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ABSTRACT  
   

Understanding the evolution of the Himalayan-Tibetan orogen is 

important because of its purported effects on global geodynamics, geochemistry 

and climate. It is surprising that the timing of initiation of this canonical 

collisional orogen is poorly constrained, with estimates ranging from Late 

Cretaceous to Early Oligocene. This study focuses on the Ladakh region in the 

northwestern Indian Himalaya, where early workers suggested that sedimentary 

deposits of the Indus Basin molasse sequence, located in the suture zone, preserve 

a record of the early evolution of orogenesis, including initial collision between 

India and Eurasia. Recent studies have challenged this interpretation, but 

resolution of the issue has been hampered by poor accessibility, paucity of robust 

depositional age constraints, and disputed provenance of many units in the 

succession.  

To achieve a better understanding of the stratigraphy of the Indus Basin, 

multispectral remote sensing image analysis resulted in a new geologic map that 

is consistent with field observations and previously published datasets, but 

suggests a substantial revision and simplification of the commonly assumed 

stratigraphic architecture of the basin. This stratigraphic framework guided a 

series of new provenance studies, wherein detrital U-Pb geochronology, 40Ar/39Ar 

and (U-Th)/He thermochronology, and trace-element geochemistry not only 

discount the hypothesis that collision began in the Early Oligocene, but also 

demonstrate that both Indian and Eurasian detritus arrived in the basin prior to 
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deposition of the last marine limestone, constraining the age of collision to older 

than Early Eocene.  

Detrital (U-Th)/He thermochronology further elucidates the thermal 

history of the basin. Thus, we constrain backthrusting, thought to be an important 

mechanism by which Miocene convergence was accommodated, to between 11-7 

Ma.  

Finally, an unprecedented conventional (U-Th)/He thermochronologic 

dataset was generated from a modern river sand to assess steady state assumptions 

of the source region. Using these data, the question of the minimum number of 

dates required for robust interpretation was critically evaluated. The application of 

a newly developed (U-Th)/He UV-laser-microprobe thermochronologic technique 

confirmed the results of the conventional dataset. This technique improves the 

practical utility of detrital mineral (U-Th)/He thermochronology, and will 

facilitate future studies of this type. 
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PREFACE  

“The man who removes a mountain begins by carrying away small stones.” 
—William Faulkner
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CHAPTER 1 

INTRODUCTION 

1. Motivation  

The rise of the Himalayan range and Tibetan plateau has created some of 

the most spectacular and complex landforms on Earth. As such, understanding the 

interrelationships between climate and orogenic processes has been the focus of 

modeling, with results implying that the rise of the Himalaya had a profound 

effect on regional and, likely, global climate patterns [Raymo and Ruddiman, 

1992]. As the archetype for continental collision, the Himalayan-Tibetan orogenic 

system provides an active example by which to understand the evolution of 

ancient orogens, and the geodynamic effects that orogenic processes have on the 

surrounding region [Rowley, 1996].  

Considering the importance of this system, it is surprising that the timing 

of collision between India and Eurasia that led to continental orogenesis is a 

highly disputed first-order boundary condition. Despite decades of research on 

this topic, estimates span a 35 million year range, from ca. 70 Ma to 35 Ma [e.g., 

Yin and Harrison, 2000; Aitchison et al., 2007]. This unacceptably large range of 

possibilities was prime motivation for the research that led to this dissertation.  

Over the years, a variety of methods have been used to assess the timing 

of collision. Commonly applied techniques such as paleomagnetism and 

biostratigraphy yield multiply interpretable and sometimes conflicting results. 

Compare, for example, the conclusions drawn by Aitchison et al. [2007] and 

Najman et al. [2010], wherein the same section was studied for biostratigraphic 
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markers, and interpretation of the data yielded estimates for collision of ca. 35 Ma 

versus 50 Ma. Cenozoic intermontane basins along the Indus-Tsangpo suture zone 

have garnered significant interest because the sediments they contain are thought 

to preserve a record of the earliest history of the orogen. Of particular interest are 

the sedimentary strata wherein both Indian- and Eurasian-derived detritus are 

identified; such “mixed provenance” is commonly cited as evidence of syn- or 

post-collisional deposition [e.g., Wang et al., 2010]. However, the value of such 

studies for constraining the age of collision depends upon knowledge of 

depositional age and robust and unequivocal evidence of mixed-provenance for a 

given layer.  

The advent of rapid data collection methods for detrital mineral 

geochronology [e.g., Kosler et al., 2002] has facilitated provenance analysis 

within these basins, but the vast majority of published studies focused only upon 

detrital zircon U-Pb geochronology and zircon Hf isotopic constraints, which 

inherently biases the sampling toward zircon-bearing lithologies. Therefore, the 

thoughtful development and application of multiple methodologies for 

provenance studies is imperative to achieve a more comprehensive understanding 

of the early record of the orogen preserved in these basins.  

The Indus Basin, located in the Ladakh region of northwestern India 

(Figure 1.1), is among the most studied of the Cenozoic intermontane basins of 

the Himalayan-Tibetan orogenic system because it is spectacularly exposed and 

lies in one of the few parts of the system that have remained continually 

accessible for geologic study over the past three decades (despite persistent 
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political tensions among China, India, and Pakistan). However, this basin is 

exposed in a very rugged, high-elevation landscape, with few trails and fewer 

roads. The rocks are complexly folded and faulted throughout the basin, and there 

is no undeformed “reference” stratigraphic section to enable quantitative 

reconstructions of the regional structure. Many stratigraphic units – most of which 

are conglomeratic with rare facing indicators – look alike, and have similar clast 

contents. The succession contains no known volcanic horizons and few age-

diagnostic fossils.  As a consequence, many fundamental questions remained 

regarding the basic stratigraphy and depositional ages of units within the Indus 

Basin at the start of my research. In the following chapters, a multi-faceted 

approach is presented that resolves (or at least clarifies) several of these questions. 

The stratigraphy was simplified based on careful remote sensing image analysis, 

and the resulting stratigraphy and geologic map were verified through fieldwork, 

compilation and addition of age constraints, and critical evaluation in the context 

of previous studies. The results subsequently guided provenance studies, which 

demonstrate that tectonic models for the orogenic system in which India-Eurasia 

collision is younger than to Early Eocene time (~53 Ma) are untenable.  

One tool that is rarely used for the analysis of sedimentary basins – but 

which was particularly valuable for this project – was detrital mineral (zircon and 

apatite) (U-Th)/He thermochronology. Such studies can elucidate the thermal 

history of either the source area or depocenter, depending upon the degree to 

which the (U-Th)/He systematics have been reset subsequent to deposition. Both 

scenarios were encountered in the Indus Basin study. In some cases, unreset 
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grains were used to reveal the erosional and exhumation history of the source 

area. In others, reset to partially reset grains were used to constrain the timing of 

post-collisional deformation and basin inversion. To facilitate detrital (U-Th)/He 

studies for future researchers, the number of dates required for robust 

interpretation of the thermal histories of source regions was established, and those 

results were corroborated using data generated by a new (U-Th)/He 

thermochronologic technique – described here for the first time – that decreases 

sample bias and increases throughput. 

A brief summary of each subsequent chapter is provided. Chapters 2-6 

were prepared for publication in peer-reviewed journals, and as such, there is 

overlap in the background material.  

2. Outline of Chapters 2-6 

The Indus Basin sedimentary units have been variably mapped multiple 

times, but such efforts are limited by inaccessibility of most lithologic contacts 

due to rugged terrane, the deformation of the region caused by basin inversion, 

and the relative monotony of lithology. In Chapter 2, we examined these 

otherwise inaccessible contacts using Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) images, and mapped lithologic variations 

within the Indus Basin. Specifically, the visible imagery allowed for assessment 

of apparent color changes of the rocks, while masked thermal infrared data 

yielded information regarding lithologic variability. We used these images to 

generate a geologic map of the region that is not only internally consistent, but 

also consistent with external datasets, including a compilation of depositional age 



	   	  	  5 

constraints and sedimentary petrography. Furthermore, we simplified the 

stratigraphy such that discrete depocenters are now identifiable, each of which 

likely records different phases of collisional orogenesis.  

In Chapter 3, we present new data for the Upper Oligocene (~30 Ma) 

Basgo Formation of NW India that are pertinent to the hypothesis that the 

collision initiated no earlier than the Eocene-Oligocene boundary (~34 Ma) 

[Aitchison et al., 2007]. The Basgo Formation, which represents a portion of the 

Indus molasse basin deposited along the Indus-Tsangpo suture zone, contains 

conglomerates with clasts of Eurasian plate rocks [Garzanti and Van Haver, 

1988]. However, the distribution of U-Pb dates for detrital zircons in associated 

sandstones indicate an Indian plate source. This mixed provenance demonstrates a 

minimum Late Oligocene age (~30 Ma) for India-Eurasia collision in the NW 

Indian Himalaya. However, (U-Th)/He cooling dates for detrital zircons from the 

Basgo Formation range from 52.6 to 28.25 Ma, implying that their Indian plate 

source was emergent and eroding by the Early Eocene (~53 Ma) due to collision. 

Therefore, the hypothesis that collision commenced during Early Oligocene (~30 

Ma) time is not supported by these data.  

Most strata in the Indus Basin are poorly dated, and were likely deposited 

semi-continuously from Early Eocene to Miocene time. Whereas the majority of 

fine-grained detritus in these older units appears to preserve a distinct 

Transhimalayan (Eurasian) source, we present new geochemical and 

geochronological data that suggest a significantly varied provenance for the Indus 

Basin strata in Chapter 4. Specifically, detrital zircon U-Pb geochronology of 
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quartzite cobbles within conglomeratic beds of the oldest macrostratigraphic 

molasse unit demonstrates a potentially mixed source, which, on balance, appears 

most similar to Indian passive margin detrital zircon U-Pb age spectra. Trace 

element geochemistry of mafic pebbles, collected from conglomeratic horizons, 

appears to demonstrate derivation from the Shyok suture zone that is situated 

north of the Transhimalayan source area. However, several clasts are consistent 

with Indus-Tsanpgo suture zone ophiolites. This is interpreted as evidence for an 

Indian source area. Finally, 40Ar/39Ar thermochronology of detrital biotite from a 

sandstone unit intercalated with the last (late Ypresian, ~53 Ma) Indus Basin 

marine limestone is most consistent with an Indian plate source region. Therefore, 

the minimum age of India-Eurasia collision at this location is late Ypresian (Early 

Eocene, ~53 Ma).  

Chapter 5 focuses on backthrusting, thought to play an important role 

within the Transhimalayan sector of the orogen in accommodating Cenozoic 

convergence between India and Eurasia. Backthrusts located near the Indus-

Tsangpo suture zone have been postulated to represent a major structural system – 

the Great Counter Thrust system – that may persist many hundreds of kilometers 

along strike [Yin, 2006]. However, the ages of many structures grouped within the 

Great Counter Thrust system are not well constrained, complicating our 

understanding of the role of the system in Himalayan tectonics. In the Ladakh 

region of NW India, we used new apatite (U-Th)/He dates and published 

40Ar/39Ar dates to constrain the timing of backthrusting to between 19 and 7 Ma. 

Importantly, zircon (U-Th)/He systematics were not fully reset during the 
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backthrusting event. Modeling of these results in light of the conditions of 

anchizonal metamorphism related to backthrusting provides a better estimate of 

the timing of metamorphism (11 to 7 Ma) and suggests a 3 to 3.5 my duration for 

the event. Comparison of this result with data from elsewhere along the suture 

suggests diachroneity in the timing of backthrusting structures along what is 

mapped as the Great Counter Thrust system.  

In Chapter 6, I focus on detrital mineral thermochronology of modern 

sediments, which is a valuable tool for assessing catchment-wide exhumation 

rates [Stock and Montgomery, 1996]. However, this application is only acceptable 

for catchments that have achieved an erosional and thermal steady state. It is 

possible to assess the likelihood of steady-state conditions – as well as other 

necessary assumptions – through statistical comparisons of the distribution of 

thermochronologic dates in a detrital population to catchment hypsometry [Ruhl 

and Hodges, 2005]. This approach presumes that the thermochronologic dataset is 

representative of the overall distribution of bedrock dates in the catchment. Due to 

the time-intensive nature of conventional (U-Th)/He thermochronology, most 

previous studies of this kind have relied on data for a few tens of grains, even 

though conventional wisdom holds that a substantially larger number might be 

necessary for a robust characterization of the population of cooling ages in a 

sample. I explore the question of how many detrital grain dates are sufficient for 

such studies in a known non-steady–state setting by comparing subsamples of a 

large (U-Th)/He zircon dataset (n = 113) for a sediment sample that drains the 

Ladakh batholith, north of the Indus Basin. The results indicate that, even for a 
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basin with a complex thermal history, only ~ 35 grains may be sufficient to reveal 

that complexity and dissuade a researcher from inadvertently (and incorrectly) 

concluding that the catchment had achieved steady state. I also introduce the use 

of UV-laser microprobe (U-Th)/He thermochronology for detrital studies. The 

laser microprobe dataset yields comparable information about cooling age 

distributions and minimizes unwanted bias toward use of pristine, unabraded 

crystals, which are normally selected for conventional (U-Th)/He 

thermochronologic studies. 

Chapter 7 provides a synthesis of the previous chapters, and focuses on 

designing future studies based upon the techniques and datasets presented and 

discussed in the preceding chapters.  

The citations for chapters 2-6 are as indicated below:  

 

Chapter 2: Tripathy, A. K., C. S. Edwards, K. V. Hodges, J.-A. Wartho, and F. J. 

Cooper (2011), Lithologic mapping of complexly deformed sedimentary strata 

using ASTER multispectral imagery: Implications for the evolution of Indus 

Basin depocenters, Ladakh, NW India, in preparation for submission to Journal of 

Geophysical Research – Solid Earth 

 

Chapter 3: Tripathy, A. K., K. V. Hodges, M.C. van Soest, and T. Ahmad (2011), 

Pre-Oligocene emergence of the Indian passive margin and the timing of Indian-

Eurasian collision, submitted to Geology 
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Chapter 4: Tripathy, A. K., K. V. Hodges, T. Ahmad, P. D. Clift, G. W. Gordon, 

and J.-A. Wartho (2011), Identifying mixed Indian-Eurasian provenance in the 

Indus Basin molasse sequence, northwestern Indian Himalaya: Implications for 

the timing of collision, in preparation for submission to Chemical Geology 

 

Chapter 5: Tripathy, A. K., K. V. Hodges, M. C. van Soest, and T. Ahmad (2011), 

Timing of north-vergent deformation in Ladakh, northwestern India, and 

implications for the along-strike continuity for the Great Counter Thrust system, 

in preparation for submission to Journal of the Geological Society of London 

 

Chapter 6: Tripathy, A. K., B. D. Monteleone, M. C. van Soest, and K. V. Hodges 

(2011), Robust detrital mineral (U-Th)/He thermochronology in non-steady-state 

settings, in preparation for submission to Journal of Geophysical Research – 

Earth Surface 
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4. Figure captions 

Figure 1.1. Geologic map of the northwestern Himalaya, after Hodges [2000], 

Schlup et al. [2003], and Steck [2003]. Inset after Sinclair and Jaffey [2001]. The 

extent the Indus Basin studied in the following chapters is boxed and labeled. 

ITSZ – Indus-Tsangpo suture zone; GCT – Great Counter Thrust; KFZ – 

Karakoram fault zone; MBT – Main Boundary Thrust; MCT – Main Central 

Thrust; MFT – Main Front Thrust; SSZ – Shyok suture zone; STFS – South 

Tibetan fault system.  
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Figure 1.1.  
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CHAPTER 2 

LITHOLOGIC MAPPING OF COMPLEXLY DEFORMED SEDIMENTARY 

STRATA USING ASTER MULTISPECTRAL IMAGERY: IMPLICATIONS 

FOR THE EVOLUTION OF THE INDUS BASIN DEPOCENTERS, LADAKH, 

NW INDIA 

ABSTRACT 

The Indus Basin, located in the northwestern Indian Himalaya, is of 

particular importance to understanding the history of the Himalayan-Tibetan 

orogen because it records the early Cenozoic history of the orogenic system that 

has since been eroded and modified by post-Oligocene deformation. 

Unfortunately, these strata have been variably mapped by previous workers 

because of the inaccessibility of most lithologic contacts due to rugged terrane, 

the deformation of the region caused by basin inversion, and the relative 

monotony of lithology. To examine these otherwise inaccessible contacts, we 

used Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) data to map the lithologic variation within the Indus Basin. Specifically, 

we used the visible-near infrared imagery to assess the apparent color changes of 

the rocks. We then applied several masks to the full dataset to generate images 

focused on lithologic variability using all wavelengths. We used these images to 

generate a regional-scale geologic map that is not only internally consistent, but 

also one that is permissible based on external datasets, including a compilation of 

depositional age constraints and sedimentary petrography. Furthermore, we 

demonstrate that the stratigraphy is far simpler than previous studies suggest, 
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which eliminates the need for complex changes between marine and terretiral 

depositional environments. This allows for identification of discrete depocenters 

within the terrestrial strata that likely record different aspects of collisional 

orogenesis, particularly the timing of collision and early erosional history of the 

orogen. 

1. Introduction 

Much of the modern tectonic architecture of the Himalaya was established 

over the past 20 million years [e.g., Hodges, 2000], and it should come as no 

surprise that our best understanding of the Himalayan orogenic processes pertain 

to that timeframe. However, the earliest stages of India-Eurasia collision appear to 

have begun at least thirty million years earlier [Rowley, 1996] and an increasing 

number of researchers are turning their attention to explorations of Eocene-Early 

Miocene (55-20 Ma) Himalayan tectonics. An important record of these early 

Himalayan tectonic events is preserved within the Indus-Tsangpo suture zone 

(ITSZ) of southern Tibet and adjacent regions of NW India [e.g., Rowley, 1996; 

Searle et al., 1997; Aitchison et al., 2002; DeCelles et al., 2011], wherein isolated 

sedimentary basins record the transition from the precollisional Andean-style 

subduction along the Eurasian margin to the dynamic steady state in which the 

orogen has persisted since Miocene time [Hodges, 2006]. The dating, correlation, 

and sedimentologic interpretation of stratigraphy in these basins are thus 

important for developing a rich understanding of the collisional processes. 

Unfortunately, because of the paucity of age-diagnostic fossils and tuffaceous 

horizons, age constraints remain poor in these strata. In the best-dated basins, 
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geochronologic evidence suggests Cretaceous (~65 Ma) or Oligocene to Miocene 

ages (~25-22 Ma) [Wang et al., 2010; DeCelles et al., 2011], but other basins 

have no known age constraints. Nevertheless, correlations have been attempted 

based upon lithologic similarities among basin fill deposits [e.g., Aitchison et al., 

2002], but these are speculative at best. 

Even within a single basin, discrepancies exist among even the most 

detailed stratigraphic studies because: 1) the strata contain few obvious marker 

horizons; 2) many exposures occur in remote and inaccessible regions; 3) many 

exposures are highly deformed; and 4) complete undeformed sections that are 

optimal for stratigraphic characterization are rare. In this paper, we demonstrate 

how the analysis of high-resolution multispectral satellite imagery can be a 

tremendously useful tool that can provide a better understanding of the 

stratigraphy and depositional history of these basins.   

We focused our study on the Indus Basin of Ladakh, India, which is one of 

the more extensive molasse basins in the ITSZ (Figure 2.1). Only a few transects 

across the basin are accessible by car or foot, and as a result, multiple published 

stratigraphic sections and geologic maps from this area are distinctively different 

(Figures 2.2 and 2.3). Instead of focusing on the more traditional outcrop-scale 

methods of correlating sedimentary units across >100 km that have been applied 

in numerous studies of this region, we used multispectral imagery, specifically 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

data, to create a comprehensive map of regional-scale lithologic variations in the 

Indus Basin. We substantiated the map not only with fieldwork, but also with a 
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comparison of predicted stratigraphic correlations and patterns of variation in 

sedimentary petrography and detrital mineral age populations across the region. 

This has yielded the most extensive regional-scale geolgic map in the Indus Basin 

that is not only interally consistent, but also consistent with published and 

additional depositional age constraints and sedimentary petrography. However, it 

is distinctively different from many previously published maps in that we resolve 

the issue of multiple transitions between marine and terrestrial depositional 

environments. Moreover, this map permits us to resolve discrete depostional 

systems across the region, such that we can discuss key locations for further study 

aimed at better constraining the timing of India-Eurasia collision and the early 

erosional history of the orogen.  

2. The Himalayan-Tibetan orogen 

Collision between India and Eurasia is commonly thought to have 

occurred during the Eocene along the ITSZ [e.g., Najman et al., 2010]. Since the 

pioneering work of Heim and Gansser [1939] and Le Fort [1975], the Himalaya 

are frequently described in terms of six tectonostratigraphic packages (Figure 

2.1).  

The northernmost Eurasian component – the “Transhimalaya” – includes 

intrusive igneous units of the Mesozoic-early Cenozoic Kohistan-Ladakh-

Gangdese system of batholiths and the country rocks into which they intrude. 

These units represent the remnants of an Andean-type continental arc developed 

along the southern margin of Eurasia prior to collision [Honegger et al., 1982].  
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The southernmost Indian components comprise four tectonostratigraphic 

packages – the Tibetan Sedimentary Sequence (TSS), the Greater Himalayan 

Sequence (GHS), the Lesser Himalayan Sequence (LHS), and the Subhimalaya, 

which all represent an orogenic wedge developed in Indian plate rocks during 

ongoing collisional orogenesis. The Neoproterozoic-Paleocene TSS preserves 

remnants of the precollisional Indian passive margin, and is bounded to the north 

by the Main Zanskar Backthrust (MZB) [Searle, 1986; Yin, 2006], and to the 

south by the South Tibetan fault system (STFS), an orogenic-scale normal fault 

system [Burchfiel et al., 1992]. In the footwall of the STFS, the GHS consists of 

Proterozoic-Early Paleozoic metasedimentary rocks and magmatic rocks of both 

Miocene and Cambrian age [e.g., Le Fort et al., 1987; Miller et al., 2001]. The 

Miocene Main Central Thrust system (MCTS) separates the GHS from the 

structurally lower LHS, which comprises unmetamorphosed to lower amphibolite 

facies supracrustal rocks of Early Proterozoic to Miocene age [DeCelles et al., 

2001]. The LHS is bounded to the south by the Middle Miocene-Pliocene Main 

Boundary Thrust system (MBT), which separates it from the Middle Miocene to 

Pliocene rocks of the Subhimalaya [DeCelles et al., 2001]. The Subhimalaya 

similarly overthrusts the modern-day foreland basin along the Pliocene-Holocene 

Main Frontal Thrust system [Yeats et al., 1992]. 

The Indian and Eurasian elements of the Himalaya are separated by the 

ITSZ, which is a narrow, structurally complex region that includes disaggregated 

exposures of ophiolites, precollisional forearc basin strata, and the syn- to post-

collisional Cenozoic intermontane molasse basins [Gansser, 1980]. Our research 
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focused on the Indus Basin, which is one of the larger, more accessible, and better 

exposed of these preserved molasse basins. 

3. The Indus Basin  

The Indus Basin, located in the Ladakh region of northwest India, is 

perhaps the most studied, yet least understood, of these intermontane basins. It 

has been recognized as potentially one of the most important of these successions 

for understanding the timing of collision [Rowley, 1996]. Preserved strata in the 

basin demonstrate the emergence and erosion of both sides of the orogen, with the 

majority of detritus interpreted as Eurasian [Henderson et al., 2011], but some 

Indian-plate detritus sourced from the TSS, which contains evidence for the pre-

Oligocene exhumation of the Indian passive margin (Chapter 3) [Tripathy et al., 

in review].  

3.1. Available datasets 

The datasets available thus far include several transects through the 

steeply-dipping to near-vertical strata. The number of transects has increased due 

to relaxed military restrictions to disputed border regions, but the number of 

vehicle accessible transects has only increased from three to four. Thus, access to 

multiple transects in the field is still significantly limited.  

Regarding age constraints, the biostratigraphy of the succession has been 

refined substantially since the pioneering work of Garzanti and Van Haver [1988] 

by Bajpai et al. [2004] and Henderson et al. [2010]. These findings have been 

supplemented with detrital mineral U-Pb geochronology and 40Ar/39Ar 

thermochronology [Wu et al., 2007; Henderson et al., 2010, 2011; this study]. 
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However, the lack of minerals suitable for 40Ar/39Ar thermochronology in all but 

the youngest strata restrict the utilization of this method. Moreover, when both 

chronometers are applied to the same sample, a significant difference between the 

youngest zircon U-Pb date versus the youngest muscovite 40Ar/39Ar date is often 

observed [Henderson et al., 2010], implying that the U-Pb data provide only a 

very loose constraint on the maximum depositional age.  

The sedimentary petrography of the Indus Basin elucidates the change in 

provenance over time, which directly influences paleogeographic interpretations, 

yet, in some cases, different applications of this technique have led to inconsistent 

results [Brookfield and Andrews-Speed, 1984; Henderson et al., 2010; 2011]. In 

particular, earlier studies suggest input from both Indian and Eurasian source 

regions, whereas more recent studies imply only Eurasian sources. Coupled with 

stratigraphic studies, these conflicting interpretations yield a variety of different 

suggestions for depositional environments (Figure 2.2). As a result, there is little 

consensus regarding both the depositional history of the Indus Basin rocks and the 

erosional history of the purported source regions. 

The Zanskar Gorge section (Figures 2.3 and 2.4) is the most structurally 

complex transect through the Indus Basin, yet has become regarded as the “type 

section” for two reasons. First, it is the most easily accessible transect by road. 

Second, the Nummulitic Limestone, a rare yet important marker bed within the 

Indus Basin, is exposed here. In fact, the Nummulitic Limestone has only been 

described in detail here and in one other section, beneath the Spontang ophiolite 

some 40 km to the west [Searle et al., 1997; Green et al., 2008]. Though the 
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Zanskar Gorge has been the focus of several studies, the mapping through this 

section varies significantly from one published map to another. By way of 

illustration, we show the various map interpretations of the Zanskar Gorge by 

Garzanti and Van Haver [1988], Clift et al. [2002], and Henderson et al. [2010] 

in Figure 2.3. The differences highlight the variability of interpretation that is 

permitted by such complexly deformed, lithologically monotonous strata.  

3.2. Conflicting stratigraphic nomenclature in the Indus Basin 

In addition to variable maps, multiple interpretations of the stratigraphy 

and associated depositional environment have also been presented (Figure 2.2). 

These discrepancies reflect correlation challenges associated with laterally 

variable lithofacies within a single depositional system, a common characteristic 

of continental molasse basins. In light of the difficulty of following any single 

contact along strike because of the rugged terrain in this region, major differences 

in stratigraphic interpretations come as no surprise. The problem is exacerbated 

by the fact that early workers [e.g., Brookfield and Andrews-Speed, 1984] defined 

much of their stratigraphy along transects other than the Zanskar Gorge, and these 

original stratigraphic frameworks have been variably extrapolated in more recent 

studies. Different perspectives have resulted in confusing stratigraphic 

inconsistencies, such as the fact that the Tar Formation of Garzanti and Van 

Haver [1988] is very different in both definition and mapped location from the 

Tar Group of Sinclair and Jaffey [2001]. 

Below we demonstrate that remote sensing data, which permit a broader 

analysis of the stratigraphy than is possible from ground-based studies alone, are 
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suggestive of a relatively simple Indus Basin “macrostratigraphy” that can be 

interpolated between accessible transects and extrapolated beyond them.  

3.3. ASTER-based stratigraphy 

For clarity, we first provide our informal stratigraphy for the Indus Basin 

sedimentary rocks, and go on to demonstrate how it was built and verified 

throughout the remainder of this paper. We follow Figure 2.2, which is a 

comparison between our own stratigraphic framework and those derived from 

previously published studies. We did not extract stratigraphic sections directly 

from previous work, but rather, we examined each previously published map and 

associated field descriptions, and determined how each of these published units 

corresponds to our stratigraphic framework. As a consequence, not all previously 

published lithologic units are shown in Figure 2.2a because they do not 

correspond to any part of the Zanskar Gorge stratigraphy. We also include 

appropriate correlations to strata along the Leh-Manali road section to the east 

(Figures 2.2b, 2.4), which includes some, but not all, of the same stratigraphic 

units. Figure 2.2 also lists the interpreted depositional environments where 

explicitly stated by previous authors. 

3.3.1. Southern Zone: The Chilling Group  

This unit comprises several complexly intermingled, yet mappable, 

lithologies that we group together for simplicity. Bounded to the south by the 

Main Zanskar Backthrust, the Chilling Group principally comprises elongate pods 

of ophiolite, ophiolitic mélange, coherent forearc strata, and limestone. Age 
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constraints are poor, but previous authors have described this section as 

Maastrichtian-Eocene (ca. 70-34 Ma) in age [e.g., Searle et al., 1997].  

3.3.2. Northern Zone: Ladakh batholith 

North of the Indus Basin sedimentary strata lies the Ladakh batholith, onto 

which the Indus Group has been thrust. Comprised of calc-alkaline plutonic rocks, 

predominantly granite and granodiorite, U-Pb zircon ages, interpreted as 

crystallization ages, range from Early Cretaceous to Lutetian (ca. 48-40 Ma) 

[Honegger et al, 1982; St. Onge et al., 2010]. 

3.3.3. Tar Group 

The Tar Group includes all marine strata exposed between the Chilling 

Group and the first continental clastic stratum of the Lower Indus Group. In 

general, the lithologies of the Tar Group include shales, sandstones and 

limestones, with black limestones dominating the upper parts of the unit. The top 

of the Tar Group comprises black fossiliferous limestones of the Sumda 

Formation as well as a Nummulitic Limestone that has been mapped explicitly by 

some research groups [e.g., Searle et al., 1990; Clift et al., 2002; Henderson et al., 

2010]. These carbonate units interfinger with overlying continental clastic rocks. 

Along the Leh-Manali road transect (Figure 2.4), the Tar Group forms the core of 

a syncline, upon which continentally derived strata lie, as observed by Brookfield 

and Andrews-Speed [1984]. 

The Tar Group can be subdivided into the Nindam forearc rocks [e.g., 

Fuchs, 1984; Clift et al., 2002], the Ypresian (ca. 55-49 Ma) Jurutze Formation 

[Henderson et al., 2010], and the upper Ypresian Sumda Formation and 
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Nummulitic Limestone [Henderson et al., 2010]. As with the Chilling Group, 

there is little consensus regarding the most appropriate subdivisions, and our 

stratigraphy most closely follows that of Sinclair and Jaffey [2001]. In Figure 2.4, 

we do not subdivide the Tar Group because the nature of the contacts among 

many Tar Group units has not been studied in detail. 

3.3.4. Lower Indus Group 

We interpreted the Lower Indus Group as a combination of several units 

mapped separately by previous researchers, and subdivided it into two formations. 

The stratigraphically lowest of these, the Chogdo Formation, conformably 

overlies the Tar Group, and consists of cyclical packages of red shale and green 

sandstone. Conglomeratic horizons increase toward the top of the section such 

that the uppermost coarse-grained unit is the cobble-boulder conglomerate that is 

commonly referred to as the Choksti Conglomerate [Henderson et al., 2010]. The 

Chogdo Formation is bounded to the north by a major backthrust structure that is 

potentially the Choksti Thrust of Sinclair and Jaffey [2001]. It is cut by at least 

one additional backthrust, which may account for the dramatic change in outcrop 

thickness in the Zanskar Gorge, as compared to easterly exposures. The 

depositional age for Chogdo rocks most likely ranges from upper Ypresian to 

Lutetian (ca. 50-40 Ma) [Wu et al., 2007; Henderson et al., 2010]. From Figure 

2.2, it is evident that our interpretation for the Chogdo Formation is the most 

significant departure that we make from the previous work in this region.  

The second unit, the Stok Kangri Formation of Fuchs [1984] and 

Brookfield and Andrews-Speed [1984] (i.e., the Rong Formation of Henderson et 
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al. [2011]) is not continuous with the Chogdo Formation, but lies to the south of 

the Tar Group along the Leh-Manali road. In detail, subtle differences exist 

between the Stok Kangri Formation and the Chogdo Formation [Henderson et al., 

2011], but we nevertheless consider it likely that the Stok Kangri Formation is 

time correlative with parts of the Chogdo Formation. To the south, the Stok 

Kangri Formation overthrusts the Chilling Group, whereas to the north, the Stok 

Kangri Formation and the Tar Group have an angularly discordant contact 

relationship [Henderson et al., 2011]. Because of significant snow cover in the 

ASTER imagery, we cannot characterize this formation in detail using remote 

sensing techniques. Instead, we discuss these strata in terms of geochronology, 

sedimentary petrography and contact relationships.  

3.3.5. Upper Indus Group 

The Upper Indus Group can be subdivided into three major sections, two 

of which are present in the Zanskar Gorge. The Choksti Formation, which is 

better exposed to the east of the Zanskar Gorge, is likely Middle Eocene 

(Lutetian, ca. 45 Ma) or younger in age [Wu et al., 2007], and is in thrust contact 

with the underlying Lower Indus Group. Choksti rocks comprise mostly black 

shales and sandstones, with subordinate red and green shales and cobble 

conglomerates toward the top of the section. However, east of the Zanskar Gorge, 

this unit is significantly more conglomeratic.  

The Hemis Formation, not exposed in the Zanskar Gorge section, is 

present along the Leh-Manali road transect. The type locality, at Hemis Gompa, 

preserves cyclical sandstone and conglomerate packages, with these 
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conglomerates containing abundant clasts derived from the Ladakh batholith. Its 

maximum age of deposition is Late Eocene (Priabonian, ca. 34 Ma; this study). 

The Nimu Formation, which is mainly exposed in the Zanskar Gorge, 

comprises mostly black shales that contain plant remains, gray sandstones, and 

occasional cobble conglomerates. The Nimu Formation is separated from the 

Choksti Formation by an angular discordance, which we interpret as a fault. The 

Nimu Formation could be as old as Middle Eocene (ca. 41 Ma) at its base [Wu et 

al., 2007], but is clearly as young as Early Oligocene (Rupelian, ca. 30 Ma) 

toward the top of the section (this study).  

3.3.6. Basgo Group 

The Basgo Group includes both the Basgo Formation and the conformably 

overlying Temesgam Formation. The Basgo Formation is highly calcareous in 

comparison to the other molasse units, and contains distinct mustard colored 

sandstones. Ostracods are present in green-red calcareous shale and fine-grained 

sandstone sequences, and have been dated as Late Oligocene (ca. 28-23 Ma) 

[Bajpai et al., 2004]. The conformably overlying Temesgam Formation, which is 

exposed north of the Zanskar Gorge, contains gray-yellow sandstones and blue-

gray shales, with the occasional very fine-grained red horizon. In fault contact 

with the Nimu Formation, the Temesgam is as young as Miocene (ca. 19 Ma) 

toward the top of the section [Henderson et al., 2010]. The Basgo Group has been 

thrust over the Ladakh batholith, and the fault is exposed west of Likir. 
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4. Lithologic mapping with ASTER data 

The stratigraphy described in the previous section was built differently 

from previous stratigraphies of the Indus Basin in that it represents mappable 

units that are easily distinguished using remote sensing data. Sensor systems on 

multispectral imaging satellites have advanced significantly over the last two 

decades, and the data products are commonly used to map mineral abundances in 

places such as the Moon and Mars, where few other means exist to quantitatively 

examine the geologic history. For Earth, there is a wealth of literature involving 

data from the Landsat program, active since 1972, such that remote sensing 

textbooks are written in the context of Landsat-based studies [e.g., Sabins, 1997].  

The ASTER instrument, deployed in 1999 on the Terra satellite, offers 

improvement in the resolution of multispectral data for Earth, with 14 bands 

collected from three radiometers – the visible-near infrared (VNIR), short-wave 

infrared (SWIR) and thermal infrared (TIR) instruments (Table 2.1). These data 

are used to demonstrate changes in lithology and mineral abundances [e.g., 

Rowan and Mars, 2003; Vaughan et al., 2005], and have been used in the 

Himalaya to map gneiss domes [Watts et al., 2005], granite bodies in extremely 

variable topography [Bertoldi et al., 2011], and ophiolites along the ITSZ [Corrie 

et al., 2010]. In this section, we first discuss processing methods used to create 

ASTER data products that maximize the information obtained from this 

multispectral dataset. We then use our resulting images to build the stratigraphic 

framework described above for the Indus Basin rocks. We discuss the general 

outline gleaned from the visible imagery (Figures 4 and 5a), describe the use of 
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TIR mapping of masked images to elucidate changes in mineralogy (Figure 2.5b), 

and perform principal component analysis (PCA) of the full dataset to highlight 

changes in both composition and structure (Figure 2.5c). At the end of this 

section, we corroborate our interpretations by comparing TIR spectra of different 

parts of the ASTER image to verify likeness of lithologies (Figures 2.6 and 2.7).  

4.1. Processing ASTER data 

4.1.1. Data acquisition 

We retrieved the ASTER Level 1B data products for scenes that minimize 

cloud and snow cover in order to reveal the maximum amount of surface, and, 

therefore, geology, as possible. Because we use SWIR data to identify and mask 

vegetation and ice/snow, we require data collected prior to April 2008 because 

high SWIR detector temperature has rendered recently collected ASTER SWIR 

data unusable. ASTER L1B data products are processed using Davinci, a free 

remote sensing image processing software developed at Arizona State University 

(http://davinci.asu.edu).  

4.1.2. Visible imagery 

Because of the aridity and associated lack of vegetation of the Ladakh 

region, significant information can be acquired from only the visible imagery. 

These data formed the basis for our preliminary regional geologic map of the 

Indus Basin. We present in Figure 2.4 a mosaic of nine false color ASTER images 

(RGB images with VNIR bands 3, 2, and 1, respectively, where vegetation 

appears red due to the enhanced reflectivity in band 3) that show the lateral extent 

of the macrostratigraphic units described above, with further subdivisions of the 
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terrestrial Lower Indus, Upper Indus and Basgo Groups. The mosaic was created 

in Java Mission-planning and Analysis for Remote Sensing (JMARS) for Earth, 

which is an open-source Geographical Information System (GIS) system created 

at Arizona State University that is available to the general public 

(http://jmars.asu.edu). In Figure 5a, we focus on the scene that encompasses the 

Zanskar Gorge and surrounding areas because it allows comparison to the 

previously published maps depicted in Figure 2.3 and contains all major 

lithotectonic units, including those not exposed in the Zanskar Gorge transect.  

4.1.3. Creating TIR decorrelation stretch images 

An important application of TIR data is elucidating the mineralogy of the 

scene. In the rocks of the Indus Group, we utilized these data to differentiate not 

only between calcareous versus non-calcareous units, but also between various 

units that may have a different clast or matrix composition, which inherently 

implies a different source area than its neighboring rocks. We use TIR data to test 

our observations made from the visible imagery and further differentiate various 

strata. To visualize the variability in a given scene, we created a decorrelation 

stretch (DCS) image [Gillespie et al., 1986], which is designed to highlight 

second- and third-order spectral variability in infrared data, rather than the first-

order temperature differences that serve as a proxy for topography. To create this 

image, we follow the steps described below.  

Noise removal 

In order to exploit the full capability of the TIR bands from ASTER 

images, noise that is common to ASTER radiance data and infrared instruments in 
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general was removed using a specialized multi-wavelength line-to-line filter 

[Nowicki and Christensen, submitted].  

Masking 

Following the noise-removal process, we applied three data-exclusion 

masks that effectively remove unwanted pixels from the TIR data – pixels 

containing significant fractions of vegetation, snow, ice, water and clouds. The 

masking process plays an important role because it enhances the variability of 

pixels that are representative of the mineralogy of the exposed surface and not the 

spectral signature of the three excluded components.  

To create these masks, all bands in each scene were first re-sampled to the 

same resolution as that of the 90m ASTER TIR data using a bilinear interpolation 

image-resampling algorithm. We masked vegetation, snow, ice, water, and clouds 

in different ways: 1) using the Normalized Difference Vegetation Index (NDVI) 

[NASA Earth Observatory, earthobservatory.nasa.gov] for vegetation; 2) snow, 

ice and water using the Normalized Difference Snow and Ice Index (NDSII) [Xiao 

et al., 2001]; and 3) clouds using the Cloud mask of Cooper et al. [in 

preparation], which uses ASTER band 1 to look for bright zones. For each of 

these masks, index values were carefully selected in order to maximize the 

elimination of pixels affected by any of these features.  

Temperature and Emissivity Separation  

The L1B data product provides information about the surface-emitted and 

solar-reflected radiance. However, in order to extract maximum information about 

spectral variability, the data must be converted to emissivity, which effectively 
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removes all temperature information from the scene, resulting in data that 

represent compositional variability [e.g., Gillespie et al., 1998]. No atmospheric 

correction was applied, as only relative differences in composition were of 

interest for the DCS image, and the paucity of clouds indicates a relatively 

uniform atmosphere. 

Creating the TIR Decorrelation Stretch Images 

To visualize compositional diversity in a radiance or emissivity image, a 

decorrelation stretch was applied to the masked scene, whereby the color 

differences found in three TIR bands were enhanced [see Gillespie et al., 1986]. 

We use band combination 14-12-10 (or TIR 5-3-1) to maximize variability 

between different rock mineralogies. In this scheme, red pixels have high band 14 

values, green pixels have high band 12 values, and blue pixels have high band 10 

values. White areas have equal values in all three channels, whereas purple values 

are high in bands 14 and 10, green-blue are high in bands 12 and 10, and yellow 

pixels are high in bands 14 and 12.  

To convert this to rock type/mineralogy, Figure 6, reproduced from 

Ninomiya et al. [2005], shows the laboratory-determined emissivity spectra for 

common rock types with the ASTER TIR bands plotted at their appropriate 

wavelengths. Therefore, in a 14-12-10 image, a carbonate rock, which is strongly 

absorbing in band 14, will be strongly green-blue. A mafic rock does not have any 

strong absorption in these bands, and will be white. Felsic and quartz-rich rocks 

show strong absorptions at bands 12 and 10, and will show up as pink. However, 

quartz-rich rocks are not as strongly absorbing in band 10, and will therefore be 
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more purple than a felsic rock with less quartz, which will be more red. To further 

highlight these color differences, we performed a sampled stretch, whereby we 

applied the statistics of the region of interest to the entire scene, which enhanced 

the color variation for the mineralogies of interest (Figure 2.5b). 

Care must be taken during interpretation of multiple scenes for which 

decorrelation stretches have been created because the color differences are 

specific to each individual scene, such that features of the same color in different 

scenes may be different lithologies. Therefore, we focus on the Zanskar Gorge 

scene and discuss the color changes from north to south within the stratigraphic 

framework of the visible imagery (Figure 2.5a), and lay out additional 

subdivisions that are apparent using only the TIR bands. Figure 2.5b is a sampled 

DCS of the Zanskar Gorge that shows our zones B1, B2 etc. that we use to 

highlight various features apparent in the image. 

4.1.4. Principal Component Analysis (PCA) 

An additional use of multispectral data is PCA, which uses orthogonal 

data transformations to convert correlated variables into a set of components, or 

axes such that the first principle component has the maximum variance possible, 

and each subsequent component is both orthogonal to and has a decreasing 

amount of variance than the previous component [Chavez and Kwarteng, 1989]. 

In our analysis of the Zanskar Gorge region, all 14 bands were masked and 

collapsed into an 830x700x14 matrix, and 10 principle components were 

calculated, as any subsequent components were largely composed of random 

noise and eigenvalues that are several orders of magnitude lower than the first 
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several principle components. The first component was not useful because it 

highlighted any snow or ice that we were unable to fully mask. The tenth 

component shows the least variance and was also not useful. We focused only on 

features that were present in all intervening principle components images, and 

showed PCA component 5 (PCA5) because it maximizes the contrast of the 

persistent features, the most important of which are bounded by the yellow box 

(Figure 2.5c). 

4.2. ASTER image interpretation  

An examination of the different images in Figure 2.5 revealed patterns that 

permitted the classification of ten domains: the Chilling Formation to the south, 

the Ladakh batholith to the north, and eight distinctive domains within the Indus 

Basin sedimentary rocks. Each domain shows an overall NW-SE elongation 

parallel to the trace of the ITSZ, but not all are continuous throughout the study 

area. In some cases, domain boundaries truncate one another, suggestive of a fault 

relationship. 

For each domain, we first describe the image analysis without any 

interpretation. All boundaries shown in Figure 2.5a are based solely upon color 

change in the VNIR bands that we inferred to imply change in lithology. In Figure 

2.5b, we modified those boundaries when necessary, based upon the change in 

lithology that is directly represented by the color changes. Figure 2.5c 

corroborated several boundaries, and elucidated structural features that are not 

apparent in the previous two images.  
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Then, for each domain, we evaluated our image analysis in the context of 

fieldwork, which we supplemented in places with emissivity spectra extracted 

from atmospherically corrected emissivity data (Figure 2.7). This evaluation 

includes interpretation of the boundaries between each domain. Based on this 

discussion, we present our geologic map in Figure 2.8. The domain numbers 

correspond to those listed in Figures 2.4, 2.5a and 2.8, and we discuss them in 

numerical order. Zone numbers correspond to Figure 2.5b. Uninterpreted images 

for Figure 2.5 are available in Supplementary Material Appendix A.  

4.2.1. Domain 1 (zone B1) 

Description 

Domain 1, exposed near the village of Chilling, is distinctive in both the 

VNIR and TIR images because of the multitude of apparent lithologies. In Figure 

2.5a, it includes lozenge-shaped black features, and elongated red and white units. 

The black features indicate mafic compositions when coupled with their white 

color in the TIR DCS image (zone B1, Figure 2.5b). The remaining lithologies are 

more felsic and/or quartz-rich, based upon their emissivity characteristics, which 

is illustrated by orange and pink colors in the TIR DCS image (Figure 2.5b). The 

southern boundary of Domain 1 is not apparent in Figure 2.5a, but shows up 

clearly in the TIR DCS image as a boundary between the green-blue carbonate-

rich SW corner of the image versus the felsic units included within this Domain 

(Figure 2.5b). The northern boundary of Domain 1 is based upon Figure 2.5a, 

where the contact is a distinct color change from dark Domain 1 strata to 

significantly lighter Domain 2 rocks.  
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Interpretation 

In the field, Domain 1 comprises multiple lithologies. The mafic pod 

exposed west of Chilling village is ophiolitic, and so we used this as a ground-

truthed area with which to compare other mafic pods. In fact, the spectral 

signatures among the Chilling ophiolites and the other pods shown (zone B1) 

have similar slopes between ASTER bands and absorption features at each band, 

implying that they are similar mafic lithologies. The felsic strata surrounding 

these ophiolitic bodies have been described and interpreted in such varying detail 

by different authors [e.g., Fuchs, 1984; Clift et al., 2002; Henderson et al., 2011] 

that we made no attempt to interpret the nature of these individual mappable units. 

Rather, the entirety of Domain 1 is considered a complex amalgam of lithologies 

that is likely correlative to ophiolites and ophiolitic mélange zones that are present 

along strike to both the east and west of this area [e.g., Robertson and Dengan, 

1994]. Hereafter, we refer to Domain 1 as the Chilling Formation. As shown in 

Figure 2.8, we observe that the TSS to the south has been backthrust over the 

Chilling Formation, and must be the Main Zanskar Backthrust, as defined by 

Searle et al. [1997]. 

4.2.2. Domain 2 (zones B2-B4, B6) 

Description 

Domain 2 is clearly differentiated in the VNIR image (Figure 2.5a), and 

comprises all light colored strata in the central part of the Zanskar Gorge. 

However, based solely upon the VNIR image, further subdivision is not apparent. 

From the TIR DCS image, zone B2 comprises a multicolored unit, implying a 
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mixture of lithologies at a scale that is finer than the 90m resolution ASTER TIR 

data. In Figure 2.5b, a thin white layer, exposed to the east in a river valley, 

bounds zone B2 to the north. Upon further examination of Figure 2.5a, a thin dark 

layer is present that we interpreted as a sliver of mafic material located at the 

northern boundary of zone B2. However, we could not follow this boundary 

beyond the Zanskar Gorge region.  

North of zone B2 lies zone B3, another multicolored unit. It contains 

fewer green-blue (carbonate) pixels, and more pink (felsic) pixels in the TIR DCS 

image than zone B2, and comprises the eastern continuation of Domain 2 (Figure 

2.5b).  

Zone B4 in Figure 2.5b is an enigmatic unit. In the VNIR image of Figure 

2.5a, it corresponds to Domain 2 and bears no resemblance to the overlying 

Domain 3. However, in the TIR DCS image of Figure 2.5b, it is indistinguishable 

from Domain 3 because of the shared pink-red color, which implies a felsic 

lithology.  

Finally, zone B6 in the far west of Figure 2.5b is a distinct blue-green 

carbonate layer that apparently caps the remainder of Domain 2 (zones B2-B4), 

and interfingers with the overlying Domain 3 (zone B5). Furthermore, pods of 

similar lithology to sonze B6 are fully enclosed within Domain 3. 

Interpretation 

Domain 2 is best discussed in the context of zones B2 through B6 of 

Figure 2.5b, although it excludes zone B5. Zone B2 comprises forearc strata 

commonly referred to as the Nindam Formation [e.g., Clift et al., 2002] (Figure 
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2.2). Zone B3 is interpreted as the Jurutze Formation, which records a transition 

from marginal marine to distal turbidites [Brookfield and Andrews-Speed, 1984] 

(Figure 2.2). This is supported by the combination of carbonate and felsic 

lithologies indicated by the TIR DCS image.  

Above the Jurutze Formation lies zone B4, which could belong to either 

Domain 2 or Domain 3. In Figure 2.7, we present emissivity spectra from both 

zone B4 and Domain 3, which demonstrates that they are similar to one another. 

However is possible that zone B5 of Domain 3, which topographically caps zone 

B4, has eroded, and subsequently covered, the entire slope with felsic detritus, 

thus obscuring the true spectral signature of zone B4. This hypothesis requires 

fieldwork for verification. Thus, we tentatively assign zone B4 to Domain 2 based 

upon Figure 2.5a.  

Finally, zone B6 comprises limestones of the Sumda Formation and the 

Nummulitic Limestone, which are clearly exposed in the Zanskar Gorge as near-

vertical limestone beds. Counter to the common interpretation that the Sumda 

Formation and Nummulitic limestone are separate and represent a complicated 

depositional history due to intervening terrestrial clastic strata with the marine 

sequence (Figure 2.2), they appear to be continuous with one another. This is 

supported by their emissivity spectra, which are equivalent (Figure 2.7). 

Furthermore, we interpreted the limestone pods that are fully enclosed within 

Domain 3 to be part of zone B6 as well, which implies that the boundary between 

Domains 2 and 3 is complexly deformed. One pod in particular is peculiar, in that 

it is an apparent dome of zone B6 that is cored by distinctly felsic pixels (Figures 
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2.5b and 2.8), and will be discussed during the interpretation of Domain 3. 

However, based upon our interpretation, all marine limestones of the Indus Basin 

are located stratigraphically below Domain 3, and are collectively referred to as 

the Tar Group. 

4.2.3. Domain 3 (zones B5 and B7) 

Description 

Domain 3 contrasts sharply with its surrounding rock types in Figure 2.5a 

because its lithology is significantly redder in the VNIR image, and is generally 

distinctly pink-red (zone B5) in the TIR DCS image, implying significantly more 

felsic and/or quartz rich lithologies than the surrounding areas. There are two 

exceptions to this observation. One is the abovementioned limestone pods. The 

second is zone B7, which denotes the eastern continuation of Domain 3. It is not 

distinct in Figure 2.5b, and is a result of erosion of overlying carbonate strata of 

Domain 2 (zone B3) that mantles and obscures the characteristic TIR emissivity 

signature of Domain 3. This is apparent in Figure 2.5b, where large 

colluvial/alluvial features are clearly present. As such, Figure 2.5b is not useful 

for mapping the eastern extent of the boundary between Domains 2 and 3. 

Interpretation 

Domain 3 comprises the first appearance of continentally derived rocks in 

the Zanskar Gorge section, which we informally name the Chogdo Formation. 

Unlike many previous studies, we make no effort to further subdivide these strata. 

As a consequence, the Chogdo Formation combines the Chogdo Formation, Nurla 

Formation, Choksti Conglomerate and Red Shale Member of Henderson et al. 
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[2010]. It also includes the Gonmaru La and Artsa Formations of Henderson et al. 

[2011], exposed along the Leh-Manali road (Figure 2.2).  

Where clearly exposed (Zanskar Gorge and Leh-Manali road transects, 

and near the village of Rumbak), the contact between the Chogdo Formation and 

the Tar Group (Sumda and Nummulitic limestones) is conformable, implying a 

transition between marine and deltaic depositional systems, as discussed by 

Henderson et al. [2010]. Along the Leh-Manali road, the Chogdo Formation 

forms the northern limb of the antiformal structure mentioned above.  

Because of the isolated carbonate exposures within the Chogdo rocks 

located in and near the Zanskar Gorge, which is not characteristic of the rest of 

the unit, we infer complex folding of the Tar Group and the Chogdo Formation. 

Alternatively, the Chogdo Formation may contain minor carbonate lenses that are 

not present elsewhere. We infer the former to be more likely based upon the 

presence of fold axes observed along the Zanskar Gorge transect (Figure 2.8).  

The most perplexing of these carbonate lenses is what appears to be a 

doubly plunging antiform along the Zanskar Gorge transect that is cored by rocks 

similar to the Chogdo Formation (Figures 2.5 and 2.8), as mentioned in the 

interpretation of Domain 2. We hypothesize that the core of this dome correlates 

to the pink pixels of zone B3, but recognize that an appropriate comparison of 

laboratory-derived spectra of hand samples from each area should be made in 

order to verify this suggestion.  

Perhaps the most interesting observation regarding the Chogdo Formation 

is its relatively uninterrupted continuation between Chumathang and Rumback 
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that is apparent from Figure 2.4, spanning ~100 km. An interruption of the 

Chogdo Formation between Rumback and the Zanskar Gorge transect is only ~2 

km long, and is located at the confluence of multiple rivers. As such, it is possible 

that the contact is simply obscured beneath alluvium. Because of its relative 

continuity over >120 km, the Chogdo Formation should be considered the most 

important marker bed within the Indus Basin.  

4.2.4. Domain 4  

Description 

In the ASTER image analyzed for the area immediately east of the 

Zanskar Gorge, there is significant snow cover that limits our capability to 

unambiguously identify and characterize units there. However, the image does 

show a clear transition from the light-colored Tar Group into darker rocks labeled 

as Domain 4 in Figure 2.5a.  

Interpretation 

Although obscured in the ASTER images of Figure 2.5, Domain 4 is well 

exposed along the Leh-Manali road, and has been mapped as the Stok Kangri 

Formation by Brookfield and Andrews-Speed [1984] and Fuchs [1984], as 

described in section 3.4.4.  

Based on analysis of additional ASTER scenes, and corroborated by 

fieldwork, these rocks most likely represent the core of a large-scale synform 

exposed along this transect, as mapped by Henderson et al. [2011] (Figure 2.8). 

The southern contact, between the Stoki Kangri Formation and the Chilling 

Formation, is clearly a fault, originally mapped by Fuchs [1984]. We correlate 
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this fault with that which bounds the Chilling Formation in the Zanskar Gorge 

(Figure 2.8), which implies that the Stok Kangri Formation was not as laterally 

extensive as the Chogdo Formation. To the north, the Stok Kangri Formation 

forms the strata along the southern flank of the antiformal structure that is cored 

by the Tar Group along the Leh-Manali road. The contact is angularly discordant, 

but we could not differentiate whether this contact is faulted or depositional. 

However the simplest explanation is that the antiformal feature developed prior to 

deposition of the Stok Kangri Formation, thus explaining the angular discordance 

without the need for a fault. 

4.2.5. Domain 5 (zone B8) 

Description 

In Figure 2.5a, Domain 5, north of Domain 3, is distinctly lighter colored. 

Domain 5 is mostly exposed along the Leh-Manali road, where zone B8 

comprises significantly more intermingled white and green-blue pixels than the 

surrounding felsic units, which implies more mixing of rock types (Figure 2.5b). 

Because these are sedimentary rocks, this likely denotes a more varied source 

region. In Figure 2.5c, the resolution of the PCA analysis of the ASTER data is 

sufficient to elucidate a major fold structure in Domain 5 that is not apparent in 

either the VNIR or TIR DCS images, and is highlighted by the yellow box.  

Interpretation 

The multicolored signature in the TIR DCS image (Figure 2.5b) of 

Domain 5 reflects that the majority of these strata comprise alternating pebble-

cobble conglomerates and sandstones, with the conglomerates having a variety of 
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clast types. The southern contact of Domain 5 is a fault located between the Red 

Shale and Sandstone members of the Choksti Formation of Henderson et al. 

[2010] in the Zanskar Gorge, and an equivalent fault that separates the Artsa 

Formation from the Umlung Formation [Henderson et al., 2011] along the Leh-

Manali road transect. Because it includes the remainder of the Choksti Formation 

of Henderson et al. [2010], we informally named Domain 5 the Choksti 

Formation.  

The Choksti Formation southern boundary fault can be traced along most 

of its length in Figure 2.5a, and west of the Zanskar Gorge its extent is inferred 

based upon an angular discordance apparent in the visible image (Figure 2.5a). 

This may be equivalent to the “Choksti Thrust” of Sinclair and Jaffey [2001].  

The major fold present in the Choksti Formation (Figure 2.5c) is the only 

regional-scale fold structure that is distinctly apparent within strata north of the 

Chogdo Formation, although numerous km-scale tight folds are known to 

characterize much of the outcrop. Despite that degree of deformation, because we 

can discern a relatively simple macrostratigraphy, this implies that many of the 

large, tight folds visible in the field are actually intrafolial and do not repeat major 

stratigraphic units.  

4.2.6. Domain 6 (zone B9) 

Description 

Only present in the easternmost extent of this image, Domain 6 is 

nevertheless apparent not only as a color variation, but also as a change in strike 
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(Figure 2.5a). However, Domain 6 (zone B9) is not distinguishable from Domain 

5 (zone B8) in the TIR DCS image (Figure 2.5b), implying similar source areas.  

Interpretation 

Exposed in the easternmost extent of Figure 2.5, Domain 6 is mapped 

strictly based upon an angular discordance in the visible imagery (Figure 2.5a). 

We trace this boundary to the Leh-Manali road, where we verified that it is a fault 

contact that has been mapped by Henderson et al. [2011], which separates their 

Umlung and Upshi Formations (Figures 2.2 and 2.8). Because these strata were 

originally named after their type locality near the Hemis Gompa, we name this 

unit the Hemis Formation. The northern contact of the Hemis Formation is 

inferred to be a fault, but is obscured beneath Indus River valley deposits except 

for a single exposure at Upshi, which is inaccessible due to military restrictions.  

4.2.7. Domain 7 (zone B10) 

Description 

In Figure 5a, Domain 7 comprises all light colored strata north of Domains 

3, 5 and 6. In the TIR DCS image, Domain 7 (zone B10) is more felsic than its 

surrounding units (Figure 2.5b), although much of its northern contact is obscured 

beneath the Indus River valley deposits (Figure 2.5a). 

Interpretation 

Exposed mostly in the Zanskar Gorge, Domain 7 correlates with the 

Lower Nimu Formation of Henderson et al., [2010], and so we refer to it as the 

Nimu Formation. Its southern boundary with the Choksti Formation is observed 

as an angular discordance, but is not well exposed in the Zanskar Gorge, as 
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pointed out by Henderson et al. [2010]. We inferred that it is a fault contact based 

on age relationships that we will describe in subsequent sections. The northern 

contact of the Nimu Formation is exposed near Saspul, which we observed to be a 

fault contact (Figure 2.8). However, it is also mostly obscured beneath the 

alluvium of the Indus River valley. 

4.2.8. Domain 8 (zone B11) and Domain 9 (zone B12) 

Domain 8 description 

Domain 8 lies north of the Indus River valley, and comprises light colored 

strata in the westernmost extent of Figure 2.5a. Both its southern and northern 

boundaries are apparent in Figure 2.5a as changes in color (southern boundary 

with Domain 9) and change in weathering pattern (northern boundary with 

Domain 10). In Figure 2.5b, the outcrop locations of Domain 8 (zone B11) are 

much more green than other parts of the image, which implies a carbonate-

bearing lithology.  

Domain 9 description 

Domain 8 is south of and overlies Domain 9. Domain 9 is not significantly 

different in Figure 2.5a, although the contact is apparent upon close examination. 

However, in Figure 2.5b, zone B12 depicts significantly more orange strata than 

elsewhere, where these rocks outcrop, which implies a mixture between quartz-

rich and carbonate lithologies at the sub-pixel scale.  

Interpretation of Domains 8 and 9 

We discuss these domains north of the Indus River and west of the 

Zanskar Gorge together because they form a single tectonostratigraphic package. 
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Domains 8 and 9 correspond to the Basgo and Temesgam Formations, 

respectively, as described by Garzanti and Van Haver [1988] and Searle et al. 

[1990]. We refer to them collectively as the Basgo Group.  

They can be easily differentiated from the remainder of the Indus Basin 

rocks because of their distinctive alternating mustard and red colors at the outcrop 

scale, although the Basgo Group contains more green sandstones than the 

overlying Temesgam Formation. The contact between the Basgo and Temesgam 

Formations is conformable where observed in the field, but together, the Basgo 

Group comprises a single tilted package, over which the Nimu Formation has 

been thrust. The Basgo Group itself is emplaced over the Ladakh batholith by a 

north-directed backthrust. 

4.2.9. Domain 10 (zone B13-14) 

Description 

In Figure 2.5a, Domain 10 clearly comprises rocks that are not 

sedimentary in nature, particularly due to the weathering pattern. In Figure 2.5b, 

this domain comprises significant mixing of various mineralogies (zone B13). 

However, all weathered material within catchments result in strongly red 

signatures in the TIR DCS image, which implies that these rocks are highly felsic 

compared to the surrounding lithologies (zone B14).  

Interpretation 

Domain 10 corresponds to the Ladakh batholith [Honegger et al., 1982]. 

The boundary between the batholith and the Indus Basin sedimentary strata to the 

south is easily observed in the visible imagery because of the lack of layering in 



	   	  	  45 

the Ladakh batholith, as well as the dramatic change in weathering patterns 

between granites and granodiorites versus sandstones and shales (Figure 2.5a). 

Where the contact is observed, the Indus basin sedimentary strata are thrust 

northward over the Ladakh batholith (Figure 2.8), but the abundance of Ladakh 

batholith clasts in many of the Indus Group conglomerates suggests a primary 

unconformable relationship before thrust displacement.  

5. Age constraints 

In this section, we briefly summarize our muscovite 40Ar/39Ar 

thermochronology methods and data. We then synthesize all available age 

constraints from the Indus Basin, and place these data in the context of our units 

as defined by the ASTER image analysis. 

5.1. Detrital muscovite 40Ar/39Ar thermochronology 

5.1.1. Methods 

Three coarse-grained sandstone samples were analyzed for detrital 

muscovite 40Ar/39Ar thermochronology by the laser total fusion technique. Two 

samples, LM-K and LM-L, were collected from the Hemis Formation, and one 

sample, ZG-O, was collected from the Nimu Formation (Figure 2.8). 

Muscovite grains were handpicked from the 120-250 µm aliquot and fast 

neutron irradiated at the McMaster University nuclear reactor, Hamilton, Ontario, 

Canada. Upon return, individual age standard and unknown grains were loaded 

into an aluminium palette and loaded into an ultra-high vacuum laser chamber. A 

970 nm diode laser was employed to melt and degas each grain for 2 minutes with 

a 50 W 600 µm diameter beam.  
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The gases released by laser heating were first purified for 2 minutes using 

two SAES NP10 getter pumps, and then analyzed with a Nu Instruments Noblesse 

multi-collector mass spectrometer employing both a Faraday detector and an ion 

counting multiplier (depending on 40Ar signal size). Faraday/ion counting detector 

intercalibration for 40Ar was performed using the multiple aliquots air shots. 

Errors are quoted at the 2σ confidence level. For more a detailed description of 

our analytical methods, please see the Supplementary Material Appendix B. 

5.1.2. Results 

In Figure 2.9, the 40Ar/39Ar total fusion dates for each sample are plotted 

as probability density functions, which take into account the error associated with 

each measurement. We rejected any analysis with less than 90% radiogenic 40Ar 

(40Ar*) yield, but still retain statistically robust datasets. Full data tables are 

reported in the Supplementary Material Appendix 3. Below, we discuss the results 

in the context of the stratigraphy.  

5.2. Synthesis of age constraints in the Indus Basin 

The ages of many of the macrostratigraphic units can be constrained by 

biostratigraphy [Bajpai et al., 2004; Henderson et al., 2010] and isotope 

geochronology and thermochronology [Wu et al., 2007; Henderson et al., 2010, 

2011; Tripathy et al., in review (Chapter 3), this study]. We discuss these data in 

relative chronologic order, following our informal stratigraphic framework, listed 

in Figure 2.10. This description introduces the Lower and Upper Indus Groups, 

which are largely differentiated based upon their approximate depositional ages, 
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where the Lower Indus Group includes the Chogdo and Stok Kangri Formations, 

and the Upper Indus Group includes the Choksti, Hemis and Nimu Formations.  

For the Upper Indus Group, detrital muscovite 40Ar/39Ar 

thermochronologic data not only provide information about the cooling history of 

the muscovite source region, but also provide a more robust maximum age of 

deposition than U-Pb dates because the Indus Basin rocks were not heated above 

220°C [Clift et al., 2002] after deposition, well below the bulk resetting 

temperature for the 40Ar/39Ar muscovite thermochronometer.  

Henderson et al. [2010, 2011] presented many 40Ar/39Ar total fusion dates 

for detrital muscovites separated from several samples. These analyses have 

highly variable 40Ar* yields, some as low as 18%. Total fusion dating of materials 

by the 40Ar/39Ar method requires the correction of the total measured 40Ar for 

atmospheric40Ar. This correction has a much more significant effect on the 

calculated age when the 40Ar* yield is low, and thus dates characterized by 40Ar* 

yields higher than ca. 90% are more robust. In this paper, we present and interpret 

only those dates from Henderson et al. [2010, 2011] that fall into that category. 

As we show, the application of this criterion has a significant impact on the 

maximum age of deposition for many of their samples.  

5.2.1. Chilling Group 

Because of the disorderly nature of the various strata within this zone, the 

variety of maximum ages of deposition is not a surprise (Figure 2.10). We listed 

the age constrains by our estimation of stratigraphic level within this unit, but 

recognize that because of the complex contact relationships between various 
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lithologies, this is an approximation. The youngest lithology present in this zone 

(with a depositional age of <51.1 Ma, derived from U-Pb zircon data) appears in 

the Leh-Manali road section where Henderson et al. [2011] map it as their Lato 

Formation.  

5.2.2. Tar Group 

Detrital zircon U-Pb geochronologic samples in the Jurutze Formation of 

the Tar Group yield statistically indistinguishable maximum ages of deposition of 

53.4±1.4 and 54.3±0.8 Ma for the Zanskar Gorge and Leh-Manali road transects, 

respectively [Henderson, et al., 2010; 2011]. The ASTER imagery supports the 

conclusion of Henderson et al. [2011] that these are time-correlative parts of the 

same stratigraphic package. 

In the Zanskar Gorge, a detrital zircon U-Pb geochronologic sample from 

the Nummulitic Limestone yields a maximum age of deposition of 52.5±0.7 Ma 

[Henderson et al., 2010]. Additionally, Henderson et al. [2010] reported 

biostratigraphic ages of 54.9-51.0 Ma for their Sumda Formation, and 50.8-49.4 

Ma for their Nummulitic Limestone. For the Sumda Formation, they report 

Alveolina rotundata (shallow benthic zone, SBZ8-9) in one sample, and 

Nummulites atacicus (SBZ8), N. planulatus (SBZ10) and Alveolina ellipsoidalis 

(SBZ6) for another, which, together, are consistent with an Early Eocene age 

[Serra-Kiel et al., 1998]. However Henderson et al. [2011] suggest that the fossil 

assemblage is largely reworked, and that the most likely depositional age is SBZ8 

(Early Eocene). We consider it more likely that the youngest zone represented in 

this assemblage is closest to the depositional age of the unit. Therefore, the 
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depositional age should be that of SBZ10, or late Ypresian (ca. 50-48 Ma), and 

we report this revised age range in Figure 2.10. For the Nummulitic Limestone, 

they report Nummulites escheri (SBZ11) and Cuvillierina vanbellini, which 

correspond to late Ypresian as well. We declined to assign numerical ages in 

Figure 2.10 because, as pointed out by Gradstein et al. [2004], shallow benthic 

zones are correlated such that there is room for subjective interpretation.  

Based on our remote sensing analysis, we consider it likely that the Sumda 

Formation and the Nummulitic Limestone are not separate units, but rather 

different facies of the same unit. This correlation is permissible despite the 

biostratigraphic interpretations presented by Henderson and co-workers because 

the boundaries between shallow benthic zones are not constrained by Global 

Boundary Stratotype Section and Points, unlike the lower boundary of the Eocene 

[Aubry et al., 2007]. Hence, we suggest that the entire Tar Group is Early Eocene 

(Ypresian, ca. 55-48 Ma).  

5.2.3. Lower Indus Group  

Detrital zircon U-Pb geochronologic samples from within the Chogdo 

Formation in the Zanskar Gorge yield maximum ages of deposition between 60±2 

and 46.1±1.0 Ma [Wu et al., 2007; Henderson et al., 2010], which implies 

Paleocene-Middle Eocene depositional ages (Selandian-Lutetian, ca. 60-40 Ma). 

The Stok Kangri Formation has a maximum age of deposition of 48.4±1.4 Ma, 

and is therefore potentially time-correlative with at least the upper part of the 

Chogdo Formation that must be Lutetian or younger.  
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5.2.4. Choksti Formation of the Upper Indus Group 

From the Upper Indus Group, Wu et al. [2007] present detrital U-Pb zircon 

data that yield a maximum age of deposition of 45±8 Ma (Lutetian). Although this 

youngest age has a significant error, the eight youngest grains cluster between 45-

49 Ma, a range which we take as a robust estimate for the maximum age of 

deposition.  

5.2.5. Hemis Formation of the Upper Indus Group 

The Hemis Formation, exposed along the Leh-Manali Road transect, 

yields maximum ages of deposition from detrital muscovite 40Ar/39Ar 

thermochronology that range from 48.9±0.43 (sample LM-K) to 32.4±0.23 Ma 

(sample LM-L). While the oldest of these dates is permissive of some Hemis 

deposition as early as Ypresian time (ca. 50 Ma), we consider it most likely that 

the bulk of this unit was deposited between Late Eocene (Priabonian, <37 Ma) 

and Early Oligocene (Rupelian, >28 Ma) time (Figures 2.9 and 2.10).  

5.2.6. Nimu Formation of the Upper Indus Group 

For the Nimu Formation, the stratigraphically lowest sample has only been 

dated using detrital zircon U-Pb geochronology, and yields a maximum age of 

deposition of 41±0.6 Ma [Wu et al., 2007]. The remaining samples constitute 

detrital muscovite 40Ar/39Ar dates, which provide a maximum age of deposition of 

29.2±0.21 Ma (sample ZG-O). We infer a depositional age of Early Oligocene for 

most of this unit. 
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5.2.7. Basgo Group 

To the west of the Zanskar Gorge, the Basgo Formation, originally 

interpreted as Maastrichtian (ca. 70-65 Ma) by Garzanti and Van Haver [1988], 

has been revised to Late Oligocene (ca. 28-23 Ma) in age, based upon 

reexamination of ostracod fauna [Bajpai et al., 2004]. A Late Oligocene age is 

supported by recently obtained detrital zircon (U-Th)/He thermochronologic data, 

which indicate an Early Oligocene (<29.63±1.13 Ma) maximum age of deposition 

(Figure 2.10) [Tripathy et al., submitted]. 

The base and top of the overlying Temesgam Formation yield detrital 

muscovite 40Ar/39Ar dates indicative of maximum depositional ages of 34.5±3.2 

Ma and 19.1±1.0 Ma, respectively [Henderson et al., 2010]. An additional 

constraint is that the Temesgam Formation must be younger than the underlying 

Late Oligocene Basgo Formation. Thus, we propose an Early Miocene age for the 

Temesgam Formation (ca. 19 Ma).  

6. Provenance 

Multiple studies employing a variety of methods have focused on the 

provenance of units within the Indus Basin. We present here a discussion of the 

currently available datasets related to provenance in the context of our new 

macrostratigraphic framework, focusing on both detrital mineral geochronology 

and the most recent petrographic work of Henderson et al. [2010, 2011].  

In Figure 2.11, we replot the data of Henderson et al. [2010; 2011] using 

provenance discrimination diagrams based on quartz, feldspar and lithic 

compositions [Dickinson and Suczek, 1979], but do so in the context of our 
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stratigraphic framework for ease of comparison to the geochronologic and remote 

sensing data. We focus only on the sedimentary units of the Indus Basin.  

6.1. Tar Group  

The petrographic data of the Tar Group [Henderson et al., 2010, 2011], 

which, based on our definition, includes all marine strata, tends to concentrate in 

the transitional arc field with outliers in both the undissected and dissected arc 

fields. This is reasonable for pre-collisional sands that have been sourced from an 

active arc that is in its incipient stage of unroofing. The detrital zircon U-Pb work 

presented in Henderson et al. [2010, 2011] corroborates this interpretation, as the 

data imply derivation from the Ladakh batholith, representing an active 

continental arc to the north.  

6.2. Lower Indus Group  

For the Chogdo Formation, the four petrographic samples [Henderson et 

al., 2010, 2011] show an evolution from undisssected to dissected arc (Figure 

2.11), such that the relative stratigraphic locations of the samples correlate with 

the degree of evidence of arc dissection. If this apparent evolution is real, the 

Chogdo Formation must be recording a significant portion of the syn- to post-

collisional history of the Indus Basin sediments and associated source area. More 

sandstone petrography in these rocks is needed across the entire region to confirm 

this hypothesis.  

Detrital zircon U-Pb data for the Chogdo and Stok Kangri Formations are 

very similar [Henderson et al., 2010, 2011], and allow for our interpretation that 

the depositional ages for these units overlap. The provenance discrimination 
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diagram (Figure 2.11) suggests that the Stok Kangri Formation most likely 

correlates with the Chogdo Formation, further supporting our macrostratigraphic 

Lower Indus Group subdivision.  

However, as noted by Henderson et al. [2011], the Stok Kangri Formation 

contains detrital muscovite whereas the Chogdo Formation does not. As a 

consequence, those researchers instead correlated the Stok Kangri Formation and 

their Umlung Formation (our Choksti Formation). Although their observation is 

significant, their preferred correlation is inconsistent with contact relationships 

expressed in the field. We regard the presence of muscovite in the Stok Kangri 

Formation as simply an indication of a variation in provenance. 

6.3. Upper Indus Group 

Samples from the Upper Indus Group plot within the dissected arc to 

basement uplift fields in Figure 2.11 [Henderson et al., 2010, 2011]. In particular, 

the lowermost Choksti Formation plots within the dissected arc field, whereas the 

younger, overlying Hemis Formation plots in both the dissected arc and basement 

uplift fields. The Nimu Formation plots in the basement uplift field, near the 

sample from the overlying Basgo Group (Temesgam Formation) [Henderson et 

al., 2010, 2011]. This evolution reflects an increased degree of dissection of the 

Ladakh arc over time, and is supported by the detrital zircon U-Pb data from Wu 

et al., [2007].  

Probability density curves of our detrital muscovite 40Ar/39Ar samples 

demonstrate a distinct change in the source area over time (Figure 2.9). The base 

of the Hemis Formation (sample LM-K) contains detrital muscovite with 



	   	  	  54 

40Ar/39Ar dates ranging from 49 to 87 Ma. In contrast, many muscovite dates from 

the upper part of the Hemis Formation are in the 35-40 Ma range (sample LM-L). 

A similar distribution of muscovite dates characterizes the Nimu Formation 

(sample ZG-O), implying that although the Hemis Formation may be older than 

the Nimu Formation, they may have had similar muscovite-bearing source areas. 

The difference in 40Ar/39Ar age distributions for the lower and upper parts of the 

Hemis Formation could suggest either completely different source areas, or, more 

likely, the progressive unroofing and exhumation of the muscovite-bearing source 

area.  

6.4. Basgo Group 

A single sample for the upper Temesgam Formation [Henderson et al., 

2010, 2011] plots within the basement uplift field (Figure 2.11). Coupled with its 

Miocene 40Ar/39Ar muscovite maximum age of deposition (~19 Ma) [Henderson 

et al., 2010], these data support the interpretation that the Temesgam Formation is 

the youngest unit in the Indus Basin, and should, therefore, reflect the latter parts 

of the dissection of the Ladakh batholith.  

However, the underlying Basgo Formation contains abundant evidence for 

mixed Indian-Asian provenance; the clasts in its conglomeratic horizons are 

clearly sourced from the Ladakh batholith [Garzanti and Van Haver, 1988], but 

the finer-grained sandstones in the sequence have detrital zircon U-Pb signatures 

indicative of derivation from the Tibetan Sedimentary sequence of the Indian 

plate [Tripathy et al., in review; Chapter 3]. As the India-Eurasia collision 

continued into its Oligocene and Miocene phases (<33 Ma), the Indus Basin 
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recorded increasingly varied source areas. A wealth of information regarding the 

emergence of the north Indian margin during this process may be revealed in the 

course of future studies of Oligocene strata in the Indus Basin. 

7. Toward a simpler narrative of the history of the Indus Basin 

Our results resolve a significant paradox that arose from earlier studies 

regarding India-Eurasia collision as recorded in the Indus Basin. Traditionally, it 

was thought that the Tar Group recorded the latest stages of marine deposition 

and that the Indus Group recorded a transition to continental deposition in the 

Indus Basin [Searle et al., 1990]. However, most recent papers [e.g., Henderson 

et al., 2010] place the unquestionably marine Nummulitic Limestone with the 

Lower Indus Group stratigraphy, requiring a foundering of the basin and at least a 

brief marine incursion. Our new stratigraphy eliminates the need for this incursion 

because the Nummulitic Limestone is placed entirely within the Tar Group 

succession and beneath all continentally derived molasse units in the Indus Basin.  

We posit that multiple, discrete molassic units have been deposited since 

Eocene time into various depocenters within the Indus Basin. These different 

units/depocenters – the Lower Indus Group, the Choksti Formation, the Hemis 

Formation, the Nimu Formation, and the Basgo Group – record different parts of 

the history of the early evolution of the Himalayn-Tibetan orogen.  

The Lower Indus Group is of particular importance because it likely 

contains the record of initiation of India-Eurasia collision, as well as the earliest 

history immediately after collision commenced. This is supported by the Early-

Middle Eocene maximum ages of deposition for these strata, which imply that 
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these are the oldest terrestrial strata in the Indus Basin. The sandstone petrography 

of Henderson et al. [2010, 2011] further supports this interpretation because it 

hints at the potential for significant changes in the evolution of the source terrane 

after collision began. 

In the Upper Indus Group, successively higher stratigraphic units record 

the progressive uplift and erosion of the Indian passive margin and the dissection 

of the Ladakh arc. The addition of muscovite, which is interpreted to be evidence 

of Indian-derived detritus [Henderson et al., 2010], could represent evidence for 

diversification of the source area. However, it is unclear if all muscovite was, 

indeed, sourced from the Greater Himalayan sequence, as suggested by 

Henderson et al. [2010, 2011] because the specific source area for the 50-80 Ma 

muscovites is not known on the Indian margin. Muscovite is abundant within the 

Greater Himalayan sequence rocks, but those rocks only crop out today on the 

other side of the Himalayan range crest from the Indus Basin and all Greater 

Himalayan sequence muscovites yield Early Miocene or younger ages [Clift et al., 

2008]. Hence, these rocks cannot be the source of the 50-80 Ma muscovites 

preserved in the Indus Basin. It is possible that the Indus Basin muscovite ages 

instead record Transhimalayan exhumation and erosion, and that today, there is 

very little of this muscovite-bearing part of the arc preserved. Thus, we interpret, 

these 50-80 Ma muscovite 40Ar/39Ar data to potentially reveal an important part of 

the history of the Eurasian plate that is no longer preserved. The units of the 

Upper Indus Group, which seem to record changes in provenance, should be the 
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focus of more detailed studies in the future to understand the potential co-

evolution of these three depocenters.  

Finally, the Basgo Group, which is known to contain coarse cobbles and 

boulders from the Ladakh batholith and fine-grained detritus from India [Garzanti 

and Van Haver, 1988; Tripathy et al., submitted], should record the transition into 

the configuration of the orogen that has persisted from Miocene time to the 

present [Hodges, 2006].  

DeCelles et al. [2011] suggested that Cenozoic intermontane basins of the 

ITSZ might have formed in an extensional, instead of contractional, environment. 

They examined the Kailas molasse basin east of our study area, and observed a 

fining upward sequence that resulted in a lacustrine sandwich, whereby after 

lacustrine environments existed and capped the intermontane basin lithologies, the 

depositional environment transitioned back to traditional intermontane basin red 

beds and sandstones. If any evidence of such an event exists in the Indus Basin 

rocks, it is likely to be found in either the Nimu Formation or the Temesgam 

Formation, both of which contain lacustrine sediments [Searle et al., 1990]. The 

Upper Indus Group and Basgo Group should be the focus of studies that seek to 

understand the subsidence history of the Indus Basin, and the geodynamic 

implications of possible deposition in an extensional setting. 

8. Conclusions 

The Indus Basin contains Eocene to Miocene sedimentary rocks deposited 

during and after collision between India and Eurasia, and as such, records a 

wealth of information about the early evolution of the Himalayan-Tibetan 
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orogenic system. Although previous studies have been hampered by difficulties 

associated with accessing most exposures of the basin and tracing contacts along 

strike, we demonstrate that high-resolution multispectral ASTER imagery permits 

unit correlations between transects with high fidelity. Our result is a relatively 

simple macrostratigraphy of the Indus Basin that represents five discrete 

depocenters that young from south to north. The map and stratigraphy we present 

are simpler than earlier studies would suggest, yet they remain consistent with all 

existing chronostratigraphic and petrographic datasets. Finally, the simplifcation 

of the map units and stratigraphy allow for the eliminiation of complex changes in 

depositional history by placing all marine strata stratigraphically below the first 

appearnce of clastic, continentally-derived detritus. 
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10. Figure captions 

Figure 2.1. Geologic map of the northwestern Himalaya, after Hodges [2000], 

Schlup et al. [2003], and Steck [2003]. Inset after Sinclair and Jaffey [2001]. The 

extent of Figure 4 is boxed and labeled. ITSZ – Indus-Tsangpo suture zone; GCT 

– Great Counter Thrust; KFZ – Karakoram fault zone; MBT – Main Boundary 

Thrust; MCT – Main Central Thrust; MFT – Main Front Thrust; SSZ – Shyok 

suture zone; STFS – South Tibetan fault system. 

 
Figure 2.2. Comparison of proposed stratigraphy for Indus Basin sedimentary 

rocks, as determined in (a) Zanskar Gorge region, and (b) the Leh-Manali road 

transect, by careful examination of each authors’ map and associated rock 

descriptions. Both (a) and (b) are scaled the same, and correlate to one another as 

well. 

 

Figure 2.3. Published maps of the same extent of the northern part of the Zanskar 

Gorge, shown to highlight the variability of published maps. (a) Garzanti and Van 

Haver [1988]. (b) Clift et al. [2002]. (c) Henderson et al. [2010]. 

 

Figure 2.4. Mosaic of false color visible-near infrared images (3-2-1 in RGB), 

with lithotectonic boundaries drawn and labeled in white. The red box denotes the 
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location of Figure 2.5. The two black boxes bound the Zanskar Gorge transect to 

the west and the Leh-Manali road transect to the east. 

 

Figure 2.5. (a) Boundaries discerned from false color visible-near infrared 

imagery (bands 3-2-1), where all white lines are drawn based upon color changes 

that are inferred to represent changes in lithology. Black dash-dot lines denote the 

Indus (NW-SE) and Zanskar Rivers (N-S). Numbers are described in the text as 

Domains 1-10, and follow those in Figure 2.4. The Tibetan Sedimentary sequence 

(TSS) is labeled for clarity. (b) Sampled DCS of TIR bands 14-12-10. White lines 

were transferred directly from Figure 2.5a, and subsequently modified when 

necessary, as described in the text. Various locations of interest, labeled 

numerically, are described in the text as zones B1-B14, etc. (c) PCA 5 image, 

with contacts shown in red instead of white for enhanced visibility. The yellow 

box highlights an important fold structure in Domain 5 of Figure 2.5a. 

 

Figure 2.6. TIR laboratory emissivity spectra for common rock types, with 

ASTER channels labeled at appropriate wavelengths. After Ninomiya et al. 

[2005]. 

 

Figure 2.7. Emissivity spectra extracted from atmospherically corrected 

emissivity data that demonstrate the similarity between various sectors of the 

Zanskar Gorge region. 
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Figure 2.8. Geologic map of the Indus-Tsangpo suture zone in the eastern Ladakh 

region of northwestern India. Except for the units that bound the Indus Basin 

sedimentary rocks (Chilling Formation and Ladakh batholith), lithotectonic units 

young with increasing number. Contacts are drawn based upon ASTER image 

analysis and interpreted based on fieldwork and basic structural requirements, and 

are dashed where appropriate. This regional-scale map is very similar to the 

earliest maps produced from this region [Brookfield and Andrews-Speed, 1984]. 

 

Figure 2.9. Probability density plots of the three detrital muscovite 40Ar/39Ar 

thermochronologic samples, plotted using in-house Matlab software. 

 

Figure 2.10. Full informal stratigraphy as determined in this study, with all 

possible quantitative age constraints listed. Detrital zircon data include U-Pb 

geochronology and (U-Th)/He thermochronology (italicized date), and detrital 

40Ar/39Ar muscovite data include only dates that contained >90% 40Ar* and less 

than 10% error (1σ level). We report the youngest date for all detrital samples, 

which provides a maximum age of deposition for the sample. 

 

Figure 2.11. Ternary diagram that depicts the proportion of quartz (Q), feldspar 

(F) and lithics (L). Data plotted from Henderson et al. [2010, 2011]. Each point 

represents a single sample. These data show the evolution toward increased arc 

dissection as marine sedimentation gave way to continental molasse depositional 

systems.  
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Table 2.1. ASTER instrument characteristics 

Radiometer 
Spatial 

resolution 
ASTER 

Band Number 
Center Wavelength 

(µm) 
VNIR 15 m/px 1 0.556 
  2 0.661 
  3 0.807 
SWIR 30 m/px 4 1.66 
  5 2.17 
  6 2.21 
  7 2.27 
  8 1.34 
  9 2.40 
TIR 90 m/px 10 8.29 
  11 8.63 
  12 9.08 
  13 10.7 
  14 11.3 
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Figure	  2.2a	  
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Figure	  2.2b	  
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Figure 2.3.  
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Figure 2.4.  
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Figure 2.5.  
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Figure 2.6.  
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Figure 2.7. 
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Figure 2.8.  
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Figure 2.9.  
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Figure 2.10.  
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CHAPTER 3 

PRE-OLIGOCENE EMERGENCE OF THE INDIAN PASSIVE MARGIN AND 

THE TIMING OF INDIAN-EURASIAN COLLISION 

ABSTRACT 

Precise knowledge of the timing of Indo-Eurasian collision is prerequisite 

for understanding the subsequent evolution of the Himalayan-Tibetan orogenic 

system, yet the topic remains controversial despite decades of research. We 

present new data for the Upper Oligocene Basgo Formation of NW India that are 

pertinent to one proposal – that the collision initiated no earlier than the Eocene-

Oligocene boundary. The Basgo Formation, which represents a portion of the 

Indus molasse basin deposited along the Indus-Tsangpo suture zone, contains 

conglomerates with clasts of Eurasian plate rocks. However, the distribution of U-

Pb dates for detrital zircons in associated sandstones indicate an Indian plate 

source. This mixed provenance demonstrates a minimum Late Oligocene age for 

India-Eurasia collision in the NW Indian Himalaya. (U-Th)/He cooling dates for 

detrital zircons from the Basgo Formation range from 52.6 to 28.25 Ma, however, 

implying that their Indian plate source was likey emergent and eroding by Early 

Eocene due to collision. 

1. Introduction 

The collision between India and Eurasia, which resulted in the demise of 

Neothethys, was a profound geodynamic event that, beyond building the 

Himalayan-Tibetan orogenic system, has affected regional – and possibly global – 



	   	  	  81 

climate patterns [e.g., Raymo and Ruddiman, 1992]. However, the timing of this 

event remains controversial despite years of research on the topic, with popular 

estimates ranging from Late Cretaceous to Early Oligocene [e.g., Yin and 

Harrison, 2000; Aitchison et al., 2007]. 

Proponents of a Late Cretaceous collision are most strongly persuaded by 

paleomagnetic data of Lhasa block rocks [Chen et al., 2010], paleontologic 

evidence that demonstrates exchange of terrestrial fauna during the Maastrichtian 

[Jaeger et al., 1989], and emplacement of ophiolites atop the Indian passive 

margin in the Latest Cretaceous [Searle et al., 1997]. However, other researchers 

[e.g., Aitchison et al., 2007] interpret several observations to imply an Early 

Oligocene collision; an apparent decrease in northward motion of India at 20 Ma 

[Acton, 1999]; Late Oligocene to Early Miocene molasse-type conglomerates 

along the Indus-Tsangpo suture zone (ITSZ) [Aitchison et al., 2002; DeCelles et 

al., 2011]; Oligocene to Miocene uplift and unroofing of the Transhimalayan 

batholiths [e.g., Kirstein et al., 2009]; and Late Oligocene-Miocene movement 

along the major Himalayan fault systems [e.g., Hodges, 2000 and references 

therein]. In particular, proponents of young collision point to the relatively small 

amount of pre-Oligocene orogen-derived clastic detritus in the Himalayan 

foreland as further evidence of limited pre-Oligocene shortening [Aitchison et al., 

2007]. Nevertheless, the most frequently cited age interval for collision among 

geoscientists working in the orogen, ca. 50-55 Ma, is based on several lines of 

reasoning. Most notable are the coincidence of an apparent decrease in Indian 

ridge spreading rates [Patriat and Achache, 1984], an apparent decrease in the 
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rate of northward motion of India [Klootwijk et al., 1992; Acton, 1999], and the 

timing of ultrahigh–pressure subduction-related, metamorphism of the leading 

Indian margin [Leech et al., 2005]. Some observations that have significant 

implications regarding the timing of collision remain controversial; compare, for 

example, the Aitchison et al. [2007] and Najman et al. [2010] interpretations of 

the paleolatitude of India at 55 Ma as derived from paleomagnetic data, and the 

arguments for the timing of final marine deposition between India and Asia in the 

vicinity of the ITSZ by Wang et al. [2002] and Zhu et al. [2005].  

Direct evidence of the timing of India-Eurasia collision is potentially 

preserved in sediments of Eocene-Miocene intermontane basins – located near the 

ITSZ – which were deposited during much of the interval over which collision 

might have occurred [Rowley, 1996]. Because most of these basins contain an 

abundance of coarse clastic fill with few fossils or volcanogenic layers in all but 

the youngest strata [e.g., DeCelles et al., 2011], the ages of many important units 

are not well known, thus contributing to the uncertainty. 

In this paper, we explore the provenance of one of the best-dated parts of 

one of these intermontane basin sequences, the Upper Oligocene Basgo 

Formation of the Indus Basin in NW India [Bajpai et al., 2004]. Although this 

unit lies in direct depositional contact on Eurasian plate rocks and its more 

conglomeratic horizons contain clasts derived from the Eurasian plate, we present 

detrital zircon U-Pb dates that show, unequivocally, that most of the detritus in 

finer-grained Basgo clastic strata was derived from the Indian plate. Moreover, 

based on detrital zircon (U-Th)/He thermochronology of the sandstones, it 
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appears that the Indian plate provenance region for these zircons experienced 

early Tertiary exhumation well before Basgo deposition. Collectively, these data 

suggest that India-Eurasia collision drove the emergence of the pre-collisional 

Indian passive margin by Early Eocene time.   

2. Cenozoic intermontane basins of the ITSZ  

The ITSZ extends along the Yarlung-Tsangpo River to the east and the 

Indus River to the west, and comprises ophiolitic material, forearc basin deposits, 

and intermontane basin clastic strata. The molassic intermontane basins along the 

Yarlung Tsangpo River are relatively isolated from one another, and are 

represented, from east to west, by rocks mapped as the Luobosa, Dazhuqu, Liuqu, 

Qiuwu, and Kailas Formations (Figure 3a). These basins share many lithologic 

similarities, particularly among conglomerate facies, which has spurred 

correlation across several hundred kilometers [Aitchison et al., 2002]. However, 

the ages of similar lithologic units in different basins are relatively poorly known, 

making these correlations speculative at best. The Luobosa Formation outcrops 

for approximately 100 km east of Zedong and contains fossils of Oligocene-

Miocene age [Aitchison et al., 2002]. The Dazhuqu Formation, located southwest 

of Lhasa near Renbung, can be traced eastward to Daga, and has not been dated. 

The Liuqu Conglomerates, located south of Xigaze, must be no older than Middle 

or Late Eocene based upon U-Pb detrital zircon dates [Wang et al., 2010]. Just 

north of the Liuqu conglomerates are rocks similar to the Dazhuqu Formation that 

have been referred to as the Qiuwu and Qianbulin Formations [Aitchison et al., 

2002; Wang et al., 2010]. Based on palynology, Li et al. [2010] regard the 
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Qianbulin Formation as Cretaceous, whereas the overlying Qiuwu Formation is 

thought to be Eocene to Miocene. One of the best-known molassic depocenters in 

southern Tibet is the Kailas Basin in the area surrounding the mountain of the 

same name. Recently obtained U-Pb dates for interstratified volcanic units 

confirm a Miocene age for the Kailas Formation [DeCelles et al., 2011].  

The largest and most thoroughly studied of the ITSZ molassic depocenters 

lies along the Indus River valley in the Ladakh region of NW India and is referred 

to as the Indus Basin [e.g., Garzanti and van Haver, 1988; Henderson et al., 

2010]. An important cross section through the Indus Basin stratigraphy is 

spectacularly exposed in the Zanskar Gorge (34°07’N, 77°13’E). Here clastic 

sedimentary rocks of the Lower Indus Group conformably overlie limestones of 

the Tar Group that are 54.9-49.4 Ma, based on their fossil assemblages 

[Henderson et al., 2010]. Younger strata in the gorge, referred to as the Upper 

Indus Group in this paper and separated from the Lower Indus Group by a fault, 

have Oligocene maximum ages of deposition [Henderson et al., 2010].  

The work presented here focuses on the youngest units of the Indus Basin 

that outcrop to the west of the Zanskar Gorge. The Basgo Formation 

unconformably overlies the Cretaceous-Paleogene Ladakh batholith [Garzanti 

and Van Haver, 1988], and is in conformable contact with the overlying 

Temesgam Formation, the youngest rocks of the Indus Basin. This section is 

separated from the Upper Indus Group by another fault (Figure 1b).  

The Basgo Formation contains a well-studied faunal assemblage of Upper 

Oligocene ostracoda [Bajpai et al., 2004]. Although units of this age should be 
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present in the canonical Zanskar Gorge section of the Indus Group, no lithologies 

similar to the Basgo sequence occur there in what could be a time-correlative 

stratigraphic position. The paucity of age-diagnostic fossils in the Zanskar Gorge 

section, as well as the existence of faults with unknown throw, make it difficult to 

know precisely how the Basgo and Temesgam Formations correlate with the 

Upper and Lower Indus Group, so we prefer to consider the Indus Group and the 

Basgo/Temesgam succession as distinctive packages within the Indus Basin.  

3. Establishing provenance of the Basgo Formation 

In order to explore this enigmatic section of the Indus Basin, we first use 

U-Pb detrital zircon geochronology to evaluate the provenance of the Basgo 

Formation. A wealth of such data exists for the Indus Basin strata exposed in the 

Zanskar Gorge [Wu et al., 2007; Henderson et al., 2010]. This provides a simple 

means by which to compare the Basgo Formation provenance with the 

provenance of other, better-studied Indus Basin units.  

3.1. U-Pb Methods 

Sandstone samples of the Basgo Formation were collected from several 

locations in and around a paleontological sampling locality of Bajpai et al. 

[2004], and are listed in terms of relative stratigraphic height. Lowest is sample 

ST-B, collected for its proximity to the contact with the Ladakh batholith and its 

distinctive yellow color. Next, 0.9 km to the east, sample TR-B was collected 

from the most ostracod-rich section of Bajpai et al. [2004; location TR2]. The 

stratigraphically equivalent sample TR-D was collected 0.4 km to the southeast, 

and the final sample, TR-E, is 100 m away from, and above sample TR-D.  
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The samples were crushed and sieved, and zircon grains were separated 

using standard magnetic and gravimetric techniques. U-Pb detrital zircon dates for 

samples TR-D and TR-E were obtained using laser-ablation multicollector-

inductively coupled plasma-mass spectrometry (LA-MC-ICPMS) at the 

University of Arizona Laserchron facility, with procedures detailed in Gehrels et 

al. [2008], and those specific to our analytical session in the Supplementary 

Material Appendix D.  

3.2. U-Pb Results 

Detrital zircon U-Pb dates from both Basgo samples are similar, 

displaying dates ranging from ~3400-90 Ma (Figure 3.2a). Probability density 

curves from both samples are calculated and plotted using in house software at 

Arizona State University (Figure 3.2a; Supplementary Material Appendix E), and 

for comparison, we plot zircon U-Pb dates from the potential source areas from 

both the north and the south. For the northern Eurasian source, we plot bedrock 

and detrital U-Pb zircon dates from the Transhimalayan arcs (Kohistan-Ladakh-

Gangdese), the Karakoram, and the Lhasa and Qiantang blocks, whereas for the 

southern Indian source, we plot the most proximal detrital samples collected from 

Cambrian-Ordovician rocks within the Tibetan sedimentary series (TSS; Figure 

3.2a). The two Basgo samples have major modes highlighted by gray bands at ca. 

2500, 950, and 540-520 and 90 Ma. The Cretaceous mode is almost certainly 

indicative of a Eurasian source, but accounts for only 4 of 183 grains, or ~2% of 

the dataset. The Cambrian mode may be indicative of either an Indian or Eurasian 

source, but the older modes are required to be Indian in origin. Overall, the Basgo 
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sandstone spectra are consistent with a very high proportion of zircons having 

been derived from Indian sources, particularly the TSS (Figure 3.2a). 

In the classic section of the Indus Group in the nearby Zanskar Gorge, 

detrital U-Pb zircon data yield mostly Cretaceous-Paleogene dates; by comparing 

these results with the spectra of U-Pb zircon dates for possible sediment sources, 

Wu et al. [2007] and Henderson et al. [2010] inferred that the Indus Group 

sandstones derived almost exclusively from Eurasia. The Zanskar Gorge spectrum 

contrasts strongly with those of the Basgo Formation, implying that the two 

juxtaposed sedimentary successions had significantly different source areas, 

further supporting our interpretation that the Basgo Formation had a significantly 

different source region that is almost certainly the Indian plate.  

4. Exhumation of the zircon source region  

Zircon (U-Th)/He (hereafter referred to as ZHe) dates record cooling 

below the nominal bulk closure temperature of 180°C [Reiners et al., 2004], and 

provide information for both the maximum age of deposition of the Basgo 

Formation and the exhumation of the source region as determined from the 

detrital zircon U-Pb geochronology.  

4.1. ZHe Methods 

ZHe dates from all samples were obtained in the Noble Gas, 

Geochronology and Geochemistry Laboratory at Arizona State University using 

conventional techniques, detailed in van Soest et al. [2011]. Age ranges are 

plotted in Figure 3.1c and a probability density curve for all the data (n=20) is 
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plotted in Figure 3.3. Analytical results are listed in the Supplementary Material 

Appendix F.  

4.2. ZHe Results 

The ZHe dates range from 52.6±1.7 to 28.52±0.96 Ma (2σ), providing 

information about the low-temperature history of the two potential source areas. 

Based on the detrital zircon U-Pb results described above, we infer that the 

majority of these grains were derived from TSS rocks that were exposed and 

eroding prior to or during Late Oligocene Basgo deposition. This inference is 

supported by youngest ZHe dates that indicate Early Oligocene cooling. Notably, 

70% of the zircons yield (U-Th)/He cooling dates of Eocene age.  

5. Implications  

Clasts within more conglomeratic units [Garzanti and van Haver, 1988; 

Bajpai et al., 2004], as well as the Cretaceous mode of detrital zircons in the 

sandstones, indicate that the Basgo Formation contains sediments from Eurasia, 

but the detrital zircon U-Pb data presented here suggest that the major source for 

finer-grained Basgo detritus was India – specifically the TSS. The mixed India-

Eurasia provenance of the Basgo Formation strongly implies post-collisional 

deposition as suggested by Aitchison et al. [2007]. Moreover, the timing of Basgo 

deposition, best constrained as Late Oligocene by the paleontological data, is 

supported by the youngest ZHe dates. 

However, it is clear from the ZHe dataset that the provenance region did 

not experience a single phase of rapid and uniform erosion in Late Oligocene time 

because most zircons passed through their closure temperature ranges tens of 



	   	  	  89 

millions of years earlier. This implies that erosional exhumation and cooling of 

much of the source region was related to an older deformational event. The 

majority of the Basgo ZHe cooling ages are Eocene, corresponding to the timing 

ascribed by many researchers to the onset of India-Eurasia collision. The simplest 

explanation of our detrital zircon U-Pb and ZHe datasets is that the Tibetan 

sedimentary sequence in this region had been incorporated into the Himalayan-

Tibetan orogenic system by Eocene time and was actively eroding as a 

consequence.  

Although we can neither rule out a pre-Eocene timing for collision, nor 

definitively say that the Eocene exhumation event along the northern Indian 

margin did not predate the final stages of collision, our data are collectively 

consistent with the large body of evidence that favors India-Eurasia collision at 

ca. 55-50 Ma in the western Himalayan-Tibetan orogenic system [e.g., Rowley, 

1996]. Understanding whether the timing of collision is consistent or variable to 

the east will require further studies of the kind described here in other Cenozoic 

intermontane basins along the ITSZ.  
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7. Figure captions 

Figure 3.1. (a) GTOPO30 shaded relief map overlain with ASTER DEM, with 

Cretaceous-Miocene intermontane basins shown in black [from Searle, 1986; Yin 

et al., 1999; Aitchison et al., 2002; Li et al., 2010; Wang et al; 2010]. (b) 

Geologic map of ITSZ to the west of Leh. (c) Geologic map of area around Likir 

showing sample locations and ZHe age ranges. Filled circles depict geographic 

locations, whereas filled squares depict samples from this study. 

 

Figure 3.2. (a) Stacked probability density curves, from bottom to top, of Indian 

detrital U-Pb data (Myrow et al. [2011] samples KU-2, Thango, PV and Batal), 

Basgo samples TRD and TRE from this study, and Eurasian U-Pb bedrock and 

detrital data (see Supplementary Material Appendix G for complete listing of 

sources for Eurasian data). Gray bands signify important modes common to the 

Basgo samples. (b) Compilation of detrital U-Pb data from classic Indus Group 

section in the Zanskar Gorge [Wu et al., 2007; Henderson et al., 2010]. Curve is 

plotted at a different scale than those in (a), but x-axis is the same.  

 

Figure 3.3. Probability density curve of all ZHe data from this study.  
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Figure 3.1.  
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Figure 3.2.  
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Figure 3.3.  
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 CHAPTER 4 

IDENTIFYING MIXED INDIAN-EURASIAN PROVENANCE IN THE INDUS 

BASIN MOLASSE SEQUENCE, NORTHWESTERN INDIAN HIMALAYA: 

IMPLICATIONS FOR THE TIMING OF COLLISON 

ABSTRACT 

Cenozoic intermontane basins in southern Tibet preserve a record of the 

early stages of the India-Eurasia collisional event that initiated the Himalayan-

Tibetan orogenic system. Of particular interest for establishing the age of collision 

are strata wherein both Indian- and Eurasian-derived detritus are identified.  

We present a multifaceted isotopic and trace element geochemical study of 

Early Eocene-Miocene sediments of the Indus Basin of the Ladakh region in the 

northwestern Indian Himalaya. Based on previously published detrital zircon U-

Pb geochronological studies, the majority of fine-grained detritus in these older 

units appears to indicate a distinctive Eurasian source. However, we present new 

data that suggests a more varied provenance for the Indus Basin strata. The 

distribution of detrital zircon U-Pb dates from quartzite cobbles within 

conglomeratic beds of the oldest molasse unit are comparable to those found in 

Indian passive margin units. Trace element geochemistry of mafic pebbles from 

throughout the older Indus Basin molasse units appear to demonstrate derivation 

from the Shyok suture zone, situated north of the local Eurasian source area. 

However, several clasts are geochemically similar to ophiolitic material found 

within the Indus-Tsanpgo suture zone separating India and Eurasia, implying 

sourcing from fragments of the Neo-Tethys Ocean basin caught up in the suture 
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or obducted onto the Indian passive margin prior to collision. 40Ar/39Ar cooling 

dates for detrital biotite from a sandstone unit intercalated with an upper Ypresian 

marine limestone (the youngest marine unit in the Indus Basin) are more 

consistent with an Indian plate source region than a Eurasian provenance. These 

results collectively point to an Early Eocene minimum age for India-Eurasia 

collision in this sector of the orogenic system. 

1. Introduction 

Sedimentary basins often record the erosional history of both active 

orogenic systems and ancient ones that have long-since eroded away. By focusing 

on detrital geochemical studies of such areas, this history can be reconstructed, 

particularly by application of detrital geochemical techniques that preserve 

different characteristics of sediment sources.  

Geochemical studies of the units in intermontane sedimentary basins 

found near the Indus-Tsangpo suture zone (ITSZ) – a feature that marks the locus 

of the collision between India and Eurasia that led to development of the 

Himalayan-Tibetan orogenic system [Hodges, 2000] – provide an opportunity to 

better constrain the timing of India-Eurasia collision. Surprisingly, the timing of 

this important event remains controversial despite years of study. Some 

researchers, favor Late Cretaceous collision based on paleontological evidence for 

the exchange of terrestrial fauna during the Maastrichtian (ca. 70-65 Ma) [Jaeger 

et al., 1989], and on provenance analysis of Cretaceous strata in Tibet that implies 

derivation of sediment from both sides of the suture zone [Cai et al., 2011]. 

Proponents of Early Oligocene (ca. 34 Ma) collision cite paleomagnetic studies 
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that place India significantly south of Eurasia during Eocene time (ca. 55-34 Ma), 

and sedimentologic studies that imply only a minor contribution of pre-Oligocene 

orogen-derived clastic detritus to the Himalayan foreland [Aitchison et al., 2007]. 

The most commonly referenced estimate for the timing of collision, between ca. 

55-50 Ma, is largely based upon the coincidence of an apparent decrease in Indian 

ridge spreading rates [Patriat and Achache, 1984], an apparent decrease in the 

rate of northward motion of India [Klootwijk et al., 1992; Acton, 1999], the timing 

of ultrahigh–pressure subduction-related metamorphism of the leading Indian 

margin [Leech et al., 2005], and the age of the last marine sedimentary units 

[Rowley, 1996]. 

We addressed this controversy through geochemical studies of the detritus 

in one of the most accessible and best preserved of these intermontane 

depocenters, the Indus Basin of the northwestern Indian Himalaya (Figure 4.1). 

Although abundantly folded and faulted, its basic stratigraphy is relatively simple 

[Tripathy et al., in prep.; Chapter 2] thus providing an ideal location at which to 

examine the provenance of the coarse clastic strata with the goal of determining 

the commencement of combined Indian–Eurasian sedimentation, and by 

inference, the collision of the Indian and Eurasian plates. We applied three 

geochemical techniques to various Indus Basin sedimentary units: detrital zircon 

U-Pb geochronology of quartzite cobbles; trace element geochemistry of mafic 

clasts; and detrital biotite 40Ar/39Ar thermochronology of sandstones. Armed with 

these results, we explored possible source areas, identified the oldest stratigraphic 

level at which mixed provenance can be demonstrated, and established the 
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minimum age of collision in this sector of the orogenic system as late Ypresian 

(Early Eocene, ca. 52-48 Ma), thereby confirming the conclusion of Green et al. 

[2008]. 

2. General architecture of the Himalayan-Tibetan orogenic system 

The Himalayan-Tibetan orogenic system formed as a result of the closure 

of the Neo-Tethys Ocean and subsequent collision between India and Eurasia, the 

location of which is marked by the ITSZ [Gansser, 1980].  

Immediately north of the ITSZ, intrusive igneous rocks of the Kohistan-

Ladakh-Gangdese (KLG) batholith complex and associated volcanic units 

[Honegger et al., 1982] likely represent an Andean-type arc built upon the 

southern margin of Eurasia prior to collision. These arcs form the southern margin 

of the Lhasa block, which includes much of the country rock [Dewey et al., 1988]. 

In the Ladakh region, a belt of oceanic sediments and ophiolitic remnants (the 

Shyok suture zone, or SSZ [Dunlap and Wysoczanski, 2002], separates Ladakh 

batholith from another arc terrain to the northwest, the Karakoram block. Most 

researchers working in the region assign an Early Cretaceous age to this suturing 

event and regard final collision of the Indian and Eurasian continents as a younger 

phenomenon [e.g., Treloar et al., 1989]. However, Bouilhol et al. [2011] have 

suggested that suture zone rocks that are typically mapped in the Ladakh region as 

ITSZ actually comprise an older suture between the Ladakh island arc complex 

within Neo-Tethys and India, whereas the SSZ represents a Middle-Late Eocene-

aged (ca. 45-35 Ma) zone of collision between Eurasia and an amalgamated 

India-Ladakh mass to the south. 
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South of the ITSZ, the Indian plate elements of the orogen comprise the 

traditionally discussed tectonostratigraphic units of the Himalaya, which include, 

from north to south, the Tibetan Sedimentary Sequence (TSS), the Greater 

Himalayan Sequence (GHS), the Lesser Himalayan Sequence (LHS), and the 

Subhimalaya. All of these are separated by major north-dipping fault systems. 

The TSS comprises Neoproterozoic-Paleocene remnants of the precollisional 

Indian passive margin [DeCelles et al., 2001], and is separated from the ITSZ by 

a north-vergent backthrust system that Yin [2006] defines as the Great Counter 

thrust along the length of the orogen. The southern boundary of the TSS, the 

South Tibetan fault system (STFS), is north-dipping normal fault system 

[Burchfiel et al., 1992], which carries Proterozoic-Miocene metasedimentary and 

intrusive rocks of the GHS in its footwall [e.g., Le Fort et al., 1987; Miller et al., 

2001]. The subjacent Miocene Main Central thrust system (MCTS) separates the 

GHS from unmetamorphosed to lower amphibolite facies, Early Proterozoic to 

Miocene supracrustal rocks of the Lesser Himalayan sequence. Those units are 

bounded to the south by the Middle Miocene-Pliocene Main Boundary thrust 

system (MBTS) [DeCelles et al., 2001]. The LHS overthrusts Middle Miocene to 

Pliocene foreland basin sediments of the Subhimalaya [Burbank et al., 1996; 

DeCelles et al., 2001], which similarly overthrust the modern-day foreland basin 

along the Pliocene-Holocene Main Frontal thrust system [Yeats et al., 1992]. 

Together, these tectonostratigraphic units represent an orogenic wedge that 

developed in the northern margin of the Indian plate during India-Eurasia 

collision.  
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3. Cenozoic intermontane basins of the ITSZ 

The ITSZ itself is a narrow, structurally complex region that includes 

disaggregated exposures of ophiolites, precollisional forearc basin strata, and a 

series of syn- to post-collisional Cenozoic intermontane basins that frequently 

contain post-collisional molassic sedimentary deposits (Figure 4.1) [Gansser, 

1980].  

Molasse deposits in these basins have been mapped, from east to west, as 

the Luobosa, Dazhuqu, Liuqu, Qiuwu, Kailas and Indus Formations. Several of 

these basins have been correlated across several hundred kilometers because of 

lithologic similarities, particularly among conglomerate facies [Aitchison et al., 

2002]. However, age constraints of the purportedly correlative strata are poorly 

known in several of these regions, rendering such conclusions speculative.  

3.1. Tibetan molasse basins 

The easternmost Luobusa Formation can be traced approximately 100 km 

east of Zedong, terminating near the eastern syntaxis of the Himalaya. It 

comprises cobble- and boulder-conglomerates with clasts derived from all nearby 

tectonostratigraphic blocks [Aitchison et al., 2002; Yin et al., 1999]. Based upon 

the mixed provenance argument, the minimum age of collision (Oligocene-

Miocene) is approximated by the depositional age of the oldest strata containing 

detritus from both sides of the orogenic system [Badengzhu, 1981].  

The Dazhuqu Formation, located southwest of Lhasa near Renbung, can 

be traced eastward to Daga, and is dominated by coarse clastic rocks of mixed 

provenance [Aitchison et al., 2002]. Unfortunately, it has not been studied in 
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detail, so any correlation made with similar sections along the ITSZ should be 

considered tentative. 

The Liuqu conglomerates, exposed in the area south of Xigaze, record 

derivation from both the Indian and Eurasian plates based upon combined U-Pb 

dates and Hf-isotopic characteristics of zircon [Wang et al., 2010] The minimum 

age of collision, interpreted as Middle to Late Eocene (ca. 48-34 Ma), is estimated 

from the maximum age of deposition determined by detrital U-Pb zircon 

geochronology and arguments regarding the uplift of one of its source areas. 

Wang et al. [2010] interpret these strata to record a Middle Eocene minimum age 

of collision. 

North of the Liuqu conglomerates lie rocks that are superficially similar to 

the Dazhuqu Formation; they have been variably referred to as the Qianbulin 

Formation [Wang et al., 2010] and the Qiuwu Formation [Aitchison et al., 2002]. 

Using palynology, Li et al. [2010] have identified the Qianbulin Formation as 

Cretaceous, and have argued that the overlying Qiuwu rocks represent an 

overlying Eocene to Miocene fining upward sequence.  

The Kailas Formation, among the best studied of the Tibetan molasse 

basins, comprises both fluvial and lacustrine deposits, with only the uppermost 

strata demonstrating mixed provenance [DeCelles et al., 2011]. Dating of detrital 

and igneous zircons by U-Pb geochronology suggests that most of the Kailas 

Formation was deposited between 26-24 Ma [DeCelles et al., 2011]. Therefore, 

these strata yield an Oligocene minimum age of collision, based upon evidence 

for mixed provenance. Aitchison et al. [2002] correlated Kailas Formation strata 
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with deposits to the west that lie along the Indus River, which are collectively 

referred to the Indus Basin deposits.  

3.2. The Indus Basin 

The Indus Basin, located in the Ladakh region of northwest India, is 

potentially one of the most important of the Cenozoic intermontane basins for 

understanding the timing of collision [Rowley, 1996]. Sedimentary rocks within 

the Indus Basin span at least the Early Eocene to Early Miocene (ca. 55-19 Ma), 

and record a transition from marine to terrestrial deposition. We follow the 

nomenclature of Tripathy et al. [in prep.; Chapter 2], in which the Indus Basin 

was informally subdivided into four macrostratigraphic units (Figure 4.2). We 

briefly summarize each unit in terms of its stratigraphy, age, and provenance as 

determined from previous studies focused along the Zanskar Gorge and Leh-

Manali road transects through the Indus Basin succession (Figure 4.3). 

3.2.1. Tar Group 

The Tar Group includes marine strata within the Indus Basin: shales, 

sandstones and limestones, with black limestones dominating the upper parts of 

the unit. The Tar Group can be broadly subdivided into the Nindam forearc rocks 

[e.g., Fuchs, 1984; Clift et al., 2002], the Ypresian (ca. 55-49 Ma) Jurutze 

Formation [Henderson et al., 2010], and the upper Ypresian (ca. 50 Ma) Sumda 

Formation and Nummulitic Limestone [Henderson et al., 2010]. Although 

originally mapped as separate units, Tripathy et al. [in prep.; Chapter 3] 

demonstrated that, in the Zanskar Gorge, the Sumda Formation and Nummulitic 

Limestone are likely temporally and spatially correlative. Along the Leh-Manali 
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road transect (Figure 4.3), the Tar Group forms the core of an antiform, upon 

which continentally derived strata lie both to the north and south, as observed by 

Brookfield and Andrews-Speed [1984]. 

Henderson et al. [2010, 2011] presented detrital zircon U-Pb 

geochronology data from three Tar Group samples. Collected from the Jurutze 

Formation and the Sumda Formation/Nummulitic Limestone, their dataset implies 

derivation of material predominantly from the Kohistan-Ladakh-Gangdese arcs 

(hereafter referred to as the KLG arc system).  

3.2.2. Lower Indus Group 

The Lower Indus Group conformably overlies the Tar Group in the 

Zanskar Gorge transect, and flanks either side of the Tar Group antiform exposed 

along the Leh-Manali road transect. In the Zanskar Gorge, and on the northern 

flank of the anticlinorium, the Lower Indus Group is refered to as the Chogdo 

Formation, which consists of cyclical packages of red shale and green sandstone. 

In general, the Chogdo Formation coarsens upwards such that the uppermost 

conglomerate unit is the Choksti Conglomerate of Henderson et al. [2010]. It is 

truncated by a major backthrust structure in both transects. The depositional age 

for the Chogdo Formation ranges from late Ypresian to Lutetian (ca. 52-45 Ma) 

(Figure 4.2). 

The southern flank of the antiform comprises the Stok Kangri Formation 

of Fuchs [1984] and Brookfield and Andrews-Speed [1984]. Although the Chogdo 

and Stok Kangri Formations are not physically continuous, we nevertheless 
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consider it likely that the Stok Kangri Formation is time-correlative with parts of 

the Chogdo Formation (Figure 4.2).  

Multiple detrital zircon U-Pb geochronologic studies have focused on 

Lower Indus Group strata, and yield superficially similar results, although the 

maximum age of deposition and location of major modes vary among different 

samples [Wu et al., 2007; Henderson et al., 2010; 2011]. The U-Pb 

geochronologic data, as well as Hf isotopic data from two samples studied by Wu 

et al. [2007] imply a KLG arc source.  

The Stok Kangri Formation contains muscovite, which has been 

interpreted to imply an Indian source area [Henderson et al., 2011]. If this 

interpretation is correct, then the Stok Kangri Formation records the first mixed 

Indian and Eurasian provenance, and could be interpreted to indicate a minimum 

age of collision of early Lutetian (ca. 48 Ma). However, muscovite is not strictly 

an Indian plate-derived mineral in this region [Singh et al., 2007] and may not be 

a robust indicator of Indian provenance.  

3.2.3. Upper Indus Group 

The Upper Indus Group can be subdivided into three major units. The 

Choksti Formation, which is well exposed east of the Zanskar Gorge, is likely 

Middle Eocene (Lutetian) or younger in age (<45 Ma) [Wu et al., 2007], and is in 

thrust contact with the underlying Lower Indus Group. Choksti Formation rocks 

comprise mostly black shales and sandstones, with subordinate red and green 

shales and cobble conglomerates towards the top of the section. However, east of 

the Zanskar Gorge, this unit is significantly more conglomeratic. The Hemis 
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Formation, present along the Leh-Manali road transect, preserves cyclical 

sandstone and conglomerate packages, with the conglomerates containing 

abundant clasts derived from the Ladakh batholith [Tripathy et al., in prep.; 

Chapter 2]. Its maximum age of deposition is Late Eocene (Priabonian, ca. 34 

Ma; Tripathy et al., [in prep.; Chapter 2]). The Nimu Formation, which is mainly 

exposed in the Zanskar Gorge, comprises mostly black shales that preserve plant 

remains, gray sandstones, and occasional cobble conglomerates. The upper parts 

of the section are as young as Early Oligocene (ca. 30 Ma) [Tripathy et al., in 

prep.; Chapter 2].  

Wu et al. [2007] presented detrital zircon U-Pb geochronologic data from 

both the Choksti and Nimu Formations, and the dates again indicate derivation 

from the KLG arc sources. However, the Hf isotopic signature of the sample 

collected from the Nimu Formation more closely matches the Lhasa block, 

implying that additional parts of Eurasia were eroding into the Indus Basin. 

Furthermore, all three units contain detrital muscovites, which could (but does not 

necessarily) imply an Indian source [Henderson et al., 2010]. 

3.2.4. Basgo Group 

The Basgo Group includes both the Basgo Formation and the conformably 

overlying Temesgam Formation. The Basgo Formation is distinct from the other 

Indus Basin strata because of its mustard colored sandstones, highly calcareous 

sandstones and shales, and the presence of ostracods within it that have been 

dated as Late Oligocene (ca. 28-23 Ma) [Bajpai et al., 2004]. The conformably 

overlying Temesgam Formation, which is exposed north of the Zanskar Gorge, 
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contains gray-yellow sandstones and blue-gray shales, with the occasional red 

shale horizon. In fault contact with the Nimu Formation, the Temesgam is as 

young as Miocene (ca. 19 Ma) toward the top of the section [Henderson et al., 

2010]. The Basgo Group has been thrust over the Ladakh batholith. 

The Basgo Formation contains cobbles and boulders in conglomeratic 

horizons that are sourced directly from the Ladakh batholith, thus providing clear 

evidence of the KLG arc source [Garzanti and Van Haver, 1988]. However, 

detrital zircon U-Pb geochronologic data from sandstones indicate a drastically 

different source area than the remainder of the Indus Basin rocks, with age 

distributions matching the TSS of the Indian plate [Tripathy et al., in review; 

Chapter 3]. Therefore, the Basgo Formation provides ample evidence for a mixed 

Indian-Eurasian provenance, and implies a minimum Early Oligocene age of 

collision. Moreover, the Basgo Formation is the only part of the Indus Basin that 

unequivocally demonstrates mixed provenance in the literature.  

4. Detrital zircon U-Pb geochronology of quartzite clasts 

We have taken a unique approach to seeking distinctly Indian plate 

detritus by focusing on the conglomerate clasts, which likely came from a more 

proximal source area than the finer-grained sands that are usually studied. In 

particular, we hypothesize that quartzite clasts from the Stok Kangri Formation of 

the Lower Indus Group were derived from the TSS, and contain a similar detrital 

zircon U-Pb geochronologic signature to the sandstones that are presently exposed 

to the south of the Indus Basin [Myrow et al., 2010].  
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4.1. Methods and results 

To test this hypothesis, we collected multiple cobble-sized quartzite clasts 

from two conglomerate beds (Figure 4.2). For each sample locality, we combined 

all the clasts together to ensure sufficient numbers of zircon for dating. Thus, for 

each conglomerate bed, if there existed multiple quartzite source areas, we would 

be unable to deconvolve the mixed signal without a priori knowledge of the 

source area.  

Zircon crystals were extracted from crushed samples by traditional 

gravimetric and magnetic susceptibility methods designed to concentrate heavy 

minerals. A large split of zircon grains was incorporated into a 1” epoxy mount 

together with fragments of University of Arizona Sri Lanka standard zircon 

[Gehrels et al., 2008]. The mounts were polished, imaged photographically, 

examined with a cathodoluminescence detector at the Arizona State University 

LeRoy Eyring Center for Solid State Science using a JEOL 840 scanning electron 

microscope, and cleaned prior to isotopic analysis. 

U-Pb geochronology was conducted by laser ablation multicollector 

inductively coupled plasma mass spectrometry (LA-MC-ICPMS) at the Arizona 

LaserChron Center [Gehrels et al., 2006, 2008]. The procedure generally follows 

that of Gehrels et al. [2011], but we provide details for our specific analytical 

session. Zircons were ablated with a New Wave UP193HE Excimer laser using a 

spot diameter of 30 µm and pit depths of ~15 µm. The ablated material was 

carried in helium into the plasma source of a Nu HR ICPMS for simultaneous 

measurement of U, Th, and Pb isotopes. All measurements were made in static 
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mode, using Faraday detectors with 3x1011 ohm resistors for 238U, 232Th, 208Pb, 

207Pb, 206Pb, and discrete dynode ion counters for 204Pb and 202Hg. Ion yields were 

~0.8 mV per ppm. Each analysis consisted of one 15-second integration on the 

isotope peaks with the laser off (for backgrounds), 15 one-second integrations 

with the laser firing, and a 30-second delay to purge the previous sample and 

prepare for the next analysis.  

For each analysis, the errors in determining 206Pb/238U and 206Pb/204Pb 

generally resulted in measurement errors of ~1-2% (at 2σ level) in the 206Pb/238U 

age. The errors in measurement of 206Pb/207Pb and 206Pb/204Pb generally also 

resulted in ~1-2% (at 2σ level) uncertainties in age for grains that are >1.0 Ga, but 

were substantially larger for younger grains due to the low intensity of the 207Pb 

signal. For most analyses, the crossover in precision of 206Pb/238U and 206Pb/207Pb 

ages occurred at ~1.0 Ga.  

204Hg interference with 204Pb was accounted for by measurement of 202Hg 

during laser ablation and subtraction of 204Hg according to the natural 202Hg/204Hg 

ratio of 4.35. This Hg correction was not significant for most analyses because Hg 

backgrounds were low (typically ~150 cps at mass 204). Common Pb correction 

was accomplished using the Hg-corrected 204Pb and assuming an initial Pb 

composition from Stacey and Kramers [1975], with uncertainties of 1.5 for 

206Pb/204Pb and 0.3 for 207Pb/204Pb.  

Inter-element fractionation of Pb/U was generally ~5%, whereas apparent 

fractionation of Pb isotopes was generally <0.2%. In-run analyses of fragments of 

a large Sri Lanka zircon crystal (generally every fifth measurement) with a known 
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U-Pb age of 563.5 ± 3.2 Ma (2σ error; Gehrels et al., [2008]) were used to correct 

for this fractionation. The uncertainty resulting from the calibration correction 

was generally 1-2% (2σ) for both 206Pb/207Pb and 206Pb/238U ages. Concentrations 

of U and Th were calibrated relative to the same zircon standard, which contains 

~518 ppm of U and 68 ppm Th [Gehrels et al., 2008]. 

The U-Pb analytical data are reported in Supplementary Material 

Appendix H. Uncertainties shown in these tables are at the 2σ level, and include 

only the analytical errors. Analyses that were >20% discordant (by comparison of 

206Pb/238U and 206Pb/207Pb ages) or >5% reverse discordant were not considered 

further [Gehrels et al., 2011].  

The resulting interpreted ages are shown in relative age-probability 

diagrams using a Matlab program written at Arizona State University. These 

probability density curves show the summation of each age and its associated 

Gaussian uncertainty (for analytical errors only) as a single curve. The area under 

each curve is normalized to 1 according to the number of constituent analyses. 

The ordinates for the curves plotted in Figure 4.4 have the same scale, such that 

the relative peak heights of different curves have significance.  

4.2. Provenance interpretation  

4.2.1. Potential source areas 

To facilitate comparison, we plot zircon U-Pb dates from potential source 

areas on either side of the ITSZ as stacked probability density curves (Figure 4.4), 

with explicit focus upon published detrital zircon U-Pb geochronologic data from 

pre-Tertiary sandstones. For the northern Eurasian source area, we consider data 
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from sandstones on the Lhasa block, as presented by Gehrels et al. [2011]. For the 

Indian southern source area, we focus only on sandstones from the TSS and upper 

parts of the LHS that span sample locations from Bhutan to Pakistan, which 

Geherls et al. [2011] interpret as equivalent and, as a consequence, combine. We 

restrict the comparison to the adjacent local Lhasa block and TSS-type source 

areas because it is unlikely that the cobbles were derived from beyond central 

Tibet. Furthermore, we only plot pre-Cenozoic source area datasets. The three 

Cenozoic dates in this dataset (sample 09-AT-LM-Z, Supplementary Material 

Appendix H) likely represent sandstone matrix from the outer edges of the 

cobbles that was not completely removed during sample preparation. As such, we 

exclude these three dates from the probability density curve in Figure 4 for a more 

accurate comparison between the hypothesized source areas for the cobbles 

themselves.  

Four major modes are apparent in the TSS dataset from Gehrels et al. 

[2011] (gray bands in Figure 4.4). Mode 1 is centered at approximately 150 Ma. 

Mode 2 comprises a broad peak between 450-550 Ma. Mode 3 is centered at 

approximately 900 Ma, and Mode 4 is located at 2500 Ma. Data exist between 

major modes, but are not abundant, except for a very broad scatter of dates 

between 1500-2000 Ma.  

When compared to the Lhasa block age spectrum (Figure 4.4), the TSS 

modes 1 and 4 are interpreted as diagnostic of an Indian source, as these modes 

are not observed in the Eurasian Lhasa block age spectrum. Modes 2 and 3 

broadly overlap with both Indian and Lhasa block spectra and are therefore non-
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diagnostic for either source terrane. However, in the Lhasa block age spectra, 

there is an apparent age peak between 1000-1200 Ma which is far less 

pronounced in the TSS spectrum (Figure 4.4). Although this mode cannot be 

considered diagnostic, it is suggestive of derivation from the Lhasa block.  

4.2.2. Comparison of detritus with bedrock sources 

The U-Pb zircon age distribution of sample 09-AT-LM-Z (Figures 4.3 and 

4.4) contains five major modes. A distinct Cretaceous mode broadly overlaps 

Mode 1 of the TSS spectrum. Although less prominent, two modes are present in 

the Triassic and middle Paleozoic. Neither is particularly distinctive in the 

reference Lhasa block or TSS spectra. The final two modes – one similar to Mode 

2 and a more diffuse peak between 800 and 1300 Ma –could match either 

reference spectrum and are thus not diagnostic. Although the spectrum for this 

sample superficially resembles the TSS age spectrum, it is possible that this 

sample contains a mix of cobbles derived from either potential source. Based on 

the presence of diagnostic Mode 1 zircon dates, we infer that at least some of the 

cobbles were sourced from the Indian Plate. 

Sample 09-AT-LM-Y (Figure 4.3) has a different age spectrum than 09-

AT-LM-Z, and presents six major modes and multiple minor modes (Figure 4.4). 

The most prominent mode is Triassic in age, and this corresponds to a similar 

mode in 09-AT-LM-Z, but U-Pb zircon ages in this range are not common in 

either the TSS or Lhasa block reference spectra. A second major mode comprises 

the same Cambrian mode found in all other age spectra. Between 1100-1300 Ma 

the next mode is encountered, which most closely corresponds to the Lhasa block 
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age spectrum, but is not diagnostic because zircons of this age are also present in 

the TSS age spectrum. We consider the peaks between 1500-2000 Ma as a diffuse 

scattering of dates that comprise the fourth mode of this sample’s age spectrum; 

this range is not specific to either source area. A distinct peak at 2500 Ma 

corresponds to Mode 4 of the TSS age spectrum. Another mode, between 2700-

2800 Ma is, again, not diagnostic of either source area. Therefore, although this 

age spectrum is distinct from the previous sample, we interpret it similarly. Most 

modes are not specific to either potential source area, implying that either could 

have contributed clasts, but the presence of Mode 4, which is diagnostic of a TSS 

source, suggests that at least some of these cobbles were sourced from the Indian 

plate. Therefore, we interpret these data to imply a mixed Indian-Eurasian source, 

particularly when coupled with published U-Pb detrital zircon geochronology 

from sandstones that imply a Eurasian provenance [Henderson et al., 2011].  

5. Trace element geochemistry of mafic clasts 

By comparing the trace element geochemistry of the ophiolites of the 

ITSZ and SSZ, Ahmad et al. [2008] was able to demonstrate that these mafic 

rocks can be distinguished from one another based upon their chondrite-

normalized rare earth element (REE) diagrams, primitive mantle-normalized 

multi-element patterns, and discrimination diagrams for the least mobile elements. 

Thus, the trace element geochemical signatures for individual mafic clasts 

collected from conglomerates throughout the Indus Group should provide further 

insights regarding clast provenance.  
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Ophiolitic rocks within the ITSZ are representative of the Neo-Tethys 

ocean basin that separated India and Eurasia prior to collision. Farther to the east, 

in southern Tibet, large tracts of ophiolitic material mark the trace of the ITSZ 

[Gansser, 1980]. In northwestern India, the ITSZ is mostly a tectonic mélange 

with relatively minor metabasaltic components [e.g., Honegger et al., 1982]. True 

ophiolites in northwestern India, such as the Spontang ophiolite, exposed not far 

from the study area, were obducted onto the North Indian continental margin prior 

to the final stages of collision [Searle et al., 1997]. As a consequence, we interpret 

the derivation of clasts from an “ITSZ ophiolite” as likely indicative of derivation 

from the Indian Plate, though we cannot rule out derivation from the suture zone 

itself. Ophiolitic rocks with SSZ characteristics most likely derive from the SSZ 

itself, which was either internal to the Eurasian plate during Indus Basin 

sedimentation or external such that it marked a later collision zone between 

Eurasia and an amalgamated Ladakh-India block, following the recent 

interpretation of Bouilhol et al. [2011].   

5.1. Methods and results 

We collected a minimum of four mafic clasts per sample from four 

conglomeratic horizons in the Lower and Upper Indus Group exposed in the 

Zanskar Gorge (Figures 4.2 and 4.3), yielding a total of 26 mafic clasts. Each clast 

was individually powdered using a ceramic ball mill to minimize trace metal 

contamination.  

Approximately 50 mg of powder was weighed per sample and digested in 

concentrated HF and HNO3 on a hotplate for 12 hours. The solutions were dried 
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and concentrated HCl was added. The mixture was heated for 12 hours to digest 

any fluoride salts. The solutions were subsequently dried, and the remainders 

were dissolved in 0.32 M HNO3 for analysis by quadrupole ICP-MS. To control 

the quality of our procedure, we processed blanks and two U.S. Geological 

Survey (USGS) basalt reference samples – BCR-2 (Columbia River Basalt) and 

BIR-1 (Icelandic Basalt) – alongside the unknowns. These standards were chosen 

for both their lithology and reference values of elements of interest.  

The measurement of selected major, minor and trace elements was 

performed on a Thermo X-series quadrupole mass spectrometer in the W. M. 

Keck Foundation Laboratory for Environmental Biogeochemistry at Arizona State 

University. For minor and trace elements, we used a dilution factor of ~1:1,000, 

and ~1:25,000 for the major elements. Calibration and optimization of the 

instrument was done using a series of internal standards to create a set of 

calibration curves for the analyzed elements at levels of ~650 ppb, ~100 ppb, ~25 

ppb, ~5 ppb, ~1 ppb, ~500 ppt, ~100 ppt and ~50 ppt. After initial calibration, one 

of these calibration solutions was run after approximately five unknowns to 

monitor reproducibility, which was generally around 10%, but could be as high as 

15% for elements that were difficult to measure, such as phosphorous. During 

analysis, a Ge-In-Bi internal standard was simultaneously introduced with sample 

solutions to monitor plasma suppression throughout the course of the run, which 

explains some of the variability in the repeated measurements of the calibration 

curve solutions.  
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The analytical software package corrected for the system blank and 

applied the calibration curve before producing “raw” data in concentration form. 

These data were then corrected for process blanks, and the exact dilution factor 

was applied to each sample. Analyses less than the limit of detection (LOD) for 

each element, reported in Table 4.1, were discarded. Accuracy was checked using 

external standards BCR-2 and BIR-1, and both accuracy and reproducibility are 

reported in Table 4.1. We regard the accuracy with which we can measure these 

external standards as the most robust estimation of error associated with these 

analyses, particularly because the analytical imprecision associated with each 

measurement is generally much smaller, sometimes less than 1% (1σ), when 

compared to reproducibility of the standards, which can be as high as 20%. The 

final concentrations are presented in Table 4.1.  

5.2. Provenance interpretation 

5.2.1. Potential source areas 

Because this study focuses on individual mafic pebbles that have 

undergone a relative complex thermal history since their initial formation, we 

focused on REE patterns, which are distinctive to each potential source area in the 

Ladakh region [Ahmad et al., 2008].  

Rolland et al. [2000; 2002] divided the SSZ in this region into western and 

eastern domains, based upon geochemical characteristics and subsequent 

interpretation. The Western Ladakh domain was further subdivided into Northern 

and Southern groups, which are differentiable based upon differences in Nb 

depletion. However, as shown in Figure 4.5, the average chondrite-normalized 
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REE patterns for all Northern Group (curve A) and Southern Group (curve B) 

samples are similar in that they both demonstrate enrichment in LREE, a flat 

heavy REE (HREE) pattern, and no Eu anomaly (Figure 4.5). Rolland and co-

workers [2000; 2002] interpret these data as evidence of a back-arc basin tectonic 

setting. In contrast, the Eastern Ladakh domain preserves basalts that are more 

enriched in LREE relative to HREE than their western counterparts, and have 

marked negative Eu anomalies (Figure 4.5). Rolland et al. [2000; 2002] 

interpreted these data, coupled with additional geochemical evidence, as 

characteristic of a mature volcanic arc that is unrelated to a back-arc basin setting. 

We refer to REE patterns that have a negative slope and Eu anomaly as Type 1 

(Eastern Ladakh type), and those that have a negative slope but lack a Eu anomaly 

as Type 2 (Western Ladakh type).  

For the ITSZ of the Ladakh region, Ahmad et al. [2008] presented data 

from the Nidar complex. Both plutonic and volcanic rocks have nearly flat to 

slightly depleted REE patterns, and show a distinct positive Eu anomaly in some 

cases. Coupled with additional geochemical information, they interpreted this 

complex as containing mafic rocks of an intraoceanic subduction environment. 

The average chondrite-normalized REE curve for the data presented therein is 

plotted on Figure 4.5, and is distinctive, particularly because of its positive slope. 

We refer to these as Type 3 REE patterns.   

5.2.2. Comparison of detritus with bedrock sources 

Based on the chondrite-normalized REE patterns of the mafic clasts from 

the four samples analyzed in this study, we are able to divide the dataset based 
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upon REE pattern type (Figure 4.6), as defined above. The vast majority of the 

clasts resemble SSZ ophiolites from both the eastern (Type 1) and western (Type 

2) domains, while three clasts preserve the Type 3 REE pattern characteristic of 

the ITSZ (Figure 4.6), which could imply a mixed provenance. We explored this 

further with the use of a discrimination diagram, where we plot primitive mantle-

normalized La versus the primitive mantle-normalized Yb/La ratio. Such 

diagrams are often used to demonstrate the degree of partial melting, and in part, 

expresses the steepness of the REE pattern (Figue 4.7).  

As expected, most of the clasts that showed Type 1 and Type 2 patterns 

plot within the field drawn from the Eastern and Western Ladakh datasets 

[Rolland et al., 2000; 2002], with the exception of five clast analyses that are 

immediately adjacent to and above this field. All but one of the three analyses that 

were characterized as having Type 3 REE patterns indicative of an ITSZ source 

plot within the Nidar complex field. This supports our subdivision based on 

chondrite normalized REE patterns, and suggests that the majority of these clasts 

were derived from the SSZ, but a select few clasts are of Neo-Tethyan affinity. 

All conglomerate horizons examined in this study contain clasts that preserve 

varying REE types, such that no stratigraphic correlation can be made with our 

dataset. Thus, we interpret these data to represent mixed provenance with an SSZ 

source and an ITSZ source. 

6. Detrital biotite 40Ar/39Ar thermochronology  

Our final dataset includes detrital biotite 40Ar/39Ar dates from a sample 

(08-AT-ZG-A) collected from one of several sandstone horizons intercalated with 
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the last marine limestone of the Tar Group (Figures 4.2 and 4.3), which is late 

Ypresian (ca. 52-48 Ma) in age [Henderson et al., 2010]. Biotite is a common 

rock-forming mineral in the Ladakh batholith today. We originally hypothesized 

that if these grains were derived from the batholith they would record the earliest 

part of its cooling history. However, if an Indian provenance can be demonstrated, 

this would be the lowermost (and best dated) unit within the Indus Basin to 

contain Indian detritus. 

6.1. Methods and results 

Here, we describe the procedure of the Arizona State University Noble 

Gas, Geochronology and Geochemistry Laboratories (NG3L) in detail. Biotite 

grains were handpicked from the 250-100 µm aliquot, cleaned in acetone, 

methanol, and deionised water, and individually wrapped in aluminium foil 

packets. For the irradiation package, sample packets were regularly interspersed 

with packets of biotite age standard HD-B1 (24.18 ± 0.09 Ma, Schwarz and 

Trieloff, [2007]) to monitor the neutron flux gradient, along with natural and 

synthetic salts to determine interfering nuclear production ratios. The small 

aluminium disks into which the packets were loaded were then stacked and 

secured together to make up the irradiation package, which was then Cd shielded 

and irradiated for 5 hours at a near-core position (5C) within the McMaster 

University nuclear reactor, Hamilton, Ontario, Canada. 

Upon return, individual age standard and unknown sample grains were 

loaded into a 61 mm diameter aluminium palette containing a series of 2 x 2 x 2 

mm holes. The palette and a glass coverslip were loaded into an ultra-high 
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vacuum 4.5” laser chamber with a Kovar glass viewport and baked at 120°C for 

one day and then pumped at ultrahigh vacuum for one day to remove adsorbed 

atmospheric argon from the samples and chamber walls.  

To degas and melt each grain, a 60 W IPG Photonics infrared (970 nm) 

diode laser, with computer-controlled Photon Machines optics and X-Y-Z stages 

linked to a Newport controller, was fired such that two minutes of lasing with a 50 

W, 0.6 mm diameter beam was sufficient to ensure total fusion of each grain. The 

gases released by laser heating were purified for an additional two minutes using 

two SAES NP10 getter pumps (one at 400°C and one at room temperature) to 

remove all active gases. The remaining gases were equilibrated into a high 

sensitivity multi-collector mass spectrometer (Nu Instruments Noblesse), 

containing a Nier-type source operated at 400 mA. The Ar isotopes were 

measured using a 1 x 1011-Ohm Faraday detector or an ETP ion counting 

multiplier, depending upon the 40Ar signal size. Detector intercalibration for 40Ar 

was performed using multiple air shots. Laser heating, X-Y stage movement, 

automated valve operation, and data acquisition was automated and computer 

controlled using the Mass Spec software program. Errors throughout this paper 

are quoted at the 2σ confidence level. 40Ar/39Ar ages were calculated using the 

decay constant, branching ratio, and atmospheric 40Ar/36Ar ratio recommended by 

Steiger and Jäger [1977]. J-values and errors are noted in data tables of the 

supplementary materials. 

Total system blanks during the experiments were estimated as 1.80 x 10-16, 

1.22 x 10-18, 9.12 x 10-20, 1.95 x 10-19, and 3.85 x 10-20 moles STP (standard 
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temperature and pressure) for 40Ar, 39Ar, 38Ar, 37Ar, and 36Ar, respectively. The 

sensitivities of the Faraday and ion counting detectors were 8.2314 x 10-13 

moles/V and 1.4633 x 10-20 moles/cps, respectively. Unknown analyses were 

corrected for mass spectrometer discrimination using air shots. Measured 

40Ar/36Ar air ratios varied from 296.39± 2.18 to 306.80±1.87 (1σ errors) during 

the unknown analyses. Nuclear interference correction factors were as follows: 

40Ar/39ArK = 0.027945, 36Ar/38ArCl = 316, Ca/K = 1.92234, and Cl/K = 0.16863.  

We interpreted no data for experiments yielding less than 90% 40Ar* or 

having 40Ar* signals less than ten times the level of the 40Ar blank. The remaining 

data for sample 08-AT-ZG-A are listed in the Supplementary Material Appendix 

I. On a relative probability density plot (Figure 4.8), these data exhibit a 

prominent mode at ~550 Ma with small secondary mode at ~475 Ma. Overall, the 

data include a range of 40Ar/39Ar detrital biotite cooling ages between 480.5 ± 5.4 

to 608.0 ± 12 Ma. 

6.2. Provenance interpretation 

The prominent ~ 550 Ma mode in the 40Ar/39Ar data is highly significant. 

The U-Pb crystallization ages for various plutons in the Ladakh arc are 

exclusively Mesozoic or Cenozoic [e.g., Honegger et al., 1982; St. Onge et al., 

2010]. K-Ar and 40Ar/39Ar biotite dates from the Ladakh arc are Lower-Middle 

Eocene, and there is no indication that they harbor significant amounts of non-

radiogenic (“excess”) 40Ar that might result in our obtaining impossibly old 

40Ar/39Ar total fusion dates for grains derived from the batholith [Honegger et al., 

1982; Clift et al., 2002]. It is essentially impossible for the biotites in sample 08-
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AT-ZG-A to represent a Ladakh batholith source. We are aware of no reports of ~ 

550 Ma 40Ar/39Ar biotite dates from other parts of the Lhasa block, as the only 

confirmed Cambrian-Ordovician location is the non-biotite-bearing rhyolite 

terrane in the Xainza area [Ji et al., 2009]. Most 40Ar/39Ar biotite dates from the 

Himalayan realm, particularly from the Greater Himalayan sequence where 

metamorphic biotite is common, have Miocene or younger cooling ages. 

However, some Proterozoic-Cambrian 40Ar/39Ar muscovite cooling ages 

have been obtained from the Lesser Himalayan sequence and Bengal Basin 

[Wobus et al., 2003; Najman et al., 2008]. The Bengal Basin dataset is especially 

interesting: Najman et al. [2008] presented detrital muscovite 40Ar/39Ar 

thermochronologic dates from the Paleocene to Early Eocene Tura and Sylhet 

Formations, which both contain a single major mode in the probability density 

curves that is centered at ca. 500 Ma. Because the depositional ages of these strata 

overlap the most likely depositional age of sample 08-AT-ZG-A, we posit that 

Cambrian to Ordovician detritus was likely common in the early stages of the 

initiation of collision. Thus, this detritus was synchronously shed both southward 

into the Bengal Basin and northward into intermontane depocenters such as the 

Indus Basin. If this hypothesis is correct, the sample 08-AT-ZG-A biotite dataset 

implies that the stratigraphically highest unit of the Tar Group contains detritus 

from the Indian plate. When considered in light of detrital zircon U-Pb dates for 

this part of the section that strongly indicate derivation from the Eurasian Lhasa 

block [Henderson et al., 2010], our data suggest that the upper Tar Group records 

a mixed Indian and Eurasian provenance, such that both the Indian and Eurasian 
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plates were proximal to and eroding into the Indus Basin during upper Tar Group 

deposition. 

7. Synthesis and conclusions  

Despite the suggestion by Henderson et al, [2010] that only parts of the 

younger Indus Basin stratigraphy contain detritus derived from the Indian Plate 

(Upper Indus Group), we present multiple lines of geochemical evidence that 

suggest a mixed provenance throughout the depositional history of the Indus 

Basin. The U-Pb detrital zircon geochronology of quartzite clasts suggests a 

dominantly Indian source area, though some contribution from Eurasian 

sandstones is plausible. Trace element geochemistry suggests a predominately 

northerly source of mafic clasts from the Shyok suture zone. Following the 

conventional interpretation of an Early Cretaceous age for the Shyok suture, this 

implies that the mafic clasts in the Indus Basin predominately had a Eurasian 

source. However, if the interpretation of Bouilhol et al. [2011] regarding the 

significance of the SSZ is correct, our trace element geochemical results imply 

deposition of the Indus Basin succession after that younger collisional event, with 

material sourced from north of the Ladakh arc. This would imply an as yet 

unidentified unconformity between the late Ypresian upper Tar Group and the 

Lower Indus Group, which is generally observed to be a depositional contact. 

Detrital biotite 40Ar/39Ar dates from the sandstones intercalated with the late 

Ypresian marine limestones in the Tar Group of the Indus Basin are not consistent 

with dates from previously analyzed bedrock samples from the Ladakh batholith 
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or Lhasa block. Comparison with other datasets from the Indian realm of the 

orogenic system reveals potential sources there.  

Collectively, the evidence supports an interpretation of the Indus Basin 

detrital record as containing a mixed Indian-Eurasian provenance throughout its 

depositional history. We conclude that collision in this region is no younger than 

late Early Eocene (ca. 52-48 Ma), and that the recent hypothesis that collision 

could be as young as Early Oligocene in this region, put forth by Aitchison et al. 

[2007] is unlikely to be correct.  Moreover, we recommend that for other 

intermontane basins within the Indus suture zone, such studies as the one 

presented herein, where specfic clasts are chosen for study based upon their most 

likely source region, should be carried out to resolve this conflict regarding the 

timing of collision. 
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9. Figure captions 

Figure 4.1. Shaded relief map derived from GTOPO30 (30m/pixel DEM) overlain 

with ASTER DEM (15m/pixel), with Cretaceous-Miocene intermontane basins 

shown in black from Searle [1986], Yin et al. [1999], Aitchison et al. [2002], Li et 

al., [2010], Wang et al., [2010], and major Himalayan fault systems as white lines 

from Hodges [2000] and Yin et al., [1999]. GCTS – Great Counter Thrust system, 

MBTS – Main Boundary Thrust system, MCTS – Main Central Thrust System, 

MFTS – Main Frontal Thrust system, and STFS - South Tibetan Fault system. 

Major Himalayan lithotectonic units labeled in Nepal (from Hodges [2000]). GHS 

– Greater Himalayan Sequence, LHS – Lesser Himalayan sequence, SH – 

Subhimalaya, and TSS – Tibetan Sedimentary Sequence. White box around Leh 

shows the extent of Figure 4.3.  
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Figure 4.2. Summary of stratigraphy and age constraints of the Indus Basin, from 

Tripathy et al. [in preparation]. Sample locations for the current study are listed in 

their approximate stratigraphic location, and the final interpration of provenance, 

based on data presented herein, as well as other lines of evidence, are shown for 

ease of correlation to approximate stratigraphic age. TEG – trace element 

geochemistry, UPb – U-Pb zircon geochronology, bt – biotite 40Ar/39Ar 

thermochronology. 

 

Figure 4.3. Simplified geologic map of the Ladakh region. Strata between the 

Tibetan Sedimentary Series (TSS) and the Ladakh batholith comprise the ITSZ, 

and are drawn from Tripathy et al. [in prep]. The northern boundary of the 

Ladakh batholith, Karakoram Fault zone (KFZ) and exposures of SSZ strata after 

Bohon et al. [submitted]. The Zanskar Gorge transect is marked by samples 

labeled “ZG”, and the Leh-Manali road transect is marked by samples labeled 

“LM.” 

 

Figure 4.4. Stacked probability density curves, from bottom to top, of Indian plate 

TSS detrital U-Pb data (compiled by Gehrels et al. [2011]), Indus Basin samples 

09-AT-LM-Z and 09-AT-LM-Y from this study, and Eurasian plate Lhasa block 

detrital sandstone samples (compiled by Gehrels et al. [2011]). The gray bands 

highlight major modes, which are labeled above, in the detrital zircon U-Pb 

signature of the TSS. The arrow points to the broad peak at ca. 1200 Ma in the 

Lhasa block age spectrum.  



	   	  	  133 

 

Figure 4.5. REE patterns, normalized to chondrites [Sun and McDonough, 1989], 

of published data, averaged based upon location. The Western Ladakh SSZ curves 

(Type 2) comprise all ophiolitic material analyzed from the Northern Group (A) 

and Southern Group (B) of the SSZ rocks exposed in western Ladakh [Rolland et 

al., 2000; 2002]. The Eastern Ladakh SSZ curve comprises ophiolitic material 

analyzed from the SSZ exposed just north of Leh [Rolland et al., 2000; 2002]. 

The ITSZ curve comprises data from the Nidar complex [Ahmad et al., 2008].  

 

Figure 4.6. Chondrite normalized REE patterns [Sun and McDonough, 1989], of 

the data presented herein. The gray curves are the averages from previous studies, 

as shown in Figure 4.5. We subdivide by type, as assigned in the text. (a) Type 1 

diagram, which most closely matches the Eastern Ladakh SSZ because of the 

enrichment in LREEs and negative Eu-anomaly. (b) Type 2 diagram, which most 

closes matches the Western Ladakh SSZ because of LREE enrichment but either 

positive or no Eu anomaly. (c) Type 3, which most closely matches ITSZ Nidar 

complex samples because of the slight depletion of LREEs. 

 

Figure 4.7. [La/Yb]N versus [La]N diagram, ratios normalized to the primitive 

mantle of Sun and McDonough [1989]. We plot data from Rolland et al. [2000; 

2002] and Ahmad et al. [2008] as colored fields based upon where the majority of 

their data lie, with their outliers plotted for in gray for completeness. Our data are 
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presented as black symbols based upon Type, as defined in the text and in Figure 

4.6.  

 

Figure 4.8. Probability density curve of all detrital biotite 40Ar/39Ar data from 

sample 08-AT-ZG-A.  
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Table	  4.1.	  Whole	  rock	  geochemistry	  of	  mafic	  clasts.	  	  
                        
Sample ZGC6 ZGC9  ZGD3  ZGD5  ZGE3  ZGE4  ZGF1  ZGF3  ZGC1 ZGC2 ZGC3 
(ppm)                       
P 453.52 805.8 602 77.0 934 286.3 329.0 600 103.4 519 513 
K 20900 19400 8000 1646.1 28900 1129 4448 10100 2497 7200 6000 
Sc 34.36 47.00 7.20 1.559 34.45 34.27 19.92 39.73 18.924 51.59 37.39 
Ti 8850 6616 2125 683.8 4418 3653 2773 4840 1032.5 4138 3974 
Rb 83640 78380 39940 8750 115000 4003 18670 43210 9716 30140 24090 
Sr 121.15 77.91 177.0 47.25 215.1 106.2 594.0 520.4 29.651 308.5 351.9 
Y 9.629 22.323 23.329 21.19 16.82 16.878 19.47 27.40 3.105 18.67 18.43 
Zr 23.12 13.378 43.74 12.444 7.688 40.9 56.9 47.28 2.0 14.03 24.7 
Nb 1.100 2.2942 1.998 2.156 1.932 1.117 3.351 3.725 - - - 
Ba 383.3 306.0 154.5 51.71 809 65.96 127.7 299.5 50.05 132.56 111.11 
La 3.491 8.66 6.236 12.91 17.78 4.785 10.90 14.20 1.541 10.96 11.791 
Ce 8.90 19.877 15.83 24.78 37.26 12.63 22.49 29.93 3.215 23.04 23.075 
Pr 1.283 2.802 2.3091 2.770 4.72 1.668 2.680 4.003 0.408 2.986 2.975 
Nd 6.601 13.44 11.27 10.352 20.07 7.86 11.301 17.931 1.82 13.36 13.196 
Sm 1.890 3.726 3.19 1.907 4.43 2.269 2.706 4.677 0.451 3.35 3.344 
Eu 0.874 1.290 0.892 0.342 1.327 0.528 0.772 1.521 0.107 0.988 0.949 
Gd 2.068 4.159 3.37 1.702 3.949 2.614 2.87 5.15 0.483 3.47 3.55 
Tb 0.3114 0.669 0.579 0.2126 0.580 0.4672 0.451 0.839 0.0821 0.527 0.5044 
Ho 0.402 0.880 0.7895 0.2109 0.680 0.701 0.599 1.128 0.1131 0.671 0.632 
Er 1.151 2.485 2.375 0.6093 1.968 2.181 1.806 3.302 0.346 1.971 1.861 
Tm 0.1513 0.3285 0.340 0.0820 0.2725 0.3159 0.260 0.457 0.0513 0.2742 0.2581 
Yb 0.986 2.103 2.35 0.563 1.818 2.43 1.789 2.95 0.342 1.842 1.782 
Lu 0.1322 0.2919 0.3738 0.07811 0.2654 0.3111 0.2708 0.4412 0.0464 0.2656 0.2583 
Pb 9.01 4.650 4.552 22.53 9.44 2.06 9.37 9.76 4.020 9.92 11.53 
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Table	  4.1.	  Continued	  	  
                    
Sample ZGC4 ZGC5 ZGC7 ZGC10 ZGC11 ZGD1 ZGD4 ZGD9 ZGE1 
(ppm)                   
P 323.2 564 291.3 718.0 566 348 416.4 717 496.4 
K 26901 13100 12300 15025 10100 13700 915.5 1536 36500 
Sc 48.74 37.02 4.981 53.50 20.77 14.89 2.709 19.45 47.00 
Ti 5326 4589 1636 6980 4265 3301 216.22 4732 6475 
Rb 107190 53590 45640 58080 35470 74000 7600 7480 137000 
Sr 82.12 105.63 123.40 23.57 381.1 165.5 400.8 73.47 22.993 
Y 14.811 20.237 13.760 20.637 35.837 28.11 20.831 30.58 17.44 
Zr 5.85 26.45 9.063 13.7 107.38 116.3 8.8 108.3 39.91 
Nb - - - - - - - - - 
Ba 572.0 186.7 223.1 288.4 227.5 162.2 15.60 48.78 724.5 
La 2.30 7.78 13.32 3.258 26.71 20.15 10.21 11.94 0.981 
Ce 6.481 16.35 27.18 8.45 53.36 41.11 16.13 24.55 4.943 
Pr 0.999 2.208 2.856 1.333 6.363 4.974 2.568 3.314 0.855 
Nd 5.296 10.373 10.258 6.858 25.85 20.620 11.67 14.98 4.580 
Sm 1.832 2.778 2.106 2.333 5.837 4.778 3.05 3.974 1.824 
Eu 0.6623 1.0004 0.576 0.4248 1.495 1.630 0.532 1.087 0.6182 
Gd 2.34 3.21 2.042 3.01 6.41 4.96 3.88 4.53 2.13 
Tb 0.407 0.480 0.2926 0.5567 0.919 0.7286 0.529 0.688 0.417 
Ho 0.6109 0.6316 0.350 0.918 1.169 0.9573 0.565 0.932 0.659 
Er 1.843 1.799 1.035 2.881 3.483 2.910 1.450 2.830 2.061 
Tm 0.2612 0.2423 0.1477 0.437 0.477 0.4170 0.1699 0.3985 0.300 
Yb 1.763 1.573 1.016 3.21 3.49 3.07 1.019 2.88 2.000 
Lu 0.261 0.2119 0.1435 0.453 0.458 0.432 0.1386 0.4045 0.2631 
Pb 6.528 6.031 6.501 3.199 16.83 13.60 8.25 9.15 2.436 
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Table	  4.1.	  Continued	  
                

BIR-
1   

BCR-
2   

Sample ZGE2 ZGE5 ZGE6 ZGE7 ZGE8 ZGF2 LOD  
Rep. 
(%)1 

Acc 
(%)1 

Rep. 
(%)1 

Acc 
(%)

1 
(ppm)                       

P 558.6 259.6 408 272.60 215.8 351.0 10.332 96.0 80.0 89.0 
95.
0 

K 5400 1505 373 569.3 2239 14100 2.670 - - 98 96 
Sc 21.00 24.39 45.48 6.49 5.032 34.70 0.072 99.4 97 99.9 95 
Ti 3806 2934 5811 1949 1489 4576 0.546 97 90 90 100 
Rb 15377 3854 1619 1101 9360 61710 6.180 - - 99.6 91 
Sr 154.96 155.0 647 116.6 104.69 251 0.006 98 90 94 95 
Y 13.381 14.46 26.85 39.07 27.626 20.72 0.006 98 88 99 94 
Zr 85.65 24.48 28.6 18.79 17.7 31.01 0.024 99 82 97 94 
Nb - - - - - - 3.360 - 88 - - 
Ba 128.5 67.00 14.11 43.29 62.3 415 0.012 99 83 95 93 
La 13.1 3.218 7.27 21.507 15.58 7.52 0.666 97 95 99.8 97 
Ce 16.22 8.243 16.81 49.28 38.75 17.31 0.000 99.5 98 99.9 98 
Pr 1.970 1.150 2.148 6.04 4.877 2.193 0.432 - - 99 93 
Nd 8.249 5.706 10.24 23.95 20.18 10.19 1.692 99.3 97 99 92 
Sm 1.705 1.722 2.91 5.65 4.4527 2.83 1.380 93 93 99.5 93 
Eu 0.4000 0.499 0.960 0.597 0.558 0.961 0.552 99.5 98 98 93 
Gd 1.811 2.20 3.83 5.36 4.25 3.17 0.000 98 100 98 91 
Tb 0.2892 0.3607 0.593 0.9009 0.6011 0.5313 0.132 - - 98 97 
Ho 0.417 0.5175 0.833 1.1473 0.7260 0.731 0.282 - - 99.5 98 
Er 1.233 1.5652 2.475 3.506 2.177 2.155 0.462 - - - - 
Tm 0.1668 0.2204 0.343 0.5086 0.308 0.2985 0.258 - - 99.9 90 
Yb 1.084 1.512 2.27 3.56 2.078 2.006 0.498 98 98 99 99 
Lu 0.1500 0.2228 0.335 0.455 0.2889 0.2708 0.276 96 100 98 90 
Pb 1.322 2.598 16.91 3.70 2.562 4.92 4.170 99 96 93 94 
1Rep - % reproducibility from replicate analyses, Acc - % accuracy from replicate analyses 
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Figure 4.1.  
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Figure 4.2.  
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Figure 4.3.  
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Figure 4.4.  
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Figure 4.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   	  	   143 

 

Figure 4.6.  
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Figure 4.7.  
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Figure 4.8.  
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CHAPTER 5 

TIMING OF NORTH-VERGENT DEFORMATION IN LADAKH, 

NORTHWESTERN INDIA, AND IMPLICATIONS FOR THE ALONG-

STRIKE CONTINUITY OF THE GREAT COUNTER THRUST SYSTEM 

ABSTRACT 

Backthrusting is thought to play an important role in accommodating 

Cenozoic convergence between India and Eurasia north of the Himalayan range 

crest and south of central Tibet. In particular, backthrusts located near the Indus -

Tsangpo suture zone have been postulated to represent a major structural system – 

the Great Counter Thrust system – that may persist many hundreds of kilometers 

along strike. However, the ages of many structures grouped into the Great 

Counter Thrust system are not well constrained, complicating our understanding 

of the role of the system in Himalayan tectonics. In the Ladakh region of NW 

India, we used new apatite (U-Th)/He dates and published 40Ar/39Ar dates to 

constrain the timing of backthrusting to between 19 and 7 Ma. Zircon (U-Th)/He 

systematics were not fully reset during the backthrusting event. Modeling of these 

results in light of the conditions of anchizonal metamorphism related to 

backthrusting provides a better estimate of the timing of metamorphism (11 to 7 

Ma) and suggests a 3 to 3.5 my duration for the event. Comparison of this result 

with data from elsewhere along the suture suggests either differences in the 

function of backthrusting along the length of the orogen, implying that the Great 

Counter Thrust system does not include the backthrusts in NW India, or 
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diachroneity in the timing of backthrust structures along what is mapped as the 

Great Counter Thrust system. 

1. Introduction 

In compressional orogens, foreland-directed thrust faults and associated 

fold trains tend to dominate the tectonic architecture of the system. However, the 

timing, duration and function of hinterland-directed backthrusts are typically less 

well understood despite the fact that they are common structural elements of 

many compressional orogens [Schmid et al., 1989; McQuarrie et al., 2001; Yin, 

2006].  

In the Himalayan-Tibetan orogenic system, numerous north-vergent, 

hinterland-directed structures have been identified in the vicinity of the Indus-

Tsangpo suture zone (ITSZ). Present along much of the strike-length of the 

suture, the Great Counter Thrust system (GCTS) is so named because its 

structures verge counter to the dominant foreland-directed features [Heim and 

Gansser, 1939]. Its initiation age and duration of activity are not well constrained 

in most locations, and its relationship with other major Himalayan fault systems 

(e.g. the Main Central Thrust system, or MCTS, Figure 5.1) is, as a consequence, 

speculative. At present, age estimates for GCTS activity range from Early-Middle 

Miocene in eastern Tibet [Quidelleur et al., 1997] to Plio-Pleistocene in the 

Ladakh region [Searle et al., 1997], implying that the backthrusts may have been 

active concurrently with a variety of major foreland-vergent fault systems on the 

south side of the Himalayan range (see Hodges [2000] for a general review). 

Considering the range of age estimates, it is unclear if the GCTS is best regarded 
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as a fundamental orogen-scale feature, as suggested by Yin [2006], or if 

backthrusts developed at different times in different places along the ITSZ and do 

not actually constitute a single, well-defined structural system. In order to 

understand the role of the GCTS and its relationship to other major structures in 

the orogen, and to differentiate among competing models, it is valuable to better 

constrain the timing of backthrusting along multiple segments of the ITZS.  

In this paper, we take a unique approach to developing information 

regarding the age and duration of GCTS deformation by obtaining detrital apatite 

and zircon (U-Th)/He dates from the Indus Basin. A spectacularly exposed 

molasse in the ITSZ of the Ladakh region of NW India (Figure 5.1), the Indus 

basin sedimentary rocks display complex north-vergent deformation patterns that 

we refer to as the Zanskar backthrust system (ZBS). Related anchizonal 

metamorphism reached high enough temperatures (≥180˚C, Clift et al. [2002]) to 

reset (U-Th)/He isotopic systematics in detrital apatite, but not 40Ar/39Ar 

systematics in detrital white micas, thereby providing an opportunity to bracket 

the age of ZBS deformation in the Ladakh region with these thermochronometers. 

Thus, we combined published 40Ar/39Ar dates with newly obtained apatite (U-

Th)/He data to establish the maximum age range during which backthrusting must 

have occurred. We then used these constraints and the (U-Th)/He cooling age 

distributions of detrital zircon (n=122) from the same region to model the 

duration of ZBS-related metamorphism. Using these new constraints, we address 

the temporal relationship between the ZBS and other major Himalayan fault 

systems.  
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2. Structural character and timing constraints along the GCTS 

Although reconnaissance studies have demonstrated that backthrusts and 

associated folds are common features of the ITSZ, such structures have been 

described in detail only in two areas in southern Tibet and one in NW India. Here 

we briefly describe each region from east to west, and use the regional name of 

the fault system to differentiate between the various locations.  

2.1. Renbu-Zedong thrust system  

In the Renbu and Zedong region, although the Renbu-Zedong thrust 

system (RZTS) is buried beneath alluvium in many places, it is well exposed east 

of Zedong and clearly places phyllites directly atop molasse on a south-dipping 

plane [Harrison et al., 1993]. Quidelleur et al. [1997] collected samples from a 25 

km traverse through the footwall, beginning near the exposed fault contact where 

intrusive rock in the footwall is penetratively deformed and recrystallized to 

greenschist facies. This deformation and recrystallization decreases away from the 

fault contact and is not detectable ~5 km north of the thrust. The mineral 

assemblage of the higher grade hanging wall rocks indicate temperatures of 

~450°C, inferred to be the maximum temperature attained during thrusting 

[Quidelleur et al., 1997]. Hornblende 40Ar/39Ar dates from the hanging wall are 

between 17-18 Ma, which is interpreted to record the time of initial motion of the 

RZTS. From the footwall, biotite laser total fusion 40Ar/39Ar analyses from the 

transect show dates increasing from 12.3 Ma at the fault to 60 Ma greater than 5 

km away from the fault. K-feldspar step-heating experiments yield dates between 

8-15 Ma for the initial gas released, and by applying multiple domain diffusion 
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(MDD) modeling to their step heating spectra, Quidelleur et al. [1997] interpreted 

that the RZTS was active between 19 and 11 Ma.   

2.2. South Kailas thrust system  

In the Kailas region of southwest Tibet, Heim and Gansser [1939] 

recognized a south dipping thrust that places flysch atop molasse type-

conglomerates, and coined the term “Great Counter Thrust.” Named the South 

Kailas thrust system (SKTS) in this area, multiple backthrusts successively place 

rocks of the suture zone above one other, with the structurally highest 

(southernmost) thrust placing ophiolitic serpentinite over flysch [Yin et al., 1999].  

Estimates for movement along the SKTS are broadly bracketed as less 

than 20 Ma, but greater than 4 Ma [Yin et al., 1999]. The upper boundary derives 

from MDD models of K-feldspar separated from a volcanic cobble in the Kailas 

conglomerate that was sampled directly below the frontal thrust. The most robust 

model allowed Yin et al. [1999] to interpret that the sample was at 350°C at 19 

Ma, and remained at this temperature until 13 Ma, which they attributed to 

faulting. The lower boundary of 4 Ma is based upon crosscutting relationships 

with the Karakoram fault [Searle, 1996]. Because the age range broadly overlaps 

that of the RZTS, Yin et al. [1999] correlated the backthrusting between both 

regions, and preferred the interpretation that the SKTS was active 

contemporaneously with the RZTS, between 19-10 Ma.  

2.3. Zanskar backthrust system 

First described in detail by Searle [1986], the 30-km wide belt of south-

dipping backthrusts in the ITSZ in the Ladakh region of NW India affects not 
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only the ITSZ, but also the northernmost shelf sequence of the Tibetan 

sedimentary sequence (TSS) [Searle, 1986; Searle et al., 1997]. The southern 

boundary of the ITSZ is formed by the steeply south-dipping Main Zanskar 

backthrust, whereas the northern boundary of the ITSZ is a less steeply dipping 

north vergent contact where molassic sedimentary strata of the Indus Basin are 

thrust upon the Ladakh batholith [Searle et al., 1997]. These boundaries, as well 

as all other intervening backthrusts, are interpreted to be part of the same system 

of faults [Searle, 1986], which we refer to as the Zanskar backthrust system 

(ZBS). This system is estimated to have accommodated ~36 km of shortening in 

the molasse strata alone [Searle et al., 1990], and 150-170 km across the entirety 

of the ITSZ [Searle et al., 1997].  

Because all Eocene-Miocene Indus Basin rocks are cut by the ZBS, Searle 

et al. [1997] suggest that the ZBS is Plio-Pleistocene in age. More recently, Clift 

et al. [2002] presented apatite fission track data from the Indus Group in the 

Zanskar Gorge, and interpreted their ca.14 Ma apatite fission track dates to be 

evidence of thermal resetting by backthrusting, implying that activity on the ZBS 

is Middle Miocene.  

3. Sedimentary rocks of the Indus Basin 

3.1. Stratigraphy and age constraints 

Within the ITSZ, Indus Basin sedimentary rocks, exposed along two 

transects - the Zanskar Gorge and Leh-Manali road - record the transition from 

marine to non-marine sedimentation within the paleo-intermontane basin between 

the Indian and Eurasian plates [Brookfield and Andrews-Speed, 1984; Garzanti 
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and Van Haver, 1988; Sinclair and Jaffey, 2001]. These strata are bounded to the 

south by the Chilling Group, which comprises a fault-bounded amalgamation of 

complexly juxtaposed ophiolitic and sedimentary rocks, and to the north by the 

Ladakh batholith, onto which Indus Basin strata have been thrust (Figure 5.1).  

Based upon Advanced Spaceborne Thermal Emission Radiometer and 

Reflection (ASTER) image analysis, Tripathy et al. [in prep.; Chapter 2] 

demonstrated that the Indus Basin has a relatively simple stratigraphy that can be 

divided into four macrostratigraphic units, in spite of its highly deformed nature 

and inaccessible contacts (Figures 5.1 and 5.2). These include the predominantly 

marine Tar Group that is complexly folded with the terrestrial overlying Lower 

Indus Group. Based on biostratigraphy and detrital zircon U-Pb geochronology, 

the Tar Group is upper Ypresian (ca. 52-48 Ma) [Henderson et al., 2010; 2011]. 

The Lower Indus Group extends into the Lutetian, where the maximum age of 

deposition of its uppermost strata is ca. 46 Ma [Henderson et al., 2010]. Above 

the Lower Indus Group and bounded by backthrust structures, the Upper Indus 

Group comprises several distinct stratigraphic units, all of which are fault 

bounded. The oldest Choksti Formation is at least Lutetian (ca. 48-40 Ma), but 

may be younger [Wu et al., 2007], and is overlain by the uppermost Lutetian to 

Priabonian (Middle to Upper Eocene, ca. 40-34 Ma) Hemis Formation that is only 

exposed to the east along the Leh-Manali road transect [Tripathy et al., in prep; 

Chapter 2]. Above both the Choksti and the Hemis Formations lies the Nimu 

Formation, which is at least as young as Rupelian (Early Oligocene, ca. 30 Ma) 

[Tripathy et al., in prep; Chapter 2]. North of the Nimu Formation is the final 
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macrostratigraphic unit, the Basgo Group, which is only exposed near and west of 

the Zanskar Gorge transect. Bounded by backthrusts to both the north and south, 

the Basgo Group comprises the Upper Oligocene Basgo Formation [Bajpai et al., 

2004], as well as the conformably overlying Temesgam Formation. The 

depositional history of the latter formation extends into Early Miocene time, as 

estimated from the maximum age of deposition provided by detrital muscovite 

40Ar/39Ar thermochronology, ca. 19 Ma [Henderson et al., 2010].  

3.2. Provenance  

Detrital zircon U-Pb geochronology provides a valuable constraint on 

provenance for the Indus Basin clastic rocks because distinctive zircon 

crystallization age populations characterize both Indian and Eurasian sources 

[e.g., Gehrels et al., 2011]. Most detrital U-Pb datasets for most of the units in the 

Indus Basin suggest derivation from Eurasia [Wu et al., 2007; Henderson et al., 

2010; 2011]. An important exception is the Basgo Formation; although many 

conglomeratic clasts suggest derivation from Eurasian sources, finer grained 

clastic units contains an abundance of Indian plate zircons [Tripathy et al., in 

review; Chapter 3]. Henderson et al. [2010, 2011] noted that parts of the Lower 

Indus Group, and the entirety of the Upper Indus Group, contain detrital 

muscovite, a mineral that is sparse in exposed sections of the Eurasian plate in the 

vicinity of the Indus Basin, suggesting to those authors derivation from India. We 

regard the Indus Basin as predominantly recording the increased dissection of the 

Ladakh arc to the north, while subtly preserving information about the 
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exhumation of the Indian plate associated with continental collision [Tripathy et 

al., in review; Chapter 3].  

3.3. Deformation and metamorphism 

The simplest interpretation of the available age constraints on Indus Basin 

units is that basin deposition was semi-continuous from Early Eocene to Miocene 

time. As such, it is unlikely that backthrusting began during deposition of Indus 

Basin strata, particularly because there is no obvious field evidence of syn-

deformation sedimentation. Therefore, the timing of ZBS deformation, which 

affects all rocks enclosed in the ITSZ as pointed out by Searle [1986], must be 

younger than the Early Miocene Temesgam Formation. This provides a maximum 

age constraint of 19 Ma [Henderson et al., 2010]. Achieving a better estimate of 

the age of backthrusting requires a different approach. 

Clift et al. [2002] determined the maximum temperatures throughout the 

Zanskar Gorge section (Figure 5.2) using illite crystallinity. Of particular 

importance is the spatial correlation among the highest metamorphic temperatures 

and the concentration of backthrusts and fold trains; specifically, the highest 

temperatures were obtained for samples collected in the noses of backthrust-

propagation folds. We thus infer a direct relationship between ZBS deformation 

and anchizonal metamorphism.  

To determine how much younger ZBS deformation could be than ca.19 

Ma, and to obtain information about the duration of metamorphism related to 

backthrusting, we used detrital mineral thermochronology to elucidate both the 

minimum age of backthrusting based on reset apatite (U-Th)/He (hereafter 
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referred to as AHe) systematics, and the duration of reheating, based upon thermal 

modeling of a partially reset zircon (U-Th)/He (hereafter referred to as ZHe) 

dataset.  

4. Analytical methods and results 

4.1. (U-Th)/He analytical methods 

All (U-Th)/He data were obtained in the Noble Gas, Geochronology and 

Geochemistry Lab (NG3L) at Arizona State University (ASU). Seven samples 

from the Zanskar Gorge and six samples from the Leh-Manali road transect were 

crushed, sieved, and separated using standard magnetic and heavy liquid mineral 

separation techniques. From each sample, a minimum of four, but generally at 

least ten, euhedral grains were selected, measured, and loaded into Nb 

microcrucibles for analysis of 4He using an ASI Alphachron system. Each grain 

was heated with a 980 nm diode laser, and the released gas was spiked with 3He, 

purified, and expanded into a quadrupole mass spectrometer for 4He/3He 

measurement by electron multiplier. For apatite, after initial heating and 

measurement, the grain is re-extracted, or reheated such that a second round of 

gas is released. If, upon re-extraction, the amount of gas released is greater than 

blank levels, we excluded the analysis due to the likely presence of 

microinclusions. For zircon analyses, each grain was re-extracted to less than 

0.5% of the initial released gas. For U and Th analyses of apatite, each grain was 

spiked with a 235U + 230Th solution and digested using nitric acid. For zircon, 

samples were spiked and digested using concentrated hydrofluoric, hydrochloric 

and nitric acids in Parr digestion vessels. The final solutions were analyzed on a 
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Thermo X-Series quadrupole mass spectrometer in the W. M. Keck Foundation 

Laboratory for Environmental Biogeochemistry at ASU. Each grain was corrected 

for loss of 4He by alpha ejection using the methods of Farley et al. [1996] for 

apatite and of Hourigan et al. [2005] for zircon. For a more detailed description of 

our analytical techniques, see van Soest et al. [2011].  

4.2. Data presentation 

Apatite of sufficient quality to be considered datable was recovered from 

only one sample, 07-AT-ZG-O (Figure 5.1). This sample was collected from an 

outcrop known to have experienced anchizonal metamorphic temperatures high 

enough to have likely resulted in the complete resetting of the apatite (U-Th)/He 

thermochronometer during metamorphism. Six grains from this sample yielded a 

narrow range of AHe cooling ages between 8.68 ± 0.42 to 6.47 ± 0.19 Ma (2σ). 

While the dispersion in these dates is greater than what might be expected from 

analytical imprecision alone – the mean squared weighted deviation, or MSWD, 

of the error-weighted mean is 27.08 – we interpret these inconsistencies to reflect 

slight variations in resetting kinetics of the different grains or the uncorrected 

effects of variable U+Th zoning [Flowers et al., 2009; Hourigan et al., 2005; 

Farley et al., 2011]. For our purposes, we estimate an effective age of resetting 

based on the error-weighted mean age of the six grains, with a 2σ uncertainty 

modified by multiplication by the square-root of the MSWD [Ludwig and 

Titterington, 1994] 6.87 ± 0.63 Ma, calculated using Matlab program written at 

ASU. The complete dataset is located in Supplementary Material Appendix J.  
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For ZHe analyses, zircons were abundant in all samples. We present 122 

dates in total – 91 dates from the Zanskar Gorge transect, and 31 dates from the 

Leh-Manali road transect (Figures 5.3a and b; Supplementary Material Appendix 

J; 2σ errors). Somewhat surprisingly, the cooling age frequency distribution from 

both transects were quite similar, suggesting a similar thermal history for the 

basin during the backthrusting event. As a consequence, we combined both 

datasets for the diffusive loss modeling exercise described below (Figure 5.3c). 

The range of ZHe dates obtained from these samples (37.32 ± 1.87 to 7.83 

± 0.40 Ma) is too large to be explained by variations of intracrystalline zoning 

patterns causing incorrect alpha ejection corrections [Hourigan et al., 2005]. 

Moreover, there is no variation between grain size and ZHe age, such that grain 

size variation also cannot be invoked as an explanation for the observed range of 

ZHe dates [Reiners et al., 2004]. Although some dispersion in (U-Th)/He apatite 

datasets can be traced to different amounts of radiation damage [Flowers et al., 

2009], we found no correlation between effective uranium concentration (eU) and 

apparent age for the Indus Basin zircons. Therefore, we consider it likely that the 

ZHe data are partially reset during anchizonal metamorphism, such that the age 

dispersion reflects the primary age frequency distribution in the ZHe detrital 

zircons before the metamorphic event, as well as the timing of heating and 

exhumation due to deformation. 

5. Broadly bracketing the age of deformation and metamorphism 

As mentioned above, the detrital muscovite 40Ar/39Ar results from 

Henderson et al. [2010] constrain the maximum age of initiation of backthrusting 
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to be less than ca. 19 Ma. The AHe date of 6.87 ± 0.63 Ma (2σ) is interpreted as 

the minimum age of metamorphism, and, therefore, backthrusting. This is a 

minimum because first, the apatite (U-Th)/He system has the lowest resetting 

temperature for any thermochronometer applicable to these samples and second, 

because the thermal pulse associated with backthrusting had to end prior to ca. 7 

Ma in order to record this cooling age. Therefore, we consider the range between 

19-7 Ma to be a robust bracket around the timing of ZBS deformation. 

6. Additional constraints on the thermal history 

If we assume that resetting of an isotope thermochronometer reflects 

daughter product (4He) diffusive loss as described by Fick’s Law during a heating 

event, then the extent of resetting is a function of the temperature and duration of 

that event. Assuming volumetric diffusion, different zircons will experience 

different degrees of diffusive loss depending on grain size. For a detrital dataset, 

which would have been characterized by a dispersion of (U-Th)/He apparent ages 

prior to partial resetting simply because the source regions for the grains would 

have had variable cooling histories, partially reset ages would also show 

considerable dispersion regardless of grain size variation. Here we present a 

method by which a partially reset dataset can be used to derive a range of 

synthetic “pre-event” cooling age frequency diagrams consistent with different 

ages and durations for the thermal event. We explain how comparison of these 

results with other types of detrital thermochronologic and geochronologic data 

can be used to place additional constraints on the resetting event.  
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6.1. Requirements for estimating a range of possible durations 

We determined permissible combinations of duration and treheat, the time 

of onset of reheating (metamorphism), by applying a series of known inputs and 

assumed boundary conditions. We point out that this calculation is predicated on 

data from a single grain, and does not allow the use of multiple grains because it 

requires input parameters that are unique to each individual grain – namely, grain 

size and measured U, Th and 4He concentrations. Furthermore, we must assume a 

simple thermal history for this grain that involves crystallization, exhumation, 

transportation, deposition, instantaneous reheating, and cooling. As such, we 

calculated the combinations of duration and treheat for multiple grains to assess the 

fidelity of the final durations. 

The boundary conditions required for the calculation include a range of 

treheat for which we calculate unique durations, a range of estimates for maximum 

temperature (Tmax), and an estimate for the theoretical initial ZHe age of the grain 

to be modeled. The goal is to combine these assumptions and known parameters 

to determine, for a given grain, which unique combinations of duration and treheat, 

for a theoretical initial ZHe age and Tmax, will give the same 4He concentration as 

measured, 4Hemeas.  

6.1.1. Defining a range of treheat 

From the AHe data, the reheating event as experienced by these grains 

was completed by ~7 Ma, so we assumed that the initiation of metamorphism can 

be no younger than 7 Ma, thereby setting a lower boundary for treheat. For the 

upper boundary, the time at which reheating began cannot be significantly older 
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than the youngest ZHe age, which is ~8 Ma. Therefore, we assumed that the 

maximum age of backthrusting is 11 Ma, to account for the possibility of a 

protracted thermal event. Moreover, if a maximum age of backthrusting of greater 

than ca. 11 Ma is assumed, the duration calculated for each value of treheat is so 

short that the grains would actually not be partially reset, but rather preserve their 

their source area cooling age, which is unlikely considering Tmax and range of 

ZHe dates. Hence, using 100,000-year increments for treheat, we calculated 41 

possible unique combinations of treheat and duration for each set of Tmax and 

theoretical initial ZHe ages, defined below.  

6.1.2. Defining a range of maximum temperature, Tmax 

Although relative temperatures presented in the illite crystallinity dataset 

by Clift et al. [2002] are likely meaningful, the errors associated with the data are 

not reported. In general, errors associated with the method are between 12-14% 

(1σ) [e.g., Robinson et al., 1990]. As such, we did not use absolute temperatures 

obtained from Clift et al. [2002]. Rather, we applied a range of temperatures 

between 160-200°C, which encompasses much of the range of temperatures 

obtained by Clift et al. [2002].  

This range is supported empirically by the ZHe dataset presented herein. If 

the lower boundary for the Tmax were much less than ~160°C, partial resetting 

would require unreasonably long durations based on our calculations. 

Furthermore, if the temperature of metamorphism were significantly greater than 

200°C, the majority of the zircon grains would be reset for the ZHe 

thermochronometer, in particular because the appropriate range of grain sizes and 
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heating rates yield resetting temperatures of 210-240°C [Gardés and Montel, 

2009]. Thus, we consider 200°C to be the Tmax obtained anywhere within either 

transect through the Indus Basin.  

6.1.3. Defining the theoretical initial ZHe age 

To determine the most appropriate theoretical initial ZHe age, we first 

determined the population of grains to which the model should be applied. We 

used a combination of the published detrital zircon U-Pb data for the region, 

presented in Figure 5.4 as a relative probability density curve, because these data 

provide information regarding the source area of the ZHe dates presented in this 

study, which were collected from the same units within the Indus Basin. 

A visual comparison between Figures 5.3c and 5.4 highlights the bimodal 

nature of both of the curves. The ZHe data presented in Figure 5.3a contain 

important modes at 10 and 14 Ma, whereas the U-Pb data in Figure 5.4 shows 

major modes at 55 and 100 Ma. Although the difference between these peaks is 

significant, we hypothesized that the youngest grains in the ZHe dataset are likely 

to correspond to the youngest U-Pb dates, implying that if we were to double date 

the youngest grains dated by U-Pb geochronology with ZHe thermochronology, 

they would yield dates comparable to the youngest ZHe dates obtained in our 

dataset. Therefore, we assumed the six youngest grains, which are statistically 

indistinguishable from one another, are sourced from the ca. 50 Ma population of 

U-Pb dates. Assuming cooling rates between 35-75°C/Ma based on the range of 

estimates for active orogens, which can be as high as 120°C/Ma in incipiently 

active orogens [Liu et al., 2000], we obtained theoretical initial ages of 30 and 40 
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Ma, respectively. These six grains were then individually modeled to determine 

the durations required to obtain the age that we measure today, described below. 

6.2. Calculating the permissible durations of metamorphism 

Our goals here was to apply a variety of thermal histories at a particular 

temperature to a single grain with known U and Th concentration, grain size, and 

an assumed theoretical initial age (tinitial), where the thermal histories comprise all 

possible combinations of duration and treheat, in order to determine which thermal 

history would yield the amount of 4He that we analytically measure, 4Hemeas. This 

allows for unique combinations of duration and treheat. The details of these 

calculations are presented in the Supplementary Material Appendix K.  

All models were run at Tmax = 180°C and 200°C for theoretical initial ages 

of 30 and 40 Ma for the six youngest grains. We then averaged the durations 

obtained from each grain for each model to average any variability imparted by 

the complexity of zircon diffusion systematics (Table 5.1). The durations from 

individual grains are reported in Supplementary Material Appendix L. From 

Table 5.1, it is evident that the difference between 180°C and 200°C is 

significant, such that the durations for equivalent models vary by 3-4 million 

years. In contrast to Tmax, the theoretical initial age assumed for these models, 30 

Ma versus 40 Ma, has little impact on the calculated duration when comparing 

otherwise equivalent models. 

Based on the AHe data, backthrusting and related metamorphism must 

have ceased by ~7 Ma. Therefore, the time at which closed system behavior of 

4He commenced (tclose) must be greater than 7 Ma for that particular sample, and 
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is assumed to extrapolate to the remaining samples. This implies that any duration 

that yields an age that is younger than 7 Ma when subtracted from treheat is an 

invalid result. This stipulation eliminates all models associated with a Tmax of 

180°C, and eliminates many of the duration and treheat combinations for a Tmax of 

200°C (Table 5.1). We are left with durations of metamorphism-related 

backthrusting that range from 2.5-3.3 my.  

6.3. Removing the thermal history 

In order to further constrain possible durations, we calculated theoretical 

initial ZHe ages for each remaining set of boundary conditions. To calculate 

theoretical initial ages, the equations used for the model in section 6.2 are simply 

inverted such that the known thermal history is subtracted from the system and 

the 4He that was lost from each grain is added back, which corresponds to the 

theoretical initial age. This yields 122 theoretical initial ZHe ages for each of the 

remaining thermal histories within both models, for which the initial 6 grains 

yield their assumed theoretical initial age as a check for the model.  

Associated errors for each theoretical initial ZHe age are propagated using 

Monte Carlo methods, and are never greater than ~5% of the calculated value. 

Thus we assign each age a 5% error (2σ), and plot their probability density curves 

in Figure 5.5. This error does not include the uncertainty associated with the 

diffusivity parameters, but includes all other known and estimatable sources of 

error. 

To assess the fidelity of these curves, we compared them to the topology 

of the U-Pb probability density curve in Figure 5.4. In this comparison, we 
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expected the model curves in Figure 5.5 to mimic the U-Pb probability density 

curve. Thus, modeled peaks must be shifted to lower ages, and peak intensities 

must be similar such that we expected the youngest peak to be the highest, as is 

the case for the U-Pb data (Figure 5.4). Moreover, if any major modes for the 

theoretical initial ZHe age curves were older than the U-Pb modes, those curves 

must be eliminated as well. For ease of comparison, we plotted major modes from 

the U-Pb data as gray bars in Figure 5.5. Perhaps the most important mode is the 

oldest one, depicted by the gray bar centered at ~140 Ma. Based on the U-Pb 

curve, there should be few to no ZHe dates beyond this point, but only four 

possible curves meet this criterion, highlighted in Figure 5.5b. This implies that 

the duration of the thermal event was most likely between 3-3.5 my, and that treheat 

= ~11 Ma.  

6.4. Age and duration of backthrusting 

Although dating the exact age of initiation, termination and nuances of the 

intervening history for a fault is often challenging, if not impossible, it is 

reasonable to bracket the timing of activity. It is certain that backthrusting is 

younger than 19 Ma because the muscovite 40Ar/39Ar data provide us the 

maximum age of deposition of the uppermost Temesgam Formation. AHe data 

further constrains that backthrusting ceased by ~7 Ma. Our preferred 

interpretation, based on modeling of partially reset ZHe data, is that backthrusting 

must have commenced around 11 Ma, and lasted for between 3-3.5 my. 

The argument could be made that backthrusting continued past 7 Ma to 

bring the rock to the surface. If treheat = 11 Ma and the thermal event lasted for 3 
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my at Tmax  = 200°C, the rock must have begun to cool from Tmax at 8 Ma. 

Furthermore, we know that at least some of the rocks were at ~80°C by 7 Ma, 

which yields a cooling rate of 120°C/Ma. We interpret this very fast cooling rate 

to be correlated with backthrusting. If backthrusting continued past 7 Ma to bring 

the rocks to the surface at this cooling rate, 0.5 my would be required, which is 

within the error of the AHe date itself. If slow cooling commenced, we infer that 

to imply a cessation of backthrusting. Therefore, 7 Ma should be a robust estimate 

for the lower boundary for the timing of backthrusting. 

We find no evidence that backthrusting in this region is older than 11 Ma, 

although our data does not preclude the possibility. Therefore, although 

backthrusting must have occurred between ~19-7 Ma, it most likely occurred 

between 11-7 Ma. Additional evidence that backthrusting is very young comes 

from the youngest population of ZHe dates that are as young as ~8 Ma (Figure 

5.3), implying that backthrusting must be only slightly older than these youngest 

grains.  

This estimate for the age of backthrusting-related deformation and 

metamorphism is younger than that estimated by Clift et al. [2002], based upon 

AFT dates. They dated two samples from the Zanskar Gorge transect, which 

yielded dates of 13.8 ± 1.9 and 13.7 ± 3.2 Ma. This age range encompasses the 

majority of the ZHe data presented herein, aside from the very youngest and 

oldest populations. However, because Clift et al. [2002] had difficulty obtaining 

track length data, we cannot fully interpret their data.  
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7. Orogen-scale backthrusting 

Yin [2006] correlated the ZBS with the RZTS and SKTS, and stated that of 

all the orogenic-scale features in the Himalaya, the GCTS is the most robust in 

terms of consistency of history along strike. With our new data, we can begin to 

address possible scenarios regarding the continuity of this system. First, if all 3 

regions are part of a single system, we could expect the amount of shortening, the 

timing of fault activity, the duration of the event, and its relationship with other 

large-scale structures, to be similar. Importantly, even if the former three criteria 

are met, if the overall function of the structure varies, it should be considered a 

different structure. Yin [2006] points out that in Tibet, there is evidence for large 

magnitude slip (>120 km) along the GCTS, which is similar to the 150-170 km 

estimate for the ZBS from Searle et al. [1997]. Regarding timing, all three regions 

broadly overlap, with the RZTS active between 19-11 Ma, the SKTS best 

constrained to 20-4 Ma, and ZBS active between 11-7 Ma. However, between the 

ZBS and the SKTS, the estimated duration of reheating is very different. The 

maximum duration for the ZBS is 3.5 Ma, whereas the SKTS was heated to 

350°C for ~ 6 Ma [Yin et al., 1999].  

Regarding the relationship between backthrusting and observed activity on 

other major Himalayan fault systems, Yin [2006] postulated that the RZTS and the 

SKTS acted synchronously with the South Tibetan fault system (STFS) and the 

MCT at depth, which is temporally permitted by the broad constraints of 

backthrusting in both Tibetan locales [Quidelleur et al., 1997; Yin et al., 1999]. 

However, the STFS in the Zanskar region was active between 22.2-19.8 Ma 
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[Dèzes et al., 1999], contemporaneous with the MCT, which was active between 

23-17 Ma [Stephenson et al., 2001]. Our data presented herein show no evidence 

that the ZBS was coeval with STFS or MCT activity in the western Himalaya. 

This calls into question the role of the ZBS in accommodating shortening in 

conjunction with other major Himalayan fault systems.  

Thus, if the RZTS and the SKTS are active contemporaneously with the 

STFS and MCTS, as suggested byYin [2006], then it is unlikely that the ZBS 

functioned in the same role, implying that it is not part of the same system. 

However, it is also possible that the timing along the RZTS and SKTS are not 

known well enough to accurately assess their relationships with activity the most 

proximal strands of the MCTS and STFS. Moreover, the timing of activity along 

the MCTS and STFS need to be known reasonably well south of the Kailas and 

Zedong regions in order to truly assess this issue. Another possibility is 

diachroneity of backthrusting-related deformation along strike, based on the 

difference in timing between the RZTS and the ZBS. This is supported by the 

variation in interpreted relationships with other Himalayan fault systems. 

8. Conclusion  

Based on a comprehensive analysis of various low-temperature 

thermochronologic data, we conclude that backthrusting and associated 

deformation occurred between 19-7 Ma in the Indus Basin region. Based on 

interpretations drawn from thermal modeling of partially reset zircon (U-Th)/He 

data, we refined that estimate to 11-7 Ma. This event most likely lasted for 3 to 

3.5 million years. Our findings do not negate the hypothesis that the GCTS is an 



	   	  	   168 

orogen-scale system, but instead illustrate the need for better constraints in other 

areas to test the hypothesis that the GCTS is a singular, orogen-scale feature in the 

Himalayan-Tibetan orogenic system.  
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10. Figure captions 
 
Figure 5.1. (a) Shaded relief map derived from GTOPO30 (30m/pixel DEM) 

overlain with ASTER DEM (15m/pixel) showing major Himalayan fault systems. 

GCTS – Great Counter Thrust system, MBTS – Main Boundary Thrust system, 

MCTS – Main Central Thrust system, MFTS – Main Frontal Thrust system, STFS 

– South Tibetan Fault system. Box shows location of b. Fault locations from Yin 

et al. [1999] and Hodges [2000]. (b) Geologic map of the Indus Basin, showing 

sample locations. Zanskar Gorge transect and Leh-Manali road transect labeled 

with “ZG” and “LM” in sample names, respectively. Tibetan sedimentary 

sequence and Ladakh batholith labeled for reference. After Tripathy et al. [in 

prep.]. 
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Figure 5.2. Stratigraphy of the Indus Basin, with summary of age constraints. 

Sample locations are listed by approximate stratigraphic location, with range of 

ZHe dates obtained in this study. After Tripathy et al. [in prep].  

 

Figure 5.3. Probability density curves for ZHe datasets. (a) Zanskar Gorge ZHe 

dataset. (b) Leh-Manali road ZHe dataset. (c) All ZHe data from both transects, 

combined.  

 

Figure 5.4. Probability density curve of published detrital U-Pb geochronologic 

samples from the Lower and Upper Indus Group rocks. Data from Wu et al. 

[2007] and Henderson et al. [2010; 2011].  

 

Figure 5.5. Probability density curves of synthetic theoretical initial ZHe ages 

calculated from durations derived from the youngest grain population. Each 

model, run for a specific temperature and theoretical initial age of the youngest 

grains, produced 41 possible durations for each treheat. Of those, we only plot 

permissible curves that are shown in bold in Table 5.1 and explained in the text. 

The gray boxes are major modes taken from the U-Pb dataset in Figure 4 for ease 

of comparison. (a) Synthetic curves produced by applying durations obtained 

from Tmax = 200°C and theoretical initial age (T.I.A.) = 30 Ma. All curves are 

shown in gray because none of them match the U-Pb curve due to many 

theoretical initial ZHe ages calculated that are older than the gray box centered at 

140 Ma. (b) Synthetic curves produced by applying durations obtained from Tmax 
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= 200°C and theoretical initial age (T.I.A.) = 40 Ma. The four curves shown in 

black are permissible based on their offsets toward younger ages when compared 

to the U-Pb dataset.  
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Table 5.1. Results from calculation of duration, averaged for the six youngest 
grains. 

  Tmax=200°Cb Tmax=200°Cb Tmax=180°Cb Tmax=180°Cb 

 T.I.A.=30 Mac T.I.A.=40 Mac T.I.A.=30 Mac T.I.A.=40 Mac 
treheat 
(Ma)a 

duration 
(my)d 

tclose 
(Ma)e 

duration 
(my)d 

tclose 
(Ma)e 

duration 
(my)d 

Tclose 
(Ma)e 

duration 
(my)d 

tclose 
(Ma)e 

7 1.7 5.3 1.9 5.1 5.3 1.7 5.4 1.6 

7.1 1.7 5.4 1.9 5.2 5.3 1.8 5.4 1.8 

7.2 1.7 5.5 1.9 5.3 5.4 1.8 5.9 1.8 

7.3 1.8 5.5 2 5.3 5.4 1.9 5.9 1.9 

7.4 1.8 5.6 2 5.4 5.4 2 5.9 2 

7.5 1.8 5.7 2 5.5 5.5 2 6 2 

7.6 1.8 5.8 2 5.6 5.5 2.1 6 2.1 

7.7 1.9 5.8 2.1 5.6 5.5 2.2 6 2.2 

7.8 1.9 5.9 2.1 5.7 5.6 2.2 6.1 2.2 

7.9 1.9 6 2.1 5.8 5.6 2.3 6.1 2.3 

8 1.9 6.1 2.1 5.9 5.7 2.3 6.1 2.3 

8.1 2 6.1 2.2 5.9 5.7 2.4 6.6 2.4 

8.2 2 6.2 2.2 6 5.7 2.5 6.6 2.5 

8.3 2 6.3 2.2 6.1 5.8 2.5 6.6 2.5 

8.4 2.1 6.3 2.3 6.1 5.8 2.6 6.7 2.6 

8.5 2.1 6.4 2.3 6.2 5.8 2.7 6.7 2.7 

8.6 2.1 6.5 2.3 6.3 5.9 2.7 6.8 2.7 

8.7 2.2 6.5 2.3 6.4 5.9 2.8 6.8 2.8 

8.8 2.2 6.6 2.4 6.4 6 2.8 6.8 2.8 

8.9 2.2 6.7 2.4 6.5 6 2.9 6.9 2.9 

9 2.3 6.7 2.4 6.6 6 3 6.9 3 

9.1 2.3 6.8 2.5 6.6 6.1 3 7.3 3 

9.2 2.3 6.9 2.5 6.7 6.1 3.1 7.3 3.1 

9.3 2.4 6.9 2.6 6.7 6.2 3.1 7.4 3.1 

9.4 2.4 7 2.6 6.8 6.2 3.2 7.4 3.2 

9.5 2.5 7 2.6 6.9 6.2 3.3 7.5 3.3 

9.6 2.5 7.1 2.7 6.9 6.3 3.3 7.5 3.3 

9.7 2.6 7.1 2.7 7 6.3 3.4 7.5 3.4 

9.8 2.6 7.2 2.8 7 6.4 3.4 7.6 3.4 

9.9 2.7 7.2 2.8 7.1 6.4 3.5 7.6 3.5 

10 2.7 7.3 2.9 7.1 6.5 3.5 7.7 3.5 

10.1 2.8 7.3 2.9 7.2 6.5 3.6 7.7 3.6 

10.2 2.8 7.4 3 7.2 6.5 3.7 7.8 3.7 

10.3 2.9 7.4 3 7.3 6.6 3.7 7.8 3.7 

10.4 2.9 7.5 3.1 7.3 6.6 3.8 7.8 3.8 

10.5 3 7.5 3.1 7.4 6.7 3.8 7.9 3.8 

10.6 3.1 7.5 3.2 7.4 6.7 3.9 7.9 3.9 

10.7 3.1 7.6 3.3 7.4 6.8 3.9 8 3.9 

10.8 3.2 7.6 3.3 7.5 6.8 4 8 4 

10.9 3.2 7.7 3.4 7.5 6.9 4 8.1 4 

11 3.3 7.7 3.4 7.6 6.9 4.1 8.1 4.1 
aAll values of treheat for which duration was calculated.  
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bMaximum temperature assumed for thermal model. 
cTheoretical initial age (T.I.A.) assumed for the model. 
dAverage duration for the six youngest grains, calculated based upon model 
parameters listed above 
eCalculated from the subtraction of treheat from duration, which must be greater 
than 7 Ma for the model to be considered permissible.  
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Figure 5.1. 
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Figure 5.2. 
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Figure 5.3. 
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Figure 5.4. 
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Figure 5.5. 
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CHAPTER	  6	  

ROBUST	  DETRITAL	  MINERAL	  (U-‐TH)/HE	  THERMOCHRONOLOGY	  IN	  NON-‐

STEADY-‐STATE	  SETTINGS	  

ABSTRACT	  

Detrital	  mineral	  thermochronology	  of	  modern	  sediments	  is	  a	  valuable	  

tool	  for	  assessing	  catchment-‐wide	  exhumation	  rates,	  but	  only	  for	  catchments	  

that	  have	  achieved	  an	  erosional	  and	  thermal	  steady	  state.	  It	  is	  possible	  to	  

assess	  the	  likelihood	  of	  steady-‐state	  conditions	  –	  as	  well	  as	  other	  necessary	  

assumptions	  –	  through	  statistical	  comparisons	  of	  the	  distribution	  of	  

thermochronologic	  dates	  in	  a	  detrital	  population	  to	  catchment	  hypsometry	  

[e.g.,	  Ruhl	  and	  Hodges,	  2005].	  This	  approach	  presumes	  that	  the	  

thermochronologic	  dataset	  is	  representative	  of	  the	  overall	  distribution	  of	  

bedrock	  dates	  in	  the	  catchment.	  Due	  to	  the	  time-‐intensive	  nature	  of	  

conventional	  (U-‐Th)/He	  thermochronology,	  most	  previous	  studies	  of	  this	  

kind	  have	  relied	  on	  data	  for	  a	  few	  tens	  of	  grains,	  even	  though	  conventional	  

wisdom	  holds	  that	  a	  substantially	  larger	  number	  might	  be	  necessary	  for	  a	  

robust	  characterization	  of	  the	  population	  of	  cooling	  ages	  in	  a	  sample.	  We	  

explore	  here	  the	  question	  of	  how	  many	  grain	  dates	  may	  be	  necessary	  and	  

sufficient	  for	  such	  studies	  in	  a	  known	  non-‐steady–state	  setting	  by	  comparing	  

subsamples	  of	  a	  large	  (n	  =	  113)	  (U-‐Th)/He	  zircon	  dataset	  for	  a	  sediment	  

sample	  from	  NW	  India.	  Our	  results	  indicate	  that,	  even	  for	  a	  basin	  with	  a	  

complex	  thermal	  history,	  only	  ~	  35	  grains	  may	  be	  enough	  to	  reveal	  that	  

complexity	  and	  dissuade	  a	  researcher	  from	  inadvertently	  (and	  incorrectly)	  
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concluding	  that	  the	  catchment	  had	  achieved	  steady	  state.	  We	  also	  introduce	  

the	  use	  of	  laser	  microprobe	  (U-‐Th)/He	  for	  detrital	  studies,	  showing	  that	  it	  

yields	  comparable	  information	  about	  cooling	  age	  distributions	  and	  

minimizes	  unwanted	  bias	  toward	  pristine,	  unabraded	  crystals.	  	  

1.	  Introduction	  	   	  

Detrital	  mineral	  thermochronology	  has	  been	  applied	  in	  a	  variety	  of	  

settings	  to	  address	  a	  range	  of	  topics,	  which	  include,	  but	  are	  not	  limited	  to,	  

determining	  provenance,	  evaluating	  cooling	  histories	  of	  source	  regions,	  

calculating	  lag	  time	  associated	  with	  sediment	  transport,	  and	  assessing	  both	  

long-‐	  and	  short-‐term	  catchment	  wide	  erosion	  rates	  [e.g.,	  Brewer	  et	  al.,	  2003;	  

Rahl	  et	  al.,	  2003;	  Hodges	  et	  al.,	  2005;	  Ruhl	  and	  Hodges,	  2005;	  McPhillips	  and	  

Brandon,	  2010].	  All	  of	  these	  applications	  require	  dating	  a	  statistically	  

significant	  number	  of	  grains	  per	  sample	  to	  appropriately	  characterize	  the	  

total	  population,	  but	  the	  number	  of	  grains	  typically	  dated	  in	  any	  given	  study	  

has	  evolved	  with	  the	  advent	  of	  more	  efficient	  analytical	  techniques,	  as	  well	  as	  

revised	  statistics.	  	  

Prior	  to	  2004,	  most	  workers	  dated	  no	  more	  than	  60	  grains	  per	  sample	  

because	  this	  number	  had	  been	  deemed	  sufficient	  to	  obtain	  a	  representative	  

sampling	  of	  the	  total	  population	  of	  grains	  [Dodson	  et	  al.,	  1988].	  At	  that	  point,	  

analytical	  techniques	  had	  evolved	  such	  that	  high	  throughput	  of	  single	  grain	  

analyses	  was	  becoming	  routine.	  In	  particular,	  laser	  ablation-‐inductively	  

coupled	  plasma	  mass	  spectrometry	  (LA-‐ICPMS)	  allowed	  detrital	  zircon	  U-‐Pb	  

geochronologic	  studies	  to	  become	  standard	  methods	  for	  provenance	  studies	  
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[e.g.,	  Dickinson	  and	  Gehrels,	  2003],	  while	  laser	  total	  fusion	  of	  single	  mica	  

grains	  opened	  the	  door	  for	  routine	  detrital	  40Ar/39Ar	  studies	  (as	  reviewed	  by	  

Hodges	  et	  al.	  [2005]),	  which	  focused	  not	  only	  on	  provenance,	  but	  also	  on	  

inverting	  detrital	  datasets	  for	  thermal	  histories,	  as	  first	  suggested	  by	  Stock	  

and	  Montgomery	  [1996].	  	  

Vermeesch	  (2004)	  published	  a	  statistically	  rigorous	  treatment	  

regarding	  the	  number	  of	  grains	  required	  for	  dating	  at	  least	  one	  grain	  from	  all	  

subsets	  that	  compose	  at	  least	  5%	  of	  a	  uniformly	  distributed	  population.	  He	  

concluded	  that	  117	  grains	  is	  the	  minimum	  number	  that	  meets	  this	  criterion,	  

and	  most	  workers	  in	  the	  field	  of	  detrital	  geochronology	  and	  

thermochronology	  have	  aspired	  to	  produce	  ~100	  dates	  per	  sample.	  	  

Adding	  detrital	  (U-‐Th)/He	  thermochronology	  to	  the	  arsenal	  of	  tools	  

used	  for	  studying	  long-‐	  and	  short-‐term	  exhumation	  rates	  is	  important	  

because	  of	  the	  low	  closure	  temperatures	  associated	  with	  both	  zircon	  

(~180°C)	  [Reiners	  et	  al.,	  2004]	  and	  apatite	  (~80°C)	  [Farley,	  2000].	  Detrital	  

studies	  focused	  on	  assessing	  basin-‐wide	  erosion	  rates	  utilizing	  these	  data	  fill	  

the	  temporal	  gap	  between	  cosmogenic	  radionuclide	  (CRN)	  studies,	  which	  

illuminate	  basin-‐wide	  millenial-‐scale	  erosion	  rates,	  and	  40Ar/39Ar	  studies,	  

which	  elucidate	  long-‐term	  (million	  year-‐scale)	  erosion	  rates.	  	  

However,	  (U-‐Th)/He	  thermochronometry	  is	  both	  labor-‐	  and	  time-‐

intensive	  due	  to	  the	  inability	  to	  simultaneously	  measure	  4He	  by	  gas-‐source	  

mass	  spectrometry,	  and	  U	  and	  Th	  by	  solution	  ICPMS	  [Wolf	  et	  al.,	  1996].	  As	  

such,	  most	  studies	  rarely	  date	  more	  than	  50	  and	  frequently	  fewer	  grains	  per	  
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sediment	  sample	  [e.g.,	  Rahl	  et	  al.,	  2003;	  Stock	  et	  al.,	  2005].	  The	  conventional	  

approach	  is	  further	  complicated	  by	  the	  need	  to	  analyze	  only	  euhedral	  grains	  

to	  allow	  accurate	  geometric	  correction	  for	  alpha	  particle	  ejection	  from	  the	  

outer	  ~20	  microns	  of	  each	  grain	  [Hourigan	  et	  al.,	  2005],	  inherently	  biasing	  all	  

conventional	  (U-‐Th)/He	  detrital	  datasets.	  Moreover,	  the	  majority	  of	  these	  

studies	  have	  focused	  on	  detrital	  apatite	  (U-‐Th)/He	  dating,	  in	  part	  because	  it	  

is	  less	  time	  consuming,	  labor	  intensive,	  and	  expensive	  than	  detrital	  zircon	  

studies.	  The	  few	  detrital	  zircon	  (U-‐Th)/He	  studies	  that	  do	  exist	  have	  been	  

limited	  in	  scope,	  focusing	  more	  on	  provenance	  than	  quantification	  of	  erosion	  

rates	  of	  the	  source	  area	  [e.g.,	  Rahl	  et	  al.,	  2003;	  Reiners	  et	  al.,	  2005;	  Campbell	  

et	  al.,	  2005;	  McInnes	  et	  al.,	  2009].	  	  

Because	  of	  the	  difficulty	  inherent	  to	  obtaining	  very	  large	  datasets	  

using	  the	  conventional	  (U-‐Th)/He	  technique,	  the	  question	  of	  whether	  or	  not	  

a	  particular	  dataset	  is	  truly	  representative	  becomes	  extremely	  important.	  

Most	  recently,	  Avdeev	  et	  al.	  [2011]	  demonstrated	  that	  smaller	  datasets	  (<20	  

grains)	  reliably	  estimate	  long-‐term	  exhumation	  rates	  when	  cooling	  histories	  

are	  simple	  and	  especially	  when	  there	  is	  at	  least	  some	  a	  priori	  knowledge	  of	  

the	  geologic	  history	  of	  the	  catchment.	  Avdeev	  et	  al.	  [2011]	  also	  point	  out	  that	  

a	  standard	  sample	  size	  applicable	  to	  all	  detrital	  studies	  is	  difficult	  to	  

generalize	  because	  it	  should	  be	  dictated	  by	  a	  variety	  of	  different	  parameters,	  

including	  the	  catchment	  size,	  complexity	  and	  exhumation	  history.	  	  

Instead	  of	  focusing	  on	  a	  simple	  situation	  in	  which	  few	  grains	  can	  

approximate	  a	  plausible	  erosion	  rate	  and	  yield	  valid	  interpretations,	  we	  
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address	  here	  the	  issue	  of	  a	  complex	  scenario,	  in	  which	  the	  standard	  

assumptions	  associated	  with	  calculating	  basin-‐wide	  erosion	  rates,	  as	  

described	  by	  Ruhl	  and	  Hodges	  (2005),	  are	  inappropriate.	  In	  cases	  such	  as	  

these,	  there	  exists	  the	  distinct	  possibility	  that	  too	  few	  cooling	  ages	  will	  lead	  

to	  a	  false	  interpretation	  of	  thermal	  and	  topographic	  steady	  state,	  leading	  the	  

researcher	  to	  mistakenly	  believe	  that	  estimating	  basin-‐wide	  erosion	  rate	  

from	  the	  data	  is	  justified.	  	  

In	  this	  paper,	  we	  present	  a	  conventionally	  acquired	  zircon	  (U-‐Th)/He	  

dataset	  that	  was	  obtained	  from	  a	  modern	  river	  sand	  collected	  from	  the	  

Ladakh	  batholith	  in	  the	  northwestern	  Indian	  Himalaya.	  Based	  on	  previously	  

published	  bedrock	  (U-‐Th)/He	  data	  from	  this	  region	  [Kirstein,	  2006;	  2009],	  

we	  expected	  a	  complex	  exhumation	  history	  for	  the	  catchment.	  We	  were	  not	  

disappointed:	  the	  diagnostic	  technique	  described	  by	  Ruhl	  and	  Hodges	  (2005)	  

confirms	  that	  a	  113-‐grain	  conventional	  dataset	  is	  inconsistent	  with	  the	  

ensemble	  of	  assumptions	  necessary	  to	  use	  it	  to	  calculate	  a	  basin-‐wide	  

erosion	  rate.	  We	  then	  derived	  a	  series	  of	  smaller	  “synthetic”	  datasets	  from	  

the	  conventional	  dataset	  to	  illustrate	  that	  small	  datasets	  (with	  fewer	  than	  30-‐

35	  dates)	  frequently	  yield	  “false	  positives”,	  a	  false	  sense	  of	  comfort	  by	  which	  

erosion	  rates	  could	  be	  erroneously	  calculated.	  

A	  second	  zircon	  dataset	  (n	  =	  44)	  from	  the	  same	  sample	  was	  acquired	  

using	  the	  laser	  microprobe	  (U-‐Th)/He	  method	  [Boyce	  et	  al.,	  2006].	  With	  

these	  data,	  we	  verified	  that	  44	  cooling	  ages	  is,	  in	  fact,	  sufficient	  to	  

demonstrate	  that	  the	  catchment	  violated	  the	  assumptions	  of	  thermal	  and	  
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topographic	  steady	  state.	  In	  this	  paper,	  we	  compare	  the	  conventional	  and	  

laser	  microprobe	  datasets	  and	  show	  that	  the	  latter	  is	  better	  at	  recovering	  the	  

variation	  of	  (U-‐Th)/He	  ages	  in	  the	  catchment,	  probably	  because	  it	  permits	  a	  

less	  biased	  sampling	  of	  the	  detrital	  zircon	  population	  than	  the	  conventional	  

approach	  that	  requires	  the	  use	  of	  euhedral	  grains.	  	  

2.	  Detrital	  mineral	  thermochronology	  applied	  to	  basin-wide	  erosion	  

rates	  

Brewer	  et	  al.	  [2003]	  and	  Ruhl	  and	  Hodges	  [2005]	  discussed	  the	  

relationship	  between	  the	  frequency	  distribution	  of	  detrital	  cooling	  ages	  and	  

hypsometry	  of	  a	  modern	  river	  catchment,	  demonstrating	  that	  the	  

thermochronometric	  data	  can	  be	  inverted	  to	  estimate	  erosion	  rates,	  provided	  

that	  several	  assumptions	  withstand	  scrutiny.	  If	  we	  ignore	  the	  effects	  of	  

lateral	  rock	  advection	  and	  assume	  vertical	  particle	  trajectories,	  the	  range	  of	  

measured	  detrital	  cooling	  ages	  from	  a	  single	  catchment	  should	  be	  

proportional	  to	  the	  time	  needed	  to	  erode	  the	  relief	  of	  the	  source	  area	  [Stock	  

and	  Montgomery,	  1996].	  Erosion	  rate	  (E)	  can	  be	  calculated	  by	  dividing	  the	  

elevation	  range	  of	  the	  catchment	  (relief,	  R),	  by	  the	  range	  of	  measured	  cooling	  

ages	  (trange).	  	  

	   	   	   	   	   	   	   	   	   	  (1)	  

While	  this	  equation	  is	  simple,	  its	  practical	  utility	  depends	  on	  several	  

assumptions	  that,	  as	  it	  happens,	  can	  be	  collectively	  tested	  by	  comparing	  the	  

distribution	  of	  elevation	  within	  the	  catchment	  (the	  hypsometry)	  with	  the	  

distribution	  of	  apparent	  ages	  of	  grains	  collected	  from	  the	  eroded	  sediment	  

! 

E =
R
trange
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(Ruhl	  and	  Hodges,	  2005).	  Specifically,	  the	  spatial	  distribution	  of	  erosion	  can	  

be	  quantified	  by	  comparing	  the	  measured	  cooling	  ages	  to	  a	  model	  

constructed	  by	  assigning	  cooling	  ages	  to	  each	  elevation	  in	  a	  digital	  elevation	  

model	  (DEM;	  Figure	  6.1).	  To	  describe	  the	  distribution	  of	  measured	  detrital	  

cooling	  ages,	  we	  plot	  a	  synoptic	  probability	  density	  function	  for	  each	  dataset	  

(SPDF;	  Figure	  6.2),	  which	  comprises	  the	  normalized	  summation	  of	  individual	  

cooling	  ages	  and	  their	  associated	  Gaussian	  uncertainties,	  such	  that	  the	  area	  

under	  the	  curve	  is	  1	  [Ruhl	  and	  Hodges,	  2005;	  Stock	  et	  al.,	  2006].	  If	  erosion	  is	  

proportional	  to	  the	  surface	  area,	  then	  basin-‐wide	  erosion	  is	  spatially	  uniform	  

and	  the	  measured	  SPDF	  should	  exactly	  match	  that	  of	  the	  hypsometry-‐derived	  

model	  SPDF.	  Deviations	  between	  the	  measured	  and	  model	  SPDFs	  suggest	  

that	  at	  least	  one	  of	  three	  basic	  assumptions	  is	  invalid.	  	  

2.1.	  Assumption	  1:	  Thermal	  and	  topographic	  steady	  state	  

For	  Equation	  1	  to	  be	  applicable,	  the	  catchment	  must	  have	  achieved	  

and	  maintained	  thermal	  and	  topographic	  steady	  states	  at	  appropriate	  times	  

during	  the	  erosional	  history	  of	  the	  catchment.	  “Appropriate”,	  in	  this	  case,	  

corresponds	  to	  the	  range	  of	  cooling	  ages	  determined	  from	  the	  sample.	  These	  

two	  steady	  states	  are	  not	  independent	  because	  topographic	  steady	  state	  is	  

required	  at	  long	  wavelengths	  and	  over	  million	  year	  timescales	  to	  maintain	  

thermal	  steady	  state	  [Mancktelow	  and	  Grasemann,	  1997].	  This	  is	  particularly	  

true	  when	  dealing	  with	  low	  temperature	  thermochronometers.	  If	  the	  

predicted	  and	  measured	  SPDFs	  topologically	  match	  one	  another,	  a	  plausible	  

interpretation	  is	  that	  the	  catchment	  is	  in	  both	  topographic	  and	  thermal	  
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steady	  state.	  Thus,	  throughout	  the	  remainder	  of	  this	  paper,	  we	  define	  our	  

usage	  of	  the	  term	  “steady	  state”	  to	  include	  both	  topographic	  and	  thermal	  

steady	  state,	  and	  do	  not	  discuss	  other	  types	  of	  steady	  state	  conditions.	  	  

2.2.	  Assumption	  2:	  Uniform	  basin-wide	  erosion	  rates	  

During	  the	  range	  of	  time	  between	  the	  oldest	  cooling	  age	  and	  erosion	  

of	  the	  sediment,	  erosion	  rates	  must	  have	  been	  temporally	  and	  spatially	  

uniform	  throughout	  the	  catchment.	  Therefore,	  if	  the	  erosion	  rate	  within	  the	  

basin	  has	  changed	  significantly,	  a	  mismatch	  will	  result.	  Moreover,	  if,	  within	  a	  

single	  catchment,	  there	  are	  spatial	  gradients	  in	  uplift	  or	  erosion	  regimes,	  and	  

if	  lithologic	  variations	  cause	  preferential	  erosion	  in	  parts	  of	  the	  catchment,	  

the	  result	  will	  be	  a	  mismatch	  between	  the	  modeled	  and	  measured	  SPDFs	  

[Ruhl	  and	  Hodges,	  2005].	  

2.3.	  Assumption	  3:	  Representative	  sampling	  of	  the	  total	  population	  

Although	  any	  successful	  detrital	  mineral	  thermochronologic	  study	  

requires	  enough	  cooling	  ages	  to	  ensure	  an	  adequate	  representation	  of	  the	  

total	  population	  of	  cooling	  ages	  within	  a	  sample,	  Ruhl	  and	  Hodges	  [2005]	  

point	  out	  that	  the	  sediment	  sample	  itself	  must	  contain	  a	  hypsometrically	  

weighted	  distribution	  of	  cooling	  ages	  from	  the	  bedrock	  within	  the	  catchment,	  

which	  requires	  no	  lag	  time	  between	  erosion	  and	  deposition	  in	  temporary	  

storage	  in	  river	  channels.	  Thus,	  a	  match	  between	  the	  measured	  and	  

predicted	  SPDFs	  would	  suggest	  that	  the	  complete	  range	  of	  bedrock	  cooling	  

ages	  is	  present	  in	  the	  detrital	  sample.	  Furthermore,	  departures	  between	  the	  

measured	  and	  modeled	  SPDF	  related	  to	  unrepresentative	  sampling	  bias	  can	  
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be	  caused	  by	  a	  variety	  of	  different	  processes,	  including	  sediment	  storage	  or	  

focused	  erosion	  due	  to	  rockfalls,	  landslides,	  or	  glacial	  erosion.	  	  

Using	  these	  concepts,	  we	  focus	  much	  of	  the	  remainder	  of	  this	  paper	  

upon	  comparing	  hypsometry	  to	  measured	  cooling	  ages.	  However,	  instead	  of	  

using	  this	  method	  to	  determine	  whether	  any	  of	  these	  assumptions	  apply	  to	  a	  

given	  catchment,	  we	  focus	  on	  a	  catchment	  in	  which	  at	  least	  one	  of	  these	  

assumptions,	  that	  of	  steady	  state,	  was	  almost	  certainly	  violated.	  	  

3.	  Application	  to	  the	  Ladakh	  batholith	  in	  the	  NW	  Indian	  Himalaya	  

The	  Ladakh	  batholith	  of	  NW	  India	  represents	  a	  portion	  of	  the	  Andean-‐

type	  continental	  arc	  that	  developed	  in	  Mesozoic	  to	  early	  Cenozoic	  time,	  along	  

the	  southern	  margin	  of	  Eurasia,	  prior	  to	  the	  India-‐Eurasia	  collisional	  event	  

that	  resulted	  in	  development	  of	  the	  Himalayan-‐Tibetan	  orogenic	  system	  

(Figure	  6.1)	  [Honegger	  et	  al.,	  1982].	  Previously	  published	  conventional	  (U-‐

Th)/He	  analyses	  of	  multigrain	  zircon	  aliquots	  from	  samples	  of	  various	  parts	  

of	  the	  batholith	  yield	  dates	  ranging	  from	  30.9	  ±	  5.8	  to	  13.5	  ±	  1.2	  Ma	  (2σ)	  

[Kirstein	  et	  al.,	  2006,	  2009].	  These	  and	  other	  low-‐temperature	  bedrock	  

thermochronometric	  data	  (including	  (U-‐Th)/He	  apatite	  and	  fission	  track	  

zircon	  and	  apatite	  analyses)	  show	  an	  unusual	  pattern:	  apparent	  ages	  do	  not	  

simply	  correlate	  with	  sample	  elevation,	  but	  instead	  are	  oldest	  at	  lower	  

elevation	  along	  the	  southern	  edge	  of	  the	  batholith	  and	  become	  progressively	  

younger	  at	  higher	  elevations	  and	  to	  the	  north.	  Kirstein	  et	  al.	  [2009]	  

interpreted	  this	  pattern	  as	  a	  result	  of	  southward	  tilting	  of	  the	  batholith	  about	  

a	  horizontal	  axis.	  They	  also	  suggested	  that	  this	  might	  hav	  e	  been	  
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accompanied	  by	  doming	  to	  explain	  the	  observed	  age	  distribution.	  This	  model	  

was	  further	  refined	  to	  include	  a	  sequence	  of	  northward	  and	  southward	  tilts	  

to	  explain	  Al-‐in-‐hornblende	  geobarometric	  results	  for	  the	  batholith	  [Kirstein,	  

2011].	  	  

Our	  study	  focused	  on	  the	  Basgo	  catchment,	  a	  small	  (~	  100	  km2)	  basin	  

developed	  along	  the	  southern	  margin	  of	  the	  batholith	  (Figure	  6.1).	  Elevations	  

range	  from	  3359	  m	  at	  the	  mouth	  to	  4550	  at	  the	  crest.	  Kirstein	  et	  al.	  (2009)	  

obtained	  two	  bedrock	  apatite	  fission	  track	  dates	  from	  this	  catchment:	  34.9	  ±	  

6.8	  Ma	  at	  an	  elevation	  of	  3550	  m,	  and	  33.8	  ±	  9.6	  Ma,	  at	  an	  elevation	  of	  4001	  

m.	  Statistically	  indistinguishable	  from	  one	  another,	  these	  dates	  are	  both	  

older	  than	  all	  published	  zircon	  (U-‐Th)/He	  bedrock	  data	  from	  the	  rest	  of	  the	  

range,	  which	  implies	  substantial	  variability	  of	  the	  thermal	  and	  erosional	  

structure	  within	  the	  batholith	  during	  the	  Cenozoic.	  However,	  10Be	  

cosmogenic	  radionuclide	  dates	  from	  the	  main	  stem	  of	  the	  Basgo	  catchment	  

yield	  three	  statistically	  indistinguishable	  estimates	  for	  erosion	  rate	  between	  

29.2	  ±	  8.0	  to	  39	  ±	  16	  m/Ma,	  which	  collectively	  imply	  little	  areal	  variation	  in	  

erosion	  rate	  over	  the	  last	  ~300	  ka	  (Figure	  6.1)	  [Dortch	  et	  al.,	  2011].	  	  

For	  this	  study,	  we	  collected	  a	  modern	  river	  sand	  from	  the	  mouth	  of	  

the	  Basgo	  catchment	  (Figure	  6.1,	  sample	  07-‐AT-‐LB-‐B;	  34°14’45.05”	  N,	  

77°17’1.8”E),	  which	  was	  sampled	  not	  only	  for	  its	  proximity	  to	  previous	  

thermochronologic	  and	  cosmogenic	  radionuclide	  sampling	  localities,	  but	  also	  

because	  the	  catchment	  comprises	  monotonous	  granite	  and	  granodioritic	  
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lithologies	  common	  to	  the	  Ladakh	  batholith,	  as	  discerned	  from	  Advanced	  

Spaceborne	  Thermal	  Emission	  and	  Reflection	  Radiometer	  (ASTER)	  image	  

analysis.	  Because	  zircon	  is	  common	  to	  these	  lithologies,	  we	  considered	  it	  

likely	  that	  if	  we	  obtained	  a	  very	  large	  dataset,	  any	  inconsistency	  found	  

between	  the	  measured	  and	  predicted	  SPDFs	  would	  be	  a	  result	  of	  departure	  

from	  steady	  state	  conditions.	  As	  a	  consequence	  of	  previous	  work	  by	  Kirstein	  

et	  al.	  [2006,	  2009],	  we	  anticipated	  that	  such	  an	  inconsistency	  would	  be	  

found.	  	  

4.	  Analytical	  Methods	  

4.1.	  Catchment	  Hypsometry	  

Analysis	  of	  the	  relief	  of	  the	  Basgo	  catchment	  was	  performed	  using	  an	  

ASTER-‐based,	  30-‐m	  per	  pixel	  digital	  elevation	  model.	  We	  derived	  the	  

hypsometry	  using	  ArcInfo	  drainage	  area	  sampling	  routines	  with	  100-‐m	  

elevation	  bins	  [e.g.,	  Brocklehurst	  and	  Whipple,	  2004;	  Ruhl	  and	  Hodges,	  2005].	  

4.2.	  Detrital	  zircon	  (U-Th)/He	  thermochronology	  	  

The	  modern	  river	  sand	  required	  wet	  sieving	  and	  the	  application	  of	  

standard	  magnetic	  and	  density-‐based	  mineral	  separation	  procedures.	  Once	  

the	  fraction	  containing	  only	  zircon	  was	  isolated,	  it	  was	  panned	  in	  ethanol	  and	  

split	  in	  half.	  Each	  half	  was	  then	  prepared	  for	  either	  conventional	  or	  laser	  

microprobe	  dating.	  	  

4.2.1	  Conventional	  Approach	  	  

Standard	  procedures	  for	  the	  Noble	  Gas,	  Geochronology	  and	  

Geochemistry	  Laboratory	  (NG3L)	  at	  Arizona	  State	  University	  (ASU)	  have	  
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been	  described	  in	  detail	  by	  van	  Soest	  et	  al.	  [2011].	  For	  this	  study,	  we	  

separated	  113	  from	  the	  conventional	  split.	  All	  grains	  were	  carefully	  

examined	  under	  high	  magnification	  to	  minimize	  analyzing	  grains	  that	  

contained	  inclusions,	  fractures	  or	  other	  imperfections.	  These	  opitcally	  

satisfactory	  and	  euhedral	  grains	  were	  then	  measured	  for	  alpha	  ejection	  

correction	  [Hourigan	  et	  al.,	  2005]	  and	  loaded	  into	  Nb	  tubes	  for	  isotopic	  

measurement.	  

4He	  was	  measured	  for	  each	  individual	  grain	  using	  the	  ASI	  AlphaChron	  

at	  NG3L,	  whereby	  tubes	  were	  loaded	  into	  an	  ultrahigh	  vacuum	  (UHV)	  laser	  

chamber	  and	  heated	  with	  a	  980	  nm	  diode	  laser.	  The	  released	  gas	  was	  spiked	  

with	  3He	  and	  measured	  on	  a	  quadrupole	  mass	  spectrometer.	  The	  packets	  

were	  removed	  from	  the	  AlphaChron,	  spiked,	  and	  digested	  using	  concentrated	  

acids	  in	  Parr	  digestion	  vessels.	  The	  final	  solutions	  were	  analyzed	  on	  a	  

Thermo	  X	  series	  quadrupole	  ICP-‐MS	  in	  the	  W.	  M.	  Keck	  Foundation	  

Laboratory	  for	  Environmental	  Biogeochemistry	  at	  ASU	  for	  measurement	  of	  U	  

and	  Th.	  The	  resulting	  data	  and	  calculated	  dates	  are	  reported	  in	  

Supplementary	  Material	  Appendix	  M.	  	  

4.2.2.	  Laser	  Microprobe	  Approach	  

The	  application	  of	  laser	  microprobe	  technologies	  for	  (U-‐Th)/He	  

monazite	  thermochronology	  was	  pioneered	  by	  Boyce	  et	  al.	  [2006]	  and	  has	  

now	  been	  employed	  to	  successfully	  date	  monazites	  as	  young	  as	  Pleistocene	  

[Boyce	  et	  al.,	  2009].	  Here	  we	  describe	  the	  first	  application	  of	  this	  method	  to	  

detrital	  zircons.	  
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From	  the	  laser	  micrprobe	  split	  mentioned	  above,	  we	  randomly	  

selected	  a	  relatively	  large	  number	  of	  zircon	  grains	  that	  were	  greater	  than	  60	  

µm	  in	  their	  shortest	  dimension	  from	  the	  50-‐250	  µm	  zircon	  size	  fraction.	  This	  

minimum	  grain	  size	  was	  selected	  because	  we	  intended	  to	  extract	  4He	  from	  

the	  core	  of	  each	  grain	  using	  a	  focused	  laser	  beam	  that	  would	  produce	  a	  ~	  20-‐

35	  µm-‐diameter	  ablation	  pit.	  As	  a	  consequence,	  dates	  for	  ≥	  60	  µm	  grains	  

would	  not	  require	  the	  alpha	  correction	  procedure	  that	  requires	  the	  selection	  

of	  euhedral	  grains	  for	  conventional	  analysis.	  

The	  grains	  were	  then	  mounted	  in	  Torr	  Seal,	  a	  high	  vacuum	  resin	  made	  

by	  Varian	  that	  is	  ideal	  for	  noble	  gas	  work	  because	  of	  its	  low	  vapor	  pressure	  

under	  UHV.	  To	  minimize	  bubbles	  on	  the	  mount	  surface,	  the	  Torr	  Seal	  was	  

stirred	  atop	  the	  grains	  while	  heated	  to	  no	  greater	  than	  60°C.	  Once	  cured,	  the	  

mount	  was	  polished	  to	  submicron	  levels	  and	  ultrasonicated	  in	  acetone	  for	  30	  

minutes	  to	  remove	  any	  excess	  Torr	  Seal	  residue.	  	  

The	  mount	  was	  lightly	  gold-‐coated	  and	  loaded	  into	  the	  JEOL	  840	  SEM	  

in	  the	  Leroy	  Eyring	  Center	  for	  Solid	  State	  Science	  (LE-‐CSSS)	  at	  ASU	  to	  obtain	  

cathodoluminesence	  (CL)	  images,	  which	  serve	  as	  a	  proxy	  for	  U	  and	  Th	  zoning	  

patterns	  [e.g.,	  Dobson	  et	  al.,	  2008].	  Using	  these	  images,	  we	  were	  able	  to	  

carefully	  target	  the	  least	  zoned	  parts	  of	  each	  grain	  while	  avoiding	  the	  alpha	  

ejection	  zone,	  which	  comprises	  the	  outer	  20	  µm	  of	  the	  grain.	  We	  

concomitantly	  collected	  secondary	  electron	  (SE)	  images,	  which	  aided	  the	  

identification	  of	  microinclusions	  that	  might	  have	  been	  missed	  during	  the	  
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picking	  process;	  if	  found,	  grains	  with	  such	  inclusions	  were	  deemed	  

inappropriate	  for	  laser	  microprobe	  dating.	  	  

After	  SEM	  work,	  the	  mount	  was	  lightly	  polished	  to	  submicron	  levels	  to	  

remove	  the	  gold	  coat,	  ultrasonicated	  in	  acetone	  for	  30	  minutes,	  and	  placed	  

under	  a	  temperature-‐calibrated	  heat	  lamp	  to	  drive	  off	  any	  remaining	  

volatiles	  in	  the	  Torr	  Seal.	  Gold	  coat	  removal	  allowed	  us	  to	  see	  through	  the	  

grains,	  thus	  maximizing	  both	  the	  usefulness	  of	  Torr	  Seal	  and	  our	  ability	  to	  

find	  inclusions	  in	  conjunction	  with	  the	  CL	  and	  SE	  images.	  To	  ensure	  that	  we	  

only	  remove	  a	  thin	  layer	  without	  altering	  the	  zoning	  pattern,	  we	  compared	  

pre-‐and	  post-‐analytical	  CL	  images;	  in	  all	  cases,	  the	  patterns	  remained	  

unchanged.	  	  

The	  mount	  was	  then	  loaded	  into	  an	  UHV	  laser	  chamber,	  and	  grains	  

were	  ablated	  using	  a	  New	  Wave	  193	  nm	  (ArF)	  Excimer	  laser	  with	  20-‐35	  μm	  

ablation	  pit	  sizes.	  For	  a	  20	  μm	  diameter	  pit,	  100	  shots	  were	  fired	  for	  a	  depth	  

of	  approximately	  10	  μm,	  whereas	  for	  a	  35	  μm	  diameter	  pit,	  175	  shots	  were	  

fired	  for	  a	  depth	  of	  approximately	  17	  μm.	  The	  repetition	  rate	  of	  the	  laser	  was	  

5	  Hz	  and	  the	  main	  energy	  output	  of	  the	  laser	  was	  kept	  constant	  at	  6	  mJ.	  Once	  

the	  gas	  was	  liberated	  from	  the	  grain,	  it	  was	  purified	  using	  a	  SAES	  GP50	  getter	  

and	  cryogenically	  trapped	  such	  that	  only	  4He	  was	  released	  into	  a	  Thermo	  

Scientific	  Helix	  SFT	  (Split	  Flight	  Tube)	  mass	  spectrometer	  for	  isotopic	  

measurement	  using	  an	  electron	  multiplier	  in	  ion-‐counting	  mode.	  Sensitivity	  

was	  monitored	  using	  slabs	  of	  Durango	  apatite	  of	  known	  age	  and	  U	  and	  Th	  

concentration,	  and	  was,	  on	  average,	  58,400	  ±	  4100	  atoms	  4He/cps.	  Blanks	  
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generally	  ranged	  from	  3.4	  x	  106	  to	  6.0	  x	  107atoms	  4He.	  The	  volume	  and	  depth	  

of	  each	  laser-‐He	  pit	  was	  measured	  using	  an	  ADE	  PhaseShift	  MicroXAM	  

interferometric	  microscope	  coupled	  with	  a	  Matlab	  program	  developed	  

specifically	  for	  volume	  calculations	  and	  error	  determnation,	  which	  allows	  for	  

conversion	  of	  4He	  abundances	  to	  4He	  concentrations.	  We	  report	  volumes	  and	  

4He	  concentrations	  in	  Supplementary	  Material	  Appendix	  N.	  	  

Prior	  to	  U	  and	  Th	  analysis,	  the	  ejecta	  blanket	  around	  the	  laser-‐He	  pit	  

was	  lightly	  polished	  using	  submicron	  abrasive	  to	  minimize	  the	  amount	  of	  

removed	  material.	  The	  mount	  was	  again	  ultrasonicated	  in	  acetone	  to	  remove	  

any	  Torr	  Seal	  that	  had	  flaked	  into	  the	  laser	  ablation	  pits	  during	  polishing.	  The	  

mount	  was	  then	  gold	  coated	  in	  preparation	  for	  secondary	  ionization	  mass	  

spectrometry	  (SIMS).	  	  

U	  and	  Th	  concentrations	  were	  measured	  using	  the	  Cameca	  IMS	  6f	  at	  

ASU.	  For	  standardization,	  a	  calibration	  curve	  was	  created	  with	  two	  natural	  

zircons	  (Mahenge	  and	  ASU	  Sri	  Lanka)	  as	  well	  as	  synrock,	  a	  zircon	  powder	  

made	  from	  a	  single	  natural	  zircon	  that	  has	  been	  sintered	  together	  using	  a	  

piston	  cylinder	  furnace	  at	  20	  kbar	  and	  1100°C	  to	  create	  a	  rock	  [Monteleone	  et	  

al.,	  2009].	  We	  used	  a	  ~20	  nA	  16O-‐	  primary	  beam	  and	  measured	  the	  following	  

secondary	  ions:	  30Si+,	  91Zr+,	  232Th+,	  238U+,	  248ThO+,	  and	  254UO+,	  and	  ratio	  to	  

30Si+.	  The	  primary	  beam	  was	  focused	  to	  60	  μm	  in	  diameter	  with	  a	  pre-‐sputter	  

time	  of	  4200	  seconds,	  and	  energy	  filtering	  was	  applied	  using	  a	  -‐75	  V	  offset	  

with	  a	  40	  eV	  window.	  The	  purpose	  of	  using	  the	  large	  primary	  beam	  was	  to	  

obtain	  an	  area-‐integrated	  measurement	  of	  the	  total	  U	  and	  Th	  contributing	  
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4He	  to	  the	  region	  of	  the	  laser	  ablation	  4He	  analysis;	  we	  accomplished	  this	  by	  

centering	  the	  broad	  ion	  beam	  directly	  on	  the	  laser	  ablation	  pit.	  While	  this	  

method	  assumes	  no	  additional	  U+Th	  zoning	  complexity	  in	  the	  third	  

dimension,	  it	  is	  operationally	  consistent	  with	  the	  approach	  to	  dealing	  with	  U	  

and	  Th	  inhomogeneities	  that	  was	  advocated	  recently	  by	  Farley	  et	  al.	  [2011].	  

The	  resulting	  U	  and	  Th	  concentrations	  are	  reported	  in	  Supplementary	  

Material	  Appendix	  N.	  	  

Throughout	  the	  analytical	  procedure,	  we	  monitored	  Mg	  (which	  is	  

present	  in	  much	  greater	  concentrations	  in	  Torr	  Seal	  than	  in	  zircon)	  to	  ensure	  

that	  Torr	  Seal	  was	  not	  contributing	  either	  U	  or	  Th	  to	  the	  analysis.	  As	  we	  

developed	  this	  method,	  a	  slab	  of	  Sri	  Lanka	  zircon	  with	  an	  age	  of	  443	  ±	  9	  Ma	  

[Nasdala	  et	  al.,	  2004]	  was	  analyzed,	  and	  for	  20	  spots,	  we	  obtained	  a	  weighted	  

mean	  age	  of	  437	  ±	  7	  Ma	  (2σ),	  which	  is	  within	  error	  of	  the	  published	  age.	  This	  

is	  a	  relatively	  homogeneous	  zircon,	  given	  its	  size,	  and	  demonstrates	  the	  

fidelity	  of	  the	  laser-‐microprobe	  (U-‐Th)/He	  method.	  

5.	  Conventional	  (U-Th)/He	  results	  	  

Figure	  6.2b	  demonstrates	  a	  narrow	  distribution	  of	  (U-‐Th)/He	  zircon	  

cooling	  dates	  for	  the	  Basgo	  catchment	  and	  implies	  moderately	  paced	  

exhumation	  over	  the	  Middle	  Eocene	  (40.0	  ±	  1.2	  Ma)	  to	  Early	  Miocene	  (19.78	  

±	  0.60	  Ma)	  interval.	  The	  most	  frequently	  encountered	  dates	  are	  Late	  

Oligocene.	  To	  facilitate	  comparison	  between	  the	  SPDF	  produced	  from	  the	  

conventional	  data	  and	  the	  modeled	  SPDF	  derived	  from	  the	  hypsometry,	  we	  
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plot	  the	  cumulative	  SPDF	  (CSPDF)	  versus	  dimensionless	  age,	  t*,	  on	  a	  CSPDFt*	  

plot,	  where:	  

	   	   	   	   	   	   	   	   	   (2)	  

	   	   	   	   	   	   	   	  

and	  	   	   is	  the	  minimum	  cooling	  age	  from	  this	  sample	  (Figure	  6.3a)	  

[Ruhl	  and	  Hodges,	  2005].	  While	  trange	  was	  explicitly	  defined	  as	  the	  difference	  

between	  the	  oldest	  and	  youngest	  measured	  age	  for	  a	  sample	  in	  Equation	  (1),	  

this	  is	  impractical	  when	  outliers	  exist,	  particularly	  because	  young	  grains	  

often	  have	  large	  analytical	  errors,	  which	  will	  skew	  the	  tail	  of	  the	  distribution.	  

Following	  Ruhl	  and	  Hodges	  [2005],	  we	  assigned	  values	  to	  trange	  such	  that	  the	  

interval	  comprises	  99%	  of	  the	  area	  under	  the	  cooling	  age	  SPDF,	  and	  the	  

assigned	  value	  minimizes	  the	  mismatch,	  quantified	  as	  root	  mean	  square	  

error	  (RMSE),	  between	  the	  shapes	  of	  CSPDFt*	  versus	  the	  model	  curve	  derived	  

from	  hypsometry,	  CSPDFz*	  (Figure	  6.3a).	  To	  create	  CSPDFz*,	  we	  plot	  the	  

cumulative	  normalized	  SPDF	  derived	  from	  hypsometry,	  versus	  

dimensionless	  elevation,	  z*,	  where	  

	   	   	   	   	   	   	   	   	   (3)	  

	  

and	  zmin	  is	  the	  minimum	  elevation	  [Brocklehurst	  and	  Whipple,	  2004].	  	  

To	  visually	  assess	  the	  significance	  of	  any	  mismatch	  between	  the	  

dimensionless	  distributions,	  we	  follow	  the	  procedure	  of	  Ruhl	  and	  Hodges	  

[2005]	  and	  produce	  300	  model	  curves,	  CSPDFt*m,	  from	  n	  points	  randomly	  

selected	  from	  the	  CSPDFz*	  distribution,	  where	  n	  is	  the	  number	  of	  grains	  
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analyzed	  from	  the	  sample	  (Figure	  6.3).	  If	  CSPDFt*	  lies	  within	  the	  range	  of	  

CSPDFt*m,	  then	  it	  is	  reasonable	  to	  infer	  that	  all	  assumptions	  necessary	  for	  the	  

application	  of	  Equation	  1	  are	  appropriate,	  and	  that	  the	  catchment	  was	  at	  

steady	  state	  during	  the	  closure	  interval	  for	  the	  (U-‐Th)/He	  

thermochronometer	  as	  represented	  by	  the	  range	  of	  dates	  in	  the	  sample.	  	  

5.1.	  Visually	  assessing	  the	  assumption	  of	  steady	  state	  	  

As	  mentioned	  above,	  the	  bedrock	  data	  of	  Kirstein	  and	  co-‐workers	  led	  

us	  to	  expect	  a	  mismatch	  between	  the	  CSPDFz*	  predicted	  from	  hypsometry	  

and	  the	  measured	  (U-‐Th)/He	  cooling	  age	  distribution,	  CSPDFt*.	  Indeed,	  in	  

Figure	  6.3a,	  CSPDFt*	  is	  well	  outside	  the	  bounds	  of	  CSPDFz*	  and	  its	  derived	  

CSPDFt*m	  curves.	  Close	  inspection	  of	  CSPDFt*	  suggests	  that	  the	  mismatch	  is	  

caused	  by	  oversampling	  of	  older	  grains,	  which,	  in	  a	  simple	  case,	  would	  imply	  

a	  reduction	  in	  catchment	  relief	  with	  more	  grains	  being	  sourced	  from	  higher	  

elevations	  [Stock	  et	  al.,	  2006].	  However,	  if	  we	  assume	  that	  the	  interpretation	  

of	  bedrock	  data	  from	  Kirstein	  et	  al.	  [2009]	  is	  correct,	  older	  ages	  should	  be	  

sourced	  from	  lower	  elevations,	  which	  would	  imply	  oversampling	  at	  lower	  

elevation.	  	  

5.2.	  Statistically	  assessing	  sample	  size	  for	  non-steady	  state	  scenarios	  

Because	  we	  have	  an	  unprecedented	  conventional	  zircon	  (U-‐Th)/He	  

dataset,	  we	  can	  explore	  the	  ramifications	  of	  dating	  fewer	  than	  114	  grains.	  We	  

used	  Monte	  Carlo	  methods,	  whereby	  we	  randomly	  subsample	  the	  

conventional	  dataset	  for	  different	  values	  of	  subsample	  size,	  s,	  where	  s	  =	  10,	  

50,	  and	  100	  grains.	  We	  performed	  this	  calculation	  2000	  times	  for	  each	  value	  
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of	  s,	  and	  plot	  the	  results	  as	  CSPDFt*s=10,	  CSPDFt*s=50	  and	  CSPDFt*s=100	  in	  Figure	  

6.4,	  with	  both	  CSPDFt*	  and	  CSPDFz*	  plotted	  for	  reference.	  	  

A	  basic	  observation	  is	  that,	  as	  the	  subsample	  size	  s	  increases,	  the	  

family	  of	  CSPDFt*s	  curves	  do	  not	  overlap	  CSPDFz*.	  However,	  upon	  close	  

examination	  of	  CSPDFt*s=10	  in	  Figure	  6.4a,	  CSPDFz*	  overlaps	  at	  least	  some	  of	  

the	  subsampled	  curves.	  This	  important	  observation	  implies	  that	  it	  is	  possible	  

to	  obtain	  an	  incorrect	  interpretation	  of	  steady	  state	  when	  dating	  so	  few	  

grains.	  	  

In	  order	  to	  quantify	  how	  often	  the	  subsampled	  cooling	  age	  curves,	  

CSPDFt*s,	  are	  statistically	  indistinguishable	  from	  CSPDFz*,	  we	  applied	  a	  one-‐

sample	  Kuiper	  test	  [Kuiper,	  1962].	  This	  method	  was	  chosen	  because	  it	  gives	  

equal	  sensitivity	  to	  both	  the	  median	  and	  tails	  of	  a	  distribution.	  We	  calculated	  

the	  Kuiper	  statistic,	  V,	  which	  involves	  the	  maximum	  deviation	  both	  above	  

and	  below	  the	  cumulative	  distributions	  that	  are	  being	  compared	  (Equation	  5	  

of	  Ruhl	  and	  Hodges	  [2005]).	  	  

In	  this	  case,	  we	  compared	  each	  CSPDFt*s	  curve	  to	  CSPDFz*	  in	  an	  effort	  

to	  determine	  the	  probability,	  P,	  that	  one	  cannot	  exclude	  that	  a	  sample	  

CSPDFt*s	  has	  been	  drawn	  from	  the	  given	  distribution,	  CSPDFz*	  at	  a	  threshold	  

of	  α	  =0.05.	  Therefore,	  if	  P	  >	  0.05,	  the	  result	  is	  consistent	  with	  the	  two	  curves	  

being	  equivalent	  at	  the	  95%	  significance	  level,	  whereas	  if	  P	  <	  0.05,	  the	  

probability	  that	  CSPDFt*s	  was	  drawn	  from	  CSPDFz*	  is	  less	  than	  5%.	  	  

We	  calculated	  the	  Kuiper	  statistic	  for	  each	  of	  10,000	  subsampled	  

curves	  with	  subsets	  containing	  s=5	  to	  s=100	  at	  5	  grain	  intervals.	  The	  results	  
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are	  listed	  in	  Table	  6.1	  and	  displayed	  in	  Figure	  6.5,	  where	  we	  plot	  the	  number	  

of	  grains	  in	  each	  subsampled	  population,	  s,	  on	  the	  ordinate,	  and	  the	  percent	  

of	  false	  positive	  matches	  between	  CSPDFt*s	  and	  CSPDFz*	  versus	  total	  number	  

of	  runs	  (10,000)	  on	  the	  abscissa.	  	  

For	  ten	  randomly	  selected	  grains,	  there	  is	  a	  ~70%	  chance	  of	  yielding	  a	  

CSPDFt*s	  curve	  that	  is	  statistically	  indistinguishable	  from	  CSPDFz*	  at	  the	  95%	  

confidence	  level.	  Thus,	  the	  likelihood	  of	  incorrectly	  concluding	  that	  the	  

catchment	  was	  at	  steady	  state	  is	  ~70%.	  In	  practice,	  dating	  only	  ten	  grains	  

would	  probably	  encourage	  researchers	  to	  calculate	  basin-‐wide	  erosion	  rates	  

from	  the	  non-‐steady–state	  Basgo	  catchment.	  However,	  by	  analyzing	  more	  

than	  35	  grains,	  the	  probability	  of	  obtaining	  a	  false	  positive	  match	  decreases	  

to	  ~5%	  and	  any	  amount	  over	  50	  grains	  is	  well	  within	  the	  95%	  confidence	  

limit	  of	  yielding	  statistically	  distinguishable	  CSPDFz*	  and	  CSPDFt*s	  curves.	  

Because	  the	  Basgo	  catchment	  likely	  experienced	  a	  complex	  

exhumation	  history	  [Kirstein,	  2011],	  we	  extrapolate	  our	  results	  to	  any	  

catchment	  of	  similar	  size	  and	  uniform	  lithology,	  and	  conclude	  that	  a	  

minimum	  of	  30	  to	  35	  grains	  should	  be	  dated,	  particularly	  in	  the	  situation	  

where	  no	  prior	  knowledge	  exists	  regarding	  the	  cooling	  history.	  Any	  dataset	  

that	  comprises	  fewer	  grains	  should	  be	  interpreted	  with	  caution,	  and	  should	  

be	  supplemented	  with	  alternate	  datasets,	  as	  discussed	  by	  Avdeev	  et	  al.,	  

[2011].	  It	  is	  also	  apparent	  from	  Figure	  6.5	  that	  any	  sample	  size	  greater	  than	  

50	  grains	  will	  not	  necessarily	  provide	  any	  additional	  useful	  information	  for	  

this	  particular	  catchment,	  and	  so	  we	  suggest	  that	  studies	  that	  produce	  
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between	  50	  and	  60	  cooling	  ages	  will	  robustly	  characterize	  the	  distribution	  of	  

cooling	  ages	  exposed	  within	  the	  catchment	  under	  examination	  so	  long	  as	  it	  is	  

of	  comparable	  size	  to	  the	  Basgo	  catchment	  [e.g.,	  Stock	  et	  al.,	  2006].	  	  

6.	  Laser	  microprobe	  results	  and	  analysis	  

Figures	  6.2b	  and	  6.3b	  show	  the	  SPDF	  and	  CSPDFt*	  curves	  for	  44	  single	  

zircons	  from	  the	  same	  detrital	  sample.	  As	  expected,	  the	  overall	  shapes	  of	  the	  

SPDFs	  for	  the	  laser	  ablation	  and	  conventional	  datasets	  are	  similar.	  The	  laser	  

ablation	  dates	  spread	  between	  Middle	  Eocene	  (45.1	  ±	  3.3	  Ma)	  and	  Middle	  

Miocene	  (16.3	  ±	  1.2	  Ma),	  with	  most	  dates	  in	  the	  Late	  Oligocene	  –	  Early	  

Miocene	  interval.	  Although	  the	  means	  of	  both	  datasets	  are	  equivalent,	  the	  

laser	  ablation	  dataset	  shows	  more	  skew	  towards	  younger	  dates.	  This	  is	  more	  

apparent	  when	  the	  CSPDFt*	  curves	  for	  the	  two	  datasets	  are	  compared	  (Figure	  

6.3).	  As	  the	  analysis	  in	  the	  previous	  section	  would	  predict,	  the	  44-‐grain	  laser	  

ablation	  dataset	  permits	  us	  to	  reject	  the	  steady-‐state	  assumption	  for	  the	  

Basgo	  catchment	  even	  though	  it	  is	  based	  on	  a	  much	  smaller	  number	  of	  (U-‐

Th)/He	  dates.	  Moreover,	  we	  consider	  it	  likely	  that	  the	  laser	  ablation	  dataset	  

provides	  a	  less	  biased	  sampling	  of	  the	  distribution	  of	  bedrock	  cooling	  ages	  in	  

the	  catchment.	  	  

The	  bedrock	  data	  of	  Kirstein	  et	  al.	  [2009]	  show	  that	  higher	  elevations	  

along	  the	  south	  side	  of	  the	  Ladakh	  batholith	  yield	  younger	  (U-‐Th)/He	  dates,	  

and	  we	  would	  thus	  predict	  that	  younger	  zircon	  grains	  would	  have	  to	  be	  

transported	  farther	  downstream	  in	  the	  Basgo	  catchment	  to	  the	  collection	  site	  

for	  our	  sediment	  sample.	  	  The	  higher	  proportion	  of	  younger	  grains	  in	  the	  
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laser	  ablation	  sample	  probably	  reflects	  the	  fact	  that	  younger	  grains	  are	  more	  

often	  broken	  or	  abraded	  during	  their	  longer	  transport	  distance	  than	  older	  

grains	  and	  thus	  less	  likely	  to	  be	  euhedral	  and	  selected	  out	  of	  a	  population	  for	  

conventional	  analysis.	  For	  the	  laser	  microprobe	  work,	  we	  did	  not	  selectively	  

choose	  euhedral	  grains	  for	  analysis	  but	  instead	  selected	  grains	  at	  random	  for	  

dating.	  	  	  

7.	  The	  case	  for	  laser	  microprobe	  dating	  in	  detrital	  (U-Th)/He	  studies	  

Evidence	  that	  the	  laser	  microprobe	  dataset	  is	  more	  representative	  

than	  the	  conventional	  dataset	  for	  the	  Basgo	  catchment	  suggests	  that	  the	  laser	  

microprobe	  technique	  may	  be	  a	  better	  approach	  to	  detrital	  (U-‐Th)/He	  

thermochronology.	  However,	  as	  is	  the	  case	  with	  all	  microanalytical	  

techniques,	  increased	  spatial	  resolution	  comes	  at	  a	  cost	  of	  analytical	  

precision.	  Our	  laser	  microprobe	  dates	  for	  the	  Basgo	  catchment	  have	  average	  

2σ	  analytical	  uncertainties	  of	  ~7.5%,	  whereas	  the	  conventional	  analyses	  

have	  average	  uncertainties	  of	  ~3.3%.	  However,	  it	  should	  be	  noted	  that	  errors	  

associated	  with	  the	  alpha	  ejection	  correction	  that	  must	  be	  applied	  in	  

conventional	  (U-‐Th)/He	  work	  are	  seldom	  propagated	  into	  published	  datasets	  

(including	  ours)	  because	  they	  are	  so	  difficult	  to	  quantify.	  Spiegel	  et	  al.	  [2009]	  

did	  so	  by	  estimating	  a	  5	  μm	  uncertainty	  in	  their	  grain	  size	  measurements,	  

and	  report	  an	  approximate	  1σ	  analytical	  uncertainty	  of	  ~6.2%	  for	  their	  data,	  

but	  even	  this	  does	  not	  account	  for	  uncertainties	  in	  overall	  grain	  geometry	  or	  

the	  possibility	  of	  heterogeneous	  U	  and	  Th	  distribution.	  Such	  uncertainties	  are	  
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effectively	  eliminated	  in	  the	  laser	  ablation	  method	  because	  we	  avoid	  the	  

alpha	  ejection	  zone,	  and	  –	  at	  least	  from	  a	  two-‐dimensional	  perspective	  that	  

presumes	  no	  zoning	  complexities	  in	  the	  third	  dimension	  [Farley	  et	  al.,	  2011]	  

–	  measure	  all	  U	  and	  Th	  that	  contributed	  4He	  to	  the	  laser	  ablation	  pit.	  We	  feel	  

confident	  that	  the	  current	  level	  of	  uncertainty	  associated	  with	  laser	  

microprobe	  (U-‐Th)/He	  thermochronology	  will	  improve	  as	  we	  continue	  our	  

efforts	  to	  improve	  the	  analytical	  technique.	  

There	  have	  been	  relatively	  few	  published	  detrital	  (U-‐Th)/He	  studies	  

compared	  with	  the	  number	  of	  published	  detrital	  40Ar/39Ar	  studies.	  This	  

discrepancy	  largely	  reflects	  the	  relative	  simplicity	  of	  laser	  fusion	  techniques	  

(commonly	  applied	  in	  40Ar/39Ar	  studies	  [Hodges	  et	  al.,	  2005])	  as	  compared	  

with	  the	  conventional	  method	  of	  (U-‐Th)/He	  dating	  that	  involves	  4He	  analysis	  

by	  isotope	  dilution	  quadrupole	  mass	  spectrometry	  and	  U+Th	  analysis	  by	  

solution	  ICPMS.	  The	  laser	  microprobe	  technique	  described	  here	  is	  also	  

complex,	  but	  much	  of	  the	  time	  associated	  with	  the	  procedure	  reflects	  SIMS	  

analysis	  for	  U+Th.	  We	  are	  in	  the	  process	  of	  transitioning	  our	  approach	  to	  the	  

use	  of	  LA-‐ICPMS,	  which	  should	  increase	  throughput	  significantly.	  	  

8.	  Conclusions	  

A	  paired	  conventional	  and	  laser	  microprobe	  study	  of	  detrital	  zircon	  

crystals	  in	  a	  sediment	  sample	  from	  the	  mouth	  of	  the	  Basgo	  catchment	  

demonstrates	  that	  the	  laser	  microprobe	  technique	  described	  here	  is	  at	  least	  

as	  good	  as	  (and	  likely	  less	  biased	  than)	  the	  conventional	  technique	  for	  

establishing	  (U-‐Th)/He	  cooling	  age	  distributions	  in	  detrital	  mineral	  
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populations.	  We	  applied	  the	  metrics	  of	  Ruhl	  and	  Hodges	  [2005]	  to	  the	  two	  

datasets	  developed	  for	  the	  Basgo	  catchment	  to	  confirm	  our	  instinct	  that	  the	  

catchment	  was	  not	  at	  thermal	  and	  erosional	  steady	  state	  throughout	  its	  

Eocene-‐Miocene	  interval	  of	  cooling	  through	  the	  (U-‐Th)/He	  closure	  

temperature.	  Monte	  Carlo	  subsampling	  of	  the	  large	  conventional	  dataset	  

suggests	  that	  roughly	  35	  (U-‐Th)/He	  dates	  may	  be	  sufficient	  to	  characterize	  

the	  cooling	  age	  distributions	  in	  detrital	  mineral	  populations	  adequately	  for	  

application	  of	  the	  Ruhl	  and	  Hodges	  [2005]	  method	  of	  assessing	  the	  feasibility	  

of	  employing	  Equation	  1	  [Stock	  and	  Montgomery,	  1996]	  to	  determine	  

catchment-‐wide	  erosion	  rates	  for	  steady-‐state	  landscapes.	  	  
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10.	  Figure	  captions	  

Figure	  6.1.	  (a)	  Shaded	  relief	  map	  derived	  from	  GTOPO30	  (30m/pixel	  DEM)	  

overlain	  with	  ASTER	  DEM	  (15m/pixel),	  with	  white	  box	  showing	  location	  of	  b.	  

(b)	  Simplified	  geologic	  map	  after	  Tripathy	  et	  al.	  [in	  prep.]	  with	  black	  box	  

showing	  location	  of	  c.	  (c)	  ASTER	  DEM	  of	  Basgo	  catchment	  draped	  over	  

shaded	  relief	  map,	  with	  all	  samples	  plotted.	  CRN	  samples	  from	  Dortch	  et	  al.,	  

[2011],	  and	  AFT	  samples	  from	  Kirstein	  et	  al.	  [2009].	  We	  plot	  our	  detrital	  

zircon	  (U-‐Th)/He	  sample	  for	  completeness.	  

	  

Figure	  6.2.	  Probability	  density	  curves	  of	  (a)	  conventional	  and	  (b)	  laser	  

microprobe	  data	  presented	  herein.	  Outliers	  are	  included	  for	  completeness.	  	  

	  

Figure	  6.3.	  Comparison	  of	  cumulative	  hypsometric	  curve	  CSPDFz*	  (solid	  black	  

lines)	  and	  non-‐dimensionalized	  cooling	  age	  curves	  CSPDFt*	  (dashed	  black	  
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lines),	  with	  300	  model	  CSPDFt*m	  curves	  plotted	  for	  the	  catchment	  (see	  Ruhl	  

and	  Hodges,	  2005).	  For	  each	  dataset,	  n	  describes	  the	  number	  of	  zircon	  (U-‐

Th)/He	  dates	  represented	  by	  CSPDFt*.	  The	  root	  mean	  square	  error	  (RMSE)	  is	  

calculated	  between	  the	  CSPDFz*	  and	  each	  CSPDFt*.	  (a)	  Conventional	  dataset,	  

and	  (b)	  laser-‐microprobe	  dataset.	  	  

	  

Figure	  6.4.	  Dashed	  black	  line	  denotes	  CSPDFt*	  calculated	  from	  the	  

conventional	  data.	  We	  resampled	  these	  data	  2000	  times	  for	  various	  subset	  

sizes	  (s),	  and	  plot	  their	  CSPDFt*s	  curves	  (gray	  lines).	  We	  include	  CSPDFz*	  

(solid	  black	  line)	  to	  visually	  demonstrate	  the	  lack	  of	  significant	  difference	  

between	  some	  CSPDFt*s=10	  curves,	  and	  the	  complete	  lack	  of	  overlap	  for	  all	  

CSPDFt*s=100.	  	  

	  

Figure	  6.5.	  Graphical	  depiction	  of	  number	  of	  grains	  for	  different	  subsets,	  s,	  of	  

the	  total	  population	  of	  conventional	  (U-‐Th)/He	  dates	  versus	  the	  percent,	  out	  

of	  10,000	  random	  selections,	  that	  the	  CSPDFt*s	  erroneously	  matches	  CSPDFz*.	  

In	  scenarios	  where	  s	  is	  greater	  than	  or	  equal	  to	  40	  grains,	  confidence	  levels	  of	  

over	  95%	  are	  reached	  such	  that	  it	  is	  very	  unlikely	  that	  any	  dataset	  would	  

yield	  a	  topologic	  match	  to	  the	  hypsometric	  curve.	  	  

	  

Figure	  6.6.	  Comparison	  between	  laser-‐microprobe	  dataset	  (solid	  black	  line)	  

and	  conventional	  dataset	  (dashed	  black	  line).	  To	  create	  the	  gray	  lines,	  we	  

randomly	  subsampled	  the	  conventional	  dataset	  to	  the	  same	  size	  as	  the	  laser-‐
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microprobe	  dataset	  (n=44).	  These	  curves	  topologically	  match	  the	  laser-‐

microprobe	  CSPDF	  fewer	  than	  4%	  of	  the	  time,	  implying	  that	  the	  two	  datasets	  

are	  statistically	  distinguishable	  from	  one	  another.	  	  
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Figure 6.1. 
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Figure 6.2. 
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Figure 6.3. 
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Figure 6.4. 
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Figure 6.5. 
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Figure 6.6. 
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CHAPTER 7 

SYNTHESIS 

 The studies described in previous chapters demonstrated the power of 

using a multi-faceted approach to interrogate a geologically complex area. Here, I 

summarize the major contributions made in the course of my work and speculate 

on possible research projects at different scales, ranging from locally focused 

projects in the Indus Basin to general applications of techniques introduced in this 

dissertation, that could extend my work.  

1. Major contributions 

 For the benefit of those who work in the Ladakh region, I have developed 

an internally consistent regional-scale geologic map and coherent stratigraphy that 

eliminated the unnecessary complexity of previous interpretations of Indus Basin 

geology.  

Evidence for mixed Indian-Eurasian detritus has been found throughout 

the Indus Basin succession, counter to conclusions of previous workers [e.g., 

Henderson et al., 2010; 2011]. This observation, coupled with previous and newly 

presented constraints on the depositional ages of different elements of the 

stratigraphy, requires that the primary tectonic event of the Himalayan-Tibetan 

orogenic system – collision between India and Eurasia – must have occurred by 

late Ypresian (late Early Eocene, ca. 52-48 Ma) time at this longitude. 

Thermochronology of some of the youngest (Early Oligocene) continental clastics 

in the succession confirms that their source, the Indian passive margin south of 

the suture, was emergent and eroding by Eocene time.  



	   	  	   217 

On a scale significant to Himalayan tectonics, my results indicate a 

previously unappreciated complexity in the post-collisional deformation of the 

Transhimalayan region in India and southern Tibet. One of the principal 

deformational styles in this region is north-vergent backfolding and backthrusting 

that has been assumed to be of exclusively Early-Middle Miocene age (19-11 Ma) 

based on work done several hundred kilometers to the east of Ladakh. However, 

my estimates for the age of backthrusting and backfolding in Ladakh, obtained 

through thermal modeling of partially reset zircon (U-Th)/He systematics, are 

younger: 11 to 7 Ma. This result suggests diachroneity in backthrusting and 

backfolding along the length of the orogen.  

Two final contributions are in the application of satellite remote sensing 

data to geologic mapping, and the application of both conventional and laser 

microprobe technology to detrital mineral (U-Th)/He thermochronology. I 

demonstrated the integrative use of visible to thermal infrared wavelengths of 

multispectral data to map stratigraphy and complex structure in poorly accessible 

and complexy deformed sedimentary basins. I contributed to an ongoing debate 

regarding the number of grains in a sediment sample that must be dated to fully 

characterize detrital age distributions in the sample (fewer than previously 

assumed). I showed for the first time how laser-microprobe techniques (pioneered 

by Boyce et al. [2006, 2009] for monazite dating) can be used to date the 

important accessory phase zircon and, especially, to characterize detrital zircon 

(U-Th)/He age distributions in sedimentary samples.  
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2. Opportunities for future work in the Himalaya 

2.1. Along-strike variation of the timing of Indian-Eurasian collision 

Other intermontane basins in Tibet record the first appearance of mixed 

Indian-Asian detritus at varying times in their depositional histories. For example, 

in easternmost Tibet, the minimum age of collision is between Oligocene and 

Miocene time for the Luobusa Formation [Badengzhu, 1981], whereas sediments 

from the next basin to the west for which data exist, the Liuqu conglomerates, 

provide a minimum age estimate of Middle Eocene collision [Wang et al., 2010]. 

The oldest record of collision comes from the Qianbulin Formation, which 

contains mixed Indian-Eurasian detritus in Late Cretaceous time [Wang et al., 

2010]. This contrasts with the Kailas Formation, which does not record mixed 

provenance until Miocene time according to researchers who have studied those 

rocks [Aitchison et al., 2002]. It is difficult to envisage a paleotectonic scenario 

consistent with such variable and not spatially progressive variations in the age of 

collision. I think it is more probable that the collision occurred in the Eocene (or 

possibly earlier) and that the studies necessary to establish evidence for earlier 

mixed detritus in depocenters simply have not yet been done.  

Even the Indus Basin merits further study. The Tar Group, representing 

mostly marine strata at the bottom of the Indus Basin, becomes increasingly sand-

rich upsection because of the gradual elimination of marine conditions and a 

transition into a deltaic setting [Garzanti and Van Haver, 1988]. Although we 

have demonstrated that the uppermost part of this sequence provides a minimum 

age of collision of late Ypresian, the majority of the Tar Group sandstones have 
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not been studied in detail, and could contain evidence for an even older signal of 

mixed detritus.  

2.2. The Timing of Initial Uplift of the Indian Passive Margin 

 My data record evidence of uplift and erosional unroofing of the Indian 

passive margin by Eocene time, but that conclusion is based on a small detrital 

dataset (n = 20). More dates should be obtained from this sequence for the 

purpose of determining not only the range of cooling dates recorded by these 

grains, but also to explore whether or not the data are uni- or multi-modal. If India 

slowed relative to Eurasia after collision and maintained a relatively constant 

northward velocity, new data would likely be unimodal with an age distribution 

skewed toward younger dates. However, if, subsequent to collision, the Indian 

plate velocity (relative to stable Eurasia) varied episodically, as suggested by 

White and Lister [2011], then the cooling age distribution should show distinct 

peaks, reflecting distinct episodes uplift and erosion.  

2.3. Exhumation Kinematics of the Ladakh batholith 

 Kirstein [2011] hypothesized that the Ladakh batholith experienced 

multiple episodes of northward and southward tilting of the range during its 

Cretaceous-Cenozoic exhumation. Based on a small number of bedrock samples, 

she concluded that (U-Th)/He dates on bedrock samples from the southern flank 

of the Ladakh Range showed an unusual pattern: youngest dates at the highest 

elevations, with dates aging progressively toward lower elevations. The (U-

Th)/He detrital zircon age distribution in the Basgo catchment sediment sample is 

generally consistent with such a pattern, but the hypothesis (and my detrital 
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thermochronologic results) could be tested in more detail through a systematic 

bedrock thermochronologic study of the Ladakh batholith. The resulting dataset 

would also have regional significance because the possible affects on Ladakh 

Range uplift of oblique slip on the Karakoram fault zone is not well understood.  

2.4. Mapping Himalayan-Tibetan Geology with ASTER Image Analysis 

 The mapping challenges encountered by workers in the Indus Basin are 

common throughout much of the Himalaya, suggesting that the techniques used in 

Chapter 2 might be valuable for a range of Himalayan studies. This approach is 

likely to be most valuable in high elevation regions with little vegetation and 

snowpack such as the Tibetan Plateau, although a recent ASU study of a 

moderately forested region of western Bhutan yielded valuable insights regarding 

geologic relationships there [Cooper et al., in prep]. Of particular interest are 

regions near international borders where access for fieldwork is restricted. 

Cursory analysis of ASTER imagery of one such region near the Indus Basin– the 

incompletely mapped Tso Morari ultra-high pressure metamorphic complex –

 reveals a rich variation of mappable lithologies and should be a target for study.  

3. Laser Microprobe (U-Th)/He Thermochronology 

3.1. Improving Laser Microprobe (U-Th)/He Thermochronology  

When using the Helix SFT in the NG3L facility for laser microprobe 

dating, we do not measure 4He abundances by isotope dilution. Instead, we 

convert 4He signals to abundances using an abundance sensitivity monitored by 

replicate analysis of the Durango fluorapatite standard. This results in a 4-7% 

error (2σ) for the measurement of 4He used in the age determination, partly 
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because the standard itself is not of completely uniform composition [Boyce et al., 

2005]. In the future, we intend to abandon this approach and instead use a gas 

volume with known 4He abundance for sensitivity determination, a practice that 

should reduce the sensitivity error by 50% or more.  

The major error associated with the measurement of U and Th 

concentrations stems from uncertainty in standard concentrations, which we know 

to 7% (2σ), a level comparable to the error associated with the 4He measurement. 

This error can be improved with further refinement of standard concentrations, 

which is in progress with development of synthetic materials of varying 

chemistry.  

Finally, because we use SIMS for U and Th concentration measurement, 

which is a surficial analytical technique, we do not fully average the U and Th 

concentration that contributed 4He to the laser ablation pit volume. However, with 

the adaptation of LA-ICPMS for U and Th concentration measurements in the 

future, it should be possible to volumetrically integrate all U and Th that 

contributed 4He to the ablation pit volume.  

Although the laser microprobe method has many steps, we have found that 

the time for laser microprobe analyses is significantly less than that required for 

conventional analyses in NG3L. For example, dating 100 zircon grains by the 

laser microprobe method requires approximately three weeks of analytical time, 

whereas the conventional method requires approximately 6 weeks. Although 

procedures vary among conventional laboratories, it’s probably a general rule that 
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the laser microprobe zircon thermochronology is twice as efficient as 

conventional work.  

If it is possible to eliminate our reliance on the SIMS method for U and Th 

analyses by switching to the much faster LA-ICPMS approach, we would be able 

to greatly improve our current overall throughput. This would increase the 

viability of detrital zircon (U-Th)/He as a tool to study provenance thermal and 

erosional histories. Because laser microprobe thermochronology consumes only a 

small volume of material within a grain, the potential exists to simultaneously 

determine the U-Pb age of each zircon grain during the LA-ICPMS procedure. 

Additionally, if the grain is large enough, “triple dating” – supplementing the U-

Pb and (U-Th)/He dates with zircon fission track dates – is also possible.  

3.2. Future Applications of Laser Microprobe (U-Th)/He Thermochronology  

This laser microprobe method opens the door to a variety of research 

projects in addition to detrital studies, particularly if double- or triple-dating 

becomes viable. An interesting application would be to address the formation of 

tectonic mélange in order to understand the interesting juxtaposition of blueschists 

and eclogites with essentially unmetamorphosed rocks in a block-in-matrix 

pattern, as is found in the Franciscan of California [Ernst, 1970]. 

Another important aspect of this method is that it is less destructive in 

comparison to the conventional (U-Th)/He method. Min et al. [2004] have 

examined U- and Th- bearing minerals in Martian meteorites using conventional 

methods in hopes of understanding their low-temperature history, including the 

time of shock metamorphism, interpreted as the age of ejection from Mars. Laser 
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microprobe (U-Th)/He thermochronology has multiple advantages relative to the 

conventional method for such precious samples. For example, the laser 

microprobe method does not require extraction of individual whole grains, but 

rather, can be done using a thick section containing the mineral in question. 

Additionally, as the precision of the method increases, it will likely surpass that of 

conventional methods, which will only allow for better constraints on the thermal 

history of any given meteorite.  
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Figure A2.1. Uninterpreted ASTER images that correspond to Figure 2.5.  
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Muscovite	  grains	  from	  samples	  07-‐AT-‐ZG-‐O,	  O7-‐AT-‐LM-‐K	  and	  07-‐AT-‐

LM-‐L	  were	  handpicked	  from	  the	  250-‐100	  µm	  aliquot,	  cleaned	  in	  acetone,	  

methanol,	  and	  deionised	  water,	  and	  individually	  wrapped	  in	  aluminium	  foil	  

packets.	  For	  the	  irradiation	  package,	  sample	  packets	  were	  regularly	  

interspersed	  with	  packets	  of	  biotite	  age	  standard	  HD-‐B1	  (24.18	  ±	  0.09	  Ma,	  

Schwarz	  and	  Trieloff,	  [2007])	  to	  monitor	  the	  neutron	  flux	  gradient,	  along	  

with	  natural	  and	  synthetic	  salts	  to	  determine	  interfering	  nuclear	  production	  

ratios.	  The	  small	  aluminium	  disks	  into	  which	  the	  packets	  were	  loaded	  were	  

then	  stacked	  and	  secured	  together	  to	  make	  up	  the	  irradiation	  package,	  which	  

was	  then	  Cd	  shielded	  and	  irradiated	  for	  1.2	  hours	  at	  a	  near-‐core	  position	  

(5C)	  within	  the	  McMaster	  University	  nuclear	  reactor,	  Hamilton,	  Ontario,	  

Canada.	  

Upon	  return,	  individual	  age	  standard	  and	  unknown	  sample	  grains	  

were	  loaded	  into	  a	  61	  mm	  diameter	  aluminium	  palette	  containing	  a	  series	  of	  

2	  x	  2	  x	  2	  mm	  holes.	  The	  palette	  and	  a	  glass	  coverslip	  were	  loaded	  into	  an	  

ultra-‐high	  vacuum	  4.5”	  laser	  chamber	  with	  a	  Kovar	  glass	  viewport	  and	  baked	  

at	  120°C	  for	  one	  day	  and	  then	  pumped	  at	  ultrahigh	  vacuum	  for	  one	  day	  to	  

remove	  adsorbed	  atmospheric	  argon	  from	  the	  samples	  and	  chamber	  walls.	  	  

To	  degas	  and	  melt	  each	  grain,	  a	  60	  W	  IPG	  Photonics	  infrared	  (970	  nm)	  

diode	  laser,	  with	  computer-‐controlled	  Photon	  Machines	  optics	  and	  X-‐Y-‐Z	  

stages	  linked	  to	  a	  Newport	  controller,	  was	  fired	  such	  that	  two	  minutes	  of	  

lasing	  with	  a	  50	  W,	  0.6	  mm	  diameter	  beam	  was	  sufficient	  to	  ensure	  total	  

fusion	  of	  each	  grain.	  The	  gases	  released	  by	  laser	  heating	  were	  purified	  for	  an	  
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additional	  two	  minutes	  using	  two	  SAES	  NP10	  getter	  pumps	  (one	  at	  400°C	  

and	  one	  at	  room	  temperature)	  to	  remove	  all	  active	  gases.	  The	  remaining	  

gases	  were	  equilibrated	  into	  a	  high	  sensitivity	  multi-‐collector	  mass	  

spectrometer	  (Nu	  Instruments	  Noblesse),	  containing	  a	  Nier-‐type	  source	  

operated	  at	  400	  mA.	  The	  Ar	  isotopes	  were	  measured	  using	  a	  1	  x	  1011-‐Ohm	  

Faraday	  detector	  or	  an	  ETP	  ion	  counting	  multiplier,	  depending	  upon	  the	  40Ar	  

signal	  size.	  Detector	  intercalibration	  for	  40Ar	  was	  performed	  using	  multiple	  

air	  shots.	  Laser	  heating,	  X-‐Y	  stage	  movement,	  automated	  valve	  operation,	  and	  

data	  acquisition	  was	  automated	  and	  computer	  controlled	  using	  the	  Mass	  Spec	  

software	  program.	  Errors	  throughout	  this	  paper	  are	  quoted	  at	  the	  2σ	  

confidence	  level.	  40Ar/39Ar	  ages	  were	  calculated	  using	  the	  decay	  constant,	  

branching	  ratio,	  and	  atmospheric	  40Ar/36Ar	  ratio	  recommended	  by	  Steiger	  

and	  Jäger	  [1977].	  J-‐values	  and	  errors	  are	  noted	  in	  data	  tables	  in	  the	  

supplementary	  materials.	  

The	  mean	  4	  minute	  extraction	  system	  blank	  Ar	  isotope	  measurements	  

obtained	  during	  the	  experiments	  were	  1.41	  x	  10-‐16,	  1.70	  x	  10-‐18,	  1.93	  x	  10-‐19,	  

1.14	  x	  10-‐18,	  and	  7.95	  x	  10-‐19	  moles	  STP	  (standard	  temperature	  and	  pressure)	  

for	  sample	  07-‐AT-‐LM-‐K,	  1.66	  x	  10-‐16,	  1.61	  x	  10-‐18,	  2.07	  x	  10-‐19,	  3.18	  x	  10-‐18,	  

and	  8.60	  x	  10-‐19	  moles	  STP	  for	  sample	  07-‐AT-‐LM-‐L,	  and	  1.80	  x	  10-‐16,	  1.69	  x	  

10-‐18,	  2.23	  x	  10-‐19,	  1.08	  x	  10-‐18,	  and	  9.14	  x	  10-‐19	  moles	  STP	  for	  sample	  07-‐AT-‐

ZG-‐O,	  for	  40Ar,	  39Ar,	  38Ar,	  37Ar,	  and	  36Ar,	  respectively.	  The	  sensitivities	  of	  the	  

Faraday	  and	  ion	  counting	  detectors	  were	  8.2729	  x	  10-‐13	  moles/V	  and	  1.4702	  

x	  10-‐20	  moles/cps	  for	  sample	  07-‐AT-‐ZG-‐O,	  and	  8.3019	  x	  10-‐13	  moles/V	  and	  
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1.4899	  x	  10-‐20	  moles/cps	  for	  samples	  07-‐AT-‐LM-‐L	  and	  07-‐AT-‐LM-‐K,	  

respectively.	  Unknown	  analyses	  were	  corrected	  for	  mass	  spectrometer	  

discrimination	  using	  air	  shots.	  The	  measured	  40Ar/36Ar	  air	  ratios	  varied	  from	  

295.17±1.97	  to	  306.80±1.87	  (1σ	  errors)	  during	  the	  8	  days	  analyses	  of	  sample	  

07-‐AT-‐ZG-‐O,	  and	  293.41±1.83	  to	  307.29±	  2.21	  for	  the	  14	  days	  of	  analyses	  of	  

samples	  07-‐AT-‐LM-‐L	  and	  07-‐AT-‐LM-‐K.	  Nuclear	  interference	  correction	  

factors	  were	  as	  follows:	  40Ar/39ArK	  =	  0.027945,	  36Ar/38ArCl	  =	  316,	  Ca/K	  =	  

1.92234,	  and	  Cl/K	  =	  0.16863.	  We	  interpreted	  no	  data	  for	  experiments	  

yielding	  less	  than	  90%	  40Ar*	  or	  having	  40Ar*	  signals	  less	  than	  ten	  times	  the	  

level	  of	  the	  40Ar	  blank.	  Errors	  are	  quoted	  at	  1σ,	  and	  the	  40Ar/39Ar	  ages	  were	  

calculated	  using	  the	  decay	  constant	  quoted	  by	  Steiger	  and	  Jäger	  [1977].	  J	  

values	  and	  errors	  are	  noted	  in	  the	  sample	  40Ar/39Ar	  data	  tables	  in	  Appendix	  

C.	  
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Table A2.3. 40Ar/39Ar data tables 
Lab ID# 40Ar*/39Ar 40Ar/39Ar 36Ar/39Ar 39Ar %40Ar* Age (Ma)1 
  ± 2σ ± 2σ ± 2σ (moles)   ± 2σ 

07-AT-LM-K - 33°48'49.8"N, 77°48'35.9"E 
406-63 63.525 0.569 64.139 0.533 0.0020 0.0007 1.16E-16 99.09 48.93 0.43 
406-80 68.998 0.709 69.428 0.629 0.0014 0.0011 6.86E-17 99.42 53.08 0.54 
406-37 69.439 0.532 70.549 0.503 0.0037 0.0006 1.18E-16 98.47 53.41 0.40 
406-06 72.491 0.544 73.373 0.518 0.0029 0.0006 1.38E-16 98.84 55.73 0.41 
406-11 73.654 0.621 74.485 0.571 0.0027 0.0009 8.66E-17 98.92 56.61 0.47 
406-23 75.046 0.677 77.345 0.638 0.0077 0.0009 9.24E-17 97.06 57.66 0.51 
406-13 76.774 0.633 77.604 0.585 0.0027 0.0009 9.07E-17 98.97 58.96 0.48 
406-97 78.356 1.265 79.304 1.016 0.0031 0.0026 3.04E-17 98.84 60.16 0.96 
406-54 78.692 0.668 79.653 0.635 0.0032 0.0008 1.07E-16 98.83 60.41 0.50 
406-64 80.855 0.803 83.043 0.730 0.0073 0.0012 7.55E-17 97.40 62.05 0.61 
406-83 81.938 0.689 83.261 0.630 0.0044 0.0010 7.77E-17 98.44 62.86 0.52 
406-91 83.310 1.380 86.692 1.207 0.0114 0.0025 3.04E-17 96.13 63.9 1.0 
406-24 83.722 0.665 85.643 0.616 0.0064 0.0009 9.33E-17 97.79 64.21 0.50 
406-46 83.862 0.395 86.206 0.386 0.0078 0.0004 3.00E-16 97.31 64.31 0.30 
406-03 84.156 0.651 84.978 0.630 0.0027 0.0006 1.37E-16 99.06 64.53 0.49 
406-69 84.630 0.593 85.301 0.573 0.0022 0.0005 1.66E-16 99.25 64.89 0.45 
406-28 85.839 0.894 87.942 0.845 0.0070 0.0011 7.37E-17 97.64 65.8 0.67 
406-16 86.093 0.820 87.045 0.733 0.0031 0.0013 6.75E-17 98.94 65.99 0.62 
406-51 86.344 0.626 86.741 0.611 0.0013 0.0005 1.62E-16 99.57 66.18 0.47 
406-70 86.436 1.008 87.585 0.856 0.0038 0.0019 4.68E-17 98.72 66.25 0.76 
406-19 86.572 0.808 91.229 0.779 0.0157 0.0011 8.26E-17 94.92 66.35 0.61 
406-01 87.580 0.505 88.573 0.495 0.0033 0.0004 2.12E-16 98.91 67.11 0.38 
406-60 89.101 0.696 90.763 0.672 0.0055 0.0007 1.29E-16 98.20 68.25 0.52 
406-65 89.220 1.126 90.465 0.979 0.0041 0.0020 4.03E-17 98.65 68.34 0.85 
406-25 89.672 0.681 90.145 0.646 0.0015 0.0007 1.13E-16 99.51 68.68 0.51 
406-57 90.522 1.460 94.470 1.203 0.0133 0.0030 2.86E-17 95.85 69.3 1.1 
406-75 90.567 1.204 97.494 1.057 0.0234 0.0024 4.20E-17 92.92 69.36 0.90 
406-66 91.085 1.615 92.845 1.407 0.0059 0.0028 2.70E-17 98.13 69.7 1.2 
406-04 91.588 0.482 93.848 0.470 0.0076 0.0005 2.21E-16 97.62 70.12 0.36 
406-33 91.651 0.930 93.427 0.868 0.0059 0.0013 6.09E-17 98.13 70.17 0.70 
406-38 91.704 1.314 93.666 1.173 0.0065 0.0022 3.56E-17 97.94 70.21 0.99 
406-74 91.901 0.729 92.929 0.702 0.0034 0.0007 1.15E-16 98.92 70.36 0.55 
406-27 93.088 1.064 94.152 0.989 0.0035 0.0014 5.62E-17 98.90 71.25 0.80 
406-14 93.227 0.568 94.540 0.555 0.0044 0.0005 1.93E-16 98.64 71.35 0.43 
406-10 93.356 1.182 95.615 1.041 0.0076 0.0020 3.90E-17 97.67 71.45 0.89 
406-48 93.454 1.082 95.713 0.959 0.0076 0.0018 4.48E-17 97.67 71.52 0.81 
406-67 93.554 0.842 94.328 0.807 0.0025 0.0009 9.27E-17 99.21 71.60 0.63 
406-17 93.915 1.110 94.959 1.015 0.0034 0.0016 5.06E-17 98.93 71.87 0.83 
406-32 94.018 0.801 98.012 0.769 0.0134 0.0010 8.87E-17 95.95 71.95 0.60 
406-21 94.081 0.865 97.173 0.802 0.0104 0.0013 6.68E-17 96.85 71.99 0.65 
406-52 94.144 1.710 94.843 1.420 0.0023 0.0033 2.26E-17 99.29 72.0 1.3 
406-02 95.308 0.933 101.540 0.895 0.0210 0.0013 7.08E-17 93.89 72.91 0.70 
406-47 95.401 0.946 97.077 0.916 0.0056 0.0010 8.56E-17 98.30 72.98 0.71 
406-34 97.700 1.052 107.927 1.012 0.0345 0.0017 6.18E-17 90.55 74.71 0.79 
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406-39 98.406 0.975 99.620 0.924 0.0040 0.0011 6.27E-17 98.81 75.24 0.73 
406-36 98.579 1.000 101.175 0.946 0.0087 0.0013 6.63E-17 97.46 75.37 0.75 
406-59 98.867 1.737 100.470 1.510 0.0053 0.0030 2.45E-17 98.43 75.6 1.3 
406-31 99.169 1.438 104.482 1.223 0.0179 0.0029 3.11E-17 94.94 75.8 1.1 
406-30 101.218 0.912 102.612 0.869 0.0046 0.0010 8.16E-17 98.67 77.34 0.68 
406-62 102.665 0.644 104.091 0.626 0.0047 0.0006 1.54E-16 98.66 78.42 0.48 
406-56 103.266 1.173 104.777 1.023 0.0050 0.0020 4.33E-17 98.58 78.87 0.88 
406-29 103.656 0.780 108.229 0.756 0.0154 0.0008 1.27E-16 95.80 79.16 0.58 
406-05 104.306 1.134 106.510 1.045 0.0074 0.0017 5.24E-17 97.96 79.65 0.85 
406-40 104.406 0.577 105.296 0.570 0.0029 0.0004 2.09E-16 99.18 79.72 0.43 
406-87 104.498 1.054 113.316 0.936 0.0298 0.0021 5.39E-17 92.24 79.79 0.79 
406-98 104.590 1.259 105.792 1.103 0.0040 0.0021 3.77E-17 98.89 79.86 0.94 
406-22 104.790 0.860 106.430 0.834 0.0055 0.0008 9.71E-17 98.48 80.01 0.64 
406-09 105.336 0.956 107.206 0.892 0.0062 0.0013 6.12E-17 98.28 80.42 0.71 
406-68 105.993 1.030 106.598 0.985 0.0020 0.0011 7.97E-17 99.46 80.91 0.77 
406-45 106.317 0.960 108.283 0.934 0.0066 0.0009 1.04E-16 98.21 81.15 0.72 
406-77 106.855 1.412 109.065 1.167 0.0074 0.0028 2.91E-17 98.00 81.6 1.1 
406-08 108.547 0.950 118.019 0.954 0.0320 0.0010 1.28E-16 92.00 82.81 0.71 
406-85 109.141 1.387 110.104 1.269 0.0032 0.0020 4.11E-17 99.15 83.3 1.0 
406-58 109.201 1.441 110.301 1.310 0.0036 0.0021 3.77E-17 99.03 83.3 1.1 
406-18 110.094 0.824 110.909 0.809 0.0027 0.0006 1.33E-16 99.29 83.97 0.61 
406-26 111.060 0.854 112.245 0.834 0.0039 0.0007 1.27E-16 98.97 84.69 0.64 
406-07 111.776 1.422 113.959 1.279 0.0073 0.0023 3.52E-17 98.11 85.2 1.1 
406-61 112.102 1.503 116.682 1.352 0.0154 0.0026 3.71E-17 96.10 85.5 1.1 
406-81 112.718 1.875 124.072 1.812 0.0383 0.0031 3.07E-17 90.87 85.9 1.4 
406-86 113.388 1.488 114.597 1.333 0.0040 0.0023 3.60E-17 98.97 86.4 1.1 
406-76 113.422 1.252 116.244 1.087 0.0095 0.0022 3.98E-17 97.60 86.45 0.93 
406-42 113.516 1.681 116.194 1.484 0.0090 0.0029 2.62E-17 97.72 86.5 1.3 
406-53 113.962 1.401 116.337 1.291 0.0079 0.0020 4.02E-17 97.98 86.8 1.0 
406-20 113.938 0.571 114.349 0.562 0.0013 0.0004 2.20E-16 99.66 86.83 0.42 
406-43 114.223 1.271 117.687 1.186 0.0116 0.0018 4.49E-17 97.08 87.04 0.95 
406-55 114.567 1.650 116.998 1.438 0.0081 0.0029 2.98E-17 97.95 87.3 1.2 
406-78 76.156 0.771 76.704 0.698 0.0018 0.0011 6.81E-17 99.32 58.50 0.58 
406-15 92.491 0.498 93.793 0.483 0.0043 0.0005 2.03E-16 98.64 70.80 0.37 
           

07-AT-ZG-L - 33°48'13.9"N, 77°47'52.37"E 
408-32 43.021 0.313 43.951 0.274 0.0031 0.0005 1.66E-16 97.94 32.36 0.23 
408-88 45.146 0.385 46.703 0.344 0.0052 0.0006 1.41E-16 96.72 33.94 0.29 
408-80 45.390 0.314 45.841 0.292 0.0014 0.0004 2.06E-16 99.08 34.13 0.23 
408-44 45.582 0.334 47.657 0.299 0.0069 0.0006 1.75E-16 95.70 34.27 0.25 
408-03 45.619 0.386 49.989 0.344 0.0147 0.0007 1.54E-16 91.31 34.30 0.29 
408-16 45.874 0.273 46.385 0.247 0.0016 0.0004 2.19E-16 98.96 34.49 0.20 
408-25 46.105 0.492 46.962 0.397 0.0028 0.0010 7.72E-17 98.23 34.66 0.37 
408-68 46.121 0.428 47.792 0.383 0.0056 0.0007 1.40E-16 96.56 34.67 0.32 
408-57 46.203 0.347 47.019 0.320 0.0027 0.0005 1.70E-16 98.32 34.73 0.26 
408-61 46.245 0.301 46.617 0.281 0.0012 0.0004 2.09E-16 99.26 34.76 0.22 
408-81 46.283 0.316 47.000 0.292 0.0023 0.0004 1.95E-16 98.53 34.79 0.24 
408-48 46.456 0.356 48.203 0.310 0.0058 0.0006 1.40E-16 96.43 34.92 0.26 
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408-56 46.545 0.328 50.978 0.282 0.0149 0.0006 1.64E-16 91.35 34.99 0.24 
408-70 47.120 0.335 48.961 0.311 0.0061 0.0005 1.98E-16 96.29 35.41 0.25 
408-22 47.286 0.352 47.808 0.340 0.0017 0.0003 2.30E-16 98.97 35.54 0.26 
408-53 47.327 0.223 48.025 0.213 0.0023 0.0002 3.67E-16 98.60 35.57 0.17 
408-76 47.368 0.369 49.176 0.350 0.0060 0.0004 2.23E-16 96.38 35.60 0.27 
408-45 47.660 0.329 48.139 0.302 0.0015 0.0005 1.69E-16 99.06 35.82 0.24 
408-14 47.710 0.372 48.731 0.325 0.0034 0.0006 1.39E-16 97.96 35.85 0.28 
408-58 47.991 0.332 52.163 0.312 0.0140 0.0004 2.76E-16 92.05 36.06 0.25 
408-29 48.021 0.241 48.679 0.228 0.0021 0.0003 3.22E-16 98.70 36.08 0.18 
408-21 48.110 0.275 49.095 0.248 0.0032 0.0004 2.00E-16 98.05 36.15 0.20 
408-52 48.218 0.322 49.310 0.310 0.0036 0.0003 2.86E-16 97.84 36.23 0.24 
408-08 48.367 0.423 51.688 0.400 0.0112 0.0006 1.54E-16 93.62 36.34 0.31 
408-41 48.713 0.652 53.876 0.478 0.0174 0.0017 5.75E-17 90.46 36.60 0.48 
408-07 48.792 0.330 49.004 0.315 0.0006 0.0003 2.12E-16 99.63 36.66 0.25 
408-43 48.851 0.352 49.200 0.337 0.0011 0.0004 2.39E-16 99.35 36.70 0.26 
408-40 48.913 0.552 50.167 0.399 0.0042 0.0013 6.58E-17 97.55 36.75 0.41 
408-34 48.935 0.429 49.667 0.361 0.0024 0.0008 1.02E-16 98.58 36.76 0.32 
408-72 49.017 0.633 50.390 0.506 0.0046 0.0013 5.76E-17 97.33 36.83 0.47 
408-28 49.074 0.727 50.482 0.544 0.0047 0.0017 5.16E-17 97.26 36.87 0.54 
408-90 49.292 0.424 51.109 0.334 0.0061 0.0009 1.01E-16 96.50 37.03 0.32 
408-17 49.348 0.389 49.757 0.306 0.0013 0.0008 1.01E-16 99.23 37.07 0.29 
408-02 49.393 0.329 50.883 0.307 0.0050 0.0004 2.10E-16 97.13 37.11 0.24 
408-64 49.517 0.594 51.156 0.473 0.0055 0.0013 6.33E-17 96.85 37.20 0.44 
408-51 49.519 0.429 50.890 0.345 0.0046 0.0009 8.35E-17 97.36 37.20 0.32 
408-55 49.540 0.661 51.324 0.499 0.0059 0.0015 5.24E-17 96.58 37.21 0.49 
408-71 49.545 0.539 52.430 0.392 0.0097 0.0013 6.50E-17 94.55 37.22 0.40 
408-19 49.640 0.236 49.930 0.224 0.0009 0.0003 3.62E-16 99.48 37.29 0.18 
408-84 49.741 0.205 50.755 0.198 0.0033 0.0002 5.05E-16 98.06 37.36 0.15 
408-37 49.772 0.571 52.335 0.425 0.0086 0.0014 6.35E-17 95.15 37.39 0.42 
408-36 49.833 0.381 50.555 0.328 0.0024 0.0007 1.16E-16 98.63 37.43 0.28 
408-04 49.835 0.730 51.163 0.538 0.0044 0.0017 4.83E-17 97.46 37.43 0.54 
408-39 49.879 0.572 52.209 0.412 0.0078 0.0014 6.52E-17 95.59 37.47 0.43 
408-63 49.895 0.425 50.671 0.351 0.0025 0.0008 9.12E-17 98.52 37.48 0.32 
408-93 49.917 0.390 50.297 0.341 0.0012 0.0007 1.16E-16 99.30 37.49 0.29 
408-69 49.979 0.436 51.286 0.349 0.0043 0.0009 1.04E-16 97.50 37.54 0.32 
408-65 50.015 0.543 51.044 0.400 0.0034 0.0013 6.05E-17 98.04 37.57 0.40 
408-12 50.442 0.509 54.074 0.410 0.0122 0.0011 8.46E-17 93.33 37.88 0.38 
408-50 50.484 0.341 51.817 0.288 0.0044 0.0007 1.23E-16 97.48 37.92 0.25 
408-42 50.544 0.392 51.096 0.338 0.0018 0.0007 1.16E-16 98.97 37.96 0.29 
408-73 50.550 0.586 51.810 0.443 0.0042 0.0013 6.34E-17 97.62 37.96 0.44 
408-95 50.858 0.250 54.562 0.239 0.0124 0.0003 4.22E-16 93.26 38.19 0.19 
408-85 50.917 0.743 51.441 0.539 0.0017 0.0017 4.73E-17 99.03 38.24 0.55 
408-82 50.934 0.519 52.459 0.435 0.0051 0.0010 8.16E-17 97.14 38.25 0.39 
408-11 51.002 0.615 51.935 0.423 0.0031 0.0015 5.08E-17 98.26 38.30 0.46 
408-83 51.208 0.614 55.314 0.459 0.0138 0.0015 6.09E-17 92.62 38.45 0.46 
408-15 51.407 0.961 56.372 0.653 0.0167 0.0026 3.32E-17 91.24 38.60 0.71 
408-92 51.436 0.585 56.498 0.477 0.0170 0.0013 7.14E-17 91.09 38.62 0.43 
408-66 51.526 0.573 53.360 0.474 0.0061 0.0012 7.05E-17 96.61 38.69 0.43 
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408-05 51.540 0.901 55.005 0.605 0.0116 0.0024 3.24E-17 93.75 38.70 0.67 
408-46 51.626 0.774 53.558 0.593 0.0064 0.0018 4.32E-17 96.44 38.76 0.58 
408-24 51.729 0.655 53.428 0.502 0.0057 0.0015 5.22E-17 96.87 38.84 0.49 
408-75 51.745 0.570 52.519 0.438 0.0025 0.0013 6.95E-17 98.58 38.85 0.42 
408-54 51.935 0.714 53.971 0.545 0.0068 0.0016 5.05E-17 96.28 38.99 0.53 
408-20 52.088 0.687 57.826 0.497 0.0193 0.0018 5.22E-17 90.12 39.11 0.51 
408-31 52.121 0.346 53.879 0.332 0.0059 0.0004 2.76E-16 96.79 39.13 0.26 
408-35 52.282 0.375 53.138 0.322 0.0028 0.0007 1.23E-16 98.44 39.25 0.28 
408-18 52.617 0.468 54.847 0.403 0.0075 0.0009 1.05E-16 95.98 39.50 0.35 
408-01 52.682 0.620 53.779 0.490 0.0036 0.0013 5.92E-17 98.01 39.55 0.46 
408-98 52.696 0.605 54.589 0.466 0.0063 0.0014 5.82E-17 96.58 39.56 0.45 
408-13 52.735 0.439 54.842 0.390 0.0070 0.0008 1.15E-16 96.21 39.59 0.33 
408-38 52.740 0.790 53.720 0.583 0.0032 0.0018 4.82E-17 98.23 39.59 0.59 
408-10 52.794 0.396 57.635 0.357 0.0163 0.0007 1.65E-16 91.64 39.63 0.29 
408-67 52.877 0.742 54.368 0.565 0.0050 0.0017 4.73E-17 97.31 39.69 0.55 
408-96 52.888 0.781 59.750 0.606 0.0231 0.0019 4.62E-17 88.56 39.70 0.58 
408-26 53.196 0.481 56.349 0.365 0.0106 0.0011 8.32E-17 94.45 39.93 0.36 
408-87 53.592 0.848 58.165 0.661 0.0154 0.0020 4.32E-17 92.18 40.22 0.63 
408-47 53.645 0.799 54.516 0.600 0.0029 0.0018 4.42E-17 98.45 40.26 0.59 
408-79 53.678 0.403 55.856 0.321 0.0073 0.0009 1.17E-16 96.15 40.29 0.30 
408-30 53.730 0.992 59.776 0.662 0.0204 0.0027 3.34E-17 89.93 40.33 0.74 
408-86 53.901 0.606 56.498 0.461 0.0087 0.0014 6.87E-17 95.45 40.45 0.45 
408-23 58.619 0.527 62.359 0.493 0.0126 0.0008 1.21E-16 94.05 43.95 0.39 
408-09 61.682 0.510 63.418 0.459 0.0058 0.0008 1.16E-16 97.31 46.22 0.38 
408-78 66.277 0.452 66.634 0.431 0.0011 0.0005 1.92E-16 99.51 49.62 0.33 
408-89 68.353 0.737 83.158 0.654 0.0500 0.0016 8.13E-17 82.22 51.15 0.54 
408-49 71.383 0.331 75.330 0.326 0.0133 0.0003 3.91E-16 94.80 53.38 0.24 
408-59 72.960 0.419 75.436 0.407 0.0083 0.0004 2.56E-16 96.75 54.54 0.31 

           
07-AT-ZG-0 - 34°9'13.1"N, 77°18'55.6"E 

398-81 38.959 0.276 40.257 0.230 0.0043 0.0005 1.71E-16 96.84 29.23 0.21 
398-89 39.719 0.292 41.441 0.259 0.0057 0.0005 1.91E-16 95.91 29.80 0.22 
398-45 40.201 0.257 40.732 0.236 0.0017 0.0004 2.24E-16 98.76 30.16 0.19 
398-50 40.268 0.305 43.364 0.277 0.0104 0.0005 2.22E-16 92.92 30.21 0.23 
398-79 40.638 0.351 41.753 0.274 0.0037 0.0008 1.26E-16 97.39 30.48 0.26 
398-78 40.672 0.308 42.118 0.274 0.0048 0.0005 1.75E-16 96.63 30.51 0.23 
398-40 41.144 0.307 43.575 0.279 0.0081 0.0005 2.04E-16 94.48 30.86 0.23 
398-23 41.351 0.264 42.258 0.226 0.0030 0.0005 1.83E-16 97.92 31.01 0.20 

398-102 42.169 0.609 43.646 0.413 0.0049 0.0016 5.71E-17 96.68 31.62 0.45 
398-48 42.322 0.398 44.218 0.335 0.0063 0.0008 1.40E-16 95.77 31.73 0.30 
398-49 42.567 0.304 46.110 0.284 0.0119 0.0004 2.89E-16 92.37 31.92 0.23 
398-22 42.659 0.444 45.524 0.427 0.0096 0.0006 1.69E-16 93.76 31.98 0.33 
398-66 42.686 0.320 45.174 0.287 0.0083 0.0005 1.79E-16 94.55 32.01 0.24 
398-27 43.150 0.296 45.499 0.256 0.0079 0.0005 1.60E-16 94.90 32.35 0.22 
398-08 43.461 0.385 46.317 0.351 0.0096 0.0006 1.43E-16 93.89 32.58 0.29 
398-33 43.594 0.661 44.970 0.442 0.0046 0.0017 4.93E-17 97.00 32.68 0.49 
398-93 43.598 0.350 47.787 0.304 0.0141 0.0007 1.53E-16 91.29 32.68 0.26 
398-21 43.685 0.673 47.046 0.509 0.0113 0.0016 5.54E-17 92.91 32.75 0.50 
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398-103 43.813 0.351 48.942 0.303 0.0173 0.0007 1.55E-16 89.57 32.84 0.26 
398-82 43.885 0.311 44.788 0.267 0.0030 0.0006 1.62E-16 98.04 32.90 0.23 
398-73 44.076 0.319 45.112 0.290 0.0034 0.0005 1.70E-16 97.76 33.04 0.24 
398-28 44.267 0.506 46.875 0.389 0.0087 0.0012 7.53E-17 94.49 33.18 0.38 
398-43 44.418 0.455 46.522 0.351 0.0070 0.0010 8.22E-17 95.53 33.29 0.34 
398-31 44.501 0.300 45.444 0.268 0.0031 0.0005 1.70E-16 97.99 33.35 0.22 
398-68 44.513 0.325 46.085 0.280 0.0052 0.0006 1.47E-16 96.65 33.36 0.24 
398-25 44.641 0.371 48.366 0.335 0.0125 0.0006 1.75E-16 92.35 33.46 0.28 
398-65 44.802 0.321 46.198 0.306 0.0046 0.0004 2.67E-16 97.04 33.58 0.24 
398-01 44.905 0.407 48.539 0.320 0.0122 0.0009 1.02E-16 92.57 33.65 0.30 
398-56 45.219 0.322 47.007 0.282 0.0060 0.0006 1.62E-16 96.25 33.89 0.24 
398-18 45.236 0.236 48.047 0.224 0.0094 0.0003 3.54E-16 94.20 33.90 0.18 
398-06 45.405 0.318 46.322 0.303 0.0030 0.0004 2.56E-16 98.08 34.02 0.24 
398-02 45.558 0.305 49.246 0.309 0.0124 0.0003 4.38E-16 92.56 34.14 0.23 

398-109 45.654 0.463 47.974 0.326 0.0078 0.0012 8.64E-17 95.22 34.21 0.34 
398-12 45.820 0.409 48.594 0.337 0.0093 0.0009 1.16E-16 94.35 34.33 0.30 
398-95 45.984 0.334 47.254 0.311 0.0042 0.0004 1.95E-16 97.37 34.45 0.25 

398-107 46.128 0.327 48.015 0.314 0.0063 0.0004 2.76E-16 96.13 34.56 0.24 
398-72 46.410 0.311 49.240 0.295 0.0095 0.0004 2.21E-16 94.31 34.77 0.23 
398-29 46.422 0.367 47.477 0.286 0.0035 0.0008 1.05E-16 97.84 34.78 0.27 
398-41 46.526 0.287 46.947 0.277 0.0013 0.0003 3.23E-16 99.16 34.86 0.21 

398-106 46.529 0.631 48.549 0.436 0.0067 0.0016 5.35E-17 95.89 34.86 0.47 
398-94 46.587 0.338 47.703 0.306 0.0037 0.0005 1.73E-16 97.72 34.90 0.25 
398-26 46.676 0.322 48.108 0.292 0.0048 0.0005 1.82E-16 97.08 34.97 0.24 
398-15 46.771 0.305 47.745 0.289 0.0032 0.0004 2.72E-16 98.02 35.04 0.23 
398-35 46.835 0.342 49.840 0.325 0.0101 0.0004 2.53E-16 94.02 35.09 0.25 
398-90 46.963 0.405 50.063 0.373 0.0104 0.0006 1.70E-16 93.86 35.18 0.30 
398-05 47.011 0.300 48.405 0.287 0.0046 0.0003 2.94E-16 97.17 35.22 0.22 
398-09 47.018 0.300 48.812 0.277 0.0060 0.0004 2.49E-16 96.38 35.22 0.22 
398-92 47.036 0.357 50.817 0.335 0.0127 0.0005 2.31E-16 92.61 35.24 0.26 

398-104 47.071 0.429 47.890 0.337 0.0027 0.0009 9.30E-17 98.35 35.26 0.32 
398-75 47.331 0.433 48.567 0.352 0.0041 0.0009 9.49E-17 97.51 35.45 0.32 
398-86 47.469 0.281 51.674 0.256 0.0141 0.0005 3.12E-16 91.91 35.56 0.21 
398-20 47.583 0.543 51.385 0.410 0.0128 0.0013 6.66E-17 92.65 35.64 0.40 
398-67 47.721 0.538 49.621 0.438 0.0063 0.0011 7.07E-17 96.23 35.74 0.40 
398-14 47.730 0.444 52.277 0.442 0.0153 0.0005 2.49E-16 91.35 35.75 0.33 
398-62 47.733 0.419 52.586 0.340 0.0163 0.0010 1.20E-16 90.82 35.75 0.31 
398-83 48.029 0.348 51.259 0.297 0.0108 0.0007 1.32E-16 93.75 35.97 0.26 
398-46 48.469 0.745 51.006 0.547 0.0085 0.0018 4.42E-17 95.08 36.30 0.55 
398-52 48.579 0.642 48.857 0.477 0.0009 0.0015 5.22E-17 99.49 36.38 0.48 

398-112 48.591 0.437 49.725 0.340 0.0037 0.0010 8.82E-17 97.77 36.39 0.32 
398-99 48.883 0.286 49.871 0.272 0.0033 0.0003 3.12E-16 98.07 36.60 0.21 
398-85 48.926 0.900 52.159 0.610 0.0108 0.0023 3.71E-17 93.85 36.64 0.67 
398-80 48.977 0.487 53.904 0.375 0.0166 0.0012 9.41E-17 90.91 36.67 0.36 
398-44 48.988 0.642 53.969 0.459 0.0168 0.0017 5.87E-17 90.82 36.68 0.48 
398-61 49.198 0.407 50.161 0.327 0.0032 0.0008 1.20E-16 98.13 36.84 0.30 
398-30 49.208 0.394 53.249 0.340 0.0136 0.0008 1.16E-16 92.46 36.85 0.29 
398-42 49.227 0.192 51.684 0.182 0.0082 0.0002 5.68E-16 95.30 36.86 0.14 
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398-111 49.351 0.699 52.843 0.492 0.0117 0.0018 5.21E-17 93.44 36.95 0.52 
398-63 49.432 0.623 49.651 0.440 0.0007 0.0015 6.04E-17 99.62 37.01 0.46 
398-19 49.451 0.379 53.241 0.307 0.0127 0.0008 1.23E-16 92.93 37.03 0.28 
398-98 49.481 0.459 54.507 0.368 0.0169 0.0011 1.04E-16 90.83 37.05 0.34 
398-70 49.628 0.487 52.617 0.399 0.0100 0.0010 8.64E-17 94.37 37.16 0.36 

398-101 49.660 0.768 49.972 0.560 0.0010 0.0018 4.60E-17 99.43 37.18 0.57 
398-105 49.728 0.791 50.860 0.544 0.0037 0.0020 4.24E-17 97.83 37.23 0.59 
398-03 49.753 0.444 50.791 0.362 0.0034 0.0009 8.59E-17 98.01 37.25 0.33 
398-55 49.753 0.372 53.802 0.308 0.0136 0.0008 1.14E-16 92.52 37.25 0.28 
398-84 49.764 0.371 51.860 0.281 0.0070 0.0009 1.11E-16 96.01 37.26 0.27 
398-24 49.847 0.379 52.587 0.286 0.0092 0.0009 1.10E-16 94.84 37.32 0.28 
398-04 50.027 0.521 53.348 0.433 0.0111 0.0011 7.45E-17 93.82 37.45 0.39 

398-116 50.110 0.748 50.231 0.543 0.0003 0.0017 4.57E-17 99.82 37.51 0.55 
398-114 50.461 0.791 56.240 0.570 0.0195 0.0020 4.59E-17 89.77 37.77 0.59 
398-57 50.590 0.529 51.443 0.416 0.0028 0.0011 7.54E-17 98.40 37.87 0.39 

398-110 50.740 0.823 55.201 0.569 0.0150 0.0021 4.54E-17 91.96 37.98 0.61 
398-113 50.867 0.968 55.441 0.688 0.0154 0.0025 3.76E-17 91.80 38.07 0.72 
398-97 52.417 0.716 56.078 0.529 0.0123 0.0017 5.22E-17 93.52 39.22 0.53 

398-115 52.739 0.986 56.744 0.679 0.0135 0.0026 3.44E-17 92.99 39.46 0.73 
398-16 52.821 0.565 56.434 0.408 0.0121 0.0014 7.11E-17 93.64 39.52 0.42 

398-108 53.387 0.497 56.593 0.351 0.0108 0.0013 7.33E-17 94.38 39.94 0.37 
398-39 54.912 0.473 55.604 0.373 0.0023 0.0010 8.92E-17 98.80 41.07 0.35 
398-76 58.094 0.455 59.871 0.417 0.0059 0.0007 1.38E-16 97.08 43.42 0.34 
398-91 59.098 0.475 62.733 0.440 0.0122 0.0007 1.45E-16 94.25 44.16 0.35 

398-100 59.418 0.363 63.545 0.339 0.0139 0.0005 2.42E-16 93.55 44.40 0.27 
1J values (2σ):07-AT-LM-K - 4.327E-4±7.9910E-6; 07-AT-LM-L - 4.2070E-4±1.7900E-6; 07-AT-ZG-O - 
4.1930E-4±6.422E-6 
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Zircon crystals were extracted from crushed samples by traditional 

gravimetric and magnetic susceptibility methods. A large split of the grains was 

incorporated into a 1” epoxy mount together with fragments of University of 

Arizona Sri Lanka standard zircon. The mounts were polished, imaged both 

photographically and with cathodoluminescence at Arizona State University, and 

cleaned prior to isotopic analysis. 

U-Pb geochronology was conducted by laser ablation multicollector 

inductively coupled plasma mass spectrometry (LA-MC-ICPMS) at the Arizona 

LaserChron Center [Gehrels et al., 2006, 2008]. The analyses involved ablation of 

zircons with a New Wave UP193HE Excimer laser using a spot diameter of 30 

µm. The ablated material was carried in helium into the plasma source of a Nu 

HR ICPMS for simultaneous measurement of U, Th, and Pb isotopes. All 

measurements were made in static mode, using Faraday detectors with 3x1011 

ohm resistors for 238U, 232Th, 208Pb, 207Pb, 206Pb, and discrete dynode ion counters 

for 204Pb and 202Hg. Ion yields were ~0.8 mv per ppm. Each analysis consisted of 

one 15-second integration on peaks with the laser off (for backgrounds), 15 one-

second integrations with the laser firing, and a 30-second delay to purge the 

previous sample and prepare for the next analysis. The ablation pits were ~15 µm 

in depth.  

For each analysis, the errors in determining 206Pb/238U and 206Pb/204Pb 

generally resulted in a measurement error of ~1-2% (at 2σ level) in the 206Pb/238U 

age. The errors in measurement of 206Pb/207Pb and 206Pb/204Pb generally also 

resulted in ~1-2% (at 2σ level) uncertainty in age for grains that are >1.0 Ga, but 
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were substantially larger for younger grains due to low intensity of the 207Pb 

signal. For most analyses, the cross-over in precision of 206Pb/238U and 206Pb/207Pb 

ages occurred at ~1.0 Ga.  

204Hg interference with 204Pb was accounted for by measurement of 202Hg 

during laser ablation and subtraction of 204Hg according to the natural 202Hg/204Hg 

of 4.35. This Hg is correction was not significant for most analyses because our 

Hg backgrounds were low (generally ~150 cps at mass 204).  

Common Pb correction was done using the Hg-corrected 204Pb and 

assuming an initial Pb composition from Stacey and Kramers [1975]. 

Uncertainties of 1.5 for 206Pb/204Pb and 0.3 for 207Pb/204Pb were applied to these 

compositional values based on the variation in Pb isotopic composition in modern 

crystal rocks.  

Inter-element fractionation of Pb/U was generally ~5%, whereas apparent 

fractionation of Pb isotopes was generally <0.2%. In-run analysis of fragments of 

a large Sri Lanka zircon crystal (generally every fifth measurement) with known 

age of 563.5 ± 3.2 Ma (2σ error) was used to correct for this fractionation. The 

uncertainty resulting from the calibration correction was generally 1-2% (2σ) for 

both 206Pb/207Pb and 206Pb/238U ages.  

Concentrations of U and Th were calibrated relative to the same zircon 

standard, which contains ~518 ppm of U and 68 ppm Th. 

The analytical data are reported in Appendix E. Uncertainties shown in 

these tables are at the 1σ level, and include only analytical errors. Analyses that 

are >20% discordant (by comparison of 206Pb/238U and 206Pb/207Pb ages) or >5% 
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reverse discordant are not considered further.  

The resulting interpreted ages are shown in relative age-probability 

diagrams using a Matlab program written at Arizona State University. The age-

probability diagrams show the age and its uncertainty (for analytical error only) as 

a normal distribution, and sum all ages from a sample into a single curve. The 

area under each curve is normalized to 1 according to the number of constituent 

analyses. The ordinate for the curves plotted in Figure 3.2a have the same scale, 

such that the relative peak heights not only within but also between different 

curves have significance.  
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Table A3.2a. Detrital U-Pb geochronologic analyses, raw data 
 

Analysis U1 206Pb/ U/Th1 Isotope ratios   

 (ppm) 
204Pb2  206Pb*/ ± 207Pb*/ ± 206Pb*/ ± error 

    
207Pb*  

235U  
238U  corr. 

     (%)  (%)  (%)  
TRD 
07ATTRD-48 100 19655 2.5 16.2594 24.6 0.1279 25.9 0.0151 8.0 0.31 
07ATTRD-85 214 43350 2.6 23.1634 28.1 0.0948 28.2 0.0159 3.2 0.11 
07ATTRD-44 315 103802 2.0 19.4537 12.7 0.1232 13.1 0.0174 3.4 0.26 
07ATTRD-21 132 171136 1.1 17.2778 3.3 0.6501 5.2 0.0815 4.0 0.77 
07ATTRD-33 58 57081 0.6 17.7629 11.3 0.6363 14.0 0.0820 8.3 0.59 
07ATTRD-4 42 6017 0.6 12.3696 26.6 0.9155 28.0 0.0821 8.9 0.32 
07ATTRD-67 212 654333 0.7 16.9696 4.1 0.6718 6.8 0.0827 5.4 0.80 
07ATTRD-62 285 368219 2.4 17.0689 2.2 0.6757 3.4 0.0837 2.5 0.75 
07ATTRD-89 66 79760 1.1 16.6213 8.5 0.6957 10.1 0.0839 5.3 0.53 
07ATTRD-80 122 165031 1.7 17.2423 8.5 0.6754 9.0 0.0845 3.1 0.35 
07ATTRD-18 152 277323 0.7 17.3775 3.0 0.6788 4.5 0.0855 3.3 0.74 
07ATTRD-82 83 85330 0.7 17.5040 8.5 0.6778 9.0 0.0860 3.0 0.34 
07ATTRD-68 872 2390001 25.4 17.0463 1.1 0.7016 2.9 0.0867 2.7 0.93 
07ATTRD-30 302 426977 0.6 17.2843 2.0 0.6948 3.8 0.0871 3.2 0.84 
07ATTRD-60 1037 2556786 71.4 17.1572 0.8 0.7040 2.4 0.0876 2.3 0.95 
07ATTRD-38 635 684392 0.7 17.0302 0.9 0.7124 2.3 0.0880 2.1 0.92 
07ATTRD-40 220 268366 1.0 17.3758 4.3 0.6991 4.5 0.0881 1.4 0.31 
07ATTRD-8 287 545989 1.5 17.2944 1.3 0.7094 2.1 0.0890 1.6 0.76 
07ATTRD-81 112 32096 0.9 15.9463 7.5 0.7714 8.6 0.0892 4.2 0.49 
07ATTRD-61 967 1441737 3.0 17.1414 0.6 0.7330 1.4 0.0911 1.3 0.92 
07ATTRD-46 112 201945 1.4 14.2158 30.1 0.8876 30.3 0.0915 3.5 0.11 
07ATTRD-74 489 806422 3.1 16.9350 1.1 0.7479 3.1 0.0919 2.8 0.93 
07ATTRD-28 109 113402 1.8 16.5771 3.3 0.7765 4.9 0.0934 3.6 0.74 
07ATTRD-100 100 93454 1.3 16.6027 4.1 0.8267 6.1 0.0995 4.5 0.74 
07ATTRD-70 90 116726 2.3 16.2374 5.2 0.8516 6.7 0.1003 4.3 0.63 
07ATTRD-5 507 844908 21.6 16.3747 1.1 0.8622 2.5 0.1024 2.3 0.91 
07ATTRD-72 294 154013 3.2 15.5249 1.9 0.9199 5.6 0.1036 5.3 0.94 
07ATTRD-95 655 1878398 3.6 16.4424 1.3 0.8779 2.2 0.1047 1.8 0.81 
07ATTRD-10 227 274184 5.7 16.2337 2.4 0.9055 4.2 0.1066 3.5 0.83 
07ATTRD-76 108 195807 2.2 16.0626 4.4 0.9304 5.1 0.1084 2.6 0.51 
07ATTRD-34 349 410055 4.8 15.1812 2.5 1.0355 4.0 0.1140 3.1 0.78 
07ATTRD-6 275 542255 2.9 14.1026 1.0 1.1722 6.1 0.1199 6.0 0.99 
07ATTRD-23 904 2318596 12.3 15.5784 0.8 1.0956 2.1 0.1238 1.9 0.92 
07ATTRD-51 505 159982 6.6 14.6807 0.8 1.1975 4.3 0.1275 4.2 0.98 
07ATTRD-101 255 444700 1.6 15.3693 1.0 1.1470 2.7 0.1279 2.5 0.92 
07ATTRD-14 241 431140 13.5 15.0828 1.2 1.1911 3.4 0.1303 3.2 0.94 
07ATTRD-39 249 404360 2.1 15.1718 0.9 1.2044 1.7 0.1325 1.4 0.84 
07ATTRD-1 100 356813 0.8 14.6844 5.3 1.3550 7.3 0.1443 5.0 0.69 
07ATTRD-22 533 2255388 8.7 14.4692 0.9 1.4366 2.2 0.1508 2.0 0.90 
07ATTRD-86 118 337830 2.5 14.2851 2.5 1.5165 3.7 0.1571 2.7 0.74 
07ATTRD-59 36 173364 0.7 14.2592 6.8 1.4166 8.5 0.1465 5.1 0.60 
07ATTRD-79 316 783619 2.8 14.2364 0.8 1.5366 2.3 0.1587 2.2 0.94 
07ATTRD-78 76 252319 2.5 14.2134 3.3 1.4556 5.1 0.1500 3.9 0.76 
07ATTRD-105 282 622523 8.3 14.1360 1.1 1.4841 2.5 0.1522 2.3 0.90 
07ATTRD-17 149 369296 2.1 14.1349 1.5 1.4810 2.5 0.1518 2.0 0.80 
07ATTRD-2 43 122079 1.8 14.1225 5.6 1.6200 6.1 0.1659 2.3 0.38 
07ATTRD-58 154 366191 5.6 14.1211 2.1 1.5417 2.3 0.1579 1.0 0.43 
07ATTRD-35 148 620705 1.6 14.1130 2.0 1.5722 2.9 0.1609 2.1 0.73 
07ATTRD-106 323 577481 2.6 14.0677 1.1 1.5761 2.3 0.1608 2.0 0.88 
07ATTRD-69 96 320890 2.4 14.0096 3.6 1.5555 4.4 0.1581 2.5 0.57 
07ATTRD-71 214 890109 1.9 13.9745 1.4 1.5599 2.3 0.1581 1.9 0.80 
07ATTRD-88 187 489072 4.0 13.9685 1.2 1.6445 2.4 0.1666 2.1 0.86 
07ATTRD-53 90 163581 1.2 13.9360 3.5 1.5265 5.5 0.1543 4.2 0.76 
07ATTRD-49 54 110596 2.2 13.9056 2.7 1.3697 3.5 0.1381 2.1 0.61 
07ATTRD-65 365 868556 4.4 13.8898 1.1 1.6055 3.6 0.1617 3.4 0.95 
07ATTRD-77 53 162419 0.9 13.8283 5.6 1.6027 6.2 0.1607 2.7 0.44 
07ATTRD-92 160 373477 0.9 13.8167 1.8 1.7167 2.9 0.1720 2.3 0.80 
07ATTRD-64 122 653139 1.6 13.7420 1.7 1.7393 3.8 0.1734 3.4 0.90 
07ATTRD-108 606 343709 4.0 13.7180 0.5 1.4826 4.2 0.1475 4.2 0.99 
07ATTRD-56 100 359759 0.7 13.7067 3.0 1.7572 5.6 0.1747 4.7 0.84 
07ATTRD-93 303 1939734 4.9 13.6314 2.0 1.7329 3.1 0.1713 2.4 0.76 
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07ATTRD-54 110 192046 1.5 13.2425 1.6 1.9016 2.7 0.1826 2.2 0.82 
07ATTRD-41 407 1504112 1.1 13.1955 0.6 2.0063 1.5 0.1920 1.4 0.92 
07ATTRD-83 281 1202720 5.3 13.1337 1.0 1.9599 2.5 0.1867 2.3 0.91 
07ATTRD-63 94 469267 3.6 13.0078 2.6 2.0513 6.3 0.1935 5.7 0.91 
07ATTRD-29 222 493409 2.3 12.7758 1.2 2.1426 2.1 0.1985 1.8 0.83 
07ATTRD-15 373 1733328 11.4 12.6171 0.6 2.1462 2.0 0.1964 1.9 0.96 
07ATTRD-12 329 1085943 5.6 12.6089 0.5 2.1792 1.6 0.1993 1.5 0.95 
07ATTRD-87 621 3560633 1.5 12.2770 1.2 2.2528 2.7 0.2006 2.4 0.89 
07ATTRD-98 126 499287 3.8 12.1873 1.1 2.4135 2.4 0.2133 2.1 0.88 
07ATTRD-52 237 865343 4.8 11.8175 1.0 2.5297 1.9 0.2168 1.5 0.83 
07ATTRD-57 83 258614 1.9 10.3778 2.6 3.4664 3.0 0.2609 1.6 0.53 
07ATTRD-37 435 2583783 2.9 9.8411 0.9 3.4314 3.0 0.2449 2.9 0.96 
07ATTRD-19 62 740233 1.7 8.7933 1.3 5.0631 4.8 0.3229 4.6 0.96 
07ATTRD-26 166 821166 2.7 8.7232 0.7 5.3885 1.5 0.3409 1.3 0.88 
07ATTRD-45 346 235781 5.1 7.9208 0.2 6.3335 2.8 0.3638 2.8 1.00 
07ATTRD-107 419 2451566 2.1 7.6670 0.3 6.8260 1.3 0.3796 1.3 0.97 
07ATTRD-55 588 8121931 5.9 6.5020 0.4 8.8109 7.4 0.4155 7.4 1.00 
07ATTRD-36 133 762870 1.0 6.3319 0.3 9.6692 1.5 0.4440 1.5 0.98 
07ATTRD-32 213 450874 2.4 6.3110 0.9 9.4872 6.1 0.4342 6.1 0.99 
07ATTRD-42 41 179035 4.1 6.2090 1.2 10.4308 2.0 0.4697 1.6 0.81 
07ATTRD-27 404 5444555 2.2 6.2068 0.2 9.5136 2.6 0.4283 2.6 1.00 
07ATTRD-24 278 2081748 1.2 6.1849 0.4 9.8813 1.3 0.4432 1.2 0.95 
07ATTRD-103 267 2695398 1.4 6.1387 0.3 10.0361 2.4 0.4468 2.4 0.99 
07ATTRD-73 152 1009992 1.5 6.1152 0.4 9.8868 2.2 0.4385 2.2 0.99 
07ATTRD-47 285 3594489 3.5 5.8926 0.2 10.3724 2.3 0.4433 2.3 1.00 
07ATTRD-9 66 708296 1.9 5.3480 0.9 12.8608 2.5 0.4988 2.4 0.93 
07ATTRD-102 540 900381 2.5 4.5017 1.2 16.9645 2.7 0.5539 2.4 0.89 
07ATTRD-31 37 290208 2.0 4.4201 0.6 17.3220 1.6 0.5553 1.5 0.94 
07ATTRD-90 23 258710 1.7 3.4297 0.4 27.3673 4.7 0.6808 4.6 1.00 
           
TRE 
07ATTRE-54 650 182376 2.9 20.4940 11.2 0.0931 11.4 0.0138 2.4 0.21 
07ATTRE-75 533 4910063 1.3 10.0004 0.2 3.7573 1.4 0.2725 1.4 0.99 
07ATTRE-84 137 909328 1.2 5.9628 0.3 11.1479 2.9 0.4821 2.9 1.00 
07ATTRE-66 767 1950967 9.8 16.6063 0.8 0.7691 1.1 0.0926 0.8 0.73 
07ATTRE-88 60 629787 1.3 3.4042 0.3 28.1681 2.2 0.6955 2.1 0.99 
07ATTRE-112 547 450411 1.8 16.9712 1.4 0.7237 1.8 0.0891 1.0 0.60 
07ATTRE-22 671 1479155 2.7 6.1914 0.4 9.9863 2.2 0.4484 2.2 0.99 
07ATTRE-97 479 249612 0.9 18.2175 2.8 0.4230 3.4 0.0559 1.9 0.57 
07ATTRE-26 1247 979646 6.9 16.9935 0.8 0.6269 1.7 0.0773 1.5 0.87 
07ATTRE-78 222 190737 0.7 17.0632 2.2 0.6776 2.6 0.0839 1.4 0.53 
07ATTRE-21 343 1932509 2.3 12.5355 0.4 2.1054 1.8 0.1914 1.7 0.98 
07ATTRE-64 215 2038759 1.7 5.3225 0.4 13.5715 2.8 0.5239 2.8 0.99 
07ATTRE-108 243 490715 0.7 17.5657 2.8 0.6154 3.2 0.0784 1.6 0.49 
07ATTRE-29 376 1857298 3.5 6.3955 0.4 8.3678 3.4 0.3881 3.4 0.99 
07ATTRE-7 69 39745 0.5 15.8849 16.3 0.7090 16.4 0.0817 1.7 0.10 
07ATTRE-81 329 1664660 2.2 9.9583 0.5 4.0544 1.6 0.2928 1.5 0.96 
07ATTRE-11 734 729531 3.5 16.1391 1.0 0.9055 1.8 0.1060 1.4 0.81 
07ATTRE-40 463 466807 1.3 17.0374 1.1 0.7223 2.1 0.0893 1.7 0.83 
07ATTRE-70 843 4092450 1.2 13.5487 0.4 1.6752 1.8 0.1646 1.8 0.97 
07ATTRE-80 393 1971538 6.7 7.4846 0.5 7.4320 3.4 0.4034 3.4 0.99 
07ATTRE-83 188 177765 0.7 17.7826 2.7 0.6580 3.3 0.0849 1.9 0.57 
07ATTRE-79 271 263211 6.0 17.1637 3.4 0.7524 3.8 0.0937 1.8 0.46 
07ATTRE-19 579 1050727 2.1 13.8587 0.5 1.6318 2.5 0.1640 2.4 0.98 
07ATTRE-33 392 1272665 7.4 15.7889 1.7 0.9333 2.3 0.1069 1.6 0.70 
07ATTRE-82 619 1414330 16.5 14.1316 0.5 1.6023 1.8 0.1642 1.7 0.95 
07ATTRE-35 188 111236 0.9 16.5323 5.2 0.7122 5.6 0.0854 2.2 0.39 
07ATTRE-37 123 113938 0.2 16.7396 5.1 0.7513 5.5 0.0912 2.1 0.39 
07ATTRE-114 490 978749 16.2 14.0307 0.6 1.5597 2.3 0.1587 2.3 0.97 
07ATTRE-104 509 659634 3.4 17.2427 1.8 0.6838 3.1 0.0855 2.5 0.81 
07ATTRE-109 79 58933 0.5 17.2940 5.1 0.6369 5.8 0.0799 2.8 0.48 
07ATTRE-57 192 674241 2.2 9.4937 0.8 4.4583 1.2 0.3070 0.9 0.75 
07ATTRE-105 571 661059 1.7 12.5693 0.7 1.9993 2.8 0.1823 2.7 0.97 
07ATTRE-71 353 1142606 1.2 15.1096 1.5 1.1582 2.4 0.1269 1.9 0.79 
07ATTRE-58 111 230593 0.5 16.8595 8.6 0.6967 9.0 0.0852 2.7 0.30 
07ATTRE-62 416 2034397 2.6 11.5093 0.8 2.3922 2.8 0.1997 2.7 0.96 
07ATTRE-14 196 314911 2.7 14.4513 1.1 1.3985 2.1 0.1466 1.8 0.86 
07ATTRE-24 102 76855 0.5 17.8123 6.3 0.6981 6.9 0.0902 2.7 0.40 
07ATTRE-89 80 101639 0.9 17.4053 6.3 0.7163 6.9 0.0904 2.8 0.41 
07ATTRE-44 443 1314837 5.7 13.8905 0.8 1.6545 2.3 0.1667 2.2 0.94 
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07ATTRE-17 132 111474 0.8 16.3944 5.4 0.7009 6.3 0.0833 3.2 0.50 
07ATTRE-91 644 2125809 35.2 14.9360 0.5 1.2724 2.2 0.1378 2.1 0.97 
07ATTRE-96 584 709673 2.7 16.7635 1.7 0.7351 3.6 0.0894 3.2 0.89 
07ATTRE-2 300 245899 2.2 17.1534 3.0 0.6986 4.5 0.0869 3.3 0.74 
07ATTRE-28 66 60932 0.6 18.3090 7.2 0.6306 8.0 0.0837 3.5 0.43 
07ATTRE-32 416 708521 2.1 13.9099 0.9 1.6361 2.9 0.1651 2.7 0.95 
07ATTRE-60 393 519076 4.5 13.5883 0.9 1.8508 4.7 0.1824 4.6 0.98 
07ATTRE-53 397 770612 6.8 14.5585 1.2 1.2764 2.6 0.1348 2.3 0.89 
07ATTRE-94 200 224977 0.9 17.2713 3.4 0.6677 4.9 0.0836 3.5 0.72 
07ATTRE-1 67 42471 0.5 17.5989 14.8 0.6276 15.3 0.0801 3.8 0.25 
07ATTRE-16 417 798077 4.8 14.0115 0.9 1.5238 1.9 0.1549 1.6 0.87 
07ATTRE-90 250 585800 3.7 14.4206 1.2 1.4014 2.6 0.1466 2.3 0.88 
07ATTRE-52 837 1576055 117.3 13.7200 1.0 1.7971 6.0 0.1788 6.0 0.99 
07ATTRE-36 122 32388 1.0 13.8708 5.1 1.1441 5.9 0.1151 3.0 0.51 
07ATTRE-10 257 349626 4.3 14.0186 1.0 1.5947 2.6 0.1621 2.4 0.92 
07ATTRE-86 50 58448 0.8 18.5570 21.0 0.5991 21.5 0.0806 4.4 0.21 
07ATTRE-115 1599 367171 8.7 14.0725 0.5 1.2288 3.1 0.1254 3.1 0.99 
07ATTRE-55 188 471113 1.6 14.2551 1.1 1.5166 3.1 0.1568 2.9 0.94 
07ATTRE-73 568 864616 3.1 14.1973 1.1 1.4194 4.0 0.1462 3.9 0.96 
07ATTRE-46 1062 1155068 24.9 16.7109 0.9 0.5681 5.6 0.0689 5.6 0.99 
07ATTRE-27 298 1103475 0.5 13.5874 1.1 1.5094 2.3 0.1487 2.1 0.88 
07ATTRE-25 80 109789 0.6 18.1432 7.4 0.6339 8.8 0.0834 4.7 0.54 
07ATTRE-43 95 94889 2.2 14.8378 27.3 0.8688 27.7 0.0935 4.2 0.15 
07ATTRE-34 991 1506130 5.0 16.5884 0.8 0.8019 4.5 0.0965 4.5 0.98 
07ATTRE-47 236 436819 3.3 12.8245 1.3 2.1910 3.7 0.2038 3.5 0.94 
07ATTRE-111 406 413997 12.5 16.7676 1.2 0.7930 4.7 0.0964 4.5 0.97 
07ATTRE-85 218 266702 1.8 14.3178 1.3 1.5192 1.8 0.1578 1.3 0.72 
07ATTRE-113 180 326922 0.7 14.1192 1.3 1.4988 2.0 0.1535 1.6 0.78 
07ATTRE-63 171 366294 1.8 13.1744 1.3 1.9727 2.8 0.1885 2.5 0.88 
07ATTRE-13 90 850032 1.2 9.4112 1.4 4.5475 3.1 0.3104 2.7 0.89 
07ATTRE-93 644 170740 1.7 15.1706 1.5 1.0541 4.1 0.1160 3.8 0.93 
07ATTRE-95 59 47678 0.5 18.1251 9.4 0.6151 10.8 0.0809 5.3 0.49 
07ATTRE-49 278 525852 0.8 13.9727 1.3 1.5808 1.8 0.1602 1.2 0.67 
07ATTRE-39 179 320753 1.7 13.6232 1.4 1.7771 2.3 0.1756 1.9 0.81 
07ATTRE-41 369 542854 3.9 13.0474 1.4 1.8196 5.7 0.1722 5.6 0.97 
07ATTRE-20 86 63044 0.9 16.3012 31.3 0.6303 31.9 0.0745 6.5 0.20 
07ATTRE-51 523 1159323 4.4 15.1965 1.1 1.1062 4.7 0.1219 4.6 0.97 
07ATTRE-72 129 142307 0.5 16.4022 3.6 0.6843 8.1 0.0814 7.2 0.90 
07ATTRE-30 168 667519 1.8 12.8978 1.9 1.8565 3.1 0.1737 2.4 0.78 
07ATTRE-92 138 367593 0.5 12.6578 1.9 2.1996 3.1 0.2019 2.4 0.79 
07ATTRE-56 47 48799 0.5 17.1232 15.6 0.6556 17.6 0.0814 8.2 0.46 
07ATTRE-4 78 220446 1.0 10.3296 2.2 3.4803 3.5 0.2607 2.7 0.77 
07ATTRE-3 176 317126 1.0 14.2668 2.0 1.4664 3.4 0.1517 2.7 0.80 
07ATTRE-61 449 975112 2.6 14.3308 12.9 0.8196 15.6 0.0852 8.7 0.56 
07ATTRE-18 197 265903 0.9 13.9533 2.3 1.5368 4.1 0.1555 3.4 0.83 
07ATTRE-106 195 1632830 2.5 10.0533 2.6 3.3251 4.7 0.2424 4.0 0.84 
07ATTRE-5 659 764617 2.5 14.5473 0.6 1.2768 6.7 0.1347 6.6 1.00 
07ATTRE-103 284 756159 4.4 12.1601 2.7 1.8410 6.1 0.1624 5.4 0.89 
07ATTRE-77 163 330871 2.0 14.2612 2.8 1.3233 7.5 0.1369 6.9 0.93 
07ATTRE-76 401 949692 1.0 11.4533 2.8 2.3986 7.2 0.1992 6.6 0.92 
07ATTRE-6 80 160340 1.9 14.0657 3.4 1.4714 3.8 0.1501 1.8 0.47 
07ATTRE-74 127 225094 2.2 13.7703 4.2 1.6312 6.6 0.1629 5.1 0.77 
07ATTRE-48 51 123580 1.6 12.6837 4.9 1.9715 5.4 0.1814 2.3 0.43 
07ATTRE-65 73 98751 2.2 13.1744 6.5 1.7193 7.0 0.1643 2.4 0.34 
  Note: All uncertainties are reported at the 1σ level, and include only measurement errors. Systematic errors are as follows for 206Pb/238U  
and 206Pb/207Pb, respectively, at 2σ level: 1.6% and 0.9% for sample TRD and 2.1% and 3.2% for sample TRE. Analyses conducted by  
LA-MC-ICPMS, as described by Gehrels et al. (2008). U/Pb and 206Pb/207Pb fractionation is calibrated relative to fragments of a large Sri  
Lanka zircon of 563.5±3.2 Ma (2σ). U decay constants and composition as follows: 238U = 9.8485 x 10-10, 235U = 1.55125 x 10-10,  
238U/235U = 137.88. 
   1U concentration and U/Th are calibrated relative to Sri Lanka zircon standard and are accurate to ~20%. 
   2Common Pb correction is from measured 204Pb with common Pb composition interpreted from Stacey and Kramers (1975). Common  
Pb composition assigned uncertainties of 1.5 for 206Pb/204Pb, 0.3 for 207Pb/204Pb, and 2.0 for 208Pb/204Pb. 
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Table A3.2b. Detrital U-Pb geochronologic analyses, age data. 
Analysis Apparent ages (Ma) 

 206Pb*/ ± 207Pb*/ ± 206Pb*/ ± Best  ± 
 

238U   
235U  

207Pb*  age3  
 (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) 
TRD 
07ATTRD-48 96.5 7.6 122 30 660 540 96.5 7.6 
07ATTRD-85 101.9 3.2 92 25 -160.0 710 101.9 3.2 
07ATTRD-44 111.1 3.7 118 15 260 290 111.1 3.7 
07ATTRD-21 505 19 509 21 525 73 505 19 
07ATTRD-33 508 40 500 55 460 250 508 40 
07ATTRD-4 509 44 660 140 1220 530 509 44 
07ATTRD-67 512 27 522 28 564 89 512 27 
07ATTRD-62 518 13 524 14 552 48 518 13 
07ATTRD-89 519 27 536 42 610 180 519 27 
07ATTRD-80 523 16 524 37 530 190 523 16 
07ATTRD-18 529 17 526 18 513 67 529 17 
07ATTRD-82 532 15 525 37 500 190 532 15 
07ATTRD-68 536 14 540 12 555 24 536 14 
07ATTRD-30 538 16 536 16 524 45 538 16 
07ATTRD-60 541 12 541 10 540 17 541 12 
07ATTRD-38 544 11 546.2 9.7 557 20 544 11 
07ATTRD-40 544.3 7.2 538 19 513 95 544.3 7.2 
07ATTRD-8 549.5 8.4 544.4 8.8 523 30 549.5 8.4 
07ATTRD-81 551 22 581 38 700 160 551 22 
07ATTRD-61 562.2 7.0 558.3 6.1 542 12 562.2 7.0 
07ATTRD-46 565 19 650 150 940 630 565 19 
07ATTRD-74 567 15 567 13 569 25 567 15 
07ATTRD-28 575 20 583 22 615 71 575 20 
07ATTRD-100 612 26 612 28 612 89 612 26 
07ATTRD-70 616 25 626 31 660 110 616 25 
07ATTRD-5 628 14 631 12 642 23 628 14 
07ATTRD-72 635 32 662 27 755 40 635 32 
07ATTRD-95 642 11 640 11 633 28 642 11 
07ATTRD-10 653 22 655 20 660 51 653 22 
07ATTRD-76 663 17 668 25 683 94 663 17 
07ATTRD-34 696 21 722 21 802 52 696 21 
07ATTRD-6 730 41 788 33 955 21 730 41 
07ATTRD-23 752 14 751 11 748 17 752 14 
07ATTRD-51 774 31 799 24 872 16 774 31 
07ATTRD-101 776 19 776 15 776 22 776 19 
07ATTRD-14 790 24 796 19 816 25 790 24 
07ATTRD-39 802 10 802.6 9.2 804 19 802 10 
07ATTRD-1 869 41 870 43 870 110 869 41 
07ATTRD-22 905 17 904 13 902 19 902 19 
07ATTRD-86 941 24 937 22 928 50 928 50 
07ATTRD-59 881 42 896 50 930 140 930 140 
07ATTRD-79 949 19 945 14 935 16 935 16 
07ATTRD-78 901 32 912 31 939 68 939 68 
07ATTRD-105 913 19 924 15 950 22 950 22 
07ATTRD-17 911 17 923 15 950 31 950 31 
07ATTRD-2 990 22 978 38 950 120 950 120 
07ATTRD-58 945.1 8.6 947 14 952 42 952 42 
07ATTRD-35 962 19 959 18 953 40 953 40 
07ATTRD-106 961 18 961 14 960 22 960 22 
07ATTRD-69 946 22 953 27 968 73 968 73 
07ATTRD-71 946 16 954 14 973 29 973 29 
07ATTRD-88 993 19 987 15 974 24 974 24 
07ATTRD-53 925 36 941 34 979 72 979 72 
07ATTRD-49 834 17 876 20 984 56 984 56 
07ATTRD-65 966 30 972 22 986 23 986 23 
07ATTRD-77 961 24 971 39 990 110 990 110 
07ATTRD-92 1023 22 1015 19 997 36 997 36 
07ATTRD-64 1031 33 1023 25 1008 35 1008 35 
07ATTRD-108 887 35 923 26 1011.1 9.4 1011.1 9.4 
07ATTRD-56 1038 45 1030 36 1013 61 1013 61 
07ATTRD-93 1019 22 1021 20 1024 41 1024 41 
07ATTRD-54 1081 22 1082 18 1082 31 1082 31 
07ATTRD-41 1132 15 1118 10 1089 12 1089 12 
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07ATTRD-83 1103 23 1102 17 1099 21 1099 21 
07ATTRD-63 1140 60 1133 43 1118 51 1118 51 
07ATTRD-29 1167 19 1163 15 1154 24 1154 24 
07ATTRD-15 1156 20 1164 14 1179 11 1179 11 
07ATTRD-12 1171 16 1174 11 1179.9 9.5 1179.9 9.5 
07ATTRD-87 1178 26 1198 19 1232 23 1232 23 
07ATTRD-98 1247 24 1247 17 1247 22 1247 22 
07ATTRD-52 1265 18 1281 14 1307 20 1307 20 
07ATTRD-57 1494 21 1520 24 1555 49 1555 49 
07ATTRD-37 1412 37 1512 24 1654 16 1654 16 
07ATTRD-19 1804 72 1830 40 1860 24 1860 24 
07ATTRD-26 1891 21 1883 13 1874 13 1874 13 
07ATTRD-45 2000 49 2023 25 2046.4 4.3 2046.4 4.3 
07ATTRD-107 2074 23 2089 12 2103.7 6.0 2103.7 6.0 
07ATTRD-55 2240 140 2319 68 2388.6 6.6 2388.6 6.6 
07ATTRD-36 2369 29 2404 14 2433.6 5.0 2433.6 5.0 
07ATTRD-32 2320 120 2386 56 2439 16 2439 16 
07ATTRD-42 2482 34 2474 19 2467 20 2467 20 
07ATTRD-27 2298 51 2389 24 2467.4 4.1 2467.4 4.1 
07ATTRD-24 2365 24 2424 12 2473.3 6.7 2473.3 6.7 
07ATTRD-103 2381 47 2438 22 2486 4.9 2486 4.9 
07ATTRD-73 2344 43 2424 20 2492.4 6.0 2492.4 6.0 
07ATTRD-47 2365 45 2469 21 2554.7 3.7 2554.7 3.7 
07ATTRD-9 2609 51 2670 24 2716 15 2716 15 
07ATTRD-102 2841 55 2933 26 2996 20 2996 20 
07ATTRD-31 2847 35 2953 15 3025.6 8.8 3025.6 8.8 
07ATTRD-90 3350 120 3397 46 3426 6.3 3426 6.3 
         
TRE 

07ATTRE-54 88.6 2.1 90.4 9.9 140 260 88.6 2.1 
07ATTRE-75 1554 20 1584 11 1624.0 3.0 1624.0 3.0 
07ATTRE-84 2536 61 2536 27 2534.9 4.4 2534.9 4.4 
07ATTRE-66 571.0 4.6 579.2 5.1 611 17 571.0 4.6 
07ATTRE-88 3403 57 3425 21 3437.6 5.4 3437.6 5.4 
07ATTRE-112 550.1 5.5 552.8 7.5 564 31 550.1 5.5 
07ATTRE-22 2388 43 2434 20 2471.6 6.1 2471.6 6.1 
07ATTRE-97 350.6 6.6 358 10 408 63 350.6 6.6 
07ATTRE-26 479.8 6.7 494.2 6.5 561 18 479.8 6.7 
07ATTRE-78 519.1 6.8 525 11 552 48 519.1 6.8 
07ATTRE-21 1129 18 1151 12 1191.4 7.3 1191.4 7.3 
07ATTRE-64 2716 62 2720 27 2723.7 7.3 2723.7 7.3 
07ATTRE-108 486.6 7.3 487 12 489 61 486.6 7.3 
07ATTRE-29 2114 61 2272 31 2416.7 7.5 2416.7 7.5 
07ATTRE-7 506.1 8.3 544 69 710 350 506.1 8.3 
07ATTRE-81 1656 22 1645 13 1631.8 8.7 1631.8 8.7 
07ATTRE-11 649.4 8.9 654.7 8.5 673 22 649.4 8.9 
07ATTRE-40 551.1 9.0 552.0 8.8 556 25 551.1 9.0 
07ATTRE-70 982 16 999 12 1036.2 9.1 1036.2 9.1 
07ATTRE-80 2185 63 2165 31 2145.9 9.2 2145.9 9.2 
07ATTRE-83 525.1 9.5 513 13 462 61 525.1 9.5 
07ATTRE-79 577.2 9.7 570 17 540 75 577.2 9.7 
07ATTRE-19 979 22 983 16 990 10 990 10 
07ATTRE-33 655 10 669 11 719 36 655 10 
07ATTRE-82 980 15 971 11 951 11 951 11 
07ATTRE-35 528 11 546 24 620 110 528 11 
07ATTRE-37 563 11 569 24 590 110 563 11 
07ATTRE-114 950 20 954 14 965 12 965 12 
07ATTRE-104 529 13 529 13 530 40 529 13 
07ATTRE-109 495 13 500 23 520 110 495 13 
07ATTRE-57 1726 13 1723.2 9.5 1720 14 1720 14 
07ATTRE-105 1079 27 1115 19 1186 14 1186 14 
07ATTRE-71 770 14 781 13 812 31 770 14 
07ATTRE-58 527 14 537 38 580 190 527 14 
07ATTRE-62 1174 29 1240 20 1358 15 1358 15 
07ATTRE-14 882 15 888 13 905 23 882 15 
07ATTRE-24 557 15 538 29 460 140 557 15 
07ATTRE-89 558 15 548 29 510 140 558 15 
07ATTRE-44 994 20 991 15 986 16 986 16 
07ATTRE-17 516 16 539 26 640 120 516 16 
07ATTRE-91 832 17 833 13 836 11 832 17 
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07ATTRE-96 552 17 560 16 591 36 552 17 
07ATTRE-2 537 17 538 19 541 66 537 17 
07ATTRE-28 518 17 496 31 400 160 518 17 
07ATTRE-32 985 25 984 18 983 18 983 18 
07ATTRE-60 1080 46 1064 31 1030 18 1030 18 
07ATTRE-53 815 18 835 15 889 25 815 18 
07ATTRE-94 518 18 519 20 526 74 518 18 
07ATTRE-1 497 18 495 60 480 330 497 18 
07ATTRE-16 928 14 940 11 968 19 968 19 
07ATTRE-90 882 19 890 16 909 26 882 19 
07ATTRE-52 1061 58 1044 39 1011 20 1011 20 
07ATTRE-36 702 20 774 32 990 100 702 20 
07ATTRE-10 969 21 968 16 967 21 967 21 
07ATTRE-86 500 21 477 82 370 480 500 21 
07ATTRE-115 762 22 814 17 959 10 762 22 
07ATTRE-55 939 26 937 19 933 22 933 22 
07ATTRE-73 879 32 897 24 941 22 941 22 
07ATTRE-46 429 23 457 21 598 21 429 23 
07ATTRE-27 894 17 934 14 1030 23 1030 23 
07ATTRE-25 516 23 498 35 420 160 516 23 
07ATTRE-43 576 23 630 130 850 580 576 23 
07ATTRE-34 594 25 598 21 614 18 594 25 
07ATTRE-47 1196 38 1178 26 1146 25 1146 25 
07ATTRE-111 594 26 593 21 590 25 594 26 
07ATTRE-85 944 12 938 11 924 26 924 26 
07ATTRE-113 920 13 930 12 952 26 952 26 
07ATTRE-63 1113 25 1106 19 1093 26 1093 26 
07ATTRE-13 1743 42 1740 25 1736 26 1736 26 
07ATTRE-93 707 26 731 22 804 31 707 26 
07ATTRE-95 501 26 487 42 420 210 501 26 
07ATTRE-49 958 11 963 11 974 27 974 27 
07ATTRE-39 1043 18 1037 15 1025 28 1025 28 
07ATTRE-41 1024 53 1053 38 1112 28 1112 28 
07ATTRE-20 463 29 500 130 650 690 463 29 
07ATTRE-51 742 32 756 25 800 24 742 32 
07ATTRE-72 504 35 529 33 638 77 504 35 
07ATTRE-30 1032 23 1066 20 1135 38 1135 38 
07ATTRE-92 1186 26 1181 22 1172 38 1172 38 
07ATTRE-56 505 40 512 71 540 340 505 40 
07ATTRE-4 1494 36 1523 27 1564 41 1564 41 
07ATTRE-3 911 23 917 20 931 42 931 42 
07ATTRE-61 527 44 608 71 920 270 527 44 
07ATTRE-18 932 30 945 25 976 47 976 47 
07ATTRE-106 1399 50 1487 37 1614 48 1614 48 
07ATTRE-5 815 51 835 38 891 13 815 51 
07ATTRE-103 970 49 1060 40 1251 53 1251 53 
07ATTRE-77 827 54 856 43 932 58 827 54 
07ATTRE-76 1171 71 1242 52 1367 55 1367 55 
07ATTRE-6 902 15 919 23 960 69 960 69 
07ATTRE-74 973 46 982 42 1003 85 1003 85 
07ATTRE-48 1074 23 1106 36 1168 96 1168 96 
07ATTRE-65 981 22 1016 45 1090 130 1090 130 
3Analyses with >10% uncertainty (1σ) in 206Pb/238U age are not included.  Analyses with >10% uncertainty  
(1σ) in 206Pb/207Pb are not included, unless 206Pb/238U age is <500 Ma. Best age is determined from 206Pb/238U  
age for analyses with 206Pb/238U age <1000 Ma and from 206Pb/207Pb age for analyses with 206Pb/238U age  
>1000 Ma. 
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APPENDIX F  

CHAPTER 3 SUPPLEMENT: 

ZHE DATA 
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Table A3.3. ZHe data   
Sam. 
name 

[4He]1 [238U]1 [232Th]1 AgeR
2 R13 R23 L3 T13 T23 FT

4 AgeC
5 Err. 

     (Ma) (µm) (µm) (µm) (µm) (µm)  (Ma) (2σ)6 
07-AT-TR-B (34°16’42.37”N, 77°10’55.24”E)          
z003  0.0977 2.1164 0.6475 24.98 38.7 38.7 138.0 - - 0.745 33.5 1.9 
z004 0.3352 4.4538 3.4689 38.76 46.2 46.2 165.5 - - 0.782 49.6 2.3 
z005 0.1311 1.8270 0.4837 35.65 29.3 32.3 144.3 39.6 33.4 0.678 52.6 1.7 
             
07-AT-TR-D (34°16’30.33”N, 77°11’0.05”E)            
z001  0.2057 3.3611 1.7031 32.41 47.0 43.1 152.1 34.2 31.7 0.761 42.6 1.5 
z002 0.2036 4.4802 0.8736 23.45 37.1 28.7 137.4 33.1 27.4 0.692 33.9 1.3 
z003 0.2452 4.1966 2.9763 29.05 46.2 40.1 138.2 40.4 24.6 0.744 39.1 1.3 
z004 0.1545 3.3536 1.4554 24.26 44.1 40.3 147.8 34.9 40.0 0.744 32.6 1.1 
z005 0.3861 6.6678 1.8788 29.63 39.6 28.7 135.7 19.3 29.2 0.701 42.3 1.4 
             
07-AT-TR-E (34°16’32.99”N, 77°11’0.47”E)         
z001  0.7267 13.868 0.2595 29.46 37.9 31.5 187.7 32.6 32.4 0.726 40.6 1.4 
z003 0.0580 1.0095 0.2226 28.20 28.9 57.3 83.9 27.6 29.3 0.663 42.5 1.9 
z004 0.1381 2.5226 0.6938 26.29 32.8 28.1 104.9 20.8 29.3 0.656 40.1 1.5 
z005 0.1078 1.6384 1.2416 26.83 30.3 26.8 86.3 24.5 22.5 0.616 43.6 1.7 
             
08-AT-ST-B (34°17’8.13”N, 77°10’0.69”E)         
z001  0.3042 6.4837 6.5190 24.73 62.7 76.7 226.3 62.3 55.4 0.835 29.6 1.1 
z002 2.4364 39.734 52.068 30.53 59.3 64.9 282.4 48.3 42.7 0.834 36.6 1.3 
z003 0.9821 15.995 35.829 26.13 61.5 67.4 259.7 70.1 50.4 0.830 31.5 1.2 
z004 1.8170 40.098 26.753 25.49 61.4 61.1 298.8 55.0 65.3 0.834 30.6 1.1 
z005 0.6335 9.8403 7.5803 34.76 52.1 52.7 347.0 40.6 55.3 0.818 42.5 1.4 
z006 1.1434 27.901 14.327 24.00 94.3 56.1 234.7 47.7 60.2 0.842 28.5 1.0 
z007 0.1070 1.8848 1.4750 27.38 39.0 37.2 157.0 29.1 36.0 0.732 37.4 1.2 
z008 0.2835 5.0716 4.1451 29.07 47.7 47.4 274.3 41.7 55.4 0.795 36.6 1.6 

   1Absolute measured 4He, 238U and 232Th concentrations are used to calculate the 'Raw Age' that is uncorrected for the effects of 4He  

loss due to alpha particle recoil. Measured in pmoles 
   2The 'Raw Age' was calculated with an iterative approach to solving the age equation. 
   3R1 and R2 describe the perpendicular half widths of the zircon crystal. L describes the total length of the zircon crystal and T1 and T2  

describe the height of the pyramidal termination of the zircon crystals. 
   4The mean FT correction was calculated following procedures defined by Hourigan et al. (2005). 
  5The FT corrected age of the crystal. The FT correction was applied to the raw age following procedures defined by Farley et al. (1996). 
   6The propagated 1σ and 2σ analytical errors.  
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Table A3.4. Sources for Eurasian Oligocene and older U-Pb zircon data.  

Citation Region Number of Dates 

Booth et al., 2003 Lhasa, Gangdese 231 

Chiu et al., 2009 Lhasa 24 

Chu et al., 2006 Lhasa, Gangdese 77 

Chung et al., 2003 Lhasa 1 

Dong et al., 2005 Gangdese 4 

Dong et al., 2011 Qiantang 138 

Dong et al., 2011b Lhasa 50 

Dunap and Wysoczanski, 2002 Ladakh 33 

Fraser et al., 2001 Karakoram 4 

Guynn et al., 2006 Lhasa 9 

Harrison et al., 2000 Gangese 3 

He et al., 2007 Gangdese 161 

Honegger et al., 1982 Ladakh 1 

Hu et al., 2003 Gangese 2 

Jain and Singh, 2008 Karakroram 9 

Ji et al., 2009 Gangese 42 

Kapp et al., 2005 Lhasa 60 

Krol et al., 1996 Kohistan 1 

Le Fort, 1983 Karakoram 1 

Leier et al., 2007 Lhasa 729 

Leloup et al., 2011 Karakoram 2 

McDermid et al., 2002 Lhasa 6 

Miller et al., 2000 Gangese 2 

Mo et al., 2005 Gangese 6 

Murphy et al., 1997 Lhasa 2 

Parrish and Tirrul, 1989 Karakoram 22 

Pullen et al., 2008 Qiantang 432 

Quidelleur et al., 1997 Lhasa 12 

Ravikant et al., 2009 Ladakh 12 

Schaltagger et al., 2002 Kohistan 5 

Scharer et al., 1984 Ladakh 26 

Scharer et al., 1984b Gangdese 11 

Scharer et al., 1990 Karakoram 4 

Searle et al., 1989 Karakoram 1 

Searle et al., 1990 Karakoram 5 

Searle et al., 1998 Karakoram 39 

Singh et al., 2007 Ladakh 2 

St Onge et al., 2010 Ladakh 2 

Upadhyay et al., 2008 Ladakh 5 

Volkmer et al., 2007 Lhasa 23 

Weinberg and Dunlap, 2000 Ladakh 3 

Weinberg et al., 2000 Karakoram 1 

Wen et al., 2008 Gangdese 25 

Xu et al., 1985 Lhasa 44 

Zhu et al., 2011 Qiangtang, Lhasa 507 
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APPENDIX H  

CHAPTER 4 SUPPLEMENT: 

 U-PB DATA FOR QUARTZITE CLASTS 
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Table A4.1a. U-Pb geochronologic analyses of zircons from quartzite clasts, raw 
data. 

Analysis U1 206Pb/ U/Th1 Isotope ratios   

 (ppm) 
204Pb2  206Pb*/ ± 207Pb*/ ± 206Pb*/ ± error 

    
207Pb*  

235U  
238U  corr. 

     (%)  (%)  (%)  

09-AT-LM-Y 
09ATLMY17 850 8426468 3.1 18.8594 2.6 0.2366 2.9 0.0324 1.4 0.48 
09ATLMY72 801 4554025 1.8 17.6529 1.6 0.5564 1.7 0.0712 0.7 0.40 
09ATLMY40 273 682520 1.5 19.8946 3.6 0.2312 4.0 0.0334 1.8 0.44 
09ATLMY10 114 365779 0.8 20.3798 11.0 0.2012 11.3 0.0297 2.4 0.21 
09ATLMY107 1071 6932424 1.7 17.3241 1.0 0.6586 1.4 0.0827 1.0 0.69 
09ATLMY83 311 385572 1.3 17.0132 9.4 0.2798 9.7 0.0345 2.4 0.25 
09ATLMY89 844 2475414 7.0 19.9383 0.8 0.2395 2.7 0.0346 2.5 0.95 
09ATLMY48 68 369555 0.8 20.6751 4.9 0.2252 5.6 0.0338 2.7 0.48 
09ATLMY64 255 886579 0.7 19.8833 2.0 0.2331 3.4 0.0336 2.7 0.80 
09ATLMY41 302 522917 2.6 19.2536 3.4 0.2157 4.6 0.0301 3.1 0.67 
09ATLMY65 296 746945 1.9 19.6510 2.0 0.2295 3.6 0.0327 3.0 0.84 
09ATLMY28 698 986707 1.9 19.7548 2.4 0.2702 3.7 0.0387 2.8 0.75 
09ATLMY101 212 486899 2.3 18.0119 3.6 0.4088 4.1 0.0534 2.0 0.49 
09ATLMY49 327 1061045 1.7 19.8822 8.8 0.2243 9.5 0.0323 3.4 0.36 
09ATLMY79 1065 2073124 2.5 15.6397 0.7 1.0081 1.3 0.1143 1.1 0.84 
09ATLMY33 208 947627 1.2 15.6565 0.6 1.0874 1.2 0.1235 1.1 0.88 
09ATLMY36 660 744763 1.9 17.3160 1.9 0.6471 2.5 0.0813 1.6 0.63 
09ATLMY73 224 438525 0.7 17.9009 4.0 0.6244 4.4 0.0811 1.8 0.41 
09ATLMY52 297 834351 1.6 17.1850 1.6 0.6794 2.4 0.0847 1.9 0.76 
09ATLMY45 295 904168 1.7 17.1154 2.6 0.6503 3.3 0.0807 2.0 0.61 
09ATLMY24 349 851925 6.6 17.1239 2.5 0.6711 3.1 0.0833 1.9 0.62 
09ATLMY59 219 114240 3.7 17.2854 7.5 0.7501 7.8 0.0940 2.0 0.26 
09ATLMY44 3038 830106 10.8 15.9863 2.4 0.8736 3.1 0.1013 2.0 0.63 
09ATLMY-2 250 69215 2.3 18.3508 12.6 0.6731 12.8 0.0896 2.3 0.18 
09ATLMY20 1263 1119298 4.4 12.7453 0.7 1.9654 1.4 0.1817 1.2 0.86 
09ATLMY99 93 208847 2.0 16.3455 10.5 0.7421 10.8 0.0880 2.4 0.22 
09ATLMY90 523 945069 5.7 12.2091 0.6 2.2791 1.3 0.2018 1.2 0.90 
09ATLMY82 529 1298895 1.0 18.6661 6.7 0.4848 7.5 0.0656 3.3 0.44 
09ATLMY11 1512 3413043 3.7 13.4703 1.4 1.6514 2.0 0.1613 1.5 0.74 
09ATLMY19 156 867496 2.7 14.2935 1.2 1.3901 2.0 0.1441 1.7 0.82 
09ATLMY102 648 1232207 1.2 12.5031 1.5 2.2215 2.0 0.2015 1.3 0.64 
09ATLMY14 56 33787 0.6 22.8703 27.8 0.5237 27.9 0.0869 2.8 0.10 
09ATLMY51 241 492482 5.6 16.5359 0.9 0.7616 3.0 0.0913 2.9 0.95 
09ATLMY22 1092 1565769 2.0 12.5190 1.9 2.1912 2.4 0.1990 1.5 0.62 
09ATLMY67 562 291077 2.8 18.9741 6.0 0.3807 7.8 0.0524 5.0 0.65 
09ATLMY98 121 627307 1.6 17.2863 3.5 0.7004 4.7 0.0878 3.1 0.67 
09ATLMY23 505 989997 3.4 10.2589 0.7 3.6369 1.6 0.2706 1.4 0.90 
09ATLMY29 432 654505 2.8 13.2043 1.5 1.7891 2.6 0.1713 2.1 0.81 
09ATLMY71 144 399522 0.6 13.1641 1.7 1.8040 2.8 0.1722 2.2 0.78 
09ATLMY7 598 525559 2.4 12.7454 2.1 2.0161 3.0 0.1864 2.0 0.69 
09ATLMY12 370 621963 2.5 12.5190 1.0 1.7599 2.6 0.1598 2.4 0.92 
09ATLMY74 289 257552 1.9 14.4776 1.1 1.3718 2.8 0.1440 2.6 0.93 
09ATLMY87 632 599210 1.2 10.2624 0.8 3.7038 1.9 0.2757 1.7 0.91 
09ATLMY100 288 806454 0.9 13.3915 0.5 1.7786 2.6 0.1727 2.5 0.98 
09ATLMY5 180 754856 1.4 9.6623 0.9 4.1820 2.0 0.2931 1.7 0.88 
09ATLMY68 235 380287 2.1 10.1751 1.6 3.5645 2.6 0.2631 2.0 0.77 
09ATLMY-3 390 1185756 3.5 14.1149 1.2 1.4614 3.4 0.1496 3.1 0.93 
09ATLMY109 196 250239 1.1 12.4145 0.8 2.2858 2.6 0.2058 2.4 0.95 
09ATLMY39 90 396589 3.7 14.6493 1.6 1.0735 4.4 0.1141 4.1 0.93 
09ATLMY93 127 230561 1.3 14.8277 1.5 1.1861 4.2 0.1276 3.9 0.93 
09ATLMY42 151 120222 1.3 10.7887 3.2 3.1465 3.9 0.2462 2.3 0.58 
09ATLMY86 155 334076 1.2 11.1488 2.0 2.9752 3.1 0.2406 2.4 0.76 
09ATLMY88 78 128618 1.2 13.4931 2.0 1.6621 3.8 0.1627 3.3 0.85 
09ATLMY56 754 677714 1.4 12.8847 2.5 1.9027 4.1 0.1778 3.2 0.79 
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09ATLMY15 175 734424 2.0 8.3461 0.2 5.5415 1.9 0.3354 1.9 1.00 
09ATLMY21 252 866118 1.8 14.0394 0.6 1.5954 3.6 0.1624 3.5 0.99 
09ATLMY104 453 264166 17.4 12.5202 1.6 2.0819 3.7 0.1890 3.3 0.90 
09ATLMY62 1254 408996 1.3 12.1664 1.0 2.3436 3.4 0.2068 3.2 0.95 
09ATLMY78 276 170863 1.5 12.6886 0.9 1.7987 4.0 0.1655 3.9 0.97 
09ATLMY31 1138 457142 1.1 10.6038 0.4 2.7662 3.2 0.2127 3.2 0.99 
09ATLMY66 421 604045 3.3 5.4334 0.4 12.6604 1.7 0.4989 1.7 0.98 
09ATLMY-4 312 212174 1.9 10.6730 1.4 3.2746 3.2 0.2535 2.8 0.89 
09ATLMY94 203 407402 1.6 9.2281 0.8 4.5507 2.7 0.3046 2.6 0.96 
09ATLMY81 409 571754 1.8 6.0799 0.2 10.5324 1.9 0.4644 1.9 0.99 
09ATLMY63 71 106426 1.1 10.2688 1.4 3.4570 3.3 0.2575 3.0 0.90 
09ATLMY108 801 668339 2.7 10.1017 1.2 3.2165 3.6 0.2357 3.4 0.94 
09ATLMY-1A 746 520288 9.1 5.1430 0.3 13.1034 2.2 0.4888 2.2 0.99 
09ATLMY55 536 329533 3.1 6.0595 0.3 10.0450 2.5 0.4415 2.5 0.99 
09ATLMY77 1841 150167 1.6 5.0763 0.8 12.1358 2.7 0.4468 2.6 0.95 
09ATLMY34 907 277939 1.9 6.0204 0.5 10.0937 2.7 0.4407 2.7 0.98 
09ATLMY103 559 144281 3.9 8.6561 0.5 5.3535 3.5 0.3361 3.4 0.99 
09ATLMY50 199 141099 1.7 12.2493 1.3 2.3582 5.3 0.2095 5.1 0.97 
09ATLMY8 149 91391 1.8 9.2794 1.7 3.9782 4.8 0.2677 4.5 0.94 
09ATLMY30 429 35460 2.4 13.1058 0.6 1.8638 6.6 0.1772 6.6 1.00 
09ATLMY53 298 80386 1.9 8.2642 0.5 5.2547 4.7 0.3150 4.6 0.99 
09ATLMY26 380 90366 1.2 4.9497 0.8 15.4482 3.2 0.5546 3.1 0.97 
09ATLMY84 53 32403 1.2 6.5557 2.4 9.8838 10.3 0.4699 10.0 0.97 

09-AT-LM-Z 
09ATLMZ-121 724 73935 0.6 20.1256 8.5 0.0518 8.9 0.0076 2.6 0.29 
09ATLMZ-69 331 24776 1.0 20.3461 18.6 0.0651 18.8 0.0096 2.8 0.15 
09ATLMZ-113 601 73341 1.3 22.7373 5.9 0.0869 6.4 0.0143 2.5 0.39 
09ATLMZ-28 608 42463 0.6 17.5705 6.6 0.0756 7.7 0.0096 4.0 0.52 
09ATLMZ-80 455 46053 1.3 21.2420 16.3 0.0862 16.6 0.0133 3.0 0.18 
09ATLMZ-98 733 187489 4.1 19.7535 2.8 0.2280 3.1 0.0327 1.3 0.43 
09ATLMZ-106 470 70311 1.1 21.0339 12.1 0.0869 12.6 0.0133 3.3 0.27 
09ATLMZ-21 809 286408 1.5 21.7557 3.9 0.0936 4.9 0.0148 3.0 0.62 
09ATLMZ-30 368 40934 1.4 23.5213 20.3 0.0795 20.8 0.0136 4.3 0.21 
09ATLMZ-9 680 769838 5.5 18.3012 2.5 0.4343 2.9 0.0576 1.5 0.53 
09ATLMZ-64 271 88179 2.5 19.0072 10.3 0.2675 10.5 0.0369 2.4 0.23 
09ATLMZ-3 525 1776917 2.8 16.5530 1.5 0.8431 1.8 0.1012 1.0 0.54 
09ATLMZ-122 227 109606 1.5 18.3185 18.4 0.2323 18.9 0.0309 4.0 0.21 
09ATLMZ-70 520 310173 3.1 17.1262 2.4 0.6766 2.9 0.0840 1.6 0.55 
09ATLMZ-43 592 552424 4.8 15.8683 1.2 1.0002 1.8 0.1151 1.2 0.71 
09ATLMZ-38 132 45672 1.4 19.9393 19.4 0.2210 19.9 0.0320 4.5 0.23 
09ATLMZ-60 244 399208 1.2 14.9231 1.4 1.2252 1.9 0.1326 1.2 0.67 
09ATLMZ-27 724 966655 6.5 14.7289 0.7 1.3047 1.5 0.1394 1.3 0.87 
09ATLMZ-4 194 467271 1.5 13.0075 2.0 1.9390 2.3 0.1829 1.1 0.49 
09ATLMZ-115 751 625402 3.2 16.9080 1.3 0.6763 2.7 0.0829 2.4 0.88 
09ATLMZ-39 469 441771 6.6 16.8936 2.9 0.7373 3.7 0.0903 2.3 0.63 
09ATLMZ-16 187 115915 0.7 17.5327 5.7 0.6418 6.3 0.0816 2.6 0.41 
09ATLMZ-107 657 645262 6.7 16.3281 0.7 0.8529 2.5 0.1010 2.4 0.96 
09ATLMZ-117 297 304627 4.0 18.9046 5.8 0.4357 7.1 0.0597 4.1 0.58 
09ATLMZ-120 168 496639 2.3 14.6096 2.1 1.2775 2.9 0.1354 2.0 0.69 
09ATLMZ-63 112 123093 2.6 14.6657 2.2 1.3217 3.0 0.1406 2.0 0.67 
09ATLMZ-1 379 210217 3.1 17.4225 2.0 0.6745 3.9 0.0852 3.4 0.86 
09ATLMZ-87 793 819802 3.2 16.5201 1.3 0.8161 3.3 0.0978 3.0 0.92 
09ATLMZ-83 190 325390 1.2 13.0970 1.7 1.9087 2.4 0.1813 1.8 0.73 
09ATLMZ-102 258 721286 1.2 11.0583 0.8 2.8303 1.7 0.2270 1.5 0.88 
09ATLMZ-95 167 140055 2.1 16.9921 5.9 0.7509 6.7 0.0925 3.3 0.49 
09ATLMZ-116 420 1288383 2.2 13.1128 1.2 1.8894 2.2 0.1797 1.9 0.84 
09ATLMZ-32 287 303401 1.5 17.4635 2.8 0.6579 4.9 0.0833 3.9 0.81 
09ATLMZ-119 326 726198 1.1 12.4978 0.9 2.2107 2.1 0.2004 1.9 0.90 
09ATLMZ-109 743 1191881 5.5 13.6143 2.4 1.3451 3.6 0.1328 2.7 0.75 
09ATLMZ-72 976 307230 2.3 13.8173 0.9 1.5796 2.5 0.1583 2.3 0.94 
09ATLMZ-50 1005 2035079 3.1 14.3540 0.4 1.4199 2.5 0.1478 2.5 0.99 
09ATLMZ-24 192 335428 1.6 13.4605 2.0 1.8633 3.0 0.1819 2.2 0.74 
09ATLMZ-91 341 766963 1.9 12.9871 0.8 1.9693 2.3 0.1855 2.2 0.95 
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09ATLMZ-17 467 722993 1.9 15.1807 1.1 1.1804 3.3 0.1300 3.1 0.94 
09ATLMZ-25 85 330421 1.5 8.9588 1.6 4.9722 2.2 0.3231 1.5 0.66 
09ATLMZ-51 136 186494 2.1 12.7117 1.6 2.1173 2.7 0.1952 2.2 0.81 
09ATLMZ-103 162 152331 0.8 17.4241 5.6 0.6523 7.4 0.0824 4.7 0.64 
09ATLMZ-44 107 386759 2.2 8.8274 1.0 5.0856 1.8 0.3256 1.5 0.84 
09ATLMZ-36 97 187344 1.1 10.3197 1.3 3.5443 2.2 0.2653 1.8 0.81 
09ATLMZ-104 234 375603 1.1 13.6540 0.9 1.7805 2.8 0.1763 2.7 0.94 
09ATLMZ-10 121 271441 3.9 15.0600 8.2 1.3065 8.9 0.1427 3.2 0.36 
09ATLMZ-81 157 421836 1.6 12.3838 1.7 2.0759 3.3 0.1865 2.8 0.85 
09ATLMZ-65 882 1087711 2.3 14.2986 0.6 1.4462 3.4 0.1500 3.4 0.98 
09ATLMZ-77 328 334813 1.2 14.0279 1.2 1.5560 3.5 0.1583 3.3 0.94 
09ATLMZ-40 172 343712 1.4 11.8917 2.4 2.3812 3.6 0.2054 2.7 0.74 
09ATLMZ-55 230 461302 1.2 13.2479 1.2 1.9167 3.3 0.1842 3.1 0.93 
09ATLMZ-111 925 2380389 2.6 14.2512 0.9 1.3921 3.9 0.1439 3.8 0.98 
09ATLMZ-66 312 1488082 0.7 5.4708 0.3 12.6724 1.5 0.5028 1.4 0.97 
09ATLMZ-37 438 653221 3.1 14.6424 1.6 1.2087 4.6 0.1284 4.3 0.94 
09ATLMZ-112 721 5362545 9.2 5.5184 0.3 11.9009 1.6 0.4763 1.6 0.99 
09ATLMZ-59 502 1676751 11.8 13.1161 0.8 1.7941 3.6 0.1707 3.5 0.97 
09ATLMZ-97 204 363274 2.0 14.1323 2.1 1.6244 4.5 0.1665 4.0 0.88 
09ATLMZ-92 288 1186626 1.4 8.3380 0.4 5.8393 2.2 0.3531 2.2 0.98 
09ATLMZ-8 165 351115 1.0 8.7526 0.7 5.0995 2.5 0.3237 2.4 0.96 
09ATLMZ-45 258 3406341 2.1 4.3721 0.6 19.1414 1.7 0.6070 1.6 0.93 
09ATLMZ-31 114 382215 3.4 13.1361 2.8 1.9717 4.7 0.1878 3.8 0.81 
09ATLMZ-53 202 856590 1.2 7.5409 1.1 7.1154 2.5 0.3892 2.2 0.90 
09ATLMZ-76 279 356115 2.1 13.1100 1.9 1.7747 4.7 0.1687 4.3 0.91 
09ATLMZ-71 1076 2566751 17.4 14.4596 0.6 1.3494 5.3 0.1415 5.2 0.99 
09ATLMZ-47 779 703107 7.3 12.4802 0.9 1.9290 4.5 0.1746 4.4 0.98 
09ATLMZ-82 468 3285703 2.2 3.5233 0.7 22.3615 2.0 0.5714 1.9 0.94 
09ATLMZ-85 78 259519 1.6 8.7647 1.2 5.2334 3.2 0.3327 2.9 0.92 
09ATLMZ-7 565 241165 1.6 13.4799 1.2 1.6207 5.5 0.1584 5.4 0.98 
09ATLMZ-56 518 1045189 10.0 14.0302 0.8 1.6027 5.4 0.1631 5.3 0.99 
09ATLMZ-41 274 514299 2.5 14.1260 1.7 1.4222 7.1 0.1457 6.9 0.97 
09ATLMZ-79 119 221486 1.1 12.6037 1.8 2.0756 6.2 0.1897 5.9 0.95 
09ATLMZ-49 590 2669809 6.8 5.2714 0.8 12.1344 3.5 0.4639 3.4 0.98 
09ATLMZ-29 118 860461 2.8 4.0844 0.6 21.5068 2.9 0.6371 2.8 0.98 
09ATLMZ-46 140 1579346 1.2 3.6264 1.8 25.5477 4.2 0.6719 3.8 0.91 
09ATLMZ-6 360 242691 2.9 5.6242 0.3 11.0530 8.8 0.4509 8.8 1.00 
   Note: All uncertainties are reported at the 1σ level, and include only measurement errors. Systematic errors are as follows for  
206Pb/238U and 206Pb/207Pb, respectively, at 2σ level: 1.6% and 0.9% for sample TRD and 2.1% and 3.2% for sample TRE. Analyses  
 conducted by LA-MC-ICPMS, as described by Gehrels et al. (2008). U/Pb and 206Pb/207Pb fractionation is calibrated relative to  
fragments of a large Sri Lanka zircon of 563.5±3.2 Ma (2σ). U decay constants and composition as follows: 238U = 9.8485 x 10-10,  

235U = 1.55125 x 10-10, 238U/235U = 137.88. 
   1U concentration and U/Th are calibrated relative to Sri Lanka zircon standard and are accurate to ~20%. 
   2Common Pb correction is from measured 204Pb with common Pb composition interpreted from Stacey and Kramers (1975). Common  
Pb composition assigned uncertainties of 1.5 for 206Pb/204Pb, 0.3 for 207Pb/204Pb, and 2.0 for 208Pb/204Pb. 
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Table A4.1b. U-Pb geochronologic analyses of zircons from quartzite clasts, age 
data. 

Analysis Apparent ages (Ma) 

 206Pb*/ ± 207Pb*/ ± 206Pb*/ ± Best  ± 
 

238U   
235U  

207Pb*  age3  
 (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) 

09-AT-LM-Y 
09ATLMY17 205.3 2.8 215.7 5.7 329.8 58.8 205.3 2.8 
09ATLMY72 443.6 2.9 449.2 6.2 477.8 34.5 443.6 2.9 
09ATLMY40 211.5 3.7 211.2 7.7 207.2 83.7 211.5 3.7 
09ATLMY10 188.9 4.5 186.1 19.2 150.0 260.0 188.9 4.5 
09ATLMY107 512.5 4.7 513.7 5.6 519.2 21.8 512.5 4.7 
09ATLMY83 218.8 5.2 250.5 21.6 560.0 210.0 218.8 5.2 
09ATLMY89 219.5 5.5 218.0 5.2 202.2 19.1 219.5 5.5 
09ATLMY48 214.1 5.6 206.2 10.4 120.0 120.0 214.1 5.6 
09ATLMY64 213.1 5.7 212.8 6.4 208.6 46.3 213.1 5.7 
09ATLMY41 191.3 5.9 198.3 8.3 282.7 77.9 191.3 5.9 
09ATLMY65 207.5 6.1 209.8 6.8 235.8 45.2 207.5 6.1 
09ATLMY28 244.9 6.6 242.9 7.9 223.6 55.7 244.9 6.6 
09ATLMY101 335.4 6.6 348.0 12.1 433.2 79.7 335.4 6.6 
09ATLMY49 205.2 6.9 205.5 17.6 210.0 210.0 205.2 6.9 
09ATLMY79 697.9 7.3 707.9 6.7 739.6 14.8 697.9 7.3 
09ATLMY33 750.5 7.5 747.2 6.4 737.4 12.1 750.5 7.5 
09ATLMY36 503.7 7.6 506.7 9.9 520.3 42.4 503.7 7.6 
09ATLMY73 502.5 8.6 492.6 17.2 446.9 89.5 502.5 8.6 
09ATLMY52 524.0 9.4 526.4 10.1 537.0 34.9 524.0 9.4 
09ATLMY45 500.5 9.6 508.7 13.1 545.8 56.7 500.5 9.6 
09ATLMY24 516.1 9.7 521.4 12.8 544.7 54.1 516.1 9.7 
09ATLMY59 579.4 11.3 568.3 34.0 520.0 170.0 579.4 11.3 
09ATLMY44 622.0 11.6 637.5 14.6 693.1 51.1 622.0 11.6 
09ATLMY-2 553.1 12.1 522.6 52.4 390.0 280.0 553.1 12.1 
09ATLMY20 1076.1 12.1 1103.7 9.6 1158.5 14.5 1158.5 14.5 
09ATLMY99 543.5 12.6 563.6 46.7 650.0 230.0 543.5 12.6 
09ATLMY90 1185.0 12.7 1205.8 9.3 1243.3 11.4 1243.3 11.4 
09ATLMY82 409.8 13.2 401.3 24.9 350.0 150.0 409.8 13.2 
09ATLMY11 964.2 13.4 990.1 12.8 1047.9 27.5 1047.9 27.5 
09ATLMY19 867.9 13.6 884.7 12.1 927.2 24.1 867.9 13.6 
09ATLMY102 1183.1 13.7 1187.9 14.0 1196.5 30.3 1196.5 30.3 
09ATLMY14 537.0 14.6 427.6 97.8 -130.0 700.0 537.0 14.6 
09ATLMY51 563.5 15.6 575.0 13.3 620.6 19.8 563.5 15.6 
09ATLMY22 1169.7 15.9 1178.3 16.6 1194.0 36.6 1194.0 36.6 
09ATLMY67 329.2 16.2 327.5 21.9 320.0 140.0 329.2 16.2 
09ATLMY98 542.6 16.4 539.0 19.8 524.0 77.4 542.6 16.4 
09ATLMY23 1543.8 19.6 1557.6 12.6 1576.4 12.7 1576.4 12.7 
09ATLMY29 1019.4 19.9 1041.5 16.9 1088.0 30.1 1088.0 30.1 
09ATLMY71 1024.4 20.5 1046.9 18.2 1094.1 34.8 1094.1 34.8 
09ATLMY7 1101.6 20.7 1120.9 20.1 1158.5 42.5 1158.5 42.5 
09ATLMY12 955.6 21.1 1030.8 16.8 1194.0 20.1 1194.0 20.1 
09ATLMY74 867.5 21.4 876.9 16.7 900.9 21.9 867.5 21.4 
09ATLMY87 1569.5 24.0 1572.2 15.2 1575.7 15.0 1575.7 15.0 
09ATLMY100 1027.2 24.1 1037.7 16.8 1059.8 9.8 1059.8 9.8 
09ATLMY5 1656.8 25.2 1670.5 16.1 1687.7 17.3 1687.7 17.3 
09ATLMY68 1505.4 26.2 1541.7 20.2 1591.7 30.6 1591.7 30.6 
09ATLMY-3 898.8 26.3 914.6 20.3 953.0 25.2 953.0 25.2 
09ATLMY109 1206.4 26.7 1207.9 18.1 1210.5 16.5 1210.5 16.5 
09ATLMY39 696.3 27.1 740.5 23.1 876.5 33.1 696.3 27.1 
09ATLMY93 773.9 28.4 794.2 23.1 851.4 31.9 773.9 28.4 
09ATLMY42 1418.9 28.8 1444.1 30.0 1481.5 60.0 1481.5 60.0 
09ATLMY86 1389.7 29.4 1401.3 23.4 1419.0 38.1 1419.0 38.1 
09ATLMY88 971.5 29.4 994.2 24.3 1044.5 40.4 1044.5 40.4 
09ATLMY56 1055.0 31.3 1082.0 27.1 1137.0 49.7 1137.0 49.7 
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09ATLMY15 1864.7 31.3 1907.1 16.7 1953.5 3.0 1953.5 3.0 
09ATLMY21 970.4 31.6 968.4 22.2 964.0 12.3 964.0 12.3 
09ATLMY104 1116.2 33.9 1142.9 25.3 1193.8 32.0 1193.8 32.0 
09ATLMY62 1211.7 35.3 1225.6 23.9 1250.1 19.9 1250.1 19.9 
09ATLMY78 987.4 35.9 1045.0 26.3 1167.4 18.0 1167.4 18.0 
09ATLMY31 1243.4 36.0 1346.5 24.0 1514.2 8.2 1514.2 8.2 
09ATLMY66 2609.1 36.1 2654.7 16.2 2689.7 5.8 2689.7 5.8 
09ATLMY-4 1456.4 37.0 1475.0 24.8 1501.9 27.3 1501.9 27.3 
09ATLMY94 1714.0 38.5 1740.3 22.3 1772.1 14.3 1772.1 14.3 
09ATLMY81 2459.1 39.1 2482.8 17.9 2502.2 4.1 2502.2 4.1 
09ATLMY63 1476.9 39.4 1517.5 26.0 1574.6 26.4 1574.6 26.4 
09ATLMY108 1364.1 42.0 1461.1 28.0 1605.2 22.1 1605.2 22.1 
09ATLMY-1A 2565.3 46.9 2687.1 21.1 2780.1 4.8 2780.1 4.8 
09ATLMY55 2357.1 49.6 2438.9 23.4 2507.9 5.4 2507.9 5.4 
09ATLMY77 2381.0 51.9 2615.0 25.6 2801.5 13.4 2801.5 13.4 
09ATLMY34 2353.9 52.5 2443.4 25.0 2518.7 8.1 2518.7 8.1 
09ATLMY103 1867.8 55.8 1877.4 29.8 1888.1 8.9 1888.1 8.9 
09ATLMY50 1226.2 57.0 1230.0 37.5 1236.8 24.9 1236.8 24.9 
09ATLMY8 1529.3 61.2 1629.8 39.0 1762.0 30.9 1762.0 30.9 
09ATLMY30 1051.4 63.8 1068.3 43.6 1103.0 11.6 1103.0 11.6 
09ATLMY53 1765.0 71.7 1861.5 39.9 1971.1 9.6 1971.1 9.6 
09ATLMY26 2844.2 71.7 2843.3 30.7 2842.7 13.0 2842.7 13.0 
09ATLMY84 2480.0 210.0 2424.0 95.1 2374.6 41.6 2374.6 41.6 

09-AT-LM-Z 
09ATLMZ-121 48.6 1.3 51.3 4.5 180.0 200.0 48.6 1.3 
09ATLMZ-69 61.6 1.7 64.0 11.6 150.0 440.0 61.6 1.7 
09ATLMZ-113 91.8 2.3 84.6 5.2 -110.0 150.0 91.8 2.3 
09ATLMZ-28 61.8 2.5 74.0 5.5 490.0 150.0 61.8 2.5 
09ATLMZ-80 85.0 2.5 83.9 13.3 50.0 390.0 85.0 2.5 
09ATLMZ-98 207.2 2.7 208.5 5.9 223.7 65.6 207.2 2.7 
09ATLMZ-106 84.9 2.8 84.6 10.2 80.0 290.0 84.9 2.8 
09ATLMZ-21 94.5 2.9 90.9 4.3 -4.2 93.0 94.5 2.9 
09ATLMZ-30 86.8 3.7 77.6 15.5 -200.0 510.0 86.8 3.7 
09ATLMZ-9 361.3 5.4 366.2 9.0 397.5 55.5 361.3 5.4 
09ATLMZ-64 233.5 5.5 240.7 22.6 310.0 230.0 233.5 5.5 
09ATLMZ-3 621.5 5.9 620.8 8.4 618.3 33.0 621.5 5.9 
09ATLMZ-122 196.0 7.8 212.1 36.1 400.0 420.0 196.0 7.8 
09ATLMZ-70 520.2 7.8 524.7 11.7 544.4 52.5 520.2 7.8 
09ATLMZ-43 702.4 8.3 703.9 8.9 708.8 26.2 702.4 8.3 
09ATLMZ-38 202.8 9.0 202.7 36.7 200.0 450.0 202.8 9.0 
09ATLMZ-60 802.7 9.4 812.1 10.4 838.1 28.8 802.7 9.4 
09ATLMZ-27 841.1 10.2 847.8 8.6 865.3 15.5 841.1 10.2 
09ATLMZ-4 1082.9 11.1 1094.7 15.2 1118.1 39.3 1118.1 39.3 
09ATLMZ-115 513.6 11.9 524.5 11.2 572.4 28.4 513.6 11.9 
09ATLMZ-39 557.6 12.5 560.8 16.1 574.2 63.2 557.6 12.5 
09ATLMZ-16 505.7 12.5 503.4 25.0 490.0 130.0 505.7 12.5 
09ATLMZ-107 620.3 14.1 626.2 11.7 647.8 15.7 620.3 14.1 
09ATLMZ-117 374.0 15.1 367.2 21.9 320.0 130.0 374.0 15.1 
09ATLMZ-120 818.4 15.3 835.7 16.4 882.2 42.8 818.4 15.3 
09ATLMZ-63 847.9 15.9 855.2 17.2 874.2 45.5 847.9 15.9 
09ATLMZ-1 527.2 17.1 523.4 16.0 506.8 43.4 527.2 17.1 
09ATLMZ-87 601.4 17.5 605.9 15.1 622.6 27.8 601.4 17.5 
09ATLMZ-83 1074.1 17.7 1084.1 16.3 1104.3 33.4 1104.3 33.4 
09ATLMZ-102 1318.8 17.9 1363.6 12.8 1434.6 15.3 1434.6 15.3 
09ATLMZ-95 570.5 18.1 568.7 29.3 560.0 130.0 570.5 18.1 
09ATLMZ-116 1065.3 18.2 1077.4 14.7 1102.0 24.0 1102.0 24.0 
09ATLMZ-32 516.0 19.6 513.3 19.6 501.6 62.7 516.0 19.6 
09ATLMZ-119 1177.4 20.0 1184.4 14.4 1197.4 17.5 1197.4 17.5 
09ATLMZ-109 803.9 20.5 865.4 21.0 1026.4 47.9 1026.4 47.9 
09ATLMZ-72 947.3 20.7 962.2 15.6 996.5 17.8 996.5 17.8 
09ATLMZ-50 888.7 20.8 897.3 15.1 918.6 8.3 918.6 8.3 
09ATLMZ-24 1077.4 21.9 1068.2 19.6 1049.4 40.2 1049.4 40.2 
09ATLMZ-91 1096.9 22.3 1105.1 15.7 1121.2 15.2 1121.2 15.2 
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09ATLMZ-17 787.6 22.7 791.5 17.9 802.3 23.5 787.6 22.7 
09ATLMZ-25 1804.7 22.9 1814.6 18.6 1826.0 29.9 1826.0 29.9 
09ATLMZ-51 1149.5 22.9 1154.5 18.5 1163.8 31.2 1163.8 31.2 
09ATLMZ-103 510.6 23.2 509.9 29.5 510.0 120.0 510.6 23.2 
09ATLMZ-44 1817.0 23.7 1833.7 15.2 1852.7 17.8 1852.7 17.8 
09ATLMZ-36 1516.8 24.0 1537.2 17.3 1565.3 23.9 1565.3 23.9 
09ATLMZ-104 1046.8 25.8 1038.4 18.4 1020.5 19.1 1020.5 19.1 
09ATLMZ-10 859.9 25.9 848.6 51.0 820.0 170.0 859.9 25.9 
09ATLMZ-81 1102.1 28.4 1140.9 22.5 1215.4 33.6 1215.4 33.6 
09ATLMZ-65 900.8 28.5 908.3 20.7 926.5 12.3 926.5 12.3 
09ATLMZ-77 947.4 29.2 952.9 21.7 965.7 23.9 965.7 23.9 
09ATLMZ-40 1204.1 29.6 1237.0 26.0 1294.7 47.3 1294.7 47.3 
09ATLMZ-55 1089.7 30.6 1086.9 21.9 1081.4 24.2 1081.4 24.2 
09ATLMZ-111 866.6 31.0 885.6 23.2 933.3 17.8 866.6 31.0 
09ATLMZ-66 2625.9 31.0 2655.6 13.9 2678.3 5.5 2678.3 5.5 
09ATLMZ-37 778.5 31.8 804.6 25.6 877.5 32.6 778.5 31.8 
09ATLMZ-112 2511.2 32.6 2596.6 14.9 2664.0 4.5 2664.0 4.5 
09ATLMZ-59 1015.8 32.9 1043.3 23.5 1101.4 16.9 1101.4 16.9 
09ATLMZ-97 992.8 36.9 979.7 28.6 950.5 44.0 950.5 44.0 
09ATLMZ-92 1949.5 37.0 1952.3 19.4 1955.2 7.0 1955.2 7.0 
09ATLMZ-8 1807.8 38.3 1836.0 21.5 1868.1 13.1 1868.1 13.1 
09ATLMZ-45 3057.8 38.5 3049.0 16.4 3043.1 10.1 3043.1 10.1 
09ATLMZ-31 1109.7 39.1 1105.9 31.8 1098.4 55.1 1098.4 55.1 
09ATLMZ-53 2118.9 39.8 2126.0 21.8 2132.8 18.9 2132.8 18.9 
09ATLMZ-76 1005.2 40.4 1036.2 30.9 1102.4 38.6 1102.4 38.6 
09ATLMZ-71 853.2 41.9 867.3 30.7 903.4 11.8 853.2 41.9 
09ATLMZ-47 1037.4 42.1 1091.2 30.0 1200.1 18.5 1200.1 18.5 
09ATLMZ-82 2913.6 44.5 3199.6 19.6 3384.1 10.8 3384.1 10.8 
09ATLMZ-85 1851.3 47.3 1858.1 27.2 1865.6 22.5 1865.6 22.5 
09ATLMZ-7 948.1 47.7 978.3 34.8 1046.5 24.6 1046.5 24.6 
09ATLMZ-56 973.9 48.1 971.3 33.6 965.3 16.0 965.3 16.0 
09ATLMZ-41 876.8 56.2 898.3 42.2 951.4 34.7 951.4 34.7 
09ATLMZ-79 1119.9 60.8 1140.8 42.5 1180.7 36.4 1180.7 36.4 
09ATLMZ-49 2456.9 69.7 2614.9 32.8 2739.6 12.6 2739.6 12.6 
09ATLMZ-29 3177.6 71.2 3161.7 28.2 3151.7 9.7 3151.7 9.7 
09ATLMZ-46 3313.3 99.7 3329.4 41.5 3339.1 27.9 3339.1 27.9 
09ATLMZ-6 2400.0 180.0 2527.6 82.4 2632.5 4.3 2632.5 4.3 
3Analyses with >10% uncertainty (2σ) in 206Pb/238U age are not included. Analyses with >10% 
uncertainty (1σ) in 206Pb/207Pb are not included, unless 206Pb/238U age is <500 Ma. Best age is 
determined from 206Pb/238U age for analyses with 206Pb/238U age <1000 Ma and from 206Pb/207Pb 
age for analyses with 206Pb/238U age >1000 Ma. 
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APPENDIX I  

CHAPTER 4 SUPPLEMENT: 

40AR/39AR FOR 08-AT-ZG-A 
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Table A4.2. 40Ar/39Ar data for sample 08-AT-ZG-A. 

Lab 
ID# 40Ar*/39Ar 40Ar/39Ar 36Ar/39Ar 39Ar %40Ar* Age (Ma)1 

  ± 2s ± 2s ± 2s (moles)   ± 2s 

08-AT-ZG-A 

103-21 179.939 2.423 181.026 2.419 0.0036 0.0010 8.52E-17 99.41 480.5 5.3 

103-03 179.133 1.643 183.273 1.603 0.0139 0.0015 6.19E-17 97.76 489.6 8.0 

103-08 187.445 1.793 188.811 1.773 0.0046 0.0011 7.59E-17 99.29 516.2 5.8 

103-09 181.617 1.004 189.186 1.004 0.0256 0.0008 1.55E-16 96.01 517.2 3.9 

103-02 190.601 4.574 193.158 4.235 0.0086 0.0063 1.29E-17 98.69 521.0 5.1 

103-63 186.909 2.301 191.150 2.206 0.0143 0.0027 3.21E-17 97.80 523.4 8.5 

103-05 176.626 1.992 177.468 1.935 0.0028 0.0017 4.36E-17 99.54 524.7 5.5 

103-07 188.858 1.792 191.459 1.802 0.0087 0.0007 1.41E-16 98.66 525.5 4.1 

103-11 180.412 1.783 183.659 1.756 0.0109 0.0014 6.62E-17 98.25 526.2 4.3 

103-19 193.230 0.954 194.167 0.944 0.0031 0.0005 1.90E-16 99.53 527.4 4.2 

103-04 184.967 1.184 185.705 1.169 0.0024 0.0007 1.15E-16 99.62 527.6 4.0 

103-01 184.342 1.445 185.345 1.431 0.0033 0.0008 9.22E-17 99.47 529.4 6.2 

103-28 178.388 1.603 180.453 1.576 0.0069 0.0012 6.86E-17 98.87 530.6 4.5 

103-29 174.758 2.248 176.928 2.199 0.0073 0.0019 4.14E-17 98.79 533 13 

103-13 183.983 1.469 184.945 1.468 0.0032 0.0005 1.64E-16 99.49 533.7 2.6 

103-18 211.425 4.779 218.176 4.799 0.0228 0.0037 2.51E-17 96.92 537.5 4.7 

103-16 178.084 2.151 179.997 2.072 0.0064 0.0022 4.19E-17 98.95 537.5 4.3 

103-20 185.559 1.149 193.792 1.183 0.0278 0.0005 4.87E-16 95.77 539.2 3.3 

103-60 186.136 1.492 187.333 1.494 0.0040 0.0005 2.10E-16 99.38 539.7 3.7 

103-10 184.602 1.465 186.070 1.439 0.0049 0.0011 8.27E-17 99.23 540.6 3.7 

103-14 183.773 1.304 185.780 1.281 0.0067 0.0010 9.37E-17 98.93 541.3 3.7 

103-69 179.227 1.584 185.081 1.553 0.0198 0.0016 5.67E-17 96.85 541.5 4.7 

103-30 178.685 1.679 180.361 1.635 0.0056 0.0015 5.12E-17 99.09 542.2 3.0 

103-06 183.101 1.861 188.817 1.843 0.0193 0.0016 5.86E-17 96.99 542.4 8.9 

103-32 186.867 0.761 192.189 0.765 0.0179 0.0004 4.28E-16 97.24 543.7 2.9 

103-38 189.085 3.727 190.244 3.404 0.0039 0.0053 1.68E-17 99.41 545.2 3.8 

103-61 175.162 1.509 178.218 1.444 0.0103 0.0017 5.47E-17 98.30 547.0 1.9 

103-33 187.192 1.617 188.549 1.593 0.0045 0.0011 7.61E-17 99.29 547.1 5.8 

103-26 188.263 0.940 189.212 0.936 0.0031 0.0004 2.24E-16 99.51 547.8 2.6 

103-23 181.191 5.171 188.295 5.188 0.0240 0.0046 1.91E-17 96.24 547.8 4.1 

103-68 183.111 1.712 185.186 1.680 0.0070 0.0014 5.72E-17 98.89 548.0 3.1 

103-67 189.086 0.885 191.554 0.887 0.0083 0.0003 3.33E-16 98.73 548.1 2.4 

103-43 184.693 1.855 186.557 1.858 0.0063 0.0008 1.20E-16 99.02 548.5 4.5 

103-36 187.288 0.946 188.905 0.940 0.0054 0.0005 1.90E-16 99.16 549.7 2.4 

103-31 188.881 1.006 189.630 1.008 0.0025 0.0002 5.30E-16 99.62 550.5 2.4 

103-24 199.310 3.955 210.872 3.799 0.0391 0.0056 1.50E-17 94.53 552.0 4.5 

103-17 187.184 1.039 188.444 1.034 0.0042 0.0005 1.80E-16 99.35 552.1 2.5 

103-15 192.285 2.554 194.595 2.425 0.0078 0.0030 2.70E-17 98.83 552.6 9.4 

103-51 190.136 0.933 190.742 0.929 0.0020 0.0004 2.35E-16 99.70 552.6 2.2 

103-53 187.928 0.952 193.052 0.959 0.0173 0.0005 2.77E-16 97.36 553.2 2.5 

103-27 164.470 3.064 166.331 3.058 0.0062 0.0016 5.25E-17 98.90 554.9 7.2 

103-57 189.305 0.982 190.446 0.979 0.0038 0.0004 2.14E-16 99.42 555.3 2.3 

103-42 185.019 3.513 186.695 3.432 0.0056 0.0030 2.72E-17 99.12 556.3 8.2 

103-34 190.545 3.258 191.083 2.962 0.0017 0.0046 1.72E-17 99.73 556 11 

103-46 161.017 2.040 172.051 2.010 0.0373 0.0025 3.89E-17 93.60 558 11 

103-52 187.268 1.211 188.447 1.202 0.0039 0.0007 1.23E-16 99.39 560.7 6.4 

103-55 192.882 2.872 198.738 2.802 0.0198 0.0031 2.92E-17 97.07 562.2 7.2 



	   	  	   282 

103-37 191.110 4.328 194.911 3.965 0.0128 0.0064 1.33E-17 98.06 563.0 2.4 

103-54 177.585 3.323 183.334 3.179 0.0194 0.0042 1.90E-17 96.88 571 10 

103-62 190.002 2.876 193.742 2.794 0.0126 0.0029 2.67E-17 98.08 578.2 9.8 

103-40 196.328 4.184 200.561 3.748 0.0143 0.0068 1.43E-17 97.90 608 12 
1J value (2s) - 1.8955E-03 ± 0.3399        
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APPENDIX J 

CHAPTER 5 SUPPLEMENT: 

(U-TH)/HE THERMOCHRONOLOGIC DATA FROM ZANSKAR GORGE 

AND LEH-MANALI ROAD 
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Table A5.1. (U-Th)/He thermochronologic data for samples from Zanskar Gorge 
and Leh-Manali road transects 

Sample 
name 

[4He]a [238U]a [232Th]a AgeR
b R1c R2c Lc T1c T2c FT

d AgeC
e Err. 

  (ncm3) (ng) (ng) (Ma) (µm) (µm) (µm) (µm) (µm)  (Ma) (2σ)f 

07-AT-ZG-E zircon   
z001 0.7913 0.8296 0.5365 6.80 36.4 39.7 133.8 33.3 34.4 0.718 9.48 0.32 
z002 3.7055 2.5217 1.6012 10.50 67.1 65.6 277.3 58.5 75.3 0.840 12.51 0.39 
z003 2.3102 1.4630 1.0675 11.07 67.4 49.3 224.0 44.8 46.5 0.815 13.59 0.41 
z004 7.8350 3.7052 2.4847 15.00 66.1 68.9 331.2 58.8 58.7 0.850 17.64 0.54 
z005 1.9605 1.3374 0.4098 11.23 45.3 41.2 150.6 34.7 44.7 0.749 14.99 0.52 
z006 0.9326 0.8789 0.5657 7.57 51.9 47.9 185.5 47.6 36.5 0.786 9.64 0.31 
z007 1.0817 0.8144 0.6693 9.14 25.2 40.9 160.2 49.0 37.2 0.679 13.46 0.49 
z008 5.0395 1.6938 1.9043 19.31 29.1 34.8 155.3 35.7 33.0 0.688 28.08 0.82 
z009 1.0091 0.4681 0.3479 15.07 30.5 30.2 162.8 32.5 34.6 0.683 22.06 0.69 
z010 2.6819 2.0076 1.2675 9.56 55.9 51.0 247.7 56.5 54.4 0.808 11.83 0.35 
             

07-AT-ZG-G zircon          
z001 4.4637 2.5891 2.1499 11.85 55.6 65.9 234.6 51.2 60.9 0.821 14.42 0.44 
z003 2.8390 1.6390 1.2771 12.02 42.5 58.5 235.5 54.6 50.1 0.793 15.16 0.46 
z004 4.4502 1.3578 1.0957 22.60 50.1 54.8 276.3 50.6 62.4 0.809 27.95 0.84 
z005 4.3045 4.0412 2.4394 7.66 65.6 57.5 263.4 47.6 61.1 0.830 9.23 0.29 
             

07-AT-ZG-H zircon   
z001 1.7648 1.1082 1.0235 10.75 42.2 28.7 254.5 46.5 35.0 0.728 14.75 0.73 
z002 5.8421 5.0768 3.2342 8.22 104.0 86.0 303.5 86.0 74.3 0.878 9.37 0.45 
z003 8.9036 7.4851 7.8747 7.83 70.0 45.4 280.4 68.8 49.5 0.815 9.61 0.46 
z004 4.2821 4.7143 2.4547 6.65 70.5 69.0 320.0 82.1 84.9 0.849 7.83 0.40 
z005 3.2830 2.4842 3.0172 8.44 79.5 79.5 312.5 96.8 106.5 0.855 9.87 0.47 
z006 5.2236 1.2548 1.0588 28.49 40.6 31.4 217.5 28.1 47.6 0.731 38.97 1.13 
z008 0.3879 0.4680 0.2547 6.04 31.0 32.0 128.4 39.5 28.7 0.673 8.97 0.30 
z009 1.7666 1.5605 0.9131 8.18 53.0 50.5 169.4 42.2 45.0 0.785 10.42 0.33 
z010 2.1406 1.5138 0.8187 10.31 44.7 32.4 121.4 32.1 30.0 0.709 14.53 0.44 
z011 0.7238 0.9405 0.3717 5.79 36.1 34.7 103.5 24.7 26.5 0.687 8.42 0.27 
             

07-AT-ZG-I zircon   
z001 16.645 3.8028 1.9702 31.99 81.0 81.0 242.0 58.8 58.4 0.857 37.32 1.87 
z003 2.2548 1.3673 0.8313 11.85 89.5 73.5 264.0 71.5 84.9 0.840 13.85 0.52 
z007 3.2244 1.8858 1.4334 11.91 81.0 76.0 219.0 64.2 66.0 0.845 14.10 0.39 
z008 0.3485 0.3427 0.1972 7.36 37.9 30.7 159.0 44.4 51.4 0.696 10.58 0.31 
z009 0.1595 0.1823 0.1392 6.10 31.7 28.6 117.0 33.8 34.5 0.650 9.37 0.29 
z010 0.9868 0.8541 0.6135 8.12 41.4 41.0 240.3 42.6 47.5 0.765 10.61 0.34 
z012 0.4238 0.4089 0.3410 7.12 32.6 34.8 125.7 24.1 27.2 0.693 10.27 0.36 
z013 1.5256 0.8099 0.5158 13.45 59.8 38.5 212.1 64.8 42.6 0.778 17.29 0.48 
z014 2.3258 0.7311 0.7144 21.23 31.8 26.6 177.0 35.3 29.2 0.675 31.43 0.93 
z016 0.3259 0.3183 0.1813 7.42 32.2 34.5 125.1 31.2 35.2 0.685 10.83 0.34 
z017 2.8633 1.6243 0.7839 13.00 55.1 66.3 171.0 45.3 49.6 0.804 16.16 0.46 
z018 0.3095 0.3439 0.2093 6.47 27.8 31.7 97.3 24.9 18.6 0.644 10.04 0.33 
z019 0.2793 0.2315 0.2633 7.82 37.6 38.8 151.3 35.2 29.6 0.728 10.74 0.35 
z020 1.0071 1.1141 0.5440 6.66 41.6 56.1 139.5 36.3 37.9 0.760 8.77 0.27 
z021 0.2973 0.2610 0.1325 8.36 28.4 30.4 112.2 33.2 21.6 0.651 12.84 0.43 
z022 0.6720 0.6035 0.4495 7.78 28.7 32.0 139.0 31.4 39.7 0.668 11.65 0.36 
z023 0.3440 0.3477 0.2758 6.85 57.8 43.4 157.4 37.1 39.3 0.774 8.85 0.28 
             

07-AT-ZG-N zircon   
z002 13.167 9.5308 3.4388 10.46 118.0 121.0 596.5 114.5 158.5 0.913 11.46 0.60 
z003 1.8815 1.2702 0.9041 10.42 37.4 34.8 185.0 38.2 41.6 0.727 14.34 0.74 
z004 1.1335 1.2004 0.3047 7.32 28.3 28.5 153.0 27.3 24.5 0.671 10.92 0.59 
z005 5.2436 3.4263 2.9532 10.45 51.0 40.3 186.0 36.7 37.6 0.770 13.57 0.67 
z006 12.530 6.5015 4.7301 13.52 56.1 73.4 284.0 52.8 48.2 0.838 16.12 0.47 
z007 6.1700 5.2570 2.3395 8.73 42.8 27.7 123.2 22.7 30.9 0.692 12.61 0.39 
z008 1.9359 1.6735 1.0402 8.29 64.3 57.2 209.0 51.7 52.1 0.817 10.14 0.31 
z009 5.5171 5.4482 2.3498 7.55 83.4 60.6 201.9 44.8 50.8 0.835 9.05 0.28 
z010 0.3611 0.3616 0.2735 6.97 35.4 35.0 141.7 34.4 40.5 0.704 9.90 0.38 
z011 9.2964 5.9391 3.9949 11.10 54.5 50.2 212.5 42.9 43.3 0.801 13.87 0.40 
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07-AT-ZG-O zircon   
z002 9.8706 8.1061 3.6484 9.05 54.6 58.7 160.9 40.3 0.0 0.800 11.31 0.35 
z003 0.3200 0.2526 0.2823 8.24 25.7 28.7 150.9 22.8 26.1 0.653 12.63 0.74 
z005 0.8732 0.6694 0.4921 9.14 23.8 26.8 172.5 25.0 26.3 0.642 14.23 0.72 
z006 2.6071 1.5867 1.6643 10.82 36.7 40.0 177.3 39.3 32.5 0.737 14.68 0.46 
z007 1.7389 1.2640 0.6631 10.06 45.0 45.0 188.4 35.5 38.7 0.773 13.02 0.69 
z009 9.9513 4.0999 2.8652 17.11 50.5 45.3 215.5 36.7 37.9 0.789 21.70 1.12 
z010 7.2927 4.4098 3.2074 11.60 40.9 37.8 177.6 36.0 36.6 0.744 15.59 0.79 
z012 0.5078 0.4618 0.3196 7.77 30.1 18.0 135.1 32.8 27.2 0.589 13.20 0.57 
z013 2.5298 1.4599 1.8781 10.93 30.6 29.1 167.2 42.8 31.0 0.675 16.19 0.50 
z015 1.7008 1.2255 0.3494 10.69 25.8 24.8 187.0 34.3 31.8 0.646 16.55 0.63 
z016 1.0191 0.8420 0.6494 8.42 42.5 32.1 240.0 38.5 43.6 0.742 11.34 0.37 
z017 2.6948 1.8352 0.8004 10.94 39.6 35.1 196.0 42.6 53.8 0.734 14.91 0.45 
z018 3.0474 1.8696 1.9803 10.72 26.1 25.5 168.0 27.4 31.5 0.642 16.68 0.48 
z019 4.2856 3.0299 1.4191 10.47 24.2 26.0 153.5 26.7 32.7 0.633 16.54 0.51 
z020 3.4562 2.6386 1.5865 9.43 34.9 28.5 138.0 35.5 25.9 0.682 13.83 0.41 
z021 0.8732 0.6629 0.6325 8.84 30.0 34.1 151.0 30.1 31.7 0.690 12.80 0.41 
z022 3.0208 1.9213 1.1678 11.30 49.6 42.7 192.0 41.5 37.9 0.776 14.57 0.43 
z023 3.1797 2.1668 2.0294 9.88 42.1 34.3 169.5 38.2 39.3 0.731 13.52 0.40 
z024 2.3819 1.3270 1.1919 12.17 39.7 27.9 209.5 31.2 41.2 0.712 17.09 0.52 
z025 1.6145 1.1256 1.5918 8.84 35.8 32.7 168.0 40.3 28.1 0.709 12.47 0.39 
z026 3.0379 2.9324 1.2710 7.73 40.1 43.0 131.0 27.8 22.8 0.740 10.44 0.32 
z027 5.1025 3.7459 1.7772 10.07 46.6 42.9 203.5 47.6 50.3 0.771 13.05 0.43 
z028 1.9360 1.6598 1.1578 8.23 48.8 42.4 194.0 45.0 42.1 0.772 10.66 0.33 
z029 10.199 6.9084 1.5191 11.53 48.5 48.8 176.0 27.1 36.8 0.785 14.70 1.84 
z030 15.258 9.4167 5.0964 11.81 61.5 51.5 222.5 40.4 41.2 0.814 14.50 0.44 
z031 0.8919 0.8284 0.6130 7.54 37.5 38.1 158.5 30.6 33.9 0.731 10.31 0.33 
z032 1.0778 0.7668 0.6214 9.70 45.9 40.5 189.5 35.0 32.1 0.765 12.68 0.49 
z033 0.3160 0.2595 0.2263 8.30 34.0 37.9 148.5 33.9 35.7 0.713 11.64 0.51 
z034 1.8492 1.6179 1.1393 8.06 42.4 39.1 182.0 31.9 32.9 0.754 10.69 0.32 
z035 2.7769 2.0959 1.8520 9.01 42.1 43.9 186.5 34.0 34.7 0.763 11.80 0.61 
z036 1.6656 0.9839 1.0386 11.14 44.6 37.3 181.0 32.0 33.8 0.751 14.83 0.74 
             

09-AT-ZG-X zircon   
z002 3.5974 1.9584 1.5538 12.71 57.6 63.9 240.4 49.4 47.3 0.825 15.40 0.42 
z003 1.8139 1.8348 1.4169 6.87 61.9 55.7 237.4 68.3 72.4 0.813 8.46 0.26 
z004 17.766 15.894 4.4180 8.62 64.5 50.3 189.4 42.4 41.1 0.807 10.68 0.33 
z005 4.9951 2.9111 1.9677 12.16 65.4 56.8 238.2 56.5 53.5 0.824 14.75 0.44 
z006 3.5717 1.9476 1.3722 12.92 64.3 54.0 246.2 50.4 59.9 0.821 15.74 0.46 
z007 1.1965 1.1877 0.5330 7.49 64.7 62.9 223.9 72.7 71.8 0.820 9.13 0.29 
z008 1.1210 0.9876 0.7658 7.89 45.1 34.9 197.7 33.7 39.2 0.750 10.52 0.30 
z009 2.4505 1.7531 0.9395 10.20 34.1 47.8 205.0 39.4 37.3 0.754 13.52 0.40 
z010 0.9480 0.5573 0.3976 11.97 36.2 61.7 183.5 63.6 60.9 0.755 15.85 0.52 
             

07-AT-ZG-O apatite   
a003 0.1103 0.1520 0.1414 4.89 N.D.g 64.7 140.0 N.D. N.D. 0.754 6.49 0.26 
a004 0.0255 0.0237 0.0478 5.98 N.D. 50.3 116.3 N.D. N.D. 0.689 8.68 0.42 
a005 0.0913 0.0822 0.2448 5.36 N.D. 46.5 182.5 N.D. N.D. 0.697 7.70 0.31 
a008 0.0217 0.0285 0.0501 4.43 N.D. 37.7 126.6 N.D. N.D. 0.630 7.04 0.35 
a009 0.1236 0.1098 0.3477 5.30 N.D. 71.7 206.0 N.D. N.D. 0.784 6.76 0.19 
a010 0.1844 0.1962 0.4285 5.10 N.D. 75.7 182.1 N.D. N.D. 0.789 6.47 0.19 
             

08-AT-LM-A zircon   
z001 1.7712 1.0937 0.9757 10.99 70.0 51.8 204.2 46.9 41.9 0.815 13.49 0.43 
z002 13.929 10.375 2.8929 10.35 65.7 63.5 203.5 33.7 54.2 0.828 12.51 0.43 
z003 4.7445 2.2660 1.4300 14.97 54.5 51.4 260.8 53.0 44.7 0.811 18.47 0.55 
z004 2.4638 1.5547 1.0503 11.23 48.0 86.0 230.4 60.9 46.9 0.824 13.63 0.43 
z005 5.0567 2.7539 0.9414 13.96 51.1 56.3 227.5 52.4 44.7 0.808 17.28 0.55 
             

07-AT-LM-B zircon   
z001 1.5420 1.5443 1.5354 6.65 53.1 49.2 194.7 42.8 41.6 0.791 8.40 0.26 
z002 1.1573 0.9936 0.9233 7.85 37.8 45.4 154.8 32.3 33.1 0.745 10.54 0.34 
z003 2.6681 1.9380 1.1073 9.97 38.9 39.1 138.7 31.3 31.7 0.729 13.68 0.41 
z004 2.0678 1.0797 0.6888 13.68 36.9 42.9 154.5 32.5 31.0 0.740 18.49 0.59 
z005 2.6856 2.5264 1.2977 7.79 53.3 69.4 186.8 41.6 53.4 0.811 9.61 0.31 
             

07-AT-LM-G zircon   
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z001 2.3824 1.0297 0.8098 16.03 45.4 47.0 251.4 50.2 41.8 0.787 20.36 0.66 
z002 11.807 5.8820 3.5775 14.42 51.2 57.7 243.0 41.9 50.3 0.812 17.76 0.56 
z003 1.5042 1.4041 0.7036 7.87 64.0 52.9 200.4 38.4 58.0 0.810 9.72 0.32 
z004 3.9778 2.5841 1.7427 10.91 59.3 66.5 217.7 44.2 58.1 0.824 13.24 0.42 
z005 2.3066 1.7515 0.9520 9.59 41.9 56.6 160.8 42.0 40.9 0.771 12.45 0.40 
             

07-AT-LM-H zircon   
z001 1.9052 1.3101 0.8496 10.37 64.7 48.6 192.6 49.8 42.6 0.802 12.92 0.42 
z003 1.7226 1.9215 0.9609 6.59 73.9 58.7 187.5 44.5 54.4 0.821 8.03 0.27 
z004 2.5621 2.7115 1.3521 6.95 55.2 49.4 197.2 45.2 47.3 0.796 8.73 0.28 
z005 1.7079 1.2504 0.7010 9.91 38.7 38.5 160.6 21.1 30.2 0.739 13.41 0.47 
z006 1.1003 0.6642 0.9037 10.31 37.4 34.2 146.8 32.3 25.3 0.713 14.45 0.45 
z007 1.8220 0.9282 1.2276 12.29 30.8 31.3 161.9 29.8 34.4 0.686 17.92 0.56 
             

07-AT-LM-K zircon   
z001 19.514 9.1050 5.6070 15.37 115.8 120.5 349.1 89.6 96.8 0.899 17.09 0.56 
z002 33.800 22.226 7.2236 11.61 124.2 116.7 451.7 102.4 89.2 0.910 12.76 0.45 
z003 1.7295 1.9292 0.6498 6.83 64.0 59.2 211.5 51.7 47.3 0.822 8.30 0.29 
z004 16.031 10.610 5.9182 10.97 139.9 171.3 618.6 120.4 168.0 0.929 11.81 0.39 
z005 0.7890 0.7593 0.4209 7.55 79.0 66.2 264.1 67.7 50.7 0.849 8.90 0.31 
             

07-AT-LM-L zircon   
z001 3.2467 2.7329 1.9177 8.38 59.9 57.1 231.6 66.2 48.2 0.816 10.26 0.36 
z002 3.3601 2.0716 1.9781 10.88 45.4 52.2 272.7 68.8 56.5 0.794 13.71 0.44 
z003 0.7587 0.7734 0.3773 7.23 28.6 29.1 178.0 24.8 19.7 0.682 10.60 0.36 
z004 0.4220 0.4202 0.3200 7.00 39.6 39.8 180.4 31.8 44.6 0.746 9.38 0.35 
z005 1.4409 1.3321 0.5853 8.06 56.0 42.4 226.3 45.8 44.0 0.792 10.17 0.37 
aAbsolute measured 4He, 238U and 232Th concentrations are used to calculate the 'Raw Age' that is uncorrected for the   
effects of 4He loss due to alpha particle recoil. 
bThe 'Raw Age' was calculated with an iterative approach to solving the age equation. 
cR1 and R2 describe the perpendicular half widths of the zircon crystal. L describes the total length of the zircon crystal and  
T1 and T2 describe the height fo the pyramidal termination of the zircon crystals. 
dThe mean FT correction was calculated following procedures defined by Hourigan et al. (2005). 
eThe FT corrected age of the crystal. The FT correction was applied to the raw age following procedures defined by Farley 
et al. (1996). 
fThe propagated 1σ and 2σ analytical errors.  
gN.D. = not determined. 
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  APPENDIX K 

CHAPTER 5 SUPPLEMENT: 

THERMAL MODEL 
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First all components of this thermal model are defined, which we facilitate 

by using a cartoon that demonstrates the evolution of 4He in a given grain over 

time. We begin with Figure A1a, which shows a simple cooling history that the 

grain would have undergone had it not been reheated. 4Heinitial, defined as the 

amount of 4He that the grain should have contained had it not been subject to a 

thermal event, is labeled, as is the theoretical initial age (tinitial) of the grain.  

Figure A5.2.1 depicts the simple thermal model that we assume for the 

grain, which we describe in terms of temporal evolution. Beginning at the 

theoretical initial age (tinitial), the grain accumulates 4He until treheat, at which time 

it has accumulated 4Hereheat. At treheat, the grain is instantaneously heated and 

subsequently loses some amount of 4He, defined as 4Helost. The grain is then held 

for some duration before it effectively closes to the diffusive loss of 4He, and 

begins to acquire 4He along a different trajectory. We define this as tclose, where  

tclose = treheat – duration   Eq. A1 

The grain evolves along the new trajectory from tclose until present, where we 

measure the concentration of 4He present today, 4Hemeas.  

4Hemeas can be defined as the sum of the amount of 4He that was not lost 

during the reheating event (4Henot_lost) and the amount of 4He that has grown into 

the system since it began to retain 4He after reheating (4Heclose). Determining the 

amount of 4Henot_lost requires manipulation of simple equations. The first is the 

equation for fractional loss (f) of a sphere from Crank [1975]: 

 Eq. A2  

   

! 

f =1" (6 /# 2) (1/n2)exp("n2# 2
n=1

$

% Dt /r2)



	   	  	   289 

 

where D is the diffusivity at a specific temperature (diffusivity calculated using 

Arrhenius parameters from Reiners et al. [2004]), r is the measured radius of each 

grain, and t is the unknown duration of the reheating event. The next two 

equations indirectly relate f to 4Henot_lost:  

4Hereheat = 4Henot_lost + 4Helost           Eq. A3 

f = 4Helost /4Hereheat            Eq. A4 

where 4Hereheat is the amount of 4He present at treheat, determined from measured U 

and Th concentrations by using the age equation for the (U-Th)/He system 

[Harrison and Zeitler, 2005], and 4Helost is the amount of 4He that was diffusively 

lost during the reheating event. Determining the amount of 4Heclose is simpler, as it 

involves using the relationship in Eq. A1, to determine tclose. Using the age 

equation with tclose, 4Heclose is calculated. Finally, 4Heclose and 4Henot_lost are 

summed and compared to 4Hemeas until the correct combination of durations and 

treheat is found.  

In order to calculate the theoretical initial ages of the other zircon grains in 

the dataset, the thermal history, which is a unique combination of treheat and 

duration for a given temperature and theoretical initial age of the modeled grain, 

must be removed such that 4Hereheat can be calculated. For this calculation, tclose is 

known from Eq. A1, so 4Heclose is calculated for every grain from the age 

equation. To obtain 4Henot_lost, 4Heclose is subtracted from 4Hemeas. Using Eq. A2, f 

is calculated and to determine 4Helost by combining Eqs. A3 and A4. Finally, 
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4Hereheat is calculated from Eq. A3, and used with the known U and Th 

concentrations of each grain, to calculate the time between tinitial and treheat.   
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FIGURE CAPTIONS 

Figure A5.2.1. (a) 4He evolution over time of a grain that has not experienced a 

thermal event after it cooled through its bulk closure temperatures. (b) 4He 

evolution of a grain that has been subject to a metamorphic event, during which it 

retained some 4He. All quantities are described in the text except for tmeasured, 

which is the date of the grain that we calculate today after measure 4He, U and Th 

and making all appropriate corrections.  
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Figure A5.2.1 
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Table A5.3. Individual grain duration calculations. 

  Tmax=200 Tmax=200 Tmax=180 Tmax=180 

 
T.I.A. = 30 

Ma 
T.I.A. =40 

Ma 
T.I.A. = 30 

Ma 
T.I.A. =40 

Ma 

treheat (Ma) 
duration 

(my) 
duration 

(my) 
duration 

(my) 
duration 

(my) 
Grain info: age - 7.83 +/- 0.20 Ma; half-width - 70 (microns) 

7 2.3 2.7 6.6 - 
7.1 2.3 2.7 6.7 - 
7.2 2.3 2.7 6.7 - 
7.3 2.4 2.7 6.8 - 
7.4 2.4 2.8 6.8 - 
7.5 2.4 2.8 6.8 - 
7.6 2.4 2.8 6.9 - 
7.7 2.5 2.9 6.9 - 
7.8 2.5 2.9 6.9 - 
7.9 2.5 2.9 7 - 

8 2.6 2.9 7 - 
8.1 2.6 3 7.1 - 
8.2 2.6 3 7.1 - 
8.3 2.7 3 7.1 - 
8.4 2.7 3.1 7.2 - 
8.5 2.8 3.1 7.2 - 
8.6 2.8 3.1 7.3 - 
8.7 2.8 3.2 7.3 - 
8.8 2.9 3.2 7.3 - 
8.9 2.9 3.3 7.4 - 

9 2.9 3.3 7.4 - 
9.1 3 3.3 7.5 9.1 
9.2 3 3.4 7.5 9.1 
9.3 3.1 3.4 7.6 9.2 
9.4 3.1 3.4 7.6 9.2 
9.5 3.2 3.5 7.6 9.2 
9.6 3.2 3.5 7.7 9.3 
9.7 3.3 3.6 7.7 9.3 
9.8 3.3 3.6 7.8 9.4 
9.9 3.4 3.7 7.8 9.4 
10 3.4 3.7 7.9 9.4 

10.1 3.5 3.8 7.9 9.5 
10.2 3.5 3.8 7.9 9.5 
10.3 3.6 3.8 8 9.6 
10.4 3.6 3.9 8 9.6 
10.5 3.7 3.9 8.1 9.7 
10.6 3.7 4 8.1 9.7 
10.7 3.8 4.1 8.2 9.8 
10.8 3.8 4.1 8.2 9.8 
10.9 3.9 4.2 8.3 9.8 

11 4 4.2 8.3 9.9 
     

Grain info: age - 8.03 +/- 0.27 Ma; half-width - 66 (microns) 
7 2.1 2.4 6.3 - 

7.1 2.1 2.5 6.3 - 
7.2 2.1 2.5 6.4 - 
7.3 2.2 2.5 6.4 - 
7.4 2.2 2.5 6.4 - 
7.5 2.2 2.6 6.5 - 
7.6 2.3 2.6 6.5 - 
7.7 2.3 2.6 6.6 - 
7.8 2.3 2.7 6.6 - 
7.9 2.4 2.7 6.6 - 

8 2.4 2.7 6.7 - 
8.1 2.4 2.8 6.7 8.2 
8.2 2.4 2.8 6.7 8.2 
8.3 2.5 2.8 6.8 8.3 
8.4 2.5 2.8 6.8 8.3 
8.5 2.6 2.9 6.9 8.4 
8.6 2.6 2.9 6.9 8.4 
8.7 2.6 2.9 6.9 8.4 
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8.8 2.7 3 7 8.5 
8.9 2.7 3 7 8.5 

9 2.7 3.1 7.1 8.6 
9.1 2.8 3.1 7.1 8.6 
9.2 2.8 3.1 7.2 8.6 
9.3 2.9 3.2 7.2 8.7 
9.4 2.9 3.2 7.2 8.7 
9.5 3 3.3 7.3 8.8 
9.6 3 3.3 7.3 8.8 
9.7 3 3.3 7.4 8.8 
9.8 3.1 3.4 7.4 8.9 
9.9 3.1 3.4 7.5 8.9 
10 3.2 3.5 7.5 9 

10.1 3.2 3.5 7.5 9 
10.2 3.3 3.6 7.6 9.1 
10.3 3.3 3.6 7.6 9.1 
10.4 3.4 3.7 7.7 9.1 
10.5 3.5 3.7 7.7 9.2 
10.6 3.5 3.8 7.8 9.2 
10.7 3.6 3.8 7.8 9.3 
10.8 3.6 3.9 7.9 9.3 
10.9 3.7 3.9 7.9 9.4 

11 3.7 4 8 9.4 
     

Grain info: age - 8.30 +/- 0.29 Ma; half-width - 62 (microns) 
7 1.8 2.1 5.7 - 

7.1 1.8 2.1 5.8 - 
7.2 1.9 2.2 5.8 7.2 
7.3 1.9 2.2 5.8 7.2 
7.4 1.9 2.2 5.9 7.2 
7.5 1.9 2.2 5.9 7.3 
7.6 2 2.3 5.9 7.3 
7.7 2 2.3 6 7.4 
7.8 2 2.3 6 7.4 
7.9 2 2.4 6.1 7.4 

8 2.1 2.4 6.1 7.5 
8.1 2.1 2.4 6.1 7.5 
8.2 2.1 2.4 6.2 7.5 
8.3 2.2 2.5 6.2 7.6 
8.4 2.2 2.5 6.3 7.6 
8.5 2.2 2.5 6.3 7.7 
8.6 2.3 2.6 6.3 7.7 
8.7 2.3 2.6 6.4 7.7 
8.8 2.3 2.6 6.4 7.8 
8.9 2.4 2.7 6.5 7.8 

9 2.4 2.7 6.5 7.9 
9.1 2.5 2.7 6.5 7.9 
9.2 2.5 2.8 6.6 7.9 
9.3 2.5 2.8 6.6 8 
9.4 2.6 2.8 6.7 8 
9.5 2.6 2.9 6.7 8.1 
9.6 2.7 2.9 6.7 8.1 
9.7 2.7 3 6.8 8.1 
9.8 2.7 3 6.8 8.2 
9.9 2.8 3 6.9 8.2 
10 2.8 3.1 6.9 8.3 

10.1 2.9 3.1 7 8.3 
10.2 2.9 3.2 7 8.3 
10.3 3 3.2 7 8.4 
10.4 3 3.3 7.1 8.4 
10.5 3.1 3.3 7.1 8.5 
10.6 3.2 3.4 7.2 8.5 
10.7 3.2 3.4 7.2 8.6 
10.8 3.3 3.5 7.3 8.6 
10.9 3.3 3.5 7.3 8.7 

11 3.4 3.6 7.4 8.7 
     

Grain info: age - 8.30 +/- 0.26 Ma; half-width - 51 (microns) 
7 1.6 1.3 4.7 5.7 

7.1 1.6 1.4 4.7 5.8 
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7.2 1.6 1.4 4.8 5.8 
7.3 1.6 1.4 4.8 5.8 
7.4 1.7 1.4 4.8 5.9 
7.5 1.7 1.5 4.9 5.9 
7.6 1.7 1.5 4.9 5.9 
7.7 1.7 1.5 4.9 6 
7.8 1.8 1.5 5 6 
7.9 1.8 1.6 5 6.1 

8 1.8 1.6 5 6.1 
8.1 1.8 1.6 5.1 6.1 
8.2 1.9 1.6 5.1 6.2 
8.3 1.9 1.7 5.2 6.2 
8.4 1.9 1.7 5.2 6.2 
8.5 1.9 1.7 5.2 6.3 
8.6 2 1.8 5.3 6.3 
8.7 2 1.8 5.3 6.4 
8.8 2 1.8 5.3 6.4 
8.9 2.1 1.9 5.4 6.4 

9 2.1 1.9 5.4 6.5 
9.1 2.1 1.9 5.5 6.5 
9.2 2.2 2 5.5 6.5 
9.3 2.2 2 5.5 6.6 
9.4 2.2 2.1 5.6 6.6 
9.5 2.3 2.1 5.6 6.7 
9.6 2.3 2.1 5.7 6.7 
9.7 2.4 2.2 5.7 6.7 
9.8 2.4 2.2 5.8 6.8 
9.9 2.4 2.3 5.8 6.8 
10 2.5 2.3 5.8 6.9 

10.1 2.5 2.4 5.9 6.9 
10.2 2.6 2.4 5.9 7 
10.3 2.6 2.5 6 7 
10.4 2.7 2.5 6 7 
10.5 2.7 2.6 6.1 7.1 
10.6 2.8 2.7 6.1 7.1 
10.7 2.9 2.7 6.2 7.2 
10.8 2.9 2.8 6.2 7.2 
10.9 3 2.9 6.3 7.3 

11 3 2.9 6.3 7.3 
     

Grain info: age - 8.42 +/- 0.13 Ma; half-width -35 (microns) 
7 0.73 0.86 3 3.6 

7.1 0.75 0.87 3 3.7 
7.2 0.76 0.88 3.1 3.7 
7.3 0.78 0.9 3.1 3.7 
7.4 0.79 0.91 3.1 3.7 
7.5 0.81 0.93 3.2 3.8 
7.6 0.83 0.95 3.2 3.8 
7.7 0.85 0.96 3.2 3.8 
7.8 0.86 0.98 3.3 3.9 
7.9 0.88 1 3.3 3.9 

8 0.9 1 3.3 3.9 
8.1 0.93 1 3.4 4 
8.2 0.95 1.1 3.4 4 
8.3 0.97 1.1 3.4 4 
8.4 1 1.1 3.5 4.1 
8.5 1 1.1 3.5 4.1 
8.6 1.1 1.2 3.5 4.1 
8.7 1.1 1.2 3.6 4.2 
8.8 1.1 1.2 3.6 4.2 
8.9 1.1 1.2 3.7 4.2 

9 1.2 1.3 3.7 4.3 
9.1 1.2 1.3 3.7 4.3 
9.2 1.3 1.4 3.8 4.3 
9.3 1.3 1.4 3.8 4.4 
9.4 1.3 1.4 3.8 4.4 
9.5 1.4 1.5 3.9 4.5 
9.6 1.5 1.5 3.9 4.5 
9.7 1.5 1.6 4 4.5 
9.8 1.6 1.6 4 4.6 
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9.9 1.6 1.7 4.1 4.6 
10 1.7 1.8 4.1 4.7 

10.1 1.8 1.8 4.1 4.7 
10.2 1.8 1.9 4.2 4.7 
10.3 1.9 2 4.2 4.8 
10.4 2 2 4.3 4.8 
10.5 2.1 2.1 4.3 4.9 
10.6 2.2 2.2 4.4 4.9 
10.7 2.3 2.3 4.4 5 
10.8 2.4 2.4 4.5 5 
10.9 2.5 2.5 4.5 5 

11 2.5 2.6 4.6 5.1 
     

Grain info: age - 8.46 +/- 0.13 Ma; half-width -59 (microns) 
7 1.6 1.9 5.4 6.7 

7.1 1.7 2 5.4 6.7 
7.2 1.7 2 5.5 6.8 
7.3 1.7 2 5.5 6.8 
7.4 1.7 2 5.5 6.8 
7.5 1.8 2.1 5.6 6.9 
7.6 1.8 2.1 5.6 6.9 
7.7 1.8 2.1 5.6 6.9 
7.8 1.8 2.1 5.7 7 
7.9 1.9 2.2 5.7 7 

8 1.9 2.2 5.8 7 
8.1 1.9 2.2 5.8 7.1 
8.2 2 2.2 5.8 7.1 
8.3 2 2.3 5.9 7.2 
8.4 2 2.3 5.9 7.2 
8.5 2.1 2.3 5.9 7.2 
8.6 2.1 2.4 6 7.3 
8.7 2.1 2.4 6 7.3 
8.8 2.2 2.4 6.1 7.3 
8.9 2.2 2.5 6.1 7.4 

9 2.2 2.5 6.1 7.4 
9.1 2.3 2.5 6.2 7.5 
9.2 2.3 2.6 6.2 7.5 
9.3 2.3 2.6 6.3 7.5 
9.4 2.4 2.6 6.3 7.6 
9.5 2.4 2.7 6.3 7.6 
9.6 2.5 2.7 6.4 7.7 
9.7 2.5 2.7 6.4 7.7 
9.8 2.5 2.8 6.5 7.7 
9.9 2.6 2.8 6.5 7.8 
10 2.6 2.9 6.6 7.8 

10.1 2.7 2.9 6.6 7.9 
10.2 2.7 3 6.7 7.9 
10.3 2.8 3 6.7 8 
10.4 2.8 3.1 6.7 8 
10.5 2.9 3.1 6.8 8 
10.6 2.9 3.2 6.8 8.1 
10.7 3 3.2 6.9 8.1 
10.8 3.1 3.3 6.9 8.2 
10.9 3.1 3.3 7 8.2 

11 3.2 3.4 7 8.3 
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APPENDIX M 

CHAPTER 6 SUPPLEMENT: 

CONVENTIONAL (U-TH)/HE THERMOCHRONOLOGIC DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   	  	   298 

Table A6.1. Conventional (U-Th)/he age determinations for sample 07-AT-LB-B. 

Sample [4He] ncm3 [238U] ng [232Th] ng Raw Age (Ma) Mean FT FT corrected Age (Ma) 2s (Ma) 
LB-B z002  6.5462 1.6619 1.1101 27.92 0.816 34.2 1.0 

LB-B z003  15.6476 4.3005 3.2490 25.35 0.838 30.26 0.80 

LB-B z004  3.0624 1.1150 0.9482 18.79 0.771 24.38 0.78 

LB-B z005  2.3128 0.7292 0.6993 21.24 0.800 26.56 0.85 

LB-B z006  7.6114 2.2166 1.8646 23.52 0.809 29.07 0.86 

LB-B z007  3.2945 1.0351 0.7442 22.34 0.778 28.73 0.89 

LB-B z008  5.8606 1.5068 1.6713 25.31 0.836 30.29 0.92 

LB-B z009  5.1956 1.6534 1.3786 21.56 0.819 26.31 0.77 

LB-B z010  3.0118 1.1082 1.1448 17.95 0.790 22.72 0.69 

LB-B z011  6.8493 2.2532 1.6411 21.30 0.826 25.80 0.75 

LB-B z016  2.8399 0.8942 0.7226 21.90 0.750 29.19 0.85 

LB-B z018  1.4612 0.4415 0.4689 21.73 0.784 27.71 0.83 

LB-B z020  1.9950 0.6780 0.4121 21.13 0.733 28.81 0.95 

LB-B z022  4.5249 1.5495 1.4070 19.75 0.802 24.64 0.73 

LB-B z027  1.1441 0.3942 0.3814 19.41 0.723 26.83 0.87 

LB-B z029  4.0575 1.4362 0.9646 20.03 0.808 24.77 0.75 

LB-B z030  1.9407 0.4810 0.3244 28.56 0.786 36.3 1.2 

LB-B z031  4.0586 1.3090 1.0459 21.42 0.832 25.76 0.80 

LB-B z032  13.4032 5.4383 3.0072 17.91 0.850 21.06 0.65 

LB-B z033  12.9319 3.5466 2.8695 25.13 0.836 30.05 0.89 

LB-B z034  6.2263 1.8502 1.3530 23.56 0.821 28.69 0.88 

LB-B z035  1.6443 0.6454 0.4309 18.08 0.770 23.49 0.74 

LB-B z036  5.1238 1.6074 1.0261 22.74 0.812 28.00 0.83 

LB-B z037  3.8226 1.0983 0.7284 24.70 0.817 30.22 0.88 

LB-B z038  2.2594 0.7959 0.4154 20.75 0.751 27.64 0.86 

LB-B z039  1.1259 0.4644 0.4177 16.43 0.726 22.63 0.74 

LB-B z040  2.2056 0.7638 0.5841 20.09 0.818 24.55 0.76 

LB-B z041  1.6548 0.5366 0.5745 20.22 0.749 27.00 0.83 

LB-B z042  4.9833 1.3155 0.9744 26.46 0.768 34.5 1.0 

LB-B z043  2.9444 0.9415 0.8056 21.37 0.773 27.64 0.78 

LB-B z044  10.9717 3.2779 2.5998 23.15 0.829 27.93 0.77 

LB-B z045  5.5539 1.9671 2.0011 18.70 0.798 23.42 0.65 

LB-B z046  2.9054 1.1588 1.0186 17.06 0.780 21.88 0.62 

LB-B z047  2.7025 0.9344 0.5987 20.63 0.786 26.26 0.78 

LB-B z048  0.6568 0.2354 0.2114 18.91 0.758 24.94 0.80 

LB-B z049  1.8975 0.6293 0.4841 20.96 0.811 25.84 0.79 
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LB-B z051  3.3776 1.0598 0.7567 22.39 0.773 28.96 0.83 

LB-B z052  1.5927 0.5936 0.6130 17.72 0.769 23.04 0.71 

LB-B z053  1.2168 0.4137 0.3896 19.76 0.738 26.79 0.78 

LB-B z054  1.1576 0.3827 0.3317 20.62 0.789 26.12 0.80 

LB-B z055  2.8591 0.9136 0.7253 21.64 0.809 26.74 0.74 

LB-B z056  5.8653 1.9090 1.3112 21.71 0.827 26.25 0.75 

LB-B z057  9.8043 2.7145 3.0343 23.47 0.820 28.63 0.81 

LB-B z058  1.5034 0.5213 0.4470 19.70 0.825 23.87 0.82 

LB-B z059  4.1734 1.3343 1.0069 21.80 0.768 28.38 0.83 

LB-B z060  2.6159 0.8572 0.8980 20.09 0.797 25.20 0.77 

LB-B z061  2.3250 0.7865 0.6408 20.36 0.799 25.49 0.80 

LB-B z062  0.4916 0.1759 0.1697 18.69 0.702 26.6 1.0 

LB-B z063  2.7070 0.9612 0.7142 19.68 0.780 25.22 0.79 

LB-B z064  3.2899 0.8897 0.6647 25.80 0.744 34.7 1.1 

LB-B z065  6.7278 2.1744 1.9324 21.00 0.818 25.67 0.80 

LB-B z066  5.4656 1.4703 1.6970 23.99 0.790 30.35 0.92 

LB-B z068  13.7157 0.6626 0.4395 18.73 0.807 23.22 0.74 

LB-B z069  1.7479 3.5309 3.1179 26.39 0.804 32.83 0.92 

LB-B z070  2.0569 0.7419 0.7526 18.37 0.798 23.02 0.71 

LB-B z071  4.7507 1.6332 1.4349 19.79 0.758 26.10 0.77 

LB-B z072  31.2480 4.9668 15.3668 29.86 0.848 35.21 0.92 

LB-B z073  1.1915 0.3825 0.2877 21.72 0.805 26.98 0.88 

LB-B z074  0.8903 0.3347 0.3137 17.89 0.800 22.37 0.69 

LB-B z075  1.1175 0.4057 0.3513 18.78 0.782 24.01 0.75 

LB-B z076  2.7132 1.1039 1.0790 16.41 0.829 19.78 0.60 

LB-B z077  1.4898 0.5069 0.3697 20.59 0.770 26.75 0.86 

LB-B z078  1.7019 0.4980 0.5698 22.10 0.708 31.23 0.92 

LB-B z079  0.6685 0.3093 0.2407 15.00 0.647 23.20 0.85 

LB-B z080  0.9695 0.3978 0.2758 17.20 0.683 25.18 0.87 

LB-B z081  1.4966 0.5027 0.4021 20.57 0.781 26.33 0.83 

LB-B z082  4.0231 1.0943 0.9291 25.14 0.779 32.29 0.90 

LB-B z083  1.4233 0.4374 0.4368 21.62 0.793 27.26 0.85 

LB-B z084  2.5810 0.8594 0.5643 21.35 0.782 27.31 0.78 

LB-B z085  2.4060 0.8776 0.7684 18.66 0.772 24.19 0.70 

LB-B z086  1.2631 0.3732 0.3328 22.95 0.722 31.81 0.98 

LB-B z087  0.6571 0.2073 0.2109 20.99 0.650 32.3 1.1 

LB-B z088  1.3432 0.4553 0.3877 20.17 0.794 25.41 0.82 

LB-B z089  2.4988 0.8879 0.8724 18.77 0.787 23.84 0.72 

LB-B z090  12.0736 2.7274 2.6511 29.55 0.739 40.0 1.2 
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LB-B z091  1.8086 0.4968 0.3343 25.78 0.776 33.2 1.1 

LB-B z092  3.1969 0.4194 0.2790 24.79 0.755 32.8 1.1 

LB-B z094  3.3303 0.9181 1.2053 22.74 0.777 29.27 0.88 

LB-B z095  1.4652 1.2624 1.6054 16.00 0.765 20.93 0.71 

LB-B z096  2.8409 1.1678 1.0305 16.54 0.815 20.28 0.61 

LB-B z097  3.3008 1.3629 0.9825 17.00 0.773 21.99 0.69 

LB-B z098  21.8523 4.3716 7.4028 29.32 0.760 38.6 1.1 

LB-B z099  2.3430 0.9242 0.7792 17.37 0.833 20.86 0.66 

LB-B z100  1.3658 0.3960 0.6684 20.26 0.695 29.17 0.93 

LB-B z101  0.9039 0.3469 0.3058 17.72 0.775 22.85 0.87 

LB-B z102  1.0682 0.3874 0.2630 19.52 0.758 25.7 1.1 

LB-B z103  4.5613 1.0680 1.3362 27.07 0.767 35.3 1.3 

LB-B z104  1.0710 0.4027 0.2742 18.82 0.703 26.8 1.1 

LB-B z105  0.3492 0.1368 0.1047 17.76 0.744 23.9 1.0 

LB-B z106  0.7801 0.3063 0.2235 17.84 0.795 22.43 0.94 

LB-B z107  2.0725 0.7232 0.5497 19.95 0.812 24.58 0.97 

LB-B z108  4.3202 1.6718 0.9437 18.73 0.754 24.83 0.96 

LB-B z109  0.9781 0.3726 0.3408 17.73 0.744 23.82 0.96 

LB-B z110  4.7034 1.1590 1.0385 27.49 0.822 33.5 1.3 

LB-B z111  2.6667 1.0468 0.5912 18.46 0.803 22.98 0.90 

LB-B z112  3.4879 1.0065 0.9404 23.31 0.783 29.8 1.1 

LB-B z113  0.7199 0.2627 0.2147 18.87 0.767 24.60 0.95 

LB-B z114  4.7689 1.4434 1.3476 22.23 0.727 30.6 1.1 

LB-B z115  5.2182 2.0520 0.9954 18.74 0.833 22.50 0.88 

LB-B z116  1.4366 0.4292 0.5391 21.20 0.771 27.5 1.1 

LB-B z117  1.3725 0.4917 0.4286 19.01 0.727 26.16 0.89 

LB-B z118  2.0637 0.6497 0.4766 22.23 0.778 28.6 1.1 

LB-B z119  5.2140 1.6593 1.1928 22.06 0.769 28.7 1.1 

LB-B z121  2.0634 0.6005 0.6064 22.78 0.740 30.8 1.2 

LB-B z122  3.9112 1.1905 0.9487 22.70 0.828 27.4 1.0 

LB-B z123  1.0444 0.3722 0.2912 19.45 0.798 24.39 0.92 

LB-B z124  1.8210 0.7142 0.3006 19.05 0.742 25.7 1.0 

LB-B z126  1.6237 0.5362 0.5181 20.25 0.773 26.19 0.97 

LB-B z127  0.2980 0.1411 0.0981 14.91 0.659 22.61 0.96 

LB-B z129  4.0562 1.2959 1.5832 19.95 0.672 29.7 1.1 

LB-B z130  1.4816 0.7123 0.4331 14.94 0.647 23.10 0.86 

LB-B z131  1.7928 0.6610 0.5785 18.46 0.797 23.18 0.84 

LB-B z132  0.4706 0.1925 0.1465 17.02 0.752 22.62 0.88 
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Table A6.2. Laser microprobe age determinations for sample 07-AT-B-B. 

Sample 4He (atoms) Volume [4He] atoms/g [U] ppm [Th] ppm Age (Ma) Error (2s) 
LBB ZR 030  4.78E+08 4.68E+03 2.197E+16 361.93 223.15 16.3 1.2 

LBB ZR 031 3.51E+08 2.54E+03 2.971E+16 221.50 179.46 34.6 2.5 

LBB ZR 032 1.00E+08 2.35E+03 9.182E+15 63.82 65.70 35.6 2.6 

LBB ZR 034 4.16E+08 1.46E+04 6.134E+15 62.85 60.72 24.4 1.8 

LBB ZR 035 3.12E+08 2.34E+03 2.869E+16 257.92 189.75 29.1 2.1 

LBB ZR 036 9.44E+07 4.23E+03 4.804E+15 63.87 36.93 20.4 1.5 

LBB ZR 038 1.21E+09 1.50E+04 1.733E+16 270.12 203.12 16.7 1.2 

LBB ZR 040 5.92E+08 1.38E+04 9.200E+15 84.72 94.70 26.4 1.9 

LBB ZR 041 5.67E+08 4.30E+03 2.837E+16 371.08 196.02 20.9 1.6 

LBB ZR 043 3.55E+08 3.97E+03 1.925E+16 187.07 101.97 28.? 2.1 

LBB ZR 044 1.36E+09 1.33E+04 2.204E+16 197.61 240.11 26.6 2.0 

LBB ZR 045 6.95E+07 1.75E+03 8.527E+15 88.97 104.25 23.1 1.7 

LBB ZR 048 1.39E+08 3.24E+03 9.242E+15 124.52 80.88 19.8 1.5 

LBB ZR 049 2.13E+08 1.60E+03 2.848E+16 303.61 196.12 25.0 1.8 

LBB ZR 050 1.21E+08 1.66E+03 1.564E+16 209.06 161.74 19.4 1.4 

LBB ZR 051 3.08E+08 1.71E+03 3.870E+16 551.64 537.03 17.5 1.3 

LBB ZR 052 1.84E+08 1.66E+03 2.377E+16 173.02 143.63 35.3 2.6 

LBB ZR 054 7.90E+07 1.89E+03 8.968E+15 85.00 81.14 26.4 1.9 

LBB ZR 055 8.67E+07 1.85E+03 1.010E+16 123.52 94.36 21.3 1.6 

LBB ZR 057 1.98E+08 3.60E+03 1.182E+16 121.50 120.38 24.2 1.8 

LBB ZR 058 2.28E+08 3.80E+03 1.291E+16 181.58 149.85 18.3 1.3 

LBB ZR 060 1.57E+08 1.65E+03 2.052E+16 236.35 244.96 21.4 1.6 

LBB ZR 061 1.59E+08 3.13E+03 1.097E+16 115.93 92.97 24.5 1.8 

LBB ZR 063 1.09E+08 1.52E+03 1.544E+16 161.27 168.01 23.6 1.8 

LBB ZR 065 9.74E+07 1.42E+03 1.474E+16 92.85 96.31 39.1 3.1 

LBB ZR 066 1.44E+08 1.37E+03 2.260E+16 199.77 235.73 27.2 2.0 

LBB ZR 067 1.35E+08 1.43E+03 2.019E+16 266.67 191.08 19.9 1.5 

LBB ZR 010 4.99E+08 1.44E+04 7.483E+15 76.64 53.79 25.7 1.9 

LBB ZR 011B 1.01E+09 1.49E+04 1.467E+16 141.79 91.47 27.7 2.0 

LBB ZR 012 2.29E+08 4.28E+03 1.151E+16 155.52 178.22 17.9 1.3 

LBB ZR 013B 2.59E+08 3.97E+03 1.403E+16 110.93 82.87 32.9 2.5 

LBB ZR 014 2.89E+08 2.40E+03 2.592E+16 349.10 320.19 18.8 1.4 

LBB ZR 015 3.05E+08 2.10E+03 3.124E+16 283.24 224.60 28.5 2.1 

LBB ZR 016 7.35E+08 1.15E+04 1.376E+16 89.07 67.53 40.3 3.0 

LBB ZR 017 1.22E+08 2.09E+03 1.259E+16 122.36 81.89 27.4 2.3 

LBB ZR 018 1.19E+08 2.00E+03 1.279E+16 104.62 61.42 33.? 2.8 
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LBB ZR 019 4.01E+08 3.85E+03 2.243E+16 176.17 108.59 34.1 2.5 

LBB ZR 020 3.68E+08 3.81E+03 2.076E+16 124.82 70.57 45.1 3.3 

LBB ZR 021 6.89E+08 3.83E+03 3.871E+16 336.48 409.06 27.5 2.0 

LBB ZR 022 1.35E+08 1.81E+03 1.608E+16 170.08 91.40 25.8 1.9 

LBB ZR 023 1.28E+08 3.45E+03 8.005E+15 58.97 53.98 34.3 2.6 

LBB ZR 024 3.81E+08 3.52E+03 2.328E+16 145.09 154.61 39.4 2.9 

LBB ZR 025B 1.92E+08 3.42E+03 1.210E+16 122.60 95.81 25.6 2.3 

LBB ZR 027 s2 2.20E+08 1.81E+03 2.610E+16 312.43 179.27 22.6 1.7 
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APPENDIX O 
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