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ABSTRACT  
   

The Dual Marching Tetrahedra algorithm is a generalization of the Dual 

Marching Cubes algorithm, used to build a boundary surface around points which 

have been assigned a particular scalar density value, such as the data produced by 

and Magnetic Resonance Imaging or Computed Tomography scanner.  This 

boundary acts as a skin between points which are determined to be “inside” and 

“outside” of an object.  However, the DMT is vague in regards to exactly where 

each vertex of the boundary should be placed, which will not necessarily produce 

smooth results.  Mesh smoothing algorithms which ignore the DMT data 

structures may distort the output mesh so that it could incorrectly include or 

exclude density points.  Thus, an algorithm is presented here which is designed to 

smooth the output mesh, while obeying the underlying data structures of the DMT 

algorithm. 
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CHAPTER 1 

INTRODUCTION 

Machines such as MRI scanners are capable of determining density at 

discrete locations in an object, allowing us to peer into the inner workings of 

closed systems such as the human body.  However, in order to fully utilize the 

data produced, there have been several algorithms proposed.  For data sets aligned 

to a 3 dimensional lattice, such as that produced by an MRI, it is common to use 

the “Marching Cube” algorithm, which forms “voxels”, or units of volume, as 

cubes along the grid.  The points in the lattice are segmented based on their 

density, to either be inside an object, or outside an object.  Then, the cubes are 

placed using these “inside” points as their vertices.  The surface cubes are then 

used to form a “skin” around the data points determined to be on the “inside” of 

such an object. (Lorensen and Cline, 164) 

However, the Marching Cubes and Dual Marching Cubes algorithms may 

be generalized to fit more diverse data sets.  The “Dual Marching Tetrahedra” 

algorithm instead uses tetrahedra for its voxels, which do not require the same 

constraints on the data set as the Cubes algorithms, which contain all right angles 

as each data point must be aligned to a grid (Nielson, “Dual Marching 

Tetrahedra”, 184).  The algorithm also allows for more complex segmentation of 

the data points by the introduction of an ambiguous case, which we may use when 

it is not clear that a point should be marked as “inside” or “outside”. (Nielson, 

“Dual Marching Tetrahedra”, 188) 
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Unfortunately, since we are building a surface around discrete data, the 

results are not necessarily smooth.  Furthermore, these algorithms build non-

continuous surfaces, and so there is some ambiguity regarding vertex placement, 

as some locations may be smoother than others.  However, smoothing algorithms 

which seek to adjust the surface once it is formed, may distort the surface 

considerably.  In some such algorithms, extra points will be added in order to 

interpolate between the points already in place.  Also, the goal of the surface is to 

entirely enclose the points “inside” the object, and to exclude the points “outside” 

the object.  Smoothing algorithms which work after the surface is defined will 

have no knowledge of the original data set.  Thus, they may shift the points to 

violate the correct point inclusion of the surface, where “inside” points are/or 

outside, and “outside” points are inside. 

Hence, we will now look into a way of producing smoother results, during 

the creation of the original mesh.  Thus, we will be able to maintain the correct 

point inclusion. 

Keep in mind throughout this discussion, that these results can be 

implemented in both 2D, and 3D versions.  In many cases, the 2D version is 

considerably simpler; however, we are more interested in the 3D case, due to its 

inherent complexity, and its relationship to the Marching Cubes algorithm. 
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CHAPTER 2 

PREVIOUS WORK ON SMOOTHING 

Given a set of data points in space and their associated densities, there are 

a variety of ways to produce a boundary surface.  Here we will concentrate on the 

Marching Cubes, Dual Marching Cubes, and Surface Nets algorithms, which all 

use somewhat similar approaches in creating a surface.  In each algorithm, there is 

the idea of a “voxel”, which is some unit of volume.  For the algorithms presented 

in this chapter, all use a cube shaped voxel.  

In the Marching Cubes algorithm, we are given a rectilinear grid of data 

(Lorensen and Cline, 164). 

We can define the points of this grid as 

 ��,�,� = �(�∆	, 
∆�, �∆), where Δ	, Δ�, Δ are positive lengths of the 

sides of the cube. 

 So our rectilinear grid would be defined by 

� = 	 �(�∆	, 
∆�, �∆), � = 1,… ,��; 
 = 1,… ,�� , � = 1,… ,���.  

Furthermore, we can define our cubes with the diagonal from (�∆	, 
∆�, �∆) to 

((� + 1)∆	, (
 + 1)∆�, (� + 1)∆) (Nielson, “Dual Marching Cubes”, 490). 

Then, given some threshold value, we specify each vertex of the cube as 

either “inside” or “outside” the surface.  Then, for each cube, we create our 

surface itself by using a lookup table to create surface elements, and connecting 

them to the surface elements of adjacent cubes.  (Lorensen and Cline, 165). 
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Each cube shaped voxel may have points which are “inside” or “outside” of an object.  Depending on 
which set the vertices of the cube belong to, we may create a polygonal surface separating those 
vertices.  While there are considerably more cases than those shown above, we may generalize all of the 
cases into the 14 above. 

 Marching Cubes surface lookup table (Lorensen and Cline, 165).  (Figure 1) 

The lookup table provides some configuration of polygons which separate 

the “inside” and “outside” vertices for a cube.  So, for each cube, a configuration 

is selected from the table.  Once a configuration is selected, its geometry is 

compared to the geometry of the adjacent cubes, which allows the geometry to be 

connected.  Once complete, this will then provide a polygonal surface separating 

the two sets of vertices. 

This process was modified by the Dual Marching Cubes algorithm to use 

surface patches.  The surface patches themselves are left somewhat undefined, 
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except that each surface patch is not necessarily polygonal.  That allows for 

greater flexibility in its construction.  According to the original paper, surface 

patches are created using the following definition: 

Definition :  Let S be in [the collection of surfaces for the 

Marching Cubes], then �∗ is a surface comprised of a collection of 

quad patches with the following properties 

1)  For each patch �� of � there is a vertex �� of the dual 

surface, �∗, lying in the interior of the voxel containing ��. 

2)  For every vertex ��, of the marching cubes surface, �, there 

is one quad patch  � of �∗.  The vertices of the quad patch are the 

vertices that associate with each of the four patches of � that have 

�� in common. 

3) For every edge of � there is an associated edge of �∗.  The 

edge of � lies in the voxel face intersected by the associated edge 

of the dual surface �∗ (Nielson, “Dual Marching Cubes”, 491). 

This leads to a lookup table similar to the one used by Marching Cubes. 
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Here we show the patch based lookup table used in the Dual Marching Cubes algorithm. 

Dual Marching Cubes lookup table (Nielson, “Dual Marching Cubes”, 491).  (Figure 2) 

We can see that in the Marching Cubes algorithm, each cube contains 0 or 

more polygonal surfaces.  In the Dual Marching Cubes algorithm, we instead 

place a vertex for each of these surfaces, and attach them with patches to the 

adjacent neighbors. 

However, in the Dual Marching Cubes paper, it is shown that the DMC 

can be modified to use a lookup table which includes only one vertex per voxel.  

This is also known as the Cuberille Method (Chen et al). 
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Here we show a modified form of the lookup table for the Dual Marching Cubes algorithm.  In thise 
case, instead of a potential maximum of four vertices per voxel, we unify the vertices to create a single 
vertex per voxel.  This is also used in the Cuberille method. 

DMC Lookup Table using one vertex per voxel (Nielson, “Dual Marching Cubes”, 496).  (Figure 3) 

This alternate lookup table uses edges which are a subset of the Surface 

Nets method (Nielson, “Dual Marching Cubes”, 496), which also use a single 

vertex per cube approach. 

The Surface Nets method is used to produce a smooth boundary.  It is a 

modified form of Laplacian smoothing, which is a well established method of 

smoothing geometric data (Taubin, 1).  In the case of Laplacian smoothing, each 

vertex in a mesh is moved to the barycenter of its neighboring vertices.  However, 

there is significant shape distortion, and after several iterations, the mesh structure 
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will eventually shrink down to a single point (Taubin, 1).  Taubin does introduce 

several methods to counteract the shrinkage, however none take the underlying 

data points into consideration. 

Surface Nets on the other hand are designed to address the underlying data 

points, while applying the principles of Laplacian smoothing.  Similar to the 

previous algorithms, cubes are used once again (Gibson, 892).  Again each data 

point is classified as “inside” or “outside” of an object, in a process which is 

defined as “Segmentation”.  The cubes are then determined to be either “entirely 

inside”, “entirely outside” or “on the surface” of the object, based on being made 

up of purely “inside” points, purely “outside” points, or a mixture of the two, 

respectively.  Then, for every surface cube, a vertex is placed in the center, and 

connected to the vertex of the adjacent surface cubes.  The surface itself is defined 

identically to the lookup table shown above.  The Surface Net may now be 

“relaxed”, by moving the vertex of each cube to a position equi-distant from its 

neighbors (Gibson, 893). 

This method differs distinctly from the Laplacian method by one 

constraint.  Each vertex must be constrained to the inside of its original surface 

cube.  The surface will thus be faithful to the underlying segmentation, and will 

favor the segmentation, rather than overall smoothness.  Furthermore, it will 

create sharp areas where the underlying data specifies it (Gibson, 894). 

The method defined in this work draws considerable inspiration from the 

Surface Nets method. 
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CHAPTER 3 

DUAL MARCHING TETRAHEDRA ALGORITHM 

Let's take a look at the Dual Marching Tetrahedron method of mesh 

generation.  We will show both the 2D and 3D versions, as both may be extended 

with a smoothing algorithm.  Again, this is based on the Cuberille Method, which 

uses nearly identical logic. 

 

2.1  2D Algorithm 

We will take in some set of 2 dimensional points, each assigned some 

density.  We are attempting to build a boundary between “inside”, and “outside” 

points.  The boundary will be a line, which we will then smooth (Nielson, “Dual 

Marching Tetrahedra”, 188). 

Let's call the points !" = (	" , 	�" , #")	where		" , 	�" ∈ ℝ	and	#" ∈ ℝ+.  

We can group the points into the set  = {!"	 ∶ 	� = 1, . . ., )}.  In order to build 

our mesh, we have to run several algorithms: 

 

a.)  Segmentation Algorithm 

In the original Marching Cubes algorithm, the points were split into two 

sets, based on the density of each element:  those inside and those outside the 

object in question.  While the DMT algorithm can work in a similar fashion, there 

is an opportunity to account for an ambiguous case, where the density is unclear 

as to whether or not the point should be placed in or out of the object. 

Here we split P into three separate sets, based the density of each element.  
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Specifically, the sets are  � ,  +,-,	and	 ,.".+/., which are for points inside the 

object, points outside the object, and points which we are unable to determine 

their inclusion in the object, respectively.  The proposed segmentation algorithm 

uses two selected threshold values:  0� 	and	0+,-.  Without loss of generality, points 

density greater than or equal to0�are placed in �and points with density less than 

or equal to 0+,- are placed in  +,-.  All points with density between 0� 	and	0+,- are 

placed in  ,.".+/..  Although it is beyond the scope of this paper, it is possible to 

define another threshold, of points which are too dense to be inside, and put them 

also into the “outside” set. 

We will not consider the points in the “unknown” case, and so we can now 

define  123�4 =  � ∪  +,-, which thus only stores the “inside” and “outside” 

points. 

This algorithm can be easily implemented by iterating through P, and 

classifying each !" as “inside”, “outside”, or “unknown”, and then either deleting 

the “unknown” points, or entering the “inside” and “outside” cases into some new 

 123�4 set.  However, specific implementations may vary significantly as far as 

data structures are concerned, and so for the rest of this discussion, we will 

continue to use the notation and conventions already in place. 

 

b.)  Triangulation 

Now that we have divided our points into appropriate sets, we will create a 

2D mesh of triangles which connect all of the points in  123�4.  These units of area 

help to divide up the surface for our boundary.  We can represent a each triangle 
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as a 3-tuple of points from  123�4.  For a triangle defined by points !� , 	!� , 	!", we 

write 6�,�,".  Furthermore, we define the union of the volumes as a surface, I, 

which is subject to a few constraints: 

 

i.)  No 6�,�," ∈ 7 is degenerate, meaning !� , 	!� , 	!" are non-collinear. 

ii.) The interiors of any two triangles in I do not intersect. 

iii.)  Two triangles in I only intersect at a common edge. 

 

This kind of triangulation may be achieved through a Delaunay 

Triangulation (Nielson, “Dual Marching Tetrahedra”, 186).  In the 2D case, the 

Delaunay Triangulation is defined to be a set of triangles connecting a set of 

points, such that the circumcircle of any triangle contains no points (Okabe et al., 

94).  There are a variety of algorithms available for constructing such a structure 

(Nielson, “Tools for Triangulation”). 

 

c.)  Building the Boundary 

Now that we have defined our triangles, we will actually build the 

boundary. 

 

i.)  For each 6�,�," ∈ 7, we define it as active if and only if at least one 

of its vertices is in �and at least one is in  +,-.  So let 728-�19 ⊆ 7 such that, 

if 6�,�," ∈ 7 is active, then 6�,�," ∈ 728-�19. 
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ii.) For each triangle, 6�,�," ∈ 728-�19 we define a center point ;�,�," ∈

�.  There is no specific requirement for the location of ;�,�,", other than 

that it is inside of 6�,�,".  For our purposes, at this point we may simply set 

;�,�," as the centroid of 6�,�,". 

 

Note:  This placement is guaranteed to put the vertex inside of the triangle. 

 

iii.)   We now will analyze which triangles are adjacent to one another 

via common edges.  Let's define an edge as two points of a triangle, !� , 	!�, 

which we write as <�,�.  Let J be the set of all triangle edges, such that 

<�,� ∈ =.  Furthermore, we define an edge as active if and only if at least 

one of its vertices is in  � and at least one is in  +,-.  So let =28-�19 ⊆ = 

such that, if <�,� ∈ = is active, then <�,� ∈ =28-�19.  We define two triangles 

as adjacent if they share an edge. 

 

iv.) Furthermore, we will now define an edge >�,�," ∈ ?, which 

connects the center points of the two triangles which are adjacent across 

edge D�,� ∈ =28-�19. 

 

We now have a boundary defined by edges which separate the “inside” 

and “outside” points.  
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2.2  3D Algorithm 

As stated before, we will take in some set of 3 dimensional points, each 

assigned some density.   

We can simply extend the definition of our points 3D.  Let's call these 

points !" = (	" , 	�" , 	", 	#")	where		", 	�" , 	" ∈ ℝ	and	#" ∈ ℝ+.  We can group 

the points into the set  = {!" ∶ � = 1, . . ., )}.  Again, in order to build our 

mesh, we have to run several algorithms: 

 

a.)  Segmentation Algorithm 

This portion of the algorithm is identical to the 2D version. 

 

b.)  Tetrahedrization 

Here, since we can no longer constrain our points to a planar surface, we 

build our “voxels”, or units of volume.  For our purposes, we will use tetrahedra 

to define these volumes, which we can represent as a 4-tuple of points from 

 123�4.  For a tetrahedron defined by points !� , 	!� , 	!" , 	!3, we write 6�,�,",3.  

Furthermore, we define the union of the volumes as a tetrahedronal I which is 

subject to a few constraints: 

i.) No 6�,�,",3 ∈ 7 is degenerate, meaning !� , 	!� , 	!" , 	!3 are non-

coplanar. 

ii.) The interiors of any two tetrahedra in I do not intersect. 

iii.)  Two tetrahedra in I only intersect at a common triangular face. 
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Again, a Delaunay Triangulation is used, but is extended to the 3D case 

using circumspheres (Nielson, “Tools for Triangulations”).  Similarly, there are a 

variety of methods to find a Delaunay Tetrahedrization (Nielson, “Tools for 

Triangulations”), (Blandford, Blelloch, Kadow), (Field), (Hoshiko, Kawahara). 

 

 c.)  Building Mesh 

Now that we have defined our volumes, we will actually build the “skin” 

of the mesh. 

i.)  For each 6�,�,",3 ∈ 7, we define it as active if and only if at least 

one of its vertices is in �. and at least one is in  +,-.  So let 728-�19 ⊆ 7 

such that, if 6�,�,",3 ∈ 7 is active, then 6�,�,",3 ∈ 728-�19. 

ii.) For each tetrahedron, 6�,�,",3 ∈ 728-�19 we define a center point 

;�,�,",3.  There is no specific requirement for the location of ;�,�,",3, other 

than that it is inside of 6�,�,",3.  For our purposes, at this point we may 

simply set ;�,�,",3 as the centroid of 6�,�,",3. 

Note:  This placement is guaranteed to put the vertex inside of the 

tetrahedron. 

iii.)  We now will analyze which tetrahedra are adjacent to one another 

via common faces.  Let's define a face as three points of a tetrahedron, 

!� , 	!� , 	!", which we write as ��,�,".  Let J be the set of all tetrahedron 

faces, such that ��,�," ∈ =.  Furthermore, we define a face as active if and 

only if at least one of its vertices is in  �. and at least one is in  +,-.  So let 
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=28-�19 ⊆ = such that, if ��,�," ∈ = is active, then ��,�," ∈ =28-�19.  We define 

two tetrahedra as adjacent if they share a face. 

iv.) Furthermore, we will now define an edge >�,�," ∈ ?, which 

connects the center points of the two tetrahedra which are adjacent along 

face ��,�," ∈ =28-�19. 

 

The three tetrahedra at the top of figure represent the lookup table for the Dual Marching Tetrahedra 
method.  The lower portion shows how two adjacent tetrahedra might connect. 

The three cases of DMT in 3D (Nielson, “Dual Marching Tetrahedra”).  (Figure 4) 

 

v.) We now must connect the edges together to form the 

polygons of our final mesh.  We can use a similar lookup table to the one 

used in the Cuberille Method.  For each pair of edges leaving ;�,�,",3, there 

are two tetrahedron through which the edges pass.  These faces share a 

tetrahedron edge, which in turn is adjacent to two tetrahedron points.  If 

one of these points is in  �., and one is in  +,-, we may create a polygon. 

Now that we have our polygons constructed, we have our final mesh. 
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CHAPTER 4 

CRITERION FOR SMOOTHNESS 

While we are seeking to represent smooth analog objects, our data set is of 

discrete points of density.  Thus, even though the resulting mesh of the DMT 

algorithm has produced a correct enclosing structure, it will not necessarily 

produce a smooth result.  Keeping in mind that we are dealing with polygons and 

edges, we cannot hope for a continuous result.  While a continuous surface has 

simple measures for smoothness based on curvature, polygons and edges are not 

so well defined.  So, let's take a look at a few ways to define smoothness of such 

objects. 

It is important to note that we define smoothness here so that we have a 

way to test whether a smoothing algorithm has produced a favorable result.  

While the human eye may be able to detect that a particular example “looks 

smoother” than another, ultimately this isn't a reliable measure.  Keep in mind that 

we actually do not use this criterion as a part of our smoothing algorithm itself.  

We merely use it to verify our results. 

 

3.1  2D Criteria 

The 2D case is significantly simpler than the 3D case.  The primary idea is 

to analyze the angles surrounding a vertex in the boundary.  For our purposes, we 

are only looking at each angle individually.  Future work could be done to analyze 

several adjacent angles at once, which would provide a more global smoothness 

estimate.  However, that is outside the scope of this discussion. 
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There are several tests which we can use.  Here we will present two. 

a.)  Angle Analysis 

In a continuous and differentiable line, the angle at any point is always 

180°.  So, given any subset of points on such a line, the average angle would 

always be 180°.  We can do a similar process for connected line segments, which 

are connected by vertices.  For each vertex connecting two line segments, we 

have an angle, and so the average of all such angles can be found.  We should 

always select the angle which is 180° or less, also known as the “non-reflex” 

angle.  Since we always selected the non-reflex angle, the maximum average is 

180°.  So, the closer to 180°, the smoother the result. 

Thus, we can define smoothness on a mesh D = (�, ?), to be: 

Let	� be the set of vertices, and ? be the set of edges. 

Then ?1 ⊂ ? is the set of edges adjacent to ; ∈ �. 

Then �F = {;	|	∀;	 ∈ �	Iℎ>K>	?1 = 2}. 

Then MNOO0ℎ)>MM(D) = 	∑ 8(1)Q	∈RS
|T|  , 

where U(;) = cosYZ [ 9\⋅9^
|9\||9^|

_ and >`, >Z ∈ ?1. 
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2D Angle Criterion (Figure 5) 

 

 

Note that our average is only meaningful if we consistently select the non-

reflex angle in our computation. (We may also always select the reflex angle, but 

for sake of convention, the non-reflex angle is more convenient.)  For example, 

let's say we're averaging the angles of two vertices, both measuring 170°. The 

resulting average would then be 170°.  However, let's say that for one we select 

the non-reflex angle of 170°and for the other we select the reflex angle of 190°.  

The average would then be 180°, even though our example is clearly not smooth.  

Thus, we must consistently select the non-reflex angle. 

b.)  Vector Analysis 

This method is similar to the smoothing algorithm itself.  It is a more 

complex method, and in the 2D case does not necessarily give us more 

information than the previous method.  However, due to its relationship to the 

smoothing algorithm, it is useful to present. 
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If we look at a vertex with two incident edges, instead of analyzing the 

angle itself, we can analyze the two edges.  Let's say we have a vertex v, and two 

edges >Z, >c.  We can then construct two vectors of unit length from v along the 

edges, which specifies two points dZ, dc.  We can then find the midpoint of these 

points, which is q.  We are interested in the distance from v to q.  If the two edges 

are collinear in opposite directions (180°), then clearly the distance will be 0.  

However, if the two are at any other angle, the distance will be 0 < #�M0f)U> ≤

1.  So, we can see that a smoother boundary will result in a number closer to 0. 

Thus, we can define smoothness on a mesh D = (�, ?), to be: 

Let	� be the set of vertices, and ? be the set of edges. 

Then ?1 ⊂ ? is the set of edges adjacent to ; ∈ �. 

Then �F = {;	|	∀;	 ∈ �	Iℎ>K>	|?1| = 2}. 

Then, given ;	 ∈ �F, we have ?1 =	 {>`, >Z}. 

Then >` = (;, ;`), >Z = (;, ;Z) where ;`, ;Z ∈ �. 

Then let >h̀ = 11\
|11\|

, and  >Zh = 11^
|11^|

 , which are unit length vectors along the 

adjacent edges. 

Use >h̀ , >Zh  to create points !`, !Z. 

Then let ;F be the midpoint between !`, !Z. 

Then MNOO0ℎ)>MM(D) = 	∑ 8(1)Q	∈RS
|T|  , where U(;) = |;;F|. 

  



  20 

 

2D Vector Criterion (Figure 6) 

 

c.)  Energy Criterion 

This method is similar to the 3D method defined by Gibson for Surface 

Nets (Gibson, 893).  It is based on the idea that smoother surfaces will have less 

surface area.  Then, each edge is given an energy, which in this case is equal to 

the square its length.  Then the sum of all of the energies is produced, which 

provides a rough idea of the surface area of the Surface Net.  Here a smoother 

smaller result means a smoother surface. 

It is important to note that the result of this criterion is not scale invariant.  

If a mesh were scaled to a larger size with no other modifications, it would 

generate a larger result.  For Laplacian smoothing, this would pose a significant 

problem as the mesh would shrink.  However, for an algorithm based on Surface 

Nets, shrinkage is not a problem, and so this criterion is applicable.  
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Given a mesh D = (�, ?), where � is the set of vertices, ? is the set of 

edges. 

Then for each >	 ∈ ?, > = (;`, ;Z), where ;`, ;Z ∈ �. 

Then MNOO0ℎ)>MM(D) = ∑ U(>)9	∈i  , where U(>) = |;`;Z|
c. 

 

3.2  3D Criteria 

The 3D case is not nearly as simple.  At each vertex, we may have 

between two and four converging faces and edges.  Unlike the 2D example, we 

cannot simply test for the angles converging on a vertex, for instead of dealing 

with edges alone, we are now dealing with surfaces.  There are undoubtedly 

multiple ways of testing this kind of smoothness, but here we will present two 

such methods. 

a.)  Vector Analysis 

This method is inspired by the smoothing algorithm which will be 

presented later.  For each vertex, we will have two to four adjacent edges.  For 

each adjacent edge, we may define a point unit distance from the vertex.  We then 

take the centroid of those new points, and have our new point C.  If this surface is 

perfectly flat, C will be at the same location as our vertex. 

This method is not particularly meaningful for two edges.  For three we 

can certainly find whether or not a concave surface is defined.  For four edges 

however, we will have a meaningful result if the surface is concave, but the 

surface may also describe a saddle point.  If we have a saddle point, it is possible 

for C to be located at the vertex even if the geometry is by no means flat. 
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Just as with the 2D case, a perfectly smooth vertex will result in a distance 

of 0, and all others will be in the range of 0 ≤ #�M0f)U> ≤ 1.  So the smoother 

the surface, the closer the distance will be to 0. 

Thus, we can define smoothness on a mesh D = (�, ?,  ), to be: 

Let	� be the set of vertices, ? be the set of edges, and   be the set of 

polygons. 

Then ?1 ⊂ ? is the set of edges adjacent to ; ∈ �. 

Then �F = &;	|	∀;	 ∈ �	Iℎ>K>	|?1| ≥ 2}. 

Then, given ;	 ∈ �F, we have ?1 =	 {>`, … , >.}. 

Then >� = (;, ;�), where ;� ∈ �. 

Then let >kh = 11l
|11l|

, which is a unit length vector along the adjacent edge of 

;	 ∈ �F. 

Then let ;F be the centroid of >h̀ , … , >.m, where each vector starts from the 

position of ;. 

Then MNOO0ℎ)>MM(D) = 	∑ 8(1)Q	∈RS
|T|  , where U(;) = |;;F|. 

Note, this criterion is very similar to the smoothing algorithm, and is 

useful to present. 
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3D Vector Criterion (Figure 7) 

 

b.)  Energy Criterion 

This method is defined by Gibson for Surface Nets.  It is essentially the 

same as the 2D version (Gibson, 893).  Again, a smoother smaller result means a 

smoother surface. 

Given a mesh D = (�, ?,  ), where � is the set of vertices, ? is the set of 

edges, and   is the set of polygons. 

Then for each >	 ∈ ?, > = (;`, ;Z), where ;`, ;Z ∈ �. 

Then MNOO0ℎ)>MM(D) = ∑ U(>)9	∈i  , where U(>) = |;`;Z|
c. 
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CHAPTER 5 

SMOOTHING ALGORITHM 

5.1  Developing Algorithm 

Note, that in both the 2D and 3D case, we are testing the concavity at 

every vertex.  The non-reflex angle between lines is simply a measure of how 

concave the shape is.  We will deal with that concept as we motivate our 

algorithm. 

The mesh built by the DMT is created specifically to contain all of the 

points of  �. and none of  +,-.  As mentioned before, if we were to smooth our 

mesh once it is build by the DMT, ignoring the data structures and methods used 

to construct the mesh, we may change shape in such a way which violates the 

correct point inclusion of the mesh.  If we violate the point inclusion, then we do 

not necessarily correctly represent the object which we sought to visualize.  Thus, 

we need some smoothing technique which modifies our mesh, while keeping the 

original data in mind. 

First, it is important to note that DMT has no specific requirement for the 

location of ;�,�,",3, other than that it must exist inside of 6�,�,",3.  As long as ;�,�,",3 

remains inside 6�,�,",3, we can clearly see that if the mesh was constructed 

correctly, we will contain  �. and exclude  +,-.  Thus the vertex may be relocated 

to any place in interior of the tetrahedron. 
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In our description above, we blindly chose the centroid as the location in 

each tetrahedron, since it is guaranteed to be on the inside.  However, our 

algorithm will seek to find a location for each ;�,�,",3, which provides a smoother 

mesh as per our smoothness criterion. 

 

We started with the “Surface Nets” method briefly mentioned in the 

original DMT paper.  As mentioned before, the Surface Nets algorithm very 

similar to the Cuberille method, upon which DMT is based.  For the original 

Surface Nets, all of the voxels are cube shaped, just as they are in the Cuberille.  

So, we can similarly change the cubes of Surface Nets to tetrahedra.  Just as with 

the Cuberille method, DMT has a node inside every surface tetrahedron, which is 

connected by an edge to the vertices of its neighboring surface tetrahedra.  Thus, 

our DMT may be taken through the same relaxing processes that the original 

Surface Nets undergo.  

 

5.2  Statement of Algorithm 

Just as we may define DMT for both the 2D and 3D cases, we may define 

our smoothing algorithm for both as well.  In the definition of the 3D case below, 

simply replace the word tetrahedron with triangle for the 2D case.  

For each tetrahedron ∈ 728-�19 , there exists a center vertex ;. 

Then �1 ⊂ � is the set of vertices adjacent to ; ∈ �. 

Then let ;F be the centroid of the vertices in �1. 

Then move ; to the location of ;F. 
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The new location of ; may now be outside of the tetrahedron.  If so, it will 

have to be moved to the location closest to ;F, such that it is still inside the 

tetrahedron. 

 

Here is a tetrahedron containing vertex n, which is adjacent to three vertices, no, np, and nq.  It is then 
relocated to the centroid of its neighbors, nF. 

Smoothing Algorithm (Figure 8) 

2D Triangle Bounding. 

If the location of ;Fis outside of triangle 6, we will have to test it 

against each side of 6 to see if it is either “outside” or “on” the side of 6, 

in which case we can say that it “violates” the side. 

Case 1:  If we violate only one side, we simply project ;F onto that 

side. 

Case 2:  If we violate two sides, we simply set ;F to the 

intersection of the two sides. 
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There is a possibility that Case 1 will actually cause Case 2, since 

projecting to a single side may violate the another side.  However, since 

we projected the point to a location “on” the first side, it now violates two 

sides.  So we may simply run the bounding a second time, and which will 

project to a point on the triangle, and solve the issue. 

 

3D Tetrahedron Bounding 

The 3D case may be handled similarly.  If the location of ;Fis 

outside of tetrahedron 6, we will have to test it against each face of 6 to 

see if it is either “outside” or “on” the face of 6, in which case we can say 

that it “violates” the face. 

Case 1:  If we violate only one face, we simply project ;F onto that 

face. 

Case 2:  If we violate two faces, we must fine the line where the 

two faces intersect.  Then we project ;F onto that line. 

Case 3:  If we violate three faces, we may simply project ;F onto 

the intersection of the three faces. 

 There is a possibility that Case 1 or Case 2 will actually cause 

Case 2 or Case 3, since projecting to due to one or two violations, may 

cause violations of other faces.  However, since we projected the point to a 

location “on” the first ace, it still violates that face.  So we may simply run 

the bounding a second time, which will pick up all possible violations, and 

solve the issue.  
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CHAPTER 6 

DISCUSSION 

Now that we have our algorithm in place, we can run our smoothness 

criterion to analyze the result.  Drawing inspiration from the Surface Nets 

algorithm, we may repeat the smoothing process more than one time.  Each time 

the algorithm is run, it will create a smoother result, tending towards some 

maximum smoothness. 

We should note that the maximum smoothness is not necessarily a number 

which is perfectly smooth by our criterion.  If the data set itself is very smooth, 

say in a high resolution scanning of a circle or sphere, the resulting surface will 

tend towards a smooth number. 

 

Here is surface obtained from discrete points arranged in a sphere.  The grid of data is 32 x 32 x 32. 

High Resolution Mesh, smoothed 0 times (Figure 9) 
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Here we see the same data set, smoothed 100 times.  It is visually much smoother, except for some 
sharp points which can be attributed to the surface settling onto the sharp points of the data set itself. 

High Resolution Mesh, smoothed 100 times (Figure 10) 
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This is a graph of the smoothness criterion over 100 runs.  We can see a marked decrease in the 
smoothness criterion.  Here we used the Vector Analysis criterion.  A smaller number indicates that 
our mesh became smoother. 

High Resolution Mesh, Vector Analysis Smoothness (Figure 11) 

 

 

Here is a surface obtained from a lower resolution data set of a sphere.  The grid of data is 8 x 8 x 8. 

Low Resolution Mesh, smoothed 0 times (Figure 12) 
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Here is the same data set smoothed 100 times.  Once again, it is visually much smoother than before.  
Similarly, there are sharp points where the data set specifies. 

Low Resolution Mesh, smoothed 100 times (Figure 13) 
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This is a graph of the smoothness criterion over 100 runs.  We can again see the smoothness quickly 
drop, and then grow asymptotically towards some value.  Here we again used the Vector Analysis 
criterion, and so a smaller number indicates an increase in smoothness. 

Low Resolution Mesh, Vector Analysis Smoothness (Figure 14) 

On the other hand, if our surface is very jagged on a per voxel basis, or 

simply very low resolution, then the resulting surface naturally will tend towards 

a much less smooth number.   

To explain, we will need a few definitions.  Since this algorithm works on 

a per vertex basis, we need to understand concavity at each vertex.  Loosely 

borrowing definitions from Calculus, we can see that a vertex can be considered 

“concave inward” if its non-reflex angle is on the inside of the object.  Similarly, 

it can be considered “concave outward” if its non-reflex angle is on the outside of 

the object.  The 3D case works similarly, for each vertex; we may analyze the 

angles between its adjacent polygons.  If all of the angles are non-reflex on the 

inside, then we can say it is “concave inward”.  Similarly, if all of the angles are 

non-reflex on the outside, we can say it is “concave outward”.  Of course, there 
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are cases in 3D which are ambiguous, such has having a vertex with a “saddle 

point”, where two edges are concave inward, and two are concave outward.  

 

 

The top left figure is concavity for a 2D boundary.  The top right figure is concavity for a 3D 
boundary.  The bottom figure is a 3D saddle point. 

Concavity (Figure 15) 

 

With these definitions in place, we can clearly see that if a vertex is 

concave inward, it will be moved inward.  Likewise, if a vertex is concave 

outward, it will be moved outward.  In the less defined case, the vertex will still 

be moved to an equi-distant location, which will produce a smoother result. 

In the most trivial example, a single “inside” point, surrounded entirely by 

“outside” points, every single vertex of the result is concave inward.  Thus, the 

vertices will all move inwards during each iteration, eventually reaching the 

tetrahedron or triangle boundaries.  Rather than smoothing, the object simply 

shrank. 
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It is also interesting to note, that for the original Surface Nets, it was 

observed that the smoothness dropped quickly, and then rose asymptotically 

towards some eventual value.  This was interpreted to mean that the sharp points 

in the eventual result were forming (Gibson, 894).  We can see a similar result in 

the graph of our Low Resolution Mesh. 

The complexity of our smoothing algorithm is O(n).  We loop through our 

n vertices, which have a maximum of 4 neighbors, which reduces from O(4n) to 

O(n).  Of course we may run our algorithm k times in order to get the desired 

result, which would then have the aggregate run at O(nk), but k is a defined by the 

user at run time, and so again, it reduces to O(n). 
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CHAPTER 7 

CONCLUSION 

Turning discrete data into continuous surfaces is a non-trivial process.  

However, when analyzing important data such as that produced by MRI and CT 

scanners, the clarity of the resulting surface is paramount.  Similar methods have 

existed for earlier algorithms such as Marching Cubes, and Dual Marching Cubes.  

However, drawing inspiration from the Surface Nets algorithm, we have the 

ability to produce much smoother results with the Dual Marching Tetrahedra 

algorithm. 

There is some future work to be done incorporating the densities of the 

mass points from the underlying data set into the smoothing algorithm.  When we 

segment the data points, we normally specify a range of densities where our 

boundary might lie.  Inside this range, we can select a specific density for our 

boundary.  Then, when we analyze the individual tetrahedra, we can interpolate 

between the densities of the four data points, in order to find some location where 

the specified density exists.  Thus, our vertex should be placed in that location.  

Now, the vertex is placed according to the underlying data set, and so it is more 

likely to pick up the characteristics of the original scanned object, whether this it 

is smooth or jagged.  However, this location is ignorant of any smoothing we 

might wish to perform, and so the results will not necessarily be as smooth as the 

smoothed version.  We can try and unify the two approaches, by finding some 

blending between the smoothed position, and the weighted position. 
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