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ABSTRACT 

In recent years, service oriented computing (SOC) has become a widely 

accepted paradigm for the development of distributed applications such as web 

services, grid computing and cloud computing systems. In service-based systems 

(SBS), multiple service requests with specific performance requirements make 

services compete for system resources. IT service providers need to allocate 

resources to services so the performance requirements of customers can be 

satisfied. Workload and performance models are required for efficient resource 

management and service performance assurance in SBS. 

This dissertation develops two methods to understand and model the 

cause-effect relations of service-related activities with resources workload and 

service performance.  

Part one presents an empirical method that requires the collection of 

system dynamics data and the application of statistical analyses. The results show 

that the method is capable to: 1) uncover the impacts of services on resource 

workload and service performance, 2) identify interaction effects of multiple 

services running concurrently, 3) gain insights about resource and performance 

tradeoffs of services, and 4) build service workload and performance models. In 

part two, the empirical method is used to investigate the impacts of services, 

security mechanisms and cyber attacks on resources workload and service 

performance. The information obtained is used to: 1) uncover interaction effects 

of services, security mechanisms and cyber attacks, 2) identify tradeoffs within 
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limits of system resources, and 3) develop general/specific strategies for system 

survivability. 

Finally, part three presents a framework based on the usage profiles of 

services competing for resources and the resource-sharing schemes. The 

framework is used to: 1) uncover the impacts of service parameters (e.g. arrival 

distribution, execution time distribution, priority, workload intensity, scheduling 

algorithm) on workload and performance, and 2) build service workload and 

performance models at individual resources. The estimates obtained from service 

workload and performance models at individual resources can be aggregated to 

obtain overall estimates of services through multiple system resources.  

The workload and performance models of services obtained through both 

methods can be used for the efficient resource management and service 

performance assurance in SBS.  
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CHAPTER 1 

INTRODUCTION 

Service oriented computing (SOC) has emerged as a major research topic 

in recent years. Strong support from major computer and IT service providers 

companies such as IBM, Microsoft, Hewlett Packard, Oracle, SAP and Amazon 

has accelerated the acceptance and adoption of SOC. The loosely coupled nature 

of SOC allows companies to build new value-added services or upgrade existing 

services in a granular fashion to address new business needs. Service Oriented 

Architecture (SOA), the platform allowing the implementation of the SOC 

paradigm, has been adopted in various distributed systems such as web services, 

grid computing and cloud computing systems. Resource management and service 

performance are key aspects in SOA. Because system resources are shared among 

services, workloads placed on resources by services and their impact on service 

performance as a result of allocating resources to services must be considered in 

several stages of the IT services’ life cycle, including modeling, composition, 

monitoring, optimization and management. In the modeling stage, service 

workload and performance must be estimated so that in the composition stage this 

knowledge can be used to allocate resources to services for satisfying service 

performance requirements. In the monitoring, optimization and management 

stages, service workload and performance need to be monitored so that resources 

and services can be adapted and optimized to accommodate dynamic system 

changes. The growing complexity and demand of services make individual IT 
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efforts for managing service-based systems (SBS) costly and inefficient. Service 

standardization is required to manage service-based systems efficiently. Existing 

efforts on service standardization (Curbera, et al. 2002), including UDDI 

(Universal Description Discovery and Integration), SOAP (Simple Object Access 

Protocol), WSDL (Web Service Description Language) and WSMO (Web Service 

Modeling Ontology), focus on the functional aspects of services and their 

specification for service discovery and interoperability. However, those standards 

do not provide support for non-functional aspects of services, such as service 

performance which is of particular concern for IT service providers as it directly 

affects client’s satisfaction and loyalty (Subrata, Zomaya and Landfeldt 2008).  

Service standardization should consider both functional and non-

functional aspects of services. With this need in mind, ontologies and templates 

have been proposed for the specification of both functional and non-functional 

(e.g., workload, performance) aspects of services (Wang, et al. 2006; Lamparter, 

Ankolekar and Studer 2007; Hu, Cao and Gu 2008; Tran, Tsuji and Masuda 2009; 

Staikopoulos, et al. 2010). However, these studies fail to consider the dynamic 

nature of the execution environment as the availability of system resources and 

service demands change over time. For example, services demands can fluctuate, 

having higher demand peaks at rush hours but lower demands at other times. 

Similarly, resource availability can change due to communication overhead, 

hardware failure or cyber attacks. From the perspective of resource management, 

a service request adds activities and workload to system resources. If the machine 

hosting the service cannot provide enough resources to the service, the service is 



 

3 

 

likely to perform with a degraded performance (Li, et al. 2005). Different services 

consume different types and quantity of resources (e.g. CPU, memory, disk, 

network and so on.), and service performance or usually called “quality of 

service” (QoS) depends on the amount of resources assigned to the service (Wu 

and Woodside 2004; Stewart and Shen 2005; Zhang, Bivens and Rezek 2007). 

There exists a cause-effect relation of service activities (A) with resource 

workload/state (S) and service performance/quality (Q). However, models 

capturing these relations are not readily available from the design of system and 

application software which provides mostly logic-based operational models rather 

than workload and performance models. Previous studies on resource workload 

and service performance (Vazhkudai and Schopf 2002; Doyle, et al. 2003; 

Shivam, Babu and Chase 2006; Sun and Ifeachor 2006; Kan, Sun and Ifeachor 

2010; Kang and Suh 2011; Zhang, Verma and Cheng 2011) address particular 

services or focus on specific resources, and limited system aspects. Workload and 

performance models are required at a more comprehensive, system-wide scale 

considering multiple resources, their interactions, and the impacts of service 

activities. 

This research focuses on establishing systematic methods to understand 

and model the cause-effect relations of service-related activities (A) with 

resources workload/state (S) and service performance/quality (Q). The workload 

and performance models of services obtained through these methods support 

service standardization for modeling, composition, monitoring, optimization and 

management stages of service-based systems (SBS). Additionally by uncovering 
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these cause-effect (ASQ) relations, insights about resource and performance 

tradeoffs of services are obtained.  

In chapter 2, an empirical method is proposed to analyze and model the 

impacts of services on system activities, resources workload and service 

performance. This method involves the collection of system-wide dynamics data 

and the application of statistical analyses to uncover and model resource workload 

and service performance. Various types of services and service scenarios are 

investigated, including a motion detection service (MDS) and four variations of 

the voice communication service (VCS): VCS, VCS with background network 

traffic, VCS with data encryption, and VCS with data encryption and background 

network traffic. The results uncover system-wide impacts of these services on 

resources workload and service performance, and identify interaction effects of 

multiple services running concurrently.  

In chapter 3, the empirical method (in chapter 2) is used to investigate the 

impacts of services, security mechanisms and cyber attacks on resources 

workload and service performance, and to explore the implications of these 

impacts in developing strategies for system survivability. System dynamics data is 

collected under the conditions of two services of voice communication and 

motion detection, two security mechanisms of data encryption and intrusion 

detection and five cyber attacks (ARP poison, ping flood, vulnerability scan, fork 

bomb and remote dictionary). The results uncover the impacts of services, 

security and cyber attacks on resource workload and service performance, and 
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reveal important tradeoff effects that can be used in developing strategies for 

system survivability. 

The empirical method captures the cause-effect (ASQ) relations of 

services, resources workload and service performance. However, the empirical 

method is limited by the time and effort required for experimental set-up, data 

collection and analysis. To overcome this limitation, in chapter 4 a framework is 

proposed to estimate the impacts of services on resource workload and service 

performance based on the assumption that system dynamics are mainly driven by: 

1) the resource-sharing scheme of the system resources, including: admission 

control, allocation method, scheduling policy, and 2) the resource requirements 

(profile) of services competing for the resource. The framework is used to build 

service workload and performance models at processor and disk resources. These 

models can be used as quantitative basis for efficient management of resource 

workload and service performance in service-based systems. 
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CHAPTER 2 

IMPACTS OF SERVICES ON SYSTEM ACTIVITIES, RESOURCES 

WORKLOAD AND SERVICE PERFORMANCE 

2.1 Literature review 

As people increasingly rely on online services deployed on computer and 

network systems to support operations in banking, telecommunications, 

transportation and many other conventional domains, service performance 

(quality) has become a major concern for IT service providers as it directly affects 

users’ satisfaction and loyalty (Subrata, Zomaya and Landfeldt 2008). Service 

performance is usually measured through different metrics such as throughput, 

delay, jitter, accuracy, security, and so on. According to service functionality, 

some of these performance metrics may be more critical for a specific service 

than others. A list of performance metrics for various common services can be 

found in (Chen, Farley and Ye 2004). For example in a voice communication 

service (VCS), critical metrics for service performance are throughput and delay 

of voice data transmission. IT service providers are required to satisfy both 

functional and non-functional (performance) service aspects. The increasing 

diversity and demand of services specifically tailored to user requirements have 

increased the complexity of IT systems to a point where standardization is 

required to handle important system aspects such as resource management and 

service performance efficiently. When competing service requests with specific 

performance requirements are received, the IT service provider must determine if 
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it has enough resources to satisfy the service requests, including performance 

metrics, and the service and resource configurations required. Existing service 

standards such as UDDI (Universal Description Discovery and Integration), 

SOAP (Simple Object Access Protocol), WSDL (Web Service Description 

Language) and WSMO (Web Service Modeling Ontology) have been developed 

to provide support for functional aspects of services and their specification for 

services discovery and interoperability. However those standards do not provide 

support for non-functional aspects of services, such as service performance. 

Multiple studies have focused on extending semantics to incorporate 

service performance metrics through the use of ontologies and templates. 

Ontologies capturing functional and non-functional (e.g. workload, performance) 

service aspects within standards-based specification language were developed in 

Wang, et al. (2006), Lamparter, Ankolekar and Studer (2007) and Tran, Tsuji and 

Masuda (2009). Customizable semantic templates were proposed to model 

functional and non-functional aspects of web services in Hu, Cao and Gu (2008) 

and Staikopoulos, et al. (2010). However these ontologies and templates assume 

user-defined functions for performance metrics and fail to consider the dynamic 

nature of the execution environment as the availability of system resources and 

service demands change over time. From the resource management perspective, 

competing service requests and their associated system activities add workload to 

system resources which in turn affects service performance (Wu and Woodside 

2004; Stewart and Shen 2005; Zhang, Bivens and Rezek 2007). Models capturing 

these cause-effect relations of service-related activities (A) on resources 
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workload/state (S) and service performance/quality (Q) are required for service 

standardization. Existing studies on resource workload and service performance 

models address particular services or focus on specific resources, and limited 

system aspects. For example, Vazhudai and Schopf (2002) used regression models 

to characterize the impact of I/O load variations on file transfer times in data 

grids. Doyle, et al. (2003) build internal-component models to predict the 

utilization of memory and storage resources for services with static content. 

Shivam, et al. (2006) studied the impact of various assignments of computing, 

network and storage resources on the completion time for batch processing tasks. 

Sun and Ifeachor (2006) used nonlinear regression models to predict the 

performance in a voice over IP (VoIP) setting by codec types under different 

network loads. Kan, et al. (2010) provided a prediction model for video quality on 

wireless networks based on network state metrics. Zhang, et al. (2011) developed 

a competitive market model for resource allocation by considering network delay 

in multi-class networks. Kang and Suh (2011) modeled the tradeoff between two 

service quality metrics: delay and reliability on wireless network transmissions. 

Workload and performance models are required at a more comprehensive, system 

wide scale considering multiple resources, their interactions, and the impacts of 

service-related activities. A systematic approach is required to capture these 

cause-effect relations independently of services functional and non-functional 

requirements. 
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2.2 Shortcomings 

Based on the above literature review, shortcomings from existing research 

can be summarized as follows: 

1) Available service standards do not provide support for resource 

workload and service performance specifications. 

2) Ontologies and templates extending service standards assume user-

defined functions for workload and performance metrics and fail to 

consider system dynamics. 

3) Workload and performance models available from existing studies 

address particular services or focus on specific resources, and limited 

system aspects. 

2.3 Objectives 

Address the above shortcomings by developing an empirical method to 

analyze and model the impacts of service-related activities (A) on resources 

workload/state (S) and service performance/quality (Q). The empirical method 

should be able to capture ASQ relations independently of services functional and 

non-functional requirements. 

Use the empirical method to gain insights about resource and performance 

tradeoffs of services, so this information together with the ASQ models can be 

considered for service standardization. 
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2.4 Methodology for data collection, analysis and modeling 

The proposed method involves the collection of system-wide dynamics 

data and the application of statistical analyses to uncover and model resources 

workload and service performance. This section describes the process of data 

collection, analysis and modeling. 

2.4.1 Data Collection 

A system monitor tool was developed to collect Windows performance 

variables (Microsoft Corporation 2003) during experimental service scenarios. 

The data is collected from the server computer and reflects the impacts of service-

related activities (A) on resources workload/state (S), and service 

performance/quality (Q). System dynamics variables from Windows performance 

objects such as Process, Processor, Memory, System, IP, TCP, UDP, Paging file, 

Server, web services and other objects can be collected simultaneously. 

2.4.2 Data Analysis 

The data collected from the experimental service scenarios is analyzed to 

investigate the impacts of service parameters (which mainly drive service-related 

activities) on resources workload/state (S) and service performance/quality (Q). 

The data analysis takes two steps: 1) data screening, and 2) effects analysis. The 

data screening first removes the variables falling into the following categories: 

� A variable records the highest or peak value since the server computer is 

restarted. For example, the variable, Virtual Bytes Peak of the Process 
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object, records the highest virtual address space in bytes used by the VCS 

process since the server computer is restarted. Hence, values of the 

variable keep increasing over time. 

� A variable collects the cumulative value over time since the server 

computer is restarted. For example, the variable, Datagrams Outbound 

Discarded of the IP object, counts the number of output IP datagrams with 

no errors that are discarded due to reasons such as lack of buffer space 

since the computer is restarted.  

� A variable collects data that is not affected by the experimental conditions. 

For example, the variable, Priority Base of the Process object measures the 

base priority of a service process. Under the experimental scenarios the 

priority of the service processes is constant through all conditions. 

For the variables of the Windows performance objects remaining after the 

data screening, ANOVA is performed using Statistica7 for each service scenario 

and each variable of Windows performance objects, with the variable as the 

dependent variable and the service parameters involved in the service scenario as 

the independent variables. ANOVA reveals the impacts of the service parameters 

individually and together on the system dynamics variable from Windows 

performance objects. If ANOVA results indicate a significant impact of one or 

more service parameters on a variable, the Tukey’s honest significant difference 

(HSD) test in Statistica7 is performed to reveal how different levels of the service 

parameters affect the system dynamics variable. Figure 1 shows examples of the 

following six different impacts revealed through Tukey’s test.  
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� Decrease (↓): the value of the S or Q variable decreases as the service 

parameter level increases. (see Figure 1.a) 

� Increase (↑): the value of the S or Q variable increases as the service 

parameter level increases. (see Figure 1.b) 

� Increase-Stable (↑s): the value of the S or Q variable increases and then 

keeps stable as the service parameter level increases. (see Figure 1.c) 

� Decrease-Stable (↓s): the value of the S or Q variable decreases and then 

keeps stable as the service parameter level increases. (see Figure 1.d) 

�  V (ν): the value of the S or Q variable decreases and then increases as the 

service parameter level increases. (see Figure 1.e) 

� Inverse-V (Λ): the value of the S or Q variable increases and then 

decreases as the service parameter level increases. (see Figure .f) 

     
                a. Decrease (↓).                              b. Increase (↑).                       c. Increase-Stable (↑s). 

     
            d. Decrease-Stable (↓s)                           e. V (ν).                                f. Inverse-V (Λ). 

Figure 1. Different impacts of service parameters on system dynamics variables 

from the VCS with data encryption service and background network traffic. 
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If a system dynamics variable is significantly affected by more than one 

service parameter, the partial eta-squared index (Olejnik and Algina 2003) in 

Statistica7 is obtained to determine the impacts size so the impacts of the service 

parameters can be ordered by their sizes. The service parameter with the largest 

impact size on a system dynamics variable affects the system dynamic variable 

most. The system dynamics variables are then grouped into categories according 

to their impacts with service parameters and the size of those impacts. 

2.4.3 Data Modeling 

Among the system dynamics variables that appear in the impacts 

categories and considering the cause-effect chains of service parameters (A) on 

resources workload/state (S), and service performance/quality (Q), linear 

regression models are built to capture: 1) quantitative relations of service 

parameters (A) with resource workload/state (S) variables and 2) quantitative 

relations of resource workload/state (S) variables with the service 

performance/quality (Q) metrics. Only a representative subset of resource 

workload/state (S) variables is selected to build these workload and performance 

models. The selection of this subset of variables should be based on expert 

domain-knowledge of the services under consideration. Statistica7 is used to build 

the linear regression models. 
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2.5 Description of Experimental Scenarios 

Two sets of experimental scenarios are implemented. One set of 

experiments involves four different variations of the voice communication service 

(VCS): VCS-only, VCS with background network traffic (VCS & Traffic), VCS 

with data encryption for security (VCS & Security) and VCS with data encryption 

and background network traffic (VCS & Security & Traffic). The voice 

communication service is a communication-intensive service. The data encryption 

service is used to encrypt voice data in the voice communication service for 

security purposes. Background network traffic is added to represent additional 

network activities that may occur during the voice communication service. 

Another set of experiments involves a motion detection service which is a 

computation-intensive service. Figure 2 shows the computer and network set-up 

for the two sets of experiments. The computer and network set-up consists of 

seven computers: one computer as a server, five computers running clients (one 

client on one computer), and one computer to generate network traffic. Each 

computer has 1 GB memory and Intel Pentium 4 processor of 2.2 GHz. All 

computers have Windows XP operating system with service pack 2 (SP2). The 

computer and network set-up stands alone without any other network connections 

to avoid interferences. 
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Figure 2. Computer and network set-up for VCS and MDS experiments. 

In the voice communication service (VCS), a client sends a service request 

to the server via the network, and the server sends the requested voice data to the 

client. VCS is implemented by converting an open-source video conference 

software package (Abdel-qader 2007) into a web service using C# in .NET. The 

data encryption service provides data encryption using the Advanced Encryption 

Standard (AES) algorithm developed by Daemen and Rijmen (2001). The data 

encryption algorithm is implemented within VCS. If requested, voice data is 

encrypted on the VCS server before it is transmitted over the network to a client. 

The computer generating the background network traffic uses a web service to 

generate traffic by continuously sending data packets over the network to the 

server computer. 

In the motion detection service, clients send service requests to the server 

to analyze video streams to detect motion. To focus on the computation-intensive 

aspect of the motion detection service, pre-recorded video files (each file with a 

different video resolution) stored on the server computer are used rather than 

Server 

Client 1 

Client 2 
Client 4 

Traffic 

Client 5 

Client3 
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having video data transmitted over the network. When a client requests the motion 

detection service, a video file with a specified video resolution is opened and 

processed frame by frame at the rate of 20 frames per second to simulate real-time 

video streaming from peripheral devices such as a webcam. Video data is 

analyzed using a motion detection algorithm which is implemented by converting 

an open-source motion detection algorithm package (Kirillov 2007) into a web 

service using C# in .NET. The detection algorithm first extracts a reference frame 

from the initial frames of a video stream, and then calculates differences between 

the subsequent frames and the reference frame. Multiple clients can 

simultaneously request the server to process a video stream with a specified video 

resolution to detect whether there is any motion. A process thread is created for 

each client. 

2.5.1 Service parameters in experimental scenarios 

For VCS, three service parameters are used to produce various levels of 

VCS activities: the sampling rate (Sa), the number of clients (C), and the size of 

the buffer (B) for holding voice data before transmitting the data to the clients 

over the network. The sampling rate is the frequency of sampling voice data from 

the sound card. A higher sampling rate gives a better quality of voice data and 

yields more voice data. More VCS clients produce more workload on resources 

and more voice data. Table 1 lists the levels of the service parameters of the VCS 

used in the experiments. 
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 For the security service of data encryption, two service parameters are 

used to produce various levels of data encryption activities: the encryption 

percentage (E) and the key length (K). The encryption percentage represents the 

percentage of VCS voice data being encrypted. The key length is the size of the 

key used for data encryption in the AES algorithm (Daemen and Rijmen 2001). A 

larger key length produces a stronger security. The levels of the encryption 

percentage and the key length used in the experiments are also listed in Table 1. 

For generating background network traffic, the number of threads created to 

generate and send packets to the server varies in the experiments as shown in 

Table 1. Each thread continuously generates and sends 32Kbytes packets to the 

server over the network. 

Table 1. Levels of the service parameters for VCS experiments. 

Service parameters Level 1 Level 2 Level 3 
Traffic (T) 0 5 10 
Percent Encryption (E) 0% 50% 100% 
Key Length (K) 128 bits 192 bits 256 bits 
Sampling rate (Sa) 44,100 Hz 132,300 Hz 220,500 Hz 
Number of clients (C) 1 3 5 
Buffer size (B) 16 Kbytes 32 Kbytes 48 Kbytes 

 

The motion detection service (MDS) has two service parameters: the video 

resolution (R) and the number of clients (C). A higher video resolution places a 

higher workload of analyzing more video data for motion detection and a longer 

delay of processing each video frame, but allows a better accuracy of motion 

detection since smaller moving objects can be captured. Each client runs one 

thread of motion detection. The levels of these two service parameters for MDS 
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are listed in Table 2. These service parameters produce various levels of MDS 

activities. 

Table 2. Levels of the service parameters for MDS experiments. 

Service parameters Level 1 Level 2 Level 3 
Video Resolution (R) 22x18px 44x36px 88x72px 
Number of clients (C) 1 3 5 

 

For the set of experiments involving VCS: VCS-only, VCS & Security, 

VCS & Traffic, VCS & Security & Traffic, and for the set of experiments 

involving MDS six Windows performance objects, namely, process, processor, 

memory, system, IP and web service are used to collect totally 186 variables of 

system dynamics data. Each combination of service parameters and their levels is 

run as an experimental condition. For example, the VCS-only scenario has nine 

experimental conditions for nine combinations which result from three service 

parameters of VCS and three levels of each parameter, respectively. For the set of 

experiments involving VCS, all the experimental conditions for all the four 

service scenarios are arranged in a random order and run continuously from one 

experimental condition to the next experimental condition. Then, this random 

order is reversed, and the reversed order is used to run all the experimental 

conditions for all the four service scenarios again after the computer network is 

cleaned up and restarted.   

For the set of experiments involving MDS, all the nine experimental 

conditions of MDS are first run in a random order and after the computer network 

is cleaned up and restarted, the reversed order is run. The data collected from the 
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two opposite orders is used in the data analysis so that a specific order of running 

the experimental conditions does not affect the data analysis results. Each 

experimental condition is run to collect 30 data observations with a rate of one 

observation per second.  

2.6 Results and Discussions 

In this section, the impacts of VCS, data encryption and background 

network traffic uncovered by analyzing the data from the VCS experiments are 

presented. Also the impacts of MDS uncovered by analyzing the data from the 

MDS experiments are presented. Models capturing the impacts of service 

parameters (A) on resources workload/state (S) and service performance/quality 

(Q) for the experiments are provided. 

2.6.1 Impacts of VCS 

The data screening and effects analysis of the data collected from the set 

of the experiments involving VCS reveal the following: 

� In the VCS-only scenario, 37 variables of Windows performance 

objects are significantly affected by at least one of the three service 

parameters (Sa, C and B) of VCS, 

� In the VCS & Traffic scenario, 45 variables of Windows performance 

objects show a significant impact by at least one of the four service 

parameters of VCS and background network traffic (Sa, C, B and T), 
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� In the VCS & Security scenario, 43 variables of Windows 

performance objects show a significant impact by at least one of the 

five service parameters of VCS and the data encryption service (Sa, C, 

B, E and K), and 

� In the VCS & Security & Traffic scenario, 46 variables of Windows 

performance objects show a significant impact by at least one of the 

six service parameters of VCS, data encryption and traffic (Sa, C, B, E, 

K and T). 

To determine the consistent impacts of the VCS parameters, Sa, C and B, 

the results from the VCS-only, VCS & Security, VCS & Traffic, and VCS & 

Security & Traffic scenarios are compared to identify the impacts of Sa, C and B 

that remain constant across these scenarios. Table 3 shows the three groups of 

system dynamics variables according to their impacts with the service parameters 

of VCS. In Table 3, service parameters in each group are ordered according to 

their effect size. The service parameter with the largest impact is listed first. 
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Table 3. Consistent Impacts with VCS. 

Impacts with 
VCS 

parameters Object Variable 
1. Sa↑C↑B↓ 
(11 variables) 
  
  
  

  
  
  

IP 
(2 variables) 

Performance (Q) variables: Fragments Created/sec, 
Fragmented Datagrams/sec. 

Process 
(7 variables) 

State variables: % Processor Time, % User Time, % 
Privileged Time.  
Activity variables: IO Other Operations/sec, IO Other 
Bytes/sec, Thread Count, Handle Count. 

Processor 
(2 variables) 

Activity variables: % User Time, % Privileged Time. 

2. Sa↑C↑ 
(3 variables) 
  
 

IP 
(1 variable) 

Activity variable: Datagrams Sent/sec. 

Memory 
(1 variable) 

Activity variable: Cache Faults/sec. 

System 
(1 variable) 

Activity variable: File Control Bytes/sec. 

3. C↑ 
(2 variables) 

Web Service 
(2 variables) 

Activity variables: Current Anonymous Users, Current 
Connections. 

 

Group 1, Sa↑C↑B↓: this group contains 

� System activity variables measuring counts of threads/handles and 

associated IO other operations and bytes for scheduling and 

synchronizing threads; 

� Resource workload/state variables measuring the CPU utilization of 

VCS in the user mode and the privileged mode; 

� Performance variables of VCS measuring IP fragments created by the 

server to send to the clients and the resulting fragmented datagrams. 

The increase in values of these variables with the increasing level of VCS 

activities through Sa and C indicates that CPU utilization in the user mode and 

outgoing IP fragments are the main characteristics of VCS’s workload and 

performance. The CPU utilization in the privileged mode also increases as the 
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level of VCS activities is raised due to the increase in scheduling and 

synchronization activities in privileged mode caused by the increase in VCS 

threads. The system dynamics variables in this group decrease their values as the 

buffer size increases because a larger buffer size results in a smaller frequency of 

sending out larger amounts of voice data each time. This reveals an important way 

of reducing the resource workload of VCS by increasing the buffer size. However, 

the throughput of VCS also decreases due to a larger buffer size. 

Group 2, Sa↑C↑: this group includes 

� System activity variables measuring cache faults and file control bytes 

associated with IO other operations and bytes in group 1; 

� Performance variable measuring the IP datagrams sent out by the VCS 

server to the VCS clients. 

The variables in this group, which measure the VCS performance and 

system activities for scheduling and synchronizing VCS threads, are similar to the 

system dynamics variables in group 1 and increase their values with the 

increasing level of VCS activities through Sa and C. However, the impacts of B 

on the system dynamics variables in group 2 are either weak or inconsistent 

across different VCS scenarios. 

Group 3, C↑: this group contains the system activity variables measuring 

the number of current network connections through IIS/web service which 

increase their value only with the increasing number of VCS clients.  
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In overall, the dominant impact of VCS manifest in outgoing network 

data, cache usage, processor usage in the user mode, and network connections for 

VCS clients. The increase in threads/handles, and CPU utilization in the 

privileged mode results from the increase in system activities. 

2.6.2 Impacts of background network traffic 

To determine the consistent impacts of the background network traffic 

parameter, T, the analysis results from the VCS & Traffic and VCS & Security & 

Traffic scenarios are compared to identify the impacts of T that remain constant 

across these scenarios. Table 4 shows the four groups of system dynamics 

variables according to their impacts with T.  

Table 4. Consistent Impacts with background network traffic. 

Impacts with 
Traffic Object Variable 

1. T↓s 
(6 variables) 
  

Memory 
(2 variables) 

Activity variables: Demand Zero Faults/sec, Page Faults/sec. 

Process 
(3 variables) 

Activity variables: IO Other Operations/sec, IO Other 
Bytes/sec, Thread Count. 

  Processor 
(1 variable) 

State variable: % User Time. 

2. T↓ 
(8 variables) 

System 
(8 variables) 

Activity variables: System Calls/sec, Context Switches/sec, 
File Read Bytes/sec, File Write Bytes/sec, File Read 
Operations/sec, File Write Operations/sec, File Data 
Operations/sec, File Control Operations/sec. 

3. T↑s 
(8 variables) 

IP 
(3 variables) 

Activity variables: Datagrams Received Delivered/sec, 
Datagrams Received/sec, Datagrams/sec. 

  Processor 
(4 variables) 

Activity variables: DPC Rate, DPCs Queued/sec, 
Interrupts/sec. 
State variable: % Privileged Time. 

  System 
(1 variable) 

Activity variable: File Control Bytes/sec. 

4. T↑ 
(1 variable) 

Memory 
(1 variable) 

Activity variable: Committed Bytes. 
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Group 1, T↓s: this group includes several variables in group 1 of Table 3 

that increase with more VCS activities. These variables decrease their value as T 

increases from level 1 to level 2 because VCS and traffic compete for CPU and 

network bandwidth. An increase in background network traffic reduces the usage 

of CPU in the user mode and network bandwidth by VCS and thus decreases 

system activities of VCS. However, VCS activities stop decreasing and remain at 

the similar level as T increases from level 2 to level 3 due to the saturation of the 

network bandwidth by the incoming background traffic and the consequent drop 

of the additional incoming network traffic.  

Group 2, T↓: this group contains the variables related to file data (read and 

write) operations and bytes, file control operations, system calls and context 

switches. These variables decrease with the increasing level of T because more 

CPU time is spent on processor interrupts from the network interface card due to 

the incoming background traffic, leaving less CPU time for context switches and 

system calls to operating system service routines for CPU scheduling. 

Group 3, T↑s: this group includes incoming network data which is 

measured by IP object variable and increases with T. The incoming network data 

is the main characteristic of background network traffic in the experiments. The 

rest of the variables in group 3 measure processor interrupts from the network 

interface card to handle incoming network traffic and CPU utilization in the 

privileged mode for those processor interrupts, and increase their values with T. 

File control bytes in the system increase with both T in Table 4 and Sa and C in 
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Table 3. Hence, file control bytes in the system seem to increase with more 

activities in the system, including VCS and incoming network traffic. The values 

of the variables in group 3 no longer increase as T increases from level 2 to level 

3. This leveling off effect may be caused by the saturation of the network 

bandwidth by the highest level of T in the experiments and the consequent drop of 

additional incoming network traffic.  

Group 4, T↑: Committed Bytes of the Memory object in Group 4 reflect 

the memory usage by the incoming network traffic and increase with T. 

2.6.3 Impacts of security service of data encryption 

To determine the consistent impacts of the activity parameters, E and K, 

the analysis results from the VCS & Security and VCS & Security & Traffic 

scenarios are compared to identify the impacts of E and K that remain the same 

across these scenarios. Table 5 shows the two groups of system dynamics 

variables according to their impacts with E and K. 

Table 5. Consistent Impacts with security service of data encryption. 

Impacts 
with 
Security 
parameters Object Variable 
1. E↓ 
(8 variables) 
  
  
  

IP 
(2 variables) 

Performance (Q) variables: Fragments Created/sec, 
Fragmented Datagrams/sec. 

Processor 
(1 variable) 

State variable: % Privileged Time. 

System 
(5 variables) 

Activity variables: File Control Operations/sec, File Data 
Operations/sec, File Write Operations/sec, File Read 
Operations/sec, System Calls/sec. 

2. E↑ 
(32 
variables) 

IP 
(4 variables) 

Activity variables: Datagrams Received Delivered/sec, 
Datagrams Received/sec, Datagrams/sec, Datagrams 
Sent/sec. 
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Memory 
(5 variables) 

Activity variables: Cache Faults/sec, Demand Zero 
Faults/sec, Page Faults/sec, Page Reads/sec, Page Inputs/sec. 

Process 
(13 
variables) 
  

Activity variables: Page Faults/sec, IO Other Operations/sec, 
IO Other Bytes/sec, IO Data Bytes/sec, IO Write Bytes/sec, 
IO Write Operations/sec, IO Read Bytes/sec, IO Data 
Operations/sec, IO Read Operations/sec, Thread Count. 
State variables: % Processor Time, % User Time, % 
Privileged Time. 

Processor 
(4 variable) 

State variable: % User Time. 
Activity variables: DPC Rate, DPC Queued/sec, 
Interrupts/sec. 

System 
(3 variables) 

Activity variables: File Control Bytes/sec, File Read 
Bytes/sec, File Write Bytes/sec. 

Web Service 
(3 variable) 

Activity variable: Current Anonymous Users, Current 
Connections, Post Requests/sec. 

 

Group 1, E↓: this group includes the IP variables which measure the 

throughput performance of VCS and decrease their values by increasing 

encryption percentage due to the time required to encrypt voice data packets 

before transmission and the resource competition between the data encryption part 

and the data transmission part of VCS. The data encryption slows down the rate of 

sending out encrypted voice data for VCS. The % Privileged Time of the 

processor object for scheduling and synchronization of activities in the system 

also decreases with E due to more computation time for data encryption in the 

user mode. More data encryption decreases file data (read and write) and control 

operations but increases file data and control bytes in the system (group 2). 

  Group 2, E↑: this group contains IO reading and writing data bytes in IO 

data operations and associated system activities (including threads, page faults in 

cache and memory, CPU utilization in the user mode, and processor interrupts 

from data channels and disk drivers) which increase with E due to more data 

encryption work. CPU utilization in privileged mode also increases with E for 



 

27 

 

scheduling and synchronizing more activities in the system. Current network 

connections via the web service increase with E because each connection for 

sending out encrypted voice data lasts longer. The total amount of IP datagrams 

(received and sent) increases with E because the data encryption slows down the 

use of network bandwidth by VCS, leaving more network bandwidth available for 

incoming network traffic. 

Hence, the security service of data encryption is characterized by more 

reading and writing data bytes in IO operations on data channels in the system and 

an associated increase in threads, cache and memory usage, CPU utilization, and 

overall activities in the system. The competition between the data encryption and 

the network data transmission for CPU time exists, causing a decrease in the 

throughput of VCS network data transmission and a longer network connection 

session as the encryption percentage increases. The decrease in the throughput of 

VCS in turn leaves more network bandwidth for incoming background traffic. 

The encryption percentage has much larger impacts than the key length which 

shows only weak or inconsistent impacts on the system dynamics variables 

affected by E. 

2.6.4 A summary of the impacts with VCS, security and traffic 

Table 6 summarizes major groups of system activity, workload/state and 

performance variables with similar impacts from more than one parameter of 

VCS, security and traffic. 
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Table 6. Summary of system dynamics variables affected by 
more than one service parameter. 

Group Variable Object 

Impacts 
with 
VCS 

Impacts 
with 
Security 

Impacts 
with 
Traffic 

1 

% User Time Processor Sa↑C↑ E↑ 
 

% Privileged Time 

Process Sa↑C↑ E↑ 
 

% Processor Time 
% User Time 
IO Other Operations/sec 
IO Other Bytes/sec 
Thread Count 
Datagrams Sent/sec IP Sa↑C↑ E↑ 

 
Cache Faults/sec Memory Sa↑C↑ E↑ 

 

2 
Fragmented Datagrams/sec 

IP Sa↑C↑B↓ E↓ T↓s 
Fragments Created/sec 

3 File Control Bytes/sec System Sa↑C↑ E↑ T↑s 

4 

Datagrams/sec IP 
 

E↑ T↑s 
DPC Rate 

Processor 
 

E↑ T↑s DPCs Queued/sec 
Interrupts/sec 

5 

File Control Operations/sec 

System 
 

E↓ T↓ 
File Data Operations/sec 
File Write Operations/sec 
File Read Operations/sec 
System Calls/sec 

6 

Page Faults/sec 
Memory 

 
E↑ T↓s 

Demand Zero Faults/sec 
File Read Bytes/sec 

System 
 

E↑ T↓ 
File Write Bytes/sec 

7 
Current Anonymous Users Web 

Service 
C↑ E↑   

Current Connections 

 

In summary, VCS produces an increase in the following: 

� Outgoing network data (see group 2 in Table 6), 

� CPU utilization in the user mode (see group 1 in Table 6), and 

� Network connections for VCS clients (see group 7 in Table 6). 

The security service of data encryption produces an increase in the 

following: 
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� Reading and writing data bytes in IO operations on data channels in 

the system, 

� CPU utilization in the user mode (see group 1 in Table 6), 

� Cache and memory usage (see group 1 and group 6 in Table 6), and 

� Processor interrupts from data channels and disk devices (see group 4 

in Table 6). 

Background network traffic in the experiments produces an increase in the 

following: 

� Incoming network data (group 4 in table 6), and 

� Processor interrupts from the network interface card (see group 4 in 

Table 6). 

VCS, the security service and background traffic all increase activities in 

the system, which consistently manifest in the increase in 

� File control bytes/sec in the system (see group 3 in Table 6). 

Both VCS and the security service of data encryption create threads and 

require CPU privileged time and IO other operations and bytes for scheduling and 

synchronizing threads (see group 1 in Table 6). 

VCS, the security service of data encryption and background network 

traffic compete for system resources in the following ways: 
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� Competition between the data encryption and the network data 

transmission for CPU time: more data encryption causes a decrease in 

the throughput of VCS network data transmission and a longer 

network connection session which in turn leaves more network 

bandwidth for incoming background traffic (see group 2 and group 7 

in Table 6). 

� Competition between VCS and incoming background traffic for CPU 

time and network bandwidth. More incoming background traffic 

reduces VCS activities (see group 2 in Table 6). 

In group 5 of Table 6, file data (read and write) and control operations in 

the system are reduced by more data encryption and background traffic because 

the repetitive use of the same data files by the data encryption service and 

background traffic. Also in group 5 of Table 6, system calls/sec in the system are 

reduced by more data encryption and background traffic due to more CPU time on 

handling more interrupts from data channels and the network interface card and 

thus less CPU time for CPU scheduling and synchronization through system calls. 

2.6.5 Impacts of MDS 

There are 46 variables of Windows performance objects that show 

significant impacts with the MDS parameters, C and R, as shown in Table 7. The 

MDS parameter with the largest impact size is listed first in Table 7. 
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Table 7. Impacts of MDS parameters on system dynamics variables 

Impacts with 
MDS 

parameters 

Object Variables 

1. C↑R↑ 
(4 variables) 

 

Process 
(2 variables) 

State variables: % Processor Time, % User Time. 

Processor 
(1 variable) 

State variables: % User Time. 

System 
(1 variable) 

Activity variable: Exception Dispatches/sec. 

2. C↑R↑s 
(12 variables) 
 

Process 
(9 variables) 

Activity variables:  IO Other Operations/sec, IO Read 
Bytes/sec, IO Data Bytes/sec, Handle Count.  
State variables: Working Set, Page File Bytes, Private Bytes, 
Virtual Bytes, Pool Nonpaged Bytes. 

System 
(2 variables) 

Activity variables: File Read Bytes/sec, Processes. 

Memory 
(1 variable) 

State variable: Committed Bytes. 

3. C↑ 
(10 variables) 
 

Process 
(1 variable) 

State variable: % Privileged Time. 

System 
(1 variable) 

State variable: Processor Queue Length. 

Web Service 
(8 variables) 

Activity variables: Current Anonymous Users, Current 
Connections, Current ISAPI Extension Requests, Bytes 
Sent/sec (Cs↑), Bytes Received/sec (Cs↑), Bytes Total/sec 
(Cs↑), Files Sent/sec, Files/sec (Cs↑). 

4. R↓C↑ 
(7 variables) 

 

Process 
(4 variables) 

Activity variables: Thread Count, IO Read Operations/sec, IO 
Data Operations/sec, IO Other Bytes/sec. 

System 
(3 variable) 

Activity variables: Threads, File Read Operations/sec, File 
Data Operations/sec. 

5. C↓R↓ 
(7 variables) 

  

System 
(6 variables) 

Activity variables: File Write Operations/sec, File Control 
Operations/sec, File Write Bytes/sec, Context Switches/sec, 
File Control Bytes/sec, System Calls/sec. 

Processor 
(1 variable) 

State variable:  % Privileged Time. 

6. C↓R↑ 
(4 variables) 

  

Memory 
(3 variables) 

Activity variables: Demand Zero Faults/sec, Page Faults/sec, 
Cache Faults/sec. 

Process 
(1 variable) 

Activity variable: Page Faults/sec. 

 

Group 1 (C↑R↑) and group 2 (C↑R↑s): the variables in these two groups 

measure memory bytes, file and IO read bytes, CPU time in the user mode which 

are used by MDS processes. MDS processes involve the use of memory in bytes, 

file and IO read bytes and CPU time in the user mode which increases with more 

MDS clients and higher video resolutions. File and IO read bytes, associated 
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memory usage in bytes and MDS processes created for these activities keep stable 

as R increases from level 2 to level 3 possibly due to the constraint on the file read 

speed. 

Group 3 (C↑) and group 4 (R↓C↑): the variables in this group measure the 

communication with the web service (i.e., user connections and data 

communication in files and bytes) which increases with more MDS clients since 

MDS is implemented using the web service software. More MDS clients produce 

more MDS threads which in turn cause an increase in % Privileged Time of the 

processor for the web service and Processor Queue Length due to the scheduling 

and synchronization of more threads. File and IO read operations also increase 

with more MDS clients. MDS threads and file and IO read operations of these 

threads decrease by increasing video resolution because a higher video resolution 

requires more computation time and produces a longer delay to determine the 

motion level in a video frame. 

Group 5 (C↓R↓) and group 6 (C↓R↑): the variables in these two groups 

measure file and IO write operations and bytes, page faults in cache and memory, 

context switches, system calls to operating system service routines for scheduling 

and synchronization, and % Privileged Time associated with context switches and 

systems calls. All MDS clients use the same video files for motion detection and 

produce the same outcome of motion detection. Hence, more MDS clients using 

the same data reduce page faults in cache and memory and file and IO write 

operations to record the motion detection results. This characteristic is associated 
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with the special feature of the MDS scenario in the experiments, and may not hold 

for MDS which processes different video files. A higher video resolution causes 

more page faults in cache and memory because a video frame of a higher 

resolution has more differences in the data content. Context switches, system calls 

and associated % Privileged Time on the processor for the overall system decrease 

with MDS clients due to more computation time and longer processing delay in 

the user mode. This also causes the longer processor queue as seen in group 3 of 

Table 7. 

Hence, MDS is characterized by file and IO read operations and bytes, 

memory usage, and CPU utilization in the user mode which increase with MDS 

clients. Increasing the video resolution has the following impacts: 

� Increases page faults in cache and memory, and 

� Decreases MDS threads, file and IO read operations from fewer MDS 

threads, and CPU utilization in the privileged mode for thread 

scheduling and synchronization, due to a longer processing delay of 

computing the motion level in a video frame of a higher resolution. 

However, file and IO read bytes do not decrease with the increasing 

video resolution because more data is processed for a video frame of a 

higher resolution. 

In summary, MDS produces an increase in File and IO read operations and 

bytes, and associated cache and memory usage, and CPU utilization in the user 

mode. Using video data of a higher resolution for motion detection produces more 
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memory-related system overhead in terms of more page faults and a longer 

processing delay of computing the motion level for a MDS thread which in turn 

reduces CPU availability for other processes/threads. 

2.6.6 Cause-effect (ASQ) models of system dynamics 

ANOVA and Tukey’s test uncovered the significant, qualitative relations 

of service parameters with resources workload/state and service performance of 

VCS, data encryption service, background network traffic and MDS. Cause-effect 

(ASQ) models capturing system dynamics for each service can be further built for 

each performance metric (Q). The performance metrics of each service mainly 

depend on the workload/state of system resources which are driven by the service 

parameters. First, models are built to capture the workload/state of system 

resources (S) with service parameters (A), and then models are built to capture the 

effect on performance metrics (Q) due to the workload/state of system resources 

(S). These quantitative models can be used directly to determine resources 

workload/state and consequently service performance given certain levels of 

service parameters and support service standardization for services modeling, 

composition, monitoring, optimization and management stages of service-based 

systems (SBS). 

For the voice communication service (VCS) a major performance metric 

(Q) is the network throughput of voice data from the VCS server to the VCS 

clients. Fragments Created/sec of the IP object shown in group 1 of VCS impacts 

in Table 3, can be used to measure the throughput of VCS. Other performance 
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metrics for VCS (e.g., processing delay) are not collected in this study. Hence, the 

VCS throughput is used as an example of how to build the system activity- state-

performance dynamics models. For each service scenario involving VCS, system 

dynamics models are built using the service parameters of all the services 

involved in the service scenarios. For example in the VCS & Security scenario, 

the five service parameters of VCS (Sa, C and B) and the security service of data 

encryption (E and K) are used to build the system dynamics models. Fragments 

Created/sec of the IP object, as performance metric for VCS, can be found in 

Group 2 of Table 6 that summarize major groups of VCS, security and 

background traffic impacts. The following seven system dynamics variables are 

selected from the groups in Table 6 with at least one system dynamics variable 

selected from each group: 

� %Processor Time_Process (from Group 1 in Table 6) 

� Thread Count_Process (from Group 1 in Table 6) 

� Interrupts/sec_Processor (from Group 4 in Table 6) 

� File Control Bytes/sec_System (from group 3 in Table 6) 

� File Read Bytes/sec_System (from group 6 in Table 6) 

� System Calls/sec_System (from group 5 in Table 6) 

� Current Connections_Web Service (from group 7 in Table 6). 

By using the data collected from the VCS experiments for the above 

system dynamics variables to perform the linear regression, the system dynamics 

models for each service scenario involving VCS were built. These models are 
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shown in Tables 8-11. In these tables, an R2 value in the range of [0, 1] indicates 

the goodness-of-fit of a given model to the data. The higher the R2 value, the 

better fit of the model to the data.  

The model of the performance metric (Q) for VCS in Tables 8-11 has the 

R2 value greater than 0.9. This indicates that the performance metric (Q) for VCS 

can be well predicted from the variables representing resources workload/state 

which can be predicted from the service parameters in each service scenario. Note 

that not all the service parameters are needed to predict each variable representing 

resources workload/state since different system dynamics variables may be 

affected by different service parameters. Moreover, not all seven variables 

representing resources workload/state are required to predict the performance 

metric (Q) for VCS. Three, four, five and seven system dynamics variables are 

needed in the performance model for the VCS-only, VCS & Traffic, VCS & 

Security, and VCS & Security & Traffic scenarios respectively. Hence, as the 

complexity of the service scenarios increases more variables representing 

resources workload/state are required to predict the performance metric (Q). The 

R2 values for the models of some resource workload/state variables (File Read 

Bytes/sec_System, System Calls/sec_ System, and Current Connections_Web 

Service in Table 8 and Table 9) with the service parameters are small (R2 ≤ 0.7) 

possibly because these system dynamics variables may have nonlinear relations 

with the service parameters under these service scenarios. However, under these 
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service scenarios these resource workload/state variables (S), with small R2, are 

not needed in the models for the performance metric (Q). 

Table 8. Linear regression models of system dynamics for VCS-only. 

Voice Communication Service (VCS)  
S or Q Variable Regression Model R2 

% Processor Time_Process (SPT) 
SPT = -1.79 + 0.00003(Sa) + 1.17(C) - 
0.000055(B) 

0.831 

Thread Count_Process (STC) STC = 11.2 + 0.000018(Sa) + 4.18(C)  0.974 

Interrupts/sec_Processor (SI) 
SI = 241 + 0.000385(Sa) + 15.3(C) - 
0.000294(B) 

0.874 

File Control Bytes/sec_System 
(SFCB) 

SFCB = - 1344903 + 12(Sa) + 517389(C) 0.868 

File Read Bytes/sec_System (SFRB) SFRB = 93719 - 0.38(Sa) - 2994(C)  0.397 
System Calls/sec_System (SSC) SSC = 84208  - 0.0284(Sa) - 2462(C) 0.381 
Current Connections_Web Service 
(SCC) 

SCC = 6.15 + 0.000003(Sa) + 1.05(C)  0.563 

Fragments Created/sec_IP (Q) 

Q = - 515 + 0.917(STC) + 1.27(SI) + 
0.000669(SFCB)  
Or Q = - 162 + 28.8(SPT) + 1.37(STC) + 
0.000636(SFCB)  

0.999 
 
0.999 

 

 

Table 9. Linear regression models of system dynamics for VCS & Traffic. 

Voice Communication Service & Traffic (VCS & T) 
S or Q Variable Regression Model R2 

% Processor Time_Process (SPT) 
SPT = - 2.01 + 0.00003(Sa) + 1.26(C) - 
0.00006(B) 

0.826 

Thread Count_Process (STC) 
STC = 11.4 + 0.000017(Sa) + 4.19(C) - 
0.000004(B) 

0.972 

Interrupts/sec_Processor (SI) SI = 685 + 115(T) - 0.000615(Sa) - 28.2(C)  0.736 
File Control Bytes/sec_System 
(SFCB) 

SFCB = 2251534 + 990325(T) + 4.54(Sa) + 
196432(C) 

0.736 

File Read Bytes/sec_System (SFRB) SFRB = 88136 - 1682(T) - 0.0274(Sa) - 2319(C)  0.576 
System Calls/sec_System (SSC) SSC = 79480 - 1445(T) - 0.196(Sa) - 1892(C) 0.574 
Current Connections_Web Service 
(SCC) 

SCC = 6.83 + 0.979(C) - 0.000009(B) 0.532 

Fragments Created/sec_IP (Q) 
Q = 1375 + 58.4(SPT) + 6.13(STC) - 5.38(SI) + 
0.000624(SFCB)  

0.989 
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Table 10. Linear regression models of system dynamics for VCS & Security. 

Voice Communication Service & Security (VCS & S)  
S or Q Variable Regression Model R2 

% Processor Time_Process (SPT) 
SPT = - 31 + 0.00015(Sa) + 6.57(C) - 
0.000086(B) + 0.396(E) 

0.787 

Thread Count_Process (STC) 
STC = 11.5 + 0.000018(Sa) + 4.21(C) - 
0.000001(B) 

0.974 

Interrupts/sec_Processor (SI) 
SI = 263 + 0.0003(Sa) + 12.9(C) - 0.00038(B) - 
0.141(E) 

0.775 

File Control Bytes/sec_System 
(SFCB) 

SFCB = - 2630375 + 17.9(Sa) + 759289(C) + 
26040(E) 

0.847 

File Read Bytes/sec_System (SFRB) 
SFRB = -2128216 + 9.16(Sa) + 385766(C) + 
29047(E) 

0.765 

System Calls/sec_System (SSC) 
SSC = 107604 - 0.142(Sa) - 6773(C) + 
0.0758(B) - 360(E) 

0.764 

Current Connections_Web Service 
(SCC) 

SCC = 5.09 + 0.000002(Sa) + 1.51(C) + 
0.0143(E) 

0.746 

Fragments Created/sec_IP (Q) 
Q = - 2526 - 36.6(SPT) + 18.1(STC) + 7.99(SI) + 
0.000496(SFCB) - 24.6(SCC)  

0.963 

 

 

Table 11. Linear regression models of system dynamics for VCS & 

Security & Traffic. 

Voice Communication Service & Security & Traffic (VCS & S & T)  
S or Q Variable Regression Model R2 

% Processor Time_Process (SPT) 
SPT = -27.5 - 0.121(T) + 0.00014(Sa) + 6.09(C) 
- 0.00007(B) + 0.377(E) 

0.792 

Thread Count_Process (STC) 
STC = 11.3 + 0.000018(Sa) + 4.21(C) + 
0.00547(E) 

0.973 

Interrupts/sec_Processor (SI) 
SI = 613 + 118(T) - 0.00042(Sa) - 18(C) + 
0.315(E) 

0.74 

File Control Bytes/sec_System 
(SFCB) 

SFCB = 792072 + 990021(T) + 10.9(Sa) + 
470505(C) + 26355(E) 

0.748 

File Read Bytes/sec_System (SFRB) 
SFRB = -1953250 - 15728(T) + 8.05(Sa) + 
341722(C) + 5.35(B) + 27052(E) 

0.766 

System Calls/sec_System (SSC) 
SSC = 98673 - 1119(T) - 0.117(Sa) - 5729(C) + 
0.0423(B) -322(E) 

0.752 

Current Connections_Web Service 
(SCC) 

SCC = 5.55 + 1.47(C) - 0.000007(B) + 
0.0163(E) 

0.741 

Fragments Created/sec_IP (Q) 
Q = 1833 - 6.2(SPT) + 24.6(STC) - 6.34(SI) + 
0.000732(SFCB) - 0.00433(SSC) - 32.3(SCC) - 
0.000691(SFRB)  

0.925 
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2.7 Conclusions 

Through conducting the experiments of running different services (voice 

data communication, data encryption for security, motion detection, and 

background network traffic) and collecting, analyzing and modeling the 

experimental data under various services, system-wide impacts of these services 

on system activities, resources workload/state and service performance were 

uncovered (Tables 3-7). Specifically, the voice communication service (VCS) 

produces an increase in outgoing network data, CPU utilization in the user mode, 

and network connections. The security service of data encryption produces an 

increase in reading and writing data bytes in IO operations on data channels in the 

system, CPU utilization in the user mode, cache and memory usage, and 

processor interrupts from data channels and disk devices. Background network 

traffic in the experiments produces an increase in incoming network data and 

processor interrupts from the network interface card. The computation-intensive 

motion detection service (MDS) produces an increase in file and IO read 

operations and bytes, and associated cache and memory usage, and CPU 

utilization in the user mode. 

The VCS, security service and background network traffic all increase 

activities in the system, which consistently manifest in the increase in file control 

bytes/sec in the system. Both VCS and security service create threads and require 

CPU privileged time and IO other operations and bytes for scheduling and 

synchronizing threads. The VCS, security service and background network traffic 
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compete for system resources, especially CPU time and network bandwidth, 

resulting in tradeoffs among these services in their resource workload and 

performance. Although the experimental set-up for the VCS and MDS scenarios 

is small (1 server, 5 clients) in comparison to typical IT service-based scenarios 

that can have up to dozens of servers and hundreds or even thousands of clients, 

the system-wide impacts uncovered for these specific services on system 

activities, resources workload/state and service performance are still valid for 

larger set-ups, since, independent of the computer and network set-up, services 

still generate the same type of system activities and require the same type of 

system resources to provide the functionality required by clients, although in 

different quantity depending in the number of client’s requests and their 

performance (QoS) requirements. The regression models that were built for these 

scenarios to capture the quantitative relations of service parameters with resources 

workload/state (S) and service performance (Q) have to be used with caution 

when used to estimate resource workload and performance in larger service 

scenarios due to the uncertainty generated by model extrapolation. 

The method presented in this study for collecting system dynamics data, 

analysis and modeling can be used to uncover system-wide impacts and identify 

interaction effects of services, independent of their functional and non-functional 

requirements. The information uncovered by this method can be used to provide 

support for service modeling, composition, monitoring, optimization, and 

management stages of service-based systems (SBS).  
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CHAPTER 3 

IMPACTS OF SERVICE, SECURITY AND CYBER ATTACKS AND THEIR 

IMPLICATIONS ON SYSTEM WORKLOAD, PERFORMANCE AND 

SURVIVABILITY 

3.1 Literature review 

In general, survivability is often defined as the capability of a system to 

fulfill its mission in a timely manner even in the presence of attacks, failures or 

accidents (Lipson and Fisher, 1999; Atighetchi et al., 2004; Yi and Zhang, 2005; 

Zhang et al., 2007; Xiao et al., 2007; Zuo and Panda, 2009). For service-based 

systems, survivability is linked to service performance. Survivability without 

some definition of the minimum service performance required to be survivable is 

meaningless (Li, Shu and Feng 2009). Although service performance metrics may 

vary according to service functionality, they usually measure performance aspects 

such as: timeliness, precision and accuracy (Chen, Farley and Ye, 2004). A system 

unable to adapt in the presence of cyber attacks, failures or accidents is very 

limited since the presence of these conditions most likely will degrade the service 

performance to a point below minimum requirements if adaptation decisions are 

not taken.  

A general approach to system survivability involves calling in the reserves 

for additional system resources. However, reserving additional system resources 

for unforeseen events can be costly and impractical. There is always a limitation 
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in how much system reserves can be held. There is always a possibility that the 

damage caused by cyber attacks lead to a severe shortage of system resources. 

 For this part of the research different ways of making tradeoffs within the 

limits of system resources are explored based on the impacts of services, security 

mechanisms and attacks on system activities, resources workload/state, and 

service performance/quality. The execution of a service request adds workload to 

system resources. Security activities may be added to protect the system from 

cyber attacks. These activities also require system resources to fulfill its mission. 

Cyber attacks themselves can be represented as additional system activities 

launched by malicious users with the purpose to compromise system resources, 

services and security. Services, security mechanisms and attacks drive system 

activities which change the workload/state of system resources. Changes in the 

workload/state of system resources affect the performance of services (Ye, 2002; 

Ye, Newman and Farley, 2005; Ye, 2008). System impacts of services, security 

mechanism and attacks in the form of activity-state-performance chains are not 

well understood at system scale, especially under services, security mechanisms 

and attacks simultaneously. Such cause-effect chains are not readily available 

from the design of system and application software which provides mostly 

algorithm-based operational models.  

Previous studies on resources workload and service performance impacts 

(Vazhkudai and Schopf 2002; Doyle, et al. 2003; Shivam, Babu and Chase 2006; 

Sun and Ifeachor 2006; Kan, Sun and Ifeachor 2010; Kang and Suh 2011; Zhang, 
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Verma and Cheng 2011) address particular services or specific resources, covering 

limited system aspects. Hence, it is necessary to investigate the cause-effect chain 

of system activities, resources workload/state and service performance/quality 

(Ye, Yau, et al. 2010) driven by services, security mechanisms, cyber attacks, and 

their parameters. Based on the analytical results on system impacts of services, 

security mechanisms and cyber attacks, implications of those impacts in 

developing strategies for system survivability can be explored. 

3.2 Shortcomings 

Based on the above literature review, shortcomings from existing research 

can be summarized as follows: 

1) The general approach of reserving additional system resources for 

survivability in case of unforeseen events is costly and impractical. 

2) System adaptation decisions require understanding the impacts of 

services, security mechanisms and cyber attacks on resources 

workload/state (S), and service performance/quality (Q), but these 

activities (A) - workload/state (S) - performance/quality (Q) chains are 

not well understood at the system scale, especially under services, 

security mechanisms and cyber attacks simultaneously. 
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3.3 Objectives 

Address the above shortcomings by using the empirical method proposed 

in chapter 2 to investigate the impacts of services, security mechanisms and cyber 

attacks on resources workload/state (S) and service performance/quality (Q).  

Use the results on the impacts of services, security mechanisms and cyber 

attacks to identify tradeoffs within the limits of system resources and develop 

general/specific strategies for system survivability. 

  3.4 Methodology of data collection and analysis 

The method used involves the collection of system-wide dynamics data 

and the application of statistical analyses to uncover resources workload and 

service performance. The method is fully described in section 2.4. 

3.5 Description of experimental scenarios 

The experimental scenarios involve two specific services (voice 

communication and motion detection), two security mechanisms (data encryption 

and intrusion detection), and five cyber attacks (ARP Poison, ping flood, 

vulnerability scan, fork bomb, and remote dictionary). Two sets of experiments 

are run. One set of experiments involves the voice communication service, data 

encryption as security mechanism to protect voice data transmitted over the 

network, and five cyber attacks. Another set of experiments involves the motion 

detection service, intrusion detection as security mechanism to protect the system 
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running the motion detection service, and five cyber attacks. Figure 3 shows the 

computer and network set-up for the two sets of experiments consisting of one 

server, five clients and the attacker. Each computer has an Intel processor Pentium 

4 2.2 GHz, 1 GB memory and Windows XP operating system with service pack 2 

(SP2). The computer and network set-up stands alone without any other network 

connections to avoid interferences. 

   

Figure 3. Computer and network set-up for services, security mechanism and 
cyber attacks experiments. 

3.5.1 VCS, data encryption and cyber attack scenarios 

 Voice communication is a communication-intensive service. In voice 

communication, a client sends a service request to the server via the network, and 

the server sends the requested voice data to the client. There are one server and up 

to five clients, each running on its own computer. Voice communication is 

implemented by converting an open-source video conference software package 

(Abdel-qader 2007) into a web service using C# in .NET and Internet Information 

Service (IIS) version 6. The data encryption service uses the Advanced 

Server 

Client 1 

Client 2 
Client 4 

Attacker 

Client 5 

Client3 
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Encryption Standard (AES) algorithm developed by Daemen and Rijmen (2001). 

The data encryption is paired with voice communication to protect the 

confidentiality of voice data transmitted over the network. Data encryption is 

implemented within voice communication software. If requested, voice data is 

encrypted on the server before the voice data is transmitted over the network to a 

client. Each attack (A) in the experiments is launched against the server computer. 

ARP poison is a man-in-the-middle attack that corrupts the content of the ARP 

table on the server computer. Cain and Abel® v4.9.30 is used to perform the ARP 

Poison attack. Ping flood is a denial of service (DOS) attack that quickly fills up 

network resources for holding network connections. Ping ® v2.0 is used to 

perform the attack. Vulnerability scan is an attack that searches for system 

vulnerabilities by scanning the network open ports. Nmap ® v4.76 is used to 

perform the attack. Fork Bomb is also a DOS attack that keeps creating 

processes/threads and thus fills up system resources for holding processes/threads. 

Remote dictionary is a brute-force attack that keeps trying different user names 

and passwords to gain access to the administrator account on a computer via the 

Windows desktop connection utility. Tscrack® v2.1 is used to perform the remote 

dictionary attack.  

Voice communication has three service parameters: 1) the sampling rate 

(Sa) which determines the quality of the sampled voice data, 2) the number of 

clients (C) requesting the service, and 3) the size of the buffer (B) holding the 

sampled voice data at the server before transmission. The parameters for data 
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encryption are: 1) the encryption percentage (E) which is the percentage of 

packets encrypted, and 2) the key length (K) which is the size of the key used for 

encryption. Table 12 defines the levels of each of the parameters used in the 

experiment. 486 experimental conditions for 3*3*3*3*3*2 combinations of levels 

for Sa, C, B, E, K and A are run. For each attack (A), 486 experimental conditions 

are run in a random order, and then run again in a reverse order after cleaning up 

and restarting the server. System dynamics data from both orders of experimental 

runs is used for data analyses so a particular order of running the experimental 

conditions does not affect the analysis results. 

Table 12. Parameters levels for VCS, data encryption and cyber attacks. 

Service Parameters Level 1 Level 2 Level 3 
Sampling rate (Sa) 44,100Hz 132,300Hz 220,500Hz 
Number of Clients (C) 1 3 5 
Buffer size  (B) 16Kbytes 32Kbytes 48Kbytes 
Encryption Percentage (E) 0% 50% 100% 
Key Length (K) 128 bits 192 bits 256 bits 
Cyber Attack (A) no attack attack  

 

3.5.2 MDS, intrusion detection and cyber attack scenarios 

Motion detection is a computation-intensive service. In motion detection 

service (MDS), clients send service requests to the server to analyze video 

streams to detect motion. To focus on the computation-intensive aspect of motion 

detection, pre-recorded video files (each file with a different video resolution) 

stored on the server computer are used instead of having video data transmitted 

over the network. When a client requests the motion detection service, a video file 
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with a specified video resolution is opened and processed frame by frame at the 

rate of 20 frames per second to simulate real-time video streaming from 

peripheral devices such as a webcam. Video data is analyzed using a motion 

detection algorithm which is implemented by converting an open-source motion 

detection algorithm package (Kirillov 2007) into a web service using C# in .NET 

and Internet Information Service (IIS) version 6. The detection algorithm first 

extracts a reference frame from the initial frames of a video stream, and then 

calculates differences between the subsequent frames and the reference frame. 

Multiple clients can simultaneously request the server to process a video stream 

with a specified video resolution to detect whether there is any motion. A process 

thread is created for each client. Snort® is used as the network intrusion detection 

software in the experiments. The intrusion detection is run independently from the 

motion detection service. The same five cyber attacks (ARP Poison, ping flood, 

vulnerability scan, fork bomb, and remote dictionary) are also run in this set of the 

experiments. Motion detection has two parameters: the video resolution (R) and 

the number of clients (C).  Table 13 defines the levels of each parameter. Totally 

36 experimental conditions (3*3*2*2 combinations of levels for R, C, intrusion 

detection, and attack) are run. For each attack, the 36 experimental conditions are 

run in a random order, and then run again in reverse order after cleaning up and 

restarting the server. System dynamics data from both orders of experimental runs 

is used for data analyses so a particular order of running the experimental 

conditions does not affect the analysis results. 
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Table 13. Parameters levels for MDS, intrusion detection and cyber attacks. 

Service parameters Level 1 Level 2 Level 3 
Video resolution (R) 22 × 18 44 × 36 88 × 72 
Number of Clients (C)  1 3 5 
Intrusion Detection (I) no I I  
Cyber Attack (A) no A A  

 

3.5.3 System dynamics data collection 

 For the two sets of experiments, Windows performance objects (Microsoft 

2009) are used to collect system dynamics data from the server computer. The 

data collected reflects system activities, resources workload/state and service 

performance/quality. Fifteen Windows performance objects, including Process, 

Processor, Memory, Paging File, Physical Disk, IP, UDP, TCP, Redirector, 

Network, Server, Web Services, System, Objects, and Terminal Service Session 

(TSS) are collected. Each object has a number of variables that provide 

information of activities, state and performance of system resources. The 

activities, state and performance monitored by each object are described below. 

� Process: monitor running application programs and system processes. 

� Processor: monitor various aspects of the processor activities, state and 

performance. 

� Memory: monitors behavior of physical memory (RAM) and virtual 

memory (including space in physical memory and on disk), especially 

movement of pages between disk and physical memory. 
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� Paging File: monitors paging to retrieve data from disk devices to 

memory. 

� Physical Disk: monitors read and write activities, state and 

performance of hard disk drives. 

� IP: monitors received and sent datagrams at the IP layer and various IP 

errors. 

� UDP: monitors received and sent datagrams through UDP (User Data 

Protocol) and UDP errors. 

� TCP: monitors received and sent data segments through TCP 

(Transmission Control Protocol) and TCP errors. 

� Network: monitors received and sent data at the network layer. 

� Redirector: monitors the handling of application requests for network 

connections originating at the computer by the redirector which 

redirects application data between network layers. 

� Server: monitors communication between the computer and the 

network. 

� Web Services: monitors file transfer rates, bandwidth usage, 

connections and errors through the Internet Information Services (IIS). 

� System: monitor the overall activities of system components including 

processes, threads, system calls, context switches for the processor, 

memory, file operations, etc. 

� Objects: monitors logical objects in the system, including processes, 

threads, events, etc. 
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� Terminal Service Session: provides per-session statistics of system 

activities, resource and performance. 

 There are 384 system dynamics variables from these 15 Windows 

performance objects. Thirty data observations of these variables are collected for 

each experimental condition at a rate of one observation collected per second.  

Additionally, two service performance metrics for the MDS are collected: 

processing delay and motion level. The motion level is computed as follows: 

Motion level = Number of detected changed pixels / Total number of pixels. The 

processing delay is computed as the delay of processing each frame from a video 

stream. The code for computing the motion level and the processing delay was 

added to the motion detection software. 

3.6 Results and discussions 

In this section the system impacts characteristics of voice communication, 

data encryption, intrusion detection, motion detection, and cyber attacks are 

presented. 

3.6.1 System impacts of VCS, data encryption and cyber attacks 

 Table 14 presents system impacts of voice communication, data 

encryption and cyber attacks on system activities, resources workload/state and 

service performance/quality in major groups with each group of system dynamics 

variables showing similar impacts with voice communication, data encryption and 

attack parameters. For each group, the system impact characteristics, competition 
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of voice communication, data encryption and attacks for system resources, and 

selection of Windows performance objects for monitoring system impacts are 

discussed. The implications of these impacts for system survivability and attack 

detection strategies are also discussed. 

Table 14. System impacts of VCS, data encryption and cyber attacks. 

Group of 
System 
Impacts 

Object Variables 

1. A↓E↑Sa↑ 
C↑ 
(17 
variables) 

Process   
(9 variables) 

Activity variables: Page Faults/sec (K↓), IO Read 
Operations/sec (K↓), IO Write Operations/sec (K↓), IO Data 
Operations/sec (K↓), IO Other Operations/sec (K↓), IO Read 
Bytes/sec (K↓), IO Write Bytes/sec (K↓), IO Data Bytes/sec 
(K↓). 
State variable: %Privileged Time (K↓). 

System  
(3 variables) 

Activity variables: File Read Bytes/sec (K↓), File Write 
Bytes/sec (K↓), File Control Bytes/sec (K↓). 

Physical Disk 
(2 variables) 

Activity variables: Avg. Disk Bytes/Transfer, Avg. Disk 
Bytes/Write. 

Web Service  
(2 variables) 

Activity variables: Post Requests/sec (K↓), ISAPI Extension 
Requests/sec (K↓). 

TSS 
(1 variable) 

Activity variable: Page Faults/sec. 

2. A↓E↓K↓ 
Sa↑C↑ 
(1 variable) 

IP  
(1 variable) 

Performance (Q) variable: Fragments Created/sec. 

3. A↓EνKν 
(16 
variables) 

TSS 
(4 variables) 

State variables: Working Set (SaΛC↑), Page File Bytes 
(SaΛC↑), Private Bytes (SaΛC↑), Virtual Bytes (SaΛC↑). 

Memory 
(2 variables) 

State variables: Committed Bytes (SaΛC↑), Pool Paged Bytes. 

Objects 
(5 variables) 

Activity variables: Processes, Threads (SaΛC↑), Events 
(SaΛC↑), Mutexes (SaΛC↑), Semaphores (SaΛC↑). 

Process 
(4 variables) 

State variables: Virtual Bytes, Working Set, Page File Bytes, 
Private Bytes. 

System 
(1 variable) 

Activity variable: Processes (SaΛC↑). 

4. A↓ 
(1 variable) 

Memory 
(1 variable) 

State variable: System Code Resident Bytes. 

5. A↑E↓K↓ 
Sa↓C↓ 
(5 variables) 

System 
(3 variables) 

Activity variables: File Read Operations/sec, File Write 
Operations/sec, File Data Operations/sec. 

Network  
(2 variables) 

Activity variables: Bytes Total/sec, Packets/sec. 

6. A↑E↑Sa↑ 
C↑ 
(2 variables) 

Web Service 
(1 variable) 

Activity variable: Current ISAPI Extension Requests. 

Memory 
(1 variable) 

Activity variable: Cache Faults/sec. 
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7. A↑ 
(except Fork 
Bomb) 
 
(3 variables) 

Network  
(1 variable) 

Activity variable: Packets Received/sec. 

Server 
(1 variable) 

Activity variable: Pool Nonpaged Bytes. 

System 
(1 variable) 

State variable: %Registry Quota In Use. 

8. E↓ 
(15 
variables) 

Physical Disk 
(6 variables) 

Activity variables: Disk Transfers/sec, Disk Writes/sec, Disk 
Write Bytes/sec, Transition Faults/sec, Write Copies/sec. 
State variables: Avg. Disk Write Queue Length. 

Web Service 
(5 variables) 

Activity variables: Bytes Sent/sec, Files Sent/sec, Files/sec, 
Bytes Received/sec, Bytes Total/sec. 

Process 
(1 variable) 

Activity variable: Handle Count. 

IP 
(1 variable) 

Activity variable: Fragmented Datagrams/sec. 

UDP  
(1 variable) 

Activity variable: Datagram/sec. 

Processor 
(1 variable) 

State variable: %DPC Time. 

9. E↑ 
(9 variables) 

Memory 
(3 variables) 

Activity variables: Pages/sec, Pages Input/sec, Page Reads/sec. 

Physical Disk 
(3 variables) 

Activity variables: Avg. Disk sec/Transfer, Avg. Disk 
sec/Write. 
State variable: Current Disk Queue Length. 

TSS 
(2 variables) 

State variables: %Processor Time, Pool Nonpaged Bytes. 

System 
(1 variable) 

State variable: Processor Queue Length. 

 

 Group 1, A↓E↑Sa↑C↑(K↓): Most variables in this group reflect IO 

activities (including file, network and device IOs), page faults generated by VCS 

and data encryption, and bytes for read, write and control operations on files 

representing disks, serial and parallel devices in the system. These variables 

increase their values with Sa, C and E. Hence, VCS and data encryption increase 

IO activities, page faults and bytes for file operations. These variables decrease 

their values with K because the use of a larger key length increases the 

computation time of data encryption, leaving less CPU time for file operations of 

VCS and data encryption. % Privileged Time for VCS and data encryption 

services increase with more VCS and data encryption activities due to more CPU 
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time spent in the privileged mode for scheduling and synchronizing system 

activities. File Control Bytes/sec of the System object also increase with more 

system activities scheduling and synchronization. All the system dynamics 

variables in this group decrease with A because cyber attacks consume CPU time, 

leaving less CPU time for VCS and data encryption activities. 

 System impact characteristics of voice communication and data 

encryption: VCS and data encryption activities increase with a higher sampling 

rate, more clients and more percentage of data encryption, thus causing an 

increase in IO activities, page faults, and bytes for file operations in the system. 

However, a larger key length used for data encryption increases the computation 

and reduces the IO aspect of VCS and data encryption due to limited CPU time.    

 Competition for system resources: VCS, data encryption and cyber attacks 

compete for limited CPU time. The presence of cyber attacks reduces CPU time 

available for VCS and data encryption.  

 Selection of Windows performance objects for monitoring system impacts: 

Physical Disk and Terminal Service Session objects provide similar information 

about bytes for file operations and page faults which are covered by the Process 

and System objects. Hence, with the Process and System objects, the use of the 

Physical Disk and Terminal Service Session objects are not necessary.  

 Implications for system survivability: the competition for limited CPU 

time among cyber attacks, VCS and data encryption can be used to suppress the 
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level and system impacts of cyber attacks and sustain CPU time for VCS and data 

encryption by increasing the system activities of VCS and data encryption. The 

system activities of VCS and data encryption can be increased, for example, by 

increasing the sampling rate and the encryption percentage. The increased system 

activities of VCS and data encryption demands and takes more CPU time, thus 

leaving less CPU time to be taken by cyber attacks. 

 Group 2, A↓E↓K↓Sa↑C↑: The variable Fragments Created/sec of the IP 

object measures the network throughput of VCS. The VCS throughput increases 

with Sa and C. However, the network throughput of VCS decreases with the 

increasing of E, K and A, as data encryption and cyber attack activities competes 

with VCS for CPU time.   

 System impact characteristics of voice communication: the increasing 

level of VCS due to a higher sampling rate and more clients results in more 

network throughput. The network throughput is a major performance metric for 

VCS.  

 Competition for system resources: same as those for group 1. The 

throughput performance of VCS is degraded by adding data encryption. 

 Selection of Windows performance objects for monitoring system impacts: 

IP datagrams need to be created for sending out data over the network. Hence, 

Fragments Created/sec at the IP layer can be used to measure the network 

throughput of VCS. 
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 Implications for system survivability: since data encryption decreases the 

network throughput of voice communication, reducing the level of data 

encryption through less encryption percentage and a smaller key length may be 

necessary when a cyber attack is present and the network throughput of VCS 

needs to be maintained at a certain level. 

 Group 3, A↓EνKν(SaΛC↑): The workload/state variables in this group 

indicate memory usage, and the activity variables indicate processes/threads. 

Memory usage and the number of active processes/threads increase with C and 

the increase of Sa from level 1 to level 2. Because both memory and 

processes/threads running in the system have a limit in the system, the memory 

usage and processes/threads can reach their limit as Sa further increases to level 3, 

causing the memory usage and processes/threads to stop increasing and start 

decreasing. Hence, Sa has a major impact on memory usage and processes/threads 

than C. For data encryption, as E and K increase from level 1 to level 2, 

processes/threads decrease because more computation for data encryption takes 

more CPU time. Fewer processes/threads for data encryption lead to less memory 

usage. As computation for data encryption further increases with E and K going 

from level 2 to level 3, more processes/threads are created to handle the 

computation demand, thus increasing memory usage. Due to competition for CPU 

time among cyber attacks, VCS and data encryption, the presence of cyber attacks 

reduces memory usage and the number of processes/threads of VCS and data 

encryption.  
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 System impact characteristics of voice communication and data 

encryption: VCS increases memory usage and processes/threads. Increasing Sa 

places higher workloads on memory and processes/threads than C. Data 

encryption uses memory and creates processes/threads. Setting an appropriate 

level of E and K optimize memory and processes/threads workloads due to data 

encryption. 

 Competition for system resources: same as those for group 1. 

 Selection of Windows performance objects for monitoring system impacts: 

the System and Process objects, which cover information in group 1, also cover 

the information in group 3 about processes/threads and memory usage.  

 Implications for system survivability: same as those for group 1.   

 Group 4, A↓: System code resident bytes of the Memory object in this 

group shows the size of operating system code currently in physical memory that 

can be written to disk when not in use. Such code is for managing application 

processes, and is reduced by cyber attacks since cyber attacks reduce activities of 

VCS and data encryption. Operation system code is there for managing 

application processes but does not change with the increasing activity level of 

VCS and data encryption.   

 System impact characteristics of voice communication, data encryption 

and cyber attacks: applications such as voice communication and data encryption 
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need operating system code in memory for managing applications. Cyber attacks 

decrease operating system code in memory for managing application.   

 Competition for system resources: same as those for group 1. 

  Selection of Windows performance objects for monitoring system impacts: 

the Memory object is necessary to monitor operating system code in memory. 

 Implications for cyber attack detection: a significant decrease in operating 

system code in memory can be used to detect the presence and increase of outside 

activities coming to the computer such as cyber attacks.  

 Group 5, A↑E↓K↓Sa↓C↓: The variables in this group reflect file operations 

and total packets sent and received at the network layer, and increase their values 

with cyber attacks. Cyber attacks, except Fork bomb, occur through the network, 

and thus increase network activities as reflected by file operations on the network 

device and network packets. Fork bomb keeps creating processes/threads, and 

thus increase file operations to store information of new processes/threads. 

Although cyber attacks increase file operations due to increased network 

activities, cyber attacks do not increase bytes for those network-related file 

operations. Hence, data involved in cyber attacks are not as significant as those 

involved in VCS and data encryption since VCS and data encryption increase 

bytes for file operations as shown in group 1. Due to competition for CPU time 

among cyber attacks, VCS and data encryption, system dynamics variables in this 
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group decrease their values as the system activities of VCS and data encryption 

increases through the increase of Sa, C, E and K. 

 System impact characteristics of cyber attacks: cyber attacks increase 

network packets and file operations in the system but not bytes for file operations.  

 Competition for system resources: same as those for group 1. 

 Selection of Windows performance objects for monitoring system impacts: 

the System and Network objects are necessary to capture system impact 

characteristics of cyber attacks, VCS and data encryption. 

 Implications for system survivability: same as those for group 1.    

Group 6, A↑E↑Sa↑C↑: All the system activities due to VCS, data encryption and 

cyber attacks increase cache faults. Current ISAPI Extension Requests of web 

service are also increased by system activities due to VCS, data encryption and 

cyber attacks because all these activities use Internet Information Services 

platform.  

 System impact characteristics of voice communication, data encryption 

and attacks: cache faults are increased by all the activities in the system.  

 Selection of Windows performance objects for monitoring system impacts: 

the Memory object is necessary to capture cache faults. 
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 Implications for system survivability and attack detection: cache faults can 

be used to measure system activities and workload. Although some activities in 

the system such as stealthy attacks or malicious insider activities may not seem 

noticeable, they are still expected to produce system impacts in terms of 

increasing cache faults. Hence, they can still be caught by monitoring their system 

impacts on cache faults.     

 Group 7, A↑: The variables in this group measure received network 

packets, pool nonpaged bytes, and % registry quota in use, which are affected by 

cyber attacks only. 

 System impact characteristics of attacks: all cyber attacks, except Fork 

Bomb, are network-based attacks and involve network packets received by the 

server computer and the use of registry quota.   

 Selection of Windows performance objects for monitoring system impacts: 

the System and Network objects are necessary to capture system impacts in this 

group.  

 Implications for cyber attack detection: amounts of received network 

packets and use of registry quota can be used to detect network-based attacks. 

 Group 8, E↓: The variables in this group reflect network data sent by VCS 

and network data received due to cyber attacks.  These variables decrease their 

values with E because more data encryption takes more CPU time and leaves less 

CPU time for voice communication and attacks.  
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 System impact characteristics of voice communication, data encryption 

and attacks: similar to those covered by groups 2 and 7.   

 Competition for system resources: same as those for group 1. 

 Implications for system survivability: same as those for groups 1 and 2.     

 Group 9, E↑: The variables reflect page reads from disk to memory and 

bytes written to disk, the number of threads in the processor queue, the queue 

length for disk, and processor usage. These variables increase their values with E. 

Cyber attacks (A) have no effects on these variables. Voice communication affects 

these variables but not in a consistent manner with VCS parameters. System 

impacts in this group are similar to those in group 1. Thus, information in group 1 

can be used to cover information in this group. 

 System impact characteristics of data encryption: data encryption 

increases page faults as shown in group 1 and thus page reads from hard disk to 

memory. Data encryption also needs to write to disk, and uses CPU time.  

 Selection of Windows performance objects for monitoring system impacts: 

the Memory, System and Physical Disk objects cover the information in this 

group. 

 Figures 4-6 summarize the major system impacts of VCS, data encryption 

and cyber attacks, respectively, by illustrating the cause-effect chains of system 

activities, resources workload/state and services performance/quality. The system 
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impacts of VCS and data encryption are similar except for the impacts on memory 

and processes/threads workloads. Increasing the sampling rate of voice 

communication can be limited by memory and processes/threads constraints in the 

system, whereas selecting an encryption percentage and a key length for data 

encryption in the middle range can help reduce workloads on memory and 

processes/threads. Increasing both the sampling rate and the number of clients 

increases voice communication activities and network throughput, whereas using 

a large key length slows down data encryption activities. Cyber attacks in the 

experiments are characterized by their system impacts on increasing received 

network packets and file operations.  

 

  

Figure 4. System impact characteristics of VCS. 

 

 

Figure 5. System impact characteristics of data encryption. 
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Figure 6. System impact characteristics of cyber attacks. 

The competition for system resources among VCS, data encryption and 

cyber attacks manifests mainly in their competition for CPU time. An increase in 

one of the three activities decreases the two other activities. The competition for 

limited CPU time among cyber attacks, voice communication and data encryption 

can be used to suppress the level and system impacts of cyber attacks and sustain 

CPU time for voice communication and data encryption by increasing the system 

activities of VCS and data encryption. When an attack occurs and is detected, the 

system activities of VCS and data encryption can be increased, by increasing Sa 

to take away more CPU time from the cyber attack and sustain the performance 

level of VCS and data encryption. When a cyber attack is present and the network 

throughput of the voice communication service need to be maintained at a certain 

level, the data encryption service may need to be sacrificed to a certain degree. 

Cache faults are increased by all three activities, and can be used to indicate the 

overall system workloads by all activities on the system and detect stealthy, 

insider activities. Operating system code in memory is a useful indicator of 

competition between activities originating inside and outside the system. A 

significant decrease in operating system code in memory indicates a significant 

increase in outside activities coming to the system, and can be used to detect 
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cyber attacks. Among the fifteen Windows performance objects monitored, the 

System, Process, Memory, IP and Network objects cover most of system impact 

characteristics. These objects can be used for monitoring major system impacts of 

activities going on in the system. 

3.6.2 System impacts of MDS, intrusion detection and cyber attacks 

Table 15 presents system impacts of motion detection, intrusion detection 

(I) and cyber attacks (A) on system activities, resources workload/state and 

service performance in major groups with each group of system dynamics 

variables showing similar impacts with motion detection, intrusion detection and 

cyber attack parameters. The implications of these impacts for system 

survivability and attack detection strategies are discussed. 

Table 15. System impacts of MDS, intrusion detection and cyber attacks 

Group of 
System 
Impacts 

Object Variables 

1.C↓R↓ 
(A↑) 
(8 
variables) 

Processor 
(1 variable) 

State variable: % Privileged Time. 

System 
(6 variables) 

Activity variables: Context Switches/sec (A↑), File Control 
Bytes/sec, File Control Operations/sec, File Write Bytes/sec, 
File Write Operations/sec, System Calls/sec. 

TSS 
(1 variable) 

State variable: % Privileged Time (A↑). 

2.C↓R↑ 
(A↑I↑) 
(10 
variables) 

Memory 
(8 variables) 

Activity variables: Demand Zero Faults/sec (I↑), Page 
Faults/sec (A↑), Page Output/sec (I↑), Page Writes/sec (I↑), 
Pages/sec (A↑I↑), Page Reads/sec (I↑), Pages Input/sec (I↑), 
Cache Faults/sec (A↑I↑). 

Processor 
(1 variable) 

Activity variable: Interrupts/sec (A↑). 

TSS 
(1 variable) 

Activity variable: Page Faults/sec. 

3.R↓C↑(A↓) 
(6 
variables) 

Process 
(4 variables) 

State variable: % Privileged Time.   
Activity variables: IO Data Operations/sec (A↓), IO Other 
Bytes/sec (A↓), IO Read Operations/sec (A↓). 
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System 
(2 variables) 

Activity variables: File Read Operations/sec (A↓), File Data 
Operations/sec. 

4. C↑R↑ 
(A↑I↑) 
(13 
variables) 

Performance 
(1 variable) 

Performance (Q) variable: Processing Delay. 

Process 
(4 variables) 

Activity variables: IO Read Bytes/sec, IO Data Bytes/sec.  
State variables: % Processor Time, % User Time. 

Processor 
(1 variable) 

State variable: % User Time (A↑I↑). 

System 
(5 variables) 

Activity variables: Threads (A↑), Processes (A↑I↑), File Read 
Bytes/sec, Exception Dispatches/sec (A↑I↑).   
State variable: Processor Queue Length. 

TSS 
(2 variables) 

State variable: % User Time. 
Activity variable: Thread Count (A↑). 

5. C↑I↑(A↑) 
(13 
variables) 

Memory 
(1 variable) 

State variable: Committed Bytes (A↑). 

Objects 
(4 variables) 

Activity variables: Processes (A↑), Mutexes, Semaphores, 
Events. 

Process 
(4 variables) 

State variables: Page File Bytes (A↑), Private Bytes (A↑), 
Virtual Bytes (A↑), Working Set (A↑). 

TSS 
(4 variables) 

State variables: Page File Bytes (A↑), Private Bytes (A↑), 
Virtual Bytes, Working Set (A↑). 

6. A↓C↑(I↑ 
with A) 
(13 
variables) 

Memory 
(6 variables) 

State variables: Cache Bytes, Pool Paged Bytes, Pool Paged 
Resident Bytes, System Cache Resident Bytes, Pool Nonpaged 
Bytes, Pool Nonpaged Bytes. 

Objects 
(1 variable) 

State variable: Sections. 

Paging File 
(1 variable) 

State variable: % Usage. 

Process 
(2 variables) 

Activity variables: Thread Count, Handle Count. 

TSS 
(3 variables) 

State variables: Pool Nonpaged Bytes, Pool Paged Bytes.   
Activity variable: Handle Count. 

7. C↑ 
(6 
variables) 

Process 
(1 variable) 

Activity variable: IO Other Operations/sec. 

Web Service 
(5 variables) 

Activity variables: Current Anonymous Users, Current 
Connections, Current ISAPI Extension Requests, Files 
Sent/sec, Files/sec. 

8. R↑ 
(1 variable) 

Performance 
(1 variable) 

Performance variable: Motion level. 

9. A↑ 
(except 
Fork Bomb) 
(7 
variables) 

IP 
(4 variables) 

Activity variables: Datagrams Received Delivered/sec, 
Datagrams Received/sec, Datagrams Sent/sec, Datagrams/sec. 

Processor 
(3 variables) 

State variable: % Interrupt Time.   
Activity variables: DPC Rate, DPCs Queued/sec. 

Note: the impact in parentheses occurs to some but not all variables in the group. 

 The number of clients/threads for motion detection and the video 

resolution produce most system impacts as follows. 
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 More MDS clients increase and a higher video resolution increases: 

� Processing delay (group 4) 

� IO read and data bytes (group 4) 

� CPU usage in user mode and in overall (group 4) 

� Processes/threads and processor queue length (group 4). 

 More MDS clients increase and a higher video resolution decreases: 

� IO read and data operations (group 3) 

� File read and data operations (group 3). 

More motion detection clients increase: 

� Committed bytes in memory (groups 5 and 6) 

� Connections and current ISAPI extension requests of web service 

(Group 7) 

� IO other operations (group 7). 

 More MDS clients decrease and a higher video resolution increases: 

� Page faults, reads and writes (group 2) 

� Cache faults (group 2) 

� Interrupts of processor (group 2) 

 More MDS clients decrease and a higher video resolution decreases: 

� System calls and context switches (group 1) 
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� CPU usage in privileged mode (group 1) 

� File write and control operations and bytes (group 1). 

 A higher video resolution increases: 

� Motion level (group 8). 

 System impact characteristics of motion detection: In summary, more 

MDS clients competing for CPU time reduce available CPU time for each client, 

and thus increase the processing delay for each client. A higher video resolution 

improves the motion level of motion detection. Motion detection produces 

processes/threads, takes CPU time in user mode and memory space, and involves 

file and IO read operations and bytes. A higher video resolution requires 

processing more video data for each file and IO read operation, thus reducing the 

number of file and IO read operations processed per second. An increase in the 

number of clients and/or video resolution for motion detection increase the use of 

CPU time in user mode by motion detection, and leave less CPU time in 

privileged mode to handle system calls, context switches, and associated file write 

and control operations and bytes. More MDS clients decrease page faults, reads 

and writes and cache faults because clients use the same video stream files in the 

experiments. Page faults, reads and writes and cache faults are increased by a 

higher video resolution because a video stream file for a higher video resolution 

has more data contents and causes more page and cache faults to read and write 

such data contents. Web service connections are increased by motion detection 

because the motion detection software is web-based software. This may not hold 
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if motion detection software does not use the Internet Information Service (IIS) 

application. Since all the clients use the same video files, more MDS clients 

reduce the need for getting new data from memory to cache and from files on disk 

to memory, and thus reduce page faults and reads, and cache faults. However, this 

characteristic will not hold if MDS clients use different video files, which is likely 

the real case for motion detection. Figure 7 highlights the major system impact 

characteristics of motion detection. 

 

Figure 7. System impact characteristics of motion detection. 

 Cyber attacks have the following system impacts. Cyber attacks increase: 

� Context switches (group 1) 

� CPU usage in privileged mode (group 1) and in user mode (group 4) 

� Interrupts from the network interface card and handles (groups 2, 6 

and 9) 

� Page faults (group 2) 

� Cache faults (group 2) 

� Memory usage (group 5) 

� Processes/threads/exception dispatches (groups 4 and 5) 

� Received and sent network data (group 9, excluding Fork Bomb) 
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 Cyber attacks decrease: 

� IO read, data and other operations (group 3) 

� File read and data operations (group 3) 

� Cache bytes (group 6). 

 System impact characteristics of attacks: In summary, cyber attacks 

(mostly network-based attacks) in the experiments increase processes/threads and 

thus context switches among processes/threads, interrupts from the network 

interface card and handles for processing those interrupts, network traffic, 

memory usage, page and cache faults. CPU usage increases in user mode for 

executing attack processes/threads and in privileged mode for handling interrupts 

from the network interface card. Figure 8 highlights the major system impact 

characteristics of cyber attacks and intrusion detection. The system impacts of 

cyber attacks shown in Figure 6 for VCS and in Figure 8 for MDS are consistent. 

Small differences in the system impacts of cyber attacks for the two set of 

experiments are attributed to the functional differences between the MDS which is 

a computation-intensive service and VCS which is a communication-intensive 

service.

 

Figure 8. System impact characteristics of cyber attacks and intrusion detection. 
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 System impact characteristics of intrusion detection: As shown in groups 

2, 4, 5, 6 of Table 15 and Figure 8, the system impacts of intrusion detection are 

similar to those of cyber attacks because intrusion detection activities increase 

with the presence of cyber attacks. Note that cache faults are increased by all the 

activity parameters in both sets of experiments except the number of clients for 

motion detection due to the use of the same video files by all the motion detection 

clients. Hence, cache faults can be used as an indicator of all activities going on 

the system and thus the overall system loads.   

 Competition for system resources among motion detection and attacks: 

Cyber attacks decrease IO and file read operations and cache bytes of motion 

detection due to competition for CPU time between attacks and MDS.  

 Implications for system survivability: Similar to VCS experiments, there is 

also competition for system resources among MDS, cyber attacks and intrusion 

detection, especially CPU time. This competition can be used to suppress the level 

and system impacts of cyber attacks by increasing the activity level of MDS. 

Cache faults are increased by all the activities, therefore can be used as an 

indicator of the overall system workload and to detect stealthy insider activities. 

 Selection of Windows performance objects for monitoring system impacts: 

The System, Process, Memory and IP objects cover most of system impact 

characteristics for MDS, intrusion detection and cyber attacks. 
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3.7 Conclusions 

 Experiments were conducted to collect system dynamics data under the 

services of voice communication, motion detection, data encryption and intrusion 

detection along with cyber attacks. The analysis on the data collected from those 

experiments uncovers the system-wide impacts of these services and cyber attacks 

on system activities, resources workload/state and service performance/quality. 

The system impacts of voice communication and data encryption on IO activities, 

bytes for file operations, page faults, and processes/threads are similar except that 

increasing the sampling rate of voice communication can be limited by memory 

and processes/threads constraints in the system whereas selecting an encryption 

percentage and a key length for data encryption in the middle range can help 

reduce workloads on memory and processes/threads. Increasing both the sampling 

rate and the number of clients increases voice communication activities and 

network throughput, whereas using a large key length slows down data encryption 

activities. As expected, voice communication is associated with large amounts of 

network data sent from the server to the clients. Like voice communication and 

data encryption, motion detection affects file and IO operations but more on file 

and IO read operations. For the motion detection service the use of CPU time in 

user mode is more apparent than that by voice communication and data 

encryption services. Cyber attacks (mostly network-based attacks, except Fork 

Bomb) increase processes/threads and thus context switches among 

processes/threads, interrupts from the network interface card and handles for 
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processing those interrupts, network traffic, memory usage, and page and cache 

faults. CPU usage in user mode increases for executing attack processes/threads 

and CPU usage in privileged mode increases for handling the processor interrupts 

generated by the additional network traffic. As expected, network-based attacks 

are associated with an increase in network traffic to and from the server. By 

looking for an unexpected increase in the amount of network incoming traffic 

network-based attacks can be identified. Intrusion detection activities increase 

with the presence of cyber attacks. As a result, system impacts of intrusion 

detection are similar to those of the cyber attacks. Cache faults are increased by 

all the activities, and can be used as an indicator of the overall system workload 

by everything occurring in the system. The variable Cache faults/sec of the 

Memory object can be used to detect stealthy, insider attack activities by looking 

for suddenly unexpected changes in the value of the variable. The results show 

five Windows performance objects: System, Process, Memory, IP and Network 

mainly capture most of system impact characteristics. The variables in these 

Windows performance counters can be used to monitor the system impacts of 

services, thus reducing the need of collecting information from additional 

Windows performance objects. Although the computer and network set-up for 

these experiments is relatively small (1 server, 5 clients) in comparison to typical 

IT service-based scenarios that can have up to dozens of servers and hundreds or 

even thousands of clients, the system impact characteristics uncovered for these 

specific service scenarios as well as the selected group of variables identified to 

monitor system impacts of services and cyber attacks are still valid and can be 
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used for resource and performance management and cyber attack detection, since 

independent of the computer and network set-up these services, security 

mechanisms and cyber attacks still produce the same type of system activities and 

require the same type of system resources. 

 The competition for system resources by all the activities in the system, 

including voice communication, data encryption, motion detection, intrusion 

detection, and cyber attacks manifests dominantly in their competition for limited 

CPU time. This competition for limited CPU time among services and cyber 

attacks gives rise to a promising system survivability strategy for suppressing the 

level and system impacts of cyber attacks by increasing the intensity levels of 

services. For example, in the voice communication scenarios the intensity level of 

voice communication and data encryption can be increased by increasing the 

sampling rate and/or the encryption percentage. The increased intensity level of 

voice communication and data encryption demands will take more CPU time and 

thus leaving less CPU time to be used for cyber attacks. Moreover, when an attack 

is present and the performance of a service needs to be maintained at a certain 

level another promising strategy for system survivability involves using the 

uncovered tradeoffs between service performance metrics and/or services to 

sustain the performance of services above the required level. For example, in 

order to maintain the network throughput of the voice communication at a certain 

level, the data encryption may need to be sacrificed to a certain degree, by 

reducing the encryption percentage, in order to achieve survivability. 
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CHAPTER 4 

A FRAMEWORK TO ESTIMATE SERVICE WORKLOAD AND 

PERFORMANCE 

4.1 Background 

As more organizations move their services and operations towards service 

oriented computing (SOC) there is an urgent need to develop service oriented 

architectures (SOA) and solutions for service computing to enable services 

provisioning by service providers to service consumers (clients) in order to satisfy 

their business needs (Zhang, Zhang and Cai 2007). In SOA, software applications 

are viewed as independent atomic services that can be dynamically selected and 

composed at runtime to increase system’s flexibility, scalability and service’s 

reusability. As these SOA environments grow in size and complexity, efficient 

management of service performance and system’s resources becomes increasingly 

difficult (Zhang, Bivens and Rezek 2007). Previous studies have identified the 

value of modeling system dynamics to guide resource allocation in achieving the 

required service performance (Wu and Woodside 2004; Stewart and Shen 2005; 

Zhang, Bivens and Rezek 2007). Services compete with each other for the 

system’s resources required to perform their intended functionality. The amount of 

system’s resources assigned to each service will impact its performance. 

Therefore, efficient resource and performance in service-based systems (SBS) 

require understanding the dynamic effects of services on the workload/state of 

system’s resources and service performance. 
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4.2 Previous Work 

Much work has been done on individual workload and performance 

modeling for computer and network systems. Statistics and data mining 

techniques have been extensively used to model resource workload and 

performance, for example, linear regression models were used in Vazhudai and 

Schopf (2002) to characterize the effect of I/O workload variations on file transfer 

times for data grids environment. Doyle, et al. (2003) built internal-component 

models to predict the utilization of memory and storage resources for services 

with static content. Abrahao and Zhang (2004) applied principal component 

analysis (PCA) to characterize CPU utilization of various services in a utility 

computing setting. Shivam, et al. (2006) built regression models to predict the 

completion time of various assignments of computing, network and storage 

resources for batch processing tasks. Sun and Ifeachor (2006) used nonlinear 

regression models to predict the performance in a voice over IP (VoIP) setting by 

codec types under different network loads. Kan, et al. (2010) used neural 

networks to model video quality on wireless networks based on network state 

metrics.  

Control theory has also been used for resource and performance 

management. Feedback control was used in Harada, et al. (2007) to maximize the 

performance of individual tasks by adjusting resource allocation. Kjaer, et al. 

(2009) used online feedback control to minimize CPU allocation to services while 

satisfying performance requirements. Kang and Suh (2011) used and heuristic 
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feedback control algorithm to predict delay and reliability on wireless network 

transmissions by adjusting the size of the error control block at the MAC layer. 

The disadvantage of feedback control methods is their reactive nature since 

changes in the environment have to propagate through the entire system before 

being compensated. The workload and performance models presented in these 

above studies cannot be generalized since they were designed for individual 

services, covering specific system resources or performance metrics.  

General approaches to manage system resources and performance, 

independently of service functional and non-functional requirements have been 

developed. Lee, et al. (1999) proposed a mixed integer programming formulation 

for the multiple resource-multiple QoS problem. In this formulation, the 

performance (QoS) requirements for each service must be satisfied based on 

available systems resources. A relation between resources and performance (QoS) 

metrics is identified, but no description or details about the functions capturing 

these relations were provided. Similarly, Bashandy, et al. (2005) proposed a 

dynamic programming approach to solve the multiple resource-multiple QoS 

problem where performance (QoS) metrics are characterized as functions of 

system resources but the form of the functions were not defined. Zhang, et al 

(2007) developed an automated approach to model performance in service-based 

systems based on Bayesian networks. This approach incorporates existing domain 

knowledge into the statistical learning framework, but requires considerable 

amount of time for building the network model.  
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Queuing theory and queuing networks have been used to model 

performance metrics for service-base systems in Liu, et al. (2006) and Liu, Gorton 

and Zhu (2007). Although these models are stable and mathematically sound, 

assumptions required for the framework to work (e.g. scheduling algorithm, 

arrival and service distributions) may not be reasonable for all services. For 

example, Poisson distributed arrivals may not be a reasonable assumption for 

services under periods with high user traffic (Yu, et al. 2006).  

In chapter 2, an empirical method was proposed to analyze and model the 

impacts of services on system activities, resources workload and service 

performance. This method involves the collection of system-wide dynamics data 

and the application of statistical analyses to uncover and model resource workload 

and service performance. The results show the empirical method can be used to 

capture the cause-effect (ASQ) relations of service-related activities (A) on 

resources workload/state (S) and service performance/quality (Q). However, 

considering the large number of possible combinations of services that can occur 

on a computer and network system, and thus need to be investigated, the 

empirical method is limited by the time and effort required for experimental set-

up, data collection and analysis.  

4.3 Shortcomings 

Based on the above literature review, shortcomings from existing research 

can be summarized as follows: 
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1) Workload and performance models are essential to manage system’s 

resources and performance efficiently. 

2) Limited applicability of available workload and performance models 

from previous studies. 

3) Although the empirical approach presented in chapter 2 effectively 

captures the cause-effects (ASQ) relations of service-related activities 

on resources workload and service performance, it is limited by the 

time and effort required for experimental set-up, data collection and 

analysis. 

4.4 Objectives 

One objective is to develop a general framework to estimate the impacts of 

services on resource workload and service performance under a wide variety of 

service conditions and independently of service functional and non-functional 

requirements.  

Another objective is to use the framework to build the models required for 

resource and performance management in service-based systems (SBS). 

4.5 Description of the Framework 

Services require system resources such as processor (CPU), memory, disk 

and network to perform their intended functionality. The amount and type of 

resources required by each service depends on its functional and non-functional 

(e.g. performance) requirements (Stewart and Shen 2005; Ye, et al. 2010). Service 
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activities such as the number of service requests, including performance 

requirements, are reflected in the amount of resources required by the service.  

Figure 9 presents an abstract view of the major components in a computer 

and network system. This figure shows the access pattern to be followed by 

services through multiple system resources. The main system resources are 

processor (CPU), memory, disk and network, but other system resources (e.g. 

video/sound cards) can also be included. Inter-component interaction is not 

considered. Each system resource has its own queue. In this framework, a model 

for each of the system resources is required. Each resource model should capture 

hardware (e.g. speed, capacity) and software (e.g. access, allocation, scheduling) 

characteristics of each system resource. Section 4.6 describes the details of the 

model development process. 

       

Figure 9. An abstract view of computer and network system components. 
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For services requiring system resources, memory is allocated first before 

accessing any other resource. Peak memory usage is allocated to services. 

Memory unlike the rest of system resources (CPU, disk and network) can be 

assigned to multiple services simultaneously. When memory capacity is exceeded, 

swapping is necessary to provide services with the memory required for 

execution. The effect of memory swapping on workload and performance is not 

intended to be modeled in this study, therefore, memory capacity is considered 

only as an upper bound on the number of services that can be admitted into the 

system. The Processor (CPU) controls the access of services to other system 

resources. Processor scheduling is managed by the operating system (OS). Once a 

service has completed execution through all resources, memory is deallocated and 

the service exits the system. Under this framework, system dynamics are mainly 

driven by: 1) the resource-sharing scheme of the system resources, including: 

admission control, allocation method, scheduling policy, and 2) the resource 

requirements (profile) of services competing for the resource.  

The estimation of services workload and performance starts with the 

estimation of individual service workload and performance on individual 

resources, and proceeds to the aggregated workload and performance of these 

services through multiple system resources. Assuming access to system resources 

has been granted (admission control) and each resource can only be allocated to 

one service at a time (allocation method) the scheduling policy is the only aspect 

of the resource-sharing scheme that may affect resource workload and service 
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performance. Service profiles characterize per-resource needs as functions of 

service functional and non-functional (e.g. performance) requirements. For each 

resource required by the service, the arrival and the execution time distributions 

are specified in its service profile. The arrival distribution represents the 

frequency at which service instances arrive to the resource. The execution time 

distribution represents the amount of time the resource is required by each service 

instance. Arrival and execution time distributions are not limited to exponential 

distributions. Service profiles can be derived from application domain knowledge 

or obtained empirically by running experiments covering service conditions of 

interest to collect information regarding arrival and execution time at each 

resource, and then using the maximum likelihood estimation (MLE) (McLachlan 

and Peel 2000) method to find the best distributions representing arrival and 

execution time information. 

 

 

Figure 10. Competition of services’ instances at a single resource. 

The competition of services’ instances at each single resource is shown in 

Figure 10. Service instances from multiple services may arrive to the resource 

queue according to the arrival distribution specified in their service profiles. 

Services’ instances may have different priorities according to their type. The 

resource-scheduling algorithm determines how services’ instances are ordered 
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within the queue and which service instance access the resource each time using 

scheduling rules such as first in-first out (FIFO), by priority, shortest job time first 

(SJF), earliest deadline first (EDF),  round robin, etc (Silberschatz, Galvin and 

Gagne 2009). Rules can be preemptive, meaning an instance can be pushed out by 

another instance with a higher priority. Once a service instance has been assigned 

to the resource, the service instance seizes the resource for a time period or 

quantum (unless is preempted). This quantum can be equal to a fixed time (e.g. 10 

milliseconds) or equal to the time required by the service instance.  

If the competition of services’ instances at a single resource (Figure 10) is 

observed over a period of time NT, information related to idle and busy periods of 

the resource such as those shown in Figure 11 can be collected.  

Figure 11. Information related to resource idle and busy periods  
during the period of NT. 

 Each busy period represents a length of time in which the resource was 

allocated to a particular service instance for execution. This information about 

Busy and idle periods together with information regarding the arrival time of 

service instances to the resource queue is used to estimate individual services’ 

workload and performance at each resource.  The entire observation period (NT), 



 

83 

 

is divided into N periods of length T and the following workload and performance 

metrics are estimated for each service: 

1. Resource Workload (Utilization): Workload metric defined as the proportion 

of time T during period � in which the resource was busy due to instances of 

service type �. The resource workload at period � due to service instances of 

type � (����) can be calculated using Eq. 1: 

���� =
∑ 	
����

��� ��            (Eq. 1) 

where: 

Indices: 

�: Service type competing for the resource, �= 1,.., I 

�: Period number, � = 1,.., N 

���: Index of service instance of type � during period n, ���= 1,.., ��� 

Variables: 

�: Length of time (in seconds) for each of the � periods (fixed). 

	
����
� : Operation time of instance ��� of service type � during period �.  

 

2. Waiting Time: Defined as the average waiting time at resource queue for 

instances of service type � during period	�. The average waiting time at period 

� for service instances of type	� (��������) can be calculated using Eq. 2: 

�������� =
∑ �����

��� ����            (Eq. 2) 
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where: 

�����
� : Waiting time of instance ��� of service type � during period �. 

 

3. Operation Time: Defined as the average operation time of instances of service 

type � during period	�. The operation time is the sum of the execution time 

and the overhead time due to the management of the service instance by the 

resource-scheduling algorithm. The average operation time at period � for 

service instances of type � (	
��������) can be calculated using Eq. 3: 

	
�������� =
∑ 	
����

��� ����            (Eq. 3) 

 

4. Completion rate: Performance metric defined as the rate of instances of 

service type	� per second that complete execution during period �. The 

completion rate at period � for service instances of type	� (�����) can be 

calculated using Eq. 4: 

����� =
∑ �(���)�� ��          (Eq. 4) 

where: 

�(���): Binary indicator variable. It takes a value of 1 if ��� service instance of 

type � completes its execution time in the resource during period n, otherwise 

it takes a value of 0. 
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5. Response Time: Performance metric obtained by adding the waiting time (Eq. 

2) and operation time (Eq. 3), and defined as the average time instances of 

service type � spend in the resource during period	�. 

��� �� = �������� + 	
��������                     (Eq. 5) 

The metrics obtained from equations 1-5 represent workload and 

performance metrics for each service type at individual resources. These metrics 

are estimated based on the average of individual service instances observed 

during periods of fixed length T. The effect of different lengths for T on the 

workload and performance metrics is reported in section 4.8. 

Once workload and performance metrics for each service type at 

individual resources are estimated, aggregated workload and performance metrics 

are obtained. The total workload on a specific resource is obtained by summing 

the resource workloads of all services competing for the resource (Eq. 6). The 

total resource workload can be compared to resource availability to identify 

bottleneck resources. 

������� = ∑ �������     (Eq. 6) 

The average total response time of a service is obtained by summing the 

average waiting time and average operation time of the service for all resources 

considered (Eq.7).  
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�������� = �������(!"#)� + 	
�������(!"#)� +�������($�%&)� + 	
�������($�%&)� +⋯	
�������(… )�    Or 

�������� = ��� �(!"#)
� + ��� �($�%&)

� +⋯��� �(… )�          (Eq. 7) 

The total completion rate of a service is determined by the resource with 

the smallest completion rate (Eq.8).  

)������� = *��(���(!"#)� + ����(+�%&)� +⋯����(… )� )         (Eq. 8) 

The total response time and total completion rate can be compared to 

service requests (QoS) requirements to identify if performance requirements of 

services are being satisfied. 

4.6 Models development 

The framework described in the previous section (4.5) requires the 

collection of information regarding: 1) idle and busy periods for each of the 

system resources, and 2) the detailed tracking of service instances along the 

system to estimate service workload and performance at each resource (Eq. 1-5) 

and then aggregate this information to obtain overall resources workload and 

service performance estimates (Eq. 6-8). In order to collect this information, 

models of system resources are required. Each resource model should capture 

hardware (e.g. speed, capacity) and software (e.g. access, allocation, scheduling) 

characteristics of each system resource. Since inter-component interaction is not 

considered, each model is viewed as an independent component. In Chapters 2 

and 3, Windows performance objects (Microsoft 2009) were collected to capture 
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workload and performance information. Windows performance objects provide 

mostly aggregated values of workload and performance variables from multiple 

service instances rather than workload and performance values associated with 

individual service instances. For example, the variable % Processor Time of the 

Process object measures the percentage of time the processor spent executing 

threads (instances) of a particular service during a period of 1 second. The 

information provided by this variable is detailed enough for the analyses 

performed in Chapters 2 and 3, but it provides no information to estimate the 

waiting time or the operation time of individual service instances, and thus cannot 

be used to estimate individual service performance metrics at the resource such as 

the operation time and waiting time. Only aggregated workload for service 

instances during the period (1 second) can be estimated. 

For this part of the research, two system resources are modeled: processor 

and disk to illustrate how the framework can be applied to estimate workload and 

performance of services. The details and assumptions for these models are given 

in sections 4.6.1-4.6.4. Models are implemented using discrete-event simulation 

(DEVS) formalism into ARENA v12 software. Hardware and resource-sharing 

scheme characteristics incorporated in the models can be configured to particular 

hardware and software specifications. These models can collect data regarding: 1) 

idle and busy periods for each of the system resources, and 2) the detailed 

tracking of service instances along the system. Memory resource is considered to 

have an upper bound on the number of services that can be admitted into the 
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system. Network, video card, sound card and other system resources along with 

interactions between components are out of the scope for this research, but they 

can be considered in future work. 

4.6.1 Processor (CPU) model  

The processor (CPU) model implements a round robin priority preemptive 

(RRP) scheduling algorithm. This algorithm intends to represent the processor 

scheduling algorithm used in Windows XP operating systems (Russinovich and 

Solomon 2005), although at a higher abstraction level. Important service 

parameters (factors) that affect processor workload and performance are: services’ 

priority, arrival and execution time distributions, and the competition for 

processor with other services. Service instances from multiple services may arrive 

to the resource queue according to the arrival distribution specified in their service 

profiles. The processor time required by a service instance is based on the 

execution time distribution specified in the service profiles. Services’ instances 

may have different priorities according to their type. When a service instance 

arrives at the resource queue, it is ordered according to its priority, if the service 

instance is selected to seize the processor, it seizes the processor until it is 

preempted by a higher-priority service instance arriving at the queue, until it 

terminates execution, or until its quantum ends. If quantum ends and the service 

instance still requires additional processor time, the service instance is sent back 

to the queue and the processor is assigned to the next service instance selected by 

the scheduling algorithm. The quantum is set to 10 ms (milliseconds) 
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(Silberschatz, Galvin and Gagne 2009). Overhead time (context switch) is set to 

0.5 ms and represents the time required by the scheduling algorithm to un-seize 

the previous service instance and seize the next one. No form of priority boosting 

is considered. The model can be customized to represent other scheduling 

algorithms, parameters such as quantum and overhead can be modified, as well as 

the number of service types competing for the processor, their arrival and 

execution time distributions, and their priorities.  

 4.6.2 Processor model validation 

In order to validate the processor model, a study was performed to 

compare the workload information generated with the processor model to the 

processor workload information collected under a real computer and network 

setting in Lakshminarasimhan (2005).  Lakshminarasimhan (2005) used windows 

performance objects to collect resource workload and performance information on 

a server during two normal activities: text editing and web browsing. Each normal 

condition was run with the absence/presence of cyber attacks. The server had 

Windows XP® Operating system with Pentium 4 3.0 GHz processor, 3.0 GB of 

RAM and 120GB hard disk. The text editing condition (under no-attacks) was 

selected for comparison. Text editing condition was run in Lakshminarasimhan 

(2005) for a period of 10 minutes, for a total of 600 observations (one per second) 

collected for each variable of the Windows performance objects. Six services 

were identified to access the processor during text editing condition. The 

description of each of the active services is given in Table 16. At system level, 
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services are associated to processes. The profiles for the active services, in Table 

17, were estimated by using the observations collected for the variable % 

Processor Time_Process() for the process associated to each service. This variable 

measures the percentage of time the processor was busy executing instances 

(threads) of a particular service during one-second intervals. The arrival 

distribution contained in the profile of each service represents the interval 

frequency at which services arrive to the processor during text editing conditions. 

The execution time distribution also contained in the profile of each service 

represents the processor time per interval required by the service instances. 

Table 16. Description of active services during text editing condition. 

Services Description 

csrss 
Client/server run-time subsystem responsible for the windows console, 
creating and/or deleting threads, and some parts of the 16-bit virtual 
MS-DOS environment. 

explorer Responsible of user shell and desktop. 

mmc 
Microsoft Management Console application used to display 
management plug-ins accessed from the Control Panel, such as the 
Device Manager. 

system Checks the correct performance of the entire system, including 
drivers, ports, memory, disk and all other components. 

smlogsvc Monitor machine's performance, periodically scheduled checks on 
your system and create logs, notify of problems. 

word Responsible of text editing activity. 
 

Table 17. Services profiles containing arrival and execution time distributions. 

Index(�)  Services Arrival Time Dist. (sec) Execution Time Dist. (sec) 
1 word  Norm(1.7,1.23) Norm(2.61,1.51) 
2 system Expo(105.8) 1.5625 
3 csrss Expo(48.75) 1.5625 
4 explorer Rand*200 1.5625/6.25 
5 mmc Rand*300 1.5625 
6 smlogsvc Expo(9.5) 1.5625 
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The variable selected for comparison is the % Idle Time of the Processor 

object which measures the percentage of time the Processor was idle waiting for 

services to be executed. The service profiles in Table 17 were used as input 

parameters to the processor model. Ten simulations were run using the processor 

model. Each simulation was run for 100 seconds. The framework described 

previously was used to estimate the workload (utilization) of each service on the 

processor using Eq. 1. The length of the periods was set to 1 second (T=1), similar 

to the length of the collection interval for windows performance objects. The % 

Idle Time for each period � was calculated using Eq. 9. 

%�-./��*/� = (1 − ∑ ����) ∗ 1004��        (Eq. 9) 

 The Mann-Whitney test (Mann and Whitney 1947) was used to compare 

the % Idle Time estimates for each simulation run with the % Idle Time 

observations collected during the text editing condition in Lakshminarasimhan 

(2005). Table 18 shows the p-values obtained for the Mann-Whitney test using 

Minitab v14. For nine out of ten simulation runs, a p-value higher than 0.1 

indicates the workload information obtained using the data collected during 

simulation runs is not significantly different to the workload information observed 

during the text editing condition. These results probe the processor model can 

produce accurate processor workload information based on the service profiles. 

Services profiles can be used to capture multiple services conditions independent 

of services functional and non-functional requirements. 
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Table 18. P-values Mann-Whitney test for simulation runs under text editing. 

Run 
Mann-Whitney test 

(p-values) 
1 0.3863 
2 0.2627 
3 0.029* 
4 0.7138 
5 0.3368 
6 0.3349 
7 0.7695 
8 0.6474 
9 0.5905 

10 0.1054 
 

4.6.3 Disk model  

Disk is considered the slowest resource in a computer and network system 

(Riska and Riedel 2006). Effective disk management is required to prevent disk 

becoming a bottleneck in system performance. Figure 12 shows the disk model 

structure which represents a high level abstraction of a real disk structure. Similar 

to a real disk, the operation time for a service instance in the disk model is the 

sum of the access time and the transfer time. Transfer time measures the time 

needed to read/write the data required and it mainly depends on the transfer rate 

and the data size. Access time measures the time it takes the disk head to reach the 

disk block (sector) required for the read/write operation. Access time has two 

major components: Seek time and rotational latency. Seek time measures the time 

it takes the read-write head to reach the track containing the required block. 

Rotational latency measures the time it takes to rotate the platter to reach the 
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specific block along the track. Access time is the major contributor to the 

operation time. 

 

 

Figure 12. Disk model structure (disk abstraction) 

Table 19 lists the default values for the parameters considered in the disk 

model. These parameters can be customized to particular disk hardware and 

software characteristics. The access pattern refers to the track location of the 

service instances (disk requests) along the platters’ surface. This is an important 

factor that affects disk workload and performance. In general, it is accepted that 

servers and desktop environments operate under mostly random access patterns 

for the purpose of workload and performance analysis (Thomasian and Liu 2002; 

Riska and Riedel 2006). Other service parameters (factors) that affect disk 

workload and performance are: block size which directly affects transfer time, the 

arrival distribution of the services instances, and the competition for disk with 

other services.  
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Table 19. Default values for disk model parameters 

Disk Parameters Default values 
No. of tracks per surface 10,000 
Transfer rate (read/write) 300 Mb/s 
Avg. rotational latency 4.16 ms  
Avg. seek time 9 ms 
Constant seek time 0.5 ms 
Block size  4 Kb 
Access pattern random 
Scheduling algorithm C-Look 

 

Most disk scheduling algorithms focus on minimizing access time, since 

access time is the main contributor to disk operation time. The C-Look (circular 

elevator) algorithm focus on minimizing the seek time part of the access time. C-

Look sorts arriving service instances (disk requests) in its queue according to the 

track where the block to be read/write is located, then it starts executing service 

instances from the innermost track request to the outermost track request. When 

the outermost track request is reached, it moves back to the innermost track 

request and starts executing service instances moving outward again. Seek time is 

estimated using Eq. 10. Track distance is measure as the number of tracks the 

read-write head has to move to reach the desired track from the current track 

position. Track time is the time it takes the read-write head to move one track and 

is estimated based on the average track distance and the average seek time. Track 

time is assumed to be constant. When random access pattern to the disk is 

assumed, the average track distance is roughly one third of the number of tracks 

per surface (Jacob, Ng and Wang 2008), and track time is estimated by dividing 

the average seek time by the average track distance. By minimizing track distance 
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seek time is reduced which in turn reduces access time. Rotational latency which 

is the second component of access times is considered constant for each request 

(average rotational latency). 

5//6	��*/ = )7�8�9��	8//6	��*/ + ��9�6	-�8�9��/ ∗ ��9�6	��*/    (Eq. 10) 

4.6.4 Disk model validation 

For the validation of the disk model, a study was performed to compare 

the disk workload information generated using the disk model to the disk 

workload information collected during one of the experiments in Lumb, et al. 

(2000). In the experiment, the impact of various scheduling algorithms on disk 

workload (utilization) is investigated. Lumb, et al. (2000) used the DiskSim 

simulator (Parallel Data Lab 2011) for the experiment. This simulation 

environment has been previously validated against various disks from different 

manufacturers, including the Quantum Atlas 10K 9.1 GB disk which results are 

used for validation of the disk model. The input traces used for the experiment in 

Lumb, et al. (2000) are used as inputs for the disk model. Input traces for this and 

other disk experiments are available through the DiskSim website 

(http://www.pdl.cmu.edu/DiskSim/diskspecs.shtml). For Quantum Atlas 10K 9.1 

GB disk, input traces consist of 10,000 random access requests at an approximate 

2:1 ratio of reads to writes, with most requests requiring 4 Kb block size. There is 

0 (zero) time between requests. Table 20 contains the Quantum Atlas 10K 9.1 GB 

disk basic characteristics. These characteristics were abstracted from hardware 

characteristics of the disk and the input trace information. Disk model parameters 



 

96 

 

(Table 19) are adjusted to incorporate these characterisitcs. The maximum queue 

size is fixed to 20 at all times, similar to the experiment in Lumb, et al. (2000). 

Table 20. Quantum Atlas 10K 9.1 GB disk basic characteristics. 

Disk Characteristics  Values 
No. of data surfaces 6 
No. of tracks per surface 10,042 
Avg. No. of sectors per track 298 
Transfer rate (read/write) 160 Mb/s 
Delay before transfer (read/write) 0.1 ms 
Avg. seek time 5 ms 
Min-Max seek times  1.2-10.8 ms 
Avg. rotational latency 3 ms  
Min rotational latency 0.5 ms 
Access pattern random 
Scheduling algorithm C-Look, SSTF 

 

Two different scheduling algorithms are used, the C-Look algorithm 

described in section 4.6.3, and the shortest seek time first (SSTF) algorithm. 

Similar to C-Look, SSTF focus on minimizing seek time. SSTF assigns the disk 

to the service instance (request) with the minimum seek distance regardless of 

direction, it scans the queue for the service instance with requested track closest to 

the current track where the read-write head is located. Different from the DiskSim 

simulator, the disk model doesn’t distinguish between read/write requests and no 

additional overheads on disk are considered. Figure 13 shows the comparison of 

the disk workload information generated by the disk model using SSTF and C-

Look scheduling algorithms with the disk workload information observed during 

the experiment in Lumb, et al. (2000).  
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Figure 13. Disk workload comparison simulation model vs. Lumb, et al. (2000) 

experiment. 

Disk workload information in each column is brokendown into workload 

due to rotational latency, workload due to data transfer, and the workload due to 

seek time. The first column in Figure 13 represents the disk workload information 

observed during the experiment in Lumb, et al. (2000) when SSTF algorithm is 

used. The first column can be compared to the second column containing the disk 

workload information obtained with the disk model when SSTF algorithm is used. 

Similarly, the third column contains the disk workload information observed 

during the experiment in Lumb, et al. (2000) when C-Look algorithm is used. The 

third column can be compared to the fourth column containing the disk workload 

information obtained with the disk model when C-Look algorithm is used. The 

small differences in percentage between the disk workload information generated 

using the disk model and the workload information observed in Lumb, et al. 
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(2000) for the SSTF (2.1%) and C-Look (2.6%) scheduling algorithms probe the 

disk model can produce representative disk workload information if the proper 

values for model parameters and service profiles are used. These small workload 

differences are mainly due to the higher abstraction level of the disk model in 

comparison with level of details used in DiskSim simulator.  

4.7 Description of experiments for building workload and performance models 

The framework described in section 4.5 together with the processor (4.6.1) 

and disk (4.6.3) models are used to analyze the impacts of various service 

parameters (e.g. arrival distribution, execution time distribution, priority, 

workload intensity, scheduling algorithm) on workload and performance.  

Experiments were designed to build workload and performance models for 

each resource. The experiments cover a wide variety of service conditions. Details 

of the experiments are provided in the following sections 4.7.1 – 4.7.2.  

4.7.1 Processor experiments 

The processor experiments cover the service parameters (factors) and their 

levels which are shown in Table 21 and explained in the text below.  
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Table 21. Service parameters (factors) for processor experiments. 

Service parameters Levels 
Arrival time distribution type (2) exponential, normal 
Execution time distribution type (2) exponential, normal 
No. of services in competition (3) 2, 5, 10 
Scheduling algorithm (2) RRP, MLF 
Workload intensity (3) 0.5, 0.7, 0.9 
Relation of execution time – 
service priority (2) 

Small execution time – High priority, 
Large execution time – High priority 

 

The distributions assumed for the arrival and execution times of services 

are either exponential or normal. Two, five or ten services can compete for 

processor during the experimental conditions (cases). The priorities of services 

change according to the number of services competing for the processor. If two 

services compete for processor, service one has higher priority than service two. If 

five services compete for processor, service one has the highest priority, services 

two and three have the second highest priority and services four and five have the 

lowest priority. If ten services compete for processor, services one and two have 

the highest priority, services three and four have the second highest priority, 

services five, six and seven have the third highest priority and services eight, nine 

and ten have the lowest priority. Two different scheduling algorithms are used, the 

round robin priority preemptive (RRP) algorithm with default values for the 

parameters described in section 4.6.1, and the multi-level feedback priority 

preemptive (MLF) algorithm. MLF has three different queues. The goal of this 

algorithm is to avoid service instances with large execution times affecting the 

performance of service instances with smaller execution times. Arriving services’ 

instances are ordered according to its priority in the first queue. Service instances 
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in the second and third queues are also ordered according to their priority. Service 

instances in the first queue are executed first. If the first queue is empty, service 

instances in the second queue are executed. Service instances in the third queue 

are executed only if the first and second queues are empty. A service instance in 

the first queue preempts any service instance from the second or third queues. 

Service instances from first queue can be preempted only by arriving service 

instances with higher priority. The amount of time a service instance seizes the 

processor depend on the queue they come from. For service instances in the first 

queue, quantum is set to 10 ms (milliseconds) such as that in the RRP algorithm. 

For service instances in the second and third queues quantum is set to 20 ms and 

30 ms, respectively. Once the processor has been assigned to a particular service 

instance, the service instance seizes the processor until the instance is preempted, 

until it terminates execution, or until its quantum ends. If the service instance is 

preempted, it goes back to the queue it was before execution, this ensures service 

instances will proceed to the next queue only if the processor has been allocated 

for at least a full quantum. If the service instance quantum ends and the service 

instance still requires the processor, it is sent to the next queue. Overhead time 

(context switch) is set to 0.5 ms and represents the time required by the 

scheduling algorithm to un-seize the previous service instance and seize the next 

one. No form of priority boosting is considered.  

Workload intensity (��!"#) factor is an estimate of the processor 

workload due to all services competing for the processor and can be obtained 

using Eq. 11, a result from queueing theory (Gross and Harris 1998). Three levels 
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of workload intensity levels are investigated: low (0.5), medium (0.7) and high 

(0.9). Workload intensity tends to under-estimate processor workload since it does 

not consider the overhead workload due to the scheduling algorithm. The relation 

of execution time – service priority explores the effect of assigning the highest 

priorities to services with small execution times versus the effect of assigning the 

highest priorities to services with large execution times. 

 ��!"# = ∑ :� ;�<���     (Eq. 11) 

where: 

 � = Service type, � = 1,…I  :� = Arrival rate service type �. 
 ;� = Execution rate service type �. 
 

Based on the levels of each factor in Table 21, totally 72 x 2 = 144 

experimental conditions (2*2*3*2*3*2) are run. Each experimental condition 

(case) is replicated 10 times. The length of each simulation run is 100 seconds. 

The services profiles used in each case can be found in the appendix section.  

4.7.2 Disk experiments 

The disk experiments were designed to cover the service parameters 

(factors) and their levels which are shown in Table 22 and explained in the text 

below.  
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Table 22. Service parameters (factors) for disk experiments. 

Service parameters Levels 
Arrival time distribution type (2) exponential, normal 
Block Size in MB (5) 0.04, 0.016, 0.032, 0.064, 0.128 
No. of services in competition (3) 2, 5, 10 
Scheduling algorithm (2) C-Look, SSTF 
Workload intensity (4) 0.6, 0.8, 1, 1.2 

 

The arrival distribution for service instances (requests) can be either 

exponential or normal. Service instances may require distinct block sizes to be 

read/write from the disk. Block sizes depend on services type. Two, five or ten 

services can compete for disk during experimental conditions. Two different 

scheduling algorithms are used, the C-Look algorithm and the shortest seek time 

first (SSTF) algorithm. Both algorithms focus on minimizing seek time. Default 

values for disk model parameters are assumed (Table 19). C-Look and SSTF 

algorithms do not consider services priorities. Workload intensity (��!"#) factor 

is an estimate of disk workload due to all services competing for the disk. Disk 

workload intensity is calculated using Eq. 12. The workload intensity formula 

(Eq. 12) considers the workload on disk due to data transfer and the workload on 

disk due to disk access. Disk access time is the major component of disk 

operation time and it is affected by the arrival rate of service instances (requests). 

The arrival rate of service instances is positively correlated with the number of 

service instances in queue, that is, if the arrival rate is increased the number of 

service instances in queue increases. Increasing the number of service instances in 

queue reduces the seek distance the read-write head has to travel between 

requests. Workload intensity (Eq. 12) tends to over-estimate disk workload 
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because it doesn’t capture the reduction effect in seek distance between requests 

when the number of service instances in queue increases. Four levels of workload 

intensity levels are investigated: low (0.6), medium (0.8), medium-high (1) and 

high (1.2). . 

��$�%& = ∑ = >
?@A�BCD@	@AEDF!G�%HI�HJKK&FLMN.JKK&P�QKFLMN.RGHIH�G�ISTIHK�UVW

X
���      (Eq. 12) 

 

where: 

 � = Service type, � = 1,…I  Y� = Arrival mean service type �. 
 Z� = Block size for service type �. 
 

Based on the levels of each factor in Table 22, 240 experimental 

conditions (2*5*3*2*4) are required. However, experimental conditions (cases) 

can be combined given that more than one service type competes for the disk in 

each case. For example, when having five services competing for the disk, the 

five different levels of block size can be run in one experimental condition (case), 

combining five cases into only one. By using the same logic to combine cases, the 

total number of cases was reduced to 40 x 2 = 80. Each case is replicated 10 

times. The length of each simulation run is 100 seconds. The services profiles 

used in the cases can be found in the appendix section.  
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4.8 Results and Discussions 

In this section, the impacts of service parameters (factors) on processor 

and disk workload and performance are presented. Workload and performance 

models capturing these impacts are provided.  

4.8.1 Impacts of service parameters on processor workload and performance 

The framework described in section 4.5 is used to estimate workload and 

performance metrics of services at the processor based on the data collected from 

the experimental conditions (cases) in section 4.7.1. For each of the 10 simulation 

runs (replicates) for each case, workload and performance metrics are obtained, 

using equations 1-5, for each of the services competing for the processor. Figure 

14 shows the effect of using different values of T when estimating the workload 

and performance metrics for service 1 in case 24 run 1. T is the length of the 

period used for calculating the workload and performance metrics. As it can be 

seen from Figure 14, the mean value of the workload and performance metrics 

estimated for service 1 of case 24 run 1 is not sensitive to the length of the period 

(T). Similar effect with T is observed for the workload and performance metrics of 

services in all cases. This effect increases the confidence for using these metrics 

as estimates of service workload and performance at the processor. 
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  a. CPU Workload.        b. Waiting time. 
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  c. Operation time.      d. Completion rate. 

Figure 14. The effect of T on service workload and performance metrics  
at processor. 

The metrics are estimated based on the average of individual service 

instances observed during n periods of length T, as T increases, the number of 

service instances observed in each period increases and this increase in the 

number of service instances observed tends to reduce the variance of the workload 

and performance metrics estimated for each service.  

The impacts of service parameters on the mean and standard deviation of 

the workload and performance metrics for individual services are discussed next. 

The length of the period, T, is set to 2 seconds. Since each simulation run for each 

of the cases is run for 100 seconds, by setting T equal to 2 seconds each 

simulation run is divided into 50 periods and the information observed during 
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these periods is used to estimate the workload and performance metrics of 

services (Equations 1-5).There is no statistically significant impact on service 

workload and performance metrics with a change in the relation of execution time 

– service priority. To better understand the impacts of service priorities and 

workload intensity (��!"#) parameters on individual service workload and 

performance, these two parameters were combined to obtain: ρi, ρHP and ρSP. ρi is 

the workload intensity due to the service type � and is estimated using Eq. 11, but 

considering only service type � (ρi =λi/µi). ρHP is the workload intensity due to the 

services with higher priority than service type � and is estimated using Eq. 11, but 

considering only service types with higher priority than service type �. ρSP is the 

workload intensity due to the services with similar priority to that of service type � 
and is estimated using Eq. 11, but considering only service types with similar 

priority to that of service type �. 

CPU Workload 

 Figure 15 shows the impacts of service arrival distribution mean (Arrivµ) 

on processor (CPU) workload mean (µ) and standard deviation (σ). The Arrivµ has 

a decrease effect on the processor workload mean (µ) and standard deviation (σ). 

M i/M i/1 represents those experimental conditions (cases) with arrival and 

execution times assuming exponential distributions. Gi/M i/1 represents those 

cases with arrivals being normal distributed and execution time being exponential 

distributed. Mi/Gi/1 represents those cases with arrivals being exponentially 

distributed and execution time being normal distributed. Gi/Gi/1 represents those 
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cases with arrival and execution times assuming normal distributions. For 

constructing Figures 15- 27, service parameters are kept at constant values in each 

figure. For example for constructing Figure 15, the execution distribution mean of 

the service (Exµ=0.009), the workload due to higher priority services (ρHP=0) and 

the workload due to same priority services (ρSP=0) were kept at constant values. 

Each figure indicates the parameters kept at constant values for its construction. 
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        a. Impact of Arrivµ on CPU Workload (µ)     b. Impact of Arrivµ on CPU Workload (σ) 

Constant parameters: Exµ=0.009, ρHP=0, ρSP=0 

Figure 15. Impacts of arrival distribution mean (Arrivµ) on CPU workload. 

Figure 16 shows the impacts of service arrival distribution’s coefficient of 

variation (ArrivCV) on processor (CPU) workload mean and standard deviation. 

The coefficient of variation (CV) is a normalized measure of the dispersion of a 

probability distribution and is defined as the ratio of the standard deviation (σ) to 

the mean (µ). Exponential distributions has a CV = 1, and normal distributions are 

restricted to have a CV = 1/3. ArrivCV has no significant effect on the mean (µ) of 

processor workload, but it has an increasing effect on the standard deviation (σ) of 

processor workload. 
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Constant parameters:  ρ = 0.075, Arrivµ=0.12,  Exµ=0.009, ρHP=0, ρSP=0. 

Figure 16. Impacts of arrival distribution CV (ArrivCV) on CPU workload. 

Figure 17 shows the impacts of service execution distribution mean (Exµ) 

on processor (CPU) workload mean (µ) and standard deviation (σ). Exµ has an 

increasing effect on CPU workload mean (µ) and standard deviation (σ). 
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        a. Impact of Exµ on CPU Workload (µ)                      b. Impact of Exµ on CPU Workload (σ)  
                                                  Constant parameters: Arrivµ=0.2, ρHP=0, ρSP=0. 

Figure 17. Impacts of execution distribution mean (Exµ) on CPU workload. 

Figure 18 shows the impacts of service execution distribution CV (ExCV) 

on processor (CPU) workload mean (µ) and standard deviation (σ). ExCV has no 

significant effect on CPU workload mean (µ), but it has an increasing effect on 

CPU workload standard deviation (σ). 
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Figure 18. Impacts of execution distribution CV (ExCV) on CPU workload. 

Table 23 summarizes the service parameters effects on CPU workload 

mean (µ) and standard deviation (σ) with the parameters: workload intensity due 

to higher priority services (ρHP), workload intensity due to services with similar 

priority (ρSP), arrival distribution mean (Arrivµ), arrival distribution CV (ArrivCV), 

execution distribution mean (Exµ), and execution distribution CV (ExCV).  From 

Figures 15-18, it can be observed the mean (µ) and standard deviation (σ) of the 

CPU workload metric depends on the arrival and execution time distributions 

assumed. The mean (µ) and standard deviation (σ) of the CPU workload metric 

tend to be higher with RRP algorithm but only the effect on standard deviation of 

CPU workload with RRP is statistically significant. 

Table 23. Service parameters effects on CPU workload mean (µ) 

and standard deviation (σ). 

Parameters effects on: ρHP ρSP Arrivµ ArrivCV Exµ ExCV 
CPU Workload (µ) - - ↓ - ↑ - 
CPU Workload (σ) - - ↓ ↑ ↑ ↑ 
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Waiting Time 

Figure 19 shows the increasing effects on service waiting time mean (µ) 

and standard deviation (σ) due to the increase of the processor workload by higher 

priority services (ρHP). 
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Constant parameters:  ρ = 0.075, Arrivµ=0.12, Exµ=0.009, ρSP=0. 

Figure 19. Impacts of workload by higher priority services (ρHP) on Waiting 
Time. 

Figure 20 shows the increasing effects on service waiting time mean (µ) 

and standard deviation (σ) due to the increase of the execution distribution mean. 
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Constant parameters: Arrivµ=0.2, ρHP=0, ρSP=0. 

Figure 20. Impacts of execution distribution mean (Exµ) on Waiting Time. 
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Table 24 summarizes the service parameters effects on waiting time mean 

(µ) and standard deviation (σ).  From Figures 19-20, it can be observed that 

values for waiting time mean (µ) and standard deviation (σ) depend on the arrival 

and execution time distributions assumed and the scheduling algorithm. Waiting 

time mean (µ) and standard deviation (σ) are significantly larger with MLF 

algorithm. It is important to notice that service parameters such as ρSP, Arrivµ, 

ArrivCV and ExCV have an impact on waiting time mean and standard deviation, 

but these effects are very small in comparison with the effects of ρHP and Exµ. The 

models presented in section 4.8.2 capture these effects on waiting time mean and 

standard deviation. 

Table 24. Service parameters effects on Waiting Time mean (µ) 

and standard deviation (σ). 
Parameters effects on: ρHP ρSP Arrivµ ArrivCV Exµ ExCV 

Waiting Time (µ) ↑ - - - ↑ - 
Waiting Time (σ) ↑ - - - ↑ - 

Operation Time 

Figure 21 shows the impacts of the workload by higher priority services 

(ρHP) on service operation time mean (µ) and standard deviation (σ). ρHP has no 

significant effect on the mean (µ) of operation time, but it has a small increasing 

effect on its standard deviation (σ) when MLF algorithm is used.  
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Constant parameters:  ρ = 0.075, Arrivµ=0.12, Exµ=0.009, ρSP=0. 

Figure 21. Impacts of workload by higher priority services (ρHP)  

on Operation Time. 

Figure 22 shows the impacts of service arrival distribution mean (Arrivµ) 

on operation time mean (µ) and standard deviation (σ). Arrivµ has no significant 

effect on operation time mean (µ), but it has a small increasing effect on operation 

time standard deviation (σ). 
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          a. Impact of Arrivµ on Operation Time (µ)  b. Impact of Arrivµ on Operation Time (σ) 

Constant parameters: Exµ=0.009, ρHP=0, ρSP=0. 

Figure 22. Impacts of arrival distribution mean (Arrivµ) on Operation Time. 

Figure 23 shows the increasing effect on the mean (µ) and standard 

deviation (σ) of service operation time due to the increase in the execution 

distribution mean (Exµ).  
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             a. Impact of Exµ on Operation Time (µ)        b. Impact of Exµ on Operation Time (σ) 

Constant parameters: Arrivµ=0.2, ρHP=0, ρSP=0. 

Figure 23. Impacts of execution distribution mean (Exµ) on Operation Time. 

Figure 24 shows the impacts of service execution distribution CV (ExCV) 

on mean (µ) and standard deviation (σ) of operation time. ExCV has no significant 

effect on operation time mean (µ), but it has a small increasing effect on operation 

time standard deviation (σ). 
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           a. Impact of ExCV on Operation Time (µ)  b. Impact of ExCV on Operation Time (σ) 

Constant parameters:  ρ = 0.075, Arrivµ=0.12, Exµ=0.009, ρHP=0, ρSP=0. 

Figure 24. Impacts of execution distribution CV (ExCV) on Operation Time 

Table 25 summarizes the service parameters effects on operation time 

mean (µ) and standard deviation (σ).  From Figures 21-24, it can be observed that 

values for the standard deviation (σ) of service operation time are affected by the 



 

114 

 

execution time distributions assumed. When the execution time distribution is 

exponential (CV=1) a larger standard deviation is observed than when the 

distribution is normal (CV=1/3). This implies the larger the CV of the execution 

time distribution, the larger the standard deviation (σ) on service operation time. 

Additionally, the standard deviation (σ) of operation time is statistically larger 

with MLF scheduling. 

Table 25. Service parameters effects on Operation Time mean (µ)  

and standard deviation (σ). 

Parameter Effects on: ρHP ρSP Arrivµ ArrivCV Exµ ExCV 
Operation Time (µ) - - - - ↑ - 

Operation Time (σ) ↑(MLF) - ↑ - ↑ ↑ 

 

Completion Rate 

Figure 25 shows the decreasing effects on completion rate mean (µ) and 

standard deviation (σ) due to the increase in arrival distribution mean (Arrivµ).  
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         a. Impact of Arrivµ on Completion Rate (µ)          b. Impact of Arrivµ on Completion Rate (σ) 

Constant parameters: Exµ=0.009, ρHP=0, ρSP=0. 

Figure 25. Impacts of arrival distribution mean (Arrivµ) on Completion Rate. 
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Figure 26 shows the impacts of service arrival distribution CV (ArrivCV) 

on completion rate mean (µ) and standard deviation (σ). ArrivCV has no significant 

effect on completion rate mean (µ), but it has an increasing effect on completion 

rate standard deviation (σ). 
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      a. Impact of ArrivCV on Completion Rate (µ)       b. Impact of ArrivCV on Completion Rate (σ) 

Constant parameters:  ρ = 0.075, Arrivµ=0.12, Exµ=0.009, ρHP=0, ρSP=0. 

Figure 26. Impacts of arrival distribution CV (ArrivCV) on Completion Rate. 

Figure 27 shows the increasing effects on completion rate mean (µ) and 

standard deviation (σ) due to the increase in execution distribution mean (Exµ).  
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         a. Impacts of Exµ on Completion Rate (µ)             b. Impacts of Exµ on Completion Rate (σ) 

Constant parameters: Arrivµ=0.2, ρHP=0, ρSP=0. 

Figure 27. Impacts of execution distribution mean (Exµ) on Completion 
Rate. 
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Table 26 summarizes the service parameters effects on completion rate 

mean (µ) and standard deviation (σ).  From Figures 25-27, it can be observed that 

values for completion rate mean (µ) and standard deviation (σ) tend to be slightly 

larger with MLF algorithm, but these effects with MLF scheduling are not 

statistically significant. 

Table 26. Service parameters effects on Completion Rate mean (µ) 

and standard deviation (σ). 

Parameters effects on: ρHP ρSP Arrivµ ArrivCV Exµ ExCV 
Completion Rate (µ) - - ↓ - ↑ - 

Completion Rate (σ) - - ↓ ↑ ↑ - 

 

 In general, the increase of workload due to higher priority services (ρHP) 

increases the service waiting time mean and standard deviation, and the standard 

deviation of service operation time when MLF scheduling is used. The arrival 

distribution mean impacts service workload mean and standard deviation, 

completion rate mean and standard deviation, and the standard deviation of 

operation time. Increasing arrival distribution mean decreases service workload 

and completion rate means and standard deviations, and increases the standard 

deviation of service operation time. The larger the coefficient of variation (CV) 

for the arrival distribution, the larger the standard deviations of service workload 

and completion rate metrics. An increase in the mean of the service execution 

distribution increases the means and standard deviations of service workload, 

waiting time, operation time and completion rate metrics. The larger the 

coefficient of variation (CV) for the execution distribution, the larger the standard 



 

117 

 

deviations of service workload and operation time metrics. Using RRP scheduling 

increases the standard deviation of services’ workload on processor. Services, 

especially those with long execution times, tend to wait more time for the 

processor with MLF, since they stay in the lowest priority queue longer time, 

waiting for services in higher priority queues to complete execution. 

4.8.2 Workload and performance models for processor 

Tables 27-28 provide the service workload and performance models for 

the processor with RRP and MLF scheduling algorithms respectively. These 

models accurately capture the impacts of service parameters on workload and 

performance metrics described in the previous section (4.8.1). Multiple linear 

regression was used to build the models, polynomial (ρ
2, Arriv2

µ, Ex2
µ) and 

interaction terms (Arrivµ.CV, Exµ.CV) were included when necessary to increase 

model performance. Natural log (Ln) and square root (Sq) transformations were 

applied to the workload and performance metrics with the similar purpose. When 

analyzing the residuals for the regression models, for some of the metrics, it was 

found the residuals had non-constant variance. The common pattern identified in 

the residuals appears in Figure 27a, where the variance of the residuals increases 

with the fitted values. To correct this inequality of variance problem, weighted 

least square regression (WLS) was applied (Montgomery, Peck and Vining 2006). 

This approach incorporates weights into the least squares calculation. The main 

concern with weighted regression is how to find the proper weights to be used, 

but for processor and disk experiments the replicates for each of the experimental 
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conditions (cases) are used to estimate these weights. These replicate runs were 

used to calculate the average value at each service condition and its variance. The 

weights were defined as the inverse of the variance observed at any service 

condition. Figure 28 shows the residuals vs. fitted values plots for the standard 

deviation (σ) of service workload on processor before (Figure 27 a) and after 

using weighted least square regression (Figure 27 b) when RRP scheduling 

algorithm is used. Weighted least square regression corrected the inequality of 

variance of the residuals. 

    
                     a. Before weighted regression                           b. After weighted regression 

Figure 28. Deleted residuals vs. fitted values CPU workload  
standard deviation (σ) model. 

 
The predictive performance of the models in Tables 27-28 was estimated 

in terms of the R-square. R-square is a common measure for the goodness-of-fit 

for regression models and measures the square correlation coefficient between the 

predicted and observed responses. The closest the R-square value to one, the 

better the fitness of the model. Ten fold cross-validation (Tan, Kumar and 

Steinbach 2006) is used to estimate the predictive R-square value for the models 

(Tables 26-27). In k cross-validation the data is partitioned randomly into k 

equally-sized subsets, at each of the k folds k-1 subsets (train data) are used to 
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build a regression model, and then this model is used to estimate the predicted 

response values for the remaining subset (test data). Each k subset is used for 

testing once. The predictive R-square is obtained by comparing the observed 

responses vs. the predicted responses obtained from cross-validation. The 

predictive R-sq values obtained using cross-validation show the regression 

models are a good fit for the data and provide the confidence to use these models 

for prediction of service workload and performance. The estimates obtained from 

these models can be used for taking workload and performance management 

decisions. 

Table 27. Regression models for service workload and performance at 
processor with RRP algorithm. 

Metrics Regression model 
R-sq 
(pred) 

WLS  

CPU 
Workload 

(µ) 

Sq Uµ = 0.239 + 1.02 ρ - 0.367  ρ2 - 1.61 Arrivµ - 0.000853 
ArrivCV + 4.12 Arriv2

µ + 15.5 Exµ + 0.00383 ExCV - 0.304 
Exµ.CV - 443 Ex2µ 

0.998 - 

CPU 
Workload 

(σ) 

Sq Uσ = - 0.00173 + 0.306 ρ - 0.27 ρ2 + 0.119 Arrivµ + 
0.0719 ArrivCV - 0.183 Arrivµ.CV + 0.625 Arriv2µ + 5.91 Exµ + 
0.024 ExCV + 3.72 Exµ.CV - 189 Ex2µ 

0.921 Y 

Waiting 
Time (µ) 

Ln Wtµ = - 8.60 - 6.91 ρ + 9.82 p2 + 6.24 ρHP + 0.869 ρSP - 
13.5 Arrivµ - 7.98 Arrivµ.CV + 1.38 ArrivCV + 57.9 Arriv2

µ + 
447 Exµ + 0.879 ExCV - 45.4 Exµ.CV - 8643 Ex2µ 

0.915 Y 

Waiting 
Time (σ) 

Ln Wtσ = - 11.7 - 1.73 ρ + 7.14 ρ2 + 7.34 ρHP + 1.38 ρSP + 
7.79 Arrivµ + 2.20 ArrivCV - 11.9 Arrivµ.CV + 16.1 Arriv2

µ + 
356 Exµ + 1.12 ExCV - 10.8 Exµ.CV - 8719 Ex2µ 

0.89 Y 

Operation 
Time (µ) 

Sq Optµ = 0.0362 + 0.00181 ρ + 0.0455 Arrivµ - 0.293 
Arriv2

µ + 7.98 Exµ + 0.00113 ExCV - 0.0846 Exµ.CV - 135 Ex2µ 
0.996 Y 

Operation 
Time (σ) 

Ln Optσ = - 10.3 - 1.19 ρ + 0.987 ρ2 + 11.3 Arrivµ + 0.0515 
ArrivCV - 37.1 Arriv2

µ + 269 Exµ + 1.72 ExCV - 14.8 Exµ.CV - 
6450 Ex2µ 

0.975 - 

Completion 
Rate (µ) 

Ln crµ = 3.80 + 1.85 ρ - 1.03 ρ2 - 20.4 Arrivµ - 0.0600 
Arriv µ.CV + 55.4 Arriv2

µ - 21.5 Exµ 
0.994 Y 

Completion 
Rate (σ) 

Sq crσ = 1.28 + 0.689 ρ - 0.093 ρ2 - 7.34 Arrivµ + 7.69 
Arriv µ.CV + 4.94 Arriv2

µ + 2.27 Exµ + 3.04 Exµ.CV - 413 Ex2µ 
0.681 Y 
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Table 28. Regression models for service workload and performance at processor 
with MLF algorithm. 

Metrics Regression model 
R-sq 
(pred) 

WLS 

CPU 
Workload 

(µ) 

Sq Uµ = 0.238 + 1.02 ρ - 0.369 ρ2 - 1.6 Arrivµ - 0.000742 
ArrivCV + 4.08 Arriv2

µ + 15.09 Exµ + 0.00493 ExCV - 0.549 
Exµ.CV - 462 Ex2µ 

0.998 - 

CPU 
Workload 

(σ) 

Sq Uσ = 0.00219 - 0.265 ρ - 0.221 ρ2 - 0.039 Arrivµ + 0.0694 
ArrivCV - 0.173 Arrivµ.CV + 8.01 Exµ + 0.029 ExCV + 2.5 
Exµ.CV - 268 Ex2µ 

0.932 Y 

Waiting 
Time (µ) 

Ln Wtµ = - 10.3 - 9.88 ρ + 9.32 p2 + 6.59 ρHP - 0.692 ρSP - 
33.4 Arrivµ - 5.27 Arrivµ.CV + 1.45 ArrivCV + 204 Arriv2

µ + 
898 Exµ + 1.51 ExCV - 131 Exµ.CV - 15326 Ex2µ 

0.856 - 

Waiting 
Time (σ) 

Ln Wtσ = - 12.1 - 6.09 ρ + 6.58 ρ2 + 5.9 ρHP - 14.2 Arrivµ + 
2.22 ArrivCV - 9.14 Arrivµ.CV + 158 Arriv2

µ + 671 Exµ + 1.99 
ExCV - 129 Exµ.CV - 5125 Ex2µ 

0.734 Y 

Operation 
Time (µ) 

Sq Optµ = 0.0394 - 0.0125 ρ + 0.011 ρ2 - 0.0248 Arrivµ + 
0.00256 Arrivµ.CV + 8.27 Exµ + 0.0016 ExCV - 0.205 Exµ.CV - 
138 Ex2µ 

0.995 - 

Operation 
Time (σ) 

Ln Optσ = - 10.6 - 0.402 ρ + 0.179 ρHP + 12.7 Arrivµ + 0.0697 
ArrivCV - 37.2 Arriv2

µ + 273 Exµ + 1.89 ExCV - 47.7 Exµ.CV - 
5049 Ex2µ 

0.974 - 

Completion 
Rate (µ) 

Ln crµ = 3.77 + 1.66 ρ - 0.777 ρ2 - 20.7 Arrivµ - 0.068 
Arriv µ.CV + 56.5 Arriv2

µ - 4.9 Exµ  + 0.071 Exµ.CV - 827 Ex2µ 
0.995 - 

Completion 
Rate (σ) 

Ln crσ = 0.706 + 0.689 ρ - 15.8 Arrivµ + 13.6 Arrivµ.CV + 9.19 
Arriv2

µ + 19.5 Exµ - 1.86 Exµ.CV 
0.829 Y 

 

4.8.3 Impacts of service parameters and factors on disk workload and 

performance 

Similar to processor experiments, the framework described in section 4.5 

is used to estimate workload and performance metrics of services at the disk 

based on the data collected from the experimental conditions (cases) in section 

4.7.2. For each of the 10 simulation runs (replicates) for each case, workload and 

performance metrics are obtained, using equations 1-5, for each of the services 

competing for the disk. Figure 29 shows the effect of using different values of T 

when estimating the workload and performance metrics for service 1 in case 8 run 
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1. T is the length of the period used for calculating the workload and performance 

metrics. As it can be seen from Figure 29, the mean value of the workload and 

performance metrics estimated for service 1 of case 8 run 1 is not sensitive to the 

length of the period (T). Similar effect with T is observed for the workload and 

performance metrics of services in all cases. This effect increases the confidence 

for using these metrics as estimates of service workload and performance at the 

disk.  
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  a. Disk Workload.        b. Waiting time. 
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  c. Operation time.      d. Completion rate. 

Figure 29. The effect of T on service workload and performance metrics at disk. 

 
The metrics are estimated based on the average of individual service 

instances observed during n periods of length T, as T increases, the number of 

service instances observed in each period increases and this increase in the 
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number of service instances observed tends to reduce the variance of the workload 

and performance metrics estimated for each service. The impacts of service 

parameters on the mean and standard deviation of the workload and performance 

metrics for individual services are discussed next. The length of the period, T, is 

set to 2 seconds. Since each simulation run (replicate) for each of the cases is run 

for 100 seconds, by setting T equal to 2 seconds each simulation run is divided 

into 50 periods and the information observed during these periods is used to 

estimate the workload and performance metrics of services (Equations 1-5). To 

understand the impact of workload intensity (��$�%&) on individual service 

workload and performance, workload intensity is decomposed in ρi and ρO. ρi is 

the workload intensity due to the service type � and is estimated just as in Eq. 12, 

but considering only service type �. ρO is the workload intensity due to other 

services competing for the disk and is estimated using Eq. 12, but considering all 

service types except service type �.  

Disk Workload 

Figure 30 shows the impacts of the workload imposed by other services 

(ρO) on the mean (µ) and standard deviation (σ) of the service workload at disk. 

The workload imposed by other services has a decreasing effect on the mean (µ) 

and standard deviation (σ) of the service workload at disk. This effect is caused by 

the reduction in access time due to the increase of service instances in queue. 

When the number of service instances in queue increases, the seek distance per 

disk access is reduced since the disk has more service instances to choose from, 
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thus reducing the access time. Mi/Di/1 represents those experimental conditions 

(cases) with exponential arrival distributions. Gi/Di/1 represents those cases with 

arrivals being normal distributed. For constructing Figures 30-44, service 

parameters are kept at constant values in each figure. For example, for 

constructing Figure 30 the arrival distribution mean of the service (Arrivµ=0.05) 

and the block size were kept (B= 0.032) at constant values. Each figure indicates 

the parameters kept at constant values for its construction. 
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             a. Impact of ρO on Disk Workload (µ)          b. Impact of ρO on Disk Workload (σ) 

Constant parameters: Arrivµ=0.05, B= 0.032. 

Figure 30. Impacts of workload by other services (ρO) on  
service workload at disk. 

Figure 31 shows the impacts of service arrival distribution mean (Arrivµ) 

on disk workload mean (µ) and standard deviation (σ). The arrival distribution 

mean of the service has a decreasing effect on the processor workload mean (µ). 

The standard deviation (σ) of disk workload varies within a certain range with the 

arrival distribution mean (Arrivµ), first increasing with Arrivµ and then showing a 

slow decreasing effect. 
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           a. Impact of Arrivµ on Disk Workload (µ)           b. Impact of Arrivµ on Disk Workload (σ) 

Constant parameters: B=0.032, ρO=0.3. 

Figure 31. Impacts of arrival distribution mean (Arrivµ) on Disk Workload. 

Figure 32 shows the impacts of the coefficient of variation of the service 

arrival distribution (ArrivCV) on disk workload mean (µ) and standard deviation 

(σ). The coefficient of variation (CV) is a normalized measure of the dispersion of 

a probability distribution and is defined as the ratio of the standard deviation (σ) 

to the mean (µ). Exponential distributions has a CV = 1, and normal distributions 

for disk experiments are restricted to have a CV = 1/3. The arrival distribution CV 

of the service tends to decrease the mean (µ) and increase the standard deviation 

(σ) of disk workload, but only the increasing effect on the standard deviation (σ) 

of disk workload is statistically significant. 
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         a. Impact of ArrivCV on Disk Workload (µ)         b. Impact of ArrivCV on Disk Workload (σ) 

Constant parameters: Arrivµ =0.05, B=0.032, ρO=0.3. 

Figure 32. Impacts of arrival distribution CV (ArrivCV) on Disk Workload. 

Figure 33 shows the impacts of block size (B) on disk workload mean (µ) 

and standard deviation (σ). B has an increasing effect on disk workload mean (µ) 

and standard deviation (σ) due to the increase of transfer time. 
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           a. Impact of B on Disk Workload (µ)                b. Impact of B on Disk Workload (σ) 

Constant parameters: Arrivµ=0.05, ρO=0.3. 

Figure 33. Impacts of block size (B) on Disk Workload. 

Table 29 shows the impacts on the mean (µ) and standard deviation (σ) of 

disk workload with service parameters: workload imposed by other services (ρo), 

arrival distribution mean (Arrivµ), arrival distribution CV (ArrivCV), and block 

size (B).  From Figures 30-33, it can be observed the mean (µ) and standard 
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deviation (σ) of disk workload depend on the arrival distribution assumed. When 

the arrival distribution is exponential, the disk workload mean (µ) is smaller than 

with the normal distribution, but the standard deviation (σ) of disk workload tends 

to be larger than with normal distribution. The exponential distribution has larger 

coefficient of variation (CV) than the normal distribution, and larger ArrivCV tends 

to increase the standard deviation (σ) of disk workload (see Figure 32). The 

standard deviation (σ) of the disk workload is significantly larger with C-Look 

algorithm. 

Table 29. Service parameters effects on Disk Workload mean (µ)  

and standard deviation (σ). 

Parameters effects on: ρo Arrivµ ArrivCV B 
Disk Workload (µ) ↓ ↓ ↓ ↑ 
Disk Workload (σ) ↓ Ʌ ↑ ↑ 

 

Waiting Time 

Figure 34 shows the increasing effect of the workload imposed by other 

services (ρO) on the mean (µ) and standard deviation (σ) of service waiting time. 

Increasing the workload imposed by other services (ρO) increases the number of 

service instances in queue, thus increasing the service waiting time mean (µ) and 

standard deviation (σ). 



 

127 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ρ(O)

0.000

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0.032

0.036

W
ai

tin
g 

Ti
m

e
 (s

ec
)

 Mi/Di/1 SSTF
 Gi/Di/1 SSTF
 Mi/Di/1 C-Look
 Gi/Di/1 C-Look

  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ρ(O)

0.000

0.002

0.004

0.006

0.008

0.010

W
ai

tin
g 

Ti
m

e 
(s

e
c)

 Mi/Di/1 SSTF
 Gi/Di/1 SSTF
 Mi/Di/1 C-Look
 Gi/Di/1 C-Look

 
                 a. Impact of ρO on Waiting Time (µ)                   b. Impact of ρO on Waiting Time (σ) 

Constant parameters: Arrivµ=0.05, B= 0.032. 

Figure 34. Impacts of workload by other services (ρO) on Waiting Time. 

Figure 35 shows the decreasing effect of arrival distribution mean (Arrivµ) 

on service waiting time mean (µ) and standard deviation (σ). Increasing Arrivµ 

decreases the number of service instances in queue, therefore decreasing the 

service waiting time mean (µ) and standard deviation (σ). 
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            a. Impact of Arrivµ on Waiting Time (µ)     b. Impact of Arrivµ on Waiting Time (σ) 

Constant parameters: B=0.032, ρO=0.3. 

Figure 35. Impacts of arrival distribution mean (Arrivµ) on Waiting Time. 

Figure 36 shows the increasing effect of arrival distribution CV (ArrivCV) 

on service waiting time mean (µ) and standard deviation (σ).  
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            a. Impact of ArrivCV on Waiting Time (µ)   b. Impact of ArrivCV on Waiting Time (σ) 

Constant parameters: Arrivµ =0.05, B=0.032, ρO=0.3. 

Figure 36. Impacts of arrival distribution CV (ArrivCV) on Waiting Time. 

Figure 37 shows the increasing effect of block size (B) on service waiting 

time mean (µ) and standard deviation (σ). Increasing B increases the transfer time 

of service instances, thus increasing the waiting time in queue for service 

instances requiring the disk. 

0.004
0.008

0.016
0.032

0.064
0.128

0.256
0.512

0.768
1.024

Block Size (MB)

0.000

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0.032

0.036

W
ai

tin
g 

Ti
m

e 
(s

ec
)

 Mi/Di/1 SSTF
 Gi/Di/1 SSTF
 Mi/Di/1 C-Look
 Gi/Di/1 C-Look

0.004
0.008

0.016
0.032

0.064
0.128

0.256
0.512

0.768
1.024

Block Size (MB)

0.000

0.002

0.004

0.006

0.008

0.010

W
ai

tin
g 

Ti
m

e 
(s

ec
)

 Mi/Di/1 SSTF
 Gi/Di/1 SSTF
 Mi/Di/1 C-Look
 Gi/Di/1 C-Look

 
             a. Impact of B on Waiting Time (µ)   b. Impact of B on Waiting Time (σ) 

Constant parameters: Arrivµ=0.05, ρO=0.3. 

Figure 37. Impacts of block size (B) on Waiting Time. 

Table 30 summarizes the service parameters effects on service waiting 

time mean (µ) and standard deviation (σ).  From Figures 34-37, it can be observed 

the mean (µ) and standard deviation (σ) of service waiting time depend on the 
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arrival distribution and the scheduling algorithm assumed. When the arrival 

distribution is exponential, the waiting time mean (µ) and standard deviation (σ) 

are larger than with normal distribution. This effect is due to the fact that larger 

ArrivCV tends to increase service waiting time mean (µ) and standard deviation (σ) 

and the exponential distribution has larger coefficient of variation (CV) than the 

normal distribution. The service waiting time mean (µ) and standard deviation (σ) 

are significantly larger with C-Look algorithm. 

Table 30. Service parameters effects on Waiting Time mean (µ)  

and standard deviation (σ). 

Parameters effect on: ρo Arrivµ ArrivCV B 
Waiting Time (µ) ↑ ↓ ↑ ↑ 
Waiting Time (σ) ↑ ↓ ↑ ↑ 

 

Operation Time 

Figure 38 shows the impacts of the workload by other services (ρO) on the 

mean (µ) and standard deviation (σ) of service operation time. Increasing ρO has a 

decreasing effect on operation time mean (µ). This effect is due to the increase of 

service instances in queue and the consequent decrease of the access time part of 

operation time. ρO has no effect on the standard deviation (σ) of service operation 

time. 
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                a. Impact of ρO on Operation Time (µ)       b. Impact of ρO on Operation Time (σ) 

Constant parameters: Arrivµ=0.05, B= 0.032. 

Figure 38. Impacts of workload by other services (ρO) on Operation Time. 

Figure 39 shows the increasing effect of the arrival distribution mean 

(Arriv µ) on service operation time mean (µ) and standard deviation (σ). Increasing 

Arriv µ has an increasing effect on operation time mean (µ) and standard deviation 

(σ). This effect is due to the decrease of service instances in queue as result of 

increasing Arrivµ and the consequent increase of the access time part of service 

operation time. 
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          a. Impact of Arrivµ on Operation Time (µ)           b. Impact of Arrivµ on Operation Time (σ) 

Constant parameters: B=0.032, ρO=0.3. 

Figure 39. Impacts of arrival distribution mean (Arrivµ) on Operation Time. 
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Figure 40 shows the impacts of the arrival distribution CV (ArrivCV) on 

service operation time mean (µ) and standard deviation (σ). Increasing ArrivCV 

has a decreasing effect on operation time mean (µ). ArrivCV has no significant 

effect on the standard deviation (σ) of service operation time. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arriv(CV)

0.010

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

O
pe

ra
tio

n 
Ti

m
e 

(s
ec

)

 Gi/Di/1 SSTF
 Gi/Di/1 C-Look

   
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arriv(CV)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

O
pe

ra
tio

n 
Ti

m
e 

(s
ec

)

 Gi/Di/1 SSTF
 Gi/Di/1 C-Look

 
        a. Impact of ArrivCV on Operation Time (µ)         b. Impact of ArrivCV on Operation Time (σ) 

Constant parameters: Arrivµ =0.05, B=0.032, ρO=0.3. 

Figure 40. Impacts of arrival distribution CV (ArrivCV) on Operation Time. 

Figure 41 shows the impacts of the block size (B) on service operation 

time mean (µ) and standard deviation (σ). Increasing B has an increasing effect on 

operation time mean (µ) due to the increase in the transfer time part of the 

operation time. B has no significant effect on the standard deviation (σ) of service 

operation time. 
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               a. Impact of B on Operation Time (µ)              b. Impact of B on Operation Time (σ) 

Constant parameters: Arrivµ=0.05, ρO=0.3. 

Figure 41. Impacts of block size (B) on Operation Time. 

Table 31 summarizes the service parameters effects on service operation 

time mean (µ) and standard deviation (σ).  From Figures 38-41, it can be observed 

the mean (µ) of service operation time depends on the arrival distribution and the 

scheduling algorithm assumed. When the arrival distribution is exponential the 

operation time mean (µ) is smaller than with normal distribution. Larger ArrivCV 

tends to decrease the access time part of operation time (see Figure 40) and the 

exponential distribution (CV=1) has larger CV than the normal distribution (CV= 

1/3). The mean (µ) and standard deviation (σ) of the service operation time are 

significantly larger with C-Look algorithm. 

Table 31. Service parameters effects on Operation Time mean (µ)  

and standard deviation (σ). 

Parameters effects on: ρo Arrivµ ArrivCV B 
Operation Time (µ) ↓ ↑ ↓ ↑ 
Operation Time (σ) - ↑ - - 
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Completion Rate 

Figure 42 shows the decreasing effect on completion rate mean (µ) and 

standard deviation (σ) due to the increase in arrival distribution mean (Arrivµ).  
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        a. Impact of Arrivµ on Completion Rate (µ)         b. Impact of Arrivµ on Completion Rate (σ) 

Constant parameters: B=0.032, ρO=0.3. 

Figure 42. Impacts of arrival distribution mean (Arrivµ) on Completion Rate. 

Figure 43 shows the impacts of arrival distribution CV (ArrivCV) on 

service completion rate mean (µ) and standard deviation (σ). ArrivCV has no 

significant effect on completion rate mean (µ), but it has a small increasing effect 

on completion rate standard deviation (σ). 
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         a. Impact of ArrivCV on Completion Rate (µ)   b. Impact of ArrivCV on Completion Rate (σ) 

Constant parameters: Arrivµ =0.05, B=0.032, ρO=0.3. 

Figure 43. Impacts of arrival distribution CV (ArrivCV) on Completion Rate. 
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Figure 44 shows the impacts of block size (B) on service completion rate 

mean (µ) and standard deviation (σ). B has a small increasing effect on service 

completion rate mean (µ). This small effect is a consequence of the waiting time 

increase for service instances in queue due to the increase of transfer time. The 

increase in waiting time increases the number of service instances in queue, thus 

reducing service access time and increasing completion rate. 
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            a. Impact of B on Completion Rate (µ)                b. Impact of B on Completion Rate (σ) 

Constant parameters: Arrivµ=0.05, ρO=0.3. 

Figure 44. Impacts of block size (B) on Completion Rate. 

Table 32 summarizes the service parameters effects on completion rate 

mean (µ) and standard deviation (σ).  From Figures 42-44, it can be observed the 

standard deviation (σ) of completion rate is higher when the arrival distribution is 

exponential. ArrivCV has an increasing effect on the standard deviation (σ) of 

completion rate (see Figure 43), and exponential distribution (CV=1) has larger 

CV than the normal distribution (CV= 1/3). 
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Table 32. Service parameters effects on Completion Rate mean (µ) 
and standard deviation (σ). 

Parameters effects on: ρo Arrivµ ArrivCV B 
Completion Rate (µ) - ↓ - ↑(small) 
Completion Rate (σ) - ↓ ↑ - 

 

In general, the increase of workload due to other priority services (ρO) 

increases the service waiting time mean and standard deviation, but on the other 

hand decreases service operation time mean, and disk workload mean and 

standard deviation. The increase of arrival distribution mean increases operation 

time mean and standard deviation, but decreases the means and standard 

deviations of service waiting time and completion rate, and the mean of disk 

workload.  The standard deviation of disk workload varies within a certain range 

with the arrival distribution mean, first increasing and then showing a slow 

decreasing effect. The larger the coefficient of variation (CV) for the arrival 

distribution the larger the mean and standard deviation of service waiting time, 

and the larger the standard deviation of disk workload and service completion 

rate. The arrival distribution CV has a decreasing effect on operation time mean. 

Increasing block size increases transfer time and therefore increase the means and 

standard deviations of disk workload and service waiting time, and the means of 

service operation time and completion rate. The standard deviation of disk 

workload and the mean and standard deviation of service operation time tend to 

be larger with C-Look algorithm than with SSTF algorithm. Service waiting time 

mean and standard deviation are also larger with C-Look algorithm. These effects 

were expected since SSTF algorithm is more efficient in reducing the seek time 
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which is the major component of operation time. A problem with SSTF algorithm 

occurs in high workload intensity conditions and localized access pattern, where 

services instances with larger track distances from the current read-write head 

location tend to have large waiting times (Thomasian and Liu 2002). This effect is 

not perceived in the experimental conditions since full disk capacity is never 

reached and random access patterns are assumed for services. 

4.8.4 Workload and performance models for disk 

Tables 33-34 provide the service workload and performance models for 

disk with C-Look and SSTF scheduling algorithms respectively. These models 

accurately capture the impacts of service parameters on workload and 

performance metrics described in the previous section (4.8.3). Multiple linear 

regression was used to build the models, polynomial and interaction terms (ρ2, 

Arriv2
µ, B2, Arrivµ.CV) were included when necessary to increase model 

performance. Natural log (Ln) and square root (Sq) transformations were applied 

to the workload and performance metrics with the same purpose. Similar to the 

regression models for processor workload and performance metrics, when 

analyzing the residuals for the regression models, for some of the metrics, it was 

found the residuals had non-constant variance. The common pattern identified in 

the residuals appears in Figure 27a, where the variance of the residuals increases 

with the fitted values. Weighted least square (WLS) regression was applied 

(Montgomery, Peck and Vining 2006) to correct this inequality of variance 

problem. Weights were defined as the inverse of the variance observed at any 
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point, and were estimated using the replicate runs for each of the experimental 

conditions (cases). Ten fold cross-validation (Tan, Kumar and Steinbach 2006) 

was used to estimate the predictive R-square values for the models (Tables 33-

34). The predictive R-sq values obtained using cross-validation show the 

regression models are a good fit for the data and provide the confidence to use 

these models for prediction of service workload and performance at disk. The 

estimates obtained from these models can be used for taking workload and 

performance management decisions. 

Table 33. Regression models for service workload and performance at disk with 
C-Look algorithm. 

Metric Regression model 
R-sq 

(pred) 
WLS 

Disk 
Workload 

(µ) 

Sq Uµ = 0.361 + 0.956 ρ - 0.398 ρ2 - 0.0751 ρO - 0.692 Arrivµ - 
0.0273 ArrivCV + 0.109 Arrivµ.CV + 0.562 Arriv2µ + 0.0194 B  

0.998 - 

Disk 
Workload 

(σ) 

Ln Uσ = - 3.98 + 1.45 ρ - 1.44 ρ2 - 0.27 ρO - 3.87 Arrivµ + 0.794 
ArrivCV + 0.405 Arrivµ.CV + 3.87 Arriv2

µ + 0.0879 B 
0.934 - 

Waiting 
Time (µ) 

Sq Wtµ = - 0.0449 + 0.143 ρ + 0.016 ρ2 + 0.156 ρO + 0.206 
Arriv µ + 0.0394 ArrivCV - 0.104 Arrivµ.CV - 0.196 Arriv2µ  

0.981 - 

Waiting 
Time (σ) 

Sq Wtσ = - 0.0154 + 0.0692 ρ - 0.0182 ρ2 + 0.0475 ρO + 0.263 
Arriv µ + 0.0249 ArrivCV - 0.0211 Arrivµ.CV - 0.302 Arriv2µ  

0.932 Y 

Operation 
Time (µ) 

Optµ = 0.0167 - 0.00273 ρ - 0.00137 ρ2 - 0.00433 ρO - 0.00118 
ArrivCV + 0.00312 Arrivµ.CV - 0.00705 Arriv2µ + 0.00335 B 

0.947 Y 

Operation 
Time (σ) 

Ln Optσ = - 6.86 - 1.23 ρ + 0.288 ρ2 + 0.0232 ρO + 4.43 Arrivµ 
+ 0.116 ArrivCV  - 4.88 Arriv2

µ + 0.0334 B 
0.93 - 

Completion 
Rate (µ) 

Sq crµ = 2.71 + 8.25 ρ - 2.46 ρ2 -0.0479 ρO - 6.7 Arrivµ + 8.79 
Arriv2

µ - 0.191 B  
0.999 - 

Completion 
Rate (σ) 

Ln crσ = - 0.65 + 1.37 ρ - 0.53 ρ2 - 3.68 Arrivµ + 1.63 ArrivCV - 
0.481 Arrivµ.CV + 4.91 Arriv2

µ - 0.0518 B 
0.975 - 
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Table 34. Regression models for service workload and performance at disk with 
SSTF algorithm. 

Metric Regression model 
R-sq 
(pred) 

WLS 

Disk 
Workload 

(µ) 

Ln Uµ = - 1.55 + 3.3 ρ - 2 ρ2 - 0.364 ρO - 7.3 Arrivµ - 0.128 
ArrivCV + 0.471 Arrivµ.CV + 7.01 Arriv2

µ + 0.193 B - 0.0232 B2  
0.998 Y 

Disk 
Workload 

(σ) 

Sq Uσ = 0.119 + 0.142 ρ - 0.133 ρ2 - 0.0241 ρO - 0.161 Arrivµ + 
0.0713 ArrivCV - 0.0704 Arrivµ.CV + 0.216 Arriv2µ + 0.00523 B  

0.933 Y 

Waiting 
Time (µ) 

Sq Wtµ = - 0.0255 + 0.108 ρ + 0.00853 ρ2 + 0.116 ρO + 0.2 
Arriv µ + 0.0366 ArrivCV - 0.111 Arrivµ.CV - 0.19 Arriv2

µ - 
0.000884 B  

0.982 - 

Waiting 
Time (σ) 

Sq Wtσ = - 0.0138 + 0.0577 ρ - 0.0169 ρ2 + 0.0408 ρO + 0.257 
Arriv µ + 0.0219 ArrivCV - 0.0245 Arrivµ.CV - 0.31 Arriv2

µ  
0.956 Y 

Operation 
Time (µ) 

Sq Optµ = 0.13 - 0.0123 ρ - 0.00632 ρ2 - 0.0199 ρO - 0.0106 
Arriv µ - 0.00652 ArrivCV + 0.0222 Arrivµ.CV - 0.0229 Arriv2µ + 
0.0147 B  

0.959 Y 

Operation 
Time (σ) 

Ln Optσ = - 6.86 - 1.02 ρ - 0.155 ρO + 4.98 Arrivµ + 0.0875 
ArrivCV  - 5.65 Arriv2

µ + 0.0276 B  
0.926 - 

Completion 
Rate (µ) 

Sq crµ = 2.71 + 8.25 ρ - 2.46 ρ2 -0.0463 ρO - 6.7 Arrivµ + 8.79 
Arriv2

µ - 0.191 B  
0.999 - 

Completion 
Rate (σ) 

Ln crσ = - 0.633 + 1.31 ρ - 0.499 ρ2 - 3.76 Arrivµ + 1.63 ArrivCV 
- 0.494 Arrivµ.CV + 4.98 Arriv2

µ - 0.046 B 
0.976 - 

4.9 Conclusions 

When dealing with competing service requests with specific performance 

(QoS) requirements in service-based systems (SBS), the system must determine if 

its limited resources can accommodate the service requests and provide the 

performance (QoS) levels required. Understanding the impacts of services on 

resource workload and service performance becomes necessary to ensure that 

services are provided at the required performance (QoS) levels and system 

resources are managed efficiently. Previous studies (Vazhkudai and Schopf 2002; 

Doyle, et al. 2003; Abrahao and Zhang 2004; Shivam, Babu and Chase 2006; Sun 

and Ifeachor 2006; Harada, Ushio and Nakamoto 2007; Kjaer, Kihl and 
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Robertsson 2009; Kan, Sun and Ifeachor 2010; Kang and Suh 2011) focused on 

modeling system dynamics for individual services, covering specific resources or 

performance metrics. Workload and performance models of services are required 

at a more comprehensive, system-wide scale independent of services functional 

and non-functional requirements. To address these needs, a framework is 

proposed in this part of the dissertation to estimate the impacts of service 

workload and performance at individual resources considering the usage profiles 

of the services competing for the resource and the resource-sharing schemes. 

Simulation models for processor and disk components were designed to collect 

the specific service and resource information required by the framework. 

Simulation provides the modeling flexibility that other modeling techniques such 

as queuing theory lack. The simulation models incorporate hardware (e.g. speed, 

capacity) and software (e.g. access, allocation, scheduling) characteristics of each 

resource that can be customized to model different hardware and software 

configurations. Two performance (QoS) metrics were investigated: completion 

rate and response time. Response time was further brokendown into waiting time 

and operation time. Resource workload was defined as the proportion of time the 

resource was busy executing service instances (requests). Experimental conditions 

(cases) were run using processor and disk models to investigate the impacts of 

various service parameters (e.g. arrival distribution, execution time distribution, 

priority, workload intensity, scheduling algorithm) on the workload and 

performance metrics. 
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For processor, the results show the increase in workload intensity due to 

higher priority services (ρHP) mainly increases service waiting time due to the 

increase in the number of service instances in queue waiting for processor. The 

increase in arrival distribution mean (Arrivµ) decreases the frequency of service 

instances arriving at the processor queue, thus decreasing the means and standard 

deviations of service workload and completion rate, and increasing the standard 

deviation of service operation time. The larger the coefficient of variation (CV) of 

the arrival distribution (ArrivCV), the larger the standard deviations of service 

workload and completion rate metrics. The mean of the execution distribution 

(Exµ) directly increases service operation time and thus increases service 

workload, waiting time, and completion rate. The larger the coefficient of 

variation (CV) of the execution distribution (ExCV), the larger the standard 

deviations of service workload and operation time metrics. The scheduling 

algorithm has an impact on service workload and performance metrics at 

processor. Using round robin priority preemptive (RRP) scheduling increases the 

standard deviation of services’ workload on processor. Service waiting time, 

especially for those services with long execution times, tend to be larger with 

MLF scheduling since services with long execution times stay in the lowest 

priority queue longer time, waiting for services in higher priority queues to 

complete execution. 

For disk, the results show the increase in workload intensity due to other 

services (ρO) directly increases the number of service instances in queue, thus 

increasing service waiting time mean and standard deviation, but on the other 
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hand, this increase in the number of service instances in queue decreases the disk 

access time of services thus decreasing the disk workload mean and standard 

deviation, and the service operation time mean. The increase in arrival distribution 

mean (Arrivµ) decreases the frequency of service instances arriving at the disk 

queue, thus decreasing the means and standard deviations of service waiting time, 

completion rate, and the mean of disk workload, but increasing the disk access 

time of services and consequently the mean and standard deviation of service 

operation time. The larger the coefficient of variation (CV) of the arrival 

distribution (ArrivCV), the larger the mean and standard deviation of service 

waiting time, and the larger the standard deviations of disk workload and 

completion rate metrics. Additionally, a decrease effect on operation time mean is 

observed with the increase in ArrivCV. Increasing the block size (B) increases the 

transfer time and thus increases the means of disk workload, waiting time, 

operation time and completion rate metrics, and increases the standard deviations 

of disk workload and waiting time metrics. The scheduling algorithm has an 

impact on service workload and performance metrics at disk. In general, service 

operation and waiting times tend to be longer with C-Look algorithm due to the 

longer access time in comparison with SSTF scheduling. These effects were 

expected since SSTF algorithm is more efficient in reducing the seek time part of 

the access time. The effect of longer waiting times for services instances with 

larger track distances from the current read-write head position when using SSTF 

scheduling, is not observed in the experimental conditions since full disk capacity 

is never reached and random access patterns are assumed for services. 
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Regression models were built to capture the above impacts of service 

parameters on workload and performance metrics. The predictive R-sq values 

obtained using cross-validation provide the confidence to use these models for 

prediction of service workload and performance at processor and disk resources. 

Independent of the number of services competing for the resource and/or the 

profiles of the services competing for the resource, the workload and performance 

models obtained can be used to estimate the workload and performance of 

services, but if the hardware or software characteristics of the resource change, for 

example using a different scheduling algorithm, the workload and performance 

models will no longer be valid and the model coefficients for the service 

parameters will need to be re-estimated according to the new hardware and 

software configuration of the resource. If required, the estimates obtained from 

workload and performance models at individual resources can be aggregated to 

obtain the workload and performance of services through multiple system 

resources. Although service workload and performance models are built only for 

processor and disk resources, the framework presented in this study is general 

applicable to model service workload and performance at other system resources 

(e.g. network) assuming an appropriate model of the resource incorporating major 

resource hardware and software characteristics is available.  
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CONCLUSIONS 

The dynamicity, flexibility and loosely-coupled capability of service-based 

systems (SBS) cause service performance to become one of the most challenging 

aspects in SBS. Service performance is important for customer satisfaction and 

loyalty, therefore it is critical to IT service providers. Resource management is 

also critical to IT service providers since the availability and further allocation of 

system resources to services impact their performance. Previous studies have 

identified the value of modeling system dynamics to guide resource allocation in 

achieving the required service performance (Wu and Woodside 2004; Stewart and 

Shen 2005; Zhang, Bivens and Rezek 2007), but a general approach is not yet 

established to capture system dynamics under a wide variety of service conditions 

and independently of service functional and nonfunctional requirements.  

This dissertation develops two methods to understand and model the 

cause-effect relations of service-related activities on resources workload and 

service performance.  

Chapter 2 presents an empirical method to analyze and model the impacts 

of services on system activities, resources workload and service performance. The 

method requires the collection of system-wide dynamics data and the application 

of statistical analyses to extract the information required. The results show that the 

method is capable to: 1) uncover the impacts of services on resource workload 

and service performance, 2) identify interaction effects of multiple services 

running concurrently, 3) gain insights about resource and performance tradeoffs of 
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services, and 4) build service workload and performance models capturing system 

dynamics. 

Chapter 3 presents a study to investigate the impacts services, security 

mechanisms and cyber attacks on resources workload and service performance. 

System dynamics data is collected under two services (voice communication and 

motion detection), two security mechanisms (data encryption and intrusion 

detection) and five cyber attacks (ARP poison, ping flood, vulnerability scan, fork 

bomb and remote dictionary). The results show the information obtained using the 

empirical method presented in Chapter 2 can be used to: 1) uncover interaction 

effects of service, security mechanism and cyber attacks, 2) identify tradeoffs 

within the limits of system resources, and 3) develop general/specific strategies 

for system survivability. The results obtained in Chapters 2 and 3 by using the 

empirical method to capture system dynamics provide useful knowledge of 

services, security mechanisms and cyber attacks that can be used for IT service 

providers for resource and performance management of services, and even system 

survivability.  

Chapter 4 presents a general framework to estimate the impacts of service 

workload and performance at individual resources based on the usage profiles of 

the services competing for the resource and the resource-sharing schemes. This 

framework overcomes the limitations of the empirical method due to the time and 

effort required for experimental set-up, data collection and analysis for each 

service configuration of interest. Processor and disk models were designed to 

collect the service and resource information required by the framework. The 
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framework is used to investigate the impacts of various service parameters (e.g. 

arrival distribution, execution time distribution, priority, workload intensity, 

scheduling algorithm) on resource workload and performance metrics. The results 

show the framework can be used to: 1) uncover the impacts of service parameters 

on workload and performance metrics, and 2) build service workload and 

performance models at individual resources. The estimates for service workload 

and performance metrics at individual resources can later be aggregated to obtain 

workload and performance estimates of services through multiple system 

resources. 

The empirical method and the theoretical framework represent two distinct 

alternatives to analyze and model the impacts of services on system resources and 

performance for SBS. The empirical method involves the experimental set-up and 

data collection under each service condition (configuration) of interest and further 

data analyses in order to build the workload and performance models. On the 

other hand by using the framework, service workload and performance models are 

provided for processor and disk resources under specific hardware (e.g. speed, 

capacity) and software (e.g. access, allocation, scheduling) characteristics. These 

models can be used to estimate service workload and performance at processor 

and disk based on the profiles of the services competing for the resources. If the 

profiles of the services competing for the resource change, the estimates for 

service workload and performance will change according to the workload and 

performance models. If the hardware or software characteristics of the resource 

change, for example using a different scheduling algorithm, then the workload 



 

146 

 

and performance models are no longer valid and need to be re-estimated 

according to the new hardware and software configuration of the resource. 

The workload and performance models of services obtained through either 

the empirical method or the general framework can be used for efficient 

management of resource workload and service performance. These workload and 

performance models can be incorporated into service standardization for modeling, 

composition, monitoring, optimization and management stages of SBS. 

Future work includes: 1) exploring the relation between service activities, 

system resources and service performance when system reaches a saturation 

point, 2) using the framework for the development of service workload and 

performance models for additional system resources including network, memory, 

video card, etc., 2) the evaluation of aggregated service workload and 

performance through multiple resources, and 4) the inclusion of the inter-

component communication between resources. 
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APPENDIX 

SERVICE PROFILES OF EXPERIMENTAL CONDITIONS FOR PROCESSOR 

AND DISK MODELS  
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Tables A1-A3 show the service profiles for each of the experimental 

conditions (cases) run for the processor model. Cases were run first using RRP 

and then using MLF algorithms. 

Table A1. Service Profiles for processor experiments, 2-Services competition. 

Service Profile 1 Service Profile 2 

Case WI Arrival Dist. Service Dist. Arrival Dist. Service Dist. 

1 0.5 expo(0.04) expo(0.01) expo(0.02) expo(0.005) 

2 0.5 expo(0.04) expo(0.005) expo(0.02) expo(0.0075) 

3 0.7 expo(0.04) expo(0.01) expo(0.02) expo(0.009) 

4 0.7 expo(0.04) expo(0.005) expo(0.02) expo(0.0115) 

5 0.9 expo(0.04) expo(0.02) expo(0.02) expo(0.008) 

6 0.9 expo(0.04) expo(0.005) expo(0.02) expo(0.0155) 

7 0.5 expo(0.04) norm(0.01,0.0033) expo(0.02) norm(0.005,0.0017) 

8 0.5 expo(0.04) norm(0.005,0.0017) expo(0.02) norm(0.0075,0.0025) 

9 0.7 expo(0.04) norm(0.01,0.0033) expo(0.02) norm(0.009,0.003) 

10 0.7 expo(0.04) norm(0.005,0.0017) expo(0.02) norm(0.0115,0.0038) 

11 0.9 expo(0.04) norm(0.02,0.0067) expo(0.02) norm(0.008,0.0027) 

12 0.9 expo(0.04) norm(0.005,0.0017) expo(0.02) norm(0.0155,0.0052) 

13 0.5 norm(0.04,0.0133) expo(0.01) norm(0.02,0.0067) expo(0.005) 

14 0.5 norm(0.04,0.0133) expo(0.005) norm(0.02,0.0067) expo(0.0075) 

15 0.7 norm(0.04,0.0133) expo(0.01) norm(0.02,0.0067) expo(0.009) 

16 0.7 norm(0.04,0.0133) expo(0.005) norm(0.02,0.0067) expo(0.0115) 

17 0.9 norm(0.04,0.0133) expo(0.02) norm(0.02,0.0067) expo(0.008) 

18 0.9 norm(0.04,0.0133) expo(0.005) norm(0.02,0.0067) expo(0.0155) 

19 0.5 norm(0.04,0.0133) norm(0.01,0.0033) norm(0.02,0.0067) norm(0.005,0.0017) 

20 0.5 norm(0.04,0.0133) norm(0.005,0.0017) norm(0.02,0.0067) norm(0.0075,0.0025) 

21 0.7 norm(0.04,0.0133) norm(0.01,0.0033) norm(0.02,0.0067) norm(0.009,0.003) 

22 0.7 norm(0.04,0.0133) norm(0.005,0.0017) norm(0.02,0.0067) norm(0.0115,0.0038) 

23 0.9 norm(0.04,0.0133) norm(0.02,0.0067) norm(0.02,0.0067) norm(0.008,0.0027) 

24 0.9 norm(0.04,0.0133) norm(0.005,0.0017) norm(0.02,0.0067) norm(0.0155,0.0052) 
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Table A2. Service Profiles for processor experiments, 5-Services competition. 

Service Profile 1 Service Profile 2 
Case WI Arrival Dist. Service Dist. Arrival Dist. Service Dist. 

25 0.5 expo(0.12) expo(0.012) expo(0.1) expo(0.009) 

26 0.5 expo(0.12) expo(0.004) expo(0.1) expo(0.006) 
27 0.7 expo(0.12) expo(0.012) expo(0.1) expo(0.011) 
28 0.7 expo(0.12) expo(0.008) expo(0.1) expo(0.009) 
29 0.9 expo(0.12) expo(0.018) expo(0.1) expo(0.016) 
30 0.9 expo(0.12) expo(0.008) expo(0.1) expo(0.01) 
31 0.5 expo(0.12) norm(0.012,0.004) expo(0.1) norm(0.009,0.003) 

32 0.5 expo(0.12) norm(0.004,0.0013) expo(0.1) norm(0.006,0.002) 
33 0.7 expo(0.12) norm(0.012,0.004) expo(0.1) norm(0.011,0.0037) 
34 0.7 expo(0.12) norm(0.008,0.0027) expo(0.1) norm(0.009,0.003) 
35 0.9 expo(0.12) norm(0.018,0.006) expo(0.1) norm(0.016,0.0053) 
36 0.9 expo(0.12) norm(0.008,0.0027) expo(0.1) norm(0.01,0.0033) 
37 0.5 norm(0.12,0.04) expo(0.012) norm(0.1,0.0333) expo(0.009) 

38 0.5 norm(0.12,0.04) expo(0.004) norm(0.1,0.0333) expo(0.006) 
39 0.7 norm(0.12,0.04) expo(0.012) norm(0.1,0.0333) expo(0.011) 
40 0.7 norm(0.12,0.04) expo(0.008) norm(0.1,0.0333) expo(0.009) 
41 0.9 norm(0.12,0.04) expo(0.018) norm(0.1,0.0333) expo(0.016) 
42 0.9 norm(0.12,0.04) expo(0.008) norm(0.1,0.0333) expo(0.01) 
43 0.5 norm(0.12,0.04) norm(0.012,0.004) norm(0.1,0.0333) norm(0.009,0.003) 

44 0.5 norm(0.12,0.04) norm(0.004,0.0013) norm(0.1,0.0333) norm(0.006,0.002) 
45 0.7 norm(0.12,0.04) norm(0.012,0.004) norm(0.1,0.0333) norm(0.011,0.0037) 
46 0.7 norm(0.12,0.04) norm(0.008,0.0027) norm(0.1,0.0333) norm(0.009,0.003) 
47 0.9 norm(0.12,0.04) norm(0.018,0.006) norm(0.1,0.0333) norm(0.016,0.0053) 
48 0.9 norm(0.12,0.04) norm(0.008,0.0027) norm(0.1,0.0333) norm(0.01,0.0033) 

Cases WI Service Profile 3 Service Profile 4 
25 0.5 expo(0.08) expo(0.008) expo(0.06) expo(0.006) 
26 0.5 expo(0.08) expo(0.0065) expo(0.06) expo(0.007) 
27 0.7 expo(0.08) expo(0.01) expo(0.06) expo(0.009) 
28 0.7 expo(0.08) expo(0.009) expo(0.06) expo(0.0095) 
29 0.9 expo(0.08) expo(0.014) expo(0.06) expo(0.012) 
30 0.9 expo(0.08) expo(0.012) expo(0.06) expo(0.014) 

31 0.5 expo(0.08) norm(0.008,0.0027) expo(0.06) norm(0.006,0.002) 
32 0.5 expo(0.08) norm(0.0065,0.0022) expo(0.06) norm(0.007,0.0023) 
33 0.7 expo(0.08) norm(0.01,0.0033) expo(0.06) norm(0.009,0.003) 
34 0.7 expo(0.08) norm(0.009,0.003) expo(0.06) norm(0.0095,0.0032) 
35 0.9 expo(0.08) norm(0.014,0.0047) expo(0.06) norm(0.012,0.004) 
36 0.9 expo(0.08) norm(0.012,0.004) expo(0.06) norm(0.014,0.0047) 

37 0.5 norm(0.08,0.0267) expo(0.008) norm(0.06,0.02) expo(0.006) 
38 0.5 norm(0.08,0.0267) expo(0.0065) norm(0.06,0.02) expo(0.007) 
39 0.7 norm(0.08,0.0267) expo(0.01) norm(0.06,0.02) expo(0.009) 
40 0.7 norm(0.08,0.0267) expo(0.009) norm(0.06,0.02) expo(0.0095) 
41 0.9 norm(0.08,0.0267) expo(0.014) norm(0.06,0.02) expo(0.012) 
42 0.9 norm(0.08,0.0267) expo(0.012) norm(0.06,0.02) expo(0.014) 

43 0.5 norm(0.08,0.0267) norm(0.008,0.0027) norm(0.06,0.02) norm(0.006,0.002) 
44 0.5 norm(0.08,0.0267) norm(0.0065,0.0022) norm(0.06,0.02) norm(0.007,0.0023) 
45 0.7 norm(0.08,0.0267) norm(0.01,0.0033) norm(0.06,0.02) norm(0.009,0.003) 
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46 0.7 norm(0.08,0.0267) norm(0.009,0.003) norm(0.06,0.02) norm(0.0095,0.0032) 
47 0.9 norm(0.08,0.0267) norm(0.014,0.0047) norm(0.06,0.02) norm(0.012,0.004) 
48 0.9 norm(0.08,0.0267) norm(0.012,0.004) norm(0.06,0.02) norm(0.014,0.0047) 

Cases WI Service Profile 5 
25 0.5 expo(0.04) expo(0.0044) 
26 0.5 expo(0.04) expo(0.0084) 
27 0.7 expo(0.04) expo(0.0086) 
28 0.7 expo(0.04) expo(0.0109) 
29 0.9 expo(0.04) expo(0.0086) 
30 0.9 expo(0.04) expo(0.014) 

31 0.5 expo(0.04) norm(0.0044,0.0015) 
32 0.5 expo(0.04) norm(0.00835,0.0028) 
33 0.7 expo(0.04) norm(0.0086,0.0029) 
34 0.7 expo(0.04) norm(0.0109,0.0036) 
35 0.9 expo(0.04) norm(0.0086,0.0029) 
36 0.9 expo(0.04) norm(0.014,0.0047) 

37 0.5 norm(0.04,0.0133) expo(0.0044) 
38 0.5 norm(0.04,0.0133) expo(0.00835) 
39 0.7 norm(0.04,0.0133) expo(0.0086) 
40 0.7 norm(0.04,0.0133) expo(0.0109) 
41 0.9 norm(0.04,0.0133) expo(0.0086) 
42 0.9 norm(0.04,0.0133) expo(0.014) 

43 0.5 norm(0.04,0.0133) norm(0.0044,0.0015) 
44 0.5 norm(0.04,0.0133) norm(0.00835,0.0028) 
45 0.7 norm(0.04,0.0133) norm(0.0086,0.0029) 
46 0.7 norm(0.04,0.0133) norm(0.0109,0.0036) 
47 0.9 norm(0.04,0.0133) norm(0.0086,0.0029) 
48 0.9 norm(0.04,0.0133) norm(0.014,0.0047) 

 

Table A3. Service Profiles for processor experiments, 10-Services competition. 

Service Profile 1 Service Profile 2 

Cases WI Arrival Dist. Service Dist. Arrival Dist. Service Dist. 

49 0.5 expo(0.15) expo(0.008) expo(0.14) expo(0.007) 

50 0.5 expo(0.15) expo(0.003) expo(0.14) expo(0.003) 

51 0.7 expo(0.15) expo(0.01) expo(0.14) expo(0.01) 

52 0.7 expo(0.15) expo(0.005) expo(0.14) expo(0.005) 

53 0.9 expo(0.15) expo(0.012) expo(0.14) expo(0.012) 

54 0.9 expo(0.15) expo(0.007) expo(0.14) expo(0.008) 

55 0.5 expo(0.15) norm(0.008,0.0027) expo(0.14) norm(0.007,0.0023) 

56 0.5 expo(0.15) norm(0.003,0.001) expo(0.14) norm(0.003,0.001) 

57 0.7 expo(0.15) norm(0.01,0.0033) expo(0.14) norm(0.01,0.0033) 

58 0.7 expo(0.15) norm(0.005,0.0017) expo(0.14) norm(0.005,0.0017) 

59 0.9 expo(0.15) norm(0.012,0.004) expo(0.14) norm(0.012,0.004) 

60 0.9 expo(0.15) norm(0.007,0.0023) expo(0.14) norm(0.008,0.0027) 
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61 0.5 norm(0.15,0.05) expo(0.008) norm(0.14,0.0467) expo(0.007) 

62 0.5 norm(0.15,0.05) expo(0.003) norm(0.14,0.0467) expo(0.003) 

63 0.7 norm(0.15,0.05) expo(0.01) norm(0.14,0.0467) expo(0.01) 

64 0.7 norm(0.15,0.05) expo(0.005) norm(0.14,0.0467) expo(0.005) 

65 0.9 norm(0.15,0.05) expo(0.012) norm(0.14,0.0467) expo(0.012) 

66 0.9 norm(0.15,0.05) expo(0.007) norm(0.14,0.0467) expo(0.008) 

67 0.5 norm(0.15,0.05) norm(0.008,0.0027) norm(0.14,0.0467) norm(0.007,0.0023) 

68 0.5 norm(0.15,0.05) norm(0.003,0.001) norm(0.14,0.0467) norm(0.003,0.001) 

69 0.7 norm(0.15,0.05) norm(0.01,0.0033) norm(0.14,0.0467) norm(0.01,0.0033) 

70 0.7 norm(0.15,0.05) norm(0.005,0.0017) norm(0.14,0.0467) norm(0.005,0.0017) 

71 0.9 norm(0.15,0.05) norm(0.012,0.004) norm(0.14,0.0467) norm(0.012,0.004) 

72 0.9 norm(0.15,0.05) norm(0.007,0.0023) norm(0.14,0.0467) norm(0.008,0.0027) 

Cases WI Service Profile 3 Service Profile 4 

49 0.5 expo(0.14) expo(0.007) expo(0.12) expo(0.006) 

50 0.5 expo(0.14) expo(0.004) expo(0.12) expo(0.004) 

51 0.7 expo(0.14) expo(0.009) expo(0.12) expo(0.009) 

52 0.7 expo(0.14) expo(0.006) expo(0.12) expo(0.006) 

53 0.9 expo(0.14) expo(0.011) expo(0.12) expo(0.01) 

54 0.9 expo(0.14) expo(0.008) expo(0.12) expo(0.009) 

55 0.5 expo(0.14) norm(0.007,0.0023) expo(0.12) norm(0.006,0.002) 

56 0.5 expo(0.14) norm(0.004,0.0013) expo(0.12) norm(0.004,0.0013) 

57 0.7 expo(0.14) norm(0.009,0.003) expo(0.12) norm(0.009,0.003) 

58 0.7 expo(0.14) norm(0.006,0.002) expo(0.12) norm(0.006,0.002) 

59 0.9 expo(0.14) norm(0.011,0.0037) expo(0.12) norm(0.01,0.0033) 

60 0.9 expo(0.14) norm(0.008,0.0027) expo(0.12) norm(0.009,0.003) 

61 0.5 norm(0.14,0.0467) expo(0.007) norm(0.12,0.04) expo(0.006) 

62 0.5 norm(0.14,0.0467) expo(0.004) norm(0.12,0.04) expo(0.004) 

63 0.7 norm(0.14,0.0467) expo(0.009) norm(0.12,0.04) expo(0.009) 

64 0.7 norm(0.14,0.0467) expo(0.006) norm(0.12,0.04) expo(0.006) 

65 0.9 norm(0.14,0.0467) expo(0.011) norm(0.12,0.04) expo(0.01) 

66 0.9 norm(0.14,0.0467) expo(0.008) norm(0.12,0.04) expo(0.009) 

67 0.5 norm(0.14,0.0467) norm(0.007,0.0023) norm(0.12,0.04) norm(0.006,0.002) 

68 0.5 norm(0.14,0.0467) norm(0.004,0.0013) norm(0.12,0.04) norm(0.004,0.0013) 

69 0.7 norm(0.14,0.0467) norm(0.009,0.003) norm(0.12,0.04) norm(0.009,0.003) 

70 0.7 norm(0.14,0.0467) norm(0.006,0.002) norm(0.12,0.04) norm(0.006,0.002) 

71 0.9 norm(0.14,0.0467) norm(0.011,0.0037) norm(0.12,0.04) norm(0.01,0.0033) 

72 0.9 norm(0.14,0.0467) norm(0.008,0.0027) norm(0.12,0.04) norm(0.009,0.003) 

Cases WI Service Profile 5 Service Profile 6 

49 0.5 expo(0.12) expo(0.006) expo(0.1) expo(0.005) 

50 0.5 expo(0.12) expo(0.005) expo(0.1) expo(0.005) 
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51 0.7 expo(0.12) expo(0.008) expo(0.1) expo(0.008) 

52 0.7 expo(0.12) expo(0.007) expo(0.1) expo(0.007) 

53 0.9 expo(0.12) expo(0.01) expo(0.1) expo(0.009) 

54 0.9 expo(0.12) expo(0.009) expo(0.1) expo(0.0095) 

55 0.5 expo(0.12) norm(0.006,0.002) expo(0.1) norm(0.005,0.0017) 

56 0.5 expo(0.12) norm(0.005,0.0017) expo(0.1) norm(0.005,0.0017) 

57 0.7 expo(0.12) norm(0.008,0.0027) expo(0.1) norm(0.008,0.0027) 

58 0.7 expo(0.12) norm(0.007,0.0023) expo(0.1) norm(0.007,0.0023) 

59 0.9 expo(0.12) norm(0.01,0.0033) expo(0.1) norm(0.009,0.003) 

60 0.9 expo(0.12) norm(0.009,0.003) expo(0.1) norm(0.0095,0.0032) 

61 0.5 norm(0.12,0.04) expo(0.006) norm(0.1,0.0333) expo(0.005) 

62 0.5 norm(0.12,0.04) expo(0.005) norm(0.1,0.0333) expo(0.005) 

63 0.7 norm(0.12,0.04) expo(0.008) norm(0.1,0.0333) expo(0.008) 

64 0.7 norm(0.12,0.04) expo(0.007) norm(0.1,0.0333) expo(0.007) 

65 0.9 norm(0.12,0.04) expo(0.01) norm(0.1,0.0333) expo(0.009) 

66 0.9 norm(0.12,0.04) expo(0.009) norm(0.1,0.0333) expo(0.0095) 

67 0.5 norm(0.12,0.04) norm(0.006,0.002) norm(0.1,0.0333) norm(0.005,0.0017) 

68 0.5 norm(0.12,0.04) norm(0.005,0.0017) norm(0.1,0.0333) norm(0.005,0.0017) 

69 0.7 norm(0.12,0.04) norm(0.008,0.0027) norm(0.1,0.0333) norm(0.008,0.0027) 

70 0.7 norm(0.12,0.04) norm(0.007,0.0023) norm(0.1,0.0333) norm(0.007,0.0023) 

71 0.9 norm(0.12,0.04) norm(0.01,0.0033) norm(0.1,0.0333) norm(0.009,0.003) 

72 0.9 norm(0.12,0.04) norm(0.009,0.003) norm(0.1,0.0333) norm(0.0095,0.0032) 

Cases WI Service Profile 7 Service Profile 8 

49 0.5 expo(0.1) expo(0.005) expo(0.08) expo(0.004) 

50 0.5 expo(0.1) expo(0.006) expo(0.08) expo(0.006) 

51 0.7 expo(0.1) expo(0.007) expo(0.08) expo(0.0065) 

52 0.7 expo(0.1) expo(0.008) expo(0.08) expo(0.008) 

53 0.9 expo(0.1) expo(0.009) expo(0.08) expo(0.009) 

54 0.9 expo(0.1) expo(0.0095) expo(0.08) expo(0.01) 

55 0.5 expo(0.1) norm(0.005,0.0017) expo(0.08) norm(0.004,0.0013) 

56 0.5 expo(0.1) norm(0.006,0.002) expo(0.08) norm(0.006,0.002) 

57 0.7 expo(0.1) norm(0.007,0.0023) expo(0.08) norm(0.0065,0.0022) 

58 0.7 expo(0.1) norm(0.008,0.0027) expo(0.08) norm(0.008,0.0027) 

59 0.9 expo(0.1) norm(0.009,0.003) expo(0.08) norm(0.009,0.003) 

60 0.9 expo(0.1) norm(0.0095,0.0032) expo(0.08) norm(0.01,0.0033) 

61 0.5 norm(0.1,0.0333) expo(0.005) norm(0.08,0.0267) expo(0.004) 

62 0.5 norm(0.1,0.0333) expo(0.006) norm(0.08,0.0267) expo(0.006) 

63 0.7 norm(0.1,0.0333) expo(0.007) norm(0.08,0.0267) expo(0.0065) 

64 0.7 norm(0.1,0.0333) expo(0.008) norm(0.08,0.0267) expo(0.008) 

65 0.9 norm(0.1,0.0333) expo(0.009) norm(0.08,0.0267) expo(0.009) 
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66 0.9 norm(0.1,0.0333) expo(0.0095) norm(0.08,0.0267) expo(0.01) 

67 0.5 norm(0.1,0.0333) norm(0.005,0.0017) norm(0.08,0.0267) norm(0.004,0.0013) 

68 0.5 norm(0.1,0.0333) norm(0.006,0.002) norm(0.08,0.0267) norm(0.006,0.002) 

69 0.7 norm(0.1,0.0333) norm(0.007,0.0023) norm(0.08,0.0267) norm(0.0065,0.0022) 

70 0.7 norm(0.1,0.0333) norm(0.008,0.0027) norm(0.08,0.0267) norm(0.008,0.0027) 

71 0.9 norm(0.1,0.0333) norm(0.009,0.003) norm(0.08,0.0267) norm(0.009,0.003) 

72 0.9 norm(0.1,0.0333) norm(0.0095,0.0032) norm(0.08,0.0267) norm(0.01,0.0033) 

Cases WI Service Profile 9 Service Profile 10 

49 0.5 expo(0.08) expo(0.004) expo(0.08) expo(0.0037) 

50 0.5 expo(0.08) expo(0.006) expo(0.08) expo(0.0076) 

51 0.7 expo(0.08) expo(0.005) expo(0.08) expo(0.005) 

52 0.7 expo(0.08) expo(0.009) expo(0.08) expo(0.0094) 

53 0.9 expo(0.08) expo(0.008) expo(0.08) expo(0.0077) 

54 0.9 expo(0.08) expo(0.01) expo(0.08) expo(0.0119) 

55 0.5 expo(0.08) norm(0.004,0.0013) expo(0.08) norm(0.0037,0.0012) 

56 0.5 expo(0.08) norm(0.006,0.002) expo(0.08) norm(0.0076,0.0025) 

57 0.7 expo(0.08) norm(0.005,0.0017) expo(0.08) norm(0.005,0.0017) 

58 0.7 expo(0.08) norm(0.009,0.003) expo(0.08) norm(0.0094,0.0031) 

59 0.9 expo(0.08) norm(0.008,0.0027) expo(0.08) norm(0.0077,0.0026) 

60 0.9 expo(0.08) norm(0.01,0.0033) expo(0.08) norm(0.0119,0.004) 

61 0.5 norm(0.08,0.0267) expo(0.004) norm(0.08,0.0267) expo(0.0037) 

62 0.5 norm(0.08,0.0267) expo(0.006) norm(0.08,0.0267) expo(0.0076) 

63 0.7 norm(0.08,0.0267) expo(0.005) norm(0.08,0.0267) expo(0.005) 

64 0.7 norm(0.08,0.0267) expo(0.009) norm(0.08,0.0267) expo(0.0094) 

65 0.9 norm(0.08,0.0267) expo(0.008) norm(0.08,0.0267) expo(0.0077) 

66 0.9 norm(0.08,0.0267) expo(0.01) norm(0.08,0.0267) expo(0.0119) 

67 0.5 norm(0.08,0.0267) norm(0.004,0.0013) norm(0.08,0.0267) norm(0.0037,0.0012) 

68 0.5 norm(0.08,0.0267) norm(0.006,0.002) norm(0.08,0.0267) norm(0.0076,0.0025) 

69 0.7 norm(0.08,0.0267) norm(0.005,0.0017) norm(0.08,0.0267) norm(0.005,0.0017) 

70 0.7 norm(0.08,0.0267) norm(0.009,0.003) norm(0.08,0.0267) norm(0.0094,0.0031) 

71 0.9 norm(0.08,0.0267) norm(0.008,0.0027) norm(0.08,0.0267) norm(0.0077,0.0026) 

72 0.9 norm(0.08,0.0267) norm(0.01,0.0033) norm(0.08,0.0267) norm(0.0119,0.004) 
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Tables A4-A6 show the service profiles for each of the experimental 

conditions (cases) run for the disk model. Cases were run first using C-Look and 

then using SSTF algorithms. 

Table A4. Service Profiles for disk experiments, 2-Services competition. 

Service Profile 1 Service Profile 2 

Case WI Arrival Dist. 
Block 
Size Arrival Dist. 

Block 
Size 

1 0.6 expo(0.07) 0.004 expo(0.034) 0.032 

2 0.6 expo(0.06) 0.016 expo(0.037) 0.064 

3 0.6 expo(0.05) 0.032 expo(0.043) 0.128 

4 0.8 expo(0.065) 0.004 expo(0.023) 0.016 

5 0.8 expo(0.055) 0.016 expo(0.025) 0.032 

6 0.8 expo(0.045) 0.064 expo(0.029) 0.128 

7 1 expo(0.04) 0.004 expo(0.021) 0.064 

8 1 expo(0.03) 0.016 expo(0.026) 0.128 

9 1 expo(0.02) 0.032 expo(0.045) 0.064 

10 1.2 expo(0.035) 0.004 expo(0.017) 0.064 

11 1.2 expo(0.025) 0.016 expo(0.022) 0.128 

12 1.2 expo(0.015) 0.032 expo(0.049) 0.064 

13 0.6 norm(0.07,0.0233) 0.004 norm(0.034,0.0113) 0.032 

14 0.6 norm(0.06,0.02) 0.016 norm(0.037,0.0123) 0.064 

15 0.6 norm(0.05,0.0167) 0.032 norm(0.043,0.0143) 0.128 

16 0.8 norm(0.065,0.0217) 0.004 norm(0.023,0.0077) 0.016 

17 0.8 norm(0.055,0.0183) 0.016 norm(0.025,0.0083) 0.032 

18 0.8 norm(0.045,0.015) 0.064 norm(0.029,0.0097) 0.128 

19 1 norm(0.04,0.0133) 0.004 norm(0.021,0.007) 0.064 

20 1 norm(0.03,0.01) 0.016 norm(0.026,0.0087) 0.128 

21 1 norm(0.02,0.0067) 0.032 norm(0.045,0.015) 0.064 

22 1.2 norm(0.035,0.0117) 0.004 norm(0.017,0.0057) 0.064 

23 1.2 norm(0.025,0.0083) 0.016 norm(0.022,0.0073) 0.128 

24 1.2 norm(0.015,0.005) 0.032 norm(0.049,0.0163) 0.064 
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Table A5. Service Profiles for disk experiments, 5-Services competition. 

Service 1 Service 2 

Case WI Arrival Dist. 
Block 
Size Arrival Dist. 

Block 
Size 

25 0.6 expo(0.11) 0.004 expo(0.11) 0.016 

26 0.8 expo(0.09) 0.004 expo(0.09) 0.016 

27 1 expo(0.08) 0.004 expo(0.08) 0.016 

28 1.2 expo(0.06) 0.004 expo(0.06) 0.016 

29 0.6 norm(0.11,0.0367) 0.004 norm(0.11,0.0367) 0.016 

30 0.8 norm(0.09,0.03) 0.004 norm(0.09,0.03) 0.016 

31 1 norm(0.08,0.0267) 0.004 norm(0.08,0.0267) 0.016 

32 1.2 norm(0.06,0.02) 0.004 norm(0.06,0.02) 0.016 

Case WI Service 3 Service 4 
25 0.6 expo(0.11) 0.032 expo(0.11) 0.064 

26 0.8 expo(0.09) 0.032 expo(0.09) 0.064 

27 1 expo(0.08) 0.032 expo(0.08) 0.064 

28 1.2 expo(0.06) 0.032 expo(0.06) 0.064 

29 0.6 norm(0.11,0.0367) 0.032 norm(0.11,0.0367) 0.064 

30 0.8 norm(0.09,0.03) 0.032 norm(0.09,0.03) 0.064 

31 1 norm(0.08,0.0267) 0.032 norm(0.08,0.0267) 0.064 

32 1.2 norm(0.06,0.02) 0.032 norm(0.06,0.02) 0.064 

Case WI Service 5 
25 0.6 expo(0.141) 0.128 

26 0.8 expo(0.075) 0.128 

27 1 expo(0.045) 0.128 

28 1.2 expo(0.05) 0.128 

29 0.6 norm(0.141,0.047) 0.128 

30 0.8 norm(0.075,0.025) 0.128 

31 1 norm(0.045,0.015) 0.128 

32 1.2 norm(0.05,0.0167) 0.128 
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Table A6. Service Profiles for disk experiments, 10-Services competition. 

Service 1 Service 2 

Case WI Arrival Dist. 
Block 
Size Arrival Dist. 

Block 
Size 

33 0.6 expo(0.23) 0.004 expo(0.23) 0.008 
34 0.8 expo(0.18) 0.004 expo(0.18) 0.008 

35 1 expo(0.16) 0.004 expo(0.16) 0.008 
36 1.2 expo(0.12) 0.004 expo(0.12) 0.008 
37 0.6 norm(0.23,0.0767) 0.004 norm(0.23,0.0767) 0.008 
38 0.8 norm(0.18,0.06) 0.004 norm(0.18,0.06) 0.008 
39 1 norm(0.16,0.0533) 0.004 norm(0.16,0.0533) 0.008 
40 1.2 norm(0.12,0.04) 0.004 norm(0.12,0.04) 0.008 

Case WI Service 3 Service 4 
33 0.6 expo(0.23) 0.016 expo(0.23) 0.032 
34 0.8 expo(0.18) 0.016 expo(0.18) 0.032 
35 1 expo(0.16) 0.016 expo(0.16) 0.032 
36 1.2 expo(0.12) 0.016 expo(0.12) 0.032 
37 0.6 norm(0.23,0.0767) 0.016 norm(0.23,0.0767) 0.032 

38 0.8 norm(0.18,0.06) 0.016 norm(0.18,0.06) 0.032 
39 1 norm(0.16,0.0533) 0.016 norm(0.16,0.0533) 0.032 
40 1.2 norm(0.12,0.04) 0.016 norm(0.12,0.04) 0.032 

Case WI Service 5 Service 6 
33 0.6 expo(0.23) 0.064 expo(0.23) 0.128 
34 0.8 expo(0.18) 0.064 expo(0.18) 0.128 

35 1 expo(0.16) 0.064 expo(0.16) 0.128 
36 1.2 expo(0.12) 0.064 expo(0.12) 0.128 
37 0.6 norm(0.23,0.0767) 0.064 norm(0.23,0.0767) 0.128 
38 0.8 norm(0.18,0.06) 0.064 norm(0.18,0.06) 0.128 
39 1 norm(0.16,0.0533) 0.064 norm(0.16,0.0533) 0.128 
40 1.2 norm(0.12,0.04) 0.064 norm(0.12,0.04) 0.128 

Case WI Service 7 Service 8 
33 0.6 expo(0.23) 0.256 expo(0.23) 0.512 
34 0.8 expo(0.18) 0.256 expo(0.18) 0.512 
35 1 expo(0.16) 0.256 expo(0.16) 0.512 
36 1.2 expo(0.12) 0.256 expo(0.12) 0.512 
37 0.6 norm(0.23,0.0767) 0.256 norm(0.23,0.0767) 0.512 

38 0.8 norm(0.18,0.06) 0.256 norm(0.18,0.06) 0.512 
39 1 norm(0.16,0.0533) 0.256 norm(0.16,0.0533) 0.512 
40 1.2 norm(0.12,0.04) 0.256 norm(0.12,0.04) 0.512 

Case WI Service 9 Service 10 
33 0.6 expo(0.23) 0.768 expo(0.432) 1.024 
34 0.8 expo(0.18) 0.768 expo(0.204) 1.024 

35 1 expo(0.16) 0.768 expo(0.088) 1.024 
36 1.2 expo(0.12) 0.768 expo(0.136) 1.024 
37 0.6 norm(0.23,0.0767) 0.768 norm(0.432,0.144) 1.024 
38 0.8 norm(0.18,0.06) 0.768 norm(0.204,0.068) 1.024 
39 1 norm(0.16,0.0533) 0.768 norm(0.088,0.0293) 1.024 
40 1.2 norm(0.12,0.04) 0.768 norm(0.136,0.0453) 1.024 

 


