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ABSTRACT

Multidimensional (MD) discrete Fourier transform (DFT) is a key kernel algorithm in

many signal processing applications, such as radar imaging and medical imaging. Traditionally,

a two-dimensional (2-D) DFT is computed using Row-Column (RC) decomposition, where one-

dimensional (1-D) DFTs are computed along the rows followed by 1-D DFTs along the columns.

However, architectures based on RC decomposition are not efficient for large input size data which

have to be stored in external memories based Synchronous Dynamic RAM (SDRAM).

In this dissertation, first an efficient architecture to implement 2-D DFT for large-sized

input data is proposed. This architecture achieves very high throughput by exploiting the inherent

parallelism due to a novel 2-D decomposition and by utilizing the row-wise burst access pattern of

the SDRAM external memory. In addition, an automatic IP generator is provided for mapping this

architecture onto a reconfigurable platform of Xilinx Virtex-5 devices. For a 2048× 2048 input

size, the proposed architecture is 1.96 times faster than RC decomposition based implementation

under the same memory constraints, and also outperforms other existing implementations.

While the proposed 2-D DFT IP can achieve high performance, its output is bit-reversed.

For systems where the output is required to be in natural order, use of this DFT IP would result in

timing overhead. To solve this problem, a new bandwidth-efficient MD DFT IP that is transpose-

free and produces outputs in natural order is proposed. It is based on a novel decomposition algo-

rithm that takes into account the output order, FPGA resources, and the characteristics of off-chip

memory access. An IP generator is designed and integrated into an in-house FPGA development

platform, AlgoFLEX, for easy verification and fast integration. The corresponding 2-D and 3-D

DFT architectures are ported onto the BEE3 board and their performance measured and analyzed.

The results shows that the architecture can maintain the maximum memory bandwidth through-

out the whole procedure while avoiding matrix transpose operations used in most other MD DFT

implementations. The proposed architecture has also been ported onto the Xilinx ML605 board.

When clocked at 100 MHz, 2048× 2048 images with complex single-precision can be processed

in less than 27 ms.
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Finally, transpose-free imaging flows for range-Doppler algorithm (RDA) and chirp-scaling

algorithm (CSA) in SAR imaging are proposed. The corresponding implementations take advan-

tage of the memory access patterns designed for the MD DFT IP and have superior timing perfor-

mance. The RDA and CSA flows are mapped onto a unified architecture which is implemented

on an FPGA platform. When clocked at 100MHz, the RDA and CSA computations with data size

4096× 4096 can be completed in 323ms and 162ms, respectively. This implementation outper-

forms existing SAR image accelerators based on FPGA and GPU.
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Chapter 1

Introduction

Multidimensional digital signal processing (MD DSP) is an important research area with applica-

tions spanning image coding, medical imaging, remote sensing, seismology, surveillance, computer

vision, video compression, and many more. Compared to one-dimensional (1-D) DSP systems,

an MD DSP system needs to handle a much larger amount of data. For example, radar images

could be as large as 4,096×4,096, which is equivalent to 16 mega pixels or 64 Mbytes of data in

single-precision format. Many of the MD DSP applications also demand real-time computation.

For instance, real time computation of 4,096× 4,096 2-D DFT in radar imaging requires about

6×1010 floating-point operations per second, and is quite a challenge.

Fortunately, the steadily increasing density of transistors on a chip has resulted in dramatic

improvements in the performance of the computing devices. As shown in Table 1.1, the Intel i7-

975 CPU has a peak performance of 55.36 GFLOPs with its 6 cores running at 3.46 GHz. This is

49x faster than the Intel Pentium III processor from 10 years ago. Thus today’s processors have

the capability to implement many real-time MD DSP systems, provided the I/O bandwidth is not a

constraint.

MD DSP systems also operate on huge amounts of data, which have to be stored into exter-

nal memories. Memory capacity has also significantly increased over the past decade, as shown in

Table 1.1. Today there are 8GBytes per DIMM (double in-line memory module), which is sufficient

Table 1.1: Progress of CPU and memory in the past decade.

2000 2010 Improvement
CPU 1.13 GFLOPS 55.36 GFLOPS

49x faster
performance(1) (Intel Pentium-III 1.13 GHz) (Intel i7-975)

Memory 128 MB 8 GB
64x larger

capacity(2) (DDR-SDRAM pc133) (DDR3-SDRAM pc3-17000)

Memory 1.066 GB/s 17.066 GB/s
16x faster

performance(2) (DDR-SDRAM pc133) (DDR3-SDRAM pc3-17000)

(1): Theoretical peak performance without I/O constraints.
(2): Per dual in-line memory module (DIMM).
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to store multiple high-resolution images or video clips. In short, with contemporary technologies,

there is sufficient computing power and memory capacity to handle MD DSP computations.

However, memory performance, defined as data transfer rate, has not improved at the same

rate as memory capacity or CPU performance. As shown in Table 1.1, the memory speed has only

improved by 16 times, while the CPU’s peak performance has improved 49 times and memory

capacity has increased 64 times. Thus, the data transfer between a computing device and the

external memory is still the bottleneck of a system. This was predicted in [1], and has only gotten

worse. While memory bottleneck is true for general systems, it is exacerbated in MD DSP systems

since huge amounts of data need to be accessed to and from the external memory multiple times.

In this research, we focus on a typical MD DSP algorithm, namely, multidimensional Dis-

crete Fourier Transform (MD DFT). Its implementation is very challenging, because it is not only

computation-demanding but also memory bandwidth-demanding. Not only do we have to access

large amounts of data, they have to be accessed along different dimensions! In this dissertation,

we concentrate on efficient implementations of MD DFT and study how to overcome the memory

bandwidth constraints.

1.1 MD DFT Implementations

MD DFT is widely used in signal processing and scientific computing applications, more specifi-

cally, it is used in imaging applications which need operations in frequency domain, such as image

watermarking, finger print recognition, synthetic aperture radar (SAR) processing and medical

imaging. The image sizes in many of these applications have become larger over the years. In

SAR imaging, for instance, the image size could be as large as 4,096×4,096 [2], and in medical

imaging, the data size could be 512×512×384 [3].

Existing MD DFT implementations include software which are optimized for general-

purpose CPU, such as FFTW [4, 5], Spiral [6, 7], Intel MKL [8] and IPP [9], or even cluster

computers [10, 11]. Software solutions are very flexible and can be ported to users’ applications

easily and quickly. However, these platforms usually consume power that is too high for embedded

applications.
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ASIC implementations for 1-D DFT [12, 13, 14, 15, 16, 17], and MD DFT [18, 19] have

been proposed over the years. They exploit the high regularity and parallelism of the DFT algo-

rithm and are quite efficient. While DFT ASICs offer high performance while consuming minimal

power, the manufacturing cost of these chips is quite high, and once a chip is manufactured, its

functionality and performance cannot be changed anymore.

1.2 FPGA-based MD DFT Accelerators

Field programmable gate array (FPGA) has become an attractive alternative to ASIC, because

it offers high flexibility. Large amount of on-chip resources, such as logic slices, multipliers,

and RAMs, make contemporary FPGAs a great candidate for DSP accelerator. Besides, FPGA

vendors also provide versatile intellectual properties (IPs) and comprehesive hardware/software

support, which help the user to shorten design cycle significantly. This is why many MD DFT

implementations based on FPGA has been proposed [20, 21, 22, 23, 24, 25]. In this dissertation,

we concentrate on FPGA-based architectures.

Many of the existing FPGA solutions for MD DFT are based on Row-Column (RC) de-

composition [19, 21, 22], where the 2-D DFT is computed by successively applying 1-D DFT along

rows and then along columns. This works fine for Static RAM (SRAM) based designs [21, 22],

where data access along rows and along columns have the same cost. However, for systems with

dynamic memory, e.g. synchronous dynamic RAM (SDRAM) which is typically adopted for its

large storage density, RC decomposition has low performance. This is because SDRAM only fa-

vors burst access, and thus while data stored in consecutive locations in memory can be retrieved

very efficiently, accessing data along columns is a lot more expensive. To avoid memory access

with large strides, the transpose operation is used in [19] to re-align the column data into contigu-

ous addresses. While this enables a long burst size to be maintained, the transpose operation take

additional time. When the dimension is higher, e.g. in 3-D DFT, the transpose operation becomes

harder to implement because of the limited local memory on the FPGA.
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Finally, most hardware solutions are not as versatile as software solutions. They cannot

support 2-D and 3-D DFTs in one package, and some [19, 21] are even fixed to some specific

image sizes.

1.3 Contributions

In this research, our goal is to (1) optimize the performance of the MD DFT processors under the

constraints of memory bandwidth and hardware resources; (2) provide flexible MD DFT IPs that

are easy to use in other applications and can support various image sizes. Our study focuses on the

following three tasks.

• I. FPGA Architecture for 2-D Discrete Fourier Transform Based on 2-D Decomposition

for Large-sized Data (Chapter 3)

We propose an efficient architecture to implement 2-D DFT for large-sized input data based

on a novel 2-D decomposition algorithm. This architecture achieves very high throughput by

exploiting the inherent parallelism due to the algorithm decomposition and by utilizing the

row-wise burst access pattern of the external memory. A high throughput memory interface

has been designed to enable maximum utilization of the memory bandwidth. In addition, an

automatic system generator is provided for mapping this architecture onto a reconfigurable

platform of Xilinx Virtex-5 devices. For a 2K×2K input size, the proposed architecture

is 1.96 times faster than RC decomposition based implementation under the same memory

constraints, and also outperforms other existing implementations.

e

• II. Multidimensional DFT IP Generators for FPGA Platforms (Chapter 4)

We propose an MD-DFT intellectual property (IP) generator and a bandwidth-efficient MD

DFT IP for high performance implementations of 2-D and 3-D DFT on FPGA platforms.

The proposed architecture is generated automatically and is based on a decomposition al-

gorithm that takes into account FPGA resources and the characteristics of off-chip memory

access, namely, the burst access pattern of the Synchronous Dynamic RAM (SDRAM). The

IP generator has been integrated into an in-house FPGA development platform, AlgoFLEX,
4



for easy verification and fast integration. The corresponding 2-D and 3-D DFT architectures

have been ported onto the BEE3 board and their performance measured and analyzed. The

results shows that the architecture can maintain the maximum memory bandwidth through-

out the whole procedure while avoiding matrix transpose operations used in most other MD

DFT implementations. The proposed architecture is also ported onto the high-end ML605

board. The simulation results show that 2K×2K 2-D images can be processed in less than

27ms, and 128x128x128 3-D DFT can be finished within 22ms.

• III. Transpose-free SAR Imaging on FPGA Platform (Chapter 5)

We propose transpose-free implementations of Synthetic Aperture Radar (SAR) image al-

gorithms, such as range-Doppler algorithm (RDA) and chirp scaling algorithm (CSA). In

both algorithms, data needs to be transformed between space and frequency domains back

and forth, and so in traditional implementations, multiple transpose operations were required

thereby degrading timing performance. The proposed implementation utilizes the mem-

ory access patterns derived from the MD DFT IP and avoid the transpose operations. The

proposed transpose-free flows for RDA and CSA are mapped to a unified architecture that

supports both RDA and CSA and ported onto the ML605 FPGA board. For 4K×4K data

size, the RDA computation can be completed in 323ms, which is 1.2x faster than the most

advanced GPU-based solution. For CSA with the same data size, the computation can be

finished in 162ms, which is 6.6x faster than another FPGA-based accelerator.

The rest of this dissertation is organized as follows. In Chapter 2, we review state-of-the-

art 1-D and MD DFT implementations. Then, the new high-performance 2-D DFT for large sized

images is described in Chapter 3. Chapter 4 presents the flexible DFT IP generator for 2-D and 3-D

DFT. In Chapter 5, we describe the in-pending work on design of a SAR imaging processor based

on the MD DFT IP. The conclusion is given in Chapter 6.
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Chapter 2

Background on DFT Algorithm and Its Implementations

In this chapter, we first review 1-D DFT algorithm and its hardware implementations. Next we

present a survey on existing MD DFT implementations.

2.1 Fast Fourier Transform

Discrete Fourier Transform (DFT) of an N-point complex sequence x(n) is defined as:

X(k) =
N−1

∑
n=0

x(n) ·W nk
N ,k = 0,1, . . . ,N −1, (2.1)

where WN = e− j2π/N and n = 0,1, . . . ,N − 1. The computation complexity of an N-point DFT is

O(N2). Fast Fourier Transform (FFT) algorithm reduces the computation complexity to O(N log2 N)

[26] by recursively decomposing the even and odd frequency components as follows:

X2k =
N/2−1

∑
n=0

(xn + xn+N/2) ·W nk
N/2, (2.2)

X2k+1 =
N/2−1

∑
n=0

(xn − xn+N/2) ·W nk
N/2 ·W

n
N/2. (2.3)

The data flow graph of an 8-point FFT is shown in Fig. 2.1.

Hardware implementation of FFT is a well-studied topic. A few of the commonly used

architectures are described as follows.
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Figure 2.1: Data flow graph of 8-point FFT (decimation-in-frequency).
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Figure 2.2: Architecture of Xilinx pipelined FFT IP core [27].

2.1.1 Pipelined Architectures

The pipelined FFT architecture [27] [28] [16] is a serial-in-serial-out(SISO) architecture. Fig. 2.2

shows a typical example of pipelined FFT. It is obtained by a straightforward mapping of the

data flow graph onto log2 N hardware units, where each hardware unit is assigned to one stage of

the FFT flow graph. The main advantage of this architecture is its high throughput rate. Input

sequences can be fed in continuously. Besides, its control mechanism is also very simple. The

internal memories are simple FIFOs without any complex memory controllers. The drawback of

the pipelined architecture is that it needs an extra bit-reverse operation, and an additional buffer is

required for rearranging the data. Besides, the maximum FFT size it can compute is limited the

number of butterfly units.

The pipelined FFT IP core [27] provided by Xilinx is based on this architecture. Because

of its high performance, we adopt it in our MD DFT implementations.

2.1.2 Memory-based Architectures

Memory-based architecture [29] [30] [31] consists of a memory unit and a computational core,

which contains one or multiple butterfly units, as illustrated in Fig. 2.3. The memory unit is used not

only as a storage for intermediate results but also as an input/output buffer. By simply modifying

the memory addressing, memory-based architectures can prevent the extra operation of bit-reversal.

When the number of butterfly units increases, however, the memory structure and address-

ing becomes very complex. This is because multiple butterfly units will need to access data at the

same time, and conflicts need to be avoided. Xilinx [27] provides memory-based FFT with only

7
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Figure 2.3: Architecture of Memory-based FFT.

one butterfly unit. It costs less in terms of hardware resources but it is much slower compared to

the pipelined counterpart.

2.1.3 Automatic IP Generators

More recently, automatic tools to rapidly generate have been developed optimized FFT implemen-

tations for FPGAs. The method in [32] performs design space exploration on different number of

butterfly units and sub-FFTs, and estimates the performance and hardware cost of the different con-

figurations. The FFT compiler in [33] also provides a mechanism for folding FFT computations

onto sub-FFT computation modules. Under user-defined performance requirements, these auto-

matic tools are able to generate the most cost- or power-efficient FFT architectures. It is worthwhile

to note that [32] [33] have been ported onto FPGAs and achieve high performance competitive to

some commercial products such as [27].

2.2 Multidimensional DFT

A 2-D DFT of N1 ×N2 samples, x(i1, i2), is defined by,

Y (k1,k2) =
N1−1

∑
i1=0

N2−1

∑
i2=0

x(i1, i2) ·W k1i1
N1

·W k2i2
N2

, (2.4)

where k1 ∈ [0,N1 −1] and k2 ∈ [0,N2 −1].

The Row-Column (RC) decomposition algorithm decomposes a 2-D DFT into a series of

multiple 1-D DFTs:

Row DFT : X̃(i1,k2) =
N2−1

∑
i2=0

x(i1, i2) ·W k2i2
N2

, (2.5)
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and

Column DFT : Y (k1,k2) =
N1−1

∑
i1=0

X̃(i1,k2) ·W k1i1
N1

. (2.6)

With RC decomposition, a 2-D DFT on N1 ×N2 data can be computed by first performing N2 row-

wise 1-D DFTs, and then N1 column-wise 1-D DFTs. It has a complexity of O(N1N2(N1 +N2)).

If the 1-D DFTs can be replaced by FFTs, the complexity of 2-D FFT is O(N1N2 log2(N1N2)). For

hardware implementation, one can simply adopt any 1-D FFT architectures mentioned in Section

2.1 to construct the 2-D DFT based on the RC decomposition. Furthermore, the decomposition of

2-D DFT can be easily extended to DFT with higher dimensionality, such as 3-D DFT.

2.3 Existing MD DFT Implementations

Several FPGA-based multidimensional DFT solutions have been proposed in the literature. In

2001, Dillon Engineering [21] delivered a high performance image processing system which in-

cludes two Xilinx Virtex-II FPGAs and can achieve 120 frames per second (fps) at a resolution of

2,048×2,048. However, the design is based on RC decomposition, which needs large-sized Static

RAMs (SRAMs) as intermediate memory for matrix transpose operations. SRAM based designs

were also used in [34] and [35]. In [34] the authors used two Xilinx Virtex-2000E FPGAs and

four banks of on-board SRAMS to construct a 1,024×1,024 2-D FFT with a frame rate of 13 fps.

Although its performance and size of 2-D FFT are lower than [21], the cost of the design is also

much lower due to the cheaper FPGAs and smaller SRAMs. A 0.35um ASIC design with on-chip

SRAM was presented in [35]. It operates at 133MHz and has a frame rate of 42 fps at a resolution

of 512×512. Although the on-chip memory reduces the power consumption compared to external

memory, its smaller capacity also limits the size of 2-D DFT.

To deal with large data sizes, Lenart et al. [19] chose SDRAM instead of SRAM. However,

the three-dimensional organization of SDRAM devices (banks, rows, and columns) results in non-

uniform access. For instance, data inside a row can be transferred in a burst manner, while accessing

data in different rows can cause a much longer latency. This characteristic of SDRAM causes

significant performance loss while doing column-wise FFT operations. To avoid column memory

access, a transpose operation is required to realign the column data into the rowsTo implementation

the transpose, the 2-D data need to be partitioned into small sub-blocks. The sub-blocks are read
9



sequentially, transposed on the chip, and written back to the external memory in proper locations.

The operation can be represented by the following equation:

 A00 A01 A02

A10 A11 A12

T

=


AT

00 AT
10

AT
01 AT

11

AT
02 AT

12

 . (2.7)

With the transpose unit, the overall latency can be reduce by 3 times. The 2,048×2,048 2-D DFT

is ported onto a Virtex-1000E FPGA, which runs at 24MHz and achieves 1.5 fps frame rate. The

design has also been synthesized in 0.13 µm CMOS process. It is able to operate at 250MHz and

supports a frame rate of 20 fps. In short, this design successfully solves the non-uniform access

time of SDRAM. However, the transpose is an extra operation which is not overlapped with the

DFT computations and the overall performance is weaker than that of [21].

There are other hardware solutions such as [20, 24, 36] that are not based on RC decom-

position. Here the multi-stage DFT flow graph is folded into one or more butterfly units. These

approaches are efficient when the data size is small and can fit in the on-chip memory. For large

data sizes, these architectures will have to optimize data access from external memory to sustain

high performance.

In Table 2.1, we list the existing 2-D DFT implementations. First, we see that ASIC/FPGA

solutions can easily outperform the pure software solutions with standard CPUs. For instance, a

3GHz dual-core Pentium4 can only deliver 2,048×2,048 images at 0.8 fps [19]. Since 2-D DFT is

an algorithm with high parallelism, hardware with multiple customized processing elements, such

as ASIC or FPGA, is a more suitable architectural platform. Secondly, FPGA is a better candidate

than ASIC, due to lower development cost and competitive performance. In fact, the best performer

[21] is an FPGA-based solution as shown in Table 2.1.

To sum up, most 2-D DFT architectures are based on RC decomposition. They still require

either an extra transpose unit or expensive SRAMs to overcome the problem caused by column-

wise memory access. In the rest of this dissertation, we propose new 2-D decomposition algo-

rithms which can reduce the size of both row- and column-wise 1-D FFTs and reduce the penalty

of column-wise memory access. The matrix transpose is no longer required, and the proposed

SDRAM-based architecture can compete with the more expensive SRAM-based solutions.
10



Table 2.1: Comparison of the existing MD DFT processors

Technology Memory
Clock Frame

Year
Frequency Rate*(fps)

Intel Pentium4 Dual Core [19]
Dual-Bank

3 GHz 0.8 2008
SDRAM

ASIC, 0.35µm [35]
Single-Bank

133 MHz 2.6 2003
SRAM

ASIC, Eonic PowerFFT [18]
Quad-Bank

128 MHz 11.9 2002
SDRAM/SRAM

ASIC, 0.13µm [19]
Dual-Bank

250 MHz 20.0 2008
SDRAM

FPGA, Virtex-1000E [19]
Dual-Bank

24 MHz 1.5 2008
SDRAM

FPGA, Virtex-2000E [22]
Quad-Bank

35 MHz 2.0 2005
SRAM

FPGA, Virtex-II-6000×2 [21]
Dual-Bank

125 MHz 120.0 2001
SRAM

FPGA, Virtex-4-LX40 [37]
Quad-Bank

N/A 30.0 2007
SRAM

(*: Frame rate is normalized to 2,048×2,048 image size.)
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Chapter 3

FPGA Architecture for 2-D Discrete Fourier Transform based on 2-D Decomposition for

Large-sized Data

3.1 Introduction

In this chapter, we describe FPGA architectures for 2-D DFT that are targeted for large data sizes.

The proposed algorithm partitions the original data into a mesh of sub-blocks, performs butterfly

type operations between sub-blocks and then computes local 2-D DFT on each of the sub-blocks.

The size of the sub-blocks is a function of the available FPGA resources and is determined automat-

ically. The experimental results demonstrate that our architecture based on the 2-D decomposition

algorithm achieves better performance than optimized architectures based on Row-Column (RC)

decomposition.

The rest of the chapter is organized as follows. Section 3.2 briefly introduces 1-D and

2-D DFT and derives the proposed 2-D decomposition algorithm. Section 3.3 describes in detail

our novel FPGA architecture for 2-D DFT. Section 3.4 describes the automatic system generator.

Various configurations of our architecture are evaluated in Section 3.5, and concluding remarks are

given in Section 3.6.

3.2 Decomposition Algorithms for DFT

In this section, the decomposition of 1-D DFT is described in Section 3.2.1, followed by the 2-D

decomposition algorithm for 2-D DFT in Section 3.2.2 and the functional components of the 2-D

DFT in Section 3.2.3.

3.2.1 Decomposition of 1-D DFT

A 1-D DFT of length N can be decomposed and computed by a series of smaller transforms and

permutations. We first represent DFT in the matrix-vector multiplication form as

[X0 X1 . . . XN−1]
T = FN · [ x0 x1 . . . xN−1]

T , (3.1)

where FN is the twiddle factor matrix.
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The decomposition of 1-D DFT is essentially representation of FN as a product of sparse

matrices and is described as follows [38], [39], [40].

FN = PN,p(Ip ⊗Fm)D̃N(Fp ⊗ Im), (3.2)

where N = p ·m, where p and m are both integers. Im is an m×m identity matrix, D̃N is a diagonal

matrix of twiddle factors, and ⊗ is the Kronecker or tensor product and can be expressed as

D̃N( j, j) =W ( j mod m)·⌊ j/m⌋
N f or j = 0,1 . . .N −1, (3.3)

An ⊗Bm = [ak,lBm]0≤k,l<n f or An = [ak,l]0≤k,l<n. (3.4)

Finally, PN,p denotes permutation with stride p.

The traditional radix-2 FFT can be considered a specific case of recursive decomposition

with factor p = 2.

3.2.2 2-D decomposition algorithm

The general form of 2-D DFT is described in matrix form as follows:

Y = FM ·X ·FT
N = FM ·X ·FN , (3.5)

where input X and output Y are of size M×N; FM and FN are DFT matrices which are symmetric.

The expression (FM ·X) is traditionally calculated by applying an M-point DFT for each

column of X . As described in Section 3.2.1, an M-point DFT can be replaced by the sparse matrix

product form as depicted in Eq. (3.2). Hence, by partitioning a column of size M into p sub-blocks,

the expression (FM ·X) can be written as follows:

FM ·X = PM,p · (Ip ⊗FM/p)D̃M(Fp ⊗ IM/p) ·X , (3.6)

where the permutation PM,p term in Eq. (3.2) is taken into account in the final stage.
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Figure 3.1: The functional flow graph of 2-D DFT.

Similarly, the expression (X ·FN) in Eq. (4.1) can be written as follows:

X ·FN = X · (Fq ⊗ IN/q)D̃N(Iq ⊗FN/q) ·PN,q. (3.7)

Extending such a partitioning to both row-wise and column-wise elements, the 2-D de-

composition of Eq. (4.1) on a p×q mesh is written as follows:

Ỹ = (Ip ⊗FM/p)D̃M(Fp ⊗ IM/p) ·X · (Fq ⊗ IN/q)D̃N(Iq ⊗FN/q). (3.8)

Y is obtained by applying a bit-reverse permutation (P) on Ỹ of Eq. (3.8).

3.2.3 Functional components of the 2-D decomposition algorithm

Eq. (3.9) pictorially demonstrates the sequence of operations involved in the computation of the

decomposed 2-D DFT.

Y = P((Ip ⊗FM/p) D̃M(Fp ⊗ IM/p) ·X · (Fq ⊗ IN/q)D̃N︸ ︷︷ ︸
Step 1︸ ︷︷ ︸

Step 2

(Iq ⊗FN/q)

︸ ︷︷ ︸
Step 3

). (3.9)

Input X of size M×N, is partitioned into a p×q mesh where each sub-block in the mesh is of size

M/p×N/q. The four main steps are described below Fig. 3.1 presents the functional flow of the

proposed 2-D decomposition algorithm.

Step 1. Row-wise data exchange with twiddle-factor multiplication:

There are q sub-blocks in each row, and each element inside one sub-block has to do data

exchange with the corresponding elements in the other (q− 1) sub-blocks. This data exchange

(DX) operation can be implemented as a q-point 1-D FFT followed by a twiddle-factor multiplica-

tion (with D̃N). Since there are M/p ·N/q elements in each sub-block, there are (MN/pq)(q · log2 q)
14



arithmetic operations with q-point 1-D FFT for each row, and (MN/pq)(q · log2 q)p for all rows.

Including MN operations for twiddle-factor multiplication (D̃N), it takes a total of (MN/pq)(q ·

log2 q)p+MN ≈ O[MN(1+ log2 q)] arithmetic operations. Note that all q-point 1-D FFTs can be

computed in parallel.

Step 2. Column-wise data exchange with twiddle-factor multiplication:

Y2 = D̃M(Fp ⊗ IM/p) ·Y1

Similar to Step 1, the DX is repeated for the p sub-blocks in each column. This step has a

complexity of O[MN(1+ log2 p)] operations.

Step 3. Local 2-D DFT on each sub-block:

Ỹ = (Ip ⊗FM/p)Y2(Iq ⊗FN/q)

After the row-wise and column-wise data exchange with twiddle-factor multiplications,

2-D DFT computation is performed on each sub-block of size M/p ·N/q. This operation is fully

parallel for all sub-blocks, and only limited by resource constraints in the underlying architecture.

No data communication is required between any sub-blocks.

Step 4. Output permutation:

Y = P(Ỹ )

A bit-reverse permutation is required before generating the output. This is done by the host

computer before display.

The pseudo code of the 2-D decomposition algorithm for the case when the image is of size

N×N is presented in Fig. 3.2. The sub-blocks are of size K×K, the mesh is of size (N/K)×(N/K),

and the local memory is of size S× S. Note that 1-D DFT is computed along rows and columns

in each stage. Also notice that there are other 2-D decomposition methods, such as Vector Radix

FFT [41], which recursively decomposes the 2-D DFT into small-sized ones, like 2× 2 or 4× 4

2-D DFT. While such methods can effectively reduce the number of multiplications, the recursive

decomposition makes hardware implementation and memory addressing much more complicated.
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INPUT:
Input size: N ×N
Local 2-D DFT size: K ×K
Mesh size: (N/K)× (N/K)
Local memory size: S×S

1. Data Exchange (DX)
for i = 1 : (N/S)× (N/S)

Load DX data into local memory
for j = 1 : 2(S/(N/K))

Compute (N/K)-point 1-D FFT with twiddle-factor
multiplication

Store the result back to external memory
2. Local 2-D DFT (LDFT)

for i = 1 : (N/S)× (N/S)
Load LDFT data into local memory
for j = 1 : 2(S/K)

Compute K-point 1-D FFT
Store the result back to external memory

Figure 3.2: Pseudo code for 2-D decomposition algorithm for 2-D DFT

3.3 Proposed 2-D DFT Architecture

Fig. 3.3 gives a bird’s eye view of the FPGA architecture for implementing the 2-D decomposition

based 2-D DFT. It is composed of several components that can be classified broadly into Domain-

specific components and Infrastructure components. Components such as processing elements

(PEs) are designed specially for the 2-D DFT application and hence are domain-specific. Infras-

tructure components, including PowerPC, memory interface, host connection and UART, provide

high-level control and support for the domain-specific components.
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Figure 3.3: Block diagram of the FPGA architecture for 2-D decomposition based 2-D DFT.
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Figure 3.4: The proposed 2-D DFT architecture. (The size of the 1D FFT IP, Q, is described in
Section 3.4.1)

3.3.1 Domain-specific Components

As shown in Fig. 3.4, the PE array consists of multiple PEs, where each PE is formed by a primitive

1-D FFT IP core and a complex multiplier. The primitive FFT is used for both data exchange and

local 2-D DFT. In our design, we adopt Xilinx pipelined FFT IP [27]. The complex multiplier is

used for twiddle-factor multiplication during data exchange. All PEs operate in parallel and access

data from/to multi-banked local memory simultaneously without conflicts. The number of PEs and

size of the primitive FFTs is determined by the memory bandwidth and available FPGA resources

as explained in Section 3.4. Note that for ease of implementation, an input size of N ×N is always

assumed, where N is a power of 2, otherwise zero-padding is applied.

The input data is stored in the external memory (SDRAM), and is logically partitioned into

a mesh of sub-blocks. During each step mentioned in Section 3.2, portions of data are loaded into

the FPGA local memory, processed, and then stored back to the external memory. There are two

identical local memories that serve as ping pong buffers. These local memories are implemented

with dual-port Block RAM (BRAM) on the FPGA. The operations are described in details below.

In the data exchange stage which consists of the first four blocks in Fig. 3.1, first, equal

number of samples from the same position in each sub-block is loaded into local memory. This

data is then used for computing both row-wise and column-wise data exchanges. Note that the data

from the external memory is accessed only along the row direction as depicted in Fig. 3.5. This
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Figure 3.5: Data access pattern from external memory for data exchange and local 2-D DFT stages.

pattern is especially advantageous for accessing a dynamic memory, such as DDR2 and DDR3

SDRAM, which only favors row-wise burst access. The operations are repeated until the entire

data is traversed, as shown in Fig. 3.5.

In the local 2-D DFT stage (corresponding to the fifth block in Fig. 3.1), fixed number

of contiguous sub-blocks of the 2-D data are loaded into FPGA local memory and the PE array

computes 1-D transforms along rows and then along columns. This operation is repeated for all the

blocks.

3.3.2 Infrastructure Components

PowerPC is utilized for loading the input data into external memory, UART debugging and ethernet

TCP/IP connections, and also run-time configurations for the domain-specific components, such as

processing elements and data path controller. It is implemented as a Hard IP core in Xilinx FPGA,

particularly the FX series in Virtex-4 and Virtex-5 device. If PowerPC can not be supported in case

of LX, SX series of Virtex FPGA series, other soft-core processors like Microblaze can be utilized.

UART block is used to provide a basic terminal to show status and debugging information. For host

connection, currently Ethernet interface is preferred because Xilinx supports Hard tri-mode MAC
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(TEMAC) for Virtex-4 and Virtex-5 [42]. A light-weight implementation of the TCP/IP protocol

library, lwIP [43], is loaded to support ethernet communication.

High Throughput Memory Interface: While the PE array can finish computations very fast, the

bottleneck is the interface to external memory. Xilinx’s Multi-Port Memory Controller (MPMC),

for instance, is a very versatile controller supporting SDRAM/DDR/DDR2 memory. However, its

peak throughput is only 50% of a DDR2-SDRAM DIMM’s peak transfer rate. To alleviate this

bottleneck, we design a customized high throughput memory interface.

The customized memory interface, as shown in Fig. 3.6, has has a 128-bit wide internal

data-bus. Since the DDR2 SDRAM device has an operating frequency of 200MHz and an user

application in FPGA runs at 100MHz, the memory interface operates at 200MHz and has a 256-bit

wide data bus between the interface and the application. This enables data transfer rates of up to

256 bits at 100 MHz or 3200 MBytes per sec. Together with double buffering technique on local

memory, the customized memory interface enables us to completely overlap communication with

computation and avoid any loss of performance due to communication bottle-neck. This memory

interface can be ported onto any FPGA board with SDRAM DIMMs.

Memory Interface
(200 MHz)

Backend

FIFOs

Command

interface

DDR2
SDRAM

Controller

Address
Generation

DDR2
SDRAM
DIMM

(200 MHz) 25612812864

 Local Memory
 (100 MHz)

Figure 3.6: High throughput memory interface.

3.4 Automatic 2-D DFT System Generator

Given the specifications of input data and hardware platform, we propose a 2-D DFT system gen-

erator to automatically generate a 2-D DFT implementation based on the proposed 2-D decompo-

sition algorithm. The automation flow is shown in Fig. 3.7. A design optimizer first determines

the best decomposition based on input specifications to obtain the size of the primitive FFT. Then,
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Figure 3.7: Automation flow of generating architecture for 2-D Decomposition based 2-D DFT.

according to the available FPGA resources and memory bandwidth, the optimizer calculates the

number of PEs. The information is passed to the system generator, which generates hardware

module in Verilog or VHDL. Then, the HDL files are fed into the FPGA tool to produce final

configuration bit-files. Note that no user intervention is required for the entire process.

3.4.1 Choosing size of the FFT IP core

The input specifications include data size, target device, memory type, and accuracy requirement.

The data size is a power of two, typically from 512×512 to 4096×4096. The target FPGA platform

is Virtex-5 from Xilinx. For memory type, only DDR2 SDRAM is currently supported to provide

large memory bandwidth. However, the memory interface can be easily extended to other memory

types by replacing SDRAM controller block. The user can choose either 16-bit implementation for

resource constrained designs, or 24-bit implementation for high accuracy designs.
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Let N = K · L. Then the sub-block size is L× L for a mesh of size K ×K. The design

optimizer is used to find the best decomposition, i.e. L and K for a given N. Since our architecture

uses high throughput memory interface (Section 3.3.2) and double-buffering technique to overlap

communication with computation, the communication cost is not be considered in the modeling.

Moreover, if the local memory has a fixed size S× S, then there is an implicit constraint on the

possible values for K and L namely, K ≤ S and L ≤ S.

Assume that it takes Tdx to complete row-wise and column-wise data exchange operations,

and Tld f t to complete local 2-D DFTs, respectively. Then the total DFT computation time Ttotal for

input data of size N ×N can be calculated as

Ttotal = (N2/S2) · (Tdx +Tld f t). (3.10)

Since the local memory can hold up to (S/K)2 blocks for data exchange and (S/L)2 blocks

for local 2-D DFTs each time, then if Td f t(n×n) is defined as the time required for a 2-D DFT

computation of size n×n,

Tdx = (S/K)2 ·Td f t(K×K), (3.11)

Tld f t = (S/L)2 ·Td f t(L×L). (3.12)

For pipelined implementations, Td f t(n×n) is proportional to the 2-D DFT size n×n, and

Tdx = (S/K)2 · c ·K ·K = c ·S2, (3.13)

Tld f t = (S/L)2 · c ·L ·L = c ·S2. (3.14)

where c is a constant. It can be seen that both data exchange time Tdx and local 2-D DFT time Tld f t

depend only on the local memory size.

To fully utilize standard IP cores, only Q-point DFT will be implemented to accomplish

both K-point and L-point DFTs, where Q = max{K,L}. So if the FPGA can support P Q-point

processing elements, then

Tdx = Tld f t = c ·S2/P. (3.15)

Combining Eq. (3.15) with Eq. (3.10), we have

Ttotal = 2 · c ·N2/P. (3.16)
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Table 3.1: Resources required for Xilinx pipelined FFT IP.

FFT point 32 64 128 256

Virtex-4
24 bit

DSP48 16 16 24 24
BRAM 0 2 6 8

16 bit
DSP48 6 6 9 9
BRAM 0 1 3 4

Virtex-5
24 bit

DSP48E 24 24 36 36
BRAM 0 2 5 7

16 bit
DSP48E 8 8 12 12

BRAM 0 1 3 4

This implies that the time to complete DFT depends on data size N ×N, and the number of pro-

cessing elements, P, which is, in turn, determined by the resources available on the FPGA.

As primitive FFT size increases, the number of DSPs and BRAMs both increase, as shown

in Table 3.1. For an FPGA with limited DSP and BRAM resources, we need to keep the value of Q

as small as possible, so that more PEs can be accommodated. Since Q = max(K,L), and K ·L = N,

the smallest value of Q is
√

N. However, if
√

N is not an integer, we need to find a factorization of

N so that K and L are close to each other. Once the optimal factorization is found, the length of the

primitive FFT cores, Q, can be determined. For instance, if N = 1024, Q = 32, and if N increases

to 4096, Q = 64.

3.4.2 Choosing the number of PEs

After choosing the size of the FFT IP core, the number of PEs is determined. Based on the hardware

resources of the target FPGA and resources required by the FFT IP core given in Table 3.1, the 2-

D DFT generator calculates the maximum number of PEs, PRES, that can fit onto the FPGA. The

external memory type/interface plays an equally important role in determining the number of PEs,

since the pipelined Xilinx FFT IP [27] can input 1 datum/cycle. For instance, suppose that the data

width of a complex datum is 32 (16×2) bits, and if FFT IP is running at 100 MHz, its data rate is

400 MBytes/s. Now, let PBW be the maximum number of PEs that can be supported by the available

memory bandwidth. If the external memory is one DIMM of DDR2-400 SDRAM, which can offer

3200 MBytes/s data rate, up to 8 PEs can be supported, and PBW would be set to ”8”. In this case,

the performance of the 2-D DFT cannot be improved with more PEs. Eventually, the number of
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PEs is decided by the minimum of PRES and PBW , i.e.

P = min{PRES,PBW}. (3.17)

Once the design optimizer decides the number and type of the primitive FFT IPs and mem-

ory partitioning, the system generator generates all the required hardware modules, namely, infras-

tructure block, FFT core block and memory interface block. The infrastructure blocks such as

UART and host connection are fixed, whereas other blocks are user specified and provided in a

template format, with several parameters that are set based on decisions of the design optimizer.

After the generation of these modules, scripts for Xilinx flow are produced to run Xilinx tool au-

tomatically. Finally, the configuration bit file consisting of both hardware bit file and software

binaries are generated from FPGA tool.

3.5 Evaluation

In this section, the 2-D DFT architecture generated using the DFT system generator is evaluated.

First, the evaluation of high throughput memory interface is presented in Section 3.5.1, and the

resource utilization is analyzed in Section 3.5.2. Then, the evaluation of performance for various

input sizes is presented and compared with existing solutions in Section 3.5.3. Finally, the numer-

ical accuracy of the 2-D DFT is analyzed in Section 3.5.4. For the evaluations, Xilinx 10.1 tool set

and Modelsim 6.4 are used, and Virtex-5FX device is considered as the candidate FPGA device.

3.5.1 Memory throughput for RC- and 2-D decomposition- based architectures

The performance of the memory interface is measured in terms of the number of cycles taken to

read/write data from/to DDR2 SDRAM to/from local memory. The performance for read, write

and read+write operations for various memory access patterns for an input size of 2048× 2048

and local memory size of 128×128 is shown in Fig. 3.8. It can be observed that column access is

much slower compared to other access patterns, and hence it would be the bottle-neck for direct RC

method. On the contrary, data exchange (DX) and local DFT (LDFT) are both row-wise accesses.

Therefore, the proposed 2-D DFT avoids the performance penalty caused by column access and

hence can achieve a higher performance.
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Figure 3.8: Memory access time for different access patterns when on-chip memory size is 128×
128.

3.5.2 Resource utilization

The resource utilization of the PEs (Xilinx FFT IPs, complex multipliers, and the control units) and

the memory requirement in terms of bandwidth, are summarized in Table 3.2. This evaluation is

based on the device XC5FX200T, which has 384 DSP slices, 456 BRAMs (16 Mbs), 30,720 logic

slices, and 122,880 slice LUTs. For large image sizes from 1024×1024 through 4096×4096, the

size of the FFT IP can be either 32-point or 64-point. The data representation can be either 16-bit

or 24-bit. The infra-structure block uses fixed number of resources of 8,149 logic slices and 47

BRAMs including TEMAC for host interface. We assume the operating frequency of the IPs is

100 MHz and the external memory device to be one DDR2-400 SDRAM DIMM operating at 200

MHz.

From Table 3.2, we see that the number of BRAMs and Slice LUTs utilized by 64-point

FFT are slightly higher than 32-point FFT, though the number of DSP resources utilized is the same

for both the cases. The number of DSP resources and the memory bandwidth required increase

almost linearly with the number of PEs. Also, there is a large increase in DSP resources and

memory bandwidth, when the data-width is changed from 16-bit to 24-bit.

From Table 3.2 we also see that the target FPGA can fit either 16 32-point FFT cores with

16-bit data width, or 8 32-point FFT cores whith 24-bit data width, or 8 64-point FFT core with

16-bit, or 8 64-point FFT cores with 32-bit data width. The DSP resource requirement for the 16
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Table 3.2: Resource utilization and memory requirement for different configurations on Xilinx
XC5FX200T FPGA.

Primitive FFT Bit Width # of PEs
DSP BRAM Slice LUTS Required Memory

Slices (36 Kbits) LUTs Bandwidth(MB/s)

32-point FFT
16bits

4PEs 36 137 25536 1600
8PEs 72 137 35238 3200
16PEs 144 145 54442 6400

24bits
4PEs 112 145 33294 3200
8PEs 224 145 46326 6400

64-point FFT
16bits

4PEs 36 139 26882 1600
8PEs 72 141 37958 3200

24bits
4PEs 112 149 34991 3200
8PEs 224 153 50132 6400

FFT cores (32-point and 64-point) with 24-bit data representation exceeds that supported by the

Virtex5 FPGA and hence cannot fit in the device. Also, the configuration with 16 64-point FFT

cores with 16-bit data width cannot be supported due to local memory constraints. Thus, for both

cases, the 2-D DFT system generator (see Section 3.4) would set PRES as ”8”. Note that PRES could

be higher for other FPGAs with larger capacities.

Table 3.2 also list the required bandwidth for each configuration, and based on the table, the

2-D DFT system generator is able to determine PBW . For example, if we have 1 DIMM of DDR2-

400 SDRAM with a bandwidth of 3200 MB/s, then for 64-point FFT IP with 24-bit representation,

PBW = 4. Although PRES in this case is ”8”, the final number of PEs is ”4”, based on Eq. (3.17).

However if we have 2 DIMMs of DDR2-400 SDRAM, then the available memory bandwidth is

6400 MB/s, and the final number of PEs is 8. Note that PBW could be higher if more DIMMS or a

faster memory device, such as DDR2-800 SDRAM, is used.

3.5.3 Comparison of timing performance

Table 3.3 shows the performance of the 2-D DFT architecture for different input sizes and different

architecture configurations. The performance is specified in terms of frame rate, which refers to

the number of frames of input data that the 2-D DFT architecture can process in a second. The size

of the FFT primitive is chosen by the design optimizer (see Section 3.4). It can be seen that the

performance is inversely proportional to the input data size, but directly proportional to the number

of PEs.
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Table 3.3: Performance for different input sizes.

Input size Primitive # of PE
Computation

Frame rates
time(ms)

1024×1024 32-point FFT
8 5.4 182
4 10.7 92

2048×2048 64-point FFT
8 22.4 44
4 43.4 23

4096×4096 64-point FFT
8 90.4 11
4 174.3 5

Table 3.4: Performance comparison for different architectures for input size 2048×2048

RC Transpose 2D-DEC
Computation time (ms) 44.0 30.4 22.4

Frame rates 23 33 44

Table 3.4 compares the performance in terms of computation time and frame rate for FPGA

implementations corresponding to (i) RC decomposition, (ii) Transpose (row-DFT - transpose -

row-DFT) and (iii) the proposed 2-D decomposition algorithm. This comparison is done for iden-

tical architecture constraints such as one DDR2-400 SDRAM DIMM, 128× 128 local memory

size, 16-bit implementation and for an input data size of 2048×2048. The evaluation of the can-

didate architectures is performed using the proposed high throughput memory interface for the

case when there are 8 PEs. The table shows that under identical conditions, the 2-D decomposi-

tion architecture provides a 96.4% improvement compared to the RC decomposition architecture

and a 35.7% improvement compared to the transpose-based architecture. The improvement can be

maintained across different image sizes, as shown in Fig. 3.9.

Further, Table 3.5 presents a comparison of other existing 2-D DFT implementations with

the proposed 2-D decomposition based DFT (2D-DEC) architecture that utilizes maximum mem-

ory bandwidth on Virtex-5 FPGA. Uzun et al. [34] have used SRAM as the external memory

with Virtex-E FPGA. Our 2D-DEC architecture provides significant performance improvement

over [34] for the same input data size of 1024× 1024. Dillon [21] has used two cascaded Virtex-

II FPGAs for row-DFTs and column-DFTs and large SRAMs for intermediate data storage. In

contrast, our 2D-DEC architecture uses a single FPGA with cheaper DDR2 SDRAM as external

memory. Furthermore, our datawidth is 32 bits compared to 16 bits in [21]. Lenart et al. [19] have
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Figure 3.9: Comparison of the computation times (normalized to RC-based method) for different
image sizes.

Table 3.5: Performance comparison with existing works.

Input size Method Technology External memory Complex data Frame rate
(bits) (fps)

1024×1024 Uzun [34] Virtex-E, 180 nm, 27 MHz Quad SRAM 2×16 13
2D-DEC Virtex-5FX, 65 nm, 100 MHz Single SDRAM 2×16 182

2048×2048
Dillon [21] Virtex-II×2, 130 nm, 125 MHz Dual SRAM 2×8 120
Lenart[19] ASIC, 130 nm, 250 MHz Dual SDRAM 2×16 20
2D-DEC Virtex-5FX, 65 nm,100 MHz Single SDRAM 2×16 44

implemented a transpose based architecture with DDR SDRAM memory. Our 2D-DEC architec-

ture operates at 100 MHz compared to 250 MHz and still provides performance improvement by

avoiding transpose operation.

3.5.4 Accuracy evaluation

As mentioned earlier, the proposed 2-D DFT is implemented using Xilinx pipelined FFT IPs, which

are fixed-point cores. Due to finite wordlength effects, accuracy is a major design issue that needs

to be analyzed.

An N-point Xilinx pipelined FFT core consists of log2(N) stages of radix-2 butterflies. For

an N ×N 2-D DFT, therefore, every input element needs to be operated by 2log2(N) stages of

radix-2 butterflies, irrespective of the decomposition algorithm used. To prevent overflow, Xilinx

provides corresponding function (right-shifting 0-3 bits) on each pair of two stages in the FFT IP.

The corresponding control bits can be programmed by the user. In this work, we first scale the input
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Table 3.6: SNR(dB) of proposed 2-D DFT, where the input set is drawn from uniformly distributed
random number and |x(i1, i2)|< 1/2.4142.

DFT Size 64×64 128×128 256×256 512×512 1024×1024 2048×2048
16 bit 70.56 69.94 69.67 69.36 68.72 67.72
20 bit 94.50 94.50 93.92 92.97 92.16 91.59
24 bit 118.77 118.17 117.52 117.15 116.81 116.03

array so that |x(i1, i2)| < 1/2.4142 [44] to prevent overflow in the first stage. Then we right-shift

1 bit for every pair of stages to prevent overflow in the FFT computation. This half-a-bit-per-stage

scheme works for a broad class of signals [45].

To quantify the output accuracy, we feed uniformly distributed random numbers into the

2-D DFT. We adopt a commonly used criterion, Signal-to-Noise-Ratio (SNR), which is defined as:

SNR(dB) = 10log10
Pout put

Pquantnoise
,

where Pout put is average output power, and Pquantnoise is acquired by comparing the hardware output

with Matlab floating point results. The SNR results for randomly generated input data are listed in

Table 3.6.

From Table 3.6, three observations can be made. First, SNR of the 2-D DFT is mainly

dominated by Xilinx FFT IP. For example, a 16-bit 1024-point Xilinx FFT has an SNR around

73dB [27]. The 16-bit 2-D DFTs have lower SNRs than 73dB, because the 2-D DFTs have more

stages of radix-2 butterflies. Second, we can gain about 6 dB of SNR when 1 additional bit is

added to the data width. This observation is consistent with the results in [27]. Based on this,

the user can decide the data width. Thirdly, the accuracy is insensitive to the 2-D DFT problem

size (as shown in this case). To explain this, one should notice that the denominator of the SNR

equation is dominated by data width, which is fixed, and the numerator is dominated by the signal

power (or amplitude). In Fig. 3.10, we record the internal maximum amplitude of every stage in

the 2-D DFT. The values are maintained around a certain value (0.75 in this case), irrespective of

the number of butterfly stages. That means the signal power is almost fixed throughout the whole

computation. As the denominator and numerator are both fixed, the SNR value can be maintained.
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Figure 3.10: Maximum amplitude of every stage in a 2048× 2048 2-D DFT, where the input is
uniformly distributed random numbers.

Besides, Fig. 3.10 indicates that the internal data utilizes full data-width but never lets overflow

occur. It also proves that the scaling scheme works well.

If accuracy is not critical, it is recommended to use a smaller data-width to minimize the

hardware resources occupied by the primitive FFTs. Typically, a 16-bit Xilinx FFT core occupies

only 30-40% of resources compared with a 24-bit design. With saved resources, we can put more

primitive FFTs into the FPGA to further accelerate the 2-D DFT computation.

3.6 Summary

In this chapter, we have proposed an efficient architecture to implement the 2-D DFT for large input

sizes based on a novel 2-D decomposition algorithm. This architecture provides high performance

by leveraging the inherent parallelism of the 2-D decomposition and by scheduling data commu-

nication to overlap with computation. The memory bandwidth problem is alleviated by employing

a custom-designed high throughput memory interface. In addition, a system generator is provided,

which can automate the generation of an optimized version of the 2-D DFT architecture for various
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input sizes. The evaluation of this architecture shows significant performance enhancements over

existing 2-D DFT implementations.

One drawback of this implementation is that the outputs are generated in bit-reversed order.

This could be a problem if the 2-D DFT module is fed to another module that need its input in

natural order. In the next chapter, we describe another implementation of MD DFT where the

outputs are generated in natural order.
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Chapter 4

Multi-Dimensional DFT IP Generators for FPGA Platforms

4.1 Introduction

In this chapter, we propose an automated MD DFT hardware IP generator for implementing 2-D

and 3-D DFT on FPGA platforms. The optimized MD DFT architecture maximizes the external

memory bandwidth. It achieves this by accessing the memory data in a way that avoids transpose

operations and utilizes the burst access pattern of the SDRAM memory. The proposed MD DFT

architecture is automatically generated by an in-house IP generator. Based on the image size,

dimensionality, and FPGA hardware constraints, the IP generator produces optimized HDL code

that utilizes the on-chip FPGA resources efficiently. The DFT IPs have been ported onto the BEE3

board. The results prove that our implementation is transpose-free and that it can maintain the

maximum memory throughput rate for the entire computation.

The rest of this chapter is organized as follows. In Section 4.2, the proposed MD DFT

algorithm is derived. Section 4.3 describes in detail the proposed DFT architecture. A newly

developed FPGA framework is described in Section 4.4. The implementation details and evaluation

results are discussed in Section 4.5, and concluding remarks are given in Section 4.6.

4.2 MD DFT Algorithm

The general form of 2-D DFT can be described in matrix form as follows. Here input U and

output V2 are of size N2 ×N1; FN1 and FN2 are twiddle factor matrices for row and column DFT

computations:

V2 = FN2 ·U ·FN1 . (4.1)

In Eq. (4.1), V1 =U ·FN1 can be done by applying 1-D DFT along the rows of U , and (FN2 ·V1) by

applying 1-D DFT along the columns. This is the traditional Row-Column (RC) decomposition.

If the data along the rows of U are stored in a one-dimensional memory, say SDRAM, we can

efficiently access data in consecutive location while executing row DFT. However, adjacent data

along the columns are no longer in consecutive addresses, and the long strides that are necessary

to gather data along columns could make the access latency about 10 times longer during column
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DFT computation [19]. To reduce access latency of column data, in many implementations, the

data is transposed after row operation [19] so that the column-wise data can be re-aligned into

adjacent addresses in the memory and can still be accessed in a burst manner when executing

column DFT. However, transpose operations cost extra time, and during matrix transpose operation,

the computation unit remains idle. Furthermore, when computing higher dimensional DFT, such as

3-D DFT, much larger on-chip local memory is required for the transpose operation, which cannot

be supported on some smaller FPGAs.

In the rest of this section, we first describe the memory-aware 2-D DFT algorithm, which

is transpose-free. Then, we also show how the proposed operations in 2-D DFT can be reused in

3-D DFT.

4.2.1 Proposed 2-D DFT Algorithm

To maintain row-wise burst for column DFT computations, we utilize the local memory on FPGA

and store multiple columns of data. Let S be the size of the local memory, then we can store

S/N2 columns. If S/N2 is less than the SDRAM’s burst size B, then the SDRAM bandwidth is not

utilized completely. For instance, if B = 32, S = 16,384 and N2 = 1024, then S/N2 = 16 < 32, the

burst size. To utilize burst size, B, we decompose the column computations of size N2 into 1-D

computation of size m followed by 1-D computation of size p, where N2 = m · p. Let L = S/B, then

p ≤ L. The procedure can be represented mathematically as follows:

V2 = PN2,m · (Im ⊗Fp) · D̃N2 · (Fm ⊗ Ip) ·U ·FN1︸ ︷︷ ︸
Step 1-a︸ ︷︷ ︸

Step 1-b︸ ︷︷ ︸
Step 2

. (4.2)

where Im and Ip are the identity matrices of sizes m×m and p× p, respectively, D̃N2 is a diagonal

matrix of twiddle factors, PN2,m is the column permutation, and ⊗ is the Kronecker product. Eq.

(4.2) can be summarized as follows:
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[2-D DFT Procedure]

• Step 1. Row Operations: This step includes two operations:

– Step 1-a. Row DFT (U ·FN1): Compute the DFT along the rows of array U.

– Step 1-b. Column stride DFT: Column DFT of size m followed by twiddle multiplica-

tions.

• Step 2. Column Local DFT: Column DFT of size p followed by column-wise permutation.

Note that Step 1-b & Step 2 form the column DFT. The data access pattern for the 2-D DFT is

illustrated in Fig. 4.1. In Fig. 4.1a, m rows spaced p rows apart are selected from the data array

and N1×m data is sent to the FPGA local memory. Since the local memory is of size S, S ≥N1×m,

DFT of N1 points is executed along each of these rows. Then, column-wise m-point DFT followed

by twiddle factor multiplication is applied as shown in Fig. 4.1b. The result is stored back in

the same location of the data array in the SDRAM. After p iterations of Step 1-a & 1-b, all row

DFTs and column stride DFTs are completed. Then Step 2, which consists of p-point local DFT,

is computed. As shown in Fig. 4.1c, L rows with B elements per row are stored in the local

memory. Thus S ≥ B×L, where L ≥ p. This enables p-point local DFT to be computed on these

sub-columns. Note that if N2 ≤ L, column stride DFT can be skipped, because the whole column

can fit in the local memory and the decomposition is not required. Next, the data along the rows

have to be stored back to the correct row locations (based on the column-wise permutation, PN2,m)

in the SDRAM.

We compare the theoretical time consumptions of three different 2-D DFT solutions in

Table 4.1. Direct RC implementation only needs to access the data array in the SDRAM two times.

However, the column access is K times longer, where K could be as high as 10 [19]. The transpose-

based solution needs to access the SDRAM four times, because of the two additional transpose

operations. Note that during the transpose operation, the computation units are idle. In contrast,

the proposed design only needs to access the SDRAM two times, for row operations (Step 1) and

for column local DFT (Step 2). The row operations could take two times longer (α = 2) than the

column local DFT if column stride DFT is activated. However, if the row operations can be fully
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Figure 4.1: The proposed data access pattern for 2-D DFT .

Table 4.1: Comparison of computation times for 2-D DFT.

Direct RC Transpose Proposed
Operations Time Operations Time Operations Time
Row DFT T Row DFT T Row operations αT

Column DFT KT Transpose T Column local DFT T
Row DFT T
Transpose T

Total (K+1)T Total 4T Total (α +1)T

overlapped with data accesses to the external memory, as is done in our proposed method, α can

be reduced to 1. Thus, under the same hardware constraints, the proposed method can be up to two

times faster than the transpose-based solution and much faster than the direct-RC implementation.

4.2.2 3-D DFT Algorithm

3-D DFT is a simple extension of 2-D DFT. As illustrated in Fig. 4.2a, the 2-D DFT algorithm

(described in Section 4.2.1) is computed on each of the N3 2-D slices parallel to the d1-d2 plane.

Next, 1-D DFT of size N3 is done along the d3-axis. Since adjacent data along the d3 dimension are

not in consecutive addresses in the SDRAM, to utilize the burst along d1 dimension, we access data

on a 2-D slice parallel to d1-d3 plane and apply the decomposition along d3 dimension, as shown

in Fig. 4.2b. The mathematical description of this procedure is given by:

V1,3 = FN3 ·U1,3 = PN3,m′ ·
(
Im′ ⊗Fp′

)
·D̃N3 ·

(
Fm′ ⊗ Ip′

)
·U1,3︸ ︷︷ ︸

Step 2-a︸ ︷︷ ︸
Step 2-b

, (4.3)
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Figure 4.2: The proposed data access pattern for 3-D DFT .

where U1,3 represents an input 2-D array parallel to d1-d3 plane and V1,3 is the output array;

N3 = m′× p′. The whole 3-D DFT procedure can be summarized as follows:

[3-D DFT Procedure]

• Step 1. Run [2-D DFT Procedure] on N3 slices: Compute 2-D DFT on every 2-D slice

parallel to d1-d2 plane.

• Step 2. DFT along d3 dimension (Eq. (4.3)):

– Step 2-a. Stride DFT: Compute m′-point stride DFT followed by twiddle multiplica-

tions on the 2-D slice parallel to d1-d3 plane.

– Step 2-b. Local DFT: Compute p′-point local DFT followed by the permutation on the

2-D slice parallel to d1-d3 plane.

Step 2 has to be iterated N2 times. After Step 3, the final results have to be stored to the correct

locations in a different part of the SDRAM. Similar to the 2-D DFT procedure, Step 2 can be

skipped if N3 ≤ L.

Note that the purpose of the decompositions along d2(column)- and d3-dimension is to uti-

lize the burst access along d1-dimension(row) throughout the whole 3-D DFT computation. With
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this decomposition technique, we can avoid the data transpose required in other 3-D DFT imple-

mentations [11][46] and achieve higher performance.

4.3 Proposed DFT Architecture

4.3.1 Architecture Overview

The architecture proposed for MD DFT is shown is Fig. 4.3. The main components are an FPGA

to do the processing and an SDRAM to store the data. The SDRAM controller fetches the input

data from SDRAM and sends it to the local memory on the FPGA. The processing elements (PE)

read this data, process it, and store the results back to the local memory. The SDRAM controller

then reads these results from the local memory and stores them back to the SDRAM. The main

components of the architecture are described below:

Processing elements (PEs): A PE consists of a 1-D DFT module followed by a complex multiplier.

The 1-D DFT module can support a maximum of N1-point DFT for computing along rows, but it

can also compute column stride/local DFTs of other lengths L ≤ N1. In our design, we adopt

Xilinx’s streaming Fast Fourier Transform (FFT) IP core [27]. The complex multiplier is used to

compute the twiddle multiplication after column stride DFT. The number of PEs depends on the

required data throughput as well as the hardware resources available on the FPGA.

SDRAM: SDRAM is the main memory used to store the multi-dimensional data. In our imple-

mentation, a 2GB DDR2-400 DIMM is adopted. For 2-D or 3-D images, consecutive data along

36



R
O
w

(m -1)p

u( 0, 0)*

u( 0, 1)

u( 0, 2)

u( 0, r-1)

u ( 0, r)

u( 0 , r+ 1)

u( 0, r+ 2)

u ( 0, 2r-1)

u( 0, 3) u( 0, r+ 3)

u ( 2p, r-1)

u( 2p , 0)

u( 2p , 1)

u( 2p , p -2)

u( p , 2r-1)

u( p , r)

u( p , r+ 1)

u( p, 2r-2)

u( 2p , 2) u( p , r+ 2)

u( 4p, r-2)

u( 4p, r-1)

u( 4p , 0)

u( 4p , r-3)

u ( 4p,2r-2)

u ( 4p,2r-1)

u( 4p , r)

u ( 4p ,2r-3)

u( 4p , 1) u( 4p, r+ 1)

u((r-2)p , 1)

u((r-2)p , 2)

u((r-2)p , 3)

u((r-2)p , 0)

u((r-2)p, r+ 1)

u((r-2)p, r+ 2)

u((r-2)p, r+ 3)

u ((r-2)p , r)

u((r-2)p , 4) u((r-2)p, r+ 4)

*: x(row  index, colum n index)

R ow  0 R ow  2p R ow  4p R ow  (r-2)p

Bank 0

Bank 1

Bank 2

Bank 3

Bank r-1

Access sequence of 
Colum n S tride/Local D FT

S/r sam ples

Local m em ory

R
O
w

0

R
O
w

p

R
O
w

4p

S/r sam ples

R
O
w

2p

R
O
w

3p

S/m  sam ples S/m  sam ples S/m  sam ples S/m  sam ples

S/r sam ples

S/m  sam ples S/m  sam ples

R
O
w

(m -2)p

Access sequence of 
R ow  DFT

Figure 4.4: Data organization and the access patterns of the local memory.

d1 dimension is stored in consecutive locations in the SDRAM. We use AlgoFLEX (described in

Section 4.4) to transfer the data between SDRAM and FPGA. The data is always accessed along

d1 dimension, thereby fully exploiting SDRAM’s bandwidth efficiency.

Dual local memory: There are two identical local memories of size S that serve as ping pong

buffers. These local memories are implemented with dual-port Block RAMs on the FPGA. Unlike

the SDRAM, non-consecutive addresses in the Block RAM can be accessed in contiguous clock

cycles without performance penalty. Each local memory consists of multiple banks, so that multiple

data can be received within one cycle from the SDRAM, and data in the local memory can be

accessed by multiple 1-D FFT IP cores at the same time. To support simultaneous accesses from

multiple (up to r) PEs, each local memory is divided into r banks, as illustrated in Fig. 4.4. If

S is the size of the local memory, for the row operation, the SDRAM controller fetches the first

S/m consecutive data (i.e. the first S/(m×N1) rows) from the SDRAM and stores them into the

banks starting from Bank 0. Then, the SDRAM controller fetches the next S/m consecutive data

starting from the pth row and stores them starting from Bank 1, and so on. Such a storage scheme

enables r PEs to access the data that were in the same bank. The arrows in Fig. 4.4 show how the

conflict-free accesses work for row DFT and column stride DFT. The same addressing scheme also

works for column local DFT. Note that the local memory can also receive multiple input data via a

wider bus or SDRAM interface with the multiple-banked organization.
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4.4 Test Platform and MD DFT IP Generator

To implement and evaluate the proposed MD DFT design on different FPGAs, we have developed

an automated MATLAB-based MD DFT IP generator. The IP generator automatically calculates

the size of the FFT IP in the PE, and the optimal number of PEs, NPE , based on image size, FPGA

resources and external memory bandwidth. Then, it generates the corresponding HDL (Verilog)

files which can be fed into the FPGA tool to produce the final configuration bit-files. The automa-

tion flow of the MD DFT IP generator is shown in Fig. 4.5.

In order to integrate the MD DFT cores with other programmable and customized cores

for large system design, we have also developed a framework called AlgoFLEX. This framework

provides a backbone hardware platform for seamless integration of customized cores. Further, it

provides a front-end GUI interface and back-end synthesis software chain for mapping the desired

set of IP blocks onto a target FPGA. We only explain the portions of this framework essential to

understanding the integration of MD DFT core on to this platform.

4.4.1 AlgoFLEX Platform

The AlgoFLEX framework has been designed for integrating multiple cores to aid fast development

of complete applications on FPGA based hardware platforms. On the hardware side, it provides

various standard interfaces, like system bus and SDRAM controller for plug-n-play user-defined

modules. On the software side, the platform incorporates a unified graphical user interface (GUI)

which allows the user to modify the configurations, execute the FPGA implementation flow and

display the results.

The AlgoFLEX hardware infrastructure, shown in Fig. 4.6, provides a system designer

with the capability to plug-n-play a collection of custom accelerator blocks, such as our MD DFT

core, without requiring intimate knowledge of how those blocks will be composed. As shown, the

platform consists of a hybrid communication network comprised of a System Local Bus (SLB)

and a packet-based on-chip router along with memory controllers, accelerators, and other system

components. Currently, we adopt Xilinx’s 128-bit Processor Local Bus (PLB) [47] as SLB and 64-

bit Multi-Port Memory Controller (MPMC) [48] as the memory controller. While the SLB serves
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Figure 4.5: Automation flow of generating architecture for the proposed MD DFT.

as the communication backbone within a single FPGA, the router is used to coordinate a secondary

channel for both intra- and inter-FPGA communication.

To integrate accelerators such as our MD DFT into the base hardware configuration of Al-

goFLEX, we have designed a Universal Custom Accelerator Module (UCAM) wrapper. It defines

a standard interface between the common system level facilities and an instance of an accelerator

module. It takes advantage of the fact that many signal processing applications can be character-

ized by the following: 1) at the application level a sequence of subtasks are repeatedly performed

on incoming data and 2) in each subtask, a static set of compute-intensive operations are performed

whose sequence can vary across different invocations. For example, an optimized MD DFT im-

plementation may selectively perform decomposition of data into 1-D DFT operations based on

the dimensionality, but the sequence of these operations may be radically different across different

problem specifications.
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Figure 4.6: AlgoFLEX Hardware Infrastructure.

Furthermore, each UCAM is equipped with an Application Specific Instruction Processor,

ASIP, that facilitates fetching, decoding, and preprocessing of accelerator specific instruction se-

quences. It also provides a set of built-in Command Handlers that are useful for many algorithm

accelerators. For the case of 2-D and 3-D DFT, the window fetch handler supports optimized

fetching and storing of n-dimensional data with programmable column size, number of rows and

columns, row and column offset, inter-row stride, inter-column stride, and inter-dimension offset.

The provisioning of such features within the AlgoFLEX framework facilitates reuse of design ef-

fort across modules as well as helps in quickly adapting the customized cores to a different target

FPGA with changes only in a small set of base platform modules.

AlgoFLEX also provides a drag-and-drop graphical interface that allows the user to com-

pose a system by diagramming the algorithmic specification onto a canvas using AlgoLets, as

shown in Fig. 4.7a. An AlgoLet is an abstraction of an algorithmic entity that, when synthesized,

is implemented in one or more associated UCAM modules. The dataflow between AlgoLets is
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described by the user by drawing connections between several AlgoLets. AlgoFLEX automati-

cally infers control flow, maps UCAMs to FPGA resources, instantiates Direct Memory Access

and Manipulate (DMAM) module and Stream Operators, and executes synthesis scripts necessary

to generate bitstreams for each FPGA in the platform. An example command set and execution

sequence for 2-D DFT can be seen in Fig. 4.8. In addition to hardware, software is generated

for the embedded microcontroller to perform initialization tasks such as configuring routing ta-

bles, performing memory allocation, and memory mapping for each UCAM. The executables for

each microcontroller are loaded using a JTAG debug interface while the system initialization data

is loaded through an Ethernet interface. For instance, in Fig. 4.7a, two MD DFT AlgoLets are

dragged and linked on the canvas. The former one runs DFT, and the latter one runs IDFT. This

setting is for the MD DFT function verification. In Fig. 4.7b, the GUI displays the input and output

images, which if identical, implies that the MD DFT/IDFT works correctly.

4.4.2 Automated MD DFT IP Generator

In this section, we describe the operations in the MD DFT IP generator shown in Fig. 4.5. It

receives the user-selected device, memory type/interface, the required image size, and dimension-

ality from the AlgoFLEX GUI. Based on the image size, it chooses the size of the Xilinx 1-D FFT

IP. Then, based on the hardware resources of the target FPGA, the IP generator picks the number

of PEs, NPE Resource. Note that the external memory type/interface also affects the number of PEs,

since the pipelined Xilinx FFT IP [27] can input 1 datum/cycle. For instance, if the memory in-

terface can transfer 128 bits/cycle and an image sample is 64-bit wide, only 2 samples from the

external memory can be read in one clock cycle, and the performance of the MD DFT cannot be

improved with more PEs. Let NPE Bandwidth, be the number of PEs based on the memory bandwidth.

Then, the number of PEs is the minimum of NPE Resource and NPE Bandwidth, i.e.

NPE = min{NPE Resource,NPE Bandwidth}. (4.4)

The MD DFT IP generator also has the capability to determine if the image size can be

supported by the FPGA platform or not. It computes the maximum image size based on the fol-

lowing equations: First, let the 1-D FFT IP’s maximum size, NFFT IP be the maximum value of N1,

41



(Running DFT) (Running IDFT)

MD DFT parameters:

(a) An FFT-IFFT bi-directional test for functionality verification.

Original Reconstructed

(b) Compare the original and reconstructed images.

Figure 4.7: Graphical user interface of AlgoFLEX.

which is provided by the user through the GUI. So

NFFT IP = N1 max. (4.5)

The local memory size, S, decides the number of rows, m, which can be loaded into the FPGA in

row DFT/column stride DFT computations, where m = S/N1 max. The burst size, B, which is an

SLB parameter, affects the sizes of N2 and N3. For column local DFT, L rows with B samples per

row are loaded onto the local memory, i.e. L = S/B. L is actually the maximum size of column

local DFT, p, and N2 = p×m. Therefore, the maximum value of N2 is

N2 max = L×m =
S2

N1 max ×B
. (4.6)
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In other words,

N1 max ×N2 max =
S2

B
. (4.7)

A similar analysis holds for N3, and

N1 max ×N3 max =
S2

B
. (4.8)

For example, in our implementation, the local memory size S on a Virtex-5 LX155T FPGA is

16384, and the burst size B is 32 samples. Based on Eqs. (4.7)-(4.8), the MD DFT implementation

can support up to 2048× 4096 2-D DFT and 2048× 4096× 4096 3-D DFT. If the user inputs N2

and N3 larger than N2 max and N3 max, the GUI would show a warning message and suggest the user

to reduce the image size.

4.5 Evaluation

The proposed MD DFT architecture has been generated by the AlgoFLEX platform and its func-

tionality has been verified on the BEE3 board [49], which is equipped with a Virtex-5 LX155T

FPGA. We assume that N1 max = 2048 in our experiments. For this configuration, the FPGA can

only accommodate one PE, which consists of a 2K-point FFT IP and a complex multiplier, since

this occupies more than half (53%) of DSP48Es. The local memory size, S, is 16,384 samples. The

ping pong buffer and other memory in the 2K-point FFT IP consume 41% of Block RAMs, and

the other Block RAMs are needed to support AlgoFLEX’s infrastructure. The hardware resource
43



Table 4.2: Hardware resource utilization of the MD DFT IP on a Xilinx Virtex-5 XC5LX155T
FPGA.

Slices DSP48Es Block RAMs
25% 53% 41%

(8,273/33,088) (68/128) (87/212)

utilization of the MD DFT IP is summarized in Table 5.4. Since there is only one PE, single-banked

local memory would have been sufficient. However, we choose to divide it into 2 banks, since in

each cycle the 128-bit SLB can transfer 2 complex samples with single precision and store them

into the local memory. For maximum performance, SLB’s burst size is set to the largest value: 16

cycles. Thus, the effective burst size, B, is 16×2 = 32 complex samples. In our implementation, m

is set to 8, because 8 rows of length 2048 can fit in the local memory. The clock frequency is set to

100MHz. A timer on the FPGA is used to count the clock cycles elapsed during the computations.

4.5.1 2-D DFT

The computation times (measured) of 2-D DFT for square and rectangular images of different

sizes are listed in Table 4.3. First, these results show that column local DFT takes almost the same

time as the row operations. This means that the row-wise burst access mode for the column local

DFT computations achieve the same bandwidth efficiency as the row operations. Secondly, the

computation time is proportional to the image size, that is, if the computation time is T for an

N×N image, it is 4T for a 2N×2N image. So a 512×512 2-D DFT takes about four times longer

than 256×256 2-D DFT; a 1024×1024 2-D DFT takes almost the same time as 2048×512 2-D

DFT, because their data sizes are the same.
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Table 4.3: Measured computation time of 2-D DFT on BEE3.

Shape
Image size Row operations Column local Total
(N1 ×N2) (ms) DFT (ms) (ms)

Square

128×128 0.89 0.90 1.79
256×256 3.01 3.04 6.05
512×512 12.14 12.72 24.86
1024×1024 ∗ 50.21 52.42 102.63
2048×2048 ∗ 202.45 209.65 412.10

Rectangle
512×2048 ∗ 50.34 52.37 102.71
2048×512 50.11 52.47 102.58

(∗: Column stride DFT is required.)

In the current implementation on the BEE3 board, the SDRAM’s peak performance is

not fully exploited due to the slow SLB (Xilinx’s PLB) and the memory controller, MPMC. In

the 2K×2K DFT, the average data transfer rate is only 325.69MB/s, while the peak transfer rate

of the SDRAM is 3200MB/s. To achieve a much higher performance, the proposed architecture is

currently being ported onto the Xilinx ML605 FPGA board [50], which is equipped with a Virtex-6

LX240T FPGA and a DDR3-800 SDRAM SO-DIMM. This FPGA can accommodate 8 PEs, which

can easily deal with the full SDRAM bandwidth. In addition, if a dedicated SDRAM controller

is designed that can utilize 80% of the SDRAM’s bandwidth, the proposed design can complete

2K×2K DFT in 26.2ms.

With ML605, the proposed architecture can outperform other 2-D DFT solutions listed in

Table 4.4. To make a fair comparison, we extrapolate the performances of the different architec-

tures for the same data width, namely, 2× 32 bits (single precision complex data). We assume

that in all cases the performance is constrained by the data transfer between the external memo-

ries and FPGA/ASIC, and that the bandwidth of the external memory is the same as the original

implementation. So the normalized time consumption is 64/(data width) of the reported compu-

tation time. Under this scenario, both Dillon’s implementation [21] and ML605 (simulated) have

very low computation times, around 30ms for 2K×2K data. While our design requires only one

SDRAM, Dillon’s solution [21] utilizes multiple SRAM modules and a memory controller that

is optimized for an image size of 2K×2K. Uzun’s 2-D DFT [22] supports multiple image sizes.

However, since it requires transpose operations and runs at a lower frequency, its performance is
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Figure 4.9: Comparison of computation times of 2-D DFT architectures. Note that the computation
times are normalized for the same data width, 2×32 bits.

lower. Other competing solutions such as Lenart’s [19] also requires transpose operations, and the

one from Eonic [18] requires multiple SDRAMs (up to 4 banks). The performances of the 2-D

DFT architectures have been illustrated in Fig. 4.9. We see that the proposed 2-D DFT on ML605

is the fastest implementation for different data sizes. Also, the straight lines in this log-scaled plot

imply that the performances of the 2-D DFTs on BEE3 and ML605 are proportional to the data

sizes.

To analyze the precision of the 2-D DFT, we first use MATLAB’s 2-D FFT function to

transform different sized images to the frequency domain. Then we use the spectral data to recon-

struct the images using our 2-D DFT BEE3 implementation. In Table 4.5, we record the images’

Signal-to-Noise-Ratio (SNR) and maximum reconstructive error, where SNR is defined as

SNR(dB) = 10log10
Poriginal image

Pquantization noise
;

Poriginal image is the power of original image (the ideal result), and Pquantization noise is the power of

quantization noise. We see that the SNR is around 130 dB, which is mainly due to Xilinx 1-D

FFT IP, whose SNR is about 140dB [27]. Secondly, the maximum errors of all the images are

fairly small. We conclude that the proposed architecture has high accuracy and can be used in most

DFT-based image reconstruction applications.
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Table 4.5: Measured accuracy of the proposed 2-D DFT.

Image Size SNR(dB)
Maximum
norm error

Lena(1) 128×128 136.26 1.23e-4
Lena(1) 256×256 133.93 2.37e-4
Lena(1) 512×512 131.04 4.94e-4

MRI-brain(2) 1024×1024 128.02 1.21e-3
SAR(3) 2048×2048 126.59 2.07e-3

(1): From USC-SIPI Image Database [51].
(2): From University of Virginia Health System [52],

and the image is resized to 1K×1K.
(3): From EUSAR06 [53], and the image is resized to 2K×2K.

Table 4.6: Measured computation time of 3-D DFT on BEE3.

Number of samples Image size (N1 ×N2 ×N3) Total (ms)
221 128×128×128 348.24

222
64×256×256 757.21
256×64×256 646.81
256×256×64 697.09

4.5.2 3-D DFT

The performance of the 3-D DFT implementation is summarized in Table 4.6. The results presented

here are measured values, but they match very well with estimated result derived from 2-D DFT

measurements. In 1283 DFT, for example, 2-D DFT on the 128 d1-d2 planes takes 128× 1.79 =

229.12ms, and column DFTs on the 128 d1-d3 planes takes 128× 0.9 = 115.2ms. Thus, the total

estimated time of 1283 3-D DFT is 344.32ms, which is pretty close to the measured result of

348.24ms. This means SDRAM’s bandwidth efficiency in 2-D DFT is maintained in 3-D DFT. As

in the 2-D case, the time-consuming transpose operations have been avoided. Note that, due to

driver issues, we can currently only measure performance of data volumes up to 222 samples on the

BEE3 board.

Table 4.7 compares the performance of our architecture on the BEE3 and ML605 with

Sasaki’s architecture [23]. In [23], the computation kernel consists of three double-precision adders

and two double-precision multipliers, which can implement a butterfly computation in two cycles.

It utilizes the memory bandwidth efficiently and is computation-bound. To make the 3-D DFTs
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Table 4.7: Comparison of 3-D DFT implementations with respect to hardware configuration and
performance.

Sasaki[23] Proposed (BEE3(1)) Proposed (ML605(2))
Technology Virtex-II, 180nm Virtex-5, 65nm Virtex-6, 40nm

External memory Single SDRAM Single SDRAM Single SDRAM
Clock freq. (MHz) 100 100 100

Data width (bits) 2×64 2×32 2×32
Computation times 128×128×128 441 348 (696)† 22 (44)

for different 256×256×256 4,027 2,327 (4,654) 148 (296)
image sizes (ms) 512×512×512 – 19,241 (38,482) 1,223 (2,447)

(1): Except for 128×128×128 3-D FFT, the other results are extrapolated.
(2): The results are simulated based the hardware configuration of ML605.
(†: The computation times in the brackets are normalized for the same data width, 2×64 bits.)

comparable, we normalize our implementations to double precision. Since the implementations on

BEE3 and ML605 are communication-bound, their computation times would be doubled due to 2x

wider data width. The implementation on BEE3 is constrained by the data transfer as mentioned

before. On ML605 board, however, the proposed architecture could be at least 10x faster than [23].

Since images larger than 1K×1K×1K with single precision require at least 8 GB memory, they

cannot fit in the 4GB SO-DIMM, on the ML605 platform. Thus, we only simulate image sizes up

to 512×512×512.

4.6 Summary

An MD DFT IP has been proposed that is based on a decomposition algorithm which takes into

account the burst access pattern of the SDRAM and the available FPGA resources. It does not

require long stride memory accesses or transpose operations and is able to maintain the maximum

SDRAM bandwidth throughout the computation. The MD DFT IP is automatically generated

and the MD DFT IP generator integrated into the AlgoFLEX development platform. The input

specifications such as image size, dimensionality, FPGA resources, memory bandwidth are input

through the AlgoFLEX GUI, and the optimized HDL code is produced by the IP generator. The

resulting architecture has been ported onto the BEE3 FPGA board and validated for different sized

2-D and 3-D data. To achieve higher performance, the architecture has been ported onto the high-

end Xilinx ML605 FPGA board. Simulation results demonstrate the superior performance of these

architectures compared to existing DFT implementations.
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Chapter 5

Transpose-free SAR Imaging on FPGA Platform

5.1 Introduction

Synthetic Aperture Radar (SAR) has been widely used in military surveillance, environmental

monitoring, and earth resource survey. From an airborne or a space-borne platform, a SAR system

generates high resolution images covering large areas in all weather conditions, day or night.

The raw data collected by a SAR system is highly unfocused due to electromagnetic wave

scattering and the relative motion between the radar and the earth surface. In fact, the unprocessed

raw image looks like random noise. Focusing based on Fourier optics [54] is achieved using laser

beams and lenses [55]. The lenses perform real-time two-dimensional Fourier Transform (2-D FT)

on raw images projected from the film, and images are focused using diffraction gratings. Another

set of lenses implement 2-D inverse Fourier Transform (2-D IFT) to convert the focused image

back to space domain and record the final image on film. This optical process can be done in real-

time but requires many high-quality lenses to be precisely aligned on a large optical bench. The

process is hard to automate and requires a well-trained technician to maintain the image quality. In

addition, the film, which records the output image, limits the dynamic range of the final image.

Today, digital SAR imaging processors have replaced the optical counterparts. Several

algorithms have been developed for digital SAR imaging. These include range-Dopper algorithm

(RDA) [56], chirp scaling algorithm (CSA) [57], and Omega-K algorithm (WKA) [58]. The key

kernels of these algorithms are Discrete Fourier transform (DFT), interpolation, and convolution,

all of which can easily be computed on PCs or workstations. Since the SAR imaging algorithms

can be highly parallelized, they can be computed even more efficiently on modern GPUs, or on

application-specific hardware, like ASIC or FPGA, with multiple customized processing elements

(PEs).

The real bottleneck that impedes acceleration of SAR imaging is data transfer between the

processing unit and the external memory. SAR images are typically very large, e.g. 4,096×4,096,

and must be stored in an external memory, which is usually a Synchronous Dynamic RAM (SDRAM).
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SDRAM’s transfer rate is slow compared to processors’ computation speeds, and so the perfor-

mance of SAR imaging systems today is dominated by the memory bandwidth.

Furthermore, SAR imaging algorithms need to perform computations along row and col-

umn directions of a 2-D image several times. Because SDRAM only favors row-wise burst ac-

cess, most SAR imaging processors [59] [60] [61] [62] need to perform matrix transpose before

column-wise operations. This is done by transferring column-wise data from the SDRAM to the

chip, realigning, and storing back to the memory. Then, another transpose operation is required

before the next row-operation. Typically, all SAR imaging algorithms require multiple matrix

transposes. Since the memory transfer rate is the bottleneck, multiple transpose operations make

the performance of a SAR processor even worse.

To eliminate matrix transpose, the method in [63] stores SAR data into a multi-chip SDRAM

array and takes advantage of the multi-banking memory organization to reduce the overhead of ac-

cessing column-wise data. However, this design does not support general SDRAM DIMMs, and

significant customization had to be done. Another way to eliminate transpose operations is to in-

crease the locality of data along column direction in a SDRAM DIMM. This is done in [64] and

[65], where the column-wise data is re-mapped into a physical page of SDRAM to increase the

access efficiency. Such a method achieves 80% of SDRAM’s peak rate for both row-wise and

column-wise access. However, the data re-mapping before the SAR imaging process takes extra

time.

In this chapter, we propose transpose-free SAR imaging flows for RDA and CSA. The

corresponding implementations have superior timing performance, since there are no transpose

operations, and efficient memory bandwidth utilization is efficiently utilized. The flows are mapped

to a unified architecture which is implemented on the Xilinx ML605 platform. Simulation results

on the ML605 platform show that the RDA and CSA computations with data size 4096×4096 can

be completed in 323ms and 162ms respectively. This implementation outperforms existing SAR

image accelerators, including FPGA- and GPU-based solutions [65, 66, 67].

The rest of the chapter is organized as follows. A brief description of RDA and CSA

is given in Section 5.2. In Section 5.3, the transpose-free imaging flows for RDA and CSA are
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proposed. A unified FPGA architecture for RDA and CSA is proposed in Section 5.4, and evaluated

in Section 5.5. The chapter is concluded in Section 5.6.

5.2 Background

In this section, we describe the traditional RDA and CSA process flows and explain their draw-

backs.

5.2.1 Range-Doppler Algorithm

In SAR imaging, range-Doppler algorithm (RDA) is the most popular imaging method. Its process

flow is depicted in Fig. 5.1 and described as follows.

Phase 1: Range Compression

A SAR system transmits long-duration linear frequency modulation (FM) pulses, so that the pulse

has a lower peak power. After the radar receives the reflected pulse, matched filtering is done to

compress the raw data and form a narrow pulse. Matched filtering is usually done in frequency

domain and on each range line. Range compression consists of three steps:

• Step 1. Range DFT: DFT transforms the data into frequency domain along each range line.

• Step 2. Matched filtering: A multiplication implements matched filtering in frequency domain.

• Step 3. Range IDFT: IDFT transforms the data back to space domain.

Phase 2: Azimuth Compression

In the second phase, the image is focused along azimuth direction. It consists of the following

steps:

• Step 4. Azimuth DFT: The data is transformed to range-Doppler domain first.

• Step 5. Range cell migration correction (RCMC): In range-Doppler domain, the trajectory formed

by a target needs to be straightened before azimuth compression. Along the range direction, inter-

polation is performed to obtain the peak values of the trajectory and mapped onto a straight line.

• Step 6. Matched filtering: A phase multiplication is performed to implement azimuth compres-

sion along each azimuth line.

• Step 7. Azimuth IDFT: The compressed data is transformed back to the space domain.
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Figure 5.1: Traditional process flow for Range Doppler algorithm (RDA) [56].

The main downside of RDA is that the interpolation for RCMC is computation-intensive.

In addition, it requires multiple transpose operations, as shown in Fig. 5.1. After range com-

pression, a transpose operation is required before Azimuth DFT. Furthermore, since RCMC is

implemented by interpolations along range direction, we need two additional transpose operations

before and after RCMC. Thus, RDA requires three transpose operations which results in significant

timing overhead.
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5.2.2 Chirp Scaling Algorithm

The chirp scaling algorithm (CSA) avoids the interpolation for RCMC and is computationally less

intensive compared to RDA. CSA requires only complex multiplications and Fourier transforms,

as shown in the operation flow in Fig. 5.2. The sequence of steps is described as follows:

• Step 1. Azimuth DFT: Azimuth DFT is first performed in order to transform the data into

range/Doppler domain.

• Step 2. Chirp scaling: Then, in range-Doppler domain, chirp scaling, a quadratic phase function,

is applied to equalize the curvatures of the curves at different ranges.

• Step 3. Range DFT: It is performed to transform the data into the 2-D frequency domain.

• Step 4. Bulk RCMC: A phase multiplication is performed with a reference function, which in-

cludes range compression, secondary range compression, and bulk RCMC in one operation.

• Step 5. Range IDFT: Range IDFT transforms the data back to range/Doppler domain.

• Step 6. Azimuth Compression: A phase multiplication is performed to implement both azimuth

compression and a phase correction, compensating the chirp scaling applied in Step 1.

• Step 7. Azimuth IDFT: The compressed data is transformed back to the SAR image domain.

Although interpolation is avoided in CSA, it still requires two matrix transposes between

Range and Azimuth DFT/IDFT.

5.2.3 Problem Statement

SAR raw data is so large that it needs to be stored in an external memory. Dynamic memory, such

as synchronous dynamic RAM (SDRAM), is usually adopted due to its large storage density, high

performance, and low cost. However, SDRAM only favors burst access to consecutive addresses.

For example, if the 2-D SAR data is stored in range-major order, i.e. the range-wise data is stored

in consecutive address, the data can be retrieved from the SDRAM very efficiently along the range

direction. However, accessing the azimuth-wise data is a lot slower, because the data are not in

adjacent addresses any more. This is why both RDA and CSA require multiple transpose operations

to keep data in consecutive location in the memory throughout the computations.
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Figure 5.2: Traditional flow of chirp scaling algorithm (CSA) [57].

However, transpose operations hog the memory bandwidth and keep it busy. A conse-

quence of this is that the computation units have to wait for the memory data and are idle longer.

Thus, transpose operations need to be removed to improve the timing performance of SAR imaging

implementations.

5.3 Transpose-free SAR Imaging Methods

To avoid the transpose operations and exploit the SDRAM access characteristics matrix transposes,

we utilize three access patterns as shown in Fig. 5.3:
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• Pattern 1-a. Row Access: Rows spaced p rows apart are accessed. It supports row-wise DFT

and interpolation.

• Pattern 1-b. Column Stride Access: Data is processed across the rows read with Pattern 1-a.

This pattern is required for q-point Column Stride DFT [68].

• Pattern 2. Column Local Access: Sub-columns are accessed for p-point Column Local DFT

[68].

Note that: (1) The accessed data of Patterns 1-a and 1-b are from the same set of addresses in the

memory. Therefore, if the adjacent two steps require these two access patterns, they can be merged

into one step; (2) Patterns 1-b and 2 together can be used to compute full-length (N2(= p×q)-point)

Column DFT.

The proposed method is based on decomposing the lengthy column DFT into shorter ones,

so that multiple more adjacent sub-columns of data can be read from or written to the SDRAM.

Consequently, long row-wise bursts can be formed, and peak performance of the SDRAM can be

sustained throughout the computation. Most importantly, this reorganization ensures that transpose

operations are no longer required.

2D data array

p

2N

1N

p

(a) Pattern 1-a. Row Access

2D data array

2N

1N

p

p

(b) Pattern 1-b. Column Stride Access
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Figure 5.3: Data access patterns of the transpose-free 2-D DFT.

5.3.1 Transpose-free RDA Processor

Based on the data access patterns, we propose a new RDA flow, which is illustrated in Fig. 5.4.

Note that there are several storage formats of SAR raw data; they depend on both type of radar
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Figure 5.4: Proposed flow of range-Doppler algorithm.

as well as the host system. Here, we assume that the SAR raw data is preprocessed and stored in

the external memory in range-major order, that is, the data along the range direction are stored in

adjacent addresses in SDRAM. This helps in accessing memory data efficiently during computation

of Range DFT and IDFT in Step 1. To avoid transpose operations, Azimuth DFT is decomposed

into Local DFT in Step 2 and Stride DFT in Step 3. To perform Azimuth Stride DFT in Step 3, the

entire row along range direction needs to be loaded onto the local memory. After the DFT, RCMC

can be computed along the rows in the same step. To transform the data back to the space domain,

the Azimuth Stride and Local IDFT are performed. Note that Azimuth Stride IDFT is computed

in Step 3 to avoid extra memory transactions. Compared to the original flow, the new flow still

requires 4 steps but eliminates the 3 transpose operations.

Table 5.1 compares SDRAM bandwidths of traditional and proposed RDA flows. Note

that every step of the two flows needs to access the whole matrix, i.e. N1N2 pixels, once. Since the
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Table 5.1: Comparison of RDA implementations.

Step Traditional Proposed

1
Range FFT Range DFT

+ Range IFFT + Range IDFT

2 [Transpose] Azimuth Local DFT

3 Azimuth DFT
Range Stride DFT

+ RCMC + Azimuth IDFT

4 [Transpose] Azimuth Local IDFT

5 RCMC

6 [Transpose]

7 Azimuth IDFT

SDRAM Bandwidth
7N1N2 4N1N2(# of Pixels Accessed)

traditional flow has 7 steps, overall 7N1N2 pixels are accessed during the computation. As for the

proposed flow, the number of accessed pixels is 4N1N2. Thus, the SDRAM bandwidth is saved by

about 42%. This makes the proposed flow faster and also reduces the power consumption of the

SDRAM.

5.3.2 Transpose-free CSA Processor

We assume that the SAR raw data is preprocessed and stored in the SDRAM in azimuth-major or-

der. With this data organization, Azimuth DFT or IDFT achieves the highest performance because

row data can be retrieved efficiently using long row-wise burst access along rows in SDRAM. To

avoid transpose, we decompose the Range (I)DFT into (1) Range Stride(I)DFT and (2) Range Lo-

cal (I)DFT, and obtain a new process CSA flow, as illustrated in Fig. 5.5. There are only three

major steps now:

Step 1. Since Azimuth DFT can access data with Pattern 1-a, and Range Stride DFT needs to

access data with Pattern 1-b, they can be merged into one step. In addition, chirp scaling function

can be implemented with a multiplication right after Azimuth DFT.
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Figure 5.5: Proposed flow for chirp scaling algorithm.

Step 2. Range DFT and IDFT are computed on the same set of data in every iteration, so they are

merged into one step. The RCMC function is just a multiplication after Range local DFT.

Step 3. This step is just an inverse operation of Step 1, except for the Azimuth compression

function. Range Stride IDFT accesses data with Pattern 1-b, while Azimuth IDFT accesses data

with Pattern 1-a, and thus they can be merged into one step.

To sum up, the proposed CSA procedure reduces the number of steps from four to three,

while avoiding the two extra transpose operations.

A comparison of the traditional and proposed CSA flows is given in Table 5.2. The tradi-

tional CSA requires two additional transpose operations. Note Range DFT and Range IDFT can

be computed within the same step, i.e. Step 3, because no transpose is required between these two
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Table 5.2: Comparison of CSA implementations.

Step Traditional Proposed

1 Azimuth DFT
Azimuth DFT

+ Range Stride DFT

2 [Transpose]
Range Local DFT

+ Range Local IDFT

3
Range DFT Range Stride IDFT

+ Range IDFT + Azimuth IDFT

4 [Transpose]

5 Azimuth IDFT

SDRAM Bandwidth
5N1N2 3N1N2(# of Pixels Accessed)

computations. Thus, 5N1N2 pixels need to be accessed in the traditional flow, while the proposed

method only accesses 3N1N2 pixels. The bandwidth of SDRAM is saved by 40%.

In short, by taking advantage of the proposed access patterns, we can improve the mem-

ory efficiency of the two mainstream SAR imaging algorithms. The computation times can be

shortened, and power consumption of the memory can be reduced, too.

5.4 Unified Architecture for Proposed RDA/CSA Flows

In this section, we propose a unified architecture for computing both RDA and CSA. From the

proposed flows, there are three basic kernels that need to be implemented: (1) Forward and Inverse

Fourier Transform, (2) Phase factor (Multiplication), and (3) Interpolation. While RDA requires

all three, CSA needs only the first two. We choose FPGA as our target platform, for ease of

prototyping. The unified architecture for SAR imaging is shown in Fig. 5.6. It consists of an

FPGA for accelerating SAR computation and an external SDRAM for storing the SAR data. The

main components are described in details as follows:

PE Array: Processing Element (PE) Array contains one or multiple PEs. Each PE consists of an

FFT IP, an interpolator, and a multiplier to support RDA/CSA computations.
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• FFT IP: The FFT IP should be able to support all DFT/IDFT with different sizes in the

proposed flows of RDA/CSA. To satisfy the requirements, we adopt Xilinx’s streaming FFT

IP [27]. The size of the FFT IP can be reconfigured dynamically, and it has a very high

throughput. In addition, the FFT IP is based on block floating-point (BFP) implementation

and can achieve high dynamic range. Its I/O is converted to single-precision floating-point

format.

• Interpolator: The single-precision interpolator supports the computation of RCMC in RDA

and can be removed if only CSA is to be supported. It is a pipelined 8-tap FIR filter with

programmable coefficients.

• Multiplier: The single-precision multiplier implements the multiplications with twiddle fac-

tors and reference phase functions.

• Local memory for twiddle factors/reference phases: These coefficients are pre-computed

and stored in a local memory. To save the on-chip memory, only N/8 twiddle factors from 0

through π/4 are stored, where N is the largest size that the FFT IP supports. These twiddle

factors can be used to regenerate other required twiddle factors on the fly. For RDA, the

range/azimuth compression coefficients, are also pre-computed and saved in the memory.

As for CSA, the phase factors can be separated into functions of range, Φ(r), and functions

of azimuth, Φ(a), which are pre-computed and stored in the local memory. Φ(r) and Φ(a)
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can be used to generate phase factors, Φ(r,a), on the fly. Then, a Φ-to-e jΦ lookup table is

used to convert the phases into complex numbers for the computations.

Note that RDA and CSA can be highly parallelized, and the computations on multiple range and

azimuth lines can be executed simultaneously. Therefore, if we have N PEs, we can accelerate the

computations N times. However, the number of PEs is limited by the available hardware resource.

Local Memory on FPGA: Two local memories form a ping-pong buffer to overlap the computa-

tion and communications between the FPGA and SDRAM. Each local memory is of size S pixels.

It is divided into r banks of Xilinx Block RAMs (BRAMs), so that r PEs can access the data in

the local memory at the same time. An addressing scheme [68] is adopted to support conflict-

free memory access for all row- and column-wise computations. For example, let the r banks of

BRAMs be named as Bank 0-r− 1. For the row operation, the SDRAM controller fetches a row

from the SDRAM and stores them into the banks starting from Bank 0. Then, the SDRAM con-

troller fetches the another row starting from the pth row and stores them starting from Bank 1,

and so on. Such a storage scheme guarantee that r PEs can simultaneously access the data from

different banks. The same addressing scheme also works for column-wise access.

SDRAM: An SDRAM controller fetches the input data from SDRAM and sends it to the local

memory. The processing elements (PE) read this data, compute Range/Azimuth (I)DFT and twid-

dle multiplications, and store the results back to the local memory. Finally, the SDRAM controller

reads these results from the local memory and stores them back to the SDRAM.

In this design, we offer two configurations for the user: (1) Dual-mode: This configuration

supports both RDA and CSA. It offers flexibility when the user want to accelerate RDA or CSA

computations without reprogramming the FPGA; (2) CSA-only: Only CSA is supported with this

configuration. By removing the interpolator from the PE, more PEs can fit on the FPGA and

achieve very high performance.
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5.5 Evaluation

5.5.1 Resource

Our target platform is the Xilinx ML605 FPGA board, which is equipped with a Xilinx Virtex-6

XC6VLX240T FPGA and a DDR3-800 SDRAM module. In Table 5.3, we list the FPGA resources

required by the major components. To support up to 4096×4096 data size, we adopt a 4096-point

Xilinx FFT IP in the PE. It is programmable and can also support smaller FFT sizes from 2048- to

8-point, that would be required to calculate stride/local FFT/IFFT in the proposed flows. The FFT

IP requires 60 DSP48E1 slices, but the 8-tap single-precision interpolator requires 80 DSP48E1s!

If we only need to support CSA, we can remove the interpolator. In this case, the total number of

the DSP480E1s would be only 78, and hence, we can put more PEs on the FPGA.

Each local memory of the ping-pong buffer can accomodate 32,768 complex single-precision

data, which corresponds to 240 BRAMs. To support on-line phase regeneration of CSA, we use an

8K-word Φ-to-e jΦ lookup table. Each word is 18-bit, so that it can fit in the 18-bit wide BRAMs.

In each PE, the lookup table requires 14 BRAMs.

Table 5.3: Number of dedicated multipliers required by one single PE, on a Xilinx Virtex-6 FPGA
(Data format: Single precision).

4096-point Twiddle Phase Generator 8-tap Ping-Pong
FFT Multiplier for CSA Interpolator Buffer

DSP48E1s 60 16 2 80 –
BRAMs 36 2 14 – 240

Table 5.4 compares the occupied resources of both Dual-mode and CSA-only configura-

tions. Since the Dual-mode configuration includes an interpolator in the PE, only 4 PEs can fit on

the Virtex-6 FPGA. In CSA-only configuration, there is no interpolator and so overall 8 PEs can be

implemented on the FPGA.

5.5.2 Performance

The SAR processor is clocked at 100MHz, and our customized memory controller can achieve 80%

of peak transfer rate of the DDR3-800 SDRAM module. The computation times for the two con-

figurations for three data sizes are listed in Table 5.5. Since the dual-mode configuration only has
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Table 5.4: Hardware resource utilization of the proposed SAR imaging processor on a Xilinx
Virtex-6 XC6VLX240T FPGA (Data format: Single precision).

Configuration # of PEs DSP48E1s BRAMs Slices
Dual mode

4
81% 54% 47%

(with interpolators) (624/768) (448/832) (17,701/37,680)
CSA only

8
81% 79% 78%

(no interpolator) (624/768) (656/832) (29,385/37,680)

four PEs, in most steps, the computations take longer than the data transcations between the FPGA

and SDRAM. As a result, CSA takes about 60% longer time on this configuration, compared to

CSA-only configuration which only supports CSA and houses 8 PEs. The timing performance of

the CSA-only configuration is only constrained by the SDRAM bandwidth, while that of the dual

mode configuration is constrained by the on-chip resources. For RDA with dual-mode configura-

tion, Step 2 and Step 4 only have one operation respectively, so they can be computed faster than

the other steps. On the contrary, Step 3 of RDA has three operations, including the computation-

intensive interpolation, and therefore, this step takes the longest time. For both configurations, the

computation time is proportional to the image size.

Table 5.5: Simulated computation times (ms) of the proposed SAR imaging processor.

Data Size 1024×1024 2048×2048 4096×4096
# of PEs 4 (Dual Mode) 8 (CSA only) 4 (Dual Mode) 8 (CSA only) 4 (Dual Mode) 8 (CSA only)

Algorithm RDA CSA CSA RDA CSA CSA RDA CSA CSA
Step 1 5.45 5.43 3.39 20.78 20.95 13.09 85.19 84.55 52.78
Step 2 3.37 5.49 3.90 13.20 20.86 14.29 53.81 86.78 55.90
Step 3 8.30 5.49 3.36 31.29 21.03 13.15 129.78 85.21 53.10
Step 4 3.31 – – 13.52 – – 54.21 – –
Total 20.43 16.41 10.65 78.80 62.84 40.53 322.99 256.54 161.78

In Table 5.6, we compare our implementation with other SAR imaging processors. Zhou

[65] also proposed a transpose-free FPGA design for CSA computation. By reordering the SAR

data, this implementation minimizes the frequency of opening/closing physical pages of mem-

ory, and hence, sustains the performance of the SDRAM. However, it still requires extra time for

reordering the data, while our design needs no data rearrangement. As for RDA, we compare

the proposed design with three GPU solutions [66, 67, 69]. While GPUs have numerous parallel

computation engines running at very high clock rates, it takes extra time for the host computer to

generate sufficient number of GPU threads, so that the computational power of the GPUs can be
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highly or fully utilized. Besides, memory transaction is still a bottleneck for GPUs based on the

experiments in [69]. With the proposed transpose-free procedure, our design is able to outperform

the GPU-based accelerators in terms of timing. In addition, since the power consumption of the

Virtex-6 FPGA is no more than 15 Watts, while the GPUs usually consume more than 70 Watts,

our FPGA-based SAR processor is highly power-efficient compared to the GPU-based solutions.

5.5.3 Accuracy

-93.53 -89.07 -83.42-89.54 -88.21 -83.05
-96-94-92-90-88-86-84-82-80-78-76

1024x1024 2048x2048 4096x4096
RDACSAQuantization E

rror (dB)
Data Size

Figure 5.7: Image focused by the proposed SAR imaging processor.

We use MATLAB to generate synthesized RAW data to verify the function of the proposed

SAR imaging processor. The reconstructed images are compared with the ideal outputs generated

by MATLAB, and their differences are shown in Fig. 5.7. For the proposed RDA implementation,

the main quantization noise source is the block floating-point FFT IP. The larger the data size,

the larger the noise it generates. For the CSA implementation, the phase factor generators cause

additional noise, whose noise level is about -90dB based on our simulations. The noise level is

larger than that of the 1024-point FFT, which is only -95dB. This is why the overall noise level of

CSA is higher than that of the RDA, when the data size is 1024×1024. Note that the noise levels

of 2048- and 4096-point FFT are -89dB and -85dB respectively, which are higher than that of the

phase generators. As a consequence, the FFT IP dominates the accuracy performance when data

size is larger than 1024×1024. As mentioned above, the Φ-to-e jΦ lookup table has 8K words.
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If we double the words in the table such that the e jΦ can be approximated better, its noise level

can be reduced by about 6dB. As a result, the accuracy performance of the CSA would be very

close to that of the RDA, when the data size is 1024×1024. However, a 16K-word lookup table

would require too many BRAMs and the design would not fit on the FPGA. Also, the quantization

error generated by both configurations is fairly small, and so increaing the table size carries little

merit. Overall, the proposed architecture has high accuracy and can be used for SAR imaging

applications.

5.6 Summary

In this chapter, we propose transpose-free flows for two popular SAR imaging algorithms, RDA

and CSA. This is done by reorganizing the flows so that the row-wise burst access pattern favored

by SDRAM can be utilized. Thus data transactions with the external memory are reduced, and the

high transfer rate of SDRAM can be sustained. In addition, the computation units are no longer idle

waiting for memory data. The proposed flows are mapped to a unified architecture that can support

RDA and CSA and implemented onto a ML605 platform. Two configurations are supported: Dual-

mode which supports both RDA and CSA, and CSA-only configuration that achieves very high

speed on CSA computation. The simulation results show that the proposed design has superior

performance compared to existing FPGA and GPU-based SAR image accelerators.
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Chapter 6

Conclusion

MD DSP algorithms are not only computation-intensive but also demand high memory bandwidth.

Today’s processors have significant computational power but the available memory bandwidth is

not sufficient for real-time implementations of many of the MD DSP algorithms. In this work, we

show how algorithm transformations can be used to circumvent this bottleneck. We focus on MD

DFT, a widely used MD DSP algorithm. We choose FPGA as the target platform, because of its

flexibility. Moreover, today’s FPGA have abundant on-chip resources, making it very suitable for

MD DSP applications.

The first problem that we addressed is the development of a high-performance 2-D DFT

IP for large-sized data. The 2-D DFT computation is decomposed into computations on smaller

sub-blocks, so that it is sufficient to load only part of the large data onto the FPGA at a time.

The proposed architecture exploits the parallelism exposed by this decomposition and, in addition,

exploits the row-wise burst access pattern of the external memory. We show through experimental

results that the proposed design outperforms existing 2-D DFT solutions. In order to automate the

process, we developed an IP generator, which can generate optimized 2-D DFT implementations

based on the hardware resource of the FPGA platforms.

The second problem involved development of a flexible MD DFT IP to support transpose-

free 2-D and 3-D DFT for different data shapes and sizes. Transpose operations are time consuming

and degrade the overall system time performance. To avoid transpose operations, strips of data are

accessed from the SDRAM onto the local memory, where the width of the strips match the row-wise

burst size. As a result, the maximum memory bandwidth can be sustained throughout the 2-D/3-D

DFT computation. Our experiments show that the proposed architecture has superior performance

to other existing FPGA-based 2-D/3-D DFT processors. The corresponding automated IP generator

is embedded in a full-fledged FPGA development framework, where the user can configure the DFT

using a user-friendly graphical interface, and generate, synthesize, and port the optimized IP onto

the FPGA.
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The third problem that we addressed is development of an FPGA-based architecture for

SAR imaging. Multiple transpose operations are required in conventional range-Doppler (RDA)

and chirp scaling (CSA) algorithms used in SAR imaging. We develop transpose-free imaging

flows for both RDA and CSA. These utilize the memory access patterns derived for MD DFT IP and

result in high memory bandwidth utilization. The flows are then mapped to a unified architecture

which can compute both RDA and CSA. The simulation results shows that it has good accuracy

and higher timing performance compared with existing FPGA- and GPU-based solutions.

Future Work

The main concept behind the MD DFT IP is efficient memory bandwidth utilization. Specifically,

the DFT algorithm steps were reorganized to take advantage of the burst access of the SDRAM.

This concept can be extended to other MD DSP algorithms that also access SDRAM data with

different stride. One example of such an algorithm is pyramid generation, which is needed in

multiple image processing and computer vision algorithms. In pyramid generation, the output data

of every level is decimated. Thus, the relevant data is not generated in continuous cycles, and if we

directly store the data back to an SDRAM, the data transfer rate would be seriously degraded. To

avoid this, the local memory on the FPGA should be used to collect sufficient amount of data, so

that long data bursts can be formed and bandwidth well-utilized.

Another part that we can improve on are the automation tools for generating the IPs. The

automation tools were fully customized for the MD DFT to increase the efficiency of the hardware

implementations. As a result, new users would take extra effort to learn the tools and configure

them for their own working environment. For higher portability, the plan is to integrate IPs into

some widely used commercial software, such as Simulink or LabVIEW. These tools also support

well-developed hardware infrastructure for FPGA, and many users in DSP area are familiar with

these tools. Unfortunately, the bit stream generated by these tools does not result in an efficient

implementation. More effort needs to be directed to make the bitstreams competitive with those

generated by customized tools.
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Finally, for SAR imaging, while the proposed unified architecture supports both RDA and

CSA, other advanced imaging algorithms, such as Extended CSA [70] or Omega-K algorithm

[71] should also be considered. Most of these algorithms also require FFT, phase multiplication,

and interpolation, and hence these components can be easily reutilized. More importantly, memory

access patterns should be studied and the design flow reorganized to utilize the memory bandwidth.

Only then can SAR imaging processors truly achieve high performance.
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