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ABSTRACT

Value-added models (VAMs) are used by many states to assess contribu-

tions of individual teachers and schools to students’ academic growth. The gen-

eralized persistence VAM, one of the most flexible in the literature, estimates the

“value added” by individual teachers to their students’ current and future test scores

by employing a mixed model with a longitudinal database of test scores. There is

concern, however, that missing values that are common in the longitudinal student

scores can bias value-added assessments, especially when the models serve as

a basis for personnel decisions – such as promoting or dismissing teachers – as

they are being used in some states. Certain types of missing data require that the

VAM be modeled jointly with the missingness process in order to obtain unbiased

parameter estimates.

This dissertation studies two problems. First, the flexibility and multimem-

bership random effects structure of the generalized persistence model lead to com-

putational challenges that have limited the model’s availability. To this point, no

methods have been developed for scalable maximum likelihood estimation of the

model. An EM algorithm to compute maximum likelihood estimates efficiently is

developed, making use of the sparse structure of the random effects and error

covariance matrices. The algorithm is implemented in the package GPvam in R

statistical software. Illustrations of the gains in computational efficiency achieved

by the estimation procedure are given.

Furthermore, to address the presence of potentially nonignorable missing

data, a flexible correlated random effects model is developed that extends the gen-

eralized persistence model to jointly model the test scores and the missingness

process, allowing the process to depend on both students and teachers. The joint

model gives the ability to test the sensitivity of the VAM to the presence of non-
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ignorable missing data. Estimation of the model is challenging due to the non-

hierarchical dependence structure and the resulting intractable high-dimensional

integrals. Maximum likelihood estimation of the model is performed using an EM

algorithm with fully exponential Laplace approximations for the E step. The meth-

ods are illustrated with data from university calculus classes and with data from

standardized test scores from an urban school district.
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Chapter 1

INTRODUCTION

Value-added models (VAMs) are increasingly recommended as a method of es-

timating the effectiveness of schools and teachers. It is widely recognized that

comparing teachers and schools based solely on their students’ test scores unfairly

penalizes those that teach students from disadvantaged backgrounds. VAMs at-

tempt to partially account for student background by examining student growth on

standardized tests and estimating teacher or school effectiveness using the growth

of the students who have been instructed by that teacher or school. The VAM

scores for a teacher from the models are intended to estimate the “value added”

by that teacher to the student’s growth—how much more (or less) students’ scores

changed under that teacher than they would be expected to change under an “av-

erage” teacher.

The federal Race to the Top program requires that participating states use

longitudinal student achievement data as a component of teacher and principal

evaluation. Value-added models are increasingly being used to estimate the por-

tions of individual students’ growth that can be attributed to their teachers (see www.

cgp.upenn.edu/ope_nation.html for a list of states that have adopted VAMs).

Discussions of the use of VAMs have appeared recently in the New York Times

(Leonhardt, 2010) and the Los Angeles Times (Felch et al., 2010). The Los An-

geles Times article describes a value-added analysis performed by the newspaper

on Los Angeles public school data and publishes the resulting teacher rankings.

The publication of the results created a strong reaction both from teachers whose

names had been released with rankings and from parents of students.
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In October of 2009, the National Academy of Sciences deemed VAMs to be

a promising approach to estimating teacher effectiveness, but cautioned that they

should not be used for “high stakes” decisions, such as tenure or dismissal, until

they have been studied and developed further (The National Academies, 2009).

One issue raised by Briggs and Domingue (2011) involves the sensitivity of teacher

rankings to the inclusion of fixed-effect covariates in the VAM based analysis pub-

lished by the Los Angeles Times (Felch et al., 2010). Despite such concerns, a

number of states are now using VAMs for personnel decisions, including merit pay

and tenure. For example, Louisiana recently began to use VAMs for 50 percent of

each public school teacher’s evaluation (Louisiana Department of Education, 2010).

With $4.35 billion in funding for Race to the Top, it seems that VAMs will play a ma-

jor role in the future in judging teacher, school, district, and state performance (U.S.

Department of Education, 2009). Given the magnitude of the decisions that the

value-added education models will be used to make, it is extremely important that

the models are thoroughly studied and their limitations explored.

Although the purpose of VAMs is to measure the teacher contributions, such

causal inference can be misleading in the presence of non-random student assign-

ment to classrooms (Draper, 1995). What VAMs attempt to measure as teacher

effects may be more appropriately referred to as “unexplained heterogeneity at the

classroom level” (Lockwood et al., 2007). The motivation in using VAMs is to try

to compensate for this non-random assignment through effects in the model. This

provides an improvement over simplistic gain score models that have been used in

the past (Harris and McCaffrey, 2010).

Some VAMs are presented as standardized gain models (Reback, 2008), or

as student growth percentile models, such as the Colorado Growth Model (Beteben-

ner, 2009). The Colorado Growth Model uses quantile regression to measure stu-
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dent growth relative to peers who were at a similar achievement level in the pre-

vious year(s). Teachers are then ranked by the median student growth percentile

from their class. However, there are concerns about the stability of the estimates

from these nonparametric methods, and about their potential bias against teachers

of students from poor socioeconomic backgrounds (Wright, 2010).

More complex VAMs are defined using linear mixed models (Sanders et al.,

1997; Raudenbush and Bryk, 2002; Ballou et al., 2004; McCaffrey et al., 2004;

Lockwood et al., 2007; Harris and McCaffrey, 2010; Wright et al., 2010). These

models vary in their correlation structures, their reliance on covariates, and the

structure for the effect of a teacher in year g on future year scores in years g + 1,

g + 2, etc. In this context, estimation is done through either a nested or a multi-

membership mixed model on longitudinal student data which includes random ef-

fects for teachers and students, as well as any desired fixed effects, such as so-

cioeconomic status. The empirical best linear unbiased predictors (EBLUPs) of the

teacher random effects serve as the estimates of teacher contributions to student

learning. Rather than simply calculating the average test score for a classroom,

value-added models control for information on the students’ backgrounds, the stu-

dents’ individual test score histories, and contributions of previous teachers to the

students’ learning. We focus our attention on these mixed model based VAMs.

The generalized persistence (GP) VAM (Mariano et al., 2010) is one of the

most general and flexible value-added models in the literature, containing most of

the other linear mixed model based VAMs as special cases. Unlike other VAMs,

the GP model allows the effects of teachers on future year scores to be imperfectly

correlated. This contrasts with the perfect correlation assumed by variable persis-

tence models (McCaffrey et al., 2004; Lockwood et al., 2007), and the equality of

current and future year effects assumed by complete persistence models (Sanders
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et al., 1997). However, the flexibility afforded by the GP model comes at a heavy

computational cost. No computational methods are currently available for maximum

likelihood estimation of the GP model due to its multi-membership random effects

structure and highly correlated random effects. SAS is able to estimate the model

parameters for only very small data sets.

The first part of this dissertation develops a maximum likelihood procedure

for estimating the GP VAM, which was estimated with Bayesian methods by Mari-

ano et al. (2010). Mariano et al. (2010) find that even minimally-informative priors

for the covariance matrix of the random effects were “quite informative”, meaning

the results are sensitive to the choice of prior distributions. Estimation of the mixed

model is done via an EM algorithm with custom-written code in R (R Development

Core Team, 2012). We have built the estimation routine into the R package GPvam,

and hope that the availability of software for the GP model will encourage further

exploration of its properties. The GP VAM has the potential to be used in many

settings outside of educational evaluation.

An often neglected aspect of value-added modeling is the effect of missing

data on the results of the analysis (McCaffrey and Lockwood, 2011). Longitudi-

nal education data often contain many incomplete student profiles. Students drop

courses, change schools, move away, or may be absent on the day of an exam.

Analysis of data where some observations are missing requires assumptions about

the nature of the missing data. Of particular interest is a type of missing data that

arises in the college setting. For example, students in calculus 2 who do not finish

calculus 3 will have missing data for calculus 3. The missingness may be relevant

to estimates of the calculus 2 teachers’ contributions to student learning. A student

who is poorly prepared for calculus 3 may drop the class despite having received

a high grade in calculus 2. Or, in the elementary-school setting, it is possible that
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low-performing students might be discouraged from taking a standardized exam

(Ryan and Weinstein, 2009). In a simplistic example, suppose that students are

randomized to one of several classrooms and teachers are evaluated based upon

the average score for their classes on a standardized exam at the end of the year. If

a teacher were to discourage her weakest students from taking the exam, she could

inflate her class average and thus her ranking. Ignoring data that are missing in part

due to the value that would have been observed may lead to biased estimates (Little

and Rubin, 2002).

The assumptions about missing data made by VAMs are usually overly sim-

plified and have been recognized as a potential problem for their use in teacher

evaluation (McCaffrey et al., 2003; Braun, 2005). McCaffrey et al. (2005) and Wright

(2004) explore the impact of the presence of missing data on VAMs, although they

do not propose a model under a more relaxed assumption on the missing-data

mechanism. Certain types of missing data require that the VAM be modeled jointly

with the missingness process in order to obtain unbiased parameter estimates.

To date, the only thorough investigation of the impact of missing data on VAMs

by jointly modeling a missingness process comes from McCaffrey and Lockwood

(2011). They use selection and pattern-mixture models, two particular types of joint

models, for the missing data indicators with Bayesian inference, attributing missing

data to intrinsic student – but not teacher – characteristics.

In the second part of this dissertation, we develop a new multi-response

multi-membership mixed model that allows the missingness mechanism to depend

on teachers as well as students. This model presents both theoretical and compu-

tational challenges due to 1) the need to jointly model a continuous and a binary re-

sponse and 2) the non-nested, multi-membership random effects structure needed

to account for student movement across classrooms. We obtain the maximum
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likelihood estimates with an EM algorithm, which provides a stable maximization

procedure in light of the presence of highly-correlated random effects, as well as a

dimensionality reduction feature. Steele (1996) proposes using a fully exponential

Laplace approximation in the E-step of an EM algorithm to estimate generalized lin-

ear mixed models. Rizopoulos et al. (2009) use this approach to estimate a shared

parameter model for a longitudinal and a time-to-dropout process. We generalize

several aspects of their technique in order to estimate our model. Instead of using

shared random effects, we use correlated random effects (Lin et al., 2009) between

the GP VAM (Mariano et al., 2010) and a binary missing data mechanism. Further-

more, the multi-membership structure of the VAM leads to computational difficulties

not faced in the nested model presented by Rizopoulos et al. (2009).

We use various structures that are available within our multi-response model

to perform a sensitivity analysis (Xu and Blozis, 2011) on the teacher rankings pro-

duced when analyzing a data set containing semester calculus grades from a large

public university. We find that the rankings of teacher effects may change depend-

ing on the assumptions made about the structure of the missing data mechanism.

This is an important finding given the high-stakes decisions that these rankings may

be used to make.

Chapter 2 provides background on VAMs and methods for computing es-

timates. The EM algorithm for the GP model appears in Chapter 3. A new, joint

model for student outcomes and student attendance is presented in Chapter 4.

The joint model allows for models to be fit to data under various assumptions about

the nature of the missing data, providing a sensitivity analysis to the missing at ran-

dom assumption of the GP model. Finally, Chapter 5 applies both the GP and the

joint model to real and simulated data sets.
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Chapter 2

LITERATURE REVIEW

Over the past decade, value-added models have grown in popularity in the field of

education as a tool for measuring teacher performance. The No Child Left Behind

Act of 2001 (NCLB) mandates the use of state-wide standardized tests to evalu-

ate school and district performance. NCLB focuses on identifying low-performing

schools; however, the method of analysis for the standardized test scores is left up

to the states. If an overly simplistic model is used to analyze the test scores, some

schools may be identified as low-performing due to the composition of their student

bodies. For example, schools in rural or impoverished areas may perform worse

with respect to standardized tests simply because of the backgrounds of their stu-

dents upon enrolling. Using simple score averages would provide a valid means of

comparing schools if students were randomly assigned to schools across the state,

but this is not the case. As a result, covariates such as free-lunch or migrant status

are often included in the analyses in an attempt to account for the non-random as-

signment of students to schools and classes. The Race to the Top program places

a greater emphasis on the use of student test scores to measure the performance

of individual teachers than NCLB, resulting in a recent surge in the use of VAMs

(U.S. Department of Education, 2009).

In an attempt to better control for student background characteristics, many

VAMs use multiple years of student data and focus on student growth over time.

A general VAM framework and related issues for education data are described by

McCaffrey et al. (2004), and expanded upon by Lockwood et al. (2007). The nature

of student movement through a school system leads to a complex relationship be-

tween students (level 1) and teachers (level 2) in a multi-level model. Since units
7



at level 1 belong to multiple level 2 classes, the result is a multi-membership model

(Browne et al., 2001). See Figure 2.1 for diagrams comparing nested and multi-

membership structures. Some VAMs (Sanders et al., 1997; Rowan et al., 2002; Mc-

Caffrey et al., 2003, 2004, 2005; Lockwood et al., 2007; Mariano et al., 2010; Harris

and McCaffrey, 2010) use mixed models for longitudinal student scores, modeling

the score with random teacher intercepts. Under this scenario, the empirical best

linear unbiased predictors (EBLUPs) for random teacher-intercepts serve as an es-

timate for the value-added to student learning by the individual teachers.

A heuristic summary of a mixed model VAM is in order. Suppose that stu-

dents take a diagnostic test (e.g., in mathematics) at the end of each year in high

school. In addition to keeping track of each student’s test scores, we will also record

who their teacher was each year. We wish to model the students’ scores across the

years. For fixed effects, we will include a yearly mean, and have the option of includ-

ing student or teacher level covariates. Correlation between scores from the same

student will be modeled with student-specific random intercepts. Likewise, scores

from students who took a class together will be correlated (via the influence of the

teacher and environmental factors from the shared classroom), and this will be ac-

counted for by a classroom-membership random effect called the teacher effect, or

classroom effect.

Teacher effects are measured using random-intercepts in these VAMs. Ran-

dom effects for teachers are used instead of fixed effects in part because of the

shrinkage properties of random effects. The magnitude of the effects for teachers

with relatively few students are down-weighted towards 0, the mean of the random

teacher effects. The amount of shrinkage depends on the amount of teacher-to-

teacher variation present relative to the size of the error variance. The estimation of

variance components for teacher-intercepts, student-intercepts, and residuals pro-
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Figure 2.1: Diagrams of a nested structure (top) and a multi-membership structure
(bottom)
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vides insight, via the intra-class correlation coefficients, into the proportion of vari-

ation in test scores due to teacher differences. If this proportion is high, it indicates

that classroom heterogeneity is largely responsible for the variance of students’ test

scores from their expected baseline score. By contrast, if the proportion of variation

due to teachers is low, it indicates that classroom heterogeneity is not as influential

as other factors, such as natural student-to-student variation.

In an ideal situation for statistical analysis, students would be randomly as-

signed to schools and teachers each year. Under this scenario, the EBLUPs for ran-

dom teacher-intercepts would serve as an estimate for the value-added to student

learning by the individual teachers. However, students are not randomly assigned

to classrooms. Far from being a random sample, students often cluster at the

classroom level based on significant predictors for educational performance, such

as free-lunch and migrant status. If such clustering factors are not sufficiently mod-

eled by fixed effects, they will be included in the estimated teacher effects. Note

that, as observed by Lockwood et al. (2007), these effects (EBLUPs for teacher-

intercepts) measure “unexplained heterogeneity at the classroom level,” and not

necessarily the causal effect of the teacher. Thus value-added models should be

interpreted with caution, since students are not randomized to classrooms and the

teacher effects may be influenced by classroom-level differences.

A relevant discussion of the utility and limitations of nested models (a spe-

cific form of VAM which might arise, say, from each student taking the same teacher

every year) appears in Draper (1995). Complications for nested models also affect

the more general VAMs. Draper (1995) urges a careful examination of the nature

of the sampling in the study. The assumptions made by the sampling method or

experimental design about 1) exchangeability of sampled and unsampled units in

the target population and 2) the strong ignorability of treatment assignment (inde-
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pendence of outcome and experimental assignment given covariates) should be

carefully examined. This is true, of course, for any method of statistical inference,

but Draper (1995) sought to temper instances of overzealous interpretation of multi-

level studies as they became more popular in educational settings.

The warning from Draper (1995) highlights a couple of restrictions on the

interpretation of VAMs. Consider the example of college students taking a calculus

course. Since the students taking calculus do not represent a random sample from

the population of college students (let alone 18-22 year-olds in general), the results

should not be generalized to serve as an estimation of teacher effectiveness per

se, but rather should be understood as an estimate of teacher effectiveness on

students “similar” to those that took the classes in the study.

The second concern of strong ignorability of treatment assignment relates

to the non-random process by which students are assigned to classes. College

students (or parents and counselors of elementary school students) select their

classroom based on the time and location of the class, but more importantly based

in part on their knowledge of the reputation of the instructor and in part on which

class their friends pick. These influences on classroom selection may lead groups

of low-achieving students to cluster and, likewise, groups of high-achieving students

to cluster. The inclusion of student-specific random effects, referred to as the stu-

dent’s “general level of achievement” by McCaffrey and Lockwood (2011), should

help ameliorate the effects of self-assignment, but it does not guarantee strong ig-

norability. This limits the extent to which teacher random effects may be considered

as individual teacher contributions. It emphasizes the interpretation of the teacher

random effects as “unexplained heterogeneity at the classroom level” (Lockwood

et al., 2007). Thus it may be more accurate to refer to the classroom-membership

random effects as “classroom effects” instead of “teacher effects.” This is one of
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the reasons that the National Academy of Sciences cautioned that VAMs are not

ready for high-stakes decisions. Nevertheless, these effects are being used to rank

teachers, as in the Los Angeles Times article (Felch et al., 2010). If a data set

contained multiple years of observations on teachers, it would be possible to sep-

arate the teacher and the classroom effects; however, we will leave this distinction

aside for now and refer to the effects interchangeably as “teacher” and “classroom”

effects.

2.1 Modeling Persistent Teacher Effects

After the first year of observations, we wish not only to model the effect of the cur-

rent teacher on the student, but also to attribute their growth (or decline) to their

past teachers. We would, however, expect the contribution of a teacher on a par-

ticular student to diminish over time. A challenge in the design of VAMs has been

deciding how a student’s performance should be attributed to his or her current and

prior teachers. The simplest VAMs examine each year separately and estimate the

teacher effect by the average gain score of the teacher’s students. If the effects of

good teaching persist, however, one would expect that students of a good teacher

in year 1 would do well on the test in year 1 and would continue to do well in future

years. One of the most popular VAMs in current use is the Educational Value-Added

Assessment System (EVAAS) based on the model in Sanders et al. (1997). This

model, sometimes called a “layered model,” assumes that the effect of a teacher

persists undiminished over all subsequent years of his or her students’ achieve-

ment. That is, if a teacher is estimated to “add” 3 points to predicted student scores

in year 1, those students continue to have those 3 points added to their predicted

scores forever. Thus, a student’s predicted score in year 3 includes the teacher

effects from the teachers in years 1, 2, and 3. The EVAAS model is implemented
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in SAS software (Wright et al., 2010) and through an R program (Lockwood et al.,

2003), so it is readily usable by states and school districts.

The complete persistence assumption of the EVAAS model, however, limits

its flexibility for modeling student achievement. A model proposed by McCaffrey et

al. (2004) allows the effect of a teacher on students’ scores to decay in future years,

which Lockwood et al. (2007) termed variable persistence. Whereas the EVAAS

model assumes that students of an excellent first grade teacher ought to carry that

advantage, unabated, for the rest of their education, the variable persistence model

recognizes that differences in exam content and distances in time may reduce the

influence of former classroom membership on future performance. However, the

variable persistence model restricts the way in which future effects decay. If a first

grade teacher has a current year effect that is 2 standard deviations above the

mean, their effect on third grade scores will also be 2 standard deviations above

the mean (Mariano et al., 2010).

Recently, Mariano et al. (2010) introduced a generalized persistence (GP)

model that allows a much more general structure for the effects of a current teacher

on future test scores. The GP model estimates a different effect for each teacher

in the current year and each future year of the study. Thus, a year-1 teacher might

be estimated to have an effect of 3 points on the scores in year 1, and 2 points

on the scores in years 2 and 3. While the EVAAS model requires the effects of

a teacher on all years to be the same, the GP model allows a general correlation

structure for the effects of a teacher in different years. The general correlation

structure allows much more detailed exploration of the patterns of teacher effects,

but greatly complicates the problem of computing estimates. In particular, neither

the coefficient matrix for the random effects nor the overall covariance matrix can be

written in block diagonal form, so computational methods that have been developed
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for nested hierarchical models and other special cases of linear mixed models do

not apply.

2.2 A complex random effects structure

Many papers on mixed models consider a hierarchical (nested) random effects

structure. In our model, this would mean that the students could not move be-

tween classrooms. This would be satisfied, for example, if the measurements were

longitudinal observations on grade school students during a single year, and the

each student belonged to only one teacher for the entire study.

For illustration, suppose that a set of observations yi(k) are made on stu-

dent i(k) during the course of a year, during which student i belongs exclusively

to classroom k, where i = 1, . . . , nk and k = 1 . . .m. Let y be a concatenation of

the student scores, ηk represent a random intercept for classroom k, and assume

that the intra-student correlation is modeled in the error covariance matrix. The

likelihood may be factored as a product of one-dimensional integrals

f(y) =
m∏
k=1

∫ nk∏
i=1

f(yi(k)|ηk)f(ηk)dηk

Because of the correlation structure in multi-membership VAMs, however, this fac-

torization cannot occur and we are left with a single, large integral. Let η be a

concatenation of the random teacher effects. If students move between classrooms

and their scores are modeled as a function of multiple teacher effects, the likelihood

must be expressed as

f(y) =

∫
· · ·
∫
f(y|η)f(η)dη (2.1)

Students in the same classroom share a teacher effect: as they move to other

classes, they share teacher effects with their new classmates. When persistence

effects are modeled, student scores in the second year are modeled as a function

of multiple teacher effects (the current year effect of the second year teacher and
14



the future year effect of the first year teacher), hence the name “multi-membership

model” (Browne et al., 2001). Although a closed form solution exists for Equation

(2.1) when continuous scores are modeled, this will not be the case when binary

missing data indicators are included. We address this difficultly in Chapter 4. Even

though a closed form solution exists when missing data are ignored, it is compu-

tationally expensive to compute since it is a function of large, dense matrices (due

to the multi-membership structure). Only very small data sets may be fit with such

models in SAS. We introduce a scalable, efficient method for these computations

in Chapter 3.

Mariano et al. (2010) use Bayesian methods to estimate the parameters for

the GP model using data from a large urban school district. To obtain a proper

posterior distribution, however, a Bayesian approach to computations requires that

an informative prior distribution be adopted for the covariance parameters, and dif-

ferent priors often result in different estimates of model parameters and teacher

effects. A maximum likelihood (ML) approach avoids the need for priors, although

ML estimation of even the variable persistence model, which is a subset of the

GP model, has been “practically infeasible for all but small data sets” up to this

point since “the multiple membership structure makes likelihood estimation difficult

for realistically sized data sets” (Lockwood et al., 2007). In this paper we use the

sparseness of the covariance and design matrices to develop an efficient EM algo-

rithm for calculating ML estimates of parameters in the GP model. We implement

the method in a user-friendly package in R statistical software (R Development Core

Team, 2012) called GPvam. This development makes the GP model more acces-

sible for use in practice, and provides an alternative to the Bayesian calculations

implemented by Mariano et al. (2010). Application of the proposed methods to data
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from a large urban school district demonstrates the capabilities of the estimation

procedure and software.

2.3 Nonignorable Missing Data

An often neglected aspect of value-added modeling is the effect of missing data on

the results of the analysis (McCaffrey and Lockwood, 2011). Analysis of incomplete

student profiles requires assumptions about the nature of the missing data. We use

y to represent student test scores, and partition y into the set of scores yo that

were observed, and the measurements ym that were planned but not observed.

The vector r contains binary indicators for whether or not each planned observation

was made, letting a value of 1 indicate a successful observation.

Data may be missing from a study for several reasons, and the cause of the

missingness determines the degree to which the missing data affect the analysis.

If data are missing completely at random (MCAR), then the joint likelihood of the

longitudinal and missingness processes factors cleanly, and there is no need for

joint modeling, since the longitudinal and missingness processes are independent.

Likewise, if the data are missing at random (MAR) and the parameters for the longi-

tudinal and missingness processes are distinct, then the missing data mechanism

is said to be ignorable for likelihood inference (Little and Rubin, 2002, p. 119).

However, if the missing data are missing not at random (MNAR) or if the param-

eter spaces of the longitudinal and missingness processes are not distinct, then

the missing data are nonignorable and the longitudinal process, f(y), and miss-

ingness processes, f(r), must be modeled jointly to avoid bias in the estimation of

the parameters of the longitudinal process. Models for nonignorable missing data

require a factorization of the joint likelihood f(y, r) of the longitudinal and missing-

ness mechanisms via one of three broad frameworks: selection, pattern-mixture,

and shared-parameter models (Verbeke and Molenberghs, 2000).
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• Selection Models: f(y, r) = f(r|y)f(y)

Selection models require a marginal model for y and a conditional model

r|y to describe the factorization f(y, r) = f(r|y)f(y) (Verbeke and Molen-

berghs, 2000, p. 234). The conditional model allows the probability of dropout

to depend on the complete data (both observed and missing). For instance,

McCaffrey and Lockwood (2011) modeled the number of observed scores to

be dependent on each student’s general level of achievement.

• Pattern-Mixture Models: f(y, r) = f(y|r)f(r)

Pattern-mixture models begin with a marginal model for r and a conditional

model for y|r to describe the factorization f(y, r) = f(y|r)f(r) (Verbeke

and Molenberghs, 2000, p. 276). Pattern-mixture models posit a different test

score model for each dropout pattern, or simply for each distinct number of

dropouts. That is, the observed data model is stratified across the number

of missing observations (Yuan and Little, 2009). Students with no missing

observations are modeled together, students with one missing observation

are modeled together, etc.

• Shared-Parameter Models (SPM): f(y, r) =
∫
f(y|η)f(r|η)f(η)dη

Both the observed data and missingness models depend on the same ran-

dom effects, and are independent, conditioned on these effects (Wu and Car-

roll, 1988). In the context of VAMs, the random effects are the student and

teacher effects. We might expect students with higher scores to continue to

stay in the program, and better teachers to be more likely to graduate students

who continue their studies. The dependence of both the longitudinal and

missing data mechanisms on the random effects, and thus the distribution of

the random effects, means that the missingness process is not ignorable.

17



A discussion of the types of missing data appears in Little and Rubin (2002).

These definitions fit conveniently in the selection model framework, but can be ex-

tended to the other model factorizations. Missing observations are missing com-

pletely at random (MCAR) if the missingness process is independent of the ob-

served and the missing data. In selection models, MCAR implies f(r|yo,ym,η) =

f(r), where f denotes a density function. If the missingness process depends

on the observed data but not the missing data, it is said to be missing at random

(MAR). MAR implies f(r|yo,ym,η) = f(r|yo). If, in addition to being MAR, the

parameter spaces of f(r|y) and f(y) are distinct, the missingness process is said

to be ignorable. If the missingness process depends on the unobserved values, the

missing observations are said to be missing not at random (MNAR). If observations

are MNAR or if the parameter spaces are not distinct, the missingness process is

nonignorable for maximum-likelihood based inference.

The GP model assumes that missing data are MAR. Inference is intended to

be on y = (yo,ym), but only yo have been observed. With non-ignorable missing

data, f(yo) is not the correct likelihood to maximize because r provides information

about the distribution of y. To obtain unbiased parameter estimates for the longi-

tudinal process y, the longitudinal and missingness processes must be modeled

jointly and f(yo, r) must be maximized. If we were to naively run an analysis on a

data set with MNAR data in SAS PROC MIXED, SAS would ignore all observations for

which the response was missing, yielding biased parameter estimates (Fitzmaurice

et al., 2004; Verbeke and Molenberghs, 2000).

McCaffrey et al. (2005) and Wright (2004) explore the impact of the presence

of missing data, including MNAR data, on VAMs. However, they do not attempt

a joint analysis of the test-scores and missingness. To date, the most thorough

investigation of the impact of non-ignorable missing data on VAMs by jointly mod-

18



eling a missingness process comes from McCaffrey and Lockwood (2011). They

use selection and pattern-mixture models to model the missing data in a Bayesian

framework. When applied to a dataset from a large urban school district, they find

that the MNAR analysis yielded approximately the same teacher effects as the MAR

analysis. This, as McCaffrey and Lockwood (2011) admit, is a paradoxical result,

since we would expect some teachers’ effects to be influenced by the dropout of

low-performing students. Naively, it seems that if a teacher’s worst students all

dropped out in the next year, that the teacher’s estimated effect would be biased

upward. Our new MNAR approach – using a variant of a shared-parameter model

– will provide additional insight into the issue by allowing a student’s propensity for

missingness to depend on his or her teacher history.

Shared- and Correlated-Parameter Models

Instead of assuming that the full data y depend on the pattern of missingness or

on the number of missing observations as in McCaffrey and Lockwood (2011), the

SPM assumes that the longitudinal and missing mechanisms are conditionally inde-

pendent, given a set of random effects. In our context, the assumption of conditional

independence means that the student test scores and dropout patterns are inde-

pendent given (1) the students’ general levels of achievement and the propensity of

each student to drop out and (2) the teacher effects and the propensity of teachers

to pass students who do not drop out.

The original paper on SPM examines joint modeling of missing and ob-

served data from a right-censored process on normally distributed data (Wu and

Carroll, 1988). The name “shared-parameter model” first appears in Follmann and

Wu (1995). A detailed, application-focused study that considers different models

for continuous dropout data (survival times) as well as giving an implementation in

SAS PROC NLMIXED appears in Vonesh et al. (2006). The SPM is useful both in joint
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modeling of observed and missing data and in joint modeling of observed and sur-

vival data. The difference between the two is in the structure of the density f(r|η).

We will only consider the missing data modeling, but the relationship is noteworthy

since some results we need later have been presented in the framework of survival

time modeling.

A disadvantage of shared parameter models is that the random effects in

the observed model and the random effects in the missingness model are perfectly

correlated and are restricted to have the same variance in each model. This may

not be realistic, depending on the units of measurement in each model. In addi-

tion, it may be unreasonable to expect the subject-specific effects to be the same

in each model. An alternative to building “shared” random effects into the longitu-

dinal and missingness models would be to build “correlated” random effects into

the models, as done by Lin et al. (2009). Furthermore, under the correlated ran-

dom effects factorization, the random teacher effects from the VAM enter the joint

model in a linear fashion, which should improve the accuracy of the fully exponen-

tial Laplace approximation used in the E-step of an EM algorithm (see Chapter 4).

For convenience, we will refer to the model using correlated random effects as a

“correlated-parameter model” (CPM).

Sensitivity Analysis

When jointly modeling MNAR data, the missing data mechanism makes untestable

assumptions about the nature of the relationship between the observed and miss-

ing data processes (Verbeke and Molenberghs, 2000). Molenberghs et al. (2008)

show that it is not possible to perform an overall test of MNAR versus MAR since

every MNAR model has an MAR counterpart that provides the same fit to the ob-

served data but different predictions for the unobserved data. The plausibility of the

assumed model cannot be tested empirically, and as a result it is necessary to fit
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several alternatives of the missing data mechanism to check the sensitivity of the

inference to the choice of joint modeling structure (Xu and Blozis, 2011).

The likelihood based GP VAM assumes that observations are MAR. If any

of the MNAR models were to produce substantially different results from the stan-

dard GP model, this would indicate that the conclusions of the VAM depend on

assumptions made about the nature of the missing observations. However, the

appropriate missing data process cannot be chosen by empirical investigation of

the observed data (including examination of the log-likelihood) since the observed

data do not provide information to support one particular MNAR model over an-

other (Fitzmaurice et al., 2004; Xu and Blozis, 2011). As stated by Molenberghs

and Kenward (2007), “ignoring MNAR models is no different an option than shifting

to one particular MNAR model, it is just much more convenient.” Consequently, we

will fit different MNAR models with various assumptions about the structure of the

missing data mechanism to the data sets in Chapter 5. These models all fit in the

framework of the correlated random effects model we present in Chapter 4. We

compare the teacher rankings produced by the MNAR models to those of the MAR

GP value-added model to test the sensitivity of the rankings to assumptions about

the relationship between the longitudinal and missingness processes.

2.4 High-Dimensional Integral Approximation

Much research has been done on the subject of approximating one-dimensional

integrals involving probability densities, but the higher-dimensional case is not en-

countered as frequently, since many non-linear mixed models used in practice

involve nested random effects which produce integrals that factor into a product

of one-dimensional integrals. Even in the one-dimensional case, the appropriate

method depends on the geometry of the integrand and other problem-specific de-
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tails. In a review paper, Evans and Swartz (1995) outline four classes of integral

approximation methods.

1. Asymptotic Methods (including the Laplace approximation and Penalized Quasi-

likelihood)

2. (Adaptive) Importance Sampling

3. Multiple Quadrature (Including Gaussian Quadrature and Quasirandom Quadra-

ture)

4. Markov Chain Methods (e.g. Gibbs Sampler)

Gaussian quadrature (GQ) and adaptive Gaussian quadrature (AGQ) are in-

feasible and we rule them out immediately due to the “curse of dimensionality.” The

integral model in Equation (2.1) is k-dimensional, where k is the number of student

and teacher random effects, so for large data sets the computational demands of

using GQ are immense. In our applications, k is in the thousands. The quadrature

methods approximate integrals with respect to a kernel by a weighted average of the

integrand at certain quadrature points. The GQ abscissas are predetermined and

centered around 0, the expected value of the random effects. The AGQ abscissas

are centered at the current estimate of the mode of the integrand. The calculation

of the appropriate quadrature points (and weighting) is computationally intensive.

A rule of thumb suggests that either 20 GQ points or 6 AGQ points give a good

approximation in one dimension. In order to maintain this level of coverage in each

dimension, a k-dimensional integral requires 20k GQ points, or 6k AGQ points.

The (adaptive) importance samplers work well in one dimension but be-

come complicated as the dimensionality rises due to the difficulty of determining an
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appropriate importance sampler (Evans and Swartz, 2000). “The analysis of con-

vergence for adaptive importance sampling is more difficult than importance sam-

pling because of the dependence between iterations” (Evans and Swartz, 1995,

2000), and “convergence will not take place with a poor choice of importance sam-

pler” (Evans and Swartz, 1995). The importance sampler is “not the most efficient

choice” if using normally distributed random effects and error terms (Pinheiro and

Bates, 1995).

The Markov Chain methods mostly rely on the Gibbs sampler, which, in

high-dimensional settings, may experience convergence “so slow as to be imprac-

tical” (Evans and Swartz, 1995). Assessing the achievement of stationarity and

determining the strength of serial correlations complicates the analysis (Evans and

Swartz, 1995; de Leeuw and Meijer, 2008). After attempting to fit a multi-level

model, de Leeuw and Meijer (2008, p. 357) report, “In the end, the MCMC approach

required extensive computation and judging convergence proved something of an

arcane art form.” Gibbs sampling would have been our second choice for an approx-

imation method. However, in addition to the concerns about rate of convergence,

we would like to avoid relying on priors if possible. Along with the other model pa-

rameters, Bayesian methods would require a prior for the random effects covariance

matrixG. The estimated matrix Ĝ and thus the EBLUPs η̂ = ĜS′V̂ −1
(
y −Xβ̂

)
are sensitive to the choice of prior, and we would like to avoid introducing this sub-

jective component into the calculation of the teacher effects. Mariano et al. (2010)

found that even minimally informative priors for the covariance matrix of the random

effects tended to exert a heavy influence on the results.

The asymptotic methods have a major computational advantage over the

other methods. The work in these problems lies in calculating second derivatives of

the integrand with respect to the random effects. However, once these derivatives
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are calculated or programmed, the calculation of the approximation is relatively

fast, compared to Markov Chain methods. Under regularity conditions (Evans and

Swartz, 1995, 2000), the Laplace formula approximates integrals of the form

I(h) =

∫
A
h(t)e−λk(t)dt

by

Î(h) = h
(
t̂
)

(2π)d/2
∣∣λK (

t̂
)∣∣−1/2

e−λk(t̂)

where t̂ is the global minimum of k, K is the Hessian of k, and d is the dimension

of A. There is an option in PROC GLIMMIX to approximate the marginal likelihood

via a Laplace approximation, but this requires the error variance matrix cov(y|η) =

R to be proportional to an identity matrix. By contrast, our estimation technique

allows the inclusion of so-called “R-side effects,” including heterogeneous error

variance-components in each year. In the framework of the EM algorithm, we do

not directly approximate the marginal likelihood f(yo, r) as SAS does, but rather

the conditional expectation of the complete data likelihood in the E-step, as will be

discussed in Chapter 3. Furthermore, SAS PROC GLIMMIX does not take into

account the sparse structure of the design and covariance matrices, leading to

memory deficiencies for even small data sets.

The default estimation method used by SAS PROC GLIMMIX is a pseudo-

likelihood (PL) linearization method. The link function of the generalized linear

mixed model is linearized, generating pseduo-data to which a linear mixed model

is applied, updating model parameters. This doubly iterative process continues

until convergence. This method is equivalent to penalized quasi-likelihood (PQL),

as long as the PL overdispersion parameter is fixed at 1, which is the default be-

havior for the binary distribution in PROC GLIMMIX (Wolfinger and O’Connell, 1993;

Littell et al., 2006). PQL is also equivalent to the Lindstrom-Bates method (Lind-

strom and Bates, 1990; Wolfinger and Lin, 1997; Demidenko, 2004). PQL consist
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of the Laplace approximation, less one term: it relies on one further approximation

beyond the Laplace approximation. Breslow and Lin (1995) and Lin and Breslow

(1996) show that PQL tends to produce bias in parameter estimates, especially

a downward bias in variance components. Their paper proposes a modified PQL

method, but also shows that the first–, and especially second–, order Laplace ap-

proximations perform much better than PQL. This is also the case when the number

of random effects increases with the sample size (Shun, 1997), such as with the

famous salamander mating data (McCullagh and Nelder, 1989).

Pinheiro and Bates (1995) compare applications of the Lindstrom-Bates

(PQL, PL) method, the first-order Laplace approximation, GQ, AGQ, and impor-

tance sampling, concluding that the Laplace approximation and AGQ approxima-

tions give the “best mix of efficiency and accuracy.” The Laplace approximation is

a special case of AGQ, where just one abscissa is used.

2.5 EM Algorithm

Even when ignoring the missing data mechanism and assuming that the missing

data are ignorable, the closed-form solution for the integrals in the likelihood in

Equation (2.1) involves products of large, dense matrices, making direct maximiza-

tion infeasible. The dimension of these matrices increases further with the inclusion

of the missing data mechanism. The missing data mechanism also introduces non-

linear functions of the random effects into the integrand. Our model requires a

maximization procedure that is capable of handling these difficulties.

The Expectation-Maximization (EM) algorithm may be used by treating the

random effects as missing data (Dempster et al., 1977; McLachlan and Krishnan,

2008). It was one of the first methods used to estimate linear mixed models by

treating latent random effects as missing data (Laird and Ware, 1982). The E-

step calculates the expectation of the complete-data likelihood, given the observed
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data and current parameter estimates, and the M-step maximizes the conditional

expectation of the complete data likelihood, given the observed data and the current

parameter estimates. However, the E-step itself contains intractable integrals that

require approximation. We handle the problem with a fully exponential Laplace

approximation to approximate the E-step of the EM algorithm (Tierney et al., 1989).

This approach was first proposed as a method of estimating generalized linear

models by Steele (1996).

The fully exponential Laplace approximation was developed by Tierney and

Kadane (1986) in order to reduce the approximation error of posterior means of pos-

itive functions. Roughly, it works by expressing the integral to be approximated as a

fraction of two integrals and then applying the Laplace approximation separately to

the numerator and denominator. The approximation originally applied only to strictly

positive functions, but was extended to arbitrary functions by Tierney et al. (1989).

The correlated-parameter model paper (Lin et al., 2009) also uses an improved

Laplace approximation. However, Lin et al. (2009) apply the approximation directly

to the integral yielding the marginal likelihood. Instead, we apply the approximation

to the E-step of an EM algorithm.

The fully exponential Laplace approximation was used recently by Rizopou-

los et al. (2009) to approximate integrals arising from joint modeling of longitudinal

data with survival times in a shared-parameter model. Their results, however, do

not apply directly to our situation. The paper assumes that the random effects

are nested and does not face the computational complexity of a multi-membership

model. In addition, we wish to model the probability of missingness for each ob-

servation, not survival time. Furthermore, we use a generalization of the SPM by

modeling correlated- (instead of shared-) random effects. Our correlated random

effects model appears in Chapter 4, where we further discuss the additional com-
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putational complexities faced by our model over those handled by Rizopoulos et al.

(2009).

In the next chapter, we develop computational methods for the GP model

under the assumption that missing data are MAR. Then, in Chapter 4, we present

the correlated-parameter model and methods for computing estimates of the model

parameters. Finally, Chapter 5 presents applications of the model.
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Chapter 3

EFFICIENT MAXIMUM LIKELIHOOD ESTIMATION OF THE GENERALIZED

PERSISTENCE VALUE-ADDED MODEL

The generalized persistence value-added model (GP VAM) (Mariano et al., 2010)

models student scores using information about the history of observations on each

student and each student’s teacher-history. It would be possible to add a school-

level to the multilevel model, though we do not consider this type of structure here.

We present an efficient method for obtaining maximum likelihood estimates (MLEs)

for the GP VAM, which was originally presented in a Bayesian framework. No scal-

able computational methods for ML estimation of the GP VAM currently exist. As

we shall discuss, the model may be specified in SAS, but can only be estimated for

very small data sets.

3.1 The Generalized Persistence Model

Suppose a data set tracks a cohort of n students over T years. The GP model

assumes a linear mixed model as follows:

yig = x′igβ + s′igη + εig (3.1)

where yig denotes the score for student i during year g, for i = 1, . . . , n, and g ∈ Ai;

Ai is the set of years in which student i is observed. Students are taught by one

of mg teachers in each year g. We will also refer to the vector of concatenated

student scores, y = (y′1, . . . ,y
′
n)′, where yi = (yig). The matrix X, with rows x′ig,

is the design matrix for the vector β of student and teacher level fixed-effect covari-

ates such as demographic information or years of teaching experience. The matrix

S, with rows s′ig, is the design matrix for the random teacher effects. The struc-
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ture of S determines whether the VAM models complete, variable, or generalized

persistence.

The random effects vector η contains random teacher intercepts. The GP

model estimates the effect of teachers on students in the year that they teach them,

their lasting effect on the next year’s score, and so on. Following the notation of

Mariano et al. (2010), we let θg[jt] represent the effect for the j-th grade-g teacher on

a student’s grade t score, for t ≥ g. A grade g = 1, . . . , T teacher hasKg = T−g+1

effects. Thus θg[j·] gives the vector of current and future year effects of the j-th

grade g teacher. The vector η concatenates the θg[j·] effects for all grades and

teachers. The model is able to distinguish between the persistence effect of former

teachers and the current effect of the present teacher because the students are not

nested at the teacher level. If, for example, all of the students of a grade-1 teacher

went on to have the same grade-2 teacher, it would not be possible for the model

to separate the persistence effect of the grade-1 teacher from the current effect of

the year-2 teacher.

We structure η in a way that leads to a block-diagonal random effects co-

variance matrix,

η = (θ′1[1·], . . . ,θ
′
1[m1·],θ

′
2[1·], . . . ,θ

′
2[m2·], . . . , θT [1·], . . . , θT [mT ·])

′. (3.2)

The vector η is distributed as η ∼ N(0,G) where

G = blockdiag (Γ1, . . . ,Γ1, . . . ,ΓT , . . . ,ΓT ) , (3.3)

with mg copies each of Γg, where each Γg is unstructured. The matrix Γg is square

withKg rows and gives the covariance of current and future year effects for teachers

of grade g. The design matrix S of the random effects has rows s′ig, which contain

1’s in entries corresponding to teachers who could affect each response.
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After ordering the data by student and then by year, the error terms ε =

(ε′1, . . . , ε
′
n)′ are distributed as ε ∼ N(0,R) where R is a block diagonal matrix

with blocks

Ri =


σ11 · · · σT1

...
. . .

...

σT1 · · · σTT

 . (3.4)

If student i is missing an observation, then Ri omits the corresponding row and

column corresponding to the year in which the observation is missing. Ri depends

on i only through the dimension. In addition, we assume cov(η, ε) = 0.

Based on the GP model (3.1), the log-likelihood based on the observed data

y is

l(Ψ;y) ∝ −1

2
log |V | − 1

2
(y −Xβ)′ V −1 (y −Xβ) (3.5)

where V = SGS′ +R, and Ψ is a vector of the unique model parameters from β,

G, and R. Due to the multi-membership data structure, V has no patterned struc-

ture (see Section 3.2 for an example), and its dimension is equal to the number

of observations in the data set. As a result, a direct maximization of the likelihood

function (3.5) is either highly inefficient or impossible for large data sets. For exam-

ple, the application in Section 5.3 contains 26019 observations, which would result

in a V matrix requiring over 5 GB of RAM to store in R. In order to develop a scal-

able method of estimation for the model, we must 1) use a method that requires

numerical inversion of a matrix of reduced dimension from that of V and 2) utilize

the sparseness of S,G, and R. In Section 3.4 we consider maximum likelihood

estimation of model (1) using an efficient EM algorithm based on the augmented

data (y,η).
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3.2 Alternative Model Specification

In the case when the scores from each year are measured on the same scale, an

alternative model specification is available. This alternative model is used in the

joint model in Chapter 4. Using a variable persistence structure for the teacher

effects, McCaffrey and Lockwood (2011) model the intra-student correlation with

random effects instead of in the error covariance matrix R. We implement their

model here, except we use the generalized persistence structure for teacher effects.

yig = x′igβ + s′igη + δi + εig (3.6)

The terms in Equation (3.6) are defined the same as they were in Equation (3.1),

with the exception of εig and the new term δi. Instead of modeling εi with an un-

structured covariance matrix, we model a separate error variance in each year

εig ∼ N(0, σ2
g). As a result, R is diagonal with entries from the set {σ2

1, . . . , σ
2
T},

corresponding to the year of the observation. This is a new expression forR, which

was originally defined in Equation (3.4). We do not introduce a new notation, be-

cause several of the steps in the EM algorithm result in the same operation on R,

regardless of its definition. The appropriate version of R depends on whether the

original GP or alternative model is being used. We likewise offer new definitions for

G,S and η.

The δi are random student intercepts, with δi ∼ N(0,Γstu) and cov(εig, δi) =

0. We may express Equation (3.6) by including the δi in the random effects vector

η,

η = (δ1, . . . , δn,θ
′
1[1·], . . . ,θ

′
1[m1·],θ

′
2[1·], . . . ,θ

′
2[m2·], . . . , θT [1·], . . . , θT [mT ·])

′. (3.7)

The vector η is then distributed as η ∼ N(0,G) where

G = blockdiag (ΓstuIn,Γ1, . . . ,Γ1, . . . ,ΓT , . . . ,ΓT ) , (3.8)
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with mg copies each of Γg, where each Γg is unstructured. To accommodate the

new η, the design matrix S is composed of the blocks [S1|S2], where S1 is the

design matrix for the student effects and S2 is the design matrix for the teacher

effects.

3.3 Examples of GP Structure

To illustrate the type of covariance structure induced by the generalized persistence

model, we present an example. We first consider the alternative model of section

3.2. Table 3.1 provides an example with four students observed over two years,

with two teachers in each year. The corresponding S matrix appears in Table 3.1,

the G matrix appears in Equation (3.9), and the R matrix appears in Equation

(3.10). In theG matrix, γ2
A1 denotes the variance of the proximal effects of the year

1 teachers, γ2
A2 is the variance of the future effects of the year 1 teachers, and γ2

A12

is the covariance of the two effects. The variance of the proximal effect of year 2

teachers is denoted by γ2
B2.

Table 3.1: Example Student Data with Teacher Links

Obs. Year Student Teacher (by year)

1 1 S1 1
2 1 S2 1
3 1 S3 2
4 1 S4 2
5 2 S1 1
6 2 S2 2
7 2 S3 1
8 2 S4 2
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Figure 3.1: Example Generalized Persistence Random Effects Design Matrix, S,
for Alternative Model

Obs. δ1 δ2 δ3 δ4 θ1[11] θ1[12] θ1[21] θ1[22] θ2[12] θ2[22]

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1

G =



γ2
S

γ2
S

γ2
S

γ2
S

γ2
A1 γA12

γA12 γ2
A2

γ2
A1 γA12

γA12 γ2
A2

γ2
B2

γ2
B2



(3.9)

R = diag
(
σ2

1, σ
2
1, σ

2
1, σ

2
1, σ

2
2, σ

2
2, σ

2
2, σ

2
2

)
(3.10)

The irregular structure of the design matrix for the random effects, as demonstrated

in Figure 3.1, causes difficulties in the estimation of the model. In nested designs,

it is possible to factor the likelihood into a product over the subjects, but that is not

possible with the multi-membership structure of VAMs. Even though we have con-

structed G to be block-diagonal, the marginal variance V will not have a uniform,
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simplified structure as is the case for nested models. The V = [V 1 V 2] matrix

appears in two parts, in Equations (3.11) and (3.12).

V 1 =



γ2
A1 + γ2

S + σ2
1 γ2

A1 0 0

γ2
A1 γ2

A1 + γ2
S + σ2

1 0 0

0 0 γ2
A1 + γ2

S + σ2
1 γ2

A1

0 0 γ2
A1 γ2

A1 + γ2
S + σ2

1

γA12 + γ2
S γA12 0 0

γA12 γA12 + γ2
S 0 0

0 0 γA12 + γ2
S γA12

0 0 γA12 γA12 + γ2
S



(3.11)

V 2 =



γA12 + γ2S γA12 0 0

γA12 γA12 + γ2S 0 0

0 0 γA12 + γ2S γA12

0 0 γA12 γA12 + γ2S

γ2A2 + γ2B2 + γ2S + σ2
2 γ2A2 γ2B2 0

γ2A2 γ2A2 + γ2B2 + γ2S + σ2
2 0 γ2B2

γ2B2 0 γ2A2 + γ2B2 + γ2S + σ2
2 γ2A2

0 γ2B2 γ2A2 γ2A2 + γ2B2 + γ2S + σ2
2


(3.12)

It is interesting to examine the correlations between the different observa-

tions. The last column of matrix V 2 corresponds to the last observation in Table

3.1. The component at bottom-right of V 2, γ2
A2 +γ2

B2 +γ2
S +σ2

2, gives the variance of

the second year observation on student S4. It contains contributions from the year

1 teacher, the year 2 teacher, and the year 2 error variance. Moving up the last col-

umn of V 2 reveals which observations are correlated with observation 8 (see Table

3.1). The covariance of γ2
A2 with observation 7 is due the fact that students S3 and
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S4 shared the same teacher in year 1. The covariance of γ2
B2 with observation 6 is

due to the fact that S2 and S4 are classmates in year 2. The covariance γA12 + γ2
S

with observation 4 is due to the fact that that these are both observations on the

same student (hence the γ2
S term) and that that the current and future year effects

of teachers from year 1 are correlated (hence the γA12 term). This also explains the

covariance with observation 3, which was a measurement on a year 1 classmate of

student S4.

We next consider the structure of the original formulation of the GP model

as described in Section 3.1. Unlike the alternative model, the student effects are

modeled in the error covariance matrix instead of modeling them as random ef-

fects. The design matrix, S for the random effects appears in Figure 3.2, and the

covariance matrix, G, for the random effects appears in Equation 3.13.

Figure 3.2: Example Generalized Persistence Random Effects Design Matrix, S

Obs. θ1[11] θ1[12] θ1[21] θ1[22] θ2[12] θ2[22]

1 1
2 1
3 1
4 1
5 1 1
6 1 1
7 1 1
8 1 1
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G =



γ2
A1 γA12

γA12 γ2
A2

γ2
A1 γA12

γA12 γ2
A2

γ2
B2

γ2
B2


(3.13)

This example illustrates why we sort the observations by student and then by year

in our program to make the error covariance matrix, R, block-diagonal. Table 3.1

is not sorted, and as a result the R matrix in Equation (3.14) is not block-diagonal.

The term σ12 represents the covariance of year 1 and year 2 observations on the

same student.

R =



σ2
1 σ12

σ2
1 σ12

σ2
1 σ12

σ2
1 σ12

σ12 σ2
2

σ12 σ2
2

σ12 σ2
2

σ12 σ2
2



(3.14)
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The resulting marginal covariance matrix V = [V 1 V 2] for this model formulation

appears in two parts, in Equations (3.15) and (3.16).

V 1 =



γ2
A1 + σ2

1 γ2
A1 0 0

γ2
A1 γ2

A1 + σ2
1 0 0

0 0 γ2
A1 + σ2

1 γ2
A1

0 0 γ2
A1 γ2

A1 + σ2
1

γA12 + σ12 γA12 0 0

γA12 γA12 + σ12 0 0

0 0 γA12 + σ12 γA12

0 0 γA12 γA12 + σ12



(3.15)

V 2 =



γA12 + σ12 γA12 0 0

γA12 γA12 + σ12 0 0

0 0 γA12 + σ12 γA12

0 0 γA12 γA12 + σ12

γ2A2 + γ2B2 + σ2
2 γ2A2 γ2B2 0

γ2A2 γ2A2 + γ2B2 + σ2
2 0 γ2B2

γ2B2 0 γ2A2 + γ2B2 + σ2
2 γ2A2

0 γ2B2 γ2A2 γ2A2 + γ2B2 + σ2
2



(3.16)

When only two years are included in the data set, both the GP model of Section

3.1 and the alternative model of Section 3.2 yield the same fit. The terms σ2
1 and

σ2
2 in Equations (3.15) and (3.16) account for both the student-to-student variation

and the error variance. The covariance between observations on the same stu-

dent is modeled by σ12. When more than two years are included in the study, the

model formulation from Section 3.1 models a different covariance between obser-

vations on the same student in different pairs of years, e.g. σij between years i and

j. On the other hand, the alternative model formulation in Section 3.2 imposes a
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compound-symmetric structure by modeling the same covariance σS between any

pair of observations on the same student.

3.4 The EM Algorithm

The EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2008) provides

a broad framework for maximum likelihood estimation in the presence of missing

data. It was one of the first methods used to estimate linear mixed models by

treating latent random effects as missing data (Laird and Ware, 1982). Assuming

that the students are independent conditional on the effects of their current and

previous teachers, estimation of the GP model (1) based on the augmented data

(y,η) then becomes a much more scalable optimization problem.

Unbalanced observations on students are common in longitudinal studies.

In this chapter we assume that students with incomplete profiles have observations

missing at random and that the parameters governing the outcome process are dis-

tinct from those characterizing the missingness process, yielding a valid likelihood-

based analysis under the specified model (Little and Rubin, 2002). Our VAM for

incomplete data with observations missing not at random appears in Chapter 4.

We will refer to f(y; Ψ) as the observed data density function and

f(y,η; Ψ) = f(y|η; Ψ)f(η; Ψ)

as the complete data density function, where

f(y|η;Ψ) ∝ |R|−1/2 exp

{
−1

2
(y −Xβ − Sη)′R−1 (y −Xβ − Sη)

}
f(η;Ψ) ∝ |G|−1/2 exp

{
−1

2
η′G−1η

}
Given initial values for the parameters and the random effects, the EM algorithm

alternates between an expectation (E) step and a maximization (M) step. At iteration

(k + 1), the E step calculates the conditional expectation of the complete data log-
38



likelihood, given the observed data, y, and parameter estimates obtained in the k-th

step, Ψ(k). That is, the E step computes

Q(Ψ; Ψ(k)) =

∫
{log f (y|η; Ψ) + log f (η; Ψ)} f(η|y; Ψ(k))dη.

The M step then maximizes Q(Ψ; Ψ(k)) with respect to Ψ as if η were known,

resulting in the updated parameter vector Ψ(k+1) satisfying∫
∂

∂Ψ
{log f(y|η; Ψ) + log f(η; Ψ)} f(η|y; Ψ(k))dη

∣∣∣
Ψ=Ψ(k+1)

= 0, (3.17)

provided that differentiation and integration are interchangeable, which is valid be-

cause the complete data likelihood f(y,η; Ψ) is a member of the exponential family

(Lehmann and Romano, 2010). Note that the expression on the left side of Equa-

tion (3.17) equals the observed data score vector S(Ψ;y) = (∂/∂Ψ) l(Ψ;y) (Louis,

1982), as demonstrated by the following steps (McLachlan and Krishnan, 2008).

S(Ψ) =
∂

∂Ψ
log f(y; Ψ)

=
∂

∂Ψ
log

∫
f(y|η; Ψ)f(η; Ψ)dη

=
1

f(y; Ψ)

∂

∂Ψ

∫
f(y|η; Ψ)f(η; Ψ)dη

=
1

f(y; Ψ)

∫
∂

∂Ψ
{f(y|η; Ψ)f(η; Ψ)} dη

=

∫ [
∂

∂Ψ
log {f(y|η; Ψ)f(η; Ψ)}

]
f(y|η; Ψ)f(η; Ψ)

f(y; Ψ)
dη

=

∫
∂

∂Ψ
{log f(y|η; Ψ) + log f(η; Ψ)} f(η|y; Ψ)dη (3.18)

We next present details on the M-step and the E-step that computes the

conditional expectations required in the M-step. A method on obtaining the asymp-

totic standard errors for parameter estimates is discussed and descriptions of the

convergence and initial values of the EM algorithm are provided.
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3.5 The M-Step for the GP Model

Using the definition of G in Equation (3.3), we may write the density of η as

f(η; Ψ)∝ det(G)−1/2 exp

(
−η

′G−1η

2

)
=

[
T∏
g=1

det(Γg)
−mg/2

]
exp

(
−

T∑
g=1

mg∑
j=1

θ′g[j·]Γ
−1
g θg[j·]

2

)

We use Petersen and Pedersen (2008) and Harville (2008) for matrix differentiation,

and note that each Γg is symmetric. Referring to Equation (3.17), the score vector

with respect to Γg is

S(Γg) =

∫
∂

∂Γg
log

[
det(G)−1/2 exp

(
−η

′G−1η

2

)]
f(η|y; Ψ)dη

=

∫
∂

∂Γg

[
−mg

2
log (det (Γg))

]
+

∂

∂Γg

[
−1

2

mg∑
j=1

θ′g[j·]Γ
−1
g θg[j·]

]
f(η|y; Ψ)dη

= matrix with components

dij if i = j

2dij if i 6= j

where dij is the ij-th component of the matrix

D = −1

2

{
mgΓg

−1 − Γg
−1

(
mg∑
j=1

E
[
θg[j·]θ

′
g[j·]|y; Ψ

])
Γg
−1

}

Let

η̃ = E[η|y; Ψ] (3.19)

ṽ = var[η|y; Ψ] (3.20)

represent the conditional expectation and variance, respectively, of η. These quan-

tities are calculated in the E-step and remain fixed during the M-step. Likewise, let

the sub-vector of η̃ corresponding to E[θg[j·]|y; Ψ] be denoted θ̃g[j·], and the block
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of the matrix ṽ corresponding to E[θg[j·]θ
′
g[j·]|y; Ψ] be denoted ṽg[j·]. Now, since

ṽ = E[ηη′|y; Ψ]− η̃η̃′, setting S(Γg) = 0 implies

mgΓg
−1 = Γg

−1

mg∑
j=1

(
ṽg[j·] + θ̃g[j·]θ̃

′
g[j·]

)
Γg
−1

Thus the M-step update for Γg is

Γ̂g =
1

mg

mg∑
j=1

(
ṽg[j·] + θ̃g[j·]θ̃

′
g[j·]

)
(3.21)

Equation (3.21) calculates an average of the blocks of ṽ + η̃η̃′ that correspond to

teachers who taught in year g.

The M-step update for β is the value that solves S(β) = 0, where

S (β) =

∫
∂

∂β

[
−1

2
(y −Xβ − Sη)′R−1 (y −Xβ − Sη)

]
f(η|y; Ψ)dη (3.22)

= X ′R−1 (y −Xβ − Sη̃) , (3.23)

namely,

β̂ =
(
X ′R−1X

)−1
X ′R−1 (y − Sη̃) (3.24)

Equation (3.24) provides some insight into the relationship between the fixed and

random effects. Compare Equation (3.24) to the generalized least-square (GLS)

estimator of β, namely

(X ′V −1X)−1X ′V −1y, (3.25)

where V = SGS′+R. The predicted random effects, η̃, are assumed to be known

and fixed in the M-step. Heuristically, we may think of η̃ as having no variance in

the M-step, meaning G = 0 in the GLS Equation (3.25). This would reduce V −1

to R−1. The known values of η̃ are used to account for the subject-specific effects

via the term yi − s′iη̃ in Equation (3.24). This provides an interpretation of the

fixed effects of a linear mixed model as a summary of the “residual” information

remaining after sweeping out subject-specific effects.
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Table 3.2: Parameterizing the attendance patterns for example with 3 years

Attendance
indicators Pattern

001 1
010 2
011 3
100 4
101 5
110 6
111 7

The calculation of the M-step update for R from Equation (3.4) is compli-

cated by the fact that the structure of R changes in the presence of unbalanced

data. The M-step update for the component σkl of R is the value that solves

S(σkl) = 0, where

S (σkl) =

∫
∂

∂σkl

[
log
(
|R|−1/2

)
−1

2
(y −Xβ − Sη)′R−1 (y −Xβ − Sη)

]
f(η|y; Ψ)dη.

If the observations are sorted by students and then by year, R is block-

diagonal with block sizes depending on the number of observations on each stu-

dent. For T years, there are 2T − 1 possible combinations of years in which a stu-

dent may be observed, although not all of these patterns may appear in a given data

set. To parameterize these combinations, we treat the ordered, binary attendance-

indicators for each student as a number in base-2. So in a study over three years,

each student will have an attendance pattern from the first column of Table 3.2.
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For example, a student with observations in each year has pattern 7, with

the corresponding block of R given by
σ11 σ21 σ31

σ21 σ22 σ32

σ31 σ32 σ33

 .

The matrices corresponding to the other patterns are subsets of this matrix, using

the rows and columns suggested by the attendance indicator. A student who is

missing an observation in year 2 has pattern 5 and corresponding error covariance

matrix σ11 σ31

σ31 σ33

 .

Let p denote the attendance pattern, np be the number of students with

that pattern, and R(p) represent the covariance matrix corresponding to the p-th

pattern. In addition, let Pkl denote the set of patterns p whose covariance matrix

R(p) contains σkl. Furthermore, let b(p) denote the b-th student with pattern p. We

may write

|R| =
∏
p

∣∣R(p)

∣∣np
.

Thus the score function may be expressed as

S (σkl) =− 1

2

∫
∂

∂σkl

{∑
p

np log
∣∣R(p)

∣∣+
∑
p

∑
b

[
(
yb(p) −Xb(p)β − Sb(p)η

)′
R−1

(p)

(
yb(p) −Xb(p)β − Sb(p)η

)]}

× f(η|y; Ψ)dη

where yb(p) is the vector of observations from student b(p), with corresponding de-

sign matrices for fixed and random effects Xb(p) and Sb(p). The derivative will be

0 for all terms that do not contain the parameter σkl. This includes observations
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on students who do not have observations in both years i and j. Then, taking the

derivative and letting 1{C} be the indicator function that takes the value 1 if condition

C is true and 0 otherwise,

S (σkl) =−
(

1{k 6=l} +
1

2
× 1{k=l}

) ∑
p∈Pkl

{
np

(
R−1

(p)

)
{kl}
−∫ ∑

b

[
R−1

(p)

(
yb(p) −Xb(p)β − Sb(p)η

)
×
(
yb(p) −Xb(p)β − Sb(p)η

)′
R−1

(p)

]
{kl}

f(η|y; Ψ)dη

}
.

The notation {kl} indicates the matrix component corresponding to the position of

the parameter σkl in R(p). Again using the relationship ṽ = E[ηη′|y; Ψ]− η̃η̃′,

S (σkl) =−
(

1{k 6=l} +
1

2
× 1{k=l}

) ∑
p∈Pkl

{
npR

−1
(p)

−R−1
(p)

∑
b

[(
yb(p) −Xb(p)β

) (
yb(p) −Xb(p)β

)′
−
(
yb(p) −Xb(p)β

) (
Sb(p)η̃

)′ − Sb(p)η̃ (yb(p) −Xb(p)β
)′

+ Sb(p)
(
ṽ + η̃η̃′

)
S′b(p)

]
R−1

(p)

}
{kl}

. (3.26)

If there were no missing observations then there would only be one atten-

dance pattern and the calculation of the M-step update forR would have a solution

that followed the same pattern as the M-step update for G. However, the presence

of unbalanced student profiles disrupts the structure ofR, and score functions must

be calculated for each of the unique model parameters inR. The closed form solu-

tion for S(σkl) = 0 depends on the number of years and on the attendance patterns

that are present in the data set. There is not a simple, general solution and so we

use the Newton-Raphson (NR) algorithm to calculate the M-step update. During

the first two M-step updates for R, we modify the appropriate Hessian by adding a

scaled diagonal matrix to improve the stability of the NR update of R. This results
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in a hybrid of a Newton and a gradient descent method that produces more reliable

convergence when the initial value is far away from the critical point (Nocedal and

Wright, 1999).

3.6 The M-step for the Alternative Model

The M-step update for β in the alternative model is the same as the update for the

GP model appearing in Equation (3.24), given the appropriate definition ofR. Like-

wise, the M-step updates for the Γg appearing in Equation (3.21) are unchanged.

The new work required for the alternative model is the calculation of the M-

step update for the student variance component Γstu and the yearly error variances

σ2
g from Equation (3.10), for g = 1, . . . , T . The M-step update for Γstu is derived

in the same way way as the update for Γg, and is equal to the mean of the first n

diagonal elements of ṽ + η̃η̃′. For the purpose of calculating σ̂2
g , let Bg be the set

students that are observed in year g.

S(σ2
g) =

∫
∂

∂σ2
g

log

 T∏
j=1

∏
i∈Bg

σ−1
j exp

−
(
yij − x′ijβ − s′ijη

)2

2σ2
j



 f(η|y;Ψ)dη

=

∫
∂

∂σ2
g

 T∑
j=1

∑
i∈Bj

−1

2
log
(
σ2
j

)
−

(
yij − x′ijβ − s′ijη

)2

2σ2
j


 f(η|y;Ψ)dη

= −1

2

∫
ng

(
∂

∂σ2
g

log
(
σ2
g

))
+

∂

∂σ2
g

∑
i∈Bg

(
yig − x′igβ − s′igη

)2

σ2
g

 f(η|y;Ψ)dη

= −1

2

∫
ng
σ2
g

−
∑
i∈Bg

(
yig − x′igβ − s′igη

)2

(
σ2
g

)2 f(η|y;Ψ)dη
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Using the fact that if E[Y ] = µ and cov(Y ) = Σ then for an n× n symmetric matrix

A, E [Y ′AY ] = tr(AΣ) + µ′Aµ, we obtain

E
[
η′sigs

′
igη|y; Ψ

]
= tr

(
sigs

′
igṽ
)

+ η̃′sigs
′
igη̃

Setting the score equation equal to zero,

σ̂2
g =

1

ng

∑
i∈Bg

∫ (
yig − x′igβ − s′igη

)′ (
yig − x′igβ − s′igη

)
f(η|y; Ψ)dη

=
1

ng

∑
i∈Bg

[(
yoig − x′igβ

) (
yoig − x′igβ − 2s′igη̃

)
+ s′igṽsig + η̃′sigs

′
igη̃
]

(3.27)

3.7 The E-step

Calculation of the components of observed data score vector requires the first two

moments, η̃ and ṽ, of f (η|y; Ψ). Using the method of Henderson (1950, 1975),

the moments are obtained from the gradient and Hessian of f(y,η) with respect to

η. The resulting estimates are

ṽ =
(
S′R−1S +G−1

)−1
(3.28)

η̃ = ṽS′R−1(y −Xβ) (3.29)

The expression for the EBLUP in Equation (3.29) is equivalent, via a matrix identity

(Petersen and Pedersen, 2008, Eq. 147), to the perhaps more familiar expression

η̃ = GS′V −1(y −Xβ) (3.30)

However, from a computational standpoint, (3.29) is much more efficient than (3.30)

since it does not require calculation of the full marginal covariance matrix V . The

calculation of ṽ requires inversion of a dense matrix of dimension equal to the

number of teacher effects, whereas V is dense with dimension equal to the number

of observations in the data set. The calculation of (3.29) is relatively fast despite

the large dimension of R because both S′ and R−1 are sparse.
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The E-step updates for the alternative model are the same as those appear-

ing in Equations (3.28) and (3.29), using the appropriate definitions of S,G,η, and

R.

3.8 EM Standard Errors

One criticism of the EM algorithm is that it does not produce the Hessian of the

MLE Ψ̂ as a byproduct. The work we have already done, however, makes it pos-

sible for us to compute the observed data information matrix directly without work-

ing through a correction to the complete-data information matrix, as done by Louis

(1982). Equation (3.17) expresses the observed data score vector S(Ψ) as the con-

ditional expectation of the complete data likelihood. We derived the components of

the observed data score vector in order to calculate the M-step equations. Together

with the values η̃ and ṽ from the E-step, our expression for the score vector allows

us to calculate the observed information matrix,

− ∂S(Ψ)/∂Ψ|Ψ=Ψ̂ . (3.31)

with a central difference approximation at the MLE Ψ̂. This method was sug-

gested by Jamshidian and Jennrich (2000), who proposed using either a forward

or central difference approximation, or a Richardson extrapolation (Lindfield and

Penny, 1988). Our experience has been that the Richardson extrapolation greatly

increases the computation time over the central difference approximation without

providing a noticeable increase in precision. However, our code does offer an op-

tion to use the Richardson extrapolation instead of the central difference approxi-

mation. Regardless, it is important to remember that η̃ and ṽ are functions of Ψ and

must be re-calculated for each perturbation of the parameter vector for the central

difference approximation.
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Likelihood theory shows the asymptotic covariance matrix of the model pa-

rameters is the inverse of Fisher information matrix

cov
(
Ψ̂
)

= −E{∂S(Ψ)/∂Ψ}−1,

and that that the observed information matrix is a consistent estimator for the Fisher

information matrix. The standard errors are obtained by taking the square root of

the diagonal elements of cov
(
Ψ̂
)

.

It is also useful to calculate standard errors for the predicted random effects.

The matrix ṽ provides the covariance matrix for η; however, since η is random,

ṽ underestimates the prediction variance of η̃ − η (Littell et al., 2006). As demon-

strated by McLean et al. (1991), the prediction variance matrix of the random effects

appears in block C22 of

C =

C11 C12

C21 C22

 =

X ′R−1X X ′R−1Z

Z ′R−1X S′R−1S +G−1


−1

This procedure also yields the standard errors for β̂ in block C11. The standard

errors obtained by this method for β̂ are the same as those obtained by the central

difference approximation: the central difference approximation is needed only for

the standard errors of the covariance parameters.

3.9 Convergence and Initial Values of the EM Algorithm

Dempster et al. (1977) demonstrate that the observed data likelihood is monotoni-

cally increasing in each EM iteration. That is,

f
(
y; Ψ(k+1)

)
≥ f

(
y; Ψ(k)

)
.

Wu (1983) presents conditions under which the EM algorithm converges. Beyond

regularity conditions which are satisfied (Demidenko, 2004), a sufficient condition

to guarantee that our EM algorithm converges to a stationary value of the observed
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data likelihood is thatQ(Ψ; Ψ′) is continuous in both Ψ and Ψ′. The existence of the

derivatives ∂Q(Ψ; Ψ′)/∂Ψ that yield the score functions in the M-step guarantees

thatQ(Ψ; Ψ′) is continuous with respect to Ψ. Furthermore,Q(Ψ; Ψ′) is continuous

with respect to Ψ′ since the E-step update of η̃ is a continuous function of (β,G,R)

in Equations (3.28) and (3.29).

The default convergence criterion stops the algorithm when the relative change

in the log-likelihood at iteration k, l(Ψ(k)), is less than a fixed tolerance. Letting

α = 10−7, we say the algorithm has converged when

l(Ψ(k))− l(Ψ(k−1))

l(Ψ(k))
< α.

Verification that the EM algorithm has converged to a local maximum of the likeli-

hood function is possible by checking that the Hessian of the observed data likeli-

hood is negative definite.

For several different datasets, we consistently obtained the same estimates

from different starting values, including letting the covariance matrices start from

nearly singular states. An advantage of the EM algorithm is that no restrictions

need to be placed on the G matrix to ensure that it is positive definite (see Section

4.11). This is a valuable characteristic because the future year effects in the GP

model may be highly correlated, placing G near the boundary of the parameter

space. The default initialization sets η = 0 and G = 100 ∗ I. R is set to a diagonal

matrix with each diagonal entry equal to half of the variance of the scores from the

corresponding year, and β is set to the ordinary least squares estimate of the fixed

effects.

3.10 Efficient Implementation of the EM Algorithm

Our EM algorithm is implemented and made available in the R (R Development

Core Team, 2012) package GPvam. The program takes advantage of the sparse-
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ness of the design and certain covariance matrices, and handles large data sets

relatively well. Because the program was custom-designed for the GP model, it

requires minimal input. The user must supply a data frame with columns for test

scores, year of observation, student ID, and teacher ID. Optionally, other columns

may be included for fixed effects, which are declared to the program through an R

formula statement. Sparse matrices are constructed and handled via the R pack-

age Matrix (Bates and Maechler, 2011).

The GP model requires specification of a complex random effects structure.

The paper by Doran and Lockwood (2006) provides a tutorial to the implementa-

tion of VAMs in R using the functions lme and lmer. However, Lockwood et al.

(2003) explain that, for a less complicated multi-membership model, data sets with

more than 200 teachers require several tricks to program with lme, and often fail

to converge. For our program, the sparse design matrix for the random effects is

built automatically from the data, and the model performs well in the application in

Section 5.3 which contains 4781 teacher effects.

GPvam implements both the GP model specified in Equation (3.1) and the

alternative model in Equation (3.6). Both the log-likelihood and AIC are reported,

allowing comparison of the fit of the two models. Note that the models are equiva-

lent when T = 2. In GPvam, model (3.6) is faster than model (3.1), although model

(3.1) has better scalability properties with respect to memory. For the application in

Section 5.3, model (3.1) requires a total of about 2.5 GB of RAM, while model (3.6)

requires around 6.0 GB. The alternative model requires more memory because the

student effects are modeled in the G matrix, increasing the dimension of the dense

matrix ṽ by the number of students.

It is possible to fit the GP model in SAS software (SAS Institute Inc., 2011)

for small data sets, but as noted by Broatch and Lohr (2011) implementations of
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VAMs in SAS do not have good scalability properties. The GP model requires

the EFFECT statement of PROC GLIMMIX, as well as specifying a user-defined

covariance structure for the random effects. Dimension-reduction techniques exist

for the Newton-Raphson (NR) methods used by SAS to avoid calculation of the

marginal covariance matrix V (Wolfinger et al., 1994), but NR requires that special

steps be taken to ensure that the covariance matrix of the random effects remains

positive definite (Demidenko, 2004).

Table 3.3 gives the results of the comparison of the run-times for SAS and

GPvam for a data set 6236 observations on 2834 students over 3 years, with 102,

104, and 98 teachers in each year, respectively. We use both the standard specifi-

cation of the GP model given in Equation 3.1, denoted by the suffix “-gp”, as well as

the alternate model specification of the GP VAM, denoted by the suffix “-alt”. SAS-

gp failed after encountering a negative-definite covariance matrix after 125 minutes,

while SAS-alt ran out of memory after a few minutes. Note that the application in

Section 5.3 involves a much larger data set than the one used in this example. The

usual advantages of NR over EM (Lindstrom and Bates, 1988) are negated be-

cause of the size of the matrices produced by the multi-membership structure and

the high correlations between future year effects that are typical in the GP model.

The efficiency of our estimation of the GP model stems from utilization of

methods for manipulating sparse matrices, the stability of the EM algorithm when

G is nearly singular, and the reduced dimension of the covariance matrix that needs

to be inverted (see Section 3.7). In some cases, R offers different options for the

same procedure. For each step of the program, the chosen methods were tested for

speed against alternatives. For some of the M-step calculations for the R matrix in

GPvam-gp, it is faster to work with a dense version of S since subsets of the matrix

are required. In this case, we take advantage of the fact that S is a binary matrix,
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Table 3.3: Run times in minutes

GPvam-gp SAS-gp GPvam-alt SAS-alt

114 >125 (Failed) 12 Failed

meaning that multiplication of a vector by S is equivalent to taking sums of subsets

of the vector. It may be possible to improve the speed of GPvam-gp, bringing it

closer to the performance of GPvam-alt by executing some of the required loops

and matrix operations in C via R. However, the current performance of the program

has exceeded our needs and we have not pursued this option.

3.11 Discussion

The GP model provides a flexible framework for modeling education data without

making the same assumptions about vertical test design and scaling as made by

previous VAMs. We have developed a method for computing maximum-likelihood

estimates for the generalized persistence model (Mariano et al., 2010). The EM al-

gorithm offers an efficient method of computation, taking advantage of matrix spar-

sity and requiring inversion of a matrix whose dimension depends on the number of

teachers, which is typically much smaller than the total number of observations as

would be used in routine implementation. The algorithm produces stable behavior

in the presence of a nearly-singular covariance matrix for the random effects that

results from highly correlated teacher effects across years. We have implemented

the proposed methods in the R package GPvam. The availability of maximum-

likelihood estimates should be useful for those preferring Bayesian estimation as

well, providing a sensitivity analysis to their choice of priors. We hope that this

user-friendly implementation of the model will facilitate further empirical study of

the model’s properties.

In the next chapter, we combine the GP VAM with a model for the missing

data mechanism. The joint model provides the ability to test for the sensitivity of
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teacher rankings from the GP model to the presence of nonignorable missing data

under various structures for the missing data mechanism. In Chapter 5, the joint

model is used to perform a sensitivity analysis on the rankings produced by the GP

model when applied to a data set of elementary school standardized test scores

and a data set containing college calculus grades.
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Chapter 4

A CORRELATED RANDOM EFFECTS MODEL

The generalized persistence (GP) model presented in Chapter 3 assumes that

missing data may be ignored. However, if the observations are missing system-

atically, due to any of the effects being measured by the model, then the model will

yield biased results. This chapter develops a model to incorporate information about

the missingness process. Notation is introduced, the GP model is presented in the

framework of this notation, a model for the missing data indicators is proposed, and

the two models are combined into a joint model. The joint model is applied to real

data sets in Chapter 5, where estimates from the new model are compared to those

from the unmodified GP model.

Let yig be the potential response of student i at time g, with yi = (yi1, . . . , yiT )′

and y = (y′1, . . . ,y
′
n)′. The indicator variable

rig =

1 if yig is observed

0 otherwise

tracks whether the planned measurement on student i at time g is observed or

missing. Let ri = (ri1, . . . , riT )′ and r = (r′1, . . . , r
′
n)′. The complete data y =

{yo,ym} consists of both the observed data yo and the missing data ym. The

vector yo consists of the values yig such that rig = 1, and ym consists of the values

yig that would have been observed if the observations were not missing. Note that

by missing data we are referring to missing observations on the response variable,

not missing covariates. We assume that we do not have any missing covariates.

For our model this assumption amounts to knowing which teachers taught each
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student at each time, as well as the values of the fixed effects covariates for each

observation.

4.1 The Observed Data Model

We wish to model student scores y using information about the history of observa-

tions on each student and each student’s teacher-history. To be precise, suppose

a data set tracks a cohort of n students over T years. The GP model assumes a

linear mixed model as follows:

yoig = x′igβobs + s′igηobs + εig (4.1)

where yoig denotes the score for student i during year g, for i = 1, . . . , n, and g ∈ Ai;

Ai is the set of years in which student i is observed. Students are taught by one of

mg teachers in each year g. We will also refer to the vector of concatenated student

scores, yo = (yo1
′, . . . ,yon

′)′, where yoi = (yoig). The matrix X, with rows x′ig, is

the design matrix for the vector β of student and teacher level covariates such as

demographic information or years of teaching experience. The matrix S, with rows

s′ig, is the design matrix for the random student and teacher effects.

The random effects vector ηobs = [δ′obs θ
′
obs]
′ has two components. Student

i has a latent effect δi that represents an underlying level of achievement not ex-

plained by the fixed covariates, and δ′obs = (δ1, . . . , δn)′ . As in the “alternate model”

of Chapter 3, we assume that δ1, . . . , δn are i.i.d. N(0,Γstu). This represents a slight

departure from Mariano et al. (2010), who model the intra-student correlation in an

unstructured error covariance matrix. However, that structure is not as amenable

to the joint model for missingness because it precludes the possibility of including

student effects in the missing data mechanism. As a result, we model the intra-

student correlation with random effects, similar to the VAM used by McCaffrey and

Lockwood (2011). When the annual responses yig have the same scale, this leads

to a compound-symmetry covariance structure for the students.
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The generalized persistence model estimates the effect of teachers on stu-

dents in the year that they teach them, their lasting effect on the next year’s score,

and so on. Following the notation of Mariano et al. (2010), we let θg[jt] repre-

sent the effect for the j-th grade-g teacher on a student’s grade t score. A grade

g = 1, . . . , T teacher has Kg = T − g + 1 effects. Thus θg[j·] gives the vec-

tor of current and future year effects of the j-th grade g teacher. The vector θobs

concatenates the θg[j·] effects for all grades and teachers. The model is able to

distinguish between the persistence effect of former teachers and the current effect

of the present teacher because the students are not nested at the teacher level.

We structure ηobs in a way that leads to a block-diagonal random effects

covariance matrix. The first n elements of ηobs correspond to the student random

effects, and the last
∑T

g=1Kgmg elements correspond to the classroom random

effects. This yields

ηobs = (δ1, . . . , δn,θ
′
1[1·], . . . ,θ

′
1[m1·],θ

′
2[1·], . . . ,θ

′
2[m2·], . . . , θT [1·], . . . , θT [mT ·])

′. (4.2)

The vector ηobs is distributed as ηobs ∼ N(0,G) where

G = blockdiag (ΓstuIn,Γ1, . . . ,Γ1, . . . ,ΓT , . . . ,ΓT ) ,

with mg copies each of Γg, where the Γg are unstructured. The design matrix S

of the random effects has rows s′ig, and may be partitioned into two blocks S =

[S1 S2]. S1 contains a 1 in column i if the observation is for student i, and S2

contains 1’s in entries corresponding to teachers who could affect that response.

The error terms are distributed as ε ∼ N(0,R) whereR is a diagonal matrix

with entries coming from the set {σ2
1, . . . , σ

2
T}, depending on the year of the obser-

vation. In addition, we assume cov(ηobs, ε) = 0. The log-likelihood of the GP model
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is thus

l(Ψ) = log

∫ {
n∏
i=1

∏
g∈Ai

f(yoig|ηobs)

}
f(ηobs)dηobs (4.3)

∝−1

2
log |V | − 1

2
(yo −Xβ)′ V −1 (yo −Xβ) (4.4)

where

V = SGS′ +R

f(yoig|ηobs) ∝
(
σ2
g

)−1/2 exp
[
−
(
yoig − x′igβ − s′igηobs

)2
/(2σ2

g)
]

f(η) ∝ det (G)−1/2 exp
[
−(η′obsG

−1ηobs)/2
]

and Ψ is a vector of the model parameters. The integral in Equation (4.3) has a

closed form solution, but this will not be the case for the joint model. Our joint

model will approximate the intractable integral with a fully exponential Laplace ap-

proximation. The Laplace approximation is exact in Equation (4.3) since the data

are assumed to be normally distributed and an identity link is used, meaning the

random effects enter the model linearly (Pinheiro and Bates, 1995).

4.2 The Missing Data Model

To model pig, the conditional probability that rig = 1, we use a threshold model

originally developed by McCulloch (1994) and discussed in McCulloch et al. (2008)

by defining

pij = P{w′igβmis + z′igηmis + εmis > 0}

where w′ig and z′ig are the rows of the design matrices W and Z of the fixed and

random effects in the missing data model, and εmis is distributed as N(0, 1). This

results in a generalized linear mixed model with a probit link:

rig|ηmis ∼ Bin(1, pig)

Φ−1(pig) =w′igβmis + z′igηmis
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The vectors w′ig and z′ig describe which fixed and random effects are thought to be

related to the response mechanism. The vector of fixed effects βmis of the missing

model will be different from the βobs of the observed model. It will represent a

baseline propensity for missingness at each level of the fixed effects. The missing

data model should not include stochastic time-varying covariates in βmis, since

these would be missing along with the test score. Furthermore, the missing data

model requires that there is at least one missing observation at each level of each

categorical fixed effect in the missing data mechanism. Otherwise, the data suffer

from quasi-complete separation (Allison, 2008; Agresti, 2002). In this case, the

maximum likelihood estimate for the particular fixed effect does not exist.

We may include either random teacher effects, random student effects, or

both in ηmis. The structure of the random effects is flexible, and may be modified

depending on the goals of the study. This flexibility provides the means for per-

forming a sensitivity analysis. When jointly modeling MNAR data, the missing data

mechanism makes untestable assumptions about the nature of the relationship be-

tween the observed and missing data processes. Molenberghs et al. (2008) show

that it is not possible to perform an overall test of MNAR versus MAR since every

MNAR model has an MAR counterpart that provides the same fit to the observed

data but different predictions for the unobserved data. The plausibility of the as-

sumed model cannot be tested empirically, and as a result it is necessary to fit

several alternatives of the missing data mechanism to check the sensitivity of the

inference to the choice of joint modeling structure (Xu and Blozis, 2011).

The student effects in the missingness model, if included, will be denoted

δmisi . The teacher effects in the missing data model will be denoted by Λg[j]. These

effects may be structured in a number of different ways. In our applications in Chap-

ter 5, Λg[j] represents the effect that the j-th grade g teacher has on the probability
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of his or her students being measured in year g+1. This effect measures how likely

it is that students are observed in the year after studying under a particular teacher.

This effect is not calculated for teachers in the last year of observations (year T )

because no information is available on the future dropout patterns of students of

those teachers. This feature of the model would detect instructors whose students

drop out (of the school or sequence of courses) at a relatively high rate. We refer to

these effects as the “completion effects” of the grade g teachers, since they mea-

sure the rate with which students complete year g + 1. The conditional density of

rig given the random effects is

f(rig|ηmis) = Φ
(
w′igβmis + z′igηmis

)rig [1− Φ
(
w′igβmis + z′igηmis

)]1−rig
= Φ

(
w′igβmis + z′igηmis

)rig Φ
(
−
[
w′igβmis + z′igηmis

])1−rig

= Φ
(
(−1)1−rig [w′igβmis + z′igηmis

])
As with the yig, we assume the rig are conditionally independent given the random

effects, yielding

f(r|ηmis) =
n∏
i=1

T∏
g=1

f(rig|ηmis)

=
n∏
i=1

T∏
g=1

Φ
(
(−1)1−rig [w′igβmis + z′igηmis

])
(4.5)

4.3 The Joint Model

Instead of assuming that the full data depend on the pattern of missingness or on

the number of missing observations as in McCaffrey and Lockwood (2011), we

will use a correlated-parameter model (CPM) (Lin et al., 2009), a generalization

of a shared-parameter model (Wu and Carroll, 1988). The CPM proposed in this

chapter allows the missing data mechanism to depend on the effect of students

and teachers. This should give more flexibility in detecting sensitivity to missing

data than models that only consider student effects, since it is plausible that the

attendance trajectory of students depends on their current and former teachers.
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The GP model assumes that missing data are MAR. Inference is intended

to be on y = (yo,ym), but only the yo have been observed. With MNAR data,

f(yo) is not the correct likelihood to maximize because r provides information about

the distribution of y. To obtain unbiased parameter estimates for the longitudinal

process y, the longitudinal and missingness processes must be modeled jointly

and f(yo, r) must be maximized. The joint model specifies f(y, r), meaning the

missing data ym must be integrated out of the joint density f(y, r) to yield the

appropriate likelihood function.

f(yo, r) =

∫∫∫
f(y, r|ηobs,ηmis)f(ηobs,ηmis)dy

mdηobsdηmis

In addition, we must factor the joint likelihood f(yo, r). In the CPM, we assume that

the missing data mechanism, f(r|ηmis) and the longitudinal process, f(yo|ηobs)

are conditionally independent, given a set of correlated random effects, (ηobs,ηmis).

Since neither the longitudinal process nor the missing data mechanism condition on

the the ym, the integral of f(yo, ym|η) over the ym produces the marginal density

f(yo|η) (this would not be the case in the framework of selection models). This

results in the observed data likelihood

f(yo, r) =

∫∫
f(yo|ηobs)f(r|ηmis)f(ηobs,ηmis)dηobsdηmis (4.6)

where f(ηobs,ηmis) is the density of a multivariate normal distribution. The vector

ηobs contains the students’ general levels of achievement as well as the teacher

effects on test scores, while the effects in ηmis measure some combination of stu-

dents’ attendance probabilities and/or the relative frequency of teachers’ former

students completing the next year.

CPMs make different assumptions on the joint model than selection and

pattern-mixture models (e.g. conditional independence) and present a different

approach for missing data modeling. A major benefit of using CPMs is that they
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allow us to use the teacher history in the modeling of the dropout mechanism. The

EBLUPs of the classroom effects in the missingness model (part of the ηmis vector)

provide a direct method of evaluating the frequency with which teachers’ former

students drop out. Since the missing data model estimates the probability that a

given observation would be observed, a larger EBLUP for a classroom effect in the

missingness model indicates that students who took that particular class are more

likely to complete the next year than students who took another class that year (i.e.

with another teacher). It would, however, be unrealistic to expect the effect of a

teacher on student learning to be identical to the effect of the teacher on the future

student attendance.

The CPM is constructed with the observed and missing data mechanisms

in Equation (4.6). We concatenate the random effects vectors ηobs and ηmis into a

single random effects vector, η . To ensure that the cov(η) = G matrix is block-

diagonal, we structure the η vector as

η =
(
δ1, δ

mis
1 , . . . , δn, δ

mis
n ,θ1[1·],Λ1[1], . . . ,θ1[m1·],Λ1[m1],θ2[1·],Λ2[1], . . . ,

θ2[m2·],Λ2[m2], . . . ,θT [mT ·]
)′

(4.7)

We model the random student effects and their counterparts for the missing data

mechanism, if they are included, as (δi, δ
mis
i )

′ ∼ N2 (0,Γstu) where Γstu is a 2 × 2

unstructured covariance matrix. If the random student effects are not included in

the missing data model, simply omit the δmisi from η and model δi ∼ N1 (0,Γstu).

The teacher effects are independent of the student effects and distributed as
(
θ′g[j·],Λ

′
g[j]

)′
∼ NKg+1 (0,Γg) if g 6= T(

θ′g[j·]
)′ ∼ NKg (0,Γg) if g = T
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where Γg is an unstructured (Kg + 1) × (Kg + 1) covariance matrix if g 6= T , or

Kg ×Kg if g = T . Then

G = cov(η) = blockdiag (Γstu, . . . ,Γstu,Γ1, . . . ,Γ1, . . . ,ΓT , . . . ,ΓT ) (4.8)

where there are n copies of Γstu, and for each g = 1, . . . , T there are mg copies of

Γg in G. In general, G will have

3 +
T−1∑
g=1

(Kg + 1)(Kg + 2)

2
+KT = 1 +

1

6

(
T 3 + 6T 2 + 11T

)
free parameters, and G is a square matrix of dimension 2n+

∑T−1
g=1 mg(Kg + 1) +

mTKT . The R matrix for f(yo|ηobs) is diagonal, with a separate error variance

estimated for each year. We will use σ2
g to denote the variance of the error terms

for year g in the observed data mechanism. Thus R is diagonal with diagonal

entries coming from the set {σ2
1, . . . , σ

2
T}, with their order of appearance in the

matrix depending on the ordering of the data. R introduces T parameters into the

model.

Adding up the parameters introduced by the covariance matrices G an R

and assuming for the moment that the only fixed effects included in the sub-models

are the yearly means, we find that the model has a total of 1+ 1
6

(T 3 + 6T 2 + 11T )+

3T parameters that must be estimated. See Table 4.1. Notice that this is indepen-

dent of both the number of students and the number of teachers: it depends only

on the number of years measured. For applications to datasets containing many

years of measurements, it may be reasonable to assume that the future year effects

decay to zero after several years. This would reduce the number of parameters that

need to be estimated; however, we do not consider such a modification here.
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Table 4.1: Number of parameters to be estimated

Number of Years Free Parameters

2 16
3 29
4 47
5 71

The log-likelihood for the joint model is

l(Ψ) = log

∫∫ n∏
i=1

{∏
g∈Ai

f(yig|ηobs)
T∏
g=1

f(rig|ηmis)

}
f(ηobs,ηmis)dηobsdηmis

(4.9)

where

f(yig|ηobs) ∝
(
σ2
g

)−1/2 exp
[
−
(
yoig − x′igβobs − s′igηobs

)2
/(2σ2

g)
]
,

f(rig|ηmis) = Φ
[
(−1)1−rig (w′igβmis + z′igηmis

)]
,

f(ηobs,ηmis) = f(η) ∝ det (G)−1/2 exp
[
−(η′G−1η)/2

]
,

and Ai is the set of years in which student i has an observation.

4.4 Estimation Procedure

The joint model presents a high-dimensional integration problem when calculating

the marginal distribution of the observed data in Equation (4.9). The source of the

problem is twofold, due to the presence of a nonlinear link in the integrand for the

modeling of the binary missingness process and the multi-membership structure

of VAMs. The random effects’ correlation structure is not nested, which means

that the integral over the random effects cannot be factored into a product of low-

dimensional integrals (e.g. one- or two-dimensional integrals).

The Expectation-Maximization (EM) algorithm may be used by treating the

random effects as missing data (Dempster et al., 1977). The E-step calculates the

conditional expectation of the complete-data likelihood, given the observed data
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and current parameter estimates, and the M-step maximizes the conditional ex-

pectation of the complete data likelihood. The EM algorithm is used to develop

an efficient routine for estimating the GP model (Mariano et al., 2010) under an as-

sumption of MAR in Chapter 3, and is available via the package GPvam. We extend

that work to estimate the parameters of the CPM. We implement a fully exponential

Laplace approximation to approximate the intractable integral in the E-step of the

EM algorithm (Steele, 1996). Rizopoulos et al. (2009) and Rizopoulos (2010) pro-

pose an EM algorithm with Laplace approximations to estimate the joint model for

longitudinal outcomes and survival with hierarchical data. We modify their work to

allow 1) a multi-membership dependence structure and 2) a missingness process

that depends on random teacher and/or student effects. As will be demonstrated,

the added computational challenges are tremendous in order to make the estima-

tion possible for practical use with large data sets, and the extensions in theory and

computation are not straightforward.

4.5 The M-step

The M-step of the EM algorithm maximizes the conditional expectation of the com-

plete data likelihood. Often, expressions in the M-step have a closed form solution,

providing part of the motivation for using the EM algorithm. However, the fixed ef-

fects for the missing data mechanism enter the model nonlinearly and their M-step

update requires numerical optimization.

Let η̃ = E[η|yo, r; Ψ] and ṽ = var[η|yo, r; Ψ] represent the conditional

expectation and variance, respectively, of η. These quantities are calculated in

the E-step and remain fixed during the M-step. Likewise, let the sub-vector of η̃

corresponding to E[θg[j·]|yo; Ψ] be denoted θ̃g[j·], and the block of the matrix ṽ cor-

responding to E[θg[j·]θ
′
g[j·]|yo; Ψ] be denoted ṽg[j·]. The M-step for the parameters

of βobs,G,R are unchanged from the equations derived in the previous chapter.
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β̂obs =
(
X ′R−1X

)−1
X ′R−1 (yo − Sη̃obs)

Γ̂g =
1

mg

mg∑
j=1

(
ṽg[j·] + θ̃g[j·]θ̃

′
g[j·]

)
(4.10)

σ̂2
g =

1

ng

∑
i∈Bg

[(
yoig − x′igβobs

) (
yoig − x′igβobs − 2s′igη̃obs

)
s′igṽsig + η̃′obssigs

′
igη̃obs

]
(4.11)

The M-step update for βmis does not have a closed form solution. The

observed data score function for the fixed effects of the missing data mechanism is

S(βmis)

=

∫
∂

∂βmis

 n∑
i=1

T∑
g=1

log
(

Φ
[
(−1)1−rig (w′igβmis + z′igη

)]) f(η|yo, r)dη

=
n∑
i=1

T∑
g=1

wig

∫
(−1)1−rig

φ
[
(−1)1−rig

(
w′igβmis + z′igη

)]
Φ
[
(−1)1−rig

(
w′igβmis + z′igη

)]f(η|yo, r)dη (4.12)

where φ(·) is the density of a standard normal random variable. We solve Equation

(4.12) via Newton-Raphson. The Hessian H(β̂mis) is calculated by applying a cen-

tral difference approximation to S(βmis) at β̂mis. Iteration p+1 of the approximation

yields

β̂
p+1

mis = β̂
p

mis −H(β̂
p

mis)
−1S(β̂

p

mis).

Iterations continue until

S(β̂
p

mis)
′H(β̂

p

mis)
−1S(β̂

p

mis) < α. (4.13)

We recommend α = 10−8.

4.6 The E-step with a Fully Exponential Laplace Approximation

Calculation of the components of observed data score vector requires the first two

moments, η̃ and ṽ, of f (η|yo, r; Ψ), as well as the conditional expectations ap-
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pearing in Equation (4.12). Letting {E [H(η)]}k denote the (k)-th component of the

vector (or scalar) E [H(η)], the M-step updates require

{E [H(η)|yo, r; Ψ]}k =

∫
{H(η)}k f(η|yo, r; Ψ)dη

where H(·) is a function of the random effects, and Ψ is fixed at its value from the

previous iteration. For the M-step updates βobs,G and R, we need H(η) = η and

ṽ = var[η|yo, r; Ψ]. For the M-step update of the fixed effects, βmis, of the missing

data mechanism, we need

H(η) = (−1)1−rig φ
[
(−1)1−rig (w′igβmis + z′igη

)]
Φ
[
(−1)1−rig (w′igβmis + z′igη

)] .
To solve these high-dimensional integration problems, we follow the examples of

Steele (1996) and Rizopoulos et al. (2009) and use the fully exponential Laplace

approximation of Tierney et al. (1989), approximating the cumulant-generating func-

tion log {E [exp (c′H(η))]} at the mode η̂ = η̂(0), where

η̂(c) = argmaxη {log [f (yo, r,η) + c′H (η)]} .

The mode η̂ is obtained by Newton-Raphson, using the same convergence criterion

as in Equation (4.13):

η̂p+1 = η̂p − (Σp)−1L (η̂p)

where “p” is the iteration counter. Using properties of matrix differentiation (Magnus

and Neudecker, 1999; Harville, 2008),

L(η) =− ∂

∂η
[log {f (yo|η)}+ log {f (r|η)}+ log {f (η)}+ c′H(η)] |c=0

=−
T∑
g=1

∑
i∈Aj

(
yoig − x′igβobs − s′igη

σ2
j

)
sig

−
n∑
i=1

T∑
g=1

(
(−1)1−rig φ

[
(−1)1−rig (w′igβmis + z′igη

)]
Φ
[
(−1)1−rig (w′igβmis + z′igη

)]) zig
+G−1η+ (4.14)
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and Σw = Σ(c)|(c,η)=(0,η̂w), with

Σ(c) =− ∂2

∂η∂η′
[log {f (yo|η)}+ log {(r|η)}+ log {f (η)}+ c′H(η)]

=
T∑
g=1

∑
i∈Ag

sigs
′
ig

σ2
j

−
n∑
i=1

T∑
g=1

[
∂φ(λig)

∂λ
Φ (λig)− φ2 (λig)

Φ2 (λig)

]
zigz

′
ig

+G−1 − ∂2

∂η∂η′
[c′H(η)] (4.15)

where λig = (−1)1−rig (w′igβmis + z′igη
)

and ∂φ (λig)/∂λ = −λig/
√

2π exp(−λ2
ig/2)

is the derivative of the standard normal density function. Once the Newton-Raphson

algorithm converges to an estimate η̂, the next step is to apply a fully exponential

Laplace approximation to E[exp{c′H(η)}]. We apply the result of Theorem 2 of

Tierney et al. (1989). Using properties of the cumulant-generating function,

{E [H(η)|yo, r; Ψ]}k =
∂

∂ck
log {E [exp (c′H(η)|y, r; Ψ)]} |c=0

≈ ∂

∂ck

{
c′H

(
η̂(c)

)
+ log

[
det
(
Σ(c)

)−1/2
]}∣∣∣∣

c=0

= e′kH(η̂)− 1

2
tr

Σ−1

{
∂Σ(c)

∂ck

∣∣∣∣∣
(c,η)=(0,η̂)


 (4.16)

where ek is the vector of zeros with a 1 in the k-th component. The kl-th component

of var(η), evaluated at (c,η) = (0, η̂), is

{var (η|yo, r; Ψ)}kl =
∂2

∂ck∂cl
log {E [exp (c′η|y, r; Ψ)]} |c=0

≈ e′kΣ−1el −
1

2
tr
(

Σ−1 ∂2Σ

∂ck∂cl
−Σ−1∂Σ

∂cl
Σ−1 ∂Σ

∂ck

)
. (4.17)

The first-order Laplace approximation consists of only the first terms of Equa-

tions (4.16) and (4.17) (Kass and Steffey, 1989). The terms involving the trace func-

tion in both equations are the fully exponential corrections to the first-order Laplace

approximation. Calculation of these terms is furnished in Section 4.7. These are

similar to the expressions presented by Rizopoulos et al. (2009); however, their ap-

plication is to a nested design where the likelihood factored over the subjects, where
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eight random effects are shared between a measurement and a time-to-dropout

model due to a cubic spline with seven degrees of freedom. The multi-membership

structure of our model affects the terms derived inside of the trace functions in Sec-

tion 4.7 for Equations (4.16) and (4.17), as well as the computational complexity of

the model.

4.7 Derivation of Terms for the E-step

The E-step calculations requires the terms ∂Σ(c)/∂ck, ∂2Σ(c)/∂ck∂cl, and

∂H(η)/∂η. Furthermore, the calculation of the first two of these terms requires

calculation of ∂η̂(c)/∂ck and ∂2η̂(c)/∂ck∂cl, both evaluated at c = 0. Rizopoulos,

Verbeke, and Lesaffre (2009) performed these calculations for their model. We

must calculate these quantities for our model, which differs from those of Rizopou-

los et al. (2009) due to its multi-membership structure and use of a binary atten-

dance indicator instead of a continuous time-to-event outcome. Furthermore, our

model makes use of correlated instead of shared random effects. We will use the

notational convention that, for example,

∂κ(η̂(c))

∂η
=
∂κ(η)

∂η
|η=η̂(c) .

Let the scalars Cig and Dig be defined as

Cig = (−1)1−rig
∂2φ(λig)

∂λ2
Φ2(λig)− 3

∂φ(λig)

∂λ
Φ(λig)φ(λig) + 2φ3 (λig)

Φ3 (λig)

and

Dig =
∂3φ(λig)

∂λ3
Φ3 (λig)− 4

∂2φ(λig)

∂λ2
Φ2(λig)φ(λig)

Φ4 (λig)

+
12

∂φ(λig)

∂λ
Φ(λig)φ

2(λig)− 3
(
∂φ(λig)

∂λ

)2

Φ2(λig)− 6φ4(λig)

Φ4 (λig)
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with λig = (−1)1−rig (w′igβmis + z′igηmis
)
, where

∂φ (λig)

∂λ
= − λig√

2π
exp(−

λ2
ig

2
)

∂φ2 (λig)

∂λ2
=
λ2
ig − 1
√

2π
exp(−

λ2
ig

2
)

∂φ3 (λig)

∂λ3
= −

λig
(
λ2
ig − 3

)
√

2π
exp(−

λ2
ig

2
)

are the first, second, and third derivatives, respectively, of the standard normal

density function. We first calculate ∂η̂(c)/∂ck. Let

κ(η) = log {f (y|η)}+ log {f (r|η)}+ log {f (η)} .

Since, by definition, η̂(c) = argmaxη[log {f(y, r,η)}+ c′H(η)], we have

0 =
∂

∂η
{κ(η) + c′H(η)}η=η̂(c)

=
∂κ(η̂(c))

∂η
+
∂c′H(η̂(c))

∂η

Taking the derivative with respect to ck yields

∂2κ(η̂(c))

∂η∂η′
∂η̂(c)

∂ck
+
∂e′kH(η̂(c))

∂η
+

(
∂

∂ck

{
∂H(η̂(c))

∂η

})′
c = 0

Solving for ∂η̂(c)/∂ck and evaluating at c = 0 gives

∂η̂(c)

∂ck
|c=0 =

(
−∂

2κ(η̂)

∂η∂η′

)−1(
∂e′kH (η̂)

∂η

)
=Σ−1

(
∂e′kH (η̂)

∂η

)
We only need the terms ∂2Σ(c)/∂ck∂cl and ∂2η̂(c)/∂ck∂cl for the case H(η) = η.

These terms are used in the calculation of var (η). To find ∂2η̂(c)/∂ck∂cl where
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H(η) = η, note

∂

∂cl

{
∂2κ(η̂(c))

∂η∂η′
∂η̂(c)

∂ck
+
∂e′kH(η̂(c))

∂η
+

(
∂

∂ck

{
∂H(η̂(c))

∂η

})′
c

}
= 0

⇒ ∂

∂cl

{
∂2κ(η̂(c))

∂η∂η′
∂η̂(c)

∂ck
+ ek

}
= 0

⇒ ∂2κ(η̂(c))

∂η∂η′
∂2η̂(c)

∂ck∂cl
+
∂3κ(η̂(c))

∂η∂η′∂η′
∂η̂(c)

∂cl

∂η̂(c)

∂ck
= 0

c=0⇒ ∂2η̂(c)

∂ck∂cl
|c=0 =

(
∂2κ(η̂)

∂η∂η′

)−1
∂Σ

∂η′
∂η̂

∂cl

∂η̂

∂ck

⇒ ∂2η̂(c)

∂ck∂cl
|c=0 = Σ−1

[
n∑
i=1

T∑
g=1

Cigzigz
′
ig

(
z′igΣ

−1el
)]

Σ−1ek.

Using the terms we have found, we may now calculate ∂Σ(c)/∂ck and ∂2Σ(c)/∂ck∂cl

at (c,η) = (0, η̂).

∂Σ(c)

∂ck
|c=0

=
∂

∂ck

[
−

n∑
i=1

T∑
g=1

[
∂φ(λ)
∂λ

Φ (λ)− φ2 (λ)

Φ2 (λ)

]
zigz

′
ig −

∂2

∂η∂η′

[
c′H(η̂(c))

]]
c=0

=−
n∑
i=1

T∑
g=1

Cig

(
z′ig

∂η̂(c)

∂ck
|c=0

)
zigz

′
ig −

∂2

∂η∂η′
[e′kH(η̂)]

=−
n∑
i=1

T∑
g=1

Cig

[
z′igΣ

−1

(
∂e′kH (η̂)

∂η

)]
zigz

′
ig −

∂2

∂η∂η′
[e′kH(η̂)]
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For H(η) = η and evaluating at (c,η) = (0, η̂)

∂2Σ(c)

∂ck∂cl

=
∂2

∂ck∂cl

[
−

n∑
i=1

T∑
g=1

[
∂φ(λ)
∂λ

Φ (λ)− φ2 (λ)

Φ2 (λ)

]
zigz

′
ig −

∂2

∂η∂η′

[
c′H(η̂(c))

]]
c=0

=
∂

∂cl

[
−

n∑
i=1

T∑
g=1

Cig

(
z′ig

∂η̂(c)

∂ck
|c=0

)
zigz

′
ig

]
c=0

=−
n∑
i=1

T∑
g=1

[
z′ig

∂2η̂(c)

∂ck∂cl
|c=0Cig

+z′ig

(
∂η̂(c)

∂ck
|c=0

)
z′ig

(
∂η̂(c)

∂cl
|c=0

)
Dig

]
zigz

′
ig

Finally, for the two cases of H(η), the required terms ∂H(η)/∂η and

∂2H(η)/∂η∂η′ are

∂

∂η
(e′kη) = ek

∂2

∂η∂η′
(e′kη) = 0

∂

∂η

[
(−1)1−rig φ(λig)

Φ(λig)

]
=

(
∂φ(λig)

∂λ
Φ (λig)− φ2 (λig)

Φ2 (λig)

)
zig

∂2

∂η∂η′

[
(−1)1−rij φ(λig)

Φ(λig)

]
=Cigzigz

′
ig

4.8 Convergence and EM Standard Errors

The EM algorithm converges to a stationary value of the approximated observed

data likelihood as long as the E- and M-step updates are continuous in the model

parameters, Ψ and the parameter space is compact (Wu, 1983). Although the

parameter space for Ψ is not compact for our model, this regularity condition is

satisfied by a truncation of the parameter space (McCulloch, 1994; Demidenko,

2004). The existence of the derivatives that yield the score functions in the M-step

guarantees that the M-step is continuous with respect to Ψ. Finally, the E-step

functions appearing in Equations (4.16) and (4.17) are continuous functions of the
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elements of Ψ. Due to the approximation used in the E-step, the limit point lies on

the approximated likelihood function: the quality of this approximation is discussed

in Section 4.10.

The observed data score vector S(Ψ) used in the M-step is equal to the the

conditional expectation of the complete data score vector (Louis, 1982). As pro-

posed by Jamshidian and Jennrich (2000), we calculate the observed information

matrix using a central difference approximation to the Hessian in Equation (4.18)

at the MLE Ψ̂. They also suggest using a Richardson extrapolation (Lindfield and

Penny, 1988), though our experience has shown that this greatly increases the

run-time without providing a noticeable change in the approximation.

− ∂S(Ψ)/∂Ψ|Ψ=Ψ̂ . (4.18)

4.9 Verification of a Regularity Condition

The introduction of the missing data mechanism requires an extra step to verify

that the exchange of differentiation and integration in Equation (3.17) is valid. The

exchange involving the derivatives with respect to βobs,G, and R are still valid by

the result of Lehmann and Romano (2010), but we must check that ∂/∂βmis may

be moved under the integral. For simplicity in exposition, we assume that βmis is a

scalar. According to Corollary 2.4.4 of Casella and Berger (2001), the exchange

∂

∂βmis

∫
f(r|ηmis)f(ηmis)dηmis =

∫
∂

∂βmis
f(r|ηmis)f(ηmis)dηmis

is valid if

1. f(r|ηmis)f(ηmis) is differentiable in βmis

2. ∃ g(ηmis, βmis) such that
∣∣∣ ∂
∂βmis

f(r|ηmis)f(ηmis)|βmis=β′mis

∣∣∣ ≤ g(ηmis, βmis)

for all β′mis such that |β′mis − βmis| ≤ δ0, where δ0 > 0 is a constant in ηmis

3.
∫
g(ηmis, βmis)dηmis <∞
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We now verify that these conditions are satisfied.

Proof. Letting tig = (−1)1−rig , condition (1) is satisfied by the existence of the

derivative∣∣∣∣ ∂

∂βmis
f(r|ηmis)f(ηmis)

∣∣∣∣
=

∣∣∣∣∣∣f(ηmis)
n∑
i=1

T∑
g=1

tigwigφ(tig[wigβmis + z′igηmis])
∏

(k,l)6=(i,g)

Φ(tkl[wklβmis + z′klηmis])

∣∣∣∣∣∣
(4.19)

≤f(ηmis)
n∑
i=1

T∑
g=1

|wig|φ(wigβmis + z′igηmis)
∏

(k,l) 6=(i,g)

Φ(wklβmis + z′klηmis)

 (4.20)

where Equation (4.19) results from the product rule and Equation (4.20) is a result of

the triangle inequality, the monotonicity of the cumulative distribution function, and

the non-negativity of probability density functions. Since there are a finite number

of summands in Equation (4.20), there exist a maximum summand with indices

(i∗, j∗). Thus we may continue by writing

≤nTf(ηmis)

|wi∗j∗|φ(wi∗j∗βmis + z′i∗j∗ηmis)
∏

(k,l)6=(i∗,j∗)

Φ(wklβmis + z′klηmis)


≤nTf(ηmis)|wi∗j∗ |φ(wi∗j∗βmis + z′i∗j∗ηmis) (4.21)

≤nT |wi∗j∗|f(ηmis) (4.22)

where Equation (4.21) holds because the product of distribution functions is bounded

above by 1 and Equation (4.22) holds because the standard normal density is

bounded above by 1. The expression in Equation (4.22) does not depend on βmis,

meaning condition (2) is satisfied for any δ0 > 0 by

g(ηmis, βmis) = nT |wi∗j∗|f(ηmis).
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Finally, condition (3) is satisfied because∫
nT |wi∗j∗|f(ηmis)dηmis = nT |wi∗j∗ | <∞

4.10 Approximation Error

Theorem 1 of Tierney et al. (1989) demonstrates that, for the approximations ap-

pearing in Equations (4.16) and (4.17),

E [H] = Ê [H] +O(λ−2)

V [H] = V̂ [H] +O(λ−3)

where the hat denotes the fully exponential Laplace approximation, and λ = λ(yo, r)

is a measure of the size of the data set (yo, r) such that λ → ∞ as the size of the

data set grows (Evans and Swartz, 1995). In a nested model where the Laplace

approximation is applied separately to each cluster, λ is equal to the smallest num-

ber of observations in each cluster. However, the joint model presents a multi-

membership random effects structure in f(yo|ηobs) and a choice of random effects

structures for f(r|ηmis). Nevertheless, λmay be expressed as a function of r alone

in the CPM. Consider the application of the Laplace approximation to the marginal

likelihood, ∫∫
f(yo|ηobs)f(r|ηmis)f(ηobs,ηmis)dηobsdηmis

=

∫
f(r|ηmis)

{∫
f(yo|ηobs)f(ηobs,ηmis)dηobs

}
dηmis

=

∫
f(r|ηmis)I(ηmis;y

o)dηmis (4.23)

The Laplace approximation is exact for
∫
f(yo|ηobs)f(ηobs,ηmis)dηobs, since the

ηobs enter the model linearly (Pinheiro and Bates, 1995). The result, I(ηmis;y
o), is

normally distributed with mean and variance depending on the covariance between

ηobs and ηmis. For example, under an assumption of MAR, these effects are uncor-
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related – and hence independent, due to their joint normality – and I(ηmis;y
o) =

f(ηmis)f(yo).

Applying the Laplace approximation to Equation (4.23) will result in approx-

imation error because the ηmis enter the integrand non-linearly through the non-

linear link in f(r|ηmis). The approximation error depends on the amount of in-

formation in r and the random effects structure of f(r|ηmis). If the missing data

mechanism depends only on random teacher effects, then λ equals the minimum

classroom size (out of every classroom included in the data set), since the number

of students in a teacher’s class determines the amount of information associated

with that teacher’s effect in the missing data model, along the lines of the work by

Vonesh (1996). Likewise, if only student effects are included in the missing data

mechanism, then λ is the number of years T in the study. Note that this does not

assume that the data are balanced, since each student will have an attendance

indicator recorded regardless of whether or not they have a score recorded.

If both student and teacher effects are included in the missing data model,

then the dimension of the integral in Equation (4.23) increases with the sample size.

This property is not typical for applications of the Laplace approximation; Shun and

McCullagh (1995) describe how a modification to the first-order Laplace approxima-

tion is needed to retain its usual order of convergence, although they did not study

the behavior of the fully exponential approximation, and note that it may not suf-

fer the same extent of deterioration in this setting as the first-order approximation.

The results of Shun (1997) show, in an application to the salamander mating data,

that the uncorrected first-order Laplace approximation outperforms penalized quasi-

likelihood (PQL), which is equivalent to the pseudo-likelihood method used by SAS

PROC GLIMMIX (Wolfinger and O’Connell, 1993). This is reasonable since PQL

makes an additional approximation to one of the terms in the first-order Laplace
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approximation. At worst, the (fully exponential) Laplace approximation presents an

improvement over PQL in this setting, even if consistency is not guaranteed. PQL

is widely used – such as in SAS PROC GLIMMIX – despite the the fact that it

produces potentially biased estimates, because PQL makes some problems com-

putationally feasible that otherwise would not be (Broatch and Lohr, 2011). Even

the bias-corrected PQL of Lin and Breslow (1996) is inconsistent (Jiang, 2007).

We rely on the fully exponential Laplace approximation, despite its potential incon-

sistency when both student and teacher effects are included in the missing data

mechanism, because it relies on fewer approximations than PQL, which we would

have used if SAS were capable of fitting the model. The only other alternative would

have been to use MCMC methods, whose drawbacks for high-dimensional integrals

in multi-level models were discussed in Section 2.4.

4.11 Computation

We extend the work used to develop R package GPvam in Chapter 3 to accom-

modate the joint model, relying heavily on the sparse matrix methods of the Matrix

package (Bates and Maechler, 2011). The program is computationally demanding

– despite the use of the Laplace approximation instead of Monte Carlo methods

for the E-step – due to its multi-membership structure. In fact, the GP model itself

is sufficiently complex that no scalable maximum-likelihood estimation routine has

been available for it until GPvam.

The multimembership random effects structure causes difficulties, but at

least the design matrix for the random effects, S, is sparse. In an example using

calculus grades in Chapter 5, the length of η is 4257, and S is a 9271 by 4257

matrix. Only 0.0434% of the components are nonzero. Storing the sparse version

of S takes 223 KB instead of the 316 MB needed for the dense matrix. Taking

advantage of this sparsity with the R package Matrix (Bates and Maechler, 2011)
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greatly improves the performance of the program, since many of the calculations in

the estimation of the model involve products with S.

The fixed effects for both the score and missing data models are conve-

niently specified with R formula objects, and theX andW matrices are constructed

via calls to the function sparse.model.matrix. The design matrices for the ran-

dom effects, S and Z, however, have irregular structures, and we build them with

custom functions. The identity matrix is used as the initial value for G. To test the

of the algorithm for sensitivity to this choice, we analyzed the examples of Chapter

5 with 10 different choices for initial values for G, obtained by taking the nearest

positive-definite matrix to the symmetric part of an appropriately sized matrix pop-

ulated with random values from the standard normal distribution. All 10 analyses

converged to the same parameter estimates, and they were mostly in agreement

after only a few EM iterations. The yearly error variances that appear in the di-

agonal of the R matrix are initially set to 1. The initial values for the fixed effects

are obtained by performing the M-step update using the initial G matrix and setting

η = 0. This produces the ordinary least-squares estimates of the fixed effects.

The convergence criterion for the joint model involves the maximum relative

change in parameters. Namely, we declare convergence if the maximum change in

each parameter is less than a certain tolerance. The criterion signals convergence

if for each component Ψk of the vector of parameters Ψ,
∣∣Ψp+1

k −Ψp
k

∣∣ < 0.0001 if |Ψp
k| ≤ 0.01∣∣∣Ψp+1

k −Ψp
k

Ψp
k

∣∣∣ < 0.0001 if |Ψp
k| > 0.01

An advantage of the EM algorithm over Newton type algorithms is that no

restrictions need to be placed on the G matrix to ensure that it is positive-definite

after each iteration. This is an advantage because the future year effects tend to
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be highly correlated, placing G near the boundary of the parameter space. To see

why this is true, notice thatG is a block-diagonal portion of ṽ+ η̃η̃′. The matrix ṽ is

the inverse of Σ (plus some correction terms for the joint model), which is defined

by Equation (4.15). Thus, ṽ is positive definite as long as Σ is. Looking at Equation

(4.15), it is clear that Σ is positive definite as long as the initialG is positive definite,

because the first two terms in the equation are positive semi-definite (the last term

in the equation is irrelevant because c = 0). Furthermore, η̃η̃′ is positive semi-

definite, and the sum of a positive definite and a positive semi-definite matrix is

positive definite. A similar discussion appears in Demidenko (2004). It is possible,

however, that the fully exponential corrections for the joint model in Equation (4.17)

disrupt the positive-definiteness of ṽ.

The conditional variance ṽ from Rizopoulos et al. (2009) is an 8× 8 matrix.

By contrast, our joint model for university calculus data called MNAR-t in Chapter

5 produces a ṽ of dimension 4265 × 4265. Thus the computational burden of cal-

culating the fully exponential corrections in Equation (4.17) is tremendous. Each

of the matrices Σ−1, ∂Σ
∂ck

, and ∂2Σ
∂ck∂cl

have dimension equal to the number of ran-

dom effects. Even ignoring the calculations required to obtain the derivatives ∂Σ
∂ck

and ∂2Σ
∂ck∂cl

, the term inside the trace function of Equation (4.17) requires approxi-

mately 4(2l3− l2) calculations, where l is the length of η (since multiplication of two

l × l matrices requires 2l3 − l2 arithmetic operations). For example, the calculus

data example in Chapter 5 contains 4265 random effects in the joint model. This

results in a requirement of just over 6.2 × 1011 operations to calculate the fully ex-

ponential correction for a single component of ṽ, if implemented naively. Since, in

this example, there are 4256 ∗ 4257/2 = 9058896 components in the upper-triangle

of the symmetric ṽ matrix, this implementation would result in a need for around

5.6×1018 operations per iteration, excluding the operations needed to calculate the
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derivatives. The author’s computer runs at 7.2 billion floating point operations per

second, and would require around 25 years to execute one iteration of a naively

implemented fully exponential correction to the full ṽ matrix.

In order to compute the fully exponential approximation in a reasonable

amount of time, we use a few key facts. First, ṽ is symmetric and only the upper tri-

angle needs to be calculated. Secondly, the operations inside of the trace function

in Equation (4.17) contain some elements that are common to all of the components

of ṽ and do not need to be re-calculated for each component. Thirdly, some of the

needed computations involve multiplication by sparse matrices, greatly reducing the

number of needed arithmetic operations (this is where our true gain in performance

lies). Finally, it turns out that not all of the components of var (η|yo, r; Ψ) will be

used in the M-step. The unused components may be ignored.

To see why only some of the components of ṽ are needed, observe how

the covariance matrix ṽ is used in the M-step updates of Γg and σ2
g in Equations

(4.10) and (4.11), respectively. The M-step update of Γg requires only relatively

small block-diagonal portions of ṽ, while the M-step update of σ2
g requires∑

i∈Bg
tr
(
sigs

′
igṽ
)

=
∑

row

∑
column (S′S ◦ ṽ), where ◦ represents the Hadamard

product. Thus, the only components of ṽ that are needed in addition to the afore-

mentioned block-diagonal elements are those that have the same indices as non-

zero components of the sparse matrix S′S. In the calculus data example, only

14132 (1.5%) of the upper-triangular components of ṽ need to be calculated. Com-

bined with the methods described above, we are able to calculate an entire EM

iteration, using the fully exponential corrections, in a mere 30 hours for this exam-

ple. To speed our program even further, we use the following result.

From experience, we have found that using the trace corrections to η̃ found

in Equation (4.16), but not the trace corrections to ṽ in Equation (4.17) produces re-
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sults that are extremely close to those obtained by using all of the trace corrections.

To see why this works, recall that the M-step update for the G matrix is composed

of diagonal blocks from the matrix ṽ + η̃η̃′. Hence the G matrix does experience

at least part of the benefit of the fully exponential trace corrections when the cor-

rections to η̃ are included. Breslow and Lin (1995) showed that using the first-order

Laplace approximation results in downward bias in the variance of random effects

in a GLMM, but that using a second-order approximation substantially reduces the

bias. Likewise, our simulations have shown that the fully-exponential approximation

results in larger estimates for the variance of the teacher missingness effect than

the first-order approximation. Furthermore, the fully-exponential corrections to η

account for approximately 90% of the increase observed when the corrections to

both η̃ and ṽ are included. This is explored further in Chapter 5. We take advan-

tage of this by first running the algorithm to convergence using only the corrections

to η̃, and then treating the resulting parameter estimates as initial values for the

fully exponential approximation, which may only require a few further iterations. In

the calculus data example, we are able to calculate an entire EM iteration with a

fully exponential correction for η̃ in just under 2.5 minutes.

The E-step maximizes the conditional complete data likelihood with respect

to the random effects η. The required NR algorithm runs reasonably fast because

the multiplications involve sparse matrices. The gradient used by the Newton-

Raphson algorithm is L(η) from Equation (4.14) and the Hessian Σ(0) from Equa-

tion (4.15). However, programming the M-step equations as they are written is

sometimes inefficient and may cause computational difficulties. In several instances,

we improved the performance of the program by using linear algebra to express

quantities in equivalent, but more computationally efficient forms. For example, the

evaluation log(det(ṽ)) will fail because in several applications det(ṽ) is larger than
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the word size of the computer. Instead, we obtain the log of this determinant by

taking 2 times the sum of the logarithm of the diagonal elements of the Cholesky

decomposition of ṽ. We also take advantage of the vectorized data structure of R,

avoiding the use of loops wherever possible.
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Chapter 5

APPLICATIONS

In this chapter, we run simulations to examine the performance of the EM algo-

rithms for estimating the GP VAM and the correlated random-effects model, obtain

maximum likelihood estimates of the GP VAM using the data analyzed by Mariano

et al. (2010), and apply our joint model to two real data sets. We first test the be-

havior of our EM estimation of the GP model with no missing data. Afterward, we

examine results from the application of the joint model to simulated data sets. Sec-

tions 5.4 and 5.5 consider elementary school and university data sets, respectively.

5.1 Simulation for the GP VAM

We generate and analyze 500 datasets, simulating three years of observations with

25 teachers in each grade and 30 students per teacher. For the first simulation

(GP1), we generate yearly means µ1 = µ2 = µ3 = 0, yearly error variances σ2
1 =

σ2
2 = σ2

3 = 0.5, student variance σ2
S = 1, year 1 teacher variance

Γ1 =


g2

1 g12 g13

g12 g
2
2 g23

g13 g23 g
2
3

 =


1.0 0.7 0.49

0.7 1.0 0.7

0.49 0.7 1.0

 ,

year 2 teacher variance

Γ2 =

 h2
1 h12

h12 h
2
2

 =

1.0 0.7

0.7 1.0

 ,

and year 3 teacher variance k2 = 1.

Table 5.1 summarizes the mean of the parameter estimates from the simu-

lations, as well as a p-value from a two-tailed t-test for equality of the mean of the

estimates and the true parameter values. The off-diagonal terms of Γ1 and Γ2 are
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Table 5.1: Results of Simulation GP1

True Value Mean p-value

µ1 0 -0.0087 0.312
µ2 0 -0.0008 0.953
µ3 0 0.0130 0.437
σ2

1 0.5 0.4979 0.228
σ2

2 0.5 0.5012 0.488
σ2

3 0.5 0.5017 0.320
σ2
S 1 1.0045 0.106
g2

1 1 0.961 0.006
g2

2 1 0.9553 <0.001
g2

3 1 0.9625 0.004
h2

1 1 0.9554 0.001
h2

2 1 0.9698 0.028
k2 1 0.9958 0.753

not listed to prevent cluttering the table: estimates for those parameters were un-

biased. There is evidence of some downward bias in the variance components of

the teacher effects. It is well known that the maximum-likelihood (ML) estimates for

variance components in mixed models are subject to a downward bias, as stated in

Demidenko (2004). In a linear regression model y ∼ N(Xβ, σ2I), the ML estimate

for σ2 is SS/n, where SS is the residual sum of squares, and n is the sample size.

The unbiased estimate is SS/(n−p), where p is the number of fixed effects, mean-

ing the ML estimate σ̂2
ML is subject to a downward bias, E[σ̂2

ML] = σ2(n − p)/n.

While this particular bias factor is not the same for the variance components of a

mixed model, it is interesting to note that our example includes 25 teachers and one

fixed effect in each year. This roughly corresponds to estimating the variance of 25

observations, which would yield a biased estimate of 24/25 = 0.96 times the true

value. This is exactly what we observed for the variance components of the year

one and two teachers in our simulation.
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We ran this simulation using the package GPvam, which is developed in

Chapter 3. Each data set requires an average of 15 iterations to converge, and

around 0.9 seconds per iteration. In this example, the design matrix, S, for the

random effects is 2250× 900. Of the 2025000 components of S, only 6750 (0.003%)

are nonzero. As a simple illustration of how our program benefits from considering

the sparseness of the matrices, the calculation S′S using the dense representation

of S takes an average of 2.22 seconds in R when using the crossprod function:

this is twice the amount of time taken by our program to execute an entire iteration.

By contrast, using the sparse representation of S, the operation takes less than

0.01 seconds. Furthermore, since S′S and other functions of the design matrices

are constant for each iteration, we calculate these values at the beginning of the

program and store them.

We ran two additional simulations for the GP model, being careful to re-seed

our random number generator before each simulation. Simulation GP2 uses the

same parameters as GP1, except the off-diagonal terms in the matrices Γ1 and Γ2

are set to 0, meaning that the current and future year teacher effects are assumed

to be uncorrelated with each other. The results appear in Table 5.2. Again, the

estimates of the off-diagonal terms of Γ1 and Γ2 are unbiased.

Simulation GP3 sets the off-diagonal terms to .9, which mimics a complete

persistence VAM. We cannot set these values to 1 because the covariance matrix

for the random effects needs to be positive definite. We would need to make pro-

gramming changes to actually impose the restriction of complete persistence. The

results of this simulation appear in Table 5.3. There is some downward bias in the

off diagonal terms of Γ1 and Γ2, but this is not surprising given the downward bias in

the diagonal terms of those matrices. Interestingly, the estimates for the error vari-

ance terms and the student effect variance appear to be unbiased. One implication

84



Table 5.2: Results of Simulation GP2

True Value Mean p-value

µ1 0 0.0021 0.818
µ2 0 0.0023 0.866
µ3 0 0.0038 0.811
σ2

1 0.5 0.4975 0.155
σ2

2 0.5 0.4996 0.811
σ2

3 0.5 0.5015 0.375
σ2
S 1 1.0050 0.078
g2

1 1 0.9484 <0.001
g2

2 1 0.9856 0.279
g2

3 1 0.9883 0.403
h2

1 1 0.9732 0.045
h2

2 1 0.9857 0.273
k2 1 0.9697 0.020

of this finding is that the percent of variation in test scores that is due to teacher

effects will be slightly underestimated. In this simulation, 40% of the variance in

year 1 scores is attributed to teachers during the simulation. For comparison, the

estimated percentage of variation due to the teacher effects is 39%. At least in this

simulation, the downward bias in the estimated variance of teacher effects does not

lead to a practically significant difference in the estimated percentage of variation

due to teachers.

5.2 Simulation for the Joint Model

We next perform a simulation study for the joint model with missing data. For the

joint model, we simulate 150 data sets containing two years of observations on

750 students, with 30 students assigned to each of 25 teachers in each year. The

parameters for the test score model are generated according to the joint model with

teacher effects in the missing data mechanism, using the following parameters. The

yearly means are µ1 = µ2 = 0, yearly error variances are σ2
1 = σ2

2 = 0.5, student
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Table 5.3: Results of Simulation GP3

True Value Mean p-value

µ1 0 -0.0041 0.675
µ2 0 0.0125 0.345
µ3 0 -0.0156 0.323
σ2

1 0.5 0.5013 0.466
σ2

2 0.5 0.4982 0.282
σ2

3 0.5 0.4983 0.310
σ2
S 1 0.9990 0.726
g2

1 1 0.9564 0.001
g2

2 1 0.9574 0.001
g2

3 1 0.9639 0.008
h2

1 1 0.9616 0.002
h2

2 1 0.9733 0.032
k2 1 0.9794 0.109

variance σ2
S = 1, year 1 teacher variance

Γ1 =


g2

1 g12 g13

g12 g
2
2 g23

g13 g23 g
2
3

 =


1.0 0.7 0.5

0.7 1.0 0.5

0.5 0.5 1.0

 ,

and year 2 teacher variance equal to 1. The mean for the missing data mechanism,

which models the year 2 attendance, is 0.2, which removes observations from the

second year so that on average 58% of the students from year 1 completed year

2. The probability of students completing year 2 was allowed to depend on random

teacher effects corresponding to their year 1 teachers via the missing data mech-

anism specified by Equation (4.5), where the ηmis in this simulation are correlated

with the ηobs via the last row/column of Γ1. We present the results of the simulation

using these particular parameters for illustration. It would be possible to run sev-

eral other parameter settings as determined by a designed experiment. However,

the joint model is extremely computationally demanding, despite the computational

efficiency achieved in Chapter 4. Analyzing the number of data sets required for

a simulation analysis is time consuming. Recall that the calculus data example
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requires around 30 hours for each iteration that applies the fully exponential correc-

tions to the Laplace approximations of both the conditional mean and conditional

variance of the random effects in the E step.

Each simulated data set is analyzed with the GP model under an assump-

tion of MAR, as well as with the joint model. We would expect the joint model to

provide a better fit for the data since the observations were removed according to

the structure assumed by the joint model: the simulation allows us to see which

parameters experience the greatest improvement in their estimates as a result of

using the joint model. Table 5.4 presents the mean squared error (MSE) for the 150

parameter estimates from the analyses of the simulated data using both the MAR

and joint models. For the parameters used in this particular simulation, the fixed

effects experienced the greatest improvement in MSE and most of the teacher ef-

fects recorded some improvement; however, the estimates for the error variances,

student variance, and the current year effect of the first grade teachers were unaf-

fected. Since missing data were introduced only in year 2, it seems reasonable that

the current year effects of the first grade teachers did not change. It is not clear,

however, why the MAR estimates for the other variance components were robust in

this simulation.

Table 5.4: MSE for 150 Simulations

Parameter MAR Joint

Grade 1 mean score 0.0381 0.0371
Grade 2 mean score 0.0659 0.0593

σ2
1 0.0037 0.0037
σ2

2 0.0039 0.0039
Student variance 0.0068 0.0068

Grade 1: (1,1) 0.0884 0.0884
Grade 1: (2,1) 0.0358 0.0351
Grade 1: (2,2) 0.0248 0.0242
Grade 2: (1,1) 0.0793 0.0790
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We also tested the behavior of the model under misspecification of the miss-

ing data mechanism. In one example, we remove data according to student effects,

but only model the simulated data with random teacher effects in the missing data

mechanism. In another example, we remove second year observations according

to teacher effects, but only model random student effects in the missing data mech-

anism. In both cases, the joint model produces estimates with the same MSE as

the estimates from the GP model when ignoring the missing data. The joint model

does not detect the nonignorable missingness in this case, because it does not

match the form of dropout modeled by the missing data mechanism. It is reassur-

ing to see that the inclusion of the misspecified missing data mechanism does not

negatively impact the parameter estimates of the VAM.

Another interesting aspect of the joint model worth inspecting is the compar-

ative performance of the fully exponential approximation to the first order Laplace

approximation. It turns out that using the fully exponential correction for the con-

ditional mean η̃, but not the conditional variance ṽ improves the accuracy of the

calculation in a fraction of the time. For the simulated 150 data sets, the first or-

der Laplace approximation yields smaller estimates of the random teacher effect

variance component in the missing data model than the fully exponential approxi-

mation, consistent with the downward bias reported by Breslow and Lin (1995) and

Lin and Breslow (1996). Calculating the fully exponential correction only for η̃ ac-

counts for an average of 91% (Q1=90%, Q3=92%) of the difference between the

first order and fully exponential estimates of the variance component, while requir-

ing only 0.2% of the additional computational time needed to compute the complete

fully exponential approximation. For this simulation, the mean time per iteration

is 6.8 seconds for the first order Laplace approximation, 7.8 seconds for the fully

exponential corrections to η̃ only, and 560 seconds for the fully exponential ap-
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proximation. We take advantage of this discovery in the implementation of the joint

model by first running the algorithm to convergence using only the corrections to η̃,

and then treating the resulting parameter estimates as initial values for the fully ex-

ponential approximation. The algorithm then requires only relatively few iterations

with the computationally expensive fully exponential corrections to ṽ.

5.3 Application of the GP VAM assuming MAR

We apply the GP VAM with the package GPvam developed in Chapter 3 to the data

set analyzed by Mariano et al. (2010), which is available in the supplementary ma-

terial of McCaffrey and Lockwood (2011). According to McCaffrey and Lockwood

(2011), the data come from vertically linked mathematics standardized test scores

from grades 1–5 for a cohort of students from a large urban US school district.

The data have been pre-processed by McCaffrey and Lockwood (2011), and

we further processed the data by removing observations with no student link, as

well as observations missing both the test score and the teacher link. The resulting

data set consists of 26019 observations on 9295 students over 5 years. For grades

1 through 5, there are 338, 318, 306, 321, and 259 teachers, respectively. This

results in a total of 4781 teacher effects for the GP model to estimate.

We assume that unbalanced student profiles are due to observations that

are missing at random (Little and Rubin, 2002). This amounts to assuming that

the probability of a student being observed in a given year does not depend on his

latent level of ability, his teacher history, or the score that he would have recorded

if it had been observed. Applications of the MNAR model developed in Chapter 4

appear in Sections 5.4 and 5.5.

The estimated covariance matrices, with associated correlation matrices,

are
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R:

0.741 0.478 0.463 0.456 0.392

0.478 0.705 0.523 0.516 0.449

0.463 0.523 0.736 0.563 0.484

0.456 0.516 0.563 0.688 0.509

0.392 0.449 0.484 0.509 0.565





1.000 0.661 0.626 0.639 0.606

0.661 1.000 0.726 0.740 0.711

0.626 0.726 1.000 0.791 0.750

0.639 0.740 0.791 1.000 0.817

0.606 0.711 0.750 0.817 1.000


Γ1:

0.443 0.121 0.120 0.107 0.095

0.121 0.100 0.088 0.084 0.077

0.120 0.088 0.087 0.083 0.076

0.107 0.084 0.083 0.080 0.074

0.095 0.077 0.076 0.074 0.069





1.000 0.575 0.610 0.568 0.541

0.575 1.000 0.941 0.941 0.920

0.610 0.941 1.000 0.994 0.986

0.568 0.941 0.994 1.000 0.995

0.541 0.920 0.986 0.995 1.000


Γ2:

0.281 0.059 0.039 0.042

0.059 0.025 0.023 0.020

0.039 0.023 0.024 0.020

0.042 0.020 0.020 0.017





1.000 0.703 0.478 0.593

0.703 1.000 0.951 0.967

0.478 0.951 1.000 0.979

0.593 0.967 0.979 1.000


Γ3:

0.248 0.032 0.024

0.032 0.015 0.015

0.024 0.015 0.015




1.000 0.516 0.394

0.516 1.000 0.979

0.394 0.979 1.000


Γ4:0.130 0.038

0.038 0.030


1.000 0.612

0.612 1.000
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Table 5.5: Estimates for yearly means

Estimate Std. Error

Year 1 3.395 0.030
Year 2 3.996 0.029
Year 3 4.726 0.023
Year 4 5.309 0.022
Year 5 5.984 0.025

Γ5 : 0.146

Estimates for the yearly means appear in Table 5.5.

Using the EM algorithm, we obtain correlation patterns that are similar to

those in Figures 2 and 3 of Mariano et al. (2010). However, we note that Mariano

et al. (2010) obtained these results after careful choice of an informative prior that

allowed for strong correlations between future year effects. In simulation studies,

they found that a minimally informative Wishart prior for covariance parameters

could result in posterior credible intervals for the correlations that did not include

the true values. The EM algorithm gives maximum likelihood estimates that do not

need any specifications of prior distributions.

5.4 Effects of Missing Data in an Urban School District

This section applies the joint model to data from grade-schools from an urban

school district. The data set tracks a cohort of 2834 students from grades 4 through

6, recording their score on a standardized math test each year. The GP VAM is

needed here because the tests are not vertically scaled; that is, the tests are not

designed so that they can be compared across years on the same scale. Gain score

VAMs may give misleading results in this setting. As expected, some students have

missing observations. The absences could be the result of a medical appointment,

the student skipping school, or the student’s transfer to a new school district. The

dataset is analyzed with the generalized persistence model assuming missing ob-
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servations are ignorable, and with the joint model. Three different formulations of

the missing data mechanism are used in the joint model in this example for a sen-

sitivity analysis. Model MNAR-t fits only teacher random effects in the missing data

mechanism, and MNAR-s fits only student effects. Model MNAR-b contains both

random student and teacher effects in the missing data mechanism. When only

teacher effects are included, the missing data mechanism models the probability

that students who attended year j also attend year j + 1, for j = 1, . . . , T − 1.

When student effects are included, the student attendance in year 1 is also mod-

eled.

The data set contains 102, 104, and 98 fourth, fifth, and sixth grade teach-

ers, respectively. This leads to the modeling of 612 teacher effects. When com-

bined with the student effects, this produces an η̂ vector with 3446 elements. Only

0.08% of the components of the 6236× 3446 S matrix are non-zero.

Because the future year teacher effects were all so highly correlated, we

follow the suggestion of McCaffrey and Lockwood (2011) and average the future

year effects for each teacher. For example, a fourth grade teacher’s year-5 and

year-6 effects are averaged to obtain a single estimated “future year” effect. Table

5.6 presents the results of applying the MAR GP VAM to the grade-school data.

Estimates from the joint model containing teacher effects, student effects, and both

teacher and student effects in the missing data mechanism appear in Tables 5.7,

5.8, and 5.9, respectively.
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Table 5.6: MAR Model for Grade-School Data

Parameter Estimate Std. Error

Grade 4 mean score 501.2974 1.8201
Grade 5 mean score 520.9812 1.7517
Grade 6 mean score 541.6364 1.9685

σ2
1 591.6821 31.7546
σ2

2 416.6918 25.9969
σ2

3 646.3503 32.3316
Student variance 1632.3315 54.4985

Grade 4: (1,1) 402.5404 70.9214
Grade 4: (2,1) 255.0205 54.7948
Grade 4: (3,1) 257.7022 57.2814
Grade 4: (2,2) 180.5257 51.5718
Grade 4: (3,2) 189.9864 49.0041
Grade 4: (3,3) 208.1485 59.7621
Grade 5: (1,1) 178.9935 34.9350
Grade 5: (2,1) 74.7577 22.4170
Grade 5: (2,2) 38.4672 20.1876
Grade 6: (1,1) 184.6173 37.9895
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Table 5.7: Joint Model for Grade-School Data: Teacher Effects in Missing Data
Mechanism

Parameter Estimate Std. Error

Grade 4 mean score 501.3168 1.8409
Grade 5 mean score 520.9576 1.7505
Grade 6 mean score 541.5879 1.9713

Grade 5 mean completion 0.6599 0.0319
Grade 6 mean completion 1.0343 0.0419

σ2
1 591.4300 31.8124
σ2

2 417.1465 26.0258
σ2

3 646.7562 32.3652
Student variance 1631.3971 54.5238

Grade 4: (1,1) 401.0872 70.8279
Grade 4: (2,1) 243.6031 53.5346
Grade 4: (3,1) 248.4397 56.4094
Grade 4: (4,1) 2.1269 0.7616
Grade 4: (2,2) 165.3230 49.1631
Grade 4: (3,2) 176.5910 47.1283
Grade 4: (4,2) 1.3999 0.5969
Grade 4: (3,3) 195.7792 58.0564
Grade 4: (4,3) 1.5102 0.6301
Grade 4: (4,4) 0.0176 0.0154
Grade 5: (1,1) 183.2161 35.7010
Grade 5: (2,1) 77.1346 22.7912
Grade 5: (3,1) 1.2807 0.6721
Grade 5: (2,2) 38.8062 20.2178
Grade 5: (3,2) 0.7033 0.5072
Grade 5: (3,3) 0.0499 0.0258
Grade 6: (1,1) 186.9716 38.4489
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Table 5.8: Joint Model for Grade-School Data: Student Effects in Missing Data
Mechanism

Parameter Estimate Std. Error

Grade 4 mean score 505.4803 1.9627
Grade 5 mean score 523.9156 1.8476
Grade 6 mean score 544.7444 2.0936

Grade 4 mean completion 0.8886 0.0332
Grade 5 mean completion 0.6457 0.0314
Grade 6 mean completion 0.7139 0.0317

σ2
1 568.4458 30.6736
σ2

2 424.6381 26.1150
σ2

3 659.1867 32.8372
Student variance (1,1) 1652.9003 55.0909
Student variance (1,2) 0.4062 0.0416
Student variance (2,2) 11.4092 1.0200

Grade 4: (1,1) 401.9636 74.4837
Grade 4: (2,1) 256.2325 58.0930
Grade 4: (3,1) 268.0598 63.4438
Grade 4: (2,2) 184.9096 54.2676
Grade 4: (3,2) 201.8847 54.3640
Grade 4: (3,3) 229.4734 68.1920
Grade 5: (1,1) 179.4790 35.1303
Grade 5: (2,1) 74.5944 22.7574
Grade 5: (2,2) 37.8510 20.6074
Grade 6: (1,1) 186.4737 38.3054
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Table 5.9: Joint Model for Grade-School Data: Both Student and Teacher Effects in
Missing Data Mechanism

Parameter Estimate Std. Error

Grade 4 mean score 505.0338 2.0427
Grade 5 mean score 522.1291 2.4057
Grade 6 mean score 545.0489 2.3237

Grade 4 mean completion 0.8601 0.0336
Grade 5 mean completion 0.6285 0.0343
Grade 6 mean completion 0.5449 0.0681

σ2
1 569.3392 30.7202
σ2

2 424.3269 26.0705
σ2

3 660.5157 32.8708
Student variance (1,1) 1643.5646 54.7924
Student variance (1,2) 0.3194 0.0482
Student variance (2,2) 10.6332 1.0073

Grade 4: (1,1) 414.7861 75.6862
Grade 4: (2,1) 263.9356 59.2370
Grade 4: (3,1) 277.4264 64.5767
Grade 4: (4,1) 0.9300 0.8443
Grade 4: (2,2) 188.4893 55.7737
Grade 4: (3,2) 206.9267 55.0179
Grade 4: (4,2) 0.5480 0.6798
Grade 4: (3,3) 232.6256 69.3750
Grade 4: (4,3) 0.5683 0.7430
Grade 4: (4,4) 0.0048 0.0190
Grade 5: (1,1) 181.8541 35.5557
Grade 5: (2,1) 74.4134 22.4873
Grade 5: (3,1) 1.1783 1.2934
Grade 5: (2,2) 38.5864 20.2441
Grade 5: (3,2) -0.4298 0.9402
Grade 5: (3,3) 0.2119 0.0846
Grade 6: (1,1) 190.1575 39.1850
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Figures 5.1, 5.2, 5.3, 5.4, and 5.5 plot the estimated current and future year

teacher effects for each grade from the MAR model and from MNAR-t. The smallest

correlation among these plots is .9891. Figures 5.6, 5.7, 5.8, 5.9, and 5.10 plot the

estimated current and future year teacher effects for each grade from the MAR

model and from MNAR-s. The smallest correlation between the estimated teacher

effects from the MAR and this joint model is .9917. Figures 5.11, 5.12, 5.13, 5.14,

and 5.15 plot the estimated current and future year teacher effects for each grade

from the MAR model and from MNAR-b. The smallest correlation between the

estimated teacher effects from the MAR and this joint model is .9791.

Despite the change in parameter estimates between the models, the teacher

effects do not change noticeably. The correlations between the estimated effects

from the MAR and joint models are all .9791 or greater. This finding is consistent

with what McCaffrey and Lockwood (2011) find using selection and pattern mixture

models, modeling missingness as a function of students only, when studying a

different data set. Their models yield correlations between 0.97 and 1 for all teacher

effects between the joint models and the MAR model, using a variable persistence

structure for the teacher effects. Aaronson et al. (2007) rank teachers by the quartile

of the relevant effect that their individual estimate falls in. None of the teacher

rankings move more than a single quartile between the MAR and joint models.

The stability of the teacher rankings between the models MAR, MNAR-t, MNAR-

s, and MNAR-b indicates that the rankings from the GP VAM for this data set are

not sensitive to the presence of potentially nonignorable missing data. Of course,

this does not provide sufficient evidence for concluding that the dropout process

is ignorable, but it does provide a stronger argument than fitting the MAR model

alone.
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Figure 5.1: Joint v. MAR for Grade-School 4th Grade Current Year Effects with
Teachers included in Missing Data Model
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Figure 5.2: Joint v. MAR for Grade-School 4th Grade Future Year Effects with
Teachers included in Missing Data Model
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Figure 5.3: Joint v. MAR for Grade-School 5th Grade Current Year Effects with
Teachers included in Missing Data Model
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Figure 5.4: Joint v. MAR for Grade-School 5th Grade Future Year Effects with
Teachers included in Missing Data Model
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Figure 5.5: Joint v. MAR for Grade-School 6th Grade Current Year Effects with
Teachers included in Missing Data Model
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Figure 5.6: Joint v. MAR for Grade-School 4th Grade Current Year Effects with
Students included in Missing Data Model
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Figure 5.7: Joint v. MAR for Grade-School 4th Grade Future Year Effects with
Students included in Missing Data Model
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Figure 5.8: Joint v. MAR for Grade-School 5th Grade Current Year Effects with
Students included in Missing Data Model
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Figure 5.9: Joint v. MAR for Grade-School 5th Grade Future Year Effects with
Students included in Missing Data Model
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Figure 5.10: Joint v. MAR for Grade-School 6th Grade Current Year Effects with
Students included in Missing Data Model
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Figure 5.11: Joint v. MAR for Grade-School 4th Grade Current Year Effects with
Teachers and Students included in Missing Data Model
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Figure 5.12: Joint v. MAR for Grade-School 4th Grade Future Year Effects with
Teachers and Students included in Missing Data Model
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Figure 5.13: Joint v. MAR for Grade-School 5th Grade Current Year Effects with
Teachers and Students included in Missing Data Model
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Figure 5.14: Joint v. MAR for Grade-School 5th Grade Future Year Effects with
Teachers and Students included in Missing Data Model
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Figure 5.15: Joint v. MAR for Grade-School 6th Grade Current Year Effects with
Teachers and Students included in Missing Data Model
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Figure 5.16: Fourth Grade Effects from GP model
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It is also useful to examine the bivariate plot of current and future year

teacher effects for each grade, even though the estimated model parameters in-

dicate that they are positively correlated. Figures 5.16 and 5.17 plot the current

and future year effects for fourth and fifth grade teachers, respectively, from the GP

model. Figures 5.18 and 5.19 plot the corresponding effects from the joint model,

where in this case the joint model included both student and teacher effects in the

missing data mechanism. The positive correlations between these effects indicate

that teachers whose classes perform well tend to graduate students who go on to

perform well in future years. We reiterate that the interpretation of these effects as

“teacher effects,” as they are being interpreted by state education departments, re-

lies on the randomization of students to classrooms: the VAM attempts to account

for the nonrandom assignment through the inclusion of random student intercepts.

The warnings from Draper (1995) about the importance of randomization in multi-

level models are still relevant.
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Figure 5.17: Fifth Grade Effects from GP model
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Figure 5.18: Fourth Grade Effects from Joint model
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Figure 5.19: Fifth Grade Effects from Joint model
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5.5 Effects of Missing Data in Calculus Classes

This section applies the joint model to data on calculus grades from a large public

university. Broatch and Lohr (2011) used a subset of these data in their analyses.

The data set tracks 3561 students who took calculus 2 and possibly calculus 3 at

the university. A total of 184 calculus 2 classes are included from Fall 2000 through

Spring 2005. In addition, 144 calculus 3 classes from Spring of 2001 through Spring

of 2006 are included. Students who took only calculus 3 during the study are omit-

ted. Analysis focuses on the grades assigned to students, which are converted

to the corresponding value on a four-point scale. The scores in the data set are

collectively centered and standardized.

This calculus example provides us with an ideal setting for testing for the

presence of informative missing data. While not every student who takes calculus

2 does so with the intention of taking calculus 3, we may expect to see, on average,

a certain proportion of calculus 2 students going on to complete calculus 3. In this

example, we construct the missing data mechanism to measure the proportion of

students from calculus 2 classes who complete calculus 3. To perform a sensitivity

analysis, we fit an MAR model and compare its parameter estimates and estimated

teacher effects to three different nonignorable models.

We fit the GP model both singly (assuming missing data are ignorable) and

jointly with a missing data mechanism that includes random teacher effects, though

in the second case under an assumption of MAR which is enforced by setting the

correlation between the random effects in the two sub-models to be zero. In the

model we will call MNAR-t, we include a random teacher effect in the missing data

mechanism that is correlated with the corresponding teacher effects from the ob-

served data mechanism and measures the proportion of each teacher’s students
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who go on to complete calculus 3. The model MNAR-s models missingness as

a function of student random effects. Even though only one binary observation is

made on each student, we are able to fit this model because the predicted stu-

dent effects in the missing data mechanism borrow strength from their correlation

with the student effects from the observed data mechanism. Finally, MNAR-b con-

tains both random student and teacher effects in the missing data mechanism. The

appropriate missing data process cannot be chosen by empirical investigation of

the observed data (including examination of the log-likelihood) since the observed

data do not provide information to support one particular MNAR model over another

(Fitzmaurice et al., 2004; Xu and Blozis, 2011). Instead, we compare the parameter

estimates for the observed data mechanism across the different models, looking for

sensitivity to the assumptions about the nature of the missing data.

The parameter estimates from the models appear in Table 5.10. The yearly

means in the observed data model are represented by µyi , for i = 1, 2. The value

µr2 gives the estimated proportion, e.g. Φ(0.2459) = 0.5971, of Calculus 2 stu-

dents who complete Calculus 3. The other parameters follow the same notation

as used in Chapter 4. Also listed for each model are -2 times the Laplace ap-

proximated log-likelihood (−2l) and the correlation (ρ) of the predicted calculus 2

future year effects with those from the MAR model. Because the student scores

come from non-standardized class grades, the current year teacher effects reflect

the tendency of individual teachers to assign above- or below-average grades, and

not necessarily the effectiveness of their teaching. The future year effects of calcu-

lus 2 teachers, however, reflect how well each teacher’s former students performed

in comparison to their new calculus 3 classmates. The correlation (ρ) of these

effects in the MNAR models to the MAR model provides a summary of the sen-

sitivity of the teacher rankings to nonignorable dropout under different models for
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the missing data mechanism. Using selection and pattern mixture models to at-

tribute MNAR data to students, McCaffrey and Lockwood (2011) found values of ρ

that were all greater than 0.97. MNAR-s provides the analog of their models using

correlated random effects, and yields ρ = .994. Likewise, MNAR-b does not pro-

duce teacher effects that are substantially different from the MAR model. However,

MNAR-t reorders the teacher effects, producing ρ = .881. Aaronson et al. (2007)

rank teachers by the quartile of the relevant effect that their individual estimate falls

in. Analyzing the calculus data with MNAR-t leads to different classifications than

those produced by MAR model. Thus, a teacher may receive a different evaluation

based on the model assumed (either tacitly or explicitly) for the missing data mech-

anism. Using the method of Aaronson et al. (2007), some teachers move two (or

even three) quartiles when evaluated with MNAR-t. Figure 5.20 plots the calculus

2 future year teacher effects from MNAR-t against the future effects from the MAR

model.

While computing estimates for MNAR-t, we are able to calculate an entire

EM iteration with a fully exponential correction for η̃ in just under 2.5 minutes. Once

this algorithm converges, we include the corrections to ṽ, thereby increasing the

iteration time to around 30 hours. The full algorithm then requires only a few further

iterations to converge. The differences are, for practical purposes, negligible be-

tween the estimates obtained from including all of the fully exponential corrections

and the estimates obtained by including the corrections to η̃ only. As such, when

estimating the parameters of the models MNAR-s and MNAR-b in Section 5.3, we

include the corrections from Equation (4.16) only, since the dimension of ṽ in these

examples is greater than 8000× 8000.

Following the suggestion of Molenberghs et al. (2008), we examine the fit of

MNAR-t to MAR to see which teachers make the missing data mechanism appear to
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be MNAR. The large amount of missing data in certain calculus classrooms means

that the effects of those classrooms are shrunk toward zero due to the shrinkage

properties of EBLUPs. This shrinkage property is normally desirable in VAMs, but

in the case of nonignorable dropout, we lose information. For illustration, we ex-

amine the records of one of the teachers most greatly down-weighted by MNAR-t,

indicated by a solid black circle in Figure 5.20. Only 20% of the students from

this classroom completed calculus 3 (most of them failed the calculus 2 course),

and those that did all received below-average grades in their respective calculus 3

classrooms. The calculus 2 teacher’s effect on calculus 3 in the MAR model is less

than 0, but is severely shrunk because only a few observations are present. This

is representative of the types of teachers that seem to be most affected in the joint

model MNAR-t: their effects are decreased. Also affected are the teachers who

have the greatest proportion of students completing calculus 3. Their scores are

increased. By contrast, the aforementioned calculus 2 teacher has the future year

effect increased when student effects are included in the missing data mechanism.

The change in teacher rankings produced by MNAR-t does not appear in MNAR-b

or MNAR-s because these models seem to attribute the missingness of students

with low grades to the students.

For convenience, the correlation matrix for the effects of calculus 2 teach-

ers from MNAR-t appears in Equation (5.1). The last column of these matrices, “3

comp.”, yields information about the correlation of the completion effect of the calcu-

lus 2 teachers. A larger completion effect means that relatively more of a teacher’s

students go on to complete calculus 3. This effect is positively correlated with both

the “2 on 2” effect, indicating relatively how high a calculus 2 teacher’s average

assigned grade in a class, and with the “2 on 3” effect, indicating relatively how well

the calculus 2 teacher’s former students did in calculus 3. However, the current
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Figure 5.20: Calculus 2 Future Year Effects: MAR vs. MNAR-t
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●

and future year effects for calculus 2 teachers are not correlated. Observing that a

teacher gives above- or below-average grades yields no information about how well

the students of that teacher performed in calculus 3. Applications of VAMs to stan-

dardized test score data usually show a positive correlation between the current

and future teacher effects (Mariano et al., 2010).
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cor(Γ1) =



2 on 2 2 on 3 3 comp.

2 on 2 1 −0.03 0.74

2 on 3 −0.03 1 0.60

3 comp. 0.74 0.60 1

 (5.1)

The sensitivity analysis illustrates the influence that assumptions about the

nature of missing data may have on the resulting teacher rankings. A challenge

with MNAR models is that their fit may not be tested empirically, since data are

missing. Thus the choice between MNAR-b, MNAR-t, or MAR depends in part on

a subject-matter decision. As shown by our sensitivity analysis, that decision has

direct implications for the estimated teacher rankings.

5.6 Discussion

The analyses of the urban school district and university data sets both result in

correlated longitudinal and missingness mechanisms. However, only the university

data shows a substantial change to the teacher rankings between the models. We

believe this behavior may be due in part to the amount of missing data in each

example. In the university data set, there are some calculus 2 classrooms from

which only 20% of the students complete calculus 3. No classroom in the grade-

school data has less than 70% observed data. The large amount of missing data

in certain university classrooms means that those classroom effects are shrunk

to zero due to the shrinkage properties of EBLUPs. This shrinkage property is

normally desirable in VAMs, but in the case of informative dropout, this property

may produce biased estimates for teacher effects.

The insensitivity of the teacher rankings from the elementary school data

set to assumptions about the missing data mechanism is consistent with the find-

115



ings of McCaffrey and Lockwood (2011). Besides the amount of missing data from

each class, two other important differences between the elementary and the college

data sets are that 1) the scores from the elementary setting come from standardized

exams and 2) college students have much greater latitude in selecting their future

courses. Ideally, the type sensitivity analysis we ran for each of our data sets should

be performed whenever value-added models are used to evaluate teachers. In situ-

ations like our college example where the sensitivity analysis leads to substantially

shuffled rankings for the teachers, the VAM should not be used for high-stakes de-

cisions. Otherwise, some teachers will be unjustly punished or rewarded due to

a choice of unverifiable modeling assumptions. Recalling the quote from Molen-

berghs and Kenward (2007), “ignoring MNAR models is no different an option than

shifting to one particular MNAR model, it is just much more convenient.”
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Chapter 6

CONCLUSION

In this dissertation, we have extended the capabilities of value-added models for

use in educational and other applications. We first devised a method for efficient

computation of maximum like estimates of the most flexible VAM in use, the GP

model of Mariano et al. (2010). We then constructed a new model that allows

examination of possible effects of missing data on VAM scores.

We have developed an efficient and stable EM algorithm to obtain maximum

likelihood estimates (MLEs) of the generalized persistence (GP) (Mariano et al.,

2010) VAM. Although the model may be specified in software such as SAS, the

multi-membership structure produces several large matrices which must be manip-

ulated and inverted, and the random effects representing the future year effects of

teachers are often highly correlated. For even medium-sized data sets, SAS runs

out of memory, runs so slow as to be impractical, or fails when its Newton algorithm

steps out of the parameter space. By contrast, our package GPvam obtains the

MLEs relatively quickly and reliably. Although the computational methods and soft-

ware for GPvam are developed in the educational setting, they can be used in many

other applications as well, substituting the level-1 units for “students” and the level-2

units for “teachers”. Similar models have been proposed for studying contributions

of physicians toward patients’ health outcomes. The multi-membership structure

also arises in social network data (Airoldi et al., 2008). In another example, Browne

et al. (2001) and Goldstein et al. (2000) describe a multi-membership model used

to study Belgian household migration with complete persistence, measuring the

propensity of individuals to change household membership. The GP model may
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be a good candidate for the Belgian household data since the similarity of former

roommates may decrease over time.

We have extended the EM algorithm and computational methods imple-

mented in GPvam to accommodate the estimation of a new model which we have

presented for jointly modeling nonignorable missing data with the student scores

of a value-added model. In addition to the challenges faced during the estimation

of the GP model, the joint model faces a high-dimensional integration problem due

to the non-linear functions introduced to the log-likelihood by the binary attendance

indicators. The joint model provides flexibility in the specification of the missing

data mechanism, allowing the attendance indicators to be modeled as a function of

a combination of random student and teacher effects. These effects are allowed to

be correlated with their counterparts in the VAM, producing a means of modeling

nonignorable dropout. The flexibility in the random effects structure for the missing

data mechanism furnishes the capacity for performing a sensitivity analysis.

When applied to standardized math scores from an urban grade-school dis-

trict, none of the three formulations of the joint model (including random student,

teacher, and both student and teacher effects in the missing data mechanism) pro-

duce substantially different teacher rankings from the GP model (which assumes

missing data are ignorable). However, when applied to calculus 2 and 3 grades

from a large university, the joint model with random teacher effects in the missing

data mechanism produces rankings for the future-year effect of calculus 2 teachers

that have a correlation of only .88 with those from the GP model. Some of individ-

ual teacher rankings moved two (or even three) quartiles between the two models.

The difference in these rankings are a consequence of modeling the data under

two unverifiable assumptions about the missing data (that they are ignorable and

that they are nonignorable according to a certain parametric structure). The nonig-
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norable missing observations violate the missing at random assumption of the GP

VAM. This sensitivity is an important finding, because of the potentially high-stakes

applications of the teacher rankings.

Similar to the results of our application to the grade-school data, McCaffrey

and Lockwood (2011) did not find an appreciable difference in the results of their

ignorable and nonignorable models. However, McCaffrey and Lockwood (2011)

analyzed data from elementary school standardized scores, attributing the miss-

ingness to student, but not teacher, characteristics. Two important differences be-

tween the calculus and the elementary school data are the lack of standardization

in the calculus grades and the greater potential for the calculus attendance trajec-

tories of students to vary by teacher, due to the greater choice college students

have in selecting future courses. These factors may help explain the more pro-

found changes to calculus teacher rankings resulting from the joint model MNAR-t.

The results of our application suggest that at the university level, and other settings

in which there is more discretion for course progression, considering missing data

explicitly as a function of teacher effects can result in different teacher rankings. If

the university in the application were to use the data for personnel decisions, some

teachers would receive different evaluations based on the modeling assumptions

made about dropout.

Our correlated parameter model provides a different perspective in the joint,

missing-data analysis of teacher effects over the work of McCaffrey and Lockwood

(2011) by allowing the missingness of test scores to depend on teacher history.

The missing data mechanism could be further refined by distinguishing between

different types of missing data. For example, suppose that in the college setting

students are being tracked across calculus 2 and 3. Some students will have miss-

ing calculus 3 scores because they did not take the class. Others, however, will be
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missing scores because they enrolled in the class and later dropped out. Informa-

tion on this partial enrollment is available from college data in the form of a ‘W’ on

the student’s transcript. By contrast, part-year enrollment information may not be

available at the grade-school level, or may not indicate if the student was enrolled

for a week or nearly the entire year. Thus, future work will consider more specific

dropout mechanisms for different educational settings.

A major concern in the application of VAMs is the sensitivity of the teacher

rankings to the choice of fixed effects that are included in the model, as well as sen-

sitivity to potential measurement error in the covariates. For example, the presence

of covariate measurement error tends to bias the teacher estimates of the standard-

ized gain model (Reback, 2008) and the student growth percentile model (Beteben-

ner, 2009), with teachers of minority and impoverished students being more likely to

be rated as ineffective (Wright, 2010). Simpler VAMs based on “mean gain” are sub-

ject to increased estimation error with measurement error on covariates (McCaffrey

et al., 2009). Besides measurement error in the covariates, Briggs and Domingue

(2011) found significant differences in teacher rankings in the data set analyzed by

the Los Angeles Times (Felch et al., 2010) depending on the covariates that were

included in the model. We recommend further investigation of the impact of omitted

or incorrectly measured fixed effect covariates on VAM teacher rankings.

Another avenue for future work involves developing robust estimation meth-

ods for value-added models. Outlier-robust regression methods may be useful for

studying the impact of outliers on the teacher rankings. Another option would be to

use a nonparametric mixed model, or semiparametric methods which improve the

fit of incorrectly specified parametric models with a certain amount of nonparametric

fit (Waterman et al., 2006). Employing these different methods would allow for an

analysis of the sensitivity of teacher rankings to the assumptions of the potentially
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misspecified linear model. This work could be combined with the development of

influence diagnostics for the GP model to evaluate the fit of the linear mixed model

based GP VAM.

The methods developed in this dissertation can be generalized or modified

for applications to other non-linear mixed models with multi-membership or non-

nested designs. For example, non-linear mixed models are popular in the pharma-

ceutics industry in the study of pharmacokinetics. It should be possible to adapt the

methods we have developed to compute the estimates of these types of models,

possibly yielding greater flexibility in the level of complexity of the models that may

be fit. It is also interesting to explore the comparative performance of the Laplace

approximation, the fully-exponential Laplace approximation, and, when possible,

penalized quasi-likelihood methods in SAS software.

In another application, it should be possible to use multi-membership gen-

eralized linear mixed models in the ranking of sports teams when only win/loss

information may be used, such as with the BCS college football rankings. There

would be several advantages, both computational and theoretical, of treating teams

as random effects instead of fixed effects. Treating teams as fixed effects leads to

difficulties with complete separation (Allison, 2008) when the data contain teams

with perfect records: this is not an issue when the teams are treated as random

effects. However, treating teams as random effects leads to a multi-membership

design matrix for the random effects, producing an intractable integral in the likeli-

hood of dimension equal to the number of teams in the data. Work in this direction

has been limited by computational requirements which are met by the methods we

have developed.

Value-added models are widely acknowledged to be imperfect instruments

for measuring teacher effectiveness (Koretz, 2008; Braun et al., 2010). They de-
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pend on the quality of the test as a measuring instrument and are sensitive to

model assumptions and unmeasured covariates. When students are not randomly

assigned to teachers, effects ascribed to teachers may actually be more properly

attributed to the students who take those teachers. However, these difficulties are

also faced by other measures of teacher performance. Despite their shortcomings,

VAMs have great potential to provide information that can be used to improve the

educational system (Harris and McCaffrey, 2010).

Value-added models have been implemented for teacher evaluation by more

than 20 states as a result of Race to the Top and other educational initiatives. Many

of the properties of different VAMs, however, have not been well studied to date,

in particular the effects of past teachers and the potential effects of missing data.

The work in this dissertation provides methods for computing persistence of teacher

effects and proportions of variability coming from different parts of the educational

system. This information can be used to target resources, suggest designed ex-

periments, and improve quality of education. The ability to model mechanisms for

missing data and explore their effects on parameter estimates and VAM scores

gives researchers a valuable new tool for understanding influences in education.
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