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ABSTRACT  

   

The development of microsimulation approaches to urban systems 

modeling has occurred largely in three parallel streams of research, namely, land 

use, travel demand and traffic assignment. However, there are important 

dependencies and inter-relationships between the model systems which need to be 

accounted to accurately and comprehensively model the urban system. Location 

choices affect household activity-travel behavior, household activity-travel 

behavior affects network level of service (performance), and network level of 

service, in turn, affects land use and activity-travel behavior.  The development of 

conceptual designs and operational frameworks that represent such complex inter-

relationships in a consistent fashion across behavioral units, geographical entities, 

and temporal scales has proven to be a formidable challenge. In this research, an 

integrated microsimulation modeling framework called SimTRAVEL (Simulator 

of Transport, Routes, Activities, Vehicles, Emissions, and Land) that integrates 

the component model systems in a behaviorally consistent fashion, is presented. 

The model system is designed such that the activity-travel behavior model and the 

dynamic traffic assignment model are able to communicate with one another 

along continuous time with a view to simulate emergent activity-travel patterns in 

response to dynamically changing network conditions. The dissertation describes 

the operational framework, presents the modeling methodologies, and offers an 

extensive discussion on the advantages that such a framework may provide for 

analyzing the impacts of severe network disruptions on activity-travel choices. A 

prototype of the model system is developed and implemented for a portion of the 
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Greater Phoenix metropolitan area in Arizona to demonstrate the capabilities of 

the model system.  
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CHAPTER 1 

INTRODUCTION 

In the recent past, microsimulation approaches have gained much attention in the 

field of urban systems modeling. Traditional approaches to modeling the urban 

systems were aggregate in nature and were based on laws of physics making 

simplifying assumptions about the processes underlying human decision making 

behavior. However, human behavior and the decision making processes 

underlying activity-travel and location choices is complicated and is not 

adequately represented by the traditional aggregate modeling approaches. 

Microsimulation approaches on the other hand allow one to realistically represent 

choice making behavior of individuals while recognizing the interactions, 

constraints, and underlying decision making mechanisms that they experience 

(Kitamura et al 2000). The move towards microsimulation approaches for 

modeling urban systems has been facilitated by advances along four fronts. First, 

the landscape of policies that planners and policymakers seek to evaluate from the 

models of urban systems has shifted from highway oriented policies to strategies 

that manage travel demand by altering decision making behavior of individuals. 

Limitations of traditional approaches to modeling behaviorally oriented policies 

are well documented. On the other hand, microsimulation-based approaches allow 

the realistic representation of individual decision making units and the underlying 

behaviors and are suited to modeling behaviorally oriented policies. Second, there 

is rich data available in the form of travel surveys and activity diaries containing 
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information about the individual decision making units and their behavior. The 

data has allowed researchers to better understand the motivations behind 

individual activity-travel patterns and incorporate them in models of urban 

systems. Third, the transportation modeling arena has seen great advances in the 

statistical and econometric approaches which allow the modeling and analysis of 

complex decision making behaviors without making any compromises in their 

representation. Last but not the least, advances in computational technologies 

allow for efficient estimation of complex model structures, and simulation of 

millions of agents and their decision making behaviors in reasonable time 

(Goulias and Kitamura 1992, Pendyala et al. 2008). 

A. Components of the Urban System 

Research in the field of microsimulation approaches to modeling urban systems 

has happened mostly independently in three different streams namely, land use, 

travel demand and traffic assignment. Each of the three streams of research aims 

to model and represent major components of the urban system that are of interest 

to transportation planners and policymakers (Waddell 2000).  

In the area of land use, microsimulation approaches are applied to model 

the land use choices of individuals, businesses, governments and developers 

(Waddell 2002, Waddell et al. 2003). Households in a region make choices about 

where to locate, individuals within a household make choices about their fixed 

activity locations including, work place location, school location, and college 

location (while accounting for the intra-household interactions and constraints). 
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Businesses make choices about locating their offices, and other related facilities. 

Developers on the other hand make development (on empty parcels of land) or 

redevelopment decisions (on parcels of land with existing facilities). The 

aforementioned land use choices along with the socio-demographic and economic 

evolutionary process, government land regulations, and zoning policies comprises 

the urban form in a region. The land use microsimulation models employ 

principles of market clearance to model the location choices of individuals and 

businesses (including choices of relocation in simulation for subsequent years), 

and to capture the real estate decisions of developers. Land use choices are 

influenced by the existing transportation network. In particular, the land use 

choices are impacted by the level of accessibility provided by the roadway 

network. For example, the addition of a new link on the existing roadway network 

or expansion of an existing roadway facility may impact the investment decisions 

of developers which in turn may impact the location choices of individuals and 

businesses. In order to accurately capture the impact of transport accessibility 

considerations on the land use decisions, one has to incorporate appropriate 

feedback mechanisms from the transport models (in particular traffic assignment) 

models to the land use. 

In the second stream of urban systems research, namely, travel demand 

modeling, the field has experienced an increasing use of activity-based 

microsimulation approaches to modeling the demand for travel. The advent of 

activity-based approaches was spurred by the recognition of the derived nature of 
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travel. Activity-based approaches explicitly recognize the fact that individuals 

travel in order to fulfill their need to engage in activities. The primary output from 

an activity-based travel demand model is the activity-travel patterns of households 

and individuals that belong to the household along a continuous time axis 

(Kitamura and Fujii 1998).  An activity-travel pattern for an individual contains a 

detailed account of where, when, for how long, with whom, and the mode used 

for pursuing activities along a continuous time axis (Arentze and Timmermans 

2004). The model system comprises of various sub-models to generate household 

activity agendas, individual activity schedules, activity linkages, trip chaining, 

destination and mode choices subject to the different household interactions 

(including interactions among household members), and temporal, spatial, and 

monetary constraints. The travel demand model has important linkages with the 

other two components of the urban system, namely, land use and traffic 

microsimulation. Firstly, the activity-travel patterns of individuals are affected by 

the urban land form. Secondly, the activity-travel patterns generated by 

individuals affect network conditions as trips get routed and simulated. Also, 

network conditions and transport accessibility measures affect the activity-travel 

choices including destination choice, mode choice, and activity duration among 

others. Therefore as with the land use model, appropriate feedback mechanisms 

need to be incorporated to capture the dependencies between travel demand 

model and land use/ traffic microsimulation models. 
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The last stream of research in urban systems deals with traffic assignment. 

The two main components of a traffic assignment model are route selection and 

traffic simulation. The inputs for a traffic assignment model include trip tables 

providing the volume of traffic going between different pairs of origins and 

destinations, and the transportation network with link attributes, lane 

configurations and intersection control information. The outputs from a traffic 

assignment model are the link flows, and transport accessibility measures. These 

outputs in turn feed into the travel demand model affecting the activity-travel 

choices and into the land use model to affect the land use choices in the longer 

term. Typically the inputs that feed into a traffic assignment model are peak hour 

(AM, PM, or midday peak hour) trip tables. The vehicles are routed assuming 

peak/ off-peak period transport accessibility measures and also simulated using 

the same assumption. Models based on this assumption of static travel times on 

the network are called static traffic assignment models (Beckmann et al. 1956). 

However, transportation networks evolve continuously over time and the above 

assumption of static network conditions may lead to results that are not 

completely representative of dynamic conditions on the actual network. Also, the 

microsimulation approaches to generate the activity-travel patterns (activity-based 

approaches) are capable of generating demand at a much finer temporal resolution 

(1 minute) than the matrices provided by traditional four-step modeling 

approaches (1 hour). Recognition of the limitations of traditional traffic 

assignment models and the availability of travel demand at a fine grained 
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resolution has led to the development of dynamic traffic assignment models 

which can explicitly account for network dynamics (Peeta and Ziliaskopoulos 

2001, Friedrich et al. 2000). As a result, the routing of trips, simulation of vehicle 

movements, and the resulting outputs are more representative of the actual 

network conditions. Dynamic traffic assignment models also provide the same 

outputs as static assignment model with an added time dimension, i.e., time 

dependent link flows, and time dependent transport accessibility measures of the 

network. The inclusion of temporal dynamics to models of traffic assignment has 

important detriments to the land use and travel demand models and subsequent 

planning and policy analysis of urban systems. 

B. Need for an Integrated Model of the Urban System 

As identified in the previous section, research in the field of urban systems 

modeling has happened mostly independently in three different streams of 

research, namely, land use, travel demand and traffic assignment. However, there 

are inter-relationships and dependencies among these model systems as shown in 

Figure 1. First, land use choices are affected by the network travel accessibility 

measures. Land use choices in turn affect the travel demand; one of the major 

factors affecting the activity-travel choices is the land use decisions of individuals 

and households choices including home location, work location, and school 

location. Second, travel demand is also affected by the network travel 

accessibility measures. Additionally, roadway networks continuously evolve over 

time (temporal dynamics) and it is important to link these temporal dynamics with 
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the travel demand model in a behaviorally consistent fashion to have a more 

accurate representation of the production and evolution of activity-travel 

schedules of individuals over the course of a day. Finally, the network conditions 

that are simulated for a forecast year affect the land use and travel demand 

decisions in the subsequent forecast year.  

The importance of incorporating these linkages in models of urban 

systems has been well recognized by researchers (Timmermans 2003, Miller 

2006). There have been some conceptual designs and implementations of 

integrated models which combine two (of three) components of the urban system 

namely, land use and travel demand or travel demand and traffic assignment. In 

these integrated models, linkages across component systems are incorporated 

loosely through feedback processes and data exchange mechanisms. There are 

very limited if any conceptual designs or operational implementations that have 

attempted to integrate all the three components of a model system, under a single 

unifying framework in a seamless fashion across behavioral units, geographical 

entities and temporal scales.   
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Figure 1: Interrelationships across components of an urban system 

C. Beyond Loose Coupling of Component Systems 

One of the main focuses of this research effort is to present and implement an 

integrated modeling framework that goes beyond a loose coupling of the 

component system through feedback processes and data exchange mechanisms. 

There is a need for an approach that holistically integrates components of the 

urban system while accounting for the linkages and dependencies across systems 

in a behaviorally consistent fashion. The push for the design and development of 

such an integrated model of the urban system has been motivated by three key 

considerations as discussed below:  

Land Use 

Travel Demand Traffic Assignment 

Activity-travel patterns  
Network conditions 

Network conditions  

Activity-travel patterns 
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Policy Issues and Planning Applications 

In the past, transportation planners used to employ travel demand models 

primarily for planning and construction of roadway expansions serving major 

metropolitan areas. However, in the recent past with mounting concerns of 

sustainability and greenhouse gas emissions, there has been a growing interest in 

employing models to address a host of new types of issues such as air quality 

conformity, land use – transportation interaction, transit- and pedestrian-oriented 

developments, zoning restrictions, mixed use development incentives, 

implementation of intelligent transportation systems (ITS), impacts of a range of 

travel demand management (TDM) strategies and transportation control measures 

(TCM) including variable pricing initiatives, social equity and environmental 

justice in the context of special populations, transportation and public health 

(obesity), and the effect of telecommunications on travel behavior (e.g., e-

commerce, telecommuting, etc.).  These new issues impact choice dimensions 

across all the facets of the urban continuum including land use (affecting location 

choices), travel demand (affecting activity engagement decisions) and traffic 

assignment (route choices). Without an integrated model of the urban system that 

accurately captures the interrelationships and dependencies across component 

systems, one cannot conduct accurate policy impact analyses. 

Behavioral Representation 

The activity-travel engagement decisions and location choice behaviors of 

individuals are very closely related to each other. There are a number of choice 
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dimensions that characterize these decision processes. These choice dimensions 

also occur in different time steps and occur across different spatial contexts. In the 

longer term, individuals make decisions about where to live, work, and go to 

school. In the medium term people make decisions about automobile ownership, 

fleet composition and lifestyle. In the shorter term, they make week-to-week and 

day-to-day activity-travel engagement decisions characterized by activity 

schedules, destination choices, trip chaining, mode choice and route choices.  It 

can be seen that the location choices (which have typically been modeled in land 

use models), the activity-travel engagement decisions (which have typically been 

modeled in travel demand models), and route choice decisions (which have 

typically been modeled in traffic assignment models) are characterized by choice 

dimensions which are closely related to each other. It is important to capture the 

interactions across choice dimensions in a behaviorally consistent fashion because 

change in the attribute of a choice dimension in one component model system 

may have impacts on various choice dimension in a different component 

system(s) across time and space. For example, suppose the travel time for the 

commute from home to work is increasing for a certain individual. In the short 

term, the individual may choose an alternative route that is faster (captured in a 

traffic assignment model) or he may choose to alter his departure time to arrive at 

work on time (captured in a travel demand model). He may also choose to 

telecommute or alter his shift hours to travel during less congested periods which 

in turn could affect his activity-travel engagement decisions for other activities, 
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namely, pick up and drop offs, durations and locations of discretionary and 

maintenance type activities among others. In the longer term, the individual may 

choose to relocate closer to his work place or change jobs to make the commute 

manageable. This may in turn affect medium term choice dimensions namely, 

vehicle fleet composition (may choose to bike and sell that extra car if moving 

closer to work or buy an extra car if moving away from work), and lifestyle 

changes (take the transit if it is accessible as opposed to driving).  

In previous implementations of integrated models, the interrelationships 

were captured by loosely coupling model systems through feedback processes and 

data exchange mechanisms. For example, a classic approach to integration has 

been collating results from the travel demand model system and feeding that as an 

input to a traffic assignment model. However, this approach lacks the behavioral 

fidelity and fails to accurately capture the cascading impacts of choice dimensions 

across model systems. There is a need for an integrated modeling framework that 

not only ensures consistency in representation of time, space, behavioral units, 

and behavioral processes but also enhances the behavioral fidelity by 

incorporating additional themes of individual decision making that have been 

identified by researchers in the recent past. These include: 

• Interactions: There are different types of interactions that one needs to 

consider in the context of modeling the urban continuum. Individuals interact 

with one another both within the household and outside the household to 

which they belong. The activity-travel engagement patterns of individuals are 
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closely related to one another and they evolve based on various interactions, 

dependencies, resource constraints, and household roles. For example, an 

individual may engage in activities and travel alone or jointly with some other 

individual from within the household or outside the household. Individuals 

may be dependent on others for their mobility needs (e.g. children and elderly) 

and in turn affect the activity-travel engagement decisions of the person who 

tends to them.  

• Constraints: There are different types of constraints that individuals and 

households are subjected to which affect both their location choices and 

activity-travel patterns. There are resource constraints (monetary and vehicle 

fleet composition) which affect the housing arrangement (rent or buy), 

housing location (urban or rural), the type of activities one can engage in. 

Also, there are household constraints (that may require an individual be at 

home to tend to another household member), institutional constraints (work, 

and school schedules, business hours of establishments), personal constraints 

(need for sleep), time-space prism constraints (that affect how far people can 

travel to engage in activities within a given time window). There is a need to 

account for all these constraints to accurately capture their impacts on the 

decision making behavior of individuals. 

• Heterogeneity: There are differences across individuals in the way they react 

to the various scenarios, in the way they value and perceive different 

attributes. Individuals also vary in the attributes they use/evaluate in order to 
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make a decision about a choice dimension. These differences across 

individuals are referred to as Heterogeneity.  There is observed heterogeneity 

which can be captured by various land use, network, socio-economic and 

demographic variables and there is unobserved heterogeneity which is 

explained by the random term in models of choice dimensions. In the recent 

past, there have been tremendous advances in econometric approaches which 

lend themselves to a holistic accounting for heterogeneity. One can use these 

econometric frameworks to enhance the behavioral representation of various 

choice dimensions. 

• History Dependence: There is history dependency when individual’s make 

decisions about location choices and activity-travel engagement patterns. For 

example, if a person has engaged in a discretionary activity (grocery 

shopping) earlier in the day then the probability that he engages in that 

activity again later in the day is reduced and even if he does engage in the 

activity the duration is considerably limited. It is important to account for 

history dependency to avoid the incorrect representation of activity-

engagement behavior. 

Methodological and Computational Tractability 

There have been considerable advances in the methodological and computational 

capabilities which have motivated the development of integrated urban models. In 

the past, computational feasibility and tractability were a major hindrance to the 

development and implementation of integrated models. Urban modelers treated 
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land use, travel demand, and transportation supply models rather independently. 

They were however loosely coupled to capture the interrelationships by feedback 

loops and data exchange mechanisms. Land use model outputs served as inputs to 

travel demand models.  Trip tables from the demand models were then loaded 

onto networks using traffic assignment models.  Network level of service 

measures (usually travel times or other measures of impedance) from the 

assignment models may be fed back to trip distribution and mode choice models 

in the demand modeling system to reflect the effects of network performance on 

these aspects of behavior. Additionally computational tractability and feasibility 

were major roadblocks to estimating complex model structures of choice 

dimensions. As a result modelers resorted to making simplifying assumptions 

about the underlying decision making behaviors, namely, loose coupling across 

component model systems, and simple model specifications for representing 

choice dimensions among others.  

However, there have been tremendous advances on both methodological 

fronts and computation fronts that have motivated the development of an 

integrated model of the urban continuum with strong behavioral representations. 

On the methodological front, there have been remarkable advances in the field of 

statistics and econometrics. There are advanced modeling frameworks that allow 

estimation of multiple choice dimensions simultaneously while also accounting 

for heterogeneity across individuals and the common unobserved attributes 

affecting choice processes (by using complex  error covariance structures). On the 
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computational front, hardware and software advances allow for accurate 

representation of the underlying behaviors using complex model structures 

without having to resort to simplifying assumptions for the sake of computational 

feasibility and tractability. Also, it is now possible to simulate the choices of 

millions of agents to mimic their activity-travel and location decisions in 

reasonable time. 

D. Research Outline 

This research presented aims to make contributions towards furthering the 

literature on integrated models and activity-based travel demand models along the 

following lines of inquiry: 

 Objective: Present a framework for integrating land use, travel demand and 

dynamic traffic assignment components of the urban system that goes beyond 

traditional loose coupling of component systems through input-output data 

flows and feedback processes   

Research Contribution: In this research effort, a unique framework for 

integrating land use, travel demand and dynamic traffic assignment models is 

presented that goes beyond loose coupling of component systems. Unlike 

previous implementations that proceed by running component systems 

independently and link them through input-output data flows and feedback 

processes to achieve integration, the approach presented integrates the 

components under a single unifying framework while holistically identifying 
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and incorporating the interrelationships across component systems in a 

behaviorally consistent fashion.  

 Objective: Demonstrate the feasibility of the integrated model framework by 

developing a prototype  

Research Contribution: The research effort adds to the state of practice on 

integrated models of urban systems by contributing to the development of an 

integrated model system prototype dubbed Simulator of Transport, Routes, 

Activities, Vehicles, Emissions and Land (SimTRAVEL) as part of a larger 

sponsored research effort. In particular, the research contributed to the 

development of a unique dynamic time-dependent activity travel simulator by 

combining a travel demand model system implementation - OpenAMOS 

(Open-source Activity Mobility Simulator) and a dynamic traffic assignment 

model system implementation - MALTA (Multi-Resolution Assignment and 

Loading of Traffic Activities). The research effort also makes a contribution 

to the state of practice by designing and developing an activity-based 

microsimulation model of travel demand called OpenAMOS (Open-source 

Activity Mobility Simulator). OpenAMOS builds on an earlier 

implementation of an activity-based model system called AMOS (Activity 

Mobility Simulator). However, the whole software system was reengineered 

and reprogrammed to build a software system that is robust, computationally 

tractable and feasible. OpenAMOS also includes a child dependency and 

allocation module that was not included in AMOS.  
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 Objective: Illustrate differences and implications of the integration 

framework over traditional approaches to integrated modeling of the urban 

system 

Research Contribution: The research effort comprises one of the very first 

applications of an integrated model of the urban system that combines all the 

three components including land use, travel demand and traffic assignment 

with a dynamic time-dependent activity-travel simulator. The study also adds 

to the empirical literature by conducting a comparative analysis between 

sequential approach (traditionally used) and the dynamic approach (presented 

in this effort) to integrated modeling of the urban system.  

 Objective: Highlight the behavioral fidelity of new integration framework 

presented by extending the framework to model network dynamics and 

understand its implications on activity-travel engagement behavior   

Research Contribution: Additionally on the empirical front, the research 

effort comprises one of the limited applications of integrated modeling 

frameworks for modeling network disruptions and understanding their impact 

on activity-travel engagement behavior. The dynamic time-dependent activity 

travel simulator framework presented for integrating the travel demand and 

traffic assignment components of the urban system was extended to model 

network perturbations under varying levels of travel information provisions. 

The research illustrates the implications of network perturbations on activity-
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travel engagement behavior and thus demonstrates the importance of 

integrated modeling frameworks for accurately modeling network disruptions.  

 Objective: Add to the literature on activity-travel engagement behavior for 

more accurate representation of choice dimensions and decision hierarchies in 

activity-based microsimulation model systems of travel demand 

Research Contribution: The research effort investigates advanced modeling 

frameworks to model multiple dimensions of activity-travel engagement 

simultaneously. The research was conducted with an aim to better understand 

individual activity-travel engagement patterns and the behavioral processes 

involved. A probit-based discrete continuous simultaneous equations model 

was employed to jointly model activity type choice and activity duration 

choice dimensions while accounting for history dependency of activity 

engagement. Also using the same modeling framework, the choice of vehicle 

type and the distance traveled was modeled in the context of tours formed by 

households with mixed vehicle fleets as they pursue their activity-travel 

agendas.   

In the rest of the document, contributions made along these lines of 

inquiry are described in detail. In the next chapter a brief literature review of 

microsimulation approaches to modeling the three components of the urban 

system is provided. This discussion is followed by a detailed review of integrated 

modeling frameworks in literature. In Chapter 3, a novel framework for 

integrating components of the urban system is provided followed by a description 
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of the prototype of an integrated model system in Chapter 4. In Chapter 5, a travel 

demand model system dubbed OpenAMOS which was used in the development 

of the integrated model prototype is described. In Chapter 6, two empirical studies 

are presented that were aimed at advancing the state of research on understanding 

activity-travel decision making behavior using advanced simultaneous equations 

framework. In Chapter 7, results from the application of the integrated model 

prototype for modeling the urban system are presented. The results are also 

compared against traditional sequential approach to integration and similarities 

and differences are highlighted. In Chapter 8, the framework for integrating the 

travel demand and traffic assignment is extended to model network perturbations 

and the proposed framework was employed to mimic a network disruption under 

different scenarios of travel information provision. Finally, conclusions and 

directions for future research are presented in Chapter 9.  
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CHAPTER 2 

MICROSIMULATION MODELING OF THE URBAN SYSTEM 

In the last four decades, tremendous progress has been made in the arena of 

microsimulation approaches to modeling urban systems and the rich body of 

literature in the field of urban systems is a testament to the progress. In this 

chapter, a brief review of the literature on the use of microsimulation approaches 

to modeling the various components of the urban system namely land use, travel 

demand and traffic assignment is provided. This is followed by a detailed review 

of literature on integrated modeling of urban systems.  

A. Land Use Dynamics 

The earliest models of land use were based on principles of spatial interaction 

(Lowry 1964, Garin 1966, Goldner 1971, Putman 1983, Mackett 1983, Wegener 

1982). The models were based on laws of physics and made simplifying 

assumptions about the underlying processes characterizing urban land form. 

These models suffered from 7 deadly “sins” as Lee (1973) notes, namely, lack of 

sound behavioral theory, overly comprehensive, require large amount of data, 

irresponsive, complicated, mechanical, and expensive to implement. Recognizing 

these limitations, the next generation of land use models drew their inspiration 

from the developments in the field of statistical and econometric modeling; the 

models were based on random utility theory. Two econometric frameworks 

formed the basis for most of the land use models that are applied in practice 

today, namely, regional economic models and land market models (Iacono et al. 
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2008). The regional economic models study the flow of goods and services across 

zones in a region using spatial input-output models which in turn determine the 

demand for space. There have been various implementations of the regional 

economic frameworks to study land use changes including MEPLAN (Echenique 

et al. 1990), TRANUS (de la Barra 1989), and PECAS (Hunt and Abraham 2005). 

The land market models on the other hand employ principles of market clearance 

(Martinez 1992, Waddell 2000, Salvini and Miller 2005). Models based on the 

principles of land market clearance share the characteristics of a typical 

microsimulation model as they simulate the choice of each agent (individuals, 

households, businesses) subject to the various constraints and interactions they 

experience. 

B. Activity-Travel Behavior 

In microsimulation approaches to modeling travel demand, activity-based 

(Arentze et al. 2000, Kitamura et al. 1998, Pinjari et al. 2005) and tour-based 

(Vovsha et al. 2002, Miller et al. 2005) paradigms are often employed. There are a 

number of implementations of activity-based model systems in the literature. The 

model systems differ from each other in the underlying behavioral paradigms 

assumed to represent activity-travel decision making behavior and in the choice of 

the decision making unit.  

The first step in the employment of a microsimulation model system for 

travel demand is the generation of a synthetic population for a region. The travel 

demand model system takes disaggregate household and socio-demographic data 
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of the entire population in a region as input. However, the disaggregate data for 

the entire population is often not readily available. Instead, disaggregate data for a 

sample of the population and aggregate distributions of key variables for the 

entire population are available from sources like the Census or from regional 

planning agency forecasts. Therefore, synthetic populations are created by 

sampling households from the sample such that the aggregate distributions for the 

entire population are matched (Ye et al. 2009, Beckman et al. 1996, Guo and Bhat 

2007, Arentze et al. 2007). After the synthetic population is created the activity-

travel patterns for the every individual in the synthetic population is generated by 

employing statistical and econometric models for mimicking the various 

dimensions of location choices and activity-travel behavior.  

In the activity-based approach to modeling travel demand, a number of 

frameworks are used, namely, utility-maximization principles from econometrics 

(Bhat et al. 2004, Kitamura and Fujii 1998), rule-based approaches from the 

cognitive sciences (Arentze and Timmermans 2004, Kwan 1997, Pendyala et al. 

1998), and sampling from activity profiles observed in surveys based on certain 

matching criterion (McNally 1995, Barrett et al. 1999) to model the activity-travel 

decisions of synthetic households.  

The Activity Mobility Simulator (AMOS) comprises a microsimulation 

model of travel demand that is based on econometric approaches. AMOS 

comprises a series of submodel systems including Household Activity Generation 

System (HAGS) and a Prism-Constrained Activity Travel Simulator (PCATS). In 
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addition to generating the household and person-level attributes for the synthetic 

population, HAGS also generates the location choices of synthetic households and 

persons and the mandatory activity agendas for all the persons within a 

household. The mandatory activities define the skeleton around which other 

flexible activities (including discretionary, and maintenance types of activities) 

are pursued by individuals. PCATS then generates the flexible activities to 

generate the full daily activity-travel schedules of every individual in the region. 

PCATS uses the concept of Hagerstrand time-space prisms to represent the 

temporal and spatial constraints that individuals are subjected to when making 

activity-travel decisions. Sub-models within PCATS simulate the activity-travel 

records within a time-space prism corresponding to each open period (periods 

where the individual is not engaging in any fixed or mandatory activity) for every 

individual (Kitamura and Fujii 1998, Pendyala et al. 1998, Kitamura et al. 2000, 

Pendyala et al. 2008).  

The Comprehensive Econometric Micro-simulator for Daily Activity-

travel Patterns (CEMDAP) is another implementation of an activity-based travel 

demand modeling system where the choice processes of individual agents are 

modeled using econometric frameworks. The model system comprises a series of 

econometric models each representing a particular aspect of individual activity-

travel decision making behavior. CEMDAP takes disaggregate household and 

individual socio-demographic data, land use patterns, and accessibility measures 

as input and provides activity-travel schedules along the continuous time axis for 
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the entire population in a region. The model can simulate activity-travel patterns 

for both workers and non-workers (Eluru et al. 2008, Bhat et al. 2004, CEMDAP 

website). The Integrated Transport and Land-Use Modeling for Environmental 

Analysis (ILUTE) model system developed at the University of Toronto 

comprises yet another implementation of a microsimulation model based on 

econometric principles. ILUTE first simulates the land use choices including the 

built environment, and the job market which then feed as input into the generation 

of the activity-travel choices of individuals (Salvini and Miller 2005). The model 

system was developed with an aim to understand the impacts of different 

transportation related policies on the emissions and energy use in urban areas of 

Canada. The travel demand model component of ILUTE is called the Travel 

Activity Scheduling Model with Household Agents (TASHA). TASHA differs 

from the other travel demand models in that it uses the concept of projects 

(Axhausen 1998) to identify and schedule the activities and travel within an 

individual’s daily activity-travel pattern. As the name suggests ILUTE is an 

integrated modeling system incorporating both land use model and travel demand 

model in the same framework (ILUTE website).  

In contrast to the model systems above that are based on utility-

maximization principles, there are other implementations of travel demand 

models that are based on theories from the cognitive sciences namely that of 

satisficing and choice heuristics.  Albatross: A Learning Based Transportation 

Oriented Simulation System was developed for the Dutch Ministry of 
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Transportation. The model system employs decision trees to predict activity-

scheduling decisions of individuals and households. Methods from the field of 

statistics and artificial intelligence are used to create decision tress from activity 

diary data (Arentze and Timmermans 2004). One of the drawbacks of rule-based 

approaches is the potential insensitivity of the models to key cost variables like 

travel-cost and travel-times unlike parametric methods (e.g. econometric model 

approaches based on utility-maximization principles). Arentze and Timmermans 

(2005) proposed a hybrid methodology that combines rule-based and parametric 

modeling approaches called parametric decisions trees to improve the problem of 

insensitivity to key cost variables.  Other travel demand model systems that use 

rule-based approaches to generate activity-travel patterns include GISICAS (GIS-

Interfaced Computational-process-model for Activity Scheduling) that presented a 

conceptualization of an Advanced Traveler Information System (Kwan 1997), 

SCHEDULER developed by Garling et al. (1989) was aimed at understanding the 

activity scheduling and sequencing processes and Vause (1997) was another effort 

that used rule-based approaches to model travel demand.   

A third approach to the generation of activity-travel patterns involves 

sampling from household travel surveys to generate activity schedules. After 

sampling activity schedules for every person in the region, econometric methods 

like nested logit model are used to identify the mode and location attributes of the 

different activities. Transportation Analysis and Simulation System (TRANSIMS) 

employs such a travel demand component (Cetin et al. 2002, Barrett et al. 1999, 
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TRANSIMS website) to generate the activity-travel patterns of individuals in a 

region. 

C. Dynamic Traffic Assignment 

Traffic assignment is comprised of two main steps namely route selection and 

traffic simulation. In the route selection step, a route is assigned to a vehicle trip 

based on an optimization criterion using network link impedances. The link 

impedances are computed by simulating all vehicle trips through the network 

along the routes assigned in the route selection step. The techniques used for route 

selection in the static traffic assignment models include, the classic user and 

system equilibrium as presented in Wardrop (1952) with different 

implementations varying in the definitions of the cost functions used to represent 

link impedances. In user equilibrium, individuals’ choose routes to minimize 

travel times for a particular origin and destination pair. A property of this 

approach is that the users do not improve their travel time by shifting to alternate 

routes. On the other hand, route selection models that are based on system 

optimum principles minimize travel times across all vehicle trips. One of the 

properties of the system optimum technique is that, individuals’ maybe assigned 

routes which may not be the user optimum (minimum). In other words not all 

individuals’ are assigned routes that offer them the least travel time for the given 

origin and destination pair. There are different approaches to assigning traffic to 

the network in a static traffic assignment model. All-or-nothing assignment, 

incremental-load assignment, incremental-reload assignment, and Frank-Wolfe 
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technique are the most commonly used approaches (Oppenheim 1995). In the 

dynamic traffic assignment model, similar algorithmic techniques of routing are 

used to identify paths i.e. user equilibrium and system equilibrium. However, the 

link impedances are associated with an added time dimension to account for the 

temporal dynamics that networks experience.  

In the traffic simulation step, the vehicle movements are simulated 

through the transportation network along a continuous time axis. At the end of the 

simulation, the model component provides the link volumes and link impedances 

which serve as inputs to the other model components including the routing of 

trips, land use model, and travel demand model. The different approaches that 

have been used to simulate traffic flow include macroscopic, microscopic, and 

cellular automata models. Macroscopic models employ laws of physics by 

drawing analogies between the systems for which they were developed to 

simulate vehicular traffic and generate transport accessibility measures. An 

example of macroscopic models used to represent traffic flow includes Newell 

(1961) which compares traffic to gases and explains traffic flow using kinetic 

theory of gases. Other macroscopic approaches to describe traffic flow include 

those by Lighthill and Witham (1955), Richards (1956), Payne (1979) among 

others. The microscopic models and cellular automata models fall under category 

of microsimulation models. In microsimulation models of traffic assignment the 

agents are the individual vehicles. In cellular automata models of traffic 

simulation, the links are divided into cells of fixed width and time is discretized. 
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The movement of vehicles is described by simple rules which dictate how a 

vehicle moves between cells from one time step to another (Wagner et al. 1997).  

Microscopic models of traffic simulation on the other hand are based on 

microscopic traffic models of gap acceptance, car following and lane changing 

behavior (Mahut et al. 2008, Chandler et al. 1958, Gazis et al. 1959, 1961, 

Kometani and Sasaki 1959, Gipps 1981). The use of microscopic models for 

simulation is limited to small networks owing to its high computational 

requirement. An approach that has gained popularity in the recent past owing to 

its computational tractability for large networks is the mesoscopic modeling 

approach to traffic simulation. In this approach, macroscopic theories of traffic 

flow are used to estimate traffic flow characteristics on the network, the traffic 

flow characteristics are then used to simulate the individual vehicular movements 

(Cetin 2002, Chiu and Villalobos 2008, Ramachandran et al. 2008). Other 

example implementations of microscopic models for traffic assignment include 

CORSIM (CORSIM website), INTEGRATION (Van Aerde 1999), AIMSUN2 

(Barceló et al 1994), VISSIM (VISSIM website). CONTRAM (Taylor 1990), 

DYNASMART-P (Mahmassani et al. 1992), DynaMIT (Ben-Akiva et al. 1998) 

are examples of traffic assignment models employing mesoscopic approaches to 

traffic simulation. 

D. Integrated Modeling of the Urban System 

There are important linkages across components of the urban system and hence a 

need to model the components of the urban system using an integrated modeling 
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framework. Miller (2006) defines an integrated model as that which tries to 

“model the spatial evolution of a given study region system state over time as a 

function of various socio-economic, demographic, and political processes”. The 

author notes that while the need for integrated models has been recognized for a 

while, the conceptualization and operationalization of truly integrated model 

systems has been lacking because the urban system is highly dimensional and 

usually includes model components that simulate the spatial distribution of 

residents of the region, the spatial distribution of employment and other out-of-

home activity destinations, individual activity-travel decisions described by both 

spatial and temporal coordinates, the flow of goods and services again described 

by both spatial and temporal attributes. The author further emphasizes that in truly 

integrated model systems, the critical dimensions that characterize urban 

environments namely space, time, networks, socio-economic and demographics 

are adequately understood and represented.  

In the last two decades, there has been considerable progress made in the 

conceptualization and operationalization of integrated modeling frameworks. 

Some of the earliest attempts aimed at integrated modeling the urban system were 

documented in a special issue of the Transportation published in 1996. The 

integrated modeling frameworks presented in the special issue have shaped the 

modeling structures and paradigms adopted by more recent integration efforts. 

Stopher et al (1996), presents an integrated modeling framework dubbed 

Simulation Model of Activities, Resources, and Travel (SMART). The conceptual 
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framework presented integrates all the components of the urban system including 

land use, travel demand, and traffic assignment. The framework accounts for land 

prices, land use policies and constraints, socio-economic and demographic 

evolution, and the transportation supply in the region while modeling land use. 

The land use in turn along with the transportation supply and the population 

characteristics influences the formation of activity-travel patterns while 

accounting for the resources and constraints that individuals are subjected to. The 

framework also incorporates appropriate feedback loops to establish the linkages 

across the components of the urban system, namely, the influence of network 

conditions on network changes, socio-economic and demographic changes, land 

use, and activity-travel demand generation.  

In the same issue of Transportation, Kitamura et al. (1996) presented 

Sequenced Activity Mobility Simulator (SAMS) for modeling the urban system. 

In this framework, a series of model systems are employed to simulate different 

components of the urban system. The socio-economic and demographic simulator 

is a stochastic mircosimulator model for generating a synthetic population for the 

base year. The model system not only simulates the socio-economic and 

demographic evolutionary life-cycle processes that individuals and households 

experience, but it also simulates the life-cycle events that firms undergo in the 

longer term like expansion, relocation, and closure. The urban system simulator is 

a market-based microsimulation model of the urban built environment. The model 

system simulates the location choices of households, and firms and development 
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patterns of real estate developers subject to the land use policies, zoning 

restrictions and network level of service measures. The urban system simulator 

interfaces with the socio-economic and demographic simulator in generating the 

location choices. The outputs from these models then feed into the vehicle 

transactions simulator. The vehicle transactions simulator is a dynamic, stochastic 

microsimulator of vehicle fleet composition. The simulator also generates the 

vehicle fleet decisions in the longer run, including, acquiring additional vehicles, 

disposing already owned vehicles, and type of vehicle acquired or disposed. The 

Activity-Mobility Simulator (AMOS) simulates the activity-travel decisions of 

individuals along a continuous time axis. The AMOS component has been 

enhanced to include time-space constraints when simulating activity-travel 

engagement decisions (Kitamura et al. 2000). The dynamic network simulator 

employs a dynamic traffic assignment model for routing trips on the network 

along a continuous time axis. The network simulator generates the network 

conditions as outputs and closely interfaces with the urban mobility simulator, 

vehicle transactions simulator and activity-mobility simulator. Figure 2 shows the 

design of SAMS along with all the connections and feedback processes between 

the various model components. 

Ben-Akiva et al. (1996) present another framework for integrated model 

of the urban system. This was one of the earliest frameworks adopting a tour-

based approach for modeling the activity-travel engagement patterns. This 

framework provided the basis for a number of tour-based model systems in 
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practice today. The model structure includes a component for modeling the longer 

term choice processes like mobility and life styles (including employment, 

housing, activity skeleton generation, auto ownership, and information technology 

accessibility). The activity-travel engagement decisions are simulated in the 

activity and travel scheduling model. The component comprises of deeply nested 

logit models of primary tour formation, secondary tour formation, tour type, time 

of day choice, destination choice, and mode choice. The log-sums are fed from 

the lower levels of the nest into the upper levels to capture the impact of one 

dimension on the other. In the recent past, tour-based models have grown in 

complexity with the incorporation of additional attributes affecting activity-travel 

engagement, including, household interactions in activity engagement and vehicle 

allocation (Gliebe and Koppelman, 2005; Bradley and Vovsha, 2005).  Bradley et 

al. (2008) present a model structure which combines a tour-based travel demand 

model with UrbanSim on the land use microsimulation end and a static traffic 

assignment model on the traffic microsimulation end which can also be replaced 

with a dynamic traffic assignment model. Network conditions are fed back into 

the land use microsimulation model to establish the linkages between the traffic 

assignment component and the land use microsimulation model. The network 

accessibility measures also affect the travel demand model. The proposed model 

structure was developed for the Puget Sound Regional Council and utilizes the 

OPUS software architecture (Waddell 2005).  
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Salvini and Miller (2005) present an integrated model dubbed ILUTE 

(Integrated Land Use, Transportation, and Environment). ILUTE comprises of a 

number of components for simulating various dimensions of the urban system 

including, land use patterns, location choices, auto ownership, activity-travel 

patterns and goods movement.  Location choice models embody household and 

business location choice processes while the activity/travel and goods movement 

entity includes the entire gamut of activity-based travel demand model 

components and freight transportation models.  The choice dimensions within 

these components are considered endogenous to the system. Appropriate feedback 

processes are put in place to reflect the dependencies between travel choices and 

auto ownership, travel choices and location choices, location choices and land use 

patterns, and location choices and auto ownership. Demographics, regional 

economics, government policies, transport system attributes, network level-of-

service conditions, and external impacts (e.g. air quality) are considered 

exogenous to the system. However, the exogenous factors are influenced by 

outcomes of the ILUTE model system for a subsequent year simulation. 
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Figure 2: Overview of the Sequenced Activity Mobility Simulator framework 

(Kitamura et al. 1996)  

More recently, Eluru et al (2008) present an integrated modeling 

framework called the Comprehensive Econometric Microsimulator of Urban 

Systems (CEMUS). CEMUS comprises of a synthetic population generator, a 

land use microsimulation model system called CEMSELTS - Comprehensive 

Econometric Microsimulator of Socio‐Economics, Land Use, and Transportation 
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System and an activity-travel simulator called CEMDAP - Comprehensive 

Econometric Microsimulator of Daily Activity‐travel Patterns (Pinjari et al. 

2008). The activity-travel patterns that are generated from the CEMDAP 

component are then fed into a dynamic traffic assignment model for routing and 

simulating the trips and network level of service measures are obtained as output. 

The network level of service outputs from the dynamic traffic assignment model 

are fed back into CEMSELTS and CEMDAP components in the subsequent 

iteration. The process is repeated until some convergence in the network 

conditions is achieved.  

In addition to the above integrated modeling structures that aim to 

integrate all the three components of the urban system, the literature on integrated 

models is replete with model frameworks that consider only two of the three 

components with the third component considered exogenous.  Waddell et al. 

(2007) present one such model structure where simple choice models are used to 

simulate the fixed activity location choices and auto ownership. These dimensions 

are often simulated in the context of land use microsimulation models. The model 

structure features a dynamic activity pattern generation system that simulates the 

tour decisions of individuals including the number of tours, stops within tours, 

destination locations for each stop, mode on the tour. Trip lists and origin-

destination matrices are generated at the end of the dynamic activity pattern 

generation which is then used to interface with either a static assignment or a 

dynamic assignment model.  
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Another model framework that attempts to integrate an activity-based 

travel demand model with a dynamic traffic assignment model was presented by 

Lin et al. (2008). The model structure employs CEMDAP (Comprehensive 

Econometric Microsimulator of Daily Activity-travel Patterns) to simulate the 

activity-travel patterns and VISTA (Visual Interactive System for Transport 

Algorithms) for the dynamic traffic assignment. In addition to presenting the 

conceptual design, the authors also explore issues associated with integrating 

these model systems, including, technical, computational, and practical issues. 

The research work presented in the paper throws light on some of the 

implementation challenges and issues as the authors built a prototype of an 

integrated model system using Synthetic Population Generator (SPG), 

CEMSELTS, CEMDAP and VISTA model implementations. The prototype was 

used on a sample network from Dallas Fort Worth area to explore the 

convergence properties, and sensitivities.  

Another effort in the field of integrated demand-supply model is that of 

MATSim (Multi Agent Transport Simulation model (Balmer et al. 2005, 2009). 

The model system links activity schedules derived from a travel demand model 

with a dynamic traffic assignment model. Within the simulation for a year, the 

model system proceeds by iteratively adjusting the activity schedules in response 

to network conditions (feedback loops). A synthetic population is first generated 

followed by the generation of activity-travel demand for individual agents. In the 

activity-travel pattern generation, various choice dimensions are considered 
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including activity agendas, activity schedules, location choices and mode 

decisions. The activity-travel information including other socio-economic 

information is then fed into the Iterative Demand Optimization Process – 

Evolutionary Algorithm. The activity-travel schedules are first routed through the 

network using a dynamic Dijkstra router and travel episodes are included into the 

activity-travel schedules. The routes are then simulated using a stochastic queue-

based agent traffic simulation to obtain network conditions. Travelers then score 

their experience on the network, they learn from their experience, and then 

readjust their activity schedules to improve their network experiences. The 

process is repeated iteratively until individual agents can no longer improve their 

network experience scores.  

TRansportation ANalysis and SIMulation System (TRANSIMS) 

constitutes another implementation aimed at integrating the travel demand and 

traffic assignment components of the urban system (Barrett 1999, TRANSIMS 

website). TRANSIMS has a number of appealing features which has led to a 

widespread testing and application of the model system. Firstly, TRANSIMS is 

capable of handling multimodal simulations that pan across various layers of 

networks namely highway, transit, and walk links. As with any disaggregate 

model, TRANSIMS proceeds by generating a synthetic population for the entire 

region. Activity-travel patterns are then generated for all individuals including 

determination of activity types, destination locations, mode choices, durations, 

time of day. A classification and regression tree algorithm (CART) is used to 
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generate the activity-travel patterns of the synthetic population. The route plans 

are then generated for all out-of-home activities that the individuals engage 

throughout the day using label-constrained, time-dependent shortest path 

algorithm which is a modification of the classical Dijkstra’s algorithm. The route 

plans are then simulated in the Microsimulator module of TRANSIMS. The 

Microsimulator module executes the travel plans while accounting for the intra- 

and inter-modal dynamics across layers of networks. All vehicle movements are 

simulated in detail second by second including driving on roads, stopping for 

signals, accelerating, decelerating, and vehicle lane changes. The Microsimulator 

employs cellular automata principles to simulate the movement of vehicles.  

As can be seen there are various examples of integrated model 

frameworks and implementations in literature. The development of integrated 

models has partly been motivated by the need to evaluate complex policy 

scenarios that have cascading impacts across multiple facets of the urban system 

from land use and location choices in the longer term to routing decisions in the 

shorter term. The different integrated models discussed thus far do consider the 

above issues and address them to varying degrees often by making simplifying 

assumptions. However, there are no model implementations that have holistically 

considered and accounted for all these issues under a single unifying framework 

ensuring behavioral consistency. Most of the integrated models involve loose 

coupling of component model systems, namely, land use, travel demand and 

traffic microsimulation models through data exchange protocols and feedback 
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processes. Individual model systems are applied often sequentially and results 

collated before passing them onto the next model system as exogenous inputs. 

The loose coupling approach lacks the behavioral fidelity and lacks the 

consistency in behavioral units, geographic entities and temporal scales that are 

warranted to accurately account for the impacts of complex policies. For example, 

an approach often used to link demand and supply models is to convert the 

activity-travel patterns from an activity-based travel demand model into origin-

destination trip tables and provide them as inputs to a traffic assignment model. 

However, during the aggregation process all the behavioral representations are 

lost and inconsistencies are induced into underlying behaviors. While some of the 

frameworks from earlier literature do propose a tighter coupling across model 

systems, they do not describe the operational details necessary to implement the 

conceptual frameworks. Computational challenges also have limited the progress 

of truly integrated models. Component model systems are often developed using 

different programming languages, employing varying software engineering 

paradigms, and data structures. As a result, a tighter integration of the component 

model systems in a behaviorally consistent fashion has not been achievable and 

simplifications are made to represent the behavioral dependencies and inter-

relationships across model systems. 

In this research work, an integrated modeling framework is proposed that 

couples all the three component model systems of the urban system, namely, land 

use, travel demand, and network microsimulation in a behaviorally sound fashion 
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such that consistency in the behavioral units, geographic entities and temporal 

scales is maintained across all the component systems. A prototype is developed 

which overcomes the computational challenges that have often hindered the 

development of truly integrated model systems.   
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CHAPTER 3 

A NOVEL APPROACH TO MODELING THE URBAN SYSTEM WITH 

DYNAMIC TIME-DEPENDENT ACTIVITY TRAVEL SIMULATION 

The discussion in the previous chapter highlights the widespread interest in 

integrated models of the urban system. This research effort aims to build on these 

frameworks and develop an integrated model of the urban system that advances 

the cause of integrated modeling. In the section, first the overall integrated model 

design is presented. This is then followed by an extended discussion on one of 

main topics in this research which is the interfacing between the travel demand 

model and the traffic assignment model. The linkage of the travel demand and 

traffic assignment components with the land use model and a bootstrapping 

procedure for generating time-dependent travel time matrices are described in the 

last two sections.   

A. Overall Model Design 

Figure 3 presents a high-level overview of the proposed integrated model design. 

As can be seen from the figure, the process starts with a base year bootstrapping 

procedure. A base year bootstrapping procedure ensures that link travel times 

which vary by time of day (consistent with real world network conditions) are 

obtained to kick start the integrated model system simulation for the base year. 

In the base year simulation, first a synthetic population is generated for the 

region using a synthetic population generator. The land use microsimulation 

model is then run to simulate the longer term location choices of households, 
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persons, firms and real estate developers. The activity-based travel demand model 

system then simulates the activity-travel patterns of individuals along a 

continuous time axis. Both the land use microsimulation model and the activity-

based travel demand model utilize the network accessibility measures by time of 

day in generating the choices. The trips that are generated are then routed and 

simulated through the network in the dynamic traffic assignment model along a 

continuous time axis. A detailed discussion on the linkage (representing the 

dependencies and inter-relationships) between the travel demand and traffic 

assignment components is presented in the next section. The resulting network 

conditions, namely, the O-D travel times are then fed back into the activity-based 

travel demand model. Activity-travel patterns are adjusted in response to the 

modified network conditions and the trips are re-routed and re-simulated in the 

dynamic traffic assignment model. This last step is repeated iteratively until 

convergence is achieved in the network conditions.  

The converged base year network conditions are then fed into the land use 

microsimulation model to simulate the location choices for a future year including 

the land use development patterns, household and business location choices, and 

other real-estate market processes (rents, prices). There are two approaches to 

generating the synthetic population for a future year. The first approach is to 

generate a synthetic population again for the future year based on the control 

marginal distributions for a future year. Alternatively one could evolve the base 

year synthetic population by subjecting them through the various individual, 
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household lifecycle socio-economic and demographic events to create synthetic 

population for a future year.  The activity-travel demand generation and the 

dynamic traffic assignment steps are then iteratively repeated (with network 

conditions fed back) until convergence just like the base year. This process is 

repeated for each horizon year.  

As can be seen, the proposed approach is very generic and can be 

operationalized using any implementations of land use, travel demand and traffic 

assignment model systems so long as consistency in the treatment of behaviors, 

and the notions of continuity in time and space are maintained across model 

systems. Also, it may appear that the integrated modeling framework presented in 

this section resembles the sequential frameworks proposed by earlier researchers 

wherein model systems are loosely coupled through data exchange mechanisms 

and feedback loops. While the proposed approach and other frameworks may 

share some similarities, an important distinction can be drawn by the approach 

used to establish the linkages and inter-dependencies between the travel demand 

and the traffic assignment model systems. This distinction between the proposed 

model framework and the earlier integrated modeling frameworks will be 

highlighted in the next section.  
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Figure 3: Overview of the Framework for Integrated Model of the Urban System 

 

Future Year n + 1Future Year n

Bootstrapping

Base Year Simulation

Initial OD Trip Tables

Activity Travel 
Simulation

Dynamic Traffic Assignment 
and Simulation

Calibration 
Convergence

?

OD Trip Times

OD Trip Times

Activity Travel Simulation

Dynamic Traffic Assignment 
and Simulation

Assignment 
Convergence

?
OD Trip Times

Activity Travel Simulation

Dynamic Traffic Assignment 
and Simulation

Assignment 
Convergence

?
OD Trip Times

Land Use Model Land Use Model

Observed Link 
Travel Data

Activity Travel Simulation

Dynamic Traffic Assignment 
and Simulation

Assignment 
Convergence

?

Land Use Model

Y

N

Y

N N

Y

Y

N



 

  45 

B. Dynamic Time-Dependent Activity-Travel Simulation 

In this section, a detailed description of the linkage between the activity-travel 

demand model and the dynamic traffic assignment model is presented.  While the 

land use microsimulation model is integral to the integrated model system, it is 

not as closely linked as the activity-travel demand model and dynamic traffic 

assignment models. This can be explained by the differing temporal scales at 

which the choice dimensions in the component systems operate. The land use 

model deals primarily with longer term choices (location, employment, residential 

land use) whereas the activity-travel demand model and the dynamic traffic 

assignment model, deal with medium and shorter term activity-travel choices 

including where to travel, what mode, and what route among other dimensions 

which are closely linked together. 

An approach often proposed to integrate the demand model and the 

network supply model was to run the models sequentially with a feedback of the 

network conditions until convergence is achieved. In this integration approach the 

individual model systems are run independently and loosely coupled together with 

input-output data flows. A tighter integration paradigm was proposed by 

Kitamura et al (2008) to overcome the various challenges associated with 

sequential approaches. In the tighter paradigm, the travel demand model and the 

dynamic traffic assignment model are integrated by constantly communicating 

with each other along a continuous time axis as shown in Figure 4. The resulting 

activity-travel engagement decisions are truly emergent and the decision to 
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engage in activities and the various activity-travel dimensions including activity 

type, activity duration, destination, departure time, route, and arrival time are 

generated and simulated as they happen. The design presented here builds on the 

event-based approach proposed by Kitamura et al (2008) with major 

enhancements in the heuristics employed to re-schedule activities in response to 

arrival time information. Activities and trips are generated along the continuous 

time axis and they are routed and simulated on the network as they happen.  

The demand model needs an initial set of network conditions to start 

simulating the activity-travel choices. In particular, the mode and destination 

choice models use the network conditions as inputs to the mode and destination 

choice dimensions respectively. The mode choice set includes only those 

alternatives that are available at the given time while the destination choices 

includes only those destinations that are accessible (by the fastest mode; often this 

is the auto mode) without violating the time-space prism constraints. These initial 

travel times can be derived from a traditional four-step travel demand model. 

However, the network conditions derived from a four-step model are obtained 

from static traffic assignment procedures and do not reflect the dynamics that 

real-world transportation networks experience. Therefore a boot-strapping 

procedure is employed to obtain accessibility measures by time of day that are 

consistent with real-world network conditions. The bootstrapping procedure is 

described in a subsequent section. 
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Once the initial set of network conditions by time of day are available, the 

framework as shown in Figure 4 is employed to simulate the activity-travel 

decisions, route the trips, load the trips and simulate their movements on the 

network. The typical time resolution of an activity-travel demand model is 1 

minute. Thus the day can be broken down into 1440 intervals in which activity-

travel choices need to be simulated. Within each minute the demand model 

simulates the activity-travel engagement decisions of all individuals. Trip 

information is then extracted from the activity-travel engagement decisions, 

including, origin, destination, mode, and vehicle information and passed on to the 

dynamic traffic assignment for loading them on the network. It should be noted 

that not all activity-travel engagement decisions entail travel; only those activities 

with a destination different from the current location need to be loaded onto the 

network. The dynamic traffic assignment model in turn routes the trips and 

simulates them on the network. The routes are generated in the dynamic traffic 

assignment model based on the Wardrop’s principle of user equilibrium (i.e. the 

trips are assigned to paths between an origin-destination (O-D) pair such that the 

travel time across all paths between the O-D pair remains the same). The dynamic 

traffic assignment model is capable of simulating at a finer temporal resolution 

(less than a minute). Assume that the dynamic traffic assignment model is capable 

of simulating vehicle movements at a temporal resolution of 6 seconds. In order to 

avoid lumpy loading of the vehicles onto the network within a 1 minute 

simulation, the dynamic traffic assignment model uniformly distributes the trips 
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across the 1 minute simulation interval and loads the vehicles on the network 

every six seconds.  

After loading the trips, the dynamic traffic assignment model simulates the 

movement of vehicles on the network. The vehicle’s position is updated at the end 

of every six seconds. The dynamic traffic assignment stores network level of 

service conditions (typically the link travel times, volumes, delays among others). 

It is theoretically possible for the traffic assignment model system to store 

network level of service measures at a resolution of 6 seconds and then feed those 

back for the subsequent iteration. However, it becomes computationally 

burdensome and it may be behaviorally unwarranted to store network conditions 

at such a fine temporal resolution. Additionally it is hard to imagine that 

individuals consider network conditions at a resolution of six seconds when they 

make activity-travel decisions. It may be reasonable to store network conditions at 

the same resolution as the activity-travel demand model (at a 1 minute resolution 

or higher). The vehicle movements are executed on the network until the trips 

arrive at their intended destinations. Once the trips have arrived at their 

destination, the dynamic traffic assignment model passes back the arrival 

information to the demand model to make subsequent activity-travel engagement 

decisions. The activity-travel demand model then allows the individuals to engage 

in activities before reaching the next activity-travel engagement decision point. 

Since, the dynamic traffic assignment model operates at a resolution of six 

seconds; all the trips that have arrived at their destination within any one minute 
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interval are collected and then the arrival information is sent to the demand 

model. At the end of the simulation for a day, the network conditions by time of 

day are processed to generate origin-destination travel time matrices by time of 

day for use in the travel demand model and time-dependent shortest paths 

between origin-destination pairs for use in the dynamic traffic assignment model 

in the subsequent iteration.  

The steps involved in the proposed integrated framework are summarized below: 

1. At time t = 1 minute, an individual who is currently at location O1 decides to 

go pursue an activity at destination D1 using a mode M1 

2. Information about all trips that need to be loaded on the network are extracted, 

including origin, destination, mode, and vehicle attributes and sent to the 

dynamic traffic assignment model to be routed and simulated on the network 

3. Once the dynamic traffic assignment model receives information about all the 

trips that need to be loaded onto the network starting at time t = 1 minute, it 

identifies time-dependent shortest paths for the given origin-destination pairs 

based on network level of service conditions from a previous iteration  

4. The dynamic traffic assignment model then uniformly distributes the trip 

starting time across interval (t =1 minute, t= 2 minute) and loads them on the 

network to avoid lumpy loading. For the sample individual considered above, 

the departure time on the network is t = 1 minute and 36 seconds 



 

  50 

5. The trip is then simulated on the network while considering any modal 

restrictions (such as traffic backup when a transit vehicles stops at a bus 

station) 

6. At time t = 8 minute 48 seconds, the trip was completed and the individual 

arrived at the destination. However, the dynamic traffic assignment model 

waits until t = 9 minute to send the arrival information back to the demand 

model to make subsequent activity-travel engagement decisions because the 

travel demand model operates at a temporal resolution of 1 minute 

7. The individual chooses to stay at location D1 for four minutes before 

engaging in another trip  

8. Steps (1-7) are repeated to simulate activity-travel decisions for a 24 hour 

period 

As noted earlier, the shortest paths are based on network conditions from a 

previous iteration because link conditions cannot be forecast into the future 

without actually simulating trips (future period network conditions are needed to 

calculate time-dependent shortest paths). Similarly, the network conditions from a 

previous iteration are used to make activity-travel engagement decisions including 

the destinations, the modes etc. Also, though bicycling and walking are simulated 

as mode choices in the travel demand model, they are not actually simulated on 

the network. Their arrival information is estimated based on some assumptions of 

average bicycling and walking speeds respectively.  
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The proposed approach to linking the activity-travel demand system and 

the dynamic traffic assignment model has some very behaviorally appealing 

features. Firstly, the arrival times are determined by “real-time” conditions on the 

network along a continuous time axis and are not based on a pre-determined 

network state from a previous iteration. Secondly, the feedback of network 

conditions from iteration to iteration mimics a day-to-day learning process 

wherein individuals make activity-travel engagement decisions and adjustments in 

response to their travel experience from the previous iteration. This learning 

behavior is captured by the outer feedback loop shown in Figure 4. Finally, 

consistent with the notion of dynamic traffic assignment and changing network 

conditions, the shortest paths that are computed are time-dependent shortest paths. 

Time-dependent shortest paths explicitly recognize the fact that time elapses when 

one moves from one link to the next along a path. For example, say that a route 

comprises of five links. The travel time for the path is not the sum of travel times 

along the links at an instantaneous moment in time. Instead, the travel time for the 

path is obtained by considering the travel times across links in a time-dependent 

manner. For example, suppose the travel time along the first link was 6 minutes, 

then the travel time for the second link that is added to compute the travel time 

along the path is measured 6 minutes from the time the trip started. The process 

continues until the travel time for the entire route/path is computed.  
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Figure 4: Framework for Integrating Travel Demand and Traffic Assignment Models with Dynamic Time-Dependent Activity Travel 
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C. Integration with Land Use 

The framework described in the previous two sections constitutes the integration 

between demand and supply models along a continuous time axis. The connection 

and integration with the land use model completes the integrated modeling 

framework. The land use microsimulation model system aims to simulate the 

residential and work location choices of residents in a region, business and 

employment location choices, and other longer term processes that capture 

household and business evolution. The location choices are sensitive to network 

level of service and accessibility measures. Land use microsimulation models 

employ a host of network accessibility measures to capture their impact of the 

location choice decisions of individuals, businesses and developers.   

As can be seen from Figure 3 and Figure 4, there is no instantaneous 

(“real-time”) feedback from the traffic assignment model into the land use 

microsimulation model. This is because land use choices are assumed to be longer 

term choices whereas activity-travel and routing decisions are considered to be 

shorter term decisions. The accessibility indicators that people experience in one 

year are assumed to affect the location choice decisions for a subsequent year. 

Therefore the land use microsimulation operates at a temporal resolution of one 

year. The network level of service and accessibility measures from one year affect 

the location choice decisions of the next year and the location choices in turn then 

affect the integrated activity-travel demand and supply model system. The 

network level of service attributes and accessibility measures from convergence 
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of the integrated activity-travel demand and network supply model system then 

again affects the land use microsimulation and process is repeated.    

D. Bootstrapping: Generating Time-Dependent Network Inputs 

To get the integrated model started, one needs link travel times by time of day. 

One approach is to obtain the travel times from a calibrated four-step travel 

demand model. However, these travel times are based on coarse aggregations of 

time (the whole day is divided into four or five time periods) and also the origin-

destination matrices used are obtained from trip-based modeling approaches. As a 

result the travel times may not be consistent with the paradigms adopted in the 

activity-based travel demand and dynamic traffic assignment models. It is 

proposed that a boot-strapping procedure be employed as shown in Figure 3 to 

obtain starting values of travel times which are more consistent.  

The bootstrapping procedure shown in Figure 3 closely resembles the 

integrated demand-supply frameworks proposed by earlier researchers wherein 

the travel demand model and the traffic assignment model systems are applied in 

sequence with feedback loops until some convergence in the network conditions 

is achieved. There are variants of bootstrapping procedure to obtain network 

measures (time-varying travel time matrices for use in the activity-based demand 

model and time-dependent link travel times for use in the dynamic traffic 

assignment model) consistent with base year conditions depending on the model 

system implementation for generating the demand. In the first bootstrapping 

procedure, a full-scale microsimulation-based demand model is run sequentially 
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with a dynamic traffic assignment model and both model systems are run 

repeatedly with input-output data exchanges until convergence is achieved. In the 

second bootstrapping procedure, the demand is kept constant by using origin-

destination travel time matrices obtained from a four step model and only the 

dynamic traffic assignment model is run iteratively to convergence. The choice of 

the bootstrapping procedure is dictated by application context. A discussion of the 

bootstrapping procedure employed in this research effort and the rationale for the 

selected approach are presented in Chapter 6.  
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CHAPTER 4 

PROTOTYPE OF A DYNAMIC INTEGRATED MODEL OF THE URBAN 

SYSTEM: SIMTRAVEL  

The framework presented in the previous chapter was operationalized by building 

a prototype of an integrated model system dubbed SimTRAVEL – Simulator of 

Transport, Routes, Activities, Vehicles, Emissions, and Land. In this chapter, first 

the model considerations that went into the development of the prototype are 

described followed by a discussion of the implementations of component model 

systems used to build the prototype. In the third section, the behavioral and 

computational linkages across travel demand and traffic assignment model 

systems are presented in detail.  

A. Prototype Design Considerations 

As with the design and development of any model system, there are issues that 

need to be identified and addressed. This exercise becomes all the more important 

in the context of integrated model system which aims to link model systems 

representing the different components of an urban environment, namely, land use 

models that simulate the longer term location choices, travel demand models that 

generate the medium and shorter term activity-travel choices, and traffic 

assignment models that mimic the shorter term route choice decisions. A number 

of these considerations have been identified in literature earlier and have been 

addressed to varying degrees in previous implementations of integrated models. 

The proposed framework and implementation builds on previous literature and 
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attempts to address the various considerations which were either addressed by 

making simplifying assumptions or in some instances ignored. 

Choice of Behavioral Unit 

In any microsimulation model system, the first task is to identify the behavioral 

unit at every choice step and often the behavioral units vary across choice steps. 

For example, in the land use model, the behavioral unit is a household when 

making the determination of a household’s location whereas in the choice of 

workplace location, the behavioral unit is the person (individuals within the 

household). The issue of identifying behavioral units is amplified further in the 

case of integrated model systems. While it may be a challenge to identify and 

accommodate different behavioral units for the different models within the 

integrated model system, it is important to understand that the identification of 

behavioral units is necessary and desirable so as to accurately establish the 

behavioral soundness of the models and the choice processes they represent. A 

secondary issue that arises due to variation in the behavioral units across models 

is that of book-keeping. Appropriate book-keeping mechanisms need to be 

implemented within microsimulation model systems to ensure consistency and to 

keep an accurate tracking of agents and resources including households, persons, 

vehicles, riders, and other agents throughout the model system. Book-keeping 

mechanisms also allow one to incorporate additional behaviors like constraints 

and interactions which are important factors in shaping location choices and 

activity-travel engagement decisions. 
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Identification of Choice Dimensions and Representation of Decision Hierarchies 

The main aim of an integrated model system is to represent the entire range of 

choices that represent an urban system including longer term location choices of 

households, persons, and businesses, medium and shorter term activity-travel 

choices of households and persons, and routing choices of individuals. A major 

challenge in this process is to identify the various choices. Further each of the 

choice dimensions may be characterized by a series of attributes that need to be 

identified and specified. For example, within the travel demand model, the fixed 

activity schedule generation will comprise a submodel generating the number of 

fixed activity episodes including work and school, a series of submodels for 

identifying the temporal anchors for the fixed activity episodes (both work and 

school). Also, with recent advances in methodological approaches, availability of 

richer data on individual decision making behavior and the computational 

advances combined with the growing need to analyze complex policies has led to 

a growing interest in incorporating additional choice dimensions in model systems 

of the urban system. For example, there has been a growing interest in 

incorporating models of vehicle fleet composition and vehicle type usage so as to 

evaluate policies aimed at impacting vehicle holding and vehicle usage patterns 

(e.g. impact of hike in fuel surcharges on VMT - Vehicle Miles Traveled, impact 

of providing incentives for buying cleaner and greener cars). 

In addition to identifying all the choice dimensions that represent an urban 

system, one also needs to accurately identify and represent the decision 
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hierarchies across choice dimensions. The literature on activity-travel behavior is 

replete with examples of interaction between choice dimensions. For example, 

activity type choice affects destination and mode choices, solo versus joint 

activity engagement, and time of day choice, activity duration affects timing and 

vice versa, travel duration affects activity duration and vice versa, vehicle 

ownership affects mode choice and destination choice. In all of these instances, 

multiple dependent (endogenous) variables affect one another calling for the 

adoption of simultaneous equations model frameworks that reflect the 

simultaneity in many choice processes. Even within simultaneous equations 

model systems, one needs to determine the appropriate model specification, error 

correlation structure, and dimensionality of the model system (Ye and Pendyala 

2009, Konduri et al. 2010). The representation of decision hierarchies is not just 

limited to choices within the travel demand model system and they permeate 

across model systems. For example, if one were to consider the classical self‐

selection problem in residential location choice modeling, residential location 

choice is endogenous together with vehicle ownership, vehicle fleet composition 

and vehicle usage patterns (Eluru et al. 2010). It can be seen that the residential 

location choice is part of the land use model and vehicle fleet and mode choice 

are part of the travel demand model. Recent work in this area has shed light on 

appropriate decision hierarchies and highlights the importance of accounting for 

interactions across choice dimensions and specifying appropriate decision 

hierarchies.  
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Representation of Space 

Most of the choice dimensions that are considered in integrated models have a 

spatial attribute attached to them. Traditional models of land use and travel 

demand have operated at an aggregate resolution of space, namely, traffic analysis 

zones (TAZ). However, with the advent of microsimulation-based approach to 

modeling the urban system, there is a growing interest to represent space at a finer 

scale. Census provides data at the spatial resolution of census tracts, blockgroups, 

and blocks, local planning agencies now maintain land use data at individual 

parcel level, with some agencies even keeping stock of buildings within parcels, 

employment by type within those buildings or real estate by type and occupancy 

within those buildings.  

The choice of the spatial unit and its representation in the integrated 

model system is constrained by a multitude of factors. First, the availability of 

data imposes a major constraint on the representation of space. Not all agencies 

maintain land use data at the most disaggregate level. Therefore it may not always 

be possible to represent space at the most disaggregate resolution of buildings or 

parcels. Second, the choice and representation of spatial resolution is affected by 

the decision making process underlying the choice under consideration. How do 

people perceive space when making location choices? Is there a hierarchical 

decision making process involved in making location choice? For example, it may 

be plausible to assume that when making residential location choice, households 

first make a choice of a certain area within the region based on some socio-
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economic and demographic attributes of the area, transport accessibility measures 

with respect to their fixed activity locations like school and work. Then, after 

making the choice of an area within the region they may then make the choice of 

the neighborhood, subdivision, parcel, and finally the individual building unit. 

The choice of destination locations may also range in choice from zones at one 

extreme to individual building units at the other extreme. If the individual wishes 

to go grocery shopping then it may be more appropriate to treat space at the parcel 

(or building unit) level. However, if an individual wishes to go window shop in 

area before purchasing something, then a higher spatial resolution like say TAZ 

may be the appropriate unit of analysis. Third, the disaggregate representation of 

space is associated with computational overhead (both processing and memory 

related). The roadway networks associated with a finer spatial resolution are 

generally larger (exponentially proportional to the number of spatial units) and are 

difficult to handle. While there are operational land use models that have 

represented space at the lowest resolution of parcels, such a finer scale 

representation of space hasn’t been carried out in travel demand and traffic 

assignment models.   

Representation of Time 

Many of the same issues that are encountered in the representation of space are 

also encountered in the representation of time. When considering the time 

dimension in integrated models, on one extreme the location choices like work 

place location choice, residential location choice, school location choice, real 
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estate development patterns evolve over yearly/multi-yearly time frames. On the 

other extreme, the simulation of vehicular movements in the traffic assignment 

models occur in time steps of seconds. And there are other choice processes 

within the integrated model system that proceed and evolve in time steps that are 

between these two extreme representations of time.  For example, the vehicle fleet 

choices may be medium-term (yearly) to longer-term (multi-year), activity-travel 

choice dimensions may vary from longer term to shorter term. The activity-travel 

choice dimensions of fixed activities may be considered longer term decision 

processes, the commute level trip attributes like departure time, departure mode, 

and trip chaining patterns may be considered shorter term choices. Activity-travel 

dimensions (including the associated trip level attributes) for non-fixed activities 

like discretionary and maintenance activities may be considered shorter term and 

assumed to vary from day-to-day. The temporal scale of a choice process also 

determines the structure of the feedback loops which are established to obtain 

convergence. For example, the longer term choice processes like location choices, 

fixed activity schedules may be simulated once for a base year whereas the 

shorter term day-to-day activity-travel choice processes may be repeated across 

iterations until some convergence criterion are satisfied. Therefore, it is important 

to recognize the differences in temporal scales across choice dimensions so that 

appropriate model structures are used in establishing linkages. 

Additionally the accurate representation of space and time is also 

important to generate location choice sets when generating the activity-travel 
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choices for individuals within any open time-space prism, and representing 

activity-engagement interactions. Time‐space prisms represent the constraints that 

influence and govern activity‐travel patterns that are measured and observed in 

travel surveys. The explicit consideration of time‐space interactions provides the 

ability to intelligently sample destination choices for modeling activity location 

choices and allow for simulating activity-engagement decisions. 

Representation of Time-Dependent Networks 

The representation of networks has gained much attention with the advent of 

microsimulation models of land use and transport systems. Networks are 

comprised of nodes (representing intersection elements) and links that connect 

nodes (representing the roadway elements). In addition to these, networks are also 

comprised of additional nodes representing generators and attractors (TAZ 

centroids in a zone based representation of space, individual activity locations in a 

finer representation of the network). Transit networks are also comprised of nodes 

and links like roadway network but additionally they also include additional 

elements to represent the access to transit by walk and auto. In most traffic 

assignment models, transit is not treated at the same fine grained resolution as 

roadway users wherein individual agents are tracked across multimodal networks 

between origin-destination pairs throughout the day.  

In this research effort, given the emphasis on microsimulation approaches 

to land use and transport systems, the network representation will be at a finer 

resolution with high fidelity. Also, since the dynamic traffic assignment models 
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will be used for routing and simulation of trips, time-dependent network 

conditions at a temporal resolution consistent with behavior are necessary. In 

addition to the regular network attributes such as travel times, time-dependent 

networks will also include cost attributes such as transit fares, parking pricing, 

and tolls. All the links will include lane configuration, speed limits, and percent 

trucks information, and nodes that represent intersections will include information 

regarding turning bays, intersection control and potentially could include signal 

phasing plans (subject to data availability).  

Transit adds a challenging dimension in the microsimulation modeling 

context.  When activity-travel patterns are simulated, there is no guarantee that the 

time of day choice will be consistent with the availability of transit as dictated by 

transit schedules. Therefore it is important to have a transit network that includes 

detailed information on stops, routes, schedules by time of day, transfer points, 

access and egress opportunities so that transit trips can be accurately modeled. In 

case of transit modes sharing the roadway network, both networks need to be 

integrated to reflect the influence of one on the other (transit vehicles on auto and 

vice-versa). Additionally, transit schedules and routes affect activity timing, 

destination and mode choices particularly in trip chaining contexts. 

Microsimulation approaches provide a good avenue to incorporate these 

behaviors by introducing necessary heuristics at critical decision steps in the 

transit modeling process to keep track of riders, adjust their activity-travel 

patterns to be consistent with transit schedules and network performance, and 
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track them through their tours to completion (for example, a traveler should not be 

left stranded at a time and place when transit is not available). 

Representation of Stochasticity 

Human behavior is complex and is characterized by considerable randomness. 

This randomness in the decision making behavior exhibited by individuals is best 

described as a stochastic process and is modeled using probabilistic model forms 

and specifications. Also, in traditional surveys, one cannot obtain all attributes 

contributing to an individual’s decision making behavior. Therefore there is a 

need to account for these unobserved attributes in models to avoid incorrect 

inferences. Often the randomness exhibited by individuals along with the 

unobserved attributes is captured by specifying an error term in models and a 

probabilistic distribution form is assigned to this error term. Additionally error 

correlation structures are specified to capture the correlation across decision 

variables or across choice dimensions due to common unobserved variables to 

avoid incorrect inferences of coefficient estimates (Mannering 1986, Pendyala 

and Bhat 2004, Konduri et al. 2010).  

In a microsimulation model system, the simulation proceeds by first 

specifying a random seed and then running a series of models and submodels to 

simulate the choices of individuals. The choices then correspond to one stochastic 

realization of the human decision making behavior and is dependent on the 

random seed. If one were to change the random seed, another realization of the 

human decision making behavior is obtained. As can be seen by changing the 
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random seed one can simulate the stochasticity in human decision making. The 

issue then is to determine how many times the choices should be simulated to 

assess the impact of policy on human behavior. There are two approaches that 

have often been used to study systems that are stochastic. The first option is to 

perform a number of runs and then average the results across the runs to represent 

an average outcome or forecast. The second options also entails performing a 

number of runs but then instead of reporting the outcomes in an aggregate form 

like the previous option, report the forecasts in a distributional form and report an 

acceptable range (confidence intervals) as opposed to point estimates for potential 

outcomes or forecasts. The latter option may be more appropriate in this context 

as this captures the stochasticity associated with human decision making behavior 

and provides a range of possible outcomes.  

Representation of Activity Types 

The representation and classification of activities into activity types (trip 

purposes) has been a subject of much interest. In the past activities were classified 

into mandatory activities, flexible activities and discretionary activities based on 

the temporal and spatial rigidity (or flexibility) of the activities. Mandatory 

activities are those that were fixed in time and space, flexible activities are those 

that can be shifted either in time or space or both time and space but cannot be 

forgone whereas discretionary activities are those that are flexible in time and 

space and those that can be foregone. Activities such as work and school are 

generally classified as mandatory activities, shopping and personal business 
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related activities are classified as flexible activities and social recreation and 

entertainment type of activities are classified as discretionary activities. While this 

basic activity classification has served well in previous implementations of 

activity-based models, the classification lacks the richness of information due to 

the coarser classification and may lead to poor sensitivity of the models. Also, it 

may be hard to incorporate household interactions in models of activity-travel 

engagement due to the coarser classification based only on temporal and spatial 

flexibility (Doherty 2006). 

In the activity-based travel demand model that will be employed in the 

integrated model, it is important to have a robust treatment of activity types 

because for any base year, first a primary skeleton of activities is constructed for 

each individual (comprising of mandatory activities followed by flexible 

activities) and then the activity-travel engagement decisions for discretionary type 

activities are evolved over the course of a day in response to network conditions. 

Additionally, the activity-based travel demand model also locks the skeleton of 

activities of individuals within a household based on intra- household interactions 

(such as child related activities) and the activity classification should consider the 

joint activity-travel engagement in addition to the temporal and spatial flexibility. 

Therefore it is important to have an activity type classification which will allow 

for accurately constructing the activity-travel skeletons of individuals while 

recognizing the household interactions.  
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Feedback Processes: Behavioral and Computational 

There is both a behavioral and computational consistency motivation for 

including feedback processes in integrated models of urban continuum. Network 

conditions directly impact various dimensions of the activity-travel engagement, 

namely, activity generation, activity scheduling, time of day choice, destination 

choice, and activity linking or trip chaining. For example, if it is likely that a time‐

space prism constraint is going to be violated, an activity may be shifted to 

another open time‐space prism period, thus shifting the activity in time. 

Alternatively, the activity may be pursued at an alternative destination which is 

closer to the current location of the traveler thus resulting in savings in travel time 

and adherence to time‐space prism constraints. Another possibility, particularly 

for those activities where spatial and temporal fixity is quite rigid, includes a 

modification of the duration of the activity. For example, if one is running late for 

work, a movie, or a restaurant, the duration of that activity may be shortened by 

the amount equal to the excess travel time. The converse is also true; when travel 

times are less than anticipated, then a new activity may be inserted into the 

agenda, an activity originally scheduled for a different time period may be shifted 

in time to fill up the excess time available in the current time‐space prism, a 

traveler may visit a more desirable destination that is farther away, or an existing 

activity may simply be prolonged in duration to fill up the extra available time. 

Therefore there is a need to incorporate feedback processes that reflect the 

behavioral adjustments and adaptations that people make to their activity-travel 
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engagement patterns in response to network conditions. Additionally there is a 

computational consistency motivation for inclusion of feedback loops (Siegel et 

al, 2006). Network conditions serve as inputs to various dimensions of activity-

travel engagement as noted earlier. Once the activity-travel engagement patterns 

are generated, they are then loaded on the network (trips are routed and simulated) 

resulting in another set of network conditions. It is desirable to ensure that 

network conditions that serve as inputs to a travel demand model are consistent 

with the network conditions that are obtained from the traffic assignment model. 

Procedures of feedback processes to address consistency of network conditions 

have been addressed by Boyce and Bar‐Gera (2003, 2006). The authors suggest 

the use of averaging techniques across iterations to avoid oscillations in the 

convergence criterion and to reach a stable solution efficiently. It should be noted 

that while the network conditions affect the location choices in a land use model, 

the linkage represents an evolution of the system over time wherein network 

conditions of one year affect the location choices and land development patterns 

of the following year. The linkage does not represent a feedback process as there 

is no iterative process involved between the land use model and traffic assignment 

model.  

Model Calibration, Validation, and Sensitivity Analysis 

Model calibration, validation, and sensitivity analysis are three important aspects 

of any modeling effort. These issues are of even more significance in the 

integrated model system which comprises of three different component systems 
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(land use, travel demand and traffic microsimulation) each with their own set of 

models and submodels. In model calibration, the coefficient estimates are 

modified to match the model outputs with observed patterns of individual 

decision making behavior (collected through travel surveys). Model validation on 

the other hand involves comparing aggregated model outputs with observed 

ground counts (for example, link traffic volumes, transit route ridership and stop 

boardings, business and employment characteristics).  While model calibration 

ensures that model systems are able to closely represent the individual’s decision 

making behavior, model validation ensures that the model systems closely 

represent the real world conditions. In the context of integrated model system, it is 

necessary to incorporate feedback loops and re-calibrate and re-validate the 

models as necessary to obtain results that are consistent. In addition to model 

calibration and model validation, one also needs to establish a series of heuristics 

to ensure consistency in predicted model behavior at the disaggregate level. For 

example, household and person activity-travel decisions simulated by a travel 

demand model have to be logical and consistent. Children that are dependent on 

adults cannot be abandoned; a person should not engage in multiple activities at 

the same time, joint activities across household members should be spatially and 

temporally feasible. Similar heuristics can also be established in the context of 

land use and traffic assignment components of the integrated model.  

A key motivation for a truly integrated model system is the ability to 

analyze policies and impacts of socio-economic and demographic changes in a 
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modeling environment where the individual behaviors are represented 

consistently across the wide array of choices that constitute the urban system. A 

truly integrated model system provides the ability to capture the direct and 

indirect effects of changes to the system as effects are felt throughout the model 

continuum. For example, a developer’s land use development choices will affect 

the household and business location choices, which in turn impact the entire range 

of activity‐travel choices, and traffic patterns. Therefore it is important to have a 

robust model that is responsive to policy changes, including, socio-economic, 

demographic, land use, network conditions, and travel demand management 

measures. For example, the model system should be able to respond to land use 

policies including those that promote transit‐oriented development along new 

major transit routes and light rail lines and zoning policies that promote new 

mixed use development in an area. The model system should be able to reflect the 

impacts of corridor or area‐wide pricing policies, fuel price shifts, parking pricing, 

and the entire range of network level of service impacts. These include anything 

from simple capacity expansion to more sophisticated dynamic tolling methods 

that can be analyzed using dynamic traffic assignment models embedded within 

integrated model systems. The model system should be capable of responding to 

shifts in socio‐economic conditions in the area. Shifts in population and 

employment characteristics bring about shifts in activity‐travel demand. All of the 

changes noted here may happen at the macro‐ or micro‐ level and the model 

system should be able to respond to these changes appropriately.  
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Software Architecture, Data Structures and Computational Issues 

As noted in an earlier discussion, the modeling of components of the urban 

system has occurred mostly independently in the fields of land use, travel demand 

and traffic microsimulation. The individual model systems have been developed 

on different paradigms of software architecture, adopting different data structure 

designs and are subjected to varying sets of computational issues. The component 

model systems are often developed using different programming languages. As a 

result, it is often difficult to establish linkages across models systems in a 

seamless fashion based on sound behavioral foundations due to the computational 

limitations. Researchers have often made simplifying assumptions on the linkages 

by applying the model systems sequentially. While the approach has served well 

previously, the growing emphasis on more sound representation of individual 

decision making behavior has called for a tighter coupling between model 

systems. Secondly, microsimulation approaches to modeling the urban system are 

subject to large data and memory requirements, and call for huge software and 

hardware resources to run model systems of this nature. This is particularly true 

for large urban areas where one is dealing with millions of parcels in land use 

model systems, millions of persons in activity‐travel demand model systems, and 

tens of millions of trips in dynamic traffic assignment. The problem is only 

magnified once feedback loops are accounted for. The development of integrated 

microsimulation model systems has been partly hindered by the software 

architecture differences, data structure handling, and computational limitations. 
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Advances in the field of computer hardware and software allow one to 

address some of the issues highlighted above. There are various programming 

paradigms and libraries in place which allow one to make functions calls from a 

model system written in one programming language to a model system written in 

another programing language (for example, one can make function calls from a 

dynamic traffic assignment model coded using C++ to a travel demand model 

developed using Python or vice versa using the concepts of embedding and 

extending). This however calls for a good Application Passing Interface (API) 

design so that the necessary function calls across model systems can be 

facilitated. Advances in the database management systems allow for very efficient 

way to organize, store, manage, and manipulate large data sets. Additionally, 

there is need for maintaining consistency and parsimony in data structures in the 

context of the development of the integrated model system because model 

systems often share the same data. For example, mode choice and destination 

choice models use network level of service measures to model choice behavior. 

Similarly, land use microsimulation models use network level of service measures 

from one year to model development and location choices of the following year. 

Socio‐economic data is used by the population synthesizer and in modeling 

location choices in the land use microsimulation model system. The dynamic 

traffic assignment model and model calibration and validation steps involve the 

use of traffic volume information. As can be seen, the same data items serve as 

inputs for modeling different choice behaviors. It is desirable to have parsimony 
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in databases where different model components can access the same information 

from the same database as needed. This can be facilitated by database 

management systems which also lend themselves to simultaneous access from 

different model systems. The computational issues associated with disaggregate 

representation of agents and their choice processes can be handled by modern day 

hardware systems. Additionally there are software paradigms in place like 

parallelization, namely, symmetric multiprocessing (SMP), message passing 

Interface (MPI) and socket programming, wherein one can distribute the 

computational load across available computing resources to gain efficiencies in 

run times. 

Model Considerations and Treatment in SimTRAVEL  

All of the issues noted above were considered in the development of the 

SimTRAVEL prototype. The degree to which the different design aspects were 

considered and addressed was dictated by two key factors. First and the most 

important factor was availability of data. While the intent was to introduce as 

much fidelity as possible in the behaviors, the temporal units and spatial scales, 

the prototype development was limited to a certain extent by the availability of 

data. Second factor that guided the prototype development effort was 

computational tractability and feasibility. Though there have been tremendous 

computational advances, there is still significant overheads associated with 

simulating millions of agents their behaviors and tracking their movements 

through the different dimensions of the urban system. Nonetheless the prototype 
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developed comprises a significant contribution that addresses all of the key design 

considerations that go into models of the urban system.  Table 1 and Table 2 

provide a summary of the different design considerations and the treatments 

applied in the initial prototype of the integrated model system – SimTRAVEL. 

Figure 5 provides a high level overview of the process flows in the integrated 

model prototype, temporal scales at which the various model systems are 

operating and the behavioral and computational feedback loops entailed in the 

integrated model run for a horizon year. The emphasis of this research effort was 

in the development of the transport component of the prototype and the 

application of the prototype to simulate activity-travel engagement patterns in the 

base year. Therefore the discussion in the table and subsequent chapters has a 

significant emphasis on the integration of the travel demand and traffic 

assignment components of the urban system; while the integration of the land use 

component adheres to all of the design considerations noted in this chapter, the 

discussion is just limited to integration of the transport components of the urban 

system.  
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Figure 5: Overview of the SimTRAVEL Integrated Model Prototype 

MALTA

OpenAMOS

UrbanSim

PopGenSynthetic Population Generator

Location Choices from Land Use 
Model

Vehicle Ownership and Fleet 
Composition

Daily Status for Fixed Activities

Fixed Activity Prism Generator

Child Daily Status and Allocation

Activity Skeleton Reconciliation

Enhanced Prism-Constrained Activity-Travel 
Simulator

• Activity-Travel Dimensions
• Bookkeeping of trip occupants and ensuring 

spatio-temporal consistency and continuity

Activity-Travel Records for 
Each Person

L
o
n
g

e
r 

te
rm

: 
y
e
a
r

M
e
d
iu

m
 t

e
rm

: 
d
a
y

Trip Routing 
and Simulation

S
h
o
rt

e
r 

te
rm

: 

m
in

u
te

-b
y
-

m
in

u
te



 

   

7
7
 

Table 1: Summary of the Model Design Considerations and the Treatments Implemented in SimTRAVEL 

 

  
  Challenges Proposed Treatment  

1. Choice of Behavioral Unit Individuals are the basic units of analysis; the activity-travel patterns of individuals are 

generated while considering the various interactions (child dependency and allocation, 

joint activity engagement) 

2. Identification of Choice 

Dimensions and Representation 

of Decision Hierarchies 

Choice dimensions for various attributes of activity-travel engagement were identified, and 

decision hierarchies were established. In the initial prototype, the choice dimensions were 

estimated using independent modeling frameworks. Chapter 5 describes the travel demand 

model system and the enhancements over its legacy implementation. Chapter 6 presents 

some empirical research looking at choice dimensions simultaneously 

3. Representation of Space The basic unit of space is traffic analysis zone 

4. Representation of Time The temporal scales of various choice dimensions have been identified and are indicated in 

Figure 5. Feedback processes are appropriately incorporated to reflect the dependencies 

across choice dimensions. Activity-travel patterns are generated at the temporal resolution 

of 1 minute and traffic simulation is performed at a resolution of 6 seconds 

5. Representation of Time-

Dependent Networks 

Network level-of-service conditions by time of day are considered using skim matrices for 

24 hourly periods in a day 

6. Representation of Stochasticity Random utility based frameworks are employed and appropriate modeling methodologies 

are used to model the various choice dimensions and account for stochasticity 

7. Representation of Activity 

Types 

In-home activity engagement patterns are considered in addition to a host of out-of-home 

activity types (including, work, school, personal business, shopping, eat meal, social, 

sports and recreation, other, pickup, drop-off) to cover the full range of activities that 

people participate in during the course of day.  

8. Feedback Processes: Behavioral 

and Computational 

Feedback structures were employed to capture computational and behavioral inter-

relationships and dependencies across components of the urban system 
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Table 2: Summary of the Model Design Considerations and the Treatments Implemented in SimTRAVEL (continued) 

 

 

 

 

 

  
Challenges Proposed Treatment  

9. Model Calibration, Validation 

and Sensitivity Analysis 

Model calibration was performed using a 5 percent sample by trying to replicate 

weighted survey distributions. While validation was not done in the traditional way by 

using a hold out sample technique due to the limited sample size. Validation was 

performed by means of replicating activity-travel characteristics observed from the 

survey sample. Replication was limited to travel demand characteristics and was 

performed by comparing a host of activity-travel engagement attributes obtained from 

full population runs against observed weighted survey distributions. 
10. Software Architecture Python and C/C++ programming language are used in component model system 

implementations.  

11. Data Structures  PostgreSQL - a very mature and open source Relational Database Management System 

(RDBMS) was used for data storage needs in OpenAMOS, UrbanSim utilizes a native 

data format and MALTA does not employ any database system and uses flat file formats 

to store and retrieve data  

12. Computational Issues Instead of approaching the simulation using a purely agent-based paradigm where 

activity-travel engagement decisions are generated by subjecting the agent through the 

various activity-travel choice dimensions, a hybrid approach was adopted. In this hybrid 

approach, for choice dimensions that do not involve rules/heuristics for generating the 

choice, a matrix approach is used wherein each individual row corresponds to an agent 

and the calculations proceed by using matrix capabilities. For choice dimensions that do 

not involve rules/heuristics for generating the choice, the choices are generated one agent 

at a time. 
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B. Component Model System Implementations in SimTRAVEL 

In this section, the implementations of component model systems that were used 

to build the integrated model prototype - SimTRAVEL are briefly described.  

Synthetic Population Generator 

The first input for the application of any microsimulation model system is socio-

economic and demographic data about every household and person in the region. 

This data is generally not readily available. However, disaggregate socio-

economic and demographic data about household- and person-level characteristics 

of interest are available for a sample of the population in the region (e.g. travel 

surveys, and census decennial survey) and aggregate marginal distributions of key 

household- and person-level variables of interest (e.g. agency forecasts, census 

summary files) is available. Synthetic population generators are often used to 

expand the disaggregate sample so that known aggregate distributions are 

matched to generate a synthetic population for a region. In the context of 

generating a synthetic population, it is important to ensure that the synthetic 

population generator employed can not only match given distributions of 

household variables of interest but also known distributions of person variables of 

interest. This will ensure that the synthetic population closely matches the 

household and individual socio-economic and demographic profiles of region 

which in turn impact the land use, activity-travel engagement and route choice 

decisions.  



 

  80 

PopGen - a synthetic population generator is used to generate a synthetic 

population for the region in SimTRAVEL. PopGen implements a heuristic 

algorithm called Iterative Proportional Updating (IPU) algorithm for generating a 

synthetic population while ensuring that household- and person-level marginal 

distributions are matched simultaneously (Ye et al. 2008). PopGen is a stand-

alone open-source software package developed using Python and is available to 

the public under the GNU General Public License (GPL) agreement. 

Land Use Microsimulation Model 

The land use microsimulation model that will be employed in the development of 

the SimTRAVEL prototype is UrbanSim. UrbanSim is an open-source land use 

microsimulation model which comprises of a series of models that simulate the 

location choices of households, persons, businesses, real-estate agents while 

explicitly considering the zoning policies and restrictions that built environments 

experience. UrbanSim is also developed using python and available under the 

GNU GPL agreement.  

Activity-Travel Demand Model 

The travel demand microsimulation model system that will be employed is 

OpenAMOS. OpenAMOS is an open-source activity-based travel demand model 

system which generates the activity-travel patterns of individuals. OpenAMOS 

builds on previous work namely, AMOS (Activity-Mobility Simulator) and its 

implementation for the state of Florida called FAMOS (Florida Activity-Mobility 

Simulator). AMOS comprises of two major components namely, the Household 
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Attributes Generation System (HAGS) and Prism-Constrained Activity Travel 

Simulator (PCATS). Some fundamental behavioral paradigms have been 

preserved in OpenAMOS from the legacy implementation. However OpenAMOS 

enhances the model framework to more realistically represent individual activity-

travel decision making behaviors and the constraints they experience including 

child dependency and allocation, intra-household activity-travel engagement 

interactions, multi-modal trip generation among others which were not adequately 

addressed in the legacy implementation. OpenAMOS is implemented in Python 

and is available to public under the GNU GPL agreement.  

Dynamic Traffic Assignment Model 

The dynamic traffic assignment (DTA) model system that was deployed in the 

integrated model prototype is MALTA (Multi-Resolution Assignment and 

Loading of Traffic Activities). The traffic assignment process in MALTA is 

handled by a new Hierarchical Time Dependent Shortest Path (HTDSP) algorithm 

for the highway modes. The MALTA model system is primarily written in C++. 

The model system is also open-source, similar to the other packages that are used 

in the development of the prototype, and is available to the public under the GNU 

GPL agreement.   

C. Linking Component Model Systems 

In order to implement the integrated model framework described in Chapter 3 and 

build the SimTRAVEL prototype, there was a need to establish a number of 

linkages across component model systems. While some linkages across 
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component systems required a simple interfacing with input-output data flows 

(the outputs generated from one system serving as inputs to the other system), 

there were other linkages that required a tighter coupling in order to ensure 

consistency in the representation of individual agents, and their behaviors. The 

choice between interfacing and tighter coupling was driven by the behaviors that 

needed to be linked across component systems and the temporal resolution at 

which those behaviors operated. The linkages between the component model 

system implementations namely, the land use model – UrbanSim, the travel 

demand model – OpenAMOS, and the dynamic traffic assignment model – 

MALTA are described in detail below. 

Linking UrbanSim and OpenAMOS 

As discussed in an earlier chapter, the location choices of individuals, businesses, 

developers, and governments affect the activity-engagement patterns of 

households and individuals. The processes underlying location choices operate on 

a longer-term horizon. Therefore location choices of the urban system are only 

influenced by the network conditions that are generated at the end of the previous 

horizon year, and the location choices are assumed to remain fixed when 

simulating the urban system for a horizon year.  

Given the temporal scales at which UrbanSim (land use model) and 

OpenAMOS (travel demand model) operate, the linkages across the component 

systems is achieved through input-output-data flows using a common shared 

database. At the start of the simulation for a horizon year, UrbanSim generates the 
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fixed activity location choices of every household- and person- in a region and 

writes it to the shared database. OpenAMOS uses the fixed activity location 

choices to build skeletons of activity-travel schedules.  

Linking OpenAMOS and MALTA 

As noted earlier one of the main topics of this research effort was to establish the 

linkage between the travel demand and traffic assignment model in a behaviorally 

consistent fashion. The framework for integrating the travel demand and traffic 

assignment model systems described in Chapter 3 calls for a tighter coupling of 

OpenAMOS (travel demand model) and MALTA (dynamic traffic assignment 

model) as there is a need for passing information between the model systems 

along a continuous time axis. At the start of each simulation interval, OpenAMOS 

generates activity-travel engagement decisions for all individuals that have an 

open time-space prism and passes information to MALTA about those individuals 

that are embarking on a trip. MALTA in turn identifies routes for those trips, 

loads those trips, and simulates them through the network. MALTA also collects 

and passes back information about trips that have arrived at their destination in 

the previous simulation interval to OpenAMOS to make subsequent activity-

travel scheduling and re-scheduling decisions. This process is repeated for every 

simulation interval during the day to generate activity-travel engagement patterns 

for every individual for an entire day. At the end of iteration, convergence 

measures are computed both on the supply side and demand side. If convergence 

is achieved both on the supply side and demand side then the process is stopped 



 

  84 

and the simulation of the urban system for a horizon year is complete. However, if 

convergence was not achieved then there is a feedback of network conditions to 

OpenAMOS and MALTA and the process is repeated iteratively until 

convergence is achieved. 

As noted in an earlier section, one of the challenges to the development of 

truly integrated model of the urban system has been computational challenges. 

Often component model systems are developed using different programming 

languages and integrating the software becomes a challenge and is sometimes not 

possible given the limitations of programming language employed. Even in cases 

where the integration across programming languages is possible there is need for 

a well-designed Application Passing Interface (API) to enable communication 

across component systems. Also, the data storage and retrieval mechanisms 

employed by the individual model systems make it difficult to interface.  

Similar challenges were faced in the context of SimTRAVEL prototype 

development because OpenAMOS is developed using Python programming 

language and MALTA is programmed using C++. However, Python is a high-

level programming language and is built using C. The built-in C API to the 

Python interpreter was used to communicate between OpenAMOS (written using 

Python) and MALTA (written using C/C++) without having to resort to loose 

coupling of the software and compromising on the underlying behaviors.  

In order to implement the integration between OpenAMOS and MALTA 

with dynamic hand shaking, there was a need to build low level programming 
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code involving the Python interpreter. There were two approaches that one could 

adopt in order to implement the minute-by-minute handshaking, namely, 

extending and embedding. In the extending approach, a wrapper is built around 

the MALTA code which is written in C++ and OpenAMOS interfaces with 

MALTA through the exposed MALTA API. Alternatively, one can embed 

OpenAMOS which is written in Python so that the MALTA code can make calls 

to OpenAMOS to enable the hand shaking. After exploring the underlying data 

structures and the programming paradigms, the embedding approach was pursued 

to integrate the model systems consistent with the proposed framework. The 

embedding approach has a very intuitive appeal with MALTA in the driver’s seat 

and OpenAMOS serving as a decision engine simulating behaviors of agents. 

MALTA makes calls to OpenAMOS at the start of every simulation interval to 

make scheduling and re-scheduling decisions for agents and provide information 

about trips and MALTA in turn routes and simulates the trips, and returns arrival 

information about trips that have reached their destination. 

Linking MALTA and UrbanSim 

The location choices of individuals, businesses, developers, and governments are 

impacted by network conditions. At the end of the simulation of the urban system 

for a horizon year, the network conditions including travel time matrices and 

accessibility measures feed as inputs to the location choices of different agents in 

the subsequent horizon year.  
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Again owing to the differing temporal scales at which UrbanSim (land use 

model) and MALTA (traffic assignment model) operate, the linkages across the 

component systems is achieved through input-output-data flows. At the end of 

simulation for a horizon year, MALTA generates travel time matrices and other 

network accessibility measures in the form of text files which are then processed 

by UrbanSim for generating location choices. 

Schedule Adjustment Heuristics in the OpenAMOS-MALTA Interface 

A key feature of the framework presented in Chapter 3 is the Dynamic Time-

Dependent Activity-Travel Simulation. The dynamic framework goes beyond 

traditional approach to integrating the travel demand and traffic assignment model 

systems by adopting an event-based paradigm that ensures consistency and 

continuity in the representation of individual agents and their behaviors. In order 

to conform to the framework presented and ensure behavioral consistency, a 

number of rule-based heuristics were employed in OpenAMOS (travel demand 

model) to represent the schedule adjustment behavior exhibited by individuals in 

response to real-time arrival information obtained from MALTA (traffic 

assignment model).  

The literature on schedule adjustment behavior of individuals in response 

to arrival information is few and far between. As a result some of the heuristics 

implemented in SimTRAVEL may comprise a strong assumption of underlying 

activity-travel decision making behavior. Nonetheless the heuristics employed 

ensure behavioral consistency and continuity and the software infrastructure 
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employed is very robust which can easily be enhanced with more refined 

heuristics based on observed behaviors as and when data and literature become 

available. Below is a description of all the heuristics employed in SimTRAVEL to 

represent the schedule adjustment behavior in response to real-time network 

arrival information: 

 Person arrives earlier than expected: In this case the destination activity is 

pushed to earlier so that the activity starts as soon as the person arrives at the 

destination. Also, the person engages in the activity for the full length of the 

planned episode. In addition to engaging in the destination activity for the full 

planned duration, the early arrival also impacts the activity-travel engagement 

downstream of the destination activity. The person now has a wider time-

space prism immediately following the destination activity and this could 

result in new/adjusted activity-travel engagement. For example, the person 

may engage in another non-fixed activity before heading to his next fixed 

activity episode without violating time-space prism constraints resulting in a 

new activity-travel engagement. Alternatively, if the expanded prism is not 

enough to engage in a new activity then the person will continue to be at the 

same location until it is time to head to the next fixed activity location 

resulting in adjusted activity-travel engagement. 

 Person arrives as expected: In this case there are no heuristics that need to be 

employed and subsequent activity-travel engagement decisions are unaffected.  
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 Person arrives later than expected: There are two situations that may arise 

when the person arrives later than expected. First, if the person arrives later 

than expected but the arrival time falls between the start and end time of the 

destination activity. In this situation, the person shortens the destination 

activity by adjusting the start time. Second, the person arrives later than 

expected and the arrival time is later than the end of the destination activity 

and there is no conflict with planned activities downstream of the destination 

activity. The person foregoes the destination activity and comes to a decision 

point to make subsequent activity-travel engagement decision. Third, the 

person arrives later than expected and the arrival time is later than the end of 

the destination activity and there is also a conflict with planned activities 

downstream of the destination activity. If the planned activities downstream of 

the destination activity (including those that are missed or conflicting) were 

not children related activities (i.e. dependent children’s activities allocated to 

the person), the person can forego the missed activities. However, if the 

planned activities downstream were joint episodes that the person was 

supposed to pursue with a dependent child, the joint activities are rescheduled 

and pushed downstream of the arrival. This is to ensure that dependent 

children are not abandoned.   

Similar to the early arrival scenario, the late arrival also impacts the 

activity-travel engagement decisions downstream of the destination activity. 

The person now has a narrower time-space prism immediately following the 
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destination activity and this could result in fewer non-fixed activities being 

pursued or adjusted activity-travel engagement. For example, in the second 

case of late arrival described above, the person has a narrower time-space 

prism and now the person may not have enough time to engage in another 

episode and may just head out to the next fixed activity location. 

Alternatively, he may have to choose a location that is closer or adjust the 

duration of the non-fixed activity to fit another non-fixed activity in the 

narrower prism.  

It can be seen that the adjustment heuristics entailed in the framework and 

implemented in the SimTRAVEL prototype serve to ensure consistency and 

continuity in the representation of individual behaviors. The dynamic time-

dependent activity-travel simulation along with the heuristics exhibits some neat 

capabilities. First, there is a full accounting of activities and travel through a day 

and the sum of travel and trip budgets add up to 1440 minutes available in a day. 

Second, the approach ensures consistency in the spatial and temporal 

representation of agents by ensuring that a person can be at only one location at 

any instance in time. The approach also ensures that constraints in the form of 

joint activities and dependencies are respected and individuals are not abandoned. 

The tight coupling between demand model and the traffic assignment model 

ensures that there is no need for compromising individual representation (in the 

form of “magic moves” etc.) entailed in traditional approaches to ensure 

consistency. Third, the tighter coupling has intuitive appeal and adjustment 
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reflects some real behaviors (i.e. adjusting planned activities, foregoing non-fixed 

activities, respecting dependencies, altering destination choices etc.) exhibited in 

response to experienced time-space prism constraints. This last feature is of 

particular importance when evaluating planning and policy situations involving 

network interruptions and understanding their impact on activity-travel 

engagement decisions.  
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CHAPTER 5 

OPEN-SOURCE ACTIVITY MOBILITY SIMULATOR: OPENAMOS 

In addition to the development of an integrated model prototype, a key 

contribution of this research effort was in the development of a microsimulation-

based travel demand model system. The research effort led to the development of 

an open-source travel demand model system dubbed Open Activity Mobility 

Simulator (OpenAMOS) which builds on legacy implementation called Activity 

Mobility Simulator (AMOS) (Kitamura et al. 2000 and Pendyala et al. 2005) with 

a number of enhancements to improve the various activity-travel engagement 

behaviors and constraints. In the first section, the legacy travel demand 

implementation AMOS is described. In the next section, the new open-source 

travel demand model system OpenAMOS is described along with an overview of 

enhancements in OpenAMOS over the legacy implementation (AMOS). 

A. History of the Activity Mobility Simulator (AMOS) 

Figure 6 shows an overview of the Activity Mobility Simulator (AMOS). In 

AMOS, first a synthetic population is generated by expanding a regional travel 

survey to match known distributions of variables of interest. The synthetic 

population generator employed in AMOS employs an approach similar to that 

proposed by Beckman et al. (1996) for generating a synthetic population. After 

generating a synthetic population, fixed activity skeletons are constructed for all 

individuals. These two steps are accomplished in the Household Attributes 

Generation System (HAGS). Fixed activity skeletons are constructed by 
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identifying spatio-temporal coordinates of activities that have little or no 

flexibility, namely, morning and evening sojourns at home, work episodes for 

workers and school episodes for students. Once the skeletons are constructed, 

open time-space prisms (periods when there are no fixed activities that individuals 

need to pursue) are identified within which individuals engage in other flexible 

activities like maintenance and discretionary activities. The activity-travel 

engagement decisions within any open time-space prism are generated in the 

Prism-Constrained Activity-Travel Simulator (PCATS). Figure 7 provides 

flowchart of the different steps involved in the PCATS. PCATS comprises a 

series of models that simulate the various choice dimensions characterizing 

activity-travel engagement. Within any open time-space prism, first a check is 

made to see if there is enough time in the open prism to engage in an activity. If 

there is time then a series of sub models are invoked, namely, activity type choice 

model, a joint destination-mode choice model and activity duration model to 

simulate the activity-travel engagement decisions. Once the attributes for an 

activity-travel episode are generated, then another check is made to see if there is 

time left in the prism to engage in activities. If there is time available in the open 

prism, then the process is repeated to generate more activity-travel episodes 

otherwise the person is moved to the next fixed activity location. However, if 

there was no time in the prism to engage in an activity to begin with, the person 

makes a choice of the mode and is sent to the next fixed activity location. Within 

PCATS, it is possible that the activity-travel episodes that are generated may 
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violate a time-space prism in such a case some adjustments are made to either the 

flexible activity that was generated or to the fixed activity skeleton subject to 

some thresholds. At the end of the run, activity-travel patterns are generated for 

an entire day for every individual in the region. 
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Figure 6: Overview of Activity Mobility Simulator (Kitamura et al. 2000)  
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Figure 7: Prism Constrained Activity-Travel Simulator in AMOS (Kitamura et al. 

2000) 
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B. Enhancements in the Open-Source Activity Mobility Simulator 

The development of Open-source Activity Mobility Simulator (OpenAMOS) was 

spurred by two key motivations. First, some of the same design considerations 

that drove the development of SimTRAVEL (described in Chapter 4) also 

motivated the development of an enhanced travel demand model system. The key 

themes being - enhanced representation of behaviors, ensuring consistency and 

continuity in the spatial units and temporal scales, and accounting for constraints 

experienced by agents when making activity-travel engagement decisions. 

Second, there was a need for developing a software infrastructure to model travel 

demand that was robust and extensible. The software infrastructure needed the 

capability to operate independently as well as in an integrated modeling 

environment to generate activity-travel engagement decisions. Additionally, the 

integration of the travel demand model system with a dynamic traffic assignment 

model consistent with the design proposed in Chapter 3 called for an alternative 

software design compared to the software design in AMOS.  

The overall framework of OpenAMOS is similar to the framework 

employed in AMOS. The activity-travel simulation proceeds by first generating a 

synthetic population followed by generating the skeletons of fixed activities. The 

open time-space prisms around fixed activity episodes are then filled with non-

fixed activities (including discretionary and maintenance type activities). 

However, there are some differences in how the skeletons are built and how 

activity-travel engagement decisions are made in open prisms. In the rest of the 



 

  

section, the enhancements included in OpenAMOS over legacy AMOS are 

described:  

Child Dependency and Allocation  

In the recent past there has been a growing literature on the role played by intra-

household interactions in shaping activity-travel engagement patterns (Kang and 

Scott 2009, Zhang and Fujiwara 2006, Bhat and Pendyala 2005). Without 

explicitly accounting for interactions, the activity-travel generation process may 

not truly reflect the underlying decision making behavior and may potentially lead 

to incorrect inferences when evaluating policies. For example, there may be a 

dependent child who may need to pursue an after school activity and needs an 

adult to chauffer him to the activity location; hence there is an intra- household 

interaction that one needs to consider in this context.  

Recognizing the importance of intra-household interactions, children 

related intra-household interactions are simulated in OpenAMOS. The process 

first begins by identifying all children that are dependent on an adult for their 

travel needs. The full day activity-travel patterns of dependent children are then 

simulated employing the same Prism Constrained Activity Travel Simulator 

framework presented in Figure 7. Then a child dependency allocation module is 

invoked to allocate the dependent children’s activities to adults based on their 

availability.  Therefore, in addition to an adult’s own fixed activities, activities of 

dependent children and associated travel episodes also contribute to the formation 

of activity-travel skeletons for household adults.  



 

  

The importance of dependent children’s activities in the formation of 

activity-travel agendas of other members of the household is well recognized and 

recent literature on the subject is a testament to the fact. However, data to conduct 

a thorough exploratory analysis and model estimation exercise is still lacking. 

Travel surveys place a lesser emphasis on collection of activity-travel engagement 

patterns of the children demographic. Often data related to children is not 

collected and in surveys where the data about children is collected, the data is 

requiring in quality. As a result a number of assumptions are made when 

accounting for intra-household interactions in microsimulation-based travel 

demand models. The child dependency allocation module employed in 

OpenAMOS employs a simple rule-based module that allocates dependent 

children’s activities to adults within the household based on spatial and temporal 

availability. The heuristic process employed for allocating children-related 

activities and trips in OpenAMOS is described below: 

 First a dependency status is generated for every child that is younger than 17 

years old. Children younger than 6 years are assumed to be dependent by 

default. For children aged between 5 and 18 years, a binary logit model is run 

to simulate their dependency status. Everyone 18 and older is assumed to be 

independent and can engage in activities and trips on their own. All 

independent persons within the household are assumed to be potential 

candidates for serving dependent’s activity and travel needs.  



 

  

 Dependent children always engage in activities under the supervision of an 

adult except for discretionary activities and school episodes where the 

dependent child can engage in the activity alone. The rationale behind 

allowing discretionary activities alone is these activities entail episodes such 

as social activities, sports, and recreation among others where children are 

assumed to be supervised and therefore no household adult needs to be 

present.  On the other hand all trips associated with out-of-home activities 

including, school, discretionary, and maintenance type episodes are required 

to be served by an independent adult.  

 In order to avoid dependent activities in a sequence being allocated to multiple 

individuals within the same household and subsequently constrain their 

activity-travel engagement behavior, activity-travel trip chains are formed and 

the activity-travel trip chains are allocated instead of individual activity and 

trip episodes. Trip chains are formed by building activity and trip sequences 

that are anchored by either an in-home episode or a discretionary activity 

episode on both ends. This assumption is pretty reasonable as one adult in a 

household can travel and engage in a series of out-of-home activities before 

leaving them at home where they can be catered to by another adult or at a 

discretionary activity location where they will be supervised. Subsequent trip 

chains can then be allocated to the same person or other persons within the 

household based on their spatial and temporal availability. However, the in-



 

  

home activities that form anchors of activity-travel chains are allocated 

individually to persons within the household. 

 When allocating activities or trip chains, first persons without fixed activities 

on the simulation day are scanned to see if they have open time-space prisms 

to supervise the dependent child. If no adult without fixed activities are found 

then persons with fixed activities are scanned to see if they have an open-time 

space prism so that they can cater to the dependent child’s activity-travel 

needs. If no person in the household has an open time-space prism to 

supervise the child then the child is assumed to be supervised by a non-

household member. The rationale behind this heuristic process is that 

dependent children activities are first consumed by people that do not have to 

be at a fixed activity that they must pursue and as a result can spend time 

tending to the needs of the child. In the event that there are no available 

persons without fixed activities then the persons with fixed activities are 

assumed to cater to the needs of the child before assigning them to non-

household members such as relatives, babysitters etc. While there is no 

identification of the non-household member in the allocation process, it is 

assumed that in the universe of people and their activity-travel engagement 

decisions, the dependent travel and activity episodes with non-household 

members are represented.   

The allocation module in OpenAMOS has a behaviorally intuitive basis i.e. 

allocate dependent children’s activities to adults based on spatial and temporal 



 

  

availability and activities and trips that cannot be allocated are assumed to be 

pursued with non-household members. The rule-based framework can easily be 

replaced with advanced frameworks employing statistical and econometric 

formulations to model and simulate child dependencies and allocate them to 

household/non-household members. The research on understanding intra-

household interactions and simulating the process in travel demand model 

systems is still growing and provides a great avenue for further research and 

inquiry. 

Software Architecture and Development 

As the name suggests OpenAMOS is an open-source software package and is 

available to public under an open-source licensing agreements. OpenAMOS is 

developed using Python programming language and uses a number of python 

modules and extensions. All the libraries, extensions and supplementary software 

used in the development of OpenAMOS are also available for public under open-

source agreements. OpenAMOS uses PostGreSQL – a Relational Database 

Management System (RDBMS) for data storage and retrieval. PostGreSQL was 

chosen because it uses standard SQL querying constructs to store and retrieve 

data. Also, the RDBMS feature of PostGreSQL lends itself to storing and 

retrieving data that is used and generated by OpenAMOS, namely, socio-

economic and demographic data about households and persons, activity profiles 

and trip records.  



 

  

As noted earlier OpenAMOS builds on its legacy implementation called 

AMOS. However, the entire software paradigm underlying AMOS was modified 

and re-engineered in OpenAMOS. The software architecture and development 

was motivated by three features. First, develop a software infrastructure that can 

support rich representation of underlying activity-travel behaviors and that can 

easily be extended to include additional behaviors as the state of research makes 

progress. Second, the software infrastructure must be computationally tractable 

and feasible. Finally, the software framework must be flexible enough to work 

independently and be coupled with other network simulation model systems 

depending on the application context. Following is a description of the various 

elements in the OpenAMOS that support the three features described: 

 Extensibility: The OpenAMOS software infrastructure comprises 

of two components. First, a model specification system that can be used to 

specify a travel demand model system using any paradigm with any number 

of choice processes employing any structure of the decision hierarchy. 

Second, the model simulation engine that uses the model system specified to 

generate choices. OpenAMOS uses an XML (Extensible Markup Language) 

file for specifying the submodels representing choice dimensions and to 

specify the decision hierarchies. The model simulation engine parses the XML 

document to translate the choice hierarchies, decision flows, specifications, 

and formulations and then uses that information to simulate the various choice 

dimensions characterizing activity-travel demand. XML configuration files 



 

  

are very simple to construct and are easily readable. The configuration file is 

built using basic XML constructs and modifying the model specifications and 

decision hierarchies and extending it to include additional behaviors is an easy 

process. 

 Computational Tractability: In most implementations of microsimulation-

based model systems of travel demand an agent-based paradigm is applied. 

The activity-travel generation process proceeds by iterating through 

households and persons and simulating various dimensions of activity-travel 

engagement behavior. However, such an approach is not always the 

computationally tractable and feasible. This approach entails looping which 

are not always ideal when programming using high-level languages such as 

Python. The approach also does not adequately leverage data caching often a 

key feature of computationally efficient software; especially when dealing 

with thousands of agents that have to use the same set of inputs for making 

decisions. Alternative implementations especially those that do not require 

capturing dependencies and interactions across agents employ an array-based 

approach wherein agent attributes are stacked in the form of arrays and matrix 

capabilities are used to calculate choices. However, a purely array-based 

approach cannot be used in OpenAMOS where there is a need for employing 

rules and heuristics to account for dependencies and interactions. Realizing 

the advantages and shortcomings of both approaches, OpenAMOS employs a 

hybrid approach for generating activity-travel engagement decisions. In the 



 

  

hybrid approach, choice dimensions that do not involve rules/heuristics are 

simulated using an array-based approach. For choice dimensions that do 

involve rules/heuristics for generating the choice, the choices are simulated 

one agent at a time recognizing the inter-agent constraints and dependencies. 

OpenAMOS also leverages off of a number of low-level constructs of 

Python including embedding and extending to gain efficiencies in run times. 

One such example is a C/C++ code for querying skim matrices wrapped 

around with SWIG so that it can be called as a module from within Python. 

The implementation resulted in nearly 20 times gain in computational 

efficiency compared to the same code written in Python. 

 Flexibility: This was another key feature that drove the design and 

development of OpenAMOS. Ideally OpenAMOS will always be used in 

conjunction with a land use and traffic assignment model system as described 

in Chapter 3. However, it may not always be possible to implement such a 

system due to a number of reasons. For example, the agency exploring 

OpenAMOS may already have an operational dynamic traffic assignment 

model system in place that may not be amenable to integration with the 

demand model in a tightly coupled manner (Dynamic Time-Dependent 

Activity Travel Simulation framework described in Chapter 3). Alternatively 

the agency may just be interested in linking a microsimulation-based travel 

demand model system with a static traffic assignment model system because 

they want to transition to disaggregate model systems in steps. In both cases, 



 

  

there is a need for travel demand model software that can work independently 

as well as in close coordination with other components of an urban system to 

address the various linkages and dependencies. OpenAMOS is built such that 

it can work in isolation and can easily be integrated with other components of 

the urban system. Additionally the OpenAMOS infrastructure is also 

amenable to integrating other traffic assignment models in traditional manner 

(applying component model systems sequentially) and also under the dynamic 

time-dependent activity travel simulation framework (tight coupling of travel 

demand and traffic assignment model systems) without too many changes. 

 

 

  



 

  

CHAPTER 6 

ADVANCED JOINT DISCRETE-CONTINUOUS MODELS OF 

ACTIVITY-TRAVEL BEHAVIOR 

A. Introduction 

In most implementations of microsimulation models of travel demand, the 

dimensions of activity-travel engagement are modeled separately and the models 

are applied sequentially to simulate activity-travel decisions made by individuals 

(Kitamura et al. 1997). The sequential approach of modeling and simulating 

choice dimensions of activity-travel engagement does not account for potential 

endogeneity affects. Endogeneity impacts parameter estimates and subsequently 

influences policy analysis based on the parameter estimates. Recognizing the 

impacts of endogeneity, there has been a growing body of literature on the use of 

rigorous econometric frameworks for estimating multiple activity engagement 

dimensions simultaneously (Hamed and Mannering 1993, Bhat 1998, Misra 1999, 

Ettema et al. 2007, Anggraini 2009). These statistical frameworks are capable of 

accommodating endogeneity across choice dimensions due to unobserved 

individual attributes. For example, when simulating an individual’s choice of 

activity type and the amount of time spent in the activity, a discrete choice model 

of activity type choice and a regression model of activity duration are typically 

estimated independently without accounting for potential unobserved attributes 

influencing both dimensions simultaneously. If an individual is predisposed 

towards shopping and enjoys the activity, then unobserved individual attributes 



 

  

(predisposition and enjoyment) influence both the choice of activity type (choose 

shopping more frequently) and the time allocated to shopping episodes (spend 

more time during shopping episodes). The propensity of this person to engage in 

this particular activity type and the inclination to participate in that activity for 

longer activity-durations is not captured by variables in a typical time use survey. 

As a result, when estimating activity type and activity duration models, the 

propensity of the individual (which is an unobserved explanatory factor) is 

captured in the random error term of the models and hence leads to correlations 

across choice dimensions and thus endogeneity effects. Therefore, there is a need 

for a rigorous estimation framework that not only allows for simultaneous 

estimation of choice dimensions but also accommodates error correlations across 

choice dimensions to account for the effect of common unobserved explanatory 

variables.  

Additionally, there are both continuous and discrete choice dimensions 

that characterize activity-travel engagement behavior. For example in the context 

of activity engagement, activity type is a discrete choice and the amount of time 

spent in the activity is a continuous choice. Similarly in the context of type of 

vehicle chosen on a particular tour in a household with multiple vehicles, the 

choice of the vehicle type is a discrete choice and the distance traveled on the tour 

(a proxy for destinations accessed) is a continuous variable. In order to model the 

discrete and continuous choice dimension simultaneously, joint discrete-

continuous model formulations are used. There are a number of joint discrete-



 

  

continuous frameworks in literature which are capable of modeling discrete and 

continuous choice dimensions simultaneously. Conventional discrete‐continuous 

modeling methods have either been two‐step limited‐information approaches, or 

have employed distributional transformations to facilitate full‐information 

maximum likelihood estimation of logit‐based discrete‐continuous model systems 

(Pendyala and Bhat 2004, Bhat 1998).  

In this research effort, two empirical studies aimed at understanding 

activity-travel engagement behaviors are explored involving a discrete choice and 

continuous choice dimension. In the first empirical study, the activity engagement 

behavior of individuals is explored at an episode-level by modeling activity-type 

choice and the amount of time spent on the activity. In the second study, the 

choice of the vehicle type in multiple vehicle households and the distance traveled 

– a proxy for destination choice is modeled. Both independent models of choice 

dimensions and a joint model of the choice dimensions are estimated in an effort 

to highlight the differences in parameters and capture impacts on policy analysis. 

A probit-based joint discrete-continuous modeling framework proposed by Ye 

and Pendyala (2009) is used for modeling the choice dimensions simultaneously. 

The probit-based approach uses a multivariate normal distribution to 

accommodate error correlations across choice dimensions and also across 

alternatives for the discrete variable. The probit-based discrete-continuous 

approach also offers a rigorous approach for estimating model parameters without 

having to impose distributional assumptions that one needs to make in the context 



 

  

of the transformation approach often employed in conventional joint modeling 

frameworks. 

In the next section, the probit-based joint discrete continuous model 

system is presented. An extension of the model formulation to account for varying 

choice sets of alternatives for the discrete variable is also presented. Additionally, 

an extension of the hypothesis test proposed by Ye and Pendyala (2009) is 

presented to test alternative joint discrete-continuous model structures when the 

choice set of alternatives for the discrete variable varies across decision makers. 

In Section C and Section D the two empirical studies along with estimation results 

and findings are presented. The chapter ends with a discussion of the transferring 

over this enhanced understanding of activity-travel engagement behavior to 

microsimulation models of travel demand. 

B. Probit-based Joint Discrete Continuous Model Formulation 

This section presents the probit-based joint discrete continuous modeling 

methodology proposed by Ye and Pendyala (2009) and describes the extension to 

accommodate varying choice sets for the discrete variable in the joint discrete-

continuous modeling framework.   

Formulation 

The probit-based joint discrete continuous formulation is presented here for a 

discrete variable with three choice alternatives. However, the formulation can 

easily be extended to accommodate discrete variable with any number of choice 



 

  

alternatives. The system of equations for the discrete-continuous model system 

may be formulated as: 
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utility functions of the discrete choices with coefficients δ1, δ2. z is a vector of 
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alternatives and are defined as follows: 
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(2) 

where y1 and y2 assume a value of 1 if the conditions in the parentheses are 

satisfied and 0 otherwise. λ1 and λ2 in Equation (1) are the coefficients 

corresponding to indicator variables y1 and y2. For the above model to be 

identified, either the λ or the δ parameters must be restricted to zero, and this 

results in two alternative model specifications: (i) λ1 and λ2 equal to zero, 

corresponding to the joint model specification where the continuous dimension of 

interest is affecting the choice of the discrete dimension (e.g. tour length affects 

choice of vehicle type for the tour), and (ii) δ1 and δ2 equal to zero corresponding 



 

  

to the joint model specification where discrete dimension affects the continuous 

dimension (e.g. vehicle type choice affects length of the tour pursued).  

The random error terms ε1, ε2, ε3, ω in the model are assumed to be 

multivariate normally distributed with the variance-covariance matrix as shown 

below: 
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It can be seen from the variance-covariance matrix above that the 

emphasis in the model formulation is to accommodate the error correlations 

between the discrete choice alternatives and the continuous choice variable and 

the variance-covariance components corresponding to the discrete choice 

alternatives are fixed as shown. The notation in Equation (1) may be simplified as 

shown in Equation (4): 






















σ'ξεγεγεγUd

εVu

εVu

εVu

*

*

*

332211

333

222

111

            

(4) 

where V1, V2, V3 constitute the deterministic part of the latent utility functions and 

U represents the deterministic component of the continuous model. The random 

error term in the continuous model has been parameterized as a linear 

combination of ε1, ε2, ε3, and ξ, where ξ is a random error term that is standard 

normally distributed and is independent of ε1, ε2, and ε3. σ'
2
 is assumed to be equal 



 

  

to (2
 – g1

2
 – g2

2 
– g3

2
) so that the covariance structure shown in Equation (3) is 

preserved in the modified notation.  

Let V12 represent the difference in the deterministic components of the 

latent utility functions of discrete alternatives 1 and 2, i.e., V12 = V1 – V2. 

Similarly V13 = V1 – V3. One can then derive a joint discrete-continuous 

probability function conditional on ε1, ε2, ε3. Equation (5) illustrates the 

probability formulation for discrete choice alternative 1 (y1 = 1).  
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(.) and (.) in Equation (5) denote the probability density function and the 

cumulative probability density functions respectively. The unconditional 

probability for discrete choice alternative 1 may then be derived by integrating the 

probability function over the distributional domains of ε1, ε2, ε3. As can be seen, 

the distributional domain of ε1 extends from -∞ to +∞, ε2 extends from -∞ to V12 + 

ε1, and ε3 extends from -∞ to V13 + ε1. The unconditional probability does not have 

a closed form solution and simulation based techniques may be employed to 

evaluate the unconditional probability. In order to simulate the unconditional 

probability, randomly draw 1r (r = 1, 2, … R) from a standard normal distribution 



 

  

and let 2r =  
-1

[u2r (V12+ 1r)] and 3r =  
-1

[u3r (V13+ 1r)], where u2r and u3r 

are two independent draws from a standard uniform distribution. 2r and 3r are 

now draws from the corresponding truncated normal distributions for 2 and 3.  

By repeating this procedure R times, the unconditional probability function may 

be approximated as: 
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The unconditional probability functions for the other two alternatives of the 

discrete choice variable may be derived in an analogous manner. The Maximum 

Simulated Likelihood Estimation (MSLE) procedure can then be applied to 

estimate the parameters using quasi-random Halton sequences (Bhat 2001).  

 As with any joint discrete-continuous model system, careful consideration 

must be given to issues of identification and normalization. To avoid any issues 

with normalization it is recommended that the j in Equation (3) with the smallest 

absolute value be normalized to zero. This assumption is consistent with previous 

literature (Walker 2002) and a detailed discussion on the normalization 

assumption and its validity is presented in Ye and Pendyala (2009). 

The model formulation presented above can be applied to any discrete-

continuous type problem where the choice set of alternatives is constant for all 

decision makers. However, in the study presented in Section D, the discrete 

variable considered in the analysis – vehicle body type – may vary across decision 



 

  

makers (as different households own different vehicle fleets). Therefore, the 

methodology described above is modified to accommodate varying choice sets.  

Let k1, k2, k3 be three indicator variables denoting the availability of each 

of three choice alternatives for the decision maker. The indicator variable assumes 

a value of 1 if a particular choice alternative is available and 0 otherwise. The 

deterministic component in the original utility expressions may be modified as: 
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(7) 

It can be seen that whenever an alternative is available, the deterministic 

component of the utility remains the same as in the earlier formulation. However, 

if a particular alternative is not available then the alternative is made highly 

unattractive (by adding a very large negative value). As a result the probability of 

any missing alternative (vehicle type) being chosen is forced to be zero. Thus the 

model formulation presented in Equation (7) can accommodate varying choice 

sets for the discrete choice model component in a joint discrete-continuous 

problem. 

Non-nested Hypothesis Test 

As mentioned earlier, based on whether the parameter λ or δ is set to zero, two 

different specifications of the joint discrete-continuous models arise. It is entirely 

possible that both specifications of the joint discrete-continuous model will 

provide behaviorally plausible results with statistical goodness-of-fit measures 



 

  

that are quite similar. Therefore, rigorous statistical hypothesis tests are required 

to compare and choose the appropriate model specification. The choice of the 

joint discrete-continuous model specification has an important detriment on 

understanding of the underlying decision making behavior and subsequently on 

planning and policy analysis conducted using the specification adopted.  

Standard likelihood ratio tests cannot be used when model specifications 

are non-nested. The earliest test to compare alternative non-nested model 

specifications was proposed by Cox (1961, 1962). Horowitz (1983) and then Ben-

Akiva and Swait (1986) modified the Cox test to compare non-nested 

specifications of discrete choice models. The test initially proposed to compare 

single equation model systems (McCarthy and Tay 1998) has also been used to 

compare simultaneous equations model systems (Pendyala and Bhat 2004, Ye et 

al. 2007). However, the appropriateness of the test for comparing simultaneous 

equations model systems is unknown. In order to address this issue, Ye and 

Pendyala (2009) proposed a new hypothesis test for comparing non-nested joint 

discrete-continuous model systems. However, the hypothesis test cannot 

accommodate varying choice sets across decision makers. In this research effort, 

the hypothesis was extended to accommodate varying choice sets for the discrete 

variable across decision makers.  

According to Horowitz (1983), the probability that the goodness-of-fit 

statistic for a model B is greater than the goodness-of-fit statistic for model A by a 

value t > 0 assuming that model A is the true model is asymptotically bounded as: 
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where  

2_

m  = likelihood ratio index for model m and is calculated as shown in Equation 

(9) 

Lm = log-likelihood function value for model m at convergence 

Km  = number of parameters being estimated  in model m 

L
*
 = log-likelihood function value of model m when all the parameters are 

assumed to be zero 
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(9) 

In the original formulation of Horowitz (1983), L
*
 was defined as N ln(1/J) where 

N is the number of observations and J is the number of choice alternatives. Ye and 

Pendyala (2009) proposed a modified L
*
 for comparing joint discrete-continuous 

model specifications as shown in Equation (10).  

     ModelDiscreteLModelContinuousLModelJointL ***           (10) 

The equations for calculating L
*
 for the continuous and discrete model 

components are shown in Equation (11) and Equation (12) respectively: 
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where 


 = standard deviation of the continuous variable 

   JNModelDiscreteL ln*                   (12) 



 

  

As can be seen in Equation (12), the formulation of L
*
 for the discrete choice 

assumes that the choice set is the same for all decision makers. In order to 

accommodate varying choice sets for different decision makers, the following 

form is proposed for the contribution of the discrete model component to L
*
. 
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where ji is the number of choice alternatives in the choice set for individual 

observation i. Therefore, the modified L
*
 value for the joint discrete-continuous 

model with varying choice sets is given by: 
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Substituting Equation (14) in Equation (8) gives the following form for the 

probability statistic and its asymptotic bound: 
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(15) 

Using this formulation, one can compare non-nested discrete-continuous model 

specifications with varying choice sets across decision makers. 

C. History-Dependent Episode-level Analysis of Activity Type and Duration 

Activity engagement patterns of individuals are of much interest in the context of 

the development and implementation of activity‐based travel demand models 

(Arentze et al. 2000, Miller and Salvini 2005, Pendyala et al. 2005, Pinjari et al. 

2008), understanding the motivations for travel, analyzing social networks 

(Timmermans and Arentze 2006, Axhausen 2007), and modeling time use 



 

  

(Kitamura et al. 1996, Bhat and Misra 1999, Pendyala and Bhat 2004, Chen and 

Mokhtarian 2006). Among the dimensions of activity engagement that is less 

understood is that of activity participation or generation itself. The act of 

participating in an activity of a certain type constitutes the activity generation 

process, and it is critical to model this process comprehensively  and accurately 

with an understanding of the factors that contribute to people’s activity 

participation decisions (Pendyala et al. 1997).  

The modeling of discretionary and maintenance activity engagement is of 

particular interest due to its increasing importance and role in the formation of 

daily activity agendas. Most increases in travel time expenditures and trip-making 

over the past two decades can be largely attributed to increases in discretionary 

activity‐travel engagement, with participation in mandatory activities such as 

work and school increasing only marginally (Toole-Holt et al. 2005). In this 

context, there are three aspects that merit attention in modeling discretionary and 

maintenance activity engagement, which are briefly discussed below.   

First, it is desirable to consider both in‐home and out‐of‐home activity 

participation when analyzing activity engagement patterns (Bhat and Misra 1999, 

Yamamoto and Kitamura 1999, Clifton et al. 2007). A good understanding of the 

inter-relationships and tradeoffs between in-home and out-of-home activity 

engagement patterns will allow one to accurately represent the entire range of 

activity engagement in travel demand models (Chen and Mokhtarian 2006, 

Yamamoto and Kitamura 1999).  



 

  

Second, there is history dependency in activity engagement. Individuals 

need to fulfill an activity agenda within a limited amount of time that is available; 

the type of activity in which an individual participates and the amount of time that 

is allocated to an activity is dependent on the history of activity engagement up to 

the current activity (Kitamura and Kermenshah 1983, Kitamura et al. 1997). For 

example, a person that has already engaged in a shopping activity earlier in the 

day is less likely to engage in more shopping later in the day (Kasturirangan et al. 

2002). Another dimension of activity engagement that is important is the timing 

of the activity (Pendyala and Bhat 2004, Ettema et al. 1995). Therefore models of 

activity engagement should consider history dependency and time of day effects 

to account for these factors.   

Third, the notion of time use is inextricably linked with activity 

participation. Each activity engagement decision generally involves a 

determination of the type of activity to be pursued, where it is to be pursued (in‐

home or out‐of‐home), and the duration of the activity. This gives rise to a 

discrete‐continuous choice process where the activity type is a discrete choice 

while the time use or time allocation is continuous choice. Also, there are 

common unobserved factors that affect both the choice dimensions and hence 

there is a need for employing joint modeling frameworks to model the two 

dimensions simultaneously. 

This empirical study makes a contribution along all three aspects of 

activity engagement. The study employs data from the 2008 American Time Use 



 

  

Survey (ATUS) to include consideration of all in‐home and out‐of‐home activities 

that an individual pursues over the course of a day. Individual discretionary and 

maintenance activity episodes, together with their attributes of timing, duration, 

location, and purpose, were extracted to form the dataset for analysis. The inter‐

dependence among activity episodes over the course of a day was represented 

through the use of explanatory variables that represent the history of activity 

engagement up to the activity in question. Discrete‐continuous models of activity 

type choice and activity duration are estimated to account for the simultaneity in 

these choice dimensions. Models are estimated separately for commuter and non‐

commuter market segments to recognize the differing constraints that influence 

the activity participation for these two groups. Within the context of this work, 

time of day choice and history of activity engagement were treated as exogenous 

variables, although it is clear that time of day should, strictly speaking, be treated 

as endogenous to the system (Ettema et al. 2007, Ye and Pendyala 2009). The 

probit‐based discrete continuous modeling methodology presented in Section B is 

used for estimating the system of equations. In the next subsection, the data used 

is described. In the following subsection, results are presented and the subsection 

after includes a discussion of the results and conclusions.  

Data Set and Sample Composition 

 Data from the 2008 American Time Use Survey (ATUS) was used in this study. 

ATUS is the first federally administered survey that collects detailed time use 

information of individuals in the United States. ATUS is conducted by the US 



 

  

Census Bureau for the Bureau of the Labor Statistics. ATUS respondents are 

selected randomly from among households that have completed the eighth and 

final month of interviews for the Current Population Survey (CPS). The survey is 

administered such that it evenly covers all months of the year and all days of the 

week. From a subset of the CPS households, only one person over the age of 14 

years is randomly selected to provide detailed time use information for a 24 hour 

period. In addition to the time use data for the respondent, ATUS collects 

information about the location of each activity, information about persons 

accompanying the respondent during the activity, and other socio-economic and 

demographic information of the household to which the respondent belongs. 

Additional information about the survey can be obtained at the ATUS website:  

http://www.bls.gov/tus/. 

 In the 2008 data set, there were 12,723 respondents who participated 

in a total of 253,608 activities. Only adult respondents (age 18 and older) were 

considered in the analysis resulting in a total of 12,108 respondents. The adult 

activity sample was divided into a commuter (4162 individuals) and a non-

commuter subsample (7946 individuals) to recognize that differing constraints (in 

terms of mandatory activity engagement) influence individual’s activity 

engagement patterns.  

 The maintenance and discretionary activities that commuters pursued 

were further divided into three categories based on the time period in which the 

activities were performed. The three commuter activity classification groups 



 

  

include (a) activities before the first mandatory activity episode, (b) activities 

undertaken in between mandatory activity episodes, and (c) activities after the last 

mandatory activity episode. This activity categorization was done to recognize the 

distinct time periods surrounding mandatory activity engagement for commuters.  

On the other hand, for the non-commuter sample, time of day was introduced as 

an exogenous variable in the activity type and activity duration models to 

understand the influence of time-of-day on activity engagement. Activity types in 

the ATUS were aggregated to broader categories using the detailed multi-level 

activity classification scheme. The aggregated activity categories include:  

a. In-home mandatory activities 

b. Out-of-home mandatory activities 

c. In-home maintenance activities 

d. Out-of-home maintenance activities 

e. In-home discretionary activities 

f. Out-of-home discretionary activities 

g. Sleep 

h. Travel for mandatory activities 

i. Travel for maintenance activities 

j. Travel for discretionary activities 

k. Other activities 

Table 3 and Table 4 provide descriptive statistics of activity engagement 

and time use for the survey sample stratified by commuter and non-commuter 



 

  

segments and considering the three basic periods of the day for the commuter 

sample.  The tables depict averages across all respondents and for the subset of 

respondents that actually participated in the activity type in question.  As 

expected, a large percent of maintenance and discretionary activities, whether in-

home or out-of-home, are undertaken outside the mandatory activity engagement 

time window. The lone exception is that of out-of-home discretionary activities, 

reflecting eat-meal trips undertaken during work and school that are classified as 

out-of-home discretionary activities.  The average activity duration for out-of-

home discretionary activities pursued in between mandatory activity episodes is 

just about 45 minutes for those who participated in such activities, fairly close to 

the typical one hour length of a lunch period.  The time allocated and the activity 

frequency of in-home and out-of-home maintenance and discretionary activity 

episodes are generally higher after the last mandatory activity episode compared 

to the period before the first mandatory activity episode. This observation seems 

reasonable because commuters are likely to engage in such activities later in the 

day after work and school activities are completed.   For non-commuters, the 

prevalence of in-home maintenance activity participation is quite high, suggesting 

that these individuals take on the household responsibilities and obligations.  

Their average activity duration for these episodes amounts to about four hours 

over the course of a day.  They also engage in higher levels of out-of-home 

maintenance and in-home discretionary activities, both in terms of rate of 

participation and total time allocated over the course of a day.  In general, the 



 

  

descriptive statistics are quite intuitive and consistent with expectations. As such, 

the data set was considered appropriate for estimating a joint activity type – 

duration model system as proposed in this study. 
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Table 3: Average Daily Activity Duration by Activity Type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Activity type 
Commuters (N=4162) Non-commuters (N=7946) 

All Respondents (min/day) 
Activity Participants (min/day) 

Sample sizes in parentheses 

All 

Respondents 

Activity 

Participants 

  

Before 

Mandatory 

Between 

Mandatory 

After 

Mandatory 
Total 

Before 

Mandatory 

Between 

Mandatory 

After 

Mandatory 
    

In-home Mandatory 

Activities 
6.4 1.3 13.1 20.8 95.9 

(279) 

91.1 

(58) 

110.3 

(494) 
24.0 

200.7 

(949) 

    
Out-of-home Mandatory 

Activities    
449.1 

449.1 

(4162) 
0.0 

0.0 

(0) 

In-home Maintenance 

Activities 
55.2 6.6 68.3 130.1 64.7 65.1 87.9 229.8 242.4 

    
(3551) (420) (3231) 

 
(7532) 

Out-of-home Maintenance 

Activities 

6.9 4.3 18.9 30.1 26.6 31.4 46.7 62.8 102.8 

    
(1078) (572) (1687) 

 
(4858) 

In-home Discretionary 

Activities 
26.3 8.4 137.5 172.2 55.9 87.2 164.1 361.6 374.9 

    
(1961) (401) (3487) 

 
(7663) 

Out-of-home 

Discretionary Activities 
11.9 29.0 41.3 82.2 69.5 46.1 131.1 127.1 214.1 

    
(715) (2614) (1311) 

 
(4716) 

Sleeping 143.9 15.3 308.2 467.4 162.3 338.0 327.0 554.2 554.7 

    
(3689) (189) (3923) 

 
(7938) 

Travel for Mandatory 

Activities 

6.6 2.4 16.3 25.4 25.2 19.4 40.6 0.3 86.5 

    
(1098) (521) (1674) 

 
(28) 

Travel for Maintenance 

Activities 

19.1 5.9 15.1 40.1 23.8 23.8 25.9 35.7 59.3 

    
(3342) (1033) (2426) 

 
(4788) 

Travel for Discretionary 

Activities 
3.5 1.9 10.0 15.5 24.4 13.2 35.6 29.6 52.9 

    
(602) (610) (1173) 

 
(4453) 

Other 2.5 1.0 3.6 7.0 38.6 45.1 51.0 14.9 78.4 

    
(266) (89) (294) 

 
(1513) 
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Table 4: Average Daily Episode Frequency by Activity Type 

Activity type 
Commuters (N=4162) Non-commuters (N=7946) 

All Respondents (min/day) 
Activity Participants (min/day) 

Sample sizes in parentheses 

All 

Respondents 

Activity 

Participants 

  

Before 

Mandatory 
Between 

Mandatory 

After 

Mandatory 
Total 

Before 

Mandatory 

Between 

Mandatory 

After 

Mandatory 
    

In-home Mandatory 

Activities 

0.1 0.0 0.2 0.3 1.3 1.3 1.4 0.2 1.8 

    (279) (58) (494)  (949) 

Out-of-home Mandatory 

Activities 

   2.3 2.3 0.0 0.0 

    (4162)  (0) 

In-home Maintenance 

Activities 

1.8 0.2 2.4 4.4 2.2 2.3 3.1 5.5 5.8 

    (3551) (420) (3231)  (7532) 

Out-of-home Maintenance 

Activities 

0.4 0.2 0.7 1.3 1.5 1.6 1.8 1.6 2.6 

    (1078) (572) (1687)  (4858) 

In-home Discretionary 

Activities 

0.7 0.2 2.2 3.2 1.6 2.0 2.7 4.9 5.1 

    (1961) (401) (3487)  (7663) 

Out-of-home 

Discretionary Activities 

0.3 1.1 0.6 1.9 1.5 1.7 1.8 1.5 2.5 

    (715) (2614) (1311)  (4716) 

Sleeping 0.9 0.1 1.1 2.1 1.0 1.3 1.2 2.3 2.3 

    (3689) (189) (3923)  (7938) 

Travel for Mandatory 

Activities 

0.5 0.2 1.1 1.8 1.8 1.8 2.7 0.0 1.8 

    (1098) (521) (1674)  (28) 

Travel for Maintenance 

Activities 

0.9 0.4 0.6 1.9 1.1 1.7 1.1 2.1 3.5 

    (3342) (1033) (2426)  (4788) 

Travel for Discretionary 

Activities 

0.2 0.2 0.6 1.0 1.5 1.2 2.1 1.5 2.6 

    (602) (610) (1173)  (4453) 

Other 0.1 0.0 0.1 0.2 1.2 1.2 1.3 0.3 1.4 

    (266) (89) (294)  (1513) 
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Model Estimation Results 

In this study, joint models of activity type and activity duration were estimated for 

commuter and non-commuter samples. Three separate models were estimated for 

the commuter sample.  One model was estimated for non-mandatory activities 

conducted before the first mandatory activity episode, another for activities 

undertaken between mandatory activity episodes, and a third model for those 

activities conducted after the last mandatory activity episode. This breakdown of 

episodes for commuters was done to reflect time-of-day constraints imposed by 

mandatory activity episodes on non-mandatory activity engagement choices. The 

effect of time of day on activity engagement for non-commuters was captured by 

introducing the timing variable as an explanatory variable in the models. The 

activity type (discrete variable) was modeled as a multinomial probit model and 

activity duration (continuous variable) was modeled as a log-linear regression 

model.  Joint models of activity type and activity duration were estimated using 

the probit-based discrete-continuous methodology which can explicitly 

accommodate error correlations across the choice dimensions. Independent 

models of the activity type and activity duration which assume no correlations 

across the activity choice dimensions were also estimated for comparison 

purposes.  

The model structure adopted in this study assumes that activity type 

choice affects activity duration, i.e., activity type choice enters as an endogenous 

variable in the model of activity duration. This assumption is plausible as an 
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individual is likely to determine time allocation to an activity based on the 

decision to engage in a certain activity type. While it is conceivable that the 

activity type choice may be influenced by the amount of time available in an open 

block of time prior to the onset of the next mandatory episode, an exploration of 

such a relationship is left for a future research exercise. The activity type 

comprised of four discrete choices, namely, in-home maintenance, out-of-home 

maintenance, in-home discretionary, and out-of-home discretionary.  In-home 

maintenance activity engagement was assumed as the base alternative in the 

activity type choice model. All parameter estimates in the activity type choice 

model are therefore relative to in-home maintenance activity type choice.  Table 5 

and Table 6 provide independent and joint estimation results respectively for the 

subsample of activities undertaken by commuters prior to the first mandatory 

activity episode, while Table 11 and Table 12 provide independent and joint 

model results for the non-mandatory activity episodes undertaken by non-

commuters.  Estimation results for commuter activity episodes undertaken in 

between the first and last mandatory activity episodes of the day (Table 7 and 

Table 8), or after the last mandatory activity episode of the day (Table 9 and 

Table 10), are discussed briefly.   

Independent models of activity type and activity duration that assume zero 

error correlations across the activity choice dimensions were estimated first. In 

addition to providing estimates for comparison purposes, these independent model 

estimates also served as starting values for the probit-based joint discrete 
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continuous model. The Maximum Simulated Likelihood Estimation (MSLE) 

methodology was applied to obtain parameter estimates with the aid of quasi-

random Halton sequences. One hundred quasi-random Halton draws were used 

for estimating the simulated likelihood function. 

Estimation Results for Commuters 

Table 5 presents the independent models and Table 6 show the joint model of 

activity type and duration for non-mandatory episodes undertaken by commuters 

before the first mandatory activity episode. In general, the estimation results are 

consistent with expectations. The magnitudes of the constant term in the activity 

type model reveals that in-home maintenance type activities are more likely to be 

undertaken in this period than in-home discretionary and out-of-home activities.  

This is presumably because individuals are getting ready for work and school.  

Discretionary activities (both in-home and out-of-home) offer males a greater 

utility than females, suggesting the presence of traditional gender roles.  Time-

constrained commuters are likely to engage less in all types of non-mandatory 

activities prior to work or school on weekdays, and are likely to allocate more 

time to such activities on weekend days when such constraints are likely to be 

absent.  As expected, the presence of children increases the propensity of 

commuters to engage in out-of-home maintenance type activities. The presence of 

children also decreases the amount of time allocated to different activity types as 

evidenced by the negative sign in the duration model. Age has a positive impact 

on in-home discretionary activities but has a negative impact for out-of-home 
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activity types, suggesting that younger individuals are more prone to seeking out-

of-home activity pursuits.   

Of particular interest in this study is the nature and sign of the coefficients 

of the activity type dummy variables (endogenous variables) on the activity 

duration. The relative magnitude of the endogenous variable coefficients indicate 

that time allocated to out-of-home discretionary activities is higher than that for 

in-home maintenance, which is in turn greater than that for in-home discretionary 

and out-of-home maintenance activities.  This finding is behaviorally intuitive in 

that activity episodes that are of maintenance in nature are likely to be short 

activities as commuters get ready for the day.  On the other hand, out-of-home 

discretionary activity episodes (such as an early morning jog or workout) are 

likely to be longer than maintenance activities and in-home discretionary 

activities.  It is interesting to note that the sign of the in-home discretionary 

activity coefficient is positive in the independent model, but negative in the joint 

model that accounts for simultaneity and presence of error correlations across 

activity type and duration dimensions. It is conceivable that the estimates from the 

independent model are biased and inconsistent because they do not account for 

the endogeneity of activity type choice. This observation is corroborated by the 

significance of the covariance between the random error terms in the utility 

function of in-home discretionary activity and the activity duration equations 

(value = 0.768; t = 19.9).  
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One of the goals of the study was to explore the impact of activity history 

dependency on both the activity type choice and activity duration dimensions. It is 

interesting to note that activity history has a complementary effect on activity type 

choice in the “before mandatory activity episodes” period. This finding is 

reasonable because the time of the day under consideration here is likely to be the 

morning period when people have not yet accumulated substantial activity history 

for various activity types, thus leading to a positive impact of activity history on 

activity type choice. Activity history for all activity types has a positive impact on 

activity durations except for in-home maintenance activity. This is again plausible 

because the accumulation of in-home maintenance activities in this period 

suggests that commuters have completed their morning “get-ready” activities and 

allocate decreasing amounts of time to such activities as the history of 

accumulation increases.  

Similarly, models were estimated for non-mandatory activity episodes 

undertaken by commuters in between mandatory activity episodes, and after the 

last mandatory activity episode of the day.  In general, the two model systems 

were found to offer behaviorally plausible indications.   

Unlike the model for non-mandatory activities pursued before the first 

mandatory activity episode (presented in Table 5 and Table 6), the model for non-

mandatory activities pursued between mandatory activity episodes showed no 

major differences in coefficient values and signs for right hand side activity type 

variables in the duration model.  Consistent with this finding, error covariances 
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across the two choice dimensions were not statistically significant suggesting that 

there are no significant common unobserved factors affecting activity type choice 

and activity episode duration for non-mandatory activities pursued in between 

mandatory activity episodes.  As commuters are likely to be constrained with 

respect to their non-mandatory activity engagement during the period sandwiched 

by mandatory activity episodes, it is likely that there are few extraneous 

unobserved factors that impact non-mandatory activity engagement and time use 

during this period.  

Activity history dependency was found to have an impact on both the 

activity type choice and activity duration for non-mandatory activities pursued by 

commuters between mandatory activity episodes. The history of in-home 

maintenance activities has a negative impact on the out-of-home discretionary 

activity type choice, possibly because these individuals take on the household 

maintenance role and engage less in discretionary activities outside home. Out-of-

home maintenance activity history has a negative impact on both in-home and 

out-of-home discretionary activity type choices for much the same reason; the 

impact of out-of-home maintenance activity history on activity duration is 

positive, suggesting that individuals who undertake household maintenance 

activities outside home are likely to allocate greater amounts of time for such 

activities, even in the middle of the mandatory activity period.  In-home 

discretionary activity engagement shows a positive history dependency, indicating 



 

  133 

that individuals who generally accumulate a history of these types of activities are 

likely to prefer to engage in these activities again.     

Finally, a model was estimated for non-mandatory activities undertaken by 

commuters after the last mandatory activity episode of the day. The endogenous 

variables of activity type that enter the activity duration equation were found to be 

statistically significant except for the dummy variable indicating in-home 

discretionary activity type. Out-of-home maintenance activities appear to be 

shorter in duration relative to out-of-home discretionary activities. The coefficient 

associated with in-home discretionary activity participation was highly significant 

and positive in the independent duration model; in the joint model, the coefficient 

was statistically insignificant.  Thus, while the independent model suggested that 

commuters allocate more time to in-home discretionary activity episodes, the joint 

model did not.  However, in the joint model, the covariance between the random 

error terms in the in-home discretionary activity type utility equation and the 

activity duration equation was found to be positive and statistically significant.  It 

appears that there are common unobserved attributes that contribute positively to 

engaging in and allocating more time to in-home discretionary activities after the 

last mandatory activity episode of the day.  

Once again, history dependency played a significant role in non-

mandatory activity engagement and time use.  In-home maintenance activity 

history had a negative impact on out-of-home discretionary activity engagement 

suggesting that those individuals who take on a greater amount of household 
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responsibilities are constrained with respect to their ability to engage in out-of-

home discretionary activities.  Those who have a history of completing out-of-

home maintenance activities are less likely to do in-home discretionary activities; 

instead they are more prone to potentially undertaking out-of-home discretionary 

activities that they may chain to maintenance activity-travel.  There is a strong 

positive history dependency for in-home discretionary activity engagement.  

These individuals are likely to be “home-bound” individuals who like to engage 

in pleasurable activities at home.  The same positive dependence is found for out-

of-home discretionary activity engagement, suggesting that individuals possibly 

fall into lifestyle categories defined by maintenance or discretionary activity 

participation.  In general, the accumulated history of activity engagement 

negatively impacts activity duration for subsequent episodes, presumably due to 

time constraints experienced towards the end of the day.   

Estimation Results for Non-commuters 

Table 11 and Table 12 present independent model and joint model estimation 

results respectively for the non-commuter sample. In addition to the variables 

considered in the commuter models, the non-commuter model includes time of 

day variables as well. The treatment of time of day as exogenous to the model 

system is consistent with the continuous time approach to the development of 

activity-based travel demand models.  In such models, non-mandatory activities 

are generated and time is allocated episode by episode.  Starting at the beginning 

of the day, one can model the first activity that a person is likely to pursue and the 
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time that he or she would allocate to it.  When the first activity is completed, the 

individual reaches a decision point regarding the next activity to be pursued.  This 

process continues along the time axis until the entire activity pattern evolves for 

the full 24-hour period of a day.  At each decision point, the time of day (at which 

choices are being made) is known, thus making it reasonable to treat time of day 

as exogenous in a joint model of activity type choice and duration. 

The model estimation results are generally consistent with expectations. 

Non-commuters are likely to carry more of the household obligations and 

responsibilities, thus contributing to a negative constant for all other activity 

types.  Male non-commuters are more likely to engage in out-of-home activities 

and in-home discretionary activities, and for longer durations, relative to females 

suggesting that traditional gender roles exist even among non-commuters.  Non-

commuters tend not to engage in out-of-home maintenance activities on 

weekends, perhaps reserving those days for discretionary activities, and 

presumably because they are able to finish maintenance activities on weekdays.  

On the other hand, they are less prone to engage in discretionary activities during 

the weekdays, possibly due to household obligations and constraints. The 

presence of children has a negative impact on out-of-home activity engagement 

and on activity duration. Older non-commuters are less likely to engage in out-of-

home maintenance activities and tend to allocate shorter time durations to non-

mandatory activities.  There are significant time-of-day effects.  Non-commuters 

tend to engage in out-of-home maintenance activities between 9:00 AM and 11:00 
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AM and between 4:00 PM and 7:00 PM. In the late evening hours, non-

commuters tend to pursue in-home discretionary activities (7:00 PM – 9:00 PM).  

With respect to the endogenous variables that enter the activity duration 

equation, out-of-home maintenance activities tend to be shorter in duration and 

discretionary activities tend to be longer in duration, with in-home discretionary 

activities having the highest positive coefficient among all activity types. It is 

again noteworthy that, for the specific activity type with a significant random 

error covariance (out-of-home discretionary), the coefficient in the joint model is 

quite different from the corresponding value in the independent model.  This 

coefficient takes on the highest positive value and is statistically significant in the 

independent model.  In the joint model, this coefficient is not statistically 

significant. 

Once again activity history dependency effects are observed. In-home 

maintenance activity history has a negative impact on out-of-home discretionary 

activity engagement and time allocation, presumably due to household obligations 

and constraints that these individuals face and household roles that individuals 

fulfill.  It is interesting to note that there is evidence of positive history 

dependency in non-mandatory activity engagement for non-commuters. For out-

of-home maintenance, in-home discretionary, and out-of-home discretionary 

activity types, the accumulated history of activity engagement positively impacts 

the likelihood of participating in that activity type again.  This finding suggests 

that people not only fulfill distinct household roles, but also adopt activity 
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patterns consistent with their lifestyle and personality traits.  Future research 

efforts should aim to disentangle history dependency effects from unobserved 

heterogeneity effects so that these lifestyle effects can be isolated and measured.  

Finally, it is found that all cumulative history variables have a negative impact on 

activity episode duration, which is consistent with expectations.   
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Table 5: Results of Independent Models for Non-mandatory Activity Engagement Behavior of Commuters Before First Fixed Activity 

 
 Independent Activity Type Model Independent 

Activity Duration 

Model 
  

Out-of-home 

Maintenance 

In-home 

Discretionary 

Out-of-home 

Discretionary 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant -1.219 -10.6 -1.229 -12.9 -1.680 -12.5 2.942 120.9 

Male  
  

0.510 11.8 0.606 8.9 
  

Weekend (Sat, Sun) 
      

0.337 14.4 

Weekday (Tue, Wed, Thu) -0.120 -2.1 -0.184 -4.2 -0.407 -5.7 0.031 1.5 

Presence of Children  0.149 2.6 -0.387 -8.1 -0.660 -9.0 -0.179 -8.3 

Low Income (0 - $14,999) 
      

0.059 2.7 

High Income ($75,000 - ) 
  

-0.131 -2.8 -0.231 -3.0 
  

Hispanic  
      

0.055 2.0 

African-American  
  

-0.125 -1.9 
    

Age -0.011 -4.7 0.007 3.7 -0.008 -3.2 
  

Household Size 
      

0.014 1.9 

Out-of-home Maintenance Activity 
      

-0.945 -34.5 

In-home Discretionary Activity 
      

0.130 6.1 

Out-of-home Discretionary Activity 
      

0.299 9.1 

Cumulative Duration of Out-of-home Mandatory upto the Activity 
        

Cumulative Duration of In-home Maintenance upto the Activity 
  

0.002 6.1 0.003 5.8 -0.001 -3.3 

Cumulative Duration of Out-of-home Maintenance upto the Activity 0.012 12.8 
  

0.008 7.0 0.002 4.2 

Cumulative Duration of In-home Discretionary upto the Activity 
  

0.001 1.7 
  

0.001 7.0 

Cumulative Duration of Out-of-home Discretionary upto the Activity 
    

0.007 12.4 
  

Log-likelihood at convergence = -32969.8 
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Table 6: Results of Joint Model for Non-mandatory Activity Engagement Behavior of Commuters Before First Fixed Activity 

 
 Joint Activity Type Model  

Joint Activity 

Duration Model 
  

Out-of-home 

Maintenance 

In-home 

Discretionary 

Out-of-home 

Discretionary 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant -0.888 -11.2 -0.842 -12.3 -1.266 -14.2 3.206 113.0 

Male  
  

0.330 11.0 0.416 9.8 
  

Weekend (Sat, Sun) 
      

0.330 14.2 

Weekday (Tue, Wed, Thu) -0.116 -3.0 -0.144 -4.3 -0.280 -6.3 0.010 0.5 

Presence of Children  0.044 1.1 -0.306 -8.5 -0.408 -8.8 -0.239 -10.4 

Low Income (0 - $14,999) 
      

0.061 2.8 

High Income ($75,000 - ) 
  

-0.077 -2.4 -0.140 -3.0 
  

Hispanic  
      

0.058 2.2 

African-American  
  

-0.090 -2.0 
    

Age -0.007 -4.7 0.003 2.5 -0.005 -2.7 
  

Household Size 
      

0.012 1.7 

Out-of-home Maintenance Activity 
      

-1.019 -15.4 

In-home Discretionary Activity 
      

-0.852 -16.0 

Out-of-home Discretionary Activity 
      

0.419 6.0 

Cumulative Duration of Out-of-home Mandatory upto the Activity 
        

Cumulative Duration of In-home Maintenance upto the Activity 
  

0.001 3.8 0.002 5.0 -0.0004 -2.3 

Cumulative Duration of Out-of-home Maintenance upto the Activity 0.009 13.2 
  

0.006 7.6 0.001 1.8 

Cumulative Duration of In-home Discretionary upto the Activity 
  

0.001 1.8 
  

0.002 7.8 

Cumulative Duration of Out-of-home Discretionary upto the Activity 
    

0.005 12.5 
  

Log-likelihood at convergence = -32946.3; N1 = 0.130(3.2); N2 = 0.768(19.9); N3 = -0.001(-0.0); N4 = 0.000(-); N' = 0.724(25.6) 



 

   

1
4
0
 

Table 7: Results of Independent Model for Non-mandatory Activity Engagement Behavior of Commuters In Between Fixed Activities 

 
 Independent Activity Type Model Independent 

Activity Duration 

Model 
  

Out-of-home 

Maintenance 

In-home 

Discretionary 

Out-of-home 

Discretionary 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant -0.085 -1.3 -0.415 -4.8 1.490 18.6 2.802 80.5 

Male Dummy -0.220 -2.3 0.460 4.7 0.276 3.7     

Weekend Dummy (Sat, Sun)             0.120 4.9 

Weekday Dummy (Tue, Wed, Thu)            

Children Dummy     -0.191 -2.2 -0.295 -4.3     

Low Income Dummy (0 - $14,999)            

High Income Dummy ($75,000 - ) 0.456 5.0     0.211 3.1 0.069 3.1 

Hispanic Dummy     0.452 5.8 0.054 1.9 

African-American Dummy         0.358 4.6     

Age            

Household Size         0.051 2.4     

Dummy for Out-of-home Maintenance Activity        -0.462 -12.2 

Dummy for In-home Discretionary Activity             0.575 14.7 

Dummy for Out-of-home Discretionary Activity             0.269 9.2 

Cumulative Duration of Out-of-home Mandatory upto the Activity             -0.0001 -1.7 

Cumulative Duration of In-home Maintenance upto the Activity     -0.002 -5.1     

Cumulative Duration of Out-of-home Maintenance upto the Activity     -0.006 -4.7 -0.012 -12.0 0.001 2.6 

Cumulative Duration of In-home Discretionary upto the Activity   0.004 8.5        

Cumulative Duration of Out-of-home Discretionary upto the Activity                 

Log-likelihood at convergence = -7315.97 
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Table 8: Results of Joint Model for Non-mandatory Activity Engagement Behavior of Commuters In Between Fixed Activities 

 
 Joint Activity Type Model  

Joint Activity 

Duration Model 
  

Out-of-home 

Maintenance 

In-home 

Discretionary 

Out-of-home 

Discretionary 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant -0.055 -1.3 -0.270 -4.9 1.148 19.1 2.733 37.8 

Male Dummy -0.149 -2.4 0.290 4.6 0.196 3.7     

Weekend Dummy (Sat, Sun)             0.119 4.9 

Weekday Dummy (Tue, Wed, Thu)            

Children Dummy     -0.123 -2.2 -0.224 -4.3     

Low Income Dummy (0 - $14,999)            

High Income Dummy ($75,000 - ) 0.303 5.0     0.146 2.9 0.069 3.1 

Hispanic Dummy     0.353 6.0 0.053 1.8 

African-American Dummy         0.281 4.8     

Age            

Household Size         0.041 2.5     

Dummy for Out-of-home Maintenance Activity        -0.400 -4.5 

Dummy for In-home Discretionary Activity             0.702 6.4 

Dummy for Out-of-home Discretionary Activity             0.344 3.7 

Cumulative Duration of Out-of-home Mandatory upto the Activity             -0.0001 -1.7 

Cumulative Duration of In-home Maintenance upto the Activity     -0.002 -5.3     

Cumulative Duration of Out-of-home Maintenance upto the Activity     -0.005 -5.2 -0.008 -12.8 0.001 2.5 

Cumulative Duration of In-home Discretionary upto the Activity   0.003 8.1        

Cumulative Duration of Out-of-home Discretionary upto the Activity                 

Log-likelihood at convergence = -15844.21; 1N = -0.0405(-0.76);g2N = -0.0828(-1.26); 3N =-0.0501(-0.75); 4N = 0.0000(-); ′N = 0.8072(70.62) 
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Table 9: Results of Independent Model for Non-mandatory Activity Engagement Behavior of Commuters After Last Fixed Activity 

 
 Independent Activity Type Model Independent 

Activity Duration 

Model 
  

Out-of-home 

Maintenance 

In-home 

Discretionary 

Out-of-home 

Discretionary 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant -0.927 -11.8 -0.554 -9.6 -0.385 -3.6 3.181 100.3 

Male Dummy -0.092 -2.3      0.091 6.7 

Weekend Dummy (Sat, Sun)             0.126 6.9 

Weekday Dummy (Tue, Wed, Thu) -0.166 -4.0 -0.083 -2.8 -0.330 -6.9 0.021 1.4 

Children Dummy         -0.458 -7.9 -0.057 -4.4 

Low Income Dummy (0 - $14,999) -0.141 -2.6   -0.161 -2.7 0.029 1.7 

High Income Dummy ($75,000 - )                 

Hispanic Dummy   0.153 3.7 -0.168 -2.3 0.088 4.6 

African-American Dummy 0.241 3.9 0.131 3.0     0.078 3.9 

Age -0.003 -2.0 0.008 6.9 -0.011 -5.7     

Household Size         -0.036 -1.9     

Dummy for Out-of-home Maintenance Activity        -0.400 -19.1 

Dummy for In-home Discretionary Activity             0.795 55.3 

Dummy for Out-of-home Discretionary Activity             0.967 41.5 

Cumulative Duration of Out-of-home Mandatory upto the Activity             -0.0005 -10.7 

Cumulative Duration of In-home Maintenance upto the Activity     -0.004 -11.5 -0.0002 -2.2 

Cumulative Duration of Out-of-home Maintenance upto the Activity     -0.002 -6.9 0.0005 1.1 -0.001 -7.3 

Cumulative Duration of In-home Discretionary upto the Activity   0.003 16.8    -0.0004 -5.5 

Cumulative Duration of Out-of-home Discretionary upto the Activity     0.0004 1.8 0.004 14.9 -0.001 -12.4 

Log-likelihood at convergence = -29179.97 
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Table 10: Results of Joint Model for Non-mandatory Activity Engagement Behavior of Commuters After Last Fixed Activity 

 
 Joint Activity Type Model  

Joint Activity 

Duration Model 
  

Out-of-home 

Maintenance 

In-home 

Discretionary 

Out-of-home 

Discretionary 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant -0.687 -12.7 -0.385 -8.6 -0.396 -5.5 3.471 95.5 

Male Dummy -0.058 -2.2      0.094 7.0 

Weekend Dummy (Sat, Sun)             0.124 6.8 

Weekday Dummy (Tue, Wed, Thu) -0.126 -4.4 -0.066 -2.8 -0.226 -7.3 0.021 1.4 

Children Dummy         -0.290 -7.9 -0.050 -3.7 

Low Income Dummy (0 - $14,999) -0.097 -2.8   -0.114 -3.0 0.038 2.3 

High Income Dummy ($75,000 - )                 

Hispanic Dummy   0.116 3.5 -0.083 -1.8 0.117 5.6 

African-American Dummy 0.168 4.0 0.099 2.9     0.092 4.3 

Age -0.002 -1.8 0.005 5.3 -0.006 -5.0     

Household Size         -0.023 -1.9     

Dummy for Out-of-home Maintenance Activity        -0.552 -10.3 

Dummy for In-home Discretionary Activity             -0.057 -1.1 

Dummy for Out-of-home Discretionary Activity             1.016 16.6 

Cumulative Duration of Out-of-home Mandatory upto the Activity             -0.0005 -10.6 

Cumulative Duration of In-home Maintenance upto the Activity     -0.002 -10.7 -0.0001 -1.0 

Cumulative Duration of Out-of-home Maintenance upto the Activity     -0.002 -6.8 0.0001 0.4 -0.001 -9.2 

Cumulative Duration of In-home Discretionary upto the Activity   0.002 18.5    0.0002 1.8 

Cumulative Duration of Out-of-home Discretionary upto the Activity     0.0002 1.3 0.003 14.8 -0.001 -12.6 

Log-likelihood at convergence = -63539.96; 1N = 0.1647(5.11);2N = 0.6959(16.33); 3N =0.0342(0.94); 4N = 0.0000(-); ′N = 0.7867(31.13) 
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Table 11: Results of Independent Models for Non-mandatory Activity Engagement Behavior of Non-commuters 

 
Independent Activity Type Model Independent Activity 

Duration Model   OH Maintenance IH Discretionary OH Discretionary 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant -0.542 -11.7 -0.600 -34.5 -1.267 -46.7 3.274 157.9 

Male  0.336 15.2 0.469 30.5 0.440 19.7 0.121 17.3 

Weekend (Sat, Sun) -0.189 -9.3         0.092 10.1 

Weekday (Tue, Wed, Thu) 
 

  -0.043 -2.6 -0.364 -12.9 -0.032 -3.0 

Presence of Children  -0.070 -3.0     -0.113 -5.2 -0.084 -10.1 

Low Income (0 - $14,999) -0.083 -3.5 0.171 11.0 
  

0.017 2.2 

High Income ($75,000 - )         0.069 3.0 -0.046 -5.7 

Hispanic  -0.056 -1.9 
 

  
  

0.105 10.3 

African-American      0.151 7.6     0.036 3.6 

Age -0.012 -17.0 
 

  
  

-0.001 -4.0 

Household Size                 

Time of Day (4:00 AM - 6:00 AM) -1.145 -10.1 
  

-1.151 -10.0 -0.086 -3.1 

Time of Day (6:00 AM - 9:00 AM) -0.773 -22.8 -0.146 -6.4 -0.823 -21.1 -0.158 -11.7 

Time of Day (9:00 AM - 11:00 AM) 0.086 2.9 -0.115 -4.7 
  

0.045 3.3 

Time of Day (11:00 AM - 2:00 PM) 
    

0.347 12.6 0.062 5.3 

Time of Day (4:00 PM - 7:00 PM) -0.097 -3.5 0.269 13.2 0.226 7.4 0.090 8.3 

Time of Day (7:00 PM - 10:00 PM) 
  

0.375 17.1 -0.259 -6.8 0.067 5.8 

Out-of-home Maintenance Activity 
      

-0.243 -22.4 

In-home Discretionary Activity 
      

0.606 80.4 

Out-of-home Discretionary Activity 
      

0.788 70.4 

Cumulative Duration of Out-of-home Mandatory upto the Activity 
        

Cumulative Duration of In-home Maintenance upto the Activity 
    

-0.002 -22.5 -0.0002 -6.1 

Cumulative Duration of Out-of-home Maintenance upto the Activity 0.002 13.2 -0.001 -9.1 0.001 6.8 -0.001 -15.0 

Cumulative Duration of In-home Discretionary upto the Activity 
  

0.002 36.7 
    

Cumulative Duration of Out-of-home Discretionary upto the Activity 
  

-0.0001 -1.6 0.003 33.1 -0.001 -20.1 

Log-likelihood at convergence = -283256.9 
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Table 12: Results of Joint Model for Non-mandatory Activity Engagement Behavior of Non-commuters 

 
Joint Activity Type Model Joint Activity 

Duration Model   OH Maintenance IH Discretionary OH Discretionary 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant -0.464 -4.7 -0.528 -12.2 -0.966 -17.1 3.433 37.4 

Male  0.217 4.6 0.313 8.1 0.311 6.5 0.126 5.0 

Weekend (Sat, Sun) -0.108 -2.5         0.042 1.4 

Weekday (Tue, Wed, Thu)     0.025 0.6 -0.177 -3.2 -0.086 -2.5 

Presence of Children  -0.039 -0.8     -0.094 -2.1 -0.130 -4.7 

Low Income (0 - $14,999) 0.018 0.4 0.122 3.1 
  

-0.007 -0.30 

High Income ($75,000 - )         0.090 1.9 -0.046 -1.7 

Hispanic  -0.029 -0.5 
 

  
  

0.134 4.2 

African-American      0.032 0.7     0.040 1.2 

Age -0.008 -5.7 
 

  
  

-0.002 -2.6 

Household Size                 

Time of Day (4:00 AM - 6:00 AM) -0.939 -4.1 
  

-0.888 -4.0 -0.188 -2.0 

Time of Day (6:00 AM - 9:00 AM) -0.533 -7.6 -0.071 -1.2 -0.522 -6.8 -0.188 -4.0 

Time of Day (9:00 AM - 11:00 AM) 0.054 0.8 -0.063 -1.0 
  

0.109 2.3 

Time of Day (11:00 AM - 2:00 PM) 
    

0.224 3.8 0.127 3.1 

Time of Day (4:00 PM - 7:00 PM) 0.131 2.2 0.334 6.5 0.198 3.0 0.042 1.1 

Time of Day (7:00 PM - 10:00 PM) 
  

0.436 8.0 -0.045 -0.6 0.022 0.5 

Out-of-home Maintenance Activity 
      

-0.291 -2.3 

In-home Discretionary Activity 
      

0.740 5.2 

Out-of-home Discretionary Activity 
      

0.074 0.5 

Cumulative Duration of Out-of-home Mandatory upto the Activity 
        

Cumulative Duration of In-home Maintenance upto the Activity 
    

-0.001 -6.4 -0.0003 -3.2 

Cumulative Duration of Out-of-home Maintenance upto the Activity 0.001 2.6 -0.001 -2.9 0.0003 1.0 -0.0003 -1.5 

Cumulative Duration of In-home Discretionary upto the Activity 
  

0.002 12.4 
    

Cumulative Duration of Out-of-home Discretionary upto the Activity 
  

-0.0004 -2.3 0.002 9.7 -0.0004 -2.7 

Log-likelihood at convergence = -28407.3; N1 = 0.044(0.5); N2 = -.098(-0.9); N3 = 0.467(4.4); N4 = 0.000(-); N' =0.978(24.5 
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Discussion and Conclusions 

Activity engagement patterns of individuals are of much interest in the context of 

the development of activity‐based travel demand models, understanding the 

motivations for travel, analyzing social networks, and modeling time use. Activity 

type choice and activity episode duration are two important dimensions of activity 

participation that are critical to the specification of any activity based model 

system. Beyond mandatory activities that offer little flexibility in the formation of 

an activity agenda, discretionary and maintenance activities are of interest 

because of the role they play in forming an individual’s activity engagement 

pattern. A probit-based joint discrete-continuous modeling methodology was used 

to model the activity type choice and activity episode duration jointly using data 

from the 2008 American Time Use Survey dataset. In addition to socioeconomic 

variables, the history of activity engagement (history dependency) and timing of 

the activity were used as explanatory variables. Separate models were estimated 

for commuters and non-commuters.  

Covariances between the random error terms of the activity type choice 

utility equations and activity duration equation were found to be statistically 

significant for all joint model systems with the exception of that for commuter 

non-mandatory activities pursued between mandatory activity episodes.  

Comparisons of the coefficients of endogenous variables where the error 

correlations were significant against estimates from the independent model 

specification revealed that there are substantive differences in coefficient 
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estimates and significance that can result from ignoring error correlations.  The 

study confirms the importance of considering the endogeneity of activity type and 

duration decisions to avoid inconsistent and biased estimates which could 

subsequently lead to erroneous activity-travel forecasts and policy impact 

assessments.  

One of the interesting findings in this study is that there appears to be a 

significant degree of positive history dependency in activity engagement.  It was 

found that individuals who undertook or accumulated a history of activity 

engagement in a certain type of non-mandatory activity were more likely to 

continue pursuing that activity type again later in the day, subject to shorter 

durations that arise from increasing levels of time constraints that come into play 

as the day progresses. This finding potentially points to the possibility that 

individuals have different lifestyle preferences (in addition to rather well-defined 

household roles).  This finding has key implications for the specification of 

activity based model systems that aim to capture inter-dependencies among 

household members that arise from household roles, while simultaneously 

reflecting personality traits and lifestyle preferences that influence individual 

activity engagement patterns. 

D. A Tour-level Model of Vehicle Type Choice and Usage Decision 

In microsimulation modeling of travel demand, two approaches are commonly 

used, namely, activity- (Arentze et al. 2000, Kitamura and Fujji 1998, Pendyala et 

al. 2005, Pinjari et al. 2004) and tour- (Bowman and Ben-Akiva 2000, Vovsha et 
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al. 2002, Miller et al. 2005, Bradley et al. 2009) based. In the tour-based 

approaches, the basic unit of analysis is a trip chain or tour to explicitly recognize 

the inter-dependency of trips within a tour. There have been a number of 

successful implementations of tour-based model systems both in the US and 

elsewhere (Vovsha et al. 2002, Algers et al. 1995, Bradley et al. 2009). Most of 

the tour-based models consider (to differing degrees) some basic dimensions that 

characterize tours including primary activity type, location, number of stops and 

identification of stop locations on the tour, sequencing and scheduling of stops, 

and mode choice at both the tour- and individual trip- level. There is virtually no 

tour-based model, however, that explicitly models the type of vehicle used to 

undertake the tour. Given that the type of vehicle used (in terms of body type, fuel 

type, and/or vintage) and total distance traveled on a tour are two critical factors 

determining energy consumption and greenhouse gas (GHG) emissions (Hensher 

2008, Spissu et al. 2009), this study focuses on understanding the relationship 

between these two tour-level dimensions of interest.  

Household vehicle ownership (and utilization) by type of vehicle has been 

the focus of several recent research efforts (Mohmmadian and Miller 2003, Bhat 

and Sen 2006, Cao et al. 2006, Eluru et al. 2010). However, much of this work is 

aimed at examining the household vehicle type holdings, the mix of vehicle types 

in a household fleet, and the overall utilization (mileage) of vehicles. There are no 

research efforts that have studied the vehicle type choice and usage at the 

individual tour level in households with multiple vehicle types. This level of 
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disaggregate detail is important to understand the usage patterns of different 

vehicle types and then accurately assess the associated environmental impacts.  

In most of the tour-based model implementations, a number of models are 

estimated to mimic the different choice dimensions of individual’s tour making 

behavior. The models are often implemented sequentially (with logsum feedback 

loops) to simulate the different tour characteristics. However, in reality, people 

make decisions about different tour attributes jointly and there are common 

unobserved factors affecting these decisions (Pendyala and Bhat 2004, Ye and 

Pendyala 2009). It is of considerable interest then to adopt modeling approaches 

that allow one to consider choice dimensions jointly while also accommodating 

the presence of common unobserved factors by specifying error correlation 

structures (Mannering 1986). 

This study presents a joint model of vehicle type choice and tour length 

for automobile tours undertaken by individuals in households that have a mix of 

vehicle body types.  In this context, there are interesting questions regarding the 

relationship between vehicle type choice and tour length that arise.  Does vehicle 

type choice affect tour length, or does tour length affect vehicle type choice?  Or 

is there a more contemporaneous relationship between these two choice 

dimensions that makes it impossible to choose one specification over the other?  

Interesting policy outcomes arise in the context of these questions.  Consider the 

situation where tour length affects vehicle type choice, wherein shorter tour 

lengths are associated with the use of larger vehicle types that consume more 
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energy and pollute more.  In that situation, policies that promote land use density 

may actually have a counter-intuitive effect of not providing the intended 

environmental benefits if enhanced land use density results in shorter vehicle 

tours that households can monetarily afford to undertake using large utility 

vehicles.  Similar policy implication arguments can be made for the reverse 

situation where vehicle type choice impacts tour length.  Say, one provides tax 

incentives for the purchase of a fuel efficient automobile that motivates 

households to purchase such vehicles.  Individuals can now monetarily afford to 

drive more miles using the fuel efficient vehicles, thus negating at least some of 

the potential benefits of incentives provided to households to acquire fuel efficient 

vehicles.   

The research effort uses a sample of tours undertaken by individuals in 

households that own a mix of vehicle types drawn from the 2009 National 

Household Travel Survey (NHTS) dataset of the United States.  A probit-based 

discrete-continuous model specification presented in Section B was employed to 

jointly model vehicle type choice (discrete choice variable), and tour length 

(continuous choice variable).   

The remainder of the research study is organized as follows. The data 

utilized in this study is presented in the next subsection followed by model 

estimation and hypothesis test results. In the last subsection, conclusions are 

presented. 
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Data Set and Sample Composition 

In this study, data from the 2009 National Household Travel Survey (NHTS) of 

the United States is used.  Only home and work-based tours are considered as 

these two locations are often considered anchors of trip making. The subsample 

employed for analysis in this effort includes only those tours made by individuals 

residing in households that own multiple vehicles of different body types. In 

addition, the analysis is limited to the modeling of automobile-only tours 

undertaken by individuals of driving age (15 years or above) on regular weekdays 

(Monday through Thursday).  This resulted in a total of 102,352 tours performed 

by 64,568 respondents residing in 37,938 households. The average number of 

tours per person was about 1.6 and that per household was nearly 2.7. Nearly 29.4 

percent of all tours were home-based work (HBW) tours, 64.5 percent were 

home-based non-work tours (HBNW), and about 6.1 percent were work-based 

tours mostly comprising of eat-lunch activities pursued by employed individuals 

between work episodes.  

The HBNW tours are of particular interest in this study because people 

potentially have greater flexibility in the choice of destinations (and therefore 

distance traveled) and vehicle type for these tours as opposed to home-based work 

tours and work-based tours which are more temporally and spatially constrained. 

Also, in order to avoid the inflation of t-statistics resulting from the use of a very 

large sample dataset that may lead to erroneous inferences, a random sample of a 

little less than 10 percent (6,478 out of 66,030) home-based non-work tours was 
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selected. Table 13 provides descriptive statistics for the subsample of HBNW 

tours. Each HBNW tour involved an average of 1.7 stops with average travel 

duration of 37 minutes and average tour length of 15.7 miles.  On an average, 

there were about 1.7 persons on each tour. Each household in the subsample 

comprised of nearly three persons with one child. Most of the households in the 

sample (68 percent) reside in urban areas. There is a slightly higher percentage 

(56 percent) of females than males. This may be due to the higher number of non-

work (e.g. household maintenance, serve-child) activities that women generally 

participate in compared to men.  

Table 14 provides a distribution of tour characteristics by vehicle type 

chosen. As expected, larger vehicle body types (van, sports utility vehicle) are 

typically associated with larger vehicle occupancy compared to other vehicle 

types. Households probably like to use larger vehicles for trips involving multiple 

individuals in the traveling group.  It is interesting to note that, when the vehicle 

fleet composition of the household is ignored, car appears to be the preferred body 

type, being chosen for nearly 42 percent of the HBNW tours.  The car vehicle 

type is followed in preferential order by sports utility vehicle (SUV), pickup truck 

and van. It is also found that the difference in tour lengths across vehicle types 

chosen for the tour appears to be only marginal.  These statistics might give one 

the impression that vehicle type choice and tour length have no relationship. 

However, the differences in tour length across vehicle types are more pronounced 

when one controls for vehicle fleet composition. Whenever van is part of the 
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household vehicle fleet, it appears to be the preferred alternative.  In households 

where both a car and a SUV are present, SUV is chosen for more tours than car.  

The pickup truck appears to be the least preferred vehicle type.  Pickup trucks 

may not be used as commonly as other vehicle types for routine HBNW tours. 

Tours where SUV is the chosen body type have the highest occupancy, followed 

in order by van, car and pickup truck. These findings show that one needs to 

consider the vehicle availability (fleet composition) choice set when attempting to 

model the relationships between vehicle type choice and other tour attributes. 

 

Table 13: Descriptive Statistics of the Sample 

Variable Description Mean 
Std. 

Deviation 

Tour-level 
  Number of passengers/tour 1.7 0.9 

Number of trips/tour 2.7 1.2 

Number of stops/tour 1.7 1.2 

Travel duration/tour 37.0 29.7 

Travel distance/tour 15.7 14.4 

Household-level 
  Household size 3.1 1.3 

Household vehicle ownership 2.8 1.1 

Number of adults 2.3 0.7 

Number of children 0.8 1.1 

Percentage of households in non-urban area 30% 0.5 

Percentage of households with income less than $40K 20% 0.4 

Person-level 
  Percentage of males 50% 0.5 

Percentage of people less than 18 years old 10% 0.2 

Percentage of people 65 or older 30% 0.4 

Percentage of people with some college education 70% 0.5 
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Table 14: Tour Characteristics by Vehicle Type Choice for the Tour 

Household Vehicle Fleet 

Composition by Body 

Type 

Freq. 

Body Type 

Selected 

for Tour 

Tour 

Dist. 

Tour 

Travel 

Time 

Pax 

on 

Tour 

Stops 

on 

Tour 

Average Tour Attributes (Not Considering Vehicle Fleet Composition) 

 

2716 Car 16.0 37.7 1.6 1.6 

911 Van 15.2 37.0 2.1 1.8 

1647 SUV 15.4 36.0 1.8 1.7 

1204 Pickup 15.6 36.5 1.5 1.6 

Average Tour Attributes (Considering Vehicle Fleet 

Composition) 
   SUV, Pickup 412 SUV 17.0 37.4 1.9 1.8 

SUV, Pickup 221 Pickup 15.6 37.4 1.5 1.6 

Van, Pickup 169 Van 14.4 35.9 2.0 1.8 

Van, Pickup 111 Pickup 15.9 37.5 1.4 1.7 

Van, SUV 100 Van 17.2 39.6 2.1 1.7 

Van, SUV 76 SUV 16.4 40.3 1.7 1.7 

Van, SUV, Pickup 28 Van 15.4 31.9 1.9 1.3 

Van, SUV, Pickup 31 SUV 17.9 38.4 1.9 1.6 

Van, SUV, Pickup 12 Pickup 17.4 61.4 1.3 1.3 

Car, Pickup 1204 Car 17.1 39.3 1.6 1.7 

Car, Pickup 662 Pickup 15.4 35.8 1.5 1.6 

Car, SUV 767 Car 14.3 36.1 1.5 1.6 

Car, SUV 824 SUV 14.1 34.3 1.7 1.6 

Car, SUV, Pickup 196 Car 16.6 36.9 1.6 1.6 

Car, SUV, Pickup 241 SUV 16.0 37.4 1.7 1.7 

Car, SUV, Pickup 137 Pickup 16.9 36.9 1.4 1.6 

Car, Van 392 Car 15.2 36.5 1.7 1.6 

Car, Van 450 Van 15.0 37.5 2.1 1.8 

Car, Van, Pickup 99 Car 15.8 35.6 1.6 1.5 

Car, Van, Pickup 102 Van 17.0 38.9 2.1 1.9 

Car, Van, Pickup 51 Pickup 14.0 33.5 1.6 1.4 

Car, Van, SUV 47 Car 17.2 41.2 1.5 1.6 

Car, Van, SUV 50 Van 11.1 28.8 1.8 1.6 

Car, Van, SUV 46 SUV 15.4 36.4 1.5 1.9 

Car, Van, SUV, Pickup 11 Car 20.3 42.4 1.6 1.6 

Car, Van, SUV, Pickup 12 Van 21.7 43.8 2.3 1.8 

Car, Van, SUV, Pickup 17 SUV 18.3 40.4 2.1 1.9 

Car, Van, SUV, Pickup 10 Pickup 15.0 33.6 1.4 1.6 
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Model Estimation Results 

Joint discrete-continuous models of vehicle type choice and distance traveled 

were estimated for HBNW tours using the modified formulation presented in 

Equation (7) of Section B. The vehicle type choice is modeled as a multinomial 

probit model and the tour length is modeled as a log-linear regression model. The 

vehicle type choice included four discrete choices, namely, car, van, SUV, and 

pickup truck, with pickup truck considered the base alternative. Independent 

models with no error correlations across the choice dimensions were also 

estimated for assessing the benefits of joint modeling frameworks in this context. 

The coefficient estimates from the independent models served as the starting 

values for estimating the joint models. The MSLE procedure was used for 

estimating the coefficients in the joint model using 100 quasi-random Halton 

sequences (Bhat 2001).  

In this study, two alternative joint discrete-continuous model 

specifications were explored. Table 15 and Table 16 present independent and joint 

model estimation results respectively for the first model specification where tour 

length was assumed to affect vehicle type choice and Table 17 and Table 18 

present independent and joint model results respectively for the specification 

where vehicle type choice was assumed to affect tour length. The two model 

specifications are behaviorally plausible and could potentially provide a way to 

evaluate some interesting policy outcomes. According to the first specification, an 

individual may choose a set of destinations to visit during a tour – in other words 
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he or she determines the distance to travel, and then chooses the type of vehicle 

dependent on the distance. For longer distances, an individual may choose to use 

the more fuel efficient vehicle for monetary benefits or the larger less fuel 

efficient vehicle for comfort and capacity. For shorter distances, the individual 

may be indifferent to the type of vehicle.  In the second model specification, one 

is postulating that individuals within a household probably have a car assigned to 

them based on their household roles. For example, in a household with a car and 

van, if the female head in the household is responsible for chauffeuring kids, then 

she may be allocated the larger vehicle (van), whereas the car may be assigned to 

the male head of the household. If that is the case, then the choice of tour length 

(destinations) may depend on the type of vehicle that the person is assigned (and 

drives primarily). The male head of the household may choose to travel farther 

because he is driving the smaller more fuel efficient vehicle (and it is monetarily 

affordable to do so), or may choose to drive short distances because the small car 

is not as comfortable as the large vehicle. 

Non-nested Hypothesis Test 

It is found that both joint model specifications presented in Table 16 and Table 18 

offer plausible results. In order to select an appropriate model specification that 

best fits the data, the non-nested hypothesis test presented earlier was applied. The 

model with higher likelihood ratio index is generally selected as the appropriate 

one.  The test then gives bounds on the probability that the model selected is 

incorrect. In this study, the joint model where vehicle type choice affects tour 
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length produces a higher likelihood ratio index. The non-nested test indicates that 

the probability with which this model will be an incorrect model is less than 

0.007. Therefore the model specification is more appropriate and supports the 

notion that households probably allocate vehicles among household members a 

priori at a higher longer-term choice dimension level, and then individual tour 

destinations and travel distance are dependent on the type of vehicle the person is 

allocated, other tour attributes such as accompaniment type and number of stops 

on the tour, and usual socioeconomic characteristics. This model specification 

also has significant error correlations (discussed further later) pointing to the need 

for modeling the choice dimensions using a simultaneous equations framework 

that can explicitly accommodate error correlations across choice dimensions. As 

this model specification is best supported by the data, the remaining discussion 

focuses on findings reported in Table 18. 

Influence of Tour Attributes 

The constant terms in the joint model reveal that SUV and van vehicle types are 

preferred over cars for HBNW tours. This result is reasonably consistent with 

what was observed in the descriptive analysis where SUV and van were chosen 

more frequently compared to other body types when these vehicle types existed in 

the fleet.  Note that the other model specification where length affects vehicle 

type provides results that are different and inconsistent with those found in the 

specification of Table 18.  The results in Table 18 show a slight baseline 

preference for SUV over van, whereas the results in Table 16 show a baseline 



 

  158 

preference for van over SUV.  Thus, the choice of model specification can have 

an important impact on inferences.   

In addition to the impact of vehicle type choice on tour length, the effect 

of other tour attributes, namely, number of stops and accompaniment type were 

also explored. One may contend that accompaniment and number of stops are also 

endogenous tour attributes and that they should be modeled jointly along with 

vehicle type choice and tour length. However, the modeling methodology 

employed in this study effort can only accommodate one continuous variable and 

one discrete choice variable in its current form. The exploration of all four choice 

dimensions in an integrated joint modeling framework is left for a future exercise. 

The number of stops on the tour appears to have a positive influence on the use of 

van, presumably because these are more complex trip chains involving multiple 

passengers. The number of stops also has a positive impact on tour length. Solo 

tours are more likely undertaken by car, consistent with the notion that larger 

vehicle type may not be needed in the absence of multiple passengers. Solo tours 

are also likely to be shorter tours in comparison to joint tours. This result is 

reasonable given that joint tours may involve visiting destinations (that could be 

farther away, but more preferred) that satisfy the preferences of multiple 

individuals on the journey. All three vehicle types have a positive impact on tour 

length compared to the pickup truck (omitted base alternative). Among the three 

vehicle types included in the model, the car and van are associated with longer 

tour lengths than the SUV.  Thus it appears that, whereas the SUV is more 
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preferred for tour-making (see vehicle type choice model component), the SUV is 

utilized (mileage driven) less – perhaps because drivers are making a conscious 

decision to conserve on driving expense. As van tours tend to be more complex 

(multi-stop) and multi-passenger in nature, it is not surprising that this vehicle 

type has the largest positive impact on tour length.  However, it should be noted 

that the vehicle type choice has an impact on tour length even after controlling for 

other tour attributes.    

It is also interesting to note the difference in the significance of the 

variables between the independent models and the joint models. One can see that 

if the error correlations across choice dimensions are ignored as is the case of the 

independent model, incorrect inferences may be drawn. For example, the impact 

of van vehicle type on tour length is insignificant in the independent model, while 

the same variable has a statistically significant impact on tour length after 

accounting for potential error correlations. Not only is it statistically significant, 

but it is also the highest in magnitude.  In general, parameter estimates between 

the independent and joint model specifications are quite different.  These 

observations lend credence to the need for jointly modeling activity-travel choices 

by accommodating error correlations across choice dimensions. 

Influence of Socioeconomic Attributes 

A host of household and person level socioeconomic characteristics were included 

to account for their impacts on vehicle type choice and tour length. The ratio of 

household size to vehicle count has a negative impact on tour length, presumably 
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because households with a greater ratio have a deficit of vehicles.  Individuals in 

such households may have to choose destinations that are closer to home (small 

travel distances) so that they can return quickly and make the vehicle available to 

other members of the household. Van is the least preferred vehicle type for males 

and the pickup truck (when it is in the fleet of vehicles of a household) is the most 

preferred vehicle type. Males also have a tendency to engage in longer tours 

compared to females.  It is possible that females take care of household 

maintenance and serve-child activities that are closer to home, contributing to 

shorter tour lengths as a whole.  Older individuals prefer using a van and engage 

in shorter tours. It is possible that these individuals prefer the comfort and smooth 

drive of a van.  In addition, these individuals may include grandparents who 

undertake tours with family members. As the number of children in the household 

increases, people have a propensity to use a larger vehicle (van) compared to the 

car. It is interesting to note that the number of children has a negative effect on 

tour length. There are two plausible explanations for this result. First, if the 

parents choose to leave a child at home, they may engage in shorter tours so that 

they can be back home relatively quickly and tend to their kids. Alternatively, if 

the parents choose to take their kids with them, they may still choose to engage in 

shorter tours for purposes of efficiency and for avoiding long tours that can be 

tough on children. Households in non-urban areas are less likely to use large 

vehicle types, but undertake tours of longer length.  While the latter result is quite 

consistent with expectations in that such households are probably farther away 
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from desirable destinations, the former result is somewhat surprising.   It appears 

that these households prefer to use the car, possibly for trips that do not involve 

hauling goods or people, or the pick-up truck, possibly for trips that do involve 

hauling goods and/or people.  People with flexible work start times engage in 

shorter tours suggesting that they may be engaging in more frequent and shorter 

tours, consistent with the notion that they are less time constrained than workers 

who do not have temporal flexibility in work start times.  The latter group must 

probably engage in fewer, but more efficient, multi-stop tours that are inevitably 

longer in length.   

In the case of the impact of socio-economic attributes on the endogenous 

variables, it is found that there are substantive differences in coefficient estimates 

between the independent and joint model specifications. Thus, accounting for 

error correlations is clearly important in the joint modeling of vehicle type choice 

and tour length.  However, differences in coefficient estimates between the two 

joint model specifications are less pronounced.    
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 Table 15: Independent Model Estimation Results for the Model Specification where Tour Length Affects Vehicle Type Choice 

 

Independent Vehicle Type Choice Model
a
 Independent 

Tour Length 

Model   
Car Car Car 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant 1.686 13.3 2.077 10.8 1.957 13.7 1.913 36.3 

Tour Attributes                 

Log of tour length in miles 0.076 2.0 -0.054 -0.9 0.052 1.1   

More than one stop   0.294 2.6   0.793 32.4 

Solo tour -0.381 -4.5 -0.921 -7.2 -0.670 -6.8 -0.063 -1.8 

Joint tour             0.235 6.7 

Socio-economic Attributes         

Ratio of household to number of vehicles             -0.061 -1.8 

Male -1.825 -21.1 -2.287 -18.3 -1.910 -18.9 0.047 2.0 

Age 65 years or older     0.221 1.6     -0.061 -2.1 

Number of children -0.089 -2.7 0.141 2.9   -0.058 -3.4 

Household in non-urban area         -0.197 -2.4 0.452 17.8 

Education level (atleast college)       0.048 1.9 

Can change start time of fixed activities             -0.103 -3.1 

Household income less than 40k per year             -0.066 -2.2 

a
 Log-likelihood at convergence = -13141.4 
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Table 16: Joint Model Estimation Results for the Model Specification where Tour Length Affects Vehicle Type Choice 

 

Joint Vehicle Type Choice Model
b
 

Joint Tour 

Length Model 
  

Car Car Car 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant 1.259 6.5 1.960 4.6 1.456 6.5 1.921 35.9 

Tour Attributes                 

Log of tour length in miles 0.093 1.3 -0.191 -1.0 0.089 1.0   

More than one stop   0.390 2.3   0.793 32.5 

Solo tour -0.267 -3.7 -0.763 -6.8 -0.510 -6.1 -0.065 -1.8 

Joint tour             0.232 6.6 

Socio-economic Attributes         

Ratio of household to number of vehicles             -0.067 -2.0 

Male -1.474 -21.4 -1.839 -17.8 -1.538 -18.9 0.047 2.0 

Age 65 years or older     0.170 1.5     -0.061 -2.1 

Number of children -0.073 -2.5 0.104 2.4   -0.056 -3.2 

Household in non-urban area         -0.192 -2.4 0.452 17.8 

Education level (atleast college)       0.046 1.8 

Can change start time of fixed activities             -0.099 -3.0 

Household income less than 40k per year             -0.066 -2.2 

b
 Log-likelihood at convergence = -13151.8; 1N=-0.040(-0.6); 2N = 0.120(0.7);  3N=-0.057(-0.7);  4N= 0(-); 'N= 0.925 (40.2) 
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Table 17: Independent Model Estimation Results for the Model Specification where Vehicle Type Choice Affects Tour Length 

 

Independent Vehicle Type Choice Model
a
 Independent 

Tour Length 

Model   
Car Car Car 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant 1.876 22.2 2.045 14.5 2.091 22.3 1.853 30.8 

Tour Attributes                 

Vehicle Type is Car             0.079 2.3 

Vehicle Type is Van       0.042 1.0 

Vehicle Type is SUV             0.044 1.2 

More than one stop   0.200 1.9   0.793 32.4 

Solo tour -0.400 -4.8 -0.917 -7.2 -0.684 -7.0 -0.061 -1.7 

Joint tour             0.234 6.7 

Socio-economic Attributes         

Ratio of household to number of vehicles             -0.058 -1.7 

Male -1.821 -21.1 -2.289 -18.3 -1.905 -18.9 0.060 2.4 

Age 65 years or older     0.231 1.7     -0.061 -2.1 

Number of children -0.092 -2.8 0.146 3.0   -0.058 -3.3 

Household in non-urban area     -0.227 -2.0 -0.214 -2.6 0.456 17.9 

Education level (atleast college)       0.047 1.8 

Can change start time of fixed activities             -0.105 -3.1 

Household income less than $40k per year             -0.066 -2.2 

a
 Log-likelihood at convergence = -13140.5 
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Table 18: Joint Model Estimation Results for the Model Specification where Vehicle Type Choice Affects Tour Length 

 

Independent Vehicle Type Choice Model
a
 Independent 

Tour Length 

Model   
Car Car Car 

  Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant 1.491 23.3 1.625 14.2 1.674 23.2 1.794 24.2 

Tour Attributes                 

Vehicle Type is Car             0.143 2.1 

Vehicle Type is Van       0.174 2.5 

Vehicle Type is SUV             0.099 1.6 

More than one stop   0.186 2.1   0.792 32.4 

Solo tour -0.290 -4.2 -0.728 -6.9 -0.533 -6.6 -0.055 -1.5 

Joint tour             0.234 6.7 

Socio-economic Attributes         

Ratio of household to number of vehicles             -0.064 -1.9 

Male -1.474 -21.4 -1.858 -18.2 -1.537 -18.9 0.077 2.8 

Age 65 years or older     0.185 1.6     -0.064 -2.2 

Number of children -0.077 -2.8 0.125 3.1   -0.061 -3.5 

Household in non-urban area     -0.179 -1.9 -0.190 -2.7 0.461 18.0 

Education level (atleast college)       0.045 1.8 

Can change start time of fixed activities             -0.108 -3.2 

Household income less than $40k per year             -0.064 -2.1 

b
 Log-likelihood at convergence = -13148.3; 1N=-0.068(-1.1); 2N = -0.180(-2.6);  3N=-0.051(-0.8);  4N= 0(-); 'N= 0.914 (46.9) 
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Discussion and Conclusions 

With growing concerns about energy sustainability and greenhouse gas (GHG) 

emissions transportation modelers are increasingly interested in understanding 

vehicular usage patterns at a disaggregate level of detail (trip chains or tours). In 

this context, two choice dimensions of particular interest are the choice of vehicle 

(body type) and the distance traveled to undertake activities. This study presents a 

joint model of vehicle body type and distance traveled at the individual tour level. 

A joint probit-based discrete-continuous modeling framework was employed 

which can also accommodate the influence of common unobserved variables on 

the choice dimensions by specifying multivariate normal error correlation 

structure. Two alternative model specifications, namely, vehicle type choice 

affecting tour length, and tour length affecting vehicle type choice were explored. 

A modified non-nested hypothesis test was used to select an appropriate model 

specification that best fits the data.  

Model estimation was conducted on a random sample of about 6,500 tours 

constructed from the 2009 NHTS.  Tour level models relating tour length and 

vehicle body type choice were estimated.  The application of the non-nested test 

showed that the model specification in which vehicle type choice influenced tour 

length (as opposed to the one where tour length affected vehicle type choice) 

performed statistically significantly better. This model specification lends 

credence to the behavioral paradigm wherein vehicle ownership and vehicle 

allocation to individuals is a longer term choice decision that occurs at the 
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household level and the length of tours undertaken by individuals is a shorter term 

choice dimension that occurs at the individual tour level and is affected by the 

vehicle allocated and other tour attributes.  

In general, it appears that vans are associated with longer trip lengths, 

followed respectively by cars, SUVs, and pick-up trucks.  This significance is 

found even after accounting for the fact that van trips may be multi-passenger 

multi-stop journeys that are likely to be longer. As expected, it is found that the 

preferences with respect to choice of vehicle body type vary according to the 

household vehicle fleet composition. In households where a SUV is present, it 

tends to be the most preferred vehicle type; however, the tour length for this 

vehicle type tends to be less than that of other vehicle types, suggesting that there 

is an important relationship between vehicle type choice and tour length that 

should be modeled while accounting for variable choice sets across observations.  

A comparison of coefficients across model specifications shows that the 

independent models which do not account for error correlations across choice 

dimensions offer substantively different coefficient estimates and statistical 

significance than the joint model specifications that account for error correlations. 

Among the three error correlations estimated, the one representing error 

covariance between van choice and tour length choice is found to be statistically 

significant.  The correlation is found to be negative.  What this means is that the 

unobserved attributes that make one positively inclined to choose the van as the 

vehicle type choice negatively impact tour length. This is consistent with 
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expectations.  Suppose an individual in a household has more household 

maintenance and serve-child obligations than another household member.  Then, 

this household member may be more inclined to choose the van as their vehicle of 

choice as it is convenient to haul people and goods and is comfortable.  However, 

this individual may also be inclined to choose destinations close to home for non-

work activities, thus choosing to undertake tours of shorter length.  This is 

because the same factors that made an individual choose the van (household 

obligations, serve children, desire for comfort) also contribute to the individual 

choosing to undertake shorter tours because such an individual is time-

constrained. Such considerations are critical to the correct specification of multi-

dimensional choice models of activity-travel demand.      

From a policy perspective, the finding that vehicle type choice affects tour 

length has important implications. Suppose the government offers rebates, tax 

incentives, and other price breaks that induce individuals to purchase smaller fuel 

efficient vehicles.  The idea behind offering such incentives is that energy 

consumption and greenhouse gas (GHG) emissions can be reduced by motivating 

people to acquire and drive such vehicles.  However, the joint model considered 

most appropriate in this study shows that tours undertaken by cars are likely to be 

of longer length than tours undertaken by SUV and pick-up trucks and only 

marginally shorter than van tours.  In other words, any gains in energy and 

environmental sustainability garnered through the increased acquisition of smaller 

cars may, at least in part, be negated or offset by the longer tour lengths (and 
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therefore miles of travel) undertaken by these vehicles.  It appears that 

individuals, even after controlling for a range of other attributes, may be 

consciously exercising trade-offs in their utilization of vehicles.  Thus, joint 

models of the type presented in this study can have important implications in 

terms of the policy impacts estimated for a variety of public policy scenarios.  

Future research in this area should attempt to treat other tour attributes such as 

accompaniment type and number of stops as endogenous variables in a 

multidimensional integrated choice modeling framework.   

E. Joint Modeling of Choice Dimensions in OpenAMOS 

The two empirical studies demonstrate the need for joint modeling frameworks to 

accurately model activity-travel engagement decisions. Though there has been 

tremendous progress in the joint methodologies for modeling choice dimensions 

simultaneously, there have been very limited applications of the advanced 

frameworks for simulating activity-travel engagement decisions in 

microsimulation models.  The limited use of joint modeling frameworks for 

simulating choice dimensions has partly been due to complexity of the error 

structures, the associated computational overhead, and mathematical rigor 

involved for incorporating them in microsimulation software. OpenAMOS 

comprises a very robust simulation framework that can be extended to support 

joint modeling formulations like the one presented in Section B and subsequently 

use the joint frameworks to simulate dimensions of activity-travel engagement 

simultaneously.  
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CHAPTER 7 

AN EXAMINATION OF ALTERNATIVE PARADIGMS FOR DEMAND-

SUPPLY INTEGRATION 

A. Introduction 

As noted in Chapter 2, research into the development of integrated demand-

supply models has identified two alternative approaches for achieving model 

integration. In the first approach, which may be referred to as the sequential 

approach, models of activity-travel demand and dynamic network assignment are 

run independently and sequentially using input-output data flows. At the end of 

iteration, network conditions from the supply model are fed back to the demand 

model and the process is repeated until convergence is achieved (Lin et al. 2008). 

An alternative approach, which may be referred to as the dynamic approach was 

proposed by Kitamura et al. (2008), and has more recently been operationalized 

by Pendyala et al. (2011) and presented in Chapter 3 and Chapter 4. The dynamic 

approach adopts an event-based paradigm for integrating the two components of 

the transport system namely, the demand model and the supply model. In the 

dynamic approach, there is a constant handshaking between the demand and 

supply model along the continuous time axis. Within any time interval (say, one 

minute), the demand model simulates trips that need to be loaded on the network 

and passes the set of trips to the network model. The network model, in turn, 

routes and simulates these trips through the network and returns information 

about trips that have reached their destination in each time interval. Thus, in each 
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time interval of the simulation, the demand model is providing the set of trips that 

are departing in that interval to the network model, and the network model is 

returning the set of trips that have arrived at their destination in that interval.  In 

the next simulation interval, the demand model simulates activity-travel choices 

for individuals that have reached a decision point within the interval and for those 

that have arrived at their destination in the previous interval. At the end of a 

simulation iteration (say, for an entire day), network conditions by time of day are 

saved and subsequently used in both the demand and supply models  for making 

activity-travel and routing decisions in the subsequent iteration.  This process is 

repeated until convergence is achieved. The continuous minute-by-minute 

communication and handshaking between the demand and supply models along 

the continuous time axis is intended to mimic the activity generation and 

scheduling behaviors more closely while accounting for network conditions 

experienced by individuals through the course of a day. When compared with the 

sequential approach, the dynamic approach presumably provides tighter coupling 

while maintaining consistency in the representation of individual behaviors, 

temporal units, and spatial scales – thus providing a rigorous behavioral 

framework for modeling alternative network and policy scenarios. 

While the tighter model integration implemented in the dynamic approach 

is appealing from an intuitive standpoint, it is not yet clear as to how this 

presumably more complex approach differs from the simpler sequential approach 

to model integration with respect to various performance metrics of interest.   This 
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research effort focuses on three specific aspects of performance in order to 

provide insights into the implications of adopting these alternative approaches to 

model integration.   

• First, the research effort addresses convergence properties of the alternative 

approaches.  In both approaches, the model components (demand and supply 

models) are run iteratively until convergence is achieved.  The convergence 

properties of the two approaches, and the number of iterations needed to 

achieve convergence in each of the two approaches are not well understood.  

Additionally, while convergence processes are generally well understood and 

formulated on the dynamic network modeling front, such processes are less 

established on the demand side of the integrated modeling enterprise.  As each 

iteration of the activity-travel demand model constitutes one possible 

stochastic realization of an underlying probabilistic behavioral process, the 

variability in activity-travel schedules simulated from one iteration to the next 

may present convergence challenges that are worthy of investigation.  This 

study conducts a thorough examination of the convergence properties of the 

alternative modeling approaches.   

• Second, the research effort includes a comparison of the simulation results 

that the two alternative approaches yield. Although both approaches constitute 

an integration of activity-travel demand and dynamic network models, it is not 

clear if both approaches converge to the same estimates of activity-travel 

demand and network conditions for different types of scenario analyses.  The 
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study conducted a thorough comparative examination of the predictions 

emanating from the alternative approaches to see how they might (or might 

not) differ with respect to forecasts of behavior and network performance.  

Both approaches were implemented for base year conditions to see if one is 

able to better replicate ground-truth conditions when compared with the other.  

Such a comparison would help establish the contexts or applications in which 

one approach may be preferred over the other. 

• Third, the study examined the implications of adopting different model 

integration approaches on computational run times and performance.  As the 

dynamic integrated modeling approach involves a greater level of 

communication between the demand and supply models, one would surmise 

that this approach would be computationally more burdensome than the 

sequential approach.  However, the extent of the differences in computational 

run times and burden is not well understood and is worthy of close 

examination.   

B. Study Area 

In this study, the SimTRAVEL (Simulator of Transport, Routes, Activities, 

Vehicles, Emissions, and Land) prototype was used to run the sequential and 

dynamic approaches for demand-supply model integration.  The model system is 

applied to a portion of the Maricopa (Greater Phoenix) region in the United 

States. A small region was carved out from Maricopa County model region for 

this prototype implementation and to conduct subsequent comparative analysis. 
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The subarea comprises of three cities, namely, City of Chandler, Town of Gilbert 

and Town of Queen Creek. There are about half a million people (505350) in this 

subarea residing in 167738 households. The spatial resolution of analysis for the 

implementation was Traffic Analysis Zone (TAZ). All models in SimTRAVEL, 

were estimated using local data. However, some assumptions had to be made due 

to data limitations and other issues as noted below:  

 In UrbanSim (the land-use model), all the models were estimated using local 

data. However, the fixed activity locations i.e. school and work locations of 

students and workers respectively were limited to the three city region 

because of unavailability of data for the entire Maricopa metropolitan area. 

This data limitation to run the land-use model contributed to the choice of the 

three city subarea for the prototype testing instead of the entire region. 

 There were no major assumptions in the demand model except for the mode 

choice dimension of the travel demand. A mode choice model was not 

implemented in the study and all trips generated were assumed to be pursued 

using an automobile. This assumption maybe reasonable because the subarea 

is suburban in nature and there is a lack of alternative modal options.  

 The demand generated by the three city region by itself will not generate 

enough traffic to simulate congestion on the network. In order to model the 

network conditions as closely as possible to observed travel conditions, 

background traffic is introduced for the rest of the region using Origin-

Destination (OD) tables from a traditional four-step model run. In order to be 
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consistent with the assumptions of microsimulation-based model and the 

continuous representation of time, the Origin-Destination tables were 

discretized into trip lists by using trip start time distributions from the latest 

wave of the National Household Travel Survey.  

 Before running the SimTRAVEL prototype to model the sequential 

and dynamic approaches, a bootstrapping step was performed to obtain time-

dependent link travel times and skim matrices that closely reflect base year 

network conditions. A bootstrapping step is often employed in stochastic 

iterative processes to potentially reduce/avoid oscillations across iterations. In 

the bootstrapping procedure, first Origin-Destination demand matrices from a 

4-step model were discretized into trip lists and fed to the network model 

iteratively until stable network conditions were obtained. Stability in network 

conditions is assumed to be achieved when change/improvement in network 

convergence measures across iterations is smaller than a predefined threshold. 

In order to start the bootstrapping process, free flow conditions were assumed 

along all links. In the first iteration, MALTA identified paths for trips 

assuming free flow travel conditions along links and simulated their 

movement on the network. Origin-Destination travel time matrices generated 

using the free flow link conditions were used on the demand side to get an 

expectation of the travel time for each trip that was passed to MALTA. At the 

end of iteration, the link conditions were updated with simulated network 

conditions and new time varying OD travel time matrices based on updated 
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network conditions are generated.  Network measures are computed and 

compared across iterations and the process is repeated until stable network 

conditions are obtained.  

It can be seen that a microsimulation-based model was not used to 

generate the demand in the bootstrapping procedure. Instead the discretized 

OD demand matrix from a 4 step model run was used successively until stable 

network conditions were obtained.  

C. Metrics for Comparing Sequential and Dynamic Approaches to Model 

Integration 

As noted earlier in the chapter, the comparative analyses was aimed at analyzing 

the differences/similarities in activity-travel behavior, convergence properties, 

and computational overheads between the dynamic and sequential approaches and 

understand the impact of observed differences/similarities for planning and policy 

analysis. In the following subsections, the metrics used for comparing the 

alternative approaches are described. 

Convergence Characterization 

In any integrated modeling framework, the demand and supply models are run 

iteratively with feedback loops until convergence is achieved. Therefore, 

convergence criteria need to be established to stop the iterative process. While the 

concept of convergence and stopping criterion are well established in the field of 

traffic assignment models, the concept is relatively foreign in the field of travel 

demand model. In the travel demand modeling arena, the concept of convergence 
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is not considered, every simulation result is accepted as one stochastic realization 

of the underlying activity-travel behavior.  

Traditionally in traffic assignment models, origin-destination travel time 

matrices are compared across iterations and iterative process is stopped once the 

difference between the travel time matrices across iterations is small. Boyce and 

Bar-Gera (2003, 2006) suggest the use of averaging travel time matrices across 

iterations in order to avoid oscillations in the travel time matrices across iterations 

observed by a naïve feedback and also to approach convergence more efficiently. 

Given the tight coupling between travel demand model and traffic assignment 

model in the proposed framework, the number of iterations required to achieve 

convergence in the traffic assignment model will be a direct function of how 

different activity-travel patterns are across iterations. One could argue that it may 

take more number of iterations to reach convergence in the proposed framework 

because there are more moving parts in this framework. On the contrary, one 

could also argue that the traditional sequential approach may be less efficient 

because the daily activity-travel patterns generated do not fully account for 1440 

minutes because activity-travel patterns are not consistent with the actual arrival 

time information simulated. As a result, more number of iterations may be 

necessary to reach convergence such that expected and experienced network 

conditions are same.  

In this research effort, on the supply side travel time matrices and gap 

measures (expected travel time – experienced travel time) were primarily used to 



 

  178 

monitor and characterize convergence on the supply side. Additionally given the 

tight coupling between the demand and supply model in the dynamic approach 

and its potential implications for convergence, the research effort also studied the 

convergence properties of demand model system to gain a better understanding of 

the convergence properties of the integrated model system under alternative 

paradigms. To characterize convergence on the demand side, trip counts, 

aggregated origin destination matrices, and trip length distributions are monitored 

from iteration to iteration.  

Activity-Travel Behavior 

The activity-travel engagement patterns generated from the two approaches were 

compared against each other. The results from the alternative approaches were 

also compared against weighted observations from the latest wave of National 

Household Travel Survey (NHTS 2008) to illustrate the validity of the prototype. 

A number of activity-travel behavior metrics including time-of-day distributions, 

trip purpose distributions, and trip rates, were compared to understand the impact 

of integrated modeling approach adopted on activity-travel engagement patterns 

generated.  

Computational Overhead 

Traditional metrics for benchmarking software processes such as processing time 

and memory overhead were used to compare the alternative approaches. 
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D. Results 

SimTRAVEL prototype is a robust system that can be used to run different 

configurations of the travel demand and network model systems including, the 

bootstrapping procedure, the integrated model using the sequential approach and 

the integrated model using the dynamic approach.  

As noted earlier, in the bootstrapping step, the demand model is replaced 

with discretized trip lists obtained from traditional 4-step OD demand matrices 

and run in conjunction with MALTA (dynamic network model) for obtaining 

time-dependent travel time matrices and link travel times. The time-varying 

network conditions obtained at the end of a bootstrapping procedure were then 

used to launch SimTRAVEL to mimic sequential and dynamic approaches to 

integrating the activity-based travel demand model (OpenAMOS) and the 

dynamic network supply model (MALTA).  

Ideally, it is advisable to run the model systems iteratively until stability in 

the convergence measures are obtained. However, owing to the enormity of the 

simulations and the associated run times, the bootstrapping procedure was run for 

10 iterations and the sequential and dynamic integrated models were run for 5 

iterations. As discussed later in this section, these iteration counts seem to 

produce reasonably stable conditions both on the demand and supply side. The 

task of characterizing convergence beyond the iteration counts noted above is left 

for a future exercise.  
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The convergence characteristics of bootstrapping step and the sequential 

and dynamic approach to integration are presented in the next subsection followed 

by comparison of the activity-travel engagement characteristics generated at the 

end of five iterations. In addition to comparing results from between the 

sequential and dynamic approaches, results from the two approaches are also 

compared against weighted observations from the latest wave of the National 

Household Travel Survey for the model region to test the validity of the 

SimTRAVEL prototype to replicate known distributions. Finally differences in 

computational overheads for the alternative integration approaches are presented 

in the last subsection. 

Convergence Characterization 

As noted earlier, typically in integrated models, convergence is only characterized 

on the supply side and convergence properties of the demand models are 

generally ignored. However, given the tight coupling of the demand and supply 

models entailed in the dynamic approach, the supply model proceeds to 

convergence only if the demand also proceeds to some stabile state. Therefore, 

both demand and supply side convergence measures are monitored in this study in 

an effort to understand the convergence characteristics across iterations of the 

component systems and also the integrated model as a whole. On the supply side 

the deviation in travel time matrices and the gap value measured as a difference 

between experienced and expected travel times are monitored. On the demand 
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side, aggregate trip counts, trip counts disaggregated by Origin-Destination pairs 

and trip length distributions are monitored.  

Average Skim Deviation 

The average skim deviation measure is calculated by taking the average absolute 

deviation in travel time values between all Origin-Destination pairs. In 

SimTRAVEL, 24 hourly time of day matrices were generated to represent the 

changing network conditions throughout the day. A single average deviation 

value calculated across all 24 hourly matrices was used to generate the chart 

presented in Figure 8 whereas time varying average deviation value was used to 

create the chart presented in Figure 9. The average skim deviation measure was 

monitored across the ten iterations employed in the bootstrapping procedure and 

across the five iterations of the integrated model thereafter according to sequential 

and dynamic approaches.  

The convergence characteristics of the bootstrapping process highlight the 

ability of the network model alone to proceed towards stable network conditions. 

Because the demand is kept constant across iterations in the bootstrapping 

procedure and network conditions generated at the end of the iteration are fed 

back to only update routes and simulate trips in the subsequent iteration. The 

bootstrapping procedure also provided a good benchmark for the network 

conditions at the end of ten iterations against which results from the sequential 

and dynamic model runs can be compared to assess their convergence properties.  
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Ideally during the bootstrapping run the average deviation measure must 

move closer to zero as SimTRAVEL proceeds through iterations. In other words 

at the end of bootstrapping run, stable network conditions are expected and 

additional iterations would not improve the network conditions significantly. It 

can be observed from Figure 8 that after 10 iterations the average deviation value 

flattens out at a value close to zero (0.41) and the improvement in the average 

deviation value is almost 0 (improvement in the average deviation value = 0.02).  

Similar observation can also be made in Figure 9 where the average deviation 

value across each of the 24 travel time matrices is plotted across iterations. As 

expected, the time varying average deviation value proceeds to a value close to 

zero with iterations. It is also interesting to note that the deviation reaches a value 

very close to zero at the start and end of the simulation (4 AM) for the travel day 

and in between the deviation value is slightly higher. This observation points to 

the sensitivity of the network model to the demand that is generated. At the start 

and end of the day when there are fewer trips, network conditions appear to 

converge faster and the difference in skims is almost zero after 10 iterations 

whereas in the middle of the day where there are more trips, network conditions 

are converging but the difference in skims is very close to zero after 10 iterations. 

This observation of the sensitivity of the network model to demand that is 

generated highlights the need for a controlled environment such as a 

bootstrapping procedure to obtain a good estimate of network conditions that can 

then be utilized to launch a full scale microsimulation-based model where demand 
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keeps varying across iterations. The bootstrapping reduces oscillations in 

observed behaviors across iterations and ensures faster progression towards stable 

conditions.  

The network conditions that were obtained at the end of the bootstrapping 

procedure were used to run integrated model using sequential and dynamic 

approaches. The number of iterations was limited to five based on some earlier 

test runs of the integrated model system. It can be seen from Figure 8 that both 

sequential and dynamic reach stability by the end of the fifth iteration. It is 

interesting to note that the average skim deviation for the first iteration of the 

integrated model run was smaller for the dynamic approach compared to the 

sequential approach. However, for subsequent iterations the average deviation and 

improvement are very comparable. The deviation value seems to flatten out at 

iteration 5 and the improvement from iteration 4 to 5 was within a 0.10 threshold. 

Similar observation can be made with the time varying skim deviation measure 

with the sequential approach having a consistently higher value for the first 

iteration of the integrated model compared to the dynamic approach but they both 

end up with almost the same time-varying deviation measures at the end of the 

fifth iteration. It is also interesting to note that the average deviation value at the 

end of five iterations is slightly higher than the average deviation value at the end 

of ten iterations of the bootstrapping procedure. The study of convergence 

properties beyond five iterations is left for future exercise. 
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Gap 

Another measure that is typically used to monitor convergence on the supply side 

is the gap value. The gap value is defined as the difference in the experienced and 

expected travel times. There are variants of the gap measure that one could 

monitor across iterations to characterize convergence. In this study, the average 

absolute gap value was used to monitor convergence across iterations. Similar to 

the average skim deviation, gap measure was also monitored for the bootstrapping 

procedure and across iterations of the sequential and dynamic model runs as 

shown in Figure 10. 

It can be seen that the gap value plateaus at a value of 2.10 minutes in the 

bootstrapping run after 10 iterations and the improvement in the gap value is less 

than a threshold of 0.01. In the sequential run, the gap value seems to flatten out 

after five iterations and improvement in gap value at the end of fifth iteration is 

very close to zero, whereas with the dynamic run, the improvement in gap value 

at the end of fifth iteration is close to 0.02. While there is a slight indication that 

the sequential run may be approaching convergence faster, the difference is rather 

minimal. Additionally, some of the differences observed could potentially be just 

a result of the stochasticity inherent to activity-travel engagement decisions 

simulated in OpenAMOS. Nonetheless the SimTRAVEL prototype seems to 

approach stability after about five iterations beyond the bootstrapping process for 

both sequential and dynamic integration approaches. 
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It is interesting to note that the gap value plateaus after a few iterations 

and there is a “residual gap” with a value between 2.10 and 2.20 minutes at the 

end of the bootstrapping runs and also after five iterations of the sequential and 

dynamic runs. Ideally one would expect the gap values to progress to a value 

close to zero with iterations. However, further investigation revealed that the skim 

generation procedure employed by the network model – MALTA offers a 

potential explanation of the “residual gap” observed.  

In MALTA, a computationally efficient algorithm called the Hierarchical 

Time Dependent Shortest Path Algorithm (HTDSP, Gao and Chiu 2011) is 

employed to enumerate paths in the network model and to generate the travel time 

matrices for use in the travel demand at the end of each iteration as an expectation 

of the network conditions for use in the subsequent iteration. HTDSP employs a 

hierarchical search strategy for enumerating paths between given Origin-

Destination pairs. First, the path search process identifies paths between 

Superzones (which are aggregations of smaller geographical units e.g. TAZ) 

corresponding to the origin and destination. After searching for a shortest path 

between the corresponding Superzones of an Origin-Destination pair, the 

algorithm identifies the shortest path within the Superzone to connect the actual 

origin and destination. While the approach serves well for path enumeration it 

suffers from some issues in the skim generation process. During the skim 

generation to gain efficiencies, for a particular Superzone pair (So, Sd), all Origin-

Destination pairs (o, d) such that o belongs to So and d belongs to Sd get the same 
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travel time. The exception being when there is a trip that was executed for the 

origin destination pair.  In that case the travel time for that pair is replaced with 

experienced travel time. It can be seen that the skim generation process makes a 

rather strong assumption and the travel times generated are averages of travel 

times between the Superzones and not the actual finer geographic units (TAZ). As 

a result there is always a difference between the experienced and expected travel 

times.  

In order to overcome the “residual gap” issue, one can proceed to a finer 

definition of the Superzones. Alternatively one can make away with the 

hierarchical search process but that comes at an added cost of significant 

computational overhead. While the “residual gap” may not pose an issue with the 

dynamic approach, it may impact the sequential approach as will be described 

shortly in the subsection on comparing differences in activity-travel engagement 

decisions simulated using the two integration approaches.  
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Figure 8: Average Deviation and Improvement in Travel Time Matrices Across Iterations 
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Figure 9: Average Deviation in Travel Time Matrices by Time of Day Across Iterations  
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Figure 10: Average Absolute Gap Value and Improvement Across Iterations 
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Trip Count 

As noted earlier, one of the aims of this study was to shed light on the 

convergence characteristics of the demand model in integrated model 

implementations. In order to characterize convergence one of the measures used 

was the total number of trips that are simulated. If the network conditions 

approach stability then one would expect the trip counts that are generated by the 

activity-travel microsimulation model to also stabilize. That appears to be the case 

both with the sequential and dynamic approaches to integration as can be seen 

from Figure 11 which shows a chart with the trip count (on the secondary Y axis) 

plotted against the iteration number. While there seems to be a slight hint of 

oscillation in the vehicle trip count of the dynamic approach with iteration 4 

generating more trips than iteration 3 and iteration 5, the sequential approach 

seems to flatten out at a trip count of close to 14323890. The slight hint of 

oscillation may be attributed to the stochasticity in the demand modeling process. 

Also, it must be noted that the values on the axes are indexed (and do not start at 

zero) in order to exaggerate the differences and in the grand scheme of things the 

oscillation observed may be rather minimal for all practical purposes. 

Aggregate OD Demand Matrix 

In addition to trip count, difference in aggregate Origin-Destination demand 

matrices across iterations was used as a more disaggregate measure compared to 

aggregate trip count. Figure 12 shows the progression of differences in OD 

matrices across iterations. As can be seen the differences seem to plateau after 3 
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iterations with a slight oscillation from iteration 4 to iteration 5 for the sequential 

approach. The dynamic approach seems to show a downward trend with no 

oscillation. While the chart indicates progression towards stability, the differences 

in the OD demand matrices across iterations is rather high. For a population of 

little over half a million the difference translates to almost two trips. The high 

difference in OD demand matrices can be attributed to two main reasons. First, 

across iterations, there are multiple locations that satisfy a given time-space prism 

constraint and individuals seem to be choosing comparable (in terms of 

impedances and attractiveness measures) but different destinations. Second, the 

use of HTDSP approach for generating skims may be causing the impedances to 

be more uniform than they ought to be. In the HTDSP approach, multiple 

destinations share the same travel time from a given location if they all fall within 

the same Superzone. In an effort to further explore and confirm convergence 

properties of the demand model, a more objective disaggregate measure – trip 

length distribution is monitored across iterations. 

Trip Length Distribution 

In addition to showing the progress in the trip counts, Figure 12 also displays the 

improvement in average trip length for all trips. It can be seen that the average trip 

length for the dynamic approach decreases continuously up to iteration 4 and 

shows a slight oscillation with an increase in average trip length for oscillation 5. 

In the sequential approach, the trip length decreases up to iteration 3 then 

oscillates with a slight increase in iteration 4 and then decreases in iteration 5. It is 
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interesting to see that both the sequential and dynamic approach seem to be 

oscillating between average trip lengths of 7.160 and 7.165. For all practical 

purposes the integrated model can be assumed to have reached a stable state given 

the small range over which the average trip length seems to be oscillating. The 

same two reasons that contribute to the high difference in OD cell values across 

iterations may also be contributing to the slight oscillation in trip lengths past the 

initial iterations. 

All the above measures including both the supply side and demand side 

measures seem to indicate that both the bootstrapping procedure and the 

integrated model are reaching stability. Also, the demand side measures are not 

monitored for the bootstrapping procedure because the demand remains constant 

across the ten iterations. Therefore convergence properties of the demand side 

measures need not be characterized for the bootstrapping procedure. While the 

supply side measures do not show any oscillation, the demand side measures 

seem to show slight oscillation especially after initial iterations. The oscillations 

may partially be explained by a key assumption in the network model which is the 

use of HTDSP to generate paths and skims to achieve computational efficiency.  
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Figure 11: Vehicle Trip Count and Average Trip Length Across Iterations 
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Figure 12: Cumulative Difference in Origin Destination Matrices Across Iterations 
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Activity-travel Behavior 

In this subsection, the activity-travel engagement patterns generated by the two 

approaches to integration are compared to highlight differences if any between the 

two approaches to modeling the urban system.  The results from the two 

approaches are also compared against weighted observations from the latest wave 

of the National Household Travel Survey (NHTS 2008) to demonstrate the 

applicability of the prototype for replicating observed behaviors. While the 

SimTRAVEL prototype can model the activity-travel engagement decisions of 

every individual and household in the region, results for the adult population are 

only presented. Results of the children demographic are excluded due to the lack 

of confidence in the observed NHTS data for children between 5 and 17 and also 

unavailability of data for children younger than 5 years in the latest wave of 

NHTS. 

Trip Start Time Distribution 

One of the major design objectives of any microsimulation-based model of the 

urban system is to ensure that the time of day distributions of the activity-travel 

engagement decisions are accurately replicated. Figure 13 and Figure 14 show the 

trip start time distribution for workers and non-workers respectively. It can be 

seen that the SimTRAVEL prototype replicates the weighted time of day 

distribution for the demographics reasonably closely. For workers, one can see the 

typical peaks in the morning and evening with a smaller peak in the noon period, 

presumably during the lunch hour. However, the midday peak seems to be slightly 
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off with its onset a couple of hours earlier than observed from the NHTS. Also, 

there is a slight under-prediction of trips between 3 PM and 6 PM and a slight 

over-prediction of trips between 7:00 PM and 9 PM. For non-workers, the 

distributions also match extremely well, although it appears that SimTRAVEL is 

yielding a slight under-prediction of trips between 7:00 AM and 11 AM and a 

slight over-prediction of trips between 4 PM and 7 PM.  Nonetheless the 

prototype yields time of day distributions that closely match the observed 

weighted NHTS distributions for both the worker and non-worker demographic. It 

is interesting to note that SimTRAVEL yields similar time of day distributions 

with both approaches. If the origin-destination travel time matrices are accurate 

representations of travel times one would actually experience on the network, then 

it is unlikely that the dynamic model design and the sequential model design 

would yield differing results. This appears to be the case as seen in Figure 8 and 

Figure 9 wherein the network measures seem to plateau out at similar values after 

five iterations. 

To further analyze differences in time of day distributions that are 

simulated in SimTRAVEL from those observed in the National Household Travel 

Survey, time of day distributions for workers by activity types were compared. It 

can be seen from Figure 16, Figure 18, Figure 20 that the start time distributions 

for work, discretionary, and dropoff activities match distributions from the NHTS 

almost perfectly. However, trips for home, maintenance, and pickup activities (as 

shown in Figure 15, Figure 17, Figure 19) are slightly off with under-prediction of 
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trips in the later part of the day (2:00 PM – 6:00 PM) and some over-prediction in 

the earlier parts of the day (9:00 AM – 12: 00 PM); this observation of mismatch 

in start time distributions when disaggregated by activity type could potentially 

explain the slight mismatch in the start time distribution when all trips were 

considered for workers. The mismatch can partly be traced back to the dependent 

children, their activity-travel patterns and subsequent allocation to adults in the 

household. Due to the lack of data from the latest wave of the NHTS, child 

activity-travel generation and allocation models were estimated using data from 

the 2001 NHTS. While some calibration was performed for adult models, 

calibration of children models was rather difficult due to data that is few and far 

between. Nonetheless, the simulated distributions are very closely matching and 

follow observed time of day trends.  
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Figure 13: Trip Start Time Distribution for Workers 
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Figure 14: Trip Start Time Distribution for Non-workers 
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Figure 15: Trip Start Time Distribution of Home Trips for Workers 
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Figure 16: Trip Start Time Distribution of Work Trips for Workers 
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Figure 17: Trip Start Time Distribution of Maintenance Trips for Workers 
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Figure 18: Trip Start Time Distribution of Discretionary Trips for Workers 
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Figure 19: Trip Start Time Distribution of Pickup Trips for Workers 
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Figure 20: Trip Start Time Distribution of Dropoff Trips for Workers 
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Trip Duration 

Another key dimension that is important in the context of microsimulation-based 

models of urban systems is the trip length distributions. Matching trip length 

distributions ensures that trips generated are accurately distributed in space. Trip 

duration which represents the time taken to travel from one location to another is 

a good proxy for trip length and matching trip durations serves the same purpose 

as trip lengths. The trip duration distributions for workers and non-workers are 

presented in Figure 21 and Figure 22 respectively. As expected the average trip 

duration values for workers is lower than non-workers. This is reasonable given 

the higher level of spatio-temporal constraints experienced by workers because of 

their fixed activity commitments compared to non-workers who are subject to 

fewer spatio-temporal constraints and have the flexibility to access and travel to 

locations that are further away without violating any time-space constraints. 

Similar to the trip start times, the sequential and dynamic approaches generate 

similar trip duration distributions for both workers and non-workers.  

It is interesting to note that while the trip duration distribution of workers 

closely matches the distribution observed from the NHTS, the duration 

distribution for non-workers is skewed with a higher percentage of longer trips 

(trip durations of 20 minutes and higher) and a lower percentage of shorter trips 

(trip durations of less than 20 minutes). To explore the observation further, the 

trip duration distributions were disaggregated by trip purpose to identify any 

trends between trip purpose categories and distribution skews.  
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Figure 24 shows the trip duration distribution for work trips. As can be 

seen the distribution for fixed activity matches distribution from the NHTS 

closely with a slight under-prediction in the work trips that are 10 – 20 minutes in 

length and a small over-prediction of work trips that are 50 – 70 minutes. Figure 

25 and Figure 26 show the duration distribution for non-fixed activities namely, 

maintenance and discretionary trips respectively. Figure 27 and Figure 28 show 

the duration distributions for pickup and dropoff activities respectively. In trips 

associated with activities where a child is involved (maintenance, pickup, and 

dropoff), the durations are skewed with over-prediction of longer duration trips 

and under-prediction of shorter duration trips. However with discretionary 

activities, adults engage in the activity alone. As noted in the discussion on trip 

start times, there is a need to calibrate models of child activity-travel engagement 

and ensure that their trips are representative so that the resulting dependency 

allocations are also accurate. Similar observations are observed for non-worker 

activity-travel engagement decisions with a skew in favor of trips with longer 

distribution when children may be involved in activities (Figure 30, Figure 32, 

and Figure 33). As with workers the trip duration distribution for discretionary 

activities matches more closely with observed distribution from the NHTS. 

However, the match is slightly better for workers.  

In order to further explore the difference in match for discretionary 

activities of workers, the paradigm for activity-travel generation was investigated. 

In OpenAMOS, activity-travel dimensions are simulated within any open time-
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space prims by respecting the spatio-temporal constraints. While it may be 

technically possible for an individual in one extreme locale of the region to travel 

to a location on the completely opposite side of the region to engage in a non-

fixed activity without violating any spatial and temporal constraints, it may not be 

reasonable. It appears like with workers there are additional constraints that are 

acting as proxies for “threshold” to travel distance or in other words there is an 

implied search space criterion because of their fixed activity episodes. However, 

this may not be the case with people without fixed activities such as children and 

non-workers who have very large time-space prisms at the start of the day. It 

appears like the “threshold” to travel distance is a key dimension that is not being 

accounted for in the prism constrained activity-travel simulation process and 

could potentially explain the skew in the trip duration distributions for children 

and non-workers. Though the time-space prism paradigm comprises a spatio-

temporal constraint on the opportunity space, it doesn’t account for the 

“threshold” that individuals may incorporate in their activity-travel decision 

making behavior.  

The “threshold” behavior to travel distance offers one potential 

explanation of the skew in distributions of non-workers and children activity-

travel engagement patterns. Additionally, it is very well possible that the suburban 

nature of the subarea may be contributing to the skew. People may be traveling 

further to engage in non-fixed activities because of lack of attractive opportunities 

in the area. The skew may be reasonable now because we are comparing the 
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suburban activity-travel engagement patterns with those from the entire region 

(i.e. NHTS distributions). Further exploration on all fronts noted above can 

improve the fit. Nonetheless the distributions are reasonable and follow observed 

trends closely. These observations in particular the mismatch for activities where 

children are involved point to the importance of intra-household interactions and 

their role in the formation of activity-travel engagement patterns of household 

members.  
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Figure 21: Trip Duration Distribution for Workers 
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Figure 22: Trip Duration Distribution for Non-workers 
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Figure 23: Trip Duration Distribution of Home Trips for Workers 
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Figure 24: Trip Duration Distribution of Work Trips for Workers 
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Figure 25: Trip Duration Distribution of Maintenance Trips for Workers 
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Figure 26: Trip Duration Distribution of Discretionary Trips for Workers 
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Figure 27: Trip Duration Distribution of Pickup Trips for Workers 
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Figure 28: Trip Duration Distribution of Dropoff Trips for Workers 
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Figure 29: Trip Duration Distribution of Home Trips for Non-workers 
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Figure 30: Trip Duration Distribution of Maintenance Trips for Non-workers 
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Figure 31: Trip Duration Distribution of Discretionary Trips for Non-workers 
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Figure 32: Trip Duration Distribution of Pickup Trips for Non-workers 
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Figure 33: Trip Duration Distribution of Dropoff Trips for Non-workers 
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Trip Purpose Distribution 

Figure 34 and Figure 35 show the trip purpose distributions of workers and non-

worker demographics. It can be seen that the distributions match very closely with 

those from the NHTS. Also, as noted with other measures of activity-travel 

engagement behavior, SimTRAVEL simulates very similar results with both the 

sequential and dynamic approaches. There is a slight under-prediction of work 

trips and a slight over-prediction of home trips and maintenance trips for both 

demographics. 
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Figure 34: Trip Purpose Distribution for Workers 

 

 
Figure 35: Trip Purpose Distribution for Non-workers 
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Activity Episode Duration 

In addition to matching travel duration distributions that account for how much 

time individuals spend traveling there is also a need to match distributions of 

activity episodes that people pursue. Figure 36 and Figure 37 display distributions 

of activity episode duration for workers and non-workers respectively. It must be 

noted that OpenAMOS comprises one of the few microsimulation-based demand 

modeling systems that accounts for in-home activity engagement explicitly in 

addition to out-of-home activity engagement. In other demand model 

implementations, in-home activity engagement is implied by constructing a 

skeleton of out-of-home activity engagement decisions and generating the in-

home activity patterns around out-of-home activity engagement. This approach 

however may fail to capture some of the trade-offs and interdependencies 

between in-home and out-of-home activity engagement. Also, in OpenAMOS 

paradigm, time of day is implied unlike other model implementations where time 

of day needs to be simulated and often generated using coarse aggregations of 

time. However, time is continuous and aggregations could lead to potential loss in 

information and behavioral fidelity. 

Again the sequential and dynamic approaches simulate activity duration 

choices that are very similar. The activity episode durations seem to compare well 

with the weighted observations from NHTS and seem to closely match the trends 

in the observed distribution. There are slight deviations in the activity episode 

durations for very large episodes (greater than equals 250 minutes) and for 
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episodes with durations between 50 and 150 minutes). In the demand model 

(OpenAMOS), a single model is used to simulate the durations of episodes for all 

activity types. While there are activity type dummies and time of day dummies 

included in the model specification, the single model does not seem to account for 

all trends in the data. This can be observed in the figures that show the episode 

duration distributions for home episodes (Figure 38), work episodes (Figure 39), 

maintenance activities (Figure 40), discretionary activities (Figure 41), pickup 

activities (Figure 42) and dropoff activities (Figure 43) for workers. As can be 

seen, it would be rather difficult for a single duration model to capture all these 

different trends with a single model specified using activity type and time of day 

dummies. The specification of separate models for different activity types is left 

for a future exercise. 
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Figure 36: Activity Episode Duration Distribution for Workers 
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Figure 37: Activity Episode Duration Distribution for Non-workers 
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Figure 38: Activity Duration Distribution of Home Episodes for Workers 
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Figure 39: Activity Duration Distribution of Work Episodes for Workers 
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Figure 40: Activity Duration Distribution of Maintenance Episodes for Workers 
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Figure 41: Activity Duration Distribution of Discretionary Episodes for Workers 
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Figure 42: Activity Duration Distribution of Pickup Episodes for Workers 
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Figure 43: Activity Duration Distribution of Dropoff Episodes for Workers 
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Trip Rate 

Another key dimension of measuring and assessing activity-travel engagement 

results is to compare individual trip rates. While matching trip duration 

distribution helps ensure that trips are distributed in space, matching trip rates 

ensure that the correct number of trips is generated. Table 19 show the trip rate by 

purpose for both workers and non-workers. It can be seen that the overall trip 

rates are slightly higher than those observed from the NHTS by about 0.3 across 

all adults. As noticed in the trip purpose distribution, SimTRAVEL seems to over-

predict home and maintenance type activities and slightly under-predicts work trip 

rates. A potential explanation for the latter observation is the restriction imposed 

on workers and their fixed activity participation in OpenAMOS; workers are 

assumed to only participate in a maximum of two episodes.  

Figure 44 and Figure 45 show the trip frequency distribution for workers 

and non-workers respectively. For workers, the trip frequency distribution very 

closely matches the distribution from NHTS with the deviations for all frequency 

categories within 5 percent. For non-workers the simulated trip frequency 

matches closely except for trip frequency zero. SimTRAVEL predicts fewer 

people to be performing zero trips (11.65 percent versus 20.88 percent). 

Otherwise the differences in other trip frequency categories are reasonable and 

within deviations of less than 5 percent. Similar to other activity-travel 

engagement dimensions, SimTRAVEL produces very similar distributions with 

both the sequential and dynamic approach to integration. 
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Table 19: Average Trip Rate by Purpose 

  Worker Nonworker 

  Sequential Dynamic NHTS Sequential Dynamic NHTS 

Home 1.73 1.74 1.49 1.70 1.71 1.32 

Work 1.23 1.24 1.40 0.00 0.00 0.13 

School 0.01 0.01 0.06 0.01 0.00 0.14 

Maintenance 1.11 1.08 0.77 1.44 1.41 1.22 

Discretionary 0.29 0.29 0.24 0.38 0.37 0.44 

Pick Up 0.09 0.10 0.17 0.19 0.20 0.17 

Drop Off 0.14 0.15 0.18 0.22 0.23 0.21 

OH-Other 0.06 0.06 0.07 0.18 0.17 0.17 

Total 4.66 4.66 4.38 4.11 4.10 3.80 
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Figure 44: Trip Rate Distribution for Workers 
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Figure 45: Trip Rate Distribution for Non-workers 
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Daily Time Allocation to Activities and Travel Episodes 

Time is a limited resource and individuals engage in travel and activities subject 

to a certain daily budget (1440 minutes in a day).  Therefore, any 

microsimulation-based model of the urban system should accurately account for 

the full day of activities and travel. There are a number of activity-travel 

engagement decisions that are dependent on earlier activity-travel choices and an 

inaccurate accounting of the day and its allocation to activities and travel will 

result in an erroneous representation of agent behaviors and subsequently affect 

policy and planning analyses. 

It can be noted that the activity-travel engagement measures employed so 

far exhibit similar properties for the sequential and dynamic approach to 

integration. A key difference between the two approaches will be highlighted by 

the measure used in this discussion. As noted earlier, in the dynamic approach, 

individuals schedule/re-schedule activities in response to arrival information 

whereas in the sequential approach, individuals are oblivious to the arrival 

information and proceed with activity-travel engagement for the rest of the day. 

The later approach has the potential for creating “gaps” and “overlaps” in the 

activity-travel schedule generated and as a result the allocation will not account 

for full 1440 minutes in a day. For example, in most applications of the integrated 

model, the models are run iteratively for a set number of iterations when the 

improvement across iterations is very small. In other words the models are run 

iteratively to stability and not convergence. More often than not the network 
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conditions obtained at the end of the iterative process are very close 

approximations of converged network conditions and there are always differences 

between expected (used in subsequent iteration) and experienced (generated at the 

end of the iteration). For example, a person may arrive later than expected and in 

such a case, an “overlap” of the trip episode with the activity episode occurs in the 

sequential approach. Whereas in the dynamic approach the subsequent activity is 

adjusted in response to the arrival information and no “overlap” between trip and 

activity episode occurs. Alternatively, a person may arrive earlier than expected 

and in such a case, a “gap” is created between the trip episode and activity 

episode in the sequential approach and there is no accounting of the person during 

that period. However, in the dynamic approach the subsequent activity is adjusted 

and the downstream time-space prisms are updated in response to the early 

arrival. The dynamic approach comprises a very rich and intuitive scheduling and 

re-scheduling behavior exhibited by individuals in the real world. 

While the full daily accounting may not be very important when the 

network measures that are used at the start of the integrated model run are close 

approximations to network conditions simulated at the end of the run after loading 

and simulating trips, it becomes significantly important especially in the cases 

where there are deviations in the expected and experienced network conditions. 

Nonetheless it is important to have a model system in place that comprises an 

accurate representation of underlying behaviors even when the inputs (network 

measures) are close approximations. As noted earlier, in most situations, the 
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integrated model runs are not run through to convergence instead they are stopped 

after a certain fixed number of iterations and in those situations the full 

accounting becomes important. Table 20 highlights the difference between 

sequential and dynamic approaches to integrated modeling by comparing the daily 

time allocation to various types of activities and trips. It must be noted that while 

there is a full accounting of the 1440 minutes in a day in dynamic approach, a few 

minutes are generally “lost” due to discretization errors associated with how time 

is treated in SimTRAVEL. While time is treated as a continuous entity it is not 

represented as a decimal; instead it is treated as a positive number and this leads 

to some discretization and approximation errors.  As a result, the sum of time 

allocated to activities and trips account is always a few minutes less in 

SimTRAVEL. This can also be seen in Table 20 where the total time allocation is 

1435 minutes and 1434 minutes for workers and non-workers respectively using 

the dynamic approach (i.e. 5 minutes and 6 minutes are lost due to discretization).  

However, the daily time allocation for workers and non-workers with the 

sequential approach adds up to 1447 and 1446 minutes respectively; an obvious 

inconsistency. This is due to the “overlap” effect described earlier wherein late 

arrival causes the trip episode and activity episode to overlap and hence the extra 

accounting of total minutes. In other words, sequential approach may generate 

activity-travel patterns that are comparable to dynamic approach when the 

network conditions are stable. However, when the network conditions are close 

approximations, the sequential approach suffers from inconsistencies in the 
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individual activity-travel agendas such as “gap” and “overlap”. On the other hand 

the dynamic approach does not suffer from any such inconsistencies and 

comprises a full daily accounting of individuals in time and space. 
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Table 20: Daily Time Allocation to Activities and Trips 

  

Worker Non-worker 

Sequential Dynamic NHTS Sequential Dynamic NHTS 

Time Spent on Activities 
      Home 832 829 766 1215 1211 1186 

Work 448 443 506 0 0 21 

School 1 1 10 0 0 30 

Maintenance 39 36 25 74 69 53 

Discretionary 13 12 22 29 28 58 

Pick Up 0 0 2 0 1 3 

Drop Off 1 1 1 3 3 7 

OH-Other 5 5 20 14 13 44 

Total activity duration 1338 1326 1351 1336 1324 1402 

Time Spent on Trips             

Home 42 42 33 48 48 25 

Work 31 31 32 0 0 4 

School 0 0 1 0 0 3 

Maintenance 24 23 10 37 36 19 

Discretionary 6 6 4 10 9 10 

Pick Up 2 3 2 5 5 2 

Drop Off 3 3 2 5 6 3 

OH-Other 1 1 2 5 5 6 

Total trip duration 109 109 86 110 109 74 

Total accounting of time in a day 1447 1435 1438 1446 1434 1476 
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Computational Overhead 

An issue that merits further exploration is that of computational tractability. Run 

times are naturally dependent on the hardware configuration.  On a standard quad-

core personal computer workstation, run times for a simulation of about 14.3 

million trips are in the order of about 24 hours per complete iteration, with the 

dynamic model design taking on the order of about 3-4 hours longer than a 

sequential model design run.  It is envisioned that these run times will come down 

as computing power improves and parallel computing capabilities are harnessed 

to the extent possible. In both sequential and dynamic approaches, the memory 

requirement is comparable and is anywhere from 4GB – 8 GB depending on the 

period of day being simulated.  

E. Discussion and Conclusions 

In this study, the dynamic and sequential approaches are compared to understand 

differences/similarities in convergence properties, the activity-travel engagement 

patterns that are generated at the end of the run, and computational overhead. The 

results indicate that the sequential and dynamic approaches seem to generate 

similar results on all metrics at the aggregate level except for the daily time 

allocation to activities and travel which is a disaggregate measure for assessing 

the consistency and validity of the of the activity-travel engagement patterns that 

are generated. The similarity in the results that are generated using the two 

approaches are consistent with expectations because the network conditions that 

serve as inputs for producing the activity travel engagement patterns are very 
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similar (as shown in Figure 8 and Figure 9). In other words, the expected and 

experienced network conditions are almost similar with an average deviation of 

0.63 between the expected travel time (skim matrices produced at the end of 

iteration 4) and the experienced travel time (skim matrices produced at the end of 

iteration 5). This small difference between the expected and experienced is 

causing “gaps” and “overlaps” in the sequential approach but nothing that affects 

the activity-travel patterns significantly compared to the dynamic approach. 

However, the “gaps” and “overlaps” are manifested in the daily time allocation 

metric. There is an obvious inconsistency in the daily time allocation to travel and 

activities in the sequential approach compared to the dynamic approach by about 

12 minutes. Additionally, in the sequential approach, the total of time allocated to 

activities and travel is greater than the allowable time budget in a day of 1440 

minutes. 

The difference in the daily time allocation observed in this study may not 

be significant enough to influence typical policy and planning analyses but it does 

highlight the potential issues with the sequential approach. In situations where 

“overlaps” occur, people are actually engaging in both trip episodes and activity 

episodes at the same time and when “gaps” occur, people are unaccounted for 

during the period between the arrival and the onset of the activity episode. These 

potential issues will manifest in situations where the network conditions for a 

certain area in the model region are unreliable and in particular when the expected 

travel times are always conservative estimates and lesser than experienced. In 
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such a situation the sequential approach will end up generating more trips 

compared to the dynamic approach. Because in the sequential approach, 

“overlaps” are caused due to the conservative estimate of network conditions 

generating more trips than ought to be whereas the dynamic approach adjusts the 

persons schedule in response to arrival time and ensure that consistency and 

continuity in the representation of individuals, and their activity-travel patterns.  

In some sequential model applications, attempts are made to overcome 

“overlap” issue by magically moving people from the current location on the 

network to their next activity/trip engagement. However, one can see the obvious 

inconsistency such an assumption can cause. Even in applications where the 

“overlap” issue is accounted for there is no treatment for the “gap” issue. That is 

how are people changing their activity-travel engagement patterns when there are 

travel time savings.  

Additionally, as discussed, the differences between the sequential and 

dynamic approaches for a base year simulation are only marginal. It is entirely 

possible to argue that even a sequential model design can replicate patterns 

without much difficulty as long as expected travel times (in the skim matrices) are 

accurately reflecting true travel times in the network. However, it should be 

noted, that the true merits of the proposed design can only be assessed when the 

model system is applied to a scenario in which the network is subjected to a 

perturbation.  A simpler naïve sequential model design cannot replicate behaviors 

and network conditions when a shock or policy is introduced in the system in the 
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middle of a day (simulation).  For example, how are people going to alter their 

activity-travel patterns in the base year if lane restrictions are introduced for a 

certain time period during the day? Alternatively, how are people going to spend 

the extra time gained due to improved travel conditions? These types of scenarios 

cannot be analyzed without making compromising assumptions about behaviors 

in a sequential approach whereas in the dynamic approach the scheduling 

behaviors are captured in the dynamic time-dependent activity-travel generation 

paradigm. Therefore from a pure conceptual standpoint, the dynamic integrated 

model design would have the ability to simulate adjustments in schedules and 

behaviors that would follow such an event.  It would be virtually impossible for a 

sequential design to mimic such behavioral adjustment processes.     
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CHAPTER 8 

SIMULATING THE IMPACT OF NETWORK DISRUPTIONS ON 

ACTIVITY-TRAVEL ENGAGEMENT PATTERNS 

A. Introduction 

Network disruptions refer to a class of events that alter the regular flow of traffic 

on one or more roadway facilities. Network disruptions lead to a drop in capacity 

on the roadway element where the event occurs and cause delays, build up queues 

and lead to spillbacks on to surrounding links on the network. Network 

disruptions may include planned events such as full roadway or lane closures to 

accommodate work zones along a freeway segment or bridge section, or 

unplanned events such as traffic crashes or roadway/bridge failures. The modeling 

of the impacts of network disruptions on travel demand and traffic flow has 

important implications. First, in the context of unplanned network disruptions, 

understanding the impact of such events and associated delays allows for the 

planning of emergency response services. Emergency response services can be 

optimized so that crisis teams can respond to incidents as quickly as possible and 

alleviate the impact of disruptions.  Second, modeling the impact of network 

disruptions allows for estimating the changes in activity-travel demand along both 

the space and time dimensions that may result due to such events. Such an 

understanding would allow professionals to devise traveler information systems 

and routing strategies that would minimize adverse impacts on people’s activity-

travel schedules.    
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The effects of network disruptions may be simulated using a variety of 

traffic models. However, there are some key considerations which determine the 

accuracy in representation of the disruption and its associated impacts. First, the 

model should be sensitive to information provision and reflect the influence of 

information provided on routing decisions for people entering the network after 

the onset of the disruption.  For example, there are a number of outlets that 

provide information about network disruptions including radio traffic reports, 

Google maps about current traffic conditions, and advanced traveler information 

systems (such as 511 systems) about roadway closures among others. The traffic 

model should be able to represent the alternate routing decisions that individuals 

employ in response to this information and resultant network conditions. Second, 

any model of the network disruption should account for the short-term re-routing 

decisions that people already on the network employ in order to minimize the 

impact of disruption. For example, when a crash occurs on a freeway, drivers 

upstream of the crash may get off at the next exit (if possible) and choose to take 

alternate routes to get to their destination instead of staying on the freeway 

waiting for the accident to clear. Third, the network disruption model should be 

able to capture the impact of disruptions on activity-travel engagement patterns 

and the demand that is generated. An extra hour spent on the network due to 

travel delays is an hour that is no longer available for subsequent activity-travel 

engagement. This may lead to individuals adjusting, or modifying their activity-

travel engagement patterns. The last consideration is of particular relevance in the 
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context of planned network disruptions which may affect a sub-population in a 

region for extended periods of time (e.g. “Carmageddon”, Reuters 2011) and thus 

influence their quality of life.  

There is a rich body of literature on the modeling of unplanned network 

disruptions (Chang and Nojima 2001, Kamga et al. 2011) and planned network 

disruptions (Clegg 2007). However, the literature on modeling network 

disruptions and understanding its impact on activity-travel engagement patterns is 

limited. Zhu et al. (2010) present a study looking at the impact of the I-35W 

bridge collapse over the Mississippi River in Minneapolis on traffic flows in the 

surrounding region and on the travel behavior patterns from observed data. 

However, the research does not consider the impact on full daily activity-travel 

engagement patterns.  Sundaram (2002) presents a framework for modeling 

network disruptions and captures its impact on activity-travel behavior. However, 

the model implementation employs a hybrid model of travel demand and not a 

full-scale microsimulation model that allows for a more accurate representation of 

underlying behaviors and the various interactions and constraints that individuals 

experience.  

In this research effort framework for modeling network disruptions which 

allows for an accurate representation of activity-travel engagement, network 

dynamics, and the interplay between these two components is presented. The 

framework combines a travel demand model system (generating the activity-

travel engagement decisions) with a traffic simulation model which simulates the 
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routing decisions and movement of vehicles on the network. A prototype system 

has been developed using microsimulation-based model of travel demand 

(OpenAMOS – an open-source activity-based travel demand model system) and 

network microsimulation model (MALTA - Multi-Resolution Assignment and 

Loading of Traffic Activities) to accurately capture the interactions and 

constraints that people experience as they pursue their activity-travel agendas. 

The prototype is used to model an unplanned network disruption on a major 

freeway corridor. A comprehensive analysis is conducted to assess the impact of 

the network disruption, and characterize the impact of network congestion on 

activity-travel engagement patterns under a variety of traveler information 

provision scenarios. In the next section, the framework is presented followed by a 

description of the study area and scenarios that will be evaluated in Section C. In 

section D, results from the application of the framework to model the different 

scenarios are presented. The final section includes a discussion of the results and 

concluding thoughts. 

B. Dynamic Time-Dependent Activity-Travel Simulation Framework for 

Modeling Network Disruptions 

As noted earlier, one of the key components that need to be included in the 

context of network disruption models is the activity-travel scheduling and 

rescheduling behavior exhibited by individuals in response to network delays 

caused by the network disruption. This calls for an integration of an activity-based 

travel demand model with a dynamic traffic assignment model.  The integration 
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approach should also be able to accommodate constant communication between 

the travel demand model and the traffic simulation model along the continuous 

time axis to account for the interaction between the two systems and accurately 

capture the impact of network delays on subsequent activity-travel engagement 

decisions.  

An approach typically proposed to integrate the activity-travel demand 

model and the network supply model is to run the models sequentially. Each of 

the model systems is run independently and coupled together through input-output 

data flows and feedback loops. However, such an approach cannot be used to 

model the impacts of network perturbations because the sequential framework 

does not support constant communication between the model systems along the 

time axis. The constant communication is an important feature that should be 

supported by the integration framework to mimic the formation of activity-travel 

patterns over the course of the day in response to arrival times and network 

conditions. The modeling of network disruptions calls for an event-based 

approach to integrating the two model systems which can support a continuous 

communication between the model systems. Such an event-based framework is 

presented in Chapter 3. Within each minute of the day, the demand model 

simulates activity-travel engagement decisions of all individuals. Trip 

information, including, origin, destination, mode, and vehicle information, is then 

passed to the dynamic traffic assignment model for routing trips on the network. 

The traffic assignment model in turn routes the trips and simulates vehicular 
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movements on the network. Once the trips arrive at their destination, the traffic 

assignment model passes back the arrival information to the demand model to 

simulate activity-travel engagement decisions in subsequent time steps. The 

activity-travel demand model simulates adjustments to activity schedules based 

on actual arrival times experienced by travelers.  

The event-based framework presented in Figure 4 lends itself to modeling 

network disruptions and understanding impacts on activity-travel engagement 

decisions. In the context of modeling network disruptions, there are two key 

considerations. First, the actual arrival times need to be fed back to the travel 

demand model to simulate activity-travel engagement decisions in the subsequent 

time interval. Second, network conditions after the onset of an incident also need 

to be passed back to the travel demand model so that the simulated activity-travel 

engagement patterns are a reflection of the network conditions that prevail at the 

time. The prevailing network conditions should be used in routing decisions. The 

framework presented in Figure 4 can accurately capture the first consideration, 

i.e., adjusting activity-travel scheduling behavior in response to arrival 

information. However, the framework cannot simulate information provision, i.e., 

the framework does not accommodate passing the prevailing network conditions 

for simulating activity-travel choices and routing decisions in the subsequent time 

period(s) of the day.   

Figure 46 presents a revised event-based framework for integrating 

demand and supply model. The model systems proceeds in a manner similar to 
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the framework presented in Chapter 3, where converged base year link travel 

times (Lbase) are used from start of day until the onset of the disruption (t = a) and 

again from the time that the disruption is cleared (t = b) until the end of day. 

However, for the time period between onset and clearing of the disruption (a  t  

b), the linkage between the travel demand model and the traffic simulation model 

is modified as follows: 

 At the end of every simulation interval (t), the dynamic traffic assignment 

model replaces the expected link travel times (Lbase) with the existing travel 

times (Lt) for all subsequent intervals because that is the best estimate of 

prevailing and future network conditions after the onset of an incident.  

 The new link travel times (Lt) by time of day are used to generate origin-

destination travel time matrices (ODt) for use in the travel demand model.  

 The traffic simulation model passes the travel time matrix (ODt) reflecting 

prevailing conditions, along with all trips that have arrived at their destination, 

to the demand model so that activity-travel engagement decisions for the 

subsequent time interval may be simulated.  

 The travel demand model in turn passes back trips that need to be loaded on 

the network based on the prevailing network conditions (ODt). In response to 

the prevailing (delayed) conditions, people may choose alternate destinations, 

or may just choose to proceed early to their next fixed activity (e.g., work) 

because they know it will take longer to get to the fixed activity.  
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 Once the trips are received by the dynamic traffic network simulation model, 

routes are identified using prevailing conditions (Lt) as the expectation of the 

network for all subsequent time intervals. The traffic simulation model then 

loads and routes/simulates the trips. 

 The simulation time step is incremented (t = t+1) and the process (Steps 1 - 5) 

is repeated until the incident is cleared.  

 Once the incident has cleared, the base year converged network conditions by 

time of day are used once again to simulate activity-travel engagement and 

routing decisions.  

The flowchart presented in Figure 46 offers a robust framework for modeling 

incidents. The framework presented is operationalized in this study and 

implemented to model scenarios of network disruption with varying levels of 

information provision.  
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Figure 46: Dynamic Time-Dependent Activity-Travel Simulation Framework for Modeling Network Disruptions  
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C. Case Study 

The framework presented in the previous section for modeling network 

disruptions is implemented using SimTRAVEL – Simulator of Travel, Routes, 

Activities, Vehicles, Emissions, and Land. SimTRAVEL (Chapter 4). The 

prototype has been enhanced to incorporate additional feedback between the 

model systems as necessitated by the framework presented in Figure 46 to model 

network disruptions. The study area consists of three cities (Chandler, Gilbert, and 

Queen Creek) in the southeast region of Maricopa County, Arizona. There are 

about half a million people residing in about 150,000 households in the three city 

area. The entire Maricopa region was not considered in the study due to data 

limitations. The demand for the three city region is generated using a full-scale 

microsimulation-model in SimTRAVEL and in order to simulate congestion on 

the network, origin-destination tables from traditional four-step model are used to 

capture the background traffic. The origin-destination demand table is converted 

into trip lists disaggregated by time of day using trip start time distribution from 

the latest wave of the National Household Travel Survey.  

As noted earlier, one of the main goals of this study was to extend the 

integrated model prototype (SimTRAVEL) to allow modeling of network 

perturbation. Another key goal of this effort was to implement the prototype to 

study network disruption and understand the impact of various levels of 

information provision on the activity-travel patterns that are generated. A network 

disruption is introduced by dropping the lane capacity of a section of the freeway 
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that runs through the middle of the three city region. The idea was to model an 

incident type situation wherein only one lane in each direction of the freeway 

segment is operational and other lanes are closed to clear the incident. Three 

different runs were conducted as described below to conduct the network 

disruption analysis. The incident was assumed to start at 7:00 AM and end at 

10:00 AM. The time period was chosen to capture the peak demand generated by 

individuals residing in the three city region.  

 No disruption: In this scenario, incident does not occur and base line 

conditions prevail. The scenario was run to establish a benchmark against 

which other network disruption/ information provision scenarios can be 

compared and analyzed. 

 No information provision: In this scenario, it was assumed that people are 

oblivious to the onset of the incident and thus corresponds to a no information 

provision scenario. Individuals are assumed to make activity-travel 

engagement decisions in OpenAMOS based on their expectation of network 

conditions. Additionally in the microsimulation it was assumed that 

individuals are making route choices based on earlier experiences. The 

assumption of no information provision may be unreasonable because 

individuals that are on the network are aware of the prevalent conditions. 

Additionally those that are about to embark on a trip probably know about 

network conditions through some form of traveler information system such as 

local radio and 511 systems.   
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 Full information provision: In this scenario, travelers that are already on the 

network follow their planned routes even after the onset of the network 

disruption. Only individuals that are about to embark on a trip are assumed to 

be aware of the incident and the prevailing network conditions. The activity-

travel engagement and routing decisions of these individuals are based on the 

prevailing network conditions and not based on expected conditions of the 

network that they generally experience. It must be noted that even this 

scenario comprises a rather extreme case of information provision. First, it 

may be unreasonable to assume that every individual that is embarking on a 

trip is aware of prevailing network conditions. Second, no en-route switching 

is allowed once people have embarked on a trip.  

The two scenarios described above comprise a network perturbation under 

two extreme levels of information provision namely, no information provision 

and full information provision. In reality, information provision is probably 

between the two extremes modeled in this study. Nonetheless it was considered 

an interesting exercise to model and analyze the two extremes in this study to get 

a range for the variation in activity-travel engagement behavior in response to 

network conditions. The simulation runs mimic different levels of information 

provision to travelers after the onset of a network perturbation, and should 

provide important insights. First, the study highlights the applicability of an 

event-based integrated demand-supply model system to study the impacts of 

network disruptions on activity-travel engagement. Second, the study throws light 
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on the impact of information provision during network disruption on traditional 

measures of network conditions (total trips, and delays) and also on activity-travel 

engagement behavior (trip lengths, trip durations, trip rates, and daily time 

allocation). 

D. Results 

Before running the three scenarios, SimTRAVEL prototype was employed 

iteratively to obtain stable base year conditions. The stable network conditions 

from the base year simulation run were then used to launch the three scenarios. In 

the no disruption scenario, regular SimTRAVEL prototype is employed and 

activity-travel engagement decisions are made using expected travel time matrices 

and route choices are based off expected link travel times. There is no disruption 

hence no drop in lane capacities. In the no information provision scenario, a 

disruption occurs and the lane capacity for a section of the network drops to one 

lane between 7:00 AM and 10:00 AM. However, activity-travel engagement 

decisions are still made using expected travel times and route choices are still 

based off expected travel times as individuals are oblivious to the incident and 

make decisions off of earlier experience. In the full information provision 

scenario, a disruption occurs and lane capacity drops to 1 lane on the affected 

section of the network between 7:00 AM and 10:00 AM. However, at the end of 

every minute, travel time matrices are generated based off of prevailing 

conditions and passed to OpenAMOS for making activity-travel engagement 

decisions and prevailing link conditions are used to generate paths reflecting 
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every individual’s full knowledge of the incident and its impact on existing 

network conditions. In order to understand the impact of network conditions on 

the different levels of information provision, a variety of aggregate measures of 

network conditions and activity-travel engagement were used.   

From this point forward the scenario with no disruption is referred to as 

base scenario, the disruption scenario with no information provision is referred to 

as no information scenario and finally the disruption scenario with full 

information provision is referred to as the full information scenario. Overall the 

demand model seems to perform as expected. The number of trips generated in 

the no disruption case is 14,320,888 trips whereas in the full information scenario 

it is 14,321,746 and lastly in the no information scenario a total of 14,317,790 

trips are produced. The number of trips generated in the no information scenario 

is least and is reasonable with expectations. Because in the no information 

scenario, people are presumably planning trips and selecting routes oblivious to 

the occurrence of the incident. As a result they experience higher delays and 

spend more time on the network which will in turn affect their subsequent 

activity-travel engagement decisions in the form of smaller time-space prisms to 

pursue other non-fixed activities. It is however interesting to note that the number 

of trips generated in the full information scenario is higher than the no disruption 

scenario by about 858 trips. The total Vehicle Miles Traveled (VMT) on the other 

hand is 10125 miles. This observation is consistent with expectation because 

people are probably selecting alternative routes using surface streets to avoid the 
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section of the freeway affected by the incident as they have full information about 

the network conditions and in effect choosing the fastest routes to get to their 

activity locations.  

In order to study the impact of the incident on trip generation, trip start 

time distributions were plotted and compared. Figure 47 and Figure 48 show 

time-varying differences in the counts of trips that were generated in the two 

disruption scenarios versus the trips that were generated without the disruption for 

workers and non-workers respectively. It can be seen that there are clear trends in 

the distribution of trips for workers and non-workers. First, the impact of the 

disruption on the workers is higher than the impact of the disruption on non-

workers. Presumably workers are skipping non-fixed activities but are still 

pursuing their fixed activity assignments whereas with non-workers they are 

skipping non-fixed activities completely. As a result the drop in the number of 

trips for non-workers (2577 in no information provision scenario) is higher than 

for workers (386 in no information provision scenario). During the period of the 

incident (7:00 AM - 10:00 AM), both workers and non-workers are making fewer 

trips in the no information provision scenario compared to the no disruption case. 

Whereas in the full information provision scenario, workers are making slightly 

higher number of trips compared to no disruption and non-workers are making 

fewer trips compared to no disruption. It is also interesting to note that there is a 

sudden spike in the number of trips generated right after the incident ends. It is 

plausible that the people affected by the incident are traversing the section of the 
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affected roadway under free flow conditions after the end of the incident and once 

they have reached their destination, they make schedule adjustments and embark 

on trips to their next fixed activity locations to pursue activities whose start times 

may have passed or whose start times will be violated due to the incident delay. It 

can also be seen that there is a cascading impact of the incident on subsequent 

activity-travel engagement patterns in the rest of the day.  

Figure 49 and Figure 50 show the percent difference in distribution of trip 

durations for workers and non-workers respectively for the two disruption 

scenarios compared against the no disruption scenario. As can be seen there is a 

clear trend in the duration distribution for workers and non-workers for both 

disruption scenarios. Both workers and non-workers seem to be engaging in a 

lower percentage of short duration trips and a higher percentage long duration 

trips. It is also interesting to note that the trend is similar for both disruption 

scenarios; however, for the scenario with no information provision, the magnitude 

of differences is higher than the scenario with full information provision. This is 

reasonable with expectation because in the full information provision individuals 

are using alternate routes which include surface streets and hence a smaller 

increase in the durations compared to no information provision where the 

individuals are using the section of the roadway facilities affected by the incident. 

The final metric that was employed to study the difference in activity-

travel engagement patterns was the daily time allocation to trips and activities. 

Time is a limited resource and individuals allocate time to activities and travel 
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episodes subject to daily budget (1440 minutes in a day). As expected individuals 

are spending slightly higher time on trips at the cost of activity time engagement 

in both disruption scenarios.  In the disruption scenario with no information, 

workers on an average spend 2 more minutes on trips and 2 less minutes on 

activities compared to the no disruption scenario. In the disruption scenario with 

full information, 1 less minute on activities and 1 more minute on trips. For non-

workers the trends are very similar with more time spent on trips and less time 

spent on activities as can be seen in Table 21. It can be seen that the differences in 

time allocation between the disruption scenarios and no disruption scenario is 

rather small. In an effort to further explore the observation, the difference in 

person days between the disruption scenarios and the no disruption case were 

computed by taking the difference in time allocation between disruption and no 

disruption and multiplying the difference by the number of individuals belonging 

to the demographic. Table 22 presents the person day difference in time allocation 

across all persons belonging to a particular demographic. As can be seen workers 

and non-workers both are spending more time in trips and less time engaging in 

activities compared to the disruption scenario. It is also interesting to note that the 

differences are much smaller in full information scenario compared to the no 

information scenario. Also interesting is the difference in magnitude for the 

worker and non-worker demographics. The difference in magnitude points to the 

differing roles of the two demographics and the role played by their fixed activity 

spatio-temporal constraints in forming their activity-travel agendas.  
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It can be seen from the results presented thus far that the network 

disruption has an effect on the activity-travel engagement patterns. Additionally 

the decision making behavior is impacted by level of information provision. 

Given the small magnitude of changes noted in the metrics, one could argue that 

the changes are just an artifact of the stochasticity associated with the 

microsimulation-based demand model. While the stochasticity in the demand 

model does bring about some changes due to random number seed, there should 

not be any trends in the results obtained. As noted in the results, while some of the 

changes observed can be attributed to stochasticity, majority of the changes are 

caused because of the altered inputs (in the disruption scenarios the level of 

information provision about the network conditions). Also, if the changes were 

purely due to stochasticity, one would not observe trends in the results. Also, all 

observations between the disruption scenarios and the base no disruption case are 

supported by plausible explanations.  
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Figure 47: Difference in the Count of Trips by Time of Day for Workers 
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Figure 48: Difference in the Count of Trips by Time of Day for Non-workers 
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Figure 49: Percent Difference in Trip Durations for Workers 
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Figure 50: Percent Difference in Trip Durations for Non-workers 
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Table 21: Daily Time Allocation to Trips and Activities Per-capita for Workers and Non-workers 

 
Worker Non-worker 

No 

Disruption 

No Information 

Provision 

Full Information 

Provision 

No 

Disruption 

No Information 

Provision 

Full Information 

Provision 

Time Spent on Activities 

      Home 829 829 829 1211 1210 1211 

Work 443 442 443 0 0 0 

School 1 1 1 0 0 0 

Maintenance 36 35 35 69 68 69 

Discretionary 12 12 12 28 28 28 

Pick Up 0 0 0 1 1 1 

Drop Off 1 1 1 3 3 3 

OH-Other 5 5 5 13 13 13 

Total activity duration 1326 1324 1325 1324 1323 1324 

Time Spent on Trips             

Home 42 43 43 48 49 48 

Work 31 32 31 0 0 0 

School 0 0 0 0 0 0 

Maintenance 23 23 23 36 36 36 

Discretionary 6 6 6 9 10 10 

Pick Up 3 3 3 5 5 5 

Drop Off 3 3 3 6 6 6 

OH-Other 1 1 1 5 5 5 

Total trip duration 109 111 110 109 110 110 

Total daily accounting 1435 1435 1435 1434 1434 1434 
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Table 22: Daily Time Allocation to Trips and Activities Across All Workers and Non-workers 

 
Worker Non-worker 

No Information 

Provision 

Full Information 

Provision 

No Information 

Provision 

Full Information 

Provision 

Number of people 150435 150435 187757 187757 

Time Spent on Activities 

    Home -72 8 -71 -31 

Work -111 -28 0 0 

School 4 4 -1 1 

Maintenance -21 -50 -62 -7 

Discretionary -15 -4 -8 13 

Pick Up 1 1 2 2 

Drop Off 1 1 8 2 

OH-Other -3 -3 9 5 

Total activity duration -217 -71 -123 -15 

Time Spent on Trips         

Home 46 31 33 9 

Work 110 23 0 0 

School 2 0 2 0 

Maintenance 21 7 22 -9 

Discretionary 8 4 12 10 

Pick Up 6 0 15 1 

Drop Off 24 3 34 7 

OH-Other 4 0 7 -3 

Total trip duration 221 69 124 16 
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E. Discussion and Conclusions 

This research effort comprises one of the very few operational implementations of 

a microsimulation-based integrated model for simulating network disruptions. 

This effort constitutes a unique application of a tightly integrated model that 

involves constant feedback between the activity-travel demand model and the 

dynamic traffic simulation model so that activity-travel patterns evolve in 

response to actual network conditions experienced by travelers. The scenario 

analysis completed in this project provides some important insights into the 

impacts of network disruptions on time use and travel behavior under different 

levels of information provision. First, disruptions affect individuals by affecting 

their activity-travel engagement patterns and network conditions in turn are 

affected by how individuals react in response to network perturbation information 

and how they process it to engage in subsequent activities and trips. The 

observations in this study points to the need for not just considering the trips in 

isolation when modeling perturbations but to holistically consider the entire 

transport system in which the trips are generated including the agents and their 

activity-travel engagement behaviors. This calls for an integrated model system 

with a high fidelity travel demand model system generating activity-travel 

patterns combined with a network microsimulation model that routes and 

simulates the trips. Second, traditional integrated models cannot be used to model 

network perturbations without making comprises about the decision making units 

and their underlying behaviors. A dynamic integrated model system where 
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activities and trips are generated in response to network conditions is required to 

model network disruptions. Third, there are differences in how information about 

network disruptions affects individual activity-travel engagement patterns and 

route choice decision making behavior. Therefore, the model system should be 

able to support the simulation of different levels of information provision.  

The scenario analysis and the observations presented in this study open 

new questions for research in the use of integrated models of travel demand and 

network models for modeling network disruptions. First, characterize stochasticity 

of the integrated model system by keeping the inputs constant and altering the 

random number seed. The range of results obtained can then provide additional 

guidance to comparative analysis and help isolate stochasticity effects. Second, in 

the no disruption case hourly skim matrices are applied whereas in the disruption 

case with full information provision network conditions are provided to 

OpenAMOS on a minute-by-minute basis. As a result in the no disruption case 

there is an aggregation error that may potentially affect the results generated while 

in the full information scenario no such aggregation error occurs at least in the 

period when the incident occurs and minute-by-minute communication of 

network conditions occurs. Third, the representation of scheduling and re-

scheduling and route choice behaviors can be enriched. In the current 

implementation the scheduling behaviors that are reflected are due to the 

shrinking of open time-space prisms due to prevailing network conditions and on 

the network side routes are altered at the pre-trip stage in response to information 
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provision. While these may be reasonable, they do comprise a simplification of 

individual scheduling and route choice behavior during network perturbations. 

People exhibit additional behaviors in response to network perturbations 

including, en-route rerouting, altering destinations and skipping activities when 

facing delays along the way among others that should be explored and 

incorporated.     

Nonetheless, the results presented in the study are promising and the 

framework presented can be used to model network disruptions and understand 

their impact on activity-travel engagement patterns under varying levels of 

information provision. The prototype and framework presented are robust and can 

be extended to include additional behaviors. The prototype and the analysis have 

important implications for planning and policy analyses. They can be used for 

evaluating, planning and implementing various types of traveler systems 

including advanced traveler information systems, and incident response services. 

The modeling framework allows the characterization of the impact of network 

perturbations on activity-travel engagement patterns, an angle that is less 

understood.     
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CHAPTER 9 

SUMMARY 

Although there have been considerable developments over the past decade in the 

integrated transport model formulation arena, the implementation of a tightly 

integrated model system has remained a major challenge to the profession. In this 

research effort, an integrated model framework of the urban system is presented 

that goes beyond a loose coupling of the component model systems. The 

framework comprises an integration of the component systems under a single 

unifying framework ensuring consistency in the representation of individual 

agents and their behaviors. The integrated land use – transport model system 

design incorporates a tight dynamic coupling between an activity-based 

microsimulation model system of travel demand and a dynamic network 

assignment and simulation model of network supply and has a behaviorally 

intuitive appeal.  The integrated model design is a continuous time model system 

capable of simulating activities and travel patterns in response to actual network 

conditions experienced by travelers as they execute their daily activities and travel 

in time and space.  The model operates at the level of resolution of one minute. In 

each minute of the day, the activity-travel demand model provides the network 

supply model the list of trips that need to be routed to their destination, while the 

network supply model returns the list of trips that have arrived at their destination 

locations.  This results in dynamic interaction between the demand and supply 

models on a minute by minute basis.     
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The model system has been implemented as an open source software 

package and a prototype dubbed SimTRAVEL (stands for Simulator of Travel, 

Routes, Activities, Vehicles, Emissions, and Land) was developed. The feasibility 

of the prototype to model the urban system was demonstrated by applying the 

integrated model for a three city jurisdiction of the southeast region of the Greater 

Phoenix metropolitan area.  The model system is found to perform quite well in 

replicating observed activity-travel patterns as reported in the latest wave of the 

National Household Travel Survey (NHTS 2008) data.  The results are promising 

and the model design appears to provide a conceptually appealing framework for 

tying together microsimulation model systems of activity-travel demand, network 

supply, and land use. The integrated model design presented (dynamic approach) 

was also compared against traditional approach (sequential approach) to 

integration where component systems are applied sequentially to achieve 

integration; to highlight differences and similarities between the two approaches. 

The two approaches seem to produce similar results when metrics of convergence 

and aggregate measures of activity-travel engagement patterns generated are 

compared. However, when disaggregate measures of activity-travel agendas are 

compared, the sequential approach suffered from obvious spatiotemporal 

inconsistencies whereas the dynamic approach with its arrival-based activity-

travel scheduling and rescheduling behavior provided behaviorally consistent and 

complete schedules.   
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A key shortcoming of the traditional approach is the inability to model 

application scenarios that involve modeling of network dynamics and subsequent 

impact on activity-travel engagement behavior. There are many emerging policy 

questions that call for an integrated transport demand – supply model system 

capable of responding to changing network conditions through the course of a 

day.  In the event of unexpected congestion (say, due to an incident), travelers 

may arrive at their destination location later than expected.  This late arrival 

would have cascading effects on the subsequent activities, destinations, and 

durations.  Through a tightly integrated model design, it is possible to reflect the 

effects of such network dynamics on emergent activity-travel behavior.  Similarly, 

in the event that intelligent transportation systems or dynamic pricing strategies 

are deployed, travelers may arrive more quickly at their destinations than 

originally anticipated.  The additional time that becomes available to the traveler 

may lead to induced travel or activity engagement. The dynamic integration 

approach presented in this research with its event-based paradigm for activity-

travel generation is better suited for modeling network dynamics. The dynamic 

approach to integration was extended further to model traveler information 

provision scenarios. Results from application of the dynamic approach to model a 

planned network disruption under a variety of traveler information scenarios were 

behaviorally plausible and illustrate the applicability of dynamic integration 

approach for application scenarios involving network dynamics.   
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The research effort also adds to the body of literature on activity-based 

travel demand models by examining two key choice activity-travel engagement 

behaviors, namely, activity engagement behavior at an episode level and vehicle 

transaction behavior at tour-level. The studies were conducted in an effort to 

advance understanding simultaneity in choice dimensions and to explore decision 

hierarchies among the choice dimensions underlying activity-travel engagement. 

In the first study, a probit-based joint discrete-continuous model formulation was 

employed to jointly model the activity-type choice and duration of the activity 

episode. In another study, the probit-based formulation was extended to study the 

choice of vehicle type in households with multiple vehicles and the distance 

traveled at the tour-level. Both studies point to the presence of simultaneity in 

choice dimensions and the need for employing joint modeling frameworks in 

microsimulation model systems. Additionally, the two studies also point to the 

importance of proper accounting of decision hierarchies among choice 

dimensions to conduct accurate policy analyses. Efforts are currently underway to 

enhance the choice dimensions and decision hierarchies in the SimTRAVEL 

prototype based on the observations from the two studies.  

This research effort makes contributions to furthering the state of research 

and practice in the arena of integrated models and activity-based travel demand 

models. There are tremendous opportunities for further research and inquiry in the 

arena of integrated modeling of urban systems and activity-based travel behavior 

analysis. Issues of data availability, disaggregate and aggregate validation, 



 

  279 

convergence, sensitivity to alternative policies and built environment changes, 

and computational tractability still exist and need to be tackled before model 

systems of the nature described in this research effort can be implemented in the 

real-world. 
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