
Dynamic Waveform Design for Track-Before-Detect Algorithms in Radar

by

Ryan Piwowarski

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2011 by the
Graduate Supervisory Committee:

Antonia Papandreou-Suppappola, Chair
Chaitali Chakrabarti

Narayan Kovvali

ARIZONA STATE UNIVERSITY

December 2011



ABSTRACT

In this thesis, an adaptive waveform selection technique for dynamic tar-

get tracking under low signal-to-noise ratio (SNR) conditions is investigated. The

approach is integrated with a track-before-detect (TBD) algorithm and uses delay-

Doppler matched filter (MF) outputs as raw measurements without setting any

threshold for extracting delay-Doppler estimates. The particle filter (PF) Bayesian

sequential estimation approach is used with the TBD algorithm (PF-TBD) to esti-

mate the dynamic target state. A waveform-agile TBD technique is proposed that

integrates the PF-TBD with a waveform selection technique. The new approach

predicts the waveform to transmit at the next time step by minimizing the predicted

mean-squared error (MSE). As a result, the radar parameters are adaptively and

optimally selected for superior performance. Based on previous work, this the-

sis highlights the applicability of the predicted covariance matrix to the lower SNR

waveform-agile tracking problem.

The adaptive waveform selection algorithm’s MSE performance was com-

pared against fixed waveforms using Monte Carlo simulations. It was found that

the adaptive approach performed at least as well as the best fixed waveform when

focusing on estimating only position or only velocity. When these estimates were

weighted by different amounts, then the adaptive performance exceeded all fixed

waveforms. This improvement in performance demonstrates the utility of the pre-

dicted covariance in waveform design, at low SNR conditions that are poorly han-

dled with more traditional tracking algorithms.
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Chapter 1

INTRODUCTION

1.1 Research Motivation

The ability to accurately track a moving target through space is a commonly under-

stood benefit to many real world applications. These can include commercial flight

control, rocket guidance, or military airspace security amongst many others. Radar

provides one means of performing tracking, where, in general, a radio-frequency

signal is transmitted from a base station and the energy reflected off of the target

in question is recorded and analyzed to establish estimates on the target’s posi-

tion and velocity. There are many approaches to implementing radar tracking and

attempting to improve overall performance under various operating conditions re-

mains an active field of research.

A common approach is to treat the target’s position and velocity as random

parameters and the transmission and reception of radar waveforms as a discrete

time process. By making use of appropriate dynamic modeling equations for the

target’s state and the base station’s observations, the estimation of the target’s

state reduces to a discrete time stochastic filtering problem. If the state process

and observation process equations are both linear and the noise is modeled as

Gaussian, then the well known Kalman filter [1] can be used to track the target’s

state. The conversion between the target position and velocity in space to and

from target range and range-rate from the base station is, however, only linear

in the one dimensional case. For two or three dimensional tracking, a nonlinear

stochastic filtering method needs to be used. One promising approach is the use

of particle filters [2,3] to overcome the linear model restriction which also allows for

the freedom of employing non-Gaussian noise models.
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As applied to the tracking problem, particle filtering allows for the estimation

of the posterior probability distribution of the target state which can then be used to

calculate a target state estimate [4]. This approach has been extended to include

the tracking of multiple targets [5]. Similar filtering has been employed in a variety

of track-before-detect (TBD) scenarios. TBD has the advantage of more efficiently

incorporating all available information into the target state estimate, but comes at

the cost of additional complexity. With classical radar tracking, the ambiguity func-

tion (AF) observations, derived from the reflected waveform, are thresholded to

provide a range and range-rate estimate of the target before being used to further

estimate the target state. For non-radar tracking applications, the observations are

derived from some other source like an IR camera pointed towards the general po-

sition of the target. In TBD, there is no thresholding of the observations (i.e., AF

measurements or image pixels); all observations are used. TBD tracking has been

examined in general [6, 7], and explored for various specific conditions: unknown

target amplitude [8], amplitude flucuations [9], extended targets [10] and complex

measurements [11] are only a few examples.

A more recent development in radar based tracking is the on-line adap-

tation of the transmitted signal with the intent of improving tracking performance.

Modern radar systems have the flexibility to change frequency and envelope char-

acteristics of the transmitted signal to adapt to various dynamic operating condi-

tions, and algorithms to choose those waveform characteristics are being actively

researched. A common approach is to make use of a waveform library [12–14],

establishing an algorithm to choose from that library at each time step to optimize

some criteria. Radar based tracking algorithms have been developed to minimize

the mean-squared error (MSE) under high SNR conditions [15,16]. Low SNR radar

environments pose additional challenges to both tracking and dynamic waveform

selection and are the focus of this thesis.
2



1.2 Low SNR Target Tracking

Under high SNR conditions, the AF observations over the delay-Doppler plane can

be thresholded with a reasonable expectation that the largest value will correspond

to the target’s true delay and Doppler. Additionally, the Cramér-Rao lower bound of

the target state estimate can be directly approximated by evaluating the curvature

of the AF at the origin for each waveform in the library, allowing for the selection of

the optimal waveform at each time step. However, in low SNR environments, the

peak AF observation can no longer be expected to be anywhere near the target’s

true delay and Doppler and a new method for tracking and waveform selection is

necessary.

The approach used in this thesis is to employ TBD methods to overcome

the low SNR constraint. By avoiding the thresholding of the AF observations, all

available information is included in the state estimate instead of that gained from

solely the largest observation, leading to improved performance. Additionally, we

will make use of a recursive algorithm to calculate the predicted MSE [17,18] of the

tracker for each potential waveform in a fixed library of linear frequency-modulated

waveform candidates. Using this lower bound, we will determine the optimal wave-

form to use at each time step according to a predefined error weight. With this

approach, a tracking radar is able to adaptively and autonomously determine the

best waveform to use based on the current covariance of the state estimate as well

as the state and process models, minimizing the total MSE.

This application of the predicted covariance to the low SNR radar tracking

problem was first proposed in [19, 20]. The contributions of this thesis include: an

independent implementation of the algorithm, focusing primarily on the waveform

selection performance without the additional complications of target detection or

3



estimation of dependent measurement correlations. This implementation has the

additional benefit of being significantly faster in operation, which allowed for the

exploration of a wide variety of parameter options not previously examined. Finally,

the idea of "entire plane" ambiguity function observations with adaptive grid spacing

is introduced and explored along side the traditional fixed grid approach.

1.3 Thesis Organization

This thesis is ordered as follows. Chapter 2 covers the basic principles of estima-

tion of any general hidden system, the application of particle filters to the problem

and the specific application of the system estimation to the two-dimensional (2-D)

tracking problem. Chapter 3 introduces classical tracking, explains its dependence

on high SNR operating conditions and presents the track-before-detect approach

as a means of overcoming that restriction. Chapter 4 describes the class of wave-

forms to be used in the adaptive waveform library and defines the set of ambiguity

function delay-Doppler observation points to be used in the observation model for

two general cases: full delay-Doppler grid and fixed grid. Chapter 5 presents a

means of predicting the tracking estimation error at each time step and provides an

algorithm that takes advantage of this predictive ability to optimally choose wave-

form parameters. Chapter 6 presents simulation results while chapter 7 provides

some conclusive remarks and discusses potential future work.

4



Chapter 2

ESTIMATION OF A HIDDEN SYSTEM

In this thesis, we will be estimating the state of a hidden system. This section pro-

vides a general introduction to system estimation, it discusses particle filtering [2],

and it applies this general description to the specific case of 2-D tracking with radar.

2.1 System Estimation

It is often the case where it is desired to estimate parameters of interest of a hidden

dynamic system, where "hidden" means that the only available observations of the

system are both a function of the system state and corrupted by noise. Examples

are wide ranging and include:

1. Temperature estimation using noisy thermometers.

2. Animal population estimation using limited population sampling data.

3. Estimating dynamic channel response for wireless communications.

4. Estimation in a global positioning system.

5. Tracking moving targets with inexact radar measurements.

In many practical cases, the dynamic state of the hidden system can be

modeled as a stochastic process, known as the "state process". At any particular

time, k, the unknown state process can be fully described by an Nx-dimensional

state vector xk. In general, this state process can be continuous or discrete, but

only the discrete case will be examined here, where the time parameter k is limited

to non-negative integers. If the system state is from RNx , the set of real numbers of
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dimensionality Nx, then the state at time k ≥ 0 is a random column vector with a

state instance

xk , [xk,0, xk,1, . . . , xk,Nx−1]T (2.1)

and p(xk) is the probability density function of xk.

With the actual state hidden, we must make use of noisy observations to

estimate the state. These observations can also be modeled as a stochastic pro-

cess, known as the "observation process". At time k ≥ 0, the observation process

measurements can be fully described by a length Nz column vector zk. If the ob-

servations are similarly from RNz , then the observation at time k ≥ 0 is a random

vector with observation instance:

zk , [zk,0, zk,1, . . . , zk,Nz−1]T (2.2)

and p(zk) is the probability density function of zk. Additionally, z0 , 0, by definition.

With the state and observation processes defined, we look at the problem

of estimating the history of state values from the history of observation values

x̂0:k|k = g(z1:k) (2.3)

where g(z1:k) is a function of a ll the observations, from time step 1 to k.

Of the many available cost functions to choose from, if the desire is to mini-

mize the mean-squared error of the estimate, then

g(z1:k) = E[x0:k|z1:k] (2.4)

which requires knowledge of p(x0:k|z1:k).

In order to efficiently estimate the state history as each observation is made,

it is desirable to use a recursive formulation for determining the posterior density at

6



time k from the one at time k − 1 [1,25]

p(x0:k|z1:k) =
p(xk, zk,x0:k−1|z1:k−1)

p(zk|z1:k−1)
=

p(xk, zk,x0:k−1|z1:k−1)∫
p(xk, zk,x0:k−1|z1:k−1)dx0:k

=
p(xk, zk|x0:k−1, z1:k−1)p(x0:k−1|z1:k−1)∫
p(xk, zk|x0:k−1, z1:k−1)p(x0:k−1|z1:k−1)dx0:k

(2.5)

At this point, two additional simplifying assumptions are common: Markov dynamics

and memory-less observations. The Markov dynamics assumption is expressed as

p(xk|x0:k−1, z1:k−1) , p(xk|xk−1) (2.6)

Under the assumption of Markov dynamics, the state is related to only the imme-

diately previous state through a possibly nonlinear and time varying function fk(),

such that

xk = fk(xk−1,wk−1) (2.7)

where wk ∈ RNw is an instance of an independent and identically distributed state

process noise sequence of dimension Nw.

The assumption of memory-less observations is expressed as

p(zk|x0:k, z1:k−1) = p(zk|xk) (2.8)

Under the assumption of memory-less observations, the observations are related

to only the current state through a possibly nonlinear and time varying function hk,

such that:

zk = hk(xk,vk) (2.9)

where vk ∈ RNv is an instance of an independent and identically distributed obser-

vation noise sequence of dimension Nv.

With these assumptions in place, the recursive formula for the posterior den-

sity becomes

p(x0:k|z1:k) =
p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1)∫
p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1)dx0:k

(2.10)

7



Finally, in cases where there is interest in only xk, the marginal distribution

p(xk|z1:k) also satisfies a modified recursion relation comprised of two steps. The

first step is prediction

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.11)

and the second step is update

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

(2.12)

With the posterior density determinable, the state estimate can then be cal-

culated.

2.2 Particle Filter Sequential Monte Carlo Approach

In this thesis, we attempt to recursively solve (2.11) and (2.12) with a particle filter

approach. If (2.7) and (2.8) were both linear with Gaussian distributed noise, then

a more direct Kalman filter could be used [1]. As we will see later, however, the

observations are not linear.

A particle filter attempts to directly represent the continuous probability den-

sity, p(xk|z0:k), and use that representation to recursively update the density for the

next time step. We construct a generic probability density by drawing N "particles"

from a continuous distribution; xn for n ∈ {0, 1, . . . , N} and then construct a proxy

density function as a distribution of impulses at the sampled locations. Note that in

this context, xn means the nth particle, not x to the power of n

p(x) ≈ 1

N

N∑
n=1

δ(x− xn) (2.13)

As the number of samples approaches infinity, the proxy density will con-

verge to the actual density. For any finite number of samples, however, the proxy
8



density is a discrete function and therefore does not have a non-zero value for all x

where p(x) is non-zero. The proxy density becomes a useful approximation when

it is substituted into an equation that integrates over the actual density. An example

equation would be taking the expectation of x.

x̄ = E[x] =

∫
x

p(x)xdx ≈ 1

N

N∑
n=1

xn (2.14)

Even though the proxy density "skips" some values of x, the estimate remains both

useful and, most importantly, practical to calculate.

The density of interest for the hidden model estimation problem, described

in Equations (2.11) and (2.12), is the posterior density of xk given the set of obser-

vations up to time step k, or, p(xk|z1:k). If this density is readily available to sample

from, the estimation problem is only a matter of using a proxy density to evaluate

an expectation of xk|z1:k. However, in general, it is not a known density or cannot

be easily sampled from. We turn instead to importance sampling, where we make

use of a new importance density, q, that can be sampled from. We thus modify the

proxy density to be

p(x) ≈
N∑
n=1

wnδ(x− xn) (2.15)

wn ∝ p(xn)

q(xn)
(2.16)

where now the particles, xn, are drawn from q, not p, and the weights are normalized

before use.

Introducing the specific densities of (2.12), expanding the numerator, and

integrating, we have

p(xk|z1:k) =
p(zk|xk)p(xk|xk−1)p(xk−1|z1:k−1)

p(zk|z1:k−1)

∝ p(zk|xk)p(xk|xk−1)p(xk−1|z1:k−1)

(2.17)

9



and, choosing an importance density that can be recursively computed

q(xk|z1:k) = q(xk|xk−1, z1:k)q(xk−1|z1:k−1), (2.18)

we can substitute (2.17) and (2.18) into (2.15) and (2.16) to get

p(xk|z1:k) ≈
N∑
n=1

wnkδ(xk − xnk) (2.19)

wnk ∝
p(zk|xnk)p(xnk |xnk−1)p(xnk−1|z1:k−1)

q(xnk |xnk−1, z1:k)q(xnk−1|z1:k−1)
(2.20)

wnk ∝ wnk−1

p(zk|xnk)p(xnk |xnk−1)

q(xnk |xnk−1, z1:k)
(2.21)

Now the weights and the proxy density can be recursively evaluated. A

common choice for the importance density, that is also simple to implement, is to

choose q(xnk |xnk−1), which reduces (2.21) to

wnk ∝ wnk−1p(zk|xnk) (2.22)

Algorithm 1 provides a pseudo-code for implementing a basic particle filter

using these results. The re-sampling is to avoid particle degeneracy as the simula-

tion proceeds [2] and each loop of the algorithm ends with advancing the particles

according to (2.7).

10



Algorithm 1 Basic Particle Filter

Assume an initial estimate of value µs
for n = 1 to N do

Draw xn from p(x0)
wn = 1/N

end for
for k = 1 to K do

Measure zk
for n = 1 to N do

Update: wn = wnp(zk|xn)
end for
Sum the weights: wtotal =

∑N
n=1w

n

for n = 1 to N do
Normalize: wn = wn/wtotal

end for
Estimate: x̂k =

∑N
n=1w

nxn

Resample particles
for n = 1 to N do

Draw process noise y from p(w)
Advance: xn = f(xn,y)

end for
end for

2.3 The Two Dimensional Radar Tracking Problem

Figure 2.1 displays the ideal radar system model being used in this thesis. A target

at an unknown location in the x-y plane is moving at an unknown velocity. Mean-

while, a transmitter at the origin periodically transmits a modulated waveform and

records any reflections from the target. Using reflection recordings and an a priori

probability distribution of the target state, a posterior distribution can be calculated.

The posterior distribution is then forwarded in time to the next waveform transmis-

sion time, becoming the new prior, and the process is repeated. In this way, the

target state can be tracked.

To start, we define the entire state of the target at time step k as

xk , [xk, yk, ẋk, ẏk]
T (2.23)

11
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Figure 2.1: A target is moving in the x-y plane while a radar base station located at
the origin transmits periodic waveforms and records any reflections.

where the T denotes transpose and the components of the column vector are,

respectively, the x-coordinate, y-coordinate, velocity in the x direction, and velocity

in the y direction.

However, the target state is dynamic in time. Not only does its position

change with time, but so does its velocity. How the target’s state changes over time

is modeled by the state process. In this case, the state process is simply a linear

function of the previous state corrupted with additive white noise

xk = Fxk−1 + wk (2.24)

x0 ∼ Normal(µs,Cs) (2.25)

where

F =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(2.26)

12



and ∆t is the fixed time interval, in seconds, between state transitions. Note that

the model simply adds the current x and y velocities at each step back into the

positions. Equation (2.25) signifies that the initial state is drawn from a normal

distribution with mean µs and covariance matrix Cs.

Unexpected variations in velocity and position, due to headwinds for exam-

ple, are incorporated and modeled by the process noise wk, of the same size and

description as xk.

Deriving the state process noise covariance matrix is the final step in es-

tablishing the complete state process model. Using the constant velocity model

assumption, the velocity of the target is assumed to be constant except for the

perturbations introduced by a random variable, while the position is derived from

integrating the velocity over time. If given the variance of the Gaussian distributed

velocity perturbation, the question is then: what is the variance of the position per-

turbation, and what is the covariance of the position and velocity perturbation ran-

dom variables. In this model, the x and y velocities are considered independent, so

the derivation will follow for one dimension and is easily simply duplicated to cover

the two dimensional case.

If we subdivide the Gaussian velocity perturbation P , with variance σ2
v , into

N Gaussian random variables Pi, with i = 1, . . . , N , and each with variance σv/N ,

then the total position perturbation can be calculated as

S =
∆t

N
(P1 + 2P2 + · · ·+NPN) (2.27)

and the variance of S is then, as N →∞,

Var(S) =

(
∆t

N

)2 N∑
i=1

i2
σ2
v

N
= σ2

v

N∑
i=1

(
∆t

N
i

)2
1

N
→ σ2

v

∫ ∆t

0

x2dx = σ2
v

(∆t)3

3

(2.28)
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Using a similar process for the covariance

Covar(S, P ) = σ2
v

(∆t)2

2
(2.29)

And extending these results to the two dimensional case, the full covariance

matrix of the process noise is now

Q = σ2
v



(∆t)3

3
0

(∆t)2

2
0

0
(∆t)3

3
0

(∆t)2

2
(∆t)2

2
0 ∆t 0

0
(∆t)2

2
0 ∆t


(2.30)

such that

wk ∼ Normal(0,Q) (2.31)

Given parameters σ2
v , ∆t, along with initial condition parameters µs and Cs,

a particular state process is defined. The observation process depends on the

manner in which target estimates are determined. A traditional approach as well as

the track-before-detect approach will be described in the next section.
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Chapter 3

TRACK BEFORE DETECT

In this section, we will cover two methods of establishing an observation process

from the radar measurements. First, we describe the traditional approach to es-

timating the target state under the assumption of high SNR conditions. Then an

alternative estimation approach, track-before-detect (TBD), is introduced in an at-

tempt to loosen this high SNR restriction.

3.1 Traditional Target State Estimation

The transmitted waveform is first defined as

se(t) ,
√

2Re[
√
Es(t)ejωct] (3.1)

where Re signifies taking the real part of the complex function,
√
E is the amplitude

of the signal, s(t) is the complex envelope of the waveform and ωc is the carrier

frequency in radians.

The total round-trip travel time of the waveform, τa, from radar station to

target back to radar station is defined as

τa ,
2

c
R =

2

c

√
x2 + y2 (3.2)

where c is the speed of light, R is the radial distance from the station to the target,

and (x, y) is the 2-D coordinate of the target position.

The radial velocity, ν, is simply the rate of change of R with time

ν ,
dR

dt
=

xẋ+ yẏ√
x2 + y2

(3.3)

where (ẋ, ẏ) is the 2-D coordinate for the target velocity.
15



If we assume that the reflection process is frequency-independent and lin-

ear, and that ν/c << 1 and WT << c/(2ν), where WT is the time-bandwidth

product of the waveform, then from [21], the received signal can be approximated

as

re(t) ≈
√

2Re[
√
Eb̃s(t− τa)ejρatejωct] (3.4)

where b̃ is a function of the reflective properties of the target, ρa is the Doppler shift

after reflection and

ρa , −
2ωc
c
ν (3.5)

For the rest of this thesis,
√
E and b̃ are both assumed equal to 1, so that

se(t) ,
√

2Re[s(t)ejωct] (3.6)

re(t) ≈
√

2Re[s(t− τa)ejρatejωct] (3.7)

At the receiver, the received waveform is demodulated to produce the re-

ceived waveform complex envelope

r(t) = s(t− τa)ejρat (3.8)

Traditionally, under assumed high SNR, the next step at this point is to first

estimate τa and ρa through the use of a maximum likelihood estimator. These esti-

mates represent the nonlinear noisy observations of the target state

τ̃a =
2

c

√
x2 + y2 + vτ

ρ̃a = −2ωc
c

xẋ+ yẏ√
x2 + y2

+ vρ
(3.9)

where vτ and vρ are additive white noise used to model the error of the estimates.

To obtain the delay and Doppler estimates, we first define the ambiguity

function (AF) as the Fourier transform of the time correlation of the transmitted and
16



received complex envelopes

AF(τ, ρ) =

∫ ∞
−∞

r(t)s∗(t− τ)e−jρtdt

=

∫ ∞
−∞

s(t− τa)s∗(t− τ)ej(ρa−ρ)tdt

(3.10)

The likelihood function is then the magnitude squared of the ambiguity function.

|AF(τ, ρ)|2 (3.11)

by defining

τd = τ − τa

ρd = ρ− ρa
(3.12)

and making the substitution

z = t− τ +
τd
2

(3.13)

it becomes clear that (3.10) is a function of the delay and Doppler "distance" from

the true values, τa and ρa.

AFs(τd, ρd) =

∫ ∞
−∞

s(z − τd
2

)s∗(z +
τd
2

)e−jρdtdz (3.14)

Note that (3.11) is maximum at τd = 0, ρd = 0, or equivalently, when τ = τa, ρ = ρa.

This means the ambiguity function, in the absence of noise, is centered on the true

delay and Doppler of the target.

In practice, the values of the ambiguity function are determined by passing

the received signal through a matched filter bank fixed for τ ’s of interest with the

Fourier transform of the results evaluated for the ρ’s of interest. It is from the output

of the ambiguity function, evaluated at particular discrete points, that the delay and

Doppler estimates are determined. If the maximum output likelihood value is above

some threshold, a target is classified as present. The estimates are then fed into a

tracking algorithm to further estimate the target state over time. This approach can

then be understood to be a "detect-before-track" solution to estimating the target

state.
17



3.2 Track-Before-Detect Observation Model

As the previous section mentioned, the peak of the ambiguity function occurs at the

true delay and Doppler of the target. However, the AF has significant side lobes

that can not be ignored in general. Any noise present in the received waveform will

manifest itself as local peaks and troughs of the AF throughout the delay-dopper

plane. As long as that noise is small enough, the global peak of the noisy AF will

serve as a reasonable estimate of the true peak of the noiseless AF. However, in

cases where the noise is too high, local peeks throughout the delay-Doppler plane

can easily mask and overpower the true noiseless peak (see Figure 4.3). What

is needed in this scenario is another means of taking measurements of the target

state that accounts for this.

In this thesis, we attempt to overcome this low SNR restriction by using all of

the evaluated discrete noisy AF values, instead of simply choosing the largest one.

By evaluating our estimates over the entire delay-Doppler plane, we move directly

from received waveform to estimated target state, without ever first estimating τa or

ρa. This approach, where both probability of detection of a target and target state

estimates can be evaluated concurrently is called "track-before-detect".

We can now proceed to formally defining the observation model used. There

are two primary measurements in this model: the recorded reflection of the trans-

mitted waveform, and the azimuth angle. Both are functions of the target state and

corrupted by noise in some way. For clarity, the subscript k has been dropped in

this section, but it should be understood that the measurements at each time step

k are derived from the target state at time step k.

The azimuth measurement is straightforward

zθ = hθ(x) + vθ = tan−1(y/x) + vθ (3.15)
18



where

vθ ∼ Normal(0, σ2
θ) (3.16)

The noisy ambiguity function, evaluated at particular discrete points, makes

up the remainder of the observations in our observation model.

zAF (m) = hAF (x)+vAF (m) = |AF(τm, ρm)|2 +vAF (m), for m = 1 to M−1 (3.17)

where M is the total number of scalar observations making up the observation

vector and

vAF = [vAF (1), vAF (2), . . . , vAF (M − 1)]T ∼ Normal(0,RAF ) (3.18)

In this thesis, all of the ambiguity function measurement noise is modeled

as independent so that

RAF = σ2
AF I (3.19)

where σ2
AF is the ambiguity function noise power and I is the (M − 1) by (M − 1)

identity matrix.

It should be noted that we are adding the noise to the evaluated ambiguity

function, whereas a more correct model would add it to the received waveform

signal prior to the entering the filter bank. In that case, the noise would no longer

be Gaussian and would no longer be independent, and this adjustment was made

in the interest of simplification.

Concatenating the azimuth measurement to the ambiguity function mea-

surements, we have the complete length M measurement vector

z = [zAF (1), zAF (2), . . . , zAF (M − 1), zθ]
T (3.20)
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Additionally, the azimuth measurement noise is independent of the ambiguity func-

tion noise so that

Covar(z) = R =

 σ2
AF I 0

0 σ2
θ

 (3.21)

Given the parameters σ2
θ , σ

2
AF , ωc and the complex waveform envelope s(t),

a particular observation model is defined.
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Chapter 4

TBD AMBIGUITY FUNCTION MEASUREMENTS

The TBD will be implemented using a particle filter, whose steps are given in Al-

gorithm 1 in Chapter 2. The update step of Algorithm 1 requires evaluating the

ambiguity function over every observed point of the infinite delay-Doppler plane,

but it leaves us with the choice of which points to observe. This thesis approaches

that choice in two ways.

First, we try to approximate making use of the entire plane. For arbitrary am-

biguity functions, this could lead to an unbound surface area of the delay-Doppler

plane needing to be observed. However, leveraging the properties of the AF of the

LFM waveform being used here, we present a solution so that only a finite area

need be observed. Additionally, the plane is broken up into a discrete grid with the

grid spacing dynamically adapted based on the waveform to result in roughly the

same number of measurements across all waveforms.

Second, a fixed grid is established and remains constant over time and

choice of waveform. A grid of delay-Doppler points, with fixed grid spacing, is cen-

tered on the expected starting position of the target and spans roughly the state

space, range and range-rate, the target is expected to occupy.

This section will define the radar waveform class to be used, detail the above

approaches to defining the set of AF observations and refine the tracking algorithm.

4.1 Waveforms

Finalizing the observation model requires specifying the waveforms to be used. In

particular, the complex waveform envelope, s(t), needs to be defined. In this thesis,

all waveform envelopes are linear frequency modulated Gaussian pulses.

s(t) =

(
1

πT 2

) 1
4

exp

[
−
(

1

2T 2
− jb

)
t2
]

(4.1)
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Note that the envelope is characterized by the parameters T and b, T is the standard

deviation of the Gaussian envelope and is proportional to the duration of the pulse

and b is the chirp rate of the LFM waveform. Figure 4.1 displays the LFM chirp s(t)

in Equation (4.1) in the time-domain for T = 1, b = 4. Note that the actual radar

simulations uses T values that are much smaller and b values that are much larger

than T = 1 and b = 4.

Combining (4.1) and (3.14) and evaluating the expression, we get

|AFs(τd, ρd)|2 = exp

[
−1

2

(
τ 2
d

T 2
+ T 2(ρd − 2bτd)

2

)]
(4.2)

Figure 4.2 displays the ambiguity function of s(t) in Equation (4.1) for the same

parameters, T = 1, b = 4.

The Doppler resolution, σρ, is a measure of the spread of the ambiguity

function along the τd = 0 axis. To characterize it, we first set τd = 0 in (4.2) to get

|AFs(0, ρd)|2 = exp

[
−1

2

(
T 2ρ2

d

)]
(4.3)

Note that (4.3) is now in the form of a Gaussian. The Doppler resolution is

defined as what would be the standard deviation of that Gaussian, allowing for a

familiar characterization

σρ =
1

T
(4.4)

Similarly, the delay resolution is a measure of the spread of the ambiguity

function along the ρd = 0 axis. Setting ρd = 0 in (4.2), we get

|AFs(τd, 0)|2 = exp

[
−1

2

(
τ 2
d

T 2
+ 4T 2b2τ 2

d

)]
(4.5)

and

στ =

(
1

T 2
+ 4T 2b2

)− 1
2

(4.6)
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From (3.2) and (3.5), we can determine the range and range-rate resolution

σr =
c

2
στ =

c

2

(
1

T 2
+ 4T 2b2

)− 1
2

(4.7)

σv =
c

2

σρ
ωc

=
c

2

1

ωcT
(4.8)

Later in this thesis, we will make use of a waveform library where each

waveform is characterized in terms of σr and σv, but we need T and b to be able to

generate the ambiguity function. Rearranging (4.7) and (4.8), for T and b, we get

T =
c

2

1

ωcσv
(4.9)

b = ±

(
c2

4
1
σ2
r
− 1

T 2

) 1
2

2T
(4.10)

Earlier work [16] makes use of the ambiguity function observations by find-

ing the singular delay-Doppler pair that produces the maximum peak. This corre-

sponds to the maximum likelihood estimator of the target’s true delay and Doppler.

The problem with that approach was that it is only applicable in high SNR condi-

tions. High noise will cause the ambiguity function side-lobes to create local peaks

away from the true values, making the identification of the "true" peak impossible.

Figure 4.3 demonstrates this graphically for σ2
AF = {0, .01, .5}. For comparison, this

thesis mostly uses σ2
AF = {4, 0.4}; clearly, simply choosing the maximum grid point

value will not suffice. Later work [19] extended the adaptive waveform approach by

trying to incorporate all grid-point evaluations of the noisy ambiguity function into

the estimate. This is a continuation of, and in some cases a simplification of, that

approach.

Because the complex envelope of the waveform has been normalized, all

waveforms in the library will have equal power. As the duration of the waveform
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is inversely proportional to the range-rate resolution and the bandwidth is inversely

proportional to the range resolution, the waveforms will not have an equal time-

bandwidth product. We will see, however, that the library waveform with the largest

time-bandwidth product, σr = 10, σν = 3, is not always the optimal choice.
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Figure 4.1: Amplitude, real (left) and imaginary (right) parts of s(t) in Equation (4.1)
for T = 1, b = 4

Figure 4.2: Magnitude squared of the LFM signal in Equation (4.1) using T = 1,
b = 4
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(a) Ambiguity function with σ2
AF = 0

(b) Ambiguity function with σ2
AF = 0.01

(c) Ambiguity function with σ2
AF = 0.5

Figure 4.3: AF plots of the LFM signal in Equation (4.1) with T = 1 and b = 0.5, for
varying values of σ2

AF . It can be seen that, as the observation noise increases, it
gets harder to find a single peak value in the AF domain and the maximum likelihood
results in a larger estimation error.
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4.2 Entire Delay-Doppler Plane

In order to implement Algorithm 1, we first need to take a closer look at p(zk|xn),

used in the update stage. This is the probability that the measurements made at

time step k would be made conditioned that the particle xn reflected the true state of

the target. From (3.20) and (3.21) we see that the individual measurements of the

ambiguity function are independent of each other and the azimuth measurement so

that

p(zk|xn) = p(zθ,k|xn)p(zAF,k|xn) = p(zθ|xn)
∏
d∈D

p(zAF,k(d)|xn) (4.11)

d , (dτ , dρ) (4.12)

where d is a coordinate in the delay-Doppler plane, D is the set of all points in

the plane to be evaluated, and zAF,k(d) is the measurement taken from the noisy

ambiguity function of s(t). Again dropping the subscript k for simplicity, and noting

that all noise is Gaussian, we can directly present the probability of the azimuth

measurement

p(zθ|xn) = (2πσ2
θ)
−0.5exp

[
− 1

2σ2
θ

(zθ − µθ)2

]
µθ , tan−1(yn/xn)

(4.13)

For the ambiguity function measurement probability, we need to define the

set of coordinates, D, within the delay-Doppler plane that will be taken as measure-

ments. Ideally, we would want every point to be evaluated, but as the ambiguity

function is continuous, we must settle for a discrete sampling of points. We start

with a regular grid spacing covering the entire plane

D = {(Mδτ , Nδρ)|M = −∞ to +∞, N = −∞ to +∞} (4.14)
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where δτ and δρ are the constant delay and Doppler grid spacings, and M and N

are integers. Clearly, this is not any better as we are still have an infinite number

of points to evaluate. Thankfully, [6] gives us a solution for reducing the number of

necessary evaluation points.

As the particle weights in Algorithm 1 are normalized before use, it is only

necessary to determine their values to within a constant of proportionality. In this

case, we divide by the probability of observing the ambiguity measurements condi-

tioned on there being no target. This substitutes the likelihood ratio for the ambiguity

measurements for their actual probability, allowing the update step of the algorithm

to be rewritten

wn = wn
p(z|xn)

p(zAF )
= wnp(zθ|xn)

p(zAF |xn)

p(zAF )
(4.15)

Expanding the AF likelihood ratio, similar to (4.11), and substituting in the fact the

noise is Gaussian we get

p(zAF |xn)

p(zAF )
=
∏
d∈D

p(zAF (d)|xn)

p(zAF (d))

=
∏
d∈D

exp

[
− 1

2σ2
AF

{
(zAF (d)− |AFs(dτ − τn, dρ − ρn)|2)2 − z2

AF (d)
}]

(4.16)

where τn and ρn are the delay and Doppler positions of the nth particle.

τn =
c

2

√
(xn)2 + (yn)2

ρn = −2ωc
c

xnẋn + ynẏn√
(xn)2 + (yn)2

(4.17)

Noting that any grid point where AFs(dτ−τn, dρ−ρn) = 0 results in exp(0), (4.16)

can be simplified by evaluating only over the grid points where AFs(dτ−τn, dρ−ρn)

27



is non-zero

p(zAF |xn)

p(zAF )

=
∏
d∈Dn

exp

[
− 1

2σ2
AF

{
(zAF (d)− |AFs(dτ − τn, dρ − ρn)|2)2 − z2

AF (d)
}]

=
∏
d∈Dn

exp

[
1

2σ2
AF

|AFs(dτ − τn, dρ − ρn)|2
{
|AFs(dτ − τn, dρ − ρn)|2 − 2zAF (d)

}]
(4.18)

with the evaluated points now being taken from Dn instead of D, where Dn is the

set of all coordinates where AFs(dτ − τn, dρ− ρn) > 0, or, all coordinates where the

expected ambiguity function would be non-zero if the nth particle represented the

correct target state.

The ambiguity function never actually equals zero, but as dmoves away from

(τn, ρn), it converges to zero. Looking at (4.2), we can establish a constant value

contour of the ambiguity function by finding the values of τd and ρd that produce the

same value for the exponent, or

α2 = G(τd, ρd) =
τ 2
d

T 2
+ T 2(ρd − 2bτd)

2 (4.19)

Dn can then be approximated with

Dn = {(τd, ρd)|∀G(τd, ρd) < α2} (4.20)

Figure 4.4 demonstrates the results of choosing only those coordinates with

G(τd, ρd) < α2. By setting α = 3, we are guaranteed that all coordinates with

|AFs(τd, ρd)|2 > exp(−9/2) ≈ 0.01 are included in determining a particle’s up-

dated weight value. This limits the total number of observations necessary and

allows (4.16) to be evaluated.

The new total effective grid, D, is the set of all coordinates that will have

to be evaluated for a particular time step. It is simply the union of the coordinates

required for every particle update.
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Figure 4.4: A constant contour (blue ellipse) is drawn for G(τd, ρd) = α2. Dn is
determined by finding the coordinates (red) where G(τd, ρd) < α2. The example
here is for the AF of an LFM chirp with T=1 and b=4, and we used α = 3.

D =
N⋃
n=1

Dn (4.21)

With varying waveform parameters, T and b, the extent of the ambiguity

function can change dramatically. To ensure that every waveform produces ap-

proximately the same number of valid coordinates, the grid spacing is determined

as a function of the waveform parameters. The grid can be made denser or more

sparse by dividing with a larger or smaller number. In this thesis, the divisor is

always 4.

δτ = T/4

δρ = 1/(4T )

(4.22)

With the grid fully defined, a method of evaluating the necessary probabil-

ities derived and the process state described in (2.24), the particle filter is more

specifically detailed in Algorithm 2. This algorithm was implemented in MATLAB
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using the parameters in Table 4.1 and the results for one instance of that simula-

tion over 15 time steps is shown in Figure 4.5. It is important to note that the set

of waveform parameters chosen for these simulations are not compatible with the

time-bandwidth values used for a real radar application. They would need to be

changed to simulate an actual radar installation.

Algorithm 2 Particle Filter TBD Using Full Plane Measurements

Assume an initial estimate of value µs
for n = 1 to N do

Draw xn from p(x0)
wn = 1/N

end for
for k = 1 to K do

Determine Effective Grid:
D = {∅}
for n = 1 to N do
Dn = {(τd, ρd)|∀G(τd, ρd) < α2}
D = D

⋃
Dn

end for
Measure:
- Measure azimuth, zθ
- Take measurements, zAF , for all points defined in D
for n = 1 to N do

Update:
w1 = p(zθ|xn)

w2 =
∏

d∈Dn
p(zAF (d)|xn)
p(zAF (d))

wn = wnw1w2

end for
Sum the weights: wtotal =

∑N
n=1w

n

for n = 1 to N do
Normalize: wn = wn/wtotal

end for
Estimate: x̂k =

∑N
n=1w

nxn

Re-sample particles
for n = 1 to N do

Draw process noise y from p(w)
Advance: xn = Fxn + y

end for
end for
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Carrier frequency ωc 1.885× 1010

Number of particles N 1000
Re-sample threshold Nmin 200
Process noise power σ2

v 5
Seconds between time steps ∆t 1
Initial distribution mean µs [5000, 5000, 10, 10]T

Initial distribution covariance Cs diag([1, 1, 16, 16])
Azimuth measurement noise power σ2

θ ≈ 7.62× 10−7

AF measurement noise power σ2
AF 4

Waveform range resolution σr 30
Waveform range-rate resolution σν 4

Table 4.1: Parameters used for the results in Figure 4.5 and the assumed parame-
ters when not specified for other simulations.
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Figure 4.5: Example PF-TBD simulation results for the parameters in Table 4.1.
The actual (blue) and estimated (red) target radial range from the radar station (a),
rate of change of radial range (b), position in 2-D space (c), and x velocity (d) are
shown.
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4.3 Fixed Grid

As an alternative to using the entire delay-Doppler plane with variable grid spac-

ing derived from the waveform parameters, we can alternatively predefine a fixed

and finite number of grid points. This is a practical restriction as it recognizes the

limitations of the matched filter bank used to produce the ambiguity function mea-

surements. Limits along the Doppler axis correspond to bandwidth limitations of the

received signal, and limits along the delay axis correspond to having a finite length

recording of the received waveform.

In the fixed grid case, the delay-Doppler grid points that will make up the

ambiguity function measurements are fixed at

δr = 20, δν = 6

D = {(r0, ν0) + (Mδr, Nδν)|M = −10 : 10, N = −10 : 10}
(4.23)

where (r0, ν0) represent the range and range-rate coordinate of µs. This centers

the grid over the initial expected range and range-rate of the target. The tracking

algorithm remains the same as in the entire plane case, simply a different set of

delay-Doppler observation points, D, is used.
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Chapter 5

TBD DYNAMIC WAVEFORM DESIGN

Previous sections have described the tracking problem and presented the TBD-PF

algorithm for tracking under low SNR conditions. In this section we will derive the

means of predicting expected errors at each time step and use the results of that

derivation to establish a waveform selection algorithm.

5.1 Calculating and Predicting Error

At each time step, the error is normally defined as the difference between the actual

state values and the estimated state values

errk , xk − x̂k (5.1)

Here, we are only interested in the squared error, and we wish to reduce it to a

scalar for easier comparison later. We introduce an error weight row vector, g, and

define the squared error to be

err2
k , g(xk − x̂k)

2 (5.2)

If we know the covariance matrix of xk, and our estimate is the mean of the

distribution of xk

Mk , Covar(xk)

x̂k = E[xk]

(5.3)

we can also determine the mean squared error as

Mk , Covar(xk)

err2 = E[err2
k] = g(diag(Mk))

(5.4)
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We now introduce new notation to distinguish between the a priori and a

posteri covariance matrices of xk. The a priori covariance will be denoted Mk+1|k

and is the forward transformed covariance of the previous a posteri covariance,

Mk|k, with

Mk+1|k = Covar(Fxk + Q) = FMk|kF
T + Q (5.5)

What we would like to know now, is how to predict what the squared error

will be at the next time step knowing only what the covariance is for the current

time step. We start by establishing the lower bound for the covariance matrix.

From [17], we are given a recursive relation we use to determine the predicted

posterior covariance matrix

Jk+1 = D22
k −D21

k (Jk + D11
k )−1D12

k (5.6)

where Jk is the Fisher information matrix at time step k and Pk , J−1
k is the CRLB

for any estimator of xk. For the state and process models used here, the various D

matrices reduce to

D11
k = E{[∇xk

fT (xk)]Q
−1[∇xk

fT (xk)]
T} = FTQ−1F

D12
k = [D21

k ]T = −E{∇xk
fT (xk)}Q−1 = −FTQ−1

D22
k = Q−1 + E{[∇xk+1

hTl (xk+1)]R−1[∇xk+1
hTl (xk+1)]T} = Q−1 + Jexp,k+1

∇x ,

[
∂

∂x
,
∂

∂y
,
∂

∂ẋ
,
∂

∂ẏ

]T
(5.7)

where the subscript of hl denotes that the observations are dependent on the wave-

form parameters, being chosen from a library of L options to be detailed later. The

above then allows (5.6) to be written as

Jk+1 = Jexp,k+1 + Q−1 −Q−1F(Jk + FTQ−1F)−1FTQ−1 (5.8)

and applying the matrix inversion lemma

Jk+1 = Jexp,k+1 + (FJ−1
k FT + Q)−1 (5.9)
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The term Jexp,k is the expected amount of new information at time step k

before the actual observation has taken place, and is taken with respect to p(xk, zk).

The actual amount of information gathered at step k depends on the specific zk

and is not represented in any of the above equations. The final result of (5.9), Jk+1,

can then be seen as a forward transformation of current information, Jk, plus the

expected new information, Jexp,k+1.

Using (5.9) we can determine what the predicted covariance would be, start-

ing with a know covariance, by substituting Mk|k = Pk = J−1
k

Jk+1 = Jexp,k+1 + (FMk|kF
T + Q)−1 (5.10)

substituting in (5.5)

Jk+1 = Jexp,k+1 + M−1
k+1|k (5.11)

and taking the inverse to define

P̃k+1,l = (Jexp,k+1 + M−1
k+1|k)

−1 (5.12)

where the l in the subscript to P̃k+1,l indicates that the predicted covariance is

dependent on the chosen waveform.

Note that even though J−1
k was taken to be equal to Mk|k, J−1

k+1 is not taken

to be equal to Mk+1|k+1. This is because Mk|k is the covariance of xk taking all

observations up to time step k into account, z1:k, while P̃k+1,l, the output of (5.12),

is the expected covariance incorporating expected information, but without knowing

what the observation at time k + 1 actually is. If we were to run many simulations,

we would find that, instead of equality,

P̃k+1,l = E[Mk+1|k+1] (5.13)

Put another way, we can use (5.9) to determine what the predicted covari-

ance will be for any future time step, but we must start the recursion with a known
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covariance. When the known covariance is for time step k and we are only looking

for the predicted covariance one step forward, it reduces to (5.12).

We can now predict the minimum possible expected squared error, also the

mean squared error, to be

E[err2
k+1] = err2

k+1 = g(diag(P̃k+1,l)) (5.14)

Turning now to the evaluation of Jexp,k+1, we note it is an expectation over a

continuous probability density we do not have access to. Making use, once again,

of the proxy density afforded us by the particle filter, it can be approximated as

Jexp,k+1 ≈
N∑
n=1

wn[∇xn
k+1
hTl (xnk+1)]R−1[∇xn

k+1
hTl (xnk+1)]T (5.15)

Recalling that R is diagonal and separating out the azimuth measurement from the

ambiguity function measurements, we get

Jexp,k+1 ≈
1

σ2
θ

N∑
n=1

wnDθD
T
θ +

1

σ2
AF

N∑
n=1

wnDAFDT
AF

Dθ = ∇xn
k+1
hTθ (xnk+1)

DAF = ∇xn
k+1
hTAF,l(x

n
k+1)

(5.16)

Unfortunately, Jexp is a function both of the waveform being used and the

distribution of the particles. This prevents any closed form solution. Instead, it will

have to be evaluated at each time step for each simulation run, if there is a desire

to predict the error. We can, however, make a first order approximation of the best

case scenario by setting J0 = C−1
s and evaluating Jexp only for xk. By recursively

applying (5.9), we can calculate an approximation to the expected performance for a

given error weight vector and given waveform for any future step k. Additionally, by

using the adaptive waveform selection algorithm to be described in the next section,

we can also approximate the expected performance using the adaptive algorithm’s

choices. In Section 6, this technique is used to estimate expected performance

which then serves as a reference point for the actual simulation results.
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5.2 Waveform Selection

With the results from the previous section, we are in a position to construct an

algorithm for choosing a particular waveform from a library of waveforms at each

time step, as presented in Algorithm 3.

As the particle filter progresses normally, the particles themselves reflect

p(xk|z1:k−1) at the start of the main loop in Algorithm 2. The covariance of the parti-

cles at this point is then also the a priori covariance for step k, Mk|k−1. This covari-

ance is used along with an estimated Jexp for each waveform option to determine an

expected squared error according to (5.16). Finally, the minimum estimated error

is found and those waveform parameters that produced it are used for the next set

of measurements, zk. The only adjustment necessary to have Algorithm 2 perform

optimal waveform selection is to insert a call to Algorithm 3 immediately prior to the

’Determine Effective Grid’ step.

Algorithm 3 Waveform Selection

- At time step k, obtain state estimate x̂k =
∑N

n=1w
n
kx

n
k

- Compute Mk|k =
∑N

n=1w
n
k (xnk − x̂k)(x

n
k − x̂k)

T

for l = 1 to L do
- Calculate predicted covariance P̃k+1,l using (5.12)
- Obtain predicted MSE ek+1,l = g(diag(Pk+1,l)) using (5.14)

end for
- Choose signal s(t) = arg{minlek+1,l} from the library that minimizes the pre-
dicted MSE
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Chapter 6

SIMULATION RESULTS

6.1 Entire Delay-Doppler Plane

Section 5.1 provided an algorithm for predicting the expected performance of the

tracking algorithm for both fixed and adaptive waveform choices. The left hand

side of Figures 6.1 to 6.8 show the results of this weighted MSE of the expected

performance (MSE-EP). The waveform library used was composed of 10 unique

range resolutions and 10 unique range-rate resolutions, as presented in Table 6.1,

for a total of 100 unique waveform options. The three best performing fixed wave-

forms from that library are plotted along with the adaptive waveform results. For

each figure, green represents σr = 10, σν = 3, blue represents σr = 10, σν = 30,

red represents σr = 30, σν = 3, and black represents the results of the adaptive

algorithm.

The simulations were run over varying parameters. Two different starting

covariance matrices were used; one "small", one "large". Two ∆t’s were used; 1

and 0.2. And four different error weights: one focusing on position only, one on

velocity only, one weighting the two equally and a final one weighting them so that

the position and velocity portions of the error are scaled closer to each other. In

all cases, the SNR was set to approximately -6 dB. Again, Figures 6.1 to 6.8 show

the results for the various combinations of these parameters. One key observation

is that the error weight plays an important role in the relative performance of the

adaptive algorithm when compared to any fixed waveform. We see that in most

cases where we focus only on position or velocity, a fixed waveform does as well

as the adaptive algorithm. However, when the error weight works to "balance"

the contributions from the position delta or the velocity delta to the overall error,
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there is a clear advantage to being able to change waveforms over time. This is

explored further with additional test cases in the following section using the fixed

grid. Additional overall observations follow.

There are a few important observations to be noted about the MSE-EP (left

hand side) plots. First, the best fixed waveform is not always the same under dif-

ferent simulation parameters. For example, the waveform with the smallest range

resolution (blue) has the lowest error in Figure 6.7a, the smallest range-rate res-

olution (red) has the lowest in Figure 6.7c, and setting both to the smallest option

(green) has the lowest in Figure 6.4c. This is an important, although not surprising,

result because if one fixed waveform always had the best performance, there would

be no need for agile waveform selection.

Second, the adaptive waveform performance is sometimes actually worse

than the best fixed waveform, although not by much. Figures 6.1a and 6.4c demon-

strate this. This is a result of the adaptive waveform algorithm being myopic, that

is, it is only taking the immediate next time step into consideration. There are times

when, for example, focusing on range-rate will give you the best error for the im-

mediate next time step, while ignoring range can establish an error that will decay

with time, Figure 6.4c, or that will remain persistent, Figure 6.1a. In practice, we

will see that the errors introduced as a result of using a particle filter to approximate

an efficient estimator effectively obscures these minor differences. In the event that

these error differences become significant, perhaps with the use of very large par-

ticle counts, the algorithm would need to be extended to look more than one time

step in advance.

Finally, there are cases where the adaptive performance not only matches

the best fixed waveform, but actually exceeds it. Figures 6.4c and 6.8c demonstrate

this. In the cases examined, the adaptive performance will eventually converge on
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the best fixed performance. The predicted advantage of the adaptive waveform

algorithm is then two fold: not only will the algorithm adapt itself to perform as well

as the best fixed waveform for any set of simulation parameters, it can also reach

any best asymptotic performance sooner than any fixed waveform.

We can now compare actual simulation results against the MSE-EP. The

right hand side of Figures 6.1 to 6.8 display the weighted MSE from 200 simulations

while using the same parameters that produced the plots to their left. The simulation

results are clearly not as smooth as the predicted errors, which is a result of run-

ning only a finite number of iterations in the simulations. Figure 6.9 demonstrates

convergence for additional iterations. The general pattern of the fixed waveform

simulation results, however, reasonably matches their predicted performance. This

justifies the use of the predicted covariance in the adaptive waveform selection al-

gorithm. For each parameter set, the relative predicted performance of the adaptive

algorithm is mirrored in the simulation results. Finally, Figure 6.10 demonstrates the

adaptive selection of waveform parameters for various error weights.

The principle result of this thesis is that the two predicted advantages of the

adaptive algorithm are also present in the simulations results. First, that, within ex-

pected variance of the simulation error due to a finite number of iterations, the adap-

tive waveform performance is no worse than the best fixed waveform performance

under all simulation parameters; and second, under some simulation parameters,

the adaptive performance exceeds the best fixed waveform performance. The later

simulation parameters are demonstrated in Figures 6.8d and 6.14d.

σr values 10.0 11.3 12.8 14.4 16.3 18.4 20.8 23.5 26.6 30.0
σν values 3.0 3.9 5.0 6.5 8.3 10.8 13.9 18.0 23.2 30.0

Table 6.1: Range and range-rate values used to compose the 100 entry waveform
library.
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Figure 6.1: Entire plane MSE-EP (left) and simulated (right) results over 200 itera-
tions for N = 300,Cs = diag([1, 1, 16, 16]),∆t = 1.

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.2: Entire plane MSE-EP (left) and simulated (right) results over 200 itera-
tions for N = 300,Cs = diag([1, 1, 16, 16]),∆t = 1

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.3: Entire plane MSE-EP (left) and simulated (right) results over 200 itera-
tions for N = 300,Cs = diag([255, 255, 16, 16]),∆t = 1

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.4: Entire plane MSE-EP (left) and simulated (right) results over 200 itera-
tions for N = 300,Cs = diag([255, 255, 16, 16]),∆t = 1

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.5: Entire plane MSE-EP (left) and simulated (right) results over 200 itera-
tions for N = 300,Cs = diag([1, 1, 16, 16]),∆t = .2

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.6: Entire plane MSE-EP (left) and simulated (right) results over 200 itera-
tions for N = 300,Cs = diag([1, 1, 16, 16]),∆t = .2

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.7: Entire plane MSE-EP (left) and simulated (right) results over 200 itera-
tions for N = 300,Cs = diag([255, 255, 16, 16]),∆t = .2

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.8: Entire plane MSE-EP (left) and simulated (right) results over 200 itera-
tions for N = 300,Cs = diag([255, 255, 16, 16]),∆t = .2

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.9: (a)MSE-EP performance is approached as the particle count and itera-
tion count increase. (b) N = 300, 200 iterations. (c) N = 500, 1000 iterations.
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Figure 6.10: Selected waveform parameters for one iteration of the simulation with
various error weights.
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6.2 Fixed Grid

The same simulation parameters as used in the previous section were also run in

the fixed grid case with two changes. In the entire plane approach, there was a

guaranteed minimum number of non-zero AF observations for each particle due to

the adaptive grid spacing. In the fixed grid case, there is no such guarantee. As a

result, much fewer delay-Doppler grid points actually contribute useful information

to the state estimate at each time step. To counteract this, the number of parti-

cles was increased and the AF noise power was reduced: N = 1000, σ2
AF = 0.4.

Figures 6.11 to 6.14 show the results. Unlike the previous subsection, only the

simulation results are shown, there are no predicted performance plots. However,

similarities between the predictions for the entire plane case and the fixed grid sim-

ulation results are apparent.

Once again, the two primary results of this thesis persist. The adaptive

waveform performance is at least as good as the best fixed waveform performance

and, in some cases, exceeds the best fixed waveform performance. For the fixed

grid case, some additional simulations were run to further examine cases where

the adaptive performance clearly improves on the fixed performance. As previously

mentioned, this occurs when the quantitative contributions of the position and ve-

locity components of the error closely match each other, ruling out a simple choice

of a position of velocity oriented waveform as a consistent best choice. This is

largely a function of the error weight, which is used to scale the position and veloc-

ity contributions to the overall error. Figure 6.15 introduces two new error weights

over two new ∆t’s to demonstrate that this condition can be found over a significant

range of parameter choices. It is within this range that the benefit of the adaptive

waveform selection algorithm is most pronounced.
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Figure 6.11: Fixed grid simulation results over 400 iterations for N = 1000,Cs =
diag([1, 1, 16, 16]),∆t = 1

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.12: Fixed grid simulation results over 400 iterations for N = 1000,Cs =
diag([255, 255, 16, 16]),∆t = 1

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.13: Fixed grid simulation results over 400 iterations for N = 1000,Cs =
diag([1, 1, 16, 16]),∆t = .2

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.14: Fixed grid simulation results over 400 iterations for N = 1000,Cs =
diag([255, 255, 16, 16]),∆t = .2

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Figure 6.15: Fixed grid simulation results over 400 iterations for N = 1000,Cs =
diag([255, 255, 16, 16]),∆t = .05 (top) and ∆t = .02 (bottom)

Range Resolution Range-Rate Resolution
Green 10 m 3 m/s
Blue 10 m 30 m/s
Red 30 m 3 m/s

Black Adaptive Adaptive
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Chapter 7

CONCLUSIONS

In this thesis, we have examined one approach to tracking a 2-D target with an ag-

ile waveform track before detect radar system in the presence of high power white

noise. Preliminary information on generic estimation of a hidden stochastic system

was presented along with a description of a basic particle filter algorithm to carry

out such estimation. The particular 2-D tracking problem under consideration here

was then described in detail. Both the state process model for the unknown target

state and the observation model used to make noisy measurements of that target

state were presented. The need for a TBD approach making use of more than just

the maximum AF measurement was explained as a means of being able to track

under low SNR conditions. The complex envelopes of the LFM waveforms used

in the simulations were characterized in terms of range and range-rate resolutions.

The particle filter algorithm was then extended to incorporate the specifics of the

observation model for two separate cases: an approximation to using the entire

delay-Doppler plane involving a dynamic grid spacing, and a limited model using

only a finite region of the delay-Doppler plane with a fixed grid spacing. The means

of calculating the predicted covariance matrix for each waveform candidate at each

time step was derived for the observation model being used, and the resulting re-

cursive equation was used to estimate the predicted expected performance of the

tracker as well as being an integral part of the on-line waveform selection algorithm.

Finally, simulations of the tracking algorithm were run for both fixed waveforms and

adaptive waveform selections and the results were compared to the predicted ex-

pected performance.

The primary results of this work are that two attributes of the agile wave-

form TBD algorithm presented here were predicted by the expected performance
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estimates and were confirmed by the simulations. When only position or veloc-

ity estimates are required, we showed that TBD with fixed waveforms perform as

well as the adaptive waveform TBD. When both position and velocity estimates

are required, we showed that the adaptive waveform TBD outperformed the fixed

waveform TBD. In particular, in cases where the error weight roughly "balances"

the position and velocity contributions to the overall error, a single "best case" fixed

waveform is difficult to find and the advantage of an adaptive algorithm becomes

pronounced.

There are two immediate potential areas for future work involving this al-

gorithm. First, the noise source in this thesis was simplified to the point of being

independent of both waveform and grid spacing, neither of which would be true in a

more accurate model. Incorporating a more accurate observation noise covariance

and distribution could have a significant impact on the algorithm’s performance.

Second, only LFM waveforms were considered. The approach is conceptually easy

to extend to a wide variety of additional waveform classes such as hyperbolic, expo-

nential, etc. In practice, evaluating (5.16) in closed form for a particular waveform

class can be non-trivial.
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