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ABSTRACT

This dissertation describes a novel, low cost strategy of using particle streak (track)

images for accurate micro-channel velocity field mapping. It is shown that 2-dimensional,

2-component fields can be efficiently obtained using the spatial variation of particle track

lengths in micro-channels.

The velocity field is a critical performance feature of many microfluidic devices.

Since it is often the case that un-modeled micro-scale physics frustrates principled design

methodologies, particle based velocity field estimation is an essential design and valida-

tion tool. Current technologies that achieve this goal use particle constellation correlation

strategies and rely heavily on costly, high-speed imaging hardware. The proposed image/

video processing based method achieves comparable accuracy for fraction of the cost.

In the context of micro-channel velocimetry, the usability of particle streaks has

been poorly studied so far. Their use has remained restricted mostly to bulk flow measure-

ments and occasional ad-hoc uses in microfluidics. A second look at the usability of particle

streak lengths in this work reveals that they can be efficiently used, after approximately 15

years from their first use for micro-channel velocimetry.

Particle tracks in steady, smooth microfluidic flows is mathematically modeled and

a framework for using experimentally observed particle track lengths for local velocity

field estimation is introduced here, followed by algorithm implementation and quantitative

verification. Further, experimental considerations and image processing techniques that can

facilitate the proposed methods are also discussed in this dissertation.

Unavailability of benchmarked particle track image data motivated the implemen-

tation of a simulation framework with the capability to generate exposure time controlled

particle track image sequence for velocity vector fields. This dissertation also describes

this work and shows that arbitrary velocity fields designed in computational fluid dynamics

software tools can be used to obtain such images. Apart from aiding gold-standard data

generation, such images would find use for quick microfluidic flow field visualization and

help improve device designs.
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CHAPTER 1

INTRODUCTION

The advancement of micro-electromechanical system (MEMS) technologies such as bio-

analysis systems, flow sensors, micro-valves and micro-propulsion systems has helped in

the development of microfluidic devices in the last decade. With more advanced and com-

plex microfluidic devices, there has been an increasing requirement for detailed study of

fluid and particle-fluid velocity fields at small scales. Information from the velocity fields

gives qualitative and quantitative insight into the physics of the device. Micro-channel ve-

locimetry has been applied to understand fluid flows near container walls and in estimating

shapes and pressure. It has been instrumental in understanding the effects of particle mi-

gration and particle motion in presence of electric fields. Micro-channel velocimetry is

also used for detecting biological particles and estimating biological flows, both inside and

outside living tissue. Analysis of mixing in microfluidic devices and thermometry from

Brownian motion are other applications of micro-channel velocimetry.

The flow channels of microfluidic devices have dimensions in the order of 1-100

µm. For such devices, the use of conventional flow measurement techniques is either im-

practical due to the small dimensions or inadvisable due to the potential interference with

device functioning. Imaging methods are non-intrusive and a microscope with image acqui-

sition and recording capabilities is used to image fluid flow and acquire velocimetry data.

Accordingly, micro-devices are often constructed to be transparent to enable image data

collection. A wide range of diagnostic techniques based on image analysis have been de-

veloped for micron resolution velocimetry and some of the more important ones are shown

in Fig. 1.1 with corresponding representative works [1].

Non-intrusive velocimetry methods based on particle flow imaging have been par-

ticularly popular in the last decade and, of these, micro particle image velocimetry (µPIV )

[2] has often been used for micro-channel velocity estimation. In this method the flow is

seeded with tracer particles and cross-correlation between consecutive images of particle

constellations at identical spatial locations is used for flow diagnosis. Laser-based illumi-

nation, an inverted microscope and a high speed camera are typically used in µPIV to



capture sharp particle images [3]. Other related approaches include particle tracking ve-

locimetry (PTV), which works by following tracer particles over a temporal sequence of

images and particle streak velocimetry (PSV), which uses the length of streaks created by

tracer particles during the exposure time. PSV and PTV are more intuitive and older his-

torically, while micro-PIV adapts from macro-scale PIV and has improved as a technique

over the last decade, owing to the algorithmic efforts of several researchers and also the

advancement of high-speed imaging technology.

Fig. 1.1: Quantitative imaging methods for micro-channel velocimetry

While studies on µPIV have shown it to be effective, its image acquisition re-

quirements are stringent, costly and entail difficult set up. In addition to their high cost,

laser-based µPIV illumination systems need cautious handling and suffer from interfer-

ence problems [3]. Also, high-speed flows require costlier and more complex image ac-

quisition hardware. As an alternative method that is cheap, quick and yet effective, an

innovative use of particle streaks is developed in this dissertation. In contrast to PIV based
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methods, which impose quality requirements on the camera to prevent signal decorrelation

due to particle motion blurs (streaks), the information conveyed by the streaks is exploited,

thus implicitly relaxing the hardware requirements. The mathematical modelling of particle

streak lengths in the micro-channel context and the associated computer vision and image

analysis methods that aid this velocity estimation procedure are the foundational themes in

this dissertation.

The rest of the document is outlined as follows. Micro-particle Image velocimetry

is one of the most popular methods and shares some common experimental aspects with the

proposed method. Accordingly, Chapter 2 in this dissertation provides some background

on µPIV and discusses relevant theoretical results. In addition to introducing the main

concepts and experimental limitations and control parameters of this widely used method,

this chapter also illustrates how the method set forth in this work is different. Following the

discussion of µPIV , µPTV is also described before introducing the proposed method. The

acronym PTV has occasionally been used for particle streak based velocimetry in standard

literature. This chapter explains the reasons for such use and also defines and demarcates

these methods.

Chapter 3, discusses the proposed mathematical modelling in detail. The relevant

connection of particle tracks to Lagrangian and Eulerian velocity fields is explored and the

approximations and assumptions made in the realm of microfluidics measurements are ex-

plained. Some mathematical relations are also derived in this chapter. Some of these are

specific to a generic mathematical model while some are more specific to particular exper-

imental schematics. The main purpose of parametric mathematical modelling of streaks is

to solve the inverse problem; i.e., to estimate the velocity field by estimating the model pa-

rameters of an approximation from experimental observations. Statistical methods used to

estimate the model parameters and the applicability of the mathematical model to velocity

fields in microfluidics are also discussed in this chapter.

One of the main motivations for this work was to make micro-channel velocimetry

simpler and cheaper for routine experiments. Chapter 4 discusses common problems asso-
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ciated with tracer based quantitative imaging (QI) techniques. Experimental considerations

are also reported, based on knowledge acquired from the analysis of real experimental data

and simulations. Velocimetry issues relating to depth, occlusion and defocussing are dis-

cussed to some detail in this chapter and some required corrective strategies are elaborated

in this and the next chapter. Further, important factors controlling image acquisition that

lead to improved image analysis performance are also discussed.

Chapter 5 specifically deals with image processing algorithms that are used for

extracting features from streaks. The formation of streaks is discussed briefly to set the

background and this is followed by discussion of the the methods used for determining

the end points of streaks in images. Image processing and statistical methods leading to

correction of occlusion and defocussing issues are described. For a solitary particle track

on an image frame with no tagged temporal information, a directional ambiguity is evident.

A simple technique based on local orientation used to mitigate this problem is presented in

this chapter.

Obtaining gold standard experimental data for analysis presented a substantial chal-

lenge during the course of the dissertation work. For data sets generated in real experiments,

it is often impossible to find the true velocity fields. Finding publicly available benchmark

particle streak data for known velocity fields was even more difficult. Instead of using a

another method for comparative measure (e.g., µPIV ) gold standard particle-track image

data was generated by simulation. This particular effort led to the design of a novel frame-

work which generates exposure time controlled particle flow image sequences for arbitrary

user generated velocity fields. Chapter 6 describes the problems in implementing such a

framework and then delineates methods to solve these problems.

In Chapter 7, the performance of the proposed methods for 1-D and 2-D veloc-

ity estimation and the improvements suggested in Chapter 3 for the point assignment of

average Lagrangian velocity on the particle track extent are discussed. Computation time

performance of the particle track image simulation methods for 1-D velocity fields and

qualitative performance for the simulation of 2-D particle track images are also discussed
4



in this chapter. Following this, Chapter 8 takes a look at the advantages of the proposed

methods and points out some of their intrinsic and correctable limitations.

Chapter 9 describes some examples of the application of the proposed methods

in the context of micro-channel velocity estimation for electrokinetic and hydrodynamic

studies in polymer and glass based channels. Finally, Chapter 10 describes some avenues

for future investigation.
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CHAPTER 2

BACKGROUND

The work in this dissertation originated from an attempt to estimate a 1-dimensional spatial

velocity field for an electrophoretic capture experiment conducted in the micro-regime.

Subsequent literature survey in the use of tracer images for velocimetry led us to PIV and

its micro-domain counterpart, µPIV . Literature survey on µPIV and the difficulty in

procuring a high-speed imaging setup motivated the search for a cost-efficient method,

ultimately leading to this work. While a detailed discussion on µPIV and PTV is outside

the scope of this dissertation, some of the important and most directly relevant concepts for

these methods are discussed next for completeness.

2.1 MICRO PARTICLE IMAGE VELOCIMETRY AND PARTICLE TRACKING

VELOCIMETRY

The measurement principle for µPIV was introduced in 1998 by Santiago et a.l [2] and is

fundamentally based on PIV for large scale applications. Macro-scale PIV was developed

as early as 1984 by Adrian[4] and Pickering[5] and other co-workers and has been reviewed

extensively by Adrian [6, 7], Grant [8] and Raffel [9]. Digital particle image velocimetry

(DPIV) is the present form of macro PIV that is used and a fundamental study on DPIV

was performed by Westerweel [10].

For large scale applications, the technique uses conventional microscopy and dig-

ital imaging methods for the quantitative determination of two-component velocity data in

a two-dimensional measurement plane. A transparent working medium is used and opti-

cal access is provided to the area of investigation. The flow is seeded with tracer particles

for observing the fluid motion. In the case of µPIV , similar set up is used but in micron

resolution. Macroscopic PIV uses a sheet of light for defining the measurement plane. In

µPIV volume illumination is used in which the entire depth of the test section is illumi-

nated and the measurement plane is defined by the depth-of-field of the recording lens.

These measurement planes are sharply defined, allowing quick transition of particles from

being in-focus to out-of-focus.



During image acquisition all tracer particles emit light, but only the light origi-

nating from tracer particles in the focus plane of the microscope objective (and of those

slightly out of focus) is collected by the optics and the position of those tracers is captured

on a digital camera at one instant of time t1. After a short time interval ∆t the tracer par-

ticles are illuminated again and their position is recorded on a second digital image at time

t2. Typically a pulsed light source that is synchronized with the digital camera is used. The

synchronization is done in such a way that the time interval ∆t is independent of the camera

frame rate, but defined by the time interval between the two synchronized light pulses and

is adjusted to the flow conditions.

In the presence of fluid motion, there would exist a difference in the positions of

the tracer particles in the two consecutive recordings. The tracer particles with velocity ‘v’

have shifted by a displacement ∆s such that

v =
∆s

∆t
=

∆s

t2 − t1
(2.1)

where ‘v’ is the velocity in the focal plane. The two digital images are sent to a computer,

where they are stored together with the time information. In a successive evaluation step

the particle displacement ∆s is digitally evaluated from the image pair mainly by correla-

tion approaches. Fig. 2.1 shows the basic idea of µPIV . For the simplest cross-correlation

based image processing algorithm, the two images from successive pulses are subdivided

into non-overlapping interrogation regions (sub-windows). The 2-D cross-correlation func-

tion is normally evaluated in the spectral domain and can be written as

R(s, t) = F−1 [F ∗ {fI,J(i, j)}F {gI,J(i+ s, j + t)}]

Here, f and g are the two images, F and F−1 are the Fourier operators and i, j is the

pixel position in the I, J sub-window. The location of the peak in the R plane gives the

displacement of the particles within the interrogation region.

Excellent reviews on µPIV can be found in the works of Wereley et al. [11],

Williams et al. [12], Lindken et al. [3] and Meinhart et al. [1]. The development of µPIV
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Fig. 2.1: The PIV method: Basic idea

further motivated research on macro-scale PIV, leading to important findings on PIV con-

trol parameters. One of these is the expression for thickness of the measurement volume

and is expressed in terms of the depth of correlation over which the particles contribute

significantly to the correlation peak position and height. It is commonly accepted to use the

following expression derived by Olsen and Adrian [13] and Bourdon et al. [14]:

δDOC = 2

[
(1−

√
ε)√

ε

(
n2

0d
2
p

4NA2
+

5.95(M + 1)2λ2n4
0

16NA4

)]
In this expression dp is the image diameter, λ is the light wavelength, M is the image

magnification, n0 is the refractive index of the lens immersion liquid, NA the numerical

aperture of the lens and ε is the relative threshold of defocussed particle contribution (which

is normally set at 0.01).

Another important consideration is the limitation on the particle size set by Brow-

nian motion. The error due to Brownian motion relative to the mean in-plane displacement

is given by [2] as

eBM =

〈
s2
〉1/2

∆x
=

1

u

√
2D

∆t
=

√
2

∆t

kBT

3πµdp
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Here, D and kB are the diffusion coefficient and Boltzmann constants respectively, T is

the temperature in Kelvin, µ is the dynamic viscosity,
〈
s2
〉1/2 is the RMS of the typical

fluctuations due to Brownian motion.

The µPIV technique has several advantages such as being a two-frame method,

flexible to design, and using the FFT for computation speed-up. However it also suffers

seriously from the effects of Brownian motion, which constrain the use of larger particles

that show higher scattering. Optical diffraction limits the minimum achievable resolution

of a µPIV system. This is observed from the expression of particle image diameter [13]

given by

de =

[
M2d2

p + 5.95(M + 1)2λ2
( n0

2NA

)2
] 1

2

where the diffraction term is independent of the particle diameter dp and becomes dominant

if the particle diameter is small. From Raffel et al. [9], the particle diameter image on the

sensor (de) should be in the order of 2-3 pixels. It may be noted that particle intensity

also decreases with decreasing particle diameter [6] but, on the other hand, particle size

must be sufficiently small compared to the length scale of the flow [15]. The random error

amplitude in the measured displacement depends on the diameter dD of the displacement

correlation peak as

σ∆x ≈ c
dD√

2

where c is an experimental constant.

A carefully selected seeding density is also very important for optimal performance

of µPIV [3]. While high density seeding is apparently beneficial in a spatial correlation

based method, this increases background noise and causes particle agglomerations. A pre-

ferred alternative is to increase the particle count virtually by correlation averaging [16].

High speed synchronised imaging is a necessity for µPIV which sets a higher standard for

the hardware and attempts to completely avoid velocity smears. The µPIV method targets

the mean velocity for a group of particles which inherently does a low pass filtering of the

velocity field.
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The performance of µPIV deteriorates in the presence of large velocity field gra-

dients due to spatial stretching of the tracer constellation. The presence of shear gradients

increases the random error due to a broadening of the correlation peak diameter [17, 6].

Discussion of this problem can be found in the works of Westerweel [18] and Meunier

[19]. Lastly, most µPIV implementations require the removal of spurious velocity vectors

in the post processing stage which makes it eventually a multi-frame method as well as

reliant on temporal (and spatial) statistics. Examples of correction methods and discussions

on improving the local field effects and problems arising due to the size of the interrogation

region can be found in the work of Nogueira et al. [20, 21], Takehara [22], Wereley [23]

and Hart [24].

Despite the above mentioned problems, µPIV remains one of the most accepted

standard procedures of quantitative imaging in microfluidics. Turnkey systems are presently

commercially available from TSI (www.tsi.com), LaVision (www.lavision.de) and Dantec

Dynamics (www.dantecdynamics.com).

The principle of PTV is much more intuitive in comparison to PIV and differs from

PIV in the tracking of actual tracer particles across frames and not a group of particles. The

basic PTV approach to velocity estimation is to measure individual particle displacement,

located at an arbitrary point in space and time. The velocity is calculated as:

u(x, y, t) =
∆ξ(x, y, t)

∆t

It is easy to observe that in the limit ∆t → 0, we arrive at the fundamental definition

of velocity. Accordingly it is no surprise that PTV preceded PIV as a quantitative imaging

technique [25]. In general PTV refers to a group of techniques for which the tracer density is

sufficiently low that an image captures non-overlapping and non-interfering tracer particle

images which may be tracked across multiple frames to obtain velocity estimates. PTV

is also known as Lagrangian particle tracking (LPT) due to the implicit following of the

Lagrangian time-path for a particle for velocity estimation. The basic idea behind PTV is

illustrated in Fig. 2.2.
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Fig. 2.2: The PTV method: Basic idea

While PIV is more systematic, the performance of PTV strongly depends on the

analysis algorithms. Detailed reviews on various algorithms for PTV can be found in the

works of Cheezum et al. [26], Carter et al. [27], Ohmi et al. [28] and Ouellette et al. [29].

The construction of particle tracks over space and time is the final goal of PTV. This essen-

tially leads to the determination of the pathline for a velocity vector field and can be used to

directly determine the approximate the Lagrangian velocity. The problem of constructing

the particle track can be subdivided into the problems of particle centroid localization and

the problem of following the particle centroid in time. In order to determine particle cen-

ters, the processing algorithm must have sub-pixel accuracy and be able to handle missing

particles as well as overlaps. Moreover, the algorithm needs to have a robust noise perfor-

mance. The most common methods used for particle finding are weighted averaging and

Gaussian fitting [25].

Tracking a large number of particles over many frames is a multidimensional as-

signment problem which is NP hard. Thus, tracking algorithms often reduce the complexity

by using a limited number of frames at a time to get an optimal solution over that set, in-
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Fig. 2.3: Particle association algorithms

stead of using all the frames to construct all the tracks for all the particles. One of the

common heuristics used for particle tracking is the nearest neighbour criterion, where the

nearest particle in the next frame is chosen as the next sample point. Another is the 3-frame

minimum acceleration method, where the position of the particle in the n − 1st frame as

well as the nth frame is used to find the particle position in the n + 1st frame . The 4-

frame minimum change in acceleration method is yet another method where the position

of the particle in the n + 1st frame is found as in the 3-frame method but the particle po-

sition is also found for the n + 2nd frame and this is used to select that particle within

the search region for which the change in acceleration is smallest between the n + 1st and

n+ 2nd frames. Fig. 2.3 shows the different methods of particle association for PTV. Var-

ious improvements in performance and the analysis of PTV can be found in the literature

[30, 31, 32, 33, 34], and a few of these, where the PTV algorithm uses images of parti-

cle streaks will be discussed later. Common factors in most proposed PTV improvements

and comparative reviews are either strategies for improving particle association, particle

centroid localization or correction of particle loss (or gain) errors.

In comparison to the standard PIV, PTV has two main advantages. The first is

that the velocity can be localized within the extent of the particle track while for PIV, the
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mean group velocity is targeted. The other distinct advantage of PTV is that, for a single

particle, tracking over 3-dimensional space can be achieved by the use of multiple acqui-

sition systems [28]. For PIV this becomes a much more complicated problem involving

pairwise cross correlation for the three axes. The major drawback of PTV stems from the

basic assumption of traceability of individual tracers across consecutive frames [25, 35].

The usual assumption that the concentration of particles is low enough such that the max-

imum displacement of a tracer in some time ∆t will always be less than the average spac-

ing between nearest neighbors (particles), often breaks down during actual experiments.

Moreover, tracer particles have extremely similar features (within manufacturing deviation

margins) meaning one particle is hard to distinguish from others in a group. Hence there is

typically an association problem to be solved while tracking particles across image frames,

the difficulty increasing with particle density. Apart from this there are errors arising from

sampling of the Lagrangian path and the interpolation techniques used for interpolating

over an arbitrary velocity field. Image segmentation and classification of streaks are also

important problems and a discussion on this can in be found in the work of Rosenstiel [36].

2.2 PARTICLE STREAK VELOCIMETRY

Particle streak velocimetry is actually a subset of particle tracking velocimetry. Particle

streaks are formed when higher exposure times are used for imaging and the motion of the

particle gets imaged as connected pixels in the image plane. Hence streaks are essentially

particle tracks and the endpoints may be used as particle positions within a frame and the

curve joining them is the track formed during the exposure time. While connecting particles

across consecutive frames however, the similar association problem is encountered. Particle

streaks are not fit for use in the standard PIV methods as the nature of their spatial extent

causes decorrelation and loss of accuracy in peak detection for the PIV procedure. However,

PSV shares the same advantages of PTV and is implicitly a more accurate method than PIV,

since in the ideal situation it can obtain much more resolved Lagrangian velocity values

than the mean group Eulerian estimates obtained from PIV. The problem of association in
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PTV can affect PSV if the streaks need to be connected prior to determination of the local

velocities. The problems of occlusion and overlap are also present for the use of streaks,

and perhaps in larger measure owing to the increase in the probability of overlap due to the

increase in the spatial extent. Hence successful use of PSV demands low seeding density

and sharp imaging of particle streaks.

Owing to its inherent simplicity, the use of particle streaks for velocimetry is per-

haps the oldest, in conjunction with PTV [37, 38, 39, 40]. The use of streaks can be traced

back to streak-photography where the images were manually analyzed. The method of the

analysis was to estimate the length of the streak and divide it by the time of exposure to get

average velocity values and the statistics of this method of was discussed as early as 1991

by Altman [41]. While being closely related, some PSV methods do not involve tracking

and use the streak length directly to get the local velocity vector [37, 38, 39, 42, 43, 44, 45],

while for many others tracking is the goal [46, 47, 48]. The consideration of tracking im-

plies that the endpoints of the streaks need to be connected to other streaks in the previous

and subsequent frames, the time difference being the inverse of the frame rate. As one

would expect, the latter method is more involved (often requiring extensive algorithms for

solving the association problem) but can eventually produce better results. For reasons of

clarity, in this dissertation we choose to call the latter methods PTV and the former one

PSV where the streaks are made use of by themselves and not for tracking.

We observe that there have been many instances where particle streak lengths have

been used, but their use has often been limited to macro-scale velocimetry and for estima-

tion of 1-dimensional velocity fields (1D1C), and often as point or bulk estimates. However,

the work done by Bergthorson et al. [49, 50, 51] and Hering [52] for macro-scale flow de-

serves special mention as the former uses the particle track length for velocity correction

and the latter attempts to model the streak’s gray value in an image for velocity estimation.

Another interesting observation can be made on the development of PIV, PTV and PSV.

PSV is the oldest method and its use can be found as early as 1934 [35]. As digital imaging

and high speed computations became possible, particle tracking became feasible and PTV
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dominated. With the advancement of high speed imaging techniques and lasers and even

better computing power, µPIV has now become the more used method.

While other factors may have contributed towards the restricted use of particle

streaks by themselves, the problems of overlapping and occlusion, the extended spatial

uncertainty of the position of the particle and the implicit idea that particle streaks are

imperfections and velocity blurs were the more significant reasons. However, if particle

streaks could be efficiently utilized, one sees at once that hardware requirements immedi-

ately become simpler and the directional nature of the particle streaks can be exploited to

our advantage. Surprisingly to the best of our knowledge, there has not been a dedicated

study on the sole use of particle streak length or on what could be achieved from the anal-

ysis of streak-length. This observation is even more prominent in the nascent domain of

microfluidic research in the current decade, and this is where micron resolution PIV is the

default standard.

2.3 THE PROPOSED µPSV METHODS

A novel method of using particle streaks for micro-domain 2D2C velocimetry is proposed

in this work. We propose to use particle lengths within a model-framework that assumes a

locally-linear velocity field. As will be explained in the chapters to follow, the local linear

assumption helps use the streak lengths efficiently without directly confronting the associ-

ation problem. We call the proposed method µPSV as the method relies on velocity field

smoothness which works best in the micro-domain and we essentially use streaks (length)

by themselves and not for the purpose of tracking. The final goal for the proposed method

is to obtain accurate estimates of the local Eulerian velocity on the spatial extent of the

particle streak. It may be noted that the smoothness assumption restricts the applicability

of the proposed method to micro-domains only.

Similar to any other image based velocimetry method, we start with the acquisition

of tracer particle images. Low particle density is preferred as higher particle densities in-

creases overlap between streaks. A stack of frames with particle streaks covering the region
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of interest (ROI) is thus the input. The images are firstly processed to minimize the noise

and imaging artefacts. Blurred and non-ellipsoidal objects are removed by morphological

image processing. Streaks are then segmented by local adaptive thresholding and fitted in

a bounding box. The width W and the height H of the box represent the exposure time-

weighted local horizontal and vertical velocity components respectively. Further details of

the image processing part are discussed in Chapter 5 but at the end of the image processing

step, the component values are stacked separately, for each spatial location. Hence we get

two tables (for two components) with the observed streak descriptors corresponding to spa-

tial locations. Note that target for the image processing is to just get the streak descriptors

and the image processing methodology in not unique. Any alternate method that leads to a

similar intermediate streak descriptor table would serve the purpose.

The histogram of the temporal data at a spatial position is analyzed and outlier

data points are eliminated based on the local mean, median and standard deviations from

the spatio-temporal stack. In our processing, streaks with lengths more than 2 standard

deviations over the mean were eliminated. At this point 3 different directions are possible

leading to the estimation of local velocity vectors. Firstly, there is the basic L
T approach and

this value is usually assigned to the center of the streak. This is the classical method of PSV

which is actually PTV neglecting the tracking. However, this method of assignment does

not work well for gradient fields and this is discussed in detail in Chapter 3 where strategies

of improving the efficiency of this point-assignment method are also described. Note that

the streak has a much bigger extent marking the particle path during exposure, thus making

the single-point-assignment (estimation) of velocity somewhat inefficient.

Another direction is to perform temporal averaging of the length components ’ob-

served’ at a particular point in space and then divide the result by time. The basic idea is that

streak lengths occur as a cumulative growth, with the local Eulerian velocity at each point in

space being responsible for additively contributing to the total length. Thus when lengths at

a point are averaged temporally (across multiple frames), it is actually a weighted average.

The local Eulerian velocities are the weights biasing the average towards the correct veloc-
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ity estimate. Such a method can estimate a piecewise-uniform approximated velocity field

quite accurately and this is discussed in Chapter 3. Further, we also show that this method

performs well for smooth velocity fields with small local gradients. By processing both the

length components, we obtain the 2D2C velocity field estimates. With a large number of

streaks observed at a point the mean statistic would also be reliable. It may be noted that

we were unable to find the use of spatial averaging of particle streaks for velocimetry in the

micro-particle velocimetry literature to the best of our efforts.

While temporal averaging of spatial streak information performs well, its velocity

estimates are typically higher than or below the actual velocities due to the bias introduced,

unless the velocity field is uniform or at least piecewise uniform. To obtain a better esti-

mate, a local linear model of the Eulerian velocity is used. With this assumption of a local

linear velocity field, it is possible to derive closed form expressions for the streak lengths

themselves and then use this expression and the available streak descriptors to calculate the

local velocity field parameters. Using the local velocity field parameters, we can then obtain

much better estimates of the local velocity field. In chapter 3, the first-order approximation

is introduced and the methods for obtaining velocity estimates using this approximation

are discussed. The development of the theoretical expressions and results for a first-order

approximated velocity vector field form a considerable part of this dissertation. To the best

of our knowledge, this method has not been used earlier for micro-channel velocimetry.

Thus, in effect, three methods are proposed based on the particle streak descriptors.

The first one is a corrective strategy while the other two are novel methods of using the

particle streaks by themselves, for velocity estimation. As one might observe, the proposed

µPSV method (which includes all the three methods originating from the same information

table) varies in a number of ways from µPIV and PTV. These are summarized as follows.

1. The proposed µPSV method is completely based on individual particle streak de-

scriptors (length and starting point), µPIV is based on particle groups and PTV is

based on tracking the position change of individual particles.
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2. The proposed µPSV method is not dependant on fast imaging for accuracy or trace-

ability unlike both µPIV and PTV.

3. The proposed µPSV method depends strongly on seeding density. A low seeding

density if preferred. Similar is the case with PTV but for µPIV , a higher seeding

density is desirable.

4. The proposed µPSV method uses exposure time as a sampling control parame-

ter. For µPIV the spatial sampling is controlled by setting a grid-size for cross-

correlation while for PTV, the frame-rate is used for sampling the Lagrangian path-

line.

5. The proposed µPSV method depends more on sharpness of streak end-points than

tracer image intensity, unlike µPIV where the cross-correlation peak sharpness di-

rectly depends on the intensity.

6. The dataset for proposed µPSV method implicitly conveys directional information

by a single frame. This is not so for either µPIV or PTV.

7. The proposed µPSV method directly yields well resolved Eulerian velocity esti-

mates over the entire streak length while µPIV leads to the estimation of average

Eulerian velocity and for PTV we obtain discretely sampled Lagrangian velocities

along the particle path.

8. The proposed µPSV method explicitly uses a local linear approximation of the ve-

locity field. In the case of µPIV or PTV, this is assumed implicitly used indirectly.

Details of the proposed analysis methods are covered in the chapters that follow.

Quantitative verification of the methods proposed are obtained by simulation with the aid

of CFD tools. The generation of baseline or gold-standard data is explained in Chapter 6,

where we propose some methods for reducing the simulation time. The simulated baseline

data generation method sharply contrasts the standard Monte-Carlo schemes used in litera-

ture for quantitative PIV verification. The difference arises from the fact that generation of

a finite time particle tracks on a single frame is different than the generation of two frames

with point particles with a simple shift between them. The latter is a good approximation to
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particle displacement only under the assumption of high speed imaging and this is impossi-

ble for the former case. However a method that allows for the variability of both exposure

time and frame rate is more realistic and can be used to simulate high speed imaging. The

basic problem that needs to be solved for this is the generation of finite time particle tracks

from discrete Eulerian data. This means we would have to work with 2-D samples of an

arbitrary velocity field which naturally leads to the use of computational methods. Some

novel schemes are proposed in this dissertation to reduce the computation time with min-

imal reduction in accuracy. Further the direct usage of CFD data from tools that allow a

user to design a microfluidic schematic makes the method extremely useful for designing

trial experiments.
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CHAPTER 3

PARTICLE VELOCITY VECTOR FIELDS, SAMPLING AND ESTIMATION

Flow visualization and flow estimation of velocity fields are two well known problems in

the field of fluid dynamics. The problem representations as well as their solutions both stem

from the definition and approximation of velocity vector fields. We begin this section with

an introduction to two representations of fluid and particle-fluid motions.

3.1 EULERIAN AND LAGRANGIAN VELOCITY REPRESENTATIONS

Fluid and particle-fluid flows may be observed by tracking small, distinguishable fluid ma-

terial volumes that are carried with the flow, the Lagrangian method, or by observing the

fluid velocity at fixed spatial locations, the Eulerian method. Conservation laws are inher-

ently Lagrangian because they pertain to fluid volumes and not to spatially fixed locations

in the domain of the flow. While Lagrangian laws are the natural choice for many ob-

servational techniques and for stating fundamental conservation theorems, the theoretical

development of fluid mechanics has been mostly Eulerian [53]. The notion of Eulerian ve-

locity field becomes even more prominent for describing particle flows in a liquid medium

where the hydrodynamic forces are small compared to the electrical forces. The velocity

expressions arising from force balance procedures often lead to spatial velocity descrip-

tions, so we can express the velocity at all the points in space for a traversing particle but

the Lagrangian representation will need to be invoked when we deal with space-time de-

scriptions.

In Fig. 3.1, the relationship between the two forms of velocity representations is

shown. The Lagrangian form is concerned with the motion of the blue fluid volumes along

the black trajectory while the flow sensors obtain a snapshot of the Eulerian velocity.

3.1.1 The Lagrangian representation

In the Lagrangian representation we track specific volumes of a scalar quantity. In order to

do this, we tag this material volume (parcel) by its initial position, and its inherent properties

change with time. The parcel trajectory is called the pathline. We define the pathline as

ξ = ξ(x0, t) (3.1)



Fig. 3.1: Lagrangian and Eulerian velocity fields

The derivative of the pathline gives the Lagrangian velocity, where the initial position x0 is

kept fixed

VL(x0, t) =
∂ξ(x0, t)

∂t
(3.2)

It is assumed in the representation that the mapping from x0 to ξ is continuous and unique

in that adjacent particles will never be split apart and one parcel will not be forced to oc-

cupy the position of another parcel as they have been tagged with different x0 values. So

particle trajectories starting from different spatial positions are unique to that instantaneous

observation. In the context of particle streaks, this means that under ideal conditions of

focal plane imaging, no two streaks can start at exactly the same place. In some sense this

is also physically not possible as it would mean two particles in the exact same position in

the focal plane, but both of them are in focus.

Under the assumption of unique mapping, the pathline equation is invertible, which

means that x0 can be expressed as a function of the trajectory ξ. This means that Eulerian
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and Lagrangian representations can be interchanged, at least in principle. The Lagrangian

representation presumes knowledge of the starting position x0 and treats it as an indepen-

dent variable based on which the subsequent position ξ is known. In the Eulerian repre-

sentation, the instantaneous position ξ(t) is the independent variable and x0 responsible for

this position is the dependant variable.

3.1.2 The Eulerian representation and device physics

Another method to observe the fluid velocity is by means of transducers that we could place

at fixed positions, x. The transducers would essentially sample the velocity field at fixed

positions. The velocity so obtained is termed the Eulerian velocity, VE , and is intended to

be the velocity of the fluid parcel that is present, instantaneously, within the fixed control

volume sampled by the transducer. In the case of particle motion under electric field in fluid

medium, the particle’s instantaneous spatial velocity is dependent on the spatial variation

of the electric field. The velocity field so obtained depends only on the position and hence

is an Eulerian velocity field. In microchannel velocimetry, the spatial representation of the

velocity field is the more sought after.

3.1.3 Interconversion between representations

Assuming that the particle trajectories can be inverted to yield x0(ξ, t), we can write the

expression for VL as a composite function VL(x0(ξ, t), t) whose dependant variables are ξ

and t. This can now be written as a function of x and t alone as

VE(x, t) = VL(x0(ξ, t), t) (3.3)

Thus a spatial sampling of the Lagrangian velocity field leads to a knowledge of the Eule-

rian velocity field. This is the central idea on which tracer based velocimetry works. For

example, all PIV methods inherently measure the Lagrangian velocity of particles [6]. The

basic analysis procedure of such methods involves the generation of the Eulerian veloc-

ity field from Lagrangian data by interpolating or mapping irregularly sampled Lagrangian

data onto a spatial grid. To know where to assign the velocity, knowledge of the position is

required.
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Similar to the earlier conversion, VL(x, t) can be written as

VL(x0, t) = VE(x, t)|x=ξ(x0,t) (3.4)

However in this case there is no direct sampling but the velocities are linked by the path

equation. If the Eulerian velocity is known, we can first get the path equation by solving

the differential equation

∂ξ(x0, t)

∂t
= VE(x, t)|x=ξ(x0,t) (3.5)

and then the Lagrangian velocity may be obtained by differentiating the path equation.

3.2 VELOCITY VECTOR FIELDS

A vector field f is a map f : Rn → Rn assigning to each point x in n dimensions a

n-component vector f(x). For our purposes, the velocity vector field is a 2-dimensional,

2-component (2D2C) velocity vector field in a microfluidic system. Further, we make a

comment on fluid and particle velocity fields as follows. Microfluidics is concerned with

the motion of fluids and particles in fluids. When the former is of greater concern, the

particles play the role of tracers which follow and represent the fluid flow. In the latter case,

the flow of particles themselves is more important and the fluid merely plays the role of

a medium. An important point to consider is that in the former case, if we were to track

the particles, then there always exists some degree of error about the inferred fluid motion

from the particle motion. However in the latter case, as in the case of experiments involving

particle motion in microchannels due to electric fields, the associated velocity estimation

errors are not due to propagation or inference, but directly related to the velocity estimation

process. Accordingly, there are lesser worries about how faithfully the tracer particles are

representing the flow.

3.2.1 Characteristic curves of vector fields

For an n-dimensional Euclidean space space Rn, a differentiable curve is called a tangent

curve of a n-dimensional vector field V (x) if the tangent vector at any point along the curve
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is parallel to the vector field at that point. The tangent vector curves are solutions for the

ordinary differential equation (ODE) system

d

dτ
(x(τ)) = v(x(τ));x(0) = x0 (3.6)

Distinct tangent curves are non-intersecting and do not join each other. They are character-

istic of the vector field such that for all points x ∈ En where the velocity is not a null vector,

there is an unique tangent curve through it and this curve uniquely depicts the directional

information [54, 55]. In a time-dependent vector field V (x, t) four types of characteris-

tic curves exist. These are streamlines, streaklines, pathlines and timelines. We limit our

following discussion to the first three.

Streamlines are a family of curves that are everywhere parallel to the velocity and

show the direction of the velocity field at a given instant. They are defined (for a fixed

observation time t = tf ) as
d

ds
(X(s)) = v(tf , X) (3.7)

where s is a dummy variable representing the parametrization of the vector field and could

be regarded as time. Streamlines are therefore ‘snapshots’ of the lines traced parallel to the

vector field. Examples of streamlines are shown in Fig. 3.2.

Pathlines are trajectories of massless particles in time-dependent vector fields, the

trajectory being defined by the streamlines. They can be expressed as

d

dt
(X(t)) = v(X(t), t) (3.8)

Pathlines are shown in Fig. 3.3.

A Streakline is the instantaneous locus of all particles that pass a given point and

can be observed by steadily injecting dye into the fluid at a fixed point. They are defined as

d

ds
(X(s)) = v(X(s), s) (3.9)

Also note that the term ‘streaklines’ has a fluid dynamics origin and the particle tracks,

which we loosely refer as ‘streaks’ as more of a visual inference origin (velocity blur image

of a moving object).
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Fig. 3.2: Streamlines

Fig. 3.3: Pathlines
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The above space-time formulations for the tangent curves help us in the spatio-

temporal analysis of time-dependent vector fields. In this dissertation, however we limit

our scope to time-independent (or quasi time-dependent) vector fields only. In this case,

streamlines, pathlines and streaklines coincide, since every ‘snapshot’ gives the same vector

field; i.e.,

v(x, t) = v(x, t0)

So, a streamline can be obtained by solving the ODE

d

dτ
(x(τ)) = v(x(τ), t0);x(0) = x0 (3.10)

and a pathline by solving the ODE

d

dt
(x(t)) = v(x(t), t);x(t0) = x0 (3.11)

In the above definitions, note that the streamline definition has more to do with space (Eu-

lerian) while the pathline equations are more time-defined (Lagrangian). If we have a finite

time interval, say T in which a particle traces a curve of length L then this arc-length is

given by the Eulerian description as

x0+L∫
x0

d(x(τ))

v(x(τ), t0)
=

t0+T∫
t0

dτ (3.12)

and by the Lagrangian description as

x0+L∫
x0

d(x(t)) =

t0+T∫
t0

v(x(t), t)dt (3.13)

Note that both sides of the integral are positive. Moreover, it can be immediately observed

that a time-limited segment of the tangent curve also encodes the magnitude of the vector

field by its arc-length. With this information, we can formally define ‘particle-streaks’ and

associate them with the local vector field.

Definition 1. Given a time-independent n-dimensional vector field V (x), a ‘particle-streak’

is defined as the image of an exposure-time-limited segment (arc) of a tracer particle path-

line unique to the vector field and the starting point x0.
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The exposure time limit T and the image domain spatial resolution are set by the

optics (microscope) and the image acquisition system (camera). The length of the particle-

streak can thus be expressed as

L = f(x0, VE(x), T ) (3.14)

where f(·) is some parametric function.

3.2.2 Particle track lengths as line-integral sensor outputs

The finite-time particle track length can be written as a Riemann sum as

L = lim
∆t→0

n∑
i=1

1 ·∆si; ∆si = |vi|∆t

where ∆si represents the finite and length intervals which make the total track length. For

each of these length intervals, the time interval is fixed and a distinct velocity vi is assigned

to the particle. It may be noted as ∆t tends to zero, the number of intervals ‘n’ become

infinite. Hence the above form represents a line-integral where the function value is unity.

From the image plane perspective, if each ‘ON’ pixel to ‘ON’ pixel connection for a highly

resolved optical system is considered a sensor output with a value dependant on the pixel-

distance between these ‘ON’ pixels, then the contiguous ‘ON’ pixels constitute an image

plane representation of the particle-streak. Moreover, the image domain length is actually a

linear combination of ’ON’ sensors that are connected adjacently and the total ‘ON’ sensors

that are connected diagonally. The important point to note are that the particle-track length

encodes the velocity field that the particle traverses through and that the length can be

expressed as a linear combination of binary sensor outputs.

3.2.3 Velocity estimation from length samples – the inverse problem

Now that we know that the length samples describe the local velocity field, (measure of

the total effect of a given field along a given curve), we intend to recover the velocity field

from its time-limited cumulative effect viz. the length. We immediately observe that this

is an inverse problem and since the parametric function expressing L is not necessarily a

linear mapping, direct inversion becomes intractable as the flow field deviates from uniform
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flow. We resort to parametric modelling of the local velocity field from which expressions

of streak length can be computed and these expressions and their derivatives can be fitted

with the observable data (i.e., x0 , T and L) so as to estimate the parameters of the local

velocity field.

3.3 FIRST-ORDER APPROXIMATION OF VECTOR FIELDS

In section 3.2 the velocity vector field is introduced by its generic definition and later we

specify the consequences of time-invariance; i.e., steady velocity vector fields. Another ap-

proximation is introduced in this section, originating from the local smoothness of velocity

field property of most microfluidic systems. This particular assumption leads to a simpler

approximation of the flow field and eventually aids in its estimation from experimental

observables.

3.3.1 Smooth velocity fields in microfluidics

Flows in microfluidic devices typically are laminar and have low Reynolds number owing

to the extraordinarily small area of cross-section the flow encounters. Laminar flow implies

that the fluid flows in parallel layers without any disorder. The Reynolds number is defined

as

Re =
Ul

ν

whereU is the characteristic velocity of the fluid across spatial scale l and ν is the kinematic

viscosity. In microfluidic systems the typical flow velocities do not exceed a centimeter per

second and channel widths are on the order of tens of micrometers. Accordingly, Reynolds

numbers for microfluidic systems do not normally exceed a value of 1. However, for some

recent applications like the handling of cells, larger velocities are used corresponding to

Reynolds numbers in the range from 1 to 20 [56, 57]. At extremely small Reynolds numbers

(< 0.5), creeping (Stokes) flow is observed and viscous forces are stronger than advective

inertial forces. Considering now the velocity field, it can be assumed that local velocity

gradients are small as larger gradients would lead to local turbulence which is ruled out by

the low Reynolds number condition, since typically a Reynolds number of 2000 is required
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for turbulence [56]. Flow-field smoothness is dependant on local field gradient magnitudes

and smooth flow-fields is a good approximation in at microfluidic scales [58, 59, 1].

3.3.2 First-order approximation

Consider a Taylor series expansion of the velocity vector field around a point x = xp

VE(x) = VE(xp) + V ′E(xp)(x− xp) +H.O.T. (3.15)

where the higher order terms are indicated by H.O.T. With the assumption of local smooth-

ness the higher order terms can be ignored with small error (contribution to the particle

streak length) to get the first-order approximated velocity field as

VE(x) = VE(xp) + a(x− xp) (3.16)

where a is the local velocity gradient. The above equation can be written more explicitly as

VE(x) = VE(xp) + J(x− xp) (3.17)

where

J = ∇VE(x) =

 ∂ux
∂x

∂uy
∂y

∂vx
∂x

∂vy
∂y

 (3.18)

The first-order approximation is rearranged to include the starting point of a particle streak

(i.e., x0) as it can be measured from experimental images. We obtain

VE(x) = VE(x0) + a(x− x0) (3.19)

Collecting now the constant terms together into a variable b we get

VE(x) = ax+ b; b = VE(x0)− ax0 (3.20)

The above equation is fundamental towards the remaining part of this dissertation. It

describes the local Eulerian velocity field under the assumptions of time-invariance and

smoothness. Limiting our discussion in the microfluidic regime, the above assumptions are

strongly valid and the results from the first-order approximations can be applied to standard

experiments in microfluidics, which is the target application area of this work.
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3.3.3 Standard results for particle-tracks from first-order approximation

Some standard results are now derived for the first-order approximation. We start with the

ODE expression for the pathline

d

dt
(x(t)) = v(x(t), t)

Substituting for the velocity field we set up the following integral

ξ(t)∫
x0

dx(t)

ax(t) + b
=

t∫
0

dt (3.21)

where the path is indicated by ξ(t). Solving, we get,

ξ(x, t) = eat(x0 +
b

a
)− b

a
(3.22)

ξ(t) = x0 + VE(x0)(
eat − 1

a
) (3.23)

Note that the above equation represents both the streamline and the pathline within the

spatial extent where the local linear assumption is valid.

The Lagrangian velocity field was defined earlier as the time derivative of the path

equation. Hence we have

VL(t) =
d

dt
[ξ(t)] (3.24)

which gives the following expressions for the Lagrangian velocity:

VL(t) = a(x0 +
b

a
)eat (3.25)

VL(t) = VE(x0)eat (3.26)

The path length for a finite time interval is obtained from the path equation as

L = ξ(T )− ξ(0) (3.27)

which gives

L = (x0 +
b

a
)(eaT − 1) (3.28)
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L = VE(x0)

(
eaT − 1

a

)
(3.29)

The above equation expresses the particle-streak length in terms of the starting spatial point

x0, the exposure time T and the local linear field parameters a and b. It may be noted that

of these parameters, a and b are unknown while the others can be immediately obtained

from an experimental image of a particle-streak.

The expression for length also helps us in obtaining the theoretical expressions for

the longest and the shortest streak lengths that can be observed at a particular point. It can

be seen in Fig. 3.4 that, depending on the sign of the local gradient, we have two different

trends in the change of streak length when x0 changes. For a observation point xp the

maximum length in case of positive local gradient would be for that streak which starts at

xp. Its length is given by the expression

Lmax = (xp +
b

a
)(eaT − 1) (3.30)

Fig. 3.4: Minimum and maximum lengths for local linear approximation

The starting point for the minimum length is given by xp − Lmin so that for mini-

mum length we have

Lmin = (xp − Lmin +
b

a
)(eaT − 1) (3.31)
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which gives

Lmin = (xp +
b

a
)(1− e−aT ) (3.32)

Stokes drift is an important consideration when particle tracers do not faithfully

follow the fluid flow. It is defined as the difference between the average Lagrangian and

Eulerian velocities. In the definition of the Lagrangian velocity, if we fix the time, then the

velocity is also the local Eulerian velocity. Hence using the expression of the Lagrangian

velocity obtained earlier, the minimum Eulerian velocity for a particle would occur at t = 0

and the maximum at t = T for the local linear assumption. Hence the average Eulerian

velocity is given by

〈VE〉 =
VE(x0) + VE(x0)eaT

2
(3.33)

The average Lagrangian velocity is given by the ratio of the total distance by total time; i.e.,

〈VL〉 =
L

T
= VE(x0)

(
eaT − 1

aT

)
(3.34)

The difference between these is the average Stokes drift

〈VS〉 = 〈VL〉 − 〈VE〉

This is expressed using the earlier equations as

〈VS〉 = VE(x0)

{
eaT − 1

aT
− 1 + eaT

2

}
(3.35)

Expanding the above expression by infinite series we have

〈VS〉 = VE(x0)

[
1

aT

(
−1 +

∞∑
k=0

(aT )k

k!

)
− 1

2

(
1 +

∞∑
k=0

(aT )k

k!

)]
(3.36)

which on simplification gives

〈VS〉 = VE(x0)

[ ∞∑
k=2

(aT )k

k!

(
1

k + 1
− 1

2

)]
(3.37)

From the last expression we find that the Stoke’s drift is dependent only on the product of

the local gradient and the exposure time. If this product is extremely small, so is the drift

such that

lim
aT→0

〈VS〉 = 0 (3.38)
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Hence, if either T is extremely small, which implies that the particle streak is in fact a

point or if the local gradient is close to zero; i.e., a uniform velocity condition, there is no

difference between the average Eulerian and Lagrangian velocities over the particle track

under the local linear approximation.

3.3.4 Theoretical point-assignment of average velocity for particle-tracks

Computing the average Lagrangian velocity is essentially simple as the only information we

need is the streak length L and the exposure time T . However, as observed in the previous

discussion, the average Lagrangian velocity is not necessarily the average Eulerian velocity

and hence this velocity cannot be assigned to the center of the streak without causing an er-

ror. (With the local linear approximation of the velocity field, the average Eulerian velocity

would be located at the center of the particle-streak.) Since the average Lagrangian velocity

would be equal to the Eulerian velocity at some point on the streak, if we could assign the

value of L/T to this exact point, then the assignment error would be zero. We have also seen

that the difference in the average velocities depends only on the dimensionless product aT .

We find that the location where the assignment error is zero also depends on this product.

Proposition 3.3.1. The average Lagrangian velocity of a tracer particle forming a particle-

streak of length L, equals the first-order approximated Eulerian velocity at a point com-

pletely defined by the product of the local gradient and the path time (exposure time).

Proof. Let the velocity on the streak be V (x). Then with the first-order approxi-

mation we have

VE(x) = ax+ b

We define xp, an arbitrary point on the streak as a function of the streak length by

xp = x0 + αL;α ∈ (0, 1) (3.39)

If the Eulerian velocity at this point equals the average Lagrangian velocity, then we have

VE(xp(α)) = 〈VL〉 =
L

T
(3.40)
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which gives

a (x0 + αL) + b =
L

T
(3.41)

α =
1

aT
− (ax0 + b)

aL
(3.42)

Now, substituting the value of ax0 + b from the expression for L, we get

α =
1

aT
− 1

(eaT − 1)
(3.43)

The result follows.

Proposition 3.3.2. For small values of the aT product, the L
T ratio can be assigned to the

midpoint with minimal error.

Proof. The length fraction α where the L
T ratio can be accurately assigned is given

by

α(aT ) =
1

aT
− 1

(eaT − 1)

where α is written as a function of the aT product. Now taking the limit we have

lim
aT→0

α(aT ) = lim
aT→0

{
1

aT
− 1

(eaT − 1)

}
(3.44)

Or,

lim
aT→0

α(aT ) = lim
aT→0

{
eaT − 1− aT
aTeaT − aT

}
= lim

aT→0

{
d

d(aT )

(
eaT − 1− aT

)
d

d(aT ) (aTeaT − aT )

}
(3.45)

where the last part if obtained by the application of the l’Hôspital’s rule. This gives

lim
aT→0

α(aT ) = lim
aT→0

{
eaT

eaT + aTeaT + eaT

}
(3.46)

Finally, applying the limits we have

lim
aT→0

α(aT ) =
1

2
(3.47)

The result follows.
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The velocity error of incorrect assignment can be quantified by the relative velocity

error. An advantage of using the relative error is that it is dimensionless and easily compa-

rable. In order to get the absolute error, we simply multiply by the actual velocity value.

We define the relative error as below.

er =
Vtrue − Vassigned

Vtrue
(3.48)

Fig. 3.5: Boundaries of the length fraction for different tolerances and for positive and
negative local gradients

Proposition 3.3.3. If the point of assignment of the L
T ratio on the particle streak is xp =

x0 + βL, then for P% relative error β is bounded by

1(
1 + P

100

)
aT
− 1

eaT − 1
≤ β ≤ 1(

1− P
100

)
aT
− 1

eaT − 1

Proof. The relative velocity error for incorrect assignment is a function of the length

fraction β and the aT product given by

er(β, aT ) =
VE(xp)− Vassigned

VE(xp)
(3.49)

The above expression can be simplified further as

er(β, aT ) =
a(x0 + βL) + b− L

T

a(x0 + βL) + b
(3.50)
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er(β, aT ) =
(ax0 + b) + aβL− L

T

(ax0 + b) + aβL
(3.51)

Now using the expression for length we have (ax0 + b) = aL
eaT−1

. So,

er(β, aT ) = 1−
1
aT

β + 1
eaT−1

(3.52)

Since the relative error is bound by P%, we have |er| ≤ P
100 . Then using the expression

obtained for relative error we have

− P

100
≤ 1−

1
aT

β + 1
eaT−1

≤ P

100

which gives

β ≤ 1(
1− P

100

)
aT
− 1

eaT − 1
(3.53)

and

β ≥ 1(
1 + P

100

)
aT
− 1

eaT − 1
(3.54)

From the last two inequalities, the result follows.

The boundaries between which the average Lagrangian velocity may be assigned

over the length fraction (varying from 0 to 1) for different tolerances is shown in Fig. 3.5

for both positive and negative local velocity gradients. The span of possible assignment

changes from all over the streak at near-zero gradient to an extremely well defined curve

as the gradient increases. Fig. 3.6 gives a more magnified view showing the variation at

smaller gradients.

3.3.5 Rule-of-thumb for quick assignment of average velocity

While accurate estimation of the aT product would lead to a precise assignment of the L
T

ratio, local estimation of dL
dx0

(the variation of streak length with starting position) is more

tractable during an actual experiment. Multiple experimental trials would lead to a range

p ∈ [P1, P2] ; p =
dL

dx0

Now since L = (x0 + b
a)(eaT − 1), we have

p =
dL

dx0
= eaT − 1 (3.55)
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Fig. 3.6: Boundaries of the length fraction for 10% tolerance and for |aT | ≤ 10

which gives

α̂ =
1

log(1 + p)
− 1

p
(3.56)

The values for β for different discrete intervals of the dL
dx0

leading to an er ≤ 0.015 are

shown in Fig. 3.7 and in Fig. 3.8 a more continuous variation of β is sought after. The

yellow highlighted region in the graph shows the assignment curve. Note that close to

p = 0 , the assignment region is the entire y-axis of the plot; i.e., anywhere on the streak.

Using (3.56) and different ranges of p across different values of the point of assign-

ment β, we have the following equation that gives er(βp, aT ) ≤ 0.01

βp = −0.0002p3 + 0.0041p2 − 0.0403p+ 0.4768 (3.57)

3.4 STREAK-LENGTH DISTRIBUTIONS AND AFFINE TRANSFORMATIONS

The observed experimental variables have been treated as deterministic variables so far. In

this section, we discuss the implication of random starting points. It may be noted that in

an actual experiment, the starting point for the particle tracers cannot be assigned at exact
37



Fig. 3.7: β values for different experimentally determined ranges of p for er ≤ 0.015

spatial locations. In most cases a bolus of tracers is released into the fluid stream. At the

point of release, the particles are distributed in the microfluidic volume and their nature of

their exact spatial distribution is unknown.

3.4.1 Particle position on streamlines as affine transformations

Consider now a tracer particle that has entered a microfluidic channel. From our earlier

discussion on the characteristic curves in a velocity vector field, the particle immediately

follows a streamline from the starting point to a final destination (after which we are not

concerned). This streamline spans across the spatial Eulerian velocity field and the local

velocity gradient keeps on changing as the particle position changes over the streamline.

Fig. 3.9 shows this and divides the variable local gradient into short and distinct strips over

which the local gradient is constant. This essentially is the local linear assumption.

Proposition 3.4.1. For a first-order approximated time-invariant velocity vector field, the

position of a particle (moving on a streamline) can always be expressed as an affine trans-
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Fig. 3.8: β values for different values of p for er ≤ 0.01

formation of the starting position and the constants of the transformation are functions of

the local gradient (represented by ‘a’) and local offset velocities (represented by ‘b’).

Proof. From Fig. 3.9 and previously derived results, we have the following rela-

tionship for the first part of the complete path between the first start-point xi1 and the first

end-point xf1.

xf1 = xi1e
a1T +

b1
a1

(ea1T − 1) (3.58)
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Fig. 3.9: Variation of particle position along a streamline across a velocity field

Similarly for the second start-point (first end-point) and the second end-point we have

xf2 = xf1e
a2T +

b2
a2

(ea2T − 1);xf1 = xi2

xf2 =

[
xi1e

a1T +
b1
a1

(ea1T − 1)

]
ea2T +

b2
a2

(ea2T − 1)

xf2 = xi1e
(a1+a2)T +

b1
a1

(ea1T − 1)ea2T +
b2
a2

(ea2T − 1) (3.59)

The third part of the full path is then given by

xf3 = xi1e
(a1+a2+a3)T+

b1
a1

(ea1T−1)e(a2+a3)T+
b2
a2

(ea2T−1)ea3T+
b3
a3

(ea3T−1) (3.60)

Generalizing, we have the following affine transformation

xf = xi

N∏
t=1

eatT +
N∑
k=1

bk
ak

(eakT − 1)
N∏

j=k+1

eajT (3.61)
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Or,

xf = xiP +Q;


P =

N∏
t=1

eatT

Q =
N∑
k=1

bk
ak

(eakT − 1)
N∏

j=k+1

eajT

 (3.62)

The result follows.

3.4.2 Streak-lengths as an affine transformation of random starting points

From our previous discussion, we observe that the end-point of the particle streak is an

affine transformation of the starting point. Now since the length is actually a difference

between the end-point and start-point, the expression for the streak length L can also be

expanded as an affine transformation of x0, the starting point. Now if the starting point x0

is a random variable, then the length is also a random variable and is expressed as follows

L = Mx0 +N ;

 M = (eaT − 1)

N = b
a(eaT − 1)

 (3.63)

For this particular case of a linear function of a random variable, the probability density

function is given by

fL(L) =
1

|M |
fx0(x0)

(
L−N
M

)
(3.64)

The expection is given by

E[L] = ME[x0] +N (3.65)

and the variance is given by

V ar[L] = M2 V ar[x0] (3.66)

It may be noted that the above expressions do not impose a constraint on the nature of the

random variable.

3.4.3 Streak-lengths for uniformly distributed starting points

Generally the empirical distribution of all starting points of streaks does not well approxi-

mate a uniform distribution. However with sufficient data the starting point of streaks may
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be resampled to obtain a uniform distribution; the pay off is an analytically tractable ex-

pression for streak length statistics. In such a case the starting point can be represented

as

x̃0 ∼ U(xp − Lmin, xp) (3.67)

An affine transformation for the uniform random variable then gives

L̃ ∼ U(M(xp − Lmin) +N,Mxp +N) (3.68)

where the last equation is obtained using the previous expressions for M and N . We have

then from the properties of the uniform distribution

E[L̃] =
Lmin + Lmax

2
=

(
xp +

b

a

)(
eaT − e−aT

2

)
= (xp +

b

a
) sinh(aT ) (3.69)

Similarly, for the variance of streak length we have

V ar[L̃] =
1

3
(xp +

b

a
)2[cosh(aT )− 1]2 (3.70)

3.5 SPATIO-TEMPORAL AVERAGING OF STREAK LENGTHS

Spatio-temporal averaging involves the use of the average velocity obtained by dividing the

streak length data with exposure time. This average velocity L/T is allocated to all the can-

didate pixels within the corresponding streaks spatial extent followed by a spatio-temporal

averaging over each pixel through the entire stack of acquired frames. The working prin-

ciple is illustrated in Fig. 3.10 below. Two frames are shown with streaks in overlapping

spatial positions. The streak lengths are allocated to the spatial regions initially but then

spatial averaging is done for the two frames which are part of a temporal sequence.

The actual averaging is done for multiple frames leading to a smooth transition at

changes in the spatial velocity. While prior work using particle streak have used the local

average Lagrangian velocity (L/T), the use of spatial averaging was not found in the context

of microfluidic velocity estimation studies. Our analysis showed excellent tracking of the

local velocity for small values of the aT product while for higher aT products, this leads to
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Fig. 3.10: Spatio-temporal averaging of streak velocity fields.

over-estimation errors. To better understand the spatial averaging the following theoretical

analysis was performed

Let us assume that x0 is a continuous variable and L is a continuous function of

this variable. The usual definition for the average value of a function within an interval (in

this case spatial) gives us for an observation point xp

V (xp) =
1

T

xp∫
xp−Lmin

(x+ b
a)(eaT − 1)dx

xp∫
xp−Lmin

dx

(3.71)

The above integral is solved as below

V (xp) =
1

TLmin

xp∫
xp−Lmin

(x+
b

a
)(eaT − 1)dx (3.72)
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to finally give

V (xp) = (axp + b)
(eaT − e−aT )

2aT
(3.73)

In the previous equation the first term in brackets in the previous equation is V (xp) by

definition of the first-order approximated velocity field. Hence we get

V (xp) = V (xp)
(eaT − e−aT )

2aT
(3.74)

As observed earlier, for small values the exponential-difference term reduces to 2aT , oth-

erwise it is a number more than 2aT and hence the over-estimation error.

3.6 ESTIMATION OF FIRST ORDER APPROXIMATION PARAMETERS

Estimation of the constants in the expressions relating the streak length L, the starting point

x0 and the exposure time T for a streak can be done statistically. Inherently this implies

that the estimation procedure is dependent on the number of samples, and works better with

more samples.

3.6.1 Estimation by robust regression

The expression for length can be expanded and written as

L = (eaT − 1)x0 + (eaT − 1)
b

a

If we let M = eaT − 1 and N = (eaT − 1) ba then multiple observations of (L, x0, T ) can

be written as

L̄ = Mx̄0 +N ;

 M = (eaT − 1)

N = b
a(eaT − 1)

 (3.75)

which can be solved robustly by the method of least-squares to yield

â =
1

T
log(1 + M̂); b =

â · N̂
M̂

(3.76)

Limiting solutions can be obtained for cases when the ‘aT ’ product is small. For example

for aT smaller than 0.1482 the relative error is less than 0.01. Also,

L̄ = Mx̄0 +N ;

 M = aT

N = bT

 (3.77)

44



which gives

â =
M̂

T
; b =

N̂

T
(3.78)

Finally, for uniform velocity (a = 0) we get

L̄ = bT (3.79)

and hence

â = 0; b =
L

T
(3.80)

3.6.2 Estimation based on maximum and minimum values

The maximum and minimum lengths of streaks under the first-order velocity field approx-

imations can be used effectively to estimate the local gradient. For an actual experimental

scenario with large number of observations it is very likely that the empirical maximum and

minimum streak lengths approximate very well the corresponding true values at a particular

position. From our previous results for the maximum and minimum values, we have,

Lmax

Lmin
=

(xp + b
a)(eaT − 1)

(xp + b
a)(1− e−aT )

= eaT (3.81)

which gives

â =
1

T
log

[
Lmax

Lmin

]
(3.82)

Using this value of a,b can be estimated as

b̂ =
1

T

(
LmaxLmin

Lmax − Lmin

)
log

[
Lmax

Lmin

]
(3.83)

While for a large number of experiments, the maximum and minimum values can be ap-

proximated by the sample array maximum and minimum values, for lesser number of

experiments the following uniformly minimum-variance unbiased estimator or minimum-

variance unbiased estimator (UMVUE or MVUE) can be used under the assumption of an

uniform distribution of the streak-lengths. For large values of N , the estimates tend to their

maximum-likelihood estimate.

L̂max = max [L] +
1

N
max [L] (3.84)
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and

L̂min = min [L]− 1

N
max [L] (3.85)

Alternatively, we can also use the moment-based estimators for the maximum and minimum

lengths, again with the assumption of the streak-length samples being uniformly distributed.

L̂max = E [L] +
√

3V ar[L] (3.86)

L̂min = E [L]−
√

3V ar[L] (3.87)

As in the case of robust estimation, it can be seen that large number of ‘observed’ streaks

at a point would make the parameter estimation more accurate.

3.7 ON THE USE OF SECOND-ORDER APPROXIMATED LOCAL VELOCITY FIELD

In general second order approximation of a function provides higher fidelity than first-order

approximation. However in the realm of microfluidics, the magnitude of the second order

derivative of the local Eulerian velocity field is considered extremely small and has usually

been neglected [60, 61], while deriving theoretical results as well as in practical settings

for velocimetry purposes. Nevertheless, some treatment directed towards the computation

of relative error between first and second order approximation is included here for com-

pleteness. Moreover, for the use of length-based particle streak velocimetry as proposed,

we show that second order approximation leads to solving of an indeterminate system of

non-linear equations.

An ideal scenario is considered where both first-order and second-order approxi-

mations are used, for comparison purposes. Then for the velocity around a point x = xp

for a window of observation of width h, the first-order approximation gives

VE(xp + h) = VE(xp) + Jh; J = ∇VE(x) (3.88)

and second order approximation gives

VE(xp + h) = VE(xp) + Jh+H
h2

2
; H = ∇2VE(x) (3.89)
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where J and H are the first and second order derivatives respectively. While considering

all the 3 components together, these would be the Jacobian and the Hessian matrices for the

velocity field. From the above two expressions, for the case of ideal parameter estimation,

the relative error for the first-order approximation would be given by

er =
H h2

2

VE(xp) + Jh+H h2

2

=
1

1 + 2
h2

[
VE(xp)
H

]
+ 2

h

[
J
H

] (3.90)

In the above expression the relative error increases with increase with the width of the

observation window which in turn is dependent on the length of the streaks observed for an

exposure time T . The values of H and J are fixed for the position of observation x = xp

and the velocity field. Hence the relative error is bounded by the maximum size of the

window as

er <
1

1 + 2
h2max

[
VE(xp)
H

]
+ 2

hmax

[
J
H

] (3.91)

where hmax is the maximum width of the observation window possible at x = xp. Now

from Fig. 3.11, we observe that the maximum width of the observation window is equal to

the length of the shortest and the longest streak that is possible. Now using the maximum

velocity of the streak in this observation window, we get,

hmax < max [VE(x)]w2T (3.92)

Hence, for an arbitrary velocity field, the relative error in considering a first-order approxi-

mation and not a second-order approximation is bounded by

er(xp) <
1

1 + 2
h2max

[
VE(xp)
H

]
+ 2

hmax

[
J
H

] ;hmax = max [VE(x)]w2T (3.93)

It may be noted however, that the maximum window width has only been approximated

above; for a known velocity field, more accurate expressions can be obtained. The case of a

1-D velocity field that is exponential and has the form VE(x) = beax for the local Eulerian

velocity, is considered as an example. By solving the ODE from the velocity expression,

we can obtain the length of the streaks by the same procedure as earlier. The expressions
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for the minimum and maximum streak lengths are shown in Fig. 7.16. in Chapter 7 of this

dissertation. The maximum width for the observation window is hmax < Lmin + Lmax,

which gives

hmax <
1

a
log

[
1 + abTeaxp

1− abTeaxp

]
(3.94)

Moreover, the values of J and H in the relative error expression are

J = V ′E(xp) = abeaxp = aVE(xp)

and

H = V ′′E(xp) = a2beaxp = a2VE(xp)

respectively. From these values, the bound on the relative error can be accurately expressed

in terms of the parameters of the known Eulerian velocity field.

The actual use of a second-order velocity field is now considered. The local Eu-

lerian velocity, can be expressed as VE(x) = cx2 + ax + b The differential equation that

needs to be solved for the path equation is thus

dx

dt
= cx2 + ax+ b

Now taking integrals on both sides with the usual limits

x0+L∫
x0

dx

cx2 + ax+ b
=

T∫
0

dt (3.95)

The solution to the similar indefinite integral is

∫
1

cx2 + ax+ b
dx =


2√

4bc−a2 arctan 2cx+a√
4bc−a2 + C; 4bc− a2 > 0

1√
a2−4bc

ln
∣∣∣2cx+a−

√
a2−4bc

2cx+a+
√
a2−4bc

∣∣∣+ C; 4bc− a2 < 0

− 2
2cx+a + C; 4bc− a2 = 0

(3.96)

If it is assumed that the magnitude of c is extremely small for microfluidics, such that

4bc− a2 < 0, then we have[
1√

a2 − 4bc
ln

∣∣∣∣∣2cx+ a−
√
a2 − 4bc

2cx+ a+
√
a2 − 4bc

∣∣∣∣∣
]x0+L

x0

= T
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which can be solved to obtain

L =
e
√
a2−4bcT

2c
{

1
2cx0+a+

√
a2−4bc

− 1
2cx0+a−

√
a2−4bc

e
√
a2−4bcT

} (3.97)

As can be observed, L is some function of x0, T, a, b, cwhere only the particle streak length

L and the starting point x0 can be measured. The measurement is to be done at a point of

observation in the spatial extent of the microfluidics device. However there are 3 unknown

variables which need to be estimated. Note that the exposure time T cannot be considered a

variable since it cannot be changed multiple times at every spatial location, due to hardware

constraints. Consequently, the second order approximation would lead to an indetermi-

nate system of non-linear equations with respect to the different measurements that we can

practically obtain.

3.8 GENERATION OF 2D FIELD COMPONENTS

In the previous section the first-order approximation of the parameters were obtained. If it

is assumed that a group of streaks x0 ∈ [x01, x02] , L ∈ [L1, L2] is analyzed then the spatial

extent of validity for â, b̂ is x ∈ [x01, x02 + L2] and we assign

V (x) = â(x− x01) + b̂ : x ∈ [x01, x02 + L2]

Note that for a position x, V (x) can be obtained from multiple instantiations of xp; i.e.,

V (x) = â(xp)(x− xi) + b̂(xp)

All the values of V (x) thus obtained are averaged for that particular spatial position and

thus the final velocity estimate is obtained as a spatio-temporal statistic. The method is

further explained with Fig 3.11. Consider the velocity for the pixel in the center. It would

observe 3 categories of streaks; ones that start, ones that end and ones that just pass over.

These streaks can now be used to obtain a velocity estimate for this pixel in the center

and nearby pixels within the window of analysis. Note that while getting the estimate we

would resolve and find the estimates separately for the horizontal and vertical components.

Now consider the very next adjacent (horizontal direction) pixel. While considering this
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Fig. 3.11: Spatio-temporal averaging of streak velocity fields.

pixel and the streaks it observes, and finding the velocity estimates, the previous pixel also

falls into the window of analysis and the velocity parameter estimates are utilized to obtain

velocity for both these pixels again. All these velocity estimates are averaged in the end,

resulting in a smooth 2-D field (from the 2 components). Indirectly, the averaging gets us

closer to a second order correct spatial velocity estimation.

The performance of this method was found to be excellent for large numbers of con-

tributing streaks. Smoothness of the velocity surface so obtained can be further improved

and missing-data problems corrected, by surface fitting and other interpolation methods.

Details for these methods and their performance will be studied in future and not covered

in this dissertation.
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CHAPTER 4

EXPERIMENTAL CONSIDERATIONS

The µPSV analysis methods described in Chapter 3 are targeted towards everyday labo-

ratory velocimetry requirements. The hardware relaxation enables the user to obtain ex-

perimental data with minimum cost and effort. While the actual data acquisition steps are

quite similar to µPIV , some adjustments need to be made and some points need to be kept

in mind to ensure high quality streak data. Note that a high quality µPIV setup would

definitely give high quality streak data (provided the exposure time can be controlled) but

this expense is not mandatory and this was one of the stronger motivations for this work.

As mentioned earlier, the analysis methods developed in this work use a data table which

contains streak descriptors (start and end points) for multiple streaks at the same spatial lo-

cations, the data being obtained from multiple frames. Hence experimental considerations

that lead to accurate streak descriptors are important.

We first delineate the expectations for an ideal streak image and what are the stan-

dard deviations. To visually elaborate, Fig. 4.1 shows the common possibilities that the im-

age processing algorithm might encounter in order to construct the spatio-temporal streak

descriptor table. The first is the image of a tracer particle, ideally this should be a circu-

lar pattern and can be obtained in a region where the tracer particle is static and does not

experience any resultant force. The second image is that of an ideal streak, with the end

parts resembling semicircles and having a width equal to the static particle image diame-

ter. The next few images show different possibilities of obtaining images with overlap and

defocussing errors. As can be seen, in the overlapping errors, the streaks would have to be

extremely close in the vertical axis of imaging. Only then would their imaged sizes would

be similar enough to cause confusion. In the case of defocussing errors (shown last), the

overlapping streaks would vary considerably in size. It may be noted that since the pro-

posed method depends entirely on the streak length and the starting position, the ultimate

goal of the experimental data acquisition is to obtain clear, distinct streaks with discernible

boundaries.



Fig. 4.1: Particle image cases: ideal tracer, ideal streak, overlapped streaks and defocussed,
overlapped streaks

4.1 MICROFLUIDIC DEVICE DESIGN

Device design plays a big role in the acquisition of experimental data. A poorly constructed

device is almost certain to generate poor quality data, leading to a huge requirement on the

preprocessing of images and often resulting in poor velocimetry estimates. Note that this is

a consideration that cannot be altered once the experiment has started.

4.1.1 Channel depth and surface uniformity

The channel depth of a microfluidic channel is an important factor. A classic concern would

be the case when the channel depth is not sufficient for the tracer particles to pass freely,

leading to erroneous inferences from the captured image data. As a principle, the channel

depth (or diameter) should be at least an order of magnitude larger than the particle size

so that no size effects occur. Another important concern is the nature of the walls of the

channel. For best results, the inner surfaces of the channels should be as uniform as possible

and preferably coated with a substance that reduces the surface adsorption and adhesion
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of tracer particles. Alternatively, tracer particles can be coated, thus reducing adhesion.

An example of this would be the use of particles coated with polyethylene glycol (PEG).

Channels that can be reused (e.g., glass channels) should be rinsed and cleaned after every

experiment. An ultrasound bath can be used to remove tracers attached to the walls.

4.2 EXPERIMENTAL SETUP

Experimental setup is another consideration that cannot be altered during the image capture

process. Hence the following points need to be carefully planned to reduce experimental

re-runs. The inverted microscope forms the main component for our experimental setup

and a schematic of the microscope model that was used is shown in Fig. 4.2.

4.2.1 Illumination and fluorescence imaging

Volume illumination was used for our experiment using the lamp attached to the micro-

scope. A pulsed light source is not required as we do not need high-speed synchronised

imaging. However, the use of a pulsed source can help reduce the directional ambiguity

as suggested by Adrian [6]. The light source intensity should be controllable to easily op-

timize the image intensity below the saturation level. While our analysis is not directly

dependent on the intensity of the streak images, increasing the light intensity or the gain

beyond the CCD maximum bit levels increases the background noise and in the bleaching

of the fluorescent dye which eventually reduces the SNR, leading to erroneous velocity

estimation.

Fluorescence imaging was used for our experiments and is strongly suggested for

the use of µPSV . This is because light from the fluorescent tracer particle is the main

source of the image that is formed on the camera sensor and a large volume of illumination

originating from the walls and other non-fluorescence disturbances is blocked by the optical

filter tuned to the fluorescence emission wavelength.

4.2.2 Tracer particle features

Ideal tracers are identical spherical volumes with no inertial drag, surface adhesion, tem-

perature effects and chemical effects. In practice this is not possible. So we need to select

53



Fig. 4.2: Schematic of an inverted microscope (Olympus IX70)

tracer particles that are uniform in size (minimal deviation in diameter), mono-disperse, and

have an optimal particle image diameter. Particle sizes between 500 to 1500 nm usually of-

fer a good compromise between visibility and flow fidelity [3]. Colored tracers can be very

useful, especially when the region of observation can be distinctly segregated into different

velocity zones. Intelligent choice of surface charge and particle size can then get excellent

estimation results; e.g., for electrophoresis and di-electrophoresis studies. Another way by

which tracers of multiple colors can be useful is in the correction of overlap errors. For

example an unidirectional overlap of three streaks of identical particle size but different

colors can be easily resolved by filtering the image into different color components.

4.2.3 Seeding density

There is a distinct need to avoid high seeding density to reduce streak overlaps. Moreover,

a high seeding density would bring undesired problems of higher background noise and

particle clustering. The preferred alternative is to increase the particle count virtually by
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using more images, similar to the correlation averaging technique [16].

4.2.4 Numerical aperture for the optics

Lenses with high NA and planar correction should be used for the objective. High quality

objectives turn out to be the most cost-efficient way for improved image quality. The final

(static) particle image diameter should span at least 3 pixels. This is necessary so that sub-

pixel accuracy can be achieved. Since recommended particle size varies between 0.5 to 1.5

µm [3], the effective image pixel size should be less than 2 µm. Note that in this streak

based method the accuracy is strongly dependent on the pixel resolution and smaller image

pixel size delivers more accurate estimates.

4.3 IMAGE ACQUISITION SETUP

The image acquisition setup is usually coupled to the microscope system and can be con-

trolled in real-time using dedicated software. For some image capture devices, it may even

be possible to automatically change certain parameters by the use of programs.

4.3.1 Exposure time

The usefulness of the exposure time control has been discussed earlier. The minimum

exposure time should be such that it creates a well resolved particle streak at the region of

lowest local velocity in the microfluidic device. The upper limit of the exposure time is

set by the amount of overlapping that might occur or by the amount a particle streak gets

cut-off at the boundaries of the ROI being imaged. Note that a very large exposure time

would reduce the frame rate considerably, resulting in longer image acquisition times.

4.3.2 Frame rate

Frame rate and exposure time are related and is shown in the following simplified expres-

sion:

rf =
1

tacq + tread
=

1

tCCD + tshutter + texp

Setting a large frame rate makes the image acquisition process short. Moreover for a fixed

exposure time, an increase in frame rate implies that streaks from the same particle in con-

secutive images are closer together. Often this helps with more sophisticated velocimetry
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that requires inter-frame streak association. Note that for the proposed streak based method,

the upper bound on the frame rate is set by the smallest exposure time that can be used and

still lead to a well resolved streak. This in turn gets decided by the image resolution and the

local velocity in the experimental setup.

4.4 NUMBER OF FRAMES

Our proposed method is statistical one and strongly relies on a large number of streak

images being observed at each point in the ROI. Note that there is no constraint on the

starting points of streaks, although a uniform distribution of starting points (obtained over

time) would make the statistical strength of the estimation process uniform across the ROI.

For estimation of steady state particle velocity, we do not need to restrict ourselves to only

a small number of images. Consequently, a large number of images acquired for a steady

flow would greatly help the velocity estimation process.

4.5 DISTORTION EFFECTS AND MITIGATION STRATEGIES

The problem of defocussing cannot be eliminated without the use of laser-sheet based il-

lumination and (or) confocal microscopy, so as to constrain the depth of focus. Overlap

of streaks, on the other hand cannot be eliminated unless the seeding density is drastically

reduced. However, statistical and image processing methods in conjunction with some

knowledge of the velocity field can successfully mitigate these problems.

4.5.1 Overlap of particle streak images

Streaks in different layers can also get sharply imaged together, particularly when the chan-

nel depth is small. In this case, erroneous lengths (longer) can bias the local length distri-

bution (due to the mixing of lengths at different depths). But with a large dataset, the mean,

median and standard deviation can be used to eliminate most outliers. It may also be noted

that unless there is a considerable velocity gradient among immediately adjacent depth lay-

ers, the variance of the distribution of streak-length-error introduced at a particular focal

plane would be small. This is typically true if the functional properties of the microfluidic

channel are somewhat uniform across the depth.
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4.5.2 Defocussing of particle streak images

Unlike µPIV , our method is based on shape and not cluster pattern and intensity. Accord-

ingly, the defocusing problems are different than the known depth-of-correlation problem

encountered in µPIV [13]. For deeper channels, defocussed streaks over and below the

focal plane often get imaged. These are eliminated during morphological processing which

is based on the image diameter of a static tracer particle (recorded separately) in focus.

Streaks which are much “thicker” get eliminated. This is only possible since streaks have

a shape and a thickness determined by the particle image diameter. Moreover, the intensity

loss due to defocusing is used effectively in the local adaptive thresholding (selecting the

highest intensity streak to choose in-focus streaks and eliminate out-of-focus streaks).
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CHAPTER 5

IMAGE PROCESSING FOR PARTICLE STREAK FEATURE ESTIMATION

In Chapter 3, it was shown that it is possible in theory, to obtain the parameters of the

velocity field under a local linear approximation with the use of the spatial starting points

of all the streaks that are observed at a location and the lengths of these streaks. Hence, the

image processing algorithm that precedes this stage (of parameter estimation) is expected

to generate as output a table with these required values. The image processing required to

convert a set of image frames containing particle streaks to data tables that contain the start

and end locations of particle streaks is discussed in this chapter. Moreover we also briefly

discuss the use of these tables and the errors that are usually encountered.

5.1 FORMATION OF THE PARTICLE STREAK IMAGE AND STREAK FEATURES

Particle streaks are motion blur effects from isolated particles. Due to the extended time of

exposure, every tracer particle forms a trajectory within the focal plane. The corresponding

image is created in the image plane (e.g., CCD array) and the image formed includes the

effects due the optics. The Lagrangian representations are

ξ = ξ(x0, t− t0)

VL(x0, t) =
∂ξ(x0, t− t0)

∂t

(5.1)

In the case of uniform motion the motion blur impulse response has a simple closed form

expression. For example in the case of an ideal streak caused by a particle moving at

constant velocity V with an angle of φ with the horizontal axis during an exposure time T

is given by

h(x, y) =


1
V T ; 0 ≤ |x| ≤ L cosφ; y = L sinφ

0 ; otherwise

Similarly expressions for uniformly time accelerated motion can be derived for case where

d2ξ(x0,t−t0)
dt2

is a constant for the given time interval. However, more often than not the

acceleration is non-uniform both in the Lagrangian and Eulerian representations and is un-

known. So although simpler descriptors for the streak formation process are possible for an



(a) Image of static particles (b) Intensity surface plot for the par-
ticles

(c) Image of a particle streak (d) Intensity surface plot for the par-
ticle streak

Fig. 5.1: Static particles, particle streaks and their intensity surface plots

ideal point particle undergoing uniform motion, for velocity field estimation in experimen-

tal devices, this information cannot be used easily.

Fig. 5.1 shows images of static particles and particle streaks in the image plane and

a 3-D representation (surface plot) with the pixel intensity as the third axis. Note that the

surface plot of the particles shows clipping due to saturation. An important observation

is that in the ideal case of zero defocusing, the motion blur effect creates a particle streak

whose width is identical to the diameter of the static tracer particle image. During the

experiment, the sharpest images are obtained at the focal plane and objects above or below

are defocused. Consequently, such particles and streaks have a higher diameter and width

than images obtained in the focal plane. Hence information about the image diameter for

static particles is extremely important. In most of our experiments, the static particle image
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diameter is around 5 pixels. If we consider carefully the bounding box method, we find

that the corners of the streak and the corner of the box touch each other. Assuming that

the center of the blob placed at the corner of the same bounding box and the center of the

particle forming the streak is at x0, a correction needs to be made for the particle diameter

extent. This is done in our streak length processing.

For the proposed method, the intensity variation over the spatial extent of the streak

is not directly utilized for the final velocity computation. Some particle streak tracking

based velocimetry algorithms however use this kind of information and can be found in the

works of Rosenstiel [36] and Hering [30]. Hence the most important particle streak feature

information required for the proposed method are the end-points of the particle streak.

Note that the image analysis algorithm actually does not matter as long as these features

are obtained. A streak sketch in 2-dimensions with its descriptors is shown in Fig. 5.2. The

streak is isolated by a bounding box and a straight streak is assumed. The starting point and

the length are the two most important outputs from the streak detection phase.

Fig. 5.2: An ideal streak with its bounding box
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5.2 IMAGE PROCESSING OF PARTICLE STREAKS

Image processing for the particle streaks uses some basic computer vision procedures em-

ployed for object tracking and motion estimation. There are multiple ways in which these

procedures could be implemented and no claims of quantitative superiority is made for the

standard methods used here.

5.2.1 Some basic concepts and methods

The basic methods employed for the processing of particle streaks include local thresh-

olding (for object detection), finding the bounding box and the local orientation (object

tracking) and block matching (motion estimation).

Bounding box

The bounding box is an imaginary rectangle that tightly encloses a foreground object in the

image plane. The straight lines that make this box are the of the form y = MINROW

and y = MAXROW in the vertical direction and x = MINCOL and x = MAXCOL,

where the constant values on the RHS are the minimum and maximum row and columns

for which there exists a pixel that belongs to the particle streak. Hence, the thresholding

procedure immediately helps define the bounding box.

Local orientation

Local orientation here refers to finding the direction within the bounding box of the streak

in which there is continuous chain of high intensity pixels. So effectively, the spatial extent

of the streak is traversed along the longer diagonal of the bounding box. Note that the usual

definition of local orientation has been simplified and is obtained for a binary image area

and not for a intensity variation. Accordingly, calculation of 2-D image gradients is not

required. Detailed description of local orientation methods can be found in the works of

Jahne [62] and Nordberg [63]. For our case a Radon transform [64, 65] is sufficient and

provides a method to automatically confirm which diagonal of the bounding box rectangle

encounters a higher number of ‘ON’ pixels.
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Local thresholding

Local thresholding helps reveal the foreground objects compared to the background image

plane. For high quality imaging, global thresholding is sufficient, but local thresholding

is more effective in our case where all the particles being imaged may not be in the exact

focal plane depth. In such a case, these objects would have a different range of intensity

values for their images. It was found that a multilevel thresholding algorithm works best

for our purpose. Further details on thresholding can be found in standard image processing

textbooks [66, 67] and review articles [68].

Block matching

A block matching algorithm (BMA) locates matching blocks in an image sequence, and

between consecutive frames for our purpose. Knowledge of the temporal order and the

location of a matching block provides the information of the motion vector in the region of

interest. A discussion on the major BMA’s can be found in literature [69, 70] but for our

purpose a vectorized extensive search was used, since the search neighbourhood selected

was quite small.

5.2.2 The processing algorithm

The processing algorithm has several image processing stages. All these stages however

are well known in image processing literature individually and multiple implementations

exist that can perform the requirements for each stage. Hence, in this section we discuss the

relevant processing logic with respect to our goal and not the details of each sub-process.

The image processing code was written in Matlab (Mathworks, Inc.)

Fig. 5.3 illustrates together an actual experiment, an acquired image from the ex-

periment, a streak from the image and the bounding box around this streak obtained during

the image processing. The width W and the height H of the box would naively represent

the exposure time-weighted local horizontal and vertical velocity components respectively.

The figure also shows the presence of particles stuck to the channel floor. Note that these
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particles would create regions of consistent high intensity in the images, by aggregating

through the temporal stack.

Fig. 5.3: An experimental setup showing schematic, particle streaks and bounding box

Algorithm description

The processing algorithm was made to accommodate both experimentally obtained particle

streak images and those obtained by simulation, the only difference being the absence of

the preprocessing stage for the simulated images as they are free from background noise,

defocussed streaks and images of tracer particles stuck to the channel floor. In contrast,

because of these artefacts, the pre-processing stage is very important for actual experimental

images, as is the quality of the images themselves. For better performance, the experimental

process should incorporate strategies such that the image acquisition process is efficient and

this has been discussed in some detail in the Chapter 4. Fig. 5.4 shows the image processing
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stages. The main steps are shown connected by arrows and the sub-steps are shown below

each of the main steps. The blocks on the extreme RHS are particular techniques that were

used and can be replaced by other methods if required.

Fig. 5.4: The streak image processing algorithm

The preprocessing stage reduces the noise and eliminates spatially constant distor-

tions. Spatially constant distortions are removed by obtaining temporal statistics (minimum

pixel value for each pixel across the image stack). The spatial instrument noise is reduced

by 2-D spatial noise reduction algorithms. While obtaining the temporal statistics, the

maximum intensity projection (MIP) is also found to identify the spatial coverage and flow

pattern. For a large number of image frames, streaks would be found at all places where
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the flow occurs and thus the MIP image can be used to obtain a region-of-interest for which

particle flow occurs. Also by performing an image sum operation through the stack we

obtain the region of coverage as a frequency map describing how often a streak might be

observed at a pixel. Regions (and pixels) that have poor coverage and frequency of streaks

can be masked to reduce computational expense.

The streaks are detected by thresholding. A simple global thresholding is used for

simulated images while an adaptive multilevel thresholding is used for actual experimental

images. Defocussed streaks can be removed by a combination of morphological operations

and multilevel thresholding, where the multilevel thresholding detects the defocussed image

and can be subtracted in the image domain, while a proper selection of structuring element

based on the static particle image diameter can be used to retain focussed streaks.

After the streak is detected, the bounding box is first obtained. The corners of

the bounding box represent the endpoints of the streak, but prior to that the endpoints are

corrected for the diameter of the particle image. Note that there is an ambiguity about

which diagonal corner is the starting point and is resolved by the local orientation and

the computation of only the horizontal component of the motion vector. This is further

discussed later in this section. Once the endpoints are obtained, we know the starting point

Fig. 5.5: Obtaining the position and length stacks

of the streak and the particle streak length. This is updated in the position and length feature
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databases (stacks). The process is further illustrated by Fig. 5.5. The images represent two

arbitrary frames in an acquired image sequence where a streak is observed at position xp, yp

for both the frames P and Q. The corresponding starting points, and bounding box lengths

are also shown in the figure. Thus, from these two frames, the position xp, yp is updated in

four different databases at two positions in the temporal direction. When all the acquired

image frames are processed, the generation of the streak feature database is also complete.

Resolving directional ambiguity

The directional ambiguity for streaks can be removed by either using hardware [71, 72] or

by the use of image processing based motion estimation techniques. The exact requirement

here is to identify the corner in the bounding box where the particle streak originates. For

this we first need to identify the diagonal of the rectangle which contains the maximum

number of streak image pixels. This is done by finding the local orientation as discussed

earlier. Once we know the diagonal, information about the sign of the horizontal component

is sufficient to resolve the directional ambiguity. This is done in the following way. An MIP

image is generated from about 10 randomly selected image frames from the image stack and

another MIP image is generated by taking next immediate frames for each of the frames.

Then, a small neighbourhood is selected in the center of the bounding box for the first MIP

image and this is searched for the best horizontal block match in the other MIP image. The

direction of the best match gives the sign of the horizontal motion vector. Fig. 5.6 shows

the use of the orientation and X-component sign information to identify the corner of the

bounding box where starting point is located.

5.3 STREAK FEATURE DATABASE AND THE LOCAL LENGTH VARIATION TABLE

The streak feature database is similar to an image stack and in pixel space, occupies the

same volume as all the acquired images put in a stack. The order of the frames in the

database does not matter after its generation, but during the image processing the the time

sequence is important for the block matching algorithm. A block diagram of the database is

shown in Fig. 5.7. Only the horizontal component is shown here, but the vertical component

66



Fig. 5.6: Resolving directional ambiguity

yields similar stacks. Considering again the position xp, yp and looking through-the-stack,

there would be some frames where that position has a value and many more where the

value is zero depending on spatial extent of the streaks in different frames. Considering

the collective values as 1-D arrays, four such arrays are obtained, two each for the length

and the streak starting positions. Now arranging them side-by-side we get a table of all the

lengths and the streak starting positions. This table always has more zeros than non-zero

values since the number of streaks seen at a point is much smaller than the total number of

frames. Hence the zero valued rows are removed and the table length columns are sorted

in ascending order of starting position to get the local length variation table. Note that the

lengths are signed and are thus positional displacement vectors. An example of the local

length variation table is shown in Fig. 5.8.

The local length variation table can be directly used for estimating the local ve-

locity by either the spatio-temporal averaging method or by the local linear approximation

method as shown in Fig. 5.9. The sorting process described earlier actually helps in elim-

inating large outliers even before the data is used for robust linear fitting. Note that in the

ideal case of a smooth field with small spatial gradient, the streak lengths would monoton-

ically increase or decrease when the starting position increases. This is because for this
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Fig. 5.7: Streak feature database

Fig. 5.8: Obtaining the local length variation table

approximation the streak lengths can be written as L(x0) = x0(eaT − 1) + b
a(eaT − 1)

which implies that ∂L
∂x0

has the same sign as the local spatial velocity gradient ‘a’. Note that

in the case of a closed form parametric expression for the Eulerian field, we can directly

use the streak lengths to find the parameters by fitting methods.

Instead of using the local length variation table, the streak feature database can be

directly used to obtain the spatio-temporal velocity estimate. This is actually a very quick
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Fig. 5.9: Velocity estimate from local length variation table

method of obtaining the velocity field. The mean is computed for a pixel, through-the-stack.

The biasing effect of the zero values can be eliminated by first obtaining a binary indicator

stack of same dimension where the presence of a detected streak is indicated by ‘1’. Then

the temporal sum is computed for the length stack and the indicator stack and their ratio

gives the unbiased mean at that point (pixel).
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CHAPTER 6

PARTICLE TRACK SIMULATION FOR KNOWN VELOCITY FIELDS

Particle velocimetry using image analysis is an effective non-intrusive method used for

fluid velocity field estimation in micro-channels. However, the performance of velocity

estimation algorithms is usually moderated by factors like particle density and the presence

of strong velocity gradients. Consequently, it is necessary to run an experiment multiple

times before the actual data collection process in order to determine the effectiveness of the

imaging, qualitatively understand the nature of the velocity field and check the performance

of an algorithm. Simulation of particle positions across time and space for known velocity

fields would thus be extremely useful.

6.1 SIMULATED DATA FOR MICROFLUIDICS EXPERIMENTS – IMPORTANCE AND

DIFFICULTY

Simulation of gold-standard data for user-designed microfluidic experiments is an impor-

tant topic that has not received much attention, even though a vast majority of PIV and

µPIV results, both experimental and theoretical are based on computer simulations. As

pointed out in the works of Okamoto et al. [73] and Lecordier et al. [74] developers of

different PIV and PTV algorithms have analysed the efficiency of their algorithms using

their own evaluation procedures; standardized evaluation methods are extremely rare. In

most of these simulations a Monte-Carlo approach is used where the consecutive images

are generated by either simple shifts based on local averages of a known velocity field, or

by a fixed motion model (usually affine). Multiple simulations and consequent processing

then lead to required statistical estimations. Examples of such approaches can be found in

the mainstream PIV work by Keane and Adrian [75], Raffel et al. [9], Wereley and Mein-

hart [23], Nogueira et al. [20] and also in PIV application, comparison and improvement

methods [22, 76, 77, 78]. Well documented efforts to standardize simulated PIV data are

also few and the efforts by Okamoto et al. [73] to create a standard test image library and

the synthetic image generator (SIG) tool by Lecordier and Westerweel [74] were the only

significant ones we could find, despite extensive literature review. In the standard image



test sequence, the velocity fields were simulated for a 3-D large eddy flow and the particle

displacements from their random positions were based on this velocity vector field. The

SIG tool was developed for EUROPIV2 (a PIV challenge competition) for generating test

images, and it uses velocity vector fields obtained from other tools for flexibility. With the

velocity fields, random particle images were used as earlier, but the tool incorporated the

simulated optical set up so as to mimic different imaging conditions. Apart from the above

mentioned methodology, there is also another class of simulations where the particle posi-

tions are found using closed form expressions [79, 80]. The existence (or the derivation) of

a closed form expression that completely characterizes a complex system is quite unlikely

and eventually the velocity fields used for such simulations are either classical ones for

which closed form mathematical expressions exist, or are arbitrary and simple (e.g., linear).

Since our target is to develop an algorithm that can work for different channel ge-

ometries, we are more interested in the simulation methods that deal with arbitrary velocity

fields, where closed form solutions do not exist for the displacement field. Many of these

simulation models use velocity fields from CFD tools and the random particle locations are

altered based on the velocity field by simple shifts, where for actual experiments this is

certainly not so. An assumption on which such simulations are based is that the inter-frame

time is extremely small and so is the exposure time. Hence, only point particles are im-

aged and consecutive frames are so close to each other in time that the motion of the tracer

particles can be well approximated as simple shifts. This assumption breaks down easily

for larger exposures or for larger time-lapse between successive images as now the shift

between initial and final position is a complex shift which is the result of multiple simple

shifts. However, it may be noted that this does not mean that this technique is unsuitable

for µPIV studies. This is because µPIV is based on the fundamental requirement of fast

imaging. For our purpose of simulating particle tracks, however, such methods will not

work as now the finite time increment motion of the particle needs to be simulated based

on a velocity field; i.e., all the positions of the particle need to be found and mapped to the

image space. The main difficulty in generating such simulated data for arbitrary experi-
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ments lies in the generation of particle pathlines for finite time intervals from a system for

which the velocity vector fields are not expressible as closed form equations. Apart from

this problem, the generation of velocity fields for an arbitrary user-designed device is often

difficult.

We propose the use of computational fluid dynamics (CFD) simulation tools to

generate velocity fields for micro-channel designs and then calculate progressive changes

in particle position for given imaging parameters. This is then used to simulate images

which can then be used to verify an algorithm’s performance before it is used with real

data. Since closed-form 2-D velocity equations are not easily available for most experi-

mental micro-channel designs, this method helps simulate particle movement based on the

underlying fluid dynamics equations. Also, it enables us to change experimental factors

such as particle density and physical dimensions readily and re-evaluate the algorithm per-

formance, ultimately leading to a more efficient velocity field estimation with real data. In

this dissertation, COMSOL Multiphysics [81] was used as the CFD simulation tool, how-

ever other similar tools can also be used. The image generation framework established

here is targeted to serve two important purpose. The first is to serve as a method by which

particle motion can be visualized for arbitrary experiments and arbitrary experimental con-

ditions and the second it to serve as a synthetic image generator which can generate particle

images, particle track images and streamlines. Moreover, such a method was essential for

this dissertation as, unlike PIV, there are no known repositories or tools for particle track

images which have a corresponding known velocity field.

6.2 SOLUTION FOR 1-DIMENSIONAL VECTOR FIELD

Simulation of a particle streak requires particle positions on a finite time track (streak) to

be generated from a known Eulerian field. Apparently, this is a direct problem and from

our earlier discussions on velocity vector fields, the ODE representing the streamlines can

be used. However, there are two practical factors that complicate the above computation.

Firstly, the length is a time integral of the Lagrangian velocity which is generally not avail-
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Fig. 6.1: Particle image generation block diagram

able. The Eulerian velocity is available which is related to the Lagrangian velocity as

VL(x0, t) = VE(x, t)|x=ξ(x0,t)

where x = ξ(x0, t) represents the path taken by the particle (position-time instant depen-

dence) which is unknown. Hence, the particle path equation needs to be evaluated first

which can then yield the Lagrangian velocity by differentiation.

∂ξ(x0, t)

∂t
= VE(x, t)|x=ξ(x0,t) → VL(x0, t) =

∂ξ(x0, t− t0)

∂t
→ L =

x0+L∫
x0

VL(x0, t)dt

The second factor is that VE(x) is generally not available in closed form for ex-

perimental systems. Instead, discrete samples of VE(x) might be available from CFD tools

(e.g., COMSOL). Thus the form for VL(t) cannot be pre-computed. Numerical methods

are used to solve for the particle track length. The methods are described for 1-D vector

fields. For 2-D fields, the 1-D method can be reused and this is discussed later.
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Algorithm 1 Particle track length by Modified Euler method

∆t← T
N

xf ← xi
xi ← 0
for i = 1 to N do
xi ← xf
xf ← xi + k∆t1

2 [VE(xi) + VE (xi + ∆tVE(xi))]
end for
L← xf

It may be noted that there are other possible methods than the ones described be-

low; e.g., higher order Runge-Kutta methods. But these were the ones that were tested for

performance for this dissertation. Computational accuracy and speed were the two main

performance metrics and a more accurate and (or) faster method would allow improved

replication of the real physics and (or) lead to lesser time in simulation. Another important

point is that the streak positions calculated are for the center-of-mass of an ideal, spher-

ical, tracer particle. Images from the particle positions and continuous particle positions

(particle streak images) are also ideal. Accordingly, defocussing by depth or optics of the

actual image is implemented as a post-track-processing image processing block, which is

essentially a convolution process with the defocussing function (point spread function).

6.2.1 The modified Euler method DE solver

The modified Euler method is an improvement on the simple explicit Euler method and is

a special implementation of the second-order Runge-Kutta method [82]. In terms of the

exposure time T , the streak-length L, and the starting point x0, the numerical method is

implemented using algorithm 1 above.

The advantages of using this method is that the number of steps is fixed at the start.

However, there is no indication as to how small the step sizes should be. Extremely small

step sizes would avoid larger errors but the computation time would increase. Moreover an

extremely small step size may not be a required.

The next two methods work with the next step after the differential equation is
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set-up, i.e. the expression for arc-length discussed in the third chapter.

x0+L∫
x0

d(x(τ))

VE(x(τ), t0)
=

t0+T∫
t0

dτ

Since the velocity field is time-invariant, we have,

x0+L∫
x0

dx

VE(x)
=

t0+T∫
t0

dτ (6.1)

6.2.2 Newton-Raphson method of finding roots

Here streak lengths are generated using the Newton-Raphson method [83]. If we consider

the differential equation that relates the particle path and the Eulerian velocity, then we have

∂ξ(x0, t)

∂t
= VE(x, t)|x=ξ(x0,t)

Using this directly to solve for L , we have

x0+L∫
x0

[
1

VE(ξ)

]
dξ =

T∫
0

dt (6.2)

We then denote a function f(L) as

f(L) =

x0+L∫
x0

[
1

VE(ξ)

]
dξ − T (6.3)

where L is the root to the equation f(L) = 0. We can iteratively find the value of L by

Newton-Raphson method. Consequently we need to find the terms for the root updating

step of the Newton-Raphson method which is

L(i+ 1) = L(i)− f(L(i))

f ′(L(i))
(6.4)

Now evaluating the derivative for the function f , we get

f ′(L) =
d

dL

 x0+L∫
x0

[
1

VE(ξ)

]
dξ − T

 =
d

dL

 x0+L∫
x0

[
1

VE(ξ)

]
dξ

 (6.5)

The above derivative can be obtained by Leibnitz’s integral rule, from which we have

d

dx

∫ f2(x)

f1(x)
g(t)dt = g(f2(x))f ′2(x)− g(f1(x))f ′1(x)
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Algorithm 2 Particle track length by Newton-Raphson method

v ← VE (x)
T ← Texp osure

δLmin ← 10−2

δL← 1000
g ← 1

v
Li ← 0
while δL > δLmin do
Li+1 ← Li − VE (Li) [I (Li)− T ]

δL←
∣∣∣Li+1−Li

Li

∣∣∣
end while
L← Li

for a one-variable function g. Since f(L) is also a monotonic increasing function (length

always increases) , if we let g(ξ) =
[

1
VE(ξ)

]
, then

f ′(L) =
d

dL

 x0+L∫
x0

g(ξ)dξ

 = g(x0 + L).1− g(x0).0 (6.6)

f ′(L) = g(x0 + L) (6.7)

Hence the updating step becomes,

L(i+ 1) = L(i)−

x0+L(i)∫
x0

g(ξ)dξ − T

g(x0 + L(i))
(6.8)

L(i+ 1) = L(i)−

 x0+L(i)∫
x0

g(ξ)dξ − T

VE (x0 + L(i)) (6.9)

Algorithm 2 is used for the implementation of the Newton-Raphson method. Firstly, we let

I (L) =
x0+L∫
x0

g(ξ)dξ and VE (L) = VE (x0 + L) which represent a cumulative integral on

the inverse of VE and the value of VE at a particular value of L distance from the starting

point x0 respectively.

The Newton-Raphson method is quick and does not require fixing the number of

intervals, however it does need specifying the interval size in the numerical integration

that needs to be performed (to get I (L)). It is also dependent on choice of the initial
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starting point. For our simulations the initial point was chosen based on a linear assumption

on the Eulerian velocity samples, for which the particle track length can be expressed in

terms of the starting point, exposure time and linear field parameters a and b. It may be

noted however that the method is not independent of the numerical integration. In the

next method, we propose the direct use of numerical integration and solve for the root

geometrically.

6.2.3 Geometric solution using cumulative integrals (GSCI) method

Let us start with a sampled 1-D Eulerian field as earlier. We assume that the vector field is

smooth and non-zero (VE (x) 6= 0). Now considering a function g(x) = 1
VE(x) as earlier,

we assume that the continuous function between a particular sample gn and the immediately

next sample value gn+1 is linear; i.e,

gλ = λgn+1 + (1− λ)gn;λ ∈ [0, 1] (6.10)

It may be noted that a similar assumption is made on the function values (joined by a

straight line) while applying the trapezoidal rule of numerical integration. With this setting,

we proceed with the explanation of the GSCI method for obtaining particle track length.

Firstly, we have from the usual pathline ODE

x0+L∫
x0

1

VE(x)
dx = T (6.11)

Also, we define

In =

xn∫
x0

1

VE(x)
dx (6.12)

where n is an arbitrary discrete value index, while x0 is the usual notation of the starting

point. Fig. 6.2 gives a clear idea of the definitions.

From the diagram, we immediately see that

Iq =

xq∫
x0

dx

VE(x)
=

xp∫
x0

dx

VE(x)
+

xq∫
xp

dx

VE(x)
(6.13)
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Fig. 6.2: Continuous and discrete relations for the GSCI method

or

Ip +

xq∫
xp

dx

VE(x)
= Iq (6.14)

But xq = x0 + L, so Iq = T , which gives

xq∫
xp

dx

VE(x)
= T − Ip (6.15)

At this point we use the trapezoidal rule to obtain the value of the integral on the LHS. This

gives
1

2
(xq − xp) [g(xp) + g(xq)] = T − Ip (6.16)

where g(x) has the earlier definition (samples of g(x) are index-wise inverted samples of
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VE(x)). We let y = xq − xp which gives

y =
2 (T − Ip)

g(xp) + g(xq)
(6.17)

Now denoting gk = g (xk) and considering a line joining the function values at p, q and

p+ 1, we have

gq =
gp (xp+1 − xq) + gp+1 (xq − xp)

xp+1 − xp
(6.18)

Simplifying and noting that xp+1 − xp = ∆x which is the unit of separation between

samples, we get

gq = y(gp+1 − gp) + gp (6.19)

Equating the two expressions to eliminate gq which is unknown, we get

y =
2 (T − Ip)

y(gp+1 − gp) + 2gp

(gp+1 − gp)y2 + 2gpy + 2 (Ip − T ) = 0 (6.20)

The above equation is a quadratic in y. Solving for the positive root, since xq > xp we get

y(p, T ) =

√
gp2 + 2(gp+1 − gp) (T − Ip)− gp

(gp+1 − gp)
(6.21)

which gives us the position where the LHS of integral from the pathline ODE equals the

exposure time T .

The above discussion is based on the fact that we locate the indices of the available

contiguous samples between which the above discussed integral converges to a value T .

Consider now the following diagram.

We observe that the function f(L) defined in the earlier section changes sign be-

tween these two indices. Let Īn be a N × 1 matrix, each element of which is an integral

on g(x) as defined earlier. Then Ū = Īn − T changes sign from negative at the (p+ 1)th

known index. Hence this can be obtained easily if we get Īn. Now since Īn represents a set

of cumulative integrals, we can express Īn as a product Ag where A is a predefined matrix
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Fig. 6.3: Locating the sign change position of the cumulative integral

for a given length of g and g is the column matrix of g(x) samples. For example, if we use

the Riemann integral we have

I1 = g1

I2 = g1 + g2

In = g1 + g2 + ...+ gn

which gives

Īn =



1 0 : 0

1 1 : 0

: : : :

1 1 .. 1





g1

g2

:

gn


(6.22)
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Algorithm 3 Particle track length by Geometric Solution using Cumulative Integrals

v ← VE (x)
T ← Texp osure

g ← 1
v

U ← Ag − T

[p← max
p
{p : U(p) < 0}

L← xp + y(p, T )− x0

Hence we have for this numerical method of integration

Īn = ARg;AR =



1 0 : 0

1 1 : 0

: : : :

1 1 .. 1


(6.23)

Similarly we can have a predefined matrix A for the trapezoidal rule or Simpson’s rule.

Now given the velocity field samples, with the predefined matrix, minimum computation

time would be used for the computation of Īn and we can quickly locate the sign change in

the following expression and find the index (position) of sign change ‘p’.

Ū = Ag − T (6.24)

Algorithm 3 for the GSCI method described uses some the function definitions stated ear-

lier.

6.3 EXTENDING 1-D SOLUTIONS TO 2-D

In the previous section we discussed a some solutions to the streak-length determination

problem from discrete Eulerian velocity samples of a 1-D velocity field. While this is also

useful in many experimental situations (e.g., centerline particle path simulation for mi-

crofludic channels), extending this to two-dimensions would give far more realistic simula-

tions and help us obtain actual image sequences. There results would then be comparable to

the images acquired from an actual particle visualization under the microscope. The added

advantage is that the velocity fields responsible for the particle images are generated by a

user in a CFD tool for a particular experimental schematic.
81



6.3.1 Pathline sampling of vector fields

Since we deal with only time-invariant fields here, pathlines are similar to streamlines. We

use the given horizontal and vertical velocity fields U(x, y) and v(x, y) to first calculate

the streamlines for particular starting points for the particles. While detailed description for

streamline computation is not discussed here, given the velocity field components, we can

calculate the stream-function which represents the solenoidal part and the stream-potential

which represents the irrotational part of the flow. Knowing the stream-function and the

stream-potential, we can calculate the streamlines. For the actual simulation this is accom-

plished by the ‘stream2’ function in Matlab which computes 2-D streamline data.

Once the 2-D streamline data points are known, the velocity field samples, both

in X and Y are also known. Hence the distance between successive path points can be

projected onto the X-axis and the corresponding net velocity values can be used as Y-axis

values to get a 1-D velocity field. The concept is further explained in Fig. 6.4.

Fig. 6.4: Velocity field sampling by particle pathline

After the 1-D velocity field is obtained, the methods described in the previous sec-

tion can be used to get the streak-length as well as the intermediate spatial points. With this
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information we can either simulate the entire streak (all the pixels corresponding to the spa-

tial points on the streak path are set to 1) or the point particle(either by actually setting the

exposure time extremely small or just using the initial and final points, where we assume

minimal exposure).

6.3.2 Pixel connectivity using the Bresenham’s algorithm

The pathline samples can be far apart depending on the sampling density of the velocity

field. This means that the pixels which get selected as contagious points on the pathline

are not actually so in the pixel-domain by the 4-connectivity or 8-connectivity definition.

In such cases, these consecutive index pixels will need to be connected. Such a problem

is usually encountered in computer graphics and game development and Bresenham’s line

algorithm [84] is often used for this purpose.

Bresenham’s line algorithm determines which points in an n-dimensional raster

should be plotted in order to form a close approximation to a straight line between two

given points. It uses only integer addition, subtraction and bit shifting, all of which are very

cheap operations in standard computer architectures and is one of the earliest algorithms

developed in the field of computer graphics. We use this algorithm to get the indices of

the pixels which connect disjoint pixels on the streak extent. This provides us with a more

realistic simulation of the digitization that would have occurred in the case of an actual

experiment.

6.4 THE STREAK SIMULATION FRAMEWORK

A complete streak simulation framework can now be constructed based on our earlier dis-

cussions. There is no restriction on the programming language but Matlab 7.1 (Mathworks,

Inc.) was used to implement the algorithms. The 2-D velocity field components can be

generated from any source but the corresponding import method has to be implemented

accordingly. The schematic in Fig. 6.5 shows the interconnections of the different blocks

of the framework. The small block in the bottom part of the figure shows the complete

framework as a whole with only the input that changes for a particular experiment. Note
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Fig. 6.5: The streak image simulation framework

that the velocity fields are steady (time-invariant) and hence fixed and so is the exposure

time T . However, x0 can change with position on the image frame (note that the coordi-

nates are object coordinates; i.e., not discretized) as well as the index of the frame (k) in

a sequence of frames. This block can now be used in a programming structure to gener-

ate image sequences. Image frames generated from this framework were used as baseline

(gold-standard) images for this work.
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CHAPTER 7

RESULTS AND PERFORMANCE EVALUATION

In this section we discuss the results and performances of the various methods of velocity

field estimation and particle streak simulation that have been presented in this dissertation.

The performance of the proposed methods is studied in an absolute sense against simulated

data for which the actual velocity fields (1-D or 2-D) are known. In the section where we

study the performance of the simulation method itself, we use velocity fields for which

streak lengths are known as mathematical expressions. The distinct advantage of the simu-

lation based performance analysis that is presented here is the elimination of a heavy image

pre-processing framework to get high quality streak images for analysis. However this does

not simplify the estimation or visualization (by particle streaks) problem since the test ve-

locity fields which are used for data generation are complex and do not result in simple

shifts over extended exposure (time) periods.

A considerable emphasis is put on the performance evaluation of 1-D simulation

of streaks and 1-D velocity estimation. This is because for the 2-D simulation of streaks,

the problem is reduced to a 1-D simulation problem where the particle traverses on the

streamline and the length of the streak is determined by the net velocity field along this

streamline. Hence the streak generation process is essentially a 1-D process as proposed

here. In the case of the velocity estimation the velocity components are treated separately,

thus resolving the streak length into X and Y components which are either used in a 1-D

local linear approximation based estimation process or averaged spatio-temporally.

For the analysis of 1-D performance, four velocity fields were used. Of these, the

linear, exponential and hyperbolic velocity fields have closed form expressions for the com-

putation of streak length which is essential to have a quantitative error measure. Moreover

these three velocity fields represent a progression from a field with zero local curvature to

high curvature. Since curvature implies variation of local gradient, this set implicitly tests

the performance of the local linear assumption. The last velocity field is a sigmoid curve.

This was selected because its wide applicability to represent smooth transformation be-

tween two fixed states; e.g., the transition from a high velocity zone to a low velocity zone



Fig. 7.1: 1-D velocity fields used for performance analysis.

in a microfluidic channel. Fig.7.1 shows the velocity fields used for performance analysis.

7.1 STUDIES ON THE FIRST ORDER APPROXIMATION

The proposed method is based on local first order approximation of smooth velocity fields.

The errors for the first order approximation is studied here for the exponential and hyper-

bolic fields. The fact that the linear field has no error also implies that for practical appli-

cations, the local-linear approach for velocity field estimation would be highly effective for

spatial regions-of-interest with fields which are constant, linear or piecewise linear.

7.1.1 Positional error associated with first order Taylor series approximation for 1-D

fields

If a function (curve) is approximated by its first-order Taylor series approximation at a

point, the error in the approximation depends on the local gradient at that point and how

it contributes to the missing terms of the series. The relative error for a generic function

when first order approximated can be described as follows. The first-order Taylor series

approximation around a point xp by an amount ∆x is given as

VE(xp + ∆x) ∼= VE(xp) + ∆xV ′E(xp)

and the relative error is defined as

er =
VE , true− VE , est

VE , true
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(a) Results for exponential velocity field (b) Results for hyperbolic velocity field

Fig. 7.2: First order approximation relative error magnitudes for exponential and hyperbolic
velocity fields

Hence the relative error for the first-order approximation is

er =
VE(xp + ∆x)− VE(xp) + ∆xV ′E(xp)

VE(xp + ∆x)

er = 1− VE(xp) + ∆xV ′E(xp)

VE(xp + ∆x)
(7.1)

Here we want to show how much the gradient change affects the velocity field estimation at

a fixed point. Only fields with variable gradient change are considered. For the exponential

field, we have V (x) = beax. Hence, V ′(xp) = abeaxp which gives

er = 1− beaxp + ∆xabeaxp

bea(xp+∆x)
= 1− 1 + ∆xa

ea∆x

Similarly for the hyperbolic velocity field function we have, V (x) = a
b−x . Hence, V ′(xp) =

a
(b−xp)2

which gives

er =

(
∆x

b− xp

)2

(7.2)

The relative error of first order approximation at each point is shown in Fig. 7.2. As can

be seen the relative error increases exponentially. For these two functions considered the
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(a) Non-overlapping window size 200 µm (b) Non-overlapping window size 50 µm

Fig. 7.3: Tracking performance of spatio-temporal averaging for exponential velocity field

relative error is also seen to depend on a pure ratio, a∆x for the exponential and ∆x
(b−xp) for

the hyperbolic function. Note that for each case the increase in the deviation from the point

of observation increases the error and this is because of the increase in truncation error for

the Taylor series.

7.1.2 Qualitative tracking performance for local liner approximation

Since our approach for velocity field estimation considers all the streaks ‘seen’ at a point in

space over time, and then uses the starting positions and lengths of these streaks, the union

of the spatial extent of all the streaks being considered is the domain over which the linear

approximation is done. Hence, instead of the local approximation at a point and considering

the deviation around a point, we check here the error introduced with subdividing the veloc-

ity field into discrete regions of fixed width and then fitting the velocity function for each

region by a straight line.The following two figures show the approximation performance

for regions of different width. As expected the smaller width has lesser error because the

piece-wise linear approximation is better.

In Fig. 7.3, the performance for the exponential velocity field is shown for non-
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(a) Non-overlapping window size 50 µm (b) Non-overlapping window size 20 µm

Fig. 7.4: Tracking performance of spatio-temporal averaging for a hyperbolic velocity field

overlapping subdivision widths of 200 µm and 50 µm. The discontinuities are clearly seen

in the case of the 200 µm width. An important observation is that the width also indicates

the maximum particle streak lengths that may be observed and hence the exposure time that

could have been used. For example, considering an average velocity of 70 µm/s for the

subdivision between 600 and 800 µm, the time for the interval is about 3 seconds. While

the targeted image acquisition system is slow, it would still operate in milliseconds range,

which means that particle streaks would be shorter, and hence so would the actual widths.

The performance for the hyperbolic velocity field function is shown in Fig. 7.4.

As can be seen, for the parameters selected, the hyperbolic field is far more sensitive and

while it is smooth, the local gradient changes from about 0.4 between 800 and 900 µm

to about 6 between 950 and 1000 µm. Similar sharp changes in local velocity gradient is

not impossible in microfluidics but is surely less common. However, we use this to show

that the 50 µm is no longer a good width and better results are obtained by its further

reduction. While this is achievable by reducing the exposure time, there would exist a

trade-off between resolution (longer streaks better) and fidelity of tracking (shorter streaks

better).
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(a) Results for exponential field (b) Results for hyperbolic field

Fig. 7.5: Relative error for different window widths - exponential and hyperbolic velocity
fields

7.1.3 Relative error performance and improvements by sliding window

The relative error performance for different widths is shown in Fig. 7.5. For the exponential

field the error changes from 7% to about 0.5% by changing the window size. For the

hyperbolic field, the error is extremely small in the beginning for both the widths and then

becomes as high as 60% for the larger window and 30% for the smaller. Also, the nature of

the error variation is fixed for the exponential function and not for the hyperbolic case. This

is evident from the difference of the their relative error expressions, where the hyperbolic

field shows positional dependence.

Apart from considering local function approximations in a window, in the proposed

velocimetry method, the window gets actually shifted. This is because every point in the

horizontal space is processed successively for the ‘observed’ streaks and toward parameter

evaluation. Hence we use a sliding window, estimate the linear approximation and then

estimate the velocity for the center of the window using the approximation.

The sliding window reduces the relative error, as can be seen in Fig. 7.6 but for

the hyperbolic field, it error is still as high as 10% for the smaller window. Hence for very

high changes in local gradients, relative errors would increase for the proposed velocity
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(a) Results for exponential field (b) Results for hyperbolic field

Fig. 7.6: Relative error for different sliding window widths - exponential and hyperbolic
velocity fields

estimation. We note this as a limitation to our proposed method but realize that this is

a limitation with which all quantitative imaging based velocity estimation methods work.

As discussed earlier, such extreme local gradient velocity changes seldom occur for most

microfluidic experiments and when present, counter measures can be taken to reduce the

velocity gradient. For example, the application of back-pressure (hydrodynamic force)

against electrokinetic flows.

7.2 PERFORMANCE OF POSITION SPECIFIC ASSIGNMENT OF L/T ESTIMATE ON

STREAK EXTENT

Some interesting results are shown below for the point assignment of estimated average

Lagrangian velocity. Fig. 7.7 shows the change in relative error magnitude that can be

achieved by assigning the L/T value at the correct position on the streak. An important

point to note however, is that the cost of this assignment is a streak while the output is

only a single point on the velocity field. Hence, even if the assignment is accurate, the

method is not efficient, since it implies that in order to map the complete region-of-interest,

a corresponding strategically placed streak would be present. For an actual experimental

scenario this condition might be reached asymptotically with time, but for smaller times
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(a) Relative error at midpoint assignment (b) Relative error at correct assignment

Fig. 7.7: Shift in the relative error magnitude with variable local gradient and exposure time
at the midpoint and exact assignment positions

we would have to resort to interpolation schemes involving large spatial grids. Ideally, we

would like to assign multiple spatial locations accurately from a smaller set of streaks.

Fig. 7.8: Relative error of L/T assignment for variable β and variable rate of change of
streak length with respect to the starting position

Another result is shown in Fig. 7.8 which is obtained by plotting the relative error
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surface for dL
dx0

varying between 0 and 10 and β values between 0.3 and 0.5. Note that

at smaller gradient values, the L/T value can be assigned anywhere in the range while it

becomes very selective as the gradient increases. This figure also shows how the β value

should be chosen for a given tolerance. For example if the values of dL
dx0

is around 5, the

L/T value can be assigned anywhere between the middle of the streak and the starting one-

third for a 20% error tolerance. Accurate knowledge of β can also be obtained for given

tolerance and dL
dx0

value and an expression for 1% tolerance was discussed in Chapter 3.

7.3 PERFORMANCE OF THE PARTICLE STREAK SIMULATION FRAMEWORK

Performance for the particle streak simulation methods is discussed in this section. Particle

streak simulation requires the particle positions on a finite time track (streak) be generated

from known discrete Eulerian field samples. In Chapter 6, different numerical methods

are utilized to obtain the particle streak length. These simulation methods are first studied

individually and then compared for computation time for a fixed relative error.

7.3.1 Particle streak simulation for 1-D fields

The two most important aspects to consider while comparing simulation strategies are

computation-time (Tc) and relative error (er). To quantify the relative error, the baseline

needs to be set, and this is done by using velocity fields for which the streak-lengths can be

pre-determined. The expressions for the streak-length are shown in Fig. 7.16 for the three

different velocity fields. For each of the methods, computation time and relative error plots

are obtained.

The modified Euler method

The modified Euler method is an improvement on the simple explicit Euler’s method and is

a special implementation of the second-order Runge-Kutta method [82]. While generating

the particle streaks, the discrete samples of the velocity field and the starting point was

input to the algorithm and the output was the particle track length. This was done for a

spatial extent of 400 microns. Fig. 7.9 shows the time performance in the first row and the
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(a) Time: Linear (b) Time: Exponential (c) Time: Hyperbolic

(d) Error: Linear (e) Error: Exponential (f) Error: Hyperbolic

Fig. 7.9: Computation time and relative error performance for streak length calculation for
different velocity fields using the modified Euler method

relative error performance in the second row. The first column shows the results for the

linear velocity field, followed by the exponential and hyperbolic velocity fields.

The accuracy and the computation time in Euler’s method is controlled by the fixed

number of intervals by which the exposure time is subdivided. This is the parameter N in

the plots. In each of the plots, 3 graphs are drawn for different values of the parameter N .

With larger values of N , the relative error reduces but the computation-time increases and

this effect is uniform across all the 3 different velocity fields. Also note that the relative

error is actually very small for all the values of N and for all the fields. Hence the more

important factor is the computation time since a large number of streaks would have to be

simulated for visualization and estimation purposes.
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(a) Time: Linear (b) Time: Exponential (c) Time: Hyperbolic

(d) Error: Linear (e) Error: Exponential (f) Error: Hyperbolic

Fig. 7.10: Computation time and relative error performance for streak length calculation
for different velocity fields using the Newton-Raphson method

The Newton-Raphson method

In the Newton-Raphson method [83], each successive step obtains a better approximation

of the root of an equation. In our case this root is the final position of the particle where the

total time elapsed is also the total exposure time. The derivation for the position update step

can be found in Chapter 6. Although they cannot be directly compared since the controlling

parameters are not same, the Newton-Raphson method on an average is considerably faster

than Euler’s method for the test velocity fields. This fact is more clearly observed when the

methods are compared for fixed relative error.

Results for computation time and relative error are shown in Fig. 7.10. In each of

the plots, 3 graphs are drawn for different values of the parameter ∆X which is the fixed

increment on the particle position in each step of the iteration, till the total time elapsed

equals the exposure time. With smaller values of ∆X , the relative error reduces but the
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computation-time increases.

It may be noted that although the computation time and relative error plots are ob-

tained as expected, the magnitude of the computation time is larger for the linear velocity

field for the Newton-Raphson method. This can be explained by the fact that the linear ve-

locity field function is actually used as a denominator in the velocity estimation update step.

This effectively makes it a hyperbolic function for which the first order approximation at a

point gives large variations, unless smaller deviations are chosen around that point. Hence

this translates into the requirement of smaller spatial intervals for the Newton-Raphson

method, eventually leading to larger computation times.

The GSCI methods

The proposed Geometric Solution using Cumulative Integrals (GSCI) method uses either a

trapezoidal rule or a Simpson’s rule based integration for the determination of the cumula-

tive integral and the method of obtaining the cumulative integral is discussed in Chapter 6.

The results for the computation time and relative error are shown in Fig. 7.11. In each of

the plots, 2 graphs are drawn for the two methods of numerical integration that was used.

It may be noted that both the methods are inherently the same. It can be seen that the

GSCI (trapezoidal) method is slightly less accurate than GSCI (Simpson’s) but takes less

computation time.

An interesting observation is that the computation time performance is very uni-

form across the test velocity fields and the computation time magnitude decreases quickly

as the spatial extent changes. This is due to the fact that in order to compute the particle

track length the cumulative integral needs to be evaluated at each step. As the limits of the

spatial extent over which the cumulative integral needs to be evaluated changes (reduces),

so does the computation time. For the method used to compute the cumulative integral,

the time taken varies as O(N2) for trapezoidal rule and as O(2N)2 for the Simpson’s rule,

whereN is the number of discrete points over which the cumulative integral would be com-

puted. Accordingly, Simpson’s rule has a higher computation time at the same spatial point

96



(a) Time: Linear (b) Time: Exponential (c) Time: Hyperbolic

(d) Error: Linear (e) Error: Exponential (f) Error: Hyperbolic

Fig. 7.11: Computation time and relative error performance for streak length calculation
for different velocity fields using the GSCI method

compared to the trapezoidal rule and computation time for both decrease as N decreases.

Another important observation is that while the relative error is usually larger for

the trapezoidal rule, it is smaller for the hyperbolic field case. This is because, upon inver-

sion, this becomes a linear function over which the numerical integration occurs causing

the trapezoidal rule to outperform Simpson’s rule.

Comparative computation time performance

Comparative performance is studied by fixing the relative error. This means that for each of

the methods, the control parameters (e.g., N for the modified Euler method) were changed

till the relative error value was less than 10−5. The computation time for that particular

control parameter is then selected. The GSCI method does not have a control parameter and

the usual performance was seen to be always below the targeted relative error. However for

each selection of the computation-time, 100 iterations were performed and the average time
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(a) Time performance - Linear field (b) Time performance - Exponential field

(c) Time performance - Hyperbolic field

Fig. 7.12: Comparative computational time performance for streak length computation for
different velocity fields.

was used for comparison. Thus for the curves shown in Fig. 7.12, the computation time for

each of the 400 spatial points results from 100 experiments.

For the linear velocity field, the modified Euler’s method takes the maximum time.

Moreover, its time performance is consistent over the spatial extent. The GSCI (trapezoidal

rule) is seen to perform best followed by Newton’s method. For the exponential velocity

field, the modified Euler method takes the maximum time on average again, though at the

start (of the spatial extent) it is much faster. Also its time performance is not steady over the

spatial extent, unlike the linear case earlier. The GSCI (trapezoidal rule) is seen to perform
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the best followed by the Newton’s method for the exponential velocity field. The modified

Euler method is seen to perform much better for the hyperbolic velocity field and again

its time performance is spatially consistent. The GSCI (trapezoidal rule) is again seen to

perform best followed by Newton’s method.

7.3.2 Particle streak simulation for 2-D fields

Particle streak simulation for 2-D fields is similar to the 1-D case except here the particle

pathline information is used to sample the horizontal and vertical velocity field components,

to obtain the net velocity field with which the particle moves in the 2-D plane. The net

velocity field and the pathline is then used for 1-D particle streak simulation. From the

performance study of the 1-D simulation methods done previously, it becomes clear that

the GSCI (Trapezoidal) method performs the best in terms of time. Since its accuracy is

also very high, this method was selected for simulating streaks for given 2-D velocity fields

The first 2-D velocity field is the pressure-driven, steady Poiseuille flow in a mi-

crochannel. This particular flow is of major importance for the basic understanding of

liquid handling in microfluidic systems [60]. The velocity field is obtained in COMSOL

Multiphysics by designing a simple channel with an inlet and an outlet. The pressure on the

inlet was selected to be higher than the outlet pressure. Note that this pressure difference

can easily be created by using reservoirs of different height at the two ends of the channel.

This results in a steady state velocity field as shown in Fig. 7.13(a). The streamlines for

this vector field are shown in Fig. 7.13(b). A frame of simulated streaks and a pathline plot

obtained from the streaks is shown in Fig. 7.13 (c) and (d) respectively.

The image frame containing the streaks was obtained for a time interval of 40

milliseconds and the image generation time was around 100 milliseconds per frame in a

standard notebook computer with a 2.2 GHz processor and 4GB of RAM. The algorithm

implementation was done using Matlab 7.1 (Mathworks Inc.). Note that faster processors

and large memory would definitely decrease these numbers. Moreover the choice of the

number of particles that are new for each frame depends on the user, and more particles
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(a) Magnitude vector plot (b) Streamlines

(c) Simulated particle streak image frame (d) Streamlines from particle streak images

Fig. 7.13: Particle streak simulation for steady Poiseuille flow

mean more time to simulate each frame. In the simulated frame, the change in length in

the vertical direction can be clearly seen. The pathline plot can be obtained from a set of

streak image frames by either obtaining the maximum-intensity-projection (MIP) for this

set or by simply summing them over time. Summing was done in the figure shown and the

colorbar on the plot in Fig. 7.13(d) shows the number of times an unique particle streak was

observed at a spatial position.

The second velocity field is for the steady flow of an inviscid fluid past a cylin-

der obstructing the flow. This is a typical example of irrotational flow where the velocity
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(a) Magnitude vector plot (b) Streamlines

(c) Simulated particle streak image frame (d) Streamlines from particle streak images

Fig. 7.14: Particle streak simulation for steady flow around a cylindrical obstacle

streamline approaching the flow divides and there is flow around both sides of the cylinder.

The velocity field was obtained in COMSOL Multiphysics and this was used to simulate

the streak image frames. The exposure time was 80 milliseconds for the streak image sim-

ulation.

Fig. 7.14 shows the velocity magnitude, streamlines, the particle streaks simulated

and the streamlines generated from the particle streaks. It may be noted that the streamlines

(pathlines) obtained from the streaks clearly resolves the location of the two stagnation

points on either side of the cylindrical obstruction. This is an extremely useful result which
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(a) Magnitude vector plot (b) Streamlines

(c) Simulated particle streak image frame (d) Streamlines from particle streak images

Fig. 7.15: Particle streak simulation for steady flow at the junction of rectangular channels

can readily be obtained if particle streaks are used (rather than particles).

The particle streaks generated were ideally single pixel thick but were processed

through a Gaussian blurring function that resembles a combined point spread function

which smears the otherwise sharp particle image. For the simulated frames the particle

images were allowed to have an image diameter varying from 1 pixel (just the center) to 5

pixels.

The third velocity field is for a steady hydrodynamic flow that is obtained when two

channels of different width meet at a junction and the ends of the two channels are kept at
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a pressure difference. This field was selected as such a junction is common in microfluidic

systems and also for the reason that the local gradient changes sharply near the entrance

of the smaller channel. The velocity field was obtained in COMSOL Multiphysics and this

was used for streak image simulation. The exposure time was set at 10 milliseconds since

larger exposure times resulted in more overlapping.

Fig. 7.15 shows the vector field magnitude, streamlines, the streaks and the stream-

line obtained from the streak images. As earlier, the streamlines from the streaks are very

similar to the streamlines obtained by computation. The change in local velocity can be

observed in the streak image from the streak image lengths and from the colorbar in the

figure showing the actual velocity field.

7.4 PERFORMANCE OF SPATIO-TEMPORAL AVERAGING

The estimation of velocity field by spatio-temporal averaging has been discussed earlier in

Chapter 3. In this section we show the performance of this averaging method for some

velocity fields for which the expressions for streak length can be calculated (for 1-D fields).

We also show the performance of the method for 2-D estimation problems where the 2-

D streak images are obtained for known velocity fields by the streak image simulation

framework described in Chapter 6. The measurement noise performance of the spatio-

temporal averaging method is studied later, comparatively with the local linear approxima-

tion method.

7.4.1 Spatio-temporal averaging for 1-D fields

The spatio-temporal averaging method works by selecting an observation point on the spa-

tial axis and streak lengths observed at this point are averaged. This mean streak-length on

time averaging gives the velocity estimate at that point. The starting positions for increas-

ing velocity fields are given by x0 ∈ [xp − Lmin, xp] and once the starting positions are

known, closed form expressions for streak-length can be used to determine streak lengths

for x0 values within the above range. These can then be used to estimate the velocity as de-

scribed earlier. The previously described velocity fields are used to study the performance
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of spatio-temporal averaging in 1-D. For the first three velocity fields, we can express the

track length as closed form expressions depending only on the velocity field parameters,

exposure time and starting point and for these, the maximum and minimum streak-length

expressions are tabulated in Fig. 7.9 In order to get the expressions for minimum length,

we substitute xp − Lmin for the initial starting position. The minimum length defines the

domain within which a streak observed at xp could have originated and accordingly we can

obtain the lengths observed at the position xp.

Fig. 7.16: Minimum and maximum streak length expressions for different velocity fields

In Fig. 7.16 the tracking for the linear and exponential velocity field is shown for

three different exposure times. As discussed in Chapter 3, the exposure time controls the

line integral sampling of the velocity field and with smaller exposure time, better tracking

is expected and observed. It may be noted that for the linear and the exponential fields,

the magnitude of shift from tracking the true velocity increasingly varies with the exposure

time. Also, it can be seen that the error remains almost constant for the parameters chosen

and the spatial region chosen. This means that for such a situation the relative error actu-

ally decreases for a monotonically increasing velocity field (since the denominator keeps

increasing).

For the linear velocity field, it may be noted that the performance completely de-

pends on the aT product. It was shown in Chapter 3. that the expression for velocity for

spatial averaging in case of linear velocity field is given by V (xp) = V (xp)
(eaT−e−aT )

2aT

where the term (eaT−e−aT )
2aT contributes to the overestimation error. The variation of this
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(a) Linear: full spatial extent (b) Linear: magnified region

(c) Exponential: full spatial extent (d) Exponential: magnified region

Fig. 7.17: Tracking performance of spatio-temporal averaging for linear and exponential
velocity fields.

term is shown in Fig. 7.18. It can be seen that velocity estimation at higher velocity gradi-

ents can be successfully done if the exposure time is decreased.

The performance of spatio-temporal averaging for the hyperbolic and sigmoid ve-

locity fields can be seen in Fig. 7.19 It may be observed that the performance of the hy-

perbolic velocity field is better in the beginning and gradually deteriorates towards the end.

The reason for this is because the length expression function sharply varies with the dif-

ference b − x0. Earlier, a similar effect was shown for the local linear approximation of

a hyperbolic function in an interval at different points in space. The streak-lengths were

simulated for the sigmoid velocity field as a closed form expression was not available for

L. The trapezoidal rule was used in the GSCI method for streak-length simulation.

105



Fig. 7.18: Performance of spatial averaging with variation of the aT product.

7.4.2 Spatio-temporal averaging for 2-D fields

The spatio-temporal averaging for the 2-D fields was done from simulated particle streaks

images and the performance. Three velocity fields were chosen and their performances

are described below. For each of the fields, about 30 to 50 streaks were observed at each

spatial (pixel) position and each pixel was about 0.2 microns. 2-D moving average filter

post-processing was done on the estimated vector field components to fill the missing pix-

els, although the number of such pixels were small (about 1%). The post-processing also

imparts some smoothness to the estimated velocity fields.

The first velocity field is the simple case of Poiseuille flow in a channel, where the

velocity field is obtained at a horizontal cross-section. This gives the well known parabolic

variation of velocity, with the center of the channel at the highest velocity. Apart from its

frequent occurrence and being one of the most well studied velocity fields, this flow field has

been extensively used for microfluidic velocimetry studies. The results of spatio-temporal

averaging are shown in Fig. 7.20. It can be seen that the velocity estimation performance is

really good and the relative estimation error is less than 5%. The vertical component is zero
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(a) Hyperbolic: full spatial extent (b) Hyperbolic: magnified region

(c) Sigmoid: full spatial extent (d) Sigmoid: magnified region

Fig. 7.19: Tracking performance of spatio-temporal averaging for hyperbolic and sigmoidal
velocity field

and hence estimation of the horizontal component suffices for this velocity field. Moreover,

at every vertical position the velocity is fixed; i.e. uniform across the x direction at that

fixed y position. This fact is of particular importance as for our streak-based velocimetry, it

means that a streak image would not change in length, or a statistical mean (or median) op-

eration on streak lengths at fixed y positions would yield the velocity. However, this would

only be true in ideal cases. When we consider the averaging over the entire spatial extent,

streaks would overlap and incorporate incorrect streak lengths to the statistics and bias it

toward overestimation. Fig. 7.21 shows the true and estimated vector field components.

For the vertical component, the velocity field obtained was actually a constant equal to the
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(a) True vector field (b) Estimated vector field

(c) Horizontal component estimation error (d) Vertical component estimation error

Fig. 7.20: True vector field and component estimation error for Poiseuille flow

width of the bounding box that tightly encloses the particle streak. This width is actually

the diameter of the particle and was subtracted out spatially to obtain the zero velocity field.

The second velocity field used is the well studied phenomena of the flow of fluid in a rect-

angular channel with a circular obstruction in the center. The circular obstruction causes

the Poiseuille flow to break and separate into two similar flows where the local velocity

gradient suddenly changes spatially causing a dip in the local velocity and an increase in

the local velocity within regions in close proximity. Note that, the velocity at walls was set

at zero while obtaining the velocity field from the CFD tool (COMSOL). Fig. 7.22 shows

the vector magnitude plot for the true and the estimated fields. Also, the estimation errors
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(a) True horizontal component (b) Estimated horizontal component

(c) True vertical component (d) Estimated vertical component

Fig. 7.21: True vector field components and estimated components for Poiseuille flow

for the horizontal and vertical components are shown. Estimation errors are visible for both

the field components, but the error magnitude is well within 20 µm/s. The relative error

can be seen to be larger in the region where the flow separates (and the local gradient is

higher) as in this region the velocity magnitude is more comparable to the error magnitude.

Fig. 7.23 shows the true and estimated horizontal and vertical components of the second

velocity field chosen. The effect of spatio-temporal averaging can be seen in both the com-

ponents and is more discernible for the horizontal component. Also note that with even

larger number of streaks and more efficient post-processing, even better velocity fields can

be obtained. The third velocity field was obtained in COMSOL by simulating the physics
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(a) True vector field (b) Estimated vector field

(c) Horizontal component estimation error (d) Vertical component estimation error

Fig. 7.22: True vector field and component estimation error for steady flow around a cylin-
drical obstacle

of hydrodynamic flow when a larger channel joins a smaller channel and the ends of the

channel are kept at different pressures. Fig. 7.24 shows the velocity magnitude vector plot

for the true and the estimated velocity fields. As with our previous velocity field the effect

of the spatial averaging can be seen and the velocity contours are not as sharply defined

in the estimated field as in the true velocity field. The estimation errors are also shown in

the same figure. For some pathlines of the streaks, there appears to be more biasing error

(overestimation) due to the streak lengths. Accordingly, features resembling the particle

streak pathlines can be seen in the error plots. The magnitude of the relative estimation

error is however small and about 10%. The absolute error is higher after the junction of the

110



(a) True horizontal component (b) Estimated horizontal component

(c) True vertical component (d) Estimated vertical component

Fig. 7.23: True vector field components and estimated components for steady flow around
a cylindrical obstacle

two channels but the channel velocity in the smaller channel is also small. The separation

of the two channels is at x = 0 and while the true field is extremely symmetrical around

the vicinity of this point, the estimated field is not as regular. This can be seen more clearly

in the components shown in Fig. 7.25.

7.5 PERFORMANCE OF VELOCITY ESTIMATION BY LOCAL LINEAR APPROXIMATION

The method for the local linear approximation was discussed in Chapter 3 and in Chapter

5. Briefly, for the particle streaks observed at a point in space, the starting position and the

length of each streak is recorded, for both the horizontal and vertical directions. Then the
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(a) True vector field (b) Estimated vector field

(c) Horizontal component estimation error (d) Vertical component estimation error

Fig. 7.24: True vector field and component estimation error for steady flow at the junction
of two rectangular channels

lengths are corrected for the particle image diameter. The signs on the lengths are obtained

by local orientation of the streaks and by knowing the sign on the horizontal component

at that pixel. After this the horizontal and vertical descriptor sets (of x0 and L) are used

in a robust linear fitting algorithm to obtain the local linear field parameters. The spatial

velocity at a point is then obtained by using these parameters.

7.5.1 Velocity estimation for 1-D fields

For the 1-D field, streak lengths are generated by using either closed form expressions

(for linear, exponential and hyperbolic fields) or by the GSCI method (for the sigmoid
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(a) True horizontal component (b) Estimated horizontal component

(c) True vertical component (d) Estimated vertical component

Fig. 7.25: True vector field components and estimated components for steady flow at the
junction of two rectangular channels

field). The obtained 1-D descriptors are corrupted by uniform measurement noise varying

from no noise to an uncertainty of 0.5 microns. Note that the error is introduced in the

measurement since for reasonable SNR particle streak images, the segmentation of streaks

leads to distinct streaks and our method is not dependent on the image intensity profile of

the streaks but rather on the correct localization of the start and endpoints of the particle

streak.
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(a) Results for linear field (b) Results for exponential field

(c) Results for hyperbolic field (d) Results for sigmoid field

Fig. 7.26: Velocity tracking performance in the absence of measurement error

Qualitative performance in presence of measurement error

The qualitative performance of the local linear approximation based velocity estimation is

shown in Fig. 7.26 in the absence of measurement error. To compare the performance of

the spatial averaging method, it is also included in the plots. From the plots we find that the

spatial averaging method performs well but overestimates the velocity field at higher local

gradients, a fact that we have seen earlier. In comparison the local linear approximation

method shows excellent tracking performance for all the fields and particularly well for the

linear and sigmoid velocity fields. The effect of adding measurement noise of magnitude

0.125 microns is shown in Fig. 7.27. The estimation for the sigmoid velocity field appears
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(a) Results for linear field (b) Results for exponential field

(c) Results for hyperbolic field (d) Results for sigmoid field

Fig. 7.27: Velocity tracking performance in the presence of a measurement error of 0.125
microns

to be more sensitive to noise than the other velocity fields and this is seen for the other

different noise levels also in Fig. 7.28 and Fig. 7.29. Note however that the streak lengths

simulated for the sigmoid field were much smaller than those for the other velocity field.

This was done to show the importance of having longer streaks. For the linear, exponential

and hyperbolic velocity fields, the streak lengths are too large to be adversely affected by

noise. The effect of noise is seen to alter the performance of the sigmoid velocity field so

much in Fig. 7.29 that the spatial averaging performs equally well in comparison. Thus the

presence of measurement noise would deteriorate the performance of the velocity estima-

tion and more so if the amount of measurement error is considerable compared to the length

115



(a) Results for linear field (b) Results for exponential field

(c) Results for hyperbolic field (d) Results for sigmoid field

Fig. 7.28: Velocity tracking performance in the presence of a measurement error of 0.25
microns

of the shortest streak length for the system. This in turn is dependent on the exposure time

and the local velocity field.

Estimation error performance in presence of measurement error

A quantitative study on the estimation error performance is done for different levels of

measurement noise. As noted earlier the effect of the measurement error is stronger if error

is significant compared to the least possible particle streak length. Now if we consider a

vector field that is monotonically increasing, the particle streak lengths would also increase

monotonically. Hence the effect of measurement error would reduce at larger local veloc-
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(a) Results for linear field (b) Results for exponential field

(c) Results for hyperbolic field (d) Results for sigmoid field

Fig. 7.29: Velocity tracking performance in the presence of a measurement error of 0.5
microns

ities. The relative error performance is shown for no measurement error in Fig. 7.30. As

expected the local linear approximation gives zero relative error for the linear field while for

the spatio-temporal averaging method, there appears to be a finite, spatially constant rela-

tive error. The error is however not constant for the other 3 fields and varies with the spatial

position. In the case of the exponential and hyperbolic fields, the error increases with the

increase in the local velocity. It can be seen, that while the relative error for the exponential

field is less than 10% for both the local linear approximation and averaging methods, the

error is much larger for the hyperbolic velocity field. The increase in the relative error is

caused by the increase in the streak lengths over a region which cannot be modelled at that
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(a) Results for linear field (b) Results for exponential field

(c) Results for hyperbolic field (d) Results for sigmoid field

Fig. 7.30: Relative error performance in the absence of measurement error

due to a linear velocity field. Hence it is essentially a model mismatch error which even-

tually leads to overestimation error. In case of the sigmoidal velocity field first the streak

lengths keep increasing and the model mismatch error increases and then at the inflection

point the model mismatch error starts to decrease. However the effect of model mismatch is

minimal compared to the overestimation error observed for spatio-temporal averaging. The

effect of measurement error is added over the model mismatch error and the effect of noise

can be seen in Figs. 7.31 to 7.33. The measurement error performance is consistent across

different levels of noise. For the linear field, the noise is more significant in the beginning

part when the particle streak lengths are shorter. As the velocity increases, the particle

track length also increases, thus making the measurement error insignificant compared to
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(a) Results for linear field (b) Results for exponential field

(c) Results for hyperbolic field (d) Results for sigmoid field

Fig. 7.31: Relative error performance in the presence of a measurement error of 0.125
microns

the streak length. The exponential velocity field shows this effect even more prominently,

as towards the end of x-axis, it appears as if there is no noise in the measurements. It may

be noted that the variation of the noise is small compared to the error introduced due to

model mismatch. The sigmoid velocity field shows contrasting performance for the local

linear approximation method and the spatio-temporal averaging. For the former, the effect

of measurement noise appears to increase with increasing velocity while for the latter, it de-

creases. Also, as observed earlier during tracking performance, the sigmoid velocity field

is the most affected by noise alone, if we do not consider the model mismatch error. Again

it needs to be pointed out that a part of this is because the streak lengths selection was much
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(a) Results for linear field (b) Results for exponential field

(c) Results for hyperbolic field (d) Results for sigmoid field

Fig. 7.32: Relative error performance in the presence of a measurement error of 0.25 mi-
crons

smaller. The performance of the hyperbolic velocity field appears to be the least affected

by the measurement error. For the beginning part of the spatial extent the hyperbolic field

resembles a linear field very closely and hence the model mismatch error is minimal. Later,

when the model mismatch error is high, so are the streak lengths, thus dominating the in-

significant measurement noise. The spatial change in the relative signal to noise also causes

the measurement error noise to decrease in the case of spatio-temporal averaging. At lower

velocities, the streak lengths are shorter and the noise can be comparable. When averaged,

the noise reduces but the signal increases. At higher velocities, the signal increases by even

larger amounts during the spatial averaging process, thus reducing the noise even further.
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(a) Results for linear field (b) Results for exponential field

(c) Results for hyperbolic field (d) Results for sigmoid field

Fig. 7.33: Relative error performance in the presence of a measurement error of 0.5 microns

7.5.2 Velocity estimation for 2-D fields

The performance analysis of the velocity estimation for 2-D fields is done using the same

3 velocity fields that were discussed earlier. These are the Poiseuille flow, the steady flow

around a cylinder and the flow at the junction of 2 rectangular channels. In all three cases, a

pressure difference between the inlet and outlets creates the flow. COMSOL Multiphysics

is used to first compute the flow fields and then this is used in the streak image generation

framework. The simulated images are then used to obtain the velocity field back from the

images. The first step is the image processing step, where the streak images are segmented

and the streak descriptors (start position and length) are recorded. The next step is the
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(a) True vector field (b) Estimated vector field

(c) Horizontal component estimation error (d) Vertical component estimation error

Fig. 7.34: True vector field and component estimation error for Poiseuille flow

local linear approximation step where the streak descriptors at a spatial position are used to

obtain the local parameters.

During the estimation process, 2000 frames were used and about 30 to 50 streaks

were observed for each spatial location. The actual number of usable streaks varied be-

tween 20 to 30 approximately for each spatial position. The reduction in the number of

streaks was from overlapping streaks that were eliminated. Note that some number of over-

lapping streaks are expected in the actual experiments also and the algorithm processing

the corresponding streak lengths removes such overlaps as outliers during the robust fit. In

some extreme cases, the outlier reduction reduces the statistical strength considerably and
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(a) True horizontal component (b) Estimated horizontal component

(c) True vertical component (d) Estimated vertical component

Fig. 7.35: True vector field components and estimated components for Poiseuille flow

in these cases, the spatio-temporal mean is used for that position. In the end the primary ve-

locity field component so obtained is smoothed by a local moving average filter (averaging

region is a square, with 7 pixel sides) to get the final velocity estimate.

The results for the local linear approximation method is shown for the Poiseuille

flow in Fig. 7.34 and Fig. 7.35. The estimation performance is very good and this is ex-

pected for a simple velocity field with zero vertical component. Note that the performance

of the spatial averaging method and the local approximation method are very similar for

this velocity field, as the local approximation method reduces to finding the local spatial

mean, since there is no gradient and the flow is uniform in the horizontal direction if we
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(a) True vector field (b) Estimated vector field

(c) Horizontal component estimation error (d) Vertical component estimation error

Fig. 7.36: True vector field and component estimation error for steady flow around a cylin-
drical obstacle

consider a fixed point in the vertical axis.

The performance for the flow around a cylindrical obstruction is shown in Fig. 7.36

and Fig. 7.37. In the first figure, for the magnitude vector field plot, it can be seen that the

field estimated resembles the true field closely. However it differs from the true field by the

presence of slightly bolder demarcation contours at points where the velocity changes. This

can be attributed to the absence of a sophisticated smoothing or fitting post-processing step.

The particle streak lengths change discretely while the actual velocity transitions occur

more smoothly. This gives rise to more pronounced velocity zone demarcations. While

smoother velocity field components can be obtained by better smoothing and (or) surface

124



(a) True horizontal component (b) Estimated horizontal component

(c) True vertical component (d) Estimated vertical component

Fig. 7.37: True vector field components and estimated components for steady flow around
a cylindrical obstacle

fitting methods, this is left as future work.

An interesting observation from Fig. 7.36 is the presence of contours which shows

the group movement of the particle streaks and some streamlines. These are artefacts of the

current implementation of the algorithm, which is extremely local and does not incorporate

any smoothing during the local velocity estimation. Another observation is the change in

the nature of the errors on the inlet and outlet side. While the magnitude of the error is same

the signs are different and this is due to the nature of the velocity gradient experienced by

the streaks and the corresponding effects on their lengths. Note however the relative error

is small as the local velocities are considerably higher than the error magnitudes.
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(a) True vector field (b) Estimated vector field

(c) Horizontal component estimation error (d) Vertical component estimation error

Fig. 7.38: True vector field and component estimation error for steady flow at the junction
of two rectangular channels

The performance for the third velocity field is shown in Fig. 7.38 and Fig. 7.39. The

estimated vertical and horizontal components are seen to be very similar to the true com-

ponents. The relative error magnitude is also small for both the components and less than

10% on average. Consequently, the magnitude vector plot for the estimated field appears to

be almost identical to the true velocity field.

Compared to the spatio-temporal velocity estimation method the local linear ap-

proximation based method has lesser overestimation and underestimation errors. The re-

sults for both methods are almost identical for the Poiseuille flow, while for the last velocity

field, the performance of the local linear approximation is better. For the flow with cylin-
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(a) True horizontal component (b) Estimated horizontal component

(c) True vertical component (d) Estimated vertical component

Fig. 7.39: True vector field components and estimated components for steady flow at the
junction of two rectangular channels

drical obstruction, both methods show some degree of error.

When we consider the three test velocity fields that were used, it may be noted

that the first represented a case of uniform velocity, the last a case of increasing velocity

gradient and the second, a case which had both positive and negative velocity gradient, and

the proposed methods resulted in high quality velocity estimates for all the methods. Our

target was to show that particle streaks could be used to determine velocity fields and we

have shown that both the spatio-temporal and the local linear approximation based methods

can be used to characterize and estimate the velocity field. The velocity estimates are quite

accurate and the local fields can be as resolved as the dimensions of the particle images. The
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main advantage of our method is the use of low speed imaging devices, consequently the

exposure times for our method are in the order of tens of milliseconds which is way higher

than that used for PIV. Further improvement of the accuracy by smoothing and surface

fitting and measurement error reduction will be the topic of our future work.
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CHAPTER 8

MERITS AND LIMITATIONS OF THE PROPOSED METHODS

Image based velocimetry for microfluidics is a research area that has been widely popular

over the last decade and a vast array of methods have been proposed. Each of these methods

have their own merits and limitations of their applicability. The analysis methods that have

been proposed here are no exception and in this chapter we list some of the major merits

and limitations of the methods. Moreover we also discuss the advantages and drawbacks of

the simulation framework that was also proposed in this dissertation.

8.1 MERITS OF THE µPSV METHOD

Some of the merits associated with the µPSV method originate from the fact that it falls

in the PTV class of image based velocimetry methods. The other advantages arise from the

analysis strategies, correction methods and due to the directional nature of a particle streak.

8.1.1 The PTV connection

In spite of being related, the proposed µPSV method has some major differences with

common PTV implementations. However being related to PTV automatically provides

our method with two distinct advantages. First is the resolution aspect of the estimated

velocity field. The resolution for the standard µPIV is essentially limited by the 2D cross-

correlation block size. Note that this has to be considerably larger than the dimension of a

particle, since groups of particles need to be analyzed. For PTV and the proposed method

the velocity can be localized within the particle streak extent naturally leading to highly

resolved velocity estimates. Secondly, 3D velocity estimation over a microchannel volume

is possible with the use of multiple cameras. Since it is much easier to track a single particle

and even simpler to track a particle streak (compared to a group of particle as in PIV), the

proposed method is well suited for 3D velocimetry.

8.1.2 Improvisations over PTV

It was mentioned earlier that the proposed µPSV method does not incorporate the tracking

aspect (a major difference from PTV). Thus the particle association problem linked with

PTV does not manifest, and we simply work with the particle streak endpoint locations.



By avoiding the association problem the processing time is reduced, and false association

errors are also avoided. However, the incorporation of tracking would definitely help the

estimation, and intuitively, it is much easier to associate streaks than particles. This fact has

been utilized in most of the work where streaks were used for tracking.

Another aspect of PTV which is improved in the proposed µPSV method is that

the required post-processing interpolation is minimized considerably since every point on

the spatial extent of the streak is utilized. Usually the dimension of streaks is large com-

pared to a solitary particle image. Hence a streak covers more spatial area than particles and

with a sufficiently large number of streaks, no additional interpolation would be required

after spatial velocity estimates are obtained.

8.1.3 Improvised point estimates

A corrective strategy was suggested in Chapter 3 to improve point assignment. For small

scale (irregular) use of particle image based velocimetry, manual tracking is often the

method of choice. Even if we assume that the degree of error contributed by the human

error aspect and the software used to locate endpoints or centers is minimal, the typical

method of center-point based velocity assignment adds error which increases with the local

gradient of the velocity field. The corrective method can improve the velocity estimates for

manual tracking.

8.1.4 Quick 2D2C velocity estimation by spatio-temporal averaging

The collection of streak lengths can be used efficiently for a quick 2D2C velocity estimation

simply by assigning the streak length over the spatial extent of the streak in a frame and

then performing a temporal average at each spatial location. We have shown earlier that for

uniform and piecewise uniform fields this would give very accurate estimates and for fields

with small local gradients, the errors would still be minimal. Moreover, with a sufficient

number of streaks (spatial coverage) there would be no immediate need for spatial interpo-

lation. It may be noted that neither PIV or PTV can have an analogous method owing to

their dataset of point particles.
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8.1.5 The local linear velocity model

The local linear assumption results in two major advantages for the proposed method.

Firstly, it brings in a model-fitting perspective to the velocity estimation process. The closed

form expressions that are obtained by this assumption result in a more disciplined and struc-

tured use of the acquired data (spatio-temporal streak descriptor table). Secondly, the local

linear assumption incorporates the gradient aspect of the underlying Eulerian field within

the estimation strategy. Hence it is well suited for fields with gradients. It may be noted that

in the case of a velocity field ROI which is almost linear, the method would be extremely

accurate.

8.1.6 Implicit visualization of pathlines

Particle streaks are themselves images of the tracer particle pathlines. There is no need to

join particle centroid locations as in the case of PTV. Moreover streaks convey direction and

makes it easier to join streaks of the same particle. For a time-invariant velocity field, the

pathlines represent streamlines. Thus a projection of pathlines (obtained over time) would

distinctly show the streamlines for the velocity field which is very useful information. Time

lapse videos of streamlines can reveal if a velocity field is actually time invariant.

8.2 MERITS OF THE PARTICLE STREAK SIMULATION FRAMEWORK

The method for generation of particle streaks videos from CFD data is a new technique that

generalizes the use of CFD data for visualization and baseline data generation. By changing

the simulation parameters (e.g., exposure time) we can generate ideal experimental data

under a wide range of experimental conditions for a velocity field that is user designed.

Coupling this with CFD tools like COMSOL, that allow the user to design and simulate

multi-physics experiments and obtain idealized estimates of resulting velocity fields, the

experimenter can actually perform a virtual experiment. The generated simulation images

would not only help provide baseline data for algorithm development, but also aid in making

decisions about key experimental parameters like seeding density without doing the actual

experiments, thus decreasing the time for a successful data acquisition.
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Fig. 8.1: Merits and demerits of the proposed method

8.3 LIMITATIONS OF THE µPSV METHOD

The main limitations of the proposed method in its current form of implementation arise

due to the requirement of a large number of sharp distinct streaks. The other limitations

arise due to the constraints on the validity of the local linear assumption and due to the

nature of the particle streak.

8.3.1 Performance dependence on data abundance

Evaluation of the local gradient parameter is based on robust least-squares fitting, the accu-

racy of which improves with more data. Moreover, a larger dataset implies a larger coverage

of the ROI. Hence the accuracy and the spatial extent of velocity estimation for our method
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is highly dependent on the spatial data density; i.e., how many streaks a point ‘observes’

over time. Hence a large number of image frames are normally required which can increase

processing time and storage space requirements. However, obtaining faster processors and

a relatively large secondary memory is not difficult and cheap compared to faster image

capture hardware.

8.3.2 Selecting the right seeding density

The trial and error involved with the selection of correct particle density is a limitation

associated with PTV and by virtue of its relationship, the proposed method. There is no

direct quantitative formulation that can compute an optimal seeding density. However, one

can use the particle streak simulation framework to obtain a closer estimate of the seeding

density before venturing into an actual experiment to identify an acceptable seeding density.

It may be noted that an optimal seeding density that does not cause considerable overlapping

would also lead to a smaller number of frames that would be required.

8.3.3 Resolving directional ambiguity

While a particle streak is inherently directional, it is impossible to discern the actual direc-

tion from a single image frame due to a 180 degree directional ambiguity. The proposed

method does not inherently deal with directional ambiguity and this is resolved as a separate

step in the image processing part. In comparison, the cross-correlation method of µPIV

gives the displacement direction along with the magnitude.

8.3.4 Smooth, time-invariant velocity field constraints

In this work, the proposed methods are all based on smoothness and time-invariance as-

sumptions about the velocity vector field. The streak length modelling is based on a local

linear field approximation which is only possible for a smooth velocity field. Hence the

applicability of the proposed methods is limited to smooth velocity fields only. However, if

we use the methods only for microfluidic studies, then the assumptions are often favorably

satisfied (with small errors), owing to the small Reynolds numbers associated with small

device dimensions in microfluidics.
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8.4 LIMITATIONS OF THE PARTICLE STREAK SIMULATION FRAMEWORK

The particle streak simulation framework still suffers from large computational time prob-

lems with the increase of resolution. While this is completely natural, code vectorization

as well as a multi-processor targeted programming could hugely affect the speed of image

sequence generation. Secondly, the inclusion of detailed physics and non-ideal structure

for the particles would make the simulations much more realistic while still maintaining

the gold-standard.
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CHAPTER 9

APPLICATIONS

The work in this dissertation was a result of investigating the possibility of using particle

streaks to measure velocities for an electrokinetic experiment in a microchannel. In gen-

eral however, the velocimetry method proposed is quite generic and can be used for many

applications where µPIV can be used, the main constraint being the ability to control the

exposure time of imaging. Many of the recent applications of µPIV have been discussed in

the reviews by Lindken et al. [3], Williams et al. [12] and Wereley et al. [11]. In this chapter,

we discuss how micro particle streak velocimetry can be advantageous in cases of known

velocity field types and then discuss experimental results obtained for some experiments

conducted in glass and polymer based microfluidic devices.

9.1 ESTIMATION OF KNOWN VELOCITY FIELDS

In Chapter 3, a local linear model of velocity field was used to obtain the length of the

particle streaks in the velocity field. The same method could be used for cases whenever the

velocity field is known beforehand and the particle length can be independently expressed

as a function of the other parameters. This is however not always true, even for simple

velocity fields. For example, the sigmoid function finds use in many situations where there

is a gradual (damped) non-linear, smooth change from one distinct constant level to another.

Similar situations can arise in microfluidic velocity fields; e.g., where channels connect and

pressure differences occur. However, the sigmoid function leads to an expression for the

streak lengthL, which is non-linear inL and is not very useful. In such cases often the local-

linear approach with good control on exposure time may outperform a strategy of parameter

estimation by curve fitting methods. With this caveat on the attempt to mathematically

model streak lengths for any known (closed-form) velocity field, such an activity can often

be be extremely useful.

Consider the case of a linear velocity field. Such a velocity field may be obtained in

electrokinetic experiments by controlling the electric field [85]. Also a velocity field can be

piecewise linear. In such cases, we need not actually estimate the velocity field for all points



within the set spatial limits, but only estimate two parameters based on two or more than

two particle streaks. So we do not need uniform seeding of tracers and a small collection of

clear distinct streaks is sufficient. The method of estimation of the local gradient parameter

is the same as described in Chapter 3.

Consider another case where we would like to estimate the spatial variation of

velocity in a simple hydrodynamic (Poiseuille) flow. For a radial cross-section in a circular

channel of radius a we know that under a no-slip condition at the walls, the velocity in

cylindrical coordinates [60] is given by

Vx(r, φ) =
∆p

4ηL
(a2 − r2) (9.1)

or for the case of rectangular coordinates

Vx(y, z) =
∆p

4ηL
(a2 − y2 − z2)

where the fluid is moving towards the positive x-axis and the maximum value of y and z is

the circular channel inner radius. At the z = 0 plane this becomes

Vx(y, z) =
∆p

4ηL
(a2 − y2) (9.2)

and for the vertical direction we have

Vy(y, z) = 0 (9.3)

It can be immediately seen that for an exposure time Texp a particle streak length at a given

y-value can be expressed as

lx =
∆pTexp

4ηL
(a2 − y2) (9.4)

from which we can express the pressure drop across the channel entrance and exit as

∆p =
lx4ηL

Texp(a2 − y2)
(9.5)

Note that everything on the RHS of the above equation is known and we can evaluate the

pressure drop value in theory, from a single well defined streak. While accurate µPIV
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results can be obtained, the spatial resolution of a single particle track cannot be easily

reached in µPIV due to a normally larger area requirement for the interrogation region. A

similar procedure can be used for Poiseuille flow through as rectangular channel for which

the velocity field is given by [60]

Vx(y, z) =
4h2∆p

π3ηL

∞∑
n,odd

[
1

n3

{
1−

cosh(nπ yh)

cosh(nπ w
2h)

}
sin(nπ

z

h
)

]
where w, h and L are the width, height and the length of the rectangular channel.

Fig. 9.1: Tangential and normal velocity components on a particle in a PDMS channel
under the effects of electro-osmotic and electrophoretic fields

A similar procedure could be used to investigate the electric field in a situation

where the electrokinetic velocity can be expressed as a linear function of the electric field.

For example, in the case of only the electro-osmotic force being present, a particle velocity

is given by [61]

ueof = −
(
εζE

µ

)
Here, the streak length would be directly proportional to the RHS of the equation and can

be used either to determine the electric field or the other fluid parameters (ε and µ) or the

zeta potential of the microchannel wall.

9.2 ESTIMATION OF CENTERLINE VELOCITY FIELD IN VARIABLE GEOMETRY

CHANNELS

The performance of the proposed micro particle streak velocimetry is discussed for two

cases of centerline velocity field estimation for channels etched on Polydimethylsiloxane
137



(PDMS). Spatially sampled Eulerian velocities for the two PDMS channels are obtained as

below.

Particle motion in a PDMS channel when electro-osmotic and electrophoretic are

both present is given as

E(µEO + µEM − µDEP
∂E

∂s
)êt +

µDEPE
2

R
ên (9.6)

The above equation is described in [86] and assumes that particle inertial effect is negligible.

Here ên and êt are the normal and tangential components of the velocity at a point in the

channel, E is the electric field, R is the radius of curvature of the field, s is the arc length

along the electric field line and the µ variables are constants from the electro-osmotic and

electrophoretic fields. The centerline velocity field along x-axis is obtained from the x-

components of the tangential and normal fields as shown in Fig. 9.1

The net x-axis component of the particle velocity is then given by

Vp(θ) = E(µEO + µEM − µDEP
∂E

∂s
) cos(θ)− µDEPE

2

R
sin(θ) (9.7)

where θ is the angle between the tangent on the electric field line and the x-axis. On the

center line s→ x and θ → 0 , so the centerline Eulerian field is given by

VE(x) = E(µEO + µEM − µDEP
∂E

∂x
) (9.8)

For the two different PDMS channels the changing channel width causes the centerline

electric field and consequently the velocity field, to vary. In the channel where the width

decreases linearly (linear-taper) with distance from particle source reservoir can be shown

to be given given by

V (x) =
K1

B − x
+

K2

(B − x)3 (9.9)

and for the other channel where the width tapers inversely with distance (inverse-taper), the

x-component of the electric fields can be shown to be given by [85]

E(x) = K3x+K4 (9.10)
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(a) Channel design: linear taper (b) Channel design: inverse taper

(c) Streak images: linear taper (d) Streak images: inverse taper

Fig. 9.2: The two different PDMS channels used for an electro-kinetic experiment where
µPSV is used for velocity estimation

The constantsKi are experimental parameters, some of which are known. The two channels

are shown in Fig. 9.2.

The microfluidic channels (depth 10 microns) were fabricated via standard soft

lithography using PDMS. Plasma treatment was used to render the channels hydrophilic

and a glass slide was used to cover the channel. Fluorescently-labelled polystyrene particles

(1 µm, sulfated) diluted to a concentration of approximately 5× 106 particles/mL in buffer

were used as tracers. At the start of an experiment, the pressure was equilibrated to stop

hydrodynamic flow and then a voltage (∼500 V) was applied using two platinum electrodes

dipped into the external reservoirs. Volume illumination from a mercury short-arc light

source (OSRAM, H30 103 w/2) was used and the particles were imaged by a standard,

simple and affordable combination of inverted microscope (IX70, Olympus), CCD camera
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(a) Region-of-interest: linear taper (b) Region-of-interest: inverse taper

(c) Centerline velocity: linear taper (d) Centerline velocity: inverse taper

Fig. 9.3: Results for velocity estimation in PDMS channels

(Q Imaging Inc.) and Streampix III software (Norpix). The exposure time was adjusted

depending on the experiment (30 ms - 90 ms). The frame rate was approximately 17 frames

per second.

Fig. 9.2 also shows the particle streaks obtained for the two channels. The problem

of overlapping of particle streaks was seen to be present more for the first (linear-taper)

channel for the selected exposure time. The reason for this is the nature of the velocity field,

which is approximately hyperbolic and thus strong velocity gradients cannot be directly

avoided. Also the correct selection of the exposure time becomes a problem in such a case,

as for the slower part, a small exposure time would cause loss in resolution.

The velocity field estimation procedure was conducted for a small strip along the
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channel length, at the center of the channel and is shown in Fig. 9.3. along with the results.

For the linear-taper channel, the 2-D variation of velocity horizontal component can be seen

in Fig. 9.3 (a). The nature of the velocity field is seen to be hyperbolic as expected. Also,

the peak of the velocity field is very localized (has sharp boundaries) and this is expected

from the channel geometry. Lastly, at regions very close to the channel exit, the overlap of

streaks causes loss of data and reduces the estimated velocity magnitude.

For the channel with inverse-taper, the velocity field is linear and this can be also

observed from the spread of the horizontal component. Note that the highest velocity for the

linear-taper case is less than that for the inverse-taper case, but the sudden change in velocity

gradient appears to be largely responsible for the overlapping problem at the channel exit.

Also, note that for the linear-taper case, the velocity field estimation was achieved with only

97 frames, a small number compared to the 900 frames used for the inverse-taper channel.

This shows that a good collection of sharply defined streaks is sufficient to obtain a velocity

estimate by the proposed method. However larger number of frames automatically mean a

more robust estimate and better smoothing.

The data from the center-strip is used to obtain the centerline velocity estimate and

this is shown in Fig. 9.3(c) and Fig. 9.3(d). During the estimation in the PDMS channels,

the streak data at the extreme end is excluded for fitting purposes. This is because towards

the destination, detection errors increase as the intensity decreases on the high velocity end

of the streak (due to extended spread). Moreover, streaks overlap or get partly eliminated

from the stack if they overlap with the effective frame boundary (e.g. when the particle

is about to leave the channel ). Accordingly, inclusion of this data would provide wrong

estimates. The centerline velocity fields obtained are as expected in theory.

9.3 ESTIMATION OF 2-D VELOCITY FIELD AT A CAPILLARY JUNCTION

The experimental data for the 2-D velocity field estimation was obtained from a microflu-

idic device that comprises of two glass plates between which capillary channel ends are

placed. The sides of the rectangular plates is closed with epoxy. The diameter of the capil-
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(a) Device schematic (b) Example image

Fig. 9.4: A glass-sandwiched-capillary microfluidic device

laries is 320 µm and the diameter of the opening is µm. There are 3 additional inlets and

outlets which were not used for the experiment. The main inlet connected to the reservoir

and the outlet comprising of 4 capillary channels were maintained at constant pressure dif-

ference. No electric field was used for this experiment. The tracer particles, and imaging

apparatus set up were same as that discussed for the PDMS channel experiments discussed

earlier. The schematic of the experimental design and an example image frame is shown in

Fig. 9.4.

The results of spatio-temporal averaging based velocity estimation procedure is

shown in Fig. 9.5. The centerline is also shown in the 3-D surface plot for the horizontal

component. Note that in the image of the horizontal component the sign of the velocity

is negative owing to the direction of the flow and the imaging X-axis. It can be seen in

the vertical component image that the flow is not exactly symmetric and this is expected

since the inlet reservoir was not symmetrically placed with respect to the outlet reservoir.

The hyperbolic nature of the flow can be clearly seen, as this was observed earlier for our

simulated experimental results in Chapter 7. Also note, that the loss is streak numbers at the

channel entrance (due to overlap and loss in SNR) results in the decrease of the estimated

velocity before the 50 µm point from the channel entrance. This also shows why fewer

streaks, more frames and good image preprocessing (or clear, distinct streaks) is important
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(a) Velocity vector field (b) Horizontal component and centerline

(c) Horizontal component (d) Vertical component

Fig. 9.5: 2-D velocity field results for a glass-sandwiched-capillary device design

for the estimation strategy.

The estimation of velocity fields in experimental microfludic devices is quite chal-

lenging. The construction of the microfluidic device can turn out to be imperfect due to

many reasons and this can severely bias and distort expected results. Corrections to de-

vice geometry based on the device performance need to be fast to reduce the total time of

the experiment. Accordingly a quick velocimetry method is very useful for estimating the

device performance. The results discussed above for both glass and PDMS based devices

show that particle streaks can be effectively used for microfluidic velocity estimation. The
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spatio-temporal statistics based methods discussed in this dissertation can be used for fast

and cheap velocimetry techniques, extremely well suited for routine experiments.

Simulation techniques discussed in this dissertation can also help reduce experi-

mentation time, allowing the researcher to spend more time in analysis. The particle flow

simulation framework for arbitrary user defined velocity field can generate complete image

sequence stacks, ready for analysis towards a better device and (or) quantitative algorithm

design.
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CHAPTER 10

FUTURE WORK

The proposed method is being further developed and improved and this dissertation at-

tempts to build a strong foundation of ideas for future work. This holds true for both the

novel simulation framework for gold standard particle flow data generation and the mathe-

matical approach taken to use velocity smearing (streak formation) in a productive manner

for micro-channel velocity estimation.

10.1 SYNTHESIS OF PDMS BASED CHANNELS AND PERFORMANCE EVALUATION

In this dissertation, a method for simulation of particle streaks from known velocity fields

as well as a method for estimation of velocity fields from particle streak length observations

is established. The comparison of particle streaks formed in simulation and particle streaks

obtained in actual PDMS channels would help evaluate the performance of our particle

track simulation method and improve on its deficiencies. Microfluidic channels and chan-

nel networks need to be developed to validate using our method, well known microfluidic

principles; e.g.,dependence of channel fluid resistance on channel dimension.

10.2 IMPROVEMENTS IN ESTIMATION STRATEGIES

While the first-order local velocity field approximation proved efficient for a variety of test

cases, there could be multiple methods for the proper integration of the local gradient and

initial velocity information. For example, smooth surfaces could be fit to regions based

on the 2-D gradient information. Another procedure might be to exploit the smoothness

criterion and model the local 2-D field in a transform domain. The problem of fitting of

a smooth surface (velocity vector field) given local gradient values needs to be solved on

a case-by-case basis; e.g.,for experiments involving di-electrophoresis and experiments for

only electro-osmosis can be studied as separate cases, based on the complexity of force

interactions and the smoothness of the velocity field. On the other hand, an exhaustive

study can be done comparing existing methods.

Better resolution (sub-pixel) could be obtained when the image of a particle spans

multiple pixels by fitting a 2-D Gaussian. While for a well resolved sub-micron particle the



effect would be very small for larger velocities, this could boost the accuracy for regions

with small velocities.

10.3 CHANGES IN EXPERIMENTAL STRATEGIES

The effect of using a smaller bead (sub-micron) was directly related to the resolution of the

measurements. Effectively this calls for a higher numerical aperture for the microscope,

and (or) smaller beads. The effects of modulating these parameters needs to be studied.

Also, Brownian motion needs to be analyzed in the context of streak formation.

10.4 FUTURE WORK FOR PARTICLE FLOW SIMULATION

The mathematical modelling of streaks based on CFD velocity fields could be further en-

hanced by including more physics in their simulation. For example, particles could be

assigned mass and volume to make the images even more realistic. Additionally, we could

add interacting physical laws from theory as well as from empirical rules. The simulations

could easily be extended in three dimensions and then combined for a 3-D visualization of

the particle flow.

10.5 APPLICATIONS OF THE MICRO-PSV

The knowledge of local velocities could lead to the non-intrusive measurement of local

pressure drops across the experimental region under analysis. Moreover, the spatial resolu-

tion that would be available would be far higher than pressure transducers can provide. The

continuous particle path provided by the particle streak can prove advantageous to PIV in

this context, leading to better measurement.

Particles move parallel to streamlines while forming streaks or follow field lines

when moving under electrical fields. Temporally connected particle streaks can easily be

used to visualize field-lines and streamlines. The knowledge of the velocity field aids this

procedure.
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