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ABSTRACT 

   

An Ensemble Monte Carlo (EMC) computer code has been developed to 

simulate, semi-classically, spin-dependent electron transport in quasi two-

dimensional (2D) III-V semiconductors. The code accounts for both three-

dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering 

mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity 

scattering mechanisms are included, accounting for the Pauli Exclusion Principle 

via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 

1D Schrödinger-3D-Poisson solution in which the charge distribution of the 2D 

carriers in the quantization direction is taken as the spatial distribution of the 

squared envelope functions within the Hartree approximation. The wavefunctions, 

subband energies, and 2D scattering rates are updated periodically by solving a 

series of 1D Schrödinger wave equations (SWE) over the real-space domain of 

the device at fixed time intervals. The electrostatic potential is updated by 

periodically solving the 3D Poisson equation. Spin-polarized transport is modeled 

via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) 

scattering. Also, the code allows for the easy inclusion of additional scattering 

mechanisms and structural modifications to devices. 

As an application of the simulator, the current voltage characteristics of an 

InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs 

currently being fabricated by Intel Corporation. The comparative effects of 

various scattering parameters, material properties and structural attributes are 
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investigated and compared with experiments where reasonable agreement is 

obtained.  

The spatial evolution of spin-polarized carriers in prototypical Spin Field 

Effect Transistor (SpinFET) devices is then simulated. Studies of the spin 

coherence times in quasi-2D structures is first investigated and compared to 

experimental results. It is found that the simulated spin coherence times for GaAs 

structures are in reasonable agreement with experiment. 

The SpinFET structure studied is a scaled-down version of the 

InGaAs/InAlAs HEMT discussed in this work, in which spin-polarized carriers 

are injected at the source, and the coherence length is studied as a function of gate 

voltage via the Rashba effect. 
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1. Introduction 

1.1 Background and Motivation 

 Since the commercial realization of Integrated Circuits (ICs) in the 1960s, 

the number of transistors that can be economically fabricated onto a single IC 

"chip" has doubled nearly every two years. This extraordinary trend is believed by 

many to have been postulated shortly after the invention of the IC in 1958 and has 

become popularly known as "Moore's Law", in recognition of Intel Corporation 

co-founder Gordon Moore's famous 1965 exposé on the matter [1]. 

  From a device physics standpoint, a primary reason that the 

semiconductor industry has been able to adhere to this trend for over forty years is 

due to the remarkable scaling properties of the silicon Metal Oxide 

Semiconductor Field Effect Transistor (MOSFET) [2,3,4,5]. This device is the 

basic building block of the ubiquitous complementary metal oxide semiconductor 

(CMOS) logic IC scheme. In fact, as of 2011, the minimum feature sizes in state-

of-the-art commercially available MOSFETs are on the order of 30 nm [6], as 

opposed to feature sizes on the order of tens of microns for the first 

microprocessors that appeared on the market in the early 1970s. Such feature size 

scaling has resulted in today's most advanced microprocessors containing around 

2.5 billion transistors per chip, as opposed to a few thousand per chip in the early 

1970s. Consequently, today's length scales of less than 100 nm allow clocking 

frequencies on the order of a few Gigahertz, as opposed to the hundreds of KHz 

range that was the state of the art in the early 1970s. 
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 Alarmingly though, as silicon MOSFETs continue to scale toward the 10 

nanometer regime, the physical limitations of scaling become very apparent. 

Specifically, as silicon devices are scaled into the tens of nanometers regime, 

short channel effects and gate leakage currents become problematic [7]. 

Additionally, if Moore's Law were to continue over the next decade, increasing 

integration densities due to continued scaling would result in on-chip heat 

dissipation on the order of hundreds, if not thousands, of watts per square 

centimeter. Compounding the problem is that voltage scaling in silicon MOSFETs 

below about 1.0V is very difficult, as the electron mobility of silicon severely 

hinders drive currents at sub-1V source-to-drain bias voltages [8,9]. 

 Furthermore, from a manufacturing standpoint, the fabrication of sub-

10nm devices is very problematic. In fact, diffraction effects destroy the 

resolution of the lithographic process and random process variations become 

increasingly difficult to control below about 10nm resolution [10]. 

 While the use of gate insulating materials in MOSFETs with relatively 

higher dielectric constants compared to SiO2, known as "high-k dielectrics", has 

forestalled an abrupt end to Moore's Law within the past few years [11], 

alternatives to silicon based logic devices are clearly needed if aggressive scaling 

is to continue past the current decade. Indeed, an end to the future "CMOS 

roadmap" based on Moore's Law is looming unless other technologies can be 

utilized whose operational capabilities exceed those of silicon MOSFETS, and 

can also be economically fabricated into ICs by exploiting the well established 
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layout designs of silicon-based CMOS circuitry and the  associated fabrication 

processes. 

 Amongst the most attractive candidates to replace aggressively scaled 

silicon based logic devices are FET devices constructed from heterostructures of 

III-V compounds and their alloys such as GaAs, InAs, AlAs and InxGa1-xAs. Such 

High Electron Mobility Transistors (HEMTs) exhibit low-field mobilities in 

excess of 10,000cm
2
/V-s. This is because electron transport in these devices 

occurs in a quasi-2D electron gas formed in the quantum well channel that exists 

between heterolayers with varying conduction band offsets. Furthermore, 

scattering in HEMTs is greatly reduced, as compared to other III-V devices such 

as metal semiconductor field effect transistors (MESFETs) or modulation doped 

semiconductor field effect transistors (MODFETs), due to the physical separation 

of dopant layers from the transport channel by barrier layers several nanometers 

thick [12,13,14,15]. Additionally, HEMTs have demonstrated operating 

frequencies on the order of several hundred GHz [16], and recent experimental 

research into 30nm HEMT devices shows drive currents comparable to the most 

aggressively scaled silicon devices and transconductances on the order of 3000 

uS/mV, at bias voltages less than 1 Volt [17]. 

 Furthermore, while extensive HEMT research has occurred since the early 

1980s [12,13,14,15,16,17], only since the 1990s has the fabrication process 

matured such that the devices are now widely used in mobile phone applications 

and power amplifiers [18]. This process maturity suggests that economical, high 
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volume production of these devices as logic elements in CMOS-style layout 

schemes may be possible [19]. 

 However, if III-V devices with feature sizes on the order of a few tens of 

nanometers are to exist on the "CMOS Roadmap", extensive research into their 

operational capabilities is still needed. Naturally, a crucial component of the 

research process is the conduction of low-cost computer "simulation 

experiments". 

 Therefore, the development of the III-V Monte Carlo device simulator 

presented in this dissertation is motivated by the desire to exploit and refine 

existing semiconductor simulation techniques in order to effectively study III-V 

HEMTs with feature sizes on the order of tens of nanometers. Modifications to 

well established semi-classical Monte Carlo techniques [20] have proven well 

suited for this task, as will be discussed in Section 1.2. 

 The versatility of the semi-classical Monte Carlo approach also permits in 

this work the simulation of spin-polarized transport in prototypical spintronic 

devices [21]. The field of spintronics, in which the quantum mechanical property 

of electron spin is used as a logic state [22,23,24,25], represents a fundamental 

paradigm shift from conventional electronics. 

 Fortuitously, the structure of a prototypical Spin Field Effect Transistor 

(SpinFET) [21] is actually an aggressively scaled variant of the aforementioned 

III-V HEMT structural scheme, and could perhaps become a viable technology in 

future decades beyond the existing "CMOS roadmap". In the prototypical 

SpinFET device conceived by Datta and Das in 1990 [21], the source and drain 
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ends of the quasi 2D channel, in an otherwise standard HEMT-type device, act as 

source and detector, respectively, of spin-polarized electrons. As spin-polarized 

electrons traverse the channel, the presence of Rashba spin-orbit coupling [26] 

results in a precession of the electron spin vector about an effective magnetic field 

that is perpendicular to both the direction of transport and the electric field due to 

the gate. The magnitude of the spin-orbit interaction and corresponding rate of 

spin precession can be modulated via the usual "top" electrostatic gate. 

Consequently, the magnitude of the drain current is proportional to the degree of 

alignment of the electron spin and "drain" magnetic field. 

 The simplest conceptual means of achieving a polarized electron ensemble 

in the polarizing "source" is via dilute ferromagnetic semiconductor materials 

[27], or perhaps by electrical means using quantum point contacts (QPCs) [28, 

29]. While this field is in its infancy, recent experimental work has in fact 

demonstrated the efficacy of the gate-controlled Rashba effect.  [30,31,32]. 

1.2  Semi-classical Monte Carlo Simulation 

 Ideally, the simulation of carrier motion in semiconductor devices, either 

that of electrons or holes, requires the solution to what is fundamentally a many-

body quantum mechanical problem. However, even with today's computer 

technology, obtaining such a many body, full quantum mechanical solution is 

intractable. Fortunately, for semiconductor devices whose critical dimensions are 

larger than those of the mesoscopic regime and which operate in ambient 

temperatures near or greater than room temperature (which is the case in most 

commercial applications), carrier transport can be described as being that of 
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plasma of electrically charged point-like particles. This simplification often 

allows the utilization of particle-based computer simulation methods, such as the 

Monte Carlo (MC) technique, to accurately study the physics of carrier transport 

in semiconductors. 

 The justification for such a semi-classical approach is rooted in the 

Heisenberg Uncertainty Principle. Within the aforementioned constraints of 

feature sizes and temperature, the uncertainty in a carrier's momentum p and 

position r  can be shown to be typically much less than the average momentum 

and the mean free path, respectively, of an ensemble of such carriers. Under these 

circumstances, the carrier can be considered to behave as a narrow wavepacket. 

The average momentum of a carrier ensemble is then given by the de Broglie 

relation as kp  , where k is the average wavevector of the ensemble. The 

mean free path is determined from the mean time between collisions, which is 

nearly equal to the inverse of the average scattering rate. It follows then that a 

simple calculation based on these assumptions reveals that at K300T , and for 

carrier kinetic energies less than about 1.0eV, scattering occurs at a sufficiently 

low rate to satisfy the Uncertainty Principle and validate the semi-classical 

approach [33]. 

 Therefore, the fundamental equation that typically needs to be solved in 

the semi-classical simulation of semiconductor devices is the Boltzmann 

Transport Equation (BTE). This equation describes the time-evolution of the 

carrier distribution function, )( rk,f  and is written as 
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where )( rk,f  represents the population distribution of carriers in six-dimensional 

phase-space, and the collision term in (1.1) is due to the relevant scattering 

processes. Knowledge of the distribution function as a function of time allows the 

determination of all physical quantities of interest such as currents, carrier 

energies, and densities. 

 No analytical solution exists to the BTE, except for a very narrow set of 

parameter constraints [34]. However, it has been proven that a Monte Carlo (MC) 

approach to the problem results in a numerical solution to the BTE [35], whose 

accuracy is only limited due to statistical error. Furthermore, the MC technique is 

superior in comparison to other semi-classical methods such as the Drift Diffusion 

(DD) or Hydrodynamic (HD) models, since these other approaches do not always 

capture the important transport physics, such as velocity overshoot in short 

channel devices [36]. 

 Accordingly, since the inception of the Single Particle Monte Carlo 

(SPMC) technique in the 1960s to model transport in bulk semiconductors [37], 

the complexity of various MC techniques has increased steadily over the past four 

decades. By the 1980s, the Ensemble Monte Carlo (EMC) technique, a 

straightforward extension of the SPMC, was being widely used to simulate 3D 

transport in homostructure devices such as metal oxide field effect transistors 

(MOSFETs) and quasi-2D transport in heterostructure devices such as modulation 
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doped field effect transistors (MODFETs) and high electron mobility transistors 

(HEMTs) [20,38,39,40,41,42,43]. 

 By the 1990s, drastic improvements in computer memory technology 

made possible the development of Full Band EMC [44,45,46,47] and  Cellular 

Monte Carlo (CMC) methods [33,48]. Unlike that of the SPMC or EMC methods, 

in the CMC the probabilities of scattering from any state to any other state are 

pre-tabulated and stored in random access memory (RAM) before the transport 

simulation begins. This procedure results in a demonstrated vast improvement in 

computational speeds in the simulation of MOSFET devices [33]. 

 Since the 1990s and continuing to the present day, though, the continued 

scaling of semiconductor devices deep into the nanometer regime has made it 

crucial in MC modeling to accurately account for the effects of quantization in 

semiconductor nanostructures. Such effects can be very pronounced in the 

quantum well comprising the channel of a MODFET or HEMT, or at the Si-SiO2 

interface of silicon-based MOSFET, for example. 

 In retaining the well established semi-classical MC framework, various 

"quantum correction" techniques are used to treat such quantization issues. 

Amongst them are "effective potential" methods, such as the one due to Ferry 

[49], to account for such quantization effects such as interface charge-setback. 

Schrödinger-based solutions are also widely used, as noted in [50,51]. 

Additionally, the use of "quantum potentials" as corrective terms to the 

electrostatic potential has recently gained attention, along with continued research 

in increasingly complex Schrödinger-based approaches [52,53,54]. 
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In this work, quantization is treated by applying an admixture of various 

"quantum corrections" such as periodic SWE updates over the entire real-space 

simulation domain, usage of "2D contacts", and the initialization of carrier 

attributes in a manner consistent with the proper quantum mechanical density and 

energy distribution. 

Also in this work, the D'yakanov-Perel spin-density matrix formalism is 

utilized within the framework of a self-consistent EMC simulation of a SpinFET. 

In doing so, real-space boundary conditions are imposed over the entire 

simulation domain.  These conditions, while simultaneously accounting for the 

spatial variation of the spin-density matrix spin-orbit parameters, represent an 

original contribution to the field of study. 

1.3 Dissertation Organization 

 Successive chapters of this dissertation are organized as follows. In 

Chapter 2, the derivations of the scattering mechanisms included in the EMC 

developed in this work are delineated. In Chapter 3, the EMC Algorithms are 

explained in detail. In Chapter 4, simulation results are presented for the current 

voltage characteristics of an InGaAs/InAlAs HEMT, corresponding to nanoscale 

III-V HEMTs currently being fabricated by Intel Corporation. Additionally, in 

Chapter 4, results are presented for prototypical SpinFET simulations, in which 

spin-polarized carriers are injected at an "ideal" polarizing source, and the 

coherence length is studied as a function of gate voltage via the Rashba effect. 

Finally, a summary and intent of future work is given in Chapter 5. 
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2. Carrier Scattering Mechanisms 

2.1  Overview 

 Carrier motion within the crystalline structure of a semiconductor is 

governed by the Bloch Theorem. This theorem states that in the presence of a 

periodic potential the carrier's wavefunction can be written in the form of a plane 

wave modulated by a cell periodic component. Thus, within the single particle 

model, the solutions to the Schrödinger wave equation (SWE) that describe the 

carrier motion are of the functional form 

    rk

kk rr
 i

nn eu ,, ,      (2.1) 

which are known as Bloch functions.  In (2.1), k and r denote the wavevector and 

real-space position vector, respectively, and n denotes the band index of the cell 

periodic function,  rk,nu . 

 For particle motion in an ideal periodic potential, no scattering occurs. In 

actuality, though, the periodicity of the crystal potential is disrupted by random 

perturbing potentials, which form the basis of the quantum mechanical scattering 

mechanisms that may alter a carrier's momentum and kinetic energy. 

 In this work, scattering mechanisms relevant for carrier motion in bulk  

III-V semiconductor materials are used, both 3D as well as the relevant 2D 

mechanisms for carrier transport that occurs in the quasi two-dimensional electron 

gas that is formed in the quantum well comprising the channel of a semiconductor 

heterostructure. These scattering mechanisms account for the presence of phonons 

(the quantized vibrations of the crystal lattice), the random fluctuation in the 
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periodic potential in the presence of ternary semiconductor alloys, the surface 

roughness that exists at the interfaces of the various material layers in a 

heterostructure, and the presence of ionized impurities in each material layer.  

Electron-electron and plasmon scattering have not been considered as part of the 

present work. 

 Phonon scattering is the dominant mechanism in III-V compounds at 

K300T and consists, in general, of optical and acoustic modes. Optical phonons 

exist due to the two dissimilar atoms in the unit cell that oscillate about their 

equilibrium positions within the crystal lattice, out of phase with each other. For 

acoustic phonon modes, on the other hand, the oscillations of the atoms are in 

phase with each other. This results in the relative displacement of the atoms about 

their equilibrium sites being the same everywhere. Hence, in that case, induce 

strain is the physical quantity of interest that results in a perturbation to the 

potential. 

2.2 Fermi's Golden Rule 

 The transition rate, i.e., the scattering rate, per unit time of a carrier in 

state  rk,  to a state  rk ,  (where the index n  has been dropped for 

simplicity) due to a perturbation of the Hamiltonian of magnitude H  , is given, 

within first-order, time dependent perturbation theory as 

   ωEEHS 
 kkkkkk 


 22

,
  
,    (2.2) 

where the Dirac bra and ket variables k and k   denote the corresponding state 

vectors. The Kronecker delta function   in (2.2) enforces conservation of energy 
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between the initial and final energy states, kE  and kE , respectively, accounting 

for the emission or absorption of a phonon of energy ω in the scattering process, 

where   is the Planck constant and ω  denotes the phonon frequency. This 

famous result is known as the Fermi Golden Rule. It is important to note that (2.2) 

assumes that momentum scattering occurs instantaneously, and that the real-space 

position of the particle remains constant during the collision. 

 The particular form of H depends on the relevant scattering mechanism 

in question for the material of interest, and will be discussed in subsequent 

subsections of this chapter. Furthermore, the form of the Bloch function as given 

by (2.1) needs to be modified if the motion of the particle is dimensionally 

restricted due to quantization in a particular direction in the device, as occurs in 

semiconductor heterostructures, as discussed in Section 2.4. 

2.3 3D Scattering Mechanisms 

 Since the perturbing potentials associated with the aforementioned 

mechanisms are time-harmonic and of the form [55] 

  tieHtH 
  
,      (2.3) 

each perturbing potential can be expanded into a Fourier series as 

 
q

rq

q

ieUH
  

.      (2.4) 

 Substituting the Bloch function (2.1) and (2.4) into the matrix element 

within (2.2) and recognizing that the periodicity of the exponential term yields a 

non-zero result for the matrix element only when qkk   gives 

 kkkk kk


 ,IUH
  
,      (2.5) 
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where 

 




  rr rkrk

kk detUeU ii ,
  
,     (2.6) 

     



 rrrkk kk duuI ,

  
,      (2.7) 

with the range of integration being that of the crystal volume,  . The factor 

 kk ,I  defines an overlap integral and is only valid provided that the spatial 

variation of H   occurs slowly compared to the cell periodic component of the 

Bloch function. For the case of conduction bands arising from s-like orbitals and 

assuming spherical and parabolic bands,   1, kkI .0 [55]. 

 The total scattering rate from state k , as a function of kinetic energy, is 

then deduced by inserting (2.5) into (2.2) and integrating (2.2) over all k  states 

that satisfy momentum and energy conservation requirements. In doing this, one 

must determine the total number of possible final states contained within a k-

space cell of volume d k   about the point k  by utilizing the appropriate 

expression for the density of states. In this work, the non-parabolic 3D density of 

states is utilized for all scattering mechanisms (unless otherwise noted): 

     
 

k

k
kk

dE

Ed
EmEN


 2123

2 
  
,      (2.8) 

where 

   kkk EE
m

k
E  


1

2

22
  
,     (2.9) 

is the Kane expression [56] describing the non-parabolic dispersion.  The non-

parabolicity factor is determined from k.p theory and is given as 
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
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

og m

m

E


  
,      (2.10) 

where gE  is the material bandgap and m  is the effective mass at the band 

extrema. For the conduction bands of the III-V compounds of interest, those are 

those are the  , L , X  valley k-space points. 

 Using the aforementioned prescription, the scattering mechanisms for the 

relevant 3D scattering mechanisms in III-V compounds, expressed as a function 

of kinetic energy, are well known and presented next without rigorous proof. 

2.3.1 3D Polar Optical Phonon Scattering 

 In III-V compounds, polar optical phonon scattering results from the 

dipole moment formed by the ionic bond that exists between the two dissimilar 

atoms that compose the unit cell of the crystal structure.  It is a dominant inelastic 

scattering mechanism in III-V compounds at room temperature. 

 The perturbing potential that induces the longitudinal lattice vibrations 

within the crystal has been derived by Frölich and is given as 

 rH eU
  
,     (2.11) 

where e  is the electronic charge and  rU  is an effective electrostatic potential. 

 rU  is proportional to the relative, instantaneous displacement of the atoms 

about their equilibrium positions and is given as [13] 

   rur








q

eN
iU

  
,     (2.12) 
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where N  is the number of dipoles in the crystal,   is the crystal volume,  is 

the high frequency permittivity, q is the magnitude of the phonon wavevector, e  

is the effective charge due to Frölich, and  ru is the relative displacement of the 

atoms about their equilibrium positions. In (2.12),  ru is written as [53], 

    rq

qqq

q

eru












 i

o

eaa
NM

21

2 


  
.    (2.13) 

In (2.13), the summation is over all phonon wavevectors (modes) q , and the 

approximation is made that all wavevectors are associated with the constant 

angular frequency o . In this expression the unit polarization vector is qe and 



qa and qa are the quantum mechanical raising and lowering operators, 

respectively. The Frölich effective charge, e ,  in (2.12) is written 

2121
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.    (2.14) 

 Using the aforementioned form of the interaction potential and following 

the procedure delineated in section (2.3) Fawcett and Swain [35] have derived an 

expression for 3D polar optical phonon scattering, in which they account for a 

non-parabolic  kE dispersion. The scattering rate is given as, 
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


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. (2.15) 

In (2.15), the requirement that okk EE   ensures conservation of energy. The 

kinetic energy of the carrier after the collision is either lowered or raised by an 
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amount equal to o  for the emission or absorption of a phonon, respectively. 

Momentum is conserved since qkk  . This result also assumes that the 

phonons are bulk-like, as opposed to existing in confined modes [57], and 

dispersionless with a constant frequency denoted by o . The function 

 
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2
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oo



    

,   (2.16) 

is the Bose-Einstein distribution function  which denotes the phonon occupancy 

factor for the mode q  at angular frequency o , where the upper sign is for 

absorption and the bottom for emission. Finally, the last term of (2.15) is given as 

 
   
    
























 B
EE

EE
ACEEF

kk

kk

kko 2121

2121

1 ln,




    
,  (2.17) 

where 

        2112 kkkk EEEEA   
 
,   (2.18) 

            kkkkkk EEEEEEB    1142
2/12/1

 
, (2.19) 

    kkkk EEEEC    2121114
 
,   (2.20) 

and  

   kkk EE
m

k
E  


1

2

22
    

.     (2.21)  

 Since the dipole moment of the Frölich interaction is directional in nature, 

it can be shown that small angle scattering is favored. This type of scattering is 

therefore highly anisotropic. However, since the probability of scattering through 
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some angle   is a monotonically increasing function of the angle  , a random 

number r  can be utilized to select the scattering angle. The result [35] is given as 

 
f

ff
r

211
cos




    
,     (2.22)  

where 
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
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.      (2.23)  

 It is imperative to recognize that the angle   denotes the polar angle 

between the initial and final wavevectors, but that the azimuthal angle must still 

be chosen at random, since spherical symmetry exists about the azimuthal 

direction. 

2.3.2 3D Acoustic Deformation Potential Scattering 

 As mentioned in section (2.1), the physical quantity of interest in this case 

is the interaction potential resulting from the induced strain. Hence, 

   ttH d ,, rur 
    

,       (2.24) 

where d  denotes the acoustic deformation potential and  t,ru  is given as 
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,    (2.25)  

where the summation is over all phonon wavevectors (modes) q at angular 

frequency q . In this expression the crystal volume is given as  , qe  is the unit 

polarization vector, and 


qa and qa are the quantum mechanical raising and 

lowering operators, respectively. 
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 At KT 300 , TkB  so that one can make the equipartition 

approximation that  
o

B
oo

Tk
N





  which implies that     1 oooo NN   and 

0 . The approximation can therefore be made that the scattering is elastic. 

The resulting scattering rate is 
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,   (2.26)  

where LT is the lattice temperature, and Lc  is the material dependent elastic 

constant defined as 
2

sL vc   where   is the mass density and sv is the velocity 

of sound in the material (the velocity of sound can also be expressed as qq ). In 

this case, the 3D density of states for a carrier in a non-parabolic band is given as 

     
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,    (2.27) 

where  is the Kane factor given by (2.9). 

 In spherical and parabolic bands, the acoustic deformation potential 

scattering is isotropic and the final wavevector can be chosen at random since all 

scattering angles are equally probable. Although the scattering is not strictly 

isotropic in the case of non-parabolic bands, this approximation is retained in the 

final state selection in the EMC model. 

2.3.3 3D Non-Polar Optical Scattering 

 Unlike the case of acoustic deformation potential scattering where induced 

strain is of importance, here the interaction potential is proportional to the 
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displacement, as in the polar optical case. Also, the higher optical frequencies 

involved in the interaction result in phonon energies on the order of the thermal 

energy. Hence, the scattering must be considered inelastic. This implies that the 

thermodynamic approximations used for the acoustic case cannot be used. 

 Therefore, for non-polar optical phonons near the zone center the 

interaction potential is given as 

   ttH ,, ruDr o 
    

.    (2.28) 

Additionally, near the edge of the Brillouin zone, the non-polar optical phonons 

that contribute to intervalley scattering are at slightly lower energies (on the order 

of a few meV) than those at the zone center. Accordingly, a valley dependent 

deformation potential ijD  between the valleys i and j  must be employed near the 

edge of the zone instead of using oD . 

 Using the same index scheme for the intra and inter-valley cases, the 

resulting scattering rate from the i
th

 to the j
th

 valley is 
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,  (2.29) 

where 

jiokk EEE  
    

.   (2.30) 

In (2.30), jiE  and ij denote the energy offset and intervalley phonon frequency, 

respectively, between the i
th

 and j
th

 valleys in the 3-valley model employed. jZ  

denotes the number of equivalent j valleys due to crystal symmetry and  is the 
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mass density.  kEN   is the density of final states, defined as in (2.8). The last 

term of (2.29) is given as 

 
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.  (2.31) 

2.3.4 3D Ionized Impurity Scattering 

 In highly doped semiconductors (doping density greater than ~10
17

/cm
3
), 

the resulting ionized impurities create coulombic potentials that scatter the 

carriers. These potentials are screened by the free carriers in the vicinity of the 

ions. A screening model that is typically used, which is employed here, is the 

Brooks-Herring model. In this scheme, the screened perturbation potential is 

given by 

  rq
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
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4     
,    (2.32) 

where Ze  denotes the charge of the ion, r  the distance of the carrier from the ion, 

and on  is the equilibrium density (i.e., the density of free carriers that would exist 

in the vicinity of the impurity if it were not ionized) . The screening factor, Dq , is 

taken as the Debye wavevector given by 
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.    (2.33) 

Multiplying (2.32) by the electronic charge e  yields the perturbating Hamiltonian 
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s

o De
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
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2

    
.    (2.34) 

The resulting scattering rate, from Fermi's Golden Rule, is 
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which is valid within the Brooks-Herring model so long as Dq  in the denominator 

of (2.35) is large enough so that the scattering rate does not diverge. It is 

important to note that while the non-parabolicity of the density of states is taken 

into consideration, the overlap integral of (2.7) has been ignored in this case. 

 As was the case for polar optical scattering, ionized impurity scattering is 

anisotropic and the probability of scattering through some angle   is a 

monotonically increasing function of the angle  .  Therefore, a random number 

r  can be utilized to select the scattering angle. In this case [20], 
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2.3.5 3D Alloy Scattering 

The introduction of alloys to pure III-V compounds results in additional 

disruption to the periodic potential. In this work the scattering rate discussed in 

[20] is employed. It is written (for the case 1S  in [58]), 

 
 

    
  221

4

23

)1(
28

3
V

dE

Ed
Exx

m
EW k 

 




     
,  (2.37) 

where x is the molar fraction, the volume of the unit cell   is given by  43

oa  

where oa is the lattice constant, and V  characterizes the strength of the 

perturbing potential. 
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2.4 2D Scattering Mechanisms 

 In the single band effective mass approximation, the Bloch function, (2.1), 

needs to be modified so that the component of the wavefunction in the quantized 

direction assumes the form of an envelope function. The modified Bloch function 

is then written 

      ////

// ,,

rk

kk rr
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i

inn ezu 
    

,   (2.38) 

where  zi  is the solution of the one-dimensional effective-mass equation with 

respect to the direction of quantum confinement. This corresponds to the 

heterostructure growth direction for the systems under consideration in this work, 

unless otherwise noted. The effective mass equation is written, 
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In (2.39),  zVc  is the potential energy due to the combined effect of the 

electrostatic potential and the material potential energy offsets of the 

semiconductor heterostructure. 

 Since the confinement potential in a device will vary as a function of the 

in-plane position vector, an accurate treatment of the problem requires a 

calculation of scattering rates for each in-plane device coordinate. Furthermore, a 

more accurate treatment of 2D phonon scattering requires that phonon modes be 

treated as confined, due to boundary conditions being imposed upon the 

displacement vector. In this work, however, bulk phonons are assumed in all 2D 
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scattering mechanisms. The justification for this is that the quantum well 

structures remain in intimate contact with the substrate [59]. 

 Inserting (2.38) into kk H   in lieu of the Bloch function given by 

(2.1), equations (2.5)-(2.7) become modified to account for the quantization such 

that 
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Substituting (2.40) into a modified form of (2.2), to account for the band 

indexing, the integration over the exponential terms results in the matrix element 

being equal to zero for all values of //q except the one for which ////// kkq  , 

analogous to the 3D case. However, the summation over the zq components of the 

phonon wavevector remains in the matrix element. Thus, 

    




 












 dzzezUnHn n

q

ziq

n

z

z kk ,,
    

,  (2.41) 

where U   is the pre-factor of the perturbing potential. This equation is typically 

re-written as 
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defines the overlap integral between the initial and final envelope functions. 
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 Inserting (2.42) into Fermi's Golden Rule, and evaluating the square of the 

matrix element is not a straightforward process though, due to the summation 

over zq  in (2.42). Fortunately, however, the summation over zq can be 

transformed to one over z  [59, 60] allowing one to obtain expressions for the 2D 

scattering rates that are easily evaluated numerically. 

 The 2D scattering mechanisms presented in the following sections were 

derived utilizing the aforementioned zqz   transformation. Additionally, the 

band structure is assumed to be spherical and parabolic for each 2D mechanism 

presented. While this assumption of spherical and parabolic bands is clearly 

invalid at high kinetic energies, these scattering rates are only used for carriers in 

the   valley in k-space; a regime where the energies are typically less than 

eV5.0 , the order of magnitude for the upper valley energy gaps in III-V 

compounds. 2D scattering rates for non-parabolic bands have been utilized by 

other researchers [50] and will be included in future modifications to this work. 

2.4.1 2D Polar Optical Scattering 

As was the case for the 3D scattering mechanism, the unscreened Frölich 

interaction is utilized. The intra-valley scattering rate from the i
th

 to the j
th

 

subband is then given by [61], 
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where the top signs on the right are for phonon absorption and the bottom signs 

for phonon emission. The overlap integral is 
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where 
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It can be readily verified that conservation of momentum and energy is insured by 

the following expression for q ,  
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In this expression  jioij EE     and the initial and final subband 

energies are given by iE  and jE , respectively. 

 With regard to final state selection after scattering, the anisotropic nature 

of 2D polar optical scattering favors small angle scattering as in the 3D case. To 

determine the scattering angle, a random number r  is first chosen and then 

compared to the probability of scattering to some angle  , as   is varied 

from 0  to 2 . Those probabilities are determined by tabulating the normalized 

integrand of (2.44) for each angle   from 0  to 2   in increments of d . As 

soon as an angle is found whereby the random number r  is less than the 

probability of scattering to that angle  , that particular angle is chosen. Further 

details of final state selection are discussed in Chapter 3. 
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2.4.2 2D Acoustic Phonon Scattering 

 In this case, thermodynamic approximations of the 3D case are retained, 

and the scattering is therefore treated as elastic. The scattering rate is found to be 

[21]: 
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where      zzz jiji   , ,   is the mass density and sv is the velocity of sound. 

In selecting the final state, the scattering is assumed to be isotropic. 

2.4.3 2D Non-Polar Optical Scattering 

The treatment is analogous to the 3D case. The scattering rate requires a 

summation over the number of equivalent valleys 
f

V  and is written [60] 
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, (2.49) 

where the upper sign on the right side is for phonon absorption, and the lower sign 

for phonon emission. As in the 3D case, the scattering is considered to be 

isotropic. Also, although effective masses and deformation potentials are 

specified for each valley/subband transition, these quantities in the upper valleys 

are often difficult to determine experimentally, and approximations based on the 

values for the   valley are used as needed. 

2.4.4 2D Interface Roughness Scattering  

 The material interfaces of a semiconductor heterostructure are never 

"perfectly smooth" due to lattice mismatch and fabrication process tolerances. 
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This "roughness" is characterized by local fluctuations in the heterostructure 

confinement potential that serve to disrupt the periodic potential of the ideal 

crystal. These potential fluctuations are the basis of the perturbation to the ideal 

Hamiltonian. 

 In this work, only the interface roughness that exists at the barriers 

between the quantum well channel of the heterostructure is considered, using the 

theory developed in [61]. The situation for a single interface is depicted in Figure 

(2.1). 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic depiction of interface roughness in a semiconductor 

heterointerface. 

 Expanding the actual 2D confinement potential  zV ,//r  about the ideal 

potential  zVeff  at each //r , a perturbing roughness potential can be defined as, 
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After multiplying by the electronic charge to obtain the proper energy 

perturbation in the Hamiltonian, (2.50) is inserted into (2.42) to obtain 

//r
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where 
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takes the form of an average electric field in the quantum well and, 

     

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  redrq rkki

    
,   (2.53) 

where kkq  , and  q  is the Fourier transform of  r . Therefore, when 

the square of the matrix element is determined, the resulting function 

   2
qqS   can be interpreted as the power spectrum of the roughness 

fluctuations, when a sum over all q  (equivalently all k  ) is performed. 

 As first shown by Goodnick [61], the associated autocovariance function 

takes the form of an exponential. This implies that 
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  2322

22
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L
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

    
,   (2.54) 

where the parameters   and L  are known as the rms roughness height and 

correlation length, respectively. Assuming parabolic bands, it is then 

straightforward to evaluate the scattering rate as, 
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where  2sin2 kq   and  2sin2 kq  . 

2.4.5 2D Alloy Scattering 

In this case the interaction potential is the same, naturally, as in the 3D 

case. Hence, a straightforward extension of the 3D formalism, using the 2D 

density of states yields [62]
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where x  is the molar fraction, and the volume of the unit cell is given by  43

oa  

where oa is the lattice constant. 

2.5 Plots of 2D Scattering Rates 

In this section plots of the 2D scattering rates, as a function of kinetic 

energy,  are presented for each previously discussed 2D scattering mechanism for 

a 13nm In0.7Ga0.3As quantum well bound by In0.52Al0.48As cladding layers (The 

structure is exactly as depicted in Figure 4.3 under the gate region of the Intel 

HEMT device).  In these results, a mean effective mass was  determined, based on 

the effective masses of the indivdual heterostructure layers, weighted by the  

quantum mechanical probability (square of the envelope functions) of the carrier 

"residing" within a particular layer. In turn, the effective masses of the alloys of 

InAs and GaAs were taken as a linear interpolation from those of the pure 

compounds, om036.0  and om067.0  respectively. Accordingly, the effective mass 
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in this case was om04.0 . In each of the following plots, four subbands were 

included in plotting the scattering rate "out" of the first subband to, to all other 

subbands. The choice of using four subbands was based upon the assumed 

conduction band offset of eV50.0 cE  between the In0.7Ga0.3As and by 

In0.52Al0.48As cladding layers. In all cases, K300T . 

In Figure 2.2, the 2D polar optical phonon scattering rates are plotted for 

both absorption, emission, and the combined rate. As expected from the 

dependence on the inverse of q  in (2.44) the overall scattering rate decreases as 

the energy increases. The "jumps" in the curve indicate that additional states are 

available for scattering, when inter-subband transitions are allowed, as dictated by 

conservation of momentum and energy requirements. 
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Figure 2.2 Polar optical 2D phonon scattering for a 13nm In0.7Ga0.3As 

quantum well bound by In0.52Al0.48As cladding layers, as discussed in the text; 

Bottom curve: Absorption  rate; Middle curve: Emission rate; Top curve: 

Emission + Absorption. 

 

 In Figure 2.3, the 2D acoustic phonon scattering rate is plotted. Unlike the 

case of polar optical scattering, the scattering is considered to be elastic in this 

case and the "flat" step-like dependence of the scattering rate is indicative of the 

constant 2D density of states. In this case, inter-subband transitions are allowed 

when conservation of energy permits such transitions. i.e., when 

fsubfkisubik EEEE ,,,,   . 
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Figure 2.3 Acoustic 2D phonon scattering rate for a 13nm In0.7Ga0.3As 

quantum well bound by In0.52Al0.48As cladding layers, as discussed in the text. 

 

 In Figure 2.4, the 2D non-polar optical scattering rate that contributes to 

intervalley scattering from the 1st subband of the   valley to the L  valley 

subbands is plotted for both the emission and absorption cases. In doing this the 

four equivalent final valleys are considered, as indicated in (2.49). The effective 

masses of the upper valleys are not well established experimentally for 

In0.7Ga0.3As, so an effective mass of om22.0  was used, based on previously used 

values for GaAs that gave reasonable velocity-field characteristics. Additionally, 

the conduction band offsets of the upper valleys was taken as roughly one quarter 

of the central valley offsets. Admittedly, this is a rather dubious assumption made 

in order to obtain results for quantized states in the upper valleys. Typically, the 
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upper valleys are treated as 3D. In fact, for most of the simulations conducted in 

this work, the 2D3D transition threshold is considered to be the   valley to 

the L  valley energy separation, so the effects of quantization in the upper valleys 

are not always a factor in the EMC model. In this case, conservation of energy 

requirements dictate that the energy separation of the valleys also be taken into 

consideration prior to a transition.  

 In Figure 2.5, plots of both surface roughness scattering and 2D alloy 

scattering are presented, per the treatment considered in sections 2.4.4 and 2.4.5. 

For the case of roughness scattering, only the "top" interface material barrier 

offset contributes to the average electric field in (2.55). Also, although it is 

difficult to see on the plot, the onset of scattering to the 4
th

 subband occurs at 

approximately 0.35 eV. In this case the rms roughness length is 0.3 nm and the 

autocovariance length is 1.5 nm. With regard to the alloy scattering rate plotted 

per (2.56), the alloy perturbing potential is given as V5.0V  and the lattice 

constant is taken as 


A8.5   
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Figure 2.4 Intervalley non-polar optical phonon scattering rate for a 13nm 

In0.7Ga0.3As, as discussed in the text. Blue: emission rate; Red: absorption rate. 
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Figure 2.5 Roughness (blue, lower curve) and alloy scattering rates (red, 

upper curve) for the 13nm In0.7Ga0.3As quantum well as discussed in the text. 
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 Finally, the total scattering rate, taken as a sum of each rate plotted in 

Figures 2.2 -2.5, is given in Figure. 2.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Total scattering rate from the 1
st
 subband of the 13nm In0.7Ga0.3As 

quantum well as discussed in the text. Each of the scattering rates plotted in 

Figures 2.2 - 2.5 are included. 
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3. Ensemble Monte Carlo Device Simulator 

3.1 Overview 

 In this chapter, the details of the Ensemble Monte Carlo (EMC) algorithms 

utilized in this work are explained. The salient features of each algorithm are 

discussed in subsequent subsections of this chapter. First though, an overview of 

the entire process is presented as depicted in Figure 3.1. The resulting code is 

written in Fortran90, and output plots are generated using Matlab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flowchart of the Ensemble Monte Carlo process. 
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 First, the device structure is defined as a discrete set of mesh (grid) points. 

Accordingly, a particle-mesh scheme is created such that during the course of the 

simulation carrier attributes such as real-space position and momentum can 

acquire a continuous range of values, while the charge density is mapped to the 

discrete grid in order to calculate the electrostatic potential (and resulting electric 

field, which accelerates the carriers). In doing that mapping, a nearest grid-point 

scheme is employed, as opposed to a cloud-in-cell scheme, with only nominal 

differences observed in the results, since a "fine" mesh of 1nm or less is typically 

used. 

 After the structure is defined, a series of 1D Schrödinger Wave Equations 

(SWEs) coupled to a 3D Poisson Solver are solved self-consistently over the 

entire simulation domain in order to determine the initial potential (and resulting 

electric field), carrier density, subband energies, and wavefunctions for the 2D 

scattering rates. In doing this, a 1D SWE is solved along the direction of 

quantization (heterostructure growth direction) at each grid point, or "slice" of the 

device  along the direction of transport. However, in doing this, the domain of the 

SWE solutions is not extended to certain regions of the device that are classified 

as only "3D", such as HEMT cap layers or HEMT entrenched gate regions. This 

was done for the numerical convenience of not possibly generating eigen-

solutions spanning multiple quantum wells. Hence, in this work the initial carrier 

distribution in real-space is treated as 2D except within the cap layers and gate 

region of the III-V HEMT devices under consideration. Also, while the number of 

carriers per grid cell is based on the self-consistent density, the initial real-space 
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positions within a grid cell are chosen at random. If desired, the initial spin 

distribution is also defined at this stage. 

 Then, after the initial real-space positions of the carriers are chosen, the 

carrier momentum and kinetic energy distribution is initialized according to either 

a Maxwell-Boltzmann or Fermi-Dirac Distribution. The 3D and initial 2D 

scattering rates are then calculated for each quantum state (i.e., every valley and 

subband) as a function of kinetic energy and tabulated as will be explained further 

in Section 3.2. 

 Next, during the EMC Kernel, carriers drift and scatter in the device under 

a fixed potential profile for a pre-determined number of free-flight time intervals 

(aka, "timesteps") until the charge distribution evolves so much that static electric 

field is considered to be "outdated". The time interval (and mesh size) between 

potential updates is chosen to satisfy the stability criteria associated with an 

electron plasma, as discussed in Section 3.4.  Also, at each free-flight timestep of 

the EMC kernel, a check of the carrier energy, with respect to a pre-defined 

threshold, such the channel quantum well barrier height or to L valley energy 

separation, is conducted to determine if a 2D3D transition is in order. 

 Once the simulation has been "frozen" momentarily in time in order to 

update the potential, the carrier positions are mapped to the discrete grid to obtain 

the density needed in solving the Poisson equation. Prior to updating the potential 

however, the charge distribution in the contact regions is adjusted to maintain the 

distribution that existed in the contact regions at equilibrium. (The net change in 

the charge at the contacts between potential updates serves as one measure of the 
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carrier current). Additionally, throughout the simulation domain, the distribution 

of charge in the direction of quantization (i.e., the heterostructure growth 

direction) associated with 2D carriers is mapped to the grid in order to conform to 

the spatial distribution of the squared envelope functions. In doing this, the 

contributions from carriers in each 2D subband contribute to the charge density. 

 Then, just after the potential is updated and prior to resuming the 

dynamical simulation, or at some pre-defined number of "SWE timesteps" later, 

the 1D SWE equations are re-solved and the 2D scattering rates updated. Also, 

prior to resuming the dynamical simulation after updating the potential, output 

quantities as a function of time are stored. Amongst these are the carrier density, 

average velocity, average carrier energy, spin polarization (if applicable), and 

certain diagnostic quantities such as 2D subband occupancy as a function of time 

and position. 

In the subsequent subsections, the EMC kernel will be presented first, 

since understanding it is critical to appreciating the structure of the other routines. 

3.2 Monte Carlo Transport Kernel 

In Ensemble Monte Carlo (EMC) simulation, the random motion of 

charge carriers in the semiconductor device is simulated as free flights subjected 

to forces that accelerate the carriers during free flight and instantaneous scattering 

events that randomize the velocity. The choice of a particular scattering 

mechanism is a stochastic process whereby a random number with uniform 

probability distribution between 0 and 1 is first selected. The value of this 

number, relative to its position in a normalized table of the comparative scattering 
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rates, then determines the particular scattering mechanism to be chosen. The 

quantitative details of this process will now be discussed (In this chapter the 

notation of Tomizawa [63] is frequently employed). 

The probability per unit time that a carrier will travel for a free flight of 

duration   and then scatter at the end of this time is given as 

     
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









 
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
0

exp dtEWEWP kTkT     
,   (3.1) 

where  kT EW  refers to an algebraic summation of all the scattering mechanisms 

as a function of kinetic energy that will be included in the model. Since  kT EW  

is, of course, not constant as a function of energy, an analytical evaluation of (3.1) 

is not possible. However, a clever solution to the problem is to introduce the 

concept of self-scattering [37] in which a self-scattering rate  kS EW  is defined at 

descritized intervals of kinetic energy, in order to yield a total scattering rate,  , 

that is a constant over the entire energy range. This virtual scattering mechanism 

causes no actual change to carrier dynamics. Thus, (3.1) can be re-written as, 

    eP .     (3.2) 

In consideration of (3.2), the MC algorithm can now proceed in two 

different ways, both of which yield statistically equivalent results. In the first 

approach, a random number can be chosen that is distributed uniformly between 0 

and 1. This number is then said to be equal to  P , and (3.2) is then solved for 

the resultant free flight time  . Alternatively, as is done in this work, a random-

number rejection technique can also be employed. In that case, the free flight time 
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  can be defined a priori and (3.2) is then solved for  P . A random number is 

then chosen, distributed uniformly between 0 and 1. If this number is less than 

 P a scattering event will occur. Otherwise, a new free flight will simply take 

place. This latter method was chosen so as to utilize certain code segments 

developed by this author for other work, but otherwise arbitrarily. 

Next, if it has been decided that a scattering event should occur, the 

particular mechanism is determined by choosing another random number that also 

has a uniform probability distribution between 0 and 1. The value of this number, 

with respect to its position in a normalized table of comparative scattering rates, 

determines the particular scattering mechanism chosen. This table is computed 

prior to running the dynamical portion of the EMC. 

Depicted in Figure 3.2 is a section of this table for some carrier with 

kinetic energy 2kk dEE  . For n  scattering mechanisms considered, 

numerically labeled 1 through n , a particular mechanism is chosen such that 

1 nn PrP  where nP  is the probability of choosing the nth mechanism , and r  

is the value of the random number. If these criteria cannot be satisfied, the event 

is treated as self-scattering, and no change occurs to the carrier's wavevector. 

In the EMC model developed in this work, a normalized scattering table as 

a function of kinetic energy is created for every quantum mechanical state. For 3D 

carriers, this implies that separate tables are needed for each valley. For 2D 

carriers, a separate table is created for each subband within each valley. However, 

the carriers in the upper valleys are typically treated as 3D as they are high in 
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energy relative to the central valley. The choice of 2D or 3D carrier motion in the 

upper valleys is user-defined in the parameter input files. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Depiction of the scattering table at a particular value of kinetic 

energy in the range 2kk dEE  . 

 

3.3 Structural Definitions and Nomenclature 

For the particle-mesh scheme used in this work, a non-uniform, center-

point finite difference scheme defines the discrete mesh (grid) for all three spatial 

dimensions for any rectilinear structure considered. Such a non-uniform grid is 

crucial in solving the SWE and Poisson equations, if large variations in the 

potential occur over small spatial lengths. A one-dimensional depiction of the grid 

is given in Figure 3.3.  
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Figure 3.3 One-dimensional depiction of the non-uniform center-point 

difference grid, showing the variation of effective mass and permittivity 

parameters. The notation is adapted from [25]. 

 

Note that in Figure 3.3 the effective mass and permittivity parameters are 

defined for each i
th

 grid point, and also at half the distance to adjacent grid points, 

which are not necessarily spaced apart from one another uniformly. Also, the 

notation of defining the distance between the i
th 

grid point and the adjacent grid 

points as 1ix  and ix  will be retained in subsequent sections of this chapter, 

notably in sections 3.6 and 3.7 in which the descritization of the SWE and Poisson 

equations is explained. 

Of course, a two-dimensional extension of the mesh scheme depicted in 

Figure 3.3 is actually employed for the HEMT simulation in this work in order to 

define the heterostructure growth and transport directions that correspond to the 

device depth and length, respectively. For the HEMT modeling in this work, 

however, the width dimension is not needed in solving the Poisson equation. This 

is because the width of the HEMT is assumed to be sufficiently large such that a 

constant potential can be assumed in that direction, for each particular mesh point 

of the residual two dimensional plane that is defined by the growth and transport 

directions. The width dimension is needed though in modeling some spintronics 

devices where confinement potentials in the transverse direction are considered.  
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The index naming scheme used throughout this work is as follows: The "i" 

index corresponds to the heterostructure growth direction, increasing in value 

from the top surface of the device to the substrate. The direction of transport in 

the devices is defined by the "j" index, which increases from the "source" to 

"drain" side of the device. The "k" index refers to the mesh along the device width 

in the 3D version of the code. 

3.4 Time Step and Mesh Size Criteria 

As mentioned in the Introduction, carrier transport in a semiconductor 

device can be described essentially as that of a plasma. A well known result of 

basic plasma physics for non-degenerate systems is that the spatial variation of 

charge density results in a variation of the potential that can only be resolved 

within a minimal spatial distance known as the Debye length. The Debye length is 

expressed as 

s

B
D

Nq

Tk
L

2


    ,    (3.3) 

where   is the material permittivity and sN  is the doping concentration.  

Consequently, it is imperative that the grid spacing never exceed this length. 

Otherwise, non-physical plasma oscillations will result from a grid which is too 

course. 

Likewise, due to the Coulombic forces amongst the constituent charge 

carriers of the plasma, the charge distribution will oscillate at the plasma 

frequency expressed as 
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 ,    (3.4) 

where   is the material permittivity and n  is the charge density. Therefore, the 

time interval between successive updates of the potential (aka, the timestep) 

should not exceed that of the plasma period, which is the inverse of (3.4), given 

as, 

p

pT


2
    .     (3.5) 

In practice, choosing the timestep and grid spacing is by trial-and-error, 

within these guidelines. A good rule of thumb is that the ratios of timestep and 

grid spacing, to the plasma period and Debye length, respectively, should be on 

the order of unity. A comprehensive discussion of the aforementioned stability 

criteria issues is given in [65]. 

3.5 Initialization of Carrier Distribution 

In principle, the initial energy, momentum, and spatial distribution of 

carriers does not matter, if one is only interested in studying steady state 

phenomena, and computational efficiency is not of consequence. In those cases, it 

is sometimes convenient, from a coding perspective, to simply assign the initial 

position of the carriers about the dopant sites, and to assign the carriers an initial 

momentum and energy based upon the proper thermodynamic statistical 

distribution (e.g. Fermi-Dirac). 

However, in this work, all carrier attributes are initialized to the condition 

of thermodynamic equilibrium via a self consistent solution of the SWE and 



  47 

Poisson equations. The initial motion is thus treated as 2D, except within the cap 

layers of the Intel HEMT structure under consideration, in which case the carriers 

are always assumed to be 3D. This initialization scheme is deemed to be the 

"most realistic" physical scenario prior to running the dynamical EMC part of the 

simulation. Based on prior experience, initializing the distribution to the dopant 

sites results in much longer transient times prior to reaching steady state, and can 

possibly yield drastic, unphysical "swings" in the electrostatic potential prior to 

convergence to such an extent that carriers become "trapped" in momentum 

space, in upper valleys, while traveling (in real space) from the dopant sites to the 

channel.  

Due to their complexity, the details for solving either the Poisson or SWE 

equations are reserved for subsections 3.6 and 3.7 of this chapter, respectively. 

However, the general scheme of the SWE-Poisson calculation is as follows: First, 

an initial guess is first made of the 3D electrostatic potential   by solving the 3D 

Poisson equation, 

      ,    (3.6) 

using the initial assumption that the carrier density,  , is equal to the doping 

density. Then, for each region of quantization in the device (i.e., each mesh 

"slice" of the 2D plane defined by the growth and transport directions, or in the 

case of 3D devices, each "column" of grid points, defined at every in-plane mesh 

point), the resulting electrostatic potential is then added to the material band offset 

potentials, in order to determine the potential energy contribution to the 

Hamiltonian of the one-dimensional effective mass equation for that region. A 
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quantum mechanical approximation determination of the 3D carrier density can 

then be extracted for that region as 

       
kj

nnnD

nsub

n
D iinkjin

,
2

1
3 ,,  



   ,   (3.7) 

where Dn2  is the 2D sheet density and  in  is the envelope function for the n
th

 

subband, which must be normalized so that its units are meters1 . The newly 

determined 3D density is then fed back into the 3D Poisson equation, the 

electrostatic potential is re-calculated, and the process is iterated until 

convergence is reached, i.e., the difference in the potential, as computed from 

successive iterations of the Poisson equation, is lower than some pre-defined 

tolerance. 

In (3.7), the determination of the sheet density Dn2  is based on the well 

known expression 

   dETEEfEDn fFDDD ,,
0

22 


   ,   (3.8) 

where, in this case the 2D density of states  ED D2  is a constant given by 

 2m  and FDf is the Fermi-Dirac function. Thus, 
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where nE  is the subband minimum for the n
th

 subband, maxn is a pre-defined 

maximum number of allowed subbands. 

Numerically, the choice of maxn  must be such that all occupied subbands 

in the quantum well are included. Also, for computational convenience the Fermi 

level, fE , is set to mathematical zero. Furthermore, in this work, the maximum 

error allowed in the converged solution is typically less than 510 V, based on a 

tradeoff between accuracy and convergence times. 

3.6 Descritization of Poisson's Equation 

From Maxwell's equations,  

 D
    

,    (3.10) 

where D  is the electric displacement vector and  is the free charge density. The 

displacement vector in turn is given by the constitutive equation,  

ED  
    

,    (3.11) 

where   is the dielectric permittivity and E  is the electric field. In turn, the 

electric field is defined in terms of the gradient of the electrostatic potential as 

E
    

.    (3.12) 

 

Substituting (3.11) into (3.10), using (3.12), yields (3.6), repeated for 

convenience: 

       .   (3.13) 

The descritization of (3.13) is done using a center-point finite difference scheme 

as depicted in Figure 3.3. (In the following argument, only one dimension is 
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depicted for clarity, since the presence of the dot product implies that the multi-

dimensional derivation is straightforward extension of the one-dimensional 

argument). Starting with the differentiation of (3.10), 

 
 i

ii

ii

x
x

xxi











1

2121

5.0

DD
D    ,   (3.14) 

inserting (3.11) to into (3.14) yields, 

 
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
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21212121

5.0

EE
D    .  (3.15) 

Thus, (3.15) can be re-written, making use of (3.12), as,   
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D

   (3.16) 

Finally, re-arranging (3.16) gives 

       iiii xffscoefccoefncoef   11     ,  (3.17) 

where the "north", "south", and "center " coefficients and the "ff" (forcing 

function) in (3.17) are given as, 
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ncoef     ,   (3.18) 
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xxxx
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
   ,  (3.20) 

   ixff     .     (3.21) 

Thus, given a charge density  ix , the electrostatic potential i  can be 

solved by iteratively operating on (3.17), after a first guess of each i  is made. 

Neumann boundary conditions are imposed on the solution when the electric field 

is assumed to be zero at a boundary, and Dirichlet conditions imposed for points 

of constant potential in the simulation domain. 

In this work, the well known Gauss-Siedel iterative scheme was used to 

solve the three-dimensional extension of (3.17). While this scheme has been 

found adequate in the present work, future device structures with highly non-

uniform meshes will likely require the utilization of a multigrid technique [33]. 

3.7 Descritization of SWE 

When computer memory is not an issue, a uniform mesh may be sufficient 

to descritize the SWE. Usage of a uniform mesh preserves the symmetry of the 

matrix of the eigen-operator, making the eigenvalue problem easier to solve. In 

order to account for a non-uniform grid though, as is often necessary for HEMT 

structures, the method, due to Tan, et al. [64], is utilized as discussed below. 
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Assuming a position-dependent effective mass, the 1D SWE is, 

 
       xExxVx

xm
 












1

2

2
   .  (3.22) 

Since the first term on the left-hand side of (3.22) is of the same form as the left 

hand side of (3.6) the center-point finite difference descritization scheme is 

exactly analogous to that of the Poisson equation. Accordingly, (3.22) can be 

expressed as (using matrix notation): 

 A    ,     (3.23) 

where the matrix elements of A  are given as, 
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


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2 111
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for  1 ij
   

,    (3.25) 

VAAA iiiiij   1,1,

  

for  ij 
   

,    (3.26)

 

and otherwise 

0ijA

  

for  ij 
   

.      (3.27) 

Note that a matrix L  has now been defined so that the square of each element iL  

can be written as  1

2 5.0  iiii xxxL . This allows one to define a new matrix B  

such that LLAB  , where ijiij ALB 2 . Now, making the substitution LLM  , 

(3.23) is recast as, 

 MAB     .    (3.28) 
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Operating on both sides of (3.28) with the inverse of matrix L  as 

 LLALBL 11      ,   (3.29) 

one observes that 

 LBLLBL 111      .   (3.30) 

Finally, setting, 
11BLLH   and L , one obtains 

 H    .     (3.31) 

which implies that H  is symmetric since 
1

L


 is diagonal and B  is symmetric. 

Thus, solving the eigenvalue problem given by (3.31) immediately yields the 

correct eigen-energies,  . The original wavefunction   is then found by simply 

operating on (3.31) with the inverse of matrix operator L . 

In this work, the solution of (3.31) was performed using the well known 

Fortran LAPACK routine DSTEVX. 

3.8 Carrier Motion 

By the Bloch acceleration theorem, the force acting on a carrier is given as 

dt

d k
F    ,       (3.32) 

where k  denotes the particle wavevector. In the EMC, the force is the 

electrostatic force, EF q , whereby the carriers have charge magnitude q  and 

are subjected to an electric field given as E  , where the electrostatic 

potential given as  . Use of (3.32) thus implies that the change of the particle's 

wavevector due to acceleration in the electric field is 
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

dtq
d

E
k     .     (3.33) 

Thus, after carrier drift the wavevector is updated as 

kkk d    .    (3.34) 

The real-space position of the particle is then updated by making use of the 

following definition of velocity: 

kk E


1
v    ,    (3.35) 

and utilizing the Kane relation for non-parabolic dispersion 





2

1)(41 


k
Ek    .    (3.36) 

Inserting (3.36) into (3.35) yields,  

)(41 km 




k
v


   .    (3.37) 

Taking the average over all particles in the ensemble, the average instantaneous 

velocity is given as 

)(41 km 




k
v


   .    (3.38) 

Note that 

2

if kk
k


    ,    (3.39) 

denotes the average of the initial and final wavevectors. (3.39) and (3.37) can be 

then be combined.  This implies that 
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2

k
kk

d
i     .    (3.40) 

Therefore, since dtd vr   and rrr d , substituting (3.40) into (3.38) 

results in the carrier position after drift being expressed as 

dt
km )(41 




k
rr


   .   (3.41) 

For the case of parabolic bands  0   (3.40) reduces to 











 2

k
krr

d
dt

m


   .    (3.42) 

3.8.1 Specular Reflection 

After a carrier drift, the position of the carrier may exceed the specified 

dimensions of the device. If the grid cell prior to the drift was defined by a 

Dirichlet condition (i.e., the potential is fixed to some value) corresponding to an 

ohmic contact, the particle is absorbed and removed from the simulation. 

However, if a Neumann boundary condition exists on the charge density then a 

specular reflection occurs. A reflection about the "top" or "bottom" surface of a 

rectilinear device is depicted in Figure 3.4 (the argument for a reflection at a "left" 

or "right" boundary is directly analogous). 
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 ozz      ("top" surface)
  

 
 maxmax zzzz o 

   
("bottom" surface) 

 

Figure 3.4 Depiction of specular reflection at a Neumann boundary. In this 

case, specular reflection at the top surface is depicted. 

 

 In Figure 3.4, the carrier has "overshot" the top surface boundary by a 

distance oz . The new particle positions after such a reflection are indicated in the 

equations of Figure 3.4. In this case, the new "x" position has been already 

determined by via carrier drift in the electric field and is not affected by the 

boundary encounter. A specular reflection may also occur at a heterostructure 

interface, as will be described in section 3.8.2. 

3.8.2 Barrier Encounters for 3D Carriers 

After a 3D carrier completes a drift in a given timestep, it must be 

determined if a potential barrier was encountered due to a band offset between 

different materials. This is done by utilizing a carrier attribute called "material 

type" in which the old and new material types are compared after the drift. Then, 

the kinetic energy of the carrier is compared to the barrier potential energy. If the 

kinetic energy is less than the barrier height, a specular reflection occurs, exactly 

as described in section 3.8.1. If the kinetic energy is greater than the barrier, 

transmission will occur, provided that a final state exists in momentum space for 

which the in-plane momentum (perpendicular to the barrier) can be conserved. 

 

 oz

z

                                                                        

inside device 
 




max

0

z

z


oz



  57 

Otherwise, a specular reflection occurs. Again, specular reflection occurs exactly 

as described in section 3.8.1. 

Therefore, in the event a carrier has been made a candidate for 

transmission (final state selection has yet to be considered), the kinetic energy 

will be transformed as Bkk EEE   where BE is the barrier offset, defined as 

the difference between the "new" and "old" material offsets. Conserving in-plane 

momentum requires that //// kk   . This, in turn, requires that the squared value 

of the new wavevector perpendicular to the interface be given as, 

     2

//kEEEE
m

k BkBkz 





1
2

2

2


   .  (3.43) 

Of course, 
2

zk   must be greater than zero. If this condition is met, transmission 

occurs. Otherwise, no condition exists to conserve in-plane momentum and 

specular reflection occurs. 

Although the preceding argument was made for barrier encounters 

perpendicular to the transport direction, the EMC developed in this work allows 

also for 3D barrier encounters parallel to the direction of transport. These may 

exist, for example, due to entrenched gates or insulating layers. 

3.9 2D3D Transitions 

When the total energy of a 2D carrier (kinetic plus sub-band energy 

relative to the potential minimum in the local region of quantization) exceeds 

some pre-defined threshold, i.e., tsub

D

k EEE 2
, the carrier is considered then to 

behave as a 3D carrier and be subjected thereafter to 3D scattering mechanisms. 
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In that case, the 2D subband energy is transformed into an additive component to 

the kinetic energy. 

Conserving in-plane momentum requires that //// kk  . Also, the real 

space position is unaltered during the transition. Therefore, the energy-momentum 

relationship of the transition is written as 

      sub

D

ksub

D

kz EEEEkk
m




222
2

1
2

2

//


   .  (3.44) 

Re-arranging and solving for zk   yields, 

     2

//kEEEE
m

k sub

D

ksub

D

kz 

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

22

2
1

2



   .  (3.45) 

Before determining zk   however by this expression, a check of the sign of 

the argument in (3.45) is performed. A negative value indicates that a condition 

does not exist to preserve in-plane momentum and thus a 2D3D transition will 

not occur. If a transition is allowed to occur, the direction of zk  , either positive of 

negative, is chosen at random, with both values considered to be equally probable. 

3.10 3D2D Transitions 

For a 3D carrier, when the condition exists such that t

D

k EE 3
, a 3D2D 

transition may occur. Conservation of energy and in-plane momentum then 

requires that sub

D

k

D

k EEE  23
. Therefore, the new subband energy associated 

with the 2D carrier must be such that
D

k

D

ksub EEE 23  . However, choosing the 

subband energy in this manner is inconsistent with the fact that the subband 

energy levels in the quantum well comprising the transport channel have already 
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been pre-determined by the most recent local solution of the periodically updated 

SWE. 

The approximation is thus made that the new 2D carrier will occupy the 

n
th

 subband such that 1 nsubn EEE . In the event that subE  is less than the 

ground state subband energy, it is assumed that n =1. 

Strictly speaking, energy conservation is, of course, violated in this model. 

Also, it must be noted that an inconsistency exists in determining the carrier 

energies between the 2D3D and 3D2D cases. This is because a parabolic 

dispersion exists in the 2D case, but not in the 3D case. Correcting this problem 

by using non-parabolic 2D scattering rates will be the subject of future work. 

Finally, it must be noted that a more accurate model of 2D3D 

transitions has been considered by others [66] in which transition rates are treated 

as scattering events between 2D and 3D eigenstates. The form of the resulting 

transition rates then resembles the form of the scattering rates used in this work.  

3.11 Scattering Final State Selection 

3.11.1 Isotropic Scattering 

For the scattering mechanisms described in Chapter 2 that were classified 

as "isotropic", the magnitude of the final wavevector is still determined by energy 

conservation requirements. However, as shown in Figure 3.5, all angles of the 

solid angle β between the initial and final wavevectors are equally probable.  
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Figure 3.5 Scattering angles in the isotropic scattering process. 

 

Thus, for the spherical coordinates employed in this model, the final polar and 

azimuthal angles, with respect to the axis of the "laboratory system" can be 

determined from two random numbers, 1r and 2r , both distributed uniformly 

between 0 and 1, i.e., 

12 r    ,     (3.46) 

221cos r   .    (3.47) 

 

The components of the new wavevector are then given as, 

  cossinkkx   ,    (3.48) 

  sinsinkk y   ,    (3.49) 

 coskkz   .    (3.50) 

For the case of 2D isotropic scattering in spherical bands, the formalism is 

analogous; one simply sets 90 . 
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3.11.2 Anisotropic Scattering  

Due to the angular symmetry of the problem in this case, any value for the 

angle  is still equally probable, as was the case for isotropic scattering. However 

the polar component of β in Figure 3.5 now has an angular dependence in which 

small angle scattering is favored. Therefore, the components of k  need to be 

defined in terms of β . 

Determining the components of k  is most easily accomplished by 

utilizing a rotated coordinate system as depicted in Figure 3.6. In the rotated 

coordinate system, the initial wavevector k is aligned with the z-axis of the 

rotated system by rotating the original coordinate system (laboratory system) 

about the y-axis of the laboratory system by an angle x . Then, another rotation 

is performed about the z-axis of the laboratory system by an angle z . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Rotated coordinate system used to determine anisotropic scattering 

angle. 
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The final wavevector within the rotated coordinate system is then given as, 

labrot kUk rot
     .    (3.51) 

Using basic linear algebra, the rotation matrix rotU  can be decomposed into the 

matrix product of the x
 
and z

 
rotation matrices as  

zx  UUUrot    .      (3.52) 

In turn, (3.52) can be decomposed as,   
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In the rotated coordinate system, β can then be decomposed into its polar and 

azimuthal components,   and   , respectively, as depicted in Figure (3.7): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Rotated Coordinate system for anisotropic scattering. 
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Since labrot kUk rot
 , it follows that 

rotlab kUk
1

rot
 

  .    (3.55) 

Note that 
1

rotU


 can be found by taking the inverse of (3.52) such that 
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Then, inserting (3.56) and (3.51) into (3.55) yields 





























































cos

sinsin

cossin

cossin0

cossincoscossin

sinsinsincoscos

k

k

k

k

k

k

xx

zxzxz

zxzxz

z

y

x

  . (3.57) 

Finally, inspection of Figure 3.6 reveals that the trigonometric matrix elements of 

(3.57) are given as,  

 

k

k z
x cos  ,     (3.58) 
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The treatment of 2D anisotropic scattering is analogous. Setting 
90x  

( 0zk ) and recognizing that 0  in (3.57) results in the following matrix 

equation: 
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Making use of (3.58)-(3.61) gives the final results: 

  cossin k
k

k
k

k

k
k xy

x  ,   (3.63) 

  cossin k
k

k
k

k

k
k

yx

y  .   (3.64) 

It is imperative to realize that in this case    is the in-plane scattering angle 

between the 2D wavevectors k  and k  . (Note that the derivation of (3.62) can 

also of course be done by using a 2D rotation matrix whereby the coordinate 

system is rotated to align either the yk  or xk  components of the initial 

wavevector with k ). 

3.12 Inclusion of Degeneracy (Pauli Exclusion Principle) 

The scattering rates presented in Chapter 2 have been derived under the 

assumption that the occupancy of a final state k , represented by the normalized 

distribution function,  kf , is assumed to be initially equal to zero. In actuality 

though, the probability per unit time of scattering from state k to k , must be 

written as 

      kkkkk  fSP 1,,      ,    (3.65) 
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where  kk ,S  is the transition probability given in (2.2) and the occupancy factor 

  k f1  indicates the probability that the final state is not occupied. 

Consequently, the value of the occupancy factor is dictated by the PEP, which 

states that only two particles (electrons) can occupy a quantum mechanical state at 

the same time and that these two particles must differ by their spin quantum 

numbers. 

Fortunately though, the scattering rates do not need to be re-derived. In 

fact, incorporation of the PEP into the EMC is easily accomplished in 

consideration of the theory of the Fermi gas. This theory dictates that the volume 

that an electron must occupy in momentum space, assuming a 3D system, is given 

by   V
3

2  where V is the real-space volume of the system under consideration. 

Therefore, the maximum number of electrons allowed to occupy a "cell" of 

volume 
D

c

3 in momentum space is given as, 

  V
N

D

cD

c 3

3

3

2

2




      ,    (3.66) 

where the factor of 2 accounts for the spin degeneracy and the term 

zyx

D

c kkk 3
   ,    (3.67) 

indicates that k-space is descritized in Cartesian coordinates (any convenient 

coordinate system could, in principle, be used). 

As discussed in [67], determining the scattering rate from an initial state 

k to k  using (3.65) is problematic since the occupancy  kf  is not known a 

priori. However, in the EMC selecting the final state is easily accomplished, 
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while retaining the previously given scattering rates, by utilizing a random-

number rejection technique described as follows (considering only 3D transport 

for the moment). 

After every free flight or scattering event in the EMC, a random number is 

generated, uniformly distributed between 0 and 1. This random number is 

compared to the value of the normalized distribution function describing the 

occupancy of a discrete region of k-space, determined by normalizing (3.66). If 

the random number is less than the value of the distribution function, the 

wavevector k  is updated as dictated by the drift or scattering event. Otherwise, 

the drift or scattering event is treated as a self-scattering event in which no change 

is made to the particle dynamics. 

For simulations in 3D k-space ("bulk" simulations) the volume in (3.66) is 

given simply as 

D

pN
V

3
     ,     (3.68) 

where pN  the number of simulated particles used in the EMC, and D3  is the 

electron density in the system. 

For the k-space simulation of transport in a quasi 2D electron gas, the 

treatment is directly analogous. In this case, 
D

cN 2
 is given as 

  A
N

D

cD

c 2

2

2

2

2




      ,    (3.69) 

where yx

D

c kk 2
. For the 2D system, the area is of interest whereby 
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D

pN
A

2
      .      (3.70) 

To incorporate the PEP in modeling transport in a quasi 2D gas, such as 

occurs in a HEMT, the  "area" noted above is defined to be the in-plane transport 

area of the device (device length   device width). Use of this approximation is 

justified by assuming that the in-plane wavefunctions are slowly varying over the 

device, allowing a semi-classical treatment. This assumption is admittedly 

somewhat dubious, but allows a circumvention of the numerical issues cited 

below. The "width" is chosen rather arbitrarily, but sufficiently large to allow 

enough particles in the simulation to give statistically meaningful results. 

3.13 Inclusion of Spin Dynamics 

In III-V compounds, the bulk inversion asymmetry (BIA) that exists due 

to the polar nature of the compound induces a spin-orbit coupling of a carrier's 

magnetic moment with an effective magnetic field that is perpendicular to both 

the electric field of the polar dipole moment and the electron’s momentum (i.e., 

wavevector). Spin relaxation and phase-breaking occur when momentum 

scattering alters the carrier's wavevector. Hence the direction of the effective 

magnetic field, about which the carrier's spin magnetic moment precesses, is 

altered.  

The Hamiltonian of this interaction, known as the BIA or Dresselhaus 

interaction [68], is given by 

   kΩσkH  
2

1
  ,   (3.71) 
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where 

    κkΩ
21*2 2


 gEm   ,   (3.72) 

is the precession frequency (called the Larmor frequency) about the direction of 

the effective magnetic field given by κ  which is written 

      222222 ,, yxzxzyyzyx kkkkkkkkk κ   ,  (3.73) 

In (3.72)  is a dimensionless parameter ( 07.0  for GaAs). 

Of technological significance is a similar effect that can be engineered in 

heterostructures by inducing a Structural Inversion Asymmetry (SIA) in the 

quantization direction of the device, as discussed in the Introduction. As in the 

BIA case, this results in a carrier spin-orbit coupling with an effective magnetic 

field that is perpendicular to both the carrier's momentum and the non-zero value 

of the electric field resulting from the SIA. Varying this field, for example, by 

changing the gate voltage of the FET-type device, modulates the spin precession 

rate (and hence the time and length of decoherence). This is known as the Rashba 

effect [26], as also discussed in the Introduction. Today, a major difficulty in the 

realization of these devices lies in the difficulty of injecting spin-polarized 

carriers into the transport channel. However, in a simulation the initial spin 

distribution can be known, a priori, as is done in this work [29, 69]. 

Collectively, BIA and SIA spin scattering is known as D'yakanov-Perel 

(DP) scattering and is the dominant spin-scattering mechanism in III-V 

compounds at room temperature. However, DP scattering cannot be implemented 

in the EMC as another “ordinary” momentum scattering mechanism in the 
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scattering tables. This is because the precession frequency of an electron’s 

magnetic moment is usually less than or on the order of the momentum scattering 

rate. Spin scattering should therefore be treated at each free flight step. A 

convenient way of dealing with the problem, which is utilized in this work, is due 

to Saiken et al., [70], as will be discussed next. 

Recall that the Pauli matrices denote the matrix representation of the 

electron’s spin operator S  and yield the expectation of observing the direction of 

the electron’s magnetic moment along a particular axis. A 2 2   density matrix 

for an electron (or any another spin ½ particle) can then be written as a 

combination of the Pauli matrices as 

zzyyxxo aaaIa     ,   (3.74) 

where i  are the usual Pauli spin matrices, the ia  are complex coefficients, and I 

is a 2 2   unitary matrix.  Elementary density matrix algebra allows (3.74) to be 

re-written, 

 PσIρ 
2

1
  ,    (3.75) 

where the polarization vector σP   denotes the expectation value of an electron’s 

spin angular momentum. Expanding (3.75) gives, at time 0t , 

 
     

      
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
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1
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1

tPtiPtP

tiPtPtP
t

zyx

yxz
ρ   .  (3.76) 

  Then, from standard quantum mechanics, the equation of motion of the density 

operator, (3.76), is given as, 
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       000 ,, tttttt UρUρ
   ,   (3.77) 

where 

    







 SOtt

i
tt HU 00 exp,


  ,  (3.78) 

is the time evolution operator. (3.78) is valid provided that SOH  is independent of 

time over the range 0tt  . Thus, combining (3.77) and (3.78) one obtains 

         tHHitHHi DRDR etett
  

   .  (3.79) 

The terms RH  and DH  in (3.79) refer to the Rashba and Dresselhaus 

contributions, respectively, to the momentum-dependent spin-splitting in the 

Hamiltonian. These terms assume a form identical to that of (3.71) and are 

typically recast for quasi-2D systems as 

 yxxyR kkH     ,    (3.80) 

 xxyyD kkH     ,    (3.81) 

where   and   are proportionality constants. The nature of the proportionality 

constant,   in (3.80) is controversial [71]. However, it is dependent on local 

electric fields in the quantum well, even if only to a small extent. In the event that 

the device channel is not oriented along [1,0,0], the angular dependence of the 

BIA effective magnetic field is accounted for in the Dresselhaus term by replacing 

(3.81) with [72], 

        2sin2cos yxxyxxyyD kkkkH    ,  (3.82) 
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where the angle   denotes the angle between the device channel and the [1,0,0]
 

crystallographic axis. 

Hence, for each 2D carrier (3.79), (3.80) and (3.81) (or (3.82) as 

appropriate) are updated at each time-step t  in the EMC, since the k  terms in 

(3.80) and (3.81) are in turn updated after a carrier undergoes drift or momentum 

scattering. An average spin polarization of the ensemble, in real-space, can then 

be determined. 

3.14 Contact Modeling 

In the semi-classical, particle-based simulation of semiconductor devices 

it is only feasible, from a computational perspective, to consider a small cross 

section of the actual device, the active region. This is necessary because the entire 

structure has dimensions on the order of hundreds of microns, or more likely of 

millimeters. Accordingly, the domain of the simulation needs to be truncated with 

the appropriate electrostatic boundary conditions. 

At some boundaries of the simulation domain, where it can be assumed 

that no net current is flowing through the boundary, Neumann boundary 

conditions are employed. As discussed previously in connection with the Poisson 

equation, these conditions imply that the electric field across such a boundary 

interface is set equal to zero. Numerically, this is achieved by defining the 

potential of the first grid cell immediately "outside" the simulation domain as 

equal to the potential of the grid cell immediately adjacent to the contact cell, 

within the simulation domain. Doing this implies a modification of the Poisson 

equation given by (3.17) in which the coefficient of the grid cell adjacent to the 
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contact cell within the simulation domain is multiplied by a factor of 2.0. In this 

case setting 11   ii  results in one of these terms vanishing, while the coefficient 

of the surviving term doubles. On the other hand, the maintenance of a particular 

region at a constant potential, as is done for ohmic or Schottky contacts, is known 

as applying Dirichlet Boundary conditions. 

For the case of ohmic contact cells in which the carriers are considered to 

be 3D (i.e., no quantum mechanical modeling) charge neutrality must be 

maintained in these regions since they are considered to be in thermal 

equilibrium, even when current is flowing. Accordingly, the number of 3D 

carriers that must be maintained in an ohmic contact cell depends on the density 

of ionized donors or acceptors in that cell. Therefore, immediately prior to the 

periodic update of the electrostatic potential, carriers must be either added or 

subtracted from these contact cells to obtain the charge neutral condition. The net 

gain of carriers in a cell, per unit timestep, is essentially a measurement of the 

current through the contact cell. However, for ohmic contact cells in which the 

carriers are to be treated as 2D, one cannot simply maintain charge neutrality in 

accordance with the doping concentration since consideration must be given to 

the quantum mechanical distribution of carriers. 

In this work, 2D contact modeling is achieved by maintaining a 2D carrier 

concentration that is equal to the equilibrium carrier concentration at the contacts, 

at each Poisson/SWE timestep. This is determined from the self-consistent 

Schrödinger-Poisson equations discussed previously. Furthermore, contact cells 

for 2D particles are not treated as discrete cells along the direction of quantization 
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(e.g., the heterostructure growth direction), since an exact position is quantum 

mechanically ill-defined in this direction. However, since a 3D distribution of 

carriers is needed for solving Poisson's equation, the number of 2D carriers, per 

sub-band, per region of quantization (typically one "column of cells" in the 

semiconductor growth direction at the lateral edges of the simulation domain 

defined as a "contact column" along the j
th

 channel slice) is distributed along the 

quantization direction as indicated by (3.7). For each subband, (3.7) is written 

       
kj

nnnD

D

n iinkjiN
,

2

2 ,,      .   (3.83) 

In this way, the 2D charge is effectively "smeared" over the 3D domain consistent 

with the quantum mechanical probability of finding the particle at some location 

with respect to the direction of quantization. 

For HEMT structures, a more rigorous treatment of contacts must take into 

consideration the fact that source and drain contacts are typically fabricated on the 

top edge of the device, above the cap layers. The usual interpretation of quantum 

mechanics then dictates that the carriers must tunnel through the heterostructure 

cladding layers to and from the quantum well formed in the channel layer. It is 

common practice, however, to avoid dealing with the tunneling problem 

altogether by using side contacts for modeling HEMT structures, wherein the 

carriers are treated as 3D. Furthermore, Dirichlet boundary conditions are 

typically applied to these regions and sufficient contact doping is maintained to 

negate the depletion effects (drops in electrostatic potential) associated with the 

abrupt change in potential that can occur in the vicinity of the contact cell. 
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In this work, a tunneling model has not yet been implemented. Rather, 

modified boundary conditions are introduced that eliminate the "artificial" 

potential drop associated with the usage of side contacts. The scheme is depicted 

in Figure 3.8 for a prototypical HEMT structure. In this work, it is postulated that 

the regions nearest the lateral edges of the device in Figure 3.8 (the dark shaded 

areas) are in a state of quasi thermal equilibrium by making the argument that 

tunneling current is nearly "vertical" from the channel to the cap layers (and vice 

versa). Neumann boundary conditions can then be applied at the lateral edges of 

the device and the equilibrium carrier density can be maintained in these regions 

when a bias is applied to the source and drain contacts at the top surface of the 

cap layers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Boundary conditions imposed on HEMT during EMC simulation, 

in the absence of a tunneling model. The areas labeled "tunneling region" indicate 

where tunneling would occur in an actual device. 
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4. Simulation Results 

4.1 Model Verification 

As with the construction of any large computer code, it is first necessary to 

verify that every portion of the code has been correctly implemented at each step 

of the development process. Accordingly, several simulations were conducted in 

momentum space before applying the code to device simulation. These 

simulations validated the implementation of the scattering rates and tables 

discussed in Chapter 2, and the drift, scattering, and final state selection routines 

discussed in Chapter 3. 

In Figure 4.1, the simulated velocity vs. time characteristics are plotted for 

bulk GaAs at T=300K, using scattering parameters discussed in [63]. Electrons 

are assumed to have been "injected" into the system at time 0t  with a Maxwell-

Boltzman energy distribution. The results are in excellent agreement with those 

indicated in [63] and show that the EMC is successfully capturing the transient 

effects of velocity overshoot for fields greater than about 3kV/cm. 
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Figure 4.1 Bulk GaAs EMC simulation. T=300K. 3-valley model. (Γ, L, X 

valleys) Scattering mechanisms included are 3D polar optical phonon, acoustic 

deformation potential, non-polar optical phonon, and ionized impurity scattering. 

The impurity concentration is 1.0 x 10
14

/cm
3
. 

 

In Figure 4.2, the velocity field characteristics of bulk GaAs from the 

EMC simulation are presented as an additional check on the implementation of 

the 3D portion of the code. These results are obtained via the steady state portion 

of the velocity vs. time data in Figure 4.1 as the electric field is incremented in 

units of 1kV/cm. The location of the peak in the curve is consistent with the 

expected Negative Differential Conductivity (NDC) phenomenon in GaAs. The 

NDC is caused by electrons being scattered from the   valley to the L  valley 

where the effective mass is on the order of three times greater; hence slowing the 

average carrier velocity. The noise in the curve at higher fields is statistical.  A 

smoother curve would result if one utilized more particles and longer time-
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averaging of the carrier velocity. Comparable test results for bulk GaAs were also 

obtained when the 2D scattering mechanisms were implemented in the EMC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Bulk GaAs velocity field characteristics from EMC simulation. 

T=300K. 3-valley model. (Γ, L, X valleys). The scattering parameters are the 

same as those depicted in Figure 4.1. 
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HEMT of Figure 1 in [17], to the extent possible that information was provided to 

this author in consideration of proprietary concerns. Consequently, some 

structural dimensions, such as the thickness of the beveled SiN regions, cap layer 

doping, and the lack of delta-doping directly under the gate, were assumed. 

Additionally, due to the numerical problems with simulating a delta-doped layer, 

the delta-doping was "smeared” over a 1 nm region (typically 1-2 grid cells) as 

depicted in Figure. 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Intel Corp. HEMT simulated structure. 

 

EMC Simulations of the gate region heterostructures in Figure 4.3, in 

momentum-space, were then conducted. In such simulations, the 2D transport in 

the infinite 2D plane formed by the quantum well of the InGaAs channel was 

considered. As such, the potential profile used in the momentum-space simulation 

corresponded directly to the center "slice" of the device depicted in Figure 4.3 
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comprising the entire 37nm Pt Gate, 5nm In0.52Al0.48 As cladding layer, 13nm 

In0.7Ga0.3 As channel, and 115nm In0.52Al0.48 As "substrate" layer. In doing these 

simulations, real-space transport was still allowed in the growth direction. 

In Figure 4.4 the corresponding velocity field characteristics are presented 

for various roughness scattering parameters, as discussed in section 2.4.4. 

Additionally, results are presented in Figure 4.5 for various 2D alloy scattering 

parameters, at a fixed rms roughness value of 0.6nm and auto-correlation length 

of 1.5 nm. 

 

 

 

 

 

Figure 4.4 Velocity field characteristics corresponding to the gate 

heterostructure of Figure 4.3 as a function of the interface roughness height. 
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Figure 4.5 Velocity field characteristics corresponding to the gate 

heterostructure of Figure 4.3 as a function of the alloy disorder potential at 

roughness height of 0.6nm and length of 1.5nm. 

 

Although a root mean square (rms) roughness height of 0.6nm is considered to be 

very large, it is only the comparative effects of the alloy parameters that are of 

interest in this case. 
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In the results of Figures 4.4 and 4.5 average effective masses were used in 

determining the 2D scattering rates, by weighting the contributions from each 

mesh point in the growth direction with the quantum mechanical probability of a 

2D carrier being at that location. However, when device simulations were 

conducted, numerical instabilities mandated that the contribution to the effective 

mass from the 13nm In0.7Ga0.3 As channel be used. As shown in Figure 4.6, this 

approximation is justified, since both schemes for determining the 2D effective 

mass give nearly identical results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Lower curves (red, blue): Effect of two different 2D effective mass 

calculation schemes on velocity field results for the gate heterostructure of Figure 

4.4; Red curve: Average 2D effective mass used.; Blue curve: In0.7Ga0.3As  

effective mass used; Both lower curves assume roughness rms = 0.3nm 

Roughness L = 1.5nm. Top curve: (black) No roughness scattering, average 

effective mass used. For all cases T=300K and the Pauli Exclusion Principle was 

not applied. 
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 Next, device simulation results are presented for the structure depicted in 

Figure 4.3. Unless otherwise noted, in the results that follow, the scattering 

parameters are exactly as described in Chapter 2. e.g.,  the rms roughness length is 

taken as 0.3 nm, the autocovariance length as 1.5nm, the alloy perturbing 

potential is given as V5.0V , and the lattice constant is taken as 


A8.5   

 In Figure 4.7, Id vs. Vds results are plotted for the EMC simulation of the 

structure in Figure 4.3, and the related experimental results as depicted in [17]. 

The corresponding   Id vs. Vgs curves, at Vds=0.5V, are presented in Figure 4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 EMC simulation of Id vs. Vds curves for the structure depicted in 

Figure 4.3, and the corresponding experimental results of [17]. 
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Figure 4.8 Simulated  Id vs. Vgs curves for the structure depicted in Figure 4.3, 

and the corresponding experimental results of [17], at Vds = 0.5V,
 

K300T . 

 

In Figure 4.7 and Figure 4.8 the "raw" Vgs value is depicted as opposed to 

subtracting out the threshold voltage from Vgs. This was done in order to observe 

the roughly 0.2V difference in threshold voltage TV  between the two cases, as can 

be observed by extrapolating to the x-axis the linear portions of the curves in 

Figure 4.8. As indicated in Figure 4.7 and Figure 4.8, the simulation results are in 

reasonable agreement with experiments, and differences are attributed to the 

following reasons.  First, in the EMC model the domain of the SWE did not 

extend to the gate region. Accordingly, it is believed that the gate control over the 

device is "sluggish" due to an imposed inaccurate electrostatic condition in the 

gate region of the QW channel.  Second, the exact structural specifications of the 
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Intel experimental devices, notably in the gate region were not provided to this 

author.  Third, the Schottky barrier for the platinum gate was estimated to be 

0.8V.  However, the exact value of the barrier was not known. Furthermore, in 

Figure 4.7, discrepancies between the EMC and experimental results may be 

somewhat diminished by slightly varying the scattering parameters. Such effects 

will be discussed later in this section.  

 In Figure 4.9, the transconductance is calculated from the EMC result in 

slope of the Id vs. Vgs curve in Figure 4.8. The "noise" is due to the coarseness of 

the descritized gsd VId  function. The peak of the transconductance occurs at Vds 

=0.5 V, consistent with the result in [17], whereby the reported experimental peak 

in the transconductance was um/mS1800 . 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Calculated transconductance based on Figure 4.8 EMC curve. 
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 Next, results are presented that emphasize the effects of varying some 

scattering parameters and device structural attributes. 

Figure 4.10 Effect of various scattering parameters and quantum well widths 

on HEMT drive current. Blue curve: roughness rms = 0.3nm, L = 1.5 nm, alloy 

V = 0.5V QW width = 13nm. All other curves retain these values except for one 

parameter change as noted. Red solid: roughness rms 0.15nm; Red dotted: Alloy 

V = 0.15V; Red dashed: QW width = 20nm; Black solid : roughness rms = 

0.45nm; Black dotted: alloy V = 0.75V; Black dashed : QW width  = 8nm. 
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the gate region, the low field mobility is also estimated. Unless otherwise 

specified all structural and scattering parameters are as previously mentioned. 

 Next, assorted "diagnostic" results are shown as evidence that the 

aforementioned results are from a "well behaved" EMC simulator that is working 

as expected. Figure 4.11 and Figure 4.12 indicate the cumulative amount of 

charge that has passed through the contacts of the device in Figure 4.3 as time 

progresses during the simulation. The slope of these curves serves as a 

measurement of the current. Observance of these types of plots is crucial prior to 

plotting I-V characteristics, especially if device structural attributes and scattering 

parameters are altered, in order to insure that the time-domain averaging is in fact 

being done in the steady state regime. In Figure 4.11 is shown the "charge vs. 

time" plot for the case of Vgs=0.8V and Vds = 0.0V. As expected, once steady 

state is reached the slopes of the drain and source curves are equal and flat, 

indicating that no drive current exists at this bias condition.  The middle (blue) 

curve corresponds to the drain contact curve, the lower (red) curve corresponds to 

the source contact curve, and the upper (green curve) corresponds to the 

difference of the source and drain curves. In Figure, 4.12, the effect of a finite 

source drain bias is indicated, whereby the upper (blue) curve corresponds to the 

drain contact, the middle (red ) curve corresponds to the source contact and the 

lower (green) curve represents the difference between the source and drain curves. 

In the EMC, measuring the current from these curves entails averaging the slope 

of the curve at several thousand timesteps at steady state. 
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Figure 4.11 Plot of cumulative charge vs. time through the source and drain for 

the contacts for the device depicted in Figure 4.3. Vgs =0.9 V , Vds =0.0 V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Plot of cumulative charge vs. time through the source and drain for 

the contacts for the device depicted in Figure 4.3. Vgs =0.9 V, Vds =0.8 V. 
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 Next, the average carrier velocity and energy is plotted for the device 

depicted in Figure 4.3, at the bias values  corresponding to the peak of the 

transconductance in Figure 4.9. As expected, as the carriers are accelerated by the 

strong electric field in the gate region (425nm - 505nm). Scattering then causes 

the momentum distribution to randomize, while the energy of the carriers remains 

high until they reach the drain.  
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Figure 4.13 Average carrier velocity and energy at Vgs = 0.5V, Vds = 0.5V 
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 Next, several plots of potential energy and carrier density over the 

simulation domain are presented for different bias conditions. 

 

 

 

 

 

 

 

 

 

 

Figure *.* Id vs Vgs.  for 8/31/11 runs. Blue EMC, Black experiment 

 

 

Figure 4.14 Potential energy profile over the simulation domain at Vgs =0.8V, 

Vds =0.8V. 

 

As expected, the potential drop occurs mostly over the gate region. 

Neumann boundary conditions are imposed at the "bottom" of the device (150nm 

position along the growth direction) and along the sides of the device. The 

treatment of the contacts is as described in Section 3.14. The associated carrier 

density is plotted in Figure 4.15. Real space transfer of carriers near the drain end 
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is observed in Figure 4.15 and Figure 4.16.  At low Vds, that effect is not observed 

as indicated in Figure. 4.17. 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Steady-State carrier density at Vgs = 0.8V, Vds = 0.8V, 

corresponding to the potential profile plot in Figure 4.14. 
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Figure 4.16 Rotated view of Figure 4.15. 
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Figure 4.17 Carrier density at Vgs = 0.8V, Vds = 0.1V. The figure is oriented in 

the same way as in Figure 4.16. 

 

4.3 Spintronics Simulation Results 

 As an extension of the Intel Corp. HEMT modeling described in the last 

section, the viability of constructing a SpinFET device based upon the Intel 

HEMT structure is investigated. Earlier spintronics studies by this author were 

reported in [29, 69]. Accordingly, one previously reported result [29, 69] will be 

described next, since the methodology for calculating the Rashba and Dresselhaus 

coefficients [73] in [29, 69] has been retained in this effort to model a SpinFET 

device based upon the aforementioned Intel structure. 
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As reported earlier [29, 69], in order to validate the DP approach described 

in Section 3.11, the temporal evolution of the spin polarization in k-space was 

modeled, assuming carriers were assigned a particular initial polarization. The 

system considered was a simple AlGaAS/GaAs modulation doped 

heterostructure. The Schottky barrier height (0.8V) and doping density were 

chosen to obtain a ground state subband energy of ~22 meV. The model for the 

Rashba interaction was given by zE


   where the strength of the interaction 

was given as being simply proportional to the local electric field in the quantum 

well (defined as an average value of the electrostatic field over the 

heterostructure) with VAeV 23.5   for GaAS. The Dresselhauss constant 

described in Section 3.11 was given, for each subband, as 
2

,izi k   with the 

Kane BIA parameter given as
30.29 AeV  , for GaAs. Furthermore, 

2

,izk  

was calculated via the fact that ziz ik , , resulting 0.4i for the 1st 

subband.  

As reported in [29], Figure 4.18 shows the effects of varying the square 

quantum well width on spin relaxation. In this case, spin relaxation is plotted as a 

function of the ground state energy, which varies inversely with the quantum well 

width.  As expected, the relaxation rate increases with increasing ground state 

energy (which, of course, implies a decreasing quantum well width). This is 

because as the quantum well narrows, both the Rashba and Dresselhaus 

coefficients become greater, as calculated according to [73], resulting in faster 

dephasing of the spin density matrix.  
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Figure 4.18 Spin relaxation rates, as determined by the EMC (red, top curve) 

are compared to experimental data (bottom, blue curve) for various well widths. 

The difference between the curves is likely due to higher carrier energies in the 

EMC compared to those of the optically excited carriers in the experiment [74]. 

 

 In the results reported in [29, 69], and reiterated in Figure 4.18, the device 

channel was oriented along [1,0,0]. As discussed in the literature, though [72, 75], 

spin coherence is best obtained when the device channel is oriented at an angle of 

45 with respect the [1,0,0] crystallographic axis. In particular, it has been
 

reported [75] that if the device channel is oriented at an angle of 45 with 

respect to [1,0,0]
 
and if the Rashba coefficient can be set to be equal to the 

Dresselhaus coefficient
 
(by tuning the gate voltage, for example, and altering the 

local electric field in the
 
quantum well), an optimal condition for spin coherence 

will result, since in this
 
case the effective magnetic field for carrier precession is 

always oriented
 
perpendicular to the transport direction. In this work, it was 

verified that
 

45
 

is indeed optimal, by conducting several "on the fly" 
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simulations of spin decoherence at various values of the angle   in (3.82). Hence, 

the results presented next are for simulations in which 
45  in (3.82). 

 Figure 4.19 depicts k-space simulations of spin decoherence for the 

heterostructure defined directly under the gate region of the Intel HEMT depicted 

in Figure 4.3.  For the In0.7Ga0.3As channel in the structure, the Rashba constant is 

taken as
 

VAeV 29.29   and the Kane parameter for the Dresselhaus 

constant is taken as 
35.98 AeV  , as derived from a linear interpolation 

between values given for pure compounds and other alloy molar fractions 

reported in [70, 75]. The ensemble is initially polarized along the growth direction 

at T=77K, and the decoherence, as a function of "position" (extracted from the 

time resolved k-space EMC), was determined. The departure from pure 

sinusoidal-like behavior at positions less than 10nm is likely due to the abrupt 

changes in the Rashba and Dresselhaus constants that result when intersubband 

scattering occurs. 

 
Even though 

45  for the simulation results reported in Figure 4.19, 

the fast dephasing may lead one to conclude that this heterostructure may not be 

well suited for a spintronics application. However, it was found that "tweeking " 

the Dresselhaus coefficient by a factor of 2-4 (though perhaps not physically 

justifiable) would improve the situation. Furthermore, an actual device simulation, 

as discussed next, yields better results.  
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Figure 4.19 Decoherence as a function of "position" in k-space, for the 

heterostructure of the gate region of the Intel HEMT device depicted in Figure 

4.3. T=77K. The driving electric field along the transport direction is 0.6 kV/cm.  

 

For the results depicted in Figure 4.20, the device of Figure 4.3 has been 

scaled along the direction of transport, as noted by the dashed lines in Figure 4.20. 

However, the heterostructure is otherwise the same as in Figure 4.3 along each 

"slice" of the transport channel. To the best of this author’s knowledge, the EMC 

simulation of the D’yakanov-Perel spin dynamics has not been previously 

reported for a device with the boundary conditions discussed in Chapter 3 or 

utilizing Rashba and Dresselhaus coefficients that are both subband and spatially 

dependent. 
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Figure 4.20 Spin polarization as a function of source to drain position in a 

scaled down version of the Intel HEMT depicted in Figure 4.3. Vds= 0.15V. T= 

77K. 

 

 As seen in Figure 4.20, an ensemble of carriers, 100% polarized along the 

heterostructure growth direction at the source contact, is injected into the device 

at T=77K. The initial spin distribution within the device is otherwise random, or 

"unpolarized". The local spin polarization at each "slice" along the transport 

channel is then computed as an average of spin polarizations of all carriers and 

averaged over time once the device has reached a steady state. (The achievement 

of steady state is checked by viewing charge-vs-time plots as previously 

discussed.) The constants   and   are as previously mentioned. However, since 

the electric field and quantum confinement varies over the device channel, the 

resulting Rashba and Dresselhaus coefficients, updated periodically during the 

simulation, result in more favorable Rashba/Dresselhaus ratios. This gives better 

coherence than in the case of the k-space simulation in which the coefficients vary 

only nominally as a function of time. In Figure 4.20, a "spin discrimination" 

mechanism was not simulated at the drain. However, the oscillations at the drain 
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contact, in particular for the cases of Vgs = 0.8V and Vgs = 1.0 are clearly of 

opposite polarity. This perhaps indicates the viability of being able to tune the 

spin orientation at the drain, as a function of gate voltage in an actual SpinFET 

device.  The extension of this model to include a "spin discriminator" at the drain 

will be the subject of future work.  



  99 

5. Summary and Future Work 

In summary, an ensemble Monte Carlo code has been developed to 

simulate, semi-classically, spin-polarized transport in III-V semiconductor 

nanostructures. The code was written in order to accommodate both 2D and 3D 

transport conditions, as carrier energies evolve during simulation. In doing this, an 

admixture of various “quantum corrections” was included in the model. These 

include periodic updating of the SWE at various regions of quantization during 

the simulation time and a unique method of modeling contacts in HEMTs. The 

applicability of the code to model D'yakanov-Perel spin scattering was also 

demonstrated. 

In Chapter 1, a brief overview of carrier dynamics in semiconductors was 

presented. A physical justification for using Monte Carlo techniques to model 

carrier dynamics was presented that accounts for the relevant scattering 

mechanisms. Then, a brief historical overview of Monte Carlo semiconductor 

device simulation was presented. This culminated with a discussion of how the 

use of certain “quantum corrections” is needed in contemporary EMC modeling 

of low dimensional semiconductors. This code addressed many of those needs. 

In Chapter 2, the dominant 2D and 3D scattering mechanisms in III-V 

compound were delineated. These included polar optical phonon, acoustic 

deformation potential, non-polar optical phonon, ionized impurity, alloy, and 

surface roughness scattering. 

In chapter 3, the details of the EMC algorithm were presented, with a 

separate section devoted to each of the main components. It was discussed that the 
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code was written modularly, in order to allow the easy inclusion of additional 

scattering rates. Furthermore, a unique description of contact modeling was 

presented, in the absence of a tunneling model. In this method, the quantum 

mechanical distribution of carriers at the contacts, found from a self-consistent 

SWE-Poisson solution is maintained at each time step. This method is in contrast 

to the usual 3D "charge neutral" contact procedure that is common practice in the 

semi-classical HEMT modeling community. 

In Chapter 4, results were presented that demonstrate reasonable success 

has so far been achieved with the EMC, warranting further development. First, a 

validation of the EMC algorithm was performed by simulating transport in bulk 

III-V systems. Results were in excellent agreement with the published results of 

other modeling groups. Then, the model was applied to the simulation of a HEMT 

device, which has been under recent experimental investigation by researchers at 

Intel Corporation. The results clearly indicate the relative effect of various 

structural and scattering parameters to serve as an aid in the future development 

of such HEMT devices. Finally, the EMC was used to model spin-polarized 

electron transport in a prototypical SpinFET device. 

For future HEMT modeling, several modifications will be made to the 

EMC code. First, non-parabolic 2D scattering rates will be implemented. This is 

expected to be a straightforward procedure, as such scattering mechanisms are 

well known for simple non-parabolic bandstructures. Second, the modeling of 

2D/3D transitions can perhaps be altered by using 2D/3D "capture" and "escape" 

scattering rates, in a manner more consistent with the usual momentum scattering 
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rates already implemented. Third, a tunneling model needs to be implemented to 

treat the contacts more accurately. Additionally, the use of more realistic band-

structures needs to be considered, as opposed to using simple 3-valley models.  

With regard to future spintronics modeling, spin discrimination at the 

drain will be modeled. The proper usage of other scattering mechanisms, such as 

the Elliot-Yafet mechanism needs to also be considered. Finally, the applicability 

of using the EMC to conduct a semi-classical simulation of the Spin Hall effect 

will be researched. In particular, use of a modified form of the Rashba 

Hamiltonian to account for an electric field along the transport direction needs to 

be investigated. 
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