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ABSTRACT

In this thesis a new method based on the Tight-Binding Linear Muffin Tin Or-

bital (TB-LMTO) formalism and the Quasiparticle Self-consistent GW (QSGW) ap-

proximation is proposed. The method is capable of generating accurate electronic bands

structure of large supercells necessary to model alloys structures. The strategy consist

in building simple and small hamiltonian from linear Muffin-tin-orbitals (LMTO). Pa-

rameters in this hamiltonian are then used to fit the difference in QSGW self-energies

and LDA exchange-correlation potentials. The parameter are assumed to transfer to

new environments — a procedure we check carefully by comparing our predicted band

to QSGW bands for small supercells.

The method possess both the accuracy of the QSGW approximation, (which is the most

reliable way to determine energy bands accurately, and yet too expensive for the large

supercells required here), and the efficiency of the TB-LMTO method.

The accurate and highly efficient hamiltonian is used to predict the electronic and op-

tical transitions of Si1−xGex and Ge1−xSnx alloys and SnxSiyGe1−x−y alloys. The goal

is to engineered direct band gap material compatible with the silicon technology. The

results obtained are compared to available experimental data.
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Chapter 1

Introduction

1.1 Motivation and Background

Semiconductors are a very important class of material and are present in virtually all

electric devices, for example transistors, solar cells and various opto-electronic devices.

All these applications exploit the existence in these material of an energy band-gap

which is the difference between the minimal-energy state in the conduction band and the

maximal-energy state in the valence band. When the minimal-state and the maximal-

state occurs at the same k-vector in the Brillouin zone, the gap is said to be direct,

otherwise the gap is indirect. For small gap, electrons can gain enough energy by ab-

sorbing photons and move from the valence bands to the conduction bands.

Processes involving direct transition are generally more efficient, yet two of the most

important semiconductors Si and Ge have indirect gaps. It was predicted by Jenkins

and Dow [32] that mixing Sn which is semi-metal (band-gap = -0.4 eV) with Ge would

produce a direct gap alloy. However, since the process of engineering band-gaps by

alloying is not trivial especially when the material involved are not lattice-matched,

growing single crystal material necessary for devices remain a challenge. Recently, us-

ing Chemical Vapor Decomposition (CVD) and molecular precursors, single crystalline

samples of Ge1−xSnx and Ge1−x−ySixSny were successfully grown by the Kouvetakis

Group [12]. They were able to grow Ge1−xSnx alloys with up to 20% Sn. Before their

work, many other groups attempted to grow alloys of Si-Ge-Sn, but succeeded only in

making polycrystalline or amorphous structures [25, 48]. Optical characterization of

SiGeSn revealed that direct band gap can be achieved in these alloys[16, 15, 25]

The challenges present on the experimental side are carried to the theoretical side as

well. Indeed, for the same reason alloys are hard to grow, they are also hard to simulate
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Table 1.1: Lattice parameter for Si, Ge and Sn, the mismatch in Si-Ge is 4% compared
to 16% for Si-Sn and 13% for Ge-Sn

Elements alat(a.u.) alat(Å)
Si 10.26 5.43
Ge 10.67 5.65

α-Sn 12.25 6.48

reliably with traditional alloy calculation schemes. If Jenkins and Dow did predict that

the existence of a concentration at which GeSn alloys became direct-gap material, they

however overestimated the amount of Sn needed. Their prediction of concentration of

20% was twice of the experimental values of 11%. The reason for the discrepancies

was the fact that the method used to model the alloy, the Virtual Crystal Approximation

(VCA) is more suitable for closely matched such as SixGe1−x. Since this work, many

theoretical calculations of these alloys have been made using Density Functional The-

ory [56, 42, 11].

The challenges of ab-initio modeling of alloys are two-fold: first a suitable representa-

tion of the alloys that take into account the chemical as well as the structural disorder.

Second the ab-initio calculation must be capable of handling large systems and also be

free of the well-known band-gap problem of the Density Functional Theory [22] for

meaningful comparison to experiment. Our goal is to develop a band theory method ca-

pable of generating accurate electronic bands structures of large supercells (necessary

to model alloy structures). The bands generated will be used to predict various elec-

tronic and optical properties of the alloys. For the representation of our alloys, we use

the Special Quasi-Random Structure (SQS) which are the small supercell mimicking

random alloys.
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Figure 1.1: Plot of the band gap vs. lattice parameter for various semiconductors. Sn
(absent from this plot) would lie near the InSb. Highly-mismatch SiSn and GeSn are
hard to grow

1.2 Dissertation outline

In Chapter 2, we will review the many body problem of electrons and discuss the den-

sity functional theory in details. We will also discuss the band gap problem and briefly

present the QSGW approximation.

In Chapter 3, We discuss the computational method used to solve the Schrödinger equa-

tion, in particular we review the Tight-Binding Linear Muffin-Tin-Orbitals (TB-LMTO)

hamiltonian in the Atomic Sphere Approximation (ASA). In Chapter 4, we describe our

the QSGW calculations of the bulk material Si, Ge and Sn are used to adjust the the pa-

rameter of the TB-LMTO hamiltonian. We end the chapter with a discussion of the

transferability.

In Chapter 5, we review the optical properties of semiconductors, and establish the link

between optical properties and the electronic band structures. We compare the mea-

sured dielectric function and the one calculated with our new hamiltonian.

3



In Chapter 6, we use our newly developed scheme to investigate the effect of alloying

on band gaps and optical spectra of Si-Ge-Sn alloys. The Chapter 7, we summarize our

results for the bulk material as well the alloys.
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Chapter 2

The Many Body electron problem

The aim of this chapter is to provide a background of the many body electron problem.

In section 2.1, we set up the Hamiltonian of the problem and introduce the notations

we will be using throughout the chapter. In this section, we also discuss the Born-

Oppenheimer Approximation (BOA) and the independent electron approximation. In

section 2.2 a discussion of the Hartree-Fock approximation method as well as the im-

portant notion of correlation is given. Section 2.3 is the most relevant to our study and

deals with the Density Functional Theory (DFT) and the Local Density Approxima-

tion (LDA). We end the chapter with a review of the Quasiparticle Self-Consistent GW

(QSGW) approximation.

The topic of electronic structure has been covered in great details in many standard

textbooks. Our review follows references: [6, 20, 41].

2.1 Schrödinger equation for interacting electrons and nuclei

This section covers the basic problem of the electronic structure of solids. We follow

the presentation and notation of Richard Martin’s Electronic Structure [41].

Our model solid state system consist of points nuclei of mass M and atomic number ZI

at position RI as well as electrons of mass m at positions ri.

The Hamiltonian of such a system is given by

Ĥ = − h̄2

2m ∑
i

∇
2
i +

1
2 ∑

i6= j

e2

|ri− r j|
+∑

i,I

ZIe2

|ri−RI|

− h̄2

2MI
∑
I

∇
2
I +

1
2 ∑

I 6=J

ZIZJe2

|RI−RJ|
(2.1)

The first term is kinetic energy of the electrons, the second, the electron-electron re-

pulsion, and the third term the electron-nuclear attraction. The last two terms are re-

5



spectively the kinetic energy of the nuclei and the inter-nuclear repulsion. Because of

the presence of the third term, the Hamiltonian is not separable into a purely electronic

hamiltonian and a purely electronic hamiltonian. However, the mass of the electrons m

is small compared to the mass of the nuclei M, so a perturbation series can be defined

in terms of the small parameter m/M ∼ 1/1836. If we set the nuclei mass to infinity,

the first term in kinetic energy can be ignored. In doing so, we imply that the electrons

move faster and react instantaneously to the motion of the nuclei. This is the Born-

Oppenheimer Approximation (BOA), and is in general valid, provided we are not

explicitly concerned with electron-phonon interactions. We also treat the inter-nuclei

interaction as a constant contribution to the electronic total energy. These approxima-

tions leave us with electronic many-body problem

In Hartree units h̄ = m = e = 4π/ε0 = 1, the electronic Hamiltonian is written as

Ĥ = T̂ +V̂int +V̂ext +EII (2.2)

where T̂ is the kinetic energy of the electron, V̂ext is external potential acting on the

electrons due to the nuclei

V̂ext = ∑
i,I

ZI

|ri−RI|
, (2.3)

V̂int is the many-body electron-electron interaction,

V̂int =
1
2 ∑

i 6= j

1
|ri− r j|

(2.4)

and EII the classical nuclei-nuclei interaction.

The fundamental equation for a non-relativistic quantum system of electrons is the time-

dependent Schrödinger equation

ih̄
∂Ψ(r1,r2, ...,rN ; t)

∂ t
= ĤΨ(r1,r2, ...,rN ; t) (2.5)

Ψ(r1,r2, ...,rN ; t) represents the many-body wave function for the system of electrons

with coordinates r1,r2, ...rN . Since our hamiltonian is time-independent, the wave func-

tions have the form Ψ({ri}; t) = Ψ({ri})e−iEt/h̄. Substituting Ψ({ri}; t) into Eq. (2.5)

6



yields the time-independent Schrödinger equation

ĤΨ(r1,r2, ...,rN) = EΨ(r1,r2, ...,rN) (2.6)

where E the total energy of the system and is a physical observable of the operator Ĥ

and as such is given the expectation value

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 = 〈Ĥ〉= 〈T̂ 〉+ 〈V̂int〉+

∫
d3r Vext(r)n(r)+EII. (2.7)

Another important physical observable is the particle density n(r). It is expectation

value of the density operator n̂(r) = δ (r− r′).

n(r) =
〈Ψ|n̂(r)|Ψ〉
〈Ψ|Ψ〉 = N

∫
Ψ(r,r2, ...,rN)Ψ

∗(r,r2, ...,rN)d3r2...d3rN∫
Ψ(r1,r2, ...,rN)Ψ∗(r1,r2, ...,rN)d3r1d3r2...d3rN

. (2.8)

Despite the simplification brought about by the BOA, we are still left with a complicated

interacting many-body problem in a form partial differential equation of 3N variables.

The complication stem from the fact that the electronic hamiltonian cannot be written

as a sum of single electrons terms because of the presence of the electron-electron

interaction term

Vint =V ee =
1
2 ∑

i 6= j

1
|ri− r j|

. (2.9)

This term implies that the motion of electrons are correlated. However, we can still

assume that there exist an effective potential Veff such that

Vint =Vee =
1
2 ∑

i6= j

1
|ri− r j|

= ∑
i

vi
eff(ri). (2.10)

That is, we treat the electrons in our solids, as if they each moved independently, but in

some effective, mean-field, due to the presence of other electrons. The above assump-

tion of the existence of such quasiparticles convert our many-body problem into a

set of independent one-body problem. This is the independent electron approximation.

The tricky part is building Veff that it computationally tractable, and yet still embodies

the correlated nature of the electronic motion. The two most popular theory containing

7



this idea are the Hartree-Fock (HF) approximation and DFT and will be discussed in

the sections below.

We will also discuss a many-body perturbation method, the GW approximation (GWA)

that starts with the independent-particle wave functions and determine the energy de-

pendent self-energy Σ = iGW that is analog to vi
eff(ri). We leave out other method such

as the Quantum Monte Carlo methods which do not start with the independent-particle

approximation.

2.2 Hartree-Fock Approximation

In this section, we derive the Hartee-Fock equation. We will start with Hartree method

and show how improvement on the Hartree wave functions will the idea of exchange

and correlation.

Hartree approximation

The strategy in the Hartree-like theories [20] is to look for separable solutions of the

form

Ψm(r1,r2, ...,rN)≈ ψ1(r1)ψ2(r2)...ψN(rN) (2.11)

representing the best approximation of the true wave function of Ĥ, in the sense that

they satisfy the variational principle

E0 ≤
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 . (2.12)

where E0 is the true system ground state energy. Accounting for the spins degree of

freedom, the Hartree wave function has the form

Φ(r1σ1,r2σ2, ...,rNσN)≈ φ 1(r1σ1)φ 2(r2σ2)...φ N(rNσN) (2.13)

where φ i(riσi) is the product of the spatial and spinor part φ i(riσi) = ψ i
σ (ri)α(σi)

The one-electron state φ 1(riσi) must be orthogonal to each other since they are the

8



eigenstate of the one-particle hamiltonian: we have

〈ψ i
σ (ri)α(σ)|ψ j

σ ′(ri)α(σ ′)〉= δi jδσσ ′ (2.14)

Hartree-Fock Approximation

A close inspection of the Hartree approximation reveals one major shortcoming, the

wave function is not antisymmetry under particle exchange riσi 
 r jσ j, since the elec-

trons are indistinguishable from one another.

An attempt to fix the above failings were introduced by Fock and Slater[46] in what is

called the Hartree-Fock-Slater method (HF). They constructed a wave function in the

form of a Slater determinant

Φ(riσi,riσi, ...,rNσN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1σ1) φ1(r2σ2) φ1(r3σ3) · · ·

φ2(r1σ1) φ2(r2σ2) φ2(r3σ3) · · ·

φ3(r1σ1) φ3(r2σ2) φ3(r3σ3) · · ·

· · · · · ·

· · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.15)

where the orbital have the separable form φi(riσi) = ψ i(ri)α(σi).

The Pauli exclusion principle is satisfied since the determinant is zero if two orbitals

are identical (ie no two electrons are allowed two be on the same state). Also because

single permutation of any two rows, changes the sign of the determinant, the antisym-

metry condition is satisfied.

It can be shown that the anti-symmetrization causes the electrons motion to be corre-

lated, in fact the joint probability n(r,σ ;r′,σ ′) of finding electrons of spin σ at position

r and of spin σ ′ at position r′ is more than the product of individual probabilities n(r,σ)

and n(r′,σ ′):

nHF(r,σ ;r′,σ ′) = n(r,σ)nr′,σ ′)+∆nx(r,σ ;r′,σ ′)

= n(r,σ)nr′,σ ′)−δσσ ′

∣∣∣∣∣∑i
ψ

σ∗(r)ψσ∗(r′)

∣∣∣∣∣
2

(2.16)
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The last term gives a measure of the correlation; and is zero in the Hartree approx-

imation. By examining Eq. (2.16), we see that ∆nx(r,σ ;r′,σ ′) = 0 when σ 6= σ ′

that is, there is no correlation between particles of different spin. Also, when σ = σ ′,

∆n(r,σ ;r′,σ ′)< 0 implying electrons with same spin avoid each other and further more

if at the same time r= r′, then nHF(r,σ ;r′,σ ′) = 0. No electron can have same spin and

same position. These are evidence of the presence of correlation in the Hartree-Fock

theory.

Hartee-Fock equation

It can be shown that the Hartree-Fock total energy is given by

E = 〈Ψ|Ĥ|Ψ〉 = ∑
i,σ

∫
drψ

σ∗
i (r)

[−h̄2

2m
∇

2 +Vext(r)
]

ψ
σ∗
i (r)+EII

+
1
2 ∑

i j,σiσ j

∫
drdr′ψσi

∗
i (r)ψσ j

∗

j (r′)
e2

|r− r′|ψ
σi
i (r)ψσ j

j (r′) (2.17)

− 1
2 ∑

i j,σ

∫
drdr′ψσ

i (r)ψ
σ
j (r
′)

e2

|r− r′|ψ
σ
i (r)ψ

σ
j (r
′)

The last two terms are the Hartree energy EH and the exchange energy Ex. They can be

re-expressed as,

EH =
1
2 ∑

i j,σiσ j

∫
drdr′ψσi

∗
i (r)ψσ j

∗

j (r′)
e2

|r− r′|ψ
σi
i (r)ψσ j

j (r′)

=
1
2

∫
drdr′n(r)

e2

|r− r′|n(r
′) (2.18)

Ex = −1
2 ∑

i j,σ

∫
drdr′ψσ

i (r)ψ
σ
j (r
′)

e2

|r− r′|ψ
σ
i (r)ψ

σ
j (r
′). (2.19)

We have used the n = ∑i,σi ψ
σi∗
i (r)ψσi∗

i (r)

If we now demand that the determinantal wave-function be chosen so as to minimize

variationally, the total energy in Eq. (2.17), we arrive at the HF equation,[−h̄2

2m
∇

2 +Vext(r)+V iσ
eff (r)

]
ψ

σ
i (r) = ε

σ
i ψ

σ
i (r) (2.20)
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where V iσ
eff (r) = Vext(r) +VH(r) +V x

iσ (r) and the Hartree potential VH and exchange

potential V x
iσ are respectively given by

VH(r) =
∫

dr′n(r′)
e2

|r− r′| (2.21)

Vx(r) =−
[
∑

j

∫
dr′ψσ∗

j (r)ψσ
i (r
′)

e2

|r− r′|

]
ψσ

j (r)
ψσ

i (r)
. (2.22)

Upon close observation of the expression (2.22), we see that the Hartee-Fock exchange

potential is both orbital dependent, and non-local. This means that the Hartree-Fock

one-body effective potential does contain element of the true many-body problem.

The Hartree-Fock method is known to predict reasonable the properties of atoms and

molecules, but is quite poor for solids, for example the Hartree-Fock Approximation

predicts a silicon band gap of 0.5 eV, compared to the experimental value 1.17 eV. In

addition, the method is difficult to implement because of the presence of the non-local

term in 2.20.

2.3 Density Functional Theory

In this section, we review the DFT, and derive the important Kohn-Sham equation and

its local density approximation (LDA). We also examine the interpretation of the DFT-

LDA eigenvalue.

Hohenberg-Kohn theorems

The main idea in the density functional theory is to recast the many-body problem in

terms of the particle density instead of the many-body wave functions as it is done in

the HF approximation. The theory is based on two fundamental theorems [27]

Theorem 2.3.1 For a system of interacting particles in an external potential Vext(r),

the potential Vext(r) is determined uniquely except for a constant, by the ground state

particle density n0(r).
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Theorem 2.3.2 A universal functional for the energy E[n] in terms of the density n(r)

can be defined, valid for any external potential Vext(r). For any particular Vext(r), the

exact ground state energy of the system is the global minimum value of this functional,

and the density n(r) that minimizes the functional is the ground state density n0(r).

Applying theorem (2.3.1) and (2.3.2) to the many-body electronic hamiltonian, Eq.

(2.2),

Ĥ = T̂ +V̂int +V̂ext +EII (2.23)

we have the Hohenberg-Kohn energy as functional of the density n(r)

EHK = T [n]+Eint[n]+
∫

drn(r)Vext(r)+EII (2.24)

with T [n] and Eint universal functional of n(r). Furthermore if n(r) is the ground state

density, EHK is the energy of the ground state.

It is important at this point to make the following two remarks: first the HK theorems

only refer to ground state properties and do not mention excited states. In principle,

since n(r) determines Vext and hence the entire hamiltonian, the excited states are cor-

rectly built in. However, the functionals are only evaluated near the global minimum

(ground state) far away from saddle points associated with excited states.

Second, the HK theorems only prove the existence of a unique functional E[n] of the

density, but the exact form of E[n] remains unknown. The next section tries to address

this last issue.

The Kohn-Sham Equation

Kohn and Sham formalism [34] transforms the original many-electron interacting sys-

tem into an auxiliary non-interacting system with the same number of electrons. The

result is an independent particle Schrödinger similar to the Hartree-Fock Approxima-

tion.
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The ground state of the auxiliary system has one electron each in of the N orbitals ψσ
i (r

with lowest eigenvalue εσ
i . We recall the electron density is given by

n(r) =
N

∑
iσ
|ψσ

i (r)|2 (2.25)

and the non-interacting kinetic energy TSis given by

Ts =−
1
2

N

∑
iσ
〈ψσ

i |∇2|ψσ
i 〉. (2.26)

If the coulomb interaction, EH in terms of the electronic density is

EH =
1
2

∫
drdr′

n(r)n(r′)
|r− r′| , (2.27)

and the exact Kohn-Sham total energy is

EKS = Ts[n]+EH[n]+Eex[n]+
∫

drn(r)Vext +EII (2.28)

The term Exc[n] contains the many-body effect but its exact form is not known except

via the relation

Exc = T [n]−Ts[n]+Eint[n]−EH[n] (2.29)

obtained by comparing Eqs. (2.24) and (2.28). In practice approximation are made

about the functional form of Exc[n], the most popular are the LDA (see next section)

and generalized gradient approximation (GGA).

Assuming Exc[n] given, the Kohn-Sham equation is obtained by minimizing Eq. (2.28)

with respect to the constraint n(r) = ∑
N
iσ |ψσ

i (r)|2[
1
2

∇
2 +V σ

eff(r)
]

ψ
σ
i (r) = ε

σ
i ψ

σ
i (r) (2.30)

where

V σ
eff(r) =V σ

ext(r)+VH(r)+V σ
xc(r) (2.31)

with

V σ
xc(r)≡

δExc[n]
δn(r)

=
δ

δn(r)

∫
drn(r)εxc([n];(r)) (2.32)

Again Eq. (2.30) can be solved self-consistently if Vxc is known.
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The Local Density Approximation (LDA)

The most popular exchange and correlation functional is the local density approxima-

tion. It assumes Exc has the form

ELDA
xc =

∫
drn(r)εxc([n];(r))≡

∫
drn(r)εxc(n(r)) (2.33)

where εxc(n(r) is the local exchange correlation energy density of an homogeneous

electron gas (HEG) with density n(r) and are known exactly based on calculations on

HEG system. The exchange and correlation potential is

V σ
xc(r)≡

δExc[n]
δn(r)

= εxc(n(r))+n(r)
d
dn

εxc(n(r)). (2.34)

By construction, the DFT-LDA is exact in the limit of uniform density, so properties

derived from the DFT-LDA will be more accurate for system which can be closely

approximated by a uniform density, and inaccurate for system with strong symmetric

densities.

The limitation of the DFT-LDA: Band gap problem

The grounds state properties (electronic density, total energy, bulk modulus and various

elastic coefficients) are successfully predicted by the DFT-LDA. However, the excited

state properties are not so well described. The most obvious example is the band gaps of

semiconductors which are consistently underestimated. The silicon band gap in LDA is

0.5 eV compared to the experimental value of 1.17 eV. LDA predict Ge to be a metal (0

gap) yet Ge is semiconductor with band gap of 0.65 eV at room temperature. In order

to understand the origin of these discrepancies, we have to return to the derivation of

DFT.

First, the electron density is truly non-local contrary to the assumption of the LDA.

Second, whereas the true meaning of the total energy and electron density is built in
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the DFT, nothing guarantees the Kohn-Sham eigenvalues are physical. They were in-

troduced as lagrange multipliers in the KS variational principle and so cannot automat-

ically be interpreted as the true electronic energies. In fact, it has been proved that

([44, 22]) that even if the exact functional of the exchange and correlation was known,

the KS energies will still not be equal to the quasiparticles excitation energies. Never-

theless the Kohn-Sham band energies are close to quasiparticle excitation energies and

can be considered as a zero order approximation to the true quasiparticle energies.

Various methods have been proposed to improve the accuracy of the excitation energies.

These methods can be classified into two categories: the method based on improving

the functional form of the exchange and correlation energy and other methods based on

many-body perturbation theory. We discussed the second category in the next section.

An example in the first category is the generalized gradient approximation (GGA) ([55])

in which the gradient of the density n, ∇n is added to the LDA exchange and correlation

potential. This method improves the total energy but does not affect the excited-states

energies. Another common method, the LDA+U ([37]) tries to improve the LDA eigen-

values by introducing empirical orbital (d-orbital) dependent energy term U to the LDA

potential. This scheme properly positions the localized d and f energy levels but does

little to affect the band gap. The methods in the second category that actually improve

the band gap are the Self-Interaction correction (SIC) and the Optimized Effective Po-

tential (OEP) method. The gap though improved, are overestimated. A brief discussion

of these methods is found in the review by Aryasetiawan and Gunnarson ([5]).

Other methods such as the Many-body perturbation theory can be built around the

Kohn-sham hamiltonian; we discuss them in the next section.

2.4 Many-body Methods: GW approximation

In order study electron excited state and excitation spectra, we need to go beyond-DFT

as we have indicated in the previous section. The method is best understood when
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presented from the Green’s function formalism. We will follow the presentation of

Louie and Cohen[38].

Green’s Function Formalism

We recall that the for a single particle Green’s function for interacting many-electron

system of Eq. (2.5) is given by

G(r,r′;τ) = −i〈0|T ψ̂(r,τ)ψ̂(r,0)|0〉 (2.35)

where ψ̂ is the electron field operator, T the time order operator and |0〉 is the many

electron ground state. Eq. (2.35) represent the amplitude of finding a particle at r a

time τ if one was created in r′ at time t=0.

From the many-body hamiltonian H = T̂ +V̂ext +V̂int = H0 +Vint, we have

(h̄ω−H0−VH)G(r,r′;ω)−
∫

Σxc(r,r′′,ω)G(r′′,r′;ω) = δ (r,r′) (2.36)

where Σxc(r,r′,ω) is the self-energy. Re-expressing green’s function as

G(r,r′,ω) = ∑
nk

ψnk(r)ψ∗nk(r
′)

ω−Enk± iδ
(2.37)

we obtain the quasiparticle Dyson’s equation[−h̄2

2m
∇

2 +Vext(r)+VH(r)
]

ψnk(r)+
∫

d3r′Σxc(r,r′,ω)ψnk(r′) = Enkψi(r) (2.38)

where ψnk the eigenfunctions of the Dyson’s equation and Enk the eigenvalues also cor-

responding to the pole of G(ω).

Eq. (2.38) is similar in form to Eq. (2.30) with the difference that the Vxc(r,r′) is

replaced by the self-energy Σxc(r,r′,ω). Compared to Vxc(r,r′), the self-energy is

non-local, energy dependent and contains all the effects of exchange and correlation.

Σxc(r,r′,ω) is not hermitian, therefore, Enk has a real part corresponding the quasipar-

ticle energies and an imaginary part linked to their lifetime assumed to be long enough
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to warrant comparison with experiments. Constructing Σxc(r,r′,ω) is complicated, and

approximations have to be made. The most common is the GW approximation(GWA),

first introduced by Hedin [26].

The GW approximation (GWA)

The GWA is a perturbative approach to the many-body problem around a one body

hamiltonian H0 = ∇2

2 +Veff(r,r′); usually the H0 is the DFT-LDA hamiltonian. The

method consists of expanding the self-energy in terms of the green’s function G0 and

the screened coulomb interaction W , keeping only the first term of the expansion. In

this approximation, the self-energy is given as

Σ(r,r′,ω)≈ i
2π

∫
dω
′G0(r,r′,ω−ω

′)W (r,r′,ω)e−iδω ′. (2.39)

where G0 is obtained from the eigenvalues εi and eigenfunctions Ψi of H0:

G0(r,r′,ω) = ∑
i

Ψi(r)Ψ∗i (r′)
ω− εi± iδ

(2.40)

and W calculated in the random phase approximation (RPA)

W = ε
−1v = (1− vΠ)−1v; (2.41)

where ε is the dielectric function, Π = −iG0×G0 is the proper polarization function

and v(r,r′) = 1
|r−r′| the bare coulomb interaction.

If we define a GW-one effective potential V GW
eff as

V GW
eff (ω) =Veff +Σ(ω) =VH +Vext +Σ(ω). (2.42)

we can think of GWA as a perturbative correction ∆V GW
eff (ω) to one-particle potential

Veff that is

∆V (ω) =V GW
eff (ω)−Veff (2.43)
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As mentioned earlier, the starting hamiltonian is in most cases the LDA hamiltonian,

H0 = HLDA and in this case,

Enk = εnk +Znk〈Ψnk|Σ(r,r′,εnk)−V LDA
xc (r)|Ψnk〉 (2.44)

where Znk is the quasiparticle renormalization factor

Znk = 1−〈Ψnk|
∂

∂ω
Σ(r,r′,εnk)|Ψnk〉 (2.45)

This approach to the GWA is often called the one-shot-GW, and was first implemented

by Hybertsen and Louie [28]. The energy bands of the one-shot GWA are a large im-

provement compared to the LDA bands. However, the energy values often depend on

the starting hamiltonian H0, and different H0 lead to different GW energies. This sug-

gest self-consistency is needed.

Many self-consistent GW (SC-GW) scheme have been implemented in the past.

Aryasetiawan et al [4] used one such scheme to study the energy bands structure of

NiO and Luo et al [40] for the bands structure of ZnS and ZnSe. In these two cases,

the eigenvalues were calculated self-constistently, without varying the one-shot wave

function. Later, Kotani and van Schilfgaarde et al [50, 35] implemented the more rigor-

ous Quasiparticle Self-consistent GW (QSGW) method. We present a summary of the

important steps of the QSGW method.

Quasiparticle-self-consistent GW approxiamtion

The QSGW approach to self-consistency is to find the best H0 (or Veff) from which

QP energies are derived. This is done by looping between Veff and VGW(ω) until the

difference ∆V (ω) is minimum. For the minimization step, Kotani et al [35] introduced

a norm M given by

M[Veff] = Tr[∆V δ (ω−H0)∆V †]+Tr[∆V †
δ (ω−H0)∆V ] (2.46)
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where the trace is taken over r and ω . They showed this norm was minimized by

choosing Vxc in Veff =Vext +VH +Vxc as

Vxc =
1
2 ∑

i j
|ψi〉

{
Re [Σ(εi)]i j +Re

[
Σ(ε j)

]
i j

}
〈ψ j| (2.47)

With the new Vxc, a new H0 is constructed and the GWA step repeated to generate a new

Σ. The process is repeated until convergence is reached. Achieving self-consistency in

this manner insures that QSGW approximation converges in both the eigenvalues and

eigenfunctions, in contrast to the SC-GW.

The excited states energies (and thus the values of the band gap) are in better agreement

with experiments for many semiconductors as it is shown in Figs. (2.1) [50]. This

success comes at a huge cost in computational time; this is the case because apart from

the calculation of the polarization function which is an expensive step in the GWA, the

QSGW requires both the diagonal Σii and the off-diagonal element Σ ji of the self energy

matrix.

In this thesis, we only use the QSGW method for bulk Si, Ge and Sn which only have

two atoms in their unit cell. We will perform QSGW calculations on few 8-atoms

structures. The main use of our QSGW results will be to provide us with the accurate

energies band needed for our fits.
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Figure 2.1: Fundamental gaps of sp compounds from LDA (squares) and GLDAWLDA

(circles) in top panel, and from QSGW, in bottom panel. For QSGW data, zinc-blende
compounds with direct Γ−Γ transitions are shown as circles; All other gaps are shown
as squares from [50]
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Chapter 3

Solutions of the one-electron problem

The purpose of this chapter is to solve the one-electron Kohn-Sham equation derived in

the previous chapter: [
−∇2

2
+V ( r)

]
ψi(r) = εiψi(r) (3.1)

We use the Tight-Binding Linear Muffin-Tin orbitals (TB-LMTO) method in the

Atomic Sphere Approximation (ASA). This method was developed by O. K.

Andersen[2, 3] over many years. The method is built around the classical multiple

scattering method of Korringa, Kohn and Rostoker (KKR) [29, 33]. The basis used are

minimal, short ranged, thus particularly suitable for the supercell calculations we are

interested in. We first review the derivation of the TB-LMTO method, then we apply

the method and modification thereof to the calculation of band structures of Si, Ge and

Sn.

3.1 From Multiple scattering theory to TB-LMTO

The TB-LMTO method has been discussed in greater detail in many monograms and

texts. The following presentation is based on the textbook of G.P. Das[14]. First we

present the MTO in the context of the KKR-MTO, next we introduced the Atomic

Sphere Approximation (ASA) before discussing the concept of screening and lineariza-

tion of the MTO eigenvalue problem.

We can imagine the effective potential experienced by electrons in condensed-matter

being the result of overlapping individual atomic potentials as atoms come closer and
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closer to form a solids. This potential can be approximated by MT potential

V (r) = ∑
R

VR(|r-R|)+VMT (3.2)

here R is sum over all atomic sites. V (r) is spherically symmetric within the MT radius

SR and constant in the interstitial region.

Muffin tin orbital and the tail cancellation theorem

The solution of Eq. (3.1) for a single MT, has the form

χRL(ε,κ,rR) = ŶL(r̂R)

 φRl(ε,rR) rR ≤ sR

nl(κrR)− cot(ηRl(ε,κ)) jl(κrR) rR ≥ sR

(3.3)

where rR = |r−R| and L = {lm}. φRl(ε,rR) is the solution of the radial schrödinger

equation inside the MT and the solution in the interstitial is a linear combination of

the Neumann function nl(κrR) and the Bessel function jl(κrR). κ2 = ε −VMT is the

kinetic energy in the interstitial region. Finally ηRl(ε,κ) is the ”phase shift” of the l-

partial wave which is determined by matching the inside and interstitial solution at the

MT-radius sr. Put mathematically,

cot(ηRl(ε,κ)) =
W [φRl(ε,rR),nl(κrR)]

W [φRl(ε,κ), jl(κrR)]
(3.4)

with the W [] the traditional wronskian. In order to avoid divergence of the solution in

the interstitial when κ ≤ 0, we add to the general solution cot(ηRl jl(κrR) and obtain

the so-called muffin-tin orbital

χRL(ε,κ,rR) = ŶL(r̂R)

 φRl(ε,rR)+ cot(ηRl(ε,κ)) jl(κrR) rR ≤ sR

nl(κrR) rR ≥ sR

(3.5)

The ”tail” of the MTO centered at R nl(κrR) may be expanded into spherical harmonics

about another sites R′ as

nl(κrR)∑
L′

j′L(κrR′)BRL,R′L′(κ) (3.6)
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The expansion coefficient is the KKR structure matrix BRL,R′L′ .

For the full crystal, the solution of Eq. (3.1) may now be expressed as a linear combi-

nation of MTO:

ψ(ε,r) = ∑
RL

χRL(ε,κ,rR)cRL (3.7)

on the condition that inside any MT R′ and for any angular momentum L′, the contribu-

tion from neighboring tails must cancel the cot(ηRl(ε,κ)) jl(κrR)-term from their own

MTO. This lead to the KKR tail-cancellation condition

∑
RL
[BR′L′,RL(κ)+ cot(ηRl(ε,κ))δRR′δLL′]cRL(ε) = 0. (3.8)

Eq. 3.8 is a system of linear equation and the zero of its secular determinant.

det|B(κ)+ cot(η(ε,κ))|= 0. (3.9)

gives the energies and the wave function coefficient cRL This last step essentially con-

cludes the solution of Eq. (3.1) using KKR-MTO.

Few remarks can be made about the KKR-MTO solutions just outlined:

• The basis, and hence the structure constants B(κ) are strongly energy dependent

and long-ranged. It will be useful to screened the basis thus reducing their range.

• The secular determinant is nonlinear and finding its zeros is a cumbersome task;

a linear secular determinant will make the problem more tractable.

Before introducing the concept of screening and linearization, we first discuss the

Atomic Sphere Approximation; though the linearization and screening are independent

of the ASA.

Atomic Sphere Approximation

The ASA consists in increasing the size of the MT sphere until the space is filled and

the sum of the sphere volume equal the volume of the whole space. Doing so intro-
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duces possible overlaps between neighboring spheres. Experience has shown that such

overlap can be allowed as long as they remain small:

sR− sR′−|R−R′|
sR

≤ 0.3 for all R (3.10)

This condition is generally fulfilled for closed packed solid such as metal. For open

structure such as semiconductors, artificial atom of charge Z = 0 must be added at well

chosen symmetry point until the space is filled, while respecting the overlap criteria of

Eq. (3.10).

The one consequence of invoking the ASA is that, the kinetic energy κ2 can be conve-

niently set to zero. This imply that the regular solution of laplace’s equations is now the

radial Bessel and Hänkel functions

J0
l (r) =

1
2(2l +1)

( r
w

)l
K0

l (r) =
( r

w

)−l−1

where w is a scaling constant, usually set to the sr (or sav for compounds). Again,

expanding the Hankel function in terms of static multipoles gives

K0
l (rR) = ∑

L′
J0

L′(rR′)S
0
RL,R′L′. (3.11)

The ASA-MTO is given by

χRL(ε,rR) = ŶL(r̂R)

 φRl(ε,rR)+P0
Rl(ε)(rR/sR)

l rR ≤ sR

(rR/sR)
−l−1 rR ≥ sR

(3.12)

with the matching conditions giving the potential function

P0
Rl(ε) = 2(2l +1)

DRl(ε)+ l +1
DRl(ε)− l

(3.13)

Here DRl ≡ D{φ(ε,sR)} (D{ f}= r f ′(r)
f ( r) ) is the logarithmic derivative of φ(ε,sR) eval-

uated at rR = sR.

Now the tail-cancellation condition yields

∑
RL
[SR′L′,RL +P0

R′l′(ε)δRR′δLL′][N
0
Rl(ε)]

−1cRL(ε) = 0. (3.14)
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where the normalization function N0
Rl(ε) = [(w/2)Ṗ0(ε)]1/2 with Ṗ0

R′l′(ε) the energy

derivative of the potential function. The new secular determinant

det|S0
R′L′,RL +P0

R′L′,RL(ε)δRR′δLL′|= 0. (3.15)

is now clearly divided into a structure dependent part and potential dependent part.

However two issues remain; First, the secular determinant is still non-linear. Second,

the structure matrix is long-ranged and decays slowly as

S0
l′lm =Cll′m

(
d
s

)−(l+l′+1)

. (3.16)

where Cll′m represents the hopping parameter (similar to the one found in the context of

the local combination of atomic orbitals (LCAO) [24]). The main reason for the slow

decay is because the spherical Bessel ( jl) and the Neuman (nl) functions have long

range and are energy dependent. This leads to sites interference.

Screening formalism

In this section, we introduced the concept of screening, needed to make the structure

matrix decay faster. In order to achieve localization, the multipole field at R is screened

by surroundings it with multipoles at R′.

We can write the envelope function extended over the whole space as

K0,∞
Rl (rR) = K0

Rl(rR)−∑
L′

J0
L′S

0
RL,R′L′+K0,i

Rl (rR) (3.17)

or in matrix notation,

|K0,∞〉= |K0〉− |J0〉S0 + |K0〉i (3.18)

Here, |K0〉 is the ’head’ of the envelop centered at R′ and vanishes outside the sphere,

while |J0〉 is regular solution, and vanishes outside neighboring WS cell centered at

R′ due to tail cancellation. Since we have adopted the ASA, we drop the interstitial
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contribution K0〉i

In order to screen the envelope function |K0,∞〉, we introduce a new representation

or a transformation characterized by the screened parameter α ≡ αRl . The screening

transformation may be expressed by

Jα
Rl(rR) = J0

Rl(rR)−αRLK0
Rl(rR), (3.19)

|Kα〉∞ = |K0〉− |Jα〉Sα = |K0〉(1+αSα)−|J0〉Sα (3.20)

and

Sα = S0(1−αS0) or (Sα)−1 = (Sα)−1−α (3.21)

In all the above equations, α is diagonal matrix with element αRl . When αRl = 0, we

recover the unscreened or ’bare’ representation while αRl = γRl is called the orthonor-

mal representation and α = ωRl the most localized TB-MTO representation α = 0. It

was found by trial and error [3] that the set of α yielding the best localization is uni-

versal and their values are αs = 0.3485 , αs = 0.05303 and αd = 0.0107 for l = 0,1,2

and 0 for l > 2. For these values, Sα decays exponentially as Sα = Aexp(−λ α

ll′
d
w), with

d = |R-R’|.

In the new representation, the potential has the form

Pα(ε) = P0(ε)[1−αP0(ε)] or [Pα(ε)]−1 = [Pα(ε)]−1−α (3.22)

and the normalization by Nα(ε) = [(s/2)Ṗα(ε)]1/2. The screened secular equation

become

det|Sα

R′L′,RL +Pα

R′L′,RL(ε)δRR′δLL′|= 0. (3.23)

Linear Muffin Tin Orbitals

Our goal is to construct energy independent LMTO. We begin by taylor-expanding the

energy dependent MTO about a suitable energy ε = Eν

φRl(ε,rR) = ϕRl(ε,rR)+(ε−Eν)ϕ̇Rl(ε,rR)+Ø(ε−Eν)
2 (3.24)
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where ϕRl(r) = φ(Eν ,r) and ϕ̇Rl(r) = ∂φ(ε,r)/∂ε|ε=Eν
are respectively the solutions

of

[−∇
2 +VR−Eν ]ϕ(r) = 0 (3.25)

[−∇
2 +VR−Eν ]ϕ̇(r) = ϕ(r) (3.26)

with normalization and orthogonality conditions (γ-representation)

〈ϕ|ϕ〉=
∫ sR

0
[φ

γ

Rl]
2r2 dr = 1 and 〈ϕ|ϕ̇〉=

∫ sR

0
[φ

γ

Rl φ̇
γ

Rl]r
2 dr = 0. (3.27)

In the general representation, we have

φ
α
Rl(ε,r) = φ

γ

Rl(ε,r)[N
α
Rl(ε)/Nα

Rl] (3.28)

φ̇
α
Rl(ε,r) = φ̇

γ

Rl(ε,r)[N
α
Rl(ε)/Nα

Rl]+φ
γ

Rl(ε,r)[Ṅ
α
Rl(ε)/Nα

Rl] (3.29)

Noting that ϕα
Rl = ϕ

γ

Rl = ϕRl at ε = Eν , the last expression takes the matrix notation

|ϕ̇α
Rl〉= |ϕ̇

γ

Rl〉+ |ϕ
γ

Rl〉oα (3.30)

with oα = 〈ϕ|ϕ̇α〉 = Ṅα/Nα = P̈α/2Ṗα . Others orthogonality relations between |ϕ〉,

|ϕ̇α〉 and |ϕ̇γ〉 are

〈ϕ|ϕ〉= 1 〈ϕ|ϕ̇γ〉= 0 〈ϕ̇α |ϕ̇α〉= pα = oα2
+ pγ (3.31)

with pα
Rl = 〈ϕ̇α2

Rl 〉. Using the above definition, we can write the energy independent

LMTO in the ASA as

χRl(ε,rR) = ϕRl(ε,rR)+ ∑
R′L′

ϕ̇RL(ε,rR′)h
α

R′L′,RL (3.32)

or in matrix notation

|χα〉= |ϕα〉+ |ϕ̇α〉hα (3.33)
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where the matrix element of hα are defined in such a way that |Kα〉∞ and |Jα〉 are

continuously connected to ϕ and ϕ̇ . Explicitly,

hα = −Pα(Ṗα)−1 +(Ṗα)−1/2Sα(Ṗα)−1/2 (3.34)

= (Cα −Eν)+
√

∆αSα
√

∆α (3.35)

The above expression has two parts, the on-site and diagonal part, Cα −Eν and the off-

diagonal part
√

∆αSα
√

∆α . Cα is often called the band-center parameter and ∆α the

band-width parameter. They are related to potential parameter by

Cα = Eν −Pα(Ṗα)−1 and ∆
α = 1/Ṗα (3.36)

In this basis, the overlap matrix and the Hamiltonian matrix are given by

〈χα |χα〉= 1+ 〈ϕα |ϕ̇α〉hα + 〈ϕ̇α |ϕα〉hα +hα〈ϕ̇α |ϕ̇α〉hα (3.37)

〈χα |H−Eν |χα〉= hα +hα〈ϕ̇α |ϕ̇α〉hα + · · · (3.38)

In the nearly orthonormal representation (α = γ), and neglecting higher order terms of

hα , we have the TB-LMTO-ASA hamiltonian

〈χα |χα〉 = 1 (3.39)

〈χα |H−Eν |χα〉 = hα (3.40)

3.2 The Full-Potential (FP)-LMTO method

We digress here to discuss a variant of the LMTO method, the Full-Potential LMT0.

Because the spherical averaging of the charge density, the ASA is only suitable for

determining the spectral properties. But properties related to the total energy are not

reliable, yet many properties such as force and elastic coefficient are useful. In addition,

in complex geometries, it is not always possible to fill the space with empty spheres

without incurring large overlap. For this reason, the FP-LMTO were developed[39].
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The LMTO-ASA and the FP-LMTO are similar in the sense that they all use linear MT-

basis. But they differ in the way they treat the interstitial part of the potential. The ASA

eliminates the interstitial by introducing empty spheres when necessary and can thus

find the charge density by spherical averaging and avoid the very expensive calculation

of the interstitial potential. The FP instead, treats the interstitial density and potential

more explicitly. This make the FP somehow computationally more intense because the

extra matrix Vi j =
∫

I drH ∗i (r)V (r)H ∗ j (r). Here H(r) represents the envelop function,

more precisely the smoothed Hankel functions which make the calculation of the three-

dimensional integral more efficient. The augmentation in the FP is also slightly different

than in the standard LMTO. Because of this full treatment of the potential, the FP-

LMTO is more accurate but unfortunately slower, and not amenable to the TB form.

Throughout this thesis, we will still use the FP-LMTO in three ways:

• first to perform relaxation of the alloys in our supercell since FP-LMTO forces

are accurate;

• second to generate the QSGW reference bands;

• lastly to verify that the choice of RMT radius in the LMT0-ASA is appropriate.

the GW calculations are done in the FP-LMTO while the supercell calculations are

performed using the TB-LMTO-ASA.

3.3 Step of the TB-LMTO-ASA method

Let summarize the step we take to solve our Schrödinger equation (3.1). We seek wave

functions ψ(r) which are linear combination of ∑RL χRLcRL of the LMTO χRL. The

eigenvectors cRL and eigenenergies ε are found by solving the eigenvalue problem

∑
RL
(HR′L′,RL− εOR′L′,RL)cRL = 0 (3.41)
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where

HR′L′,RL = CRLδR′RδL′L +
√

∆R′L′S
γ

R′L′,RL

√
∆RL (3.42)

Oγ = δR′RδL′L (3.43)

Sγ

R′L′,RL = [S0(1− γS0)−1]R′L′,RL (3.44)

In practice, given a material, its crystal structure (FCC, BCC, SC, Diamond or Super-

cell), and its lattice parameter alat, the basis is set by deciding which angular momentum

states l = 0,1 and/or 2) (corresponding to s, p and/or d) for each atomic species present

in a unit cell. With this information the structure matrix Sγ

R′L′,RL is determined. The next

step is to used some starting spherically averaged electron density nR(r), of the energy

moment Q(m)
Rl =, m = 0,1,2 to construct the potential. The expression for the spherical

averaged density is

nR(r) =
1

4π
∑

l
[Q(0)

Rl ϕ
2
Rl(r)+2Q(1)

Rl ϕRl(r)ϕ̇Rl(r)+Q(2)
Rl {ϕ̇2

Rl(r)+ϕRl(r)ϕ̈Rl(r)}](3.45)

with

Q(m)
Rl =

∫ EF
dENRl(E)(E−Eν ,Rl)

m (3.46)

where NRl is the projected density of state and is given by

NRl(E) = ∑
i

δ (ε− εi)∑
RL
|cRL|2 (3.47)

Then by solving the radial equation around the energy of interest Eν ,RL, one obtained

the quantities ϕRl , ϕ̇Rl and ϕ̈Rl from which the potential parameter CRL and ∆RL are

calculated. With the potential parameter, the hamiltonian HR′L′,RL is constructed and

diagonalized to obtain the eigenvalue and eigenvector. These eigenvectors are used to

generate a new density. The cycle is repeated until convergence is reached.

3.4 LDA+Levenberg-Marquardt (LDA+LM) fit

The steps just described correspond to the standard TB-LMTO-ASA method. When

the method is used within the DFT-LDA, the excited state energies are incorrect. In
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this thesis we propose a new method for correcting the excited states energies of the

DFT-LDA within the TB-LMTO method. The procedure consists in first determining

self-consistently, the potential parameters CRL and ∆RL by following the steps outlined

in the previous section. Then, using the Levenberg-Marquardt Non-Linear fitting tech-

niques [45], we adjust these parameter until the eigenvalues of the TB-LMTO are the

same as the QSGW energies. These fits are only done for elemental Si, Ge and Sn.

The correction to the potential parameters are assumed to be transferable to the alloys

structures. This last assumption is carefully tested.

This scheme is only possible because of the TB-LMTO-ASA provides a tight binding-

like formulation of the DFT-LDA. In this sense, our approach is similar to the local

density derived semi-empirical pseupotential method of Zunger [52]. It is different

from the other semi-empirical tight binding method, based on Linear Combination of

Atomic Orbitals (LCAO)[51, 30]. In TB-LCAO, the matrix elements are not evaluated

explicitly but instead fitted to experiment; by contrast, our matrix elements are first ob-

tained self-consistently within DFT-LDA before the LM fits are applied. In addition,

the number of parameter to fit is large in TB-LCAO typically 20 to 40 compared to a

maximum of 8 for similar systems.
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Chapter 4

Electronic band structure of Si, Ge and α−Sn

In this chapter, we apply our LDA+LM method to generate accurate band structures for

bulk Si, Ge and Sn by adjusting the parameters of the TB-LMTO hamiltonian. The new

parameters will be tested for transferability.

4.1 Fitting TB-LMTO bands to QSGW: case of Bulk Si, Ge, and α−Sn

Figure 4.1: The Diamond Cell and its first Brillouin zone lattice with key symmetry
point labelled

Si, Ge and ,α-Sn are all Group IV material. They are characterized by their

diamond structure; an FCC structure with two atoms in the basis: one at the origin

(0,0,0) and the other at (1/4, 1/4, 1/4). This gives each atom 4 nearest neighbors with

which they form sp3 tetrahedral bond as shown in Fig. 4.1.

We use for all our calculation the LMTO-ASA-V7 suite, the FP-LMTO-V7 suite and

the GW-suite developed by M. van Schilfgaarde et al.

For all three systems, Si, Ge and Sn, our diamond unit cell contains the two atoms, plus

two (extra) empty spheres(ES) necessary to fill the interstitial. In all cases, the overlap

is not allowed to exceed 13.7%. The atomic configurations are for Si ([Ne]3s23p2), for

Ge ([Ar] 4s23d104p2) and for Sn([Kr]5s24d105p2). Therefore our basis is made in each
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case of (1× s+3× p+5×d = 9)∗4 = 36−10 = 26 orbitals. Here, we down-folded

the 5-d-orbitals on each ES.

For each system, the first step is to obtain the QSGW reference energy bands; Next, we

determined the self-consistent potential parameter of the TB-LMTO method, CRL and

∆RL. We then run the Levenberg-Marquardt fit to obtain the shifts cRL and δRL. The

new parameters CRL + cRL and ∆RL +δRL give band structures that matched the QSGW

bands as shown in Fig. 4.2. The agreement is excellent for the valence band as well as

for the conduction bands at least up to 8 eV. The tables 4.1, 4.2 and 4.3 list the values

of the potential parameters and their shifts.

Table 4.1: Si potential parameters and the shifts from GW fits (in units of Rydberg)

Elements states CRL cRL ∆RL δRL
Si (alat=10.26 rmt=2.52587098)

s -0.838 -0.0385 0.158 0.021
Si p 0.115 0.018 0.131 0.025

d 1.528 -0.004 0.141 0.001
s 0.068 0.068 0.180 -

Es p 1.296 0.107 0.200 -
d 3.140 - 0.230 -

Table 4.2: Germanium potential parameters and the shifts from GW fits (in units of
Rydberg)

Elements states CRL cRL ∆RL δRL
Ge (alat=10.67 rmt=2.626807)

s -0.951 -0.065 0.137 0.031
Ge p 0.061 0.020 0.124 0.031

d 1.867 -0.289 0.161 -0.020
s 0.049 0.030 0.168 -0.020

Es p 1.188 -0.062 0.187 -0.02
d 2.899 - 0.214 -
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Table 4.3: Tin potential parameters and the shifts from GW fits (in units of Rydberg’s)

Elements states CRL cRL ∆RL δRL
Sn (alat=12.25 rmt=3.015782 )

s -0.896 -0.052 0.104 0.026
Sn p -0.042 0.034 0.101 0.026

d 1.554 -0.00 0.144 0.001
s -0.010 0.043 0.127 -0.025

Es p 0.820 -0.004 0.134 -0.004
d 2.016 - 0.144 -

4.2 Transferability

In order to test the transferability of our parameters, we used the shifts obtained for

bulk Si, Ge and Sn and without any additional fit, and generate the band structures

of zinc-blende (ZB) SiGe, GeSn and SiSn. The generated bands are compared to the

respective QSGW bands. Fig. 4.3 shows the excellent agreement between LDA+LM

bands and the QSGW. This confirms that the parameter can be reliably transferred to

other environments or structures. We also calculated bands structures for few randoms

alloys structures, Ge7Sn1 and Si4Sn4 all model represented by SQS-8 structures, and

the ternary system Sn1Si2Ge5 see Fig. 4.4. In all the tree cases we see that the the

LDA+LM and the QSGW bands overlap. We are therefore confident that the method

can be applied to our Si-Ge-Sn alloys.
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Figure 4.2: Band structure of Si(top), Ge(center), and Sn(bottom)using
QSGW(solid/Green), LDA+LM(dashes/Blue) and LDA(dots/Red)
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Figure 4.3: Band structure of ZB-SiGe(top), ZB-GeSn(center), and ZB-SiSn(bottom)
using QSGW(solid/Green), LDA+LM(dashes/Blue) and LDA(dots/Red)
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Figure 4.4: Band structure of Ge7Sn1(top), Si4Sn4(center), and Sn1Si2Ge5(bottom) us-
ing using QSGW(solid/Green), LDA+LM(dashes/Blue) and LDA(dots/Red)
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Chapter 5

Optical properties of Si, Ge and α− Sn

In this chapter, we derive an expression of the dielectric function of a semiconductors

crystal exposed to an electromagnetic radiation, in this case visible light. The expres-

sion derived will be used together with the bands structure calculations, to generate

optical spectra. Comparison with available experiment will be a further test of the

capability of our new method. We recall that our focus is on determining the contribu-

tion to the dielectric function from direct interband transitions: we therefore ignore all

phonon’s assisted transitions as well as excitonic effects.

Optical properties of semiconductors have been discussed in the original references

such as [17, 1] as well as in many standard texts [21, 57]. In section 5.1, we will

present a derivation of the frequency dependent macroscopic dielectric function using

semi-classical method, for this we will follow the discussion of F. Basanni et al [7]. In

section 5.2, we use the concept of joint density-of-states to introduce the critical point

used to characterize transitions. Finally in section 5.3, we show our calculated spectra

for Si, Ge, Sn and GaAs.

5.1 The Dielectric Function

Macroscopic Electrodynamics

Suppose a dielectric material is subjected to an external electromagnetic plane wave

represented by

E(r, t) = E0ei(q·r+ωt) (5.1)

where q is the wave vector and ω the frequency. The fields will induce in the material

a polarization vector P given by [57]

Pi(r′, t ′) = ε0

∫
χi j(|r− r′|), |t− t ′|))E j(r, t)drdt. (5.2)
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Here χi j is the electric susceptibility tensor and ε0 the permittivity of free space. Taking

the Fourier transform we have

Pi(q,ω) = ε0χi j(q,w))E j(q,ω) (5.3)

Knowledge of χi j(q,w) in principle determines all the linear optical response of the

medium, but since we are interested in a connection with experiment, we will focus on

the dielectric tensor defined by

Di(q,ω) = ε0εi j(q,w)E j(q,ω) (5.4)

where D(q,ω) is the Fourier transform of the electric displacement. Recalling that

D = E+4πP = εE, we have :

εi j(q,w)) = 1+χi j(q,w) (5.5)

For most applications, εi j(q,ω)) is independent of q since the wavelength of visible

light is 400 nm < λ < 800 nm and too large compared to typical lattice parameter

alat ≡ .5 nm, thus the dielectric tensor will be only a function of ω .

Also for linear media, and cubic symmetry, the tensor ε has only three identical diagonal

elements so we can now replace εi j(ω) with the scalar complex quantity ε(ω), called

dielectric function. The dielectric function is related to the complex index of refraction

N and the reflectivity R [13]:

ε = ε1 + iε2 N = n+ iκ

ε1 = n2−κ
2

ε2 = 2nκ (5.6)

N2 = ε = ε1 + iε2 R =
∣∣N−1

N+1

∣∣2 = (n−1)2+κ2

(n+1)2+κ2

while the absorption coefficient and the average energy density in the medium are given

respectively by

α =
2κω

c
=

ω

nc
ε2 and u =

n2

2π
|E0|2 (5.7)
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Semi-classical derivation of the dielectric function

We wish to calculate the dielectric response of a semiconductors crystal due to the

electromagnetic radiation characterized Eq. (5.1) from time-dependent perturbation

theory. The potential is given by A(r, t) = A0ee(iq·r−ωt) so that we have A0 =−i c
ω

E0 =

−iE0
q . The electronic Hamiltonian in the presence of this field is

H =
1

2m
(p+ eA)2 +Vc(r) (5.8)

where Vc(r) is the periodic crystal potential. Under the Lorentz gauge (∇ ·A = 0 and

neglecting non-linear effects, the interaction part of our Hamiltonian is

Hint =
e

mc
A ·p (5.9)

We recall that from first order perturbation theory, given an interaction Hint = Hinte∓iωt ,

the transition probability per unit time for an electron in state |i〉 of energy Ei to a state

| f 〉 of energy E f is given by the Fermi’s golden rule:

Pi→ f =
2π

h̄
|〈 f |Hint |i〉|2δ (E f −Ei∓ h̄ω) (5.10)

Hinte−iωt induces processes in which photons with energy h̄ω are absorbed while

Hinte+iωt causes emission of photons with the energy h̄ω . We are interested in ab-

sorption resulting in transition from occupied valence state to empty excited state.

If our initial state is a valence band Bloch eigenstate |vkv〉 and the final, the conduction

band states, |ckc〉, the matrix element of the interaction 〈c|Hint |v〉 of Eq. (5.9) become:

〈c|Hint |v〉=
e

mc
〈ckv|A ·p|vkv〉. (5.11)

substituting A(r, t) in the above expression gives the transition probability per unit time

Pv→c =
2π

h̄

(
eA0

mc

)2

|〈ckc|e(iq·r)e ·p|vkv〉|2δ (Ec−Ev− h̄ω) (5.12)
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Again from 〈ckc|eiq·re ·p|vkv〉, conservation of momentum requires kc = kv +q+G

or kc = kv + q inside the 1st-BZ. As mentioned in the last section, for the range of

frequency of interest, q is negligible small and the momentum conservation becomes

kc ≡ kv. This is the so-called dipole approximation, and as a consequence, only vertical

transitions are allowed. The probability simplifies to

Pv→c =
2π

h̄

(
eA0

mc

)2

|e ·Mcv(k)|2δ (Ec(k)−Ev(k)− h̄ω) (5.13)

with e ·Mcv(k) = 〈ck|e ·p|vk〉.

Finally, summing over all the states in the unit volume, we have the number of transition

per unit time per unit volume

W (ω) =
2π

h̄

(
eA0

mc

)2

∑
v

∑
c

∫
BZ

2dk
(2π)3 |e ·Mcv(k)|2δ (Ec(k)−Ev(k)− h̄ω) (5.14)

Connection with optical constants

The absorption coefficient mentioned in Eq. (5.7) can be given in terms of the energy

absorbed per unit time per unit volume divided by the energy flux, that is

α(ω) = h̄ω
W (ω)

u(n/c)
(5.15)

so using from Eqs. (5.14) and (5.15), we have

α(ω) =
4πe2

m2ncω
∑
v

∑
c

∫
BZ

2dk
(2π)3 |e ·Mcv(k)|2δ (Ec(k)−Ev(k)− h̄ω) (5.16)

and recalling α = ω

ncε2 gives finally

ε2(ω) =
4πe2

m2ω2 ∑
v

∑
c

∫
BZ

2dk
(2π)3 |e ·Mcv(k)|2δ (Ec(k)−Ev(k)− h̄ω) (5.17)

This expression of the dielectric function is very useful because it provides a direct

connection between the band structure obtained theoretically and the measured optical

properties.
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With the knowledge of the imaginary part of the dielectric function, the real part can be

obtained from the Kramer-Kronig relation

ε1(ω) = Re[εM] = 1+
1
π

P
∫

∞

0

ω ′ε2(ω
′)dω ′

[(Ec(k)−Ev(k))/h̄]2− (h̄ω ′)2 (5.18)

Thus the knowledge of ε2 specify completely the dielectric function as well as the com-

plex index of refraction N = n+ ik and the reflectivity R using Eq. (5.6).

Also related to the Kramer-Kronig relation, are the useful sum-rule which can serve as

a test of the accuracy of the calculated or measured response functions; some of these

sum-rules are

ε1(0) = 1+
2
π

∫
∞

0

ε2(ω)

ω
dω (5.19)

and the f-sum rule ∫
∞

0
ωε2(ω)dω =

π

2
ω

2
p (5.20)

where ωp is the electron plasma frequency given by

ωp =

(
4πne2

m

)1/2

5.2 Joint density of states and critical points

The dipole matrix elements in the expression of ε2(ω), are usually slowly varying func-

tions of k except at some symmetry points of BZ. If we assume this to be the case, we

can take e ·Mcv(k) outside the integral, and we see that from Eq. (5.17), much of the

features (peaks) emanate from the term,

Jcv(h̄ω) =
∫

BZ

2dk
(2π)3 δ (Ec(k)−Ev(k)− h̄ω), (5.21)

the so-called joint density of states (JDOS) because it gives the combined density of

a pair of states one occupied the other empty. To see the irregular form of the JDOS,

using the properties of the delta-function, we write

Jcv(E) =
2

(2π)3

∫
Ec(k)−Ev(k)=E

dS
|∇K[Ec(k)−Ev(k)]|

, (5.22)
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where dS represent an element of the k-space surface Ec(k)−Ev(k) = E. From this last

Eo Eo

EoEo

M1 M2

M3

M0

E

EE

E

     J(E)

   J(E)

   J(E)

   J(E)

Figure 5.1: Joint density of states plotted against Energy for different critical points.
M1, M2: saddle point; M0: minimum point; M3: maximum point

expression, we can see that JDOS will possess singularities where |∇K(E)|= 0. These

are called the critical points (CP) and the corresponding singularity in the ordinary

density of states are called the Van Hove Singularities [49]. In 3-D, using a Taylor

series about the critical point k0, we have

Ec(k)−Ev(k) = E0 +
3

∑
i=1

ai(ki− k0i).

Depending on the sign of the coefficients ai’s Van Hole distinguished 4 kinds of CP: M0,

M1, M2 and M3. M1 and M2 are called saddle points while M0 and M3 are the minimum

and maximum point respectively see Fig. 5.1. The CP correspond respectively to E0,

E1, E2 and E3, a notation introduced by Cardona to label the important transitions in

optical spectra. An example of the label is shown in Fig. 5.2.

5.3 Application: Dielectric function and JDOS for Si, Ge, Sn and GaAs

We have calculated the dielectric function ε2(ω)1, JDOS and DOS for bulk Si, Ge,

Sn and GaAs using the Optics Package (V7.4) inside the LMTO-ASA SUITE of M.

van Schilfgaarde; The matrix element are calculated with our new TB-LMTO-ASA
1contribution from direct interband transition only
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Figure 5.2: Sketch of the band structure of Germanium showing direct transition.

wave function. We used the tetrahedron method with 40× 40× 40 k-mesh for the BZ

integration. The results are shown in Figs. 5.3-5.10. The following general trends can

be observed:

• The LDA+LM are shifted relative to the LDA dielectric functions while conserv-

ing the sum-rule Eq. (5.20) as we see in table 5.1.

• The LDA+LM results matches the critical peaks: E0, E1, E2 and E3 in all four

systems. This agreement with experimental dielectric shows that our method

can be used to interpret optical spectra from ellipsometry and photoluminescence

experiments.

• The height of the E1 peak is consistently underestimated. Other one-electron

method such as the Exact Exchange (EXX) method also underestimate the height

of E1 peak [47]. It is widely accepted that including local-field corrections, and

excitonic effects will improved the height of the peak, without shifting them. We

also concede they are errors inerrant to the TB-LMTO-ASA

We have shown that our method can reproduce the experimental peaks of the imag-

inary part of the dielectric function. We also showed that by comparing ε2 and the

DOS, using the log-scale, we can determine whether the band-gap is direct or indirect.

44



For indirect-gap materials, the onset of the DOS occurs before the onset of the ε2(or

JDOS)2, whereas for direct-gap materials the onset of DOS and ε2 coincide. We can

see from Fig. 5.4 and Fig. 5.6, that Ge and Si are both indirect-gap material while

GaAs is clearly a direct-gap material as Fig. 5.10 confirms. Obviously, it was not nec-

essary to compare the DOS and ε2-lineshapes to establish the nature of the gap, the

bands structure plots of the previous chapter already contained that information. How-

ever this approach will be useful when we study alloys, as the band structures of alloys,

generated from supercell calculations, are hard to interpret because of band-folding.

This point will be made clearer in the next chapter where we investigate the effect of

allowing on the band gap and the optical spectra.

Table 5.1: Values of the f-sum rule in Eq. (5.20) in units of h̄−2 and for various energy
cut-off.

Ecut(Ry) f-sum rule ASA f-sum rule ASA-FIT
1 0.946 0.9086

Ge 2 1.0920 1.1087
3 1.0920 1.1087
1 0.8555 0.7689

Si 2 1.0188 0.9469
3 1.0188 0.9469
1 0.6598 0.6874

Sn 2 0.7796 0.8225
3 0.7796 0.8225
1 0.9406 0.9289

GaAs 2 1.1121 1.1465
3 1.1121 1.1465

2we remind the reader that only contribution from direct interband transitions are included in our
calculations of ε2 and of the JDOS
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Chapter 6

The effect of alloying on electronic and optical properties of semiconductors

6.1 Alloys Model: Special Quasi-Random Structures (SQS)

Semiconductors alloying provides an effective way of tuning the properties of materials.

This important class of material has been discussed expensively in many texts. A good

reference is the review of Jaros [31] and the book Semiconductor alloys by An-Ban

Chen and Arden Sher[10].

A typical alloys A1−xBx, with (1− x)% of atom A and x% of atom B. The energy gap

(or transition) Ei of such a compound usually varies according to the relation

Ei(x) = EA
i (1− x)+EB

i (x)−b(1− x)x (6.1)

where b is the bowing and represent the degree of deviation from linearity. EA and EB

are the energies of the corresponding constituent. The lattice parameter generally obeys

vergard’s law

a(x) = aA(1− x)+aB(x)−blat(1− x)x (6.2)

with very small bowing blat . The alloys where atom of type A occupies most lattice

sites and atom B occupies the remaining sites are called substitutional alloys. We as-

sume and diffraction studies confirms, that the alloys we are interest in are substitutional

and form single crystals.

Alloying introduces two types of disorder: the compositional disorder due to the ran-

dom occupation of lattice sites by different atoms and structural disorder stemming

from atoms shifting from their original positions as they adjust to their new environ-

ment. This last form of disorder is smaller for closely lattice-matched materials such

Si-Ge, but larger for highly mismatched alloys (HMA) such as Ge-Sn or Si-Sn. We

shall show that the two types of disorder mentioned, need to be included in any accu-

rate theoretical model. Structural disorder also breaks down the crystal symmetry. As a
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result, the wave vector, k is no longer a good quantum number and the Bloch’s theorem

no longer applies. Surprisingly, the features of the optical spectra resemble those of the

bulk constituent which are periodic. This suggest that experimental results are obtained

by the averaging over all the possible configurations of the system. Most alloys models

are based on an approximation of the averaging step. Two such models are the Virtual

Crystal Approximation (VCA) and the Coherent Potential Approximation (CPA). Ul-

timately, the validity of a model is determined by how well its predictions agrees with

experiment. For lattice-matched alloys, the commonly used method is the VCA [31].

In the VCA, atomic sites are occupied by fictitious atoms whose potential parameters

are the average of the alloy constituent potentials. This very simple model has been

successful in predicting the bowing of Si-Ge alloys [43], but less successful for Ge-Sn

[32]. The Failure of the VCA to predict the properties of HMA stresses the importance

of including substitutional and structural disorder effects. The CPA represents such an

attempt. In this model, one uses the average green function and perturbation techniques

to include the fluctuation in the alloy potential. Its success has been limited to closely

matched alloys, but not for HMA. A review of the CPA can be found in [10]

For HMA, one needs a representation of the alloy that fully accounts for the various

disorder, as well as an accurate ab-initio band theory suitable for large supercell. We

used the TB-LMTO-ASA method with our improved CRL and ∆RL parameters.

Special Quasi-Random Structures (SQS)

For the representation of the alloy, we must select a real space configuration out of the

2N possibilities (N i s the number of sites in binary alloy A1−xBx). We cannot perform

direct sampling and simply perform calculations on all the possible configurations. To

circumvent this difficulty, Wei and Zunger introduced the Special Quasi-Random Struc-

tures (SQS) [54]. These are small (N=8, 16 or 64 atoms) structures that mimic the first

few but physically relevant radial correlation functions of an infinite, perfectly random
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structure. Within the cluster expansion, the amount by which the property E(σ = s)

of a given structure fails to reproduce the ensemble average 〈E〉 of a perfectly random

alloys is given by

〈E〉−E(s) = ∑
k,m

Dk,m[(2x−1)k− Π̄k,m(s)]εk,m (6.3)

where Dk,m is the number of equivalent figures per sites and εk,m the contribution of

figure {k,m} to property E 1. Π̄k,m(s) is the lattice average of the correlation function.

We can see that when Π̄k,m(s) ∼ Π̄k,m(R) = (2x− 1)k, E(s) will tend to the ensemble

average 〈E〉. Wei and Zunger have applied the SQS to successfully model ZB pseudo-

binary alloys.

For our purpose, we developed SQS generator for Diamond Structures using Simulated

Annealing. In our calculations, we use either SQS of 8, 16 or mostly of 64 (SQS-64)

atoms; Convergence is usually obtained with SQS-64.

6.2 SiGe

The first alloy structure we study is the SixGe1−x alloy. This is one of the most studied

alloy and thus offer us the opportunity to test our method. We use SQS-64 for n =0,

2, 4, 6, 8 , 10, 12, 14, 16, 24, 32, 40, 48, 56, 64. All supercells were first relaxed

using the FP-LMTO method. The forces after relaxation never exceeded 2 mRy/A.U.

We observed from top panel of Fig. 6.1, that relaxation does play a role though small

in SixGe1−x. From the same plot and as expected, the SO splitting become important

as the Ge content is increased. In the second panel, the agreement with experiment

is more visible with an older experiment of Braustein et al [9]. There appear to be a

constant small shift between our results and the more recent experiment by Alonso et

al [53]. We attribute this discrepancy to the fact that our indirect gap for Ge differ by

0.04 eV to the experimental value. Nevertheless all the trends are present on our data.
1Figure {k,m} is characterized by k, the number of atoms on its vertices and the order m of the

distance separating the k atoms
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In particular, the transition from L-like to X-like conduction band minimum occurs at

about x = 0.16, in agreement with both experiments. We conclude that the new method

satisfactorily interprets experimental data for alloys of Si-Ge.

6.3 GeSn

Ge1−xSnx alloys are interesting because they provide an opportunity for a direct band

gap material compatible with silicon technology. Samples of this alloy system have

been grown and characterized by many experimental groups [23, 36, 18]. Many the-

oretical studies have also been performed. Jenkins and Dow [32] used semi-empirical

sp3s* Tight Binding combined with VCA. Bourhafs et al [8] use empirical pseudopo-

tential (EPM) method with a corrected virtual crystal approximation (VCA). The first

study that account for relaxation effect was by Moontragoon et al [42] using DFT-

LDA + X-α correction. Wei et al [56] used SQS and EMP. Later Chibane used the

Full-Potential Linearized Augmented Plane Wave (FP-LAPW) implementation of the

DFT-LDA. Most of the methods cited above focused mostly on electronic properties

and not a lot on optical properties. We would like to use our newly developed scheme

to study both the electronic as well as the optical properties of these alloys.

As in the case of SixGe1−x, we model the alloys with SQS-64. All our band structure

calculations are done on fully relaxed supercells. We can see from Fig. 6.5 that the

energy gaps are strongly affected by relaxation and also by SO (as expected since our

constituent, Ge and Sn all have important SO coupling). The VCA lines illustrate the

importance of fully accounting for both compositional and structural disorder.

As mentioned at the beginning of this chapter, using supercell of random alloys lead

to the breakdown of symmetry and so the wave number and the critical points of the

BZ loose their meaning. Yet experimental data show that the alloys still retains some

characteristic of their constituent element (which are periodic crystals); therefore, it is

still useful to analyze our band structure in terms of Γ, L and X symmetry point of
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the BZ. An additional challenge presented by alloys, is the fact that, supercells intro-

duce band-folding, thus rending the standard interpretation of energy band less obvious.

Fig. 6.2 illustrates this situation. The bands in the figure are those of Ge1−xSnx with

x = 2/64. The supercell was modeled with 2x2x2 multiples of 8-atom diamond unit

cell. Because the supercell is larger than the primitive cell, the reciprocal space and the

first BZ smaller. The state at the boundary of the small cell fold into the first BZ. For

this reason, the bands at high symmetry points are indistinguishable.

In order to establish the nature of the state, we analyze our the bands structures

with the help of both the DOS and ε2. For example, to determine whether a band gap

is direct or indirect, we compare the DOS onset with the onset of ε2. For indirect

gap, the onset of DOS occurs before that of the ε2
2, and for direct gap, the two

onsets coincide. Fig. 6.3 illustrates this idea. We can see that as the concentration of

Sn increases, the gap which starts as indirect (as in bulk Ge) progressively narrows

down. The Direct gap, represented by the onset of ε2, also become smaller; It is

not obvious to exactly determine where the two crosses each other. But by carefully

examining the energy bands near the band edges and the values of ε2 near the

onset, we can determine the nature of the gap. We have collected our results in

Fig. 6.4. The calculated gaps are in excellent agreement with Low-Temperature (LT)

results of Guevara et al [19] and direct gap or E0 energy values from D’Costa et al [16].

Bowing and indirect to direct gap transition

Our value for the direct gap bowing was found by fitting

ED(x) = EGe
D (1− x)+ESn

D (x)−b(1− x)x (6.4)
2Note that our ε2 only contains contribution from direct transition
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to the calculated gap. Our direct gap for Ge EGe
D = 0.934 eV and Sn direct gap of

ESn
D = −0.387eV . We found a bowing of 3.3 eV. This value is close to the Guevara’s

bowing at 4 K which is 2.84±0.15 eV. The small discrepancy with D’Costa bowing of

2.61 eV might due to the fact that the alloys are not truly random. Also the temperature

of 15 K though low, is higher than 4 K or 0 K.

Our data also show that xc, the critical concentration at which the gap changes from

indirect to direct transition, is approximately 18 % Sn. This value is close to 17% ob-

tained theoretically by Moontragoon et al [42]. This concentration is remarkably close

to VCA prediction of 20%. However, at this concentration our gap is 0.17 eV whereas

the VCA gap is close to∼ 0.6 eV. Experiment at room temperature finds a lower critical

concentration, about 11% [23] with a gap of .44 eV. The difference between the theo-

retical value of xc and the experimental value can be resolved if one takes into account

the difference between the calculated indirect gap (0.70 eV) and the experimental indi-

rect gap (0.74 eV). We observed that the vale of xc is very sensitive to the energy gap.

Therefore, the value of the crossover can only be known approximatively. Thus using

the SQS and the LDA+LM method, we have been able to reproduce the experimental

data for the Ge1−xSnx alloys.

Optical Spectra of GeSn

The effect of alloying on the optical spectra can be seen from Fig. 6.3. The main

features of the bulk Ge spectra are retained for small Sn content. As Sn increases, the

E0 peak moves closer to zero, signaling a reduction of the direct energy gap. At the

same time, we observe a large broadening of the E1 peak. The presence of Sn and

Ge bands combined with band-folding explain this broadening of the peaks. The E2

peak experiences a much smaller. We also note that the E1, E2 peaks are shortened and

shifted to the left. The reduction in the height of the peak indicates that the coupling

of the alloys states is weak. All the features observed are consistent with the optical
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spectrum of D’Costa [16] obtained from ellipsometry. Our method therefore represent

a additional tool for the interpretation of ellipsometric data which can be sometimes

very challenging, particularly for novel materials. For example, our calculated optical

spectra can help to identify features of the experimental spectra originating purely from

interband transition.

6.4 SiGeSn

A new class of materials based on group IV compounds is gaining interest, these are

the ternaries SnxSiyGe1−x−y. With ternary, we have an extra degree of freedom which

allows for the control of both the energy band gap and the lattice parameter. We will

consider the Sn-Si-Ge alloys latticed-matched to Ge. This material provides a possi-

bility of obtaining a direct gap material that can be grown epitaxially on Ge. Using

Vergard’s law for ternary:

a(x,y) = aSn(x)+aSi(y)+aGe(1− x− y) (6.5)

and neglecting the lattice bowing, we can achieved ternary lattice-matched to Ge by

keeping the ratio of Si/Sn equal to

y/x =
aSn−aGe

aGe−asi
∼ 3.85 say 4

. We have calculated the band structures and optical spectrum of few ternary latticed-

matched to Germanium. The following five structures: Sn1Si4Ge59, Sn2Si8Ge54,

Sn4Si16Ge44, Sn8Si32Ge24 and Sn12Si47Ge5 were considered. We show our results

in Fig. 6.6. The top panel again illustrates the effect relaxation. Without relaxation

the gap remains constant cross the different Sn/Si ratio. The picture changes when the

systems are allowed to relax. We See in the bottom panel that the gap decreases but re-

mains greater than the corresponding binary gap with the same Sn content; thus adding

Si in SnxGe1−x raises the gap while maintaining the lattice constant close to that of Ge.
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In order to determine the nature of the gap, we resort again to optical spectra and DOS.

In Fig. 6.7 we observe that for concentration of x = 1/64, x = 8/64, x = 12/64, the

band gap is clearly indirect. For x = 2/64 and x = 4/64, DOS and the ε2 onset are very

close. But contrary to the SnxGe1−x alloys, the exact value of the onset energy is not

clear. From Fig. 6.8, we can observe that ε2 forms a long tail beginning near the 1.5 eV,

and stretching deep inside the gap. The only 2 experimental samples matching our sim-

ulation are from Kouvetakis [36]. The samples are Sn.3Si.13Ge.83 and Sn.08Si.20Ge.72.

The first can be compared to our Sn2Si8Ge54 and the second to our Sn4Si16Ge44. The

authors report a direct gap of 1.10 eV for Sn.3Si.13Ge.83 and 1.04 eV for Sn.08Si.20Ge.72.

Based on our calculations, close to 1.1 eV, ε2 = 0.12 and there are still many transi-

tions of similar order of magnitude for energy below 1.1 eV. For example at 0.9 eV,

ε2 = 0.033. This suggest that ε2 has a tail-like shape reminiscent of the urbach tail

observed in amorphous materials. Another evidence of the presence of tail-states is the

rapid rise of the density-of-states near the conduction band edge. A detail study of the

states near the edges shall confirm the presence of such states. We can nevertheless

conclude that the best candidate for direct gap are ternary with x = 2/64 and x = 4/64.
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Figure 6.1: Energy gap of SixGe1−x using the LDA+LM. a) Effect of Relaxation and
Spin-Orbit (SO) splitting. b) Comparison with experiments, Expt1 is by Alonso et al
[53] and Expt2 is by Braunstein et al [9].
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Figure 6.2: Band structure of Ge1−xSnx with x = 2/64 illustrating the band-folding.
The bands at symmetry point Γ, L and X have almost identical shape.
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Figure 6.3: Left panel: plots of DOS and ε2 of SQS-64 GeSn alloys. The middle panel
and the right are log-scale plots of ε2 as well as

√
ε2
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Figure 6.4: Direct and Indirect Energy-gap vs. x for Ge1−xSnx. The experiment are
from D’Costa [16] and Guevara [19] all at 15 and 4 K respectively. The solid (Red) line
and the dotted (Blue) line represent VCA interpolation at L and Γ respectively.

Figure 6.5: Energy-gap vs. x for Ge1−xSnx showing the effect of relaxation and Spin-
Orbit coupling. Again, the solid (Red) line and the dotted (Blue) line represent VCA
interpolation at L and Γ respectively
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Figure 6.6: Energy gap of SnxSiyGe1−x−y using the LDA+LM. Top) Effect of Relax-
ation and Spin-Orbit (SO) splitting. b) The energy gap of the ternary is compared to
binary SnxGe1−x
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Figure 6.7: Plots of DOS and ε2 as of function of Sn concentration in SnxSiyGe1−x−y,
left panel. The right panel contains the log-scale plots of the same quantities. In (Green)
and (Red) we have the binary and in (Blue) and (Pink) we have the binary
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Figure 6.8: Plots of DOS and ε2 as of function of Sn concentration in SnxSiyGe1−x−y
for x=3.125 % on the top panel and x=6.25 % on bottom panel.
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Chapter 7

Summary and Future Work

In this thesis, a semi-empirical method based on the Tight-Binding Linear Muffin-Tin

Orbitals (TB-LMTO) formalism and the Quasiparticle Self-consistent GW (QSGW)

approximation was introduced. We began by computing the QSGW reference bands

of the bulk Si, Ge and Sn. The QSGW approximation was used because it is the most

reliable way to determine energy band structure. We then constructed a small and effi-

cient hamiltonian based on the TB-LMTO method of O. K. Andersen and the Atomic

Sphere Approximation (ASA). Using the Levenberg-Marquardt (LM) non-linear fit al-

gorithm, the potential parameters, C and ∆ of the hamiltonian were fitted to the QSGW

reference bands. The fit were excellent in all the three semiconductors considered. The

adjusted parameters were carefully tested for transferability into new environments by

comparing QSGW bands structure of compounds structures such as zb-SiGe, Zb-GeSn

and Zb-SiSn to bands obtained with the modified parameters (but without fitting). We

also tested transferability in the case of small random alloys both binary and ternary.

In all the tests, the QSGW bands and the LDA+LM bands structure agreed at least for

states, up to 8 eV above the valence bands. After confirming the transferability of the

parameters, we used the modified hamiltonian to generate the real and the imaginary

part of the dielectric function. The dielectric functions obtained with our method was in

better agreement with experiment compared to the LDA the dielectric function. All our

peaks coincided with experimental dielectric function but the height of the peak was

for the most part underestimated. This was expected since we did not include the local

fields effects and the excitonic effects, though errors originating from the TB-LMTO-

ASA were also certainly present.

We used the newly constructed hamiltonian to study the electronic band structure and
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the optical properties of Si-Ge-Sn alloys. For SiGe alloys, we were able to correctly

reproduce the transition from L-like band gap to X-like gap. This occurred when the Si

concentration was close to 16%. For GeSn alloys, we saw that the variation of the band

gaps with concentration were consistent with experiment. We obtained a direct band

gap bowing of 3.33 eV which was slightly larger that LT experiment value of 2.8 eV.

We think the difference might be attributed to the sample not being necessary random

as assumed in the calculation. We also found a direct to indirect band gap transition

near 18 % Sn close to other theoretical work. Experiment results obtained at room tem-

perature was close to 11 %, which was slightly lower than the our calculated value of

18 %. We saw that by combining the energy bands, the DOS and ε2, we were able to

distinguish a direct to an indirect gap. This is not always obvious in supercells calcula-

tions because of band structure folding. We believe that with our method, interpretation

of ellipsometric and other optical experiment of alloys and other novel material can be

simplified.

We ended with a study of Si-Ge-Sn ternary structures. We focused on the structure

latticed-matching Ge. This was achieved by keeping the ratio Si/Sn ratio close to 4. The

five structures considered were Sn1Si4Ge59, Sn2Si8Ge54, Sn4Si16Ge44, Sn8Si32Ge24

and Sn12Si47Ge5. Only two had the potential to be direct gap material: Sn2Si8Ge54

(gap -0.644 eV) and the Sn4Si16Ge44 (gap - 0.692 eV). But experiment, put their E0

direct gap near 1.1 eV, higher than the gap from calculations. We however suspected

the presence of tail states. Further study of these systems are needed to confirm this

assertion.

We have achieved our set goal, developing a accurate and efficient scheme for predict-

ing the properties of supercells. The method was used to explore direct group IV direct

gap material. In future, we would like to study more ternary systems of Si-Ge-Sn; it

would be interesting to study the effect of strain on these ternary. We also will like

to study Ge/GeSiSn heterostructures as possible tandem material for solar cell appli-
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cations. Finally, we like to test our method on other family of semiconductors such as

III-V and II-VI’s.
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