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ABSTRACT 

The ability to plan, execute, and control goal oriented reaching and 

grasping movements is among the most essential functions of the brain. Yet, these 

movements are inherently variable; a result of the noise pervading the neural 

signals underlying sensorimotor processing. The specific influences and 

interactions of these noise processes remain unclear. Thus several studies have 

been performed to elucidate the role and influence of sensorimotor noise on 

movement variability. 

The first study focuses on sensory integration and movement planning 

across the reaching workspace. An experiment was designed to examine the 

relative contributions of vision and proprioception to movement planning by 

measuring the rotation of the initial movement direction induced by a perturbation 

of the visual feedback prior to movement onset. The results suggest that 

contribution of vision was relatively consistent across the evaluated workspace 

depths; however, the influence of vision differed between the vertical and later 

axes indicate that additional factors beyond vision and proprioception influence 

movement planning of 3-dimensional movements. 

If the first study investigated the role of noise in sensorimotor integration, 

the second and third studies investigate relative influence of sensorimotor noise 

on reaching performance. Specifically, they evaluate how the characteristics of 

neural processing that underlie movement planning and execution manifest in 

movement variability during natural reaching. Subjects performed reaching 

movements with and without visual feedback throughout the movement and the 
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patterns of endpoint variability were compared across movement directions. The 

results of these studies suggest a primary role of visual feedback noise in shaping 

patterns of variability and in determining the relative influence of planning and 

execution related noise sources. 

The final work considers a computational approach to characterizing how 

sensorimotor processes interact to shape movement variability. A model of multi-

modal feedback control was developed to simulate the interaction of planning and 

execution noise on reaching variability. The model predictions suggest that 

anisotropic properties of feedback noise significantly affect the relative influence 

of planning and execution noise on patterns of reaching variability. 
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CHAPTER 1 

INTRODUCTION 

Limb movements are inherently variable; a characteristic that is largely 

attributed to „noise‟ in neural signals arising during sensorimotor processing 

(Desmurget & Grafton, 2000). The origins of sensorimotor noise arise from 

stochastic behavior in network mechanisms and cellular processes involved in 

signal transduction (Faisal et al., 2008). Depending upon the stage at which noise 

arises, its effect on movement differs. Specifically, noise arising during sensation 

and planning of motor commands is expected to have a different effect on 

movement than noise associated with the execution of those commands. As a 

result, elements of sensorimotor noise are typically classified as contributing to 

either „planning noise‟ or „execution-noise‟. In addition, both visual and 

proprioceptive feedback are limited in the precision in which they can encode 

estimates of limb and target position, a characteristic called „uncertainty‟ (van 

Beers et al., 1999). This uncertainty also results in variability in planning and 

movement errors (Shi and Buneo, 2009), and thus it is convenient to consider it a 

component of planning noise. 

Recent evidence suggests the brain employs specific strategies to integrate 

neural signals that compensate for the effects of this noise and improve reaching 

performance. For instance, it has been argued that visual and proprioceptive 

feedback are integrated to minimize uncertainty in limb position in the horizontal 

plane (Angelaki et al., 2009; Bays & Wolpert, 2007). Similarly, others have 

suggested that behavioral variability results from the optimal or „near optimal‟ 
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integration of movement planning and execution related noise (Faisal and 

Wolpert, 2009). However, many previous studies have confined movement to the 

horizontal plane or implemented other constraints on movement to simplify their 

tasks. Such constraints limit the complexity of sensorimotor control and thus may 

not generalize to more natural, unconstrained movements (Desmurget et al., 1997; 

Scheidt et al., 2005). As a result, it is not clear to what degree noise in 

sensorimotor control manifests during normal, unconstrained reaching movements 

to targets throughout the 3-dimensional (3D) workspace. To address these issues, 

several studies have been performed to elucidate the role and influence of 

sensorimotor noise on the planning and control of movements in 3D. 

The first study focuses on sensory integration and movement planning 

outside of the horizontal plane. To date, much of our knowledge of this process 

comes from studies of a limited region of the workspace. These studies have 

argued that integration of sensory feedback in the horizontal plane can be 

approximated as the sum of somatic and visual position cues weighted by the 

relative reliability of each modality (Wolpert, 2007). However, there is evidence 

to suggest that integration outside of the horizontal plane may be more complex, 

as additional factors (such as the effects of gravity) are involved. In addition, 

findings in the horizontal plane also suggest that the weighting of vision and 

proprioception may vary in depth. To date, these predictions have not yet been 

directly assessed for unconstrained 3D movements. To probe these questions, an 

experiment was designed to probe the integration of visual feedback during 

movement planning to vertical targets at multiple depths.  
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The second and third studies investigated the characteristics of neural 

processing that underlie movement planning and execution that can result in 

movement variability. The variability we observe in behavior is inevitably 

affected by both of these sources of noise (Thaler and Todd, 2009); however they 

are often studied independently. Understanding how noise from the different 

stages of sensorimotor control interacts to shape reaching performance is pivotal 

to our ability to draw inferences about neural mechanisms of sensorimotor control 

from behavior. As a first step, a reaching task was designed to accentuate both 

sensory and non-sensory sources of reaching variability. Movements were 

analyzed to assess the respective contributions of planning and execution to 

movement variability as well as how they interact during movement to shape 

observed behavior. Patterns of endpoint variability were quantified and compared 

between task conditions to assess the relative contribution of the underlying noise 

sources to movement variability. 

The final work detailed here considers a computational approach to 

characterizing how noisy sensorimotor processes contribute and interact to shape 

patterns of movement variability. Similar algorithms have provided important 

insight into the underlying neural mechanisms responsible for feedback control. 

However, these models have often made simplifying assumptions which 

ultimately limit their explanatory and predictive capacity. For instance, previous 

studies have largely considered only a single sensory modality, or have used 

unrealistic feedback parameters despite evidence which suggests that the specific 

spatial properties of multiple sensory modalities influence the control of reaching 
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(McIntyre et al., 1997, van Beers et al., 2002b). Thus these aspects of feedback 

control must be considered when attempting to emulate sensorimotor control of 

reaching. As an initial step towards this end, a multi-modal feedback control 

model of sensorimotor integration and movement variability was developed to 

provide a more complete characterization of the interaction of planning and 

execution noise on human reaching performance. 
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CHAPTER 2 

BACKGROUND 

The ability to plan, execute, and control goal oriented reaching movements 

is an essential function of the brain. This process requires seamless integration 

across disparate sensory modalities and dynamic motor processes to localize the 

hand and generate motor commands. Yet, the neural processes which underlie 

sensorimotor control are inherently uncertain and stochastic in nature. This 

manifests as noise in these signals, affecting the ability to reliably plan and 

execute desired movements. At the behavioral level the effects of this noise in 

sensorimotor processes is variability in reaching. To improve reaching 

performance, there is a growing body of evidence which suggests the brain filters 

these signals to reduce the effects of this noise. In fact, this function of the 

nervous system extends beyond the context of reaching to include postural (Kuo, 

1995), perceptual (Ernst and Banks), and decision making (Kording and Wolpert, 

2006). Thus the mechanism of improving the signal-to-noise ratio of neural 

signals may be a critical function of the brain. Given the connection between 

reaching variability and sensorimotor signal noise, characterizing how noise in 

sensorimotor control manifests in behavior may provide insight into how the brain 

performs one of its most fundamental functions. 

Sources of Movement Variability  

With respect to reaching, variability refers to differences in limb and hand 

position between movements to the same position. This variability is attributed to 

random fluctuations in the signals encoding reaching parameters (i.e. hand or 
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target position). These fluctuations are tantamount to noise in the neural signal. 

Illustrated in Figure 2.1, neural signals are inevitably subject to noise stemming 

from multiple aspects of sensorimotor processes ranging from stochastic behavior 

in cellular processes and network mechanisms of signal transduction (Faisal et al., 

2008). Noise in sensorimotor control is commonly separated into two distinct 

groups: noise associated with the planning of movement (including sensation of 

reaching parameters such as limb and target position), collectively called 

“planning noise”, and those arising from processes associated with the execution 

of that plan, referred to together as “execution noise”.  It is important to note that 

these two processes do not affect movement in a purely serial manner. Sensory 

feedback of the limb and target are continuously compared throughout movement, 

and used to update the motor the plan throughout the movement. Thus, planning 

noise may also be thought of as variability arising during the process of planning 

and updating the motor plan.  Execution noise is then also dependent upon both 

the initial planning as well as updating processes as these will affect the nature of 

the motor commands. 

Noise from both groups has been shown to significantly affect patterns of 

reaching variability (Carrozzo et al., 1999; Churchland et al., 2006a; Churchland 

et al., 2006b; McIntyre et al., 1998; Gordon et al., 1994; Harris & Wolpert, 1996; 

van Beers et al., 2004). For instance, the processes which underlie signal 

transduction through motor neurons and across the neuromuscular junction, as 

well as the subsequent muscle activity level are stochastic in nature. This property 

will result in trial-to-trial variability in the strength of contraction between 
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movements from an identical motor plan, and are referred to collectively as 

„execution noise‟. 

In addition to variability due to execution related noise, variability in 

movement can also arise from trial-to-trial fluctuations in the motor plan for the 

same initial hand and target positions, a.k.a. „planning noise‟. For instance, noise 

in sensory estimates arising from the thermodynamic or quantum mechanical 

properties of receptor and neuron activation/signal transduction results in 

variability in the encoded position of the limb and target. In addition, planning 

noise has been shown to be largely the result of uncertainty in the sensory 

feedback encoding reach parameters. Uncertainty here refers to the inability to 

disambiguate between true limb positions with a region of space. The larger the 

region of space in which the feedback modality cannot precisely encode limb 

position, the greater the uncertainty. Thus, the same hand position may be 

perceived differently between two trials, resulting in variability in the motor plan. 

The stochastic properties of sensory receptors and afferent signal transduction 

further contributes to sensory uncertainty , and thus sensory uncertainty 

constitutes an important component of planning noise (Osborne et al., 2005). 

 Both planning and execution noise are present during every movement 

resulting in behavioral variability proportional to the amount of noise in these 

processes. It is has been suggested that the brain has developed mechanisms of 

integration and control which mitigate the effects of planning and execution noise 

to optimize performance (van Beers et al., 2002b; Harris and Wolpert, 1998). In 

the sections to follow, we will review the nature of planning and execution noise 
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and how each is believed to effect movement variability, as well as the 

mechanisms believed to underlie sensorimotor control that minimize behavioral 

variability. 

Movement Planning and Uncertainty 

As previously stated, planning noise constitutes the noise which arises 

during the processes associated with determining the motor command, including 

estimation of the limb and target position. As stated previously, this process does 

not stop at movement onset, but also constitutes the feedback control processing 

of the motor commands throughout the movement. Thus, the neural processes 

which constitute planning phase range from afferent sensory signals, the cortical 

processes which culminate in activation of central motor neurons (such as those in 

the motor cortex), as well as the activity of interneurons in the spinal column 

which either further process the signal of primary motor neurons or are involved  

in reflex control from sensory signals in the muscles. A recent study of activity in 

the dorsal premotor cortex found that a significant amount of total variability in 

movement velocity is traceable to variability in the motor plan (Churchland et al., 

2006a; Churchland et al., 2006b). Given that sensory feedback is an important 

source of behavioral variability, it is possible that much of this planning noise is 

associated with the sensory feedback used to develop internal estimates of limb 

and target position (Shi & Buneo, 2009).  
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Figure 2.1. Sources of noise in sensation and motor control. Faisal et al. (2008), 

Nat Rev Neurosci.  
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Within the brain, internal estimates of limb and target position can be 

found throughout the parietal-frontal network (Caminiti et al., 1996, Battaglia-

Mayer et al., 2003). For instance, limb position modulation has been observed in 

several regions of parietal lobe, particularly in parietal areas 5 and 7a, as well as 

the medial intra-parietal area (MIP) (Graziano et al., 2000; Buneo & Andersen, 

2006, Battaglia-Mayer et al., 2007). Activity in both area 5 and MIP has been 

shown to encode the relative position of the hand and target (i.e. the movement 

vector), as well as the position and velocity of the hand in a fixed eye or body-

centered reference frame (Ashe & Georgopoulus, 1994; Lacquaniti et al., 1995; 

Eskandar & Assad, 1999; Buneo et al., 2002; Averbeck et al., 2005). Similarly, 

target related estimates can also be found throughout the parietal lobe (Buneo and 

Andersen, 2006). Such encoding properties represent several integral prerequisites 

associated with the planning of reaching movements and support a strong role of 

the parietal lobe in movement planning. 

In addition, movement planning related activity has also been observed in 

both dorsal and ventral premotor areas of the frontal lobe (PMd and PMv, 

respectively). Through its connectivity with the parietal lobe, neurons in PMd and 

PMv receive both somatosensory and visual feedback (Caminiti et al., 1996) and 

have been shown to encode information related to the static position and 

configuration of the arm (Pesaran et al., 2006; Scott et al., 1997). For instance, 

activity PMd has been shown to encode information regarding of movement 

direction and amplitude (Messier &Kalaska, 2000; Pesaran et al., 2006, Cisek & 
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Kalaska, 2005), further implicating this area in the planning and coordination of 

reaching movements.  

The ability to reliably generate movement plans is dependent on the 

functionality of all of these cortical areas. However, impairment to any of these 

areas (e.g. stroke, disease, etc) can result in sensorimotor deficits, often, 

manifesting in greater movement variability (Contreras-Vidal & Buch, 2002; 

Hermsdorfer & Goldenberg, 2002; Longstaff & Heath, 2006; Thies et al., 2009). 

Understanding how planning-related noise normally arises and is managed in 

these areas is critical for interpreting the exaggerated variability that often follows 

nervous system damage. Because sensory feedback are vital  to internal state 

estimation and movement planning, it seems reasonable to assume that the 

characteristics of sensory noise have an equally influential role in shaping 

planning noise. In fact, in a recent study of variability in oculomotor control, 

Osborne et al. (2005) reported that the majority of variability in motor output 

could be attributed to variability in proprioceptive feedback. Thus, understanding 

the nature of sensory noise is of paramount importance to understanding the 

influence of planning noise on movement variability. 

Sensory encoding of reaching parameters. Accurate estimation of hand 

position requires the integration of visual and somatic cues. Interestingly, inherent 

differences in the arrangement of the sensory receptors results in limb position 

information encoded in modality-specific reference-frames. For instance, visual 

estimates of position appear to be encoded with respect to the cyclopean eye, 

commonly referred to as an eye-centered reference frame (McGuire & Sabes, 
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2009; McIntyre et al., 1997, 1998). Vision provides a very reliable estimate of the 

spatial relationship between objects in the environment making visual feedback 

particularly salient for movement planning. This is consistent with 

neurophysiological evidence that suggests the internal estimates of limb and target 

position are encoded in an eye-centered reference frame in multiple parietal 

regions associated with movement planning such as MIP, LIP and area 7 (Buneo 

et al., 2002; Buneo and Andersen, 2006), as well as in PMd (Batista et al., 2007). 

The role of proprioceptive feedback in reaching cannot be understated as it 

provides postural and kinetic feedback integral to movement planning and state 

estimation (Sober and Sabes, 2003; Sainburg et al., 1993; Vindras et al., 1998; 

Desmurget & Grafton, 2000). Like vision, the arrangement of proprioceptors in 

the arm results in proprioceptive estimates of limb orientation to be primarily 

encoded with respect to the body (Scott & Loeb, 1994; McGuire and Sabes, 2009; 

McIntyre et al., 1998). Information about limb orientation is pivotal for planning 

and coordinating the appropriate sequence of motor commands which has led 

some to suggest a prominent role in the specification of motor commands during 

movement planning (Sober and Sabes, 2003). Proprioceptively derived estimates 

of hand position can also be found in the parietal lobe. This is particularly evident 

in area 5, which sits immediately anterior of MIP, an ideal position to affect 

movement planning related activity in these areas (Buneo and Andersen, 2006). In 

fact, activity in area 5 and MIP has even been shown to encode reaching 

parameters in multiple reference frames, indicative of the influence of non-

visually derived estimates of limb in this area (Buneo et al., 2002). 
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Sensory uncertainty. As previously mentioned, inherent to any sensory 

signal is a measure of uncertainty affecting the reliability of encoded information 

about limb position. The spatial characteristics of uncertainty in limb position 

estimation are believed to arise largely from the nature/arrangement of the 

sensory receptors specific to each modality (Proske, 2005; Scott & Loeb, 1994; 

Wolpert, 2007). Thus, there are differences in the spatial patterns of uncertainty 

associated with each modality; a factor which appears to affect the specific role of 

each modality during movement planning and control (Kording & Wolpert, 2004; 

Scheidt et al., 2005; Sober & Sabes, 2003; van Beers et al., 2002; van den 

Dobbelsteen et al., 2001; Viguier et al., 2001). These patterns for estimation of 

arm position via vision and proprioception are illustrated in Figure 2.2. 

Localization via somatic cues is believed to be more precise (less uncertain) for 

hand positions closer to the body, and become more variable at more distant 

positions (van Beers et al., 1998). Vision, too, becomes less precise around the 

limits of the reaching workspace (Viguier et al., 2001). Additionally, sensory 

uncertainty appears to be direction dependent. That is, proprioception is believed 

to be more precise in estimating position in depth than along the azimuth, while 

vision has been shown to be more precise in azimuth than in depth (van Beers et 

al., 1998; van Beers et al., 1999). 

The mechanism by which visual and proprioceptive information are 

integrated has been extensively studied. Despite this focus, their specific roles and 

contributions to sensorimotor control remain a matter of some debate (Bagesteiro 

et al., 2006; Berkinblit et al., 1995; Lateiner & Sainburg, 2003; McGuire & Sabes, 
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2009; Sainburg et al., 2003; Sarlegna & Sainburg, 2007; Sober & Sabes, 2003; 

van Beers et al., 1999). In most situations visual estimates have been shown to 

dominate perception; however, information from both senses is known to 

contribute to planning limb movements (Buneo et al., 2002; Rossetti et al., 1995; 

Soechting & Flanders, 1989; van den Dobbelsteen et al., 2001; Sober and Sabes, 

2003). One prominent theory of sensory integration posits that sensory feedback 

signals are weighted on basis of their relative encoding reliability (the inverse of 

variability and uncertainty). In fact, a growing number of behavioral and 

neurophysiological studies have provided evidence in support of this perspective 

of cue integration (Angelaki et al., 2009; Deneve et al., 2001; Ernst & Banks, 

2002; Wolpert et al., 1995, Wolpert, 2007). 
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Figure 2.2. Spatial anisotropy in feedback uncertainty during position estimation. 

In general, visual feedback provides a more reliable estimate of the limb position 

along the lateral axis than in depth. Proprioception generally is more precise in 

depth compared to laterally. Both senses become less reliable further from the 

body. Adapted from van Beers et al. (2002b) Exp Brain Res. 
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Sensory integration. As previously described, modality specific receptor 

organization results in different reference frames used to encode limb position. 

These differences in encoding have been used to investigate the integration of 

sensory feedback in limb position estimation (Vindras & Viviani, 1998). For 

instance, when vision of the hand is given, reach endpoint errors appear to be 

most consistent with viewer/eye-centered coordinates; however, when visual 

feedback is withheld, endpoint errors appear to be in non-eye-centered reference 

frame and in some cases best accounted for in a body-centered frame (Carrozzo et 

al., 1999; McIntyre et al., 1997). These behavioral findings have a strong 

neurophysiological basis as many cortical areas associated with movement 

planning and sensorimotor control have also been shown to encode estimates of 

limb position in both eye-centered and limb-centered coordinate frames (Buneo et 

al 2002, Batista et al. 2007; Pesaran et al., 2006).Thus, many reaching related 

areas of the cortex receive multiple feedback inputs and are thus likely directly 

involved in the integration of visual and proprioceptive estimates of limb position. 

The prevalence of viewer/eye-centered patterns of endpoint error have 

been used to infer the dominance of visual feedback in the estimation of limb 

position (Carrozzo et al., 1999; McIntyre et al., 1997, 1998), a finding which has 

been echoed at the neural level in the encoding of limb position in parietal area 

5/MIP and in PMd (Buneo et al., 2002; Battaglia-Mayer et al., 2003; Battaglia-

Mayer et al., 2007; Batista et al., 2007). However, these investigations did not 

attempt to posit a mechanism of integration, largely focusing on the spatial 

characteristics underlying behavioral variability; subsequent studies have 
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suggested it may be related to the properties of sensory uncertainty specific to 

each modality (Kording & Wolpert, 2004; Scheidt et al., 2005; Sober & Sabes, 

2003; van Beers et al., 1999; van Beers et al., 2002b; van den Dobbelsteen et al., 

2001, Viguier et al., 2001). 

To minimize the influence of unreliable feedback, it is believed that the 

brain employs a scheme of integration which takes into account the previously 

described modality-specific characteristics of sensory noise. Specifically, recent 

work on multisensory integration suggests that sensory feedback is weighted by 

its relative reliability (Ernst & Banks, 2002; Kording & Wolpert, 2004; van Beers 

et al., 2002; Gu et al., 2008). In essence, this theory posits that when multiple 

signals are combined the integrated estimate is “optimal” with respect to minimal 

variability in localization of the limb (Wolpert, 2007); a prediction which is 

consistent with studies of human perception (Bays & Wolpert, 2007; van Beers et 

al., 1999; van Beers et al., 2002b).  

At the neural level, population and single cell activity in multimodal areas 

have been shown to be consistent with this theory of sensory integration (for a 

review, see Angelaki et al., 2009). A prime example of this was provided by a 

recent study by Gu et al., (2008), wherein multimodal neurons in the dorsal 

medial superior temporal area exhibited „sub-additive‟ combination of unimodal 

inputs encoding the same preferred direction, a behavior consistent with 

predictions of the weighted sum integration of unimodal inputs (Ma et al., 2006) 

With respect to reaching, this theory allows us to predict how vision and 

proprioception will be integrated given the anisotropic nature of their respective 
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reliabilities. Specifically, visual feedback would be expected to dominate along 

both the horizontal and vertical axes (van Beers et al., 1998; van Beers et al., 

2002b). Conversely, proprioceptive estimates of the hand in depth may be 

weighted more strongly relative to vision (van Beers et al., 1998). Indeed, some of 

these patterns have been confirmed in behavioral studies of limb position 

estimation (van Beers et al., 1999; van Beers et al., 2002b); while others (i.e. 

those pertaining to integration outside of the horizontal plane) have yet to be fully 

explored. 

In addition to being conceptually straightforward, this theory of sensory 

integration also provides a mathematical framework to model sensory integration. 

This framework will be addressed more thoroughly later in this chapter; however 

it should be noted here that many of the predictions of this theory have been 

substantiated by empirical evidence (Kording & Wolpert, 2004; van Beers et al., 

2002b). Thus, this mechanism may represent a potential strategy employed by the 

brain to mitigate the effects of sensory noise. 

Sensory integration in 3D space. Despite being extensively studied in the 

horizontal plane, relatively little work has been performed to investigate whether 

mechanisms of sensory integration observed in 2D would generalize to 3D space. 

However, evidence from integration in the horizontal plane has yielded testable 

hypotheses of how this process may be occurring. For instance, due to the 

anisotropic nature of visual and proprioceptive reliabilities, visual feedback would 

be expected dominate along both the horizontal and vertical axes (Carrozzo et al., 

1999; McIntyre et al., 1998; van Beers et al., 2002; Viguier et al., 2001), as well 
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as exhibit depth dependent changes in contribution (van Beers et al., 1998;). In 

addition, there is evidence which suggests the precision of both visual and 

somatic feedback decreases with distance from the body (van Beers et al., 1998; 

van Beers et al., 1999; Viguier et al., 2001). Given that the senses are believed to 

be weighted on the basis of their relative reliability, one would expect the 

integration of the two senses to vary with workspace depth. This prediction has 

yet to be directly evaluated. It remains unknown whether the weighting of the 

senses changes appreciably across the workspace. Investigating this potential 

workspace dependence will provide a more comprehensive understanding of 

workspace dependent sensory integration. This issue also has the potential to 

significantly affect interpretation of results, past and present, of experiments 

involving movements in depth. 

The vertical plane is ideally suited to investigate these predictions as 

integration can be examined without the potential confound of moving in depth; 

however, integration in the vertical has also yet to be adequately evaluated. 

Recent evidence suggests sensory integration and movement planning may be 

significantly more complex for unconstrained movements outside of the 

horizontal plane (Desmurget et al., 1997; Le Seac‟h & McIntyre, 2007; Scheidt et 

al., 2005). For instance, somatosensation provides important postural and kinetic 

feedback throughout the reach (Desmurget & Grafton, 2000; Sainburg et al., 

1993; Vindras et al., 1998). This information may be particularly important for 

movements in the vertical plane, as orientation of the limb joints plays a 

significant role in the anticipation of the effects of gravity (Gentili et al., 2007; Le 
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Seac‟h & McIntyre, 2007). Such findings underscore the need to more fully 

explore sensory integration in 3D during estimation of limb position. Examining 

these potential workspace dependencies is an important step toward a more 

comprehensive understanding of the processes and mechanisms which underlie 

this integration. 

Sensory uncertainty and planning noise. As previously described, 

planning noise arises from the peripheral and central neural processes required to 

specify motor commands (Faisal et al., 2008; van Beers et al., 2004). An 

important constituent of planning noise for reaching movements is the uncertainty 

associated with sensory feedback (Osborne et al., 2005). Earlier in this chapter, 

we described vision as being considerably more precise along the azimuth 

direction than the depth direction (van Beers et al., 1998). In essence, the brain is 

better able to disambiguate radial position from visual signals than position in 

depth. The same is true with respect to the encoding uncertainty of somatic 

feedback of limb position; however it provides a more clear sense of position in 

depth than in azimuth. The inability to precisely distinguish between results in 

trial-to-trial fluctuations in the central signals associated with sensory estimates of 

limb position is thus tantamount to noise in the neural signals. 

During movement planning, estimates of both the hand and target position 

are compared to derive the required motor commands. While typically sensed 

unimodally (i.e. via vision) estimates of target position are also subject to 

uncertainty in its estimation. Similar to encoding of limb position/orientation, this 

uncertainty manifests as noise in the neural signals encoding target position. 
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Therefore, planning noise results from the combination of uncertainty in limb 

position/orientation with the uncertainty associated with encoded target position. 

At the neural level, uncertainty in estimation of the limb and target and the 

subsequent planning noise would be expected to be most apparent in those areas 

identified as being involved in movement. Traditionally, position estimates are 

considered to be encoded in specific activity levels of a cell or neural population 

that correlate to a given position of the limb. Within this structure, planning noise 

may manifests as variability in the cell or population activity between trials 

despite identical limb and/or target positions (Churchland et al., 2006a; Deneve et 

al., 2001). This has lead to a probabilistic theory of stimulus encoding wherein the 

encoding of a given limb position can be represented by a distribution of activity 

levels (Ma et al., 2006, Ma & Pouget, 2008). Thus, the range of activity levels 

that may result from a particular limb position may be a neural correlate of 

uncertainty in the estimation as it limits the ability of the brain to distinguish one 

position from another (Ma & Pouget, 2008). As neural estimates of limb and 

target position are combined, this variability in the encoding of each parameter 

will result in variability in the encoded movement plan between trials, which 

subsequently will affect behavior. This was the conclusion of the recent work by 

Churchland and colleagues who, in an elegant analysis of peri-movement activity 

in premotor cortex, were able to attribute a substantial portion of behavioral 

variability to variability in neural (motor preparation) activity in premotor cortex 

(Churchland et al., 2006a; Churchland et al., 2006b). 
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The influence of planning noise on movement variability. Planning 

noise results in trial-to-trial variability in the motor plan. Thus, even in the 

absence of variability in motor performance, planning noise will result in reaching 

errors. If the same movement is performed repeatedly, the result will be a 

distribution of endpoint errors which describe the spatial nature of planning 

variability. Given that the nature of planning noise is largely dependent on the 

feedback uncertainty, one would expect evidence of planning noise to manifest in 

movement errors similar in shape to those of sensory uncertainty described for 

visual and proprioceptive feedback. For instance, variability due to visually-

related planning noise would be expect to be largely oriented along the depth axis; 

whereas planning noise associated with proprioceptive noise would be expected to 

yield endpoint errors distributed more strongly along azimuth. Each of these 

predictions have been observed in the patterns of endpoint variability following 

reaching movements suggesting a prominent role of planning related noise in 

shaping of reaching variability (Shi and Buneo, 2009; McIntyre et al., 1997, 1998; 

Carrozzo et al. 1999). 

Motor Commands and Execution Variability 

After the motor command is specified, cortical motor neurons are 

activated. The motor signals are carried down the corticospinal tract via the 

pyramidal tract out of the brain and down the spinal cord along the lateral or 

anterior corticospinal tracts. These axons connect with lower motor neurons (by 

direct synapse or often via interneurons) onto alpha motor neurons, whose axons 

carry the motor command out of the spinal cord along the anterior root toward 
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their respective muscle fibers. The alpha motor neuron and the muscle fibers it 

innervates constitute a motor unit. The number of motor units recruited depends 

on the size of force of the contraction specified during planning. 

The motor command signal carried by the neurons is transmitted to the 

muscles via neuromuscular junction, a special synapse which connects nervous 

and muscle tissue. Within the muscle fibers, the impulse travels through T-tubules 

where it is disseminated to the muscle cells. The electrical signal is transduced 

into muscle contraction by actin-myosin binding within the sarcomeres of the 

muscle cells, which produces the limb movements. Each individual action 

potential produces a twitch response in the muscle fiber. As the firing rate of the 

motor neuron increases, the twitch responses “fuse” to produce a single prolonged 

contraction. 

Execution noise. As previously described, execution noise is the result of 

variability arising during the transformation of the specified movement plan into 

the contraction of the muscles to generate movement (van Beers et al., 2004). 

Thus, whereas planning related neural processes culminate in the activation of 

neurons which project directly to muscles, the processes which constitutes the 

execution phase are the neural processes associated with carrying that signal to 

the target muscle tissue and the transduction of the electrical signal into muscle 

contraction and force production. Variability in force production can arise from 

several factors. For one, the same cellular and network processes that affect 

afferent sensory signals also affect efferent motor command signals. Thus, there is 

noise already present following the activation of the cortical motor neurons and 
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continues to arise throughout transduction. Similarly, because timing of action 

potentials is pivotal to force production, variability in the temporal structure of the 

motor command can result in variability of muscle force. Lastly, even if the motor 

signals were perfectly timed, variability in the muscle force can arise from the 

stochastic processes associated with the contraction of the sarcomeres within 

muscle tissue, which will also produce movement variability (Faisal et al., 2008). 

Therefore, these motor commands are inevitably corrupted by noise, which would 

result in movement variability even for identical motor plans. 

In contrast to the processes associated with planning noise, the neural 

processes associated with execution noise do not have the opportunity to be 

mitigated by central processing. On the contrary, noise in the motor command is 

amplified as it descends through the divergence of motor neuron onto multiple 

muscle fibers, across the neuromuscular junction and across all the sarcomeres 

(Faisal et al., 2008;). Thus, the processes underlying execution noise can have a 

profound and detrimental effect on reaching performance. In fact, it has been 

shown that the characteristics of execution noise play an important role in the 

strategies employed during motor control (Harris & Wolpert, 1998, Wolpert et al., 

1995; Todorov and Jordan, 2002) and the mechanisms of motor adaptation (van 

Beers, 2009), emphasizing the influence of execution noise on how the brain 

coordinates reaching movements.  

The influence of execution noise on behavioral variability depends largely 

on the characteristics of the motor command and the resulting movement. In 

2004, van Beers and colleagues attempted to quantify these effects in a task 
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designed to minimize the influence of planning related noise. The authors found 

that the amount of endpoint variability was largely signal dependent in nature, 

varying with the size of the motor commands along the direction of movement, 

particularly the terminal movement vector (van Beers et al., 2004). Thus, the 

influence of execution noise on reaching variability would be expected to 

manifest as endpoint variable errors elongated along the movement vector and 

scaling with the speed of the movement.  

State Estimation and Sensorimotor Control  

The ability to reliably and accurately encode limb position is critical to 

sensorimotor control and successful reaching. When the hand is at rest, sensory 

feedback provides adequate information for the estimation of limb and target 

position to plan motor commands. Results from behavioral studies have shown 

that limb state estimation is derived from a combination visual and proprioceptive 

cues. Thus, at the neural level cells involved in encoding estimates of limb state 

would have to be multimodal in nature, receiving both intrinsic visual and 

proprioceptive inputs. Within the parieto-frontal network there are a few areas 

whose neurons are likely to play a role in encoding estimates of limb position. Of 

note, parietal area 5 of the superior parietal lobe and both PMv and PMd, are 

particularly well situated to encode limb state as the activity of many cells in these 

areas are sensitive to vision, proprioception, or both (Buneo et al., 2002; Buneo & 

Andersen, 2006; Battaglia-Mayer et al., 2007; Battista et al., 2007).  

Interestingly, in addition to receiving intrinsic sensory signals,  a few of 

these areas also receive input from motor areas, providing area 5 and PMd/v with 
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efferent motor signals (MacDonald & Paus, 2003; Caminiti et al., 1996; Battaglia-

Mayer et al. 2007). One explanation for this is that during movement, there is a 

significant lag between the sensory estimates of limb position and the real-time 

position of the hand. To overcome this, many have proposed that the brain must 

use the descending motor commands to generate a forward estimate of the hand 

(Desmurget & Grafton, 2000; Jordan & Rumelhart, 1992; Wolpert et al., 1995). 

The efferent motor signals could provide precisely this sort of dynamic 

information needed to generate real-time estimates of the limb. Indeed, PMd 

neurons have been shown to encode dynamic information of limb state, such as 

movement direction and velocity (Moran & Schwartz, 1999). Similarly, activity 

in the posterior parietal cortex recorded during movement provided strong 

evidence for a role of these neurons in forward estimation of the limb for online 

control (Mulliken et al 2008).  

While the copy of efferent motor commands provides a means to estimate 

the real-time position of the limb, it is important to note the reliability of the 

estimate they provide is limited because of the influence of execution noise (in so 

far as these motor commands ultimately represent the actual movement 

generated). Thus, the process of state-estimation during movement must not only 

account for uncertainty in the sensory feedback, but also the noise associated with 

execution. As a result, sensorimotor control entails the constant interaction of 

planning and execution noise processes. 

Interaction of planning and execution noise. It follows from the above 

discussion that during normal movement the brain must not only compensate for 
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the uncertainty associated with sensory feedback, but also noise arising at every 

stage of sensorimotor processing (Buneo et al., 1995; Faisal et al., 2008; Shi & 

Buneo, 2009; van Beers et al., 2004: Vindras et al., 1998). However, many studies 

of sensorimotor integration have used behavioral constraints, such as movements 

in 2D space or requiring slow movement (Desmurget et al., 1997; van Beers et al,. 

2004), to artificially reduce the influence of noise at one level from interfering 

with those under study. This is due in part to the fact that studying movements 

with minimal constraints can be problematic, and in many cases the behavioral 

consequences of each process can be considerably overlapping. For instance, 

patterns of variability following movements with a significant component in the 

depth direction have often been found to be significantly elongated along the 

depth axis (Carrozzo et al., 1999, McIntyre et al., 1997, 1998; van Beers et al., 

2004). These results could be interpreted as resulting from noise in execution (van 

Beers et al., 2004), noise in visual estimation of the target and/or hand (van Beers 

et al., 1998; Viguier et al., 2001) or noise occurring during other stages of 

planning (Carrozzo et al., 1999; McIntyre et al., 1997, 1998). In addition, a recent 

study of movements to targets in the horizontal plane argued that endpoint 

variability was best explained as the interaction of central and peripheral noise 

sources (Thaler & Todd, 2009).  

While instrumental in characterizing their individual properties, task 

constraints which alter the normal processes of reaching limit our ability to assess 

the respective influences of planning and execution noise on normal movement 

variability. Moreover, it is uncertain to what degree these two sources of noise 
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combine and/or interact during a movement to shape variability. A recent 

suggestion was that they combine in a „near-optimal‟ manner (Faisal & Wolpert, 

2009); however this only examined total variability during a 2D reaching task. 

Thus little is known about how their interaction in the spatial domain differs 

during unconstrained reaching. This is a critical weakness in our understanding of 

one of the essential functions of the brain. The effects of this interaction are 

relevant to our understanding of such diverse sensorimotor functions as position 

estimation (van Beers et al., 1998; van Beers et al., 1999; van Beers et al., 2002), 

cue integration (Kording & Wolpert, 2004), as well as motor adaptation (van 

Beers et al., 2009) and planning (Harris & Wolpert, 1998). However, still more 

work needs to be done to further characterize the individual and combined 

influences of sensory and motor processes on the control of natural, unconstrained 

reaching movements. 

Sensorimotor control of 3D movements. Reaching variability has been 

the focus of many sensorimotor investigations; however, much of this research 

has focused on movements limited largely to the horizontal plane. The level of 

difficulty/complexity involved in 3D coordination is far greater than that for 2D 

control (Desmurget et al., 1997; Blohm et al., 2009). Thus, constrained or planar 

reaches may not be able to fully represent the mechanisms used by the brain to 

plan and coordinate natural movement (Scheidt et al., 2005). As a result, it is 

unclear how well observations made of 2D movements generalize to similar 

movements made in 3D. With respect to reaching performance and variability, it 

is difficult to predict to what extent the added complexity will affect the 
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contributions of planning and execution noise on movement variability. For 

instance, one might expect that the increased complexity of forming a 3D motor 

plan may result in a greater influence of planning noise in behavioral variability. 

Conversely, because the specified movement plan may be more complex, 

involving significantly more muscle and joint action, elevated levels of execution 

related noise may pervade 3D endpoint distributions. As a result without direct 

evaluation, it is difficult to draw any conclusions apriori about this aspect of 

feedback control of 3D movements. 

Computational Sensorimotor Integration 

Computational models of sensory integration and movement production 

have provided numerous insights into both the behavioral observations as well as 

the neural underpinnings of sensorimotor control. In fact, numerous models have 

been developed to approximate the many aspects of sensorimotor control (van 

Beers et al., 1999; van Beers et al., 2004; Sober and Sabes, 2003; Saunders & 

Knill, 2004; Guigon et al., 2008). Of particular relevance are those approaches 

which attempt to model the perceptual and behavior consequences that arise from 

noise properties of sensory and motor processes. 

Sensory integration. Sensory feedback integration is a complex process 

which appears to be highly context dependent, varying with a number of 

experimental constraints (Sober & Sabes, 2003; Scheidt et al., 2005). In the 

pursuit of better understanding of cue integration, many have turned towards 

various computational frameworks, producing a myriad of mathematical models 

(van Beers et al., 1998; van Beers et al., 2002b; Sober and Sabes, 2003). These 
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models run the gamut from simple to complex, each capturing particular elements 

of sensory integration. 

As alluded to earlier in this chapter, there is growing evidence to suggest 

that sensory feedback integration is dictated in large part on the basis of the 

properties of uncertainty inherent to each modality. Specifically, the contribution 

of a given input is weighted by its reliability (the inverse of uncertainty) relative 

to the other available sources of feedback (for a review, see Wolpert & Kording, 

2006). With respect to reaching, the integration of the visual and proprioceptive 

estimate of the arm would follow from: 

         (1) 

Where  and  are the visual and proprioceptive estimates of limb position and 

 and  are the variances of those estimates, respectively. Further, under this 

framework the uncertainty associated with the combined estimate can also be 

calculated: 

          (2) 

The resulting uncertainty of the integrated estimate also has the distinction 

of being the minimum value possible given the uncertainty of the inputs. Thus this 

strategy of integration is optimal in that it minimizes variance. This scheme of 

integration has been applied to many aspects of human perception and even 

sensorimotor control and evidence for optimal or near optimal integration of 

sensory feedback has found support from both behavioral (Ernst & Banks, 2002; 

Kording & Wolpert, 2004; Wolpert, 2007) and neurophysiological studies 
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(Deneve et al., 2001; Angelaki et al., 2009; Ma & Pouget, 2008; Morgan et al., 

2008). This mechanism of integration has an important impact on movement 

variability: minimizing the uncertainty in the feedback estimate of the limb also 

reduces the levels of feedback noise, thereby reducing behavioral variability, 

believed to be a primary goal of the central nervous system (Harris & Wolpert, 

1998; Kording & Wolpert, 2004). In fact, as discussed below, the principles of 

minimum variance optimality have found recent popularity as a strategy 

underlying the whole of sensorimotor control of reaching. 

Optimal feedback control of reaching. In addition to recent evidence 

suggesting the brain combines sensory information in a statistically-optimal 

manner (i.e. minimal variance), similar principles have been observed throughout 

the stages of sensorimotor processing. During movement, sensory information of 

the limb significantly lags behind the real-time position of the hand, limiting the 

efficacy of feedback control (Rumelhart & Jordan, 1992;Wolpert et al., 1995; 

Harris & Wolpert, 1998; Desmurget & Grafton, 2000). To account for this, it has 

been suggested that brain employs a similar strategy to integrate lagging sensory 

feedback with a predictive estimate derived from efferent motor commands to 

yield an optimal, real-time estimate during movement (for a review, see Wolpert, 

2007). This has resulted in the suggestion that the underlying neural processes act 

as an optimal feedback control filter (Mulliken et al., 2008; Todorov & Jordan, 

2002; Wolpert et al., 1995). Similar to that of optimal sensory integration, this 

computational framework has been effectively used as a model of the neural 

processing underlying sensorimotor control to mimic/predict observations made at 
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both the behavioral and neurophysiogical levels (Deneve et al., 2007; Guigon et 

al., 2008; Saunders & Knill, 2004; Todorov & Jordan, 2002).  

An example of such a feedback controller for reaching is illustrated in 

Figure 2.3. Here, the motor commands for reaching movements are generated in 

response to comparison of the internal estimates of the hand and target position. 

Throughout the movement, the internal estimate of the hand is constantly updated 

from the combination of sensory feedback estimate, the previous internal 

estimate, and the predicted estimate derived from the consequences of the motor 

output. Similar to sensory feedback, both the internal estimate and predictive 

estimate are tainted with uncertainty and signal noise. The feedback control model 

accounts for this by filtering the influence of incoming sensory estimate, in this 

case via the Kalman gain, on the basis of its reliability relative to that of the 

internal estimate of the hand. As a result, the combined estimate of hand position 

is also the minimum variance estimate, thereby reducing variability in motor 

planning. In this way, the integration of these estimates is analogous to the 

optimal sensory integration described above.  

With respect to the control of reaching, Todorov & Jordan (2002) 

demonstrated that such optimal feedback control models can reliably reproduce 

normal human behavior during non-visually guided reaching movements 

(Todorov & Jordan, 2002). However, this was done assuming isotropic noise 

properties of proprioceptive feedback; instead the authors choose to focus on the 

effect of the changes in the relative levels of noise between sensory and motor 

processes. Saunders & Knill (2004) employed a similar approach to modeling 
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sensory-motor integration using some established properties of variability in 

visual estimation in the feedback control model. However, in this example, the 

authors did not incorporate a proprioceptive feedback signal, nor did they account 

for the anisotropic nature of visual feedback uncertainty. In Guigon et al. (2008), 

the authors included predictions of both visually guided and non-visually guided 

movements (Guigon et al., 2008). However, this was done assuming that the 

availability of vision would eliminate feedback noise altogether. 

Both visual and proprioceptive feedback provide important of information 

and contribute to the perception of hand position and improved reaching 

performance (Rossetti et al., 1995; Desmurget & Grafton, 2000; Sainburg et al., 

1993;Vindras et al. 1998; Carrozzo et al., 1999; McIntyre et al., 1997; Battaglia-

Mayer et al., 2003; Sober & Sabes, 2003). Thus neither feedback modality can be 

ignored when designing a model of sensory feedback control. To gain a more 

complete picture of how noise in the neural processing underlying sensorimotor 

control affects behavioral variability an important step is to incorporate both 

visual and proprioceptive input into a feedback control model of reaching.  

It is important to note that any feedback control model, which represents 

the internal processes underlying sensorimotor control, does not necessarily 

represent the activity of a single area or population of neurons. Rather, it only 

broadly represents the behavior of the entire network of cortical areas involved in 

sensorimotor control. Indeed, neurophysiological studies have found evidence for 

a number of the constituent processes and principles underlying this model (i.e. 

efference copy, minimum variance estimation, etc...), many of which are 



34 

described above. Therefore, the ability to reproduce reaching behavior by these 

principles will provide important insight into interactions and integration of the 

cortical areas associated sensorimotor control. 
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Figure 2.3. Block diagram for the feedback control of reaching. Xt represents the 

state of the system (limb and target) and Xest represents the internal estimate of 

the system developed by the brain from noisy sensory feedback. The estimate is 

used to generate subsequent motor commands which are also corrupted by noise. 
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CHAPTER 3 

CONTRIBUTIONS OF VISION AND PROPRIOCEPTION TO ARM 

MOVEMENT PLANNING IN THE VERTICAL PLANE 

Introduction 

The role of sensory information in the planning and execution of limb 

movements remains an outstanding question in motor neuroscience. One approach 

to studying the relative contributions of different sensory modalities in movement 

planning involves dissociating somatosensory (proprioceptive and/or tactile) and 

visual limb position cues prior to movement onset and quantifying the resulting 

effects on the early phases of movement. Studies employing this approach have 

demonstrated that misaligned sensory feedback at the starting position affects 

movement directions and amplitudes in a manner consistent with the motor 

system taking both vision and proprioception into account when planning 

movements (Rossetti et al.,1995; Sober & Sabes, 2003). In an elegant study 

combining behavioral analysis and computation modeling, Sober and Sabes 

(2003) showed that vision and proprioception contribute differentially to different 

aspects of movement planning, with vision playing a larger role in specifying the 

movement vector and proprioception being more important for planning the 

corresponding joint-based motor command. In addition, Sainburg and colleagues 

have shown that visual and proprioceptive cues contribute differentially to the 

planning of movement vector direction vs. distance (Bagesteiro et al., 2006; 

Lateiner & Sainburg, 2003; Sainburg et al., 2003). 
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In all of these studies, visual and somatosensory cues were dissociated 

along axes within the horizontal plane. However, there are several reasons to 

expect that the roles of these cues might differ for planned movements in the 

vertical plane. For example, arm kinematics vary for movements performed along 

different directions in the vertical plane, specifically in their time-to-peak velocity 

and relative time spent in acceleration vs. deceleration (Gentili et al. 2007; 

Papaxanthis et al., 2003; Papaxanthis et al., 2005). These findings suggest that, in 

contrast to horizontal plane movements, the production of vertical plane 

movements involves an optimization of both inertial and gravitational forces 

(Gentili et al. 2007). Moreover, experiments conducted in microgravity suggest 

this optimization is part of a movement planning strategy designed to anticipate 

the effects of gravity on the limb (Papaxanthis et al., 2005). According to this 

scheme, planning of arm movements in the vertical plane would take into account 

not only visual and somatosensory information about limb position but vestibular 

information as well, as suggested by several recent studies (Knox & Hodges, 

2005; Le Seac‟h & McIntyre, 2007; Mars et al., 2003).  

The varying gravitational torques exerted on the arm when moving along 

different directions in the vertical plane would most likely be taken into account 

during the planning of motor commands. As described above, in the horizontal 

plane this stage of motor planning appears to rely more on proprioception than on 

vision. Proprioception likely plays an even more important role in planning motor 

commands during the production of unconstrained arm movements in the vertical 

plane. For example, proprioceptive signals appear to be perceived more readily in 
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terms of limb segment inclinations relative to vertical than as joint angles 

(Soechting & Ross, 1984; Worringham et al., 1987) supporting the idea that 

proprioception plays a key role in anticipating arm configuration dependent 

effects of gravity (Proske, 2005). In addition, proprioception likely plays an 

important role in distinguishing among the nearly infinite sets of arm postural 

paths (and therefore motor commands) that are consistent with a given planned 

movement vector in 3D space, which would be critical for movement planning in 

the vertical plane. 

As an initial step toward understanding the mechanisms of multisensory 

integration during unconstrained 3D arm movements, we analyzed the effects of 

misaligned visual and somatosensory cues on reaching movements that were 

planned and executed along different directions in the vertical plane. We 

hypothesized that, similar to observations in the horizontal plane, movements 

would be altered in a manner consistent with the motor system taking into account 

both vision and proprioception during movement planning, but would be biased 

more strongly by proprioception, for the reasons described above. Moreover, 

since sensing the inclination of limb segments via proprioception may be more 

difficult as these segments become more vertically oriented (Worringham et al., 

1987), we hypothesized that the contribution of proprioception to movement 

planning could vary with movement direction in the vertical plane, becoming 

stronger for more laterally directed movements.  
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Material and Methods 

Subjects. Twelve subjects (10 men, 2 women) between the ages of 

eighteen and thirty-two were recruited to perform the experiments. All procedures 

were approved by the Arizona State University Institutional Review Board and all 

subjects read and signed an informed consent form prior to participating. Subjects 

were briefed on the experimental procedures and what to expect when moving 

within the virtual environment but were naïve to the purpose of the study.  

Apparatus. The experimental apparatus consisted of a large, standing 

frame which supported a stereoscopic 3-D monitor (Dimension Technologies 

Incorporated, Rochester, NY), a metal shield and a chinrest (Fig. 3.1A, B). The 

monitor projected onto a mirror embedded within the shield. Subjects were seated 

with their head positioned on the chinrest in such a way that the eyes were aligned 

with the center of the mirror. The metal shield also served to block the arm from 

view, ensuring that all visual feedback was provided via the monitor projection. 

Motion tracking. An LED was positioned on the subject‟s fingertip to 

monitor the position of the hand throughout the reach. Fingertip/LED position 

was continuously monitored by a Visualeyez ™ VZ-3000 motion tracker 

(Phoenix Technologies Inc., Burnaby, British Columbia) at 150 Hz (0.5 mm 

spatial resolution). Visual feedback of position was relayed to subjects in real 

time via a virtual reality (VR) environment developed in Vizard® (WorldViz 

LLC. Santa Barbara, CA) and was displayed on the 3-D monitor as a green sphere 

of approximately 5 cm diameter in the „near‟ workspace, as were the reach targets 

(see below). 
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Figure 3.1. Experimental paradigm. A. Experimental apparatus. B. Visual 

information was kept constant across workspace depths by scaling target positions 

and visual displacements by a constant visual angle. C-D. Target layout in the 

veridical (C) and shifted (D) feedback conditions, viewed from behind the 

subject. In D, dashed lines connect the fully shifted hand position with the targets. 

Dotted lines show the corresponding errors that would arise at the actual starting 

position (S).  
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Experimental design. On a given trial, subjects reached to one of three 

targets oriented at 20, 40, and 60 degrees from the vertical line passing through 

the starting position (Fig. 3.1C-D). The starting position was located on a small 

block placed on the tabletop and centered on the body midline. The vertical 

(frontal) plane containing the starting and target positions constituted the task 

workspace. Since previous studies in 2D have suggested that the contributions of 

vision and proprioception to movement planning could be depth-dependent (van 

Beers et al., 1998), two workspaces were used; the „near‟ workspace was located 

approximately 22 cm from the body surface, while a „far‟ workspace was located 

14 cm farther in depth, approximately 36 cm from the body (Fig. 3.1B). The 

angular relationship between the starting position and targets was identical in both 

workspaces. The distance between the starting position and each of the targets 

was constant within each workspace, but this distance was scaled with depth to 

maintain an approximately constant visual relationship between the starting and 

target positions. As a result, the distance between the starting position and targets 

was approximately 18 cm in the near workspace and approximately 23.5 cm in the 

far workspace.  

Experiment 1. Horizontally displaced feedback. In this experiment, we 

varied the horizontal alignment of visual and proprioceptive cues at the starting 

position. Two feedback conditions were used: aligned and misaligned. In the 

aligned condition, visual feedback coincided with the finger‟s actual position at 

the starting location, which was kept constant via a tactile cue placed on top of the 

block illustrated in Fig. 3.1B. In the misaligned condition, visual feedback of 
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finger position was shifted to the right by 4.23 degrees of visual angle. This 

resulted in a real shift of 3.823 cm and 5cm in the near and far workspaces 

respectively. The use of different shifts for the different workspaces was done to 

maintain an approximately constant visual displacement between the felt and seen 

positions of the finger at each workspace depth. Though a tactile cue was 

provided to help localize the starting position, limb position was largely conveyed 

through proprioception, thus we use this latter term when referring to felt position. 

The experiment involved four different blocks, one for each combination 

of the experimental variables: 1) Aligned-feedback in the near workspace, 2) 

misaligned-feedback in the near workspace, 3) aligned-feedback in the far 

workspace, and 4) misaligned-feedback in the far workspace. A blocked design 

was used because subjects detected the misaligned feedback when aligned and 

misaligned trials were interleaved; this was not the case when using the blocked 

design. As in Rossetti et al. (1995), in order to prevent adaptation no error 

feedback was provided to the subjects, and post-hoc analysis indicated this was 

indeed the case (see Results). The order of blocks was randomized. Subjects had 

no prior knowledge of the task conditions in a given block. Within each block, 

subjects completed thirty trials, ten to each target in random order.  

Each trial began with the subject moving his/her unseen finger to the 

starting position (Fig. 3.1B). The starting position was associated with a small 

behavioral window (1.5 cm diameter) and once it was acquired visual feedback of 

the finger was provided. After a 350 ms holding period within the starting 

window, a target would appear, cueing movement. Upon leaving the start position 
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window, visual feedback of the finger was removed while the target remained 

illuminated. Thus, subjects experienced a brief but variable time window where 

the starting position and target position were simultaneously viewed, which aided 

movement planning, but movements were executed without online visual 

feedback of the moving hand.  

Subjects were instructed to move quickly and accurately to the presented targets. 

Trials were considered successful if the subject remained within the allowable 

target window for 350 msec. Knowledge of results was provided via an auditory 

tone that signaled the trial was a success, but this information could not be used to 

further adjust endpoint position.  

Experiment 2: Vertically displaced feedback. This experiment was 

identical to Exp.1 in every way except the displacement of visual feedback was in 

the positive vertical (upward) direction. Subjects executed reaching movements to 

the same three target positions from the same physical starting position.  

Data analysis. Movement data were smoothed offline using a 

regressive/low-pass filter and instantaneous tangential velocities were calculated 

by differentiating the position data along the movement path. As in previous 

studies, we inferred the relative contribution of each sensory modality to the 

estimated position of the limb (and therefore movement planning) by analyzing 

the errors in initial movement direction that resulted from misaligned feedback 

(Sober & Sabes, 2003). Errors in movement direction in the frontal plane were 

evaluated at ~130 msec after movement onset. This time point was chosen to rule 
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out any effects of feedback signals, which can influence movement trajectories as 

early as ~150 msec after movement onset (Prablanc & Martin, 1992).  

Due to the experiment design, errors in initial movement direction were 

expected to vary with target location, becoming progressively smaller for more 

lateral targets in Exp. 1 (illustrated in Fig. 3.1D) and for more vertical targets in 

Exp. 2. Thus, to evaluate potential target-dependent effects on the contributions of 

vision and proprioception to movement planning we calculated the changes in 

movement directions induced by the misaligned feedback and expressed them as a 

fraction of the maximum change that could be expected given the misalignment 

(which differed for each target). This provided a relative contribution index (RCI) 

of visual feedback for movements planned to each target position and workspace 

depth. The RCI was calculated as: 

          (1) 

Where  is the maximum change in movement direction expected for target t at 

workspace depth d,   is the average initial movement direction in the 

aligned condition for target t at workspace depth d, and  is the 

corresponding initial movement direction on misaligned trials. Due to the 

normalization procedure, an RCI of 1 indicated full reliance on vision while an 

RCI of 0 meant no reliance on vision.  

Velocities, movement times, and induced changes in movement direction 

in each workspace were analyzed statistically using 2-way ANOVAs with factors 

target direction and feedback condition. Effects of target direction on RCIs in 
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each workspace were analyzed statistically using 1-factor ANOVAs. One-factor 

ANOVAs were also used to assess the effect of trial number (and therefore time) 

on the RCIs associated with each target location. Due to differences in variances 

between the two experiments, a non-parametric Mann-Whitney U-test was used to 

assess differences in RCIs arising from the direction of perturbation (horizontal 

vs. vertical). The significance level for all statistical tests was α=0.05. 

Results 

Experiment 1: Horizontally displaced visual feedback. In both the 

aligned and misaligned feedback conditions, subjects generally produced quick, 

direct movements from the perceived starting position to the targets. For example, 

in the near workspace average movement times were 463 +/-73 msec in the 

aligned condition and 483 +/-83 msec in the misaligned feedback condition. In the 

far workspace average movement times were 485 +/-95 msec in the aligned 

condition and 466 +/-92 msec in the misaligned feedback condition. Figure 3.2 

shows example movement paths for one representative subject in the aligned (2A) 

and misaligned (2B) feedback conditions. These figures show that movements on 

misaligned trials were generally rotated counter-clockwise compared to those on 

aligned feedback trials, consistent with the rotation expected if the subject 

incorporated both vision and proprioception into their estimate of initial hand 

position (see Fig. 3.1D). 

Figure 3.2C shows the change in initial movement direction induced by 

the misaligned feedback for all six subjects, as well as for the population. Data for 

each target in the far workspace are shown. In this figure, a rotation of 0º would 
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indicate that subjects completely ignored the displaced visual feedback, planning 

and executing their movements based on somatosensory cues alone. In contrast, 

rotations of 12.17 º, 10.69 º, and 7.43 º would be expected if subjects relied 

entirely on the displaced visual cues to produce their movements to the 20 º, 40 º, 

and 60 º targets, respectively (as indicated by the bars at the far right). When data 

from all subjects and targets were combined, a significant main effect of the 

horizontal visual displacement on movement direction was observed in both the 

near and far workspaces (2-factor ANOVA, df=1, F=115.06, p<0.05). No effect 

of workspace or interactions effects were found. For each target, the induced 

rotations were generally between those expected for full reliance on 

proprioception and full reliance on vision, consistent with a movement plan that 

took into account both somatosensory and visual cues. In addition, most subjects 

demonstrated the pattern of gradually decreasing rotation for more horizontal 

targets, as expected given the direction of visual displacement. The most notable 

exception to this trend was Subject 6, who showed shift induced rotations that 

differed substantially from those of the other subjects. As a result, this subject‟s 

data were not included in the analyses of RCI (below). 

As described in Material and Methods, we calculated the relative 

contributions of vision and proprioception separately for each target by 

normalizing the induced changes in movement direction by the maximum change 

expected given the horizontal visual displacement. Figure 3.3A shows the relative 

contribution indices (RCIs) for each target in the near and far workspaces. As 

expected given the results shown in Fig. 3.2, the RCIs were generally between 



47 

that expected for full reliance on vision (RCI=1) and full reliance on 

proprioception (RCI=0). In both workspaces the mean RCI demonstrated a 

tendency to decrease for more lateral targets. However, when the RCIs were 

compared statistically across target locations using a 1-factor ANOVA, no 

significant differences were found in either workspace. Combining the data across 

all targets in both workspaces, we found that the mean RCI was 0.48 (+/-0.63). 

This index was only slightly less than 0.5, suggesting vision and proprioception 

contributed relatively equally to movement planning when these cues were 

dissociated along the horizontal axis.  

The relative contributions of vision and proprioception to movement planning in 

this experiment did not appear to result from an adaptive process but instead 

appeared to be present from the very first exposure to the displaced visual 

feedback. This conclusion is based on the following observations. First, a one-

way ANOVA of the RCIs associated with different trials within a block was 

performed by combining data across subjects for each trial (Lukos et al., 2010). 

This analysis showed no difference in RCI across trials for any target location. In 

addition, one subject returned and repeated the experiment in the near workspace, 

performing twenty reaches to each target in separate blocks. The RCI associated 

with the first five trials to each target was compared to that of the last 5 trials, 

with no significant change noted in these indexes over the different blocks of 

trials.  
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Figure 3.2. Effects of sensory misalignment on movement direction. A. Average 

movement paths from a single subject to targets in both workspaces in the aligned 

condition. Solid black lines: straight line paths to the target. B. Corresponding 

paths in the misaligned condition. Filled circles: target positions. Dotted lines: 

paths expected under full visual reliance. C. Misalignment induced changes in 

movement directions to each target in the far workspace for each subject and for 

the population. Bars to the far right illustrate the changes expected if subjects 

relied entirely on vision to plan their movements.  
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Experiment 2: Vertically displaced visual feedback. Given 

proprioception‟s likely role in anticipating arm configuration dependent effects of 

gravity, we reasoned that the contributions of proprioception and vision to 

movement planning might show different properties when these cues were 

dissociated along the vertical axis. To examine this possibility, subjects were 

asked to perform the same reaching task as in Exp. 1 but under conditions where 

the visual displacement was in the positive vertical direction. Here, movements on 

misaligned trials were generally rotated clockwise relative to aligned trials (as 

expected given the displacement direction). Although more variable than in 

Exp.1, the degree of rotation and RCIs in Exp.2 also generally fell between the 

indices expected for full reliance on vision and proprioception (Fig. 3.3B). In 

addition, RCIs showed target-dependent trends that were similar to those in Exp. 

1, decreasing progressively for more lateral targets. In fact, RCIs were 

significantly different across targets in the near workspace (1-factor ANOVA, 

df=2, F=3.82, p<0.05). Although the far workspace showed a similar trend, RCIs 

were not significantly different across targets in this workspace. Combining the 

data across all targets in both workspaces, we found that the mean RCI was 0.27 

(+/-1.0). This index was significantly less than that associated with horizontal 

visual displacements (Mann-Whitney U-test, df=1, chi
2
= 15.21, p<0.05), 

suggesting a generally stronger contribution of proprioception in movement 

planning when vision and proprioception were dissociated along the vertical axis.  
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Figure 3.3. Contributions of vision and proprioception to movement planning. A. 

Relative contributions of vision and proprioception (RCIs) for reaches to each 

target in the near (black) and far (gray) workspaces in Exp. 1 (horizontally 

displaced feedback). B. RCIs in Exp. 2 (vertically displaced feedback). Error bars: 

Standard deviations. 
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Discussion 

To our knowledge the present study is the first to investigate misaligned 

sensory cues at the starting position of unconstrained arm movements performed 

in the vertical plane. We also believe it is the first to investigate the effects of 

misaligned visual and somatosensory cues along the vertical axis. The findings 

suggest that vision and proprioception are both taken into account when planning 

vertical plane movements. Although we hypothesized that proprioception would 

contribute more strongly than vision to movement planning in the vertical plane, 

this appeared to be the case only in Exp. 2, where vision was dissociated along the 

vertical axis. This suggests that the contributions of vision and proprioception 

take into account factors other than the differing biomechanical requirements 

associated with moving along different directions in the vertical plane. For 

example, cue reliability is believed to be a major factor in determining the 

weighting of sensory cues in both the perceptual and motor domains (Angelaki et 

al., 2009). Thus, the differing contributions of vision and proprioception in Exps. 

1 & 2 may point to differences in the relative reliabilities of vision and 

proprioception along the vertical and horizontal axes. This may arise from 

differences in the noise characteristics of the senses along the vertical and 

horizontal axes, or from differences in the contributions of other senses (e.g. 

vestibular) along these axes.  

We also found that when visual and somatosensory cues were dissociated 

along the vertical axis in the near workspace, the relative contributions of vision 

and proprioception varied significantly with target location. In fact, this trend 
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pointed toward a larger contribution for vision for more vertical targets, as 

predicted if sensing the inclination of limb segments via proprioception was more 

difficult for these targets (Worringham et al., 1987). This general trend was also 

observed in the far workspace, as well as for both workspaces during horizontal 

displacements of visual feedback, though in these latter cases the observed trends 

failed to reach statistical significance. Nevertheless the present results provide 

evidence that the CNS may take into account the planned movement direction 

with respect to vertical when determining the relative contributions of vision and 

proprioception to movement planning. This interpretation would be consistent 

with proprioception‟s proposed role in anticipating arm configuration dependent 

effects of gravity. 

As discussed in the Introduction, the effects of gravity would be expected 

to be accounted for during the planning of motor commands, rather than during 

the planning of movement vectors. These effects might alter the contributions of 

proprioception and vision to the planning of motor commands in the vertical 

direction. Stronger and more consistent effects of target location and/or direction 

of sensory misalignment might be revealed therefore by examining these stages of 

motor planning in isolation, which would require both behavioral measures and a 

suitable computational model of movement production in the vertical plane 

(Sober & Sabes, 2003). This type of model would be considerably more complex 

than for horizontal plane movements as it would need to account  not only for the 

effect of gravitational forces on arm movements in different directions but also for 

the kinematically redundant nature of arm motion for unconstrained movements 
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in 3D space. However, this approach represents a logical next step in determining 

the contributions of vision and proprioception to arm movement planning in the 

vertical plane. 
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CHAPTER 4 

INTERACTING NOISE SOURCES SHAPES PATTERNS OF ARM 

MOVEMENT VARIABILITY IN 3D SPACE 

Introduction 

Limb movements are inherently variable. This variability is the result of 

noise arising during the transformation of sensory signals into motor commands 

(„planning noise‟) as well as noise generated during the transformation of 

commands into movements („execution noise‟; van Beers et al., 2004). Planning 

noise includes uncertainty arising during the sensing process (Fig. 4.1) and 

several studies have pointed to visual and/or proprioceptively derived uncertainty 

as an important source of movement variability (Osborne et al., 2005; Shi & 

Buneo 2009; van den Dobbelsteen et al., 2001; Vindras et al., 1998). Noise 

generated during other stages of planning, e.g. during coordinate transformations 

or during the specification of the required movement vector have also been shown 

to contribute significantly to movement variability in humans (Gordon et al., 

1994; McIntyre et al., 1998; 1997; Vindras & Viviani, 1998). While figure 4.1 

illustrates the feed-forward effects of planning noise, this process continues to 

affect reaching performance throughout the movement as online feedback control 

of the hand requires constant modification of the movement plan. In addition,  a 

recent neurophysiological study in non-human primates has shown that variability 

in neural activity prior to movement onset can account for nearly half of the 

variability in movement speed (Churchland et al., 2006a), further emphasizing the 

strong contribution of planning noise to movement variability. As indicated 
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above, execution related noise can also profoundly affect movements (Buneo et 

al., 1995); in fact it has been suggested that in many circumstances patterns of 

arm movement variability are largely determined by execution-related noise (van 

Beers et al., 2004).  

The interaction of planning and execution noise during natural movements 

is poorly understood, despite being essential for understanding the exaggerated 

variability that results from damage to the nervous system. At least two factors 

have contributed to this lack of understanding. First, in many psychophysical 

studies, behavioral constraints are built into the experimental procedures which 

serve to reduce the effect of noise at one stage of movement production from 

interfering with those under study, thereby obviating analysis of the interaction of 

noise sources. Second, analysis of endpoint distributions, a chief method for 

quantifying movement variability, is often confounded by the inherently similar 

behavioral consequences of planning and execution related noise in certain 

contexts. For example, in the studies by McIntyre and colleagues (1997, 1998), 

movements were made from starting positions near the body to targets located 

further in depth. The resulting endpoint errors were found to be elongated along 

the depth axis, which could conceivably have resulted from noise in execution (as 

movements had relatively large depth components), noise in visual estimation of 

the target or hand (as vision is relatively unreliable along the depth axis; see 

below) or noise occurring during other stages of planning, as argued by the 

investigators. It is equally possible that the interaction of two or more of these 

sources contributed to the observed endpoint variability (Thaler & Todd, 2009).  
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Recently, it has been argued that planning and execution related noise combine in 

a “near-optimal” manner (Faisal & Wolpert 2009). However, the relative 

contribution of each noise source to endpoint variability depends on a number of 

factors, including variations in the relative reliability of sensory information 

across the reaching workspace. For example, estimation of hand position depends 

on both visual and somatic cues. The precision of these cues is anisotropic in 

nature, being more reliable along azimuthal axes than in depth for vision and vice-

versa for somesthesis (van Beers et al., 1999; 1998; van Beers et al., 2002b). In 

addition, the absolute precision of both cues appears to vary with position in the 

workspace, being less precise further from the body surface. These findings 

suggest that the contribution of sensor noise, and thus planning noise, to overall 

movement variability should vary with the position of the hand in the workspace.  
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Figure 4.1. Simplified schematic representation of the processes involved in reach 

planning and execution. Planning noise arises from noisy sensor estimates of hand 

and target position and during the coordinate transformations required to produce 

a displacement vector. Additional noise is added at later stages of processing, 

including at the levels of the neuromuscular junction and muscles (execution 

noise) to produced observed patterns of behavioral variability. It is important to 

note that this illustrates the feed-forward process of movement planning; 

however, this process is also involved in online feedback control of the limb 

during movement. Thus, the affects of sensory and planning noise can be seen 

throughout the movement. 
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Studies of planar arm movements have shown that execution related noise 

results in patterns of endpoint variability that depend on the required movement 

direction (van Beers et al., 2004). As a result, endpoint variability will vary not 

only with the position of the hand in the workspace but also with the path that the 

hand took to reach that position. Execution noise can be traced in part to noise in 

the commands to the muscles, the lengths and moment arms of which vary 

substantially with arm configuration. Thus, patterns of movement variability 

might even be expected to vary for the same movement vector executed at 

different positions in the workspace. This is particularly true for unconstrained 

movements in 3D space, which necessitate more complex sensorimotor 

transformations than those that are more constrained (Desmurget et al., 1997).  

In the present investigation we studied the interaction of planning and 

execution noise across a large portion of the 3-D workspace of the arm. Seven 

human subjects performed reaches to targets arranged in three vertical planes 

separated in depth, and movements were made with and without visual feedback 

of the hand. In contrast to previous studies, starting positions were contained 

within the same vertical planes as the targets. As a result, required movement 

vectors were perpendicular to the depth axis, i.e. the axis along which visual 

planning noise would be expected to dominate. Planning and execution noise 

were accentuated by randomizing target positions from trial to trial and by 

switching the final target position during movement, requiring rapid, online 

changes in movement planning and execution. We hypothesized that movement 

variability would be largely dominated by execution noise and that this 
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dominance would be most apparent under visual conditions, where visual 

planning noise was relatively low. We found that in the presence of hand vision 

patterns of endpoint errors were anisotropic, with the principal axis of variability 

being largely oriented along the depth axis. In contrast, in the non-vision 

condition endpoint errors were larger and more isotropic. In both conditions, 

patterns of endpoint errors were only well aligned with the movement vector 

when movements were directed primarily along the depth axis. The results 

suggest that visual planning related noise determines the anisotropic nature of 

reach movement endpoints in 3D space, with execution noise acting to amplify or 

reduce this anisotropy in a direction dependent manner. 

Methods 

Subjects. Seven (7) subjects (4 women, 3 men) between the ages of 

twenty-one and twenty-five were recruited to perform the experiment. Prior to the 

experiment, subjects were briefed on the experimental procedures and what to 

expect when moving within the virtual environment but were naïve to the purpose 

of the study. The experiment complied with and was approved by the Arizona 

State University Institutional Review Board prior to subject recruitment and data 

collection and all subjects read and signed an informed consent form prior to 

participating. 

Apparatus. The experimental apparatus consisted of a large, standing 

frame which supported a stereoscopic 3-D monitor (Dimension Technologies 

Incorporated, Rochester, NY), a metal shield and a chinrest (Fig. 4.2A). The 

monitor projected down through an opening in the frame onto a mirror embedded 
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within the metal shield, which also served to block the arm from view. The shield 

was suspended from the frame at a 45 degree angle with respect to the monitor. 

Subjects were seated directly in front of the shield with their head positioned on 

the chinrest in such a way that the eyes were aligned with the center of the mirror. 

Motion Tracking. During an experiment, an LED was positioned on the 

subject‟s fingertip to monitor the position of the hand throughout the reach. LED 

position was continuously monitored by a Visualeyez ™ VZ-3000 motion tracker 

(Phoenix Technologies Inc., Burnaby, British Columbia) at a rate of 150 Hz (0.5 

mm spatial resolution). The position data was fed back to the subjects via a virtual 

reality (VR) environment developed in Vizard® (WorldViz LLC. Santa Barbara, 

CA) and displayed on the 3-D monitor as a green sphere of approximately 5 cm 

diameter in the „near‟ depth plane (see below). This system provided feedback of 

the hand within the virtual workspace in near real time. In addition, a large cube 

was rendered in the virtual environment to provide additional depth cues. 

Movement data were smoothed offline using a regressive/low-pass filter to reduce 

sampling noise and instantaneous tangential velocity was calculated by 

differentiating the position data along the movement path. 

Experimental Design. The task was to execute a sequence of two reaches 

to targets located in each of 3 vertical planes positioned at different distances 

from the body (i.e. in depth; Fig. 4.2B). The VR environment was calibrated in 

such a way that the nearest plane of targets was located approximately 20 cm 

from the body surface, with each successive target plane located 8 cm farther in 

depth, making the respective depths of the planes 20 cm, 28 cm, and 36 cm. The 
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targets, as well as the centrally located starting position were rendered as green 

spheres of approximately 5 cm diameter in the near plane. This target size was 

chosen such that depth discrimination between target planes in the VR 

environment was clearly apparent facilitating judgment of target depth. As shown 

in Fig. 4.2B, targets were arranged on a circle in each vertical plane and were 

positioned 9 cm from the centrally located starting position. There were four 

primary targets (T1), located along the x (horizontal) and y (vertical) axes of the 

display. Each T1 was associated with two potential secondary targets (T2) located 

immediately clockwise or counterclockwise from a given T1. As a result, each T2 

was approached from two different T1s, which allowed a comparison of the 

endpoint variability at a given T2 when this target was approached from two 

different directions. Note that starting locations for each vertical target plane were 

also varied in depth. As a result, required movement sequences were 

perpendicular to the axis along which visual planning noise would be expected to 

dominate, i.e. along the depth axis, in contrast to previous investigations of reach 

endpoints in 3D space (e.g. McIntyre et al., 1997, 1998). 
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Figure 4.2.Experimental design A. Experimental apparatus. B. Target layout for 

each experimental depth. T1s represent position of initial targets, T2s the position 

of secondary targets. Each T2 is approached from both adjacent T1s for eight 

movement sequences per target plane. C. Trial sequence illustrating T1 and T2 

onset and idealized tangential velocity profiles. 
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Movement sequences (i.e. combinations of T1 and T2) were performed 

with full visual feedback throughout the movement (visual (V) condition) or 

without visual feedback following movement onset (non-visual (NV) condition). 

Each trial began with the illumination of the starting position (Fig. 4.2C). This cue 

also defined the depth at which the subsequent targets would appear. Between 

trials, subjects had ample time (1.5 sec) to visually align their hand with the 

starting position. After a 350 ms holding period within the starting window, T1 

would appear, cueing the first movement. Upon leaving a predetermined window 

(r = 4.5 cm) around the starting position, T1 would disappear and an adjacent T2 

would appear, cueing the second movement. The size of this window was chosen 

such that T2 appeared very close to peak hand velocity to T1. This was done to 

ensure subjects immediately perceived the target jump by minimizing the effects 

of saccadic suppression (Prablanc et al., 2003), which was not the focus of the 

present research and a potential confound to analysis. On NV trials, coincident 

with the appearance of T1, the visual feedback of the moving hand was removed 

for the duration of the trial. On V trials, vision of the hand was always allowed. 

For each trial, the feedback condition (V, NV), depth plane, and the locations of 

T1 and T2 were all pseudo-randomly selected such that each combination of 

variables was sampled seven (7) times. The subject had no prior knowledge of 

any of these trial parameters prior to trial onset.  

Selection of target positions was randomized both within and across depth 

planes on a trial by trial basis. In addition, subjects were instructed to move as 

quickly and accurately as possible to the presented targets. These aspects of the 
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experiment design were incorporated to accentuate planning and execution related 

noise processes rather than to minimize them, thereby allowing a characterization 

of their interaction. Subjects were also instructed to avoid correcting their position 

at the end of a sequence. Knowledge of results was provided by means of an 

auditory tone that signaled that subjects were in an acceptable window around the 

target (+/- 5 cm along each axis) but this information could not be used to further 

adjust endpoint position. The trial was considered a success if the subject moved 

to T2 in under 1400 msec and remained within the target window for 350 ms.  

Data Analysis. Analysis focused on movement errors at the end of each 

sequence (i.e. at each T2). Movement endpoints were defined as the point at 

which the tangential movement velocity fell below 10% of its peak value for 

movements to T2. To assess accuracy, constant errors were calculated by 

subtracting the known target center (T) from the measured endpoint of the hand 

(h) on each trial. More specifically, constant errors along a given axis were 

calculated as: 

        (1) 

where  is the location of the target at depth plane d,  is the endpoint position 

of the hand for this target for trial i, and  is the corresponding number of trials. 

Similarly, precision was assessed by calculating the variable errors along a given 

axis for each target position as follows: 

       (2) 
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where  represents the mean endpoint position for a given target at a particular 

workspace depth.  

Movement endpoints were arranged according to subject, feedback 

condition, target sequence, and depth plane. Levene‟s test (a conservative test of 

equality of variances) was used to analyze the separate effects of workspace 

depth, feedback condition, and movement direction on the endpoint variability 

along each axis (for a given sequence). Where sample sizes were larger (e.g. after 

grouping endpoints across workspace depths for a given sequence) Bartlett‟s test 

of uniformity was applied. This also allowed us to assess more specific 

differences in variability (e.g. lesser or greater variance).  

Principal components analysis (PCA) was used to quantify the size, shape 

and orientation of the endpoint distributions. For this analysis we first calculated 

the 95% tolerance ellipsoids associated with each endpoint distribution as follows 

(McIntyre et al., 1998; Morrison, 1990): 

               [3] 

where the dimensionality q=3, the number of target positions k=1, F refers to the 

95% confidence F-statistic wit 3 and 3 degrees of freedom, and H is the 

covariance matrix of endpoint position h. Eigenvalues and eigenvectors were 

determined from the matrix T. The eigenvalues determined the size of the 

distributions, the ratio of the eigenvalues associated with each eigenvector 

determined the shape of the distributions and the eigenvectors themselves 

determined the orientation. A χ
2
 test of the form used by Morrison (1990), and 
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McIntyre et al. (1997), was used to test whether any two eigenvalues were 

significantly different from each other, in order to ascertain whether the 

distributions were isotropic or anisotropic. For visualization purposes, 95% 

confidence ellipses and ellipsoids were calculated for the endpoint distributions 

using Matlab code based on the Khachiyan algorithm (Khachiyan, 1996; 

Khachiyan & Todd, 1993), as implemented by Nima Moshtagh. 

In a recent examination of the role of execution noise in movement 

variability, it was observed that movement variability (endpoints and initial 

movement directions) varied systematically with movement direction (van Beers 

et al., 2004). Moreover, when movements in a single direction but different 

distances were examined, endpoint ellipses were better aligned with the last part 

of the movement trajectory than with the straight line joining the starting position 

to the target, a finding attributed largely to execution noise. In order to estimate 

the contribution of execution noise in the present experiment we consequently 

related endpoint variability to both the „total‟ movement vector between T1-T2 

(vector connecting T1 and T2 endpoints), as well as the „terminal‟ movement 

vector, i.e. the difference between the T2 endpoint and the hand position 200 

msec prior to the end of movement. More specifically, to evaluate the degree of 

alignment between execution and endpoint variability we calculated the angle in 

space (α) between the movement vector (both total and terminal) and the first 

eigenvector derived from PCA.  
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Results 

Subjects generally produced stereotyped reaching trajectories under both 

feedback conditions. Figure 4.3 shows endpoint positions and average movement 

paths for clockwise sequences in the frontal plane. Data for a single subject at 

each workspace depth are shown. Though movements in both conditions were 

very stereotyped, movements in the NV condition (red) often undershot T1 and 

were then followed by a slightly more curved and variable movement to T2. In 

contrast, when vision was available (blue), subjects moved completely to T1, then 

executed the movement to T2 in a more direct and consistent manner. This 

behavior is consistent with previous findings under similar feedback conditions 

(Prablanc et al., 1979).  

Temporal aspects of the movement trajectories also differed somewhat 

between feedback conditions but, as with the movement paths, these differences 

were consistent across depths. Peak velocities to T1 in the NV condition were 

significantly slower than their V counterparts for many sequences (p<0.05). The 

reduced velocities and durations on NV reaches suggest a misestimation of the 

movement amplitudes required to reach T1. With respect to movements to T2 

(which remained visible throughout), there were no significant differences in peak 

velocities and movement times between the V and NV conditions. Regarding 

workspace depth, no significant effect of depth on peak velocities and movement 

times to T2 was noted for either condition.  

Endpoints in the V condition were in general more accurate and less 

variable than those in the NV condition. However, in both feedback conditions, 
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variability was generally most pronounced along the depth axis. This can be 

readily appreciated in Fig. 4.4, which shows a top-down view of the movements 

and endpoints shown in the “Middle” plot of Fig 3. Variable errors were larger 

along the depth axis than along the horizontal for both the upper (left panel) and 

lower (right panel) T2s. This was true in both feedback conditions, though the 

endpoint distributions were larger without vision. The mean of the endpoint 

distributions (constant errors) were also occasionally biased outside the target 

plane though the nature of this bias (under or overshoot) was both target and 

subject dependent. Such idiosyncratic behavior with regard to constant errors has 

been reported elsewhere (Berkinblit et al., 1995; Darling & Miller 1993; Foley & 

Held 1972; Soechting & Flanders 1989a) thus these errors were not explored in 

detail. Instead, we will focus our discussion on the variable errors, which provide 

more direct information about planning and execution-related noise. We first 

consider the endpoint variability in the V condition and then consider these errors 

in the absence of visual feedback. 
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Figure 4.3. Mean trajectories and endpoint positions to clockwise T2s. Each depth 

is represented for one subject. Each colored dot represents the endpoint for a 

single trial to the target in a given feedback condition. Open ellipses represent 

95% confidence ellipses for the endpoint distributions in each feedback condition. 

Filled black circles refer to target locations. Performance generally varied 

between V and NV conditions, but did not vary with depth for a given T1-T2 

sequence.  
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Figure 4.4. Mean trajectories and endpoint positions in the horizontal plane to 

upper (left) and lower (right) T2s for the movements shown in the „middle‟ 

workspace depth of Fig. 4.3. Other figure conventions as in Fig. 4.3. Variability 

along the depth axis was generally similar in magnitude between V and NV 

conditions. 
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Endpoint variability under visual feedback. The pattern of endpoint 

variability associated with a given movement sequence was relatively consistent 

across workspace depths and subjects. Figure 4.5 shows bar plots of the variable 

errors along each axis for the clockwise movement sequences in a single subject 

(the same subject as in Fig. 4.4). Data for identical movement sequences (i.e. 

same T1-T2 combination) executed at different workspace depths are shown in 

each panel. As indicated above, variable errors tended to be larger along the depth 

axis than along the horizontal or vertical axes; this is most evident for T2135 and 

T2225. In addition, the relative distribution of endpoint variance associated with a 

given movement sequence was generally consistent across depths. This was 

quantitatively assessed by comparing the variance along a given axis as a function 

of workspace depth. When data from all subjects and sequences were analyzed, 

only 14 out of 168 (8%) sequences showed an effect of workspace depth 

(Levene‟s test, p <0.05). Thus, we conclude that the endpoint variability 

associated with identical movement sequences was not significantly affected by 

changes in workspace depth in this experiment. 

For planar arm movements, patterns of endpoint variability have been 

shown to be better related to the terminal phases of the hand trajectory (which 

include any curvature), than to the vector connecting the initial hand position to 

the target (van Beers et al., 2004). This has been used to argue that endpoint 

variability is better related to execution than planning noise. Thus, a key question 

concerns how well the orientations of terminal movement vectors in the present 

experiment can explain the observed patterns of endpoint variability. To aid in 
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comparing the terminal movement vector with the distribution of observed 

variable errors we used PCA. The first eigenvector typically accounted for 60-

75% of the total variance in endpoint position and the first two eigenvectors 

typically accounted for nearly 95% of the variance, consistent with other studies 

of endpoint variability in 3D space (McIntyre et al., 1998; 1997). To assess the 

role of execution-related noise, we used the first eigenvector as our estimate of the 

orientation of endpoint variance and compared that to the orientation of both the 

total movement vector and the terminal movement vector (see Methods). The 

rationale is that if execution related noise were largely responsible for producing 

the anisotropic distribution of errors observed in this task, then the first 

eigenvectors and movement vectors should be roughly aligned in 3D space.  

Visual inspection of movement paths suggested that neither the total 

movement vector nor the terminal vector could account for the generally large 

out-of plane (depth) component of the first eigenvectors. This can be appreciated 

from Fig. 4.6 which illustrates for a single subject the average movement paths 

(blue lines) and 95% confidence ellipsoids for sequences in the middle plane. 

Black lines cutting through each ellipsoid represent the first eigenvector for that 

sequence, centered on the mean endpoint. In the frontal plane (Fig. 4.6a), 

ellipsoids and eigenvectors suggest some degree of elongation of the endpoint 

variability along the mean T1-T2 path. This is consistent with our expectation that 

execution noise plays a role in determining endpoint variability, especially when 

visual planning uncertainty is reduced. However, for most sequences, only a small 

portion of the eigenvector is observed to project onto the frontal plane. Instead, 
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for many sequences the first eigenvector was oriented perpendicular to the plane 

containing the starting position and targets. This is most evident in Fig. 4.6b, 

which shows top-down views of the same movements and ellipsoids. For both 

upper (top) and lower (bottom) T2s, the orientations of the ellipsoids and 

eigenvectors were clearly biased along the depth axis. Moreover, they are clearly 

not well aligned with the average movement paths, which were largely 

horizontally directed.  

Figure 4.6 suggests that the principal axis of movement variability was not 

well explained by the orientation of either the total or terminal movement vectors 

in this experiment. This was generally the case. First, on average, the 1
st
 

eigenvector had a significantly larger component along the depth axis than along 

the horizontal and vertical axes (Kruskal-Wallis test, p<0.001; Fig. 4.7a). In 

contrast, the components of the mean terminal movement vector were not 

significantly different from each other, which suggests that eigenvectors and 

terminal movement vectors were often misaligned. To verify this we calculated 

the angle (α) between the total/terminal movement vector and the first eigenvector 

for each sequence. For the terminal vector, the mean angular difference across 

sequences was 58˚ (+/- 21), much larger than one would expect if the movement 

vector (and therefore execution-related noise) were largely responsible for the 

observed anisotropy in endpoint position. With respect to the total movement 

vector, a mean α of 69˚ (+/- 19) was observed, indicative of even poorer 

alignment. The terminal movement vector was better than the total vector at 

explaining patterns endpoint variability in virtually all analyses and in both 
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conditions. As a result we will focus the rest of our discussion of execution noise 

on this vector.  

It is important to emphasize that the movement vector did affect endpoint 

variability in this experiment, it just did so in an axially-dependent manner. This 

was ascertained by correlating α with the degree of movement along each axis. 

Since a given movement sequence resulted in largely identical patterns of 

movement variability at each workspace depth we combined the variable errors 

for identical sequences across depths for this analysis. This also served to increase 

our statistical power. For the terminal vector, α was uncorrelated with movement 

along the vertical axis (r = 0.06; p = 0.66) and was only weakly correlated with 

horizontal movement (r = 0.426; p < 0.01). However, α was strongly correlated 

with movement along the depth axis (r = -0.643; p < 0.001; Fig. 4.7c). In fact, 

when the component of the terminal movement vector was greater than 0.75 (i.e. 

when it was oriented largely along the depth axis) then α was on average 36˚ (+/- 

17), indicating a relatively high degree of alignment. Note that although we 

combined data across workspace depths for this analysis, these basic trends were 

clearly observable without such grouping. Thus, in this condition, anisotropies in 

endpoint position appear to be largely related to misestimating the final position 

in depth, with a smaller contribution from execution-related noise processes.  

We also assessed the influence of execution noise by comparing the 

endpoint distributions for pairs of movement sequences associated with different 

T1s but the same T2. The average angle between terminal movement vectors to a 

common T2 was 85º (+/- 32.5). Given this disparity, we predicted that a strong 
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influence of execution noise would result in significant differences in the endpoint 

variability associated with different movements to the same T2. We found that for 

43% (12/28) of the possible comparisons, endpoint distributions differed 

significantly along at least one axis (Bartlett‟s test, p<0.05). This indicates that the 

movement path did affect endpoint distributions to some degree in this 

experiment, which could reflect the influence of execution-related noise.  
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Figure 4.5. Single subject variable errors for clockwise sequences performed at 

each workspace depth. Axis-specific errors were compared across workspace 

depths for identical sequences using Levene‟s test. Stars demarcate statistically 

significant differences (p<0.05). A significant result along any one axis resulted in 

the entire sequence being classified as being „workspace dependent‟. When all 

subjects and sequences were considered only 8/168 sequences (~5% ) were 

classified in this way. 
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Figure 4.6.Mean trajectory and 95% confidence ellipsoids in the V-condition. A. 

Frontal plane view of the mean trajectories and endpoint positions for clockwise 

sequence in the middle workspace. Data from one subject in the V condition are 

shown. Also shown are 95% confidence ellipsoids for each endpoint distribution 

and the first eigenvectors derived from principal components analysis of these 

distributions (black lines). In this view ellipsoids appear to be aligned to some 

degree with the mean trajectory. B Top-down view of the same movements 

shown in A for the upper (top) and lower (bottom) T2s. Eigenvectors and ellipses 

appear largely oriented along the depth axis and not with the mean trajectory.  
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Figure 4.7. Comparison of eigenvectors and terminal movement vectors. A. Axial 

components of the 1
st
  eigenvector (left) and terminal movement vector (center), 

averaged across all subjects and sequences. Eigenvectors were significantly 

biased along the depth axis (p<0.001) whereas terminal movement vectors were 

not biased along any axis. B. Scatterplot of the depth component of the terminal 

movement vs. α (the angle between the 1
st
 eigenvector and the terminal movement 

vector). Significant negative correlation indicates that larger components of 

movement in depth resulted in greater alignment of movement and eigenvectors.  
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Endpoint variability without online visual feedback. Similar to the V 

condition, patterns of endpoint variability in the NV condition were relatively 

consistent across workspace depths and subjects. In this condition we did not 

observe as strong a tendency for variable errors to be elongated along the depth 

axis. That is, neither the average terminal movement vector nor the average 1
st
 

eigenvector were biased along a particular axis. However, patterns of endpoint 

variability associated with a given sequence were still generally similar across 

workspace depths. That is, when data from all subjects and sequences were 

analyzed, only 15 out of 168 sequences (9%) showed an effect of workspace 

depth (Levene‟s test, p <0.05). Thus, similar to the V condition, endpoint 

variability associated with identical movement sequences was not significantly 

affected by changes in workspace depth. 

Figure 4.8 illustrates average movement paths and 95% confidence 

ellipsoids for a single subject in the NV condition. Here, ellipsoids appear larger 

and more isotropic than those in the V condition. This is consistent with the 

prediction that an increase in sensor uncertainty would lead to more variability 

overall. Similar to the V condition, first eigenvectors in this condition had large 

components in depth. However, this was less consistently observed than for 

movements with visual feedback. Also similar to the V condition was the 

tendency for the eigenvectors and movement vectors to be misaligned. This can 

be seen in both the frontal (Fig. 4.8a) and horizontal plane views (Fig 8b). These 

observations are consistent with the idea that the removal of visual feedback 

results in an increase in sensor uncertainty (and therefore planning noise). 
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Consequently, more isotropic patterns of movement variability were observed in 

this condition than when vision of the hand was available. The overall increase in 

planning noise was such that evidence of execution related variability was less 

evident in the observed endpoint distributions in this condition. 

The above observations regarding endpoint variability in the NV condition 

were consistent across subjects and for the majority of sequences. In general, 

endpoint distributions were more isotropic without hand vision and the first 

eigenvectors describing these distributions were still generally not aligned with 

the terminal movement vector. These conclusions were based on the following: 

first, as stated above, the components of the mean eigenvector across subjects and 

sequences were not significantly different from one another in this condition, 

which indicates a lack of consistent anisotropy in the endpoint data. Mean 

movement vectors were also not biased along a given axis. In addition, the angle 

between the between the terminal movement vector and first eigenvector was still 

generally quite large (54˚, +/- 23), illustrating the lack of consistent relation 

between the orientations of the terminal movement vectors and the primary axis 

of movement variability. Similar to the V condition, alignment between the first 

eigenvectors and movement vectors was not correlated with the degree of 

movement along the vertical axis (r =- 0.003; p = 0.98) and was only weakly 

correlated with horizontal movement and movement in depth (r = 0.314; p < 0.05, 

and r = -0.420; p < 0.01, respectively).  
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Figure 4.8. Mean trajectory and 95% confidence ellipsoids in the NV-condition. 

A. Frontal plane view of the mean trajectories and endpoint positions for 

clockwise sequence in the middle workspace (NV condition). Figure conventions 

as in Fig. 4.6. Ellipsoids are generally larger and more isotropic than those of the 

V condition (Fig. 4.6). B. Top-down view of the same movements shown in A for 

the upper (top) and lower (bottom) T2s. As in the V condition, eigenvectors and 

ellipsoids appear largely oriented along the depth axis and not with the mean 

trajectory.  
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Effects of online visual feedback. These results may also be interpreted 

with respect to the role of vision in the online control of arm movements in 3D 

space. To evaluate the effect of online visual feedback, we compared endpoint 

variable errors between the two visual feedback conditions. Since we rarely 

observed a significant effect of workspace depth on variable errors, endpoints 

were combined across workspaces for identical sequences. Figure 4.9 illustrates 

the variable errors in both conditions for clockwise sequences from a single 

subject. In general, endpoint variability in the V condition was significantly 

reduced along the vertical and horizontal axes but not along the depth axis 

(Bartlett‟s test, p<0.05). This pattern was consistently observed across sequences 

and subjects. This observation suggests visual feedback reduces sensor and 

planning noise along the horizontal and vertical axes (relative to NV conditions), 

but does not reduce sensory uncertainty in depth, consistent with observations 

obtained in studies of hand position estimation in the horizontal plane (van Beers 

et al., 1998).  



83 

 

Figure 4.9. Single subject variable errors along each axis for clockwise sequences 

in both conditions. Endpoints were combined across depths for each sequence 

prior to calculating errors. Bartlett‟s test of uniformity was used to determine 

whether vision reduced variable errors along a given axis (stars). Variability in the 

NV condition was significantly larger along the horizontal and vertical axes for 

almost all sequences. Variable errors along the depth axis did not vary 

significantly between feedback conditions. 
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Interestingly, despite allowing subjects over 1 second to visually align 

their hand with the starting position, we observed a similar pattern of variability at 

this position. While variability was smaller overall at the starting position, 

subjects were slightly less precise at positioning their hands along the depth axis 

compared to either the horizontal or vertical axes. In addition, the variability 

along the horizontal and vertical axes was similar in magnitude. Given that 

subjects acquired this position under conditions where execution-related noise 

was relatively reduced, we interpret this finding as further evidence that the 

observed endpoint variability was largely a product of sensor/planning  

Coordinate frames. Analyses of endpoint variability are often used to 

infer the reference frame or frames used to plan movements (Gordon et al., 1994; 

McIntyre et al., 1998; 1997; Vindras & Viviani, 1998). The bias in errors along 

the depth axis begs the question as to whether their orientation supported 

movement planning in an eye/head or trunk/arm based reference frames. To probe 

this we again combined our data across workspace depths for identical sequences 

and examined the orientation of the resulting ellipses and eigenvectors. As 

illustrated in Figure 4.10, when viewed in both the sagittal and horizontal planes 

these eigenvectors appeared to have their largest components along the depth axis, 

as previously discussed. This is consistent with reduced visual precision along this 

axis and could be interpreted as supporting an eye-centered reference frame for 

movement planning. However, in the sagittal plane these vectors did not in most 

cases point toward the nominal sight line (i.e. inferiorly for upward targets, 

superiorly for lower targets). In the horizontal plane these eigenvectors also did 
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not appear to converge toward the sight line nor were they rotated in the direction 

of the shoulder of the pointing (right) arm, a key element of the most prominent 

body-centered scheme (Flanders et al., 1992). Thus, patterns of endpoint 

variability in this experiment likely reflect the influence of multiple reference 

frames, a point we discuss further below. 
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Figure 4,10. Principle eigenvectors of endpoint distributions for movement 

sequences in the V condition from a single subject. Error distributions for each 

sequence were collapsed across depths prior to PCA. Each eigenvector originates 

from the mean error of its endpoint distribution relative to the average target 

distance from the subject. Vectors were elongated to aid in visualization. A. 

Projection of eigenvectors onto the sagittal plane. B. Projections onto the 

horizontal plane. Neither view suggests a single frame of reference underlies the 

endpoint distributions. 
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Discussion 

Subjects produced movement sequences to targets arranged in three 

vertical planes separated in depth, approaching each target from two different 

directions. These movements were conducted with visual feedback (V condition) 

and without vision (NV condition). This design provided a means to probe the 

interaction of execution noise and planning noise with respect to reaching 

variability. Endpoint variable errors in the V condition were relatively small along 

the horizontal and vertical axes but were elongated along the depth axis, 

consistent with previously reported characteristics of visual reliability (McIntyre 

et al., 1997; van Beers et al., 1998; van Beers et al., 2002b; Viguier et al., 2001). 

Errors in the NV condition were generally larger and more isotropically 

distributed in space than those in the V condition but were similar in magnitude 

along the depth axis to those in the V condition. The large component of error in 

depth in both conditions suggests a prominent role for planning noise in 

determining endpoint variability for movements in three dimensions. We propose 

that this arises from visual uncertainty associated with localizing targets in depth 

or noise associated with combining target position with hand position to 

determine the required movement vector. This effect is likely compounded by 

execution noise when the terminal movement vector is also along this axis. 

Therefore, we conclude that patterns of endpoint errors across the workspace arise 

from the interaction of anisotropically distributed visual planning noise with noise 

related to execution. That is, the spatial interaction of these sources of variability 
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occurs in a direction-dependent manner defined by the characteristics of noise 

arising within each process. 

Relation to previous findings. The elongated pattern of endpoint errors in 

depth described here is reminiscent of the findings of McIntyre and colleagues 

(1997, 1998). In these experiments, subjects made movements from starting 

positions near the body to targets located further away from the body surface. The 

resulting endpoint distributions were consistent with a misestimation of endpoint 

position in depth and were interpreted as evidence for  a „viewer-„ or eye-centered 

planning frame during visually guided movements (McIntyre et al., 1998; 1997). 

More recently, van Beers et al. (2004) reported that for center-out reaching 

movements in the horizontal plane, endpoint variability was well accounted for by 

noise in the motor command. This noise resulted in patterns of variability that 

were elongated along the movement direction near the end of the trajectory. As a 

result, for movements directed toward or away from the body these errors 

appeared to be elongated in depth. Thus, the patterns of variability described by 

McIntyre and colleagues could conceivably be explained as arising from either 

planning noise, execution noise or both processes, as the axes along which these 

noise sources are expected to dominate were nearly collinear in these latter 

experiments.  

Here we observe significant, distinct effects of planning noise and 

execution on endpoint distributions, something many previous works in either 

planning or motor variability have not described. However, unlike these previous 

studies, our task is designed specifically to enhance both planning and execution 
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noises during the movement. One way this was achieved was through use of the 

double-step paradigm. This required subjects to make larger total movements and 

likely increased the amount of execution dependent noise over that of a single 

movement. Additionally, the differences in direction between movement vectors 

from separate paths to a common T2 were much greater than in previous works. 

Lastly, by arranging targets in the vertical plane, we decorrelate movement 

direction from visual noise, whereas many previous works have left these largely 

collinear. These characteristics likely made sensory and movement dependent 

effects somewhat more pronounced than has been shown in previous studies of 

single movement reaches to targets in depth.  

While planning and execution noise have traditionally been evaluated 

independently, the two inherently interact during the production of movement. 

Further, these interactions can lead to ambiguity in interpreting patterns of 

movement variability, for reasons stated above. The present task, which involved 

randomized target positions, workspaces and visual conditions as well as 

unpredictable changes in target location, was designed to accentuate both 

planning and execution related noise processes. In addition, by keeping starting 

positions in the same vertical plane as the targets, thereby requiring planned 

movements to be largely perpendicular to the depth axis, we sought to disentangle 

the contributions of planning and execution related noise to endpoint variability. 

Indeed, we found that even though required movement directions were roughly 

orthogonal to the sight line in this experiment, patterns of endpoint variability 
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were still largely elongated in depth, in agreement with previous findings obtained 

for movements in 3D space (McIntyre et al., 1998; 1997).  

Interaction between execution and planning noise. Recently, it has been 

argued that planning and execution related noise combine “near optimally” in the 

temporal domain (Faisal & Wolpert, 2009). These investigators demonstrated that 

overall task variability could be predicted from the sum of time-dependent 

sensory and motor variability. That is, when sensing times were small, and sensor 

uncertainty was therefore large, task variability was high. However, when sensing 

uncertainty was smaller (due to longer sensing times) variability became more 

indicative of the level of execution noise (Faisal & Wolpert, 2009). Extending this 

scheme to the spatial domain, one would predict that the shape of a given 

endpoint distribution would reflect the relative amount of noise due to planning 

and execution, as well as the spatial distribution of each noise source. The latter is 

believed to be determined by the natural coordinate axes of the relevant sensors 

and effectors (the eyes and arm, respectively).  

In the V condition, vision of the hand was available at all times. Since 

visual estimation of hand position has been shown to be highly precise along the 

horizontal and vertical axes, planning noise throughout movement should have 

been relatively low in the vertical plane in the V condition. As a result, one might 

predict that patterns of variability in the vertical plane would reflect largely 

execution related noise in this condition. While execution noise was not the 

dominant source of variability in this experiment, its influence was most apparent 

in the vertical plane in the V condition, as suggested by the slight elongation of 
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the confidence ellipsoids along the average movement direction in Fig. 4.6. In 

contrast, endpoint distributions appeared more isotropic in the NV condition when 

viewed in the vertical plane (Fig. 4.8). This would be expected if planning noise 

in this plane was considerably larger without visual feedback of the hand, a 

premise supported by previous findings (Carrozzo et al., 1999). Thus, the 

observed patterns of variability in the two feedback conditions appear to arise 

from differences in the relative levels of planning noise between conditions as 

well as the differing spatial distributions of uncertainty arising from planning and 

execution noise.  

An important corollary to this discussion is that when both levels of noise 

are similar and their underlying coordinate axes are aligned, then their respective 

contributions to endpoint variability should be more difficult to distinguish. This 

was in fact the case in this experiment. In general, the principal axes of movement 

variability were better explained by known anisotropies in visual planning noise 

than by the orientation of the movement vector. However, as Fig. 4.7 indicates, 

when movements involved a significant depth component, endpoint distributions 

were relatively well aligned with the movement vector. This arises from the fact 

that when movements are directed in depth, the coordinate axes of visual 

uncertainty and execution noise are largely collinear, and therefore contribute 

together to the elongated shape of endpoint distributions in depth.  

A more quantitative estimation of the relative contributions of execution 

and planning noise, as has recently been performed in a different context (van 

Beers 2009), would require an in depth analysis of the variability associated with 
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movement sequences performed along all three axes in space. Experiments of this 

nature could be a fruitful avenue for future investigations. Similarly, probing the 

nature of visual planning noise will require more advanced experimental 

paradigms as well. As suggested by Fig. 4.1, this noise could arise at several 

stages of the planning process, including during the estimation of target and/or 

hand position as well as during computation of the required movement vector. 

The similar levels of variability along the depth axis in the V and NV condition 

suggest that estimation of hand position is not a major determinant; this could be a 

reflection of the more dominant role of proprioception in estimating hand position 

along this axis (see Cue integration below). Instead, the large variability in depth 

reported here more likely resulted from visual uncertainty of target locations in 

depth or during the computation of movement vectors, which includes coordinate 

transformations and subsequent vector subtraction. Future experiments will seek 

to distinguish among these various possibilities. 

Workspace dependence. Previous work has shown that proprioceptive 

reliability decreases as the hand moves further from the body (van Beers et al., 

1998). Visual reliability on the other hand is relatively constant, at least for 

distances within the workspace of the arm (Viguier et al., 2001). As a result we 

hypothesized that the weighting of vision and proprioception might vary with 

workspace depth, resulting in different patterns of errors for identical movement 

sequences performed in different depth planes. Contrary to our initial hypothesis, 

increasing workspace depth did not generally affect the endpoint variability 
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associated with different movement sequences. This suggests that the interaction 

of planning and execution noise was generally consistent across the workspace.  

The fact that planning noise did not appear to change with workspace 

depth may be partially related to our experimental design and apparatus. Our use 

of a shield to block view of the arm prevented evaluation of hand positions closer 

than approximately 20 cm from the body, where proprioception should be most 

precise (van Beers et al., 1998). In addition, we did not explore positions near the 

limits of the reaching workspace, where proprioception might be expected to 

show a sudden decrease in precision (Scott & Loeb, 1994; Wilson et al., 2008). In 

other words, in this study we may have explored a region of space where the 

reliability of somatic feedback (like visual feedback) is relatively constant, 

leading to only minor effects on movement planning. These small changes in 

somatic reliability along this axis might also have been masked by the additional 

but larger visual uncertainty associated with target localization along this axis. 

Cue integration. As previously mentioned, we observed similar degrees 

of error in depth in both feedback conditions. In fact, variability along this 

direction was almost always greater than variability along the horizontal or 

vertical axes. We attribute this to the increased planning noise associated with 

localizing targets in depth (McIntyre et al., 1997; Viguier et al., 2001). However, 

variability along the horizontal and vertical axes differed greatly between 

conditions, with errors being significantly smaller with hand vision than without. 

This suggests an anisotropic effect of vision in this experiment, as predicted by 

recent “optimal” cue integration schemes. Recent work in cue integration has 



94 

argued that multiple sensory cues are combined in such a way that the 

contribution of each input is proportional to its reliability (the inverse of 

uncertainty) (Ernst & Banks 2002; Jacobs 1999; Knill & Saunders 2003; Kording 

& Wolpert, 2004; van Beers et al., 1999). Vision is highly reliable along the 

horizontal and vertical axes, but less so in depth. Proprioception, on the other 

hand, exhibits the opposite tendency. Thus, an “optimal” integration of these 

senses would manifest as a stronger weighting of visual information along the 

horizontal and vertical than in depth. Our observation that vision assists hand 

localization in the horizontal and vertical axis but has little effect on reliability in 

depth is precisely the pattern predicted for a system executing “optimal” 

integration strategies. 

Frames of reference. Variable errors and constant errors have historically 

been analyzed as a means to understand movement planning, particularly the 

reference frame or frame in which movements are planned. The rationale behind 

using variable errors is that the coordinate system used to encode endpoint 

positions would reveal itself as a lack of correlated variance along a set of 

coordinate axes that are linked to key „nodes‟ in the sensorimotor chain. 

Behavioral evidence supporting hand, body, and eye-centered coding of reach 

endpoints has previously been presented (Flanders et al., 1992; Gordon et al., 

1994; McIntyre et al., 1998; 1997; Vetter et al., 1999; Vindras & Viviani ,1998). 

More recently, behavioral studies suggest that under many circumstances reaching 

errors reflect the influence of distinct movement related processes and/or sensory 

signals that are encoded in correspondingly distinct reference frames (Ghez et al., 
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2007; McGuire & Sabes, 2009), observations which have support in both the 

modeling and neurophysiological literature (Buneo et al., 2002; Deneve et al., 

2001). These schemes typically invoke a mixture of reference frames, e.g. eye-

centered coordinates with limb or body-centered ones, with the weighting being 

determined by the statistical properties of the signals being integrated (McGuire 

& Sabes 2009) or, more generally, the task conditions (Heuer & Sangals 1998). 

The present results are partially supportive of this general scheme. That is, 

principal eigenvectors in this experiment were influenced in part by the direction 

of hand movement, which could be interpreted as reflecting a movement plan in 

hand-centered coordinates. The influence of an eye-centered reference frame is 

implied by the elongation of variable errors along the depth axis (consistent with 

reduced visual precision along this axis). However, as Fig. 4.10 suggests, we did 

not find strong evidence for a convergence of the eigenvectors, as would be 

expected for eye-centered coding (assuming subjects were fixating the target, 

which is reasonable). In addition, when viewed in the sagittal plane, these 

eigenvectors did not always point along the sight line, which is also inconsistent 

with an eye-centered coding scheme. Strong evidence for the encoding of 

endpoints in a single body-centered reference was also not found, as mentioned in 

Results. Thus, interpreted in the context of the coordinates of movement planning, 

the present results point to a role for both relative (hand) and absolute (eye/body) 

coordinates, though the origin of the latter is equivocal. 



96 

CHAPTER 5 

CONTRIBUTION OF EXECUTION NOISE TO ENDPOINT 

VARIABILITY IN 3D SPACE 

Introduction 

Noise pervades every stage of sensorimotor processing and contributes to 

movement variability, a hallmark of human motor behavior (Faisal et al., 2008). 

This noise can be attributed in part to neural processes associated with 

transforming sensory signals into motor commands („planning noise‟) and to 

processes associated with transforming motor commands into movements 

(„execution noise‟)(van Beers et al., 2004). Planning noise includes noise arising 

during the initial sensing of limb and target position, as well as noise that arises 

during the central integration of these signals, and is thought to result in 

variability in movement direction and amplitude, as well as speed (Churchland et 

al., 2006a; Churchland et al., 2006b; Gordon et al., 1994; McIntyre et al., 1998; 

1997; Vindras & Viviani, 1998). Execution noise also arises from both peripheral 

and central mechanisms and can have profound effects on movement variability 

(Buneo et al., 1995; van Beers et al., 2004). Understanding how planning and 

execution-related noise interact is critical not only for explaining movement 

variability that is observed in neurologically intact human subjects but also for 

comprehending the exaggerated variability that arises following nervous system 

damage (Contreras-Vidal & Buch, 2003; Hermsdorfer & Goldenberg, 2002; 

Longstaff & Heath, 2006; Thies et al., 2009). In addition, the effects of this 

interaction are relevant to understanding such diverse sensorimotor functions  as 



97 

position estimation (van Beers et al., 1999; 1998; van Beers et al., 2002b), cue 

integration (Kording & Wolpert, 2004), and motor adaptation (van Beers, 2009).  

The effect of noise manifests differently depending upon whether it is 

execution or planning based. For example, noise associated with execution is 

thought to result in movement variability that is most pronounced along the 

direction of movement, particularly its terminal component (van Beers et al., 

2004). In contrast, noise associated with sensing the position of the limb (a 

component of movement planning) has different spatial characteristics which 

arise from the unique properties of the sensors. For example, localization of the 

hand by proprioception is reportedly more precise when the hand is closer to the 

body and is also more precise in depth than in azimuth (van Beers et al., 1998; 

van Beers et al., 2002b). Vision is also more precise for positions closer to the 

eyes/body but is more precise in azimuth than in depth. These differing 

workspace dependencies predict that patterns of movement variability arising 

from planning noise will depend on whether hand position is sensed through 

proprioception alone or via both senses (Shi & Buneo 2009). In either case, the 

effects of this noise will be both movement direction and arm configuration 

dependent (Shi & Buneo 2009).  

As a result of the different behavioral consequences of execution and 

planning-related noise, determining the source or sources of movement variability 

that arises during a particular experiment can be problematic. For instance, 

patterns of variability following movements made from a starting position near 

the body to targets further away in depth have often been found to be significantly 
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elongated along the depth axis (Carrozzo et al., 1999; McIntyre et al., 1998; 1997; 

van Beers et al., 2004). These results could be interpreted as resulting from noise 

in execution (van Beers et al., 2004), noise in visual estimation of the target 

and/or hand (van Beers et al., 1998; Viguier et al., 2001) or both processes. This is 

due to the fact that the axes along which execution noise and visual planning 

noise are thought to dominate (the terminal movement axis and depth axis, 

respectively) are aligned when movements are directed in depth. Additionally, the 

elongated pattern of variability could also arise due to noise associated with other 

aspects of movement planning (McIntyre et al., 2000; McIntyre et al., 1998; 

1997).  

In most instances, however, movement variability likely arises from the 

interaction of noise sources (Thaler & Todd, 2009). In support of this idea, 

sensory and execution noise have been shown to interact „near-optimally‟ in the 

temporal domain to determine overall levels of behavioral variability (Faisal & 

Wolpert 2009). In a recent study of unconstrained reaching movements to targets 

in the frontal plane, we argued that this may also be the case in the spatial domain 

(Apker et al., 2010). In particular, we showed that visually-related planning noise 

played a dominant role in determining patterns of endpoint variability in 3D 

space, with execution noise contributing to this variability in a direction 

dependent manner (i.e. along the movement vector). However, since movements 

in this experiment were designed to be confined largely to the frontal plane, it was 

unclear if planning and execution noise interacted in the same way for movements 

requiring large components along the depth axis. In addition, in these 
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experiments, the role of uncertainty in hand position estimation in determining 

patterns of movement variability in 3D could not be adequately determined. That 

is, although we found that patterns of endpoint variability were larger and more 

isotropic in the absence of hand vision, due to the use of predominantly frontal 

plane movements we were unable to fully interpret the roles of execution and 

planning noise in shaping these distributions.     

In the present investigation we studied the interaction of planning and 

execution noise during the performance of movement sequences with or without a 

substantial terminal component in depth. As in Apker et al. (2010), planning and 

execution noise were accentuated by randomizing target positions from trial to 

trial and by switching the final target position during movement, which required 

rapid, online changes in movement planning and execution. The switching of 

targets was performed in such a way that the resulting sequences of two reaches 

were either both chiefly contained within a frontal plane („frontal sequences‟) or 

involved an initial reach within the frontal plane and a second that was directed 

toward or away from the subject („depth sequences‟). In addition, on half of the 

trials movements were made without visual feedback of the hand, a manipulation 

designed to increase uncertainty in hand position estimation (Franklin et al., 

2007). We hypothesized that variability would be more anisotropic and more 

strongly aligned with the depth axis when the dominant axes of execution noise 

and visual planning noise were more aligned, i.e. during depth sequences. We 

found that when visual feedback was available, patterns of endpoint variability 

were for the most part anisotropic, with the principal axes of variability being 
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closely aligned with the depth axis regardless of sequence type (and therefore 

movement axis). In the absence of visual feedback, variability associated with 

depth sequences exhibited similar spatial characteristics while movements made 

primarily within the front plane were considerably more isotropic and were more 

strongly influenced by the primary axis of movement. These results confirm 

previous suggestions that anisotropically distributed visual planning noise plays a 

dominant role in determining patterns of arm movement variability in 3D space. 

In addition, the findings suggest that in the absence of vision, increased 

uncertainty in hand position estimation results in patterns of endpoint variability 

that are more influenced by execution noise than those with visual feedback.  

Methods 

Subjects. Ten (10) subjects (3 women, 7 men) between the ages of 

twenty-one and twenty-seven were recruited to perform the experiment. The 

experiment complied with and was approved by the Arizona State University 

Institutional Review Board (IRB) prior to subject recruitment and data collection. 

All subjects read and signed an IRB approved informed consent form prior to 

participating. Subjects were briefed on the experimental procedures and what to 

expect when moving within the virtual environment but were naïve to the purpose 

of the study.  

Apparatus. An experimental apparatus was constructed to allow control 

of task parameters during 3-D movements; the arrangement of the different 

components of this setup is illustrated in Fig. 5.1A. A large, standing frame 

supported a stereoscopic 3-D monitor (Dimension Technologies Incorporated, 
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Rochester, NY) which projected images onto a mirror that was visible to the 

subjects. The mirror was embedded within a metal shield, which was oriented at a 

45 degree angle with respect to the monitor. This shield also served to block the 

arm from view. During the experiment, subjects were seated with their head 

positioned on a chinrest in such a way that the eyes were aligned with the center 

of the mirror.  

Motion tracking. An active-LED based motion tracking system was used 

to track movements of the fingertip (Visualeyez ™ VZ-3000 motion tracker 

(Phoenix Technologies Inc., Burnaby, British Columbia); 150 Hz sampling rate; 

0.5 mm spatial resolution). During the experiment, a single LED was positioned 

on the subject‟s fingertip and its position was fed back to the subject in near real-

time via a virtual reality (VR) environment developed in Vizard® (WorldViz 

LLC. Santa Barbara, CA). Fingertip position, target positions and the starting 

position were displayed on the 3-D monitor as green spheres and were ~5 cm in 

diameter when presented in the vertical plane defined by the starting position and 

T1 target positions. To aid in depth perception, a wireframe cube was also 

rendered in the virtual environment. The cube was centered on the starting 

position but was large enough that all of the targets and movements were 

completely contained within it. An examination of the efficacy of the depth cues 

in our environment indicated that subjects can perceive depth with an accuracy 

and precision similar to that exhibited by subjects in real environments (Viguier et 

al., 2001) over the range of target depths used in this study. 
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Figure 5.1. Experimental apparatus and target layout. A: Experimental apparatus. 

B: Frontal and sagittal plane views of the 4 potential movement sequences 

associated with T1up. The second movement in the sequence was directed to one 

of four secondary targets located clockwise (T2cw), counterclockwise (T2ccw), 

inward (T2in), or outward (T2out) from its associated T1. C:  Frontal and 

horizontal plane views of the 4 potential movement sequences associated with 

T1right.  
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Experimental design. The task was to execute a sequence of two reaches 

to targets that were arranged on the surface of an 18 cm diameter sphere centered 

on a single starting position. There were four primary targets (T1), located along 

the x (lateral) and y (vertical) axes cutting through the center of the sphere. Each 

T1 was associated with four potential secondary targets (T2) located 45  

clockwise, counterclockwise, closer in depth (inward) or further in depth 

(outward) from a given T1 and at a straight-line distance of approximately 6.4 cm 

(see Figs. 1B, 1C). As a result of this target arrangement, the second movement in 

a sequence was either largely contained with the same frontal plane as the first 

movement (in the case of clockwise/counterclockwise movements) or had a large 

component parallel to the depth axis (for inward/outward movements). This 

allowed a more comprehensive examination of the interactions between execution 

noise and planning noise than was previously attempted (Apker et al., 2010). 

Movement sequences were performed either with visual feedback of fingertip 

position throughout the movement (visual (V) condition) or without visual 

feedback (non-visual (NV) condition). Prior to the start of the experiment, 

subjects were given ample time to acclimate to the virtual environment and did 

not proceed with the experiment until they self-reported familiarity with moving 

within our virtual reality. 

Individual trials began with the illumination of the starting position which 

cued the subjects to visually align their fingertip with this position (visual 

feedback was always present during this epoch). After holding for 350 ms within 

a 4 cm window centered on the starting position, a T1 would be illuminated, 
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cueing the first movement. Coincident with the fingertip leaving the start position 

window, T1 would disappear and an adjacent T2 would appear cueing the second 

movement. Note that the size of the start position window was chosen such that 

this target jump occurred very close to peak hand velocity to T1, which was 

designed to obviate saccadic suppression, ensuring subjects were immediately 

aware of the target jump. On V trials, vision of the fingertip was available 

throughout the movement. On NV trials however, coincident with the appearance 

of T1, visual feedback of the fingertip position was removed for the duration of 

the trial. Feedback condition (V, NV), and target location (T1, T2) were pseudo-

randomly selected on a trial by trial basis. Each combination of variables was 

sampled fifteen (15) times.  

Subjects had no knowledge of the trial parameters prior to trial onset and 

were instructed to move as quickly and accurately as possible to the presented 

targets. Subjects were also instructed to avoid adjusting their fingertip position at 

the end of a sequence. These aspects of the experiment design were incorporated 

to accentuate planning and execution related noise processes rather than to 

minimize them (as in some previous studies), thereby facilitating a 

characterization of their interaction. Trials were considered successful if the 

subject moved to the target quickly and remained within an acceptable window 

around the target (5 cm radius along each axis) for 350 ms. Knowledge of results 

was provided in terms of an auditory tone that signaled that subjects were 

successful but this information could not be used to further adjust endpoint 

position. When the endpoints did not fall within this window, the trial was aborted 



105 

and repeated later during the session. If a subject was having repeated difficulty 

acquiring a particular target, the 5cm window was temporarily enlarged for that 

target so that the requisite number of trials could be completed. The decision to 

increase the window radius in these limited cases was based on concerns that the 

length of the experimental session would lead to increased difficulty in elevating 

the limb off of the table and that this fatigue would affect performance on 

subsequent trials. Only position data for successful trials were retained for 

analysis.  

Data analysis. Movements were first sorted according to subject, 

feedback condition, and target sequence (i.e. combination of T1 and T2). 

Movement data were then smoothed offline using a digital low-pass filter (5-point 

moving average) and the instantaneous tangential velocity was calculated by 

differentiating the position data along the movement path. Movement endpoints 

were identified as the point at which the tangential movement velocity fell below 

5% of its peak value for movements to T2. In a limited number of instances, 

recorded movement endpoints were allowed to fall outside of the 5cm target 

window during data acquisition, in order for subjects to complete a full set of 

trials to each target location. However, these trials were excluded from analysis, 

and only amounted to a very small fraction of total trials (26/4800 trials; 0.5%). 

To assess movement accuracy, constant errors were calculated by 

subtracting the known T2 target position from the measured endpoint of the hand. 

However, since constant errors tend to be idiosyncratic (Berkinblit et al., 1995; 

Darling & Miller, 1993; Foley & Held, 1972; Soechting & Flanders, 1989a) we 
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did not explore their nature in detail here. Instead, analysis focused on the 

variable errors, which provide more direct information about planning and 

execution-related noise (McIntyre et al., 1998; Carrozzo et al., 1999; van Beers et 

al., 2004). Variable errors associated with a given axis and T2 position ( ) were 

calculated as follows: 

                  (1) 

where  represents the mean endpoint position for a given T2 position t,  

represents the corresponding endpoint position on trial i, and nt represents the 

number of trials.  

Principal components analysis (PCA) was also used to analyze the 

endpoint distributions associated with frontal and depth sequences. The 95% 

tolerance ellipsoids associated with each endpoint distribution were first 

computed as follows (McIntyre et al., 1998; Morrison, 1990): 

      (2) 

where the dimensionality q=3, the number of target positions k=1, and H is the 

covariance matrix. The resulting eigenvalues and eigenvectors (obtained from the 

matrix T) were used to quantify the sizes, shapes and orientations of the endpoint 

distributions (see below). For visualization purposes, 95% confidence ellipses and 

ellipsoids were calculated using Matlab code based on the Khachiyan algorithm 

(Khachiyan, 1996; Khachiyan & Todd, 1993), as implemented by Nima 

Moshtagh. 
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Endpoint distributions associated with frontal and depth sequences were 

compared by analyzing differences in the sizes, shapes and orientations of their 

corresponding tolerance ellipsoids. The size of each ellipsoid was quantified by its 

volume (V): 

          (3) 

where  represents the radius of the major axis of the 95% confidence ellipsoid 

and  and  represent the radii of the minor axes. The aspect ratio was used to 

characterize the shape of each ellipsoid, defined as the ratio of the radius of the 

major axis of the ellipsoid to the sum of the radii of the minor axes Lastly, the 

general orientation of each ellipsoid was defined by the absolute values of the 

components of the first eigenvector derived from the PCA (Carrozzo et al., 1999; 

McIntyre et al., 1998; 1997).  

Statistical analyses. In order to determine whether the distributions 

derived from PCA were isotropic or anisotropic a χ
2
 test of the form used by 

Morrison (1990) and McIntyre et al. (1997) was used, which determined whether 

any two eigenvalues were significantly different from each other. The non-

parametric Mann-Whitney U test was used to test whether individual components 

(lateral, vertical, or depth) of the 1
st
 eigenvectors differed between endpoint 

distributions. Lastly, ellipsoid volumes and ellipsoid aspect ratios associated with 

frontal and depth sequences were compared using 2-way ANOVAs with factors 

„sequence type‟ (frontal vs. depth) and T1 location. The latter factor was chosen 

to assess any differences that may have arisen due to differences in the initial and 
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final movement directions in a sequence. The significance level for all statistical 

tests used in this study was α=0.05. 

Results 

Variable errors with visual feedback. Figure 5.2 illustrates average 

movement paths and individual movement endpoints for the four sequences 

associated with each T1. Ellipses represent 2-D projections of the 95% confidence 

ellipsoids calculated for each endpoint distribution. Data from a single subject are 

shown and are viewed from the bottom up for T1up and T1down and from the 

subject‟s left for T1left and T1right. These plots show that, although endpoint 

distributions appeared to vary somewhat in size and shape for the different 

sequences, these distributions were generally anisotropic in the V condition. In 

addition, for many of the distributions, the largest component of variability 

appeared to be aligned with the depth axis. This is most evident for the 

distributions associated with inward and outward sequences (red), where the 

average movement paths were also largely parallel to the depth axis. However, 

this trend can also be observed for some of the distributions associated with 

clockwise and counterclockwise sequences (black), most notably those associated 

with T1up. This is despite the fact that the average movement paths for these 

frontal plane sequences were roughly orthogonal to the depth axis. These trends 

were consistent across subjects in the V condition; across the population, variable 

errors were largest along the depth axis for 99% of the inward/outward sequences 

(79/80) and 95% of the clockwise/counterclockwise sequences (77/80). 
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The tendency for movement variability to be particularly large along the 

depth axis can be best appreciated from the orientations of the 1
st
 eigenvectors 

derived from PCA. Figure 5.3 shows the size of each component of these 

eigenvectors for each type of movement sequence, grouped by T1. Data for a 

single subject are shown (the same subject shown in Fig. 5.2). The proportion of 

variance accounted for by the 1
st
 eigenvector (indicated by the numbers at the 

upper left of each plot) was typically large for this subject and was also 

reasonably consistent across the different types of movement sequences (mean: 

74% +/- 15%). Although the variance accounted for was often higher for 

inward/outward sequences for this subject, this was not a consistent finding across 

the population (see below). Figure 5.3 also illustrates that the orientations of these 

eigenvectors were very consistent. That is, these vectors generally had their 

largest components along the depth axis for both the clockwise and 

counterclockwise sequences as well for as the inward and outward sequences. The 

lone exception to this observation is the counterclockwise sequence associated 

with T1down which had its largest component along the lateral axis. The fact that 

the clockwise and counterclockwise sequences typically had their largest 

components of movement variability along the depth axis might seem surprising 

as by design these sequences did not require significant movement components in 

depth. However, this observation is consistent with the findings of Apker et al. 

(2010), which were obtained under similar conditions. Moreover, these 

investigators showed that this trend was not related to the orientation of the 

terminal components of the average, executed movements in the frontal plane, 
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which were largely orthogonal to the depth axis in that study and the present one 

(see Fig. 5.2).  

The main findings illustrated in Fig. 5.3 were also observed at the 

population level. Figure 5.4 shows the average size of the components of the 1
st
 

eigenvectors associated with each type of endpoint distribution. As with the single 

subject shown in Fig. 5.3, the average proportion of variance accounted for by the 

1
st
 eigenvector was generally large and very consistent across subjects and 

sequence types (mean: 77% +/- 4%), consistent with other studies of endpoint 

variability in 3D space (Apker et al., 2010; McIntyre et al., 1998; 1997). In 

contrast to the single subject data, there was little difference between the average 

amount of variance accounted for by the eigenvectors for the 

clockwise/counterclockwise sequences and the eigenvectors for the 

inward/outward sequences (78% and 76%, respectively) Figure 5.4 also clearly 

shows that at the population level the 1
st
  eigenvectors were strongly biased along 

the depth axis: looking across all sequence types, the mean component of the 

eigenvector along this axis was never less than 0.8. Interestingly, even though the 

clockwise and counterclockwise sequences (and likewise the inward and outward 

sequences) were directed along axes that differed somewhat in orientation (due to 

the fact that targets were on the surface of a sphere), the average components of 

their associated eigenvectors were typically very similar. This was confirmed 

statistically as well: no statistically significant differences were found between the 

magnitudes of the individual eigenvector components associated with clockwise 

and counterclockwise sequences (Mann Whitney U test conducted separately on 
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the lateral, vertical and depth axes, p<0.05). Similarly, no differences were found 

between the magnitudes of the individual eigenvector components associated with 

inward and outward sequences (Mann Whitney U test, p<0.05).  

Size, shape, and orientation of endpoint distributions with visual 

feedback. Given previous findings (Apker et al., 2010), we hypothesized that in 

the V condition, endpoint distributions associated with depth-directed movements 

(i.e. inward/outward sequences) would be more anisotropic and more strongly 

aligned with the depth axis than endpoint ellipsoids associated with frontal plane 

movements (clockwise/counterclockwise sequences). Instead, our analysis of the 

1
st
 eigenvectors associated with individual endpoint distributions suggested that 

the orientations of these distributions were very similar at the population level. To 

further examine the similarities and differences between the different types of 

sequences, we also compared their endpoint distributions in terms of their sizes 

(volumes) and shapes (aspect ratios), which take into account variability along 

axes other than those defined by the 1
st
 eigenvector. Since the 1

st
 eigenvectors for 

counterclockwise and clockwise sequences were statistically indistinguishable 

from each other at the population level for each T1 (see above), we combined the 

distributions corresponding to these sequences together for this analysis and refer 

to the combined error distributions as „frontal sequences‟. Similarly, distributions 

for the inward/outward sequences (which were also statistically indistinguishable 

from each other at the population level) were grouped together for this analysis 

and are referred to as „depth sequences‟.  



112 

 

Figure 5.2. Movement endpoints, confidence ellipses, and average trajectories in 

the V condition for a single subject. Data are viewed from the bottom up for T1up 

and T1down and from the subject‟s left for T1left and T1right. Ellipses represent 2-D 

projections of the 95% confidence ellipsoids calculated for each endpoint 

distribution. Solid black circles denote the starting position, and gray circles 

denote the location of the T2s. Most endpoint distributions appear elongated along 

the depth axis, particularly those associated with inward and outward sequences 

(red). 
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Figure 5.3. Lateral, vertical, and depth components of the 1
st
 eigenvectors derived 

from a principal components analysis of each endpoint distribution. Data for a 

single subject in the V condition are shown, grouped by T1 location. Percentages 

to the left of each plot show the proportion of variance accounted for by the 1
st
 

eigenvector. Components were largest along the depth axis for most sequences.  
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Figure 5.4. Mean 1
st
 eigenvectors for the population (N=10) in the V condition. 

Figure conventions as in Fig. 5.3. 
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Figure 5.5A shows a horizontal plane view of the population ellipsoids 

and 1
st
 eigenvectors for the frontal and depth sequences associated with each T1. 

The main axes of the ellipsoids, as well as the 1st eigenvectors appear to be 

strongly aligned with the depth axis, as would be expected given the results 

shown in Figs. 5.2-4. In addition, the ellipsoids appear fairly consistent in size 

(volume) and shape across the different T1s and types of sequences. To further 

illustrate the consistency in volumes, Fig. 5.5B plots the average ellipsoid 

volumes associated with frontal and depth directed sequences for the population, 

grouped by the different T1s. This figure shows that ellipsoid volumes were 

typically small in the V condition, averaging between 15 and 20 cm
3 

(approximately equivalent to the volume of a golf ball). Ellipsoid volumes were 

also generally consistent across the different T1s and between sequence types. At 

the population level we found no statistically significant effects of T1 location, 

sequence type (depth vs. frontal), or their interaction on ellipsoid volume (2 factor 

ANOVA; p=0.71, p=0.35, and p=0.75 respectively). Thus, for the most part 3D 

endpoint distributions associated with frontal and depth sequences did not appear 

to differ in size (volume) when vision of the hand was available throughout 

movement.  

Endpoint distributions associated with frontal and depth sequences were 

also similar when analyzed in terms of their shapes. Figure 5.5C shows the aspect 

ratios of the ellipsoids associated with frontal and depth-directed sequences, 

grouped by T1. These aspect ratios reveal that, on average, variability along the 

1
st
 eigenvector (which is proportional to the length of the longest radius of the 
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ellipsoid) was ~1.5 times greater than that along the other eigenvectors for both 

types of sequences. Similar to the analysis of ellipsoid volume, Fig. 5.5C also 

shows that the shapes of the ellipsoids were similar between frontal and depth-

directed sequences and across the different T1s. This was confirmed statistically 

as well: here again we found no statistically significant main or interaction effects 

of T1 location or sequence type on ellipsoid aspect ratio (2 factor ANOVA, 

p=0.51, p=0.91 and p=0.42, respectively). We conclude therefore that the shapes 

of the endpoint ellipsoids also did not vary in a consistent manner between frontal 

and depth sequences in the V condition.  

The similarities in ellipsoid volumes and shapes extended to the ellipsoid 

orientations. Figure 5.5D shows the average components of the 1
st
 eigenvectors of 

the endpoint distributions associated with frontal and depth sequences, grouped 

by T1. This figure strongly suggests that both types of sequences had their largest 

components along the depth axis, in agreement with the analyses shown in Figs. 3 

and 4. This was in fact the case; depth components of the 1st eigenvectors were 

significantly different from both the lateral or vertical components for both the 

frontal and depth sequences (Mann Whitney U tests, p<0.05). Some small but 

significant differences were observed between components for some axes (Mann 

Whitney U test, p<0.05). For example, lateral components were somewhat larger 

for the frontal sequences for T1up and T1down, while for T1right the opposite trend 

was observed (there was no difference in these components for T1left). These 

differences likely reflect the influence of execution noise, a point we will return to 

later. Overall however, Fig. 5.5 and its associated statistical analyses strongly 
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suggest that in the presence of visual feedback, endpoint distributions associated 

with frontal and depth-directed movement sequences did not appear to differ 

substantially in size, shape, and orientation. In addition, the results suggest that 

for both sequence types, variability was predominantly anisotropic and strongly 

aligned with the axis along which uncertainty associated with planning and 

updating visually-guided movements would be expected to dominate, i.e. along 

the depth axis. 
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Figure 5.5. Analysis of endpoint ellipsoids associated with frontal and depth 

sequences in the V condition. A: Horizontal plane views of the ellipsoids and 1
st
 

eigenvectors associated with each T1. All ellipsoids are plotted on the same scale. 

Coordinate axes at the lower left also serve as scale bars (2cm). B: Ellipsoid 

volumes (sizes), for frontal and depth sequences associated with each T1. C: 

Aspect ratios of the endpoint ellipsoids (shapes) for frontal and depth sequences 

associated with each T1. D:  Average absolute values of the axial components of 

the 1
st
 eigenvectors (orientations) associated with each T1. In general, volumes, 

aspect ratios, and ellipsoid orientations did not vary substantially between frontal 

and depth sequences in the V condition.  
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Variable errors without visual feedback. As in Fig. 5.2, Fig. 5.6 shows 

average movement paths, individual movement endpoints, and confidence ellipses 

for the four endpoint distributions associated with each T1. Data from a single 

subject in the NV condition are shown. As expected, endpoint distributions were 

often larger in this condition, which likely resulted from the increased uncertainty 

associated with estimating the position of the hand in the absence of visual 

feedback. In comparison to the V condition, variable errors in the NV condition 

appeared to be somewhat less anisotropic and the nature of this anisotropy also 

appeared to differ among the different types of sequences. That is, although the 

variability associated with depth-directed sequences (red) still appeared to have a 

very large component along the depth axis, this was less consistently observed for 

the frontal sequences (black). In Fig. 5.6 these observations are most evident for 

sequences associated with T1down and T1right. Here the distributions for the 

inward/outward sequences appear anisotropic and aligned with the depth axis, 

while the distributions for the clockwise and counterclockwise sequences appear 

either isotropic or do not appear to be aligned with the depth axis. 

Figure 5.7 shows the average 1
st
 eigenvectors associated with each type of 

endpoint distribution in the NV condition, grouped by T1. There are noticeable 

differences between these eigenvectors and those in the V condition. First, the 

proportion of variance accounted for by the 1
st
 eigenvector was typically smaller 

in this condition (mean: 66% +/- 5%) and was somewhat smaller for the frontal 

sequences than for the depth-directed sequences (61% vs. 72%), a finding which 

was not observed in the V condition. These observations suggest that the endpoint 
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distributions were in fact more isotropic in this condition, particularly those 

associated with frontal sequences, as was also suggested by Fig. 5.6. Regarding 

the components of the eigenvectors, for virtually all sequence types the average 

magnitudes of the lateral, vertical and depth components were more similar in this 

condition than in the V condition. This was particularly true for the clockwise and 

counterclockwise sequences. For example, although the eigenvectors for the 

clockwise and counterclockwise sequences associated with T1right and T1left 

showed a slight tendency toward having larger components in depth this was not 

the case for T1up and T1down. In fact for T1down, these components were relatively 

uniform in magnitude for both the counterclockwise and clockwise sequences. 

Thus there was not a consistent pattern of variability between sequence types in 

the NV condition, unlike what was observed in the V condition. 

Figure 5.7 shows that the inward/outward sequences did tend to have their 

largest components along the depth axis, as was observed in the V condition. 

However, the lateral and vertical components were relatively larger in this 

condition than in the V condition, suggesting the endpoint distributions were not 

as well aligned with the depth axis in the absence of hand vision. Overall, Figs. 6 

& 7 suggest that movement variability in the NV condition, rather than being 

dominated by visual planning noise, more strongly reflected the effects of 

execution noise and/or an interaction between execution noise and visual planning 

noise. This appeared to be particularly true for the movement sequences 

performed in the frontal plane where the endpoint distributions were more 

isotropic and apparently less clearly aligned with the depth axis. 
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Figure 5.6. Movement endpoints, confidence ellipses, and average trajectories in 

the NV condition for a single subject. Figure conventions as in Fig. 5.2. Endpoint 

distributions were generally larger than those in the V condition and were less 

consistently elongated in depth. 
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Figure 5.7. Mean 1
st
 eigenvectors for the population in the N V condition. Figure 

conventions as in Figs. 5.3 & 5.4.  
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Size, shape, and orientation of endpoint ellipsoids without visual 

feedback. As was the case in the V condition, the 1
st
 eigenvectors for 

counterclockwise and clockwise sequences at each T1 in the NV condition were 

statistically indistinguishable from each other at the population level (Mann 

Whitney U test applied along each axis, p<0.05). This was also true for the 

inward/outward sequences in the NV condition. As a result we again grouped the 

data together for the clockwise and counterclockwise sequences at each T1 

(„frontal sequences‟) and also grouped the data together for inward and outward 

sequences („depth sequences‟). Figure 5.8A shows a horizontal plane view of the 

resulting population ellipsoids and 1
st
 eigenvectors for the frontal and depth 

sequences associated with each T1. In contrast to the ellipsoids in the V condition, 

these appeared to differ somewhat in size and shape between sequence types (e.g. 

for T1up and T1down). The most striking difference however was with regard to the 

orientations of the ellipsoids. Although the ellipsoids and eigenvectors for the 

depth sequences were strongly aligned with the depth axis (as in the V condition), 

this was not the case for the frontal sequences. For T1up and T1down these appeared 

to be oriented largely laterally, reflecting the fact that the clockwise and 

counterclockwise sequences associated with these T1s had large lateral 

components of movement. For T1right and T1left, the eigenvectors and ellipsoids 

appear to be rotated out of the horizontal plane to some degree, consistent with 

the fact that the clockwise and counterclockwise targets associated with these T1s 

had large vertical components of movement.  
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As in the V condition, we quantified the sizes, shapes and orientations of 

the endpoint ellipsoids associated with the frontal and depth sequences in the NV 

condition and compared them. Figure 5.8B shows the average ellipsoid volumes. 

Ellipsoid volumes were generally much larger in the NV condition than in the V 

condition, averaging between 50 and 100 cm
3
. Figure 5.8A suggested that the 

ellipsoid volumes for the frontal sequences were larger than those for the depth 

sequences, particularly for T1up and T1down. Although some slight differences in 

the average ellipsoid volumes can be observed both across T1s and between 

sequence types in Fig. 5.8B, ellipsoid volumes tended to be quite variable across 

subjects. As a result, these differences were not statistically significant at the 

population level (2 factor ANOVA, p=0.68, p=0.31, and p=0.35 for main effects 

of T1, main effects of sequence type and interaction effects, respectively). Thus, 

similar to the V condition, endpoint distributions associated with frontal and depth 

sequences did not differ significantly in volume in the NV condition.  

Figure 5.8C shows the average aspect ratios of the endpoint ellipsoids in 

the NV condition, grouped again by T1 and sequence type. Some similarities and 

some differences can be observed between the results of this analysis and the 

analogous one shown in Fig. 5.5. In terms of similarities, aspect ratios were 

generally consistent in magnitude across the different T1s, as they were in the V 

condition. However, aspect ratios were somewhat smaller under NV conditions, 

averaging between 1 and 1.25. (In contrast, the average aspect ratio in the V 

condition was ~1.5). This again suggests that endpoint variability was more 

isotropic without hand vision than with hand vision, as was also suggested by 
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Figs. 6 and 7. Another difference between the V and NV conditions was the 

tendency for aspect ratios to be somewhat larger for depth sequences than for 

frontal sequences in the NV condition. In Fig. 5.8C this can be observed for 

nearly all the T1s (the exception being T1R) and is consistent with Fig. 5.7, which 

indicated that the proportion of variance accounted for by the 1
st
 eigenvector was 

typically less for the frontal movement sequences than for the depth sequences. 

When examined statistically, although no significant main effect of T1 location on 

aspect ratio was found, a significant main effect of sequence type (frontal vs. 

depth ) was identified (2 factor ANOVA; p=0.66 and p=0.04, respectively; p=0.22 

for interaction effects). Post-hoc tests (Tukey‟s HSD) indicated that this 

difference arose largely due to differences associated with T1down, though again 

Fig. 5.8C suggests that aspect ratios for most of the other T1s were trending in 

that direction. Overall, these results suggest that in the NV condition, depth 

sequences were associated with slightly more elongated endpoint distributions 

than those associated with frontal sequences and that both types of sequences 

were less elongated than those in the V condition.  

Substantial differences were observed between the orientations of the 

endpoint distributions in the NV condition. Figure 5.8D shows the average 

components of the 1st eigenvectors derived from PCA for the frontal and depth 

sequences, grouped by T1. This figure suggests that depth sequences had their 

largest components of variability directed along the depth axis, as in the V 

condition. Statistical analyses confirmed that the depth components of the 1st 

eigenvectors differed from both the lateral or vertical components for all of the 
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T1s (Mann Whitney U test, p<0.05). However, this was not the case for the 

frontal sequences: only for T1right was the depth component significantly different 

from both the lateral and vertical components.  

Not surprisingly then there were differences between the two sequence 

types along certain axes and, moreover, these differences were larger than those in 

the V condition and more consistent in nature. For example, lateral components 

were larger for the frontal sequences for T1up and T1down and vertical components 

for the frontal sequences were larger for T1right and T1left (Mann Whitney U tests, 

p<0.05). These differences were consistent with differences in the required 

movement axes used to approach the final target positions. That is, for frontal 

sequences, T1up and T1down were associated with large lateral terminal 

components of movement while those for T1right and T1left were associated with 

large vertical components. In contrast, depth sequences were not generally 

associated with either large lateral or vertical terminal movement components. 

Therefore, we conclude that in the absence of visual feedback, endpoint 

distributions differed in orientation (and to a lesser degree shape) between frontal 

sequences and depth sequences. These differences in orientation appear to reflect 

differences in the directions of the movement vectors used to approach the final 

target positions, suggesting an enhanced role for execution noise in determining 

patterns of endpoint variability when vision of the hand is unavailable.  

Comparisons between feedback conditions yielded results that were 

similar in many ways to those described in Apker et al. (2010) but with several 

important additional findings. That is, a t-test performed on the combined data for 
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all T1s found that endpoint distributions (ellipsoid volumes) in the NV condition 

were larger than their V condition counterparts for both sequence types (p<0.05). 

In addition, aspect ratios of ellipsoids in the V condition were significantly larger 

than those in the NV condition for both sequence types (p<0.05). These results 

were similar to those described in Apker et al. (2010). Regarding differences in 

orientation, the orientation of the ellipsoids of depth sequences were generally 

similar between feedback conditions. That is, of the 12 comparisons made 

between axial components of the eigenvectors  across all T1s, only 1 difference 

(8%) was found between feedback conditions. In contrast, for frontal sequence 

ellipsoids,  9/12 components (75 %) differed significantly between the V and NV 

conditions across all T1 location , including significantly differing depth 

components for each T1 location (Mann-Whitney U test, p<0.05). As a result, 

ellipsoids in the NV condition were more strongly biased along the lateral and/or 

vertical axes, consistent with a greater effect of the movement vector on these 

endpoint distributions. 

Start-position corrected endpoint analysis. Variability in finger position 

at the starting position was analyzed to ensure that differences in endpoint 

variability did not arise from differences in variability at the starting position 

between frontal and depth sequences. A Levene‟s test confirmed that variability in 

the starting position was not significantly different along any axis between the 

frontal or depth sequences associated with a given T1; this was the case for both 

feedback conditions (p>0.05). As an added measure, we also reran our statistical 

analyses using start-position-corrected endpoint positions. The results of only 
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2/32 (6%) of our statistical tests differed following this correction: Differences in 

the 1
st
 eigenvector components along the horizontal and depth axes for T1right in 

the V condition, which were previously shown to be statistically significant, were 

not significant following correction. Importantly, these exceptions do not alter the 

conclusions of this study; in fact they strengthen the conclusion that frontal and 

depth sequences were similar in the vision condition. 
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Figure 5.8. Analysis of endpoint ellipsoids associated with frontal and depth 

sequences in the NV condition. Figure conventions as in Fig. 5.5. Orientations (1
st
 

eigenvectors) varied substantially between frontal and depth sequences in this 

condition. 
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Discussion 

In this experiment, we quantified patterns of endpoint variability 

associated with movement sequences performed in the frontal plane and 

compared these patterns to those associated with sequences containing a large 

movement component in depth. For both types of sequences, movements were 

performed with and without vision of the hand. We hypothesized that for both 

visual conditions endpoint distributions would be more elongated and more 

aligned with the depth axis for sequences containing large movement components 

in depth. We found that when visual feedback of the hand was available, patterns 

of variability at the endpoint of both sequence types were highly anisotropic, with 

the primary axis of variability being strongly aligned with the depth axis, 

suggesting that the executed movement direction (and therefore execution noise) 

played only a minor role in shaping endpoint distributions in this condition. 

However, when visual feedback of the hand was not available, patterns of 

endpoint variability differed significantly for the two types of sequences. More 

specifically, while endpoint distributions associated with depth sequences were 

very similar to those observed with visual feedback of the hand, endpoint 

distributions for frontal sequences were more isotropic and not generally well 

aligned with the depth axis. These results emphasize the primacy of visual 

planning noise in determining patterns of endpoint variability in 3D space and 

also suggest that the removal of visual feedback (and resulting increased 

uncertainty in estimating hand position) effectively unmasks the effects of 

execution-related noise (and planning noise as well) leading to patterns of 
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variability which can differ substantially for movements performed along 

different axes in 3D space.  

Relation to previous findings. Although previous studies have examined 

the relations between movement variability and sensing noise (Osborne et al., 

2005; Shi & Buneo, 2009; van den Dobbelsteen et al., 2001; Vindras et al., 1998), 

planning noise (Churchland et al., 2006a; Gordon et al., 1994; McIntyre et al., 

1998; 1997; Vindras & Viviani, 1998), and execution noise (Buneo et al., 1995; 

van Beers et al., 2004), the relative importance of these noise sources in 

determining patterns of arm movement variability in 3D space remains a matter of 

debate. For planar (2D) arm movements, it has been argued that movement 

variability is dominated by noise associated with execution (van Beers et al., 

2004). In a previous study of 3D arm movement sequences performed in the 

frontal plane (Apker et al., 2010) we argued that patterns of arm movement 

variability were largely determined by visually-derived noise associated with 

planning movements in depth. That is, endpoint distributions were aligned with 

the depth axis and were only minimally influenced by the executed movement 

directions, suggesting a lesser role for execution noise. However, the fact that 

movement directions were predominantly orthogonal to the dominant axis of 

visual planning noise in this study made it difficult to distinguish the effects of 

execution noise from uncertainty in hand position, as each would be expected to 

manifest in roughly similar ways for these types of sequences.  

The findings of Apker et al. (2010) were reminiscent of those of McIntyre 

and colleagues (1997, 1998) who also demonstrated that for point to point reaches 
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initiated from starting positions near the body to targets further away in depth, 

endpoint distributions were highly anisotropic and strongly aligned with the depth 

axis. In these studies, the primary axis of variability even converged toward the 

sight-line for movements performed in different workspaces with respect to the 

body, providing strong evidence that these patterns of variability arose from noise 

associated with visual estimation of the hand and/or target. The present findings 

for the V condition, and for the depth sequences in the NV condition, are 

consistent with the findings of both Apker et al. (2010) and McIntyre and 

colleagues (1997, 1998). However, the observation that endpoint distributions for 

frontal sequences were strongly influenced by the primary axes of movement in 

the NV condition suggests that execution noise can play a more significant role in 

determining patterns of endpoint variability when visual feedback of the hand is 

unavailable (Gordon et al., 1994; van Beers et al., 2004).  

To ascertain the specific role of hand vision in determining patterns of 

variability in 3D space, Carrozzo et al. (1999) analyzed movement endpoints as 

human subjects made reaching movements with and without vision of the hand 

but with full vision of the target (achieved via a virtual reality paradigm). These 

investigators observed that patterns of endpoint variability in the presence of hand 

vision were consistent with those reported here for the V condition, i.e. they were 

highly anisotropic and strongly aligned along the depth axis. In the absence of 

hand vision patterns of variability were more isotropic and less aligned with the 

depth axis, consistent with the NV endpoint distributions for the frontal sequences 

in the present study but not with those for the depth sequences. These 
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observations can be explained by certain methodological differences between the 

two studies. In the study of Carrozzo et al. (1999), movements were similar to the 

frontal sequences in the present study in that final target positions were 

approached largely using varying degrees of vertical and lateral movements. It is 

not surprising therefore that the endpoint distributions in the two studies had some 

similar properties. In Carrozzo et al. (1999) movements also had components in 

depth, but these were very different from the depth-directed sequences used here. 

In the present study subjects were required to pass through (or near) an 

intermediate target that was at the same lateral and vertical position on the way to 

the final target. As a result, final target positions were approached using 

movements with much larger depth components than those in Carozzo et al. 

(1999), which likely explains why the depth-directed sequences were more 

aligned with the depth axis in the present study.  

Interaction between planning and execution noise. Since movement 

directions were designed to be orthogonal to the depth axis in Apker et al. (2010) 

it was unclear if the interaction of execution and planning noise would manifest in 

a similar way for movement sequences that were directed along the depth axis. 

Given our previous results, as well as those of McIntyre and colleagues (1997, 

1998) we hypothesized here that endpoint distributions would be more anisotropic 

and more aligned with the depth axis under these conditions, reflecting the fact 

that the dominant axes of execution noise and visual planning noise were aligned. 

In fact when visual feedback was present, endpoint distributions associated with 

both frontal plane and depth-directed sequences were anisotropic and aligned 



134 

predominantly with the depth axis and did not differ in terms of their overall sizes 

(volume), shapes or orientations. Thus, even when execution noise was directed 

along the depth axis, it did not appear to significantly alter overall patterns of 

movement variability. This supports the idea that uncertainty associated with 

planning and updating visually-guided movements plays a dominant role in 

determining patterns of endpoint variability in 3D space.  

While the effect of execution noise was only minimally apparent in the V 

condition its effect could be easily observed in the NV condition, particularly 

during the performance of frontal plane movement sequences. Endpoint 

distributions appeared relatively isotropic for frontal plane movement sequences 

in the NV condition and were also not well aligned with the depth axis, appearing 

to be more strongly influenced by the primary axes of movement. Note that this 

also appeared to be the case in Apker et al. (2010), though due to the fact that 

only frontal plane movement sequences were used in that study we were unable to 

fully explain these patterns. In contrast, endpoint distributions for depth sequences 

in the NV condition more closely resembled those in the V condition, being 

largely anisotropic and oriented in depth. Based on these differences, we believe 

that patterns of endpoint variability in the absence of online visual feedback 

results from increased uncertainty in estimating the position of the hand, which 

effectively unmasks the effects of execution-related noise and planning noise.  

The removal of visual feedback would be expected to result in greater 

uncertainty in estimating hand position as estimates that depend only on a single 

sense (proprioception in this case) are generally less precise than those derived 
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through multisensory integration (van Beers et al., 2002a). This increased 

uncertainty would be expected to have two effects. First, movement planning 

would be adversely affected, resulting in errors in planned movement directions 

and extents (Buneo et al., 1995; Franklin et al., 2007; Shi & Buneo, 2009). These 

errors would be compounded by noise associated with visual estimation of the 

targets as well as central planning noise, with the resulting effects on behavior 

being difficult to predict. However, it is likely that variability would be increased 

along all axes leading to generally more isotropic distributions. Second, in the 

absence of online visual feedback increased hand position uncertainty near the 

end of the movements would be expected to effectively increase the influence of 

execution noise (by failing to mitigate it, as when vision is available), thereby 

elongating the endpoint distributions along the movement direction (van Beers et 

al., 2004). For frontal sequences, this would result in endpoint distributions that 

reflected a combination of enhanced execution noise and visual planning noise, 

which was observed in the present study (see Fig. 5.8D). For depth sequences, 

this interaction would be less apparent, as the executed movement directions were 

not orthogonal to but aligned with the primary axis of visual planning noise. Even 

so, the observation that ellipsoids were larger and less elongated under these 

conditions is consistent with effectively increased levels of both planning and 

execution noise during performance of these sequences.  

  Given that endpoint distributions of 3D movements are highly dependent 

on planning noise, it would be interesting to know if this endpoint variability 

arises due to planning noise at the beginning of movement or is more related to 
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uncertainty towards the end. The influence of execution noise is most dependent 

on the terminal phases of movement (van Beers et al., 2004); it may also be the 

case therefore that the influence of planning noise largely reflects feedback 

conditions nearer the end of movement. This could be tested by removing visual 

feedback at various times throughout the movement. Conversely, it would also be 

of interest to observe the effect of returning visual feedback at various points in 

the terminal movement. Recently, Faisal & Wolpert (2009) demonstrated that 

temporal characteristics of sensory and execution noises integrate in a „near 

optimal‟ manner. Varying the timing and/or duration of visual feedback would 

help integrate this finding with the present results to develop a better sense of the 

spatiotemporal nature of the influence of planning and execution noises. 
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CHAPTER 6 

MULTIMODAL FEEDBACK CONTROL OF REACHING UNDER 

ANISOTROPIC FEEDBACK NOISE 

Introduction  

Variability in goal oriented reaching performance is an inevitable product 

of human sensorimotor control. This is due to noise in the neural signals 

underlying both the planning and execution phases (Faisal et al., 2008, 

Churchland et al., 2006). Planning variability is largely attributable to uncertainty 

in sensory feedback estimates of limb position, while execution noise arises from 

variability in the motor commands and muscle contraction (van Beers et al., 

2004). A growing body of evidence suggests an important function of the brain is 

to minimize perceptual and behavioral variability (Wolpert et al., 1995, Kording 

& Wolpert, 2004). To accomplish this, brain would need to employ a mechanism 

to minimize the effects of noise in planning and execution phases of movement.  

Given the perceived origins of variability, optimizing performance 

requires minimizing the noise in sensorimotor processes. Statistically speaking, 

minimizing signal noise can be accomplished by integrating information weighted 

by its noise level relative to other related information. Indeed, sensory integration 

has been found to be related to the relative signal reliability of the constituent 

feedback modalities (Earnst & Banks 1993, Kording & Wolpert 2002, Gu et al., 

2008). In fact, this strategy of integration has been shown to operate on a 

direction-dependent basis, weighting feedback differently for each direction 

depending on the specific spatial characteristics of sensory uncertainty (van Beers 
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et al., 1999, van Beers et al., 2002b). By minimizing uncertainty this scheme of 

integration also subsequently minimizes planning noise, thereby reducing 

behavioral variability (Wolpert et al., 1995, Shi and Buneo, 2009). Thus, the 

ultimate influence of planning noise on movement variability depends on the 

anisotropic properties of the feedback, as well as on the result of their direction-

dependent integration. 

During movement, afferent sensory signals can significantly lag behind 

the real-time position of the hand, limiting their efficacy for online control 

(Rumelhart & Jordan, 1992). To overcome this, the brain uses a copy of the 

efferent motor commands to generate their predicted outcome to enhance and 

update the estimate provided by noisy, time-lagging sensory signals into a real-

time estimate of limb position for online control (Wolpert et al., 1995; Todorov & 

Jordan, 2002; Mulliken et al., 2008; Moran & Schwartz, 1999). However, like 

sensory signals, the motor commands provide a somewhat unreliable source of 

limb information as the execution of them is corrupted by noise. This results in a 

discrepancy between predicted and actual outcome of the motor command. Thus, 

there is an inherent interaction between planning and execution noise during the 

control. While extensive work has resulted in a keen awareness of how each noise 

process independently affects movement, many questions remain regarding the 

contribution and interaction of planning and execution noise in movement 

variability (Apker et al., 2010, Apker & Buneo, 2012). 

Recent evidence suggests the brain learns the statistical properties of the 

signal noise associated with sensorimotor control (Kording & Wolpert, 2004, van 
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Beers et al., 2009). As a result, it has been suggested that the behavioral 

variability we observe can be modeled as the optimal integration of the noisy 

processes underlying sensorimotor control (Todorov & Jordan, 2002, Wolpert et 

al., 1995, Guigon et al., 2008). This framework provides a means to model the 

interaction of planning and execution noise and generate predictions about how 

this may be observed in behavior. With respect to the control of reaching, 

Todorov & Jordan (2002) established optimal feedback control as an effective 

model of normal non-visually guided reaching. Also simulating non-visual 

reaching, Guigon et al. (2008) probed whether control was optimal with respect to 

the entire movement or just terminal control using isotropically distributed 

feedback noise. Saunders & Knill (2004) also employed a feedback controller that 

minimizes endpoint variability to model sensory-motor integration during a visual 

perturbation task. In that work, the authors used established properties of 

variability in visual estimation in the feedback control model (Saunders & Knill, 

2004). However, this model did not include a somatic feedback signal nor did it 

account for the spatial anisotropy associated with visual feedback (van Beers et al. 

1998, 2002; Viguer et al., 2006). To gain a more complete picture of how noise in 

the neural processing underlying sensorimotor affects behavioral variability an 

important step is to incorporate both visual and proprioceptive feedback into an 

optimal feedback control model of reaching. 

We developed a stochastic feedback control model augmented with a 

Kalman filter to evaluate the influence of anisotropic feedback noise on the 

interaction of planning and execution noise. As illustrated in Figure 6.1A, the 
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model is essentially the “optimal observer” model as described by Wolpert (2007) 

designed to integrate multiple feedback inputs with an internal estimate of limb 

position derived from the motor commands. Thus, this model more faithfully 

represented the processes and integration underlying sensorimotor control that 

result in behavioral variability. The model was used to generate predictions of 

endpoint variability under a variety of unimodal sensory feedback control 

conditions. The results of these simulations clearly demonstrate a significant 

influence of the spatial anisotropy of feedback noise on patterns of endpoint 

variability in optimal control. In addition, simulations of multimodal feedback 

control indicated that the combined influence of both sensory modalities yields 

unique patterns of predicted variability that could not have been predicted on the 

basis of any previous evidence. These results suggest that spatial dependencies of 

sensory feedback noise affect the behavior and predictions of both uni- and 

multimodal feedback control and thus should be considered when developing 

models of human movement.  



141 

 

Figure 6.1. Block diagram of a multimodal feedback control model for reaching. 

 represents the true state of the limb endpoint.  represents the internal 

estimate of  developed by the brain from the combination of visual and 

proprioceptive feedback along with previous knowledge of the position of the 

hand and a forward estimate derived from stored motor commands. 
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Methods 

Model development. To emulate the sensorimotor control of reaching, we 

have developed a multimodal feedback control model expanded from the 

feedback controller proposed by Arbib & Hoff (1993), with similar adaptation 

employed by Saunders & Knill (2004) to yield an optimal feedback control 

model. In this model, the control of the limb is corrupted by multiple independent 

sources of Gaussians noise; noise associated with the sensory estimates of the 

position of the hand which affect the specification of the motor commands 

(„sensory/planning noise‟) and noise in the execution of those commands 

(„execution noise‟). We assume the state of the reaching system is defined as the 

lateral (x) and depth (y) components of position, velocity, and acceleration of the 

limb endpoint, as well as the position of the target along these two axes at any 

given time. In the model, this is represented by a vector , which represents the 

actual state of the system at time t: 

,    (1) 

where  and  represent position, velocity and acceleration along the 

lateral and depth axis respectively, and   represent the position of the target 

along the lateral and depth axis respectively. The process model by which the 

state is expected to evolve over time is given by: 

,    (2) 

where  is a signal independent process noise with covariance matrix ,  is the 

motor command at time t,   is the signal dependent process/execution 
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noise with random noise , and matrix  which scales the magnitude of the 

noise with the size of the motor command, and A is the evolution matrix which 

proprigates the previous state forward in time: 

    (3) 

where  is the time-step between filter iterations;  = 1 millisecond for all 

simulations 

As the process evolves, the controller, in this case the brain, attempts to 

form an estimate of the state of the system simultaneously from  its previous 

internal estimate and motor commands which can be augmented with feedback 

carrying information of the actual state. In the algorithm, the noisy, internal 

estimate is modeled as: 

    (4) 

The estimate of the system, e.g. the perceptual state of the limb developed in the 

brain, resembles the real state minus process noise: 

     (5) 

To simulate the motor command, we employ a model of the minimum jerk 

principle as proposed by Arbib and Hoff (1993), where  defined is: 

     (6) 

where L is derived from the minimum jerk hypothesis, given by: 
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                   (7) 

 

 

where D is the time remaining before the end of the movement. The resulting 

motor command,  , is a single column vector with values which define the 

change in acceleration needed to reach the target smoothly on the basis on the 

current state of the limb and target. 

As mentioned previously, neural processes are inherently noisy, limiting 

the accuracy and reliability of internal estimates. We assume that the level of 

noise associated with the evolving process is relatively stable and further there is 

evidence that the brain has also information related to the reliability of its 

estimate. We can approximate the computation done by the brain by developing 

the a priori error covariance of the estimated state at the next time step based on 

the size of the motor command: 

    (8) 

In addition to the predictive estimates of the limb position based on motor 

commands, the brain is also provided with sensory feedback of the actual state. If 

we assume a single feedback signal, , is used to augment the state estimate, then 

the optimal integration of this input is derived from: 

    (9) 

 0 0 0 0 0 0 0 0  

 0 0 0 0 0 0 0 0  

 -60/D3 -36/D2 -9/D 0 0 0 60/D3 0  

 0 0 0 0 0 0 0 0  

 0 0 0 0 0 0 0 0  

 0 0 0 -60/D3 -36/D2 -9/D 0 60/D3  

 0 0 0 0 0 0 0 0  

 0 0 0 0 0 0 0 0  
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where  is the Kalman gain for the state estimate and is derived from the state 

covariance matrix and combined feedback covariance, , which is derived from 

the properties of the feedback signal or signals (see below) : 

    (10) 

where H is term which maps feedback estimates to the state estimates. This 

estimate is then advanced in time with the stored motor commands (see Knill & 

Saunders 2004) to provide an optimal estimate of limb position for the next time 

step, . 

Given the additional information from the sensory feedback, the a 

posteriori error covariance estimate is generated from the prior error estimate: 

      (11) 

Multi-modal feedback signals and integration. In most situations, 

multiple sensory sources of information of limb and target position are available 

to the brain during estimation and control. Specifically, the brain appears to rely 

most heavily on visual and proprioceptive feedback. However, this feedback is 

inherently noisy. Furthermore, the noise properties of sensory feedback are 

anisotropic and modality specific. For the purposes of this model, we will assume 

vision and proprioception only provide an estimate of the position and velocity of 

the hand and that the feedback can be modeled as: 

               

    (12) 
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where H is a term which maps the state estimate at time  into the visual, , and 

proprioceptive, , sensory feedback signals.  and  are the 

noise/uncertainty in the visual and proprioceptive systems with covariance matrix 

 and , respectively. 

Statistically optimal sensory feedback integration is believed to follow 

from maximum likelihood integration of sensory estimates (for a review, see 

Kording & Wolpert, 2006). That is, the weighting of the proprioceptive feedback 

signal is derived from its variability, , relative to that of the visual signal, : 

.    (13) 

This equation is reminiscent of the development of the Kalman Gain. Ergo, we 

also calculate a Kalman gain to determine the optimal integration of visual and 

proprioceptive feedback using the covariance of their respective feedback noise: 

 = .   (14) 

With this, the optimal integration of the feedback estimate follows a similar form 

as Eq. 9: 

   (15) 

where  is the integrated feedback signal used in Eq. 9. This method defines the 

combined variability of the estimate according to: 

.     (16) 

Thus, the combined feedback signal covariance used in the filter model is 

equivalent to: 
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    (17) 

Sensory noise parameters. Noise in both visual and proprioceptive 

estimation has been shown to have anisotropic localization properties (van Beers 

et al., 1998, McIntyre et al., 1997, Viguier et al., 2001). This anisotropy has been 

quantified in the horizontal plane, as illustrated in Figure 6.1B. Thus, position 

estimation noise for both feedback inputs were configured to reproduce this 

behavior along the lateral and depth axes (van Beers et al., 1998, van Beers et al., 

2002b). 

                                          

      (18) 

where  and  represent visual position noise and  and  represent 

proprioceptive position noise. 

Visual and proprioceptive motion noise were derived from previously 

reported properties. In the case of vision, the relative relationship between 

position noise and motion noise in the direction of movement was preserved 

(Saunders & Knill, 2004), although the specific values were scaled to be 

consistent with the direction-dependent characteristic of position variability 

(described in Eq. 18). Similarly, the respective relationship of position-to-motion 

variability in proprioceptive guidance as described in Guigon et al.‟s (2008) 

optimal feedback controller was preserved. Thus motion noise in each feedback 

modality was also direction dependent, yielding standard deviations of motion 

noise: 
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,   (19) 

 ,   (20) 

where  and  represent visual motion noise and  and  represent 

proprioceptive motion noise. These parameters define the position and motion 

noise for the feedback noise terms  and . In all simulations, the target was 

assumed to be visible throughout the reach; thus, feedback of the target position 

was assumed to have noise properties similar to that of visual position noise. 

Execution noise parameters. Signal independent and signal dependent 

characteristics of execution noise were configured to be similar with those 

previously derived for the minimum jerk-model. Specifically, parameters which 

were empirically derived from human reaching and implemented in the feedback 

control model of Saunders & Knill (2004) were also used in the present model to 

derive the total variability from execution noise, : 

    (21) 

The signal independent term was used in the  term and the coefficient of the 

signal dependent term was used to populate the appropriate diagonals of the C 

matrix. The signal independent terms was also used to fill the appropriate 

positions of the  matrix. These coefficients were then scaled to better reproduce 

previously observed patterns of execution variability for planar reaching of 

similar movement durations (van Beers et al., 2004). 
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Figure 6.2. Simulation parameters. A. Cartoon illustrating the spatial 

characteristics of sensory uncertainty in localization. These characteristics were 

used to simulate visual and proprioceptive unimodal feedback control, as well as 

multimodal feedback control assuming the optimal integration of the two sensory 

estimates. B. Movement directions to be simulated and associated direction 

dependent movement times used during simulation. Movement times are 

consistent with those reported for movements of similar magnitude in van Beers 

et al. (2004). 
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Simulations. Reaches were simulated from a central starting to position to 

each of twelve (12) targets positioned eight (8) cm from the starting position. 

There is evidence which suggests that average movement time is strongly 

influenced by inertial forces acting on the limb, producing direction dependent 

movement times in the horizontal plane (Gordon et al., 1994). The predictions of 

the motor output from the minimum jerk model used here are sensitive to changes 

in movement time, therefore, movement times inputted into the model were 

direction dependent, to be consistent with known characteristics of reaching in the 

horizontal plane from a natural posture (van Beers et al., 2004). The movement 

times used for each direction are illustrated in Figure 6.1C. This pattern of 

movement time was applied to all simulations. A feedback delay of 100msec was 

used for all simulations.  

As means to evaluate the contributions and interaction of execution and 

sensory/planning noise in an optimal feedback control framework, the above 

model was configured to simulate movement under a variety of sensorimotor 

contexts. The first such scenario entailed the elimination of feedback noise 

entirely, such that the only source of variability was attributable to execution 

noise (henceforth referred to as “Execution-Only” model). This was achieved by 

setting both sensory noise terms,  and , to zero as well as configuring the 

Kalman Gain, , to equal 1 as would be expected under perfect feedback 

reliability. A second simulation scenario was designed to evaluate the effects of 

feedback noise with spatial characteristics uniformly distributed in space (referred 

to as “Isotropic Feedback Noise” model). This was accomplished by simulating 
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feedback control with a single modality (e.g. vision) with isotropic equal noise 

levels along both the lateral and depth axes, with specific values such that the 

total variance would commensurate with previously quantified visual uncertainty 

(see Figure 6.1B): 

.   (22) 

Both the feedback signal and feedback covariance matrix were set to equal those 

of the visual feedback modality thereby obviation the proprioceptive input. 

Reaching was also simulated assuming a single feedback source with 

natural noise characteristics tailored to approximate the amount of uncertainty of 

biological sensory feedback. Movements were simulated under three conditions of 

sensorimotor control with natural feedback noise characteristics: visual guidance 

alone („Visual Feedback Noise‟), proprioceptive guidance alone („Proprioceptive 

Feedback Noise‟), and control guided by the optimal integration of the sensory 

modalities („Multimodal Feedback Noise‟). Comparison of these models with 

those described above was used to evaluate the relative contributions and 

interaction of feedback and motor noise in the context of optimal feedback control 

of reaching movements. 

Data analysis. For each simulation condition five hundred (500) 

independent movements were simulated to each target position. As described in 

Apker et al. (2010) and Apker & Buneo (2012), movement endpoints were 

identified as the point at which the tangential movement velocity fell below 5% of 

its peak value for each simulated movement. Analysis focused on the variable 

errors, which provide more direct information about planning and execution-
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related noise (McIntyre et al., 1998; Carrozzo et al., 1999; van Beers et al., 2004). 

Principal components analysis (PCA) was also used to analyze the endpoint 

distributions associated with frontal and depth sequences. The 95% tolerance 

ellipsoids associated with each endpoint distribution were first computed as 

follows (McIntyre et al., 1998; Morrison, 1990): 

 ,  (24) 

where the dimensionality q=3, the number of target positions k=1, and H is the 

covariance matrix. The resulting eigenvalues and eigenvectors (obtained from the 

matrix T) were used to quantify the sizes, shapes and orientations of the endpoint 

distributions (see below). For visualization purposes, 95% confidence ellipses and 

ellipsoids were calculated using Matlab code based on the Khachiyan algorithm 

(Khachiyan, 1996; Khachiyan & Todd, 1993), as implemented by Nima 

Moshtagh. 

Endpoint distributions associated with frontal and depth sequences were 

compared by analyzing differences in the sizes, shapes and orientations of their 

corresponding tolerance ellipsoids. The size of each ellipsoid was quantified by its 

total variance: 

,     (25) 

where  represents the radius of the major axis of the 95% confidence ellipsoid 

and  represents the radii of the minor axes. The aspect ratio was used to 

characterize the shape of each ellipsoid, defined as the ratio of the radius of the 

major axis of the ellipsoid to the sum of the radii of the minor axes Lastly, the 
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general orientation of each ellipsoid was defined by the absolute values of the 

components of the first eigenvector derived from the PCA (Carrozzo et al., 1999; 

McIntyre et al., 1998; 1997).  

Statistical analysis. To assess whether spatial properties of feedback 

noise significantly affected the patterns of variability predicted by the optimal 

feedback control model, correlation analysis was applied between the simulations 

to determine whether the calculated total variance, aspect ratio, or orientation 

deviation of 95% confidence ellipses followed the same patterns across all the 

reaching directions. The rationale for this is as follows: depending upon the 

spatial characteristics of the modeled sensory variability, the expected influence 

of the feedback signal would also be direction dependent, resulting in weak 

correlation between the predicted patterns of variability of different feedback 

models. On the other hand, if two simulations are found to be significantly 

correlated, the differences in noise properties can be assumed not to have 

significantly affected the model‟s predictions of reaching performance. To 

compare between simulation results, non-parametric Mann-Whitney U tests were 

applied to the above characteristics of endpoint variability for each target position. 

For all tests, a significance threshold of p = 0.05 was used. 

Results 

Execution-only model. Figure 6.3 illustrates simulated endpoint positions 

and calculated 95% confidence ellipses generated from the predicted endpoints of 

movements simulated without variability in estimation of the hand or target, i.e. 

zero planning noise. Ellipses appear elongated almost entirely along the direction 
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of movement, consistent with the anticipated effects of execution dependent 

variability (van Beers et al., 2004). As illustrated in Figure 6.4, average peak 

movement velocity varied between 31.3 and 38.0 cm/sec across the movement 

directions. As expected, movement time and peak velocity were strongly 

correlated (R = -0.995, p<0.05) for these simulations, with shorter movement 

times resulting in increases in peak velocities, consistent with the need to generate 

stronger motor commands for those directions. The length and size of the ellipses 

in figure 6.3 appear slightly larger for movements in the first and third quadrants, 

consistent with those directions with the greatest peak velocities. 

Figure 6.4B-D illustrates the total variance, aspect ratio and orientation 

deviation of the 95% confidence ellipses, respectively, calculated for simulated 

endpoints for each movement direction. Total variance arising solely from 

execution noise was found vary between 71.7 and 101.3 mm
2
. Aspect ratio varied 

between 3.5 and 2.5, and a significant correlation was found between aspect ratio 

and movement velocity (R=0.912, p<0.05). The predicted values of total variance 

and aspect ratio, including the relationship between aspect ratio and movement 

speed, are all consistent with previously observed contributions of signal 

dependent motor noise to reaching variability for movements of a similar size and 

speed (van Beers et al., 2004). Lastly, the deviation between movement vector 

and ellipse orientation is nearly zero for all directions. This suggests that the 

orientation of simulated endpoint ellipses was largely along the direction of 

movement, again in agreement with the anticipated effects of execution related 

noise (van Beers et al., 2004). 
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Figure 6.3. Predicted endpoints of feedback control model with zero feedback 

noise. Predicted endpoint positions (blue dots) for all movements simulated with 

95% confidence ellipsoids (blue lines). The average endpoint position for a given 

direction is shown as a red cross at the center of each distribution. Inset scale 

relates endpoint distributions but not distance from the central starting position to 

a given endpoint. 
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Figure 6.4 Size, shape, and orientation of predicted endpoint ellipses for the 

feedback control model with zero feedback noise . A. Polar plot of the average 

peak velocity of simulated movements. Black curves here and below represent 

mean values and the surrounding shaded areas represents the 95% confidence 

interval. Peak velocity was inversely related to movement time (R= -0.995, 

p<0.05). B. Total variance in predicted endpoint distributions. C. Aspect ratio of 

endpoint ellipses. D. Orientation deviation of ellipses from the movement 

direction. Near zero degree deviations suggest endpoint ellipses varied 

systematically with movement direction. 
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Isotropic vs. anisotropic feedback noise. The results of the isotropic 

feedback noise model are illustrated in Figure 6.5A. In general, the patterns of 

endpoint variability were very similar to those observed for the zero-planning 

noise model. In fact, the patterns of aspect ratio were significantly correlated to 

those of the model of execution variability alone (R=0.832, p< 0.05), as was the 

pattern of deviation off the movement vector (R=0.819, p<0.05). This suggests 

that isotropic noise has little effect on the patterns of endpoint variability 

attributed to execution processes. Patterns of total variance patterns were also 

similar to the execution-only model, only slightly larger values due to the 

increased feedback uncertainty. This suggests that under isotropic properties of 

sensory/planning noise, patterns of endpoint variability appear to be largely 

dependent upon the characteristics of execution noise. 

Figure 6.5 also illustrates the predicted patterns of variability for 

simulations with visual feedback noise only (Fig. 6.5B) as well as proprioceptive 

noise only (Fig. 6.5C). In each of these conditions, the predicted patterns of 

endpoint variability often differed significantly from those of the isotropic 

feedback noise. For instance, while the average total variance was similar 

between the isotropic and visual noise models, neither total variance nor the 

aspect ratios were strongly correlated with the isotropic model predictions 

(R=0.346, p=0.24 and R=0.48, p=0.1, for total variance and aspect ratio, 

respectively) and significantly differed for all 12 directions (Mann-Whitney U-

test, p<0.05).  
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For the visual model, Fig. 6.5 B shows that endpoint ellipses were most 

elongated along the depth axis in this condition (the direction in which visual 

noise was also elongated as illustrated in the left-most column). The increased 

influence of spatial patterns of feedback noise was also apparent in the patterns of 

ellipse orientation deviation from the movement direction and lack of correlation 

with the results from the isotropic noise model. Orientation of the endpoint 

ellipses under visual feedback noise were often askew from the movement vector, 

with the exception being those movements along the depth axis, where the 

principle axis of feedback noise (i.e. the depth axis) and execution noise 

(movement direction) were well aligned. 

In the proprioceptive noise model, overall total variance of endpoint 

variability significantly increased compared to previous simulations, consistent 

with increased sensory uncertainty associated with proprioceptive feedback 

(Mann-Whitney U-test, p<0.05 ), and was not correlated with any other noise 

model. In addition, aspect ratios were generally dissimilar to the visual and 

isotropic noise models and significantly differed from these models along all 12 

directions (Mann-Whitney U test, p<0.05). In this case, aspect ratio was greatest 

for those movements most aligned with the lateral axis, the axis of greatest 

proprioceptive feedback noise. Lastly, the orientation deviation of endpoint 

ellipses varied from the movement vector for many directions, but was near zero 

when the movement direction was along the lateral axis.  
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Figure 6.5. Comparison of the predicted patterns of endpoint variability between 

unimodal feedback control models. Format of polar plots is similar to that in Fig. 

6.4. Cartoons on the left illustrate the spatial characteristics of the A isotropic, B 

visual, and C proprioceptive feedback noise used in the model to generate the 

predictions illustrated in the same row. Predicted total variance, aspect ratio, and 

orientation deviation of endpoint ellipses varied among the unimodal models. In 

all cases anisotropic noise models yielded anisotropic patterns of variability which 

differed significantly from the predictions of the isotropic feedback noise model. 
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Multimodal feedback. Finally, feedback control of reaching was 

simulated with a feedback signal derived from the maximum likelihood 

integration of two feedback sources with noise properties similar to those of 

visual and proprioceptive uncertainty. The results of these simulations are shown 

in Figure 6.6. In general, the patterns of simulated endpoint variability appear to 

be most similar to those observed in the simulations of visual feedback. For 

instance, aspect ratios are greater for movements along the depth axis, consistent 

with the patterns of visual noise. In fact, aspect ratios of ellipses generated from 

the multimodal model were significantly correlated with only those of the 

unimodal simulation with visual feedback-like noise (R=0.902, p<0.05). 

Similarly, the orientations of these predicted ellipses were also somewhat similar 

the unimodal simulations with anisotropic visual noise characteristics. It should 

be noted, however, that aspect ratios and orientations were not identical to those 

observed in the unimodal visual feedback model and were not significantly 

correlated with those of any other simulated feedback condition. Similarly, total 

variance was not significantly correlated with any other model predictions of 

endpoint variability. In all cases, the predictions of the multimodal model 

significantly differed from those of the other feedback models along many of the 

movement directions (Mann-Whitney U test, p<0.05). 

These differences between multimodal feedback simulations and other 

simulations are related to the combined influence of the two feedback modalities. 

That is, while the predicted endpoint variability of the multimodal model were 

generally similar to those of the visual feedback model, the contribution of 
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proprioceptive feedback resulted in a few significant disparities between them. 

For instance, aspect ratios for more lateral movements are greater than those 

calculated under the unimodal visual feedback back model. This suggests a 

decrease in feedback variability off the lateral axis (i.e. in depth) under 

multimodal conditions. This decrease may be attributable to the integration of 

proprioceptive input which provides a more reliable estimate of the limb position 

along the depth axis. Thus, optimal integration of sensory feedback with noise 

properties consistent with visual and proprioceptive feedback will yield different 

patterns of endpoint variability than of any of the unimodal conditions. While 

these patterns are somewhat similar to that of the unimodal visual feedback 

control, the entirety of the predicted endpoint variability could not have been 

predicted based any combination of unimodal model results. 
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Figure 6.6. Predicted patterns of endpoint variability under multimodal feedback 

control. Format is consistent with Fig. 6.4 and 6.5. A. Simulated visual and 

proprioceptive feedback noise are overlaid to illustrate their integration. B. The 

direction-dependent patterns of predicted total variance were similar but not 

identical to visual unimodal model. C. Aspect ratio varied with movement 

direction similar to that of the visual unimodal model, but was rotated clockwise 

to a small degree. D. Orientation deviation was in general smaller than for the 

anisotropic feedback models, but was non-zero for many directions. 
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Discussion 

Here we developed a feedback control model used to predict movement 

variability due to noise in planning/sensing and execution of movements. Multiple 

forms of feedback noise were inputted into the model, in order to evaluate the 

influence of anisotropic noise properties and multimodal sensory integration on 

the predicted movement variability. As expected, feedback noise with isotropic 

properties did not appreciably affect patterns of endpoint variability from those 

predicted without feedback noise whatsoever. Conversely, unimodal feedback 

control with visual or proprioceptive feedback noise characteristics yielded 

disparate patterns of endpoint variability. The specific differences depended 

largely upon the spatial patterns of feedback noise itself, indicative of the 

influence of the spatial anisotropy in feedback uncertainty on control. When the 

visual and proprioceptive inputs were combined into an integrated feedback 

estimate, the model produced patterns of variability which were different from 

either unimodal prediction. Specifically, while a heavy bias for visual feedback 

was observed, there was a clear contribution of proprioception in the patterns of 

endpoint variability. These results emphasize the importance of spatial 

characteristics of feedback uncertainty in the basis of reaching variability. This is 

of particularly relevance when simulating or interpreting movement during such 

reaching conditions as those involving a misalignment or removal of one source 

of feedback.  

Validity of model results. The patterns observed in the execution-only 

simulations are consistent with previous behavioral results. In a 2004 work, van 



164 

Beers and colleagues attempted to predict behavioral variability resulting from 

execution noise alone. Their results demonstrated that when movements were 

more rapid, there was increased contribution of execution noise to overall 

movement variability and more elongated variable ellipses, consistent with 

evidence of signal dependent contributions of motor noise (van Beers et al., 

2004). These observations are consistent with the patterns of endpoint variability 

predicted by the present simulations. For instance, Figure 6.3 demonstrates an 

increase in aspect ratio for those directions with shorter movement times. Also 

consistent with their findings, the present model predicted patterns of endpoint 

deviation near zero for all movement directions. This suggests that the orientation 

of simulated endpoint ellipses was largely along the direction of movement, 

indicative of the strong influence of signal dependent execution noise. 

Intriguingly, the influence of execution noise parameters was able to largely 

reproduce the patterns of execution variability described in van Beers et al., 2004, 

despite not explicitly modeling the biomechanical properties of the arm. This may 

suggest that the conversion from joint space to Cartesian coordinates does not 

result in unique patterns of behavioral variability during 2D reaching. 

The modeling results offer several clear predictions for behavioral 

investigations of the integration of sensory/planning and execution noise. These 

predictions can be used to evaluate how well human behavior conforms to 

principles of optimal control. For instance, the model suggests that when there is 

little or no planning noise, patterns of execution noise dominate; a prediction 

consistent with previous behavioral results (Faisal & Wolpert 2009, van Beers et 



165 

al. 2004). Conversely, if execution noise was very low (i.e. during slow 

movements or static estimation), one would expect endpoint variability to largely 

resemble the spatial patterns of sensory feedback uncertainty. In fact, this has 

been observed for the case of static localization of the hand via proprioception 

and vision (van Beers et al. 1998, Faisal & Wolpert 2009). 

Influence of sensory noise on variability. The influence of sensory 

uncertainty and planning noise on movement variability has been widely reported 

in both behavioral and neurophysiological studies. For instance at the neural level, 

noise in the sensory feedback and the planning stages have been shown to account 

for a significant amount of variability in motor behavior (Osborn et al., 2005, 

Churchland et al., 2006a; Churchland et al., 2006b) Behaviorally, the anisotropic 

nature of sensory feedback uncertainty has been shown to affect both the process 

of sensory integration as well as limb position estimation and endpoint control 

(van Beers et al., 2002; Apker et al., 2010; Apker & Buneo, 2012). The present 

model takes these behavioral observations into consideration in its design. As a 

result, the model generates predictions which indicate a significant influence of 

the spatial patterns of feedback noise. In this way, the predictions of the model 

further support the suggestion that human behavioral variability may be the result 

of an optimal integration of sensory feedback and forward processing.  

The model results also suggest that the relative levels of planning and 

execution noise along a given movement direction are important to the patterns of 

reaching variability. This is particularly evident in the differences in the total 

variability plots in Figs. 6.2-5. In essence, these figures describe the amount of 
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total uncertainty at the end of the movement resulting from the integration of 

direction dependent execution noise and spatial patterns of sensory uncertainty. 

This is consistent with the findings of Faisal & Wolpert (2009), wherein the 

authors report that behavioral variability results from the “near optimal” 

combination of sensory and execution derived uncertainty. In the present study, 

when planning noise is introduced, total variance increases for all movement 

directions. However, despite having similar total sensory uncertainty, the isotropic 

and visual feedback noise models yielded different patterns of total variance. This 

echoes previous behavioral observations which suggest that integration of 

feedback and execution noise takes place in a direction dependent manner (Apker 

et al., 2010; Apker & Buneo, 2011). 

Interaction of sensory/planning and execution noise. The spatial 

characteristics of sensory feedback noise have been shown to affect the patterns of 

integration and subsequently, endpoint variability (van Beers et al., 2002; 

McIntyre et al., 1998, Carrozzo et al., 1999). Consistent with this, the influence of 

the anisotropic feedback noise on endpoint variability is also apparent in patterns 

of all three metrics of endpoint ellipses. For instance, total variability predicted 

for each model with anisotropic noise yielded different direction dependent 

patterns, suggesting that shape of sensory feedback noise played an important role 

in determine endpoint uncertainty. Interestingly, the direction-dependent nature of 

the total variance suggests that the total variance is greatest when the movement 

direction is largely orthogonal to the direction of maximum noise in the feedback 

estimate (See Fig. 6.5). This suggests that the combined effect is most noticeable 
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when sensory/planning noise affects the direction rather than amplitude of 

movement, a finding reminiscent of recent behavioral research which suggests 

separated controllers of amplitude and direction in movement coordination 

(Sainburg et al., 2003; Sarglena & Sainburg, 2007). Alternatively, this may be 

interpreted as the total variability being predicted to be greatest when movements 

are orthogonal to the orientation of feedback noise. This is consistent with the 

„near-optimal‟ integration described by Faisal & Wolpert (2009) as each noise 

contributes along a different axis, rather than be combined and reduced along a 

common direction, as their model predicts (Faisal & Wolpert, 2009). 

The calculated aspect ratios in the three unimodal modals also demonstrate 

the direction dependent influence of feedback noise on the shape of behavioral 

variability. Specifically, the movement directions associated with the greatest 

aspect ratios coincides with cases where movement direction (i.e. execution noise) 

and sensory noise orientation (i.e. depth axis for vision and lateral axis for 

proprioception) are more aligned. In fact, it appears that ellipse aspect ratio is 

proportional to the degree to which these two noise sources are aligned. This is 

evidence of the model‟s prediction of the interaction between execution and 

sensory/planning noise processes. In fact, this prediction is very consistent with 

the observed interaction of planning and execution noise during reaching 

movements in 3D (Apker & Buneo, 2012). 

The influence of sensory noise properties is also apparent from the 

differences in orientation deviation predictions across unimodal simulations. 

Interestingly, in both the visual and proprioceptive models the predictions of 
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orientation deviation are non-zero for nearly all directions except for those cases 

where the movement direction and noise orientation are well aligned (i.e. depth 

axis for vision and lateral axis for proprioception). This suggests sensory noise 

resulted in variability independent of the movement vector. Our results are again 

consistent with observations have found evidence for „near optimal‟ combination 

of temporally derived sensory and execution noise, extending the scheme of 

integration into the spatial domain (Faisal & Wolpert, 2009). Specifically, the 

present model predicts that the combination of noise occurs on an axial dependent 

basis (Apker et al., 2010).  

Multimodal vs. unimodal feedback control of reaching. Removing or 

perturbing visual feedback during movement is a common psychophysical 

approach to probe sensorimotor control. In fact, this was the application of the 

model described in Saunders & Knill (2004). In this work, the authors applied the 

predictions of visual feedback control without the aid of proprioceptive feedback 

to observations of human behavior following a mid-reach visual perturbation. 

However, both visual and proprioceptive feedback  have been shown to contribute 

to the estimation of hand position and improved reaching performance (Prablanc 

et al., 1979; Rossetti et al., 1995; Desmurget et al., 1995; Vindras et al., (1998); 

Carrozzo et al., 1999; McIntyre et al., 1998; Battiglia-Mayer et al., 2003). As a 

result, one would expect a contribution of proprioceptive feedback throughout 

their reaching task, affecting estimation (and thus control) of the limb during the 

periods without visual feedback as well as when it was present, having particular 

impact during the period of visual perturbation. The results of unimodal and 
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multimodal simulations described here indicate a significant effect of both visual 

and proprioceptive feedback during reaching. Thus the present model may be 

better suited to predict sensorimotor control and behavior under feedback 

conditions in which either visual or proprioceptive feedback is perturbed or 

removed at any point during the task.  

Future directions. Given the predictions illustrated in Figures 6.3-6., the 

next step is to conduct a behavioral experiment wherein subjects perform identical 

reaching movements to those simulated by the model. Comparison between these 

results and model predictions will be used to make informed adjustments to the 

model. Depending upon the results, the necessary adjustments may be as minor as 

changes in model parameters, such as visual noise levels, or may be as significant 

as requiring changes to fundamental model equations or to the model architecture. 

For instance, given that the spatial patterns of proprioceptive uncertainty are 

posture dependent, a biomechanical component may be required to more 

accurately predict the contribution of proprioception to feedback control. This 

element may be particularly important to the process of extending this model to 

the simulation of movements in 3-Dimensions. In fact, fixing the relationship 

between limb orientation and uncertainty in 3D may offer new insights into 

unique patterns of sensory integration during movement planning in the vertical 

plane (Apker et al., 2011). 

Increasing the simulated movement time will reduce the peak velocity 

generated and subsequently decrease the levels of execution noise. Conversely, 

simulating more rapid movements would be expected to result in a greater 
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contribution of execution noise to endpoint variability. However it is not clear to 

what degree this would affect the apparent contribution of sensing/planning noise 

to endpoint variability. Thus, in addition to offering a means to improve the 

execution noise component of the model, comparing the model predictions of 

differing movement times/speeds to those of actual behavior may also provide 

insight into how well human behavior conforms to the predictions of optimal 

feedback control.  

It has been suggested that behavioral variability is dependent upon 

temporal factors related to sensation and movement (Faisal & Wolpert, 2009). 

Here we characterize their contributions to variability given their variability in 

space. Both temporal and spatial factors of sensorimotor noise naturally 

contribute and interact to ultimately shape behavioral variability. The feedback 

control model presented here is also ideally suited to evaluate the temporal-spatial 

interactions of sensorimotor feedback control. One potential means to probe the 

temporal-spatial interactions using the model would be to evaluate how 

performance depends on the duration of presentation of vision both before and 

during the movement. For instance, simulating movements where visual feedback 

is removed at movement onset, 25% into the movement, and 50% into movement 

will provide insight into the degradation of estimation precision as a function of 

time and how this manifests in behavior. Characterizing the interaction of spatial 

and temporal properties of sensorimotor noise and their impact on movement 

variability is an important step toward a comprehensive model of sensorimotor 

feedback control. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

The work detailed in this volume has focused on the influence of noise in 

sensory integration and sensorimotor integration. Specifically, we have 

investigated how this noise affects control of the limb during the planning and 

execution of goal oriented reaching movements. To this end, several research 

projects were designed and carried out, each offering unique and novel insights 

into how the brain plans, coordinates, and controls limb movements in the 

presence of noise at all levels of sensorimotor control. The results of these works 

and their contribution to the study of sensorimotor control are briefly summarized 

below. 

Sensory Integration and Movement Planning in 3D-Space 

New evidence suggests that additional factors may affect the contribution 

of sensory feedback in 3D space compared to that observed in 2D (Desmurget et 

al., 1997; Scheidt et al., 2005; McIntyre & Le Seac‟h, 2007). Yet, little work has 

been done to evaluate workspace dependent and direction dependent effects of 

sensory integration outside of the horizontal plane. As a first step towards 

investigating spatial dependencies of integration across the 3D workspace we 

designed an experiment to assess the process of movement planning for 

unconstrained movements to vertical targets (see Chapter 3). While the physical 

relationship of the finger to the targets did not change, the visual feedback of the 

finger at the starting position was either aligned with the finger‟s actual position 

or misaligned by a perturbation in either the lateral or vertical axis in some trials. 
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By comparing the movement direction between aligned and misaligned 

conditions, we could assess the relative contribution of vision to movement 

planning in 3D space. 

We found that the influence of vision on estimation of fingertip position 

was significantly greater along the lateral axis than the vertical axis. In addition, 

we observed that when visual and somatosensory cues were dissociated along the 

vertical axis in the near workspace, the relative contribution of vision varied 

significantly with target location; this trend was also observed following laterally 

dissociated visual feedback, however it did not reach significance. This direction 

dependent effect may be related to additional factors affecting the relative 

contribution of visual feedback for movement planning in 3D space (i.e. sensation 

and/or compensation for the effect of gravity). 

The results of this study provide several important insights into the nature 

of sensory integration and movement planning. Primarily, these results extend 

many previously observed principles regarding integration in the horizontal plane 

into the 3D workspace. However, we also provide evidence that additional 

factors, beyond visual and proprioceptive feedback contribute to the planning and 

coordination of vertical movements. Future work will be needed to identify the 

nature of the additional factors and their specific influence on sensorimotor 

integration. For instance, there is the potential that the perceived limb orientation 

versus gravity (a product of a combination of proprioception and information 

from the otoliths) and required to compensate for the effects of the gravitational 

force) impacts motor planning (Le Seac‟h & McIntyre, 2007). Thus, the added 
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complexity of moving against gravity entails additional sensory estimates as well 

as alternative computations to be performed during planning. 

Contributions of Planning and Execution Noise in Unconstrained Movement 

Movement variability arises from a combination of execution noise and 

planning noise (Thaler & Todd, 2009). The use of task constraints which reduce 

the complexity of reaching movement is common in the study of sensorimotor 

processing. Often, these constraints have the effect of artificially minimizing the 

influence of one or both sources of variability (van Beers et al., 1998; van Beers 

et al., 2004). As a result, little is known of their relative contribution to reaching 

variability when both are present at normal levels, as during normal reaching. To 

begin to assess their relative contributions to natural movement variability, we 

designed a task to accentuate both planning and execution noise as a means to 

study their combined effects of during normal, unconstrained reaching. This study 

is described in detail in Chapter 5, but is summarized below. 

Subjects were asked to perform a sequence of two reaching movements 

and we evaluated their endpoint variability for influences of planning and 

execution noise. Interestingly, we found that visually-derived planning noise was 

likely the dominant contributor to endpoint variability. This was inferred from the 

significant elongation in variability along the depth axis, the direction in which 

visual uncertainty is greatest; this direction was also largely orthogonal to any 

movement direction. These results suggest that execution noise plays a relatively 

minor role in endpoint variability of unconstrained movements. Further, these 

results are generally consistent with previous evidence of optimal, or „near-
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optimal‟ integration of noise sources in sensorimotor control, however, the nature 

of their integration and interaction must be more explicitly tested before more 

firm conclusions can be drawn.  

Interaction of Planning and Execution Noise During Unconstrained 3D 

Movement 

As previously mentioned, very little information exists regarding how 

planning and execution noise manifest in behavior when both sources of noise are 

unmitigated by task constraints. In the previous work, we investigated the relative 

contributions of planning and execution noise during normal, 3D movements. 

However, because movement direction and visual planning noise were largely 

opposed in the study, characterization of the interaction was relatively limited. To 

address the nature of their interaction, a subsequent study was performed in which 

the movement directions were either aligned with, or were orthogonal to, the 

direction of visually-derived planning noise (see Chapter 5). This design 

facilitated a comparison of endpoint variability between conditions in which 

planning and execution noise would be expected to interact minimally (i.e. when 

they were orthogonal) and maximally (when they were aligned). 

We found that when visual feedback of the hand was provided throughout 

the movement, patterns of endpoint variability did not vary with final movement 

direction. Conversely, when visual feedback of the hand was withheld throughout 

the movement, a significant effect of the movement direction on endpoint 

variability was found. These results suggest that visual feedback essentially masks 

the influence of execution noise. This is likely due to the acuity of visual feedback 



175 

of the hand allowing subjects to detect the error in movement and mitigate it 

before the end of the movement. Thus, this study suggests an even greater role of 

feedback control for movements in 3D-space, and further emphasizes the role of 

sensory uncertainty in determining the patterns of endpoint variability. 

Multimodal-Feedback Control Model with Natural Feedback Characteristics 

Optimal stochastic feedback control has become a popular conceptual and 

computational framework for sensorimotor control (Wolpert et al., 1995, Harris 

and Wolpert, 1998). However, previous examples of these models in the literature 

often consider only a single source of feedback information of the limb during 

movement, neglecting the potential influence of other sources of information. 

This simplification has been justified methodologically, e.g. modeling only 

proprioceptive feedback by assuming a non-visual task (Todorov and Jordan, 

2002), or pragmatically, e.g. assuming only visual feedback given evidence of its 

dominance over proprioception in most contexts (Saunders & Knill, 2004). 

However, such simplifications greatly limit the predictive capacity of these 

models to very esoteric scenarios. Moreover, these models often neglect to 

account for known spatial anisotropies in the sensory feedback noise. While these 

characteristics significantly affect endpoint control in behavior, the influence of 

the multimodal and anisotropic nature of sensory feedback on the predictions of 

optimal sensorimotor control remains unknown.  

To begin to address these issues, we developed an optimal stochastic 

feedback control algorithm with realistic multimodal feedback inputs (see Chapter 

6). Simulations were run to predict the influence of sensory feedback with 
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different distributions of noise in space on the characteristics of endpoint 

variability. Analysis of the predicted endpoints provided a means to determine 

whether or not these natural anisotropies in sensory feedback would affect 

reaching performance in an optimal control framework. 

Predicted endpoint variability significantly differed between simulations 

with anisotropic vs. isotropic sensory feedback noise. Further, this model 

demonstrates that the availability of multiple feedback inputs also significantly 

affects endpoint variability, and thus both vision and proprioception must be 

considered when modeling visually guided reaching. These results indicate that 

the modality-specific anisotropic nature of feedback uncertainty must also be 

considered when modeling sensorimotor feedback control of the limb. The 

multimodal nature of the present model represents a significant evolution for 

optimal feedback control models of sensorimotor control, opening up a host of 

new possibilities to assess the predictions of optimality in sensory integration and 

motor control. For instance, a multimodal model could be used to simulate 

movements which entail a perturbation or complete removal of the visual 

feedback. 

Broader Contribution and Impact of Research 

In addition to their individual contributions, this work as a whole offers 

important insights into many open issues of neuroscience and neural engineering. 

Sensory integration across the workspace. In addition to exploring the 

contributions of vision and proprioception to movement planning in the vertical 

plane, this work also directly assessed several predictions of workspace and 



177 

direction dependent aspects of sensory integration and sensorimotor control. For 

instance, previous evidence has suggested that proprioceptive uncertainty is 

significantly reduced as the limb‟s distance from the body increases (van Beers et 

al., 1998). This would be expected to result in a significant change in the relative 

contribution of proprioceptive feedback to limb state estimation, as well as 

significantly different variability between workspace depths. We tested these 

predictions in a variety of contexts only to find that the contribution of 

proprioceptive feedback did not significantly change within a comfortable 

reaching distance. Importantly, this does not necessarily contradict the observed 

change in proprioceptive reliability nor does it refute the principles of optimal cue 

integration. Rather, it suggests that with respect to the integration of 

proprioception at the perceptual level, the change is not so great as to significantly 

affect its weighting. 

Coordinating 3D movements. Recent evidence suggests that the 

coordination of unconstrained movements in 3D may be significantly more 

complex than that for movements restricted to 2D (Desmurget et al., 1997; 

Scheidt et al., 2005). Thus, without direct evaluation, it is difficult to draw any 

conclusions apriori about sensorimotor feedback control during 3D movements. 

To study variability in sensorimotor control in a more general, natural context, we 

asked subjects to execute unconstrained reaching movements to targets 

throughout the workspace in a number of different tasks and experiments. The 

findings of these studies provide important insights into how to bridge 

observations of sensorimotor control in the horizontal plane to control of 3D 
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movements. For instance, we found evidence that suggests similar principles of 

sensory integration and feedback control of limb movements as those observed in 

2D experiments can be observed in 3D coordination. However, we also observed 

an increased dependency on the characteristics of sensory estimation error and 

planning variability in the performance of goal oriented reaching. This finding is 

consistent with previous findings of visually/non-visually guided movements in 

3D space (McIntyre et al., 1997; Carrozzo et al., 1999). 

Direct assessment of the influence of planning and execution noise in 

sensorimotor control. In the study of sensory/planning variability, task 

constraints are often focused on reducing movement related noise or planning 

noise to examine the effects of execution variability (van Beers et al., 1998; van 

Beers et al., 2004). As a result, their respective influences during natural 

movement remain unclear. One reason for this is that in many cases the 

behavioral consequences of each process can be considerably overlapping. This 

ambiguity represents a critical weakness in our understanding of sensorimotor 

control and the origin of behavioral variability. A primary aim of this work has 

been to evaluate the relative contributions and interaction of planning and 

execution noise during more natural movements. Towards this end, we have 

provided strong evidence that the influence of planning noise plays a pivotal role 

in shaping endpoint variability, both in terms of the anticipated effects of planning 

noise as well as in modulating the influence of execution noise present in the 

endpoint distribution. 
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Specifically, we showed that while visual planning noise is a pervasive 

part of 3D movement variability, it can also mask the effects of execution noise. 

This is because visual feedback is precise enough to detect movement errors 

throughout the reach, such as those due to execution noise, affording the 

sensorimotor control system the opportunity to compensate for them online. 

However, when vision is removed, errors due to execution noise go unaccounted 

for as they may not be detected by relatively imprecise proprioceptive feedback. 

This suggests a prominent role of feedback control in the coordination of 3D 

movements when visual feedback is available. 

This work has emphasized the importance of the spatial properties of 

feedback uncertainty on planning noise. This was shown in observed behavior 

both in terms of its effects on sensory integration as well as in endpoint control 

during complex 3D reaches. In addition, the importance of the noise properties 

was also apparent in the predictions of an optimal feedback control model. As a 

whole, the results of the work detailed in this volume generally support the 

application of optimal integration and control theories to human behavior and 

sensorimotor control. 

Significance to neurological disorders. Fundamentally, this research is 

investigating the mechanisms by which the brain combines sensory information 

and transforms it into a meaningful intention to interact with the surrounding 

world. Normally, this process is effortless and unperceived. However, optic 

ataxia, ideomotor apraxia, and asomatoagnosia are only a few examples of 

pathologies which can manifest in sensorimotor deficits. Often, behavioral 
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variability is an important tool in the characterization and treatment of many 

sensorimotor disorders. Thus, understanding how planning and execution-related 

noise would normally interact is critical for interpreting the exaggerated 

variability that arises following nervous system damage (Contreras-Vidal & Buch, 

2003; Hermsdorfer & Goldenberg, 2002; Longstaff & Heath, 2006; Thies et al., 

2009). The work detailed in this volume provides important insights into how 

noise in sensorimotor control manifests during normal behavior and provides a 

basis for characterizing a deficit as being related to either sensory/planning or 

motor processing. This information may ultimately be used to determine the most 

appropriate therapeutic/rehabilitative strategy and provide a means to better 

quantify recovery. 

Insights into the neural control of reaching. While these experiments 

have been focused on the influence of sensorimotor noise on behavior, the results 

of these works provide several insights into the neural processes underlying the 

control of reaching. For instance, in the introduction, area 5 of the parietal lobe 

and PMd were identified as likely candidates to be the neural substrate for limb 

state estimation. The results of these studies suggest that at all phases of 

movement production, encoding of the limb and target position in depth should be 

the most variable. This hypothesis could be tested in these areas by recording 

activity of cells in area 5 or PMd while the hand is positioned at various positions 

within the horizontal plane and attempting to predict the lateral and depth  

position from the neural activity. The present work suggests that decoding 

performance for lateral positions should exceed that for depth positions, 
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consistent with greater uncertainty in encoding this parameter (Ma et al., 2006; 

Ma & Pouget, 2008).  

In addition, the present results potentially offer insight into the process of 

sensory integration for estimation of limb position. Specifically, when vision is 

present, encoding of lateral position should become more robust but relatively 

unchanged in depth. When vision is removed, encoding of lateral position should 

degrade significantly while the encoding of position in depth should be largely 

unchanged. Similarly, given the results of the study described in Chapter 3, the 

relative influence of visual feedback on cell and population activity should be 

reduced in the encoding of vertical position of the hand relative to that of the 

lateral position. This can also be evaluated through decoding analysis. Note that 

our behavioral evidence is generally consistent with the theory of optimal cue 

integration (van Beers et al., 2002b; Ernst & Banks, 2002; Wolpert, 2007). 

However, integration during static and dynamic phases of movement may differ 

substantially (Wolpert et al., 1995; Scheidt et al., 2005). Thus, to study this at the 

neural level, an effective approach may be to use to a delayed reaching task 

wherein there is a waiting period between the presentation of the target and the 

cue to initiate movement. This would allow for the dissociation of activity during 

initial planning period from that updating and would provide a more controlled 

basis to evaluate the influence of visual and proprioceptive inputs. Should these 

neural predictions are confirmed, it would add to an already large body of 

evidence which suggests the brain has developed a mechanism of integration and 
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feedback control which minimizes uncertainty and behavioral variability (Deneve 

et al., 2001; Ma et al., 2006; Ma & Pouget, 2008; Angelaki et al., 2009).  

Future Work 

Without question, an important next step is to test the predictions of the 

sensorimotor control model against empirical evidence from actual reaching 

behavior. The results of this comparison will be used to make informed 

adjustments to model parameters or equations to better fit empirical data. 

Following this, new predictions may be generated in a number of sensorimotor 

contexts, such as control during a visuomotor perturbation or in the presence of 

periodic visual feedback availability. Comparing the results of the model with 

those observed from human behavior under identical conditions will provide 

important insights into the nature of sensorimotor control as well as optimal 

feedback control as an underlying computational framework. 

In general, we found that endpoint variability of 3D movements is largely 

dependent on the spatial characteristics of planning noise. Recently, Faisal & 

Wolpert (2009) demonstrated that total variability is also influenced by the 

integration of temporal characteristics of sensory and execution noises. Thus an 

important next step is to investigate how the temporal characteristics of 

sensorimotor noise interact with spatial characteristics to determine total 

behavioral variability. For instance, it would be interesting to know if this 

variability is related to planning noise at the beginning or at the end of movement. 

This could be tested by removing visual feedback at various points throughout the 

movement. Similarly, it would also be of interest to examine the effect of 
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returning visual feedback at various points in the movement. The feedback control 

filter described here is ideally suited to simulate these conditions to probe the 

spatial-temporal interaction and integration of planning and execution noise from 

an optimal control standpoint. This can be used to generate predictions of 

behavior which can be compared to observations from a complementary human 

reaching study. Experimentally, varying the timing and/or duration of visual 

feedback during a reaching task in 3D space would provide a means to 

characterize the spatial-temporal interaction of planning and execution noises.  

 Additionally, as our understanding of sensorimotor integration expands, it 

would also be useful to adapt the multimodal sensorimotor model to generate 

predictions of optimal feedback control in 3D. While undoubtedly a challenging 

endeavor, the potential insights into the complexity of sensorimotor control one 

could gain in the process of developing such a model would be of great value. 

However, this would be extremely challenging, and still a great deal more work 

must be done to investigate human performance during 3D movements in order to 

parameterize and populate the model with the appropriate equations. For instance, 

highlighted in this work and in others, moving in the presence of gravity may 

have a unique effect on sensory integration, anticipatory motor commands, and 

ultimately behavior (Le Seac‟h & McIntyre, 2007). However, as described above, 

more research is needed into the specific effects of gravity on reaching, as well as 

a number of other factors, before such a comprehensive model of 3D 

sensorimotor control can be developed. 
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