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ABSTRACT

The use of energy-harvesting in a wireless sensor network (WSN) is essential

for situations where it is either difficult or not cost effective to access the network’s

nodes to replace the batteries. In this paper, the problems involved in controlling an

active sensor network that is powered both by batteries and solar energy are investi-

gated. The objective is to develop control strategies to maximize the quality of coverage

(QoC), which is defined as the minimum number of targets that must be covered and

reported over a 24 hour period. Assuming a time varying solar profile, the problem is

to optimally control the sensing range of each sensor so as to maximize the QoC while

maintaining connectivity throughout the network. Implicit in the solution is the dy-

namic allocation of solar energy during the day to sensing and to recharging the battery

so that a minimum coverage is guaranteed even during the night, when only the batter-

ies can supply energy to the sensors. This problem turns out to be a non-linear optimal

control problem of high complexity. Based on novel and useful observations, a method

is presented to solve it as a series of quasiconvex (unimodal) optimization problems

which not only ensures a maximum QoC, but also maintains connectivity throughout

the network. The runtime of the proposed solution is 60X less than a naive but optimal

method which is based on dynamic programming, while the peak error of the solution

is less than 8%. Unlike the dynamic programming method, the proposed method is

scalable to large networks consisting of hundreds of sensors and targets. The solu-

tion method enables a designer to explore the optimal configuration of network design.

This paper offers many insights in the design of energy-harvesting networks, which

result in minimum network setup cost through determination of optimal configuration

of number of sensors, sensing beam width, and the sampling time.
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Chapter 1

INTRODUCTION

Advances in microelectronics have made it possible to produce very low cost and low

power active sensors. Consequently the deployment of a large network of active sensors

over a large geographical area is now feasible and can be used for a variety of purposes

such as environmental and structural monitoring or area surveillance [4].

A desirable feature of modern sensor networks is zero reliance on existing phys-

ical infrastructure such as power lines and network cables, but instead use chemical bat-

teries for power and RF chips for wireless communication. This introduces a number

of challenging problems in the management of such a network. A substantial body of

research has been conducted in the area of low-power wireless sensor network (WSN)

management at the physical, networking, and application layers [4].

Regardless of how energy efficient a battery powered sensor network is made,

eventually the network will fail due to the limited power resource; and sensor nodes

will either have to be replaced or repaired manually. This can be a costly procedure if

the network is in a difficult to access area. A solution to this problem is to use energy-

harvesting in conjunction with rechargeable batteries. This will reduce the cost by

requiring smaller batteries for some measure of performance, or equivalently improve

the performance for the same cost. Some work has gone into hybridizing sensor net-

works to use power from both a rechargeable battery and a renewable energy source.

Currently, the most promising form of renewable energy is solar. Photovoltaic pan-

els, more commonly known as solar panels, are becoming cheaper to manufacture and

are capable of providing greater energy density than ever before thus allowing for more

harvested energy from smaller, cheaper panels. These advances have made solar energy

viable, and profitable [5].
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Figure 1.1: Sensor nodes scattered in a sensing region.

With these benefits of solar energy comes many new challenges. Energy-harvesting

adds a degree of uncertainty to the task of managing the sensors (adjusting sensor radii,

sampling intervals, maintaining connectivity, etc.) due to the unpredictability of the

solar profile (cloud cover, shadows of buildings, routing paths, etc.). Thus the basic

and important problem of guaranteeing a minimum coverage of targets becomes an

even more important problem with the energy-harvesting sensors [6]. Also an optimal

scheduling policy allows a designer to scale the battery, sensor cover region, and the

solar panel size for each sensor node appropriately to minimize the network startup

cost, while ensuring a minimum quality of coverage (QoC).

1.1 Sensor Network Architecture

A sensor network is comprised of numerous sensor nodes deployed over a geographic

region such as in Figure 1.1. Thanks to the relatively cheap nature of individual sensor

nodes, the number of nodes can be in the hundreds or more. Each sensor node is

capable of monitoring a subset of the network region and producing data based on

the state of the environment. This data is then routed to a centralized base station via
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some given network protocol. It is then up to the base station to make the appropriate

response to the data. The network architecture can vary greatly based on the operating

environment, sensor/target location, and the physical hardware of the sensor nodes.

Each of these factors is briefly described below.

Operating Environment

A major draw to wireless sensor networks is the minimal existing infrastructure needed

for deployment. For this reason sensor networks are often deployed in remote or hostile

geographical regions or regions in which human presence can obscure observations.

Examples of such regions are battlefields, oceans, volatile volcanic regions, and animal

habitats. Furthermore, for solar-powered WSN’s, the environment can play a huge role

in solar energy harvesting. Basic geographical location can alter solar flux along with

humidity, cloud cover, and any obstructions (e.g. trees, buildings) that may be present.

The vast number of applications and operating environments play an important role in

the sensor hardware and network design.

Node Deployment

A critical factor to the performance and operations of a sensor network is the deploy-

ment layout; that is the locations of the sensors and the targets as well as the regions

that each sensor is capable of monitoring. Examples of deployment types are statically

placed by hand, or randomly deployed by an aerial vehicle. In addition to the initial

deployment, networks must be able to adapt to changing geographic topology sensor

node failures, and additional sensor node deployments. For these reasons it is important

for sensor network algorithms to be flexible to changes and self-organizing under any

deployment conditions and for large numbers of sensor nodes.

3



Figure 1.2: Components of a sensor node.

Hardware Constraints

A sensor node is a highly modulized unit which is customized for the specific sensor

network application. Figure 1.2 illustrates a general sensor node design such that data

communication is shown with solid black lines while energy flow is given by dotted

red lines. Key elements of a sensor node are (a) a sensing unit or an array of sensing

units, (b) a processing unit, (c) a communication unit, and (d) a power unit with possible

energy harvesting hardware. These elements are detailed in Figure 1.2 by dashed boxes

with the appropriate alphabetic labels.

The sensing unit is typically an analog sensor combined with an analog to dig-

ital converter (ADC). Sensors vary widely by applications. In general there are two

types of sensors - active and passive. Active sensors are sensors which interact with the

environment via electromagnetic/sonic waves or physical interactions. For this reason,

active sensors typically have much higher energy consumption than passive sensors.
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Typically the field of vision of such sensors is narrow (less than 30 degrees) and re-

ferred to as narrow beam sensors. Examples of active sensors include ultrasonic and

radar distancing sensors. On the other hand, passive sensors are sensors which receive

power from the phenomena that is being monitored. The only power necessary for such

sensors is the amplification circuitry to view the signals. In many cases, passive sensors

are omni-directional. Acoustic monitors are an example of passive sensors.

Regardless of the type of sensors, the node uses a communication unit such

as a radio frequency (RF) IC to communicate sensed data with other sensor nodes

and with a centralized base station. The communication unit may also provide sensor

location when needed either directly or through a location finding process [7]. The

power unit is typically a chemical battery which may be restored by the use of energy

harvesting units. Additional circuitry may be required to ensure the battery receives and

produces the correct voltages and currents. Ideally the power unit should also provide

the processing unit with the state of the battery and the energy harvesting information.

The processing unit is responsible for controlling all of the individual units and ensuring

the network application is achieved.

1.2 Prior Related Works

The Operational Range Assignment Problem for solar powered sensor networks is a

general version of the target cover problem, which takes advantage of predictable re-

newable energy sources [8]. The simplest form of the operational range assignment

problem is the cover problem where there are only two ranges for sensing - 0 (off) or r

(on). One of the most intuitive definitions of the cover problem was provided by Klee

and solved by O’Rourke [9]. Klee referred to this as the Art Gallery Problem and it

asks: given a floor plan of an art gallery, how many stationary guards are needed to
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monitor every exhibit in the art gallery if all guards have a known fixed field of vision.

This was optimally solved in 2D space [9].

The cover problem has been greatly extended and modified since the Art Gallery

Problem. In sensor networks, the sensor nodes or “guards” already have fixed locations

just like the targets or “art exhibits”. Therefore, the objective is to find a subset of

these nodes such that all targets are covered. In the case where all sensors have a fixed

sensing radius, full cover verification can be determined efficiently through the use of

techniques like binary decision diagrams [10] and perimeter cover methods [11].

When considering the sensor nodes’ limited energy supply, the cover problem

extends to the cover life time problem. The goal of this problem is to extend the time

in which all targets are covered for the maximum duration. This is typically addressed

by minimizing total energy consumption [12, 13] or prolonging the weakest node’s life

time [10].

One can further constrain the cover problem by considering connectivity. In tra-

ditional battery powered sensor networks a great deal of research has been conducted in

the area of network connectivity. Liu et. al. [14] considers both the coverage and con-

nectivity problem in wireless sensor networks. They provide a randomized scheduling

algorithm which provides probabilistic levels of QoC. Connectivity is then ensured by

turning on additional sensor nodes until all nodes are connected to the sink. Zhang

et. al. [15] proposed an alternative solution to the connectivity and coverage problem

called Optimal Geographical Density Control (OGDC). The authors proved that any

sensing network with full area coverage would be connected if the radio range of the

sensors was twice that of the sensing range assuming all sensors used the same sensing

range; their solution assumes this is a network property. Their distributed solution con-

structs a cover schedule via a series of request messages and volunteering to determine

6



which sensors are on and off. Simulations show that the algorithm outperforms other

similar algorithms.

In [8], the life time problem was extended further by introducing multiple dis-

crete sensing ranges that each sensor may choose from at any given time. This paper

refers to this problem as the operational range assignment problem. The authors have

shown this problem to be NP-Complete and have provided several heuristics for ap-

proximate solutions. One approximate solution used a centralized linear programming

(LP) solution, which finds a series of valid covers that maximize the lifetime of the

network. The second approximate solution used a greedy heuristic, in which covers

were constructed by increasing a sensor’s sensing radius sequentially until maximum

number of targets is covered. The results produced by this method were inferior to the

LP solution, because the constructed covers required a wide variation in sensing ranges

among the sensor nodes. Although this result is valid for a linear sensor power model,

in realistic scenarios, where sensor power consumption is at least quadratic with sensor

radii, the large sensing radii will quickly deplete the sensors resources.

The above solution was improved with the addition of fuzzy sensor location

knowledge in [16]. The proposed solution used a distributed approach to solve the

operational range assignment problem similar to the greedy method used in [8]. In

this method, the first phase consists of sensors increasing their radii in the order of

available battery life until all targets are covered. In the second phase, sensors’ radii

are decreased, while ensuring that full coverage is still met. Although this method in-

creased the network lifetimes substantially, it does not include the possibility of energy

harvesting sources.

There has been some focus on increasing network lifetime through message

routing in solar powered networks. Niyato et. al. [17] explored the unpredictability of
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energy harvesting via solar radiation. With the use of Markovian models and game

theory, cooperation between sensors was better established to minimize the losses in

message passing, and thus, increasing the overall energy-efficiency of the network.

In [18], a set of routing protocols for the battery powered sensor networks were intro-

duced, whose job is to prevent passing messages through areas of the network which

have reduced solar energy. A gradient was formed at each sensor node, which deter-

mined the subsequent path of a message leading to the destined receiver. Results show

that there were considerable energy savings in shifting the burden away from resource

limited nodes.

1.3 Our Contribution

To summarize, the following are the key contributions of this paper:

1. This thesis introduces the concept of optimal scheduling of sensor radii in a solar

powered network that maximizes the minimum cover over the operational time

period of 24 hours. Furthermore, this work considers network connectivity as

a constraint of the cover problem; a critical necessity to sensor networks over-

looked by many when considering the cover problem.

2. The radii scheduling problem is formulated as a nonlinear optimal control prob-

lem while the connectivity problem is expressed as a linear control problem. The

intersection of these two problems defines the feasible search space for the overall

problem. Based on certain useful characteristics of the problem, a near optimal

approximate method is described. The problem is solved as a binary search of

quasi-convex optimization problems solved over all time intervals. The search is

over the minimum cover. The proposed solution outperforms the naive DP ap-
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proach by a factor of 60 in computation speed, while maintaining the accuracy

of solution to within 8% of the optimal solution.

3. Several design space exploration experiments are described that offer new in-

sights in the design and deployment of sensor networks that employ energy-

harvesting.

1.4 Notation and Terminology

For consistency, terms and notations used in this document will be as follows: when

referring to matrices and vectors, bold script will be used. Additionally, when an in-

dividual element of a set is referenced, subscript will be used. Descriptive tags are

denoted by superscripts.

Covering Terms

• S - set of all sensor nodes, including their locational information. The size of this

set is denoted by N.

• T - set of all targets, including their locational information. The size of this set is

denoted by M.

• K - number of discrete time intervals dividing the total operational time.

• τ - length of each time interval.

• r(t) - vector or radii corresponding to the elements of S at a given time, t. 0 ≤

r ≤ rmax.

• θn - angular direction narrow-beam sensor n is facing. All θn should be taken

with respect to the same reference vector.
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• θnm - angular direction target m is in respect to sensor n. All θnm should be taken

with respect to the same reference vector.

• φn - beam width or beam angle of sensor n.

• ζ (r(t)) - cover function. Given a vector of radii, r(t), this returns the number of

elements covered in T .

• ζ min - minimum number of targets covered at any point in time during the oper-

ation time.

Battery and Power Terms

• B(t) - vector of residual battery energy corresponding to the elements of S at time

t. 0≤ Bn(t)≤ Bmax.

• Binit - initial residual battery energy of the N sensors.

• Bmin - minimum required battery level, such that B(t)≥ Bmin ∀ t.

• Psol(t) - vector of harvested solar power for each of the N sensor nodes at time t.

• Psen(r(t)) - power consumed by the N sensors at time t given a the vector of radii,

r(t).

Connectivity Terms

• Son(t) - subset of S. This set contains all sensors such that rn(t)> 0.

• Sbase(t) - contains all base stations for the network. In other words, all locations

in which the elements of S may deliver sensed data.

• x(t) - N×N matrix where each element, xn1n2 , corresponds to the amount of data

(in messages) that sensor n1 sends to n2.

10



Figure 1.3: Thesis structure.

• Dn(t) - amount of data sensor n must transmit at time t, due to covering targets.

Effectively this is dictated by the number of messages.

• ERX(t) - N×N matrix, where each element, ERX
n1n2

, corresponds to the amount of

energy n2 needed to receive one message of data from n1.

• ETX(t) - N×N matrix, where each element, ET X
n1n2

, corresponds to the amount of

energy n1 needed to transmit one message of data to n2.

• Ecom(t) - total amount energy spent from communications.

11



1.5 Content Outline

Figure 1.3 shows the report’s flow. This introduction gave basic background informa-

tion on solar-powered WSN’s and several versions of the target cover problem. Further-

more, motivation for this work was presented. The required background knowledge is

presented in Chapters 2 and 3. In Chapter 2, the energy models used for the sensor

nodes and the solar energy are presented and justified. In Chapter 3 a brief introduction

to optimal control theory and convex optimization is given. With these two chapters,

enough information is known to understand the operational range assignment problem

for solar powered WSN’s formally defined in Chapter 4 and the presented solution is

in Chapter 5. Simulation results are discussed in Chapter 6. Finally results and contri-

butions are summarized in Chapter 7.
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Chapter 2

SENSOR MODELS

As discussed in Chapter 1, sensor nodes are composed of several power hungry com-

ponents such as active sensors, radios, and microcontroller units. Furthermore, even

with energy harvesting systems, nodes only have a finite amount of energy resources

for these components at any given point in time. Hence, to maximize the quality of

cover of the network, accurate estimations of energy resources and demands is critical.

In this chapter, the energy and power models used in this work are presented along with

the formal mathematical representation of the cover model.

2.1 Solar Profile

Definition 2.1.1. A solar profile, Psol
n (t), is the available solar power via the solar

panel throughout the operating time period for sensor node n.

In practice, this profile is a stochastic process, however, the theoretical max-

imum solar power profile (also called the ideal solar profile) may be modeled with

Figure 2.1: Ideal and actual [1] solar power profiles observed in Phoenix, Arizona on
January 8, 2011
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Figure 2.2: The sensing region of an active, narrow beam sensor.

the knowledge of the Sun’s and the Earth’s physical properties (speed, rotation, shape,

and so on). This thesis uses the models from [19] and [20] to model the ideal solar

radiation. Figure 2.1 shows the ideal and actual solar profiles for January 16, 2011

in Phoenix, Arizona [1]. Because the profile may be any process (random or other-

wise), it is important to keep energy harvesting algorithms flexible enough to handle

large changes in power supply. The efficiency of most modern solar panels is found be

between 10-15% [21], and the same will be assumed in this work.

2.2 Sensor Power

Definition 2.2.1. The power consumed by sensor n to monitor a distance r, Psen
n (r), is

a direct function of the sensing distance.

The sensor system assumed in this work consists of active, narrow-beam sensors

such as an ultrasonic sensor or a radar. The area in which a narrow-beam sensor is

capable of monitoring can be expressed as a cone assuming uniform sensing distance

along the beam-width φ (also referred to as beam angle). Figure 2.2 illustrates the
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area which may be covered. One can note that as φ approaches 2π; the narrow beam

sensor becomes a omni-directional sensor. In this work we assume that φ is fixed and

is given; however, the sensing radius is variable with exponentially increasing cost to

the residual battery life.

Narrow-beam sensors work by transmitting data in the form of waves to detect

the presence or the absence of a target. If the target is present, the sensor will receive

either a response from the target, or the remnants of the reflected/scattered data the

sensor originally sent [22]. The relationship between the transmission power and the

received power is given by the Friis transmission equation [23],

Pr

Pt
= GrGt

(
λ

4πr

)α

. (2.1)

Pr and Pt represent the power of the signal at the receiver and the transmitter respec-

tively. Likewise, Gr and Gt represent the respective gain factors. λ represents the signal

wavelength, α is the degradation exponent between 2 and 5 that is experimentally de-

termined, and r is the distance between the transmitter and the receiver. Note, that one

may need to double the value of r if the sensor only receives remnants of the original

signal. This is owed to the fact that the signal must make not only reach the target,

but also return to the sensor node. The above equation may be rearranged to find the

optimal transmission power for a given transmission distance and minimum receiving

power, as shown below

Psen
n (r) =

(
Pmin

r
GrGt

)(
4πr
λ

)α

. (2.2)

Alternatively, for dish based radar systems, the following equation is equivalent

to (2.2).

Psen
n (r) =

Pmin
r (4π)2r4

GrGtArσF4 . (2.3)

Ar is the area of the receiver’s dish, F is the propagation factor (F = 1 in a vacuum)

and σ is the scattering coefficient of the target. For simplicity, we ignore radio in-

15



terference between simultaneously active sensors, assuming that such interference is

managed by the underlying MAC layer (e.g., through an appropriate TDMA or FDMA

mechanism). Channel access protocols for interference mitigation in wireless sensor

networks (WSN) are readily available.

The sensor’s power can now be expressed simply in the form shown in (2.4)

where α and β are based on the properties of the sensor and µ is the average power

requirement of all other system components, except the communication unit. These

values are found through experimentation.

Psen(r) = β rα +µ. (2.4)

The constant µ in (2.4) can be used to account for energy consumption related to chan-

nel access, data processing (e.g., fusion), and inter-sensor communications.

2.3 Radio Frequency Communication

RF communications and power requirements have been studied extensively. One may

take consideration to link budget, phase noise, start-up time, data rate, channel fading

and channel interference when determine an apt energy model for RF communica-

tions [24]. These effects are ultimately all dependent on the communication protocol

used by the sensor network and since this work does not try to create such an extensive

protocol, all effects can be considered constant.

Furthermore, if the location of sensors are fixed and known along with message

size and communication speeds, we may construct an N×N matrix, ET X , correspond-

ing the transmission energy requirements to send a single message of data. Once again

we may use Friis law (2.1) to find the transmission power required to send from one

node to another. Figure 2.3 summarizes the results from [25] which experimented with

Texas Instruments’ CC2500 [26] to find the range capabilities of their RF chip. This
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Figure 2.3: Transmission power vs. Range for TI’s CC2500 RF IC.

data conforms to (2.4) if α = 3 and β = 4.176 ·10−10W/m3. A similar matrix to ET X

can be constructed for the energy requirements to receive each message, ERX . The total

energy expended on RF communications may be expressed as the linear model

Ecom
n =

N

∑
i=1

ET X
ni χni +

N

∑
i=1

ERX
in χin, (2.5)

where χi j is the number of messages sensor i sends to sensor j.

2.4 Battery Model

The battery model used in this work is a simple linear battery model (linear charging

and discharging) with no energy loss or leakage. However, we will show that our solu-

tion can easily accommodate the more realistic models that account for rate dependent

capacity and temperature dependence [27, 28, 29] in latter sections. For short term

operations, such as the 24 hour target monitoring application addressed in this paper,

the benefits of using a more complicated battery model are negligible and would only

serve to increase the time complexity of our solution. It will be shown in later sections
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Figure 2.4: An active sensor and relevant terms.

that the proposed solution can work for any battery model with monotonic charging

and discharging profiles. The energy in the battery at time t for sensor n is given by

Bn(rn, t) = Bn(0)+
∫ t

0
(Psol(z)−Psen

n (rn(z))) dz−Ecom
n (t), (2.6)

where Ecom
n (t) is the energy spent routing messages upto time t.

2.5 The Cover Function

In Chapter 1, a level of cover, ζ , was mentioned. This section will formally define

ζ (r(t)), the cover function. A cover model defines the percentage or the total coverage

of all targets for a given vector of sensor radii. It depends on the location of sensor

nodes and targets. Equation (2.7) defines the coverage of a single target m by a single

omni-directional, active sensor n.

ζ (rn,n,m) =


0, for rn < 2×dnm

1, for rn ≥ 2×dnm

(2.7)
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where dnm is the distance between sensor n and target m. Note that the constant factor 2

comes from the sensor being an active sensor (e.g. radar), as the sensing signal travels

to the target and then is reflected back to the sensor node. For the more general case of

narrow beam sensors, the cover function is defined by

ζ (rn,n,m) =


0, for rn < 2×dnm or θm /∈ [θn± (φn/2)]

1, for rn ≥ 2×dnm and θm ∈ [θn± (φn/2)]
(2.8)

where θn is the angular direction that sensor n is facing, and θm is the angular direction

target m is in respect to n with the same reference vector used to find θn. φn represents

the beam width in radians of sensor n. θm, θn, and φn are all expressed in radians

between 0 and 2π . Note, care must be taken to ensure calculations fall in this range.

An example of these values are shown in Figure 2.4 where angles are taken in reference

to the positive x-axis.

The cover function for the entire network is defined as the total number of tar-

gets in T covered by the sensors in S with radii r, is given by

ζ (r) = ∑
m∈T

max
n∈S

(ζ (rn,n,m)). (2.9)

Figure 2.5 (b) shows the cover function ζ for the 1-D sensor network shown in

Figure 2.5 (a) assuming omni-directional sensors are used. Notice the discrete nature

of the cover function with respect to sensor radius. This is because the cover function

is defined as the number of targets covered, and for certain sensing ranges, it is possible

not to cover any new targets.
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(a) 1-D sensor network. The sensor location is denoted by a square
and target locations by diamonds.

(b) The corresponding cover function.

Figure 2.5: 1-D sensor network and its cover function.
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Chapter 3

OPTIMAL CONTROL THEORY AND CONVEX OPTIMIZATION

In this chapter, a brief introduction to optimal control theory and convex optimization

is provided. We define basic information concerning optimal control theory and vari-

ous solutions to some optimization problems including dynamic programming, convex

optimization, and linear programming.

3.1 Introduction

In many cases, a system design requires an optimization of a given objective to provide

the best quality of service or a minimal cost to the operator. This type of system design

is achievable with optimal control theory [2]. Optimal control theory is an extension

of calculus of variations with foundations made by Richard Bellman and Pontryagin in

the 1960’s. In optimal control theory, one wishes to achieve mathematical optimization

by deriving an optimal control policy. Optimal control can be defined by

u∗(t) = f(x(t), t). (3.1)

That is the optimal control u* is a collection of time varying differential equations each

a function of the state, x(t), and time, t. Much like the optimal control, the state evolves

with time and is defined by another collection of differential equations. This optimal

control may be found by solving

min J = h(x(t0), t0,x(t f ), t f )+
∫ t f

t0
g(x(t),u(t), t)dt (3.2)

s.t. ẋ(t) = a(x(t),u(t), t) (3.3)

b(x(t),u(t), t)≤ 0, (3.4)

c(x(t0), t0,x(t f ), t f ) = 0, (3.5)
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Figure 3.1: The search space used in dynamic programming applied to the QoC prob-
lem [2].

where (3.3) is the state transition model, (3.4) is the path constrains, and (3.5) is the

boundary conditions. In the general case, this type of optimization is very difficult

to achieve for higher dimensional problems, therefore it is important to have efficient

methods of solving optimization problems for special cases. This chapter explores var-

ious solutions to special types of optimal control problems beginning with the most

general solution, dynamic programming, and progressing to more restrictive, special-

ized solutions like convex optimization and linear programming.

22



3.2 Dynamic Programming

Optimal control theory is largely based on the principle of optimality, that is, an optimal

control policy has the property that regardless the current state and past decisions; the

remaining control may form an optimal policy with regard to the current state. Equiv-

alently this is saying that optimal control problems have optimal substructures. These

concepts are the basis for the Hamilton-Jacobi-Bellman equation

J = h(x(t f ), t f )+
∫ t f

t0
g(x(τ),u(τ),τ)dτ, (3.6)

where J is the total cost, and h and g are specified functions which produce a cost given

the current state, time and control.

Dynamic programming (DP) takes this concept and applies it to computational

science [2]. First, the states, the time, and the controls are discretized if not already so.

It can be shown that when given enough levels of discretization, the approximations

will approach their continuous solutions. Following this, a DP solution first calculates

and stores h from (3.6) for each possible state at time t f . Following this, DP works

backwards from time t f to t0 calculating and storing

J∗k = min
u(k)
{g(x(k),u(k))+ J∗k+1(a(x(k),u(k)))},∀x(k), (3.7)

where a is a function that when given the current state and a control vector, will de-

termine the state in the following time instance, k+ 1. In the DP methodology, both

the optimal cost, J∗k and the corresponding optimal control, u∗(k) must be stored. This

process is illustrated by Figure 3.1, where the states correspond to discrete levels of

residual battery energy and controls to sensing radii.

It should be noted however, that the general DP solution is pseudo-polynomial

in complexity meaning that the input is exponential in length. Given that time is discre-

atized to K instances, x is discretized to X instances, and u is discretized to U instances,
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Figure 3.2: A convex function [3].

then t can be shown that the run time of the general DP algorithm is O(KX |x|U |u|). For

many instances, this is perfectly acceptable (such as in the shortest path problem); how-

ever, for the sensor cover problem where the size of x and u may be in the hundreds or

thousands, this is simply not an efficient method.

3.3 Convex Optimization

Convex Optimization Problems

A special case of optimization is when your optimization problem is dictated only by a

set of convex functions. A function, f : X → R defined on a convex set X , is said to be

convex if given any two points, x1,x2 ∈ X and any θ ∈ [0,1] [3].

f (θx1 +(1−θ)x2)≤ θ f (x1)+(1−θ) f (x2) (3.8)

Figure 3.2 illustrates this meaning. To this end, we can formally define a convex opti-

mization problem to be in standard form

minx f (x) (3.9)

s.t. g(x)≤ 0, (3.10)

h(x) = 0, (3.11)

if f and g are a convex functions, x belongs to a convex set, and h is an affine function.

A similar approach may be taken for maximization over concave functions.
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Figure 3.3: The iterative process to find the minimum value of a convex hull [3].

Data: f - objective function, g - inequality constraints, h - equality constraints,
x0 - starting point, E - stopping criteria

Result: min value of f
1 x := x0;
2 while all e ∈ E is false do
3 if x is unfeasible then
4 ∆x := the steepest descent of g and h to feasible region;
5 else
6 ∆x := the steepest decent of f ;
7 Choose a step size t > 0;
8 end
9 x := x+ t∆x.

10 end
Algorithm 1: Gradient search algorithm for Convex Optimization [3].

Convex Optimization Algorithms

Several algorithms exist to solve the general convex optimization problem including

interior-point method [30], cutting-plane methods [31], and active-set [32], however a

competitively viable and intuitive method is based on gradient search. Gradient search

methods are a relatively simple algorithm as outlined in Algorithm 1. The stopping

criteria is defined by the user. Typically this is a collection of requirements including
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Figure 3.4: A quasi-convex function [3].

tolerances to the object minimizations, step size, iteration numbers, and so on. This

process is shown in Figure 3.3. For a proof of convergence for this method please

see [3]. It should be noted that there are no polynomial time bounded algorithms for

convex optimization.

3.4 Quasiconvex Optimization

A weaker definition of convex functions is quasi-convex functions. A function, f :

X → R defined on a convex set X , is said to be quasi-convex if given any two points,

x1,x2 ∈ X and any θ ∈ [0,1].

f (θx1 +(1−θ)x2)≤ max( f (x1), f (x2)) (3.12)

An example of a quasi-convex function is given in Figure 3.4. Simialarly, quasiconcave

functions may be defined as a function, f : X → R defined on a convex set X , is said to

be quasi-concave if given any two points, x1,x2 ∈ X and any θ ∈ [0,1].

f (θx1 +(1−θ)x2)≥ min( f (x1), f (x2)) (3.13)

One should note, however, that these definition still allows the gradient search method

described in 3.3 to be used since the function will always have a unique minimum (or

maximum if the function is quasiconcave). A useful observation is that any monotonic

function (either increasing or decreasing) is quasi-linear. A function is quasi-linear if

26



it is quasi-convex and quasi-concave. We will now show that any monotonic function,

f (t), is quasiconvex if the dom f is also convex. If a function is monotonically increas-

ing it is given that (3.14) is true and that ∇ f (x) is positive. It follows that (3.15) must

also be true which is the first-order condition for quasiconvexity [3].

f (x)≤ f (y)⇒ x≤ y s.t. x,y ∈ dom f (3.14)

⇒ ∇ f (x)T (y− x)≤ 0 (3.15)

This result is critical to the validity of our solution in Chapter 5 since many of

our functions are monotonic (cover, power, battery).

3.5 Linear Programming

The final subcategory of optimization, introduced in this paper is linear programming.

Linear programming is a special case of convex optimization in which all functions are

linear in nature. We may therefore describe a linear programming problem as

min
x

F ·x (3.16)

s.t. G ·x≤ b, (3.17)

H ·x = beq, (3.18)

One of the original methods to solve linear programming problems is the Simplex

method [33]. Since then, highly efficient algorithms have been established such as

Yinyu Ye’s method [34], which has runtime complexity of O(n3), where n is the num-

ber of variables. It should be noted that linear programs are far easier to solve than the

general convex optimization problem and can be applied to many graph problems such

as routing table construction.
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Chapter 4

QUALITY OF SENSOR COVER PROBLEM

In this chapter, the quality of cover for solar powered sensor networks is introduced.

Given a network region R (see Figure 4.1), with M targets at known locations, N sensors

with adjustable sensing radius r and solar profile Psol
n (t), the quality of cover problem

aims to find radii schedule such that the minimum number of targets covered at any

point during the operating period is maximized. This objective will be referred to as the

Quality of Cover or QoC for short. As discussed in the previous chapter, the size of the

problem grows exponentially with N even for a discrete number of sensing ranges. We

present the formal definition of the adjustable range quality of cover problem as used

in this work. Next we define the cover function as well as examine how to approximate

Figure 4.1: A Sensor network.
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Figure 4.2: An acceptable 100% cover. Each grid point is a target.

the cover function as a convex function. Finally we make note of the importance of

sensor node connectivity to the target cover problem.

4.1 Operational Range Assignment Quality of Cover Problem

The operational range assignment problem is defined as follows: given a set of sensor

nodes and a set of targets, find a subset of sensor nodes and their corresponding sensing

radii, which maximizes the quality of coverage (QoC), for the entire operational time

of the sensors. The QoC is defined as the minimum cover ζ min achievable at any point

in time. In the example shown in Figure 4.2, a valid cover for one time instance is

found with the sensor ranges S1 = 2, S2 = 2, S3 = 0 and S4 = 1, assuming ζ min = 16.

The problem description demands such covers be computed for entire operational time,

while maximizing ζ min.
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Assuming connectivity costs are negligible, the corresponding formulation is

given by:

max
r(t)

min
0≤t≤24 hrs

ζ (r(t)) (4.1)

s.t. B(r, t) = B(0)+
∫ t

0
(Psol(z)−Psen(r(z))) dz (4.2)

B(t)≥ Bmin, ∀t ∈ [0,24 hours] (4.3)

Psen
n (rn) = β rα

n +µ, ∀n ∈ S. (4.4)

In the above formulation, the objective (4.1) is to maximize the minimum level

of coverage experienced at any time during a day. The constraint (4.3) prevents the

battery of any sensor from reducing below a specified threshold (defined by the network

designer), while (4.2) describes the state transition model of the battery energy. A linear

battery model is assumed with no energy loss for simplicity and to ensure convexity in

the state transition model. The variable of optimization is the vector of time varying

sensor radii r(t). The above formulation falls under the realm of nonlinear optimal

control problems [2]. Note that the sensor radii are assumed to be continuous, but in

practice, the radii are discrete. Hence, the radii obtained from the solution have to be

discretized corresponding to the discrete set of ranges.

Nonlinear optimal control problems of the above type are typically hard to

solve, computationally expensive problems. The most common solution techniques

are the dynamic programming (DP) and the Hamilton-Jacobi-Bellman methods [2]. To

solve this problem using dynamic programming, the entire duration of execution (the

24 hour period) should be partitioned into K time intervals to approximate the contin-

uous nature of the problem. Furthermore, discretization of the states and controls are

needed. Let Qb denote the number of states for battery energy and Qr be the number of

discrete states for sensor radii. The run time complexity of the DP solution would be
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O(K(Qb)
N(Qr)

N) for an N sensor network, since the solution requires examining all

possible controls at every possible state. For this reason fast, near optimal solutions are

needed.

4.2 Connectivity

Definition 4.2.1. A sensor n1 and sensor n2 have a link if n1 has enough energy supply

to transmit all required data for a distance dn1n2 to n2, and n2 has enough energy supply

to receive all required data. These energy demands are dictated by power models such

as Friis transmission equation (2.1) and the per message transmission times.

Definition 4.2.2. A sensor n1 has connectivity with another sensor n2 only if there

exists an ordered subset of sensors, p such that elements si and si+1 have a link and

p0 = n1, pe = n2, where pe is the last element of p.

In the prior sections, communication costs were assumed negligible; however,

in certain applications, this may not be the case. For example long range communica-

tion devices require exuberant amounts of power to transmit data.

In the centralized version of the target cover problem previously described, all

sensed data must be returned to a centralized base station. Combined with potentially

large communication energy costs, these reasons makes network connectivity a critical

requirement for the cover problem which should not be overlooked.

When considering connectivity, one must first know the sinks and the sources

of data. For the target cover problem, the sources of data are the sensors which are

actively monitoring targets, while the sinks are the base stations which manage and

react to the sensed data. We are therefore able to define connectivity if the following is

known:
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1. The energy to transmit and receive data across links must be known. This is

established by power models such as Friis equation and the transmission times.

We represents these values in the N×N matrices, ETX and ERX respectively.

2. Given a vector of radii, the associated cover model, and the design parameters of

messages size, we are able to find χ which represents the per message routing

table for the network.

The second point is of most importance for defining the connectivity problem. Knowing

the vector of radii provides several key pieces of information described below.

1. The QoC it generates for the current time, k.

2. The sources of data which must be delivered to the base station. This set of

sensors is referred to as Son(k).

3. The amount of data from each source (a design parameter). Let this be a vector

of length N called D.

4. Partial battery levels at time t after solar and sensing powers are factored, B′(t) =

B(t)+ tPsol(t)− tPsen(t,r(t)).

These pieces of information are sufficient to determine if connectivity can be estab-

lished.
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We are now able to define connectivity in sensor networks as any χ which that

satisfies the conditions,

N

∑
j=1

χ ji(k)−
N

∑
j=1

χi j(k) = 0, ∀i ∈ S−{Son∪Sbase}, (4.5)

N

∑
j=1

χ ji(k)−
N

∑
j=1

χi j(k) =−Di, ∀i ∈ Son, (4.6)

N

∑
j=1

χ ji(k)−
N

∑
j=1

χi j(k) = Di, ∀i ∈ Sbase, (4.7)

Ecom
n =

N

∑
i=1

ET X
ni χni +

N

∑
i=1

ERX
in χin, (4.8)

B(t + td) = B′(k)−ECOM(k), (4.9)

B(t + td)≥ Bmin (4.10)

where χ(k) is the per message routing table for the network at time k and ECOM(t) is

the total energy expended from communications at time t. We define the time required

to transmit these messages from source to sink as td . Equations (4.5)–(4.7) are standard

flow conservation constraints ensuring all data from sources reach the base stations (the

sinks), while (4.8)–(4.10) are the state transition requirements. Care must be taken to

force any elements of χ to assume the value 0 if it does not correspond to an actually

link in the network. Since these conditions ensure all data is delivered to the base station

and no sensor exerts more energy than it is capable of outputting, we can conclude that

χ is a valid routing table and connectivity is achieved. It should be noted, that in the

above formulation, messages may be split and the overhead to do so must be negligible;

otherwise, the χ must consist of integer values only.

Consider the example shown in Figure 4.3 (a). A valid routing scheme is shown

in Figure 4.3 (b) where the elements of χ are presented above the links. It is clear that

all sources of data from Son are routed to the base station while the residual battery lives
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(a) A sensor network with partial battery levels,
links, and given sources/sinks.

(b) An example of a valid connectivity.

(c) An example of an invalid connectivity. (d) An example of an (in)valid connectivity.

Figure 4.3: An example of finding connectivity. The base station (B) is given as the
first entry in each of the matrices.

are kept above zero unlike in Figure 4.3 (c). Furthermore, no messages are fragmented

between links such as in Figure 4.3 (d) which may cause an invalid choice of χ .
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4.3 Summary

For completion, the full mathematical problem formulation is given below for the Qual-

ity of Cover Problem with Connectivity Constraints,

max
r(t)

min
0≤t≤24 hrs

ζ (r(t)) (4.11)

s.t. B(r, t) = B(0)+
∫ t

0
(Psol(z)−Psen(r(z))) dz−ECOM(z) (4.12)

B(t)≥ Bmin, ∀t ∈ [0,24 hours], (4.13)

Psen
n (rn) = β rα

n +µ, ∀n ∈ S, (4.14)

N

∑
j=1

χ ji(t)−
N

∑
j=1

χi j(t) = 0, ∀i ∈ S−{Son∪Sbase}, (4.15)

N

∑
j=1

χ ji(t)−
N

∑
j=1

χi j(t) =−Di, ∀i ∈ Son, (4.16)

N

∑
j=1

χ ji(t)−
N

∑
j=1

χi j(t) = Di, ∀i ∈ Sbase, (4.17)

Ecom
n =

N

∑
i=1

ET X
ni χni +

N

∑
i=1

ERX
in χin. (4.18)
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Chapter 5

CENTRALIZED QUASICONVEX COVER ALGORITHM

In this chapter, we present our quasi-convex optimization-based solution to the quality

of cover problem defined in Chapter 4. We will begin by making a few key observations

regarding the problem formulation which will serve as a foundation for our solution.

Following this we provide the reader with our approximation for the cover model. We

then present our algorithm for solving cover and how we are able to maintain an asso-

ciated connectivity.

5.1 Solution Overview

We first make few observations regarding the problem formulation (4.11)–(4.18):

1. The objective function in (4.1) for a fixed time is a discrete quasilinear function

since it is monotonically increasing (weak form of convexity, also a quasiconvex

function).

2. The conditions (4.12)–(4.18) can be easily shown to be convex since all equations

are either linear or monotonic.

3. The connectivity constraints (4.15)–(4.17) are clearly linear. Furthermore, the

control variable χ may be determined if r is given. This is due to the fact all

conditions relating to r do not effect χ except the state transition model in which

χ and r effect the state in a mutually exclusive manner. For this reason, our

determination of r may be viewed as the process of guessing an r, determining

an χ , and checking conditional constraints without any loss of correctness to the

optimal r and χ if the optimal r was guessed. This process allows us to alleviate
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some of the time complexity of convex optimization by introducing significantly

faster LP methods into our solution.

4. The resulting optimized overall minimum cover ζ has to be a constant over all

time instants. This is because, the goal is to maximize the minimum cover over

the entire duration of operation. There is no added benefit of having a higher

cover over the minimum cover for any duration of time, as it does not help in

maximizing the objective.

It is the last observation that is key in the transformation of the formulation.

Since ζ is lower bounded by a constant (say ζ min), we can now solve the formulation

(4.11)–(4.18) as a quasiconvex optimization problem for a specified time to achieve

ζ min coverage. This is repeated for all K intervals to ascertain if ζ min coverage is at-

tainable. If not, ζ min is lowered, or if yes, ζ min is increased to determine the next

maximum ζ min. This search process of determining optimal ζ min can be done through

a binary search technique. Note that in the above mentioned convex optimization prob-

lem, there is no real objective, as the objective is a constant ζ min. This gives rise to

multiple solutions. In order to avoid this, we attempt to provide the network with the

greatest chance of reaching ζ min by selecting the objective function

(1/N) ∑
n∈N

Bn(k+1)+min
n∈N

Bn(k+1) (5.1)

and maximizing over it. This objective states that we wish to maximize the tradeoff be-

tween average battery life in the network, and the minimum battery life in the network.

This objective can be rationalized by considering that the weakest node in the network

is most likely to cause a failure, thus we should remove some of its burden in hopes

that it may recharge its energy. The average battery life portion of the objective ensures

all nodes with battery greater than the weakest node cover the targets in an efficient

37



manner. Algorithm 2 outlines the problem transformation discussed in this section and

as Figure 5.2 illustrates.

Input: B(0),Psol,S,N,T,M
Output: optimal radii schedule r∗

1 begin
2 max = M; min = ζ min,∗ = 0;
3 while min≤ max do
4 failed = false;
5 ζ min =

⌊max−min
2

⌋
;

6 for k = 1 to K do
7 Solve the quasiconvex optimization problem to find a minimum

energy cover s.t. ζ (r(k))≥ ζ min and B(k)≥ Bmin as described in
Sections 5.1 and 5.2;

8 if No cover found then
9 failed = true; break;

10 end
11 Update B(k);
12 end
13 if failed then
14 max = ζ min−1;
15 else
16 min = ζ min +1;
17 if ζ min > ζ min,∗ then
18 ζ min,∗ = ζ min; r∗ = r;
19 end
20 end
21 end
22 end
Algorithm 2: Solution outline to the operational range assignment problem with-
out connectivity

5.2 Finding an Optimal Cover

In this section, we discuss the details of the quasiconvex optimization formulation for

a kth interval, (k ∈ K), mentioned in the previous section (Step 7 of Algorithm 2). But

first we must address the discrete nature of the cover function by creating a continous

approximation. This is necessary as the gradient-based solution techniques for convex
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(a) Heaviside Step function (b) Logistics function

Figure 5.1: Comparison of the Heaviside Step function to the Logistics function.

programming require the objective and all constraints to be differentiable with few

zero valued gradients. Towards this, we approximate the discrete jumps (considered as

a Heaviside step) in the cover function (see Figure 5.1 (a)) with a Logistics function as

shown in Figure 5.1 (b). The corresponding equations are:

ζ (r(k)) = ∑
m∈T

max
n∈N

(L(rn/dnm)), (5.2)

L(x) =
1

1+ e−c·x+δ
, ∀x ∈ (0,1), (5.3)

δ = ln(1/ε−1)+ c. (5.4)

L is the logistics function. Since x is bounded in (5.3), rn in (5.2) is normalized

by dnm. c and ε are quality factors for controlling how closely the logistics function

resembles the Heaviside step function by adjusting the slope and the horizontal posi-

tions of the function. Increasing these values provides a better approximation, but at the

cost of increased solution time of the optimizer. We see that the cover function is now

differentiable while maintaining its monotonic nature, hence it is now a quasi-convex

function according to section 3.4.
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With this, the quasiconvex formulation for a kth interval is given by:

max
r(k)

(1/N) ∑
n∈N

Bn(k+1)+min
n∈N

Bn(k+1) (5.5)

s.t. B(k) = B(k−1)+
∫ k

k−1
(Psol(z)−Psen(r(z))), dz (5.6)

B(k)≥ Bmin, (5.7)

ζ (r(k)) =
M

∑
1

max
n∈N

(L(rn/dnm)), (5.8)

ζ (r(k))≥ ζ
min, (5.9)

L(x) =
1

1+ e−c·x+δ
, δ = ln(1/ε−1)+ c, (5.10)

Psen
n (rn(k)) = β rα

n (k)+µ, ∀n ∈ S. (5.11)

Ignoring connectivity for the time being, the objective (5.5) is to minimize the aggre-

gate power spent by the network while ensuring that the weakest nodes are not over-

burdened. Constraint (5.9) requires that the minimum cover be above a specific level.

The rest of the constraints are same as in the formulation (4.12)–(4.14), but for a kth

interval. It is easy to show that the above equations are convex, except for (5.8) and

(5.10). Logistic functions are monotonic functions. Hence they are also quasiconvex

functions [3]. Since sum, max and min are convex functions in this context, (5.8) is a

quasiconvex function. This makes the above formulation a quasiconvex optimization

problem and may be solved as such. It should be noted that we have not yet introduced

the connectivity constraints. This will be addressed in the next section.

5.3 Maintaining Connectivity

This section will now introduce the constraint of maintaining connectivity within the

network. In order to successfully route all data through the network to a centralized

base station we must first define which sensor nodes are sources of data. We define

a sensor node to be a source of data for the kth interval if it is using a sensing radius
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greater than 0; in other words, the set of all data sources for time k is equivalent to Son

at time k.

For this reason we must first know the sensing radii of the network before a

valid routing scheme can be found, thus connectivity may be viewed as a subproblem

to the target cover problem.

Son(t) = S∩{r(t)> 0}. (5.12)

Assuming that Son is known, the process of routing data from the sources to the

sink is equivalent to the min-cost flow problem with any given objective function [33].

We will maintain the objective function (5.1) used for finding the cover for the same

reasons given in Section 5.1 and because the function is linear. We can now state that a

valid connectivity is found as the solution to the linear program

max
χ(k)

(1/N) ∑
n∈N

Bn(k+1)+min
n∈N

Bn(k+1) (5.13)

s.t. χi j(k)≥ 0 ∀i, j ∈ S,∀t (5.14)

N

∑
j=1

χ ji(t)−
N

∑
j=1

χi j(t) = 0, ∀i ∈ S−{Son∪Sbase}, (5.15)

N

∑
j=1

χ ji(t)−
N

∑
j=1

χi j(t) =−Di, ∀i ∈ Son, (5.16)

N

∑
j=1

χ ji(t)−
N

∑
j=1

χi j(t) = Di, ∀i ∈ Sbase, (5.17)

Ecom
n =

N

∑
i=1

ET X
ni χni +

N

∑
i=1

ERX
in χin, (5.18)

B(k) = B(k−1)+
∫ k

k−1
(Psol(z)−Psen(r(z))), dz−ECOM(k) (5.19)

B(t)≥ Bmin, ∀t. (5.20)
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where Di is the amount of data (messages) source i must send to the base station and χ

is the N×N matrix corresponding to the routing paths we are trying to find (note that

χi j is the amount of data sent from node i to node j). Constraints (5.15–5.17) simply

insure that all transmitted data is delivered to the base station. This is essentially a

modified min cost flow problem where the node capacities are dictated by the residual

battery levels as seen in (5.20).

To solve such problems, any linear program solver will work. We have dis-

cussed in Chapter 3 that a O(n3) LP solver exists and therefore could solve this problem

in O(N6) since there are at most N2 possible edges in the network. Alternatively, mean

cycle canceling algorithms exist and can provide better runtime complexity [33].

As discussed in Chapter 4, χ may have to be integer valued if the overhead of

message splitting/merging is not negligible. In this case there is no guarantee the LP to

produce integer results since total unimodularity is not always possible. In this case, IP

methods are required such as cutting-plane and sequential fixing [33].

5.4 The Complete Algorithm

We now present the complete algorithm to solve the operational range assignment prob-

lem of solar powered WSN’s while insuring connectivity. Figure 5.2 shows the flow of

the algorithm and will be referenced for this section.

As rationalized in the prior sections, the problem time component of the prob-

lem is discretized and thus ζ (t) now appears as a constraint, rather than the objective.

For this reason we must perform a search over the possible ζ min to find the one which

is optimal. We accomplish this by performing binary search as seen in Boxes 1, 8,

11, and 12 of Figure 5.2. Box 1 simply gives the starting point for the binary search

while Boxes 8 and 11 update the value of ζ min to check depending on whether a valid
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Figure 5.2: The proposed algorithm to maximize QoC.
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cover and connectivity schedule was found for the current assumed ζ min. The algorithm

concludes when the binary search completes as shown in Box 12.

The convex optimization process for each time interval k of a given ζ min occurs

in Boxes 3 through 7. For completeness the entire problem formulation is given below.

min
r(k)

(1/N) ∑
n∈N

Bn(k+1)+min
n∈N

Bn(k+1) (5.21)

s.t. B(k) = B(k−1)+
∫ k

k−1
(Psol(z))−Psen(r(z)) dz−ECOM(k) (5.22)

B(k)≥ Bmin (5.23)

ζ (r(k)) =
M

∑
1

max
n∈N

(L(rn/dnm)) (5.24)

ζ (r(k))≥ ζ
min (5.25)

L(x) =
1

1+ e−c·x+δ
, δ = ln(1/ε−1)+ c (5.26)

Psen
n (rn(k)) = β rα

n (k)+µ, ∀n ∈ S, (5.27)

N

∑
j=1

χ ji(t)−
N

∑
j=1

χi j(t) = 0, ∀i ∈ S−{Son∪Sbase}, (5.28)

N

∑
j=1

χ ji(t)−
N

∑
j=1

χi j(t) =−Di, ∀i ∈ Son, (5.29)

N

∑
j=1

χ ji(t)−
N

∑
j=1

χi j(t) = Di, ∀i ∈ Sbase, (5.30)

Ecom
n =

N

∑
i=1

ET X
ni χni +

N

∑
i=1

ERX
in χin. (5.31)

An initial starting point for the convex optimization process is needed and shown in

Box 3. In Box 4 of Figure 5.2, given a vector of sensing radii, we must now compute

Son and determine if a valid χ exists using the LP presented in Section 5.3. We are then

able to calculate the objective function since all energy consumption values are known.

Given all of this, we must now determine whether our proposed r and χ is valid by

making sure that the corresponding cover is greater than ζ min and that no battery has

44



been depleted beyond its limits. The last step of Box 4 is to determine the gradient and

feasibility gradient to determine our next proposed value of r in Box 5. In Box 6, the

tolerance conditions must be checked to determine whether to continue with the convex

optimization process. These tolerances are from the convex optimization algorithm

(C.O.A) which allow the algorithm to stop after a certain number of iterations, or when

the rate of change of the objective function diminishes below a threshold. Once the

process terminates, Box 7 simply determines whether the found r and χ are valid.

The remaining iterative search steps over the discretized time intervals are given

in Boxes 2, 9, and 10. If the convex optimization process ever fails before k = K, then

we must consider that the assumed ζ min is impossible to achieve and therefore we stop

the iterative search, otherwise we need to start a new iterative search for a new ζ min.

When all searching is done, the r and χ corresponding to the max assumed ζ min is

returned in Box 13.
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Chapter 6

EXPERIMENTAL RESULTS

6.1 Simulation Setup

We experimentally verify the proposed solution for the operational range assignment

problem by simulating a stationary network with sensor nodes and targets in various

location configurations. Common sensor network parameter values are summarized in

Table 6.1. Unless otherwise noted, these values are used in all the subsequent experi-

ments. We assume that all sensor nodes are homogeneous and the solar profile depicted

in Figure 2.1 is used in the experiments unless noted otherwise. In order to highlight

the benefits of our technique, networks were configured in a manner such that a 100%

cover is not achievable in trivially small networks (N < 100). In most experiments, an

omni-directional, active sensor is used. The base station is always located at point 0,0.

6.2 Time Plots of Sample Scheduling of the Proposed Algorithm

Figure 6.1 shows the plots of scheduling radii of sensors according to the proposed

algorithm, the resulting battery charge, and the QoC over a course of 24 hours. The

network is configured with 3 sensors and 25 targets arranged in a random pattern as

shown in Figure 6.1 (a). The initial battery level for each sensor is set to 11 J. In

the interest of clarity, only 3 hours of the radii schedule is shown. We observe that

the algorithm switches between various covers with different radii to ensure that the

Table 6.1: Common Network Parameter Values

Param Value Param Value Param Value
Sensor: rmax 10 m Bini 0.72 kJ Bmax 4.32 kJ
Sensor: α 4 Radio: α 3.14 Panel Size 5 cm2

Sensor: β 2.31×10−8 Radio: β 0.0002 Area 15 m2

Sensor: µ 0 Radio: µ 0.003
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(a) Sensor (squares) and target (diamonds) locations.

(b) Sensor radii (c) Solar profile

(d) QoC (e) Node battery charge

Figure 6.1: Time plots of scheduling for the proposed algorithm.
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energy of no battery is reduced to zero, while attaining the maximum possible QoC.

This can be observed at time 2:30 am when the battery of Node 2 depletes completely

and Node 3 increases its sensing radius to satisfy the minimum QoC. Figure 6.1 (e)

demonstrates that the battery primarily charges during hours of sunlight, and deeply

discharges at night as expected. The QoC of this schedule is kept constant at 4 targets

(16%). Because of the trivially small nature of this network, connectivity was purely a

one hop (i.e. all sensors reported directly to the base station).

6.3 Run Time Analysis

To verify the practicality of the proposed solution, the run time of the proposed solution

is compared with a dynamic programming (DP) solution. Dynamic programming is one

of the few known methods to solve optimal control problems; however, it requires all

continuous variables (controls, states, time, etc.) to be discretized [2]. Increasing the

number of quantized values for each of these variables will increase the accuracy of

the result, but will require a longer execution time as explained in Chapter 3. The pro-

posed solution assumes continuous control over sensing ranges. To avoid unfair bias,

the proposed algorithm is modified to choose the nearest discrete range from a set of

radii used in the DP solution. This is also required for practical implementation of the

proposed algorithm. All parameter values were based off of existing sensor node hard-

ware, TI’s ez430-RF2500 wireless sensor node system [35] along with commercially

available radars. All simulations were run on a single core of a Dell workstation with

an 2.93 GHz Intel Core i7 and 8 GB of RAM.

In this experiment, the sensors and targets were equally distributed over the area

of operations (see Figure 6.3 (a)). The solar profile used in the experiment is shown in

Figure 2.1. The maximum number of sensor nodes was limited to five in this experi-

ment, due to the enormous time complexity of the DP solution. The battery charge was
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Figure 6.2: Execution time vs. number of sensors.

quantized with 7 states and the number of sensing ranges was kept constant at 6 for the

DP solution. Furthermore, connectivity constraints where removed to reduce the time

complexity of the DP solution.

The results of this experiment are shown in Figure 6.2. Note that the scale of

the y-axis is logarithmic. We observe that the proposed solution has a large speedup

compared with the DP solution as the number of senor nodes increase. Even for 4

sensor nodes, the quasiconvex optimizer finds a solution 60 times faster than the DP

procedure. This demonstrates that the proposed algorithm is of greater practical use

than the DP solution for large networks. This also aids in design space exploration of

large networks in reasonable time as seen from the subsequent experiments. Table 6.2

demonstrates that the proposed solution can handle large networks and produce solu-

tions in reasonable time. Note that, these run times are for a single-core processor.

With the help of parallelization, it is possible to reduce the run times greatly.
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(a) Symmetric sensor-target locations (b) QoC – Symmetric locations

(c) Separated sensor-target locations (d) QoC – Separated locations

(e) Random sensor locations (f) QoC – Random locations

Figure 6.3: Various layout scenarios and the resulting QoC.
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Table 6.2: Runtime for Convex Solution without Connectivity

N 1 10 20 40 50 100
Runtime 3.87 s 100 s 309 s 21.2 min 33.2 min 2.12 hr

6.4 Accuracy of the Proposed Solution vs. Dynamic Programming

The overall accuracy of the proposed solution against the naive DP solution outlined in

Section 6.3 is examined here. We consider three different sensor-target location con-

figurations for this experiment as shown in Figure 6.3. These configurations represent

the diverse scenarios for a sensor network tasked with surveillance duty. Figure 6.3 (a)

illustrates the case where all targets and sensors are equally distributed across the op-

eration area for optimal area coverage. Figure 6.3 (c) shows the case where all targets

and sensors are equally distributed across the operations area, but the sensors and the

targets are separated from one another. This scenario represents the scenario of an en-

emy territory surveillance. From an energy standpoint, this is one of the worst possible

scenarios, since this requires larger sensing radii. Finally, Figure 6.3 (e) shows the case

where sensors are randomly distributed. This is the most common scenario in sensor

networks tasked with monitoring inaccessible areas. For these experiments, the number

of battery states was increased for the DP procedure to increase its accuracy. All other

parameters remained the same as in Section 6.3.

The results shown in Figures. 6.3 (b), 6.3 (d) and 6.3 (f) show our proposed

algorithm can cope with several possible network scenarios and provide near-optimal

results. In the symmetric configuration, our proposed solution tends to provide near

identical results to the DP solution as N increases. This is due to the fact that as the

N increases, the mean distance from any sensor to target decreases, thus allowing for

smaller radii to be used. These smaller radii use less energy and thus the effects of any
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non-ideal radii selections are reduced. For the separated configuration, results were

identical between the two methodologies. This may be attributed to the fact that there

are far fewer valid covers for this configuration as opposed to the symmetric config-

uration. Finally, the random configuration tends to display varying levels of error at

each value of N. This is to be expected when the sensor nodes are randomly positioned

creating vastly different network topologies. Over the results of all experiments, a peak

of 8% QoC loss was seen.

6.5 Impact of Connectivity on QoC and Execution Time

The goal of this experiment is to highlight the importance of considering connectivity

and data routing alongside QoC. For this experiment a 21× 21 grid of targets was

placed over a 200 m2 area. The number of sensors varied and their locations were

randomly chosen. We also increased set the α and β variables for data transmission to

be equivalent to those of the sensor.

Two routing schemes are considered. The first is a simple one hop routing

scheme in which all active sensors simply transmit the data directly to the base station.

The second is our version presented in Chapter 5 which uses linear programming inte-

grated into quasiconvex optimization techniques refered to as multi-hop routing. The

results are shown in Figure 6.4 and Figure 6.5.

As one would expect from a nonlinear power model, a one-hop routing scheme

is inferior to multi-hop routing in regards to energy. This is shown in Figure 6.4 where

our proposed solution out performs the naive one-hop method every time in respect to

QoC. It should be noted, however, as the sensor density increases, the QoC degradation

associated with the single-hop routing scheme diminishes. Furthermore, the impact on

QoC is lessen when energy transmission costs become less significant in comparison

to the sensor covering costs.
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Figure 6.4: Effect of Connectivity on QoC.

Figure 6.5: Effect of Connectivity on Run Time.
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The time analysis is shown in Figure 6.5. Since the LP for connectivity must be

solved for every guess of r, it is run a considerable amount of times depending on the

convex solver used. For this reason execution time suffers greatly.

Introducing the connectivity constraints to the problem can improve QoC; how-

ever, it comes at the cost of increased execution time. As such, designers need to take

careful note of the network size, power costs, and node density.

6.6 Investigation of Objective Functions

The next experiment quickly examines the objective function chosen for our quasicon-

vex solution. As mentioned earlier, the objective function in our reformulation of the

problem can be considered as a dummy function. As such we may consider other pos-

sible objectives. The first objective (6.1) is simply to minimize the energy consumed

by the network, or equivalently, maximizing the total residual battery life of the net-

work. The second objective (6.2) is to maximize the minimum residual battery among

all nodes in the network. The third objective (6.3) is meant to balance the other two

objectives. The same parameters from Section 6.5 are used. Results are shown in Fig-

ure 6.6. To help highlight the results only the difference in QoC between the alternative

two objective functions and the objective function proposed in Chapter 5 is given.

max
r(k),χ(k)

∑
n∈S

Bn(k) (Sum) (6.1)

max
r(k),χ(k)

min
n∈S

Bn(k) (Min) (6.2)

max
r(k),χ(k)

(1/N) ∑
n∈S

Bn(k)+min
n∈S

Bn(k) (Balanced) (6.3)

The difficulty of this problem become apparent when observing the results. No

one objective function was able to consistently outperform the other two among all

values of N; however, our proposed objective function does outperform the other two

on average giving validity to our reasoning.
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Figure 6.6: Effect of various Objective Functions on QoC

6.7 Effect of Number of Sensors on the Network Setup Cost

In this experiment, we study the effect of the number of sensors on the total cost of setup

of a sensor network to maintain a specified QoC. The results of this experiment offer

network designers with the information to trade-off number of sensors to minimize the

initial setup cost of a sensor network. This is also useful to maintain energy neutral

operations in a network [36]. Energy neutral operation requires minimum sizing of the

battery and the solar panel to reduce the operation cost, while guaranteeing a minimum

QoC for a given network. On the other hand, increasing sensor nodes increases the

network cost.

For the experiment, a large number of targets (1024) are distributed over a

200 m × 200 m area in the same fashion as in Section 6.8. The requirement is that

100% of the targets must be covered. To calculate the cost of creation of a sensor

network, we assume that each sensor node costs $20 [37], solar panel costs $2 per
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Figure 6.7: Effect of number of sensor nodes on the network setup cost

Watt [38], and batteries cost $0.47 per Watt-hour [39]. With the assumption of 10

hours of sun light per day, the results shown in Figure 6.7 were generated.

Contradicting intuition, increasing the number of sensor nodes does not increase

the total network energy. This is because, with more sensors, the radii can be smaller to

achieve the same coverage, and the energy cost decreases quadratically with the radius.

Since the total network energy decreases, smaller batteries and smaller solar panels

are sufficient to maintain the original specified cover, thus decreasing the total network

setup cost. However, an increase in the number of sensor nodes adds to the total cost

of network setup. Thus, there exists a unique configuration of number of sensor nodes

that minimizes the overall cost of network setup. This is shown in Figure 6.7. The plot

shows a sharp initial reduction in the network energy, due to the non-linear relation

between the network energy and the sensor radii, and the fact that the effective sensor

radii decreases quadratically with the increase in number of nodes.
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6.8 Effect of Sampling Time on QoC

The sampling time is described as the time between two consecutive sensings of an

object. In many non-critical applications, targets do not require continuous monitor-

ing and for many sensor nodes continuous monitoring is impossible. For this reason,

sampling time offers network designers a unique control variable to extend the lifetime

of their networks at the expense of periods of zero cover in traditional battery powered

networks. In the context of solar powered networks, the benefit is an increase in QoC.

In this experiment, the effect of reducing the sampling time is investigated. Sensors

and targets are arranged in a square grid-like pattern, with equal spacing. The number

of sensors was kept constant at 100 and the number of targets was kept constant at 900,

deployed over a 200 m × 200 m area. The sampling time was varied between 1% and

100% of the total operation time (the 24 hour period). We also make a slight modifi-

cation to our definition of cover to be the number of targets covered averaged over the

operation time.

Figure 6.8 shows the result. As expected, QoC increases as the sampling time

increases. This is because, increasing sampling time allows the sensors to harvest more

solar energy, and thus the sensors can afford to use larger radii to enhance the QoC.

It is interesting to note the quadratic increase in the QoC with linear increase in the

sampling time. The multiple jumps in the plot are due to the discrete nature of the

cover (no. of targets) and the network topology.

6.9 Effect of Beam Width on QoC

The final design exploration experiment performed observes the effect of varying beam

widths on QoC. In this experiment, the beam width was varied between 0◦ and 360◦.

The power density was kept constant and maximum power output was capped at 100
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Figure 6.8: Sampling time vs. the number of sensors.

Figure 6.9: Beam Width vs. QoC.

W. Targets were dispersed in a 21x21 grid across a 200 m2 area. Likewise 25 sensors

were equally spaced across this region. All sensor beams faced the same direction. The

results are illustrated in Figure 6.9.

Despite the increase to power costs, increasing beam width almost always tends

to increase QoC (with few exceptions which may be attributed to the discrete nature

of the cover model). That said, the rate at which QoC increases diminishes nonlin-

early with beam width until a threshold is reached. In the above case this threshold
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is approximately 67% QoC first achieved at 180◦. It should be noted that often times,

omni-directional sensors are constructed from a ring of narrow-beam sensors. For this

reason, design costs could be decreased by creating only semi-directional sensors with

no loss to QoC.
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Chapter 7

CONCLUSION AND OPEN PROBLEMS

7.1 Conclusions

There has been a proliferation of energy harvesting sensors in WSN’s. With this surge

of “green” technology come many additional challenges on optimal scheduling of sen-

sor nodes to maximize the QoC. In this work, a novel, near optimal solution was pre-

sented to the scheduling problem of active sensor nodes in the context of the target

cover problem which maximizes the minimum attainable QoC. The proposed quasicon-

vex solution not only considers the cover requirement, but also determines a proficient

routing scheme to deliver all sensed data to a centralized base station – something many

designers overlook. Our solution is demonstrated to have large speedup compared with

the naive DP solution with minimal error in accuracy.

We broadened the usefulness of our solution by demonstrating how it may be

applied to various design space explorations of energy harvesting sensor networks. The

insights provided by these experiments show that sensor networks may be optimally

sized to minimized startup cost. Furthermore, the arbitrary increasing of beam width

provides decreasing returns on QoC improvement. The benefits of sampling rates was

also explored, revealing a positive trend between average QoC and sampling time but

at sporadic rates due to the discrete nature of the cover models.

7.2 Open Problems

This work presented several interesting observations into energy harvesting networks;

however, there are many possible extensions which may be explored and integrated into

the presented framework. Three possible extensions are briefly introduced below.
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Real Time Distributed Networks

All presented solutions have been solely centralized in nature. Furthermore, the va-

lidity of the solution for a real time implementation is somewhat questionable when

considering immense networks (more than several thousand). For this reason, a dis-

tributed version of our algorithm would be extremely useful although very challenging

to implement. This would allow for more independence in the network and tolerances

to outside errors such as environmental damage. Possible first steps to solve such a

problem may be from the artificial intelligence domain such as game theory.

Unknown Solar Profiles

Continuing the real time theme introduced in the prior section, considering the ran-

domness of solar profiles could provide interesting additions to the problem. Currently

the solution assumes that the solar profile is known or inferred from a large pool of

empirical data; however, in reality, solar profiles are highly random. For this reason,

accurately predicting solar conditions would be very useful. Furthermore, determining

how the network should respond in a timely manner to faulty predictions would be a

very interesting investigation. Kalman filters offer possible solutions to such a problem.

Mobile Sensors and Targets

Recently, much interest has been put into mobile networks due to cellular phones. In

mobile networks either, the sensor nodes, targets, or both may be capable of movement.

In some situations, this movement may be controllable by the network, other times it

is not. Controllable movement would allow the network to maintain connectivity and

cover even when a sensor node fails by moving excess sensor nodes to the failure point.
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Circuit board layout techniques such as force directed placement algorithms may offer

insight into these types of problems.
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