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ABSTRACT

The Dual Marching Tetrahedra algorithm is a geneatibn of the Dual
Marching Cubes algorithm, used to build a boundaryace around points which
have been assigned a particular scalar densitgyvalich as the data produced by
and Magnetic Resonance Imaging or Computed Tombgraganner. This
boundary acts as a skin between points which daegrdaed to be “inside” and
“outside” of an object. However, the DMT is vagneegards to exactly where
each vertex of the boundary should be placed, whittinot necessarily produce
smooth results. Mesh smoothing algorithms whictorg the DMT data
structures may distort the output mesh so thaiutctincorrectly include or
exclude density points. Thus, an algorithm is @nésd here which is designed to
smooth the output mesh, while obeying the undeglyiata structures of the DMT

algorithm.
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CHAPTER 1
INTRODUCTION

Machines such as MRI scanners are capable of deiagrensity at
discrete locations in an object, allowing us torpe® the inner workings of
closed systems such as the human body. Howewverdar to fully utilize the
data produced, there have been several algorithopoped. For data sets aligned
to a 3 dimensional lattice, such as that produgeanoMRY, it is common to use
the “Marching Cube” algorithm, which forms “voxe]s3r units of volume, as
cubes along the grid. The points in the lattieesssgmented based on their
density, to either be inside an object, or outsid®@bject. Then, the cubes are
placed using these “inside” points as their vesticEhe surface cubes are then
used to form a “skin” around the data points deteechto be on the “inside” of
such an object. (Lorensen and Cline, 164)

However, the Marching Cubes and Dual Marching Cuatbgsrithms may
be generalized to fit more diverse data sets. “Dival Marching Tetrahedra”
algorithm instead uses tetrahedra for its voxelgclwdo not require the same
constraints on the data set as the Cubes algorithhish contain all right angles
as each data point must be aligned to a grid (biel$Oual Marching
Tetrahedra”, 184). The algorithm also allows farencomplex segmentation of
the data points by the introduction of an ambigumase, which we may use when
it is not clear that a point should be marked asitie” or “outside”. (Nielson,

“Dual Marching Tetrahedra”, 188)



Unfortunately, since we are building a surface atbdiscrete data, the
results are not necessarily smooth. Furthermbeset algorithms build non-
continuous surfaces, and so there is some ambigeghrding vertex placement,
as some locations may be smoother than others.ettgrwsmoothing algorithms
which seek to adjust the surface once it is formealy distort the surface
considerably. In some such algorithms, extra gowill be added in order to
interpolate between the points already in placksoAhe goal of the surface is to
entirely enclose the points “inside” the object] am exclude the points “outside”
the object. Smoothing algorithms which work aftex surface is defined will
have no knowledge of the original data set. Tthesy may shift the points to
violate the correct point inclusion of the surfastgere “inside” points are/or
outside, and “outside” points are inside.

Hence, we will now look into a way of producing tteer results, during
the creation of the original mesh. Thus, we wdldble to maintain the correct
point inclusion.

Keep in mind throughout this discussion, that threselts can be
implemented in both 2D, and 3D versions. In maases, the 2D version is
considerably simpler; however, we are more intexest the 3D case, due to its

inherent complexity, and its relationship to thertang Cubes algorithm.



CHAPTER 2
PREVIOUS WORK ON SMOOTHING

Given a set of data points in space and their &ggacdensities, there are
a variety of ways to produce a boundary surfacerehive will concentrate on the
Marching Cubes, Dual Marching Cubes, and Surfads Algorithms, which all
use somewhat similar approaches in creating acirfn each algorithm, there is
the idea of a “voxel”, which is some unit of volumEor the algorithms presented
in this chapter, all use a cube shaped voxel.

In the Marching Cubes algorithm, we are given dlmeear grid of data
(Lorensen and Cline, 164).

We can define the points of this grid as

Fy;; = F(iAx, jAy, kAz), whereAx, Ay, Az are positive lengths of the
sides of the cube.

So our rectilinear grid would be defined by

L = {(iAx, jAy, kAz), i=1,..,Ny;j=1,..,Ny,k =1,..,N,}.
Furthermore, we can define our cubes with the diabfsom (iAx, jAy, kAz) to
(G + DAx, (j + DAy, (k + 1)Az) (Nielson, “Dual Marching Cubes”, 490).

Then, given some threshold value, we specify eactex of the cube as
either “inside” or “outside” the surface. Thent &ach cube, we create our
surface itself by using a lookup table to creattase elements, and connecting

them to the surface elements of adjacent cubestefisen and Cline, 165).
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Each cube shaped voxel may have points which aren§ide” or “outside” of an object. Depending on
which set the vertices of the cube belong to, we mareate a polygonal surface separating those
vertices. While there are considerably more casdisan those shown above, we may generalize all ofeth
cases into the 14 above.

Marching Cubes surface lookup table (Lorensen an@line, 165). (Figure 1)

The lookup table provides some configuration ofygohs which separate
the “inside” and “outside” vertices for a cube., 8 each cube, a configuration
is selected from the table. Once a configuratsoseiected, its geometry is
compared to the geometry of the adjacent cubeghndliows the geometry to be
connected. Once complete, this will then provigmlygonal surface separating
the two sets of vertices.

This process was modified by the Dual Marching Guddgorithm to use

surface patches. The surface patches themsekésftasomewhat undefined,
4



except that each surface patch is not necessailygpnal. That allows for
greater flexibility in its construction. Accordintg the original paper, surface
patches are created using the following definition:
Definition: Let S be in [the collection of surfaces for the
Marching Cubes], the§i* is a surface comprised of a collection of
guad patches with the following properties
1) For each patch; of S there is a verte®; of the dual
surfaceS™, lying in the interior of the voxel containiry.
2) For every verteX;, of the marching cubes surfaée there
is one quad patch, of S*. The vertices of the quad patch are the
vertices that associate with each of the four EediS that have
V; in common.
3) For every edge f there is an associated edgeSaf The
edge ofS lies in the voxel face intersected by the assediatige
of the dual surfacg* (Nielson, “Dual Marching Cubes”, 491).

This leads to a lookup table similar to the onedusgMarching Cubes.
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Here we show the patch based lookup table used ineg Dual Marching Cubes algorithm.

Dual Marching Cubes lookup table (Nielson, “Dual Maching Cubes”, 491). (Figure 2)

We can see that in the Marching Cubes algorithith) eabe contains 0 or
more polygonal surfaces. In the Dual Marching Guddgorithm, we instead
place a vertex for each of these surfaces, andnatit@m with patches to the
adjacent neighbors.

However, in the Dual Marching Cubes paper, it isvah that the DMC
can be modified to use a lookup table which inctudely one vertex per voxel.

This is also known as the Cuberille Method (Cheal)t
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Here we show a modified form of the lookup table fothe Dual Marching Cubes algorithm. In thise
case, instead of a potential maximum of four verties per voxel, we unify the vertices to create a gjte
vertex per voxel. This is also used in the Cubeld method.

DMC Lookup Table using one vertex per voxel (Nielso, “Dual Marching Cubes”, 496). (Figure 3)

This alternate lookup table uses edges which atset of the Surface
Nets method (Nielson, “Dual Marching Cubes”, 49@)jch also use a single
vertex per cube approach.

The Surface Nets method is used to produce a snbootidary. Itis a
modified form of Laplacian smoothing, which is albestablished method of
smoothing geometric data (Taubin, 1). In the addeaplacian smoothing, each
vertex in a mesh is moved to the barycenter aieighboring vertices. However,

there is significant shape distortion, and afteesal iterations, the mesh structure
7



will eventually shrink down to a single point (Taabl). Taubin does introduce
several methods to counteract the shrinkage, haweree take the underlying
data points into consideration.

Surface Nets on the other hand are designed t@ssitite underlying data
points, while applying the principles of Laplacismoothing. Similar to the
previous algorithms, cubes are used once agairs(8jl892). Again each data
point is classified as “inside” or “outside” of abject, in a process which is
defined as “Segmentation”. The cubes are thenrmdéted to be either “entirely
inside”, “entirely outside” or “on the surface” tife object, based on being made
up of purely “inside” points, purely “outside” pd#) or a mixture of the two,
respectively. Then, for every surface cube, aexed placed in the center, and
connected to the vertex of the adjacent surfacesufbhe surface itself is defined
identically to the lookup table shown above. Thef&e Net may now be
“relaxed”, by moving the vertex of each cube taaipon equi-distant from its
neighbors (Gibson, 893).

This method differs distinctly from the Laplaciartinod by one
constraint. Each vertex must be constrained tanide of its original surface
cube. The surface will thus be faithful to the eriging segmentation, and will
favor the segmentation, rather than overall smazdbn Furthermore, it will
create sharp areas where the underlying data geiti{Gibson, 894).

The method defined in this work draws consideraidpiration from the

Surface Nets method.



CHAPTER 3
DUAL MARCHING TETRAHEDRA ALGORITHM
Let's take a look at the Dual Marching Tetrahedr@thod of mesh
generation. We will show both the 2D and 3D versjas both may be extended
with a smoothing algorithm. Again, this is basecdtlve Cuberille Method, which

uses nearly identical logic.

2.1 2D Algorithm

We will take in some set of 2 dimensional pointssteassigned some
density. We are attempting to build a boundaryvken “inside”, and “outside”
points. The boundary will be a line, which we wilen smooth (Nielson, “Dual
Marching Tetrahedra”, 188).

Let's call the pointg;, = (xi, vy, di) wherexy, y, € Randd, € R*.
We can group the points into the Bet {p;, : k =1, ..., n}. In order to build

our mesh, we have to run several algorithms:

a.) Segmentation Algorithm

In the original Marching Cubes algorithm, the psintere split into two
sets, based on the density of each element: theske and those outside the
object in question. While the DMT algorithm canrwan a similar fashion, there
is an opportunity to account for an ambiguous cabere the density is unclear
as to whether or not the point should be placemst out of the object.

Here we spliP into three separate sets, based the density bfedament.

9



Specifically, the sets a®, P,,:, andP xnown, Which are for points inside the
object, points outside the object, and points whwehare unable to determine
their inclusion in the object, respectively. Thegnsed segmentation algorithm
uses two selected threshold valuesandt,, ;. Without loss of generality, points
density greater than or equat;@re placed if;and points with density less than
or equal tat,,; are placed iP,,;.. All points with density between andt,,; are
placed inP,,iown- Although it is beyond the scope of this papes possible to
define another threshold, of points which are tens# to be inside, and put them
also into the “outside” set.

We will not consider the points in the “unknown’seaand so we can now
defineP,qi4 = P; U P,y¢, Which thus only stores the “inside” and “outside”
points.

This algorithm can be easily implemented by itexgthroughP, and
classifying eaclp, as “inside”, “outside”, or “unknown”, and then legtr deleting
the “unknown” points, or entering the “inside” afalitside” cases into some new
P,aia S€t. However, specific implementations may vagypificantly as far as
data structures are concerned, and so for thefésis discussion, we will

continue to use the notation and conventions ajreaglace.

b.) Triangulation
Now that we have divided our points into approgrisets, we will create a
2D mesh of triangles which connect all of the pgintP,,;;;. These units of area

help to divide up the surface for our boundary. 0k represent a each triangle
10



as a 3-tuple of points from,,;;;. For a triangle defined by poings, p;, px, we
write T; j . Furthermore, we define the union of the volumes surfacd,

which is subject to a few constraints:

i) NoT;;, € I is degenerate, meanipg p;, p, are non-collinear.
ii.) The interiors of any two triangles irdo not intersect.

iii.)  Two triangles in only intersect at a common edge.

This kind of triangulation may be achieved throagbelaunay
Triangulation (Nielson, “Dual Marching Tetrahedra86). In the 2D case, the
Delaunay Triangulation is defined to be a setiahgles connecting a set of
points, such that the circumcircle of any triangbatains no points (Okabe et al.,
94). There are a variety of algorithms availaloledonstructing such a structure

(Nielson, “Tools for Triangulation”).

c.) Building the Boundary
Now that we have defined our triangles, we willuzdiy build the

boundary.

i) For eacl; ;, € I, we define it as active if and only if at leaseon
of its vertices is iR;and at least one is ;. So letl .+, € I such that,

if Ti,j,k € I is active, therTi'j'k € L ctive-

11



ii.) For each trianglel; ; x € I,.¢ive WE define a center poimt ; , €
V. There is no specific requirement for the locatdbv; ; ., other than
that it is inside off; ; ,. For our purposes, at this point we may simpty se

v; j @s the centroid df; ; ;.

Note: This placement is guaranteed to put theexeariside of the triangle.

iii.) We now will analyze which triangles are adjacenbe another
via common edges. Let's define an edge as twdspofra trianglep;, p;,
which we write a); ;. LetJ be the set of all triangle edges, such that
D;; € ]. Furthermore, we define an edge as active ifangdif at least
one of its vertices is iR; and at least one is By,;. SO et/ tive S ]
such that, iD; ; € ] is active, the; ; € Jqcrive. We define two triangles

as adjacent if they share an edge.

iv.)  Furthermore, we will now define an edgsg , € E, which
connects the center points of the two trianglextviare adjacent across

edgeDi,j € ]active-

We now have a boundary defined by edges which agptre “inside”

and “outside” points.

12



2.2 3D Algorithm

As stated before, we will take in some set of 3atisional points, each
assigned some density.

We can simply extend the definition of our poin® 3 et's call these
pointsp, = (X, Vi, Zk, di) Wherexy, vy, z, € Randd, € R*. We can group
the points into the sét = {p,, : k = 1, ..., n}. Again, in order to build our

mesh, we have to run several algorithms:

a.) Segmentation Algorithm

This portion of the algorithm is identical to thB 2ersion.

b.) Tetrahedrization

Here, since we can no longer constrain our pomtsplanar surface, we
build our “voxels”, or units of volume. For ourimoses, we will use tetrahedra
to define these volumes, which we can represeatdatiple of points from
Pyqiiq- For a tetrahedron defined by poiptsp;, p, pi, we writeT; j x ;.
Furthermore, we define the union of the volumea tetrahedrondlwhich is
subject to a few constraints:

i) NoT; k. € I is degenerate, meanipg p;, px, p; are non-

coplanar.

ii.) The interiors of any two tetrahedralido not intersect.

iii.)  Two tetrahedra ith only intersect at a common triangular face.

13



Again, a Delaunay Triangulation is used, but i®eged to the 3D case
using circumspheres (Nielson, “Tools for Triangidas”). Similarly, there are a
variety of methods to find a Delaunay Tetrahedra{Nielson, “Tools for

Triangulations”), (Blandford, Blelloch, Kadow), @d), (Hoshiko, Kawahara).

c.) Building Mesh

Now that we have defined our volumes, we will atyuauild the “skin”
of the mesh.

i) For eacll; ; ., € I, we define it as active if and only if at least

one of its vertices is ,, and at least one is Ry,;. So letl .ty S 1

such that, iff; j ., € I is active, thef} j . ; € Iyctive-

ii.) For each tetrahedroff; j x ; € Igcive WE define a center point

v;j k- There is no specific requirement for the locadv; ; . ;, other

than that it is inside df; ; ;. For our purposes, at this point we may

simply setv; ; ., as the centroid df; ; ; ;.

Note: This placement is guaranteed to put theexertside of the
tetrahedron.

iii.)  We now will analyze which tetrahedra are adjacerdrte another

via common faces. Let's define a face as thregtpof a tetrahedron,

Di» Dj» Pk, Which we write ag; ; .. LetJ be the set of all tetrahedron

faces, such tha; ;, € /. Furthermore, we define a face as active if and

only if at least one of its vertices is#), and at least one is #),,,;. So let

14



Jactive € J Such that, iff; ; , € J is active, therF; ; . € Jycrive- We define
two tetrahedra as adjacent if they share a face.
iv.)  Furthermore, we will now define an edgg € E, which

connects the center points of the two tetrahediaiwdre adjacent along

faceFi,j,k € ]active-

The three tetrahedra at the top of figure representhe lookup table for the Dual Marching Tetrahedra
method. The lower portion shows how two adjacenetrahedra might connect.

The three cases of DMT in 3D (Nielson, “Dual Marchig Tetrahedra”). (Figure 4)

V.) We now must connect the edges together to form the
polygons of our final mesh. We can use a simdakup table to the one
used in the Cuberille Method. For each pair ofesdgaving; j i, there
are two tetrahedron through which the edges paksse faces share a
tetrahedron edge, which in turn is adjacent to tst@hedron points. If
one of these points is #),,, and one is i®,,;, we may create a polygon.

Now that we have our polygons constructed, we loavdinal mesh.

15



CHAPTER 4
CRITERION FOR SMOOTHNESS

While we are seeking to represent smooth analogctdyjour data set is of
discrete points of density. Thus, even thoughéiselting mesh of the DMT
algorithm has produced a correct enclosing strecitiwill not necessarily
produce a smooth result. Keeping in mind that veedealing with polygons and
edges, we cannot hope for a continuous result.le&/@htontinuous surface has
simple measures for smoothness based on curvatlygons and edges are not
so well defined. So, let's take a look at a fewsv@ define smoothness of such
objects.

It is important to note that we define smoothnesm®Iso that we have a
way to test whether a smoothing algorithm has predwa favorable result.
While the human eye may be able to detect thattecpkar example “looks
smoother” than another, ultimately this isn't aatde measure. Keep in mind that
we actually do not use this criterion as a padwfsmoothing algorithm itself.

We merely use it to verify our results.

3.1 2D Criteria

The 2D case is significantly simpler than the 3BecaThe primary idea is
to analyze the angles surrounding a vertex in tmbary. For our purposes, we
are only looking at each angle individually. Fetuwork could be done to analyze
several adjacent angles at once, which would peoaichore global smoothness
estimate. However, that is outside the scopeisfdiscussion.

16



There are several tests which we can use. HeregiNveresent two.

a.) Angle Analysis

In a continuous and differentiable line, the argglany point is always
180°. So, given any subset of points on such a |lime awverage angle would
always bel80°. We can do a similar process for connected laggrents, which
are connected by vertices. For each vertex comgento line segments, we
have an angle, and so the average of all suchsogtebe found. We should
always select the angle which1i80° or less, also known as the “non-reflex”
angle. Since we always selected the non-refleleatite maximum average is
180°. So, the closer td80°, the smoother the result.

Thus, we can define smoothness on a niésh (V, E), to be:

LetV be the set of vertices, afidbe the set of edges.

ThenE, c E is the set of edges adjacentte V.

ThenV' = {v | Vv €V where E, = 2}.

vev! c(v)

Thensmoothness(M) = 2 v

wherec(v) = cos™! (ISOI.I? I) andey, e, € E,,.
0 1

17
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2D Angle Criterion (Figure 5)

Note that our average is only meaningful if we ¢stesitly select the non-
reflex angle in our computation. (We may also alsvaglect the reflex angle, but
for sake of convention, the non-reflex angle is enavnvenient.) For example,
let's say we're averaging the angles of two vestibeth measuring70°. The
resulting average would then b20°. However, let's say that for one we select
the non-reflex angle af70°and for the other we select the reflex anglé%6°.
The average would then B80°, even though our example is clearly not smooth.
Thus, we must consistently select the non-refleglean

b.) Vector Analysis

This method is similar to the smoothing algorithiseif. It is a more
complex method, and in the 2D case does not natdgsgae us more
information than the previous method. However, @uis relationship to the

smoothing algorithm, it is useful to present.

18



If we look at a vertex with two incident edges,t@asl of analyzing the
angle itself, we can analyze the two edges. kafswe have a vertex and two
edges,, e,. We can then construct two vectors of unit lerfgiim v along the
edges, which specifies two points q,. We can then find the midpoint of these
points, which ig). We are interested in the distance frotn g. If the two edges
are collinear in opposite directionk3(°), then clearly the distance will be 0.
However, if the two are at any other angle, théadise will be0 < distance <
1. So, we can see that a smoother boundary willtrgsa number closer to 0.

Thus, we can define smoothness on a niésh (V, E), to be:

LetV be the set of vertices, afidbe the set of edges.

ThenE, c E is the set of edges adjacentte V.

ThenV' = {v | Vv €V where |E,| = 2}.

Then, giverw € V', we havet, = {egy, e;}.

Thene, = (v,vy), e, = (v,v,) wherevy, v, € V.

v v

Then leté; = =%, and & = —, which are unit length vectors along the
0 1

[vwol [vvq]
adjacent edges.
Useé,, é; to create pointg,, p;.
Then letv’ be the midpoint betweemn, p; .

vey! W)

Thensmoothness(M) = 2 V] , Wherec(v) = |vv'].

19



2D Vector Criterion (Figure 6)

c.) Energy Criterion

This method is similar to the 3D method defineddilgson for Surface
Nets (Gibson, 893). It is based on the idea thiiather surfaces will have less
surface area. Then, each edge is given an enghggh in this case is equal to
the square its length. Then the sum of all of¢thergies is produced, which
provides a rough idea of the surface area of tma&eiNet. Here a smoother
smaller result means a smoother surface.

It is important to note that the result of thigeriion is not scale invariant.
If a mesh were scaled to a larger size with noratiedifications, it would
generate a larger result. For Laplacian smoothimg,would pose a significant
problem as the mesh would shrink. However, foalgorithm based on Surface

Nets, shrinkage is not a problem, and so thisrgvitds applicable.

20



Given a mestM = (V, E), whereV is the set of verticeg; is the set of
edges.
Then for eacle € E, e = (v, v;), Wherevy, v, € V.

Thensmoothness(M) = Y., g c(e) , wherec(e) = |vyv, 2.

3.2 3D Criteria

The 3D case is not nearly as simple. At each xewe may have
between two and four converging faces and edgedikdXhe 2D example, we
cannot simply test for the angles converging oeréex, for instead of dealing
with edges alone, we are now dealing with surfaddsere are undoubtedly
multiple ways of testing this kind of smoothneas, ere we will present two
such methods.

a.) Vector Analysis

This method is inspired by the smoothing algoritiemch will be
presented later. For each vertex, we will havetwimur adjacent edges. For
each adjacent edge, we may define a point unamist from the vertex. We then
take the centroid of those new points, and havenewurpoint C. If this surface is
perfectly flat, C will be at the same location as vertex.

This method is not particularly meaningful for tedges. For three we
can certainly find whether or not a concave surfaakefined. For four edges
however, we will have a meaningful result if thefaoe is concave, but the
surface may also describe a saddle point. If we laasaddle point, it is possible

for C to be located at the vertex even if the geloyrie by no means flat.
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Just as with the 2D case, a perfectly smooth veviktxesult in a distance
of 0, and all others will be in the range(f distance < 1. So the smoother
the surface, the closer the distance will be to 0.

Thus, we can define smoothness on a niésh (V, E, P), to be:

LetV be the set of vertices, be the set of edges, aAde the set of
polygons.

ThenE, c E is the set of edges adjacentte V.

ThenV' = {v |Vv €V where |E,| = 2}.

Then, giverv € V', we haveEt, = {e, ..., e}

Thene; = (v,v;), wherev; € V.

Then letg, = % which is a unit length vector along the adjacsdge of

v eV
Then letv’ be the centroid ofy, ..., €,, where each vector starts from the

position ofv.

Thensmoothness(M) = W , Wherec(v) = |vv'].

Note, this criterion is very similar to the smoattialgorithm, and is

useful to present.
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3D Vector Criterion (Figure 7)

b.) Energy Criterion

This method is defined by Gibson for Surface Nétss essentially the
same as the 2D version (Gibson, 893). Again, aoimeo smaller result means a
smoother surface.

Given a mestM = (V,E, P), whereV is the set of verticeg; is the set of
edges, an® is the set of polygons.

Then for eacle € E, e = (vy, v1), Wherevy, v, € V.

Thensmoothness(M) = Y., cr c(e) , wherec(e) = |vyv,|?.
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CHAPTER 5
SMOOTHING ALGORITHM
5.1 Developing Algorithm

Note, that in both the 2D and 3D case, we arengstie concavity at
every vertex. The non-reflex angle between lisesmply a measure of how
concave the shape is. We will deal with that cphes we motivate our
algorithm.

The mesh built by the DMT is created specificatiycontain all of the
points ofP,, and none oP,,;. As mentioned before, if we were to smooth our
mesh once it is build by the DMT, ignoring the dsiiaictures and methods used
to construct the mesh, we may change shape inasuety which violates the
correct point inclusion of the mesh. If we viol#te point inclusion, then we do
not necessarily correctly represent the object whie sought to visualize. Thus,
we need some smoothing technique which modifiesrash, while keeping the
original data in mind.

First, it is important to note that DMT has no gpecequirement for the
location ofv; ; ,;, other than that it must exist insideTpf . ;. As long asy; j .,
remains insid€; ; , ;, we can clearly see that if the mesh was congtauct

correctly, we will contairP;,, and exclude,,,;. Thus the vertex may be relocated

to any place in interior of the tetrahedron.
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In our description above, we blindly chose the m@dtas the location in
each tetrahedron, since it is guaranteed to ba@mside. However, our
algorithm will seek to find a location for eaeh; x;, which provides a smoother

mesh as per our smoothness criterion.

We started with the “Surface Nets” method brieflgntioned in the
original DMT paper. As mentioned before, the Scefélets algorithm very
similar to the Cuberille method, upon which DMTbised. For the original
Surface Nets, all of the voxels are cube shapstiagithey are in the Cuberille.
So, we can similarly change the cubes of Surfads tdetetrahedra. Just as with
the Cuberille method, DMT has a node inside evarfase tetrahedron, which is
connected by an edge to the vertices of its neighpcsurface tetrahedra. Thus,
our DMT may be taken through the same relaxinggsses that the original

Surface Nets undergo.

5.2 Statement of Algorithm

Just as we may define DMT for both the 2D and 3§esawe may define
our smoothing algorithm for both as well. In thefidition of the 3D case below,
simply replace the word tetrahedron with trianglethe 2D case.

For each tetrahedran I, , there exists a center vertex

ThenV, c V is the set of vertices adjacentut& V.

Then letv’ be the centroid of the verticeslin

Then mover to the location of/'.
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The new location o may now be outside of the tetrahedron. If swijlit
have to be moved to the location closest'tesuch that it is still inside the

tetrahedron.

Vg

Here is a tetrahedron containing vertexv, which is adjacent to three verticesy;, v;, andv;. Itis then
relocated to the centroid of its neighborsy'.

Smoothing Algorithm (Figure 8)

2D Triangle Bounding.

If the location ofv’is outside of triangl&’, we will have to test it
against each side @fto see if it is either “outside” or “on” the sidéT,
in which case we can say that it “violates” theesid

Case 1: If we violate only one side, we simplyjpcov’ onto that
side.

Case 2: If we violate two sides, we simply geto the

intersection of the two sides.
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There is a possibility that Case 1 will actuallysa Case 2, since
projecting to a single side may violate the anotliée. However, since
we projected the point to a location “on” the fisgde, it now violates two
sides. So we may simply run the bounding a setiame and which will

project to a point on the triangle, and solve gzeie.

3D Tetrahedron Bounding

The 3D case may be handled similarly. If the lmrabf v'is
outside of tetrahedrdh, we will have to test it against each facd'db
see if it is either “outside” or “on” the face Bf in which case we can say
that it “violates” the face.

Case 1: If we violate only one face, we simplyjgcov’ onto that
face.

Case 2: If we violate two faces, we must finelthe where the
two faces intersect. Then we projettonto that line.

Case 3: If we violate three faces, we may simpbjgetv’ onto
the intersection of the three faces.

There is a possibility that Case 1 or Case 2auillally cause
Case 2 or Case 3, since projecting to due to ohwmviolations, may
cause violations of other faces. However, sincergcted the point to a
location “on” the first ace, it still violates thigtce. So we may simply run
the bounding a second time, which will pick uppaksible violations, and

solve the issue.
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CHAPTER 6
DISCUSSION
Now that we have our algorithm in place, we canounsmoothness
criterion to analyze the result. Drawing inspwatfrom the Surface Nets
algorithm, we may repeat the smoothing process thae one time. Each time
the algorithm is run, it will create a smootherulggending towards some
maximum smoothness.
We should note that the maximum smoothness isew#gsarily a number
which is perfectly smooth by our criterion. If tHata set itself is very smooth,
say in a high resolution scanning of a circle dresp, the resulting surface will

tend towards a smooth number.

Here is surface obtained from discrete points arraged in a sphere. The grid of data is 32 x 32 x 32.

High Resolution Mesh, smoothed 0 times (Figure 9)
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Here we see the same data set, smoothed 100 timésis visually much smoother, except for some
sharp points which can be attributed to the surfaceettling onto the sharp points of the data set iédf.

High Resolution Mesh, smoothed 100 times (Figure 10
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This is a graph of the smoothness criterion over 0runs. We can see a marked decrease in the
smoothness criterion. Here we used the Vector Anadis criterion. A smaller number indicates that
our mesh became smoother.

High Resolution Mesh, Vector Analysis Smoothness igure 11)

Here is a surface obtained from a lower resolutionlata set of a sphere. The grid of data is 8 x 88

Low Resolution Mesh, smoothed 0 times (Figure 12)
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Here is the same data set smoothed 100 times. Omegin, it is visually much smoother than before.
Similarly, there are sharp points where the data despecifies.

Low Resolution Mesh, smoothed 100 times (Figure 13)

31



Smoothness

1
0.9
0.8
0.7
0.6
0.5
0.4
03
0.2 C
0.1

0 -

I~ M O
- — N

Vector Analysis

AN M O N A NN O W o
M N < D O O N~NNOWOO O

This is a graph of the smoothness criterion over runs. We can again see the smoothness quickly
drop, and then grow asymptotically towards some vale. Here we again used the Vector Analysis
criterion, and so a smaller number indicates an inease in smoothness.

Low Resolution Mesh, Vector Analysis Smoothness @lre 14)

On the other hand, if our surface is very jagged @er voxel basis, or
simply very low resolution, then the resulting sieé naturally will tend towards
a much less smooth number.

To explain, we will need a few definitions. Sirtbés algorithm works on
a per vertex basis, we need to understand concatvégich vertex. Loosely
borrowing definitions from Calculus, we can sed thaertex can be considered
“concave inward” if its non-reflex angle is on timside of the object. Similarly,
it can be considered “concave outward” if its neflex angle is on the outside of
the object. The 3D case works similarly, for eaeltex; we may analyze the
angles between its adjacent polygons. If all efahgles are non-reflex on the
inside, then we can say it is “concave inward”mi&irly, if all of the angles are

non-reflex on the outside, we can say it is “comcautward”. Of course, there
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are cases in 3D which are ambiguous, such hasdhawertex with a “saddle

point”, where two edges are concave inward, andasmaconcave outward.

The top left figure is concavity for a 2D boundary. The top right figure is concavity for a 3D
boundary. The bottom figure is a 3D saddle point.

Concavity (Figure 15)

With these definitions in place, we can clearly & if a vertex is
concave inward, it will be moved inward. Likewi#fea vertex is concave
outward, it will be moved outward. In the lessidedl case, the vertex will still
be moved to an equi-distant location, which witbguce a smoother result.

In the most trivial example, a single “inside” ppisurrounded entirely by
“outside” points, every single vertex of the ressltoncave inward. Thus, the
vertices will all move inwards during each iterati@ventually reaching the
tetrahedron or triangle boundaries. Rather thasogining, the object simply

shrank.
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It is also interesting to note, that for the oraliSurface Nets, it was
observed that the smoothness dropped quickly, lerdrose asymptotically
towards some eventual value. This was interprietedean that the sharp points
in the eventual result were forming (Gibson, 89 can see a similar result in
the graph of our Low Resolution Mesh.

The complexity of our smoothing algorithm@gn). We loop through our
n vertices, which have a maximum of 4 neighbors ciwheduces fron®(4n)to
O(n). Of course we may run our algorithntimes in order to get the desired
result, which would then have the aggregate rud(ak), butk is a defined by the

user at run time, and so again, it reduceS(to).
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CHAPTER 7
CONCLUSION

Turning discrete data into continuous surfacesneratrivial process.
However, when analyzing important data such aspgtetuced by MRl and CT
scanners, the clarity of the resulting surfaceimmount. Similar methods have
existed for earlier algorithms such as Marching €yland Dual Marching Cubes.
However, drawing inspiration from the Surface Nagorithm, we have the
ability to produce much smoother results with theaDMarching Tetrahedra
algorithm.

There is some future work to be done incorporétiegdensities of the
mass points from the underlying data set into theathing algorithm. When we
segment the data points, we normally specify agariglensities where our
boundary might lie. Inside this range, we candelespecific density for our
boundary. Then, when we analyze the individuahtetdra, we can interpolate
between the densities of the four data pointsydeioto find some location where
the specified density exists. Thus, our vertexukhbe placed in that location.
Now, the vertex is placed according to the undedyata set, and so it is more
likely to pick up the characteristics of the origliscanned object, whether this it
is smooth or jagged. However, this location isoigmt of any smoothing we
might wish to perform, and so the results will netessarily be as smooth as the
smoothed version. We can try and unify the tworegghes, by finding some

blending between the smoothed position, and thghted position.
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