
A Smoothing Algorithm for the Dual Marching Tetrahedra Method

by

Sean Johnson

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2011 by the
Graduate Supervisory Committee:

Gerald Farin, Chair

Andrea Richa
Vineeth Nallure Balasubramanian

ARIZONA STATE UNIVERSITY

December 2011

 i

ABSTRACT

The Dual Marching Tetrahedra algorithm is a generalization of the Dual

Marching Cubes algorithm, used to build a boundary surface around points which

have been assigned a particular scalar density value, such as the data produced by

and Magnetic Resonance Imaging or Computed Tomography scanner. This

boundary acts as a skin between points which are determined to be “inside” and

“outside” of an object. However, the DMT is vague in regards to exactly where

each vertex of the boundary should be placed, which will not necessarily produce

smooth results. Mesh smoothing algorithms which ignore the DMT data

structures may distort the output mesh so that it could incorrectly include or

exclude density points. Thus, an algorithm is presented here which is designed to

smooth the output mesh, while obeying the underlying data structures of the DMT

algorithm.

 ii

TABLE OF CONTENTS

 Page

LIST OF FIGURES .. iii

CHAPTER

1 INTRODUCTION .. 1

2 PREVIOUS WORK ... 3

3 DUAL MARCHING TETRAHEDRA ALGORITHM 9

2D Algorithm ... 9

3D Algorithm ... 13

4 CRITERION FOR SMOOTHNESS ... 16

2D Criteria .. 16

3D Criteria .. 21

5 SMOOTHING ALGORITHM .. 24

Developing Algorithm ... 24

Statement of Algorithm ... 25

6 DISCUSSION .. 28

7 CONCLUSION .. 35

REFERENCES .. 36

 iii

LIST OF FIGURES

Figure Page

1. Marching Cubes surface lookup table ... 4

2. Dual Marching Cubes lookup table .. 6

3. DMC lookup table using one vertex per voxel 7

4. The three cases of DMT in 3D .. 15

5. 2D Angle Criterion .. 18

6. 2D Vector Criterion ... 19

7. 3D Vector Criterion ... 23

8. Smoothing Algorithm .. 26

9. High Resolution Mesh, smoothed 0 times .. 28

10. High Resolution Mesh, smoothed 100 times 29

11. High Resolution Mesh, Vector Analysis Smoothness 30

12. Low Resolution Mesh, smoothed 0 times .. 30

13. Low Resolution Mesh, smoothed 100 times 31

14. Low Resolution Mesh, Vector Analysis Smoothness 32

15. Concavity ... 33

 1

CHAPTER 1

INTRODUCTION

Machines such as MRI scanners are capable of determining density at

discrete locations in an object, allowing us to peer into the inner workings of

closed systems such as the human body. However, in order to fully utilize the

data produced, there have been several algorithms proposed. For data sets aligned

to a 3 dimensional lattice, such as that produced by an MRI, it is common to use

the “Marching Cube” algorithm, which forms “voxels”, or units of volume, as

cubes along the grid. The points in the lattice are segmented based on their

density, to either be inside an object, or outside an object. Then, the cubes are

placed using these “inside” points as their vertices. The surface cubes are then

used to form a “skin” around the data points determined to be on the “inside” of

such an object. (Lorensen and Cline, 164)

However, the Marching Cubes and Dual Marching Cubes algorithms may

be generalized to fit more diverse data sets. The “Dual Marching Tetrahedra”

algorithm instead uses tetrahedra for its voxels, which do not require the same

constraints on the data set as the Cubes algorithms, which contain all right angles

as each data point must be aligned to a grid (Nielson, “Dual Marching

Tetrahedra”, 184). The algorithm also allows for more complex segmentation of

the data points by the introduction of an ambiguous case, which we may use when

it is not clear that a point should be marked as “inside” or “outside”. (Nielson,

“Dual Marching Tetrahedra”, 188)

 2

Unfortunately, since we are building a surface around discrete data, the

results are not necessarily smooth. Furthermore, these algorithms build non-

continuous surfaces, and so there is some ambiguity regarding vertex placement,

as some locations may be smoother than others. However, smoothing algorithms

which seek to adjust the surface once it is formed, may distort the surface

considerably. In some such algorithms, extra points will be added in order to

interpolate between the points already in place. Also, the goal of the surface is to

entirely enclose the points “inside” the object, and to exclude the points “outside”

the object. Smoothing algorithms which work after the surface is defined will

have no knowledge of the original data set. Thus, they may shift the points to

violate the correct point inclusion of the surface, where “inside” points are/or

outside, and “outside” points are inside.

Hence, we will now look into a way of producing smoother results, during

the creation of the original mesh. Thus, we will be able to maintain the correct

point inclusion.

Keep in mind throughout this discussion, that these results can be

implemented in both 2D, and 3D versions. In many cases, the 2D version is

considerably simpler; however, we are more interested in the 3D case, due to its

inherent complexity, and its relationship to the Marching Cubes algorithm.

 3

CHAPTER 2

PREVIOUS WORK ON SMOOTHING

Given a set of data points in space and their associated densities, there are

a variety of ways to produce a boundary surface. Here we will concentrate on the

Marching Cubes, Dual Marching Cubes, and Surface Nets algorithms, which all

use somewhat similar approaches in creating a surface. In each algorithm, there is

the idea of a “voxel”, which is some unit of volume. For the algorithms presented

in this chapter, all use a cube shaped voxel.

In the Marching Cubes algorithm, we are given a rectilinear grid of data

(Lorensen and Cline, 164).

We can define the points of this grid as

 ��,�,� = �(�∆	,
∆�, �∆), where Δ	, Δ�, Δ are positive lengths of the

sides of the cube.

 So our rectilinear grid would be defined by

� = 	 �(�∆	,
∆�, �∆), � = 1,… ,��;
 = 1,… ,�� , � = 1,… ,���.

Furthermore, we can define our cubes with the diagonal from (�∆	,
∆�, �∆) to

((� + 1)∆	, (
 + 1)∆�, (� + 1)∆) (Nielson, “Dual Marching Cubes”, 490).

Then, given some threshold value, we specify each vertex of the cube as

either “inside” or “outside” the surface. Then, for each cube, we create our

surface itself by using a lookup table to create surface elements, and connecting

them to the surface elements of adjacent cubes. (Lorensen and Cline, 165).

 4

Each cube shaped voxel may have points which are “inside” or “outside” of an object. Depending on
which set the vertices of the cube belong to, we may create a polygonal surface separating those
vertices. While there are considerably more cases than those shown above, we may generalize all of the
cases into the 14 above.

 Marching Cubes surface lookup table (Lorensen and Cline, 165). (Figure 1)

The lookup table provides some configuration of polygons which separate

the “inside” and “outside” vertices for a cube. So, for each cube, a configuration

is selected from the table. Once a configuration is selected, its geometry is

compared to the geometry of the adjacent cubes, which allows the geometry to be

connected. Once complete, this will then provide a polygonal surface separating

the two sets of vertices.

This process was modified by the Dual Marching Cubes algorithm to use

surface patches. The surface patches themselves are left somewhat undefined,

 5

except that each surface patch is not necessarily polygonal. That allows for

greater flexibility in its construction. According to the original paper, surface

patches are created using the following definition:

Definition : Let S be in [the collection of surfaces for the

Marching Cubes], then �∗ is a surface comprised of a collection of

quad patches with the following properties

1) For each patch �� of � there is a vertex �� of the dual

surface, �∗, lying in the interior of the voxel containing ��.

2) For every vertex ��, of the marching cubes surface, �, there

is one quad patch � of �∗. The vertices of the quad patch are the

vertices that associate with each of the four patches of � that have

�� in common.

3) For every edge of � there is an associated edge of �∗. The

edge of � lies in the voxel face intersected by the associated edge

of the dual surface �∗ (Nielson, “Dual Marching Cubes”, 491).

This leads to a lookup table similar to the one used by Marching Cubes.

 6

Here we show the patch based lookup table used in the Dual Marching Cubes algorithm.

Dual Marching Cubes lookup table (Nielson, “Dual Marching Cubes”, 491). (Figure 2)

We can see that in the Marching Cubes algorithm, each cube contains 0 or

more polygonal surfaces. In the Dual Marching Cubes algorithm, we instead

place a vertex for each of these surfaces, and attach them with patches to the

adjacent neighbors.

However, in the Dual Marching Cubes paper, it is shown that the DMC

can be modified to use a lookup table which includes only one vertex per voxel.

This is also known as the Cuberille Method (Chen et al).

 7

Here we show a modified form of the lookup table for the Dual Marching Cubes algorithm. In thise
case, instead of a potential maximum of four vertices per voxel, we unify the vertices to create a single
vertex per voxel. This is also used in the Cuberille method.

DMC Lookup Table using one vertex per voxel (Nielson, “Dual Marching Cubes”, 496). (Figure 3)

This alternate lookup table uses edges which are a subset of the Surface

Nets method (Nielson, “Dual Marching Cubes”, 496), which also use a single

vertex per cube approach.

The Surface Nets method is used to produce a smooth boundary. It is a

modified form of Laplacian smoothing, which is a well established method of

smoothing geometric data (Taubin, 1). In the case of Laplacian smoothing, each

vertex in a mesh is moved to the barycenter of its neighboring vertices. However,

there is significant shape distortion, and after several iterations, the mesh structure

 8

will eventually shrink down to a single point (Taubin, 1). Taubin does introduce

several methods to counteract the shrinkage, however none take the underlying

data points into consideration.

Surface Nets on the other hand are designed to address the underlying data

points, while applying the principles of Laplacian smoothing. Similar to the

previous algorithms, cubes are used once again (Gibson, 892). Again each data

point is classified as “inside” or “outside” of an object, in a process which is

defined as “Segmentation”. The cubes are then determined to be either “entirely

inside”, “entirely outside” or “on the surface” of the object, based on being made

up of purely “inside” points, purely “outside” points, or a mixture of the two,

respectively. Then, for every surface cube, a vertex is placed in the center, and

connected to the vertex of the adjacent surface cubes. The surface itself is defined

identically to the lookup table shown above. The Surface Net may now be

“relaxed”, by moving the vertex of each cube to a position equi-distant from its

neighbors (Gibson, 893).

This method differs distinctly from the Laplacian method by one

constraint. Each vertex must be constrained to the inside of its original surface

cube. The surface will thus be faithful to the underlying segmentation, and will

favor the segmentation, rather than overall smoothness. Furthermore, it will

create sharp areas where the underlying data specifies it (Gibson, 894).

The method defined in this work draws considerable inspiration from the

Surface Nets method.

 9

CHAPTER 3

DUAL MARCHING TETRAHEDRA ALGORITHM

Let's take a look at the Dual Marching Tetrahedron method of mesh

generation. We will show both the 2D and 3D versions, as both may be extended

with a smoothing algorithm. Again, this is based on the Cuberille Method, which

uses nearly identical logic.

2.1 2D Algorithm

We will take in some set of 2 dimensional points, each assigned some

density. We are attempting to build a boundary between “inside”, and “outside”

points. The boundary will be a line, which we will then smooth (Nielson, “Dual

Marching Tetrahedra”, 188).

Let's call the points !" = (" , 	�" , #")	where		" , 	�" ∈ ℝ	and	#" ∈ ℝ+.

We can group the points into the set = {!"	 ∶ 	� = 1, . . .,)}. In order to build

our mesh, we have to run several algorithms:

a.) Segmentation Algorithm

In the original Marching Cubes algorithm, the points were split into two

sets, based on the density of each element: those inside and those outside the

object in question. While the DMT algorithm can work in a similar fashion, there

is an opportunity to account for an ambiguous case, where the density is unclear

as to whether or not the point should be placed in or out of the object.

Here we split P into three separate sets, based the density of each element.

 10

Specifically, the sets are � , +,-,	and	 ,.".+/., which are for points inside the

object, points outside the object, and points which we are unable to determine

their inclusion in the object, respectively. The proposed segmentation algorithm

uses two selected threshold values: 0� 	and	0+,-. Without loss of generality, points

density greater than or equal to0�are placed in �and points with density less than

or equal to 0+,- are placed in +,-. All points with density between 0� 	and	0+,- are

placed in ,.".+/.. Although it is beyond the scope of this paper, it is possible to

define another threshold, of points which are too dense to be inside, and put them

also into the “outside” set.

We will not consider the points in the “unknown” case, and so we can now

define 123�4 = � ∪ +,-, which thus only stores the “inside” and “outside”

points.

This algorithm can be easily implemented by iterating through P, and

classifying each !" as “inside”, “outside”, or “unknown”, and then either deleting

the “unknown” points, or entering the “inside” and “outside” cases into some new

 123�4 set. However, specific implementations may vary significantly as far as

data structures are concerned, and so for the rest of this discussion, we will

continue to use the notation and conventions already in place.

b.) Triangulation

Now that we have divided our points into appropriate sets, we will create a

2D mesh of triangles which connect all of the points in 123�4. These units of area

help to divide up the surface for our boundary. We can represent a each triangle

 11

as a 3-tuple of points from 123�4. For a triangle defined by points !� , 	!� , 	!", we

write 6�,�,". Furthermore, we define the union of the volumes as a surface, I,

which is subject to a few constraints:

i.) No 6�,�," ∈ 7 is degenerate, meaning !� , 	!� , 	!" are non-collinear.

ii.) The interiors of any two triangles in I do not intersect.

iii.) Two triangles in I only intersect at a common edge.

This kind of triangulation may be achieved through a Delaunay

Triangulation (Nielson, “Dual Marching Tetrahedra”, 186). In the 2D case, the

Delaunay Triangulation is defined to be a set of triangles connecting a set of

points, such that the circumcircle of any triangle contains no points (Okabe et al.,

94). There are a variety of algorithms available for constructing such a structure

(Nielson, “Tools for Triangulation”).

c.) Building the Boundary

Now that we have defined our triangles, we will actually build the

boundary.

i.) For each 6�,�," ∈ 7, we define it as active if and only if at least one

of its vertices is in �and at least one is in +,-. So let 728-�19 ⊆ 7 such that,

if 6�,�," ∈ 7 is active, then 6�,�," ∈ 728-�19.

 12

ii.) For each triangle, 6�,�," ∈ 728-�19 we define a center point ;�,�," ∈

�. There is no specific requirement for the location of ;�,�,", other than

that it is inside of 6�,�,". For our purposes, at this point we may simply set

;�,�," as the centroid of 6�,�,".

Note: This placement is guaranteed to put the vertex inside of the triangle.

iii.) We now will analyze which triangles are adjacent to one another

via common edges. Let's define an edge as two points of a triangle, !� , 	!�,

which we write as <�,�. Let J be the set of all triangle edges, such that

<�,� ∈ =. Furthermore, we define an edge as active if and only if at least

one of its vertices is in � and at least one is in +,-. So let =28-�19 ⊆ =

such that, if <�,� ∈ = is active, then <�,� ∈ =28-�19. We define two triangles

as adjacent if they share an edge.

iv.) Furthermore, we will now define an edge >�,�," ∈ ?, which

connects the center points of the two triangles which are adjacent across

edge D�,� ∈ =28-�19.

We now have a boundary defined by edges which separate the “inside”

and “outside” points.

 13

2.2 3D Algorithm

As stated before, we will take in some set of 3 dimensional points, each

assigned some density.

We can simply extend the definition of our points 3D. Let's call these

points !" = (" , 	�" , 	", 	#")	where		", 	�" , 	" ∈ ℝ	and	#" ∈ ℝ+. We can group

the points into the set = {!" ∶ � = 1, . . .,)}. Again, in order to build our

mesh, we have to run several algorithms:

a.) Segmentation Algorithm

This portion of the algorithm is identical to the 2D version.

b.) Tetrahedrization

Here, since we can no longer constrain our points to a planar surface, we

build our “voxels”, or units of volume. For our purposes, we will use tetrahedra

to define these volumes, which we can represent as a 4-tuple of points from

 123�4. For a tetrahedron defined by points !� , 	!� , 	!" , 	!3, we write 6�,�,",3.

Furthermore, we define the union of the volumes as a tetrahedronal I which is

subject to a few constraints:

i.) No 6�,�,",3 ∈ 7 is degenerate, meaning !� , 	!� , 	!" , 	!3 are non-

coplanar.

ii.) The interiors of any two tetrahedra in I do not intersect.

iii.) Two tetrahedra in I only intersect at a common triangular face.

 14

Again, a Delaunay Triangulation is used, but is extended to the 3D case

using circumspheres (Nielson, “Tools for Triangulations”). Similarly, there are a

variety of methods to find a Delaunay Tetrahedrization (Nielson, “Tools for

Triangulations”), (Blandford, Blelloch, Kadow), (Field), (Hoshiko, Kawahara).

 c.) Building Mesh

Now that we have defined our volumes, we will actually build the “skin”

of the mesh.

i.) For each 6�,�,",3 ∈ 7, we define it as active if and only if at least

one of its vertices is in �. and at least one is in +,-. So let 728-�19 ⊆ 7

such that, if 6�,�,",3 ∈ 7 is active, then 6�,�,",3 ∈ 728-�19.

ii.) For each tetrahedron, 6�,�,",3 ∈ 728-�19 we define a center point

;�,�,",3. There is no specific requirement for the location of ;�,�,",3, other

than that it is inside of 6�,�,",3. For our purposes, at this point we may

simply set ;�,�,",3 as the centroid of 6�,�,",3.

Note: This placement is guaranteed to put the vertex inside of the

tetrahedron.

iii.) We now will analyze which tetrahedra are adjacent to one another

via common faces. Let's define a face as three points of a tetrahedron,

!� , 	!� , 	!", which we write as ��,�,". Let J be the set of all tetrahedron

faces, such that ��,�," ∈ =. Furthermore, we define a face as active if and

only if at least one of its vertices is in �. and at least one is in +,-. So let

 15

=28-�19 ⊆ = such that, if ��,�," ∈ = is active, then ��,�," ∈ =28-�19. We define

two tetrahedra as adjacent if they share a face.

iv.) Furthermore, we will now define an edge >�,�," ∈ ?, which

connects the center points of the two tetrahedra which are adjacent along

face ��,�," ∈ =28-�19.

The three tetrahedra at the top of figure represent the lookup table for the Dual Marching Tetrahedra
method. The lower portion shows how two adjacent tetrahedra might connect.

The three cases of DMT in 3D (Nielson, “Dual Marching Tetrahedra”). (Figure 4)

v.) We now must connect the edges together to form the

polygons of our final mesh. We can use a similar lookup table to the one

used in the Cuberille Method. For each pair of edges leaving ;�,�,",3, there

are two tetrahedron through which the edges pass. These faces share a

tetrahedron edge, which in turn is adjacent to two tetrahedron points. If

one of these points is in �., and one is in +,-, we may create a polygon.

Now that we have our polygons constructed, we have our final mesh.

 16

CHAPTER 4

CRITERION FOR SMOOTHNESS

While we are seeking to represent smooth analog objects, our data set is of

discrete points of density. Thus, even though the resulting mesh of the DMT

algorithm has produced a correct enclosing structure, it will not necessarily

produce a smooth result. Keeping in mind that we are dealing with polygons and

edges, we cannot hope for a continuous result. While a continuous surface has

simple measures for smoothness based on curvature, polygons and edges are not

so well defined. So, let's take a look at a few ways to define smoothness of such

objects.

It is important to note that we define smoothness here so that we have a

way to test whether a smoothing algorithm has produced a favorable result.

While the human eye may be able to detect that a particular example “looks

smoother” than another, ultimately this isn't a reliable measure. Keep in mind that

we actually do not use this criterion as a part of our smoothing algorithm itself.

We merely use it to verify our results.

3.1 2D Criteria

The 2D case is significantly simpler than the 3D case. The primary idea is

to analyze the angles surrounding a vertex in the boundary. For our purposes, we

are only looking at each angle individually. Future work could be done to analyze

several adjacent angles at once, which would provide a more global smoothness

estimate. However, that is outside the scope of this discussion.

 17

There are several tests which we can use. Here we will present two.

a.) Angle Analysis

In a continuous and differentiable line, the angle at any point is always

180°. So, given any subset of points on such a line, the average angle would

always be 180°. We can do a similar process for connected line segments, which

are connected by vertices. For each vertex connecting two line segments, we

have an angle, and so the average of all such angles can be found. We should

always select the angle which is 180° or less, also known as the “non-reflex”

angle. Since we always selected the non-reflex angle, the maximum average is

180°. So, the closer to 180°, the smoother the result.

Thus, we can define smoothness on a mesh D = (�, ?), to be:

Let	� be the set of vertices, and ? be the set of edges.

Then ?1 ⊂ ? is the set of edges adjacent to ; ∈ �.

Then �F = {;	|	∀;	 ∈ �	Iℎ>K>	?1 = 2}.

Then MNOO0ℎ)>MM(D) = 	∑ 8(1)Q	∈RS
|T| ,

where U(;) = cosYZ [9\⋅9^
|9\||9^|

_ and >`, >Z ∈ ?1.

 18

2D Angle Criterion (Figure 5)

Note that our average is only meaningful if we consistently select the non-

reflex angle in our computation. (We may also always select the reflex angle, but

for sake of convention, the non-reflex angle is more convenient.) For example,

let's say we're averaging the angles of two vertices, both measuring 170°. The

resulting average would then be 170°. However, let's say that for one we select

the non-reflex angle of 170°and for the other we select the reflex angle of 190°.

The average would then be 180°, even though our example is clearly not smooth.

Thus, we must consistently select the non-reflex angle.

b.) Vector Analysis

This method is similar to the smoothing algorithm itself. It is a more

complex method, and in the 2D case does not necessarily give us more

information than the previous method. However, due to its relationship to the

smoothing algorithm, it is useful to present.

 19

If we look at a vertex with two incident edges, instead of analyzing the

angle itself, we can analyze the two edges. Let's say we have a vertex v, and two

edges >Z, >c. We can then construct two vectors of unit length from v along the

edges, which specifies two points dZ, dc. We can then find the midpoint of these

points, which is q. We are interested in the distance from v to q. If the two edges

are collinear in opposite directions (180°), then clearly the distance will be 0.

However, if the two are at any other angle, the distance will be 0 < #�M0f)U> ≤

1. So, we can see that a smoother boundary will result in a number closer to 0.

Thus, we can define smoothness on a mesh D = (�, ?), to be:

Let	� be the set of vertices, and ? be the set of edges.

Then ?1 ⊂ ? is the set of edges adjacent to ; ∈ �.

Then �F = {;	|	∀;	 ∈ �	Iℎ>K>	|?1| = 2}.

Then, given ;	 ∈ �F, we have ?1 =	 {>`, >Z}.

Then >` = (;, ;`), >Z = (;, ;Z) where ;`, ;Z ∈ �.

Then let >h̀ = 11\
|11\|

, and >Zh = 11^
|11^|

 , which are unit length vectors along the

adjacent edges.

Use >h̀ , >Zh to create points !`, !Z.

Then let ;F be the midpoint between !`, !Z.

Then MNOO0ℎ)>MM(D) = 	∑ 8(1)Q	∈RS
|T| , where U(;) = |;;F|.

 20

2D Vector Criterion (Figure 6)

c.) Energy Criterion

This method is similar to the 3D method defined by Gibson for Surface

Nets (Gibson, 893). It is based on the idea that smoother surfaces will have less

surface area. Then, each edge is given an energy, which in this case is equal to

the square its length. Then the sum of all of the energies is produced, which

provides a rough idea of the surface area of the Surface Net. Here a smoother

smaller result means a smoother surface.

It is important to note that the result of this criterion is not scale invariant.

If a mesh were scaled to a larger size with no other modifications, it would

generate a larger result. For Laplacian smoothing, this would pose a significant

problem as the mesh would shrink. However, for an algorithm based on Surface

Nets, shrinkage is not a problem, and so this criterion is applicable.

 21

Given a mesh D = (�, ?), where � is the set of vertices, ? is the set of

edges.

Then for each >	 ∈ ?, > = (;`, ;Z), where ;`, ;Z ∈ �.

Then MNOO0ℎ)>MM(D) = ∑ U(>)9	∈i , where U(>) = |;`;Z|
c.

3.2 3D Criteria

The 3D case is not nearly as simple. At each vertex, we may have

between two and four converging faces and edges. Unlike the 2D example, we

cannot simply test for the angles converging on a vertex, for instead of dealing

with edges alone, we are now dealing with surfaces. There are undoubtedly

multiple ways of testing this kind of smoothness, but here we will present two

such methods.

a.) Vector Analysis

This method is inspired by the smoothing algorithm which will be

presented later. For each vertex, we will have two to four adjacent edges. For

each adjacent edge, we may define a point unit distance from the vertex. We then

take the centroid of those new points, and have our new point C. If this surface is

perfectly flat, C will be at the same location as our vertex.

This method is not particularly meaningful for two edges. For three we

can certainly find whether or not a concave surface is defined. For four edges

however, we will have a meaningful result if the surface is concave, but the

surface may also describe a saddle point. If we have a saddle point, it is possible

for C to be located at the vertex even if the geometry is by no means flat.

 22

Just as with the 2D case, a perfectly smooth vertex will result in a distance

of 0, and all others will be in the range of 0 ≤ #�M0f)U> ≤ 1. So the smoother

the surface, the closer the distance will be to 0.

Thus, we can define smoothness on a mesh D = (�, ?,), to be:

Let	� be the set of vertices, ? be the set of edges, and be the set of

polygons.

Then ?1 ⊂ ? is the set of edges adjacent to ; ∈ �.

Then �F = &;	|	∀;	 ∈ �	Iℎ>K>	|?1| ≥ 2}.

Then, given ;	 ∈ �F, we have ?1 =	 {>`, … , >.}.

Then >� = (;, ;�), where ;� ∈ �.

Then let >kh = 11l
|11l|

, which is a unit length vector along the adjacent edge of

;	 ∈ �F.

Then let ;F be the centroid of >h̀ , … , >.m, where each vector starts from the

position of ;.

Then MNOO0ℎ)>MM(D) = 	∑ 8(1)Q	∈RS
|T| , where U(;) = |;;F|.

Note, this criterion is very similar to the smoothing algorithm, and is

useful to present.

 23

3D Vector Criterion (Figure 7)

b.) Energy Criterion

This method is defined by Gibson for Surface Nets. It is essentially the

same as the 2D version (Gibson, 893). Again, a smoother smaller result means a

smoother surface.

Given a mesh D = (�, ?,), where � is the set of vertices, ? is the set of

edges, and is the set of polygons.

Then for each >	 ∈ ?, > = (;`, ;Z), where ;`, ;Z ∈ �.

Then MNOO0ℎ)>MM(D) = ∑ U(>)9	∈i , where U(>) = |;`;Z|
c.

 24

CHAPTER 5

SMOOTHING ALGORITHM

5.1 Developing Algorithm

Note, that in both the 2D and 3D case, we are testing the concavity at

every vertex. The non-reflex angle between lines is simply a measure of how

concave the shape is. We will deal with that concept as we motivate our

algorithm.

The mesh built by the DMT is created specifically to contain all of the

points of �. and none of +,-. As mentioned before, if we were to smooth our

mesh once it is build by the DMT, ignoring the data structures and methods used

to construct the mesh, we may change shape in such a way which violates the

correct point inclusion of the mesh. If we violate the point inclusion, then we do

not necessarily correctly represent the object which we sought to visualize. Thus,

we need some smoothing technique which modifies our mesh, while keeping the

original data in mind.

First, it is important to note that DMT has no specific requirement for the

location of ;�,�,",3, other than that it must exist inside of 6�,�,",3. As long as ;�,�,",3

remains inside 6�,�,",3, we can clearly see that if the mesh was constructed

correctly, we will contain �. and exclude +,-. Thus the vertex may be relocated

to any place in interior of the tetrahedron.

 25

In our description above, we blindly chose the centroid as the location in

each tetrahedron, since it is guaranteed to be on the inside. However, our

algorithm will seek to find a location for each ;�,�,",3, which provides a smoother

mesh as per our smoothness criterion.

We started with the “Surface Nets” method briefly mentioned in the

original DMT paper. As mentioned before, the Surface Nets algorithm very

similar to the Cuberille method, upon which DMT is based. For the original

Surface Nets, all of the voxels are cube shaped, just as they are in the Cuberille.

So, we can similarly change the cubes of Surface Nets to tetrahedra. Just as with

the Cuberille method, DMT has a node inside every surface tetrahedron, which is

connected by an edge to the vertices of its neighboring surface tetrahedra. Thus,

our DMT may be taken through the same relaxing processes that the original

Surface Nets undergo.

5.2 Statement of Algorithm

Just as we may define DMT for both the 2D and 3D cases, we may define

our smoothing algorithm for both as well. In the definition of the 3D case below,

simply replace the word tetrahedron with triangle for the 2D case.

For each tetrahedron ∈ 728-�19 , there exists a center vertex ;.

Then �1 ⊂ � is the set of vertices adjacent to ; ∈ �.

Then let ;F be the centroid of the vertices in �1.

Then move ; to the location of ;F.

 26

The new location of ; may now be outside of the tetrahedron. If so, it will

have to be moved to the location closest to ;F, such that it is still inside the

tetrahedron.

Here is a tetrahedron containing vertex n, which is adjacent to three vertices, no, np, and nq. It is then
relocated to the centroid of its neighbors, nF.

Smoothing Algorithm (Figure 8)

2D Triangle Bounding.

If the location of ;Fis outside of triangle 6, we will have to test it

against each side of 6 to see if it is either “outside” or “on” the side of 6,

in which case we can say that it “violates” the side.

Case 1: If we violate only one side, we simply project ;F onto that

side.

Case 2: If we violate two sides, we simply set ;F to the

intersection of the two sides.

 27

There is a possibility that Case 1 will actually cause Case 2, since

projecting to a single side may violate the another side. However, since

we projected the point to a location “on” the first side, it now violates two

sides. So we may simply run the bounding a second time, and which will

project to a point on the triangle, and solve the issue.

3D Tetrahedron Bounding

The 3D case may be handled similarly. If the location of ;Fis

outside of tetrahedron 6, we will have to test it against each face of 6 to

see if it is either “outside” or “on” the face of 6, in which case we can say

that it “violates” the face.

Case 1: If we violate only one face, we simply project ;F onto that

face.

Case 2: If we violate two faces, we must fine the line where the

two faces intersect. Then we project ;F onto that line.

Case 3: If we violate three faces, we may simply project ;F onto

the intersection of the three faces.

 There is a possibility that Case 1 or Case 2 will actually cause

Case 2 or Case 3, since projecting to due to one or two violations, may

cause violations of other faces. However, since we projected the point to a

location “on” the first ace, it still violates that face. So we may simply run

the bounding a second time, which will pick up all possible violations, and

solve the issue.

 28

CHAPTER 6

DISCUSSION

Now that we have our algorithm in place, we can run our smoothness

criterion to analyze the result. Drawing inspiration from the Surface Nets

algorithm, we may repeat the smoothing process more than one time. Each time

the algorithm is run, it will create a smoother result, tending towards some

maximum smoothness.

We should note that the maximum smoothness is not necessarily a number

which is perfectly smooth by our criterion. If the data set itself is very smooth,

say in a high resolution scanning of a circle or sphere, the resulting surface will

tend towards a smooth number.

Here is surface obtained from discrete points arranged in a sphere. The grid of data is 32 x 32 x 32.

High Resolution Mesh, smoothed 0 times (Figure 9)

 29

Here we see the same data set, smoothed 100 times. It is visually much smoother, except for some
sharp points which can be attributed to the surface settling onto the sharp points of the data set itself.

High Resolution Mesh, smoothed 100 times (Figure 10)

 30

This is a graph of the smoothness criterion over 100 runs. We can see a marked decrease in the
smoothness criterion. Here we used the Vector Analysis criterion. A smaller number indicates that
our mesh became smoother.

High Resolution Mesh, Vector Analysis Smoothness (Figure 11)

Here is a surface obtained from a lower resolution data set of a sphere. The grid of data is 8 x 8 x 8.

Low Resolution Mesh, smoothed 0 times (Figure 12)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

Smoothness

Vector Analysis

 31

Here is the same data set smoothed 100 times. Once again, it is visually much smoother than before.
Similarly, there are sharp points where the data set specifies.

Low Resolution Mesh, smoothed 100 times (Figure 13)

 32

This is a graph of the smoothness criterion over 100 runs. We can again see the smoothness quickly
drop, and then grow asymptotically towards some value. Here we again used the Vector Analysis
criterion, and so a smaller number indicates an increase in smoothness.

Low Resolution Mesh, Vector Analysis Smoothness (Figure 14)

On the other hand, if our surface is very jagged on a per voxel basis, or

simply very low resolution, then the resulting surface naturally will tend towards

a much less smooth number.

To explain, we will need a few definitions. Since this algorithm works on

a per vertex basis, we need to understand concavity at each vertex. Loosely

borrowing definitions from Calculus, we can see that a vertex can be considered

“concave inward” if its non-reflex angle is on the inside of the object. Similarly,

it can be considered “concave outward” if its non-reflex angle is on the outside of

the object. The 3D case works similarly, for each vertex; we may analyze the

angles between its adjacent polygons. If all of the angles are non-reflex on the

inside, then we can say it is “concave inward”. Similarly, if all of the angles are

non-reflex on the outside, we can say it is “concave outward”. Of course, there

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Smoothness

Vector Analysis

 33

are cases in 3D which are ambiguous, such has having a vertex with a “saddle

point”, where two edges are concave inward, and two are concave outward.

The top left figure is concavity for a 2D boundary. The top right figure is concavity for a 3D
boundary. The bottom figure is a 3D saddle point.

Concavity (Figure 15)

With these definitions in place, we can clearly see that if a vertex is

concave inward, it will be moved inward. Likewise, if a vertex is concave

outward, it will be moved outward. In the less defined case, the vertex will still

be moved to an equi-distant location, which will produce a smoother result.

In the most trivial example, a single “inside” point, surrounded entirely by

“outside” points, every single vertex of the result is concave inward. Thus, the

vertices will all move inwards during each iteration, eventually reaching the

tetrahedron or triangle boundaries. Rather than smoothing, the object simply

shrank.

 34

It is also interesting to note, that for the original Surface Nets, it was

observed that the smoothness dropped quickly, and then rose asymptotically

towards some eventual value. This was interpreted to mean that the sharp points

in the eventual result were forming (Gibson, 894). We can see a similar result in

the graph of our Low Resolution Mesh.

The complexity of our smoothing algorithm is O(n). We loop through our

n vertices, which have a maximum of 4 neighbors, which reduces from O(4n) to

O(n). Of course we may run our algorithm k times in order to get the desired

result, which would then have the aggregate run at O(nk), but k is a defined by the

user at run time, and so again, it reduces to O(n).

 35

CHAPTER 7

CONCLUSION

Turning discrete data into continuous surfaces is a non-trivial process.

However, when analyzing important data such as that produced by MRI and CT

scanners, the clarity of the resulting surface is paramount. Similar methods have

existed for earlier algorithms such as Marching Cubes, and Dual Marching Cubes.

However, drawing inspiration from the Surface Nets algorithm, we have the

ability to produce much smoother results with the Dual Marching Tetrahedra

algorithm.

There is some future work to be done incorporating the densities of the

mass points from the underlying data set into the smoothing algorithm. When we

segment the data points, we normally specify a range of densities where our

boundary might lie. Inside this range, we can select a specific density for our

boundary. Then, when we analyze the individual tetrahedra, we can interpolate

between the densities of the four data points, in order to find some location where

the specified density exists. Thus, our vertex should be placed in that location.

Now, the vertex is placed according to the underlying data set, and so it is more

likely to pick up the characteristics of the original scanned object, whether this it

is smooth or jagged. However, this location is ignorant of any smoothing we

might wish to perform, and so the results will not necessarily be as smooth as the

smoothed version. We can try and unify the two approaches, by finding some

blending between the smoothed position, and the weighted position.

 36

REFERENCES

Blandford, D. K., G. E. Blelloch, and C. Kadow. "Engineering a Compact Parallel
Delaunay Algorithm in 3D." Proceedings of the Twenty-second Annual
Symposium on Computational Geometry (2006): 292-300. Print.

Chen, Lih S., Gabor T. Herman, R. Reynolds, and Jayaram Udupa. "Surface

Shading in the Cuberille Environment." IEEE Computer Graphics and
Applications 5.12 (1985): 33-42. Print.

Dyn, N., K. Hormann, S. J. Kim, and D. Levin. "Optimizing 3D Triangulations

Using Discrete Curvature Analysis." Mathematical Methods for Curves
and Surfaces: Oslo 2001 (2000): 135-46. Print.

Field, D. A. "Implementing Watson's Algorithm in Three

Dimensions." Proceedings of the Second Annual Symposium on
Computational Geometry (1986): 246-59. Print.

Gibson, Sarah. "Constrained Elastic Surface Nets: Generating Smooth Surfaces

from Binary Segmented Data." Ed. William Wells, Alan Colchester, and
Scott Delp. Medical Image Computing and Computer-Assisted
Interventation — MICCAI’98 1496 (1998): 888-98. Print.

Hoshiko, R., and M. Kawahara. 3-dimensional Mesh Generation Using the

Delaunay Method.

Kim, S. J., C. H. Kim, and D. Levin. "Surface Simplification Using a Discrete

Curvature Norm." Computers & Graphics 26.5 (2002): 657-63. Print.

Lorensen, William E., and Harvey E. Cline. "Marching Cubes: A High Resolution

3D Surface Construction Algorithm." ACM SIGGRAPH Computer
Graphics 21.4 (1987): 163-69. Print.

Nielson, G. M. "Dual Marching Cubes." Proceedings of the Conference on

Visualization '04 (2004): 489-96. Print.

Nielson, Gregory. "Dual Marching Tetrahedra: Contouring in the Tetrahedronal

Environment." Ed. George Bebis, Richard Boyle, Bahram Parvin, Darko
Karacin, Paolo Remagnino, Fatih Porikli, Jörg Peters, James Klosowski,
Laura Arns, Yu Chun, Theresa-Marie Rhyne, and Laura Monroe.
Advances in Visual Computing 5358 (2008): 183-94. Print.

Nielson, Gregory M. "Tools for Triangulations and Tetrahedrizations." Scientific

Visualization: Overviews, Methodologies, and Techniques. Los Alamitos,
CA: IEEE Computer Society, 1997. 429-525. Print.

 37

Okabe, Atsuyuki, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial
Tessellations: Concepts and Applications of Voronoi Diagrams.
Chichester: Wiley, 2000. Print.

Taubin, G. "Geometric Signal Processing on Polygonal Meshes." Eurographics

State of the Art Reports 4.3 (2000). Print.

 38

