
Lighting Prediction and Simulation in Large Nighttime Urban Scenes  

by 

Chia-Yuan Chuang 
 
 
 
 
 

A Thesis Presented in Partial Fulfillment 
of the Requirements for the Degree 

Master of Science in Technology 
 
 
 
 
 
 
 
 
 
 

Approved November 2011 by the 
Graduate Supervisory Committee: 

 
John Femiani, Chair 
Anshuman Razdan 

Ashish Amresh 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 

 
 
 
 
 
 

ARIZONA STATE UNIVERSITY 
 

December 2011



ii 

ABSTRACT 

   

Night vision goggles (NVGs) are widely used by helicopter pilots for flight 

missions at night, but the equipment can present visually confusing images especially in 

urban areas. A simulation tool with realistic nighttime urban images would help pilots 

practice and train for flight with NVGs. However, there is a lack of tools for visualizing 

urban areas at night. This is mainly due to difficulties in gathering the light system data, 

placing the light systems at suitable locations, and rendering millions of lights with 

complex light intensity distributions (LID). Unlike daytime images, a city can have millions 

of light sources at night, including street lights, illuminated signs, and light shed from 

building interiors through windows. In this paper, a Procedural Lighting tool (PL), which 

predicts the positions and properties of street lights, is presented. The PL tool is used to 

accomplish three aims: (1) to generate vector data layers for geographic information 

systems (GIS) with statistically estimated information on lighting designs for streets, as 

well as the locations, orientations, and models for millions of streetlights; (2) to generate 

geo-referenced raster data to suitable for  use as light maps that cover a large scale 

urban area so that the effect of millions of street light can be accurately rendered at real 

time, and (3) to extend existing 3D models by generating detailed light-maps that can be 

used as UV-mapped textures to render the model.  An interactive graphical user interface 

(GUI) for configuring and previewing lights from a Light System Database (LDB) is also 

presented. The GUI includes physically accurate information about LID and also the 

lights’ spectral power distributions (SPDs) so that a light-map can be generated for use 

with any sensor if the sensors luminosity function is known. Finally, for areas where more 

detail is required, a tool has been developed for editing and visualizing light effects over a 

3D building from many light sources including area lights and windows. The above 

components are integrated in the PL tool to produce a night time urban view for not only 

a large-scale area but also a detail of a city building. 
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1 INTRODUCTION 

Night vision goggles (NVGs), in particular the advanced helmet-mounted aviators 

night-vision-imaging systems, allow helicopter pilots to perform low-level flight mission at 

night.  These missions might include night time search, rescue and military applications. 

However, NVGs do not directly turn night into day, and while they may often provide 

significant advantages for night flights they may also result in visual fatigue, high 

workload, and safety hazards [1]. Consequently, it is important to train end-users in a 

realistic environment. Figure 1 illustrates the type of nighttime imagery viewed through 

NVGs which we aim to simulate
1
.   

There are many existing applications for daytime flight simulation but few of them 

are built for night vision goggle simulations. This is because accurate nighttime lighting in 

an urban area can be difficult to achieve. Daytime imagery is, for the most part, 

illuminated by a single source of light (the sun), but night time images are illuminated by 

millions of light sources scattered throughout a large area, and with varied illumination 

properties. Determining locations and types of nighttime light sources presents a huge 

challenge for urban NVG simulation.  

 

Figure 1. A scenery through a night vision goggle
2
 

                                                      
1
 In this thesis, I present results using CIEXYZ (visible) light. The method has also been 

applied to actual NVGs sensor profile but I am not permitted to show the results. 
 
2
 http://www.classiclifeguard.com/NVG_photographs.htm 
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The primary objective of this research is to provide simulation designers the 

opportunity to rapidly design and simulate the lighting scenery which can be used in real 

time rendering. In particular, we have developed techniques for extending GIS data using 

lights whose properties are drawn from a Light System Database (LDB), which we have 

helped to develop along with an interactive graphical tool for configuring and previewing 

lights. The tool allows designers to view the light intensity distribution (LID) and the lobe, 

or pattern of light, projected on the ground (see Figure 23 at section 6.1). The tool also 

allows editing the spectral power distribution (SPD) of the light, which allows our 

rendering system to simulate the response of variety of sensors. For smaller areas, we 

have developed another tool that extends existing 3D building models such as those 

used for daytime flight simulations with the data required to produce accurate lighting 

effects from many light sources including windows (see Figure 26 in section 6.3). 

An ideal PL tool can produce a plausible configuration of light systems, which 

means that an expert observer who is unfamiliar with an area would have difficulty 

distinguishing between images rendered
3
 using light positions entered manually and an 

image produced automatically by the system. Figure 2 is an example of a nighttime 

image taken over Phoenix, Arizona, where the luminance is averaged over a number of 

cloud-free observations. This figure illustrates the amount of light in an urban area, 

however, it includes a blurring effect due to averaging and it is low resolution. It also 

captures light sources not covered in our work, such as cars and region specific lights (for 

example a used car lot shows as bright point). Our system produces images such as 

Figure 3, which includes static light sources without the blurring caused by averaging.  

                                                                                                                                                 
 
3
 The real-time rendering problem is beyond the scope of this document; I am concerned 

only with the location and properties of each luminaire. 
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Figure 2. Nighttime image of Phoenix, AZ. This image is acquired from National Oceanic and 

Atmospheric Administration (NOAA). 

 

Figure 3. A real world nighttime image found on the internet
4
 

When calculating the lighting from streetlights, we make the assumption that light 

energy is emitted from points, which are called luminaires. The luminaires are a part of 

“light systems”, each of which may contain several luminaires whose positions are fixed 

with respect to the location and orientation of light system itself. We do not handle 

dynamic lights such as cars, rotating or blinking signs, or search lights. 

1.1 Specific Contributions of the Author 

This thesis is the result of collaborative work in which the author participated 

significantly. The  PL tool itself was developed by the author and one collaborator. The 

graphical user interface portions discussed here were predominantly developed by the 

author as part of larger tool that was developed on a capstone software development 

                                                      
4
 http://www.flickr.com/photos/sidstar/276225944/sizes/z/in/photostream. 
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team. The author obtained the manufacturers information on light intensity distributions 

and developed C-Sharp code to parse the data, validate the data, and use it in order to 

calculate the irradiance that reaches any point in space from a light source. This code, 

translated into C, is the backbone of the PL tool. The PL tool has three main functions; 

light system placement, large scale irradiance maps, and detailed light-map generation. 

The initial code to generate lighting properties for GIS vector data layers and placing 

lights was developed using pair-programming with one collaborator and the author.  The 

second function (large scale irradiance maps) of the PL tool was prototyped by the author, 

including linking irradiance values to GIS raster and vector data. The prototype was 

extended and integrated into the main PL tool by a collaborator. The detailed building 

light-maps involved automatic generation of texture coordinates and shadow calculations 

which were not done by the author, however the author contributed to detailed shadow 

maps by providing code that generated ‘radiant areas’ and linked them to images that 

provide the shape and colors of the areas.  Maintenance, testing, and bug fixes to this 

and all parts of the PL tool were done by the author, in close communication with a 

commercial partner. 

The remainder of this manuscript is formatted as follows: Section 2 reviews the 

relevant prior art.  Section 3 discusses the implementation of Procedural Lighting (PL) 

tool. Section 4 presents physically and geographically accurate irradiance maps for 

simulating the effects of millions of lights over large areas. Section 5 focuses on a more 

detailed approach that can be applied to smaller regions of interest, and includes details 

like pre-computing the effect of radiant areas such as windows and shadows. Section 6 

presents the results of the PL tool applied to several areas, and finally section 7 

concludes the thesis.  
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2 BACKGROUND AND PRIOR ART 

Computer graphics practitioners have long been interested in building digital 

models of cities [2, 3]  but there is a lack of tools for connecting light systems with 

existing city models. A light map [4], which is a raster texture map containing incident 

light (irradiance) of surfaces is an existing solution for storing complex lighting effects 

caused by global illumination and other computationally expensive procedures in order to 

speed up rendering
5
. We use these to capture the effect of many light sources in 

nighttime urban scenes. However, the positions and properties of light sources are hard 

to determine since there are millions of light sources, such as street lights, traffic lights 

and window lights.  There are some tools which can help city planners and art designers 

develop and preview light effects over a 3D building models [5, 6] . Unfortunately, there is 

no tool which can automatically simulate nighttime scenery over a large-scale urban area. 

The following sections discuss geographic information systems, the background methods 

of large-scale city modeling, light map, and tools helping design lighting effect over a 3D 

building in a city. 

2.1 Geographic Information Systems 

A geographic information system (GIS) is a database of spatial features used in 

mapping. GIS data is arranged into multiple layers, where each layer can be a raster 

layer or a vector layer that has a single type of feature.  Raster layers can hold raster 

data, which is a two dimensional array of tuples of data, such as aerial photographs, 

satellite imagery, digital elevation maps, or hyperspectral imagery.  Vector layers hold 

geometric features, where features are geometric shapes such as points, closed 

polygons, or open polygons (polylines).  A key feature of a GIS is that it maintains 

information on a projection that maps some two or three dimensional coordinate system 

to points on the surface of the earth.  For example the most common coordinate 

                                                      
5
 We use the term light-map loosely; our light-maps contain physically accurate irradiance 

values, whereas they are sometimes used in graphics as 0-1 values indicating the 
percentage of light that reaches a surface. 
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reference system (CRS) is known as WGS84 – the coordinates of geometric features are 

interpreted as longitude (x-axis) and latitude (y-axis) and the WGS84 projection relates 

the coordinates to an actual location on an oblique spheroid approximation to the shape 

of the Earth. Each layer (raster or vector) has an associated CRS. Raster data also 

maintains an additional geo-transform that indicates where the rectangular block of raster 

information is located within the CRS.  We call a raster layer with an associated CRS and 

geo-transform a geo-referenced raster layer.   In addition to a CRS, each vector layer 

contains a set of field definitions that describe the names and types of a list data values 

that can be associated with each feature in the layer.  Field definitions are like columns in 

a database table, each feature is a record, and the layer itself is like the table with an 

extra hidden geometric column which holds the feature shape.  Each layer can use 

different fields, and they often do. For example a key issue we address is the lack of a 

consistent set of field definitions describing important aspects of roads, such as the road 

width, whether the road has a median, sidewalks, and also any information on how the 

road should be lit.  Our PL tool takes GIS layers as input, and we also produce GIS 

layers as output. We generate a copy of an input street vector layer that has all of the 

fields we need in order to place lights. We generate a vector layer with point features for 

each light source, and add fields for the lights heading and an light-system ID for the 

actual light system to at that point. We also produce many geo-referenced raster tiles 

which hold pre-computed irradiance values that cover large urban areas.  

2.2 Large-scale Urban Modeling  

In the past, urban planners created city models by wood, cardboard, paper and 

glue from manual measurement. Nowadays, new technologies in computer graphics and 

computer-aided design (CAD) offer powerful tools for creating, visualizing and interacting 

with digital urban models. For example, CityEngine [3] enables the efficient creation of 

large-scale 3D city models with the procedural modeling approach. These applications 

acquire data such as spatial database, geographic information systems (GIS), and shape 
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grammar rules as input information and create real-world building structures 

automatically. The created large-scale digital models can be used not only in urban 

planning but also be used as film and game development. However, among these 

generated large-scale urban models, the information of cultural light resources, such as 

street light, window lights, and lights from traffic signs are limited. Therefore, it is a huge 

challenge to simulate vivid nighttime city models even if the city models have been 

generated. Furthermore, these tools generate new cities – our aim is to add lights to 

existing city models.  Manual measurement and entry of light sources for an entire urban 

area is expensive and time consuming; so automatic extraction or synthesis of light 

properties and positions from a large-scale urban area, which the PL tool does, will have 

a great impact on large-urban modeling, especially for nighttime urban modeling. 

2.3 Light Mapping 

3D applications have been applied into various areas, such as game design, 

filmmaking, CAD tool for architecture or automobiles, and military simulations. In order to 

achieve more beautiful and vivid images, physical phenomena, for instance, lighting and 

shadowing, play an important role in 3D computer graphics. However, these physical 

effects are very complex and take much effort for simulation. Gouraud shading [7] was 

one of the most used algorithms especially on fixed-function graphics hardware without 

fragment/pixel shader support. Gouraud shading is a fast approximation to Phong 

shading that works by calculating the lit color of a 3D object at the vertices (or coners) 

and interpolating the colors of the faces of the model. One obvious problem with Gouraud 

shading is the lighting model can introduce difficulties with shadows. Therefore, light 

mapping is introduced for rendering lighting and shadowing without sacrificing high 

performance [8]. Quake was the first computer game to use light mapping to augment 

rendering [9]. Since many objects and light sources are mostly fixed, the lighting and 

shadowing calculation can be saved by pre-computing them and mapping them on to the 

surface at runtime. The lighting information is stored as textures because texture 
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mapping can be done in hardware. Figure 4 (a) and (b)
6
 show the effect of light maps on 

a course polygonal model lit by a single point light source.  

In order to simulate a large-scale nighttime urban area, it is possible to 

implement lighting and shadowing effect with the light mapping approach because of its 

high performance. However, there is still in lack of light positions and properties 

information as described in section 3.  Although previous research on mapping city lights 

with nighttime data from Defense Meteorological Satellite Program (DMSP) has been 

implemented by Elvidge and his colleagues [10], the resolution is not sufficient to create 

city models. The DMSP Operational Linescan System (OLS) has a unique capability to 

detect low levels of visible and near-infrared (VNIR) radiance at night and city lights could 

be mapped by nighttime data from the DMSP Operational Linescan System. However, 

the resolution of DMSP data is just 1-km per pixel which is too low to match light systems 

with a street vector layer in GIS data. There remains a need for another method which 

can extract properties and positions of lights with higher precision and match the light 

information with street vector layer. The PL tool aims to fill that gap by generating 

plausible lights and irradiance maps at a high enough resolution to match the sharpest 

daytime imagery. 

                                                      
6
 http://www.flipcode.com/archives/Light_Mapping_Theory_and_Implementation.shtml 

      

                                  (a)                                 (b) 

Figure 4. Examples of light mapping; (a) a 3D world with light and shadow; (b) a 3D world 

without light and shadow. 
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2.4 Tools for Simulating Lighting Effects 

Previous research on a night sky model has been implemented by Henrik Wann 

Jensen and his colleagues [11], which could be used in simulating a nighttime city based 

on a physical model. However, this model excluded cultural light resources in an urban 

area, such as street lights and building window lights. Figure 5 and Figure 6 illustrate that 

the light effects should be taken into consideration in order to simulate an accurate night 

urban scene; a significant amount of the light visible in Figure 6 is absent in Figure 5 

which neglects lights from the building windows streets, and other urban light sources. 

The PL tool presented here would allow designers to place radiant areas over the 

windows, to generate streetlights according to existing GIS street vector data, and to 

preprocess the model to include the irradiance and radiance caused by these lights as a 

lightmap that can be rendered over the models in real time.  

Work in light designing and placing light over building models has included 

several projects that allow users to explore a plausible nighttime scene. Dorsey and his 

colleagues [5] have implemented a tool for simulating opera lighting and projection. They 

presented an application which simulates the optical effects of scenic projectors and 

addresses a solution to the distoriton problem produced by angular projection. Fukuda 

and his colleague [6] have implemented a support system for city plans which enable the 

realistic view of night scenes based on virtual reality (VR) technology. Unfortunately, 

these techniques either only used indoor light sources or simulated a part of building 

model, which cannot be used in a large scale of urban area with outdoor light sources. 

We aim to simulate a large-scale urban area with light mapping textures which can be 

rendered in real-tme. 
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Figure 5. Simulation result of the low moon setting over a city by Jensen [11]. 

 

Figure 6. A real night urban scene in Phoenix, AZ. 
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3 GENERATING STREETLIGHT CONFIGURATIONS 

We present a two-part process of generating light systems that are “geo-typical,” 

which means their locations and properties follow the a distribution that is expected for an 

area. First, given a geographic information systems (GIS) vector layer containing street 

map data, lighting schemes for each street are determined, and then properties and 

positions of candidate light points are suggested to match the street vectors. Second, 

given the positions of candidate lights, light system instances are fetched from a Light 

System Database (LDB), so that the properties match the lighting schemes determined 

for the streets. In the following section, we will discuss how we predict the positions and 

properties of lights. Figure 7 demonstrate how light systems are generated and rendered 

by a given GIS street vector layer and the LDB. 

The overall process of generating streetlights is presented in Figure 7. First, a 

table is created (absent from the figure) that maps field names in a GIS street vector 

layer to fields names that are understood by the system.  These tables are combined with 

a Bayesian network (section 3.3) which can be used to fill-in any required data that was 

missing from the street vector layer with plausible values.  Second, every street vector is 

processed and a new street vector layer is produced, this time with all of the required 

information on how to light the streets. Third, we generate a new GIS vector layer of point 

features for lights along each street, setting the heading and light system ID fields for 

Figure 7. Generating light systems by the Procedural Lighting (PL) Tool; (a) input GIS street 

vector data; (b) candidate light points match the GIS street vectors; (c) candidate lights 

rendered by fetching light properties from a Light System Database (LDB). 

(a) (b) (c) 
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each point. The result is a map of streetlight locations that can be used to generate 

irradiance layers as described in section 4. The modified street map and light points can 

also be edited by any GIS tool to accommodate geo-specific information (such as the 

location of an airport). 

3.1 Light Placement Suggestions 

An assumption of our approach is that light systems are placed by city planners 

or architects in an attempt to space the systems in a regular, periodic manner. However, 

in order to accommodate changes in terrain or other constraints, some light systems will 

deviate from a perfectly periodic arrangement. Therefore, we generate suggested point 

locations and types for light systems by jittering one of the following configurations: (1) 

points on a rectangular grid, (2) points on a triangular grid, (3) points on a curved 

rectangular grid, or (4) on curved triangular grid. The various grids are illustrated in 

Figure 8. Figure 8 left shows a palette of light patterns. Figure 8 right shows different type 

of grid used in our Procedural Lighting (PL) tool.  

    

Figure 8. Light points grids; Left (a) a 3x5 rectangular grid; (b) a 2x3 triangular grid; (c) a 3x3 

triangular grid; (d) a curved 3x5 rectangular grid; (e) a curved 4x1 triangular grid; (f) a curved 

4x3 triangular grid; Right (a) double sided rectangular grid; (b) double sided triangle grid; (c) 

double sided rectangular grid with three columns; (d) double sided triangle grid with three 

columns; (e) Single sided rectangular grid; (f) single sided rectangular grid with three 

columns. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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3.2 Street Properties Suggestions 

The input to our system is a GIS vector layer with linear features representing 

streets. We call this the street vector layer.  In GIS tools, a “linear” feature is a sequence 

of straight line segments connect to form a piece wise linear open curve. Each feature is 

associated with a set of fields, the fields associated with street vectors vary from one 

dataset to the other, but very often there is some field which indicates the intended use of 

street (e.g. major arterial, minor arterial, collector streets, freeway, etc.). Some but not 

most datasets may also contain information which may include the number of lanes, the 

width of streets, or whether a median is present. These fields can exist, however these 

fields are rarely all defined. Even when the information is present, the field may have 

different name in GIS datasets and the value may be interpreted differently (e.g. an 

enumeration versus an integer to indicate the street use).  Before we can determine the 

positions of lights points, we need to normalize the input so that it always includes GIS 

fields that the PL tool understands for describing how to layout lights along streets. A rule 

based system such as prolog, could be used to infer missing properties using a set of 

logical clauses. However, we also require the missing properties follow a prescribed 

random distribution allowing results being plausible. For instance, if every arterial of 

streets look the same way, it would look too artificial. Therefore, we seek a way to 

generate missing street properties by sampling a probability distribution which is created 

by a domain expert in order to capture the geo-typical lighting trends in a given area. Our 

solution is to sample a Bayesian network (described below), which generalizes a rule 

based system by allowing multiple possible outputs of the light properties for the same 

input. 

(a) 

(d) 
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3.3 Sampling Bayesian Network 

A Bayesian network, also called belief network
7
, is a directed acyclic graph (a 

DAG) where each node is a random variable, and directed edges connect independent 

variables to the other variables they dependent on.  In our application, there will be a 

node for each GIS field we desire in a street vector layer, there will also be nodes created 

by a user to map the input street layer fields to other variables that the PL tool uses to 

place lights. In addition to node for input GIS fields and output GIS fields, there may be 

additional nodes created in order to capture hidden variables, such as the number of 

lanes in a road, which are neither input nor required as output but may still help with 

estimating the required fields, such as the road width.  A Bayesian network can be used 

to determine the joint probability or likelihood of any set of fields (a sample), or to 

generate samples according to the same distribution of our observations. The purpose of 

a Bayesian network is to reduce the amount of data that needs to be used to describe the 

geo-typical properties of streets by keeping track of which nodes are independent of each 

other. The alternative would be to create an exponentially large table that assigns a 

probability to every combination of field values, called a joint probability table. Unlike a 

joint probability table, a Bayesian network exploits conditional independence and often 

requires far fewer values to be specified in order to represent a given joint probability 

distribution.  In a Bayesian network, one needs only to define a conditional probability 

table at each node of the graph, which assigns a set of probabilities for the nodes value 

conditioned on each combination of values that its parent nodes could hold.  Often the 

conditional probability tables can be kept small, and this makes them better suited for 

specifying the distribution of geo-typical properties because fewer parameters need to be 

set. In addition, the graphical structure of the Bayesian network has convenient 

interpretation: node   is connected to node   if   is influenced by  . This kind of cause 

and effect reasoning is typically not hard to guess when considering a particular geo-

                                                      
7
 Note that they are called networks even though weights are not associated with the 

edges. 
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graphic region.  The PL tool is designed so that Bayesian networks can be selected from 

a list of prebuilt networks at run-time, or mixed with tables created by a user. This way 

the networks themselves could be developed and distributed and updated, and sold 

separately by a commercial vendor.   

It is well known that generating samples from a Bayesian network that exactly 

follows the joint distribution is an NP-complete problem. A proof is provided by Chickering 

[12] based on a polynomial time reduction to the well-known Boolean satisfiability (SAT) 

problem. For a detailed proof the reader is referred to Chickering’s paper, but the idea is 

that a Bayesian network can be constructed in polynomial time to match a logical 

expression by choosing only   or   probabilities in the conditional probability tables 

associated with each node in the graph. If a sample from the table could be generated in 

polynomial time then the values would satisfy the original logical expression. Therefore a 

Bayesian network sampler could solve the SAT problem (which could be used to solve 

any other NP problem), and therefore sampling a Bayesian network is at least as hard as 

the NP-complete SAT problem.  

 In spite of the fact that sampling a Bayesian network is a NP-complete problem, 

it is often the case that samples can be generated quickly and there are polynomial time 

 

Figure 9. The Bayesian network of light system properties. This network introduces 

intermediate nodes not directly required by the tool, including CROSSECTION, 

STREETCLASS, and CSECTION nodes. The nodes are designed by a user of the tool. 

SREETCLAS and SREETCROS are actually GIS fields stored in GIS database.  
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approximations to the solution. Since there is a large amount of uncertainty involved with 

manually specifying the distribution of geo-typical properties, an approximate solution is 

well suited to our application. There are various commercial high-quality Bayesian 

network samplers that have been carefully tuned to give exact results when possible or 

else to give good approximations, however for our application these are probably overkill. 

We merely need a plausible result and it is believed a simple approximate sampling 

algorithm will work nicely.  We use a likelihood weighted sampling method [13] which first 

generates a set of    possible samples, along with their estimated likelihood according to 

the Bayesian network.   Samples are generated so that any field value already stored in 

the GIS dataset is forced to have the same value in each sample. The likelihood of each 

sample is calculated exactly at the same time that the sample is generated using a depth-

first approach that runs in linear time on the number of samples. Once   samples are 

generated, we select one randomly according to their likelihood.  More details of 

Bayesian network and likelihood weighted sampling including pseudocode are presented 

in [14] and [13]. Figure 9 shows a Bayesian network for estimating light system properties. 

Nodes STREETCLAS and STREETCROS are GIS fields in an input GIS database, with 

small tables created by a user in order to map the values to the LEAP_STREATCLASS 

and LEAP_CSECTION nodes. The rest of the Bayesian network is generic and can be 

reused for any input. Nodes LEAP_CROSSECTION, LEAP_STREETCLASS, 

LEAP_CSECTION, LEAP_CTRDIST, LEAP_LSTYPE, LEAP_CTRLS, LEAP_LEFTLS, 

and LEAP_RIGHTLS have joint probability tables dependent on their upper level nodes. 

In our system, the network is represented by a set of CSV tables under a folder, where 

each table lists the field it estimates as the first column (the dependent variable), followed 

by a list of independent variables.  Figure 10 shows an example table of _LSTYPE 

variable. Each row of the table ends with a number that is proportional to the likelihood of 

that set of street properties occurring in a given area. The numbers in Figure 10 were 

generated by counting the number of observations in a number of GIS datasets. At 



 
17 

runtime, rows of the table that do not match known properties of streets are removed and 

the remaining likelihoods are normalized sum to one. This method of providing input to 

the system is aimed at making it easy to set up a table by using estimated frequencies of 

different lighting types or by the more laborious process of actually counting occurrences. 

Users can also tune the joint probability tables of intermediate nodes, such as 

LEAP_CROSSECTION, LEAP_STREETCLASS, LEAP_CSECTION, LEAP_CTRDIST, 

LEAP_LSTYPE, LEAP_CTRLS, LEAP_LEFTLS, and LEAP_RIGHTLS, and generate the 

desired distribution of positions and properties of lights which match the GIS street vector 

layer. However, we envision this process being done only a few times to create a catalog 

of ‘geo-typical’ distributions that can be selected by users at run-time. 

 

 

 

 

_LSTYPE HAS_MEDIAN WIDE_ROAD 174 

C F F 0 

DS F F 15 

DSS F F 15 

DSCS F F 0 

DSC F F 0 

SS F F 20 

C F T 0 

DS F T 10 

DSS F T 10 

DSCS F T 0 

DSC F T 0 

SS F T 3 

C T F 10 

DS T F 15 

DSS T F 15 

DSCS T F 5 

DSC T F 5 

SS T F 5 

C T T 5 

DS T T 10 

DSS T T 10 

DSCS T T 10 

DSC T T 10 

SS T T 1 

Figure 10. A table of joint probability for _LYSTYPE light system variable. 
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4 LIGHTS FOR TERRAIN 

An effective method of creating a nighttime urban scene is rendering street lights 

generated from a GIS vector layer describing the locations, headings, and unique 

identifiers of light systems as described in section 3. In order to render a large urban 

nighttime scene in real-time, the naïve approach of placing a light-source at each point 

has issues because the most common rendering hardware in real time only supports limit 

number of sources, and the standard rendering pipeline does not lend itself to lights other 

than directional, point, or spot lights. For example, OpenGL only requires eight light 

sources [4]. Therefore, we generate a light map over a terrain and store incident light 

energy (irradiance) so that lighting can be done at interactive rates using texture 

compositing. The key point of implementing lights for terrain is determining the irradiance 

at any point in space using the light intensity distribution for each light source. The 

following section, we discuss what light intensity distribution is and how we use it. 

4.1 Light Intensity Distribution 

A light intensity distribution (LID) captures the portion of energy emitted from a light 

source in any given direction. LID’s are often visualized using goniometric diagrams 

 

Figure 11. Visualizations of light intensity distributions; (left) A goniometric diagram of 

candela plot for a IES Photometric file, (right) a photometric web. 
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(Figure 11) which is used widely in the light industry because of easy interpretation of a 

non-uniform intensity distribution of light [15].  The goniometric diagram shows the light 

intensity (in candelas) emitted from the light source at any angle. Figure 11(left) is a 

single slice through the 3D LID, unless the light system is radially symmetric then each 

slice would look a bit different.  In Figure 11(right) another LID is shown using a 

photometric web, which is also a polar plot of the candelas but it captures the entire 3D 

distribution.  LIDs have found use in architectural planning and landscaping in order to 

place lights for the best effect, and it has also found use by city planners in choosing 

street light locations in order to avoid dark patches between streetlights. Some CAD tools, 

such as AutoCAD and 3DS Max, provide methods to import LID information and render 

complex lights, however these tools do not create the physically accurate irradiance 

maps needed for NVG simulation. The LID determines the pattern of light projected onto 

the ground or buildings (called ‘lobes’), and when rendering streetlights for NVGs one can 

easily see the difference between accurate LIDs verses simple point or spot lights. The 

illuminating Engineering Society (IES) provides a standard file format for photometric files 
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Figure 12. Coordinate System and candela values in a IES file; (a) the right-handed coordinate 

system in IES photometric data; (b) candela values for given vertical and horizontal angle in a 

IES file. 
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[16], and they have also measured the LIDs for many manufacturers’ lights. IES files 

provide the amount of light energy (candelas) emitted in a given direction from a light 

source. The information is stored in an irregularly spaced grid with grid-points 

corresponding to directions emanating from the light source as Figure 12. 

4.2 Finding the Energy in a Given Direction 

An IES file contains metadata about a light source, and then a table of luminance 

values measured from a light source.  Our aim is to determine the amount of energy 

reaching any point in space from a light source. Figure 12 (a) shows the coordinate 

system used when measuring LID’s in IES files. Angle   and Angle   present the 

direction of vertical angles and horizontal angeles. The symbols,  ,  , and   are the 

Cartesian coordinate system in IES Photometric data. Note that the positive  -axis points 

downward. The IES files contain a table that represents an irregularly spaced grid of 

energy emitted at a given   and   angle. 

IES Lobe files list only half of the sphere; the other half is obtained by symmetry 

about the     plane. The most challenging part of understanding the specifications of 

an IES lobe is translating form horizontal and vertical angles to unit vectors in 3D. This is 

especially confusing since the local coordinate frame for a luminaire seems to be oriented 

with the z-axis pointing down toward the ground (Figure 13). We use formula (1) to 

convert vertical angles ( ) and horizontal angles ( ) into 3D unit vectors and visualize 

 

Figure 13. The relationship of up toward and down toward coordinate system. 
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the lobe (see Figure 14 (a)) as projected on the ground (see Figure 14 (b)), where   is 

the distance between lobe center and ground plane:  

[
 
 
 
]    [

         
          

 
]            (1) 

Since the IES lobe data includes only one half of the sphere, we use symmetry to render 

the other half by replacing horizontal angle   by    in the formulas above. These 

expression can also be used to solve for   and  , when  ,  , and  , are components of a 

unit vector in the lights local coordinate system.  

The formulas are: 

           
(2) 

      (
 

 
)              

After the 3D unit vectors have been computed, I can use formula (3) and translate 

coordinate system,  ,  , and  , to  coordinate system where   points upwards,  ,  , and 

 , (Figure 13). 

[
 
 
 
]  [

 
  
  

]    [
         
           

  
] (3) 

         

 
Figure 14. Visualizing lobe pattern in IES file; (a) the amount of energy which passes through a 

point on the surface of a sphere centered at the light origin; (b) visualization of the lobe as 

appeared on the ground. 

(a) (b) 
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Finally, given values   and    we aim to determine the candela value using 

bilinear interpolation of the candela’s listed in the IES lobe data.  Let       be the entry in 

the grid (see Figure 15) with horizontal angle     and vertical angle     where   is a row 

index in the table and   is a column index. Then to determine the candela value        

for arbitrary     we first find the interval          that contains   and likewise find the 

interval          that contains  . Then let   
    

       
   

    

       
   and  

             [                 ]      [                     ]  (4) 

This is bilinear interpolation on the candela-grid provided as part of the IES file. The 

process is illustrated in Figure 15.  

4.3 Light System Coordinate Frames 

In order to determine the irradiance at a pixel in a geo-referenced image, we need 

to do a number of coordinate transformations. We will assume that the ‘World’ 

coordinates are determined using a GIS projection, and that the mapping from pixels to 

world coordinates is available through a library such as GDAL/OGR [17].  In order to 

determine the irradiance at a pixel we need to work our way from the raster layer to the 

emitter’s coordinate systems. We introduce the transform matrices: 

                                                 

                                            

 

Figure 15. Bilinear interpolation of candela value 𝐶 𝑉 𝐻  given 𝑉 and 𝐻 in the rectangle of 𝑉𝑗 , 

𝑉𝑗  , 𝐻𝑖, and 𝐻𝑖  . 
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The transformations will represented as 16 element (      homegenous matrices.  We 

ultimately need the final matrix which takes us all the way from the pixel in a raster layer 

to a point in the emitters reference frame:  

   (                                 )
  

    

(5) 
           

        
        

      
         

     

where we use the fact             
  . The LPRD data uses Euler angles (heading, pitch, 

roll) to specify changes in orientation. We adopt the following notation for Euler angles: 

Let    indicate the heading, or the angle about the z-axis. Let    the pitch, or elevation; 

the angle above the x-axis. Let    denote the roll, or the angle around the y-axis.  We 

apply these rotations in ZXY order; in OpenGL we would issue the commands: 

void rotateEuler(        ){ 

glRotated(   0,0,1); 

glRotated(   1,0,0); 

glRotated(   0,1,0); 

} 

The resulting rotation matrix   is  

  [

                            
                           

            
    

] 

      
      (  )                       

      (  )                       
 

 

  

(6) 

To undo the rotation we would use OpenGL commands: 
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void unRotateEuler(        ){  

 glRotated(    0,1,0); 

 glRotated(    1,0,0); 

 glRotated(    0,0,1);} 

The result inverse rotation matrix is 

    [

                            
            

                           
    

] 

 
 

(7) 

After rotation the LPRD database often includes some translations; for instance a 

translation to the end of a pole or to the end of a mast.  The translation happens in the 

rotated coordinate system, so in OpenGL one would write 

void applyLprdTransform(                 ){  

 rotateEuler(        ) 

 glTranslate(        ) 

} 

The resulting transformation matrix is 

  [

     
     
     
    

] [

                            
                           

            
    

] 

 

(8) 

To undo the transform in OpenGL we write 

void unapplyLprdTransform(                 ){  

 glTranslate(           ) 

 unrotateEuler(        )} 

and the resulting matrix is 

    [

                              
              

                             
    

] 

 

(9) 
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Figure 16. Components of a light system in relation to a street.  Within the light system’s coordinate 

system,    always points in towards the street,    points  up, and    points opposite the direction 

of traffic. 

 To our knowledge the LDB database is limited to rigid body transforms (no scaling).  

The objects have the Euler angles specified as properties, but the translational parts 

must be inferred based on the type of object (e.g. mast, pole, etc.).  Usually       

       except for a pole we have          , and for a mast we have            

4.4 Region of Influence for Lobes 

The lobe of a light source is most often directly or nearly directly below the lights, 

however do the rotation of the light source or irregularities in the IES values the lobe may 

appear offset way from the light source, or larger. In order to produce an irradiance map, 

there are two options; a first option is that we could project quadrilaterals out from the 

light source onto the raster image, then rasterize and render the quads (this is done in 

the GUI editor).  The problem is that at the edges the quads would become quite dark, 

and they would project far from the light source. We would need to prune out our 

threshold the quads before rendering them if we are to have any hope with this method.  
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Mast 

Pole 

Sidew

alk 

 

Pole 

 

 

Road 



 
26 

This is the method used to render the lobe in Figure 14 (b), and it can be done entirely in 

OpenGL with the fixed function pipeline (one does not even need shaders).  Another 

problem with this approach is that it does not extend well to cases when the surface (e.g. 

the ground) has height values associated with it and it is not just a plane.  

A second option (the one used in the PL tool) is to determine a bounding box for the lobe 

in the raster plane, and then visit each pixel in the box and work back to the light to 

determine the irradiance. One could use calculate a tight bounding box for the lobe by 

analyzing the candela values and applying a threshold for the smallest visible amount of 

energy, however we adopt a simpler approach that finds a less-tight bounding box; we 

calculate the lighting for all pixels within a pre-specified (e.g. 200m radius)  square 

centered at the light source. Figure 17 shows irradiance map of a small portion of 

Phoenix area illuminated by street lights. Streets are shown as red lines and street light 

points are presented as blue dots. Figure 18 shows the close view of lights for terrain. 

 

Figure 17. Irradiance values generated from a small portion of a Pheonix area dataset. The 

contrast has been exaggerated for viewing.  

 

Figure 18. A close-up view of staggered lights. 
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5 DETAILS FOR BUILDING LIGHTS 

It is important for users to have full three-dimensional simulations of the 

illumination effects in a nighttime urban area. We have implemented a building editor 

which can generate a light radiance and irradiance maps for details of lights, including 

street lights, lights attached to buildings, and light coming from area sources like 

windows. Users can have a 3D experience by exploring our simulation results. There are 

two types of lights that can be manipulated using our building editor: street light (which 

includes lights attached to buildings) and window lights. Street lights are selected by the 

Light Properties Editor (see Figure 19), and window lights are designed by the Radiance 

Editor (see Figure 20). After street lights and window lights have been placed, users can 

bake these two types of lights into a light map including reflectivity, radiance and 

irradiance textures and the generated light map can be used in real time rendering later.  

 

Figure 19. Design street lights by Light Property Editor. Users can pick a street light property from 

the Light System Database (LDB) at the right dock panel and adjust the position and rotation of 

street lights through the Light Property Editor.    
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Figure 20. Design window lights by Radiance Editor. Users can choose a window or radiant area 

from or template database, place it on a model, adjust the size and positions of radiant area, and 

assign the energy emitted from that area through the Radiance Editor 

In the following subsections, we will discuss the details of irradiance and 

radiance and the methods to compute them. 

5.1 Irradiance Map 

Irradiance is the power of electromagnetic radiation per unit (radiative flux) incident 

on a surface in      [18]. In our building editor, we suppose the irradiance comes from 

the street light, which project light on an area and the area emitted energy as irradiance 

(Figure 21). Each street light (or light mounted on a building) is assigned a luminaire from 

the Light System Database (LDB), containing lobe and spectral power distribution (SPD) 

of light. The light energy could be computed based on the SPD and projected on the 

surface. Then the irradiance texture of light map was calculated by multiplying reflectivity 
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layer by irradiance energy. The light lobe and shadow are included in the irradiance 

texture by projecting light intensity distribution on the ground and shadow casting method. 

We maintain a full spectral power distribution for all light sources so that the 

spectral sensitivity of any sensor (including NVG sensors) can be used. Let     denote 

the energy (in watts) emitted by a light at wavelength   (in nanometers). Then the energy 

that can be detected by a sensor,   , is the integral  

                 (10) 

where the integral is taken over all frequencies and      is the sensors luminous 

efficiency at wavelength     In the LP tool, the integral in equation (10)  is approximated 

using a summation for all wavelengths in the range of 300-1000   . 

To calculate the irradiance, we use the LID to determine the fraction of a light’s 

energy that reaches the surface. Let     denote the total energy of the light source in watts 

that are capable of being sensed by our sensor which is calculated in equation (10). Let 

   be a unit vector pointing towards the light source, and        is the fraction of the lights 

energy that is emitted in the direction of  , calculated using the method of section 4.2. 

The vector   is a normal vector perpendicular to the surface being lit, and   is the 

distance between the light source and the point receiving the light (in meters). Then 

irradiance     (in       follows the formula  

𝑁 

𝐼ℓ L 

Figure 21. Illustration of irradiance Map. 𝑁 is the normal vector perpendicular to the ground, 𝐿 is 

the unit vector pointing towards to the light , and 𝐼𝑙 is the total energy (watts) emitted by the light 

source.  
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                            (11) 

where the term            is the Lambert cosine law [19], and     is a quadratic falloff 

in intensity.  

5.2 Radiance Map 

 The window and area light effects are simulated using texture image so that the 

intensity of the image at each texel is treated as proportional to the radiant exitance. The 

radiant exitance,     describes the amount of radiation emitted from particular area in 

    .  We use a GUI (see Figure 20) to allow users to choose a window or radiant area 

template, place it on a model, and assign a bias and gain to the image so that the texel 

values (which are between zero and one) can be scaled to match the desired range of 

window radiant exitance interactively.  

There are several approached for achieving the lighting effect from an area light 

source instead of a point light source; we cite several [20, 21]. One challenge is that the 

light source can be only partially visible from some points, leading to soft shadows.  

Another challenge is that the total amount of energy from an area light source would 

involve a double integral of equation (10) using every point in the radiant area as another 

light source.  Instead, we generate a small fixed number of pseudo-light sources within 

the radiant area, and we sum the radiant emittance of the area over each point in the 

pseudo-lights’ Voronoi cells in order to determine the pseudo-sources energy (see Figure 

22).  The Voronoi cell of a psuedo-light point is the set of all points on the radiant area 

that are closer to that point than any other pseudo-light location. In Figure 22 (a), window 

area is decomposed as several Voronoi cells (separated by red lines) and yellow dots are 

the pseudo-light source locations within each Voronoi cell.  Figure 22 (b) shows the 

energy of area light computed by double integral of each point in the window area. In 

Figure 22 (c), we treat all center points of Voronoi cells as point light sources, calculate 

their energy by equation (10) and project the sum of all energy coming from the pseudo-

light sources in Voronoi cells onto the ground.  
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(a) 

(b) 

(c) 

Figure 22. Compute area lights by Voronoi diagram; (a) window area decomposed as Voronoi 

diagram ; (b) the emitted energy of window light are computed by double integral of every point in 

the window area; (c) the emitted energy of window light are computed by summing all energy 

emitted from points in the Voronoi cells. 
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6 RESULTS AND SIMULATION 

 This theses presented three different applications, a Light System Database 

(LDB) editor, a Procedural Lighting (PL) tool, and a building editor. LDB editor is a tool for 

managing light properties dataset, a PL tool is for predicting light properties and positions, 

and a building editor is for generating a 3D nighttime building model.  In the following 

subsections, I will give a summary of these tools and present the simulation results of 

each one.  

6.1 LDB Editor 

 In order to generate a nighttime urban scene, a light properties datasets should 

be established first and then a PL tool can automatically generate lights positions and 

decide light properties from the established datasets. In the building editor, street lights 

could be also assigned by selecting from LDB. However, it will be a challenge for users to 

manage and establish these data because light datasets include several structures that 

are difficult for a human to interpret without suitable visualizations; they are intensity 

distributions of light for lobe pattern, spectral power distribution for color, and structures 

of light poles in 3D dimensions. Therefore, I have implemented a user interface, that 

allows people change parameters and understand how it is going to affect the scene. 

Figure 23 (a) and Figure 23 (b) show two different light sources in the LDB. Figure 23 (a) 

is a GE car lamp lobe and its spectral power distribution. Figure 23(b) is a GE building 

mounted lamp lobe combined with its spectral Power distribution color. SPD color can be 

changed interactively by tuning the efficacy and power of light. Users can see how 

different lamp lobe, SPD power, and SPD efficacy will affect nighttime scenes and select 

the desired lamp lobe and color type. 
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6.2 Simulation Results of PL Tool 

Figure 24 shows the predicted light positions on a portion of Phoenix GIS data by 

our PL tool. The purple dots and red dots are the street light poles constructed by APS 

and SRP separately. The green triangles are the light positions generated by our leap 

tool. It is apparently that the positions of street light constructed by APS and SRP (purple 

dots and red dots) match our predicted light positions (green triangles).  There are a few 

discrepencies between the generated lights and the SRP lights in the upper-right 

(a) 

(b) 

Figure 23. (a) GE car head lamp lobe and SPD color (b) GE building mounted lamp lobe and 

SPD color. The CIE XYZ luminosity functions are shown superimposed on the light’s SPD as 

blue, green, and red curves for reference. 
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quadrant of the image that are the result of streets that are not present in the input street 

vector layer. 

     

Figure 24. Street light positions predicted by PL tool; (left) procedural results are shown in green 

and light data from APS is shown in purple; (right) light positions from SRP are shown in red.  The 

density and positions of lights are roughly the same wherever the street layer is accurate.  

 Figure 25 (a) and Figure 25 (b) show nighttime scenes of Anchorage, Alaska. 

The positions and properties of street lights in these two figures are generated by our PL 

tool and the lobes of street lights are rendered by projecting light intensity distribution of 

each street light. Figure 25 (a) presents a plausible nighttime urban scene which has not 

been modeled in such a large-scale area. Figure 25 (b) shows a closer view of nighttime 

scene of Anchorage, AK.  
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(a) 

(b) 

Figure 25. Nighttime scenery of Anchorage, AK; (a) an overview of nighttime urban scene of 

Anchorage, AK (b) a closer view of nighttime scenery of Anchorage, AK. 
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6.3 Simulation Results of Building Editor  

 Given a small 3D building and LDB, an art designer could create a 3D nighttime 

scene by building editor. In our building editor, two types of light editors, Light Properties 

Editor (LP Editor) and Radiance Editor, have been implemented. LP Editor can help 

users assign properties of street light from LDB and adjust positions and orientations of 

street light around a 3D building model (Figure 19).The Radiance Editor can select a 

back ground texture on a window form a 3D model and assign a desired radiance on that 

back ground window from radiance templates (Figure 20). The shape and energy of 

widow radiance can be also adjusted by Radiance Editor.  

Figure 26 shows the simulation results of radiance map generated by building editor. 

There are four types of lights in Figure 26, including two types of street lights and two 

types of window radiances. In Figure 26 (a), it shows the radiance map generated by two 

types of street lights and two types of window lights. In Figure 26 (b), the radiance map is 

generated by window lights emitted with energy one watt per square meter. In Figure 26 

(c), it shows the radiance map generated by street lights with irradiance and shadow.   

 



 
37 

  

 

(a) 

 

(b) 

 

 (c) 

Figure 26. The radiance map generated by building editor; (a) radiance map includes 

street lights and window lights (b) radiance map includes window lights only (c) radiance 

map includes street lights only 
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7 CONCLUSION AND FUTURE WORK 

In this research, a set of computer graphics techniques for design and simulation 

of nighttime urban scenes has been presented. We made contributions to the PL tool and 

building editor which give the simulation games and city designer a unique opportunity to 

design, preview, and assess nighttime urban scenes with accurate light lobes. In addition, 

to our knowledge we are the first one to simulate a nighttime urban area in such a large-

scale area. We also implement the Lighting System Database (LDB) editor which 

presents the ability to manage and preview a light datasets, which are hard to understand 

without a proper user interface. The results of this research clearly demonstrate that use 

of computer graphics and stochastic method in urban design holds great promise, 

particularly since these techniques afford the opportunity for simulating a plausible 

nighttime urban area and consequently provide great contributions in training of night 

vision goggles for flight purpose or in city planning for public safety and energy efficiency. 

Future directions include algorithm enhancement, verification and validation of 

PL tool, LDB editor and building editor. For the PL tool, the next goal is automatically 

create parking lot lights and window lights, e.g. by processing textures to look for 

windows. The algorithms of predicting light sources and rendering light sources can be 

implemented in higher efficiency. As for the verification and validation, the PL tool can be 

tested in a larger area and building editor can be tested for processing different parts of 

models at different resolutions.  
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