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ABSTRACT  
   

The pattern and strength of genetic covariation is shaped by selection so that it is 

strong among functionally related characters and weak among functionally unrelated 

characters. Genetic covariation is expressed as phenotypic covariation within species and 

acts as a constraint on evolution by limiting the ability of linked characters to evolve 

independently of one another. Such linked characters are "constrained" and are expected 

to express covariation both within and among species. In this study, the pattern and 

magnitude of covariation among aspects of dental size and shape are investigated in 

anthropoid primates. Pleiotropy has been hypothesized to play a significant role in 

derivation of derived hominin morphologies. This study tests a series of hypotheses; 

including 1) that negative within- and among-species covariation exists between the 

anterior (incisors and canines) and postcanine teeth, 2) that covariation is strong and 

positive between the canines and incisors, 3) that there is a dimorphic pattern of within-

species covariation and coevolution for characters of the canine honing complex, 4) that 

patterns of covariation are stable among anthropoids, and 5) that genetic constraints have 

been a strong bias on the diversification of anthropoid dental morphology. The study 

finds that patterns of variance-covariance are conserved among species. Despite these 

shared patterns of variance-covariance, dental diversification has frequently occurred 

along dimensions not aligned with the vector of genetic constraint. As regards the canine 

honing complex, there is no evidence for a difference in the pleiotropic organization or 

the coevolution of characters of the complex in males and females, which undermines 

arguments that the complex is selectively important only in males. Finally, there is no 

evidence for strong or negative pleiotropy between any dental characters, which falsifies 

hypotheses that predict such relationships between incisors and postcanine teeth or 

between the canines and the postcanine teeth. 
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Chapter 1 

INTRODUCTION 

As a result of selection shaping such patterns, genetic covariation is predicted to 

be strong among functionally related characters and weak among functionally unrelated 

characters (Wagner et al., 2007). For highly heritable characters, within species genetic 

covariation is expressed as phenotypic covariation. Genetic covariation acts as a 

constraint on evolution by biasing the evolutionary trajectories of linked characters, 

limiting their ability to evolve independently of one another and channeling coordinated 

change along the major axis of genetic covariation (e.g., Klingenberg, 2010; Marroig and 

Cheverud, 2010). The strength of constraint is proportional to the “flexibility” of the 

linked traits to evolve independently of one another; as constraint increases in strength, 

flexibility decreases (Marroig et al., 2009). 

In anthropoid primates, a variety of functions are performed by teeth (food 

acquisition, food processing, social signaling, and canine honing) and these functions are, 

in general, spatially separated and performed by distinct dental units. As primate dental 

variation has been shown to be highly heritable in samples where it has been estimated 

(e.g., Hlusko and Mahaney, 2007b; Hlusko et al., 2010), the dentition is ideal for 

examining the predicted correspondence of character covariation to functional 

relationships. 

Though patterns of covariation are investigated for all dental elements, the focus 

of this dissertation is on understanding the role of genetic constraints on the evolution of 

the canine honing complex in nonhuman anthropoid primates. Extant nonhuman 

anthropoids, and most extinct anthropoids, have a functional complex that sharpens the 

canines, which are used in social signaling and less frequently as weapons (e.g., Walker, 

1984; Leigh et al., 2008), while hominins have reduced canines and lost the function of 
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canine honing (e.g., Greenfield, 1990). During hominin evolution, the honing complex 

was dramatically altered morphologically and functionally, though the pace of change 

was not consistent for the elements that formerly comprised the honing complex. Near 

the base of the hominin clade, canine height reduction was unequal for the maxillary and 

mandibular canines, substantial reduction in canine heights preceded substantial 

reduction in basal size (Suwa et al., 2009; Ward et al., 2010), and the P3 retained 

morphological relicts of its honing past after the function of canine honing was lost and 

canines were reduced (Suwa et al., 2009; Delezene and Kimbel, 2011), suggesting that 

many of the changes that transformed the canine honing complex were uncoordinated. 

The role of pleiotropy in the evolution of the canine honing complex is uncertain. Among 

extant nonhuman anthropoids, Greenfield and Washburn (1992; Greenfield, 1992) found 

that the elements of the honing complex coevolved in males but not in females, 

suggesting either sexual dimorphism in patterns of pleiotropy (present and strong in 

males and absent in females) or a lack of pleiotropy in both sexes. According to 

Greenfield’s model, the discordant patterns among species reflect the lack of functional 

integration among the elements of the complex in females and selection for female 

canines to function as incisors, a perspective that is not generally supported (e.g., 

Plavcan, 1993). Greenfield’s findings have implications for understanding the changes 

that altered the honing complex in early hominins. If the elements of the honing complex 

do not covary genetically in extant primates, then no pattern of character change in the 

hominins would be constrained. In contrast, if pleiotropy exists among the elements of 

the complex, then strong selective pressure would be required to generate the pattern of 

uncoordinated character change that is observed. 

The role of genetic covariation in the reduction of the hominin canine is also 

uncertain. Greenfield (1993) suggested that the canine lies at the “border of two 
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morphogenetic fields,” and that, especially in females, it is shaped by selection to act as 

an incisor. If true, then the canines should covary in size with the incisors within species. 

It has been proposed that the canines share positive genetic covariation with the incisors 

(e.g., Jolly, 1970; McCollum and Sharpe, 2001) and that selection for reduced incisor size 

caused a coordinated diminution of hominin canine size; in this model, canine reduction 

represents a selective trade off in tooth size mediated by pleiotropy. Studying patterns of 

covariation among the elements of the honing complex and adjacent teeth and the impact 

genetic covariation has had on dental diversification provides a test of these hypothesized 

relationships. 

In contrast to the canines, among anthropoids the functional roles of the incisors 

(food acquisition) and postcanine teeth (food processing) have remained constant. Diets 

vary among taxa; as a result, selection has shaped the incisors and postcanine teeth to 

meet the mechanical demands associated with their functions (Ungar, 2010). Analyses of 

captive baboons indicate that incisor sizes have a positive genetic correlation with one 

another and that postcanine tooth sizes have a positive genetic correlation with one 

another. A developmental model predicts that anterior and posterior tooth size should 

have a negative genetic correlation (McCollum and Sharpe, 2001), which recently 

received limited empirical support in pedigreed baboons (Hlusko et al., 2010). If the 

anterior and posterior teeth covary negatively within species, then this has implications 

for the coordinated enlargement of the postcanine dentition and diminution of the anterior 

dentition that occurred in some Plio-Pleiostocene hominins and Theropithecus (e.g., 

Jolly, 1970). Evidence for negative within-species covariation has not been documented 

in any wild population of anthropoid primates; nor has the predicted effect of the negative 

genetic correlation on the evolutionary trajectories of the anterior and posterior teeth been 

demonstrated. 
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This dissertation addresses a range of issues related to the patterning and stability 

of character covariation among anthropoid dental characters. Questions of different 

specificity at different biological levels are addressed. For example, are dental functional 

units (incisors, canine honing complex, postcanine dentition) defined by patterns of 

covariation or is there strong overlapping covariation between them? Given the constancy 

of dental functions among species, and the constancy of the teeth performing these 

functions, are patterns of covariation conserved among species? As there is little 

theoretical expectation that dimensions of the dentition should be “absolutely 

constrained” (e.g., Klingenberg, 2010), does the pattern of variance-covariance within 

species predict the direction of character difference between species? In addition to these 

basic questions about the patterning of genetic covariation in systems with functional 

differentiation and the effect of genetic covariation on the among species behavior of 

linked characters, more specific questions about the strength and direction of covariation 

between anterior and posterior teeth and evidence for dimorphic patterns of covariation in 

the honing complex are also addressed. 

Below, the topics of integration, pleiotropy, and modularity are reviewed. This is 

followed by a summary of the composition and morphology of the functional units in the 

dentition, evidence that selection has driven among-species diversification in dental 

morphology and previous research on pleiotropy in the anthropoid dentition. This chapter 

concludes with a series of hypotheses that will be addressed in subsequent analytical 

chapters. 

Character Covariation Within Species 

Morphological Integration: “Integration” is a common research topic in evolutionary 

biology; however, its meaning is variable and contextual. The term originated as the title 

to the 1958 book Morphological Integration, which addressed the correspondence of  
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Fig. 1.1. White circles represent genes, grey circles represent phenotypic traits, and the 
lines link genes to the traits they affect. On the top, a system in which genes affect many 
traits; on the bottom, a series of one gene-one trait relationships. In the middle, a modular 
system. Parcellation removes genetic correlations among characters, while integration 
extends them. Adapted from Wagner (1996). 
 

 

patterns of character covariation to functional and developmental relationships (Olson 

and Miller, 1958). The term was not defined in the text of the book; however, generally 

speaking, integration can be defined as “the observation that particular subsets of 

morphological traits tend to covary strongly over development and evolution, while other 

subsets are more weakly associated” (Magwene, 2006: 490). A perspective of integration 

views the phenotype as “networks of component traits connected by genetic, 

developmental, or functional interactions” (Santos and Cannatella, 2011: 1). The pattern 

and magnitudes of covariation can vary among species; thus, studies of integration aim to 

understand not only why certain characters covary within and among species and others 

do not, but also why covariation is stable or unstable over an evolutionary time scale. As 

will be reviewed, the pattern of variance-covariance created by genetic networks, and not 
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just the morphological products of genes, is shaped by evolutionary mechanisms 

(selection, drift, etc.). 

The term “integration” is used to describe an evolutionary transformation of 

genetic networks to create covariation among characters and also to describe covariation 

that is observed within a biological population (measured for phenotypic characters with 

a correlation coefficient, for example). When the term is used to describe a process, 

integration is contrasted with “parcellation,” which alters genetic networks to remove 

covariation among characters (Figure 1.1). Integration and parcellation are predicted to 

shape the genotype-phenotype map so that patterns of genetic covariation reflect those of 

the functional relationships among characters (e.g., Wagner, 1996; Wagner and 

Altenberg, 1996; Wagner et al., 2007; Hallgrimsson et al., 2009).  

An organism’s features can be atomized into many characters, but these 

characters are linked by a number of biological factors. Broadly considered, integration is 

observed as the “correspondence of patterns of covariation among traits to a priori or a 

posteriori hypotheses” (Chernoff and Magwene, 1999: 319) based on shared biological 

attributes. Examples of these attributes include origin in embryonic tissue, pleiotropy, 

function, spatial constraints, and evolutionary history, all of which are expected to impact 

patterns of character covariation. Character covariation can be addressed across a range 

of biological hierarchies: among genes, within demes, within and among populations of a 

species, and among species (covariation observed at higher taxonomic levels of the 

hierarchy may or may not be reflected in the levels below it) (e.g., Cheverud, 1996). The 

multitude of influences on covariation and the many biological levels at which 

covariation can be studied (e.g., Cheverud, 1996) partially explains the plethora of 

adjectives attached to “integration:” ontogenetic integration (e.g., Ackermann, 2005), 

developmental integration (Cheverud, 1996; Fink and Zelditch, 1996; Klingenberg,  
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Fig. 1.2. On the left, a simple one gene-one trait relationship; on the right, a pleiotropic 
relationship in which a gene affects the expression of more than one trait. 
 
 

2003), phenotypic integration (e.g., Cheverud, 1982; Pigliucci, 2003; Pigliucci and 

Preston, 2004; Arnold, 2005), evolutionary integration (e.g., Cheverud, 1996; Monteiro et 

al., 2005), genetic integration (e.g., Cheverud, 1982), and functional integration (e.g., 

Zelditch and Carmichael, 1989; Lockwood, 2007) to name a few. As Klingenberg (2008: 

117) states, “overall, therefore, it is clear that no general consensus on the meaning and 

measurement of morphological integration has been achieved. Readers are advised to 

exercise caution when comparing the results from different studies.” The present study of 

the anthropoid primate dentition addresses character covariation at two levels, the 

population and the clade. As will be discussed, combining these two levels of analysis 

permits the distinguishing of two processes that produce character coevolution: 1) natural 

selection acting on genetically covarying characters and 2) selective covariation, where 

natural selection acts on genetically independent characters. 

 

Pleiotropy: Within a population, phenotypic covariation is affected by genetic and 

environmental influences. One genetic mechanism that creates phenotypic covariation is 

pleiotropy, where “loci involved in development participate in multiple developmental  
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Fig. 1.3. Examples of phenotypic and genetic variance-covariance matrices for three 
characters. σ2

A (i) is the additive variance for character i and σA (i,j) is the additive 
covariance for characters i and j. The G-matrix, on the left, is the additive genetic 
variance-covariance matrix, while the P-matrix, on the right, is the observed phenotypic 
variance-covariance matrix. 
 
 

 

pathways” (Figure 1.2) (e.g., Hodgkin, 1998; MacKay, 2001). In such an arrangement, 

allelic variants of a gene produce phenotypic covariation when measured at the 

population level. 

The strength of a pleiotropic association of two characters can be quantified as a 

genetic correlation (rG); similarly, among a suite of characters, patterns of genetic 

correlation are summarized by the genetic variance-covariance matrix (the G-matrix or, 

simply, G). The cells on the diagonal of G are the additive genetic variances for each 

character and the off-diagonal elements are the additive genetic covariances among 

characters (Figure 1.3). Most commonly, G is estimated in pedigreed samples with large 

sample sizes; therefore, it is difficult to estimate in wild populations where familial 

relationships are uncertain (e.g., de Oliveira et al., 2009). As a result, studies of genetic 

variance-covariance in primates have been limited to a few “laboratory” primate 

populations; for example, Papio sp. at the Southwest National Primate Research Center 

(SNPRC) (e.g., Hlusko et al., 2007a, 2007b; Hlusko and Mahaney, 2009; Koh et al., 

2010), Macaca mulatta at Cayo Santiago, Puerto Rico (Cheverud, 1982), and Saguinas 

fuscicollis at the Oak Ridge Associated University Marmoset Research Center 
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(Cheverud, 1995). Among these samples, genetic correlations in the dentition have been 

studied most extensively in the SNPRC baboons (e.g., Hlusko et al., 2002, 2004, 2006; 

Hlusko and Mahaney, 2009; Hlusko et al., 2010). 

The phenotypic variance-covariance matrix (P-matrix or P) is typically used to 

estimate G in nonpedigreed samples (Figure 1.3); however, the substitution of phenotypic 

values is only appropriate if certain conditions are met. Since phenotypic variance-

covariance reflects both genetic and environmental influences, the effect of the 

environment should be minimal for the phenotypic values to reflect their genetic 

counterparts. The relative effect of genotypic and environmental variance on the 

phenotypic variance of character can be defined as the character’s narrow-sense 

heritability (h2); as h2 approaches 1, the effect of the environment is minimized (more on 

the calculation of h2 and limitations in its estimation are provided below). Another factor 

to consider is sample size; as is true of all sample statistics, confidence in the estimation 

of the population-level phenotypic variance-covariance increases as the sample size 

becomes larger.  

Cheverud (1988a) conducted a meta-analysis of 23 studies for which genetic- and 

phenotypic-correlation matrices were available (these 23 studies were conducted on a 

wide range of animals (“human to amphipod”) and traits (“morphological to cognitive”)). 

He demonstrated that, as sample size increases, the disparity in the estimates of genetic 

and phenotypic correlations becomes negligible. He concluded that the “actual population 

values for genetic and phenotypic correlations are quite similar,” (Cheverud, 1988a: 964) 

which is now widely known as “Cheverud’s conjecture” in the literature. Waitt and Levin 

(1998), in a survey of plants, and Reusch and Blanckenhorn (1998), in a study of the 

dung fly Sepsis cynipsea, each supported Cheverud’s conjecture (see also, Schluter, 1996; 

Roff, 1997). For the size of the anthropoid maxillary dentition, Hlusko and Mahaney  
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Fig. 1.4. In this example, two functional modules also represent variational modules, 
since pleiotropic effects are mostly confined to each module. This is an example of 
modular pleiotropy. Adapted from Wagner (1996) and Wang et al. (2010). 
 
 
 
 
(2009) found that genetic and phenotypic correlation matrices are similar in pedigreed 

SNPRC Papio sp. and that both matrices are similar to the phenotypic correlation matrix 

for wild-shot Papio anubis. In this study, patterns of phenotypic variance-covariance are 

examined and are assumed to reflect genetic variance-covariance. Fortunately for this 

study, primate dentometric variation has been shown to be highly heritable in the samples 

where it has been estimated, as will be reviewed below.  

 

Modularity: As a general principle applicable to many different biological systems, 

Wagner et al. (2007) define modularity as “a pattern of connectedness in which elements 

are grouped into highly connected subsets — that is, modules — which are more loosely 

connected to other such groups” (see also Cheverud et al., 1997, 2004; Leamy et al., 

1999; Cheverud, 2001; Klingenberg et al., 2004; Juenger et al., 2005). To complete a 

function, often several phenotypic characters participate as a unit (i.e., a functional 

complex), which Wagner et al. (2007) define as a “functional module.” Characters in a 

functional module tend to be linked by pleiotropy and form a “variational module,” 
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which is “a set of covarying traits that vary relatively independently of other such sets of 

traits. Variational modules are recognized by higher than average correlations among 

traits” (Figure 1.4) (Wagner et al., 2007: 921). 

Modularity is an organizing principle and in certain models (summarized in 

Wagner et al., 2007) is purported to be selectively advantageous. These models rely on 

the principle that modularity “is selected if it ….makes adaptive phenotypes accessible 

that would be genetically unattainable otherwise” (Wagner et al., 2007: 926). As there are 

a variety of functions performed by an organism, it is not likely that all characters need to 

simultaneously change to meet shifting environmental conditions. If characters in 

functional modules are pleiotropically linked to one another and unlinked to characters 

outside of the module, then the functional unit can easily coevolve in response to 

selection and not affect the morphology/function of characters outside of the complex. 

Therefore, changes in one functional module do not compromise adaptations in other 

modules. This argument for the existence of modularity is similar to R.A. Fisher’s 

Geometric Model that noted that mutations with large widespread effects on the 

phenotype are not likely to be adaptive (Fisher, 1930; Wang et al., 2010; Wagner and 

Zhang, 2011). Conversely, a system in which pleiotropy does not exist has a high “cost of 

complexity,” requiring each character in a functional module to respond independently to 

natural selection. Wagner and Zhang (2011: 205) state, “the more independent 

dimensions of variation the phenotype has, the more difficult is improvement resulting 

from random changes. The reason is that, if there are many different ways to change a 

phenotype, it becomes very unlikely that a random mutation affects the right combination 

of traits in the right way to improve fitness.” A modular organization reduces this cost. 

Since pleiotropy creates this covariation, Cheverud et al. (2004; Wagner et al., 2007) 

refer to this model of organization as “modular pleiotropy.” 
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To describe the effects of modularity on the evolutionary potential of systems, 

Wagner and Altenberg (1996) use the “representation phenomenon” of evolvable 

computer algorithms, which refers to how an algorithm’s code is translated into output, as 

an analogy. Some evolutionary algorithms fail to produce improvements in a program’s 

success at performing tasks because mutations in the code affect the whole program and 

randomize the output. Modularly organized evolvable algorithms are more successful 

because each module has a specific task and mutational effects are confined to a single 

module (Hansen, 2003). For organisms, the equivalent of the representation phenomenon 

is the “genotype-phenotype map,” which, within individuals, describes how the genotype 

is translated into the phenotype (Figure 1.4) and on an evolutionary scale it describes how 

genetic changes are reflected as phenotypic changes (Wagner, 1996; Wagner and 

Altenberg, 1996).  

 

Character Covariation Among Species 

Selection on Genetically Covarying Characters: Since pleiotropically linked characters 

are not free to vary independently of one another, each character is “constrained” 

(Maynard Smith et al., 1985); that is, each character has “reduc[ed] evolvability in at 

least some directions of the phenotype space” (Klingenberg, 2005: 220, 2010; see also 

Pigliucci, 2003) (Figure 1.5). The strength of constraint ranges from absent (no genetic 

correlation; rG = 0) to absolute (complete genetic correlation; rG = 1 or -1). In between 

absent and absolute constraint, characters are relatively constrained (Figure 1.5). Beldade 

and Brakefield (2003: 119) noted, “there is no real dichotomy between absolute and 

relative constraints but rather, as so often in biology, a continuum of constraints 

(limitations/biases) of different strengths.” There is little evidence that absolute  
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Fig. 1.5. In A, the two characters do not covary within a population; therefore, each 
character is equally free to evolve in any direction of phenotypic space. In B, the two 
characters are relatively constrained; limited change is possible perpendicular to the 
major axis of covariation, though most change is predicted to be channeled along the 
major axis. In C, the two characters are absolutely constrained and are not free to vary 
independently of one another; no change is possible away from the major axis. Adapted 
from Klingenberg (2010). 
 

 

constraints exist, as most pleiotropically-linked characters have some heritable variation 

that is not shared with other characters (Klingenberg, 2008; 2010). Within species, 

pleiotropy is revealed by a pattern of character covariation and, among populations, 

pleiotropy channels character change along the major axis of genetic covariation; less 

change is possible perpendicular to the major axis. Therefore, the major axis of genetic 

covariation represents the “line of least evolutionary resistance” along which characters 

can evolve (Figures 1.5 and 1.6) (Schluter, 1996; Klingenberg, 2010; Marroig and 

Cheverud, 2010).  

To maintain functional equivalence, characters in functional complexes are 

expected to coevolve as a result of natural selection acting on the complex and several 

processes can generate such a pattern.1 When selection acts on pleiotropically linked  

                                                      
1 Throughout this dissertation, the term “coevolution” is used to describe the coordinated change 
of characters (traits) among populations or species. Coevolution is a portmanteau of “correlated 
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Fig. 1.6. In this example, the sizes of two characters are plotted for three species. The 
95% confidence ellipses are estimated as an ellipse for each species. The two characters 
are characterized by a high degree of covariation (represented by highly elongated 
ellipses) within samples and are relatively constrained. Among the samples, the two 
characters have evolved along the major axis of genetic covariation (i.e., the line of least 
evolutionary resistance). 
 
 
 
characters, it tends to pull them along the major axis of covariation; in this case, 

coevolution, observed among species, is in part an extension of the genetic relationship 

that exists within species (e.g., Cheverud, 1982, 1988b, 1989, 1996). Pleiotropically 

linked characters are expected to express phenotypic covariation both within and among 

species (when measured using species means, for example) (Figure 1.6). 

The response of a single character to natural selection is expressed by the 

breeder’s equation: Δz = h2S, where Δz is the change in the mean value of the character 

of interest, h2 is the narrow-sense heritability of the character, and S is the strength of 

                                                                                                                                                 
evolution.” The use of coevolution to describe such change should not be confused with the use of 
the word to describe the coadaptation of species to one another (as in host-parasite interactions). 
This use of coevolution is consistent with other studies (e.g., Edwards, 2006). 
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selection. The multivariate selection model, Δz = Gβ, is an extension of the breeder’s 

equation and demonstrates how coevolution, observed phenotypically, can be produced 

as the result of selection acting within populations on genetically correlated traits (e.g., 

Lande, 1979; Cheverud, 1982). In the multivariate selection model, G is the G-matrix, β 

is the selection vector, where each βi reflects the strength of selection acting on each 

character i, and Δz is the vector of change in mean value for each character. Selection on 

genetically correlated traits, which occurs at the population level, will cause them to 

coevolve.  

 For a suite of traits, the major axis of genetic covariation (gmax) is quantified as 

the “linear combination...that displays the maximum within-population variance (first 

principal component)” (Marroig and Cheverud, 2010: 1471, see also, Schluter, 1996; 

Klingenberg, 2010). As change between populations in directions not aligned with gmax is 

relatively constrained, then population divergence (Δz) should be strongly correlated with 

gmax. (Note that this is not the same as saying the change can only happen along gmax.) In 

Figure 1.6, all three populations share the same gmax and Δz between all populations 

occurred along the shared gmax. The extent to which lines of least evolutionary resistance 

are shared among taxa and the correspondence of among-species change to them can be 

empirically determined (see Chapter 2) (e.g., Marroig and Cheverud, 2005). It is 

unknown if gmax for anthropoid dental traits is shared among species and if dental 

diversification is principally aligned with it. 
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Fig. 1.7. In this example, within-species covariation is estimated for five samples. The 
95% confidence ellipses form circles for each species, indicating that the two characters 
do not covary and are therefore unconstrained; however, among species the species 
means are correlated. This is the expected pattern if selective or drift covariance 
occurred. 
   

 

Selective and Drift Covariance: If fitness is determined by the interaction of characters 

that are genetically uncorrelated, then, to maintain functional equivalence during 

evolutionary change, the characters must independently respond to selection. This is 

referred to as “selective covariance;” in this case, unlike what is observed with 

pleiotropically linked characters, no pattern of phenotypic covariation is expected within 

species, even though one exists among species (Figure 1.7) (Armbruster and 

Schwaegerle, 1996). Thus, selection acting on genetically correlated and uncorrelated 

traits can produce a significant among-species phenotypic correlation; however, it is 

possible to distinguish between the two processes if both the within- and among-species 

patterns of covariation are examined (compare Figures 1.6 and 1.7). The failure to 

recognize that pleiotropy is not a prerequisite for among-species covariation has led some 
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to infer pleiotropic constraints when only among-species patterns have been analyzed 

(e.g., Jolly, 1970), as will be discussed below. 

Natural selection is not the only evolutionary mechanism that can produce 

significant covariation when measured among samples. Genetic drift can mimic the 

pattern produced by natural selection if “drift covariance” occurred (Armbruster and 

Schwaegerle, 1996). In this case, a pattern of among-sample covariation is the artifact of 

population structure, genetic drift, and phylogenetic history. As outlined in Chapter 2, the 

careful choice of samples for data collection and the use of appropriate analyses can limit 

the influence of drift covariance on observed levels of covariation both within and among 

species. 

 

Functional and Variational Modules in the Anthropoid Dentition 

Teeth are responsible for acquiring and processing food (Ungar, 2010). However, 

teeth do more than interact with food; among anthropoids, canines are rarely used in diet-

related functions, but are instead used in visual displays and as weapons in conflicts. 

Expectedly, their diversification has been strongly driven by sexual selection (e.g., 

Plavcan, 2001). In both the maxilla and mandible of the adult dentition of anthropoid 

primates, four classes of teeth are recognized: incisor, canine, premolar, and molar. 

Though distinctions in shape, size, and nonmetric morphology are observed within each 

class, each class is easily distinguishable from the others. Theories that explain the 

discreteness of tooth class (field theory, clone theory, etc.) have a long history (e.g., 

Butler, 1939; Dahlberg, 1945). More recent analyses have placed dental covariation 

within the framework of morphological integration and modularity and have compared 

patterns of covariation in the primate dentition to that of murine model organisms in  
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TABLE 1.1 Narrow sense heritability (h2) estimates for dental features. Sources are as 
follows: 1) Dempsey et al. (1995), 2) Townsend and Brown (1978), 3) Hughes et al. 

(2007), 4) Hlusko and Mahaney (2003), 5) Hlusko and Mahaney (2009), 6) Hlusko et al. 
(2004b), 7) Hlusko and Mahaney (2007a), 8) Hlusko et al. (2004a), 9) Koh et al. (2010), 

10) Hlusko et al. (2007b) 

 

Taxon Character h2 Source 
Homo sapiens  

(South Australian 
Twins) 

Mandibular and Maxillary 
Incisor MD and BL 

♂ = 0.84–0.89 
♀ = 0.81–0.91 1 

Homo sapiens  
(Australian Twins) I2 emergence time ♂ = 0.82–0.94 

♀ = 0.71–0.96 3 

Homo sapiens  
(Yuendumu 
Aborigines) 

Permanent tooth size (half-sib, 
full-sib, parent-offspring)  

MD = 0.63, 0.72, 
0.64 

BL = 0.66, 0.81, 
0.57 

2 

Papio sp. (SNPRC) Maxillary and Mandibular 
Cingular Remnant 

0.33–0.73 
x̄ = 0.49 4 

Papio sp. (SNPRC) I1 size (right, left) MD = 0.58, 0.65 
BL = 0.61, 0.45 5 

Papio sp. (SNPRC) I2 size (right, left) MD = 0.61, 0.45  
BL = 0.64, 0.60 5 

Papio sp. (SNPRC) P3 size (right, left) MD = 0.32, 0.24 
BL = 0.66, 0.29 5 

Papio sp. (SNPRC) P4 size (right, left) MD = 0.68, 0.48  
BL = 0.59, 0.61 5 

Papio sp. (SNPRC) M1 size (right, left) MD = 0.66, 0.75  
BL = 0.67, 0.72 5 

Papio sp. (SNPRC) M2 size (right, left) MD = 0.76, 0.85  
BL = 0.54, 0.68 5 

Papio sp. (SNPRC) M3 size(right, left) MD = 0.45, 0.23 
BL = 0.56, 0.23 5 

Papio sp. (SNPRC) M1–3 loph angles 0.32–0.43 6 

Papio sp. (SNPRC) M2 size MD = 0.67 
BL = 0.73 7 

Papio sp. (SNPRC) M2 area  
MD*BL = 0.85  
planimetric = 

0.83 
7 

Papio sp. (SNPRC) M2 enamel thickness (right, 
left) 0.44, 0.32 8 

Papio sp. (SNPRC) M1-3 hypocone area 0.11–0.54 9 
Papio sp. (SNPRC) M1-3 protocone area 0.15–0.42 9 
Papio sp. (SNPRC) M1-3 paracone area 0.09–0.55 9 
Papio sp. (SNPRC) M1-3 metacone area 0.10–0.59 9 
Papio sp. (SNPRC) M1–3 loph angles 0.24–0.68 6 
Papio sp. (SNPRC) M1–3 metaconid area 0.45–0.59 10 
Papio sp. (SNPRC) M1–3 entoconid area 0.29–0.44 10 
Papio sp. (SNPRC) M1–3 protoconid area 0.11–0.25 10 
Papio sp. (SNPRC) M1–3 hypoconid area 0.28–0.57 10 
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 Fig 1.8. Histogram of h2 estimates for 58 linear measurements of the cranium, derived 
from the from the Cayo Santiago Macaca mulatta sample (Cheverud, 1982). 
 

 

 

Fig. 1.9. Histogram of h2 estimates for 57 linear measurements of the ectocranium, 
derived from the Hallstatt, Austria skeletal collection (Martínez-Abadías et al., 2008).  
that variational modules do not exist in the dentition. Recent molecular work has shown  
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which odontogenesis has been studied extensively (Hlusko and Mahaney, 2009; Hlusko 

et al., 2010).   

Dental field theory and clone theory each suggest that teeth are meristic 

structures; that is, like vertebrae and ribs, they are serially homologous (e.g., Butler, 

1939, 1967; Lombardi, 1975). The premise of these theories is that within each class 

dental development is controlled by shared genes; however, an alternative perspective 

suggests that each tooth is genetically independent and that similarities in form arose 

because teeth that share functions independently converged on similar morphologies (see 

Butler, 1967). Field and clone theory would predict that dental classes are both functional 

and variational modules (sensu Wagner et al., 2007), while the alternative would suggest 

that variational modules do not exist in the dentition. Recent molecular work has shown 

that teeth are indeed meristic structures (e.g., Kangas et al., 2004) and that enamel knots 

(the site of future cusps) themselves form as a result of “repeated activation of the same 

molecular machinery” (i.e., developmental module) (Jernvall and Hungl, 2000: 183), 

indicating that the dentition is developmentally integrated. Below, the evidence for dental 

functional and variational modules is reviewed. 

 

Heritability of Dental Variation: It is an assumption of this study that phenotypic 

variance-covariance in dental characters, observed within species, reflects underlying 

genetic variance-covariance; dental variation must have high heritability. Narrow-sense 

heritability measures the relative effect of genotypic and environmental variance on the 

phenotypic variance of a trait. It is defined as h2 = σ2
G/σ2

P, where σ2
G is the additive 

genetic variance and σ2
P is the phenotypic variance. As h2 approaches 1, the effect of the 

environment approaches 0; therefore, for highly heritable characters (i.e., h2 close to 1), 

the influence of the environment on phenotypic variance is small.  
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Overall, estimates of h2 for dental characters in human and nonhuman primates 

are relatively high. In general, estimates of h2 for linear measures of dental size in Homo 

sapiens range from 0.6–0.8 (Townsend and Brown, 1978; Townsend et al., 2006), which 

is similar to h2 estimates for linear and areal dimensions of the dentition in SNPRC 

baboons (Table 1.1) (Hlusko et al., 2002; Hlusko and Mahaney, 2007b; Hlusko et al., 

2010). For 68 dimensions of the SNPRC baboon dentition, Hlusko et al. (2010) report an 

average h2 of 0.56 after the effects of age and sex are accounted for. The relatively high 

h2s observed for primate dentometric variation can be seen by contrasting them with 

those observed for craniometrics. For example, Cheverud (1982) estimated h2 for 58 

linear dimensions of the cranium in pedigreed Macaca mulatta at Cayo Santiago; in that 

sample, h2 estimates range from 0.04–0.89 with a mean of 0.31 (Figure 1.8). Martínez-

Abadías et al. (2009) estimated h2 for 58 linear dimensions of the cranium in a pedigreed 

sample of Austrian Homo sapiens and reported a range of 0.00–0.43 and a mean of 0.23 

(Figure 1.9). Even relative to other anatomical regions that have been frequent subjects 

for studies of integration and modularity (e.g. Cheverud, 1982; Cheverud, 1995; 

Ackermann, 2009; Marroig and Cheverud, 2010), the primate dentition is characterized 

by high h2s; in the two studies of primate cranial size heritability cited here, few h2s 

approach the values observed for linear and areal dimensions of the dentition. In fact, in 

the two studies combined, only 3 of 115 h2 estimates exceed 0.60 (Figures 1.8 and 1.9), a 

value that is frequently exceeded in estimates of tooth size in Homo sapiens and SNPRC 

Papio sp. (Table 1.1). 

Comparisons of h2 between studies and among populations must keep certain 

factors in mind. For example, there are a variety of ways that pedigree information is 

used to generate estimates of h2; estimates may be derived from regressions of 

phenotypic values of mother-offspring, father-offspring, midparent-offspring,  



  30 

TABLE 1.2. Summary statistics for M2 length and breadth in the SNPRC Papio and wild 
shot Papio anubis. Data are from Hlusko and Mahaney (2007a). 

 
  

 
LM2    

 
RM2  

 
 MD Mesial 

Breadth 
Distal 

Breadth  MD Mesial 
Breadth 

Distal 
Breadth 

 n 91 89 88 94 88 88 

Wild Papio 
anubis 

x̄ 12.25 11.47 10.40 12.22 11.38 10.38 
s 0.84 0.75 0.69 0.87 0.79 0.71 

 CV 6.86 6.54 6.63 7.12 6.94 6.84 
 
 n 649 647 637 643 638 623 

Total 
Captive 
SNPRC 

x̄ 12.51 10.12 9.13 12.43 10.09 9.07 

s 0.84 0.87 0.832 0.84 0.87 0.83 
 CV 6.71 8.60 9.11 6.76 8.62 9.15 
 
 n 60 57 57 59 59 58 

SNPRC 
Founders  

x̄ 12.13 9.60 8.70 12.09 9.57 8.76 
s 0.57 0.59 0.58 0.57 0.52 0.52 

 CV 4.70 6.15 6.67 4.71 5.43 5.94 
 
 n 589 590 580 584 579 565 

SNPRC 
Descendents  x̄ 12.55 10.17 9.17  12.46 10.14 9.10 

 

monozygotic twins, dizygotic twins, full sibling, half sibling, etc., which produces 

estimates that are not necessarily equivalent (Table 1.1). In addition to these simple 

pedigree estimates, complex pedigrees that include distantly related kin are also used to 

estimate h2. It is from more complex pedigrees that h2 estimates have been derived for 

pedigreed SNPRC Papio sp. (e.g., Hlusko et al., 2004a, 2004b, 2006; Hlusko and 

Maheney, 2009). 

Though the study of SNPRC baboons suggests high h2s for the anthropoid 

dentition, some have expressed doubts that h2 estimates in laboratory populations reflect 

their values in wild populations. Because founding laboratory populations tend to be 

quite small, their founding likely involves a loss of genetic variation due to genetic drift  
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TABLE 1.3. Summary statistics for M2 length and breadth in SNPRC Papio and wild shot 
Papio anubis. Data are from Hlusko and Mahaney (2007). 

 
  

 
LM2    

 
RM2  

 
 MD Mesial 

Breadth 
Distal 

Breadth  MD Mesial 
Breadth 

Distal 
Breadth 

 n 87 86 85 87 89 86 

Wild Papio 
anubis 

x̄ 12.12 10.09 9.93 12.20 10.09 9.86 
s 0.82 0.74 0.74 0.83 0.7 0.65 

 CV 6.77 7.33 7.45 6.79 6.94 6.59 
 
 n 590 581 572 593 585 575 

Total 
Captive 
SNPRC 

x̄ 12.29 9.35 8.79 12.30 9.35 8.79 

s 0.82 0.77 0.83 0.79 0.74 0.77 
 CV 6.67 8.24 9.44 6.40 7.91 8.76 
 
 n 52 51 51 54 54 53 

SNPRC 
Founders  

x̄ 11.96 8.94 8.38 12.00 9.04 8.45 
s 0.54 0.49 0.54 0.54 0.51 0.42 

 CV 4.52 5.48 6.44 4.50 5.64 4.97 
 
 n 538 530 521 539 531 522 

SNPRC 
Descendents  x̄ 12.32 9.39 8.83  12.38 9.38 8.82 

 

 

(founder effect), which should lower h2 relative to wild populations. Though the founder 

effect may lower h2, admixture of separate biological populations and a reduction of 

environmental variance are predicted to elevate h2 in the laboratory setting (Weigensberg 

and Roff, 1996). These concerns can be illustrated in the SNPRC baboon sample. Hlusko 

and Maheney (2007a) reported summary statistics for 12 measurements of the M2 and M2 

in the SNPRC founding population, the total SNPRC sample, and a wild-shot sample of 

Papio anubis. For 11 of 12 measures, the SNPRC founding population has the lowest 

standard deviation (s) and coefficient of variation (CV) (Tables 1.2 and 1.3), likely 

indicating a founder effect. The CVs for the total sample (which includes the founding 
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individuals) are similar to those of the wild-shot Papio anubis sample, suggesting an 

elevation of phenotypic variance subsequent to the SNPRC population’s founding. 

Admixture is also evident in the SNPRC baboons; though the founding sample comprised 

mostly Papio anubis individuals, some Papio hamadryas and Papio cynocephalus 

individuals were founders and the descendents include hybrids of these biologically 

distinct populations (Hlusko and Mahaney, 2007a, 2009). Tooth size has also evolved 

over time in the SNPRC baboon sample, as all 12 dimensions of the second molars have 

larger means (x̄) in the descendent sample than in the founding sample (Tables 1.2 and 

1.3) 

To address the correspondence of h2 estimates in laboratory and wild 

populations, Weigensberg and Roff (1996) performed a meta-analysis and found that in 

the populations they studied h2 estimates are not significantly different for the same 

populations in wild and captive settings. Contrary to their expectations, they found that h2 

estimates in wild populations are usually higher than in laboratory populations. It is an 

assumption of this study that h2s are high for the dental characters; however, without 

estimating h2 in all wild populations included in this analysis, it is impossible to know if 

they are similar to those observed in SNPRC Papio sp. or Homo sapiens. 

 

Acquisition (Incisal) Module: In anthropoids, the incisors primarily function to acquire 

food. Examples of acquisition behaviors include fracturing items into smaller fragments, 

which can then be introduced into the mouth for further processing, isolating edible from 

inedible items, cropping and stripping leaves from branches, gouging trees to release 

exudates, peeling fruits, separating the fleshy endocarp of fruits from the dense seeds 

within (Ungar, 2010; Ungar and Lucas, 2010) and, rarely, to “rip and tear skin from the 

cadaver,” as observed in Pan troglodytes (Pickford, 2005: 28).  
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TABLE 1.4: Coefficients of Determination (r2) among dimensions of maxillary incisor 
size (Hlusko and Mahaney, 2009). 

 
 

I1MD I2LL I2MD 

SNPRC Papio 
Genetic 

(n = 358–576) 

I1LL 0.10 0.80 0.74 

I1MD — 0.10 0.20 

I2LL — 0.66 

I1MD I2LL I2MD 

SNPRC Papio 
Phenotypic 

(n = 151–487) 

I1LL 0.05 0.28 0.16 

I1MD — 0.04 0.07 

I2LL — 0.18 
 

I1MD I2LL I2MD 

wild-shot 
Papio anubis 
(n = 113–132) 

I1LL 0.45 0.51 0.34 

I1MD — 0.34 0.31 

I2LL — 0.31 

I1MD I2LL I2MD 

wild-shot 
Presbytis 
(n = 25) 

I1LL -0.26 0.65 -0.31 

I1MD — -0.39 0.72 

I2LL — -0.39 
 

 

Anthropoid taxa vary in their incisal use and not all taxa frequently perform all 

behaviors listed in the previous paragraph. Among species, there is considerable diversity 

in incisor size (in absolute size, relative to body size, relative to the size of postcanine 

dentition, and even relative to the size of one another) and shape (ranging from broad and 

spatulate to narrow and styliform), which is believed to reflect “adaptations to meet the 

mechanical demands of food acquisition” (Ungar and Lucas, 2010: 519; Ang et al. 2006; 

Agrawal et al. 2008; Anapol and Lee, 1994; Eaglen, 1984; Norconk et al., 2009; Ungar, 

2010). An example illustrates the relationship between incisal form and function. Among 
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closely related anthropoid species, the length of the incisal row has been shown to covary 

positively with body size; in this general scaling relationship, positive residuals (i.e., 

larger than expected incisor size) are associated with frugivorous diets, which require 

frequent incisal preparation, and negative residuals are associated with folivorous diets 

(Hylander 1975; Ungar, 1994; Ungar, 2010; Ungar and Lucas, 2010; Eaglen, 1984; 

Ungar, 1996). Among anthropoids, some of the most morphologically derived and 

functionally specialized incisors are seen in pitheciines (Pithecia, Chiropotes, Cacajao), 

which have tall, narrow and procumbent incisors (Anapol and Lee, 1994; Kinzey, 1992; 

Rosenberger, 1992; Rosenberger and Strier, 1989) that are used in piercing fruit husks 

and scraping mesocarp from hard nuts, and also in prying resistant seeds from fruits 

(Kinzey and Norconk, 1990; Anapol and Lee, 1994).  

While it is evident that incisors form a functional module and that selection has 

shaped them to acquire food, there is far less evidence that they form a variational 

module and that pleiotropy is a strong constraint on their evolution. Hlusko and Mahaney 

(2009) investigated modularity in the maxillary dentition of the SNPRC baboon sample 

and wild-shot samples of Papio anubis and Presbytis (species unspecified). As regards 

incisor size covariation, their results are not easily interpretable (Table 1.4). Though a 

Mantel test of correlation matrix similarity for the entire dental set (incisors + postcanine) 

indicated pattern similarity for all samples, this is not evident when incisor covariation is 

considered in isolation. For example, the SNPRC genetic correlation matrix indicates that 

the labiolingual (LL) and mesiodistal (MD) dimensions are essentially independent for 

the I1 (r2 = 0.10 for I1MD-I1LL) but not so for the I2 (r2 = 0.66 for I2MD-I2LL); moreover, 

the LL breadths of the maxillary incisors show high magnitude genetic covariation (r2 = 

0.80 for I1LL-I2LL) but the MD lengths do not (r2 = 0.20 for I1MD-I2MD), suggesting 

that levels of covariation are drastically different for the LL and MD dimensions between 
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incisors. For the SNPRC genetic correlations, the second highest level of covariation was 

observed for I1LL-I2MD (r2 = 0.74), suggesting a substantially tighter pleiotropic linkage 

between I1LL and I2MD than between I1LL and I1MD. In contrast, the SNPRC 

phenotypic correlation matrix indicates weak covariation among all incisal pairs (the 

highest, r2 = 0.28, is observed for I1LL-I2LL); the I1LL-I2MD r2 is 0.58 less in the SNPRC 

phenotypic matrix than in the genetic matrix, the I1LL-I2LL r2 is 0.52 less, and the I2MD-

I2LL r2 is 0.48 less (Table 1.4; note that sample sizes vary between the samples being 

compared). The wild-shot Papio anubis data set differs from both SNPRC baboon 

correlation matrices in that the MD length and LL breadth of the I1 highly covary (r2 = 

0.45), while covariation between LL breadths is only slightly higher (r2 = 0.51). For wild-

shot Papio anubis, the second highest magnitude of covariation is between I1MD-I1LL; 

however, in the SNPRC matrices, the magnitude of covariation between the LL breadths 

is far greater than between I1MD and I1LL. The wild-shot Presbytis sample is the most 

distinctive of all; the LL breadths and the MD lengths of the maxillary incisors show 

similarly strong magnitudes of covariation (r2 = 0.65 and 0.72, respectively), but all 

comparisons between MD length and LL breadth show moderate levels of negative 

covariation (between r2 = -0.26 and -0.39; the negative sign indicates that the correlation 

coefficient (r) is negative). About the only commonality among the four correlation 

matrices is that the LL breadths of the maxillary incisors are typically the most highly 

covarying character pair. 

 While support for strong covariation among incisal pairs within species is 

ambiguous; in support of the hypothesis of dental modularity, Hlusko and Mahaney 

(2009) found that incisor size and postcanine size do not covary strongly. For the SNPRC 

genetic correlations, out of 52 correlations between incisor and postcanine size, the 

highest observed value is r2 = 0.64 (for I1LL-P3MD), which is probably aberrantly high, 
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as the second highest value is only r2 = 0.21 (for I1LL-M1MD). For the SNPRC 

phenotypic correlations, the highest observed value is r2 = 0.06 (for I1LL-P3MD), for the 

wild-shot Papio anubis sample, levels of covariation were typically higher, with 10 out of 

52 correlations having an r2 ≥ 0.40 (the highest is r2 = 0.49 for I2MD-M3 distal breadth), 

and for the wild-shot Presbytis sample the highest observed value was r2 = 0.29 (for 

I1MD-M1 mesial breadth). The low level of size covariance among incisors and 

postcanine teeth is consistent with the expression domains of genes involved in dental 

development. In mice, the genes Msx1 and Msx2 are expressed in the tissues that produce 

incisors, while Dlx1, Dlx2, and Barx1 are expressed in the tissues that produce molars. 

The genes Lhx6 and Lhx7 are expressed in both regions (Hlusko et al., 2010). 

 In Hlusko and Mahaney (2009), all genetic correlations between the incisors and 

postcanine teeth are positive; however, in a subsequent study of the SNPRC baboons, 

Hlusko et al. (2010) found that some dimensions of incisor and postcanine size are 

negatively correlated. These negative correlations are spread among both maxillary and 

mandibular dental size. For the mandible, 24 of 53 significant genetic correlations are 

negative for the left side and 19 of 53 significant correlations are negative for the right 

side; for the maxilla, 14 of 53 significant correlations are negative for the left side and 22 

of 55 significant correlations are significant for the right side. They state that the 

“evolutionary implications could be quite interesting and important” (Hlusko et al., 2010: 

46); specifically, they cite the among-species differences in Australopithecus and 

Paranthropus tooth size, relative to extant apes, that indicate an enlargement of the 

postcanine dentition and concurrent diminution of the anterior dentition. They are 

implicating constraints, imposed by the genetic architecture, in the evolution of hominin 

dental size. Such a negative genetic correlation has been predicted to exist by McCollum 

and Sharpe (2001), as will be discussed later. 
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 While the evidence for the magnitude and direction of incisor size covariation is 

not consistent among cercopithecid species (Hlusko and Mahaney, 2009), it suggests 

limited support for the hypothesis that the incisors are a variational module; however, 

there is little evidence that the incisors have coevolved as a unit. To date, no study has 

examined the coevolution of incisor size or the extent to which incisor diversification in 

either size or shape has followed gmax. A cursory examination among species suggests 

that the incisors are not strongly constrained. Kelly et al. (1995) report mean maxillary 

incisor size for Pongo abelii (I1MD: 13.9 mm; I2MD: 7.7 mm: I1MD/I2MD: 1.78), Pongo 

pygmaeus (I1MD: 13.7 mm; I2MD: 8.8 mm; I1MD/I2MD: 1.55), Gorilla gorilla (I1MD: 

12.5 mm; I2MD: 9.1mm; I1MD/I2MD: 1.38), and Pan troglodytes (I1MD: 11.5 mm; 

I2MD: 9.0 mm; I1MD/I2MD: 1.29). Compared to Pongo, the Gorilla gorilla I1MD is more 

than 1.0 mm less than either Pongo species, but its I2MD is larger (1.4 mm greater than 

Pongo abelii and 0.3 mm greater than Pongo pygmaeus). Such a pattern of difference 

among taxa would only be expected if the sizes of the maxillary incisors are not strongly 

linked pleiotropically or if the sizes of the teeth have a negative correlation. The same is 

true to a more exaggerated extent when maxillary incisor size is compared between Pan 

troglodytes and Pongo; in this comparison, the Pan I1MD is more than 2.0 mm smaller 

than either Pongo species but its I2MD mean is larger (1.3 mm larger than Pongo abelii 

and 0.2 mm larger than Pongo pygmaeus). Not surprisingly, Pongo incisor size 

heteromorphy is far greater than in Pan. If only the 4 hominid taxa mentioned are 

considered, then an r2 = -0.48 is observed for the MD lengths of the maxillary incisors, 

which indicates a negative correlation (i.e., as the central incisor becomes larger, the 

lateral becomes smaller and vice versa). This seems unlikely when incisor size in 

Miocene hominoids and extant hylobatids are also considered, as many of these taxa have 

both smaller I1MD and I2MD lengths than any of the extant hominids (see data in Kelley  
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TABLE 1.5. Coefficients of Determination (r2s) among some dimensions of maxillary 
postcanine size (from Hlusko and Mahaney (2009)). 

 
 P4MD- 

M1MD 
M1MD- 
M2MD 

M2MD- 
M3MD 

P4BL- 
M1BL 

M1BL- 
M2BL 

M2BL- 
M3BL 

SNPRC Papio 
Genetic 

(n = 358–576) 
 

0.32 0.84 0.90 0.28 0.75 0.84 

SNPRC Papio 
Phenotypic 

(n = 151–487) 
 

0.16 0.49 0.23 0.18 0.34 0.22 

wild-shot 
Papio anubis 
(n = 113–132) 

 

0.24 0.35 0.37 0.25 0.70 0.72 

wild-shot 
Presbytis 
 (n = 25) 

 

0.37 0.74 0.53 0.71 0.80 0.88 

 

 

et al., 1995; personal observations). The negative correlation for hominid MD length is 

not predicted from the SNPRC baboon correlation matrices (Table 1.4) (Hlusko and 

Mahaney, 2009; Hlusko et al., 2010). Instead of a negative genetic correlation, it is more 

likely that the MD lengths of the maxillary incisors are not tightly constrained by 

pleiotropy and are capable of quite divergent evolutionary trajectories. 

 

Processing (Postcanine) Module: After food items are acquired, they are processed 

(masticated) by the postcanine dentition (premolars and molars). At the most basic level, 

the postcanine teeth fracture food into smaller pieces by “compression as the lowers 

approach opposing uppers with food items between them” (Ungar, 2010: 155). Food 

processing is intimately linked to the maxillary and mandibular postcanine teeth 

functioning as a unit.  
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The relationship between form and function has been studied extensively for the 

postcanine teeth (especially so for molars). Among species, molar size has been related to 

fracture mechanics of the food items masticated. Lucas (2004) suggested that, in order to 

increase the probability of fracture, smaller food particles select for larger tooth size, as 

do foods that form thin sheets. In addition to tooth size, substantial interspecific variation 

in cusp relief and shearing crest development has been related to variation in the material  

properties of the foods most frequently masticated, so that primates that consume “hard, 

brittle foods with stress-limited defenses” have low blunt cusped teeth, while primates 

that routinely consume “tough leaves or other plant parts, or insects with tough 

exoskeletons, typically have long...shearing crests” (Kay, 1977; Ungar 1998; Kay and 

Hylander, 1978; Kay and Covert, 1984; Strait 1993; Ungar and Lucas, 2010: 521). 

Selection has clearly driven the evolution of postcanine morphology. 

As compared to the incisors, there is more evidence to indicate that the 

postcanine dentition forms a variational module; however, even here the extent to which 

patterns of pleiotropy (G-matrix and gmax) are shared among species and the extent to 

which these parameters influence among-species diversification are unknown. For 

cercopithecid primates, Hlusko and Mahaney (2009) found that maxillary molars have 

high covariation among many dimensions (Table 1.5); in fact, they indicated that some 

dimensions of the maxillary postcanine dentition are characterized by complete 

pleiotropy in the SNPRC genetic correlation matrix (i.e., the observed rG is not 

significantly different from 1). They also found that premolar size covaries with molar 

size, but not nearly as strongly as molars covary in size with one another (Table 1.5), 

proposing that premolars and molars are “quasi-independent” modules with overlapping 

pleiotropic effects, which implies that not all variance is shared between molars and 

premolars. In humans, several studies have suggested that premolars form an independent 
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unit (Dahlberg, 1945; Suarez and Williams, 1973; Townsend and Brown, 1981; Scott and 

Turner, 1997; Stefan, 2006), which supports the conclusion of Hlusko and Mahaney 

(2009). That premolar size is partially independent from molar size may be important for 

interpreting the evolution of premolar molarization and the enlargement of the premolars 

in some hominin lineages (e.g., Suwa, 1988; Kimbel and Delezene, 2009). 

McCollum and Sharpe (2001) hypothesized that the sizes of the postcanine teeth 

and the anterior teeth (incisors and canine) should have a negative genetic correlation due 

to competition among the precursor cells of each tooth type for limited space in the jaw. 

According to this model, for hominins of the genera Australopithecus and Paranthropus, 

the selective advantage of having relatively large postcanine teeth outweighed the 

advantage of having relatively large canines and incisors; therefore, as a result of 

selection driving an enlargement of postcanine tooth size, the anterior teeth were reduced 

in size. In SNPRC baboons, as stated, Hlusko et al. (2010) have provided the first 

empirical support for this developmental relationship. Outside of the pedigreed baboon 

population, there is no evidence for negative within-species covariation between the 

anterior and posterior teeth and there is no examination of the predicted effects of such a 

negative correlation on the among species relationship between anterior and posterior 

tooth size. These hypothesized within- and among-species relationships can be easily 

tested by comparing the within- and among-species patterns of covariation in wild 

primate populations. 

 

Canine Honing Module: Unlike incisors and postcanine teeth, the elements of the canine 

honing complex (mandibular canine, maxillary canine, mesial mandibular premolar) 

mostly perform nondietary functions (pitheciines are a notable exception) (Rosenberger, 

1992; Norconk, 2007). The complex is present in all extant nonhuman anthropoids  
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Fig. 1.10. Line drawings of mandibular canines and honing premolars in males and 
females of four anthropoid species. For each species the male is depicted above the 
female. A=Pan troglodytes, B=Mandrillus leucophaeus, C=Alouatta seniculus, 
D=Macaca mulatta. Figure is adapted from Plavcan (2001). 
 
 
 
 

 

 

Fig. 1.11. The canine honing complex of Cercocebus torquatus. 
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(Ryan, 1979; Greenfield and Washburn 1991, 1992) and is evident in late Eocene taxa 

from the Fayum, such as the stem catarrhine Catopithecus and the parapithecids Apidium 

and Parapithecus, which represent the earliest evidence for canine honing in anthropoids  

(geologically younger Fayum catarrhines, like Aegyptopithecus, Oligopithecus, and 

Propliopithecus also had canine honing complexes) (Simons, 1989, 1992; Greenfield, 

1995; Gunnell and Miller, 2001). It is unknown if the common ancestor of platyrrhines 

and catarrhines possessed a honing complex but its presence in parapithecids and stem 

catarrhines suggests that this is likely. 

Typically, in extant nonhuman anthropoids the maxillary and mandibular canines 

project beyond the occlusal plane of the postcanine dentition (Figures 1.10 and 1.11); 

however, the degree of projection varies between sexes and among species (discussed 

later). Large honing canines are used in visual threat displays and also as weapons during 

intraspecific conflicts, usually in polygynous social settings (e.g., Walker, 1984; McGraw 

et al., 2002; Leigh et al., 2008). Relative canine size covaries with the intensity and 

amount of agonistic intrasexual behavior within a species; species with high intensity and 

frequency of agonism are characterized by larger relative canine size than species with 

less frequent and less intense agonism (Kay et al., 1988; Plavcan, 1993, 1998, 2001; 

Thoren et al., 2006). This pattern holds for both males and females; however, since males 

typically experience more frequent and intense encounters, predictably, they normally 

possess larger canines than do conspecific females (Figure 1.10). This model (e.g., 

Plavcan et al., 2005; Plavcan, 1997, 2001) even explains the nearly monomorphic large 

canines of male and female hylobatids; Plavcan and van Schaik (1997: 362) state, 

“hylobatids aggressively defend territories from both male and female conspecifics, and 

show consistent ritual displays consistent with agonistic intrasexual competition in both 
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sexes.” Thus, sexual selection explains both interspecific differences in relative canine 

size and canine size mono-/dimorphism within species. 

Further evidence for the role of sexual selection on canine size is provided by an 

ontogenetic study of maxillary canine height in mandrills, Mandrillus sphinx, by Leigh et 

al. (2008). They found that male mandrill reproductive fitness is intimately linked to the 

height of the maxillary canine. Males that successfully sired offspring had taller canines 

than nonsires and as the canine wore down during a male’s lifetime his reproductive 

fitness also decreased. In their sample, 94% of offspring were sired by males with canine 

heights greater than 2/3 of maximum height. They suggested that the timing of the 

eruption of the maxillary canine is closely linked to the period of maximum reproductive 

potential and that, due to attrition of the canine’s height, the canine is only useful as a 

weapon in intrasexual conflicts for a short period of the male’s lifetime (about 4 years of 

a 20-year lifespan). 

In addition to crown height, other aspects of the complex suggest that selection 

has favored the use of the canines as weapons. For example, primate canine crowns are as 

resistant to bending stresses as are carnivore canines, perhaps an adaptation to resist 

breakage during conflicts involving the canines (Plavcan and Ruff, 2008). Additionally, 

as it slides against the labial face of the maxillary canine during occlusion, the 

mandibular canine is honed along its distal face. At the same time, occlusion between the 

distolingual surface of the maxillary canine and the mesiobuccal surface of the mesial-

most mandibular premolar (P2 in platyrrhines, P3 in catarrhines) hones the maxillary 

canine, sharpening the distal crest from its apex towards the cervix of the tooth (Figure 

1.11; Walker, 1984). It seems likely that sharpening the canines helps to weaponize them 

(Walker, 1984). 



  44 

 

Fig. 1.12. Mandibular premolar heteromorphy in Pan. Top, occlusal view, and bottom, 
buccal view of canine, P3, and P4. A is the protoconid of the P4, B is the metaconid of the 
P4, C is the protoconid of the P3, and D is the broad mesiobuccal face of the P3, which is 
where honing occurs. The P3 is derived for its functional role as a honing device and it is 
the accumulation of honing related features that creates premolar heteromorphy. 

 

 

Maxillary canine honing does not occur because of incidental contact; the honing 

premolar, be it P3 or P2, is derived to function as a honing device and is morphologically 

distinct from that of more distal premolars, which Greenfield and Washburn (1992) 

describe as “premolar heteromorphy.” Generally, the honing premolar is unicuspid and 

the single cusp, the protoconid, is taller than on the more distal premolar(s) (Figure 1.12). 

Unlike more distal premolars, which typically have a straight enamel-dentine junction 

(i.e., cervical margin), the honing premolar may have an enamel extension that covers a 

portion of the mesiobuccal root (this is especially true of catarrhines). The tall, centrally 

placed protoconid, elongated mesial face, and inferior projection of enamel create a broad 
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sloping surface that occludes with and hones the maxillary canine (Figure 1.12). To 

match their taller canines, males typically have a longer honing surface than do females 

(Figure 1.10). And, among species, the size of this surface varies in extent; among 

catarrhines, the honing surface is the most expansive in cercopithecids and is less 

exaggerated in hominoids (Figure 1.10). In contrast to the honing premolar, nonhoning 

mandibular premolars are typically bicuspid (i.e., have well developed metaconid that is 

more nearly equal in height and area to the protoconid) and lack the mesial elongation 

and mesiobuccal enamel extension. Within platyrrhines and hominoids, heteromorphy is 

evident; however, it is most pronounced in cercopithecids (Figures 1.10, 1.11, 1.12) 

(Greenfield and Washburn, 1992). 

The strong evidence that canine size varies among species as a result of sexual 

selection and the evidence for morphological specialization within the complex suggest 

that the canine honing complex, a functional module, should form a pleiotropically linked 

variational module. Few studies of covariation within species have examined this 

hypothesis. When analyses have been performed within species, they have mostly 

focused on canine basal areas (e.g., Cochard, 1981; Scott, 2010) and not their heights. 

Cochard (1981) examined correlations among the LL breadths and MD lengths of all 

teeth in Colobus badius. For both males and females, he found moderate levels of 

covariation for canine basal dimensions and all dimensions of incisor and postcanine size. 

Within each arch, the female range is r2 = 0.00 (C1MD-I1MD) to r2 = 0.46 (C1MD-P4MD) 

and the average level of covariation between the canines and all other dental dimensions 

is r2 = 0.19. For males the range is r2 = 0.03 (C1LL-I2LL and C1MD-M3MD) to r2 = 0.48 

(C1LL-M3BL) and the average level of covariation between the canines and all other 

dental dimensions is r2 = 0.15. Between the maxillary and mandibular canine basal sizes, 

Cochard found low to moderate levels of covariation (r2 = 0.35 for ♂C1LL-C1LL, r2 =   
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Fig. 1.13. Greenfield (1992) and Greenfield and Washburn (1992) measured projected 
canine height as the distance between line b and point c, point d is the paracone of the 
M1. Figure adapted from Greenfield and Washburn (1991, 1992). 
 

 

 

Fig. 1.14. Projected canine height and premolar honing surface length among male 
anthropoids (r2 = 0.88; p <0.0001). Data are taken from Greenfield (1992) and Greenfield 
and Washburn (1992). 
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0.24 for ♀C1LL-C1LL, r2 = 0.05 for ♂C1MD-C1MD, and r2 = 0.13 for ♀C1MD-C1MD) 

and no significant differences in the magnitude of covariation between males and 

females. Cochard’s study suggests that the pattern of covariation is similar in males and 

females, that not all dimensions of the canines are tightly linked, and that the sizes of the 

canines positively covary with other dental elements, though generally at a low absolute 

value. However, Cochard’s study is incomplete, as canine heights were not investigated, 

the honing premolar was not included in his analysis because of measurement error, and 

only correlations between homologous measures were reported; levels of covariation 

between the LL and MD dimensions of the canines were not reported. 

Additional evidence that the canines share at least some overlapping pleiotropic 

effects with adjacent teeth is provided by Garn et al. (1966), who found among 

anthropoids that teeth adjacent to the canines (I2 and mesial premolar) express higher 

indices of dimorphism (male mean/female mean) than nonadjacent teeth. Similarly, 

Plavcan (1990) found indices of dimorphism were elevated for the honing premolar over 

other noncanine teeth. This pattern can be explained if the canine and honing premolar 

are pleiotropically linked so that both canine height and honing premolar size are larger 

in males than females. 

Among species, Greenfield and Washburn (1992; Greenfield, 1992) assessed 

patterns of correlation between canines and honing premolars in a broad sample of 

anthropoid primates. They found a significant correlation between male canine projection 

(Figures 1.13 and 1.14) (they did not measure crown height) and the length of the 

mandibular premolar honing surface; a statistically significant correlation did not 

characterize females. Greenfield (1992) interpreted this difference between males and 

females to indicate the selective importance of the honing complex in males and its 

relative unimportance in females, which supported his dual selection hypothesis for 



  48 

canine morphology in anthropoid primates (e.g., Greenfield, 1992; 1993; Plavcan and 

Kelley, 1996). Plavcan (1993) questioned the functional relevance of their metric; though 

designed to capture the “weapon-related” portion of the canine’s height, canine projection 

does not even include the entire height of the honed portion of the maxillary canine, 

which extends above the occlusal plane (personal observation). Given that only a portion 

of the canine’s height is represented by its projection beyond the occlusal plane and that 

females typically have shorter canines than conspecific males, canine projection captures 

a smaller fraction of total canine height in females than in males. As a result, it is possible 

that Greenfield’s metric fails to capture the coevolutionary behavior of female canine 

height and premolar honing surface length.  

That males and females may differ in a pattern of character coevolution between 

maxillary canine height and premolar honing surface length raises questions about the 

existence of pleiotropy among characters of the honing complex. As reviewed above, 

characters can coevolve in the absence of pleiotropy if natural selection independently 

favors change in each character. If the among-species pattern is different for males and 

females, then it is possible that maxillary canine height and the size of the premolar 

honing surface are not pleiotropically linked; in males, the honing premolar may 

independently track changes in canine height to maintain functional honing at different 

canine sizes (as in Figure 1.7). Alternatively, sex-specific factors may create genetic 

correlations in the male honing complex that do not exist in the female honing complex. 

This hypothesis can be tested if both the within- and among-species patterns of 

covariation are estimated for both males and females, which is the strategy employed in 

this study. 

In early hominins, the maxillary canine was substantially reduced in height 

before the mandibular canine height was reduced (e.g., Suwa et al., 2009), the height of 
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the canines were reduced before the sizes of the canine bases were reduced (e.g., Suwa et 

al., 2009; Ward et al., 2010), and the P3 retained many relicts of its honing past long after 

the function of canine honing was lost (e.g., the tooth is unicuspid,  has a principal cusp 

that is taller than on the distal premolar, and the main axis is often set obliquely to the 

postcanine axis, so that premolar heteromorphy is pronounced in early hominins) (Suwa 

et al., 2009; Delezene and Kimbel, 2011). The pattern of changes that resulted in the 

morphological and functional transformation of the complex did not happen in a 

coordinated fashion. If characters of the honing complex are not linked pleiotropically, 

then change into any dimension of phenotypic space is genetically unconstrained. If 

pleiotropy does exist among the characters, then strong selection, especially on maxillary 

canine height, would be necessary to produce the hominin pattern of character state 

change. Studying patterns of character change in extant anthropoids in relation to the 

pattern and strength of constraint will reveal how unique the hominin pattern is. 

 Pleiotropy has been implicated in the reduction of hominin canine size. Such 

models rely on a hypothesized developmental trade-off between the sizes of the anterior 

and posterior teeth (e.g., Jolly, 1970; McCollum and Sharpe, 2001). In some lineages 

(e.g., Plio-Pleiostocene Theropithecus and the hominins Australopithecus and 

Paranthropus), the posterior teeth became megadont, while the anterior teeth (both 

incisors and canines) reduced in size. If these models are correct, then the canines should 

share positive covariation with the incisors and negative covariation with the postcanine 

teeth because “it is conceivable that increasing the size of any one subunit may occur at 

the expense of others… the postcanine dentition may have been developmentally 

correlated with reduction of the canine” (McCollum and Sharpe, 2001: 487). There is 

limited empirical support for negative covariance between incisors and postcanine teeth 

(reviewed above) and none for the canines and postcanine teeth.  
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Proposals for broad scale genetic correlations among the masticatory complex, 

such as McCollum and Sharpe (2001), address the concern that many of the supposed 

“independent” character changes that occurred during hominin evolution, and that are 

used to reconstruct cladistic relationships, are actually part of single functional and 

developmental module (e.g., Strait and Grine, 1998; Strait, 2001; McCollum and Sharpe, 

2001; Lockwood, 2007; Strait et al., 2007). While selective tradeoffs among tooth sizes 

may have happened in certain cases, it is not necessary for genetic correlations to exist 

for such a pattern to occur (e.g., Figure 1.7). That characters that are genetically 

independent can change state simultaneously has been recognized by others (e.g., 

Lockwood, 2007). The extent of covariation within and between functional units of the 

dentition, and their impact on dental diversification are easily quantified. 

 

Hypotheses 

 By combining empirical evidence from studies of genetic correlations among 

teeth (e.g., Hlusko and Mahaney, 2009; Hlusko et al., 2010), theoretical predictions of 

integration and modularity (e.g., Wagner et al., 2007), and the functional relationships 

among teeth, several hypotheses are addressed. The findings will be used to inform a 

discussion about the role of constraints and selection on anthropoid dental evolution, 

especially as it regards hominin dental evolution and mosaicism in the evolution of the 

hominin “honing” complex. Below, the hypotheses that are addressed in this study are 

enumerated; all statistical tests are described in Chapter 2. 

It is hypothesized that the functional modules of the dentition are variational 

modules. The proposed modules are: an acquisition module (incisors), a social 

signaling and honing module (canines and mesial portion of honing premolar), and 

a processing module (molars, nonhoning premolars). Both within and among 
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species, phenotypic covariation is predicted to be high within each module and low 

between modules. Therefore, there are two criteria that can be used to reject the 

hypothesis of modularity: 1) low magnitude covariation among characters within a 

hypothesized module, or 2) similar magnitudes of covariation between characters in 

different modules.  

Hlusko and Mahaney (2009) reported that premolars and molars covary in size, 

but not as strongly as they covary with one another. They suggested that the variation in 

magnitude of genetic covariation between premolar and molar size indicated that 

premolars have unique pleiotropic connections that are not shared with molars. If true, 

then premolars should share significant partial covariation when molar size is held 

constant. This hypothesis will be rejected if premolars do not share partial covariation. 

This study focuses on understanding the relationship between among- and 

within-species patterns of covariation. Given that the functions and the dental 

elements performing the functions are common among species, then it is predicted 

that patterns of variance-covariance (reflected by similar pmaxs and P-matrices) will 

be stable among species. To test the commonality of patterns of correlation, the Mantel 

test is used. The null hypothesis for this test is no similarity, so a rejection of the null 

hypothesis indicates that correlation matrices are similar among species. To test the 

commonality of the P-matrix among species, the random skewers test is used. The null 

hypothesis for this test is also no similarity, so a rejection of the null hypothesis indicates 

that P-matrices are similar. To test the commonality of lines of least evolutionary 

resistance (estimated as pmax), angles (Ɵ) between pmaxs are calculated among species. 

The null hypothesis for this test is Ɵ = 0, so a rejection of the null hypothesis indicates 

that pmaxs are not similar. 
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If dental diversification has been strongly channeled by genetic constraints, 

then among species diversification (Δz) will have occurred along pmax. This 

hypothesis is tested by assessing the deviations of Δz, the vector of mean differences 

between samples, from species estimates of pmax. The null hypothesis for this test is Ɵ = 

0; a rejection of the null hypothesis indicates that among species differences did not 

accumulate along pmax. 

The ability of characters to evolve independently of one another is proportional 

to the strength of constraint among them (Marroig et al., 2009). Therefore, those 

characters with the highest magnitude of within-species covariation are predicted to 

be the most constrained among species; that is, the magnitude of covariation within 

species should be reflected in the magnitude of covariation among species. This 

hypothesis is informally tested by comparing magnitudes of phenotypic covariation 

within species to those derived among species from independent contrasts. 

Jolly (1970) and McCollum and Sharpe (2001) have hypothesized that the 

anterior and posterior teeth have a negative genetic covariation, which has recently 

received some empirical support (Hlusko et al., 2010). If true, then the anterior and 

posterior teeth should have negative phenotypic covariation within species. This 

hypothesis will be rejected if covariation is either absent or positive in direction between 

the incisors and postcanine teeth. Furthermore, if covariation is negative within 

species and has influenced the among-species diversification of dental size, then a 

significant negative among-species correlation will be observed. This hypothesis will 

be rejected if covariation among species between incisor and postcanine size is either 

absent or positive in direction. The hypothesized negative covariation between anterior 

and posterior teeth has been hypothesized to be reflected for canine basal size as well 

(Jolly, 1970). If true, then canine basal size should covary negatively with postcanine 
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size within species and positively with incisor size within species. This hypothesis will 

be rejected if covariation is low in magnitude between canine basal size and dimensions 

and other functional modules, if covariation is positive between canine and postcanine 

size, or if covariation between canine and incisor size is negative. 

Among species, Greenfield (1992; Greenfield and Washburn, 1992) indicated 

that canine projection and premolar honing surface length coevolved in male but not 

female anthropoids. As discussed, canine projection does not capture the entire height of 

the canine and does even capture then entire height of the honed surface of the canine, 

which extends nearly to the cervix. Therefore, coevolution of the canine honing complex 

is investigated for canine crown heights and the length of the premolar honing surface. If 

Greenfield’s observation accurately captures the coevolutionary behavior of canine 

height and premolar honing surface length, then independent contrasts among 

species should indicate significant covariation only in male anthropoids. This 

hypothesis will be rejected if significant covariation exists in both sexes. Greenfield’s 

observations indicate two potential explanations within-species for the among-species 

pattern: 1) that pleiotropy is absent among elements of the complex in both males 

and females, or 2) that pleiotropy only exists in the male complex. If pleiotropy 

exists in either sex, then within-species covariation should be strong. The absence of 

pleiotropy will be rejected if covariation is significantly different from zero. 
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Chapter 2 

MATERIALS AND METHODS 

Materials 

Choice of Samples: Since analyses of the canine honing complex are important in this 

study, it was necessary a priori to identify museum collections with a high likelihood of 

containing an adequate sample of unworn or minimally worn canines. A similar selection 

criterion was utilized by Plavcan (1990) in his study of sexual selection and canine 

dimorphism, so his specimen list was used a general guide to choose taxa and to target 

individual specimens within the study species. The sample used here overlaps that of 

Plavcan (1990), but does not include all species or specimens analyzed by him and 

includes measurements from taxa (e.g., Gorilla beringei) and specimens that were not 

included in his analysis. In total, data were collected from 1768 individuals from 37 

species of anthropoid primates (Table 2.1).Summary information about the museums at 

which specimens are housed, collection localities, and notes on taxonomy are available 

upon request. 

For the interspecific analyses, species were chosen to ensure that the overall 

sample was broad taxonomically, in body size, dental size, and social organization. To 

address patterns of pleiotropy within species, it is necessary to minimize confounding 

influences (e.g., genetic drift and selection between populations) that could affect the 

estimated strength of phenotypic covariation if distinct populations are pooled. Therefore, 

for each taxon an attempt was made to measure individuals from as geographically 

limited an area as possible. Ideally, true biological populations would be sampled; 

unfortunately, museum collections rarely fit this stringent criterion. In order to fully 

identify the phylogenetic distribution of patterns of pleiotropy and their consistency 

among species, each species included in the interspecific analysis should also be included  
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TABLE 2.1: Species included in this analysis. A ▲indicates a sample that will be 
analyzed in intraspecific analyses. Explanations for why other well represented samples 

are excluded from intraspecific analyses are provided in Appendix A. 
 

Species ♂ ♀ ? Species ♂ ♀ ? 
Ateles geoffroyi  

vellerosus▲ 44 42  Macaca mulatta  
mulatta 5   

Callicebus cupreus  
discolor 9 6  Macaca nemestrina 

 nemestrina 12 14  

Cebus libidinosus 
libidinosus▲ 47 46  Macaca nigra 15 8  

Chlorocebus aethiops  
hilgerti 7 15  Macaca sinica 25 20  

Cercopithecus cephus 
cephus▲ 48 31 1 Miopithecus ogouensis 9 12 1 

Cercopithecus nictitans 
nictitans▲ 50 38  Nomascus concolor 10 5  

Cercopithecus pogonias 
grayi▲ 42 32  Pan troglodytes  

schweinfurthii 12 10 2 

Colobus badius  
powelli 2 7  Pan troglodytes  

troglodytes▲ 54 57  

Colobus guereza  
caudatus 13 14 1 Pithecia monachus  

monachus 11   

Colobus satanas▲ 26 27  Pongo abelii 15 12 7 
Erythrocebus patas 12 10  Pongo pygmaeus 50 45 2 

Gorilla beringei 20 14 1 Presbytis entellus  
thersites  7  

Gorilla gorilla▲ 76 58 5 Presbytis rubicunda 28 27  
Hoolock hoolock 47 25  Presbytis vetulus 7 18  

Hylobates klosii 23 15  Pygathrix nemaeus 
 nigripes 13 3  

Hylobates lar  
carpenteri▲ 52 55  Rhinopithecus roxellana  7  

Lagothrix lagothricha  
cana 20 30  Symphalanges 

syndactulus syndactulus 16 18  

Lagothrix lagothricha 
poeppiggi 26 24 2 Theropithecus gelada 14 6  

Macaca fascicularis 
fascicularis▲ 66 60 2     
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in intraspecific analyses (see introduction to Hlusko and Maheney (2009)), but it was 

rarely possible to achieve adequately large sample sizes that fit the criteria established 

above. Therefore, intraspecific analyses were restricted to ten taxa that are numerically 

well represented, are from geographically restricted areas, and are confidently assigned to 

subspecies. The ten taxa deemed appropriate for analyses of within-species covariation 

are indicated in Table 2.1. For some species, subspecies were pooled to calculate a 

species mean. 

 

Sample Size Criteria: For all characters except for canine heights, a sample size of n = 20 

was deemed minimal for intraspecific or interspecific analyses. This threshold is 

arbitrary, but given the reduction in statistical power (Sokal and Rohlf, 1995) and the 

inconsistency of estimates of variance-covariance at small sample sizes (e.g., Ackerman, 

2009), it was necessary to restrict analyses to those samples that are reasonably well 

represented. Given the tendency for canines to normally wear away (Walker, 1984; Leigh 

et al., 2008) or break at their apices (especially the maxillary), there were fewer 

adequately-sized samples available for their analysis within species; therefore, the 

minimum sample size for canine heights used for intraspecific analysis was n = 15. Even 

for canine heights, several samples exceed n = 20, so the strength of covariation observed 

in the smaller samples can be compared to the larger samples. Though some species are 

represented by small sample sizes, no sample with fewer than 5 individuals was included 

in the interspecific analysis.  

Other studies of canine covariation within and among species (e.g., Plavcan, 

1990; Scott, 2010) have included moderately worn canines in their analyses. In the case 

of Plavcan, who was more concerned with indices of dimorphism and among-species 

differences in mean canine size and relative canine size, it is unclear if the inclusion of 
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worn canines affected his height measures. As a result of these concerns, when Suwa 

(2009) used Plavcan’s database of canine measurements he explicitly excluded measures 

of worn canine heights. Scott (2010) addressed questions of pleiotropy and functional 

constraints on canine size and included moderately worn canines in his data set. He used 

a statistical manipulation of the raw data to identify outliers, deleting the smallest canine 

heights until the sample coefficient of variation (CV) was ≤ 10. As a result, no sample of 

canine heights was larger than 24 for males and 23 for females. Scott (2010) did not 

examine intraspecific covariation for canine heights; his intraspecific analyses of 

covariation were based on canine basal dimensions. Even in intraspecific analyses of 

canine basal area correlations, Scott (2010: 106) reported that “the median sample size 

for male great apes is n = 12 (range: n = 5–19).” It is unlikely that such small sample 

sizes accurately capture the magnitude of within-species covariation. As stated in Chapter 

1, absolute constraints are rare, therefore identifying statistically significant correlations 

(i.e., r > 0.00) reveals little about the expected dependence or independence of among-

species diversification, which has been shown to be proportional to the magnitude of 

covariation (Marroig et al., 2009). Scott (2010) did analyze canine height correlations 

among species, but, as discussed in Chapter 1, there are multiple pathways to achieving 

significant among-species correlation, and not all rely on the existence of pleiotropy 

among characters (Figure 1.7). The current sample of canine heights is composed largely 

of juvenile specimens, which have incompletely erupted canines and, therefore, are not 

represented in the Scott and Plavcan datasets. Because wear does not affect the size of the 

basal dimensions (except for the MD length of the maxillary canine at advanced wear 

stages), canine basal areas were measured from specimens with worn canines,  
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TABLE 2.2: Dental characters. 
 

MEASUREMENT ELEMENT 

Height from Cervix to Apex Maxillary Canine and Mandibular 
Canine 

Labiolingual (LL) Breadth Maxillary and Mandibular Incisors and 
Canines 

Mesiodistal (MD) Length All Maxillary and Mandibular Teeth, 
Excluding Honing Premolar 

Buccolingual (BL) Breadth Across 
Mesial Cusps 

Mandibular Molars and Nonhoning 
Premolars 

Maximum Crown Breadth 
Perpendicular to MD axis Maxillary Postcanine Teeth 

Honing Surface Length Honing Premolar 

Oblique Length Honing Premolar 

Midcrown Breadth Perpendicular to 
Oblique Length, Honing Premolar 

Mesiocervical Enamel Extension Mesial-Most Maxillary Premolar 

Crown Shape (MD/BL) Incisors and Postcanine Teeth 

 

 

Fig. 2.1. Upper left: maxillary canine height. Upper right: mesiodistal and labio- 
buccolingual dimensions of the maxillary incisors and postcanine teeth. Lower right: 
mesiodistal and labio- buccolingual dimensions of the mandibular incisors and postcanine 
teeth. Lower left: mandibular canine height and premolar honing surface length. 
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Characters: Measurements of the dentition were chosen to capture the size and shape of 

each tooth. Measures of mesiodistal (MD) length and buccolingual (BL) and labiolingual 

(LL) breadth were considered and were also used to create ratios describing shape (Table 

2.2 and Figure 2.1).  

 

Methods 

 

Data collection: Linear measurements were collected using fine-point Mitutoyo digital 

calipers with a foot pedal used as a data entry tool. Measurements were recorded to the 

nearest one-tenth of a millimeter.  

 

Data Quality: The overlap between the specimens included in this analysis and those in 

Plavcan’s (1990) sample permitted comparisons of interobserver error. Plavcan (1990) 

measured all dental metrics with a calibrated reticle, while the current study used digital 

calipers. Therefore, some difference is expected as a result of instrumentation effects; 

however, instances where the absolute difference between the current study and 

Plavcan’s (1990) study exceeded 4% of the mean values were investigated to ensure that 

the measurement was accurately assessed in the current study.  

 Since the current data set does not wholly overlap that of Plavcan (1990), data 

quality was also assessed other ways. While at the museum, outliers were investigated to 

ensure that they were accurately measured. Additionally, given that many measurements 

are correlated, bivariate plots were created and visually inspected for many character 

pairs. Outlying measurements and those that leverage regressions were then investigated 

to ensure accuracy. 
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Fig. 2.2. Phylogeny of taxa included in this analysis. In this figure, all branches are equal. 
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Independent Contrasts: Because species means violate the assumption of independence 

among data points, inherent in statistical testing, their use has been criticized for analyses 

of interspecific correlations. Following other studies of character coevolution (e.g., 

Edwards, 2006; Garamszegi et al., 2002), among-species correlations were assessed using 

phylogenetically independent contrasts (e.g., Felsenstein, 1985; Garland et al., 1992; 

Nunn and Barton, 2000; Barton, 2006), which were computed using PDTREE within 

Phenotypic Diversity Analysis Programs (PDAP, http://www.biology. ucr.edu/ 

people/faculty/Garland/PDAP.html) (Garland et al., 1999; Garland and Ives, 2000). Since 

independent contrasts are calculated as the difference between sister taxa, they essentially 

assess the amount of evolutionary change that has occurred since a cladogenic event; 

therefore, if drift covariance occurred during cladogenesis, then it will be expected to 

affect only the calculation of a single independent contrast, reducing the potential 

confounding effect of drift covariance. 

The following molecular phylogenies were used to create the phylogeny used to 

calculate independent contrasts (Figure 2.2): Platyrrhini (Opazo et al., 2006; Wildman et 

al., 2009); Hylobatidae (Whittaker et al. 2007; Matsudaira and Ishida, 2010; Thinh et al., 

2010); Cercopithecinae (Tosi et al., 2004; Li et al., 2009); Colibinae (Ting, 2008). The 

general consensus tree derived from the 10kTrees website (http//10kTrees.fas. 

harvard.edu; Arnold et al., 2010) was also used as a reference for constructing the 

phylogeny. 

Unfortunately, there is disagreement about the placement of some taxa within the 

phylogeny. Notably, generic level relationships within the Hylobatidae are poorly 

resolved; for example, Hoolock is variably placed as the sister taxon to the remaining 

hylobatid genera (Nomascus, Symphalangus, and Hylobates) (Whittaker et al., 2007) or 

as the sister taxon to only Hylobates (Purvis, 1995; Thinh et al., 2010), with 
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Symphalangus and Nomascus more distantly related. Symphalangus and Nomascus form 

a clade to the exclusion of Hylobates and Hoolock in the Whittaker et al. (2007) 

phylogeny, but in both Chaterjee (2006) and Thinh et al. (2010), Nomascus is the sister 

taxon to the clade Symphalangus+Hoolock+Hylobates. With no obvious method for 

determining which of these phylogenies is correct, the most recent hylobatid phylogeny 

as determined by Thinh (2010) is used in this analysis. Other complications arise because 

some taxa included in this analysis were not analyzed in recent molecular phylogenies. 

For example, Cercopithecus pogonias could not be located in a molecular phylogeny, so 

its phylogenetic placement was based on phenotypic data that group Cercopithecus 

pogonias and Cercopithecus mona in the “mona group” of guenons (e.g., Groves, 2001).  

 Independent contrasts incorporate branch lengths in their calculation and several 

methods are available for branch length estimation. For example, divergence dates among 

taxa, based on genetic distances and calibration with the fossil record, can be used. 

However, assigning ages to nodes for a sample as broad as the one used in this study is 

not without complications; for example, no study of divergence dates includes all of the 

taxa that are included in this study. The results from smaller scale studies can be 

combined to generate estimates for many nodes in the phylogeny but that leaves dates for 

some nodes unassigned (for example, by combining Thinh et al. (2010), Stepler et al. 

(2004), and Opazo et al. (2006)). There is also a second problem; often, where divergence 

dates are estimated for the same node in different studies, the estimated divergence dates 

are quite different. This occurs because assumptions about rates of neutral evolutionary 

change, effective population sizes, and calibration points based on the fossil record differ 

among the studies. Other studies of among-species covariation in dental size pooled 

estimated dates of divergence from multiple sources (e.g., Scott, 2010); it is unclear what 

effect this has. Since it was not possible to accurately reconstruct branch lengths, results 
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of independent contrasts were reported for equal branch lengths (branch lengths all equal 

to 1).  

 

Phenotypic Covariation Within Species: Given dimorphism in size for many measures, 

the male and female distributions largely overlap; however, the means slightly differ. If 

males and females are pooled, this would exaggerate the estimated strength of covariation 

above its true biological value (males and females were pooled in Hlusko and Mahaney 

(2009), for example). This effect was noted by Plavcan and Daegling (2006) in their 

study of dental and mandibular size covariation and by Scott (2010) in his study of canine 

correlations. In the most extreme case, where male and female distributions minimally 

overlap (as for highly size-dimorphic characters, like canine crown heights), this has the 

effect of creating a two point regression. To avoid this, for all characters outside of the 

canine honing complex, the male mean was adjusted to equal the female mean and then 

males and females were pooled into a single analysis. Males and females were pooled 

without adjusting means in analyses of shape. 

The %boot macro (http://support.sas.com/kb/24/982.html) was used within SAS 

v9.1.3 for the UNIX system to estimate the strength of covariation, which is reported here 

as the coefficient of determination (r2). The bootstrapping procedure used 10,000 

iterations and the bias-corrected mean r2 was reported as the sample estimate. When an 

outlier is present in the raw data, the bootstrap distribution is often skewed. Bias 

correction adjusts the estimate of r2 to remove the leverage of the outlying estimates in 

such a distribution. In most cases considered in this study, the bootstrap distribution was 

approximately normal and no bias correction was necessary. With sample sizes as large 

as they are for most characters in this study, the bootstrapped estimate of r2 rarely 

deviated from the estimate produced from standard methods (personal observation).  
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TABLE 2.3: Categorizing the strength of r2. 
 

Value of r2 Categorical Description 

0.00 < r2 ≤ 0.20 Very Low 

0.20 < r2 ≤ 0.40 Low 

0.40 < r2 ≤ 0.60 Moderate 

0.60 < r2 ≤ 0.80 High 

0.80 < r2 ≤ 1.00 Very High 
 

 

Where bootstrapping proved useful was in calculating confidence intervals for the sample 

r2 estimate. Several options are available for estimating the confidence intervals from the 

bootstrap distribution (e.g., Percentile, Bias Corrected, Bias Corrected Accelerated, 

Efron’s, Hybrid, T) (see Manly (2001) for a discussion of this topic); in this study, the 

Bias Corrected (BC) confidence interval was used to determine the statistical significance 

of each reported r2.  

Other studies of integration and pleiotropy often report not coefficients of 

determination, but Pearson’s correlation coefficients (r) (e.g., Hlusko and Maheney, 

2009; Scott, 2010); readers are urged to consider this difference when comparing the 

magnitude of covariation between studies. In addition to more easily interpreting the 

meaning of r2, there is an additional advantage over r; r2 is an additive parameter while r 

is not. Therefore, the average is a defined quantity for r2 but not for r, which allows for 

the calculation of the average magnitude of covariation (e.g., de Oliveira et al., 2009). 

While values of r2 were used for hypothesis testing, a protocol for referring to the 

relative strength of r2 was used throughout this study (Table 2.3). The use of categorical 

descriptors to capture differences in the magnitude of covariation has been employed by 

others (e.g., Devore and Farnum, 2005); however, there are no firm guidelines or 
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accepted terms for categorical descriptors. In this study, units of covariation were divided 

into 5 categories of equal size. Given that r2 is calculated as the square of the correlation 

coefficient (r), it cannot have a negative value. To indicate instances where a negative 

correlation exists between two variables, a negative sign (-) is placed before the r2 value. 

Given that the premolars and molars are indicated to have both unique and shared 

pleiotropic effects (e.g., Hlusko and Mahaney, 2009), partial correlations were used to 

investigate this hypothesis. Partial correlations reflect the correlation between two 

variables when correlation with a third variable is held constant. If premolar size retains 

significant partial correlation when molar size is held constant, then the hypothesis of 

quasi-independence is supported. For example, for variables X, Y, and Z, the partial 

correlation for X and Y, with Z held constant, is quantified by first regressing X against Z 

and then Y against Z. The residuals for each analysis are calculated and the partial 

correlation coefficient between X and Y, with Z held constant, is the correlation between 

the residuals. The %boot macro was used within SAS v9.1.3 for the UNIX system (using 

10,000 iterations) to calculate partial correlations and their confidence intervals. 

 

Patterns of Covariation Among Species: The similarity of patterns of covariation among 

species was assessed using both correlation and variance-covariance matrices. In studies 

of integration, the Mantel test has been commonly employed to test correlation matrix 

similarity (e.g., Cheverud, 1995; Hlusko and Mahaney, 2009); in this study, Mantel tests 

were conducted using the POPTOOLS v3.1.0 add-in for Microsoft Excel 

(http://www.cse.csiro.au/poptools/). The Mantel test generates two test statistics for 

estimating the strength of similarity between two matrices, the matrix correlation 

coefficient (rM), which allows for two-tailed tests of significance, and the cross-product 

value (Z), which allows for a one-tailed test of significance. The null hypothesis for the 
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Mantel test is no similarity, so a statistically significant result indicates that the 

correlation matrices are similar. Statistical significance was determined using a 

randomization procedure (10,000 iterations). 

The Mantel test only accounts for the pattern of the magnitudes of covariation 

among characters. As an alternative to the Mantel test, in studies of genetic variance-

covariance (or studies where phenotypic values are substituted for genetic), a procedure 

known as “random skewers” uses the multivariate selection model (Δz = Gβ) to 

investigate the similarity of variance-covariance matrices (e.g., Cheverud, 1996; 

Cheverud and Marroig, 2007). To do so, a random β (the random skewer) is multiplied 

with each variance-covariance matrix to generate a Δz, assessing the evolutionary 

response of each variance-covariance matrix to randomly generated selection vectors. 

The procedure is repeated several times and the vector correlation between the resulting 

Δzs is computed. As with the Mantel test, the null hypothesis for the random skewers 

procedure is no similarity, so a statistically significant result indicates that matrices are 

similar. In this study, the phenotypic variance-covariance matrix (P) was substituted for 

the genetic variance-covariance matrix (G). To determine statistical significance, 10,000 

iterations of the random skewers procedure were performed using the program 

“skewers,” available from Dr. Liam Revell (http://anolis.oeb.harvard.edu/~liam/ 

programs/). 

 

The Line Of Least Evolutionary Resistance and Evolutionary Divergence: Several 

methods were used to visualize and demonstrate constraints on the evolution of linked 

traits and to assess the correspondence of evolutionary change to the line of least 

evolutionary resistance (discussed in Chapter 1). To that end, 95% confidence ellipses  



  67 

 

Fig. 2.3. Confidence ellipses are used to describe the orientation and strength of 
covariation for two characters. Δz is the vector that describes the direction of difference 
between the means of the two samples. gmax is the maximum vector of genetic covariation 
and describes the line of least evolutionary resistance for the two characters to evolve 
along. Ɵ is the angle between the sample gmax and Δz. In this study pmax is substituted for 
gmax. 
 

 

were generated, using Statistica version 7.1, to graphically display the magnitude and 

orientation of covariation for two characters. For a group of characters, the line of least 

evolutionary resistance (gmax) is the principle axis of genetic covariation among the 

characters. In this study, which focuses exclusively on the phenotype, pmax, the 

eigenvector associated with the first principal component of the phenotypic values (e.g., 

Schluter, 1996; Marroig and Cheverud, 2010), was substituted for gmax. If pmax is similar 

between two taxa, then the angle between their vectors (Ɵpmax-pmax) should be 

approximately zero and the vector correlation should be nearly one. Similarly, Δz is a 

vector that describes the magnitude and direction of difference between species; 

therefore, if it is aligned with pmax, then the angle between Δz and pmax (ƟΔz-pmax) 

should be approximately zero and the correlation between the vectors should be nearly 

one (Figure 2.3). Before calculating angles between vectors and vector correlations, all 
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vectors were converted to unit length (i.e., length of 1). In such cases, Ɵ = arccos a·b; Ɵ, 

in radians, is the inverse cosine of the dot product of the unit vectors a and b. The vector 

correlation is defined as rƟ = cos Ɵ. The calculation of these parameters is explained 

more fully in Schluter (1996) and Marroig and Cheverud (2010). Eigenvectors were 

calculated using SAS for the UNIX system and the statistical significance of Ɵpmax-pmax 

and ƟΔz-pmax was determined using a bootstrapping procedure outlined in Berner (2009). 

The bootstrapped eigenvectors were generated using the bootpca macro for SAS, written 

by Dr. Steve Tonsor (http://www.pitt.edu/~tonsor/downloads/programs/ bootpca.html), 

which has been used by other researchers investigating genetic variance-covariance and 

constraints (e.g., Caruso et al., 2005). The null hypothesis for these tests is Ɵ = 0; a 

rejection of the null hypothesis indicates that the vectors are not aligned. This method for 

hypothesis testing differs from that of Marroig and Cheverud (2010), who used the 

“broken sticks” approach originally described by Schluter (1996), to test similar 

hypotheses. The broken sticks procedure generates random vectors (broken sticks) of unit 

length and then assesses the correlation of these random vectors with a fixed vector (all 

components of the vector are the same value) of unit length. The standard deviation of the 

resulting vector correlations is used to generate confidence intervals for hypothesis 

testing. Since the bootstrapping procedure used in this study incorporates error in the 

estimates of all vectors, but the broken sticks procedure does not, these two approaches 

potentially yield different confidence intervals for statistical testing. The author is 

unaware of any study that has compared the statistical power of either approach or their 

rates of Type I and Type II error.  
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Chapter 3 

INCISOR MODULARITY 

As reviewed in Chapter 1, the incisors form a functional module and are 

hypothesized to form a variational module in which characters are linked by pleiotropy. 

The incisors are predicted to express high magnitude covariation (calculated as the 

phenotypic r2) with one another and low magnitude covariation with characters outside 

the complex (i.e., r2 nearly zero). This hypothesis will be rejected if either the incisors 

covary weakly with one another (i.e., r2 nearly zero) or if covariation is nearly equal in 

magnitude with characters in other functional modules. The hypothesis of negative 

covariation between incisor and postcanine size (e.g., Jolly, 1970; McCollum and Sharpe, 

2001; Hlusko et al., 2010) is also tested. This hypothesis will be rejected if covariation 

between incisor and postcanine size is either weak (i.e., r2 nearly zero) or significant and 

positive in direction. Lastly, the expectation that levels of constraint, calculated within 

species, influence the independence of characters among species is investigated by 

comparing the magnitude of within-species phenotypic covariation (r2) to that among-

species (r2 derived from independent contrasts). The similarity of covariation within and 

among species is not set up as a formal hypothesis, but is used to frame the discussion of 

the role of constraints in among species diversification. For a subset of species, incisor 

pmax and the correspondence of incisor Δz to pmax will be formally analyzed in Chapter 6.  
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TABLE 3.1. The magnitude of covariation between the length and breadth of each incisor 
(***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
I1MD-  
I1LL 

I2MD- 
I2LL 

I1MD- 
I1LL 

I2MD- 
I2LL 

Gorilla  
Gorilla 

r2
 = 0.22** 
n = 61 

r2
 = 0.18** 
n = 74 

r2
 = 0.08* 
n = 64 

r2
 = 0.36*** 
n = 64 

Pan  
Troglodytes 

r2= 0.13* 
 n = 77 

r2
 = 0.14** 
 n = 79 

r2
 = 0.07* 
 n = 72 

r2
 = 0.30** 
 n = 71 

Hylobates  
Lar 

r2
 = 0.15* 
 n = 68 

r2
 = 0.21*** 
 n = 76 

r2
 = 0.15* 
 n = 47 

r2
 = 0.22** 
 n = 49 

Cercopithecus  
Cephus 

r2
 = 0.23*** 
n = 69 

r2
 = 0.16*** 
 n = 75 

r2
 = 0.31*** 
 n = 69 

r2
 = 0.20*** 
 n = 67 

Cercopithecus 
 Nictitans 

r2
 = 0.12* 
n = 70 

r2
 = 0.20*** 
 n = 77 

r2
 = 0.22** 
 n = 63 

r2
 = 0.25*** 
 n = 70 

Cercopithecus  
Pogonias 

r2
 = 0.08* 
n = 50 

r2
 = 0.22*** 
 n = 61 

r2
 = 0.36*** 
 n = 46 

r2
 = 0.27*** 
 n = 55 

Macaca  
fascicularis 

r2
 = 0.12* 
n = 65 

r2
 = 0.19* 
 n = 67 

r2
 = 0.29*** 
 n = 60 

r2
 = 0.04 

 n = 73  
Colobus 
 Satanas 

r2
 = 0.09* 
 n = 49 

r2
 = 0.05 

 n = 46 
r2

 = 0.25*** 
 n = 49 

r2
 = 0.14* 
 n = 46 

Ateles  
Geoffroyi 

r2
 = 0.10** 
 n = 67 

r2
 = 0.21** 
 n = 67 

r2
 = 0.37*** 
 n = 61 

r2
 = 0.42*** 
 n = 61 

Cebus 
 libidinosus 

r2
 = 0.21*** 
 n = 68 

r2
 = 0.27*** 
 n = 86 

r2
 = 0.17*** 
 n = 87 

r2
 = 0.08*  
 n = 82 

Weighted Anthropoid 
Average r2 = 0.15 r2 = 0.19  r2 = 0.22 r2 = 0.22  

Weighted Hominoid 
Average r2 = 0.16 r2 = 0.18 r2 = 0.09 r2 = 0.30 

Weighted 
Cercopithecid 

Average 
r2 = 0.13 r2 = 0.17 r2 = 0.28 r2 = 0.18 

Weighted Platyrrhine 
Average r2 = 0.16 r2 = 0.24 r2 = 0.27 r2 = 0.25 

Significantly different 
from zero (p < α = 

0.01) 
4/10 8/10 7/10 7/10 
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TABLE 3.2. The average magnitude of covariation between maxillary and mandibular 
incisor breadth and length. 

 

 
I1LL-
I2MD 

I1LL-
I1MD 

I1LL-
I2MD 

I2LL-
I1MD 

Hominoid Average r2 = 0.17 r2 = 0.15 r2 = 0.16 r2 = 0.08 
Cercopithecid Average r2 = 0.12 r2 = 0.12 r2 = 0.07 r2 = 0.24 

Platyrrhine Average r2 = 0.16 r2 = 0.24 r2 = 0.16 r2 = 0.19 
Anthropoid Average r2 = 0.14 r2 = 0.16 r2 = 0.12 r2 = 0.18 

Significantly different 
from zero (p < α = 0.01) 7/10 8/10 6/10 8/10 

 
I2LL-
I1MD 

I2LL-
I1MD 

I1LL-
I1MD 

I1LL-
I2MD 

Hominoid Average r2 = 0.10 r2 = 0.14 r2 = 0.15 r2 = 0.20 
Cercopithecid Average r2 = 0.08 r2 = 0.13 r2 = 0.16 r2 = 0.12 

Platyrrhine Average r2 = 0.17 r2 = 0.08 r2 = 0.10 r2 = 0.15 
Anthropoid Average r2 = 0.11 r2 = 0.12 r2 = 0.14 r2 = 0.15 

Significantly different 
from zero (p < α = 0.01) 6/10 8/10 8/10 8/10 

 
I1LL-
I2MD 

I2LL-
I2MD 

I2LL-
I2MD 

I2LL-
I1MD 

Hominoid Average r2 = 0.15 r2 = 0.12 r2 = 0.27 r2 = 0.18 
Cercopithecid Average r2 = 0.09 r2 = 0.08 r2 = 0.12 r2 = 0.12 

Platyrrhine Average r2 = 0.13 r2 = 0.21 r2 = 0.19 r2 = 0.18 
Anthropoid Average r2 = 0.12 r2 = 0.12 r2 = 0.18 r2 = 0.15 

Significantly different 
from zero (p < α = 0.01) 8/10 6/10 8/10 9/10 
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RESULTS 

Incisor Size Covariation Within Species: All estimates of covariation between the MD 

length and LL breadth of each incisor are positive in direction, though estimates are quite 

variable among species (Table 3.1). The range among species for I1MD-I1LL is r2 = 0.08–

0.23, for I2MD-I2LL it is r2 = 0.05–0.27, for I1MD-I1LL it is r2 = 0.07–0.37, and for 

I2MD-I2LL it is r2 = 0.04–0.42. Most estimates of r2 for the MD length and LL breadth of 

each incisor are below r2 = 0.25 (10 out of 10 estimates for I1MD-I1LL, 9 out of 10 

estimates for I2MD-I2BL, 4 out 10 estimates for I1MD-I1BL, and 5 out of 10 estimates for 

I2MD-I2BL). The magnitude of covariation is consistent for all incisors; for both 

maxillary incisors, the anthropoid average is r2 = 0.22 (Table 3.1) and for the mandibular 

incisors the anthropoid averages are lower at r2 = 0.15 (I1) and r2 = 0.19 (I2). Following 

the criteria outlined in Table 2.4, these r2s are categorized as very low to low in 

magnitude. The hominoid, cercopithecid, and platyrrhine average r2s are similar, 

indicating that this weak level of covariation is a common feature for anthropoids. Many 

of the r2s for the MD length and LL breadth of each incisor are significantly different 

from zero at α = 0.05 (38 out of 40 estimates), but fewer are significant at more restrictive 

α values (26 out of 40 estimates are significant at p = 0.01). The MD and LL dimensions 

of each incisor largely vary independently of one another within species. 

As when the incisors were considered in isolation, the MD and LL dimensions of 

different incisors also express low to very low magnitude covariation (Table 3.2). Though 

weak in strength, all estimates of covariation for comparisons of MD length and LL 

breadth among incisors are positive in direction. Compared with MD length and LL 

breadth of a single incisor (Table 3.1), analyses that pair measurements of different 

incisors have anthropoid averages that are slightly lower; average estimates are routinely 

below r2 = 0.20 and as low as r2 = 0.07. As covariation is consistently weak for all  
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TABLE 3.3. The magnitude of covariation among incisor breadths (***p-value < 0.0001, 
**p-value < 0.001, *p-value < 0.05). 

 

 
I1LL- 
I2LL 

I1LL- 
I2LL 

I1LL- 
I1LL 

Gorilla gorilla r2
 = 0.19** 
 n = 72 

r2
 = 0.70*** 
 n = 85 

r2
 = 0.44*** 
 n = 69 

Pan troglodytes r2
 = 0.58*** 
 n = 84 

r2
 = 0.81*** 
n = 84 

r2
 = 0.47*** 
n = 78 

Hylobates lar r2
 = 0.24** 
 n = 45 

r2
 = 0.62*** 
n = 82 

r2
 = 0.40*** 
 n = 49 

Cercopithecus cephus r2
 = 0.07** 
 n = 74 

r2
 = 0.60***  
n = 75 

r2
 = 0.37*** 
n = 71 

Cercopithecus nictitans r2
 = 0.24*** 
 n = 69 

r2
 = 0.58*** 
n = 75 

r2
 = 0.54*** 
 n = 68 

Cercopithecus pogonias r2
 = 0.17* 
n = 53 

r2
 = 0.48*** 
 n = 63 

r2
 = 0.24*** 
n = 52 

Macaca fascicularis r2
 = 0.37*** 
 n = 72 

r2
 = 0.63*** 
n = 71 

r2
 = 0.52*** 
n = 63 

Colobus satanas r2
 = 0.26*** 
 n = 43 

r2
 = 0.21* 
 n = 45 

r2
 = 0.13* 
 n = 47 

Ateles geoffroyi r2
 = 0.47*** 
 n = 65 

r2
 = 0.70*** 
n = 74 

r2
 = 0.24*** 
 n = 66 

Cebus libidinosus r2
 = 0.24*** 
 n = 83 

r2
 = 0.62*** 
 n = 87 

r2
 = 0.22*** 
n = 87 

Weighted Anthropoid 
Average r2 = 0.29 r2 = 0.62 r2 = 0.36 

Weighted Hominoid 
Average r2 = 0.36 r2 = 0.71 r2 = 0.44 

Weighted Cercopithecid 
Average r2 = 0.22 r2 = 0.53 r2 = 0.38 

Weighted Platyrrhine 
Average r2 = 0.34 r2 = 0.66 r2 = 0.23 

Significantly different 
from zero (p < α = 0.01) 9/10 9/10 9/10 
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TABLE 3.4 The magnitude of covariation among incisor breadths (***p-value < 0.0001, 

**p-value < 0.001, *p-value < 0.05). 
 

 
I2LL- 
I2LL 

I1LL- 
I2LL 

I1LL- 
I2LL 

Gorilla gorilla r2
 = 0.44*** 
 n = 75 

r2
 = 0.36*** 
 n = 68 

r2
 = 0.28*** 
 n = 72 

Pan troglodytes r2
 = 0.56*** 
 n = 84 

r2
 = 0.59*** 
 n = 78 

r2
 = 0.58*** 
 n = 83 

Hylobates lar r2
 = 0.11* 
 n = 64 

r2
 = 0.28*** 
 n = 49 

r2
 = 0.12* 
 n = 61 

Cercopithecus cephus r2
 = 0.26*** 
 n = 74 

r2
 = 0.31*** 
 n = 72 

r2
 = 0.22*** 
 n = 72 

Cercopithecus nictitans r2
 = 0.27*** 
 n = 75 

r2
 = 0.29*** 
 n = 69 

r2
 = 0.24** 
 n = 72 

Cercopithecus pogonias r2
 = 0.34*** 
 n = 57 

r2
 = 0.07 

 n = 53 
r2

 = 0.36*** 
 n = 57 

Macaca fascicularis r2
 = 0.57*** 
 n = 69 

r2
 = 0.46*** 
 n = 65 

r2
 = 0.34*** 
 n = 68 

Colobus satanas r2
 = 0.42*** 
 n = 44 

r2
 = 0.08* 
 n = 43 

r2
 = 0.05 

 n = 44 

Ateles geoffroyi r2
 = 0.38*** 
 n = 71 

r2
 = 0.32*** 
 n = 66 

r2
 = 0.38*** 
 n = 70 

Cebus libidinosus r2
 = 0.43*** 
 n = 83 

r2
 = 0.09* 
 n = 89 

r2
 = 0.43*** 
 n = 81 

Weighted Anthropoid 
Average r2 = 0.38 r2 = 0.30  r2 = 0.32 

Weighted Hominoid 
Average r2 = 0.39 r2 = 0.43 r2 = 0.35 

Weighted Cercopithecid 
Average r2 = 0.37 r2 = 0.26 r2 = 0.26 

Weighted Platyrrhine 
Average r2 = 0.41 r2 = 019 r2 = 0.41 

Significantly different 
from zero (p < α = 0.01) 9/10 7/10 8/10 
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taxonomic groups, incisor MD length and LL breadth largely vary independently of one 

another both within a single incisor and among incisors. 

In contrast to the low and very low magnitude of covariation observed for 

pairings of MD length and LL breadth, stronger covariation is observed for comparisons 

of LL breadth between incisors, with some LL breadths expressing moderate to high 

levels of covariation (Tables 3.3 and 3.4). The estimated magnitude of covariation is 

highest between the LL breadths of I1 and I2 (the anthropoid average is r2 = 0.62); with 

one notable exception (Colobus satanas, r2 = 0.21), all species have estimated levels of 

covariation for I1LL-I2LL ≥ r2 = 0.48. The low level observed in Colobus satanas is 

stands out from other species estimates and may be explained by the fact that the sample 

size is the smallest for any taxon included in the analysis and is, therefore, more easily 

influenced by outliers. The estimates of r2 for I1LL-I2LL are significantly different from 

zero not only at α = 0.05 (10 out of 10 samples), but also at more restrictive levels of 

significance (9 out of 10 are significant at α = 0.001); however, the null hypothesis of 

complete pleiotropy (i.e., r2 = 1) is also rejected, as the 95, 99, and 99.9% confidence 

intervals do not include r2 = 1 for any of the ten taxa.  

All other estimates of covariation among incisor LL breadths are lower than 

between the mandibular incisors, with anthropoid averages falling in the range r2 = 0.29–

0.38 (Tables 3.3 and 3.4). Following the LL breadths of the mandibular incisors in 

strength, the next highest level of covariation is for I2LL-I2LL (anthropoid average r2 = 

0.38) and then for the I1LL-I1LL (anthropoid average r2 = 0.36), which are combinations 

of characters in equivalent positions in the opposite arch. Notably, the magnitude of 

covariation between maxillary incisor breadths (anthropoid average is r2 = 0.29) is on 

average no higher than that seen between the I2LL-I1LL (anthropoid average r2 = 0.30) 

and the I1LL-I2LL (anthropoid average r2 = 0.32), indicating that maxillary incisors share 
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far less variation in common than do the mandibular incisors. The magnitudes of 

covariation between the LL breadths are higher than between pairings of MD length and 

LL breadths, but, with the exception of the mandibular incisors, the majority of variation 

in each dimension is not shared with any other dimensions; there is substantial 

independent variation for selection to act upon. 

For most comparisons of LL breadth, the level of covariation observed in 

cercopithecids is lower than that observed in platyrrhines and hominoids (Tables 3.3 and 

3.4). This difference is especially pronounced for I1LL-I2LL (the cercopithecid average r2 

is 0.14 less than hominoid average and 0.12 less than the platyrrhine average) and for 

I1LL-I2LL (the cercopithecid average r2 is 0.18 less than the hominoid average and 0.13 

less than the platyrrhine average). The low cercopithecid averages are in part a reflection 

of the low r2s in Colobus satanas; however, excluding Colobus satanas still results in 

lower averages for cercopithecids than in the other taxonomic groups.  

The comparisons of incisor LL breadths highlight three features of incisor size 

covariation: first, that covariation is much stronger between the breadths of the 

mandibular incisors than between the breadths of the maxillary incisors; second, that 

between arches, incisors of similar position tend to covary more strongly with one 

another (I1 with I1, I2 with I2) than they do with the incisor in the opposite position (I1 

with I2, I2 with I1); and third, that the incisor breadths of cercopithecids do not covary as 

strongly as they do in platyrrhines and hominoids. The underlying morphological 

explanation for these patterns will be given at the end of the chapter. 

In general, the magnitudes of covariation for incisor MD lengths are lower than 

for LL breadths (Tables 3.5 and 3.6); however, variation in the strength of covariation for 

the MD lengths follows a similar pattern to that of the LL breadths. Covariation  

 



  77 

 

 

 

TABLE 3.5. The magnitude of covariation among incisor lengths (***p-value < 0.0001, 
**p-value < 0.001, *p-value < 0.05). 

 
 I1MD- 

I2MD 
I1MD- 
I2MD 

I1MD- 
I1MD 

Gorilla gorilla r2
 = 0.23* 
 n = 55 

r2
 = 0.26*** 
 n = 54 

r2
 = 0.29*** 
 n = 50 

Pan troglodytes r2
 = 0.40*** 
 n = 65 

r2
 = 0.52*** 
 n = 74 

r2
 = 0.35*** 
 n = 69 

Hylobates lar r2
 = 0.03 

 n = 32 
r2

 = 0.55*** 
 n = 65 

r2
 = 0.64*** 
 n = 41 

Cercopithecus cephus r2
 = 0.12** 
 n = 61 

r2
 = 0.35*** 
 n = 69 

r2
 = 0.28*** 
 n = 62 

Cercopithecus nictitans r2
 = 0.21*** 
 n = 63 

r2
 = 0.15* 
 n = 71 

r2
 = 0.18* 
 n = 62 

Cercopithecus pogonias r2
 = 0.50*** 
 n = 43 

r2
 = 0.19** 
 n = 48 

r2
 = 0.14* 
 n = 41 

Macaca fascicularis r2
 = 0.03 

 n = 64  
r2

 = 0.34*** 
 n = 74 

r2
 = 0.46*** 
 n = 67 

Colobus satanas r2
 = 0.11 

 n = 43 
r2

 = 0.00 
 n = 46 

r2
 = 0.13* 
 n = 46 

Ateles geoffroyi r2
 = 0.24** 
 n = 57 

r2
 = 0.67*** 
 n = 62 

r2
 = 0.29*** 
 n = 60 

Cebus libidinosus r2
 = 0.20*** 
 n = 81 

r2
 = 0.46*** 
 n = 67 

r2
 = 0.46*** 
 n = 68 

Weighted Anthropoid 
Average r2 = 0.21 r2 = 0.36 r2 = 0.33  

Weighted Hominoid 
Average r2 = 0.26 r2 = 0.46 r2 = 0.41 

Weighted Cercopithecid 
Average r2 = 0.18 r2 = 0.22 r2 = 0.26 

Weighted Platyrrhine 
Average r2 = 0.22 r2 = 0.56 r2 = 0.38 

Significantly different 
from zero (p < α = 0.01) 6/10 8/10 7/10 
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TABLE 3.6. The magnitude of covariation among maxillary and mandibular incisor 
lengths (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
I2MD- 
I2MD 

I1MD- 
I2MD 

I1MD- 
I2MD 

Gorilla gorilla r2
 = 0.40*** 
 n = 53 

r2
 = 0.22** 
 n = 52 

r2
 = 0.17* 
 n = 46 

Pan troglodytes r2
 = 0.36*** 
 n = 68 

r2
 = 0.34*** 
 n = 68 

r2
 = 0.42*** 
 n = 65 

Hylobates lar r2
 = 0.07* 
 n = 48 

r2
 = 0.33*** 
 n = 42 

r2
 = 0.07 

 n = 47 

Cercopithecus cephus r2
 = 0.16*** 
 n = 66 

r2
 = 0.18*** 
 n = 68 

r2
 = 0.11* 
 n = 59 

Cercopithecus nictitans r2
 = 0.09 

 n = 69 
r2

 = 0.15* 
 n = 65 

r2
 = 0.16* 
 n = 64 

Cercopithecus pogonias r2
 = 0.08 

 n = 51 
r2

 = 0.14* 
 n = 44 

r2
 = 0.01 

 n = 45 

Macaca fascicularis r2
 = 0.13** 
 n = 70 

r2
 = 0.15* 
 n = 63 

r2
 = 0.05 

 n = 70 

Colobus satanas r2
 = 0.07* 
 n = 44 

r2
 = 0.12*  
 n = 45 

r2
 = 0.03 

 n = 43 

Ateles geoffroyi r2
 = 0.32** 
 n = 55 

r2
 = 0.28*** 
 n = 60 

r2
 = 0.27*** 
 n = 56 

Cebus libidinosus r2
 = 0.12** 
 n = 82 

r2
 = 0.29*** 
 n = 84 

r2
 = 0.15* 
 n = 64 

Weighted Anthropoid 
Average r2 = 0.18 r2 = 0.22  r2 = 0.15 

Weighted Hominoid 
Average r2 = 0.29 r2 = 0.30 r2 = 0.24 

Weighted Cercopithecid 
Average r2 = 0.11 r2 = 0.15 r2 = 0.08 

Weighted Platyrrhine 
Average r2 = 0.20 r2 = 0.29 r2 = 0.21 

Significantly different 
from zero (p < α = 0.01) 6/10 6/10 2/10 

 
 
 
 



  79 

 

Fig. 3.1. Histogram of incisor size average r2s for platyrrhines, hominoids, and 
cercopithecids. 
 

 

among MD lengths is highest between I1MD-I2MD (the anthropoid average is r2 = 0.36) 

and I1MD-I1MD (the anthropoid average is r2 = 0.33) and lower in strength for all other 

combinations. Covariation among MD lengths departs from the pattern observed for LL 

breadths in one important way; the I2MD does not covary strongly with any other 

measure of MD length. For all pairings, as observed for LL breadths, the cercopithecid 

average is lower than the hominoid and platyrrhine averages. In fact, the discrepancy in 

levels of covariation for incisor MD lengths is more pronounced than it is for LL 

breadths. The average r2 for I1MD-I2MD in cercopithecids (r2 = 0.22) is 0.24 less than the 

hominoid average (r2 = 0.46) and 0.34 less than the platyrrhine average (r2 = 0.56). For 

the I1MD-I1MD, the cercopithecid average (r2 = 0.26) is 0.12 less than the platyrrhine 

average (r2 = 0.38) and 0.15 less than the hominoid average (r2 =0.41). The weaker r2 
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estimates in cercopithecids likely indicate that incisor size coevolution will behave 

differently among cercopithecids than it does among hominoids or platyrrhines.  

Variation in the strength of incisal size covariation can be seen when the 

platyrrhine, cercopithecid, and hominoid average r2s for all incisal character pairs are 

placed in a histogram (Figure 3.1). Most character pairs express only very low or low 

magnitude covariation (principally pairs of LL breadth and MD length). The character 

pairs that stand out from the rest for their moderate to high levels of covariation include, 

in order of strength, the hominoid I1LL-I2LL (0.71), platyrrhine I1LL-I2LL (0.66), 

platyrrhine I1MD-I2MD (0.56), cercopithecid I1LL-I2LL (0.53), and hominoid I1MD-

I2MD (0.46), which are all pairings of homologous dimensions of the mandibular 

incisors.2 In strength, there is another cluster of characters that covary between 0.35–

0.45; these include the hominoid and platyrrhine I2LL-I1LL, cercopithecid I1LL-I1LL, the 

I2LL-I2LL of all taxonomic groups, the hominoid I1LL-I2LL, the hominoid and 

platyrrhine I1LL-I2LL, and the hominoid I1MD-I1MD. (Tables 3.1–3.6) This second 

cluster of characters includes measures of homologous dimensions in either the maxilla 

or between the maxilla and mandible. Incisor size does not form a module characterized 

by consistent, high magnitude covariation among all elements.  

At the surface, the low level of covariation among most pairs of incisal crown-

size metrics suggests that the incisors do not form a variational module. It is clear, 

however, that the pattern of covariation is not random. In fact, the data are consistent with 

the existence of two incisor variational modules, a LL module and a MD module, with 

each module having overlapping pleiotropic effects with the other. The one dimension of 

the complex that lies mostly outside of the MD variational module is I2MD. Using the 

                                                      
2 Throughout this dissertation the term “homologous dimension” is used to refer to pairings of 
labio- and buccolingual breadths, mesiodistal lengths, and heights with one another. The use of 
this term follows from Cochard (1981). 
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hominoid, cercopithecid, and platyrrhine averages, all characters, with the exception of 

the I2MD, can be linked to at least one other character at r2 ≥ 0.40. For I2MD, its highest 

observed taxonomic average is r2 = 0.30 for I2MD-I2LL in hominoids. If pleiotropy 

channels among-species change in incisor size, then I2MD length should exhibit the 

greatest independence. 

In summary, for all analyses of incisor size, estimates of covariation are 

frequently significantly different from zero and all significant correlations are positive. 

This contrasts with the findings of Hlusko and Mahaney (2009) in which the LL breadth 

and MD length of the Presbytis maxillary incisors were estimated to have a negative 

phenotypic correlation. For many comparisons, estimated levels of incisor covariation 

show substantial variation among species. This inconsistency is also seen in the Hlusko 

and Mahaney (2009) analysis and is not easily explained. However, the overall pattern of 

covariation is consistent among species. 

 

Incisor-Postcanine Size Covariation Within Species: The hypothesis of modular 

pleiotropy also predicts that characters in different functional modules belong to different 

variational modules; the magnitude of covariation should be nearly zero between 

dimensions of the incisors and dimensions of the other functional modules. Additionally, 

within and among species is predicted to be negative between the anterior and posterior 

teeth. To test these hypotheses, the covariation of incisor size with the size of dimensions 

of the honing complex and the postcanine dentition was also investigated. Covariation 

with the honing complex will be discussed in Chapter 5; here, the discussion is confined 

to covariation between postcanine and incisal characters. Eight incisor dimensions, 20 

catarrhine postcanine dimensions, and 24 platyrrhine postcanine dimensions were 

considered in this study, which yields 160 possible character-pairs of incisor and  
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TABLE 3.7. The magnitude of covariation between the breadths of the I1 and postcanine 
teeth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
 
 

I1LL- 
P2, P3BL 

I1LL- 
P4BL 

I1LL- 
M1BL 

I1LL- 
M2BL 

Gorilla gorilla 

r2
max = 0.22*** 

n = 73 
 

r2
mand = 0.23** 

n = 81 

r2
max = 0.26*** 

n = 71 
 

r2
mand = 0.24*** 

n = 82 

r2
max = 0.14**  

n = 74 
 

r2
mand = 0.10* 

n = 77 

r2
max = 0.20*** 

n = 75 
 

r2
mand = 0.17*** 

n = 84 

Pan troglodytes 

r2
max = 0.35*** 

n = 83 
 

r2
mand = 0.26*** 

n = 84 

r2
max = 0.38*** 

n = 83 
 

r2
mand = 0.32*** 

n = 82 

r2
max = 0.21*** 

n = 85 
 

r2
mand = 0.15*** 

n = 82 

r2
max = 0.23*** 

n = 84 
 

r2
mand = 0.35*** 

n = 86 

Hylobates lar 

r2
max = 0.21* 

n = 39 
 

r2
mand = 0.25*** 

n = 62 

r2
max = 0.27* 

n = 42 
 

r2
mand = 0.34*** 

n = 70 

r2
max = 0.12* 

n = 52 
 

r2
mand = 0.19* 

n = 60 

r2
max = 0.15* 

n = 45 
 

r2
mand = 0.22*** 

n = 76 

Cercopithecus 
cephus 

r2
max = 0.18** 

n = 74 
 

r2
mand = 0.18*** 

n = 73 

r2
max = 0.13** 

n = 75 
 

r2
mand = 0.13*** 

n = 75 

r2
max = 0.17* 

n = 74 
 

r2
mand = 0.28*** 

n = 74 

r2
max = 0.15** 

n = 75 
 

r2
mand = 0.31*** 

n = 75 

Cercopithecus 
nictitans 

r2
max = 0.05 
n = 68 

 

r2
mand = 0.08* 

n = 71 

r2
max = 0.19*** 

n = 69 
 

r2
mand = 0.13* 

n = 72 

r2
max = 0.11* 

n = 70 
 

r2
mand = 0.14* 

n = 68 

r2
max = 0.09* 

n = 69 
 

r2
mand = 0.16*** 

n = 73 

Cercopithecus 
pogonias 

r2
max = 0.16* 

n = 53 
 

r2
mand = 0.17*** 

n = 60 

r2
max = 0.16* 

n = 53 
 

r2
mand = 0.13* 

n = 60 

r2
max = 0.05 
n = 55 

 

r2
mand = 0.14* 

n = 63 

r2
max = 0.15* 

n = 53 
 

r2
mand = 0.17** 

n = 63 

Macaca 
fascicularis 

r2
max = 0.27*** 

n = 68 
 

r2
mand = 0.10* 

n = 66 

r2
max = 0.22*** 

n = 67 
 

r2
mand = 0.06* 

n = 69 

r2
max = 0.13*** 

n = 73 
 

r2
mand = 0.05 
n = 70 

r2
max = 0.10* 

n = 73 
 

r2
mand = 0.11* 

n = 72 

Colobus 
satanas 

r2
max = 0.04* 

n = 44 
 

r2
mand = 0.00 
n = 45 

r2
max = 0.23*** 

n = 44 
 

r2
mand = 0.03 
n = 45 

r2
max = 0.12* 

n = 49 
 

r2
mand = 0.01 
n = 50 

r2
max = 0.20* 

n = 49 
 

r2
mand = 0.10* 

n = 50 

Ateles geoffroyi 

r2
max = 0.44*** 

n = 58 
 

r2
mand = 0.29*** 

n = 63 

r2
max = 0.19*** 

n = 58 
 

r2
mand = 0.27*** 

n = 62 

r2
max = 0.25** 

n = 61 
 

r2
mand = 0.46*** 

n = 53 

r2
max = 0.17*** 

n = 61 
 

r2
mand = 0.37***  

n = 57 

Cebus 
libidinosus 

r2
max = 0.26*** 

n = 76 
 

r2
mand = 0.21** 

n = 75 

r2
max = 0.18*** 

n = 78 
 

r2
mand = 0.24*** 

n = 74 

r2
max = 0.17*** 

n = 77 
 

r2
mand = 0.12* 

n = 86 

r2
max = 0.17*** 

n = 88 
 

r2
mand = 0.18** 

n = 80 
Weighted 

Anthropoid 
Average 

r2
max = 0.23 

 

r2
mand = 0.18 

r2
max = 0.22 

 

r2
mand = 0.20 

r2
max = 0.15 

 

r2
mand = 0.16 

r2
max = 0.16 

 

r2
mand = 0.22 

 



  83 

TABLE 3.8. The magnitude of covariation between the breadths of the I2 and postcanine 
teeth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
 
 

I2LL- 
P2, P3BL 

I2LL- 
P4BL 

I2LL- 
M1BL 

I2LL- 
M2BL 

Gorilla gorilla 

r2
max = 0.22*** 

n = 81 
 

r2
mand = 0.31*** 

n = 95 

r2
max = 0.23*** 

n = 79 
 

r2
mand = 0.35*** 

n = 94 

r2
max = 0.13***  

n = 81 
 

r2
mand = 0.25*** 

n = 89 

r2
max = 0.18** 

n = 82 
 

r2
mand = 0.25*** 

n = 100 

Pan 
troglodytes 

r2
max = 0.28*** 

n = 89 
 

r2
mand = 0.28*** 

n = 87 

r2
max = 0.31*** 

n = 89 
 

r2
mand = 0.32*** 

n = 85  

r2
max = 0.20*** 

n = 90 
 

r2
mand = 0.13*** 

n = 84 

r2
max = 0.30*** 

n = 89 
 

r2
mand = 0.33*** 

n = 87 

Hylobates lar 

r2
max = 0.30*** 

n = 56 
 

r2
mand = 0.27*** 

n = 67 

r2
max = 0.28*** 

n = 61 
 

r2
mand = 0.26** 

n = 72 

r2
max = 0.11* 

n = 61 
 

r2
mand = 0.17* 

n = 60 

r2
max = 0.28*** 

n = 64 
 

r2
mand = 0.25*** 

n = 78 

Cercopithecus 
cephus 

r2
max = 0.24*** 

n = 76 
 

r2
mand = 0.25*** 

n = 75 

r2
max = 0.24*** 

n = 77 
 

r2
mand = 0.23*** 

n = 77 

r2
max = 0.10** 

n = 76 
 

r2
mand = 0.32*** 

n = 76 

r2
max = 0.17** 

n = 77 
 

r2
mand = 0.30*** 

n = 77 

Cercopithecus 
nictitans 

r2
max = 0.13* 

n = 73 
 

r2
mand = 0.14*** 

n = 75 

r2
max = 0.17* 

n = 74 
 

r2
mand = 0.16*** 

n = 76 

r2
max = 0.06* 

n = 74 
 

r2
mand = 0.16*** 

n = 72 

r2
max = 0.08 
n = 75 

 

r2
mand = 0.17*** 

n = 77 

Cercopithecus 
pogonias 

r2
max = 0.41*** 

n = 56 
 

r2
mand = 0.18*** 

n = 61 

r2
max = 0.30** 

n = 56 
 

r2
mand = 0.19*** 

n = 61 

r2
max = 0.07* 

n = 58 
 

r2
mand = 0.14* 

n = 63 

r2
max = 0.14* 

n = 56 
 

r2
mand = 0.26*** 

n = 64 

Macaca 
fascicularis 

r2
max = 0.26*** 

n = 74 
 

r2
mand = 0.25*** 

n = 65 

r2
max = 0.20*** 

n = 72 
 

r2
mand = 0.13* 

n = 68 

r2
max = 0.19** 

n = 78 
 

r2
mand = 0.07* 

n = 71 

r2
max = 0.16* 

n = 79 
 

r2
mand = 0.21** 

n = 72 

Colobus 
satanas 

r2
max = 0.16* 

n = 46 
 

r2
mand = 0.04 
n = 45 

r2
max = 0.29*** 

n = 46 
 

r2
mand = 0.15* 

n = 45 

r2
max = 0.16* 

n = 46 
 

r2
mand = 0.12* 

n = 46 

r2
max = 0.19** 

n = 46 
 

r2
mand = 0.12* 

n = 46 

Ateles geoffroyi 

r2
max = 0.37*** 

n = 63 
 

r2
mand = 0.27*** 

n = 63 

r2
max = 0.23*** 

n = 60 
 

r2
mand = 0.44*** 

n = 62 

r2
max = 0.32*** 

n = 62 
 

r2
mand = 0.46*** 

n = 53 

r2
max = 0.28*** 

n = 63 
 

r2
mand = 0.44*** 

n = 57 

Cebus 
libidinosus 

r2
max = 0.15* 

n = 74 
 

r2
mand = 0.22*** 

n = 77 

r2
max = 0.20*** 

n = 76 
 

r2
mand = 0.21*** 

n = 76 

r2
max = 0.23*** 

n = 75 
 

r2
mand = 0.19** 

n = 88 

r2
max = 0.19*** 

n = 83 
 

r2
mand = 0.23** 

n = 83 
Weighted 

Anthropoid 
Average 

r2
max = 0.25 

 

r2
mand = 0.23 

r2
max = 0.24 

 

r2
mand = 0.25 

r2
max = 0.16 

 

r2
mand = 0.20 

r2
max = 0.20 

 

r2
mand = 0.26 
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TABLE 3.9. The magnitude of covariation between the lengths of the I1 and postcanine 
teeth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
I1MD- 

P2, P3Oblique 
I1MD- 
P4MD 

I1MD- 
M1MD 

I1MD- 
M2MD 

Gorilla gorilla 

r2
max = 0.06* 

n = 51 
 

r2
mand = 0.30*** 

n = 49 

r2
max = 0.16* 

n = 58 
 

r2
mand = 0.20** 

n = 56  

r2
max = 0.22*** 

n = 63 
 

r2
mand = 0.13* 

n = 58 

r2
max = 0.11* 

n = 62 
 

r2
mand = 0.16* 

n = 56 

Pan 
troglodytes 

r2
max = 0.04 
n = 67 

 

r2
mand = 0.17* 

n = 71 

r2
max = 0.08* 

n = 72 
 

r2
mand = 0.07* 

n = 75 

r2
max = 0.19*** 

n = 75 
 

r2
mand = 0.08* 

n = 76 

r2
max = 0.14* 

n = 74 
 

r2
mand = 0.07* 

n = 79 

Hylobates lar 

r2
max = 0.11 
n = 24 

 

r2
mand = 0.01 
n = 52 

r2
max = 0.18* 

n = 35 
 

r2
mand = 0.24*** 

n = 55 

r2
max = 0.03 
n = 48 

 

r2
mand = 0.09* 

n = 61 

r2
max = 0.02  
n = 40 

 

r2
mand = 0.06* 

n = 64 

Cercopithecus 
cephus 

r2
max = 0.06 
n = 57 

 

r2
mand = 0.05 
n = 68 

r2
max = 0.09* 

n = 69 
 

r2
mand = 0.22** 

n = 69 

r2
max = 0.26*** 

n = 69 
 

r2
mand = 0.11* 

n = 68 

r2
max = 0.13* 

n = 69 
 

r2
mand = 0.14* 

n = 69 

Cercopithecus 
nictitans 

r2
max = 0.06 
n = 57 

 

r2
mand = 0.00 
n = 66 

r2
max = 0.13* 

n = 66 
 

r2
mand = 0.03 
n = 68 

r2
max = 0.20* 

n = 67 
 

r2
mand = 0.06 
n = 67 

r2
max = 0.08* 

n = 66 
 

r2
mand = 0.02 
n = 69 

Cercopithecus 
pogonias 

r2
max = 0.01 
n = 40 

 

r2
mand = 0.00 
n = 46 

r2
max = 0.21* 

n = 44 
 

r2
mand = 0.00 
n = 46 

r2
max = 0.28** 

n = 47 
 

r2
mand = 0.05 
n = 49 

r2
max = 0.22* 

n = 45 
 

r2
mand = 0.04 
n = 49 

Macaca 
fascicularis 

r2
max = 0.09* 

n = 56 
 

r2
mand = 0.11* 

n = 63 

r2
max = 0.26** 

n = 58 
 

r2
mand = 0.38*** 

n = 70 

r2
max = 0.24*** 

n = 71 
 

r2
mand = 0.20** 

n = 81 

r2
max = 0.31*** 

n = 66 
 

r2
mand = 0.26*** 

n = 78 

Colobus 
satanas 

r2
max = 0.07 
n = 44 

 

r2
mand = -0.01 

n = 44 

r2
max = 0.17* 

n = 44 
 

r2
mand = 0.12 
n = 44 

r2
max = 0.09* 

n = 49 
 

r2
mand = 0.04 
n = 49 

r2
max = 0.07*  

n = 49 
 

r2
mand = 0.01 
n = 49 

Ateles 
geoffroyi 

r2
max = 0.40*** 

n = 53 
 

r2
mand = 0.00 
n = 55 

r2
max = 0.23** 

n = 61 
 

r2
mand = 0.34*** 

n = 61 

r2
max = 0.18* 

n = 63 
 

r2
mand = 0.25** 

n = 64 

r2
max = 0.31*** 

n = 59 
 

r2
mand = 0.17* 

n = 62 

Cebus 
libidinosus 

r2
max = 0.29*** 

n = 70 
 

r2
mand = 0.03 
n = 54 

r2
max = 0.20*** 

n = 75 
 

r2
mand = 0.10* 

n = 57 

r2
max = 0.14* 

n = 75 
 

r2
mand = 0.09* 

n = 67 

r2
max = 0.18*** 

n = 85 
 

r2
mand = 0.20** 

n = 60 
Weighted 

Anthropoid 
Average 

r2
max = 0.13 

 

r2
mand = 0.07 

r2
max = 0.17 

 

r2
mand = 0.18 

r2
max = 0.19 

 

r2
mand = 0.11 

r2
max = 0.16 

 

r2
mand = 0.12 
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TABLE 3.10. The magnitude of covariation between the lengths of the I2 and postcanine 
teeth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
I2MD- 

P2, P3MD 
I2MD- 
P4MD 

I2MD- 
M1MD 

I2MD- 
M2MD 

Gorilla gorilla 

r2
max = 0.11* 

n = 54 
 

r2
mand = 0.33*** 

n = 62 

r2
max = 0.20** 

n = 61 
 

r2
mand = 0.12* 

n = 68 

r2
max = 0.23*** 

n = 64 
 

r2
mand = 0.05 
n = 71 

r2
max = 0.07 
n = 63 

 

r2
mand = 0.12** 

n = 72 

Pan 
troglodytes 

r2
max = 0.24** 

n = 66 
 

r2
mand = 0.16** 

n = 77 

r2
max = 0.13* 

n = 71 
 

r2
mand = 0.12* 

n = 79  

r2
max = 0.09* 

n = 73 
 

r2
mand = 0.12* 

n = 78 

r2
max = 0.18** 

n = 71 
 

r2
mand = 0.07* 

n = 80 

Hylobates lar 

r2
max = 0.25** 

n = 31 
 

r2
mand = 0.07* 

n = 60 

r2
max = 0.24** 

n = 44 
 

r2
mand = 0.23** 

n = 66 

r2
max = 0.26*** 

n = 49 
 

r2
mand = 0.07* 

n = 66 

r2
max = 0.31*** 

n = 49 
 

r2
mand = 0.16*** 

n = 74 

Cercopithecus 
cephus 

r2
max = 0.06 
n = 56 

 

r2
mand = 0.20*** 

n = 76 

r2
max = 0.21*** 

n = 67 
 

r2
mand = 0.17*** 

n = 77 

r2
max = 0.19** 

n = 67 
 

r2
mand = 0.15** 

n = 76 

r2
max = 0.21*** 

n = 67 
 

r2
mand = 0.21*** 

n = 77 

Cercopithecus 
nictitans 

r2
max = 0.00 
n = 59 

 

r2
mand = 0.05 
n = 72 

r2
max = 0.12* 

n = 70 
 

r2
mand = 0.04* 

n = 74 

r2
max = 0.07* 

n = 72 
 

r2
mand = 0.04 
n = 73 

r2
max = 0.04 
n = 71 

 

r2
mand = 0.02 
n = 75 

Cercopithecus 
pogonias 

r2
max = 0.06 
n = 45 

 

r2
mand = 0.01 
n = 57 

r2
max = 0.24** 

n = 52 
 

r2
mand = 0.02 
n = 58 

r2
max = 0.31** 

n = 55 
 

r2
mand = 0.07* 

n = 59 

r2
max = 0.25** 

n = 53 
 

r2
mand = 0.03 
n = 61 

Macaca 
fascicularis 

r2
max = 0.05* 

n = 65 
 

r2
mand = 0.06* 

n = 59 

r2
max = 0.03 
n = 69 

 

r2
mand = 0.06* 

n = 66 

r2
max = 0.04 
n = 76 

 

r2
mand = 0.11* 

n = 75 

r2
max = 0.04 
n = 75 

 

r2
mand = 0.06* 

n = 73 

Colobus 
satanas 

r2
max = 0.36** 

n = 44 
 

r2
mand = 0.03 
n = 45 

r2
max = 0.42*** 

n = 44 
 

r2
mand = 0.07 
n = 45 

r2
max = 0.18* 

n = 46 
 

r2
mand = 0.10* 

n = 48 

r2
max = 0.17* 

n = 46 
 

r2
mand = 0.07 
n = 48 

Ateles geoffroyi 

r2
max = 0.56*** 

n = 50 
 

r2
mand = 0.00 
n = 57 

r2
max = 0.41*** 

n = 54 
 

r2
mand = 0.32** 

n = 63 

r2
max = 0.38*** 

n = 60 
 

r2
mand = 0.21*** 

n = 62 

r2
max = 0.39*** 

n = 66 
 

r2
mand = 0.15* 

n = 60 

Cebus 
libidinosus 

r2
max = 0.32*** 

n = 70 
 

r2
mand = 0.02 
n = 73 

r2
max = 0.06* 

n = 75 
 

r2
mand = 0.13** 

n = 76 

r2
max = 0.09* 

n = 75 
 

r2
mand = 0.04 
n = 85 

r2
max = 0.15** 

n = 82 
 

r2
mand = 0.05* 

n = 78 
Weighted 

Anthropoid 
Average 

r2
max = 0.19 

 

r2
mand = 0.10 

r2
max = 0.19 

 

r2
mand = 0.13 

r2
max = 0.17 

 

r2
mand = 0.09 

r2
max = 0.17 

 

r2
mand = 0.09 



  86 

postcanine size for catarrhines and 192 possible character-pairs for platyrrhines. To 

reduce the number of comparisons, while providing adequate representation of the pattern 

of covariation between incisor and postcanine size, comparisons were restricted to 

homologous dimensions of I1, I2, P2 (platyrrhines only), P3 (catarrhines only), P4, M1, 

and M2 within an arch (Tables 3.7, 3.8, 3.9, and 3.10).  

For the breadths of the incisors and postcanine dentition (Tables 3.7 and 3.8), 

anthropoid averages range from r2 = 0.16–0.26. Most estimates of r2 are significantly 

different from zero (159 out of 160 estimates within species) and no estimate of 

covariation is negative in direction; that is, larger incisors are associated with larger 

premolars and molars within all species. Many r2 estimates are significantly different 

from zero at α = 0.05 (153 out 160 within species estimates) and at more restrictive 

values (107 out of 160 estimates are significant at p ≤ 0.01), which reflects the large 

sample sizes for each character pair, as the r2s are low in absolute value. The anthropoid 

averages indicate that very low to low levels of positive covariation exist between incisor 

and postcanine breadth. 

Compared to measures of breadth, covariation among the incisor and postcanine 

MD lengths is weaker in strength (Tables 3.9 and 3.10). The range of anthropoid average 

r2s is 0.07–0.19. As a result, fewer r2 estimates are significantly different from zero at α = 

0.05 (117 out of 160) and far fewer are significantly different from zero at α = 0.01 (52 

out of 160) than was observed for breadths. As with the breadths of the incisors and 

postcanine dentition, with one exception (I1MD-P3Oblique in Colobus satanas, r2 = -

0.01), all estimates of incisor and postcanine MD length covariation that are not zero are 

positive in direction. This contrasts with the McCollum and Sharpe (2001) model, which 

predicts negative covariation, and the reported negative genetic correlations in Hlusko et 

al. (2010). 
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Fig. 3.2. Histogram of r2 values for platyrrhine, cercopithecid, and hominoid average 
values. Values between the size of homologous dimensions of the incisors and postcanine 
dentitions are in black and values between all incisor sizes are in diagonal stripes. 
 

 

When the r2 values for homologous dimensions of the incisors and postcanine 

teeth are compared to those for all incisal pairs (Figure 3.2), incisor size consistently 

covaries with postcanine size at a very low to low level, similar to that observed between 

many comparisons of incisor size (principally comparisons between incisor MD length 

and LL breadth), which further supports the conclusion that the sizes of the incisors are 

not all tightly linked by pleiotropy. There are fifteen examples of covariation between 

incisor size that exceed those between the incisors and postcanine dentition: I1LL-I2LL, 

I1LL-I2LL, I1LL-I1LL, I2LL-I2LL, I1LL-I2LL, I1LL-I2LL, I1MD-I2MD, and I1MD-I1MD, 

again highlighting the nonrandom pattern of character covariation among incisor size. 

When the sizes of the incisors and postcanine teeth are considered, the  
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TABLE 3.11. The magnitude of covariation among species for incisor size, equal branch 
lengths. All r2s are significantly different from zero at p < α = 0.0001. n = 35 for both 
males and females; however, the taxonomic composition is slightly different for males 

and females. 
 
 

 I 1
LL

 

I 1
M

D
 

I 2
LL

 

I 2
M

D
 

I1 LL
 

I1 M
D

 

I2 LL
 

I 1
M

D
 

♂
r2  =

 0
.8

4 
♀

r2  =
 0

.8
4 

—
 

—
 

—
 

—
 

—
 

—
 

I 2
LL

 

♂
r2  =

 0
.8

8 
♀

r2  =
 0

.8
9 

♂
r2  =

 0
.7

9 
♀

r2  =
 0

.8
4 

—
 

—
 

—
 

—
 

—
 

I 2
M

D
 

♂
r2  =

 0
.6

1 
♀

r2  =
 0

.7
2 

♂
r2  =

 0
.8

2 
♀

r2  =
 0

.8
1 

♂
r2  =

 0
.8

7 
♀

r2  =
 0

.8
1 

—
 

—
 

—
 

—
 

I1 LL
 

♂
r2  =

 0
.8

8 
♀

r2  =
 0

.8
4 

♂
r2  =

 0
.7

8 
♀

r2  =
 0

.8
5 

♂
r2  =

 0
.8

2 
♀

r2  =
 0

.8
1 

♂
r2  =

 0
.6

9 
♀

r2  =
 0

.6
5 

—
 

—
 

—
 

I1 M
D

 

♂
r2  =

 0
.7

9 
♀

r2  =
 0

.7
1 

♂
r2  =

 0
.8

3 
♀

r2  =
 0

.8
5 

♂
r2  =

 0
.7

7 
♀

r2  =
 0

.7
9 

♂
r2  =

 0
.7

0 
♀

r2  =
 0

.6
6 

♂
r2  =

 0
.8

3 
♀

r2  =
 0

.8
2 

—
 

—
 

I2 LL
 

♂
r2  =

 0
.6

5 
♀

r2  =
 0

.7
6 

♂
r2  =

 0
.5

6 
♀

r2  =
 0

.6
1 

♂
r2  =

 0
.8

3 
♀

r2  =
 0

.8
4 

♂
r2  =

 0
.6

4 
♀

r2  =
 0

.6
3 

♂
r2  =

 0
.6

6 
♀

r2  =
 0

.6
5 

♂
r2  =

 0
.4

3 
♀

r2  =
 0

.5
6 

—
 

I2 M
D

 

♂
r2  =

 0
.4

6 
♀

r2  =
 0

.6
8 

♂
r2  =

 0
.5

7 
♀

r2  =
 0

.5
7 

♂
r2  =

 0
.5

7 
♀

r2  =
 0

.6
9 

♂
r2  =

 0
.6

0 
♀

r2  =
 0

.7
1 

♂
r2  =

 0
.4

1 
♀

r2  =
 0

.5
1 

♂
r2  =

 0
.4

6 
♀

r2  =
 0

.4
5 

♂
r2  =

 0
.6

6 
♀

r2  =
 0

.4
5 
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Fig. 3.3. Independent Contrasts for ♂I1MD-I2MD, branch lengths equal. The line 
represents the RMA Regression Line. The contrast with the largest residual value, 
between Macaca fascicularis and Macaca mulatta, is indicated with an arrow.  
 

 

 

Fig. 3.4. Independent Contrasts for ♂I1MD-I2MD, branch lengths equal. In contrast to the 
relationship among mandibular incisor lengths, there is a poorer fit of the of the maxillary 
incisor length independent contrasts to the RMA regression line. Maxillary incisor 
lengths demonstrate more flexibility to evolve independently of one another among 
species than do the mandibular incisor lengths. 
. 
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hypothesis of pleiotropic modularity is supported with some revision. The separation 

between the postcanine dentition and the incisors is not complete, as there is weak, but 

consistent, positive covariation between modules. 

 

Incisor Size Covariation Among Species: As reviewed in Chapter 2, both selection 

acting on pleiotropically linked characters and selective covariance create among-species 

covariation. In this section, evaluation of independent contrasts is used to determine if 

variation in the magnitude of covariation within species is reflected in variation in the 

magnitude of covariation between characters among species. Those characters that 

covary most strongly within species should be the most constrained (i.e., show the 

highest levels of among-species covariation). 

All among-species r2s for incisor size are significantly different from zero (Table 

3.11). Though most r2s are ≥ 0.65 (42 out of 56 estimates), the range of estimates is quite 

broad. When the male and female values are pooled to compute an average r2 for each 

incisal dimension (I1MD: 0.75, I1LL: 0.75, I2MD: 0.71, I2LL: 0.80, I1MD: 0.69, I1LL:  

0.73, I2MD: 0.56, I2LL: 0.64), it is evident that the I2, the I2MD especially, expresses the 

lowest level of among-species covariation. The relative independence of the I2MD is also 

evidenced by the fact that of the 14 estimates of r2 that are less than 0.65, 10 involve the 

I2MD. Bivariate plots of incisor size independent contrasts highlight the weaker 

covariance of maxillary incisor size than mandibular incisor size (Figures 3.3 and 3.4). 

For example, contrasts of mandibular incisors show a single notable outlier (the contrast 

between Macaca fascicularis and Macaca mulatta), while the remainder of the contrasts 

fall near the Reduced Major Axis (RMA) regression line. The weak among-species r2 for 

maxillary incisor size is not the result of outlying contrasts that leverage the model; there 

is simply a poorer overall correspondence of their sizes among species (Figure 3.4). 
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The magnitudes of among-species covariation between MD lengths and LL 

breadths, which do not covary strongly within species, is nearly as strong as it is for 

homologous dimensions that express higher levels of covariation within species. This is 

easily explained if natural selection has often acted to cause coordinated change in each 

character. Recall the multivariate selection model, Δz = Gβ. Since all size covariation 

within species is positive, if each incisor (“i”) experiences a β that favors change in the 

same direction, then the characters will coevolve regardless of their magnitude of 

covariation within species (as in Figure 1.7). What the among-species analysis of incisor 

size shows is that in most cases each dimension of the incisors has experienced a βi that 

favored change in the same direction. However, as the large contrasts for I2MD length 

indicate, characters that covary weakly within species retain substantial ability to change 

independently of one another. As a result, the most weakly covarying character pairs 

within species are also the most weakly covarying among species and, conversely, the 

most strongly covarying character pairs within species are the mostly strongly covarying 

among species. However, it is evident that there is no simple relationship between the 

magnitudes of within- and among-species covariation. The high level of covariation 

among species for character pairs that demonstrate low levels of within-species 

covariation suggests that it is unwise to assume tight pleiotropic linkages for characters 

that have coevolved. This finding will be discussed below in relation to among-species 

covariation in incisor and postcanine size and further elaborated in Chapter 7.  

 

Incisor-Postcanine Size Covariation Among Species: Within species, it was shown that 

homologous dimensions of the incisors and postcanine dentition express statistically 

significant, but very low to low levels of covariation (Tables 3.7–3.10). Furthermore, 

within-species levels of covariation between incisor and postcanine size are similar to  
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TABLE 3.12. The magnitude of among-species covariation for incisor and postcanine 
size, equal branch lengths. All r2s are significantly different from zero at p < α = 0.001. n 

= 35 taxa for all independent contrasts. 
 

 I1MD I1LL I2MD I2LL 

P4MD ♂r2 = 0.46 
♀r2 = 0.43 

♂r2 = 0.49 
♀r2 = 0.47 

♂r2 = 0.38 
♀r2 = 0.31 

♂r2 = 0.60 
♀r2 = 0.53 

P4BL ♂r2 = 0.56 
♀r2 = 0.57 

♂r2 = 0.58 
♀r2 = 0.56 

♂r2 = 0.51 
♀r2 = 0.47 

♂r2 = 0.72 
♀r2 = 0.68 

M1MD ♂r2 = 0.43 
♀r2 = 0.42 

♂r2 = 0.47 
♀r2 = 0.49 

♂r2 = 0.40 
♀r2 = 0.35 

♂r2 = 0.62 
♀r2 = 0.56 

M1BL ♂r2 = 0.54 
♀r2 = 0.54 

♂r2 = 0.55 
♀r2 = 0.57 

♂r2 = 0.52 
♀r2 = 0.45 

♂r2 = 0.71 
♀r2 = 0.67 

M2MD ♂r2 = 0.33 
♀r2 = 0.30 

♂r2 = 0.38 
♀r2 = 0.37 

♂r2 = 0.29 
♀r2 = 0.23 

♂r2 = 0.51 
♀r2 = 0.42 

M2BL ♂r2 = 0.52 
♀r2 = 0.48 

♂r2 = 0.57 
♀r2 = 0.50 

♂r2 = 0.49 
♀r2 = 0.36 

♂r2 = 0.71 
♀r2 = 0.59 

M3MD ♂r2 = 0.26 
♀r2 = 0.24 

♂r2 = 0.31 
♀r2 = 0.30 

♂r2 = 0.21 
♀r2 = 0.17 

♂r2 = 0.39 
♀r2 = 0.30 

M3BL ♂r2 = 0.43 
♀r2 = 0.45 

♂r2 = 0.48 
♀r2 = 0.47 

♂r2 = 0.41 
♀r2 = 0.33 

♂r2 = 0.64 
♀r2 = 0.57 

Average  r2 = 0.44 r2 = 0.47  r2 = 0.37  r2 = 0.58  

 

 
 I1MD I1LL I2MD I2LL 

P4MD ♂r2 = 0.52 
♀r2 = 0.54 

♂r2 = 0.48 
♀r2 = 0.51 

♂r2 = 0.45 
♀r2 = 0.39 

♂r2 = 0.64 
♀r2 = 0.49 

P4BL ♂r2 = 0.63 
♀r2 = 0.59 

♂r2 = 0.64 
♀r2 = 0.55 

♂r2 = 0.52 
♀r2 = 0.40 

♂r2 = 0.71 
♀r2 = 0.53 

M1MD ♂r2 = 0.47 
♀r2 = 0.46 

♂r2 = 0.45 
♀r2 = 0.43 

♂r2 = 0.40 
♀r2 = 0.38 

♂r2 = 0.63 
♀r2 = 0.49 

M1BL ♂r2 = 0.49 
♀r2 = 0.49 

♂r2 = 0.47 
♀r2 = 0.47 

♂r2 = 0.46 
♀r2 = 0.44 

♂r2 = 0.58 
♀r2 = 0.46 

M2MD ♂r2 = 0.39 
♀r2 = 0.28 

♂r2 = 0.30 
♀r2 = 0.27 

♂r2 = 0.28 
♀r2 = 0.22 

♂r2 = 0.48 
♀r2 = 0.33 

M2BL ♂r2 = 0.50 
♀r2 = 0.45 

♂r2 = 0.46 
♀r2 = 0.40 

♂r2 = 0.43 
♀r2 = 0.34 

♂r2 = 0.55 
♀r2 = 0.39 

M3MD ♂r2 = 0.25 
♀r2 = 0.25 

♂r2 = 0.23 
♀r2 = 0.25 

♂r2 = 0.27 
♀r2 = 0.17 

♂r2 = 0.43 
♀r2 = 0.29 

M3BL ♂r2 = 0.43 
♀r2 = 0.41 

♂r2 = 0.42 
♀r2 = 0.39 

♂r2 = 0.41 
♀r2 = 0.31 

♂r2 = 0.54 
♀r2 = 0.38 

Average  r2 = 0.45 r2 = 0.42 r2 = 0.37 r2 = 0.50 
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Fig. 3.5. Independent contrasts between I2LL and M1BL. The largest contrast, 
between Pan and Gorilla, is indicated with an arrow. 
 
 
 
those between the MD length and LL breadth of incisor pairs, which suggests that the 

incisors and postcanine teeth have weak, overlapping pleiotropic effects. 

Among-species covariation between incisor and postcanine tooth size is always 

significantly different from zero (even at restrictive α levels) and positive in direction 

(Table 3.12). Average among-species r2s for incisor-postcanine size range between r2 = 

0.37–0.58, which is lower than estimates for incisor pairs (except for some comparisons 

of I2 size) (Table 3.11). As Figure 3.5 shows, there is a strong association among species 

for some incisor and postcanine dimensions. At a broad level, incisor and postcanine 

sizes covary, but there is little to suggest that the sizes of the incisors and postcanine teeth 

are considerably constrained to evolve in a single direction. For example, in Figure 3.5 

the largest outlying contrast is between Pan and Gorilla, where the M1BL size difference 

between them is greater than expected for their I2LL difference (relative to M1BL, the 
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Pan I2 is broader), indicating that incisor and postcanine size can change independently 

of one another even between closely related species. 

In summary, as all among-species correlations between incisor and postcanine 

size are statistically significant and positive in direction. The Jolly (1970) and McCollum 

and Sharpe (2001) hypotheses that predict trade-offs in anterior and posterior tooth size 

are rejected. There is no evidence that the negative genetic correlation among incisor and 

postcanine size reported in SNPRC baboons played an “important” role (Hlusko et al., 

2010: 46) in channeling the among-species evolution of incisor and postcanine tooth size.  

This does not indicate that there was not a selective tradeoff between the anterior and 

posterior teeth in some hominin species, only that is was not mediated by pleiotropy. 

 

Incisor Shape Covariation Within Species: As anthropoid taxa vary in the shape of their 

incisors, incisor shape covariation was also investigated within and among species. 

Levels of incisor shape covariation do not approach the highest levels observed for 

incisor size (Tables 3.13 and 3.14). For size, the highest levels of covariation are between 

the mandibular incisors; not surprisingly, the shapes of the mandibular incisors are shown 

to covary significantly, while all other incisor pairs do not. For both the LL breadths and 

MD lengths, cercopithecid mandibular incisors do not covary as strongly as do hominoids 

and platyrrhines (especially true for MD lengths). Expectedly, moderate covariation 

between mandibular incisor shapes is seen in hominoids (average r2 = 0.42) and 

platyrrhines (average r2 = 0.46), but not in cercopithecids (average r2 = 0.18). As will be 

discussed, the hominoid and platyrrhine taxa examined in this study are characterized by 

homomorphic mandibular incisors, while the cercopithecid mandibular incisors are 

heteromorphic. As for incisor size covariation, the discrepancy in incisor shape 

covariation observed between taxa suggests that if cercopithecid incisor morphology  
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TABLE 3.13. The magnitude of covariation among incisor shapes (*** p-value < 0.0001, 
** p-value < 0.001, * p-value < 0.05). 

 

 I1-I2 I1-I2 I1-I1 

Gorilla gorilla  r2 = 0.40*** 
 n = 50 

r2 = 0.04 
 n = 53 

r2 = 0.23* 
 n = 50 

Pan troglodytes  r2 = 0.41*** 
 n = 70 

r2 = 0.25*** 
 n = 62 

r2 = 0.17*** 
 n = 67 

Hylobates lar r2 = 0.45*** 
 n = 63 

r2 = 0.00 
 n = 30 

r2 = 0.07 
 n = 38 

Cercopithecus cephus  r2 = 0.19* 
 n = 69 

r2 = -0.01 
 n = 61 

r2 = 0.15*** 
 n = 62 

Cercopithecus nictitans r2 = 0.20*** 
 n = 70 

r2 = 0.11* 
 n = 59 

r2 = 0.08* 
 n = 60 

Cercopithecus grayi r2 = 0.14* 
 n = 48 

r2 = 0.08 
 n = 43 

r2 = 0.05 
 n = 39 

Macaca fascicularis r2 = 0.31*** 
 n = 63 

r2 = 0.13** 
 n = 58 

r2 = 0.26*** 
 n = 50 

Colobus satanas r2 = 0.04 
 n = 44 

r2 = 0.04 
 n = 43 

r2 = 0.04 
 n = 46 

Ateles geoffroyi  r2 = 0.58*** 
 n = 62 

r2 = 0.04 
 n = 54 

r2 = 0.06 
 n = 55 

Cebus libidinosus  r2 = 0.34*** 
 n = 67 

r2 = 0.07* 
 n = 81 

r2 = 0.08* 
 n = 68 

Weighted Anthropoid 
Average r2 = 0.31 r2 = 0.08 r2 = 0.12 

Weighted Hominoid 
Average r2 = 0.42 r2 = 0.10 r2 = 0.16 

Weighted Cercopithecid 
Average r2 = 0.18 r2 = 0.07 r2 = 0.12 

Weighted Platyrrhine 
Average r2 = 0.46 r2 = 0.06 r2 = 0.07 

Significantly different 
from zero (p < α = 0.01) 7/10 2/10 3/10 

 
 

 
 
 
 
 
 
 



  96 

 
 
 
 
 
 

TABLE 3.14. The magnitude of covariation among incisor shapes (*** p-value < 0.0001, 
** p-value < 0.001, * p-value < 0.05). 

 

 I1-I2 I2-I1 I2-I2 

Gorilla gorilla  r2 = 0.17* 
 n = 46 

r2 = 0.00 
 n = 51 

r2 = 0.39*** 
 n = 51 

Pan troglodytes  r2 = 0.21*** 
 n = 62 

r2 = 0.26*** 
 n = 65 

r2 = 0.10* 
 n = 66 

Hylobates lar  r2 = 0.00 
 n = 45 

r2 = 0.04 
 n = 40 

r2 = 0.00 
 n = 48 

Cercopithecus cephus  r2 = 0.00 
 n = 59 

r2 = 0.05* 
 n = 67 

r2 = 0.02 
 n = 35 

Cercopithecus nictitans r2 = 0.25*** 
 n = 63 

r2 = 0.07* 
 n = 63 

r2 = 0.15* 
 n = 68 

Cercopithecus  r2 = 0.00 
 n = 45 

r2 = 0.06 
 n = 43 

r2 = 0.00 
 n = 51 

Macaca fascicularis  r2 = 0.08 
 n = 60 

r2 = 0.16* 
 n = 52 

r2 = 0.21** 
 n = 63 

Colobus satanas r2 = 0.04 
 n = 43 

r2 = 0.03 
 n = 43 

r2 = 0.00 
 n = 44 

Ateles geoffroyi  r2 = 0.03 
 n = 56 

r2 = 0.06 
 n = 56 

r2 = 0.00 
 n = 55 

Cebus libidinosus  r2 = 0.07* 
 n = 64 

r2 = 0.12* 
 n = 84 

r2 = 0.08* 
 n = 82 

Weighted Anthropoid 
Average r2 = 0.09 r2 = 0.08 r2 = 0.10 

Weighted Hominoid 
Average r2 = 0.13 r2 = 0.10 r2 = 0.16 

Weighted Cercopithecid 
Average r2 = 0.08 r2 = 0.09 r2 = 0.10 

Weighted Platyrrhine 
Average r2 = 0.05 r2 = 0.09 r2 = 0.04 

Significantly different 
from zero (p < α = 0.01) 2/10 1/10 2/10 
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evolved from a platyrrhine- or hominoid-like condition, then the pattern and strength of 

pleiotropy was altered to parcel out the mandibular lateral incisor from that of the 

mandibular central incisor (as in Figure 1.1). In line with observations of maxillary 

incisor size covariation, the maxillary incisors covary more weakly in shape than do the 

mandibular. Measures of shape incorporate measurement error in both the MD and LL 

dimensions, so some diminution of the estimated strength of shape covariation from its 

true population value is likely, as an estimate of r2 is affected by the measurement error 

of four dimensions (2 for each incisor); however, the difference in the magnitudes of 

covariation between mandibular and maxillary incisors cannot be explained as a result of 

measurement error. In summary, for shapes, it is only the mandibular incisors of 

platyrrhines and hominoids that share substantial variation in shape. All other pairs of 

incisor shapes vary independently of one another. 

 

Incisor Shape Among Species: For incisor size, all among-species r2s exceeded their 

values within species; all incisor dimensions were shown to covary strongly among 

species. In contrast, there is far less evidence that incisor shapes have coevolved (Table 

3.17). As was true of levels of incisor shape covariation within species, the highest level 

of among-species covariation is for the shapes of the mandibular incisors, but even this is 

quite (unexpectedly) low. The low level of among-species covariation for mandibular 

incisor shape largely results from the presence of large outlying contrasts (Figure 3.7). 

The large contrasts for mandibular incisor shape capture well established differences in 

incisor morphology. For example, the Pan I2 is much longer MD, relative to the LL 

breadth, than is the Gorilla I2 (Kelley et al., 1995; Pickford, 2005), so that large contrast 

is easily explained. In addition, the contrast between incisor shapes in Callicebus and 

Pithecia likely relate to functional differences in the use of the pitheciine incisors in  
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TABLE 3.17. The magnitude of incisor shape covariation among species, equal branch 
lengths. (*** p-value < 0.0001, ** p-value < 0.001, * p-value < 0.05). n = 34 taxa for all 

comparisons. 
 

 

I1 I2 I1 

I2 r2 = 0.23*** — — 

I1 r2 = 0.21 r2 = 0.06* — 

I2 r2 = 0.00 r2 = 0.06* r2 = 0.07 

 
 
 
 
 
 
 

 

 

Fig 3.7. Independent Contrasts for mandibular incisor shape, branch lengths equal. The 
line represents the Reduced Major Axis Regression Line. The contrasts with the largest 
residual values are indicated with arrows. 
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Fig. 3.8. Independent Contrasts for maxillary incisor shape, branch lengths equal. The 
line represents the Reduced Major Axis Regression Line. Notably large contrasts are 
highlighted. 
 

 

 

gouging and husking behaviors, which are absent in Callicebus (Kinzey, 1992; 

Rosenberger, 1992). The contrast between Macaca fascicularis and Macaca mulatta is 

more difficult to explain. Macaca mulatta is not numerically well represented in this 

study, but this contrast is not due to error associated with small sample size, as the same 

dichotomy in shapes is also evident in the larger sample published in Plavcan (1990). The 

low level of covariation between maxillary incisor shapes (Figure 3.8) results from the 

combination of a low overall correspondence in shape among species and the presence of 

many large outlying contrasts. These large contrasts include intrageneric contrasts 

(Cercopithecus nictitans vs. Cercopithecus cephus, Colobus guereza vs. Colobus 

satanas, Pongo pygmaeus vs. Pongo abelii, Hylobates lar vs. Hylobates klossii), which 

are not obviously associated with any dietary differences, and contrasts between deeper 

nodes (Miopithecus vs. guenons, colobine vs. cercopithecine, Symphalangus vs. other 

hylobatids), which may reflect dietary differences. Among species, the shapes of the 
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incisors do not covary strongly. The shapes of the mandibular incisors express moderate 

levels of among-species covariation, while the maxillary incisors do not. 

 

Discussion and Summary 

For certain incisal dimensions, covariation is strong within and among species. 

Covariation is weak between the incisors and postcanine teeth within species. The 

hypothesis of variational modularity is supported for the incisors; however, it is evident 

that the strength of covariation is highly variable among character pairs. For incisor size, 

MD and LL dimensions do not strongly covary within species; however, homologous 

dimensions (with the exception of I2MD) covary strongly with one another. Levels of size 

covariation are generally higher between homologous mandibular dimensions than 

between homologous maxillary dimensions and, for both sets of characters, covariation is 

generally lower in cercopithecids than in hominoids and platyrrhines. Among all 

anthropoids, the maxillary incisors are more heteromorphic in size and shape than are the 

mandibular and, among species, the cercopithecid mandibular incisors are more 

heteromorphic than are their platyrrhine and hominoid counterparts (personal 

observation). The lower levels of covariation among maxillary incisors than among 

mandibular incisors and the lower levels of cercopithecid incisor covariation compared to 

hominoids and platyrrhines capture these differences in heteromorphy. Covariation is 

expected to channel among species change and to facilitate the rapid response of 

functionally linked characters to changing environmental conditions (e.g., Marroig and 

Cheverud, 2010). The analyses of incisor size and shape indicate that there is 

considerable “flexibility” (e.g., Marroig et al., 2009) in the system, which allows incisal 

characters to change independently of one another (especially so for maxillary incisor 

size and shape). The analyses of independent contrasts indicate that there are multiple 
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adaptive combinations of size and shape, which is to say that pmax among incisor traits is 

often not aligned with fitness peaks on an adaptive landscape (Arnold et al., 2001), which 

will be addressed in Chapter 6. 

The separation of incisor and postcanine size is not complete. The highest levels 

of within-species covariation between incisor and postcanine size do not, however, 

approach the highest levels among homologous incisor dimensions. Low levels of 

positive covariation characterize the incisors and postcanine teeth within species (contra 

Jolly, 1970; McCollum and Sharpe, 2001; Hlusko et al., 2010) and moderate levels of 

covariation were observed among species. This positive correlation among species did 

not result from selection acting on characters strongly linked by pleiotropy and is best 

explained as an example of selective covariance (Chapter 1; Figure 1.7). Jolly (1970) 

hypothesized the within species relationship between incisor and postcanine size from 

two convergent cases of incisal reduction and postcanine enlargement (Theropithecus and 

Australopithecus/Paranthropus) that occurred during the Plio-Pliestocene. The general 

trend among anthropoids is for larger incisors to be associated with larger postcanine 

teeth. That characters that covary weakly within species routinely express moderate 

covariation among species indicates that the pattern and magnitude of within-species 

covariation cannot be accurately predicted from an examination of among-species 

patterns.  

The McCollum and Sharpe (2001) model is based on a hypothetical 

developmental relationship, which has limited empirical support (Hlusko et al., 2010). 

The contrast with the direction of covariation observed in Hlusko et al. (2010) is not 

easily dismissed, but it bears noting that estimates of incisor and postcanine genetic 

correlations in the same sample published only one year earlier (Hlusko and Mahaney, 

2009) presented only positive genetic correlations between incisor and postcanine size. 
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Why the captive SNPRC baboons are anomalous in their pattern relative to all wild 

populations examined in this study is unknown.  

The incisors and postcanine teeth perform different functions and are not united 

by strong covariation. Selection has been free to act upon the abundant independent 

phenotypic variance in each functional unit. Any change in absolute or relative size that 

occurred during hominin evolution should be considered independent changes. 
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Chapter 4 

POSTCANINE MODULARITY 

In this chapter, two hypotheses are tested. The postcanine teeth are hypothesized 

to form a variational module. If this hypothesis is true then the postcanine teeth will 

covary strongly within and among species (calculated using phenotypic r2s within species 

and r2s of independent contrasts among species) and covariation with characters outside 

of the module will be weak (i.e., r2 nearly zero). This hypothesis will be rejected if 

covariation among postcanine dimensions is weak or if it is nearly equal in magnitude 

with that of the other functional modules. Second, the hypothesis that the postcanine 

dentition is divisible into two subunits (the premolars and molars) is tested. If the 

hypothesis is true, then partial correlations of premolar size, with molar size held 

constant, will be significantly different from zero. If no partial correlation remains among 

premolars after accounting for molar size, then this hypothesis will be rejected. The 

relationship between the strength of constraint and flexibility is informally investigated 

by comparing the magnitudes of covariation within species to that among species. The 

similarity of postcanine pmax among species and the correspondence of Δz and pmax are 

investigated in Chapter 6 for a subset of species.  

 

Results 

Covariation of Premolar Size Within Species: As described in Chapter 1, the mandibular 

premolars are distinctive morphologically and functionally (Figure 1.12). Here, two 

measures of the honing premolar (oblique length and breadth perpendicular to the oblique 

axis across the protoconid) are considered, while MD length and BL breadth are  
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TABLE 4.1. The magnitude of covariation for the length and breadth of each catarrhine 
premolar (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
P3Oblique- 

P3BL 
P4MD- 
P4BL 

P3MD- 
P3BL 

P4MD- 
P4BL 

Gorilla gorilla r2 = 0.46*** 
n = 102 

r2 = 0.25*** 
n = 118 

r2 = 0.08* 
n = 97 

r2 = 0.33*** 
n = 119 

Pan troglodytes r2 = 0.14** 
n = 93 

r2 = 0.13*** 
n = 95 

r2 = 0.03 
n = 85 

r2 = 0.33*** 
n = 93 

Hylobates lar r2 = 0.24*** 
n = 62 

r2 = 0.32*** 
n = 74 

r2 = 0.25* 
n = 39 

r2 = 0.46*** 
n = 75 

Cercopithecus cephus r2 = 0.21*** 
n = 78 

r2 = 0.22*** 
n = 81 

r2 = 0.38*** 
n = 64 

r2 = 0.21*** 
n = 81 

Cercopithecus nictitans r2 = 0.33*** 
n = 78 

r2 = 0.16*** 
n = 80 

r2 = 0.10* 
n = 65 

r2 = 0.20*** 
n = 83 

Cercopithecus pogonias r2 = 0.17*** 
n = 66 

r2 = 0.25*** 
n = 68 

r2 = 0.21*** 
n = 57 

r2 = 0.19*** 
n = 68 

Macaca fascicularis r2 = 0.33*** 
n = 77 

r2 = 0.34*** 
n = 83 

r2 = 0.13* 
n = 71 

r2 = 0.32*** 
n = 80 

Colobus satanas r2 = 0.17* 
n = 46 

r2 = 0.26* 
n = 46 

r2 = 0.12* 
n = 47 

r2 = 0.08 
n = 47 

Weighted Catarrhine 
Average r2 = 0.27 r2 = 0.24 r2 = 0.15 r2 = 0.28  

Weighted Hominoid 
Average r2 = 0.29 r2 = 0.23  r2 = 0.12  r2 = 0.37  

Weighted Cercopithecid 
Average r2 = 0.25 r2 = 0.25  r2 = 0.19 r2 = 0.21 

Significantly different 
from zero (p < α = 0.01) 7/8 7/8 2/8 7/8 

 
 
 
considered for all other premolars (Table 2.2 and Figure 2.1). Given that platyrrhines and 

catarrhines differ in premolar number and that the honing premolar is adjacent to the P4in 

catarrhines but spatially separated from the P4 in platyrrhines, it is inappropriate to 

directly compare patterns of covariation between these groups; therefore, results are 

presented separately for each anthropoid infraorder. 

Statistically significant, but low to very low magnitude, positive covariation 

characterizes the MD length and BL breadth of each premolar. In catarrhines, the MD 

length and BL breadth of the P4, P3, and P4 express low average levels of covariation (r2 =  
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TABLE 4.2. The magnitude of covariation for the length and breadth of each platyrrhine 
premolar (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
P2Oblique- 

P2BL 
P3MD- 
P3BL 

P4MD- 
P4BL 

Ateles geoffroyi r2 = 0.62*** 
n = 61 

r2 = 0.29** 
n = 57 

r2 = 0.34** 
n = 60 

Cebus libidinosus r2 = 0.08* 
n = 75 

r2 = 0.07 
n = 73 

r2 = 0.29*** 
n = 75 

Weighted 
Platyrrhine Average r2 = 0.32 r2 = 0.17 r2 = 0.31 

 

 
P2MD- 
P2BL 

P3MD- 
P3BL 

P4MD- 
P4BL 

Ateles geoffroyi  r2 = 0.50*** 
n = 53 

r2 = 0.19*** 
n = 58 

r2 = 0.16** 
n = 59 

Cebus libidinosus  r2 = 0.01 
n = 72 

r2 = 0.06* 
n = 78 

r2 = 0.10** 
n = 77 

Weighted 
Platyrrhine Average r2 = 0.22 r2 = 0.12  r2 = 0.13  

 
 
 
0.24–0.28); for the catarrhine P3, the level is very low (average r2 = 0.15) (Table 4.1). 

With a few exceptions (relatively high estimate for P3Oblique-P3BL in Gorilla gorilla, 

relatively high estimate for P4MD-P4BL in Hylobates lar, and relatively low estimate for 

P4MD-P4BL in Colobus satanas), there is little variation in the magnitude of estimates 

among catarrhine taxa and no obvious distinctions in strength between cercopithecids and 

hominoids (Table 4.1).  

For platyrrhines, the range of r2s is broader (average r2 = 0.12–0.32) and three 

premolars (P3, P3, and P4) have an average r2 < 0.20 (Table 4.2). There is a considerable 

difference in the magnitude of covariation within the P2s in Ateles geoffroyi and Cebus 

libidinosus. The mesial premolars of Ateles geoffroyi have r2s ≥ 0.50, while in Cebus 

libidinosus the values are < 0.10. This discrepancy is not easily explained, as an 

investigation of the data reveals that estimates of r2 are not influenced by outlying 

measurements.  
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TABLE 4.3. The average magnitude of covariation among premolar breadths and 
lengths. 

 

 
P3BL-
P4MD 

P3BL-
P4MD 

P3BL-
P3oblique 

P4BL-
P3MD 

P4BL-
P4MD 

Weighted Hominoid 
Average r2 = 0.24 r2 = 0.14 r2 = 0.29 r2 = 0.23 r2 = 0.23 

Weighted Cercopithecid 
Average r2 = 0.18 r2 = 0.17 r2 = 0.22 r2 = 0.16 r2 = 0.31  

Weighted Catarrhine 
Average r2 = 0.21 r2 = 0.15 r2 = 0.25 r2 = 0.19 r2 = 0.28 

Significantly different 
from zero (p < α = 0.01) 7/8 7/8 8/8 6/8 8/8 

 
P4BL-

P3oblique 
P4BL-
P3MD 

P4BL-
P4MD 

P4BL-
P3oblique 

Weighted Hominoid 
Average r2 = 0.25 r2 = 0.24 r2 = 0.33 r2 = 0.28 

Weighted Cercopithecid 
Average r2 = 0.15 r2 = 0.15 r2 = 0.28 r2 = 0.16 

Weighted Catarrhine 
Average r2 = 0.19 r2 = 0.19 r2 = 0.30 r2 = 0.21 

Significantly different 
from zero (p < α = 0.01) 6/8 6/8 8/8 7/8 

 

 
P2BL-

P2Oblique 
P2BL-
P3MD 

P2BL-
P4MD 

P2BL-
P3MD 

P2BL-
P4MD 

Weighted Platyrrhine 
Average r2 = 0.14 r2 = 0.13  r2 = 0.17 r2 = 0.13 r2 = 0.16  

Significantly different 
from zero (p < α = 0.01) 1/2 ½ 1/2 1/2 2/2 

 
P3BL-

P2Oblique 
P3BL-
P3MD 

P3BL-
P4MD 

P3BL-
P2MD 

P3BL-
P4MD 

Weighted Platyrrhine 
Average r2 = 0.23 r2 = 0.20 r2 = 0.20 r2 = 0.18 r2 = 0.13 

Significantly different 
from zero (p < α = 0.01) 2/2 2/2 2/2 1/2 2/2 

 
P4BL-

P2Oblique 
P4BL-
P3MD 

P4BL-
P4MD 

P4BL-
P2MD 

P4BL-
P3MD 

Weighted Platyrrhine 
Average r2 = 0.17 r2 = 0.13 r2 = 0.20 r2 = 0.12 r2 = 0.06 

Significantly different 
from zero (p < α = 0.01) 2/2 ½ 2/2 1/2 0/2 

 
P2BL-
P3MD 

P2BL-
P4MD 

P2BL-
P2MD 

P2BL-
P3MD 

P2BL-
P4MD 

Weighted Platyrrhine 
Average r2 = 0.09 r2 = 0.07 r2 = 0.14 r2 = 0.13 r2 = 0.12 

Significantly different 
from zero (p < α = 0.01) 1/2 0/2 2/2 1/2 2/2 

    

  (cont.) 
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TABLE 4.3 continued. 
 

 
P3BL-

P2Oblique 
P3BL-
P4MD 

P3BL-
P2MD 

P3BL-
P3MD 

P3BL-
P4MD 

Weighted Platyrrhine 
Average r2 = 0.20 r2 = 0.16 r2 = 0.19 r2 = 0.15 r2 = 0.18 

Significantly different 
from zero (p < α = 0.01) 2/2 ½ 2/2 2/2 2/2 

 
P4BL-

P2Oblique 
P4BL-
P3MD 

P4BL-
P2MD 

P4BL-
P3MD 

P4BL-
P4MD 

Weighted Platyrrhine 
Average r2 = 0.23 r2 = 0.18 r2 = 0.15 r2 = 0.27 r2 = 0.22 

Significantly different 
from zero (p < α = 0.01) 2/2 2/2 1/2 2/2 2/2 

 

 

In Chapter 3, it was found that incisor MD and LL dimensions covary weakly 

within an incisor (the anthropoid averages for each incisor are r2 = 0.15–0.23 (Table 

3.1)). Similarly, premolar lengths and breadths do not express substantial levels of 

covariation. The range of catarrhine and platyrrhine premolar average r2s largely 

overlaps, but is sometimes slightly higher than what was observed for the incisors. 

Premolar length and breadth are not only mostly independent within a premolar, 

but also among them (Table 4.3). Though very low and low in absolute value, for both 

platyrrhines and catarrhines, covariation between premolar MD length and BL breadth is 

always positive in direction and often significantly different from zero at α = 0.05. Within 

catarrhines, the average level of covariation for MD length-BL breadth ranges from very 

low (r2 = 0.15 for P3BL-P4MD) to low (r2 = 0.30 for P4BL-P4MD). The levels observed in 

cercopithecids and hominoids are similar, though the hominoid average is higher for 

seven out of nine pairs of measurements. For platyrrhines, length and breadth among 

premolars have r2 estimates that range from very low (r2 = 0.08 for P4BL-P3MD) to low 

(r2 = 0.39 for P3BL-P2Oblique). Eighteen out of 30 platyrrhine pairings have an r2 ≤ 0.25. 

As for the MD and BL dimensions of each premolar, the highest platyrrhine r2s are for  
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TABLE 4.4. The magnitude of covariation among catarrhine premolar lengths (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
P3Oblique- 

P4MD 
P3MD- 
P4MD 

P3Oblique- 
P3MD 

P4MD- 
P4MD 

Gorilla gorilla r2 = 0.26*** 
n = 100 

r2 = 0.48*** 
n = 93 

r2 = 0.21*** 
n = 85 

r2 = 0.54*** 
n = 119 

Pan troglodytes r2 = 0.31*** 
n = 89 

r2 = 0.26*** 
n = 81 

r2 = 0.24*** 
n = 78 

r2 = 0.59*** 
n = 87 

Hylobates lar r2 = 0.26*** 
n = 62 

r2 = 0.35** 
n = 40 

r2 = 0.38*** 
n = 35 

r2 = 0.48*** 
n = 68 

Cercopithecus cephus r2 = 0.17*** 
n = 80 

r2 = 0.48*** 
n = 64 

r2 = 0.20*** 
n = 63 

r2 = 0.59*** 
n = 81 

Cercopithecus nictitans r2 = 0.33*** 
n = 79 

r2 = 0.36*** 
n = 65 

r2 = 0.10* 
n = 62 

r2 = 0.56*** 
n = 81 

Cercopithecus pogonias r2 = 0.11* 
n = 67 

r2 = 0.38*** 
n = 57 

r2 = 0.16** 
n = 56 

r2 = 0.63*** 
n = 66 

Macaca fascicularis r2 = 0.23*** 
n = 75 

r2 = 0.35*** 
n = 70 

r2 = 0.07 
n = 61 

r2 = 0.64*** 
n = 77 

Colobus satanas r2 = 0.19* 
n = 46 

r2 = 0.35* 
n = 47 

r2 = 0.22* 
n = 46 

r2 = 0.29* 
n = 46 

Weighted Catarrhine 
Average r2 = 0.24 r2 = 0.38 r2 = 0.19  r2 = 0.55  

Weighted Hominoid 
Average r2 = 0.28 r2 = 0.37 r2 = 0.25 r2 = 0.54 

Weighted Cercopithecid 
Average r2 = 0.21 r2 = 0.39 r2 = 0.15 r2 = 0.56 

Significantly different 
from zero (p < α = 0.01) 6/8 7/8 5/8 7/8 

 

 

comparisons with either P2Oblique length or P2BL breadth and, again, this is driven by a 

distinction between the values observed in Ateles geoffroyi, where the r2 estimates are 

high, and Cebus libidinosus, where the estimates are very low in absolute value and not 

significantly different from zero. The data indicate that the difference between the taxa is 

not due to the presence of outliers or levers in either taxon. It is unclear whether or not 

the difference in strength between these two taxa reflects underlying biological 

differences, or if the discrepancy is merely due to stochastic effects associated with data 

collection. Other Ateles and Cebus species should be examined to determine if these 

values are typical of their respective genera. 
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TABLE 4.5. The magnitude of covariation among platyrrhine premolar lengths (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

  
P2Oblique-

P3MD 
P2Oblique-

P4MD 
P2Oblique-

P2MD 
P2Oblique-

P3MD 

Ateles geoffroyi r2 = 0.10* 
n = 58

r2 = 0.07* 
n = 58

r2 = 0.15* 
n = 47

r2 = 0.24* 
n = 54 

Cebus libidinosus r2 = 0.09* 
n = 73

r2 = 0.05* 
n = 73

r2 = 0.08* 
n = 70

r2 = 0.04 
n = 75 

Weighted 
Platyrrhine Average r2 = 0.09 r2 = 0.06 r2 = 0.11  r2 = 0.12 

 
P2Oblique-

P4MD 
P3MD- 
P4MD 

P3MD- 
P2MD 

P3MD- 
P3MD 

Ateles geoffroyi r2 = 0.14* 
n = 55

r2 = 0.55*** 
n = 67

r2 = 0.41*** 
n = 54

r2 = 0.40*** 
n = 62 

Cebus libidinosus r2 = 0.03 
n = 75

r2 = 0.41*** 
n = 75

r2 = 0.19*** 
n = 71

r2 = 0.26*** 
n = 72 

Weighted 
Platyrrhine Average r2 = 0.08 r2 = 0.48  r2 = 0.29 r2 = 0.32 

 
P3MD- 
P4MD 

P2MD- 
P3MD 

P2MD- 
P4MD 

P3MD- 
P4MD 

Ateles geoffroyi r2 = 0.52*** 
n = 63

r2 = 0.23** 
n = 53

r2 = 0.36*** 
n = 54

r2 = 0.40*** 
n = 64 

Cebus libidinosus r2 = 0.13** 
n = 75

r2 = 0.15** 
n = 72

r2 = 0.12* 
n = 72

r2 = 0.55*** 
n = 78 

Weighted 
Platyrrhine Average r2 = 0.31 r2 = 0.18 r2 = 0.22  r2 = 0.48 

 
P4MD- 
P2MD 

P4MD- 
P3MD 

P4MD- 
P4MD  

Ateles geoffroyi r2 = 0.50*** 
n = 54

r2 = 0.33*** 
n = 64

r2 = 0.43*** 
n = 65  

Cebus libidinosus r2 = 0.13* 
n = 71

r2 = 0.27*** 
n = 76

r2 = 0.31*** 
n = 76  

Weighted 
Platyrrhine Average r2 = 0.29 r2 = 0.30  r2 = 0.37   
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TABLE 4.6. The magnitude of covariation among catarrhine premolar breadths (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
 P3BL- 

P4BL 
P3BL- 
P4BL 

P3BL- 
P3BL 

P4BL- 
P4BL 

Gorilla gorilla r2 = 0.60*** 
n = 124 

r2 = 0.45*** 
n = 110 

r2 = 0.18*** 
n = 116 

r2 = 0.41*** 
n = 114 

Pan troglodytes r2 = 0.56*** 
n = 95 

r2 = 0.40*** 
n = 91 

r2 = 0.20** 
n = 93 

r2 = 0.60*** 
n = 89 

Hylobates lar r2 = 0.47*** 
n = 74 

r2 = 0.32*** 
n = 61 

r2 = 0.37*** 
n = 65 

r2 = 0.42*** 
n = 75 

Cercopithecus cephus r2 = 0.46*** 
n = 80 

r2 = 0.38*** 
n = 78 

r2 = 0.46*** 
n = 77 

r2 = 0.47*** 
n = 81 

Cercopithecus nictitans r2 = 0.50*** 
n = 81 

r2 = 0.54*** 
n = 79 

r2 = 0.24*** 
n = 78 

r2 = 0.48*** 
n = 79 

Cercopithecus pogonias r2 = 0.37*** 
n = 70 

r2 = 0.48*** 
n = 67 

r2 = 0.34*** 
n = 69 

r2 = 0.29*** 
n = 68 

Macaca fascicularis r2 = 0.48*** 
n = 83 

r2 = 0.40*** 
n = 81 

r2 = 0.34*** 
n = 81 

r2 = 0.50*** 
n = 77 

Colobus satanas r2 = 0.36*** 
n = 47 

r2 = 0.14* 
n = 46 

r2 = 0.01 
n = 46 

r2 = 0.18* 
n = 46 

Weighted Catarrhine 
Average r2 = 0.49 r2 = 0.41  r2 = 0.27 r2 = 0.44  

Weighted Hominoid 
Average r2 = 0.55 r2 = 0.40  r2 = 0.23 r2 = 0.47 

Weighted Cercopithecid 
Average r2 = 0.44 r2 = 0.41  r2 = 0.30 r2 = 0.41 

Significantly different 
from zero (p < α = 0.01) 8/8 7/8 7/8 7/8 

 
 
 
 

In contrast to pairings of premolar MD length and BL breadth, higher levels of 

covariation are observed when MD lengths are compared to one another, both within an 

arch and between arches. In catarrhines, the MD lengths of the mandibular premolars 

(P3Oblique length and P4MD length) express an average level of covariation (r2 = 0.24) 

that is lower than that seen between the MD lengths of the maxillary premolars (r2 = 

0.38) (Table 4.4). Between the arches, the highest level of covariation is observed 

between the lengths of the P4s (r2 = 0.55); that is, the P4 lengths covary with each other 

more strongly than they do with the length of the adjacent premolar in their respective 

arch. The same cannot be said of covariation for P3Oblique-P3MD, which averages r2 =  
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TABLE 4.7. The magnitude of covariation among platyrrhine premolar breadths (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
P2BL- 
P3BL 

P2BL- 
P4BL 

P2BL- 
P2BL 

P2BL- 
P3BL 

Ateles geoffroyi r2 = 0.07* 
n = 54 

r2 = 0.16* 
n = 55 

r2 = 0.08* 
n = 57 

r2 = 0.21*** 
n = 56 

Cebus libidinosus r2 = 0.21*** 
n = 74 

r2 = 0.32*** 
n = 75 

r2 = 0.06* 
n = 76 

r2 = 0.13* 
n = 77 

Weighted 
Platyrrhine Average r2 = 0.15 r2 = 0.25 r2 = 0.07  r2 = 0.16  

 
P2BL- 
P4BL 

P3BL- 
P4BL 

P3BL- 
P2BL 

P3BL- 
P3BL 

Ateles geoffroyi r2 = 0.18* 
n = 55 

r2 = 0.66*** 
n = 53 

r2 = 0.38*** 
n = 55 

r2 = 0.30*** 
n = 55 

Cebus libidinosus r2 = 0.11* 
n = 76 

r2 = 0.56*** 
n = 72 

r2 = 0.21*** 
n = 73 

r2 = 0.22*** 
n = 74 

Weighted 
Platyrrhine Average r2 = 0.14 r2 = 0.60  r2 = 0.28  r2 = 0.25 

 
P3BL- 
P4BL 

P2BL- 
P3BL 

P2BL- 
P4BL 

P3BL- 
P4BL 

Ateles geoffroyi r2 = 0.22*** 
n = 54 

r2 = 0.69*** 
n = 59 

r2 = 0.44*** 
n = 58 

r2 = 0.66*** 
n = 60 

Cebus libidinosus r2 = 0.13** 
n = 74 

r2 = 0.57*** 
n = 76 

r2 = 0.40*** 
n = 75 

r2 = 0.77*** 
n = 77 

Weighted 
Platyrrhine Average r2 = 0.17 r2 = 0.62 r2 = 0.42 r2 = 0.72 

 
P4BL- 
P2BL 

P4BL- 
P3BL 

P4BL- 
P4BL 

Ateles geoffroyi r2 = 0.33*** 
n = 57

r2 = 0.33*** 
n = 58

r2 = 0.37*** 
n = 56

Cebus libidinosus r2 = 0.25*** 
n = 74

r2 = 0.43*** 
n = 76

r2 = 0.44*** 
n = 75

Weighted 
Platyrrhine Average r2 = 0.28 r2 = 0.39  r2 = 0.41 
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0.19. As observed for the incisors, it is the most heteromorphic elements of a dental class 

that exhibit the lowest magnitude covariation with other members. 

As was observed for the catarrhine honing premolar oblique length, in 

platyrrhines, all comparisons of P2Oblique length to other premolar MD lengths have 

very low r2 estimates (the highest average is r2 = 0.12) and no comparison involving the 

P2Oblique length is significantly different from zero at α = 0.01 (Table 4.5). Also shared 

with catarrhines, the length of the mesial maxillary premolar, P2MD, covaries weakly 

with other premolars; the highest estimate is r2 = 0.29 for both P2MD-P3MD and P2MD-

P4MD. At the other end of the spectrum, the MD lengths of the distal premolars show 

moderate levels of covariation; the average for both P3MD-P4MD and P3MD-P4MD is r2 

= 0.48. Between the arches, the highest average covariance is between the P4MD-P4MD 

(r2 = 0.37), which is slightly higher than that observed between P3MD-P3MD (r2 = 0.32). 

The magnitude of covariation between MD lengths in platyrrhines is variable among 

taxa, with Ateles geoffroyi typically expressing higher levels of covariation than Cebus.  

In catarrhines, when premolar BL breadths are compared, a similar pattern is 

observed to that among premolar MD lengths (Table 4.6). The average level of 

covariation between the P3BL and P4BL (r2 = 0.41) is slightly lower than that between 

P3BL-P4BL (r2 = 0.49). Between the arches, the catarrhine P4BL breadths covary at r2 = 

0.41, while the P3BL breadths covary weakly (average r2 = 0.27). The P4BL average is 

affected by low estimates in Cercopithecus pogonias and Colobus satanas. Levels of 

covariation observed between the BL breadths tend to be higher than that observed 

between the MD lengths (though not in every case, as the estimate of r2 for P4MD 

lengths is slightly higher than for their breadths).  

A similar pattern is observed for the platyrrhine premolar breadths (Table 4.7). 

The P2BL breadth covaries weakly with other premolars; the highest estimate is r2 = 0.25 
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for P2BL-P4BL. In contrast, all adjacent maxillary premolars express high levels (r2 > 

0.60) of covariation between their BL breadths, as do the P3 and P4. Between the arches, 

very low to moderate levels of covariation are observed for the nonhoning premolars; r2 

estimates range from r2 = 0.17 (P3BL-P4BL) to r2 = 0.41 (P4BL-P4BL). 

In summary, premolar size covariation is not consistently strong among all 

dimensions. In both platyrrhines and catarrhines, MD lengths and BL breadths express 

weak levels of covariation with one another, while pairings of homologous dimensions 

covary more strongly. Premolar breadth covariation tends to be higher in magnitude than 

among lengths and, for both dimensions, the mesial-most premolars covary weakly with 

other premolars. The highest levels of size covariation are between adjacent premolars in 

the same arch and, between arches, the P4s in both catarrhines and platyrrhines. As 

inferred for the incisors, the pattern of premolar covariation is consistent with MD 

lengths and BL breadths forming mostly separate modules. 

There is an apparent morphological explanation for the low magnitude 

covariation observed for the mesial premolars. As described in Chapter 1, premolar 

heteromorphy characterizes both the mandibular and maxillary premolars (Figure 1.11 

and Figure 4.1), which is more pronounced in catarrhines than in platyrrhines. In 

catarrhines, there is a prominent mesiocervical enamel extension on the P3 that occludes 

with the distal protoconid crest and protoconid of the P3. Additionally, the P3 paracone is 

more projecting than on more distal premolar(s) and, lingually, the P3 protocone is 

smaller than the paracone in area, which creates an asymmetric crown with a shorter 

lingual than buccal profile (Figure 4.1). This contrasts with the P4, which has a more 

symmetric crown with shorter and more equally developed cusps. Thus, as a result of 

accommodating the specialized morphology of the honing premolar, premolar 

heteromorphy also characterizes maxillary premolars. For the P2,3, it is the MD dimension  
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Fig. 4.1. Maxillary premolar heteromorphy in a male Pan troglodytes. Above, occlusal 
view of maxillary premolars and canines (mesial to the right, lingual to the top). On the 
bottom, buccal view of the maxillary premolars and canine. Point A is the mesiocervical 
enamel extension of the P3 and point B is the principle cusp, the paracone, which is taller 
and larger in area that the minor cusp, the protocone. The P3 protocone is also taller than 
the P4 protocone. The elongated mesiocervical face of the P3 occludes with the distal face 
of the P3 protoconid along the distal protoconid crest. 
 

 

that is most distinct from the distal premolar(s) (Figure 4.1). Levels of MD covariation 

between the mesial and distal maxillary premolar(s) are typically lower than for BL 

widths. Variation in magnitudes of covariation apparently reflects this heteromorphy in 

length. For the mandibular mesial premolar, its heteromorphy relative to distal premolars 

was outlined in Chapter 1 and its weak covariation with other premolars follows the 

principle outlined here. In Chapter 3, it was also noted that degrees of incisor 

heteromorphy between arches and among species are reflected as differences in the  
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TABLE 4.8. The magnitude of covariation among mandibular premolar and molar 
lengths (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
P4MD- 
M1MD 

P4MD- 
M2MD 

P4MD- 
M3MD 

Gorilla gorilla r2 = 0.35*** 
n = 117 

r2 = 0.53*** 
n = 120 

r2 = 0.31*** 
n = 102 

Pan troglodytes r2 = 0.28*** 
n = 93 

r2 = 0.39*** 
n = 95 

r2 = 0.28*** 
n = 78 

Hylobates lar r2 = 0.36*** 
n = 62 

r2 = 0.38*** 
n = 76 

r2 = 0.34*** 
n = 56 

Cercopithecus cephus r2 = 0.43*** 
n = 80 

r2 = 0.41*** 
n = 81 

r2 = 0.39*** 
n = 73  

Cercopithecus nictitans r2 = 0.55*** 
n = 74 

r2 = 0.54***  
n = 81  

r2 = 0.51*** 
n = 74 

Cercopithecus pogonias r2 = 0.44*** 
n = 63 

r2 = 0.41*** 
n = 67  

r2 = 0.40*** 
n = 61 

Macaca fascicularis r2 = 0.43*** 
n = 83 

r2 = 0.57*** 
n = 86  

r2 = 0.49*** 
n = 69 

Colobus satanas r2 = 0.23*** 
n = 46 

r2 = 0.14** 
n = 46  

r2 = 0.08 
n = 44 

Ateles geoffroyi r2 = 0.39*** 
n = 65 

r2 = 0.44***  
n = 62 

r2 = 0.35*** 
n = 42 

Cebus libidinosus r2 = 0.36*** 
n = 76 

r2 = 0.34*** 
n = 75 

r2 = 0.19* 
n = 66 

Weighted Anthropoid 
Average r2 = 0.38 r2 = 0.43  r2 = 0.34 

Weighted Hominoid 
Average r2 = 0.33 r2 = 0.45  r2 = 0.31  

Weighted Cercopithecid 
Average r2 = 0.43 r2 = 0.44  r2 = 0.40 

Weighted Platyrrhine 
Average r2 = 0.37 r2 = 0.39 r2 = 0.25 

Significantly different 
from zero (p < α = 0.01) 10/10 10/10 8/10 
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TABLE 4.9. The magnitude of covariation among mandibular premolar and molar 
breadths (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
P4BL-  
M1BL 

P4BL-  
M2BL 

P4BL-  
M3BL 

Gorilla gorilla r2 = 0.46***  
n = 103 

r2 = 0.54*** 
n = 113  

r2 = 0.37*** 
n = 99 

Pan troglodytes r2 = 0.48*** 
n = 90 

r2 = 0.67*** 
n = 90  

r2 = 0.28*** 
n = 80  

Hylobates lar r2 = 0.42*** 
n = 51 

r2 = 0.42*** 
n = 75 

r2 = 0.33** 
n = 63 

Cercopithecus cephus r2 = 0.38*** 
n = 80 

r2 = 0.51***  
n = 81  

r2 = 0.39***  
n = 73 

Cercopithecus nictitans r2 = 0.42*** 
n = 71 

r2 = 0.47*** 
n = 79 

r2 = 0.40*** 
n = 75 

Cercopithecus pogonias r2 = 0.25*** 
n = 66 

r2 = 0.25*** 
n = 68  

r2 = 0.21** 
n = 61 

Macaca fascicularis r2 = 0.54*** 
n = 79 

r2 = 0.62*** 
n = 84 

r2 = 0.62*** 
n = 67 

Colobus satanas r2 = 0.25** 
n = 46 

r2 = 0.32** 
n = 46 

r2 = 0.22* 
n = 44 

Ateles geoffroyi r2 = 0.51*** 
n = 44 

r2 = 0.38*** 
n = 50 

r2 = 0.18* 
n = 47 

Cebus libidinosus r2 = 0.35*** 
n = 76 

r2 = 0.49*** 
n = 75 

r2 = 0.33*** 
n = 69  

Weighted Anthropoid 
Average r2 = 0.41 r2 = 0.49  r2 = 0.34 

Weighted Hominoid 
Average r2 = 0.46 r2 = 0.55 r2 = 0.33 

Weighted Cercopithecid 
Average r2 = 0.38 r2 = 0.45 r2 = 0.38 

Weighted Platyrrhine 
Average r2 = 0.41 r2 = 0.45 r2 = 0.27 

Significantly different 
from zero (p < α = 0.01) 10/10 9/10 8/10 
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TABLE 4.10. The magnitude of covariation among maxillary premolar and molar lengths 
(***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
P4MD- 
M1MD 

P4MD- 
M2MD 

P4MD- 
M3MD 

Gorilla gorilla r2 = 0.37*** 
n = 119 

r2 = 0.51*** 
n = 121  

r2 = 0.34*** 
n = 104 

Pan troglodytes r2 = 0.32*** 
n = 92 

r2 = 0.36*** 
n = 91 

r2 = 0.28*** 
n = 75 

Hylobates lar r2 = 0.42*** 
n = 72 

r2 = 0.50*** 
n = 74 

r2 = 0.31** 
n = 57 

Cercopithecus cephus r2 = 0.36*** 
n = 81 

r2 = 0.34*** 
n = 81 

r2 = 0.19** 
n = 71 

Cercopithecus nictitans r2 = 0.56*** 
n = 83 

r2 = 0.61*** 
n = 83 

r2 = 0.40*** 
n = 75 

Cercopithecus pogonias r2 = 0.54*** 
n = 67 

r2 = 0.63*** 
n = 68 

r2 = 0.25*** 
n = 60 

Macaca fascicularis r2 = 0.53*** 
n = 79 

r2 = 0.64*** 
n = 82 

r2 = 0.55*** 
n = 61 

Colobus satanas r2 = 0.27*** 
n = 47 

r2 = 0.34*** 
n = 47  

r2 = 0.09 
n = 45 

Ateles geoffroyi r2 = 0.28** 
n = 65 

r2 = 0.39*** 
n = 61 

r2 = 0.21** 
n = 51 

Cebus libidinosus r2 = 0.19** 
n = 78 

r2 = 0.09* 
n = 78 

r2 = 0.01 
n = 61 

Weighted Anthropoid 
Average r2 = 0.39 r2 = 0.45  r2 = 0.27  

Weighted Hominoid 
Average r2 = 0.37 r2 = 0.46  r2 = 0.31 

Weighted Cercopithecid 
Average r2 = 0.47 r2 = 0.52  r2 = 0.31 

Weighted Platyrrhine 
Average r2 = 0.23  r2 = 0.22 r2 = 0.10 

Significantly different 
from zero (p < α = 0.01) 10/10 9/10 8/10 
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TABLE 4.11. The magnitude of covariation among maxillary premolar and molar 
breadths (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
 
 

P4BL- 
M1BL 

P4BL- 
M2BL 

P4BL- 
M3BL 

Gorilla gorilla r2 = 0.37*** 
n = 116 

r2 = 0.48*** 
n = 120 

r2 = 0.28*** 
n = 104 

Pan troglodytes r2 = 0.33*** 
n = 95 

r2 = 0.49*** 
n = 94  

r2 = 0.23*** 
n = 79 

Hylobates lar r2 = 0.39*** 
n = 74 

r2 = 0.41*** 
n = 82  

r2 = 0.38*** 
n = 68 

Cercopithecus cephus r2 = 0.39*** 
n = 80 

r2 = 0.59*** 
n = 81 

r2 = 0.47*** 
n = 72 

Cercopithecus nictitans r2 = 0.49*** 
n = 79 

r2 = 0.56*** 
n = 83 

r2 = 0.58*** 
n = 75 

Cercopithecus pogonias r2 = 0.33*** 
n = 69 

r2 = 0.44*** 
n = 70 

r2 = 0.37*** 
n = 62 

Macaca fascicularis r2 = 0.41*** 
n = 80 

r2 = 0.61*** 
n = 84 

r2 = 0.48*** 
n = 58 

Colobus satanas r2 = 0.50*** 
n = 47 

r2 = 0.61*** 
n = 47 

r2 = 0.38*** 
n = 43 

Ateles geoffroyi r2 = 0.31*** 
n = 56 

r2 = 0.51*** 
n = 57 

r2 = 0.36***  
n = 47 

Cebus libidinosus r2 = 0.28*** 
n = 77 

r2 = 0.39*** 
n = 77 

r2 = 0.20*** 
n = 64 

Weighted Anthropoid 
Average r2 = 0.38 r2 = 0.50 r2 = 0.37  

Weighted Hominoid 
Average r2 = 0.36 r2 = 0.46 r2 = 0.29 

Weighted Cercopithecid 
Average r2 = 0.42 r2 = 0.56 r2 = 0.47 

Weighted Platyrrhine 
Average r2 = 0.29 r2 = 0.44 r2 = 0.27 

Significantly different 
from zero (p < α = 0.01) 10/10 10/10 10/10 
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magnitudes of observed covariation. In Chapter 5, covariation between the length of the 

honing surface of the mesial mandibular premolar and the length of the mesiocervical 

extension of the maxillary premolar will be investigated. As hypothesized for 

heteromorphy in incisors, the hypothesis that the mesial premolars were parceled out of 

the postcanine variational module as they evolved from a homomorphic ancestral 

condition deserves attention. 

 

Premolar-Molar Size Covariation Within Species: Hlusko and Mahaney (2009) found 

that maxillary premolars and molars covary in size and suggested that the premolars and 

molars are quasi-independent modules. As the P4 is the only premolar for which the 

function is comparable in platyrrhines and catarrhines, the covariation of P4 and molar 

size is here investigated. Covariation of honing premolar and molar size will be 

investigated in depth in Chapter 5. In this section, not all possible pairs of premolar and 

molar size were investigated; analyses were restricted to comparisons of homologous 

dimensions between premolars and molars in the same arch.  

Levels of covariation among all homologous dimensions of the P4 and molars are 

positive and significantly different from zero at α = 0.05 (Tables 4.8, 4.9, 4.10, 4.11).  

Covariation between P4 and molar size is, however, not constant in magnitude among all 

molar positions. For example, in the mandible covariation is consistently highest between 

the P4 and M2 (anthropoid average r2s = 0.43(MD) and 0.49(BL)), intermediate for the P4 

and M1 (anthropoid average r2s = 0.38(MD) and 0.41(BL)), and lowest between the P4 

and M3 (anthropoid average r2s = 0.34(MD) and 0.34(BL)). The difference in strength is 

subtle, but it is repeated again in the maxilla, where the highest average covariation is  
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between the P4 and M2 (anthropoid average r2s = 0.45(MD) and 0.50(BL)), a lower 

magnitude is observed for the P4 and M1 (anthropoid average r2s = 0.39(MD) and 

0.38(BL)), and the lowest is between the P4 and M3 (anthropoid average r2s = 0.27(MD) 

and 0.37(BL)). The average covariation between P4-molar BL breadths is slightly, but 

consistently, higher than average MD covariation; the average BL covariation exceeds 

average MD covariation by 0.00-0.07 for all tooth positions. The discrepancy in the 

strength of covariation between the MD and BL breadths of the P4 and M3 is in part a 

reflection of the exceptionally low estimates for r2 between the MD lengths of these teeth 

in platyrrhines; unlike catarrhine primates, where the M3 is a relatively well developed 

tooth, in the platyrrhine taxa included in this analysis (Cebus and Ateles) the M3 is a 

fairly small ovular tooth. M3MD length is less tightly linked with the premolars than is its 

BL breadth. The low magnitude covariation for the platyrrhine M3 is not simply a 

function of it being more variable than in catarrhine primates. Coefficients of variation 

for M3MD length in the ten taxa (Ateles geoffroyi: 10.2, Cebus libidinosus: 7.9, 

Cercopithecus cephus: 9.1, Cercopithecus nictitans: 9.0, Cercopithecus pogonias: 7.0, 

Colobus satanas: 4.3, Gorilla gorilla: 7.2, Hylobates lar: 8.7, Macaca fascicularis: 6.0, 

Pan troglodytes: 8.3) show that the taxon that stands out from the rest is Colobus satanas 

for its exceptionally low level of variation. 

To determine if the premolars share pleiotropic connections that are not shared 

with the molars, partial correlations of premolar size, holding molar size constant, are 

investigated. The results of the analysis are not trivial. During hominin evolution the 

sizes of the premolars relative to the molars show variation among species; for example, 

premolars are enlarged relative to molar size in Paranthropus (Suwa, 1988). If premolars 

express unique size covariation, relative to the molars, then this would demonstrate a 

possible pathway for selection to affect premolar size independently of molar size.  
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TABLE 4.12. Partial correlations of catarrhine premolar size, holding M2 size constant 
(***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
P3oblique-  

P4MD 
P3BL- 
P4BL 

P3MD- 
P4MD 

P3BL- 
P4BL 

Gorilla gorilla r2 = 0.01 
n = 98 

r2 = 0.25*** 
n = 103 

r2 = 0.29** 
n = 92 

r2 = 0.36*** 
n = 120 

Pan troglodytes r2 = 0.20*** 
n = 88 

r2 = 0.09* 
n = 85 

r2 = 0.08* 
n = 81 

r2 = 0.48*** 
n = 91 

Hylobates lar r2 = 0.11* 
n = 62 

r2 = 0.11* 
n = 59 

r2 = 0.16* 
n = 40 

r2 = 0.22** 
n = 73 

Cercopithecus cephus r2 = 0.01 
n = 80 

r2 = 0.14 
n = 78 

r2 = 0.34*** 
n = 64 

r2 = 0.37** 
n = 80 

Cercopithecus nictitans r2 = 0.20*** 
n = 78 

r2 = 0.32*** 
n = 78 

r2 = 0.14* 
n = 65 

r2 = 0.30*** 
n = 81 

Cercopithecus pogonias r2 = 0.03 
n = 66 

r2 = 0.40*** 
n = 67 

r2 = 0.20*** 
n = 57 

r2 = 0.19* 
n = 70 

Macaca fascicularis r2 = 0.13*** 
n = 75 

r2 = 0.14* 
n = 80 

r2 = 0.06* 
n = 70 

r2 = 0.24*** 
n = 83 

Colobus satanas r2 = 0.11 
n = 46 

r2 = 0.13* 
n = 46 

r2 = 0.24* 
n = 47 

r2 = 0.18* 
n = 47 

Weighted Hominoid 
Average r2 = 0.10 r2 = 0.16 r2 = 0.19 r2 = 0.36 

Weighted Cercopithecid 
Average r2 = 0.10 r2 = 0.23 r2 = 0.19 r2 = 0.26 

Weighted Catarrhine 
Average r2 = 0.10 r2 = 0.20 r2 = 0.19 r2 = 0.31 

Significantly different 
from zero (p < α = 0.01) 3/8 3/8 3/8 6/8 
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TABLE 4.13. Partial correlations of platyrrhine premolar size, holding M2 size constant 
(***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
P2oblique- 

P3MD 
P2oblique -

P4MD 
P3MD- 
P4MD 

P2BL- 
P3BL 

Ateles 
geoffroyi 

r2 = 0.00 
n = 54 

r2 = -0.01 
n = 53 

r2 = 0.26*** 
n = 61 

r2 = 0.01 
n = 47 

Cebus 
libidinosus 

r2 = 0.04 
n = 72 

r2 = 0.01 
n = 72 

r2 = 0.28*** 
n = 74 

r2 = 0.08* 
n = 73 

Weighted 
Platyrrhine 

Average 
r2 = 0.02 r2 = 0.00 r2 = 0.27 r2 = 0.05 

 

 
P2BL  
-P4BL 

P3BL- 
P4BL 

P2MD- 
P3MD 

P2MD- 
P4MD 

Ateles 
geoffroyi 

r2 = 0.10* 
n = 47 

r2 = 0.47*** 
n = 45 

r2 = 0.01 
n = 50 

r2 = 0.10 
n = 51 

Cebus 
libidinosus 

r2 = 0.12* 
n = 74 

r2 = 0.40*** 
n = 71 

r2 = 0.12* 
n = 72 

r2 = 0.08* 
n = 72 

Weighted 
Platyrrhine 

Average 
r2 = 0.11 r2 = 0.43 r2 = 0.07 r2 = 0.09 

   

 
P3MD- 
P4MD 

P2BL- 
P3BL 

P2BL  
-P4BL 

P3BL- 
P4BL 

Ateles 
geoffroyi 

r2 = 0.10* 
n = 58 

r2 = 0.56*** 
n = 56 

r2 = 0.21*** 
n = 55 

r2 = 0.43*** 
n = 57 

Cebus 
libidinosus 

r2 = 0.52*** 
n = 78 

r2 = 0.31*** 
n = 76 

r2 = 0.15** 
n = 75 

r2 = 0.63*** 
n = 77 

Weighted 
Platyrrhine 

Average 
r2 = 0.34 r2 = 0.42 r2 = 0.18 r2 = 0.54 
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If no partial correlation remains after controlling for molar size, then the hypothesis of 

quasi-autonomy is rejected. As P4 size was shown to covary most strongly with M2 size 

among the molars, M2 size was selected as the variable to hold constant. For comparisons 

of maxillary premolar MD length covariation, M2MD length was held constant; for 

comparisons of maxillary premolar BL breadth, M2BL breadth was held constant; for 

comparisons of mandibular premolar MD length, M2MD length was held constant; and 

for comparisons of mandibular premolar BL breadth, M2BL breadth was held constant. 

For the catarrhines, premolar size covariation is significantly affected by 

controlling for M2 size. For P3MD, little covariation with P4MD length remains after 

controlling for M2MD length (average catarrhine partial r2 = 0.19) (Table 4.12). 

Maxillary premolar breadths retain nearly twice as much covariation after controlling for  

M2BL breadth (average catarrhine partial r2 = 0.36), indicating that there are unique 

premolar breadth pleiotropic effects. For the mandibular premolars, there is virtually no 

covariance remaining for P3Oblique-P4MD (average catarrhine partial r2 = 0.10) or for 

P3BL-P4BL (average catarrhine partial r2 = 0.20). When covariation among the 

dimensions of the premolars was considered (above), it was seen that the catarrhine 

mandibular premolars share low levels of covariation for both dimensions and the 

maxillary premolars share little for their MD lengths but more for the BL breadths. The 

analyses of partial correlations show the same pattern and highlight that the sizes of 

catarrhine mandibular premolars and the P3MD share few unique pleiotropic connections. 

What little variation they do share appears to arise from pleiotropic effects that are also 

shared with the molars. 

The platyrrhine premolars exhibit a similar pattern of partial correlation (Table 

4.13), with virtually no covariance remaining between the P2 and the other mandibular 

premolars or between the P2MD and other maxillary premolar lengths. In contrast, in the 
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mandible, both the MD length (partial r2 = 0.27) and BL breadth (partial r2 = 0.43) of the 

P3 and P4 retain higher levels of partial correlation, especially for the BL breadths. In the 

maxilla, substantial partial covariation remains among all BL breadths (except for P2BL-

P4BL) and the comparison of P3MD-P4MD (Table 4.13).  

In summary, the analyses of partial correlation in both platyrrhines and 

catarrhines further highlight the isolation of the mesial mandibular premolar and the MD 

length of the mesial maxillary premolar from the pleiotropic effects that link the distal 

premolar(s). This is an important observation, for the mesial premolars of hominins 

underwent significant morphological change in size and shape, which resulted in a 

reduction of premolar heteromorphy for both the maxillary and mandibular premolars 

(e.g., Kimbel and Delezene, 2009; Delezene and Kimbel, 2011). Based on the pattern of 

covariation observed in extant anthropoids, there is little reason to expect that these 

changes occurred as a consequence of selection acting on other characters that are 

pleiotropically linked to the on mesial premolar dimensions, which have been shown to 

share little variation with other postcanine teeth. The Hlusko and Mahaney (2009) 

hypothesis of quasi-independence for premolar and molar size is supported, especially for 

the distal premolars of platyrrhines and the BL breadths of the catarrhine maxillary 

premolars. That there are unique pleiotropic effects among the premolars, not shared with 

the molars, implies that there are developmental pathways on which selection can act to 

drive independent changes in premolar and molar morphology. 
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TABLE 4.14. The magnitude of covariation between the length and breadth of each 
mandibular molar (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
M1MD-  
 M1BL 

M2MD- 
M2BL 

M3MD- 
M3BL 

Gorilla gorilla r2
 = 0.50*** 
n = 112 

r2
 = 0.52*** 
n = 120 

r2
 = 0.39*** 
n = 99  

Pan troglodytes r2
 = 0.35*** 
n = 98 

r2
 = 0.25*** 
n = 98 

r2
 = 0.29*** 
n = 82 

Hylobates lar r2
 = 0.56*** 
n = 66 

r2
 = 0.50*** 
n = 84 

r2
 = 0.38*** 
n = 55 

Cercopithecus cephus r2
 = 0.33*** 
n = 79 

r2
 = 0.32*** 
n = 81 

r2
 = 0.55*** 
n = 73 

Cercopithecus nictitans r2
 = 0.20** 
n = 77 

r2
 = 0.27*** 
n = 83 

r2
 = 0.39*** 
n = 75 

Cercopithecus pogonias r2
 = 0.09* 
n = 67 

r2
 = 0.29***  
n = 72 

r2
 = 0.26*** 
n = 64 

Macaca fascicularis r2
 = 0.43*** 
n = 112 

r2
 = 0.35*** 
n = 93 

r2
 = 0.44*** 
n = 72 

Colobus satanas r2
 = 0.20* 
n = 52 

r2
 = 0.28** 
n = 51 

r2
 = 0.20** 
n = 44 

Ateles geoffroyi r2
 = 0.33*** 
n = 52 

r2
 = 0.52*** 
n = 53 

r2
 = 0.62*** 
n = 38 

Cebus libidinosus r2
 = 0.14** 
n = 89 

r2
 = 0.14** 
n = 78 

r2
 = 0.38*** 
n = 68 

Weighted Anthropoid 
Average r2 = 0.33 r2 = 0.35  r2 = 0.39  

Weighted Hominoid 
Average r2 = 0.46 r2 = 0.43 r2 = 0.35 

Weighted Cercopithecid 
Average r2 = 0.27 r2 = 0.31 r2 = 0.39 

Weighted Platyrrhine 
Average r2 = 0.21 r2 = 0.29 r2 = 0.47 

Significantly different 
from zero (p < α = 0.01) 8/10 10/10 10/10 
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TABLE 4.15. The magntidue of covariation between the length and breadth of each 
maxillary molar (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
M1MD- 
M1BL 

M2MD- 
M2BL 

M3MD- 
M3BL 

Gorilla gorilla r2
 = 0.46*** 
n = 124 

r2
 = 0.30*** 
n = 124 

r2
 = 0.19*** 
n = 101 

Pan troglodytes r2
 = 0.17*** 
n = 100 

r2
 = 0.24*** 
n = 100 

r2
 = 0.19** 
n = 82 

Hylobates lar r2
 = 0.50*** 
n = 83 

r2
 = 0.56*** 
n = 86 

r2
 = 0.39*** 
n = 64 

Cercopithecus cephus r2
 = 0.30*** 
n = 80 

r2
 = 0.64*** 
n = 81 

r2
 = 0.47*** 
n = 71 

Cercopithecus nictitans r2
 = 0.27*** 
n = 84 

r2
 = 0.46*** 
n = 84 

r2
 = 0.27*** 
n = 75 

Cercopithecus pogonias r2
 = 0.07* 
n = 71 

r2
 = 0.21*** 
n = 71 

r2
 = 0.14* 
n = 63 

Macaca fascicularis r2
 = 0.35*** 
n = 114 

r2
 = 0.48*** 
n = 94 

r2
 = 0.41*** 
n = 61 

Colobus satanas r2
 = 0.26** 
n = 53 

r2
 = 0.26*** 
n = 52 

r2
 = 0.08* 
n = 43 

Ateles geoffroyi r2
 = 0.33*** 
n = 68 

r2
 = 0.40*** 
n = 62 

r2
 = 0.35** 
n = 49 

Cebus libidinosus r2
 = 0.22*** 
n = 88 

r2
 = 0.35*** 
n = 81 

r2
 = 0.22** 
n = 62 

Weighted Anthropoid 
Average r2 = 0.30 r2 = 0.39  r2 = 0.27  

Weighted Hominoid 
Average r2 = 0.38 r2 = 0.35  r2 = 0.24  

Weighted Cercopithecid 
Average r2 = 0.26 r2 = 0.43 r2 = 0.29 

Weighted Platyrrhine 
Average r2 = 0.27 r2 = 0.37 r2 = 0.28 

Significantly different 
from zero (p < α = 0.01) 9/10 10/10 8/10 
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TABLE 4.16. The average magnitude of covariation among molar lengths and breadths.  

 

 
M1BL-
M1MD 

M1BL-
M2MD 

M1BL-
M3MD 

M1BL-
M2MD 

M1BL-
M3MD 

Weighted Anthropoid 
Average r2 = 0.26 r2 = 0.23 r2 = 0.13  r2 = 0.22 r2 = 0.10 

Weighted Hominoid 
Average r2 = 0.28 r2 = 0.23  r2 = 0.09 r2 = 0.16 r2 = 0.10 

Weighted Cercopithecid 
Average r2 = 0.25 r2 = 0.21 r2 = 0.14 r2 = 0.29 r2 = 0.12 

Weighted Platyrrhine 
Average r2 = 0.22 r2 = 0.27 r2 = 0.19 r2 = 0.18  r2 = 0.06  

Significantly different 
from zero (p < α = 0.01) 9/10 8/10 7/10 9/10 5/10 

 
M2BL-
M1MD 

M2BL-
M2MD 

M2BL-
M3MD 

M2BL-
M1MD 

M2BL-
M3MD 

Weighted Anthropoid 
Average r2 = 0.21 r2 = 0.31 r2 = 0.19 r2 = 0.26 r2 = 0.15 

Weighted Hominoid 
Average r2 = 0.19 r2 = 0.33 r2 = 0.17  r2 = 0.28 r2 = 0.15 

Weighted Cercopithecid 
Average r2 = 0.24 r2 = 0.29  r2 = 0.20 r2 = 0.26 r2 = 0.17 

Weighted Platyrrhine 
Average r2 = 0.17 r2 = 0.31 r2 = 0.19 r2 = 0.22  r2 = 0.10 

Significantly different 
from zero (p < α = 0.01) 9/10 10/10 7/10 9/10 6/10 

 
M3BL-
M1MD 

M3BL-
M2MD 

M3BL-
M3MD 

M3BL-
M1MD 

M3BL-
M2MD 

Weighted Anthropoid 
Average r2 = 0.16  r2 = 0.24 r2 = 0.25 r2 = 0.18 r2 = 0.28 

Weighted Hominoid 
Average r2 = 0.08 r2 = 0.19 r2 = 0.18 r2 = 0.14 r2 = 0.18 

Weighted Cercopithecid 
Average r2 = 0.24 r2 = 0.29  r2 = 0.31 r2 = 0.25 r2 = 0.37 

Weighted Platyrrhine 
Average r2 = 0.10 r2 = 0.20 r2 = 0.19  r2 = 0.12 r2 = 0.29 

Significantly different 
from zero (p < α = 0.01) 5/10 9/10 8/10 8/10 8/10 

 
M1BL-
M2MD 

M1BL-
M3MD 

M1BL-
M1MD 

M1BL-
M2MD 

M1BL-
M3MD 

Weighted Anthropoid 
Average r2 = 0.24 r2 = 0.14 r2 = 0.34 r2 = 0.27 r2 = 0.13 

Weighted Hominoid 
Average r2 = 0.26 r2 = 0.16 r2 = 0.47  r2 = 0.26 r2 = 0.19 

Weighted Cercopithecid 
Average r2 = 0.22 r2 = 0.14 r2 = 0.29  r2 = 0.27 r2 = 0.12  

Weighted Platyrrhine 
Average r2 = 0.25 r2 = 0.08  r2 = 0.24 r2 = 0.26 r2 = 0.03  

Significantly different 
from zero (p < α = 0.01) 8/10 4/10 10/10 9/10 4/10 

          (cont.) 
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TABLE 4.16 continued. 

 

 
M2BL-
M1MD 

M2BL-
M3MD 

M2BL-
M1MD 

M2BL-
M2MD 

M2BL-
M3MD 

Weighted Anthropoid 
Average r2 = 0.27 r2 = 0.35 r2 = 0.28 r2 = 0.38 r2 = 0.16 

Weighted Hominoid 
Average r2 = 0.31 r2 = 0.42 r2 = 0.35 r2 = 0.38 r2 = 0.20 

Weighted Cercopithecid 
Average r2 = 0.25 r2 = 0.30  r2 = 0.23 r2 = 0.41 r2 = 0.16 

Weighted Platyrrhine 
Average r2 = 0.23 r2 = 0.29 r2 = 0.28  r2 = 0.34 r2 = 0.09 

Significantly different 
from zero (p < α = 0.01) 9/10 10/10 10/10 10/10 7/10 

 
M3BL-
M1MD 

M3BL-
M2MD 

M3BL-
M1MD 

M3BL-
M2MD 

M3BL-
M3MD 

Weighted Anthropoid 
Average r2 = 0.23 r2 = 0.31 r2 = 0.23 r2 = 0.34 r2 = 0.27 

Weighted Hominoid 
Average r2 = 0.20 r2 = 0.34 r2 = 0.22 r2 = 0.30 r2 = 0.27 

Weighted Cercopithecid 
Average r2 = 0.26 r2 = 0.33 r2 = 0.25 r2 = 0.39 r2 = 0.29  

Weighted Platyrrhine 
Average r2 = 0.23 r2 = 0.20 r2 = 0.21 r2 = 0.30 r2 = 0.22 

Significantly different 
from zero (p < α = 0.01) 9/10 9/10 10/10 9/10 7/10 
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TABLE 4.17. The magntidue of covariation among maxillary molar breadths (***p-value 
< 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
M1BL- 
M2BL 

M1BL- 
M3BL 

M2BL- 
M3BL 

Gorilla gorilla r2
 = 0.54*** 
n = 118 

r2
 = 0.29*** 
n = 100 

r2
 = 0.50*** 
n = 104 

Pan troglodytes r2
 = 0.46*** 
n = 102 

r2
 = 0.14*** 
n = 83 

r2
 = 0.51*** 
n = 83 

Hylobates lar r2
 = 0.57*** 
n = 77 

r2
 = 0.23** 
n = 60 

r2
 = 0.41*** 
n = 69 

Cercopithecus cephus r2
 = 0.65*** 
n = 80 

r2
 = 0.45*** 
n = 71 

r2
 = 0.66*** 
n = 72 

Cercopithecus nictitans r2
 = 0.62*** 
n = 80 

r2
 = 0.49*** 
n = 71 

r2
 = 0.68*** 
n = 75 

Cercopithecus pogonias r2
 = 0.73*** 
n = 69 

r2
 = 0.27*** 
n = 61 

r2
 = 0.47*** 
n = 63 

Macaca fascicularis r2
 = 0.64*** 
n = 89 

r2
 = 0.63*** 
n = 57 

r2
 = 0.76*** 
n = 61 

Colobus satanas r2
 = 0.61*** 
n = 52 

r2
 = 0.31** 
n = 43 

r2
 = 0.55*** 
n = 43 

Ateles geoffroyi r2
 = 0.65*** 
n = 59 

r2
 = 0.33*** 
n = 48 

r2
 = 0.50*** 
n = 48 

Cebus libidinosus r2
 = 0.53*** 
n = 81 

r2
 = 0.20*** 
n = 65 

r2
 = 0.38*** 
n = 66 

Weighted Anthropoid 
Average r2 = 0.59 r2 = 0.33  r2 = 0.54 

Weighted Hominoid 
Average r2 = 0.52 r2 = 0.22 r2 = 0.48 

Weighted Cercopithecid 
Average r2 = 0.65 r2 = 0.44 r2 = 0.63 

Weighted Platyrrhine 
Average r2 = 0.58 r2 = 0.26 r2 = 0.43 

Significantly different 
from zero (p < α = 0.01) 10/10 10/10 10/10 
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TABLE 4.18. The magnitude of covariation among mandibular molar breadths (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
M1BL- 
M2BL 

M1BL- 
M3BL 

M2BL- 
M3BL 

Gorilla gorilla r2
 = 0.73*** 
n = 105 

r2
 = 0.44*** 
n = 89  

r2
 = 0.53*** 
n = 99 

Pan troglodytes r2
 = 0.48*** 
n = 95 

r2
 = 0.24*** 
n = 82 

r2
 = 0.52*** 
n = 81 

Hylobates lar r2
 = 0.69*** 
n = 56 

r2
 = 0.43*** 
n = 41 

r2
 = 0.63*** 
n = 65 

Cercopithecus cephus r2
 = 0.64*** 
n = 80 

r2
 = 0.51*** 
n = 72 

r2
 = 0.76*** 
n = 73 

Cercopithecus nictitans r2
 = 0.60*** 
n = 74 

r2
 = 0.35*** 
n = 67 

r2
 = 0.72*** 
n = 76 

Cercopithecus pogonias r2
 = 0.68*** 
n = 70 

r2
 = 0.46*** 
n = 62 

r2
 = 0.62*** 
n = 64 

Macaca fascicularis r2
 = 0.54*** 
n = 85 

r2
 = 0.56*** 
n = 62 

r2
 = 0.72*** 
n = 71 

Colobus satanas r2
 = 0.56*** 
n = 51 

r2
 = 0.40*** 
n = 44 

r2
 = 0.37** 
n = 44 

Ateles geoffroyi r2
 = 0.76*** 
n = 45 

r2
 = 0.51*** 
n = 38 

r2
 = 0.53*** 
n = 45 

Cebus libidinosus r2
 = 0.61*** 
n = 81 

r2
 = 0.33*** 
n = 70 

r2
 = 0.48*** 
n = 71 

Weighted Anthropoid 
Average r2 = 0.62 r2 = 0.41 r2 = 0.60 

Weighted Hominoid 
Average r2 = 0.63 r2 = 0.36 r2 = 0.55 

Weighted Cercopithecid 
Average r2 = 0.60 r2 = 0.46 r2 = 0.66 

Weighted Platyrrhine 
Average r2 = 0.66 r2 = 0.39 r2 = 0.50 

Significantly different 
from zero (p < α = 0.01) 10/10 10/10 10/10 
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TABLE 4.19. The average magntidue of covariation among the breadth of the maxillary 
and mandibular molars. 

 

 
M1BL- 
M1BL 

M1BL- 
M2BL 

M1BL- 
M3BL 

Weighted Anthropoid 
Average r2 = 0.50 r2 = 0.34 r2 = 0.19 

Weighted Hominoid 
Average r2 = 0.47 r2 = 0.30 r2 = 0.15 

Weighted 
Cercopithecid Average r2 = 0.55 r2 = 0.36 r2 = 0.24 

Weighted Platyrrhine 
Average r2 = 0.41 r2 = 0.34 r2 = 0.16 

Significantly different 
from zero (p < α = 0.01) 10/10 10/10 9/10 

 
M2BL- 
M1BL 

M2BL- 
M2BL 

M2BL- 
M3BL 

Weighted Anthropoid 
Average r2 = 0.43 r2 = 0.53 r2 = 0.33 

Weighted Hominoid 
Average r2 = 0.37 r2 = 0.47 r2 = 0.24 

Weighted 
Cercopithecid Average r2 = 0.47 r2 = 0.58 r2 = 0.43 

Weighted Platyrrhine 
Average r2 = 0.46 r2 = 0.48 r2 = 0.23 

Significantly different 
from zero (p < α = 0.01) 10/10 10/10 9/10 

 
M3BL- 
M1BL 

M3BL- 
M2BL 

M3BL- 
M3BL 

Weighted Anthropoid 
Average r2 = 0.30 r2 = 0.42 r2 = 0.47 

Weighted Hominoid 
Average r2 = 0.18 r2 = 0.36 r2 = 0.36 

Weighted 
Cercopithecid Average r2 = 0.38 r2 = 0.49 r2 = 0.58 

Weighted Platyrrhine 
Average r2 = 0.30 r2 = 0.35 r2 = 0.37 

Significantly different 
from zero (p < α = 0.01) 9/10 10/10 9/10 
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Molar Size Covariation Within Species: The average r2 for the MD length and BL 

breadth of each molar ranges from 0.33–0.40 (Tables 4.14 and 4.15). The magnitude of 

covariation between the MD and BL dimensions of the M3 is slightly lower than seen for 

other molars; otherwise, covariation is approximately equal for all maxillary and 

mandibular molars. The covariation between the MD and BL dimensions of the molars is 

higher than was observed for comparisons of breadth and length for each incisor 

(anthropoid average r2 = 0.15–0.23, Table 3.1) and each premolar (catarrhine and 

platyrrhine average r2 = 0.12–0.32, Tables 4.1 and 4.2). The levels observed for each 

molar do not, however, approach the highest levels of covariation observed between 

comparisons of homologous dimensions for incisor and premolar size. As for the 

premolars and incisors, when breadths and lengths are compared among the molars, the 

average level of covariation is lower than for comparisons of any single tooth. Among the 

molars, the anthropoid range for average MD-BL covariation is r2 = 0.10 (M1BL-M3MD) 

to r2 = 0.38 (M2BL-M2MD) (Table 4.16). Apparently, the lengths and breadths of all 

anthropoid teeth share very low to low levels of covariation. 

 Expectedly, moderate and high levels of covariation are observed among the BL 

breadths of the molars (Tables 4.17 and 4.18). For the maxillary molars, the highest 

magnitude is between the M1 and M2 (anthropoid average r2 = 0.60), an intermediate 

level is observed for the M2 and M3 (anthropoid average r2 = 0.54), and the lowest level is 

between the M1 and M3 (anthropoid average r2 = 0.35) (Table 4.18). This pattern is also 

observed in the mandible, where the highest level of covariation is between the M1 and 

M2 (anthropoid average r2 = 0.63); it is slightly lower for the M2 and M3 (anthropoid 

average r2 = 0.58) and lowest between the M1 and M3 (anthropoid average r2 = 0.41) 

(Table 4.17). The strength of covariation between the BL breadths of M1 and M2, M1  
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TABLE 4.20. The magnitude of covariation among mandibular molar lengths 
(***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
 

 
M1MD- 
M2MD 

M1MD- 
M3MD 

M2MD- 
M3MD 

Gorilla gorilla r2
 = 0.55*** 
n = 120 

r2
 = 0.33*** 
n = 99 

r2
 = 0.48*** 
n = 102 

Pan troglodytes r2
 = 0.46*** 
n = 97 

r2
 = 0.27*** 
n = 80 

r2
 = 0.49*** 
n = 81 

Hylobates lar r2
 = 0.54*** 
n = 73 

r2
 = 0.28* 
n = 46 

r2
 = 0.48*** 
n = 58 

Cercopithecus cephus r2
 = 0.59*** 
n = 80 

r2
 = 0.61*** 
n = 72 

r2
 = 0.63*** 
n = 73 

Cercopithecus nictitans r2
 = 0.68*** 
n = 77 

r2
 = 0.59*** 
n = 68 

r2
 = 0.77*** 
n = 74 

Cercopithecus pogonias r2
 = 0.52*** 
n = 66 

r2
 = 0.40*** 
n = 59 

r2
 = 0.53*** 
n = 64 

Macaca fascicularis r2
 = 0.71*** 
n = 91 

r2
 = 0.52*** 
n = 67 

r2
 = 0.58*** 
n = 71 

Colobus satanas r2
 = 0.59*** 
n = 51 

r2
 = 0.07 

n = 44 
r2

 = 0.13* 
n = 44 

Ateles geoffroyi r2
 = 0.56*** 
n = 65 

r2
 = 0.53*** 
n = 44 

r2
 = 0.59*** 
n = 45 

Cebus libidinosus r2
 = 0.62*** 
n = 77 

r2
 = 0.30*** 
n = 67 

r2
 = 0.29*** 
n = 65 

Weighted Anthropoid 
Average r2 = 0.58 r2 = 0.40  r2 = 0.51  

Weighted Hominoid 
Average r2 = 0.52 r2 = 0.30 r2 = 0.48  

Weighted Cercopithecid 
Average r2 = 0.63 r2 = 0.47 r2 = 0.56 

Weighted Platyrrhine 
Average r2 = 0.59 r2 = 0.39 r2 = 0.41 

Significantly different 
from zero (p < α = 0.01) 10/10 8/10 9/10 
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TABLE 4.21. The magntidue of covariation among maxillary molar lengths (***p-value 
< 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 
M1MD- 
M2MD 

M1MD- 
M3MD 

M2MD- 
M3MD 

Gorilla gorilla r2
 = 0.56*** 
n = 124 

r2
 = 0.27*** 
n = 102 

r2
 = 0.41*** 
n = 105 

Pan troglodytes r2
 = 0.47*** 
n = 95 

r2
 = 0.29*** 
n = 78 

r2
 = 0.49*** 
n = 82 

Hylobates lar r2
 = 0.43*** 
n = 82 

r2
 = 0.23*** 
n = 58 

r2
 = 0.27** 
n = 63 

Cercopithecus cephus r2
 = 0.46*** 
n = 81 

r2
 = 0.31*** 
n = 71 

r2
 = 0.44*** 
n = 71 

Cercopithecus nictitans r2
 = 0.62*** 
n = 84 

r2
 = 0.32***  
n = 75 

r2
 = 0.49*** 
n = 75 

Cercopithecus pogonias r2
 = 0.55*** 
n = 68 

r2
 = 0.21*** 
n = 60 

r2
 = 0.35*** 
n = 63 

Macaca fascicularis r2
 = 0.65*** 
n = 90 

r2
 = 0.46*** 
n = 62 

r2
 = 0.59*** 
n = 66 

Colobus satanas r2
 = 0.47*** 
n = 52 

r2
 = 0.16* 
n = 45 

r2
 = 0.08 

n = 45 

Ateles geoffroyi r2
 = 0.52*** 
n = 65 

r2
 = 0.24*  
n = 53 

r2
 = 0.32* 
n = 51 

Cebus libidinosus r2
 = 0.31*** 
n = 81 

r2
 = 0.00 

n = 61 
r2

 = 0.15* 
n = 61 

Weighted Anthropoid 
Average r2 = 0.51 r2 = 0.26 r2 = 0.38  

Weighted Hominoid 
Average r2 = 0.50 r2 = 0.27 r2 = 0.40 

Weighted Cercopithecid 
Average r2 = 0.56 r2 = 0.30 r2 = 0.41 

Weighted Platyrrhine 
Average r2 = 0.40 r2 = 0.11 r2 = 0.23 

Significantly different 
from zero (p < α = 0.01) 10/10 7/10 8/10 
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TABLE 4.22. The average magntidue of covariation among maxillary and mandibular 
molar lengths. 

 

 
M1MD-
M1MD 

M1MD-
M2MD 

M1MD-
M3MD 

Weighted Anthropoid 
Average r2 = 0.58 r2 = 0.42 r2 = 0.26 

Weighted Hominoid 
Average r2 = 0.61 r2 = 0.39 r2 = 0.26 

Weighted 
Cercopithecid Average r2 = 0.65 r2 = 0.50 r2 = 0.30 

Weighted Platyrrhine 
Average r2 = 0.32 r2 = 0.26 r2 = 0.16 

Significantly different 
from zero (p < α = 0.01) 10/10 10/10 8/10 

 
M2MD-
M1MD 

M2MD-
M2MD 

M2MD-
M3MD 

Weighted Anthropoid 
Average r2 = 0.45 r2 = 0.61 r2 = 0.35 

Weighted Hominoid 
Average r2 = 0.43 r2 = 0.61 r2 = 0.34 

Weighted 
Cercopithecid Average r2 = 0.52 r2 = 0.71 r2 = 0.42 

Weighted Platyrrhine 
Average r2 = 0.34 r2 = 0.34 r2 = 0.18 

Significantly different 
from zero (p < α = 0.01) 10/10 10/10 8/10 

 
M3MD-
M1MD 

M3MD-
M2MD 

M3MD-
M3MD 

Weighted Anthropoid 
Average r2 = 0.28 r2 = 0.40 r2 = 0.46 

Weighted Hominoid 
Average r2 = 0.24 r2 = 0.40 r2 = 0.44 

Weighted 
Cercopithecid Average r2 = 0.35 r2 = 0.46 r2 = 0.53 

Weighted Platyrrhine 
Average r2 = 0.17 r2 = 0.23 r2 = 0.30 

Significantly different 
from zero (p < α = 0.01) 8/10 8/10 9/10 
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and M3, and M2 and M3 are approximately equal in both arches, suggesting a similar 

pattern of pleiotropic linkage among the molars in each arch. Hlusko and Mahaney 

(2009) and Hlusko et al. (2010) indicated than many postcanine dimensions in the 

pedigreed SNPRC baboon sample are characterized by complete pleiotropy (i.e., rG not 

significantly different from 1). Although they are among the most strongly covarying 

characters in the anthropoid dentition, the null hypothesis for complete pleiotropy is 

rejected for all pairs of BL breadth in all 10 species in both the maxilla and mandible, as 

no 95, 99, or 99.99% confidence intervals contain r2 = 1.0. 

Between the arches, all pairs of molar BL breadth express statistically significant 

levels of covariation, with anthropoid averages ranging from very low, r2 = 0.19 (M1BL- 

M3BL), to moderate, r2 = 0.53 (M2BL-M2BL and M3BL-M3BL), (Table 4.19). The 

highest levels of covariation between arches are only slightly lower in magnitude than in 

the most strongly covarying pairs within an arch (Tables 4.17 and 4.18). For all 

taxonomic groups, the average levels of covariation between arches express an interesting 

pattern. For any molar, the highest level of covariation is always with the molar in the 

equivalent position in the opposite arch (M1with M1, M2 with M2, and M3 with M3). 

There is also an apparent taxonomic distinction. Cercopithecids show substantially higher 

levels of covariation for M3BL-M3BL and for all other comparisons involving M3BL. In 

cercopithecids, the BL breadths of the M3s are more tightly linked to one another and to 

the other molars than is true of hominoids and platyrrhines (Tables 4.17, 4.18, and 4.19). 

Many of the cercopithecids analyzed in this study have well developed M3s. For the M3, 

there is often a prominent distal heel formed by the hypoconulid (personal observation, 

Ungar, 2010). In some sense, the variation in the magnitude of covariation observed for 

the M3s between platyrrhines and cercopithecids reflect the relative size of the teeth 

compared to the other molars. The relatively small platyrrhine M3 covaries weakly with 
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the other molars; the relatively large and well developed cercopithecid M3s covary more 

strongly with the other molars. 

As observed for molar BL breadths, levels of covariation among molar MD 

lengths are statistically significant and strong, but not consistent between molar pairs 

(Tables 4.20 and 4.21). For the mandibular molars, the highest level of covariation is 

between the M1 and M2 (anthropoid average r2 = 0.58), an intermediate level is observed 

for the M2 and M3 (anthropoid average r2 = 0.49), and lowest between the M1 and M3 

(anthropoid average r2 = 0.39). The same pattern is observed for the maxillary molars. 

The highest level is between the M1 and M2 (anthropoid average r2 = 0.51), an 

intermediate level for the M2 and M3 (anthropoid average r2 = 0.37), and the lowest level 

is between the M1 and M3 (anthropoid average r2 = 0.25). Levels of covariation between 

the first and second molars are similar for the maxilla and mandible, but levels of 

covariation with M3MD are substantially lower than observed in the mandible (the 

anthropoid average is 0.14 less for M1MD-M3MD than for M1MD-M3MD and 0.13 less 

lower magnitudes of covariation for the M3MD comparisons, but the discrepancy is 

largest in platyrrhines (Tables 4.20 and 4.21). The M3MD length is the most independent 

dimension of molar size, a point that will be revisited below in the among-species 

analysis. 

For MD lengths between the arches, the anthropoid averages range from low, r2 

= 0.28 (M3MD-M1MD), to high, r2 = 0.61 (M2MD-M2MD), (Table 4.22). As for the BL 

breadths, the highest level of covariation is always between molars in the same position 

in the opposite arch. Covariation between teeth in the same position is as high as between 

those of adjacent teeth in the same arch, indicating substantial amounts of shared 

variation in both cases.  



  138 

When levels of covariation among the premolars, among the molars, and between 

the homologous dimensions of the premolars and molars are considered (Figure 4.1) the 

range of r2 estimates is approximately equal for comparisons among premolar sizes and 

among molar sizes (the average among the molar sizes is slightly higher). This likely 

results from the fact that the BL and oblique dimensions of the mesial mandibular 

premolar and the MD length of the mesial maxillary premolar share little covariation with 

the other premolars. The pairing of homologous measures of premolar-molar size in each 

arch also significantly covary, but these magnitudes do not approach the highest levels 

observed within the premolars or within the molars. With r2 values approaching and 

exceeding 0.50 and as high as 0.70 in some taxa, the homologous dimensions of the 

molars are among the most highly covarying characters observed in the anthropoid 

dentition. 

The hypothesis of variation modularity predicts low or no covariation between 

functional modules. When postcanine r2s are compared to those among homologous 

measures of the incisors and postcanine teeth (Figure 4.2), it is evident that there are 

consistent but low levels of positive covariation between the modules, as discussed in 

Chapter 3. The level of covariation between the modules does not approach the highest 

levels observed within the postcanine module. The hypothesis that postcanine dentition is 

a variational module is supported by these observations. 

 

Among-Species Covariation for Postcanine Size: Covariation among species was 

estimated for all molars and the P4. Expectedly, all elements of the postcanine dentition 

show a high level of covariation in both males and females (Tables 4.23, 4.24, 4.25, 

4.26). Though among-species r2s are typically higher than the values observed within  



  139 

 
Fig 4.1. Histogram of r2 estimates for postcanine tooth size. r2 estimates are for 
platyrrhine, cercopithecid, and hominoid averages. Note that this histogram does not 
represent all possible correlations among character pairs. The values in this Figure are 
those presented in the tables in this chapter. 
 

 

Fig 4.2. Histogram of r2 estimates for postcanine tooth size and incisor size. r2 estimates 
are for platyrrhine, cercopithecid, and hominoid averages. Note that this histogram does 
not represent all possible correlations among character pairs. The values in this Figure are 
those presented in the tables in this chapter. 
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TABLE 4.23. Among-species covariation for maxillary postcanine size, equal branch 

lengths. All correlations are significantly different from zero at p < 0.0001. n = 35 for all 
comparisons, though the taxonomic conformation of the males and females differs 

slightly. 
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TABLE 4.24. Among-species covariation for mandibular postcaninesize, equal branch 
lengths. All correlations are significantly different from zero at p < 0.0001. n = 35 for all 

comparisons, though the taxonomic conformation of the males and females differs 
slightly. 
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TABLE 4.25. Among-species covariation for mandibular and maxillary postcanine size, 
equal branch lengths. All correlations are significantly different from zero at p < 0.0001. 
n = 35 for all comparisons, though the taxonomic conformation of the males and females 

differs slightly. 
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TABLE 4.26: Average magnitude of among-species covariation for P4–M3 size. 

 

P4MD P4BL M1MD M1BL M2MD M2BL M3MD M3BL 

r2 = 0.89 r2 = 0.85 r2 = 0.91 r2 = 0.87 r2 = 0.90 r2 = 0.91 r2 = 0.83 r2 = 0.91 

 
P4MD P4BL M1MD M1BL M2MD M2BL M3MD M3BL 

r2 = 0.90 r2 = 0.85 r2 = 0.89 r2 = 0.83 r2 = 0.85 r2 = 0.86 r2 = 0.80 r2 = 0.87 

 

 

species, variation in the strength of covariation observed among species closely conforms 

to the pattern observed within species. For both the maxillary and mandibular molars, 

with few exceptions, homologous dimensions among molars always covary more 

strongly with one another than with nonhomologous dimensions. The length and breadth 

of each molar do not covary to the same degree as the homologous measures among 

molars. For the P4, high levels of covariation are observed with all dimensions of the 

molars; unlike for the molars, it is not necessarily the homologous dimensions of the P4 

that covary the most strongly with the molars among species. Within species, the M3MD 

is the most weakly covarying dimension with other molar dimensions. Among species, 

the lowest level of average covariation is for M3MD (r2 = 0.80) (Table 4.26). The lower 

level of M3MD covariation within species is reflected in its relative independence among 

species. 

 

Premolar Shape Covariation Within Species: Compared to the magnitudes of 

covariation observed for premolar sizes, the covariation of maxillary premolar shapes is  
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TABLE 4.27: The magnitude of covariation among maxillary premolar shapes (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
 

 P3-P4 P2-P3
 P2-P4 P3-P4 

Gorilla gorilla r2
 = 0.19*** 
n = 92 NA NA NA 

Pan troglodytes r2
 = 0.04 

n = 79 NA NA NA 

Hylobates lar  r2
 = 0.02 

n = 39 NA NA NA 

Cercopithecus cephus r2
 = 0.28*** 
n = 64 NA NA NA 

Cercopithecus nictitans r2
 = 0.33*** 
n = 65 NA NA NA 

Cercopithecus pogonias r2
 = 0.19** 
n = 57 NA NA NA 

Macaca fascicularis r2
 = 0.12** 
n = 68 NA NA NA 

Colobus satanas r2 = 0.07 
n = 47 NA NA NA 

Ateles geoffroyi  NA r2 = 0.16** 
n = 48 

r2 = 0.26*** 
n = 49 

r2 = 0.44*** 
n = 56 

Cebus libidinosus NA r2 = 0.20*** 
n = 72 

r2 = 0.06* 
n = 72 

r2 = 0.54*** 
n = 77 

Weighted Hominoid 
Average r2 = 0.10 NA NA NA 

Weighted Cercopithecid 
Average r2 = 0.20 NA NA NA 

Weighted Platyrrhine 
Average NA r2 = 0.18 r2 = 0.14 r2 = 0.50 

Significantly different 
from zero (p < α = 0.01) 5/8 2/2 ½ 2/2 
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TABLE 4.28. The magntidue of covariation among mandibular premolar shapes (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
. 

 P3-P4
 P2-P3 P2-P4

 P3-P4
 

Gorilla gorilla r2 = 0.01 
n = 94 NA NA NA 

Pan troglodytes r2 = 0.09** 
n = 86 NA NA NA 

Hylobates lar  r2 = 0.02 
n = 50 NA NA NA 

Cercopithecus cephus r2 = 0.04 
n = 78 NA NA NA 

Cercopithecus nictitans r2 = 0.16*** 
n = 76 NA NA NA 

Cercopithecus pogonias r2 = 0.00 
n = 66 NA NA NA 

Macaca fascicularis r2 = 0.00 
n = 73 NA NA NA 

Colobus satanas r2 = 0.05 
n = 46 NA NA NA 

Ateles geoffroyi  NA r2 = -0.04 
n = 48 

r2 = 0.00 
n = 48 

r2 = 0.32*** 
n = 51 

Cebus libidinosus NA r2 = 0.00 
n = 71 

r2 = 0.00 
n = 72 

r2 = 0.27*** 
n = 72 

Weighted Hominoid 
Average r2 = 0.04 NA NA NA 

Weighted Cercopithecid 
Average r2 = 0.05 NA NA NA 

Weighted Platyrrhine 
Average NA r2 = -0.02 r2 = 0.00 r2 = 0.29 

Significantly different 
from zero (p < α = 0.01) 2/8 0/2 0/2 2/2 
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TABLE 4.29. The magnitude of covariation among maxillary and mandibular premolar 
shapes in catarrhines (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 P3-P3 P3-P4
 P4-P3 P4-P4 

Gorilla gorilla r2 = 0.00 
n = 84 

r2 = -0.01 
n = 97 

r2 = 0.02 
n = 88 

r2 = 0.18*** 
n = 110 

Pan troglodytes r2 = 0.00 
n = 77 

r2 = 0.01 
n = 82 

r2 = 0.04 
n = 81 

r2 = 0.25*** 
n = 83 

Hylobates lar  r2 = 0.04 
n = 29 

r2 = 0.01 
n = 53 

r2 = 0.03 
n = 35 

r2 = 0.16** 
n = 66 

Cercopithecus cephus r2 = 0.01 
n = 62 

r2 = 0.00 
n = 78 

r2 = 0.06 
n = 64 

r2 = 0.28*** 
n = 81 

Cercopithecus nictitans r2 = 0.01 
n = 61 

r2 = -0.02 
n = 77 

r2 = 0.21*** 
n = 64 

r2 = 0.15*** 
n = 79 

Cercopithecus pogonias r2 = 0.01 
n = 55 

r2 = -0.02 
n = 64 

r2 = 0.14** 
n = 56 

r2 = 0.24*** 
n = 66 

Macaca fascicularis r2 = 0.01 
n = 60 

r2 = 0.00 
n = 69 

r2 = 0.07* 
n = 68 

r2 = 0.29*** 
n = 74 

Colobus satanas r2 = -0.07 
n = 46 

r2 = -0.27*** 
n = 46 

r2 = 0.06 
n = 46 

r2 = -0.01 
n = 46 

Weighted Catarrhine 
Average r2 = 0.00 r2 = -0.02 r2 = 0.05 r2 = 0.19 

Weighted Hominoid 
Average r2 = 0.01 r2 = 0.00 r2 = 0.03 r2 = 0.20 

Weighted Cercopithecid 
Average r2 = 0.00 r2 = -0.05 r2 = 0.11 r2 = 0.21 

Significantly different 
from zero (p < α = 0.01) 0/8 1/8 2/8 7/8 
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TABLE 4.30. The magnitude of covariation among platyrrhine mandibular and maxillary 
premolar shapes (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 P2-P2 P2-P3
 P2-P4 

Ateles geoffroyi r2 = -0.10* 
n = 43 

r2 = -0.03 
n = 48 

r2 = -0.03 
n = 49 

Cebus libidinosus r2 = 0.00 
n = 70 

r2 = -0.03 
n = 75 

r2 = -0.03 
n = 74 

Weighted Platyrrhine 
Average r2 = -0.04 r2 = -0.03 r2 = -0.03 

Significantly different 
from zero (p < α = 0.01) 0/2 0/2 0/2 

 

 P3-P2 P3-P3
 P3-P4 

Ateles geoffroyi r2 = 0.10* 
n = 45 

r2 = 0.08* 
n = 51 

r2 = 0.11* 
n = 51 

Cebus libidinosus r2 = 0.06* 
n = 69 

r2 = 0.02 
n = 73 

r2 = 0.02 
n = 73 

Weighted Platyrrhine 
Average r2 = 0.08 r2 = 0.04 r2 = 0.06 

Significantly different 
from zero (p < α = 0.01) 0/2 0/2 0/2 

 

 P4-P2 P4-P3
 P4-P4 

Ateles geoffroyi r2 = 0.14** 
n = 47 

r2 = 0.03 
n = 55 

r2 = 0.15** 
n = 53 

Cebus libidinosus r2 = 0.06* 
n = 70 

r2 = 0.11** 
n = 75 

r2 = 0.13** 
n = 75 

Weighted Platyrrhine 
Average r2 = 0.09 r2 = 0.04 r2 = 0.14 

Significantly different 
from zero (p < α = 0.01) ½ 1/2 2/2 
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minimal, with one exception. The catarrhine maxillary premolars share almost no 

covariation within any species (Table 4.27). For the platyrrhines, the P2 does not covary 

strongly with either the P3 or P4 (Table 4.27). In contrast, the distal platyrrhine maxillary 

premolars share substantial covariation in shape in both Cebus libidinosus and Ateles 

geoffroyi. 

Among the mandibular premolars, the catarrhine P3 and P4 share no shape 

covariation within species (Table 4.28). For the platyrrhine mandibular premolars, the P2 

does not covary in shape with either the P3 or the P4. As with the maxillary premolars, the 

platyrrhine distal mandibular premolars share a higher level of covariation; though, the 

level observed for the platyrrhine mandibular premolars is lower than observed for the 

maxillary premolars (Table 4.28). Premolar shape covariation is highest between adjacent 

premolars that are not heteromorphic in shape, again suggesting that the heteromorphic 

mesial premolars were parceled out of the variational module when heteromorphy 

developed. 

Between the arches, unsurprisingly, the only pairs of premolars that share 

significant levels of shape covariation are the catarrhine P4 and P4 (Table 4.29) and the 

platyrrhine P4 and P4 (Table 4.30). In both cases, the level of covariation is low compared 

to the magnitude observed for the sizes of the premolars between the arches (Tables 

4.3–4.7). The magnitude of shape covariation is highest between occluding premolars, 

but shape covariation between the arches does not approach the moderate level observed 

between the platyrrhine maxillary premolars. 

 

Premolar-Molar Shape Covariation Within Species: For shape, the P4 expresses low 

levels of covariation with the molars in both the maxilla and mandible (Table 4.31 and 

4.32). Though absolute magnitudes are low and differences in magnitude between molars  
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TABLE 4.31. The magnitude of covariation among maxillary P4 and molar shapes (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 P4-M1
 P4-M2 P4-M3 

Gorilla gorilla r2
 = 0.15** 
n = 109 

r2
 = 0.26*** 
n = 113 

r2
 = 0.15** 
n = 95 

Pan troglodytes r2
 = 0.19** 
n = 87 

r2
 = 0.19*** 
n = 88 

r2
 = 0.29*** 
n = 72 

Hylobates lar  r2
 = 0.00 

n = 65 
r2

 = 0.08* 
n = 74 

r2
 = 0.04 

n = 57 

Cercopithecus cephus r2
 = 0.24*** 
n = 79 

r2
 = 0.27*** 
n = 81 

r2
 = 0.06* 
n = 73 

Cercopithecus nictitans r2
 = 0.21** 
n = 79 

r2
 = 0.41*** 
n = 83 

r2
 = 0.20** 
n = 75 

Cercopithecus pogonias r2
 = 0.39*** 
n = 67 

r2
 = 0.45*** 
n = 68 

r2
 = 0.20** 
n = 60 

Macaca fascicularis r2
 = 0.26*** 
n = 76 

r2
 = 0.36*** 
n = 80 

r2
 = 0.20*** 
n = 54 

Colobus satanas r2 = 0.25*** 
n = 47 

r2 = 0.32*** 
n = 47 

r2 = 0.28*** 
n = 43 

Ateles geoffroyi  r2 = 0.09 
n = 55 

r2 = 0.27*** 
n = 54 

r2 = 0.12* 
n = 44 

Cebus libidinosus r2 = 0.06 
n = 77 

r2 = 0.02 
n = 77 

r2 = 0.02 
n = 60 

Weighted Anthropoid 
Average r2 = 0.18 r2 = 0.26 r2 = 0.15 

Weighted Hominoid 
Average r2 = 0.13 r2 = 0.19 r2 = 0.17 

Weighted Cercopithecid 
Average r2 = 0.27 r2 = 0.36 r2 = 0.18 

Weighted Platyrrhine 
Average r2 = 0.07 r2 = 0.12 r2 = 0.06 

Significantly different 
from zero (p < α = 0.01) 7/10 8/10 6/10 

 
 
 
 
 
 
 



  150 

 
 
 

TABLE 4.32. The magnitude of covariation among mandibular P4 and molar shapes 
(***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
 

 P4-M1 P4-M2
 P4-M3

 

Gorilla gorilla r2
 = 0.20*** 
n = 96 

r2
 = 0.18*** 
n = 109 

r2
 = 0.12* 
n = 92 

Pan troglodytes r2
 = 0.25*** 
n = 87 

r2
 = 0.38*** 
n = 89 

r2
 = 0.19** 
n = 74 

Hylobates lar  r2
 = 0.11* 
n = 47 

r2
 = 0.15** 
n = 72 

r2
 = 0.13* 
n = 52 

Cercopithecus cephus r2
 = 0.23*** 
n = 79 

r2
 = 0.24*** 
n = 81 

r2
 = 0.16** 
n = 73 

Cercopithecus nictitans r2
 = 0.32*** 
n = 70 

r2
 = 0.38*** 
n = 78 

r2
 = 0.39*** 
n = 73 

Cercopithecus pogonias r2
 = 0.16** 
n = 63 

r2
 = 0.14** 
n = 67 

r2
 = 0.22** 
n = 61 

Macaca fascicularis r2
 = 0.16** 
n = 78 

r2
 = 0.28*** 
n = 82 

r2
 = 0.18*** 
n = 66 

Colobus satanas r2 = 0.01 
n = 46 

r2 = 0.03 
n = 44 

r2 = 0.01 
n = 46 

Ateles geoffroyi  r2 = 0.21* 
n = 40 

r2 = 0.29* 
n = 45 

r2 = 0.06 
n = 36 

Cebus libidinosus r2 = 0.06* 
n = 75 

r2 = 0.10* 
n = 73 

r2 = 0.02 
n = 65 

Weighted Anthropoid 
Average r2 = 0.18 r2 = 0.23  r2 = 0.16  

Weighted Hominoid 
Average r2 = 0.20 r2 = 0.24  r2 = 0.15 

Weighted Cercopithecid 
Average r2 = 0.19 r2 = 0.24  r2 = 0.21  

Weighted Platyrrhine 
Average r2 = 0.11 r2 = 0.17  r2 = 0.03 

Significantly different 
from zero (p < α = 0.01) 6/10 7/10 5/10 
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are subtle, the pattern of covariation for mandibular premolar-molar shape is the same as 

for size: the highest level is between the P4 and M2 (anthropoid average r2 = 0.24 

(Mandible) and 0.26 (Maxillary)), intermediate for the P4-M1 (anthropoid average r2s = 

0.18 (Mandible) and 0.18 (Maxillary)), and lowest for the P4-M3 (anthropoid average r2s 

= 0.15 (Mandible) and 0.16 (Maxillary)). This is true not only of the anthropoid average, 

but for the cercopithecid, hominoid, and platyrrhine averages.  

There appears to be a taxonomic difference in levels of covariation between 

mandibular premolars and molars. Platyrrhines express the lowest levels of covariation 

and cercopithecids the highest; though, again, these differences are rather subtle. Despite 

substantial sample sizes, only 60% (P4-M1), 70% (P4-M2), and 50% (P4-M3) of species 

estimates are significantly different from zero at α = 0.01 (no platyrrhine estimates for 

mandibular premolar-molar shape covariation are significant at the more restrictive 

level). The same pattern is observed in the maxilla; in fact, the observed average levels of 

covariation between the P4 and maxillary molars are almost identical to that observed 

between the P4 and mandibular molars. Again, the magnitude of covariation is highest for 

the P4 and M2, intermediate for P4 and M1, and lowest for P4 and M3. As for mandibular 

premolar-molar shape, levels of covariation for maxillary premolar shape are highest for 

the cercopithecids and lowest for the platyrrhines (Table 4.32).  

In summary, given the low magnitude of the covariation between P4 and molar 

shape, the shape of the P4 is only subtly linked to that of the mandibular molars. 

Premolar crown shape can be affected by altering the relative sizes of its component parts 

(e.g., cusps, anterior fovea, and talonid). Such changes in relative size occurred during 

hominin evolution (e.g., Suwa, 1988). Given the low magnitude of covariation that exists 

between premolar and molar shape, such changes in hominin premolar shape probably do 
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not reflect the outcome of selection acting on set of traits that are united pleiotropically 

linked to the molars. 

 

Molar Shape Covariation Within Species: Significant covariation is observed among 

mandibular molar shapes (Table 4.27). The highest level of shape covariation is between 

the M1 and M2 (anthropoid average r2 = 0.46), lower for M2 and M3 (anthropoid average 

r2 = 0.37), and lowest between the M1 and M3 (anthropoid average r2 = 0.29), which is 

also the pattern for homologous dimensions of mandibular molar size. The strength of 

covariation is similar between taxonomic groups, though cercopithecids tend to express 

higher levels than either hominoids or platyrrhines. The low hominoid value for M1-M3 

results partly from an exceptionally low estimate in Hylobates lar. An examination of the 

Hylobates lar data indicates that this is not an artifact of outliers in the data set; given that 

no other hylobatid was included in the analysis, it is unclear whether this represents a real 

distinction from the hominids or if it is an aberrantly low estimate for shape covariation.  

A similar pattern is observed among the shapes of the maxillary molars, where moderate 

levels of covariation characterize the M1 and M2 (anthropoid average r2 = 0.39), a lower 

level is expressed for the M2 and M3 (anthropoid average r2 = 0.29), and the lowest is for 

the M1 and M3 (anthropoid average r2 = 0.20) (Table 4.28). Again, the same pattern 

observed for the size of the homologous dimensions of the maxillary molars and for the 

shapes of the mandibular molars. Average levels of covariation are similar for 

platyrrhines, hominoids, and cercopithecids for the M1-M2, though all comparisons with 

the M3 shape are lower in platyrrhines. As discussed for molar size, the MD length of the 

platyrrhine M3 expresses significantly lower levels of covariation with the lengths of the 

M1 and M2 than is observed in catarrhine taxa. The analysis of shape covariation  
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TABLE 4.33. The magnitude of covariation among mandibular molar shapes (***p-value 
< 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 M1-M2  M1-M3  M2-M3  

Gorilla gorilla r2
 = 0.43*** 
n = 100 

r2
 = 0.25*** 
n = 81 

r2
 = 0.38*** 
n = 91 

Pan troglodytes r2
 = 0.56*** 
n = 92 

r2
 = 0.23*** 
n = 75 

r2
 = 0.30** 
n = 76 

Hylobates lar  r2
 = 0.36*** 
n = 55 

r2
 = 0.02 

n = 33 
r2

 = 0.22** 
n = 53 

Cercopithecus cephus r2
 = 0.40*** 
n = 79 

r2
 = 0.31*** 
n = 71 

r2
 = 0.45*** 
n = 71 

Cercopithecus nictitans r2
 = 0.68*** 
n = 73 

r2
 = 0.48*** 
n = 64 

r2
 = 0.61*** 
n = 70 

Cercopithecus pogonias r2
 = 0.65*** 
n = 66 

r2
 = 0.64*** 
n = 59 

r2
 = 0.63*** 
n = 64 

Macaca fascicularis r2
 = 0.37*** 
n = 82 

r2
 = 0.28*** 
n = 60 

r2
 = 0.42*** 
n = 67 

Colobus satanas r2 = 0.38*** 
n = 51 

r2 = 0.15** 
n = 44 

r2 = 0.21* 
n = 44 

Ateles geoffroyi  r2 = 0.35*** 
n = 40 

r2 = 0.32* 
n = 27 

r2 = 0.27* 
n = 35 

Cebus libidinosus r2 = 0.42*** 
n = 76 

r2 = 0.26*** 
n = 67 

r2 = 0.18** 
n = 64 

Weighted Anthropoid 
Average r2 = 0.47 r2 = 0.31 r2 = 0.38 

Weighted Hominoid 
Average r2 = 0.46 r2 = 0.20 r2 = 0.31 

Weighted Cercopithecid 
Average r2 = 0.50 r2 = 0.38 r2 = 0.48 

Weighted Platyrrhine 
Average r2 = 0.40 r2 = 0.28 r2 = 0.21 

Significantly different 
from zero (p < α = 0.01) 10/10 8/10 8/10 
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TABLE 4.34. The magnitude of covariation among maxillary molar shapes (***p-value < 
0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 M1-M2  M1-M3  M2-M3  

Gorilla gorilla r2
 = 0.43*** 
n = 113 

r2
 = 0.24*** 
n = 90 

r2
 = 0.55*** 
n = 96 

Pan troglodytes r2
 = 0.46*** 
n = 91 

r2
 = 0.32*** 
n = 74 

r2
 = 0.46*** 
n = 77 

Hylobates lar  r2
 = 0.21*** 
n = 74 

r2
 = 0.01 

n = 51 
r2

 = 0.01 
n = 63 

Cercopithecus cephus r2
 = 0.32*** 
n = 80 

r2
 = 0.21*** 
n = 67 

r2
 = 0.06*  
n = 71 

Cercopithecus nictitans r2
 = 0.44*** 
n = 80 

r2
 = 0.19*** 
n = 71 

r2
 = 0.38*** 
n = 75 

Cercopithecus pogonias r2
 = 0.64*** 
n = 68 

r2
 = 0.36*** 
n = 60 

r2
 = 0.45*** 
n = 63 

Macaca fascicularis r2
 = 0.35*** 
n = 86 

r2
 = 0.28*** 
n = 54 

r2
 = 0.46*** 
n = 61 

Colobus satanas r2 = 0.24** 
n = 52 

r2 = 0.23** 
n = 43 

r2 = 0.30*** 
n = 43 

Ateles geoffroyi  r2 = 0.37*** 
n = 54 

r2 = 0.12* 
n = 45 

r2 = 0.23** 
n = 44 

Cebus libidinosus r2 = 0.40*** 
n = 81 

r2 = 0.05* 
n = 61 

r2 = 0.01 
n = 61 

Weighted Anthropoid 
Average r2 = 0.39 r2 = 0.20  r2 = 0.29 

Weighted Hominoid 
Average r2 = 0.37 r2 = 0.19 r2 = 0.34 

Weighted Cercopithecid 
Average r2 = 0.40 r2 = 0.25  r2 = 0.33 

Weighted Platyrrhine 
Average r2 = 0.39 r2 = 0.09 r2 = 0.12 

Significantly different 
from zero (p < α = 0.01) 10/10 7/10 7/10 

 

 

 

 
 

 



  155 

 
 
 
 
 
 

TABLE 4.35. The average magnitude of covariation between maxillary and mandibular 
molar shapes. 

 

 M1-M1  M1-M2  M1-M3  

Weighted Anthropoid 
Average r2 = 0.22 r2 = 0.16 r2 = 0.11 

Weighted Hominoid 
Average r2 = 0.16 r2 = 0.09  r2 = 0.09  

Weighted Cercopithecid 
Average r2 = 0.31 r2 = 0.24  r2 = 0.16 

Weighted Platyrrhine 
Average r2 = 0.12 r2 = 0.09  r2 = 0.03  

Significantly different 
from zero (p < α = 0.01) 8/10 7/10 5/10 

 

 M2-M1  M2-M2  M2-M3  

Weighted Anthropoid 
Average r2 = 0.14 r2 = 0.21  r2 = 0.16  

Weighted Hominoid 
Average r2 = 0.13 r2 = 0.14  r2 = 0.15  

Weighted Cercopithecid 
Average r2 = 0.19 r2 = 0.30  r2 = 0.19  

Weighted Platyrrhine 
Average r2 = 0.03 r2 = 0.06 r2 = 0.07  

Significantly different 
from zero (p < α = 0.01) 5/10 7/10 7/10 

 

 M3-M1  M3-M2  M3-M3  

Weighted Anthropoid 
Average r2 = 0.14 r2 = 0.16  r2 = 0.21 

Weighted Hominoid 
Average r2 = 0.09 r2 = 0.10  r2 = 0.15  

Weighted Cercopithecid 
Average r2 = 0.17 r2 = 0.22 r2 = 0.26 

Weighted Platyrrhine 
Average r2 = 0.13 r2 = 0.07  r2 = 0.16  

Significantly different 
from zero (p < α = 0.01) 4/10 5/10 8/10 
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TABLE 4.36. The magnitude of among-species covariation for P4 and molar shapes, 
branch lengths equal. All correlations significant at p < 0.0001. 

 
 

P4 M1 M2 

M1 r2 = 0.54 
n = 34 — — 

M2 r2 = 0.60 
n = 34 

r2 = 0.75 
n = 34 — 

M3 r2 = 0.50 
n = 34 

r2 = 0.75 
n = 34 

r2 = 0.70 
n = 34 

 
 
 

P4 M1 M2 

M1 
r2 = 0.51 
n = 34 — — 

M2 
r2 = 0.37 
n = 34 

r2 = 0.73 
n = 34 — 

M3 
r2 = 0.34 
n = 34 

r2 = 0.46 
n = 34 

r2 = 0.54 
n = 34 

 
 

P4 M1 M2 M3 

P4 
r2 = 0.59 
n = 34 

r2 = 0.44 
n = 34 

r2 = 0.28 
n = 34 

r2 = 0.29 
n = 34 

M1 
r2 = 0.44 
n = 34 

r2 = 0.57 
n = 34 

r2 = 0.47 
n = 34 

r2 = 0.29 
n = 34 

M2 
r2 = 0.48 
n = 34 

r2 = 0.44 
n = 34 

r2 = 0.61 
n = 34 

r2 = 0.34 
n = 34 

M3 
r2 = 0.35 
n = 34 

r2 = 0.56 
n = 34 

r2 = 0.62 
n = 34 

r2 = 0.70 
n = 34 

 



  157 

indicates, again, that the platyrrhine M3 is more weakly connected by pleiotropy with the 

other maxillary molars than is typical in catarrhine primates. 

 

Among-Species Postcanine Shape: Among species, premolar shape shows significant 

covariation with molar shape (Table 4.30). For the P4, the level of covariation with 

mandibular molar shape is lower than is seen among the molars themselves, which is 

consistent with the magnitudes of covariation observed within species. Within species, it 

was observed that the P4 covaries in shape most strongly with the M2, less so with the M1, 

least for the M3. Among species, the pattern is slightly different, with the highest level of 

covariation existing between P4-M1, a lower level for P4-M2, and the lowest level for P4-

M3. The pattern for the maxillary premolars is slightly different in magnitude. Overall, P4 

shape covaries more strongly with maxillary molar shape than was observed among the 

mandibular premolars and molars (especially so for comparisons with M2 and M3). This 

is unexpected given similarities in levels of covariation observed within species. 

Variation in the magnitude of covariation between P4 and maxillary molar shape reflects 

that observed within species; it is highest between P4-M2, intermediate for P4-M1, and 

lowest for P4-M3. 

Among species, mandibular molar shape covariation is similar in its pattern to 

that observed within species; molar shape covariation is stronger than observed with 

premolar shape and the pattern of magnitude differences is the same as observed for 

shape within species. Among-species covariation is highest for M1-M2 (r2 = 0.74), 

intermediate for M2-M3 (r2 = 0.54), and the lowest level for M1-M3 (r2 = 0.46) (Table 

4.36). Among species, maxillary molars covary more strongly in shape with one another 

than they do with the P4. Expectedly, the highest level of covariation is between M1-M2 
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(r2 = 0.75); however, unexpectedly, the level of covariation between M1-M3 is equal to 

that between M1-M2 (r2 = 0.75), and the lowest level is between M2-M3 (r2 = 0.70). 

Between arches the highest levels of covariation are seen between molars in 

similar positions in the opposite arch. The one exception is for the M2, in which the 

covariation with the M3 (r2 = 0.62) is slightly higher than with the M2 (r2 = 0.61). This 

pattern is the same as observed within species, in which teeth in the same position in the 

opposite arch were the most highly covarying character pairs when shapes were 

compared between arches (Table 4.29). As food processing requires the interaction of the 

maxillary and mandibular postcanine teeth, it is not surprising that the shapes of the 

maxillary and mandibular teeth have coevolved. 

 

Discussion and Summary 

Covariation among postcanine size is strong within and among species, while 

covariation of postcanine and incisor size is weak. The postcanine teeth form both a 

functional and a variational module that shares only weak pleiotropic connections with 

the incisors. As with the incisors, covariation among sizes is strongest between 

homologous dimensions of adjacent teeth and slightly lower between teeth in the same 

position in the opposite arch. For shapes, the highest covariation is between neighbors of 

the same class in the same arch and between teeth in the same class in the same position 

in the opposite arch. The postcanine variational module is best characterized as a having 

two subdivisions, premolars and molars, that are not completely independent of each 

other. These quasi-autonomous modules correspond to the premolars and molars.  

Within species, dimensions of three teeth are noted for sharing the least 

covariation with other members of the postcanine variational module (P2,3MD, M3MD, 

and all dimensions of the P2,3). If the honing premolar evolved from a nonhoning ancestor 
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that was not characterized by premolar heteromorphy, then the honing premolar was 

likely parceled out of the postcanine variational module (as in Figure 1.1). This 

parcellation must have occurred before the divergence of platyrrhines and catarrhines. As 

a result of the functional and morphological specialization of the honing premolar, its 

occlusal partner, the mesial maxillary premolar, also evolved specialized morphology. 

The MD length of the mesial maxillary premolar was also likely parceled out of the 

remainder of the maxillary premolars. Lower magnitude covariation for the M3MD, 

especially in platyrrhines where it is reduced in size relative to its catarrhine counterparts, 

may indicate that the first step towards significant reductions in relative M3 size also 

required a change of the covariance structure, which “individualized” the M3 (e.g., Stock, 

2001). 

As regards the mesial mandibular premolar, there is substantial variation in the 

degree of heteromorphy, shape, and occlusal morphology among extant anthropoids. 

During hominin evolution, subsequent to the loss of canine honing, the P3 was 

morphologically transformed by adding an additional cusp lingually, closing the anterior 

fovea, altering its shape so it is no longer obliquely set in the postcanine row, and 

changing the orientation of the transverse crest to expand the posterior fovea (e.g., 

Delezene and Kimbel, 2011). As a result of these changes, premolar heteromorphy is 

significantly reduced in most hominins. Though not tested, the results of this study 

suggest that there is little reason to suspect that such a transformation reflects a 

coordinated response to selection acting on other postcanine traits that are pleiotropically 

linked to the P3. If hominin sample sizes were sufficient, then it would be possible to 

determine if the P3 became “integrated” with the P4 as the premolars became more 

homomorphic (as in Figure 1.1) 
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Chapter 5 

CANINE HONING COMPLEX MODULARITY 

The honing complex is hypothesized to form a variational module. Both within 

and among species, covariation is predicted to be high in magnitude among the elements 

that comprise the complex and weak with characters in other functional modules. This 

hypothesis will be rejected if covariation is weak in magnitude among characters of the 

honing complex or if covariation is equal in magnitude between characters of the honing 

complex and the incisors and postcanine teeth. Following the developmental model of 

McCollum and Sharpe (2001) and the pleiotropy model of Jolly (1970), the hypothesis 

that within-species covariation is negative between the basal size of the canines and the 

size of the postcanine teeth is also tested. This hypothesis will be rejected if covariation 

with the postcanine dentition is either weak in magnitude or positive in direction. The 

hypothesis will also be rejected if covariation is negative or weak between the canines 

and the incisors. Following from the among-species analyses of Greenfield and 

Washburn (1992) and Greenfield (1992), the hypothesis that the honing complex 

coevolved in males but not females is tested. Using correlations of independent contrasts, 

Greenfield’s hypothesis will be rejected if the canine honing complex significantly 

covaries among species in both males and females. Unlike in the previous chapters, in 

which males and females were pooled for analysis, males and females are considered 

separately in this chapter. The similarity of canine honing complex pmax between species 

and the correspondence of Δz and pmax will be investigated in Chapter 6 for a subset of 

species. 
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TABLE 5.1. The magnitude of covarition for imensions of the mandibular canine (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

C1height– 
C1MD 

C1height– 
C1LL 

C1height– 
C1base 

C1MD– 
C1LL 

Gorilla gorilla ♀ r2 = 0.06 
n = 32 

r2 = 0.00 
n = 34 

r2 = 0.01 
n = 30 

r2 = 0.42*** 
n = 44 

Gorilla gorilla ♂ r2 = 0.21** 
n = 32 

r2 = 0.26*** 
n = 33 

r2 = 0.32** 
n =32 

r2 = 0.65*** 
n = 59 

Pan troglodytes 
♀ 

r2 = 0.09 
n = 36 

r2 = 0.08 
n = 38 

r2 = 0.10 
n = 36 

r2 = 0.33*** 
n = 46 

Pan troglodytes 
♂ 

r2 = 0.28** 
n = 28 

r2 = 0.21* 
n = 24 

r2 = 0.20* 
n = 24 

r2 = 0.63*** 
n = 34 

Hylobates 
carpenteri ♀ 

r2 = 0.39*** 
n = 25 

r2 = 0.29** 
n = 24 

r2 = 0.36** 
n = 23 

r2 = 0.53*** 
n = 38 

Hylobates 
carpenteri ♂ 

r2 = 0.20* 
n = 19 

r2 = 0.30** 
n = 19 

r2 = 0.33** 
n = 19 

r2 = 0.32*** 
n = 41 

Cercopithecus 
cephus ♀ 

r2 = 0.25* 
n = 25 

r2 = 0.27** 
n = 22 

r2 = 0.31** 
n = 23 

r2 = 0.21* 
n = 28 

Cercopithecus 
cephus ♂ 

r2 = 0.15 
n = 36 

r2 = 0.24** 
n = 37 

r2 = 0.23* 
n = 36 

r2 = 0.17  
n = 49 

Cercopithecus 
nictitans ♀ 

r2 = 0.02 
n = 25  

r2 = 0.04 
n = 25 

r2 = 0.04 
n = 25 

r2 = 0.05  
n = 31 

Cercopithecus 
nictitans ♂ 

r2 = 0.33*** 
n = 38 

r2 = 0.26*** 
n = 37 

r2 = 0.38***  
n = 37 

r2 = 0.35*** 
n = 47 

Cercopithecus 
pogonias ♀ 

r2 = 0.05 
n = 21 

r2 = 0.31* 
n = 20 

r2 = 0.20* 
n = 20 

r2 = 0.29**  
n = 31 

Cercopithecus 
pogonias ♂ 

r2 = 0.04 
n = 25 

r2 = 0.06 
n = 22 

r2 = 0.08 
n = 22 

r2 = 0.23** 
n = 33 

Macaca 
fascicularis ♀ 

r2 = 0.34* 
n = 26 

r2 = 0.06 
n = 26 

r2 = 0.29** 
n = 26 

r2 = 0.08 
n = 43 

Macaca 
fascicularis ♂ 

r2 = 0.30** 
n = 21 

r2 = 0.24 
n = 18  

r2 = 0.33*  
n = 18 

r2 = 0.41*** 
n = 31 

Colobus satanas 
♀ 

r2 = 0.22* 
n = 20 

r2 = 0.47** 
n = 19 

r2 = 0.52*** 
n = 19 

r2 = 0.23* 
n = 21 

Colobus satanas 
♂ n = 12 n = 12 n = 12 r2 = 0.13 

n = 20 
Ateles vellerosus 

♀ 
r2 = 0.24** 

n = 29 
r2 = 0.19* 

n = 29 
r2 = 0.23** 

n = 29 
r2 = 0.49*** 

n = 36 
Ateles vellerosus 

♂ 
r2 = 0.37** 

n = 20 
r2 = 0.37** 

n = 20 
r2 = 0.40** 

n = 20 
r2 = 0.74*** 

n = 28 
Cebus libidinosus 

♀ 
r2 = 0.10 
n = 30 

r2 = 0.28** 
n = 29 

r2 = 0.22* 
n = 29 

r2 = 0.35*** 
n = 35 

Cebus libidinosus 
♂ 

r2 = 0.23** 
n = 29 

r2 = 0.13 
n = 29 

r2 = 0.20* 
n = 29 

r2 = 0.50*** 
n = 37 

Hom. ♂ Avg. r2 = 0.23 r2 = 0.25 r2 = 0.28 r2 = 0.54  
Hom. ♀ Avg. r2 = 0.16 r2 = 0.10  r2 = 0.14 r2 = 0.42  
Cerc. ♂ Avg. r2 = 0.21 r2 = 0.21  r2 = 0.27 r2 = 0.26  
Cerc. ♀ Avg. r2 = 0.18  r2 = 0.21  r2 = 0.26 r2 = 0.16  
Plat. ♂ Avg. r2 = 0.29 r2 = 0.23 r2 = 0.28 r2 = 0.60 
Plat. ♀ Avg. r2 = 0.17 r2 = 0.24 r2 = 0.23 r2 = 0.42  
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TABLE 5.2. The magnitude of covariation for dimensions of the maxillary canine (***p-
value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 C1height– 
C1MD 

C1height– 
C1LL 

C1height– 
C1base 

C1MD– 
C1LL 

Gorilla 
 gorilla ♀ 

r2 = 0.38*** 
n = 33 

r2 = 0.15* 
n = 34 

r2 = 0.34*** 
n =33 

r2 = 0.31*** 
n = 46 

Gorilla  
gorilla ♂ 

r2 = 0.36** 
n = 25 

r2 = 0.45*** 
n = 28 

r2 = 0.30** 
n =25 

r2 = 0.60*** 
n = 43 

Pan  
troglodytes ♀ 

r2 = 0.08 
n = 34 

r2 = 0.01 
n = 36 

r2 = 0.06 
n = 33 

r2 = 0.22** 
n = 49 

Pan  
troglodytes ♂ 

r2 = 0.00 
n = 20 

r2 = 0.00 
n = 22 

r2 = 0.00 
n = 19 

r2 = 0.44***  
n = 36 

Hylobates  
carpenteri ♀ n = 14  n = 13 n = 13 r2 = 0.56***  

n = 25 
Hylobates  

carpenteri ♂ n = 12  n = 14 n = 12 r2 = 0.55*** 
n = 24 

Cercopithecus 
 cephus ♀ 

r2 = 0.39** 
n = 21 

r2 = 0.35*** 
n = 21 

r2 = 0.31** 
n = 21 

r2 = 0.11 
n = 27 

Cercopithecus  
cephus ♂ 

r2 = 0.25 
n = 15 

r2 = 0.20 
n = 15 

r2 = 0.27* 
n = 15 

r2 = 0.41***  
n = 32 

Cercopithecus  
nictitans ♀ 

r2 = 0.06 
n = 22 

r2 = 0.09  
n = 21 

r2 = 0.01  
n = 21 

r2 = 0.02 
n = 31 

Cercopithecus  
nictitans ♂ n = 11 n = 10 n = 10 r2 = 0.27 

n = 24 
Cercopithecus  

pogonias ♀ 
r2 = 0.12 
n = 19 

r2 = 0.22* 
n = 19  

r2 = 0.27* 
n = 19 

r2 = 0.06 
n = 30 

Cercopithecus  
pogonias ♂ n = 10 n = 10 n = 10 r2 = 0.39** 

n = 21 
Macaca  

fascicularis ♀ 
r2 = 0.18* 

n = 22 
r2 = 0.06 
n = 22 

r2 = 0.15 
n = 22 

r2 = 0.04 
n = 41 

Macaca  
fascicularis ♂ n = 9 n = 9 n = 9 r2 = 0.46*** 

n = 20 
Colobus  

satanas ♀ 
r2 = 0.07 
n = 21 

r2 = 0.02 
n = 21 

r2 = 0.06 
n = 21 

r2 = 0.36**  
n = 22 

Colobus satanas ♂ n = 4 n = 4 n = 4 n = 17 
Ateles 

 vellerosus ♀ 
r2 = 0.27* 

n = 20 
r2 = 0.13 
n = 20 

r2 = 0.23* 
n = 20 

r2 = 0.55*** 
n = 35 

Ateles  
vellerosus ♂ n = 11 n = 11 n = 11 r2 = 0.27** 

n = 26 
Cebus  

libidinosus ♀ 
r2 = 0.09 
n = 28 

r2 = 0.07 
n = 28 

r2 = 0.00 
n = 28 

r2 = 0.14* 
n = 36 

Cebus  
libidinosus ♂ 

r2 = 0.20* 
n = 26 

r2 = 0.17* 
n = 27 

r2 = 0.22* 
n = 26 

r2 = 0.47*** 
n = 34 

Anthropoid Avg. r2 = 0.20  r2 = 0.14 r2 = 0.17 r2 = 0.32  
Hominoid ♂ Avg. r2 = 0.20 r2 = 0.25  r2 = 0.17 r2 = 0.53  
Hominoid ♀ Avg. r2 = 0.26  r2 = 0.07  r2 = 0.20 r2 = 0.33 

Cercopithecid ♂ Avg. r2 = 0.25 r2 = 0.20  r2 = 0.27 r2 = 0.38  
Cercopithecid ♀ Avg. r2 = 0.16 r2 = 0.15  r2 = 0.16 r2 = 0.10  

Platyrrhine ♂ Avg. r2 = 0.20 r2 = 0.17 r2 = 0.22 r2 = 0.38 
Platyrrhine ♀ Avg. r2 = 0.17 r2 = 0.10 r2 = 0.10 r2 = 0.34 
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Results 
 
Canine Dimensions Within Species: For both the maxillary and mandibular canines, 

basal dimensions do not strongly covary with canine heights. For mandibular canine 

height, 39 within-species comparisons were made with LL and MD dimensions; of these 

comparisons, 24 are significantly different from zero and all are positive (Table 5.1). The 

anthropoid average covariation (male and female r2s pooled) for both C1height-C1MD 

and C1height-C1LL is r2 = 0.19. If C1 crown basal size is calculated as √(LL*MD), the 

average magnitude of covariation for C1height-C1base is r2 = 0.24. For the maxillary 

canine height; of 26 within-species comparisons with LL and MD dimensions, 11 are 

significantly different from zero and all are positive. The anthropoid average covariation 

is r2 = 0.20 for C1height-C1MD and r2 = 0.14 for C1height-C1LL (Table 5.2). When 

covariation is considered for C1height and the C1 basal size is calculated as √(LL*MD), 

the average covariation for C1height-C1base is r2 = 0.17. For males and females of all 

taxonomic groups, very low to low average levels of covariation are observed between 

canine height and basal size (Tables 5.1 and 5.2), which indicates that canine-crown 

height and basal size are not strongly linked by pleiotropy. 

Basal dimensions moderately covary with one another for the mandibular canine 

(anthropoid average r2 = 0.37 for C1LL-C1MD) (Table 5.1) and for the maxillary canine 

(anthropoid average r2 = 0.32 for C1LL-C1MD) (Table 5.2). The basal dimensions of each 

canine covary more strongly in platyrrhines (r2 = 0.51 for C1LL-C1MD and r2 = 0.36 for 

C1LL-C1MD) and hominoids (r2 = 0.43 for C1LL-C1MD and r2 = 0.36 for C1LL-C1MD) 

than in cercopithecids (r2 = 0.22 for C1LL-C1MD and r2 = 0.21 for C1LL-C1MD). For the 

platyrrhines and hominoids, covariation between the dimensions of the canine bases 

slightly exceeds that between length and width of each incisor and postcanine tooth; the 

values in cercopithecids are similar (Chapters 3 and 4); however,  
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TABLE 5.3. The magnitude of covariation between the heights and basal sizes of the 
maxillary and mandibular canines (***p-value < 0.0001, **p-value < 0.001, *p-value < 

0.05). 
 

 C1height- 
C1height 

C1base- 
C1base 

Gorilla gorilla ♀ r2 = 0.57*** 
n = 26 

r2 = 0.62*** 
n = 44 

Gorilla gorilla ♂ r2 = 0.77*** 
n = 17 

r2 = 0.75*** 
n = 40 

Pan troglodytes♀ r2 = 0.47*** 
n = 31 

r2 = 0.56*** 
n = 43 

Pan troglodytes ♂ r2 = 0.43*** 
n = 15 

r2 = 0.73*** 
n = 30 

Hylobates 
carpenteri ♀ n = 14 r2 = 0.57*** 

n = 24 
Hylobates 

carpenteri ♂ n = 10 r2 = 0.41** 
n = 23 

Cercopithecus 
cephus ♀ 

r2 = 0.36*** 
n = 19 

r2 = 0.67*** 
n = 24 

Cercopithecus 
cephus ♂ 

r2 = 0.87*** 
n = 15 

r2 = 0.74*** 
n = 32 

Cercopithecus 
nictitans ♀ 

r2 = 0.46*** 
n = 19 

r2 = 0.44*** 
n = 30 

Cercopithecus 
nictitans ♂ n = 11 r2 = 0.65*** 

n = 23 
Cercopithecus 

pogonias ♀ 
r2 = 0.68*** 

n = 17 
r2 = 0.28** 

n = 28 
Cercopithecus 

pogonias ♂ n = 10 n = 19 

Macaca 
fascicularis ♀ n = 11 r2 = 0.39*** 

n = 39 
Macaca 

fascicularis ♂ n = 8 n = 16 

Colobus satanas ♀ r2 = 0.41** 
n = 19 

r2 = 0.34** 
n = 21 

Ateles vellerosus ♀ r2 = 0.21* 
n = 19 

r2 = 0.65*** 
n = 33 

Ateles vellerosus ♂ n = 9 n = 17 
Cebus libidinosus 

♀ 
r2 = 0.81*** 

n = 26 
r2 = 0.30** 

n = 34 
Cebus libidinosus 

♂ 
r2 = 0.74*** 

n = 22 
r2 = 0.53*** 

n = 34 
W. Hom. ♂ Avg. r2 = 0.61 r2 = 0.66 

W. Hom. ♀ Avg. r2 = 0.52 r2 = 0.59 

W. Cerco. ♂ Avg. r2 = 0.87 r2 = 0.70 

W. Cerco. ♀ Avg. r2 = 0.47 r2 = 0.42 

W.Plat. ♂ Avg. r2 = 0.74 r2 = 0.53 

W.Plat. ♀ Avg. r2 = 0.56 r2 = 0.47 
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the magnitude of covariation does not approach that observed among homologous 

dimensions of the incisors or of the postcanine dentition in any taxonomic group. 

Between the maxillary and mandibular canines, basal size (calculated as 

√(MD*LL)) covaries moderately (anthropoid average r2 = 0.56) (Table 5.3), which is 

comparable to the magnitude observed among homologous dimensions of the incisors 

and postcanine teeth. All 16 comparisons of basal size within species are significantly 

different from zero at α = 0.05 and α = 0.01; 12 are significantly different from zero at α 

= 0.001. Moderate to high levels of covariation characterize the canine basal areas of all 

taxonomic groups and sexes (Table 5.3). The average magnitude of covariation between 

the canine bases is higher than that observed by Cochard (1981) ((r2 = 0.35 for ♂C1LL-

C1LL, r2 = 0.24 for ♀C1LL-C1LL, r2 = 0.05 for ♂C1MD-C1MD, and r2 = 0.13 for 

♀C1MD-C1MD). The basal areas of the mandibular and maxillary canines are strongly 

linked by pleiotropy and thus are expected to coevolve among species.  

As maxillary canine heights are not adequately represented in all samples, a 

restricted set was analyzed. For maxillary and mandibular canine crown heights, 

moderate to very high levels of covariation are observed for all taxonomic groups and 

sexes (Table 5.3), with an anthropoid average (male and female r2s pooled) of r2 = 0.56. 

All 12 comparisons of canine heights are significantly different from zero at α = 0.05; 11 

are significantly different from zero at α = 0.01; and 10 are significantly different from 

zero at α = 0.001. As discussed in Chapter 2, the minimum sample size for analyses of 

canine heights was set at n = 15. As a result, only a single male cercopithecid sample 

(Cercopithecus cephus) and a single platyrrhine male sample (Cebus libidinosus) were 

included in the analysis of canine height covariation. For both of these male samples, the 

estimate of r2 is very high (i.e., > 0.60). It is unwarranted to assume that such strong 

covariation characterizes all platyrrhine and cercopithecid male samples; future data 
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collection and analysis will reveal whether this is true or not. Taxonomic coverage is 

much better for females; all taxonomic averages display moderate levels (i.e., 0.40 < r2 ≤ 

0.60) of covariation between the arches. 

In summary, as with other functional modules in the dentition, not all dimensions 

of the canines covary equally. Canine basal dimensions and heights do not covary 

strongly within species. Between the arches, canine basal areas strongly covary with one 

another, as do canine heights in a limited sample. Therefore, the evolution of canine 

heights and basal areas are not likely to have constrained one another during primate 

evolution; however, evolutionary change in canine heights should be strongly 

constrained, as should changes in canine basal areas. These points that will be revisited 

below in the among-species analysis and in Chapter 7 when the evolution of the hominin 

canine honing complex is discussed. The independence of canine height and basal size 

can also be seen in indices of dimorphism for various canine dimensions. Though all 

dimensions of the canine have larger means in males than females, the heights of the 

canines tend to be much more dimorphic than bases (see Table 1 in Plavcan and van 

Schaik, 1992), which suggests that genetic networks responsible for the generation of 

larger canine heights in males are not extensively shared with other canine dimensions. 

 

Covariation of the Canines with the Incisors and Postcanine Dentition Within Species: 

Canine basal dimensions vary independently of the breadths and lengths of the incisors 

and postcanine teeth. This is true for both the MD (Table 5.4) and LL (Table 5.5) 

dimensions of the mandibular canine and for MD (Table 5.6) and LL (Table 5.7) 

dimensions of the maxillary canine. The average magnitudes of covariation are very low 

to low; of the 20 incisor and postcanine dimensions compared to canine basal size, 15 

have an average r2 < 0.20. The comparisons with the highest average r2 include the  
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TABLE 5.4. The magnitude of covariation between mandibular canine and incisor and 
postcanine length (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
C1MD - 
I1MD 

C1MD - 
I2MD 

C1MD- 
P4MD 

C1MD- 
M1MD 

C1MD- 
M2MD 

Gorilla 
gorilla ♂ 

r2 = 0.18 
n = 20 

r2 = 0.26** 
n = 27 

r2 = 0.11** 
n = 63 

r2 = 0.12** 
n = 60 

r2 = 0.27*** 
n = 62 

Gorilla 
gorilla ♀ 

r2 = 0.19* 
n = 29 

r2 = 0.05 
n = 35 

r2 = 0.16** 
n = 46 

r2 = 0.09* 
n = 45 

r2 = 0.16** 
n = 47 

Pan 
troglodytes ♂ 

r2 = 0.20* 
n = 27 

r2 = 0.26** 
n = 29 

r2 = 0.26** 
n = 35 

r2 = 0.12* 
n = 37 

r2 = 0.18** 
n = 38 

Pan 
troglodytes ♀ 

r2 = 0.09 
n = 41 

r2 = 0.10* 
n = 43 

r2 = 0.11* 
n = 50 

r2 = 0.06 
n = 48 

r2 = 0.05 
n = 49 

Hylobates 
carpenteri ♂ 

r2 = 0.18* 
n = 27 

r2 = 0.26** 
n = 34 

r2 = 0.22** 
n = 34 

r2 = 0.14* 
n = 31 

r2 = 0.10 
n = 39 

Hylobates 
carpenteri ♀ 

r2 = -0.04 
n = 25 

r2 = -0.02 
n = 29 

r2 = 0.18* 
n = 34 

r2 = 0.17* 
n = 29 

r2 = 0.15* 
n = 36 

Cercopithecus 
cephus ♂ 

r2 = 0.02 
n = 45 

r2 = 0.05 
n = 48 

r2 = 0.10* 
n = 50 

r2 = 0.11* 
n = 49 

r2 = 0.28*** 
n = 50 

Cercopithecus 
cephus ♀ 

r2 = 0.11 
n = 24 

r2 = 0.11 
n = 28 

r2 = 0.12 
n = 30 

r2 = 0.18* 
n = 30 

r2 = 0.21* 
n = 30 

Cercopithecus 
nictitans ♂ 

r2 = 0.04 
n = 39 

r2 = 0.14* 
n = 43 

r2 = 0.36*** 
n = 49 

r2 = 0.47*** 
n = 44 

r2 = 0.42*** 
n = 48 

Cercopithecus 
nictitans ♀ 

r2 = -0.01 
n = 28 

r2 = 0.02 
n = 30 

r2 = 0.10 
n = 32 

r2 = 0.00 
n = 29 

r2 = 0.02 
n = 32 

Cercopithecus 
pogonias ♂ 

r2 = -0.01 
n = 18 

r2 = 0.08 
n = 29 

r2 = 0.09 
n = 36 

r2 = 0.06 
n = 32 

r2 = 0.19** 
n = 35 

Cercopithecus 
pogonias ♀ 

r2 = 0.00 
n = 29 

r2 = 0.00 
n = 29 

r2 = 0.12 
n = 31 

r2 = 0.06 
n = 31 

r2 = 0.08 
n = 32 

Macaca 
fascicularis ♂ 

r2 = 0.33** 
n = 22 n = 19 r2 = 0.42*** 

n = 35 
r2 = 0.25** 

n = 34 
r2 = 0.38*** 

n = 35 
Macaca 

fascicularis ♀ 
r2 = 0.10 
n = 39 

r2 = 0.02 
n = 39 

r2 = 0.38*** 
n = 42 

r2 = 0.07 
n = 41 

r2 = 0.17** 
n = 43 

Colobus 
satanas ♂ 

r2 = -0.06 
n = 20 

r2 = 0.03 
n = 20 

r2 = 0.00 
n = 20 

r2 = 0.08 
n = 20 

r2 = 0.00 
n = 20 

Colobus 
satanas ♀ 

r2 = 0.09 
n = 20 

r2 = 0.10 
n = 21 

r2 = 0.37** 
n = 22 

r2 = 0.27* 
n = 22 

r2 = 0.26* 
n = 22 

Ateles 
vellerosus ♂ 

r2 = 0.02 
n = 25 

r2 = 0.11 
n = 26 

r2 = 0.45*** 
n = 29 

r2 = 0.23** 
n = 28 

r2 = 0.24** 
n = 27 

Ateles 
vellerosus ♀ 

r2 = 0.04 
n = 32 

r2 = 0.15* 
n = 33 

r2 = 0.26** 
n = 34 

r2 = 0.19* 
n = 34 

r2 = 0.28** 
n = 33 

Cebus 
libidinosus ♂ 

r2 = 0.28** 
n = 28 

r2 = 0.11* 
n = 38 

r2 = 0.04 
n = 38 

r2 = 0.17** 
n = 39 

r2 = 0.22** 
n = 37 

Cebus 
libidinosus ♀ 

r2 = 0.24* 
n = 25 

r2 = 0.05 
n = 34 

r2 = 0.00 
n = 34 

r2 = 0.02 
n = 34 

r2 = 0.03 
n = 35 

Weighted 
Hom. Avg. r2 = 0.11 r2 = 0.11 r2 = 0.14 r2 = 0.10 r2 = 0.15 

Weighted 
Cercopith. 

Avg. 
r2 = 0.06 r2 = 0.06 r2 = 0.22 r2 = 0.16 r2 = 0.22 

Weighted 
Plat. Avg. r2 = 0.14 r2 = 0.10 r2 = 0.17 r2 = 0.15 r2 = 0.19 

Wghted Avg. r2 = 0.10 r2 = 0.10 r2 = 0.19 r2 = 0.14 r2 = 0.19 
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TABLE 5.5. The magnitude of covariation between mandibular canine and incisor and 
postcanine breadth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
C1LL - 
I1LL 

C1LL - 
I2LL 

C1LL - 
P4BL 

C1LL- 
M1BL 

C1LL- 
M2BL 

Gorilla 
gorilla ♂ 

r2 = 0.24** 
n = 37 

r2 = 0.15** 
n = 45 

r2 = 0.06 
n = 56 

r2 = 0.09* 
n = 51 

r2 = 0.09* 
n = 58 

Gorilla 
gorilla ♀ 

r2 = 0.18** 
n = 40 

r2 = 0.32*** 
n = 47 

r2 = 0.33*** 
n = 47 

r2 = 0.16** 
n = 41 

r2 = 0.16** 
n = 47 

Pan 
troglodytes ♂ 

r2 = 0.29** 
n = 26 

r2 = 0.28** 
n = 27 

r2 = 0.18* 
n = 31 

r2 = 0.02 
n = 0.505 

r2 = 0.10 
n = 31 

Pan 
troglodytes ♀ 

r2 = 0.27*** 
n = 41 

r2 = 0.28*** 
n = 43 

r2 = 0.10* 
n = 44 

r2 = 0.11* 
n = 46 

r2 = 0.10* 
n = 44 

Hylobates 
carpenteri ♂ 

r2 = 0.07 
n = 35 

r2 = 0.10 
n = 36 

r2 = 0.32*** 
n = 33 

r2 = 0.28** 
n = 24 

r2 = 0.41*** 
n = 35 

Hylobates 
carpenteri ♀ 

r2 = 0.09 
n = 31 

r2 = 0.07 
n = 34 

r2 = 0.21** 
n = 33 

r2 = 0.33** 
n = 22 

r2 = 0.13* 
n = 34 

Cercopithecus 
cephus ♂ 

r2 = 0.01 
n = 47 

r2 = 0.13* 
n = 47 

r2 = 0.21*** 
n = 49 

r2 = 0.12* 
n = 49 

r2 = 0.12* 
n = 49 

Cercopithecus 
cephus ♀ 

r2 = 0.32** 
n = 26 

r2 = 0.42*** 
n = 27 

r2 = 0.10 
n = 28 

r2 = 0.25** 
n = 27 

r2 = 0.16* 
n = 28 

Cercopithecus 
nictitans ♂ 

r2 = 0.15* 
n = 39 

r2 = 0.24*** 
n = 42 

r2 = 0.20** 
n = 45 

r2 = 0.31*** 
n = 40 

r2 = 0.24*** 
n = 46 

Cercopithecus 
nictitans ♀ 

r2 = 0.25** 
n = 29 

r2 = 0.26** 
n = 30 

r2 = 0.25** 
n = 31 

r2 = 0.03 
n = 28 

r2 = 0.03 
n = 31 

Cercopithecus 
pogonias ♂ 

r2 = 0.06 
n = 27 

r2 = 0.28** 
n = 28 

r2 = 0.31*** 
n = 33 

r2 = 0.17* 
n = 32 

r2 = 0.05 
n = 34 

Cercopithecus 
pogonias ♀ 

r2 = 0.21** 
n = 30 

r2 = 0.11 
n = 30 

r2 = 0.32*** 
n = 31 

r2 = 0.04 
n = 31 

r2 = 0.05 
n = 32 

Macaca 
fascicularis ♂ 

r2 = 0.23* 
n = 21 

r2 = 0.54*** 
n = 20 

r2 = 0.21** 
n = 30 

r2 = 0.09 
n = 30 

r2 = 0.17* 
n = 32 

Macaca 
fascicularis ♀ 

r2 = 0.07 
n = 38 

r2 = 0.07 
n = 38 

r2 = 0.18** 
n = 43 

r2 = 0.07 
n = 39 

r2 = 0.09* 
n = 42 

Colobus 
satanas ♂ 

r2 = 0.00 
n = 20 

r2 = -0.03 
n = 20 

r2 = 0.03 
n = 20 

r2 = 0.00 
n = 20 

r2 = 0.01 
n = 20 

Colobus 
satanas ♀ 

r2 = 0.28* 
n = 20 

r2 = 0.06 
n = 20 

r2 = 0.12 
n = 21 

r2 = 0.48*** 
n = 21 

r2 = 0.49*** 
n = 21 

Ateles 
vellerosus ♂ 

r2 = 0.44*** 
n = 28 

r2 = 0.61*** 
n = 29 

r2 = 0.55*** 
n = 23 n = 14  n = 16 

Ateles 
vellerosus ♀ 

r2 = 0.15* 
n = 32 

r2 = 0.21** 
n = 32 

r2 = 0.30** 
n = 29 

r2 = 0.19* 
n = 28 

r2 = 0.26** 
n = 29 

Cebus 
libidinosus ♂ 

r2 = 0.07 
n = 36 

r2 = 0.05 
n = 38 

r2 = 0.09 
n = 38 

r2 = 0.04 
n = 38 

r2 = 0.05 
n = 37 

Cebus 
libidinosus ♀ 

r2 = 0.24** 
n = 34 

r2 = 0.15* 
n = 35 

r2 = 0.19* 
n = 32 

r2 = 0.19* 
n = 33 

r2 = 0.24** 
n = 35 

Weighted 
Hom. Avg. r2 = 0.18 r2 = 0.19 r2 = 0.16 r2 = 0.14 r2 = 0.12 

Weighted 
Cerco. Avg. r2 = 0.14 r2 = 0.20 r2 = 0.20 r2 = 0.15 r2 = 0.14 

Weighted 
Plat. Avg. r2 = 0.21 r2 = 0.24 r2 = 0.25 r2 = 0.13 r2 = 0.18 

Weighted 
Anthro. Avg. r2 = 0.17 r2 = 0.21 r2 = 0.21 r2 = 0.15 r2 = 0.15 
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TABLE 5.6: The magnitude of covariation between maxillary canine and incisor and 
postcanine length (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
C1MD- 
I1MD 

C1MD- 
I2MD 

C1MD- 
P4 MD 

C1MD- 
M1MD 

C1MD- 
M2MD 

Gorilla 
gorilla ♂ 

r2 = 0.10 
n = 23 

r2 = 0.44*** 
n = 22 

r2 = 0.24*** 
n = 42 

r2 = 0.17** 
n = 42 

r2 = 0.18** 
n = 42 

Gorilla 
gorilla ♀ 

r2 = 0.32**  
n = 23 

r2 = 0.42*** 
n = 26 

r2 = 0.35*** 
n = 45 

r2 = 0.25**  
n = 42 

r2 = 0.13* 
n = 45 

Pan 
troglodytes ♂ 

r2 = 0.33** 
n = 22 

r2 = 0.43***  
n = 22 

r2 = 0.20**  
n = 33 

r2 = 0.26**  
n = 34 

r2 = 0.14*  
n = 37 

Pan 
troglodytes ♀ 

r2 = 0.02 
n = 40 

r2 = 0.24*** 
n = 40 

r2 = 0.05 
n = 47 

r2 = 0.03  
n = 48 

r2 = 0.04 
n = 48 

Hylobates 
carpenteri ♂ n = 12 n = 19 r2 = 0.01 

n = 23 
r2 = 0.01 
n = 22 

r2 = 0.00 
n = 23 

Hylobates 
carpenteri ♀ n = 14 n = 13 r2 = 0.35**  

n = 25 
r2 = 0.14  
n = 25 

r2 = 0.35*** 
n = 26 

Cercopithecus 
cephus ♂ 

r2 = 0.13 
n = 30 

r2 = 0.08  
n = 28 

r2 = 0.26**  
n = 34 

r2 = 0.19*  
n = 34 

r2 = 0.35*** 
n = 34 

Cercopithecus 
cephus ♀ 

r2 = 0.13  
n = 25 

r2 = 0.13  
n = 25 

r2 = 0.08  
n = 27 

r2 = 0.38***  
n = 27 

r2 = 0.34**  
n = 27 

Cercopithecus 
nictitans ♂ 

r2 = 0.15 
n = 22 

r2 = 0.05  
n = 22 

r2 = 0.06  
n = 25 

r2 = 0.13  
n = 25 

r2 = 0.11  
n = 25 

Cercopithecus 
nictitans ♀ 

r2 = 0.23** 
n = 27 

r2 = 0.07  
n = 30 

r2 = 0.20*  
n = 31 

r2 = 0.01  
n = 31 

r2 = 0.08 
n = 31 

Cercopithecus 
pogonias ♂ n = 12 n = 14 n = 19 n = 19 r2 = 0.29* 

n = 21 
Cercopithecus 

pogonias ♀ 
r2 = 0.21*  

n = 24 
r2 = 0.13  
n = 26 

r2 = 0.14* 
n = 30 

r2 = 0.04 
n = 30 

r2 = 0.19*  
n = 30 

Macaca 
fascicularis ♂ n = 15 n = 19 n = 19 n = 19 n = 19 

Macaca 
fascicularis ♀ 

r2 = 0.13* 
n = 30 

r2 = 0.01  
n = 39 

r2 = 0.08 
n = 40 

r2 = 0.03 
n = 40 

r2 = 0.09  
n = 41 

Colobus 
satanas ♂ n = 17 n = 17 n = 17 n = 17 n = 17 

Colobus 
satanas ♀ 

r2 = 0.15  
n = 20 

r2 = 0.41***  
n = 22 

r2 = 0.27* 
n = 22 

r2 = 0.05  
n = 22 

r2 = 0.11  
n = 22 

Ateles 
vellerosus ♂ n = 14 n = 15 n = 18 n = 18 n = 17 

Ateles 
vellerosus ♀ 

r2 = 0.22** 
n = 31 

r2 = 0.51*** 
n = 29 

r2 = 0.21** 
n = 30 

r2 = 0.39*** 
n = 30 

r2 = 0.60*** 
n = 29 

Cebus 
libidinosus ♂ 

r2 = 0.18* 
n = 35 

r2 = 0.12*  
n = 35 

r2 = 0.00  
n = 36 

r2 = 0.10  
n = 36 

r2 = 0.12*  
n = 36 

Cebus 
libidinosus ♀ 

r2 = 0.24**  
n = 34 

r2 = 0.26**  
n = 34 

r2 = 0.04  
n = 36 

r2 = 0.00  
n = 36 

r2 = 0.00  
n = 36 

Weighted 
Hom. Avg. r2 = 0.16 r2 = 0.36 r2 = 0.20 r2 = 0.15 r2 = 0.13 

Weighted 
Cerco. Avg. r2 = 0.16 r2 = 0.11 r2 = 0.15 r2 = 0.11 r2 = 0.19 

Weighted 
Plat. Avg. r2 = 0.21 r2 = 0.28 r2 = 0.08 r2 = 0.15 r2 = 0.22 

Weighted 
Anthro. Avg. r2 = 0.18 r2 = 0.22 r2 = 0.16 r2 = 0.13 r2 = 0.17 
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TABLE 5.7: The magnitude of covariation between maxillary canine and incisor and 
postcanine breadth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
C1LL - 
I1LL 

C1LL - 
I2LL 

C1LL - 
P4BL 

C1LL- 
M1BL 

C1LL- 
M2BL 

Gorilla 
gorilla ♂ 

r2 = 0.21* 
n = 29 

r2 = 0.36*** 
n = 33 

r2 = 0.07 
n = 55 

r2 = 0.10* 
n = 53 

r2 = 0.10* 
n = 52 

Gorilla 
gorilla ♀ 

r2 = 0.36*** 
n = 33 

r2 = 0.18* 
n = 31 

r2 = 0.20** 
n = 32 

r2 = 0.15* 
n = 34 

r2 = 0.24** 
n = 35 

Pan 
troglodytes ♂ 

r2 = 0.25** 
n = 28 

r2 = 0.29** 
n = 31 

r2 = 0.15* 
n = 34 

r2 = 0.10 
n = 37 

r2 = 0.03 
n = 39 

Pan 
troglodytes ♀ 

r2 = 0.34*** 
n = 46 

r2 = 0.08 
n = 48 

r2 = 0.14** 
n = 52 

r2 = 0.03 
n = 53 

r2 = 0.00 
n = 51 

Hylobates 
carpenteri♂ n = 18 r2 = 0.21* 

n = 27 
r2 = 0.22*  

n = 29 
r2 = 0.18*  

n = 26 
r2 = 0.25**  

n = 29 
Hylobates 

carpenteri ♀ n = 15 r2 = 0.30** 
n = 22 

r2 = 0.18* 
n = 27 

r2 = 0.05 
n = 25 

r2 = 0.15* 
n = 28 

Cercopithecus 
cephus ♂ 

r2 = 0.27*** 
n = 36 

r2 = 0.13* 
n = 37 

r2 = 0.34*** 
n = 38 

r2 = 0.23** 
n = 38 

r2 = 0.31*** 
n = 38 

Cercopithecus 
cephus ♀ 

r2 = 0.44*** 
n = 27 

r2 = 0.17*  
n = 27 

r2 = 0.18*  
n = 29 

r2 = 0.19*  
n = 28 

r2 = 0.25** 
n = 29 

Cercopithecus 
nictitans ♂ 

r2 = 0.00 
n = 29 

r2 = 0.04  
n = 31 

r2 = 0.15* 
n = 35 

r2 = 0.05  
n = 33 

r2 = 0.14* 
n = 35 

Cercopithecus 
nictitans ♀ 

r2 = 0.04  
n = 29 

r2 = 0.03 
n = 30 

r2 = 0.11  
n = 33 

r2 = 0.14* 
n = 31 

r2 = 0.06  
n = 33 

Cercopithecus 
pogonias ♂ n = 19 n = 18 r2 = -0.01 

n = 28 
r2 = 0.00 
n = 27 

r2 = 0.00 
n = 28 

Cercopithecus 
pogonias ♀ 

r2 = -0.01  
n = 28 

r2 = 0.05  
n = 29 

r2 = 0.03  
n = 33 

r2 = 0.00 
n = 33 

r2 = 0.00 
n = 33 

Macaca 
fascicularis ♂ 

r2 = 0.16 
n = 20 

r2 = 0.00  
n = 23 

r2 = 0.25** 
n = 26 

r2 = 0.05  
n = 26 

r2 = 0.15*  
n = 27 

Macaca 
fascicularis ♀ 

r2 = 0.19** 
n = 39 

r2 = 0.29*** 
n = 40 

r2 = 0.26*** 
n = 40 

r2 = 0.22**  
n = 40 

r2 = 0.21** 
n = 42 

Colobus 
satanas ♂ n = 19  r2 = 0.10 

n = 20 
r2 = 0.29* 

n = 20 
r2 = 0.22* 

n = 20 
r2 = 0.26*  

n = 20 
Colobus 

satanas ♀ 
r2 = 0.21*  

n = 20 
r2 = 0.22* 

n = 22 
r2 = 0.21* 

n = 22 
r2 = 0.07 
n = 22 

r2 = 0.28* 
n = 22 

Ateles 
vellerosus ♂ n = 18 r2 = 0.08 

n = 22 n = 16 n = 17 n = 16 

Ateles 
vellerosus ♀ 

r2 = 0.30*** 
n = 31 

r2 = 0.42*** 
n = 32 

r2 = 0.10 
n = 30 

r2 = 0.11 
n = 30 

r2 = 0.17*  
n = 32 

Cebus 
libidinosus♂ 

r2 = 0.36*** 
n = 37 

r2 = 0.09  
n = 37 

r2 = 0.47*** 
n = 36 

r2 = 0.17* 
n = 37 

r2 = 0.38*** 
n = 37 

Cebus 
libidinosus♀ 

r2 = 0.26***  
n = 36 

r2 = 0.14* 
n = 34 

r2 = 0.21** 
n = 36 

r2 = 0.44***  
n = 36 

r2 = 0.48*** 
n = 36 

Weighted 
Hom. Avg. r2 = 0.30 r2 = 0.22 r2 = 0.15 r2 = 0.09 r2 = 0.11 

Weighted 
Cerco. Avg. r2 = 0.16 r2 = 0.12 r2 = 0.18 r2 = 0.20 r2 = 0.16 

Weighted 
Plat. Avg. r2 = 0.31 r2 = 0.19 r2 = 0.27 r2 = 0.25 r2 = 0.35 

Weighted 
Anthro. Avg. r2 = 0.23 r2 = 0.17 r2 = 0.18 r2 = 0.13 r2 = 0.18 
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TABLE 5.8. The magnitude of covariation between mandibular canine height and incisor 
and postcanine length (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
C1height - 

I1MD 
C1height - 

I2MD 
C1height - 

P4 MD 
C1height - 

M1MD 
C1height - 

M2MD 
Gorilla 

gorilla ♂ n = 10 r2 = 0.11 
n = 15 

r2 = 0.00 
n = 34 

r2 = -0.02 
n = 31 

r2 = 0.00 
n = 34 

Gorilla 
gorilla ♀ 

r2 = 0.02  
n = 23 

r2 = 0.06 
n = 27 

r2 = 0.00 
n = 29 

r2 = 0.08 
n = 30 

r2 = 0.00 
n = 30 

Pan 
troglodytes ♂ 

r2 = 0.32* 
n = 18 

r2 = 0.25* 
n = 18 

r2 = 0.06 
n = 24 

r2 = 0.06 
n = 25 

r2 = 0.22* 
n = 26 

Pan 
troglodytes ♀ 

r2 = 0.04 
n = 35 

r2 = 0.00  
n = 37 

r2 = 0.09 
n = 38 

r2 = 0.10  
n = 37 

r2 = 0.03 
n = 38 

Hylobates 
carpenteri ♂ 

r2 = 0.04 
n = 16 

r2 = 0.02 
n = 19 

r2 = 0.00 
n = 17 

r2 = 0.10 
n = 16 

r2 = 0.04 
n = 20 

Hylobates 
carpenteri ♀ 

r2 = -0.14 
n = 18 

r2 = -0.03 
n = 21 

r2 = 0.10 
n = 21 

r2 = 0.02 
n = 18 

r2 = -0.04 
n = 22 

Cercopithecus 
cephus ♂ 

r2 = 0.05 
n = 34 

r2 = 0.16* 
n = 36 

r2 = 0.05 
n = 37 

r2 = 0.06 
n = 37 

r2 = 0.09 
n = 37 

Cercopithecus 
cephus ♀ 

r2 = 0.18*  
n = 22 

r2 = 0.20* 
n = 25 

r2 = 0.03 
n = 25 

r2 = 0.17* 
n = 25 

r2 = 0.09 
n = 25 

Cercopithecus 
nictitans ♂ 

r2 = 0.05 
n = 31 

r2 = 0.18* 
n = 35 

r2 = 0.23** 
n = 38 

r2 = 0.25** 
n = 36 

r2 = 0.14* 
n = 38 

Cercopithecus 
nictitans ♀ 

r2 = 0.18* 
n = 23 

r2 = 0.02 
n = 25 

r2 = 0.00 
n = 25 

r2 = 0.02 
n = 23 

r2 = 0.12 
n = 25 

Cercopithecus 
pogonias ♂ 

r2 = 0.02 
n = 17 

r2 = 0.02 
n = 25 

r2 = -0.01 
n = 25 

r2 = -0.08 
n = 24 

r2 = 0.00 
n = 25 

Cercopithecus 
pogonias ♀ 

r2 = 0.27*  
n = 21 

r2 = 0.07 
n = 21 

r2 = 0.22* 
n = 21 

r2 = 0.22* 
n = 21 

r2 = 0.40* 
n = 21 

Macaca 
fascicularis ♂ 

r2 = 0.19 
n = 19 

r2 = 0.38** 
n = 18 

r2 = 0.08 
n = 22 

r2 = 0.19* 
n = 22 

r2 = 0.14 
n = 22 

Macaca 
fascicularis ♀ 

r2 = 0.22* 
n = 25 

r2 = 0.20* 
n = 24 

r2 = 0.18* 
n = 26 

r2 = 0.12 
n = 26 

r2 = 0.13 
n = 26 

Colobus 
satanas ♂ n = 12 n = 12 n = 12 n = 12 n = 12 

Colobus 
satanas ♀ 

r2 = 0.03 
n = 18 

r2 = 0.11 
n = 19 

r2 = 0.07 
n = 20 

r2 = 0.14 
n = 20 

r2 = 0.13 
n = 20 

Ateles 
vellerosus ♂ 

r2 = 0.22 
n = 17 

r2 = 0.06 
n = 17 

r2 = 0.13 
n = 19 

r2 = 0.22* 
n = 19 

r2 = 0.31* 
n = 19 

Ateles 
vellerosus ♀ 

r2 = 0.24*  
n = 24 

r2 = 0.16 
n = 24 

r2 = 0.21* 
n = 25 

r2 = 0.21* 
n = 25 

r2 = 0.31** 
n = 25 

Cebus 
libidinosus ♂ 

r2 = 0.16 
n = 23 

r2 = 0.15* 
n = 30 

r2 = 0.10 
n = 30 

r2 = 0.06 
n = 30 

r2 = 0.11 
n = 30 

Cebus 
libidinosus ♀ 

r2 = 0.16* 
n = 24 

r2 = 0.01 
n = 30 

r2 = -0.01 
n = 30 

r2 = -0.04 
n = 30 

r2 = -0.03 
n = 30 

Weighted 
Hom. Avg. r2 = 0.05 r2 = 0.05 r2 = 0.04 r2 = 0.06  r2 = 0.04 

Weighted 
Cerco. Avg. r2 = 0.13 r2 = 0.15 r2 = 0.10 r2 = 0.12 r2 = 0.13 

Weighted 
Plat. Avg. r2 = 0.19 r2 = 0.10 r2 = 0.10 r2 = 0.10 r2 = 0.15 

Weighted 
Anthro. Avg. r2 = 0.12 r2 = 0.11 r2 = 0.08 r2 = 0.10 r2 = 0.11 
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TABLE 5.9. The magnitude of covariation between mandibular canine height and incisor 
and postcanine breadth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
C1height - 

I1LL 
C1height - 

I2LL 
C1height - 

P4BL 
C1height - 

M1BL 
C1height - 

M2BL 
Gorilla 

gorilla ♂ 
r2 = 0.25* 

n = 19 
r2 = 0.09  
n = 24 

r2 = 0.01  
n = 32 

r2 = 0.02 
n = 28 

r2 = 0.02  
n = 33 

Gorilla 
gorilla ♀ 

r2 = 0.11 
n = 27 

r2 = 0.02 
n = 29 

r2 = 0.15* 
n = 29 

r2 = 0.07 
n = 23 

r2 = 0.06 
n = 30 

Pan 
troglodytes ♂ 

r2 = 0.35** 
n = 19 

r2 = 0.28* 
n = 20 

r2 = 0.38**  
n = 24 

r2 = 0.03 
n = 24 

r2 = 0.24* 
n = 24 

Pan 
troglodytes ♀ 

r2 = 0.08 
n = 37 

r2 = 0.08  
n = 37 

r2 = 0.09  
n = 35 

r2 = 0.14* 
n = 37 

r2 = 0.08 
n = 38 

Hylobates 
carpenteri♂ 

r2 = -0.04 
n = 19 

r2 = -0.05 
n = 19 

r2 = -0.02 
n = 18 n = 13 r2 = 0.05 

n = 17 
Hylobates 

carpenteri ♀ 
r2 = 0.12  
n = 20 

r2 = 0.16 
n = 21 

r2 = 0.02 
n = 21 

r2 = 0.02 
n = 15 

r2 = 0.00 
n = 22 

Cercopithecus 
cephus ♂ 

r2 = 0.10 
n = 35 

r2 = 0.08 
n = 35 

r2 = 0.15* 
n = 37 

r2 = 0.25** 
n = 37 

r2 = 0.34*** 
n = 37 

Cercopithecus 
cephus ♀ 

r2 = 0.31*  
n = 23 

r2 = 0.17* 
n = 25 

r2 = 0.08 
n = 25 

r2 = 0.13 
n = 24 

r2 = 0.02 
n = 25 

Cercopithecus 
nictitans ♂ 

r2 = 0.03 
n = 32 

r2 = 0.14** 
n = 35 

r2 = 0.24** 
n = 37 

r2 = 0.17* 
n = 35 

r2 = 0.21** 
n = 37 

Cercopithecus 
nictitans ♀ 

r2 = 0.04  
n = 24 

r2 = -0.01 
n = 25 

r2 = 0.00 
n = 25 

r2 = -0.04 
n = 23 

r2 = 0.01 
n = 25 

Cercopithecus 
pogonias ♂ 

r2 = 0.07 
n = 24 

r2 = 0.21* 
n = 25 

r2 = 0.03 
n = 25 

r2 = 0.07 
n = 24 

r2 = 0.08 
n = 25 

Cercopithecus 
pogonias ♀ 

r2 = 0.11 
n = 21 

r2 = 0.09 
n = 21 

r2 = 0.28* 
n = 21 

r2 = 0.05 
n = 21 

r2 = 0.16 
n = 21 

Macaca 
fascicularis ♂ 

r2 = 0.00 
n = 19 

r2 = 0.13 
n = 19 

r2 = 0.45*** 
n = 22 

r2 = 0.17 
n = 20 

r2 = 0.32** 
n = 22 

Macaca 
fascicularis ♀ 

r2 = 0.22 
n = 26 

r2 = 0.37** 
n = 24 

r2 = 0.03 
n = 26 

r2 = 0.14 
n = 25 

r2 = 0.11 
n = 25 

Colobus 
satanas ♂ n = 12 n = 12 n = 12 n = 12 n = 12 

Colobus 
satanas ♀ 

r2 = 0.15  
n = 19 

r2 = 0.13 
n = 19 

r2 = 0.14 
n = 20 

r2 = 0.36** 
n = 20 

r2 = 0.37** 
n = 20 

Ateles 
vellerosus ♂ 

r2 = 0.36** 
n = 19 

r2 = 0.20 
n = 20 

r2 = 0.37* 
n = 16 n = 9 n = 13 

Ateles 
vellerosus ♀ 

r2 = 0.28** 
n = 25 

r2 = 0.32** 
n = 25 

r2 = 0.07 
n = 24 

r2 = 0.13 
n = 22 

r2 = 0.15 
n = 24 

Cebus 
libidinosus♂ 

r2 = 0.05 
n = 29 

r2 = 0.05 
n = 30 

r2 = 0.16* 
n = 30 

r2 = 0.15* 
n = 30 

r2 = 0.13 
n = 29 

Cebus 
libidinosus♀ 

r2 = 0.05  
n = 30 

r2 = 0.01 
n = 30 

r2 = -0.02 
n = 29 

r2 = 0.00 
n = 30 

r2 = 0.01 
n = 30 

Weighted 
Hom. Avg. r2 = 0.13 r2 = 0.09 r2 = 0.11 r2 = 0.07 r2 = 0.07 

Weighted 
Cerco. Avg. r2 = 0.11 r2 = 0.14  r2 = 0.15  r2 = 0.15 r2 = 0.18  

Weighted 
Plat. Avg. r2 = 0.16 r2 = 0.13 r2 = 0.12 r2 = 0.09 r2 = 0.09 

Weighted 
Anthro. Avg. r2 = 0.13 r2 = 0.12 r2 = 0.13 r2 = 0.11 r2 = 0.13 
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TABLE 5.10. The magnitude of covariation between maxillary canine height and incisor 
and postcanine length (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
C1

 height - 
I1MD 

C1
 height - 
I2MD 

C1
 height - 
P4MD 

C1
 height - 

M1MD 
C1

 height - 
M2MD 

Gorilla 
gorilla ♂ 

r2 = -0.02 
n = 15 n = 14  r2 = 0.02  

n = 28 
r2 = 0.09 
n = 28 

r2 = 0.02  
n = 29 

Gorilla 
gorilla ♀ 

r2 = 0.04 
n = 24 

r2 = 0.17* 
n = 25 

r2 = 0.09 
n = 35 

r2 = 0.10 
n = 33 

r2 = 0.01 
n = 35 

Pan 
troglodytes ♂ 

r2 = 0.00 
n = 19 

r2 = 0.00 
n = 17 

r2 = -0.09 
n = 22 

r2 = -0.01 
n = 23 

r2 = 0.00 
n = 23 

Pan 
troglodytes ♀ 

r2 = 0.00 
n = 36 

r2 = 0.00 
n = 34 

r2 = 0.10 
n = 36 

r2 = 0.02 
n = 37 

r2 = 0.01  
n = 35 

Hylobates 
carpenteri ♂ n = 10 n = 14 r2 = 0.33* 

n = 15 
r2 = 0.49** 

n = 15 
r2 = 0.08 
n = 15 

Hylobates 
carpenteri ♀ n = 9 n = 9 n = 12 n = 13 n = 13 

Cercopithecus 
cephus ♂ 

r2 = 0.30* 
n = 15 

r2 = 0.06 
n = 15 

r2 = 0.03 
n = 15 

r2 = 0.35* 
n = 15 

r2 = 0.23* 
n = 15 

Cercopithecus 
cephus ♀ 

r2 = 0.08  
n = 20 

r2 = 0.15 
n = 19 

r2 = 0.09 
n = 21 

r2 = 0.41* 
n = 21 

r2 = 0.24* 
n = 21 

Cercopithecus 
nictitans ♂ n = 11 n = 11 n = 11 n = 11 n = 11 

Cercopithecus 
nictitans ♀ 

r2 = 0.19* 
n = 21 

r2 = 0.01 
n = 22 

r2 = 0.06 
n = 22 

r2 = 0.04 
n = 22 

r2 = 0.01 
n = 22 

Cercopithecus 
pogonias ♂ n = 6 n = 8 n = 10 n = 10 n = 10 

Cercopithecus 
pogonias ♀ 

r2 = 0.26* 
n = 16 

r2 = 0.16 
n = 18 

r2 = 0.14 
n = 19 

r2 = 0.10 
n = 19 

r2 = 0.20 
n = 19 

Macaca 
fascicularis ♂ n = 8 n = 9 n = 9 n = 9 n = 9 

Macaca 
fascicularis ♀ 

r2 = 0.00 
n = 18 

r2 = 0.00 
n = 21 

r2 = 0.00 
n = 21 

r2 = 0.04 
n = 22 

r2 = 0.05 
n = 22 

Colobus 
satanas ♂ n = 4 n = 4 n = 4 n = 4 n = 4 

Colobus 
satanas ♀ 

r2 = 0.02 
n = 19 

r2 = 0.24 
n = 21 

r2 = 0.12 
n = 21 

r2 = 0.07 
n = 21 

r2 = 0.16 
n = 21 

Ateles 
vellerosus ♂ n = 9 n = 10 n = 10 n = 10 n = 10 

Ateles 
vellerosus ♀ 

r2 = 0.25* 
n = 17 

r2 = 0.49** 
n = 17 

r2 = 0.24* 
n = 17 

r2 = 0.27* 
n = 17 

r2 = 0.44** 
n = 17 

Cebus 
libidinosus ♂ 

r2 = 0.25** 
n = 28 

r2 = 0.03 
n = 28 

r2 = 0.01 
n = 28 

r2 = 0.26** 
n = 28 

r2 = 0.09 
n = 28 

Cebus 
libidinosus ♀ 

r2 = 0.11 
n = 27 

r2 = 0.21* 
n = 28 

r2 = 0.01 
n = 28 

r2 = 0.01 
n = 28 

r2 = 0.00 
n = 28 

Weighted 
Hom. Avg. r2 = 0.01 r2 = 0.06 r2 = 0.08 r2 = 0.10  r2 = 0.02  

Weighted 
Cerco. Avg. r2 = 0.13 r2 = 0.10 r2 = 0.07 r2 = 0.16  r2 = 0.14 

Weighted 
Plat. Avg. r2 = 0.20 r2 = 0.21 r2 = 0.06 r2 = 0.17 r2 = 0.14 

Weighted 
Anthro. Avg. r2 = 0.11 r2 = 0.12  r2 = 0.07  r2 = 0.14 r2 = 0.09 
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TABLE 5.11. The magnitude of covariation between maxillary canine height and incisor 
and postcanine breadth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
C1

 height - 
I1LL 

C1
 height - 
I2LL 

C1
 height - 
P4BL 

C1
 height - 
M1BL 

C1
 height - 
M2BL 

Gorilla 
gorilla ♂ 

r2 = 0.04 
n = 18 

r2 = 0.01  
n = 17 

r2 = 0.02 
n = 29 

r2 = 0.00  
n = 28 

r2 = 0.00  
n = 28 

Gorilla 
gorilla ♀ 

r2 = 0.14* 
n = 29 

r2 = 0.19*  
n = 30 

r2 = 0.11*  
n = 35 

r2 = 0.15*  
n = 34 

r2 = 0.11  
n = 34 

Pan 
troglodytes ♂ 

r2 = 0.02 
n = 19 

r2 = 0.01 
n = 20 

r2 = -0.02 
n = 22 

r2 = 0.00 
n = 21 

r2 = 0.04 
n = 23 

Pan 
troglodytes ♀ 

r2 = 0.11 
n = 36 

r2 = 0.11* 
n = 37 

r2 = 0.15* 
n = 36 

r2 = 0.05 
n = 37 

r2 = 0.12* 
n = 36 

Hylobates 
carpenteri♂ n = 13 n = 14 r2 = 0.51** 

n = 15 
r2 = 0.45** 

n = 15 
r2 = 0.17 
n = 15 

Hylobates 
carpenteri ♀ n = 9 n = 12  n = 12  n = 12 n = 13 

Cercopithecus 
cephus ♂ 

r2 = 0.18 
n = 15 

r2 = 0.14 
n = 15 

r2 = 0.04 
n = 15 

r2 = 0.12 
n = 15 

r2 = 0.18 
n = 15 

Cercopithecus 
cephus ♀ 

r2 = 0.34* 
n = 21 

r2 = 0.01 
n = 20 

r2 = 0.19 
n = 21 

r2 = 0.08 
n = 21 

r2 = 0.15 
n = 21 

Cercopithecus 
nictitans ♂ n = 9 n = 9 n = 11 n = 11 n = 11 

Cercopithecus 
nictitans ♀ 

r2 = 0.03 
n = 22 

r2 = -0.04 
n = 22 

r2 = 0.08 
n = 22 

r2 = 0.01 
n = 22 

r2 = 0.04 
n = 22 

Cercopithecus 
pogonias ♂ n = 9 n = 8 n = 10 n = 10 n = 10 

Cercopithecus 
pogonias ♀ 

r2 = 0.07  
n = 18 

r2 = 0.22* 
n = 19 

r2 = 0.01 
n = 19 

r2 = 0.00 
n = 19 

r2 = 0.02 
n = 19 

Macaca 
fascicularis ♂ n = 8 n = 9 n = 9 n = 9 n = 9 

Macaca 
fascicularis ♀ 

r2 = -0.01  
n = 21 

r2 = 0.04 
n = 22 

r2 = 0.02 
n = 21 

r2 = 0.00 
n = 22 

r2 = 0.01 
n = 22 

Colobus 
satanas ♂ n = 4 n = 4 n = 4 n = 4 n = 4 

Colobus 
satanas ♀ 

r2 = 0.04  
n = 19 

r2 = 0.04 
n = 21 

r2 = 0.43** 
n = 21 

r2 = 0.07 
n = 21 

r2 = 0.23* 
n = 21 

Ateles 
vellerosus ♂ n = 9 n = 10 n = 10 n = 10 n = 9 

Ateles 
vellerosus ♀ 

r2 = 0.19 
n = 16 

r2 = 0.36* 
n = 17 

r2 = 0.20 
n = 16 

r2 = 0.08 
n = 17 

r2 = 0.09 
n = 17 

Cebus 
libidinosus♂ 

r2 = 0.22* 
n = 28 

r2 = 0.18* 
n = 28 

r2 = 0.31** 
n = 28 

r2 = 0.23** 
n = 28 

r2 = 0.03 
n = 28 

Cebus 
libidinosus♀ 

r2 = 0.01 
n = 28 

r2 = 0.08 
n = 28 

r2 = -0.17* 
n = 28 

r2 = -0.16* 
n = 28 

r2 = -0.03 
n = 28 

Weighted 
Hom. Avg. r2 = 0.09 r2 = 0.10 r2 = 0.12 r2 = 0.10 r2 = 0.08 

Weighted 
Cerco. Avg. r2 = 0.11 r2 = 0.06 r2 = 0.13 r2 = 0.04 r2 = 0.10 

Weighted 
Plat. Avg. r2 = 0.13 r2 = 0.18 r2 = 0.10 r2 = 0.05 r2 = 0.02  

Weighted 
Anthro. Avg. r2 = 0.11 r2 = 0.10 r2 = 0.12 r2 = 0.07 r2 = 0.08 
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C1LL-I1LL (hominoid average r2 = 0.30; platyrrhine average r2 = 0.31) and C1MD-I2MD 

(hominoid average r2 = 0.36; platyrrhine average r2 = 0.28). These comparisons are the 

exceptions, rather than the rule, for the magnitude of covariation with characters outside 

the honing complex. 

The pleiotropy hypotheses of Jolly (1970) and McCollum and Sharpe (2001) 

predict a tradeoff between anterior tooth size and postcanine tooth size. Thus, the 

expectation is a negative covariation between canine crown size and postcanine crown 

size within species. This expectation is not born out here. Not only is the level of 

covariation weak between the canines and postcanine dentition, but it is in the direction 

opposite that predicted by the pleiotropy hypothesis. Of 224 within-species comparisons 

of canine basal size with the size of the postcanine dentition, 143 are significantly 

different from zero and all have an absolute value of > 0.00. Though weak, the pleiotropy 

between the basal canine dimensions and the postcanine teeth is positive in direction. For 

the incisors and canine basal size, of 141 within-species comparisons, 77 are significantly 

different from zero and all are positive in direction. Contra the pleiotropy hypotheses of 

Jolly (1970) and McCollum and Sharpe (2001), the basal dimensions of the canines do 

not covary strongly with either the incisors or the postcanine dentition. Coordinated 

changes in canine and either incisor or postcanine size observed in hominins are not 

likely to have been mediated by a pleiotropic linkage (contra Jolly, 1970). 

 Canine crown heights do not strongly covary with the dimensions of the incisor 

or postcanine crowns (Tables 5.8, 5.9, 5.10, and 5.11). The highest anthropoid average is 

r2 = 0.14 for C1
 height-M1MD. Of 143 within-species comparisons of canine height to the 

dimensions of the postcanine dentition, only 56 are significantly different from zero, and 

all are positive in direction. Of 126 within-species comparisons of canine height to the 
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dimensions of the incisors, 41 are significantly different from zero and all are positive in 

direction.  

The low and very low levels of covariation between canine crown height and the 

basal dimensions of teeth in other functional modules (this study; Cochard, 1981) are not 

surprising given the pattern of results observed throughout this study. Namely, it always 

homologous dimensions within and between arches in functional modules that express 

the highest levels of covariation. For example, between the arches canine heights covary 

strongly with one another, as do basal areas, but basal areas and canine heights do not 

strongly covary with one another within a tooth. For the incisors and postcanine teeth, the 

breadths covary strongly with one another and the lengths covary strongly with one 

another, but breadths and lengths covary only weakly (Chapters 3 and 4). Therefore, a 

pleiotropic relationship between canine heights and any basal dimension of the incisors 

and postcanine dentition is not likely to exist.  

 

Canine Height and Premolar Honing Surface Length Within Species: Above, it was 

shown that homologous dimensions of the canines significantly covary with one another 

within species. The other element of the canine honing complex is the mesial-most 

mandibular premolar. The distal edge of the maxillary canine is honed along the 

mesiobuccal surface of the honing premolar, which extends from the protoconid along 

the mesiobuccal root (Chapter 1, Figure 1.11).  

Moderate levels of covariation are consistently observed between the heights of 

both canines and the length of the premolar’s honing surface (Table 5.12). Only one 

sample, female Cercopithecus cephus, shows a nonsignificant correlation between 

mandibular canine height and premolar honing surface length. This result is likely 

aberrant. There are far fewer samples for which covariation can be estimated for the  
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TABLE 5.12. The magnitude of covariation between canine heights and the length of the 
premolar honing surface (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 
 
 
 

 P2,3 hone length- 
C1 height 

P2,3 hone length- 
C1 Height 

Gorilla gorilla ♀ r2 = 0.62*** 
n = 26 

r2 = 0.54*** 
n = 29 

Gorilla gorilla ♂ r2 = 0.41*** 
n = 30 

r2 = 0.45*** 
n = 27 

Pan troglodytes♀ r2 = 0.59*** 
n = 35 

r2 = 0.40*** 
n = 33 

Pan troglodytes ♂ r2 = 0.44*** 
n = 26 

r2 = 0.50*** 
n = 28 

Hylobates carpenteri ♀ r2 = 0.54*** 
n = 20 n = 12 

Hylobates carpenteri ♂ r2 = 0.41*** 
n = 20 

r2 = 0.32* 
n = 15 

Cercopithecus cephus ♀ r2 = 0.18 
n = 21 

r2 = 0.11 
n = 19 

Cercopithecus cephus ♂ r2 = 0.53*** 
n = 37 

r2 = 0.74*** 
n = 15 

Cercopithecus nictitans ♀ r2 = 0.36*** 
n = 23 

r2 = 0.38*** 
n = 20 

Cercopithecus nictitans ♂ r2 = 0.59*** 
n = 38 n = 11 

Cercopithecus  pogonias  ♀ r2 = 0.61*** 
n = 21 

r2 = 0.69*** 
n = 19 

Cercopithecus  pogonias  ♂ r2 = 0.46*** 
n = 30 n = 10 

Macaca fascicularis ♀ r2 = 0.40*** 
n = 24 n = 14 

Macaca fascicularis ♂ r2 = 0.35*** 
n = 20 n = 9 

Colobus satanas ♀ r2 = 0.40** 
n = 20 

r2 = 0.49*** 
n = 21 

Ateles vellerosus ♀ r2 = 0.49*** 
n = 21 

r2 = 0.41* 
n = 15 

Ateles vellerosus ♂ r2 = 0.24* 
n = 16 n = 10 

Cebus libidinosus ♀ r2 = 0.33** 
n = 26 

r2 = 0.31** 
n = 23 

Cebus libidinosus ♂ r2 = 0.53*** 
n = 28 

r2 = 0.30** 
n = 26 

W. Hom. ♂ Avg. r2 = 0.42 r2 = 0.44 

W. Hom. ♀ Avg. r2 = 0.59 r2 = 0.47 

W. Cerco. ♂ Avg. r2 = 0.50 r2 = 0.74 

W. Cerco. ♀ Avg. r2 = 0.39 r2 = 0.42 

W.Plat. ♂ Avg. r2 = 0.42 r2 = 0.30 

W.Plat. ♀ Avg. r2 = 0.40 r2 = 0.35 
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TABLE 5.13. The magnitude of covariation between premolar hone length and incisor 
and postcanine length (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
P2,3 hone- 

I1MD 
P2,3 hone - 

I2MD 
P2,3 hone- 

P4MD 
P2,3 hone- 

M1MD 
P2,3 hone- 

M2MD 
Gorilla 

gorilla ♂ 
r2 = 0.10 
n = 29 

r2 = 0.10 
n = 28 

r2 = 0.23*** 
n = 58 

r2 = 0.13** 
n = 55 

r2 = 0.23*** 
n = 57 

Gorilla 
gorilla ♀ 

r2 = 0.10 
n = 29 

r2 = 0.20** 
n = 34 

r2 = 0.05 
n = 37 

r2 = 0.15* 
n = 39 

r2 = 0.12* 
n = 40 

Pan 
troglodytes ♂ 

r2 = 0.57*** 
n = 28 

r2 = 0.29** 
n = 29 

r2 = 0.10 
n = 36 

r2 = 0.03 
n = 37 

r2 = 0.18** 
n = 38 

Pan 
troglodytes ♀ 

r2 = 0.02 
n = 39 

r2 = 0.00 
n = 41 

r2 = 0.09 
n = 43 

r2 = 0.10* 
n = 42 

r2 = 0.07 
n = 42 

Hylobates 
carpenteri ♂ 

r2 = 0.18* 
n = 28 

r2 = 0.17* 
n = 32 

r2 = 0.15* 
n = 29 

r2 = 0.13* 
n = 46 

r2 = 0.17* 
n = 33 

Hylobates 
carpenteri ♀ n = 16 n = 19 r2 = 0.20* 

n = 22 
r2 = 0.08 
n = 20 

r2 = 0.01 
n = 22 

Cercopithecus 
cephus ♂ 

r2 = 0.03 
n = 44 

r2 = 0.10* 
n = 47 

r2 = 0.03 
n = 49 

r2 = 0.09* 
n = 48 

r2 = 0.19** 
n = 49 

Cercopithecus 
cephus ♀ 

r2 = 0.04 
n = 23 

r2 = 0.10 
n = 28 

r2 = 0.03 
n = 29 

r2 = 0.02 
n = 29 

r2 = 0.07 
n = 29 

Cercopithecus 
nictitans ♂ 

r2 = -0.01 
n = 40 

r2 = 0.02 
n = 44 

r2 = 0.22*** 
n = 48 

r2 = 0.22** 
n = 44 

r2 = 0.23*** 
n = 47 

Cercopithecus 
nictitans ♀ 

r2 = 0.02 
n = 27 

r2 = 0.07 
n = 29 

r2 = 0.09 
n = 30 

r2 = 0.01 
n = 27 

r2 = 0.00 
n = 30 

Cercopithecus 
pogonias ♂ n = 18 r2 = 0.02 

n = 29 
r2 = 0.01 
n = 36 

r2 = 0.00 
n = 32 

r2 = 0.05 
n = 35 

Cercopithecus 
pogonias ♀ 

r2 = 0.02 
n = 27 

r2 = 0.00 
n = 27 

r2 = 0.21* 
n = 29 

r2 = 0.23** 
n = 29 

r2 = 0.31** 
n = 29 

Macaca 
fascicularis ♂ 

r2 = 0.01 
n = 26 

r2 = 0.00 
n = 23 

r2 = 0.12* 
n = 36 

r2 = 0.06 
n = 36 

r2 = 0.09 
n = 36 

Macaca 
fascicularis ♀ 

r2 = 0.07 
n = 36 

r2 = 0.16* 
n = 36 

r2 = 0.20** 
n = 38 

r2 = 0.22** 
n = 36 

r2 = 0.17** 
n = 38 

Colobus 
satanas ♂ 

r2 = 0.03 
n = 21 

r2 = 0.04 
n = 21 

r2 = 0.10 
n = 21 

r2 = 0.06 
n = 21 

r2 = 0.10 
n = 21 

Colobus 
satanas ♀ 

r2 = -0.03 
n = 22 

r2 = 0.12 
n = 23 

r2 = 0.04 
n = 24 

r2 = 0.23* 
n = 24 

r2 = 0.16* 
n = 24 

Ateles 
vellerosus ♂ 

r2 = 0.00 
n = 23 

r2 = -0.07 
n = 23 

r2 = 0.00 
n = 25 

r2 = 0.00 
n = 25 

r2 = 0.01 
n = 24 

Ateles 
vellerosus ♀ 

r2 = 0.06 
n = 21 

r2 = 0.03 
n = 21 

r2 = 0.15 
n = 20 

r2 = 0.29* 
n = 21 

r2 = 0.23* 
n = 21 

Cebus 
libidinosus ♂ 

r2 = 0.08 
n = 29 

r2 = 0.09 
n = 38 

r2 = 0.09 
n = 38 

r2 = 0.09 
n = 38 

r2 = 0.14* 
n = 37 

Cebus 
libidinosus ♀ 

r2 = 0.11 
n = 23 

r2 = 0.14* 
n = 30 

r2 = 0.04 
n = 30 

r2 = 0.00 
n = 30 

r2 = 0.01 
n = 30 

Weighted 
Hom. Avg. r2 = 0.18 r2 = 0.14 r2 = 0.14 r2 = 0.11 r2 = 0.14 

Weighted 
Cerco. Avg. r2 = 0.02 r2 = 0.07 r2 = 0.11 r2 = 0.12 r2 = 0.14 

Weighted 
Plat. Avg. r2 = 0.06 r2 = 0.06 r2 = 0.07 r2 = 0.08 r2 = 0.09 

Weighted 
Anthro. Avg. r2 = 0.08 r2 = 0.09 r2 = 0.11 r2 = 0.11 r2 = 0.14 
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TABLE 5.14. The magnitude of covariation between premolar hone length and incisor 
and postcanine breadth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 
P2,3 hone- 

I1LL 
P2,3 hone- 

I2LL 
P2,3 hone- 

P4BL 
P2,3 hone- 

M1BL 
P2,3 hone- 

M2BL 
Gorilla 

gorilla ♂ 
r2 = 0.24** 

n = 35 
r2 = 0.27*** 

n = 39 
r2 = 0.17** 

n = 56 
r2 = 0.32*** 

n = 51 
r2 = 0.23*** 

n = 55 
Gorilla 

gorilla ♀ 
r2 = 0.31***  

n = 35 
r2 = 0.29*** 

n = 40 
r2 = 0.34*** 

n = 38 
r2 = 0.23** 

n = 35 
r2 = 0.29*** 

n = 38 
Pan 

troglodytes ♂ 
r2 = 0.32** 

n = 29 
r2 = 0.36***  

n = 30 
r2 = 0.26** 

n = 37 
r2 = 0.05 
n = 36 

r2 = 0.22** 
n = 36 

Pan 
troglodytes ♀ 

r2 = 0.07  
n = 40 

r2 = 0.08  
n = 41 

r2 = 0.02 
n = 43 

r2 = 0.09 
n = 42 

r2 = 0.08 
n = 42 

Hylobates 
carpenteri ♂ 

r2 = 0.04 
n = 31 

r2 = 0.04 
n = 32 

r2 = 0.04 
n = 29 

r2 = 0.08  
n = 23 

r2 = 0.17* 
n = 30 

Hylobates 
carpenteri ♀ 

r2 = 0.03 
n = 20 

r2 = 0.06  
n = 21 

r2 = 0.18* 
n = 22 n = 17 r2 = 0.03  

n = 22 
Cercopithecus 

cephus ♂ 
r2 = 0.05 
n = 47 

r2 = 0.07 
n = 47 

r2 = 0.06  
n = 49 

r2 = 0.12*  
n = 49 

r2 = 0.13*  
n = 49 

Cercopithecus 
cephus ♀ 

r2 = 0.02  
n = 25 

r2 = 0.01 
n = 27 

r2 = -0.01  
n = 29 

r2 = -0.01  
n = 28 

r2 = -0.04  
n = 29 

Cercopithecus 
nictitans ♂ 

r2 = 0.01  
n = 41 

r2 = 0.06 
n = 44 

r2 = 0.21*** 
n = 46 

r2 = 0.13* 
n = 43 

r2 = 0.15** 
n = 47 

Cercopithecus 
nictitans ♀ 

r2 = 0.08 
n = 28 

r2 = 0.03  
n = 29 

r2 = 0.09  
n = 30 

r2 = -0.01 
n = 27 

r2 = 0.00  
n = 30 

Cercopithecus 
pogonias ♂ 

r2 = 0.01 
n = 30 

r2 = 0.07  
n = 31 

r2 = 0.10 
n = 36 

r2 = 0.17*  
n = 35 

r2 = 0.07  
n = 36 

Cercopithecus 
pogonias ♀ 

r2 = 0.14*  
n = 28 

r2 = 0.11  
n = 28 

r2 = 0.28**  
n = 29 

r2 = 0.07  
n = 29 

r2 = 0.09  
n = 29 

Macaca 
fascicularis ♂ 

r2 = 0.17* 
n = 27 

r2 = 0.08  
n = 26 

r2 = 0.13*  
n = 34 

r2 = 0.04 
n = 33 

r2 = 0.06 
n = 36 

Macaca 
fascicularis ♀ 

r2 = 0.12*  
n = 36 

r2 = 0.17* 
n = 36 

r2 = 0.07 
n = 38 

r2 = 0.15*  
n = 35 

r2 = 0.13*  
n = 37 

Colobus 
satanas ♂ 

r2 = 0.01 
n = 21 

r2 = -0.02 
n = 21 

r2 = 0.00 
n = 21 

r2 = -0.31* 
n = 21 

r2 = -0.13 
n = 21 

Colobus 
satanas ♀ 

r2 = 0.03  
n = 23 

r2 = 0.31** 
n = 23 

r2 = 0.12  
n = 24 

r2 = 0.22* 
n = 24 

r2 = 0.33** 
n = 24 

Ateles 
vellerosus ♂ 

r2 = 0.08 
n = 25 

r2 = 0.00 
n = 25 

r2 = 0.06 
n = 22 n = 13  n = 17  

Ateles 
vellerosus ♀ 

r2 = 0.14  
n = 21 

r2 = 0.21*  
n = 21 n = 19 n = 18 r2 = 0.12 

n = 20 
Cebus 

libidinosus ♂ 
r2 = 0.13* 

n = 37 
r2 = 0.10* 

n = 38 
r2 = 0.22** 

n = 38 
r2 = 0.16*  

n = 38 
r2 = 0.18** 

n = 37 
Cebus 

libidinosus ♀ 
r2 = 0.19  
n = 30 

r2 = 0.08  
n = 30 

r2 = 0.00  
n = 29 

r2 = -0.01  
n = 30 

r2 = 0.01  
n = 30 

Weighted 
Hom. Avg. r2 = 0.17 r2 = 0.19 r2 = 0.17 r2 = 0.17 r2 = 0.18 

Weighted 
Cerco. Avg. r2 = 0.06 r2 = 0.09 r2 = 0.11 r2 = 0.07 r2 = 0.09 

Weighted 
Plat. Avg. r2 = 0.14 r2 = 0.09 r2 = 0.11 r2 = 0.09 r2 = 0.11 

Weighted 
Anthro. Avg. r2 = 0.11 r2 = 0.12 r2 = 0.13 r2 = 0.11 r2 = 0.12 
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maxillary canine height than for the mandibular; however, the pattern among those 

samples is consistent.  

The honing surface of the mandibular premolar is both functionally and 

pleiotropically linked to canine height in both male and female anthropoids. This result is 

somewhat surprising, as the maxillary canine height is worn and often broken away 

during an individual’s lifetime (e.g., Leigh et al., 2008). As a result, over time the 

premolar hones a progressively shorter canine crown; therefore, the link between 

premolar honing surface length and maximum canine height exists for a brief period of an 

individual’s life, suggesting that there should not be a tight functional link between 

honing surface length and canine height. A possible functional explanation for this 

phenomenon will be discussed in Chapter 7 in relation to the hyper-eruption of canines. 

 

Premolar Honing Surface Length and Incisor and Postcanine Size Within Species: 

Covariation between the length of the premolar’s honing surface and dimensions of the 

incisors and postcanine dentition was investigated. The length of the honing surface 

expresses only very low levels of covariation with dimensions outside the honing 

complex. The highest observed anthropoid average is r2 = 0.14 for premolar hone-M2MD 

(Tables 5.9 and 5.10). Of 77 within-species comparisons made for honing surface length 

with mandibular incisor size, only 22 are significantly different from zero and all 22 are 

positive in direction. Of 114 within-species comparisons between honing surface length 

and the dimensions of the mandibular postcanine dentition, 54 are significantly different 

from zero. Premolar honing surface length is weakly linked to the size of the incisors and 

postcanine dentition, further supporting the hypothesis that the canine honing complex 

constitutes both a functional and a variational module. 
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TABLE 5.15. The magnitude of covariation between the P3 enamel extension length and 
dimensions of the honing complex (***p-value < 0.0001, **p-value < 0.001, *p-value < 

0.05). 
 

P3 hone - 
P3 ext. 

C1 height-  
P3 ext. 

C1 height-  
P3 ext. 

Gorilla gorilla ♂ r2 = 0.44*** 
n = 35  

r2 = 0.14 
n = 18 

r2 = 0.03 
n = 18 

Gorilla gorilla ♀ r2 = 0.72*** 
n = 17 n = 12 r2 = 0.39** 

n = 16 

Pan troglodytes ♂ r2 = 0.57*** 
n = 30 

r2 = 0.13 
n = 19 

r2 = 0.03 
n = 19 

Pan. troglodytes ♀ r2 = 0.41*** 
n = 26 

r2 = 0.46*** 
n = 21 

r2 = 0.29** 
n = 25 

Hylobates lar ♂ r2 = 0.56*** 
n = 18 n = 12 n = 14 

Hylobates lar ♀ n = 10 n = 9 n = 7 

Cercopithecus cephus ♂ r2 = 0.29** 
n = 28 

r2 = 0.29** 
n = 27 n = 12 

Cercopithecus cephus ♀ r2 = 0.51*** 
n = 26 

r2 = 0.14 
n = 24 

r2 = 0.14 
n = 21 

 Weighted ♂ Catarrhine Avg. r2 = 0.46 r2 = 0.20  r2 = 0.03  
 Weighted ♀ Catarrhine Avg. r2 = 0.52 r2 = 0.29 r2 = 0.27 

 
 
 
 
Maxillary Premolar Covariation with the Honing Complex Within Species: As noted in 

Chapter 1, premolar heteromorphy characterizes both the maxillary and mandibular 

premolars. Heteromorphy in the mandible is easily explained as a result of the mesial 

premolar functioning as a hone for the maxillary canine. Maxillary premolar 

heteromorphy was described in Chapter 4 (Figure 4.1). In Chapter 4, it was shown that 

the MD dimension of the mesial maxillary premolar covaries weakly with the MD 

lengths of the other maxillary premolar(s). Here, covariation of the mesio-cervical 

enamel extension and dimensions of the canine honing complex is investigated for four 

catarrhine primates (Pan troglodytes, Gorilla gorilla, Hylobates lar, and Cercopithecus 

cephus); covariation was assessed between the P3 enamel extension and the canine 

heights and the length of the mandibular premolar honing surface (Table 5.15).  
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Although taxonomic representation is narrow compared to the other analyses, the 

results indicate that the P3 extension strongly covaries in size with that of the P3 honing 

surface (average r2 = 0.48 for the six comparisons). The magnitude observed in 

Cercopithecus cephus males is low relative to the other samples. Levels of covariation 

between the length of the P3 extension and canine heights are lower (average r2 = 0.24 

and 0.18 with the mandibular canine height and maxillary canine height, respectively). 

Thus, it appears that the mesial portions of the P3 and P3 share unique pleiotropic effects 

that are not shared with the canines. This does not reflect functional integration, as the P3 

extension does not occlude with the P3 honing surface. Instead, it is probably a reflection 

of the increased heights of the P3 protoconid and P3 paracone, relative to the P4s, which 

contributes to the length of the P3 honing surface (Figure 1.12) and the P3 enamel 

extension (Figure 4.1).  

In Chapter 4, it was hypothesized the mesial premolars became parceled out of 

the postcanine variational module as they evolved to be heteromorphic relative to the 

neighboring premolar. During hominin evolution, both mesial premolars lost many of 

their heteromorphic traits and became morphologically quite similar to their distal 

neighbor. These changes involved reductions in the height and area of the principal cusps 

(e.g., Kimbel and Delezene, 2009). The early hominin Australopithecus afarensis 

captures these teeth in the process of transformation, for both the mandibular and 

maxillary P3 of Australopithecus afarensis are heteromorphic relative to younger 

hominins, but have reduced heteromorphy relative to extant ape outgroups (Kimbel and 

Delezene, 2009; Delezene and Kimbel, 2011). The reduction of principal cusp heights is 

a good candidate for a coordinated change that was mediated by a pleiotropic 

relationship. Whether the mesial premolars became “integrated” into the postcanine  
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TABLE 5.16. The magnitude of covariation among species for dimensions of the canine 
honing complex (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 

 C1 Height C1 Basal Size C1 Height C1 Basal Size 

C1 Basal Size ♂r2 = 0.63*** 
♀r2 = 0.49*** — — — 

C1 Height ♂r2 = 0.80*** 
♀r2 = 0.74*** 

♂r2 = 0.91*** 
♀r2 = 0.72*** — — 

C1 Basal Size ♂r2 = 0.55*** 
♀r2 = 0.49*** 

♂r2 = 0.97*** 
♀r2 = 0.92*** 

♂r2 = 0.90*** 
♀r2 = 0.77*** — 

Premolar Hone ♂r2 = 0.73*** 
♀r2 = 0.50*** 

♂r2 = 0.76*** 
♀r2 = 0.75*** 

♂r2 = 0.73*** 
♀r2 = 0.60*** 

♂r2 = 0.69*** 
♀r2 = 0.65*** 

 

 

 

 

Fig. 5.1: Independent contrasts for maxillary canine height and premolar honing facet 
length in females. The solid line is the RMA regression line. 
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Fig. 5.2: Independent contrasts for maxillary canine height and premolar honing facet 
length in males. The solid line is the RMA regression line. 
 
 

 

Fig 5.3. Independent contrasts of maxillary canine height and basal crown size in female 
anthropoid primates. 
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Fig. 5.4. Independent contrasts of maxillary canine height and basal size in male 
anthropoids. 
 
 

variational module (as in Figure 1.1) as heteromorphy was reduced remains to be 

answered.  

 

Dimensions of the Honing Complex Among Species: Among-species covariation was 

assessed for canine heights, canine basal size (√(LL*MD)), and length of the premolar’s 

honing surface. All elements of the complex express statistically significant high levels of 

covariation in both males and females (Table 5.16). As covariation is significant among 

all elements in both sexes, Greenfield’s (1992; Greenfield and Washburn, 1992) 

conclusion that the male complex coevolved but the female complex did not is 

contradicted. His results are clearly the effect of his choice of canine projection to reflect 

canine height (Figure 1.17). The magnitude of covariation differs between males and 



  186 

females for two important comparisons. Females express lower levels of covariation for 

comparisons of maxillary canine height to the length of the premolar’s honing surface 

and for the comparisons of canine height to canine basal areas. 

The lower level of covariation for maxillary canine height to honing facet length 

in females is easily seen when bivariate plots of independent contrasts are compared 

(Figures 5.1 and 5.2). There is in general a poorer fit of the female contrasts to the RMA 

regression line (Figure 5.1) than in the male contrasts (Figure 5.2). For females, two 

contrasts stand out from the rest: the contrast between hylobatids and hominids and the 

contrast between cercopithecids and hominoids. For a given P3 honing facet length, the 

hylobatid females have a taller canine than do the hominids and cercopithecids have taller 

canines than do hominoids. These differences were also noted by Greenfield (1992; 

Greenfield and Washburn, 1992). A casual comparison of the honing premolars of female 

cercopithecids and hominoids is sufficient to confirm that their honing premolars are 

quite distinct morphologically. The hominid vs. hylobatid contrast also stands out in the 

male analysis. The dichotomies in the honing complexes of hylobatids, hominids, and 

cercopithecids are addressed in Chapter 6, where among-species differences (Δz) are 

investigated relative to pmax. 

The female honing complex also demonstrates weaker covariation of canine 

basal size and height among species than do males (Figures 5.3 and 5.4). In both males 

and females, the contrast between hylobatids and hominids is large because the hylobatid 

maxillary canine is taller relative to basal size than in hominids. Within species, these 

characters covary weakly, so their poor correspondence among species does not indicate 

that selection has acted in a direction opposed by genetic constraint. Plavcan and Ruff  

(2008) indicated that selection has operated to make canines relatively strong (i.e., 

resistant to bending stresses) in primates. From a functional perspective, it might be  
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TABLE 5.17. The magnitude of covariation among the mandibular canine and honing 
premolar and dimensions of the incisors and postcanine dentition (***p-value < 0.0001, 

**p-value < 0.001, *p-value < 0.05). 
 

 C1 Height C1 Basal Size Premolar Hone 

I1LL ♂r2 = 0.69*** 
♀r2 = 0.45*** 

♂r2 = 0.80*** 
♀r2 = 0.75*** 

♂r2 = 0.54*** 
♀r2 = 0.47*** 

I1MD ♂r2 = 0.62*** 
♀r2 = 0.41*** 

♂r2 = 0.77*** 
♀r2 = 0.74*** 

♂r2 = 0.52*** 
♀r2 = 0.53*** 

I2LL ♂r2 = 0.71*** 
♀r2 = 0.43*** 

♂r2 = 0.85*** 
♀r2 = 0.81*** 

♂r2 = 0.52*** 
♀r2 = 0.46*** 

I2MD ♂r2 = 0.48*** 
♀r2 = 0.39** 

♂r2 = 0.82*** 
♀r2 = 0.73*** 

♂r2 = 0.47*** 
♀r2 = 0.41*** 

P4MD ♂r2 = 0.81*** 
♀r2 = 0.64*** 

♂r2 = 0.89*** 
♀r2 = 0.81*** 

♂r2 = 0.79*** 
♀r2 = 0.82*** 

P4BL ♂r2 = 0.76*** 
♀r2 = 0.57*** 

♂r2 = 0.90*** 
♀r2 = 0.88*** 

♂r2 = 0.58*** 
♀r2 = 0.65*** 

M1MD ♂r2 = 0.75*** 
♀r2 = 0.62*** 

♂r2 = 0.88*** 
♀r2 = 0.78*** 

♂r2 = 0.70*** 
♀r2 = 0.78*** 

M1BL ♂r2 = 0.77*** 
♀r2 = 0.60*** 

♂r2 = 0.90*** 
♀r2 = 0.85*** 

♂r2 = 0.63*** 
♀r2 = 0.71*** 

M2MD ♂r2 = 0.75*** 
♀r2 = 0.59*** 

♂r2 = 0.83*** 
♀r2 = 0.68*** 

♂r2 = 0.74*** 
♀r2 = 0.78*** 

M2BL ♂r2 = 0.76*** 
♀r2 = 0.57*** 

♂r2 = 0.89*** 
♀r2 = 0.80*** 

♂r2 = 0.68*** 
♀r2 = 0.74*** 

Average r2 = 0.62 r2 = 0.82 r2 = 0.63 
 
TABLE 5.18. The magnitude of covariation between the maxillary canine and the incisors 

and postcanine teeth (***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05). 

 C1 Height C1 Basal Size 

I1LL ♂r2 = 0.23* 
♀r2 = 0.25* 

♂r2 = 0.76*** 
♀r2 = 0.78*** 

I1MD ♂r2 = 0.29** 
♀r2 = 0.26** 

♂r2 = 0.81*** 
♀r2 = 0.78*** 

I2LL ♂r2 = 0.36** 
♀r2 = 0.15* 

♂r2 = 0.79*** 
♀r2 = 0.64*** 

I2MD ♂r2 = 0.36** 
♀r2 = 0.29** 

♂r2 = 0.84*** 
♀r2 = 0.68*** 

P4MD ♂r2 = 0.47*** 
♀r2 = 0.40*** 

♂r2 = 0.89*** 
♀r2 = 0.86*** 

P4BL ♂r2 = 0.36** 
♀r2 = 0.32** 

♂r2 = 0.89*** 
♀r2 = 0.90*** 

M1MD ♂r2 = 0.45*** 
♀r2 = 0.36** 

♂r2 = 0.88*** 
♀r2 = 0.77*** 

M1BL ♂r2 = 0.40*** 
♀r2 = 0.36** 

♂r2 = 0.88*** 
♀r2 = 0.82*** 

M2MD ♂r2 = 0.53*** 
♀r2 = 0.36** 

♂r2 = 0.82*** 
♀r2 = 0.63*** 

M2BL ♂r2 = 0.44*** 
♀r2 = 0.36** 

♂r2 = 0.89*** 
♀r2 = 0.78*** 

Average r2 = 0.35 r2 = 0.80 
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expected that heights and basal areas would have coevolved to maintain strength. Perhaps 

selection is weaker on female canine strength than on male canine strength.  

 

Dimensions of the Honing Complex and of the Incisors and Postcanine Dentition 

Among Species: Among species, the elements of the canine honing complex covary 

positively with dimensions of the incisors and postcanine teeth (Tables 5.17 and 5.18). 

The levels of covariation between mandibular canine height and incisors (average r2 = 

0.62) and postcanine dimensions for maxillary canine height (average r2 = 0.35). Among 

species, canine basal size (√(MD*LL)) covaries more strongly with the incisors and 

postcanine teeth than do canine heights (average r2 = 0.82 for C1 basal size and r2 = 0.80 

for C1 basal size). For the length of the premolar honing surface, the average (r2 = 0.63) is 

similar to that observed for the mandibular canine height.  

 

Discussion and Summary 

The results of this chapter robustly support the conclusion that the canine honing 

complex is both a variational and functional module in males and females. Between the 

mandibular and maxillary canines, covariation among homologous dimensions is strong 

as is covariation between canine heights and premolar honing surface length. Characters 

of the complex have coevolved because selection acted on pleiotropically linked sets of 

traits (the strong selection that has acted on the canine honing complex was reviewed in 

Chapter 1 (e.g., Plavcan, 1993; Plavcan, 2001; Leigh et al., 2008)) in both males and 

females. There is some flexibility in the system; though the length of the premolar honing 

surface and the height of the maxillary canine have coevolved in both sexes, there are 

large contrasts among species in the female analysis that are not evident in the male 

analysis. In addition, canine heights and basal areas demonstrate some independence 
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among species, which has potential implications for selection acting on canine strength 

(e.g., Plavcan and Ruff, 2008). Given that canine heights are among the most strongly 

covarying characters observed in the anthropoid dentition, this implies that selection must 

have been especially strong (e.g., Klingenberg, 2010) in order to drive the differential 

rates of canine height reduction observed in early hominins such as Ardipithecus ramidus 

(reviewed in Chapter 1; Suwa et al., 2009). 

Covariation with dimensions of the honing complex and those of the incisors and 

postcanine dentition is weak and positive within species. The pleiotropy hypothesis 

(sensu Jolly (1970)) predicts a tradeoff between the size of the canines and the postcanine 

teeth and significant positive covariation between canine and incisor size. When the 

results of the among-species analysis are combined with the within-species analyses, it is 

clear that the pleiotropy hypothesis is rejected. Larger-bodied primates tend to have taller 

canines with larger basal dimensions, larger incisors, and larger postcanine teeth. 

Covariation between the canines and incisors and postcanine teeth among species is not 

strong; the canines retain substantial flexibility to evolve independently of the incisors 

and postcanine teeth. Two observations indicate that the canines are pleiotropically 

isolated from all teeth, except for the mesial mandibular premolar, in both males and 

females. First, in the within-species analyses, the magnitude of covariation between the 

sizes of canines and incisors and postcanine teeth is weak (see also, Cochard, 1981). 

Second, within species, whatever the underlying genetic cause for larger canine size in 

males, it does not translate into substantially larger postcanine or incisor size; all 

dimensions of the canines have indices of sexual dimorphism that are greater than for the 

incisors and postcanine teeth (Plavcan, 1990).  

For the hominins, though the pattern of character state change indicates that 

reductions in canine size and incisor size occurred as the postcanine teeth were enlarging, 
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this pattern resulted from selection targeting each of the functional units individually. 

Jolly (1970) and McCollum and Sharpe (2001) largely inferred the within-species pattern 

of covariation by examining the among-species hominin pattern, which, as stressed in 

earlier chapters, is unwarranted. Significant among-species correlations need not arise 

from selection operating on traits linked by pleiotropy. This is not to say that there was 

not a selective tradeoff between the sizes of the anterior and posterior teeth during 

hominin and theropith evolution for the reasons outlined by Jolly (1970). The changes in 

the absolute and relative sizes of each of the dental functional complexes that occurred 

during hominin evolution are independent of one another. 
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Chapter 6 

STABILITY OF PATTERNS OF CORRELATION AND VARIANCE-COVARIANCE 

AMONG SPECIES AND THE CORRESPONDENCE OF AMONG SPECIES 

DIVERSIFICATION TO LINES OF LEAST RESISTANCE 

Given that dental functions, and the teeth performing them, are constant among 

anthropoids, then it is hypothesized that the pattern of genetic (and by extension 

phenotypic) covariance should be similar among species (e.g., Marroig and Cheverud, 

2005; de Oliveira et al., 2009). This hypothesis is tested using the Mantel test and the 

random skewers test. The Mantel test only addresses the similarity of patterns of 

correlation, while the random skewers test addresses variance-covariance, as it tests for 

responses to randomly simulated selection vectors (see Chapter 2 for a description of 

these tests). For both tests, the null hypothesis is no similarity, so a significant result 

indicates that correlation or variance-covariance matrices are similar. In Chapters 3–5, 

the pattern and strength of covariation for character pairs was noted to be similar for all 

taxonomic groups. Potential taxonomic differences were also highlighted; for example, 

cercopithecids were noted to have lower levels of covariation among incisor MD lengths 

than either platyrrhines or hominoids, platyrrhines were shown to express the lowest level 

of M3MD covariation, and cercopithecids were shown to express higher levels of 

covariance between all M3 dimensions and other postcanine teeth. If these differences are 

significant, then they should be revealed in the results of the Mantel and random skewers 

tests. Constraints can also be represented by pmax. It is hypothesized that anthropoids 

should share a common pmax for each functional module, which would indicate that 

patterns of constraint have been constant and stable throughout anthropoid dental 

evolution. This hypothesis is testing by quantifying the angle between estimates of pmax 

for each species and then assessing statistical significance using a bootstrapping 



  192 

procedure outlined in Berner (2009) (see Methods in Chapter 2). For this test, the null 

hypothesis is Ɵ = 0, so a rejection of the null hypothesis indicates that pmaxs are not the 

same (Chapter 2). If constraints, represented by pmax, are a strong influence on among 

species diversification (Δz), then the angle between pmax and Δz should be nearly zero. 

This hypothesis is tested using a bootstrapping procedure. Again, a rejection of the null 

hypothesis indicates that among species diversification did not occur along pmax.  

 

Results 

Similarity of Correlation and Variance-Covariance Among Species: In Chapters 3 and 

4, males and females were pooled to calculate covariance within species for incisors and 

the postcanine dentition. As aspects of the canine honing complex are highly size-

dimorphic, males and females were not pooled in Chapter 5. So that the entire dentition 

could be considered in the Mantel and random skewers tests, the most highly size-

dimorphic variables, canine heights, were excluded. Canine basal dimensions and 

premolar honing surface length were included and the male mean was adjusted to match 

the female mean, as for all other characters. As platyrrhines and catarrhines differ in 

premolar number, it was not possible to directly compare the pattern of 

correlation/variance-covariance between them. To make them comparable, the 

platyrrhine P2 was compared to the catarrhine P3 and the platyrrhine P3 was excluded 

from the analyses. As a result, the Mantel and random skewers tests were conducted on 

33 dimensions of the incisors (LL and MD dimensions of all four incisors), canines (LL 

and MD dimensions of both canines), and postcanine dentition (BL and MD dimensions 

of P4–M3 and mesial-most maxillary premolar; oblique length, midcrown breadth, and 

honing surface length of the mesial-most mandibular premolar). 
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TABLE 6.1. Mantel tests for 33 dimensions of incisor, canine, and postcanine dental size. 
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Cercopithecus 
pogonias  

rM = 0.50 
p < 0.0001 

 
Z = 88.0 

p < 0.0001 

—    

Cercopithecus 
nictitans 

rM = 0.64 
p < 0.0001 

 
Z = 95.5 

p < 0.0001 

rM = 0.64 
p < 0.0001 

 
Z = 80.9 

p < 0.0001 

—   

Macaca  
fascicularis 

rM = 0.53 
p < 0.0001 

 
Z = 108.4 
p < 0.0001 

rM = 0.47 
p < 0.0001 

 
Z = 89.7 

p < 0.0001 

rM = 0.68 
p < 0.0001 

 
Z = 99.1 

p < 0.0001 

—  

Colobus 
satanas 

rM = 0.34 
p < 0.0001 

 
Z = 67.3 

p = 0.0001 

rM = 0.37 
p < 0.0001 

 
Z = 57.1 

p < 0.0001 

rM = 0.45 
p < 0.0001 

 
Z = 62.2 

p < 0.0001 

rM = 0.35 
p < 0.0001 

 
Z = 69.3 

p = 0.0001 

— 

Gorilla 
gorilla 

rM = 0.52 
p < 0.0001 

 
Z = 104.6 
p < 0.0001 

rM = 0.51 
p < 0.0001 

 
Z = 87.0 

p < 0.0001 

rM = 0.57 
p < 0.0001 

 
Z = 93.2 

p < 0.0001 

rM = 0.49 
p < 0.0001 

 
Z = 106.4 
p < 0.0001 

rM = 0.43 
p < 0.0001 

 
Z = 67.8 

p < 0.0001 

Pan 
troglodytes 

rM = 0.47 
p < 0.0001 

 
Z = 95.9 

p < 0.0001 

rM = 0.56 
p < 0.0001 

 
Z = 81.2 

p < 0.0001 

rM = 0.51 
p < 0.0001 

 
Z = 85.6 

p < 0.0001 

rM = 0.41 
p < 0.0001 

 
Z = 97.1 

p < 0.0001 

rM = 0.33 
p < 0.0001 

 
Z = 61.3 

p < 0.0001  

Hylobates 
 lar 

rM = 0.56 
p < 0.0001 

 
Z = 105.4 
p < 0.0001 

rM = 0.46 
p < 0.0001 

 
Z = 86.8 

p < 0.0001 

rM = 0.54 
p < 0.0001 

 
Z = 93.2 

p < 0.0001 

rM = 0.49 
p < 0.0001 

 
Z = 106.9  
p < 0.0001 

rM = 0.47 
p < 0.0001 

 
Z = 63.8 

p < 0.0001 

Cebus 
libidinosus 

rM = 0.40 
p < 0.0001 

 
Z = 84.7 

p < 0.0001 

rM = 0.34  
p < 0.0001 

 
Z = 70.0 

p < 0.0001 

rM = 0.42 
p < 0.0001 

 
Z = 75.1 

p < 0.0001 

rM = 0.45 
p < 0.0001 

 
Z = 87.3 

p < 0.0001 

rM = 0.33  
p < 0.0001 

 
Z = 54.7 

p < 0.0001  

Ateles 
geoffroyi 

rM = 0.51 
p < 0.0001 

 
Z = 122.3 
p < 0.0001 

rM = 0.47 
p < 0.0001 

 
Z = 101.0  
p < 0.0001 

rM = 0.47 
p < 0.0001 

 
Z = 101.0 
p < 0.0001 

rM = 0.26 
p = 0.0068 

 
Z = 121.3 
p = 0.0070 

rM = 0.29 
p = 0.0004 

 
Z = 76.7 

p = 0.0004 
(cont.) 
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TABLE 6.1 continued. 
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Pan 
troglodytes 

rM = 0.63 
p < 0.0001 

 
Z = 96.7 

p < 0.0001 

— — — 

Hylobates 
 lar 

rM = 0.51 
p < 0.0001 

 
Z = 103.5 
p < 0.0001 

rM = 0.42 
p < 0.0001 

 
Z = 93.3 

p < 0.0001 

— — 

Cebus 
libidinosus 

rM = 0.42 
p < 0.0001 

 
Z = 84.0 

p < 0.0001 

rM = 0.41 
p < 0.0001 

 
Z = 77.3 

p < 0.0001 

rM = 0.36 
p < 0.0001 

 
Z = 83.4 

p < 0.0001 

— 

Ateles 
geoffroyi 

rM = 0.32 
p < 0.0001 

 
Z = 118.6 
p < 0.0001 

rM = 0.40 
p < 0.0001 

 
Z = 109.8 
p < 0.0001 

rM = 0.42 
p < 0.0001 

 
Z = 120.0 
p < 0.0001 

rM = 0.29 
p < 0.0001 

 
Z = 121.9 
p < 0.0001 

 

 

 For the Mantel tests of correlation matrix similarity, all 45 one- and two-way 

comparisons are significantly different from zero at α = 0.0001 (Table 6.1). As the null 

hypothesis for the Mantel test is no relationship, the results indicate that all 10 anthropoid 

taxa have a similar pattern of correlation among the 33 characters. Though all 

comparisons indicate statistical similarity, three taxa have the lowest absolute matrix 

correlation values (rM): Colobus satanas, Ateles geoffroyi, and Cebus libidinosus. No 

matrix correlation for Colobus satanas is greater than rM = 0.47, no comparison involving 

Cebus libidinosus is greater than rM = 0.45, and no comparison involving Ateles geoffroyi  
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TABLE 6.2. Random Skewers Test for 33 dimensions of incisor, canine, and postcanine 
dental size. 
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Cercopithecus 
pogonias  

rRS = 0.86 
p < 0.0001  —    

Cercopithecus 
nictitans 

rRS = 0.89 
p < 0.0001  

rRS = 0.84 
p < 0.0001 —   

Macaca  
fascicularis 

rRS = 0.86 
p < 0.0001  

rRS = 0.79 
p < 0.0001 

rRS = 0.86 
p < 0.0001 —  

Colobus 
satanas 

rRS = 0.73 
p < 0.0001 

rRS = 0.74 
p < 0.0001 

rRS = 0.73  
p < 0.0001 

rRS = 0.68  
p < 0.0001 — 

Gorilla 
gorilla 

rRS = 0.81 
p < 0.0001 

rRS = 0.81 
p < 0.0001 

rRS = 0.78 
p < 0.0001 

rRS = 0.75 
p < 0.0001 

rRS = 0.73 
p < 0.0001  

Pan 
troglodytes 

rRS = 0.77 
p < 0.0001  

rRS = 0.81 
p < 0.0001 

rRS = 0.74 
p < 0.0001 

rRS = 0.73 
p < 0.0001 

rRS = 0.74 
p < 0.0001  

Hylobates 
 lar 

rRS = 0.78 
p < 0.0001  

rRS = 0.81 
p < 0.0001 

rRS = 0.74 
p < 0.0001 

rRS = 0.73 
p < 0.0001 

rRS = 0.74 
p < 0.0001  

Cebus 
libidinosus 

rRS = 0.45 
p = 0.0041 

rRS = 0.42 
p = 0.0072 

rRS = 0.39 
p = 0.0123 

rRS = 0.43 
p = 0.0054 

rRS = 0.35 
p = 0.0245 

Ateles 
geoffroyi 

rRS = 0.65 
p < 0.0001 

rRS = 0.62 
p < 0.0001 

rRS = 0.57 
p = 0.0001 

rRS = 0.61 
p < 0.0001 

rRS = 0.54 
p = 0.0002 
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Pan 
troglodytes 

rRS = 0.87 
p < 0.0001  — — — 

Hylobates 
 lar 

rRS = 0.87 
p < 0.0001  

rRS = 0.99 
p < 0.0001 — — 

Cebus 
libidinosus 

rRS = 0.47 
p = 0.0027 

rRS = 0.47 
p = 0.0025 

rRS = 0.47 
p = 0.0025 — 

Ateles 
geoffroyi 

rRS = 0.66 
p < 0.0001  

rRS = 0.68 
p < 0.0001 

rRS = 0.68 
p < 0.0001 

rRS = 0.78 
p < 0.0001  
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is greater than rM = 0.51 (Table 6.1). Explanations for these lower values are given at the 

end of this section.  

The results of the random skewers tests support those of the Mantel tests. All 45 

comparisons of variance-covariance among anthropoids are significantly different from 

rRS = 0 at α = 0.0001 (Table 6.2). As for the Mantel test, the null hypothesis for the 

random skewers test is no similarity. All ten anthropoid taxa have similar variance-

covariance structure for the 33 included characters. The same three taxa (Colobus 

satanas, Cebus libidinosus, and Ateles geoffroyi) that have low rMs also express the 

lowest absolute values of rRS. 

The Colobus satanas sample is numerically the smallest sample included in the 

analysis and the lower level of similarity to other samples reflects the uncertainty of 

correlation estimates at smaller sample sizes. Colobus satanas was noted to have 

aberrantly low r2 estimates for some character pairs in earlier chapters; for example, it has 

exceptionally low estimates for homologous dimensions of mandibular incisor size 

(Tables 3.3 and 3.5) and for comparisons of P4MD-P4BL (Table 4.1) and among 

mandibular molar MD length (Table 4.20). The lower level of similarity for both 

platyrrhines in comparison to the catarrhines suggests some divergence of 

correlation/variance-covariance structure between anthropoid infraorders. That variance-

covariance diverges over time simply due to the accumulation of neutral changes has 

been demonstrated in other studies of anthropoid covariance. de Oliveira et al. (2009) 

found that the magnitude of divergence in variance-covariance structure for cranial size 

traits was positively correlated with the time of divergence between taxa (see also, 

Schluter, 1996). The results of this study are consistent with that relationship, though it 

was not tested. It is also possible that the choice to treat the platyrrhine P2 and the 

catarrhine P3 as homologs in comparisons to other teeth affected these results. It was 



  197 

noted in chapter 4 that platyrrhines have lower levels of covariation for M3MD length 

than the catarrhines, which should also be reflected in the results of these tests. The low 

absolute value for the comparison of Ateles geoffroyi and Cebus libidinosus is not 

unexpected as well; in the analyses of Chapter 4, it was shown that Cebus libidinosus has 

relatively low estimates for premolar size covariation, while Ateles geoffroyi has high 

values for these comparisons. There is no apparent biological reason why those estimates 

of covariation should be so divergent in the two platyrrhine taxa. 

Not surprisingly, given the results of Chapters 3–5, the Mantel and random 

skewers tests indicate a strong conservation of dental variance-covariance and correlation 

structure among anthropoid primates. The hypothesis that constraints have been stable 

during anthropoid evolution is supported. 

 

The impact of pleiotropy on the evolution of characters 

In Chapters 3–5, the covariation of independent contrasts among species was 

investigated for a large sample of anthropoid primates as an informal test of the 

hypothesis that magnitudes of within species covariation affect the independence of 

characters among species. In this section, evidence for shared patterns of constraint and 

their impact on among species diversification are tested for a smaller sample of species. 

Pleiotropy is predicted to channel among-species character change along the line of least 

evolutionary resistance (gmax), which is estimated in this analysis as the eigenvector 

associated with the first principal component of dental size (pmax) (see Methods in 

Chapter 2). Patterns of variance-covariance have been shown to be similar among species 

(see above and Chapters 3–5), though some distinctions in the strength of covariance 

among characters were noted, which should be reflected as differences in pmax among 

taxa. If character change (Δz) between species occurred along a shared pmax, then Δz and  
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TABLE 6.3. Ɵpmax-pmax and the vector correlation, in parentheses, for all measures of 
incisor size. The comparisons that are significantly different from Ɵ = 0 are shaded grey. 
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pmax should exhibit a high vector correlation (i.e., Ɵpmax-Δz = 0°) (see Chapter 2). The 

hypothesis will be rejected if Ɵpmax-Δz is significantly different from Ɵ = 0°.These 

hypotheses are examined separately for dental size for each of the three 

functional/variational modules identified in Chapters 3–5 (incisors, postcanine, canine 

honing complex). The hypothesis that pmax is shared (i.e., Ɵpmax-pmax = 0°) will be 

rejected if Ɵpmax-pmax is significantly different from Ɵ = 0°. 

 

Incisor pmax and Δz: The hypothesis that anthropoids share a common incisor pmax (i.e., 

Ɵpmax-pmax = 0 for pairwise comparisons) is tested using the LL breadths and MD 

lengths of all four incisors (Table 6.3). For these eight measures, the hypothesis that pmax 

is constant among species is rejected in 22 out of 45 comparisons (49% of all 

comparisons). Several samples are distinctive among the 10 species analyzed; six of nine 

comparisons involving Cercopithecus pogonias are statistically different from Ɵ = 0°, 

eight of nine comparisons involving Macaca fascicularis are significantly different; four 

of nine Gorilla gorilla comparisons are significantly different; four of nine Colobus 

satanas comparisons are significantly different; and five of nine comparisons for both 

Cebus libidinosus and Ateles geoffroyi are significantly different. Estimates of pmax are 

quite variable in cercopithecid primates and often significantly different from other 

cercopithecids and from platyrrhines and hominoids; in contrast, between hominoids and 

between platyrrhines, pmax estimates are relatively stable, No comparisons between the 

hominoid species are significantly different from Ɵ = 0°. The comparison between the 

two platyrrhine taxa is significant, but the angle between them (14.0°) is small. Though 

many comparisons are significantly different from zero, many of the significant contrasts 

have small Ɵ values; only 18 of 45 comparisons have a Ɵ > 20°, which suggests that the 

bootstrapping procedure is a powerful test for detecting deviations from Ɵ = 0. The  
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TABLE 6.4.  Number of individuals from which incisor size pmax was estimated. 
 

Taxon Individuals preserving all 8 incisor measurements 
Gorilla gorilla 36 
Pan troglodytes 59 
Hylobates lar 28 

Cercopithecus cephus 56 
Cercopithecus nictitans 57 
Cercopithecus pogonias 37 

Macaca fascicularis 50 
Colobus satanas 37 
Ateles geoffroyi 48 

Cebus libidinosus 64 
 

 

largest Ɵs are not observed between catarrhines and platyrrhines, but rather in 

comparisons of cercopithecids to one another and comparisons of cercopithecids to both 

platyrrhines and hominoids. Cercopithecid pmax estimates are exceptionally variable. 

In the analysis of incisor modularity (Chapter 3), the estimated strength of r2 

among cercopithecids was shown to be variable and to be lower on average than for 

platyrrhines and hominoids (especially in MD lengths). Since r2s capture information 

about the covariance structure among characters and pmax reflects both variance and 

covariance, it is not surprising that estimates of the cercopithecid incisor pmax are so 

variable among species. However, the extent to which this variation reflects biological 

reality is not clear; relative to the total sample size, there are fewer individuals for which 

all 8 incisor measurements could be recorded (Table 6.4), which means that the 

eigenvectors were estimated from a smaller sample than the estimates of r2 for most 

incisor character pairs (Chapter 3). Undoubtedly, this introduces stochastic variation into 

the estimates of pmax. In fact, other studies of variance-covariance have found that 

sampling errors scale inversely with sample size (Ackermann, 2010). Given the reduction  
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TABLE 6.5. Ɵpmax-pmax and the angular correlation coefficient, in parentheses, for 
incisor breadths only. The comparisons that are significantly different from Ɵ = 0 are 

shaded grey. 
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in sample size associated with calculating incisor pmax using all eight measures of size, it 

is far more likely that the r2 estimates reflect true population values than the pmax 

estimates do. 

As incisors tend to be MD longest near their edges, even modest incisal wear 

results in a severe reduction in the number of individuals for which MD length can be 

measured (Table 6.4). In contrast, they tend to be LL broadest near their cervices and so 

breadths are for more numerous in the incisor data set. To determine if LL breadths share 

a common line of least evolutionary resistance, pmax was estimated using only LL 

breadths (Table 6.5). Sixteen out of 45 LL comparisons (36%) are significantly different 

from Ɵ = 0°, suggesting that results using the total data set were affected by stochastic 

variation associated with small sample sizes. As for the analysis that included all incisor 

measures, it is principally comparisons involving Gorilla gorilla, Cercopithecus 

pogonias, and Macaca fascicularis that are significantly different from Ɵ = 0°. Overall, 

the absolute values of Ɵ tend to be quite low; in fact, only 2 comparisons (both involving 

Gorilla gorilla) are greater than Ɵ = 20.0°. The results of the two analyses of incisor size 

indicate that pmax is similar, but not identical, among anthropoid primates. The results do 

not suggest any obvious taxonomic division of patterns for pmax. Instead, the hypothesis 

that the variation observed is stochastic (at least for the cercopithecids) deserves further 

evaluation. 

The correspondence of Δz to an estimate of incisor size pmax for each species was 

investigated. The null hypothesis for the comparisons is Ɵ = 0 (i.e., that the vector 

describing the among species differences is in line with the maximum vector of 

phenotypic covariance); a rejection of the null hypothesis indicates that Δz is not aligned 

with pmax. When all eight dimensions of incisor size are considered, 81 out of 90 

comparisons are significantly different from zero (Table 6.6). In some cases, the Ɵ values  
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TABLE 6.6. Ɵpmax-Δz for 8 incisor dimensions. Those comparisons that are significantly 
different from Ɵ = 0 are shaded grey. 
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Cercopithecus 
pogonias — 

Ɵ = 37.1 
rƟ = 0.80 

p < 0.0001 

Ɵ = 62.9 
rƟ = 0.46 

p = 0.0003 

Ɵ = 18.5 
rƟ = 0.95 

p < 0.0000 

Ɵ = 45.3 
rƟ = 0.70 

p = 0.0168 

Cercopithecus 
nictitans 

Ɵ = 32.7 
rƟ = 0.84 

p = 0.0007 
— 

Ɵ = 45.7 
rƟ = 0.70 

p < 0.0001 

Ɵ = 15.4 
rƟ = 0.96 

p = 0.0047 

Ɵ = 54.8 
rƟ = 0.58 

p = 0.0041 

Cercopithecus 
cephus 

Ɵ = 60.2 
rƟ = 0.50 

p = 0.0103 

Ɵ = 36.7 
rƟ = 0.80 

p < 0.0001 
— 

Ɵ = 15.6 
rƟ = 0.96 

p = 0.0009 

Ɵ = 51.2 
rƟ = 0.63 

p = 0.0070 

Macaca 
fascicularis 

Ɵ = 23.1 
rƟ = 0.92 
p = 0. 001 

Ɵ = 31.9 
rƟ = 0.85 

p = 0.0003 

Ɵ = 26.1 
rƟ = 0.90 
p <0.0001 

— 
Ɵ = 40.3 
rƟ = 0.76 

p < 0.0001 

Colobus  
satanas 

Ɵ = 40.3 
rƟ = 0.76 

p < 0.0001 

Ɵ = 44.9 
rƟ = 0.71 

p < 0.0001 

Ɵ = 47.4 
rƟ = 0.68 

p < 0.0001 

Ɵ = 44.6 
rƟ = 0.71 

p < 0.0001 
— 

Gorilla 
 gorilla 

Ɵ = 14.0 
rƟ = 0.97 

p = 0.0147 

Ɵ = 13.3 
rƟ = 0.97 

p = 0.0738 

Ɵ = 16.7 
rƟ = 0.96 

p < 0.0001 

Ɵ = 38.9 
rƟ = 0.78 

p < 0.0001 

Ɵ = 32.8 
rƟ = 0.84 

p < 0.0001 

Pan  
troglodytes 

Ɵ = 15.0 
rƟ = 0.97 

p = 0.0129 

Ɵ = 12.9 
rƟ = 0.97 

p = 0.0595 

Ɵ = 15.4 
rƟ = 0.96 

p < 0.0001 

Ɵ = 37.3 
rƟ = 0.80 

p < 0.0001 

Ɵ = 60.1 
rƟ = 0.50 

p < 0.0001 

Hylobates 
 lar 

Ɵ = 81.6 
rƟ = 0.15 

p < 0.0001 

Ɵ = 56.0 
rƟ = 0.56 

p < 0.0001 

Ɵ = 65.1 
rƟ = 0.42 

p = 0.0002 

Ɵ = 23.2 
rƟ = 0.92 

p = 0.0002 

Ɵ = 41.3 
rƟ = 0.75 

p = 0.0095 

Ateles 
 geoffroyi 

Ɵ = 88.1 
rƟ = 0.03 

p < 0.0001 

Ɵ = 67.2 
rƟ = 0.39 

p < 0.0001 

Ɵ = 75.0 
rƟ = 0.26 

p < 0.0001 

Ɵ = 32.4 
rƟ = 0.84 

p < 0.0001 

Ɵ = 34.6 
rƟ = 0.82 

p = 0.0298 

Cebus 
libidinosus 

Ɵ = 74.6 
rƟ = 0.27 

p < 0.0001 

Ɵ = 57.6 
rƟ = 0.54 

p < 0.0001 

Ɵ = 60.9 
rƟ = 0.49 

p < 0.0001 

Ɵ = 32.6 
rƟ = 0.84 

p < 0.0001 

Ɵ = 34.2 
rƟ = 0.83 

p = 0.0266 
(cont.) 
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TABLE 6.6. continued. 
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Cerco. 
pogonias 

Ɵ = 15.2 
rƟ = 0.97 

p = 0.0281 

Ɵ = 6.0 
rƟ = 0.99 

p = 0.3091 

Ɵ = 83.6 
rƟ = 0.11 

p < 0.0001 

Ɵ = 76.9 
rƟ = 0.23 

p < 0.0001 

Ɵ = 87.0 
rƟ = 0.05 

p < 0.0001 

Cerco. 
nictitans 

Ɵ = 15.0 
rƟ = 0.97 

p = 0.0273 

Ɵ = 5.3 
rƟ = 1.00 

p = 0.3886 

Ɵ = 65.1 
rƟ = 0.42 

p = 0.0002 

Ɵ = 63.5 
rƟ = 0.45 

p < 0.0001 

Ɵ = 70.7 
rƟ = 0.33 

p < 0.0001 

Cerco.  
cephus 

Ɵ = 14.4 
rƟ = 0.97 

p = 0.0343 

Ɵ = 5.2 
rƟ = 1.00 

p = 0.3895 

Ɵ = 80.4 
rƟ = 0.17 

p < 0.0001 

Ɵ = 75.0 
rƟ = 0.26 

p < 0.0001 

Ɵ = 86.2 
rƟ = 0.07 

p < 0.0001 

Macaca 
fascicularis 

Ɵ = 17.3 
rƟ = 0.95 

p = 0.0192 

Ɵ = 10.1 
rƟ = 0.98 

p = 0.0826 

Ɵ = 37.5 
rƟ = 0.79 

p = 0.0290 

Ɵ = 37.3 
rƟ = 0.80 

p < 0.0001 

Ɵ = 40.4 
rƟ = 0.76 

p < 0.0001 

Colobus 
satanas 

Ɵ = 22.6 
rƟ = 0.92 

p = 0.0052 

Ɵ = 19.7 
rƟ = 0.94 

p < 0.0001 

Ɵ = 11.2 
rƟ = 0.98 

p = 0.4304 

Ɵ = 16.2 
rƟ = 0.96 

p < 0.0001 

Ɵ = 20.4 
rƟ = 0.94 

p < 0.0001 

Gorilla 
 gorilla — 

Ɵ = 37.1 
rƟ = 0.80 

p = 0.0002 

Ɵ = 23.1 
rƟ = 0.92 

p = 0.1389 

Ɵ = 20.8 
rƟ = 0.94 

p < 0.0001 

Ɵ = 14.1 
rƟ = 0.97 

p = 0.0137 

Pan 
troglodytes 

Ɵ = 37.5 
rƟ = 0.79 

p < 0.0001 
— 

Ɵ = 20.3 
rƟ = 0.94 

p < 0.0001 

Ɵ = 19.6 
rƟ = 0.94 

p < 0.0001  

Ɵ = 13.8 
rƟ = 0.97 

p = 0.0088 

Hylobates 
 lar 

Ɵ = 17.8 
rƟ = 0.95 

p = 0.0142 

Ɵ = 8.1 
rƟ = 0.99 

p = 0.1491 
— 

Ɵ = 81.6 
rƟ = 0.15 

p < 0.0001 

Ɵ = 70.0 
rƟ = 0.34 

p < 0.0001 

Ateles 
geoffroyi 

Ɵ = 18.2 
rƟ = 0.95 

p = 0.0157 

Ɵ = 9.2 
rƟ = 0.99 

p = 0.1179 

Ɵ = 64.6 
rƟ = 0.43 

p < 0.0001 

Ɵ = 55.8 
rƟ = 0.56 

p < 0.0001 
— 

Cebus 
libidinosus 

Ɵ = 19.6 
rƟ = 0.94 

p = 0.0091 

Ɵ = 10.7 
rƟ = 0.98 

p = 0.0684 

Ɵ = 85.9 
rƟ = 0.07 

p < 0.0001 
— 

Ɵ = 52.8 
rƟ = 0.60 
p = 1.000 
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TABLE 6.7. Ɵpmax-Δz for incisor breadths. Those comparisons that are significantly 
different from Ɵ = 0 are shaded grey. 
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Cercopithecus 
pogonias — 

Ɵ = 42.6 
rƟ = 0.74 

p = 0.0308 

Ɵ = 68.5 
rƟ = 0.37 

p < 0.0001 

Ɵ = 11.7 
rƟ = 0.98 

p < 0.0001 

Ɵ = 18.9 
rƟ = 0.95 

p = 0.1995 

Cercopithecus 
nictitans 

Ɵ = 44.4 
rƟ = 0.71 

p = 0.0004 
— 

Ɵ = 56.0 
rƟ = 0.56 

p < 0.0001 

Ɵ = 11.8  
rƟ = 0.98 

p < 0.0001 

Ɵ = 16.7 
rƟ = 0.96 

p = 0.2469 

Cercopithecus 
cephus 

Ɵ = 59.2 
rƟ = 0.51 

p < 0.0001 

Ɵ = 42.9 
rƟ = 0.73 

p = 0.0001 
— 

Ɵ = 12.1 
rƟ = 0.98 

p < 0.0001 

Ɵ = 20.8 
rƟ = 0.94 

p = 0.1403 

Macaca 
fascicularis 

Ɵ = 10.5 
rƟ = 0.98 

p = 0.0266 

Ɵ = 23.6 
rƟ = 0.92 

p = 0.0004 

Ɵ = 17.7 
rƟ = 0.95 

p < 0.0001 
— 

Ɵ = 62.4 
rƟ = 0.46 

p = 0.0001 

Colobus satanas 
Ɵ = 22.3 
rƟ = 0.93 

p = 0.0004 

Ɵ = 15.4 
rƟ = 0.96 

p = 0.4932 

Ɵ = 33.1 
rƟ = 0.84 

p < 0.0001 

Ɵ = 80.3 
rƟ = 0.17 

p < 0.0001 
— 

Gorilla gorilla 
Ɵ = 11.7 
rƟ = 0.98 

p = 0.0087 

Ɵ = 8.6 
rƟ = 0.99 

p = 0.4439 

Ɵ = 17.9 
rƟ = 0.95 

p < 0.0001 

Ɵ = 19.2 
rƟ = 0.94 

p < 0.0001 

Ɵ = 12.9 
rƟ = 0.97 

p = 0.2752 

Pan troglodytes 
Ɵ = 8.5 

rƟ = 0.99 
p = 0.0536 

Ɵ = 6.5 
rƟ = 0.99 

p = 0.7127 

Ɵ = 15.5 
rƟ = 0.96 

p < 0.0001 

Ɵ = 16.1 
rƟ = 0.96 

p < 0.0001 

Ɵ = 15.6 
rƟ = 0.96 

p = 0.1266 

Hylobates lar 
Ɵ = 65.9 
rƟ = 0.41 

p < 0.0001 

Ɵ = 51.1 
rƟ = 0.63 

p < 0.0001 

Ɵ = 59.0 
rƟ = 0.52 

p < 0.0001 

Ɵ = 17.5 
rƟ = 0.95 

p < 0.0001 

Ɵ = 9.1 
rƟ = 0.99 

p = 0.4292 

Ateles geoffroyi 
Ɵ = 81.1 
rƟ = 0.15 

p < 0.0001 

Ɵ = 86.0 
rƟ = 0.07 

p < 0.0001 

Ɵ = 88.0 
rƟ = 0.03 

p < 0.0001 

Ɵ = 22.1 
rƟ = 0.93 

p < 0.0001 

Ɵ = 13.5 
rƟ = 0.97 

p = 0.2350 

Cebus 
libidinosus 

Ɵ = 84.5 
rƟ = 0.10 

p < 0.0001 

Ɵ = 701 
rƟ = 0.34 

p < 0.0001 

Ɵ = 75.6 
rƟ = 0.25 

p < 0.0001 

Ɵ = 21.2 
rƟ = 0.93 

p < 0.0001 

Ɵ = 11.4  
rƟ = 0.98 

p = 0.2414 
(cont.)   
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TABLE 6.7 continued 
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Cerco. 
pogonias 

Ɵ = 11.0 
rƟ = 0.98 

p = 0.0031 

Ɵ = 5.1 
rƟ = 1.0 

p = 0.0556 

Ɵ = 60.9 
rƟ = 0.49 

p = 0.0006 

Ɵ = 88.8 
rƟ = 0.02 

p < 0.0001 

Ɵ = 75.2 
rƟ = 0.26 

p < 0.0001 

Cerco. 
nictitans 

Ɵ = 11.7 
rƟ = 0.98 

p = 0.0021 

Ɵ = 5.2 
rƟ = 1.0 

p = 0.0620 

Ɵ = 45.0 
rƟ = 0.71 

p = 0.0012 

Ɵ = 74.0 
rƟ = 0.28 

p < 0.0001 

Ɵ = 87.4 
rƟ = 0.04 

p < 0.0001 

Cerco. cephus 
Ɵ = 10.3 
rƟ = 0.98 

p = 0.0060 

Ɵ = 5.9 
rƟ = 0.99 

p = 0.0284 

Ɵ = 66.3 
rƟ = 0.40 

p = 0.0001 

Ɵ = 87.1 
rƟ = 0.05 

p < 0.0001 

Ɵ = 72.5 
rƟ = 0.30 

p < 0.0001 

Macaca 
fascicularis 

Ɵ = 10.8 
rƟ = 0.98 

p = 0.0034 

Ɵ = 7.9 
rƟ = 0.99 

p = 0.0022 

Ɵ = 23.2 
rƟ = 0.92 

p = 0.0117 

Ɵ = 35.2 
rƟ = 0.82 

p < 0.0001 

Ɵ = 35.1 
rƟ = 0.82 

p < 0.0001 

Colobus 
satanas 

Ɵ = 16.2 
rƟ = 0.96 

p = 0.0004 

Ɵ = 6.8 
rƟ = 0.99 

p = 0.0110 

Ɵ = 5.2 
rƟ = 1.00 

p = 0.4256 

Ɵ = 11.4 
rƟ = 0.98 

p = 0.0010 

Ɵ = 8.7 
rƟ = 0.99 

p = 0.0830 

Gorilla gorilla — 
Ɵ = 30.8 
rƟ = 0.86 

p < 0.0001 

Ɵ = 6.3 
rƟ = 0.99 

p = 0.3063 

Ɵ = 10.2 
rƟ = 0.98 

p = 0.0035 

Ɵ = 14.2 
rƟ = 0.97 

p < 0.0001 

Pan 
troglodytes 

Ɵ = 35.6 
rƟ = 0.81 

p < 0.0001 
— 

Ɵ = 3.2 
rƟ = 1.00 

p = 0.6606 

Ɵ = 10.0 
rƟ = 0.98 

p = 0.0024 

Ɵ = 8.5 
rƟ = 0.99 

p = 0.0440 

Hylobates lar 
Ɵ = 15.3 
rƟ = 0.96 

p = 0.0004 

Ɵ = 6.0 
rƟ = 0.99 

p = 0.0334 
— 

Ɵ = 40.7 
rƟ = 0.76 

p < 0.0001 

Ɵ = 27.8 
rƟ = 0.88 

p < 0.0001 

Ateles 
geoffroyi 

Ɵ = 5.3 
rƟ = 1.00 

p = 0.2043 

Ɵ = 6.4 
rƟ = 0.99 

p = 0.0222 

Ɵ = 27.1 
rƟ = 0.89 

p = 0.0030 

Ɵ = 60.4 
rƟ = 0.49 

p < 0.0001 
— 

Cebus 
libidinosus 

Ɵ = 15.2 
rƟ = 0.96 

p = 0.0231 

Ɵ = 7.8 
rƟ = 0.99 

p = 0.0050 

Ɵ = 43.5 
rƟ = 0.73 

p = 0.0017 
— 

Ɵ = 60.1 
rƟ = 0.50 

p < 0.0001 
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TABLE 6.8. Magnitude of difference for 8 dimensions of incisor size, calculated as the 
vector length of Δz.  
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Cercopithecus 
nictitans 

Δz mag = 
 0.75 — — — — 

Cercopithecus 
cephus 

Δz mag = 
 0.41 

Δz mag = 
 0.54 — — — 

Macaca 
fascicularis 

Δz mag = 
 2.66 

Δz mag = 
 2.21 

Δz mag = 
 2.58 — — 

Colobus 
satanas 

Δz mag = 
 3.53 

Δz mag = 
3.14  

Δz mag = 
 3.52 

Δz mag = 
 2.26 — 

Gorilla  
gorilla 

Δz mag = 
 16.81 

Δz mag = 
 16.14 

Δz mag = 
 16.58 

Δz mag = 
 14.46 

Δz mag = 
 14.18 

Pan 
troglodytes 

Δz mag = 
 14.79 

Δz mag = 
 14.15 

Δz mag = 
 14.59 

Δz mag = 
 12.41 

Δz mag = 
 12.07 

Hylobates  
lar 

Δz mag = 
 1.52 

Δz mag = 
 1.63 

Δz mag = 
 1.60 

Δz mag = 
 3.43 

Δz mag = 
 3.43 

Cebus 
libidinosus 

Δz mag = 
 1.93 

Δz mag = 
 2.23 

Δz mag = 
 2.13 

Δz mag = 
 3.74 

Δz mag = 
 3.54 

Ateles 
geoffroyi 

Δz mag = 
 1.43 

Δz mag = 
 1.62 

Δz mag = 
 1.59 

Δz mag = 
 3.16 

Δz mag = 
 3.05 
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Pan 
troglodytes 

Δz mag = 
 2.37 — — — 

Hylobates 
lar 

Δz mag = 
 17.01 

Δz mag = 
 14.99 — — 

Cebus 
libidinosus 

Δz mag = 
 17.45 

Δz mag = 
 15.42 

Δz mag = 
 1.08 — 

Ateles 
geoffroyi 

Δz mag = 
 16.86 

Δz mag = 
 14.82 

Δz mag = 
 0.86 

Δz mag = 
 0.89 
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TABLE 6.9. Mean incisor size (mm) for Ateles geoffroyi and Cebus libidinosus. The taxon 
with the larger mean value is shaded in grey. 

 
 I1MD I1LL I2MD I2LL I1MD I1LL I2MD I2LL 

Ateles 
geoffroyi 3.6 3.0 4.2 3.4 4.3 4.6 4.1 3.6 

Cebus 
libidinosus 3.5 2.6 3.9 2.9 4.1 4.3 4.3 3.7 

Difference 0.1 0.4 0.3 0.5 0.2 0.3 0.2 0.1 
 

TABLE 6.10. Incisor pmax for 8 dimensions of Ateles geoffroyi and Cebus libidinosus. 
 

 I1MD I1LL I2MD I2LL I1MD I1LL I2MD I2LL 
Ateles 

geoffroyi 0.261 0.267 0.349 0.326 0.482 0.379 0.416 0.290 

Cebus 
libidinosus 0.415 0.205 0.435 0.252 0.387 0.350 0.467 0.212 

 

 

 

 

Fig. 6.1. 95% confidence ellipses for I1LL (x-axis) and I2LL (y-axis) for three guenon 
species. The three species are similar in their means and range of values but minimally 
different in incisor size. 
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Fig. 6.2. I1LL (x-axis) and I2LL (y-axis) breadth in guenons and platyrrhines. The 
distributions for the platyrrhines and guenons do not overlap significantly and the 
difference between the clades could not have accumulated along the pmax associated 
with either extant platyrrhines or extant guenons. 
 

 
 
 
 
 
 

TABLE 6.11. Mandibular incisor LL breadths (mm) for guenons and platyrrhines. 
 

 I1LL I2LL I1LL/I2LL 
Ateles geoffroyi 3.0 3.4 0.88 

Cebus libidinosus 2.6 2.9 0.90 
Cercopithecus cephus 4.0 3.9 1.03 

Cercopithecus nictitans 4.0 4.0 1.00 
Cercopithecus pogonias 4.1 3.9 1.05 

 

 

 



  210 

are quite high (30 out of 90 estimates are greater than Ɵ = 45°). The highest Ɵ values are 

observed between guenons, between guenons and platyrrhines, and between guenons and 

Hylobates lar. The reasons for the large Ɵ values are explored below. 

To determine if the more numerously represented incisor breadths evolve along a 

shared pmax, the correspondence of pmax and Δz was investigated for incisor LL breadths 

only (Table 6.7). For the incisor breadths, 71 out of 90 comparisons are significantly 

different from zero. Thus, the vast majority of comparisons for the both the complete 

incisor data set and for breadths only do not indicate a divergence along a shared pmax. 

The unavoidable conclusion of these analyses is that incisor change among species is 

frequently not aligned with pmax. Assuming that selection has driven the among species 

diversification in incisor size, then selection vectors have not frequently been aligned 

with pmax, which indicates that pmax itself is not aligned with adaptive peaks of an 

adaptive landscape (e.g., Arnold, 2005).  

Many of the large Ɵpmax–Δz values are observed between taxa that have incisors 

of similar size. For example, the Ɵpmax–Δz between Cebus libidinosus and Ateles 

geoffroyi is greater than 50° using either taxon’s estimate of pmax (Table 6.7). No 

difference between the incisor sizes of these taxa exceeds 0.5 mm (Tables 6.8 and 6.9). In 

six of eight dimensions, the Ateles geoffroyi mean is larger; however, for two of eight of 

dimensions the Cebus libidinosus mean is larger. As pmax in both Cebus libidinosus and 

Ateles geoffroyi predicts positive divergence for all characters (Table 6.10), the difference 

between the two platyrrhine taxa is not consistent with divergence along pmax. 

The lack of correspondence of incisor Δz to pmax in the guenons can be explained 

as the result of minimal divergence among the taxa. In Figure 6.1, the 95% confidence 

ellipses for Cercopithecus cephus, Cercopithecus nictitans, and Cercopithecus pogonias 

are plotted for I1LL and I2LL. It is evident that the means and ranges are nearly identical 
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in the three guenon species (Table 6.8 and 6.11). Though Ɵpmax–Δz values indicate that 

differences between them have not accumulated as a result of change along pmax, this is 

because the guenons are only minimally different (if at all) in size to begin with. 

The difference between the two platyrrhine taxa and the guenons is not consistent 

with divergence along a shared pmax. In Figure 6.2, the LL dimensions of the I1 and I2 are 

plotted for Cebus libidinosus, Ateles geoffroyi, Cercopithecus cephus, Cercopithecus 

nictitans, and Cercopithecus pogonias. The two dimensions are strongly correlated within 

all species, but, for a given I1LL breadth, the guenons have a narrower I2LL breadth 

(Table 6.11). As a result, the point clouds for the guenons and the platyrrhines minimally 

overlap. The differences between platyrrhines and guenons for these dimensions did not 

accumulate as a result of change along a pmax that characterizes either platyrrhines or 

guenons. It must be born in mind that catarrhines and platyrrhines diverged 

approximately 43 million years ago (Steiper and Young, 2006). As genetic constraints 

have been shown to be most powerful in the short term (e.g., Schluter, 1996), divergence 

between platyrrhines and catarrhines relative to an estimate of pmax derived from the 

opposite infraorder should be expected. 

 

Postcanine pmax and Δz: For catarrhine primates, only four of 28 comparisons involving 

pmax are significantly different from Ɵ = 0° (three of these involve Gorilla gorilla). 

Catarrhine primates, therefore, share a common pmax for postcanine size (Table 6.12). In 

contrast, 13 of 16 comparisons of pmax between platyrrhines and catarrhines are 

significantly different from Ɵ = 0°, indicating that the platyrrhines and catarrhines do not 

share the same pmax for postcanine dental size (Table 6.12). 
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TABLE 6.12. Ɵpmax-pmax and the angular correlation for the MD length and BL breadth 
of P4–M3. Those comparisons that are significantly different from Ɵ = 0 are shaded 

grey. 
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TABLE 6.13. Ɵpmax-Δz and the angular correlation for the MD length and BL breadth of 
P4–M3. Those comparisons that are significantly different from Ɵ = 0 are shaded grey. 
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TABLE 6.13. continued 
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Fig. 6.3. Relationship between P4BL and M1BL in anthropoid primates. P4 and M1 
breadth occupy a narrow range of morphospace, which explains why pmax and Δz are 
similarly oriented in anthropoids. This figure also shows why the pmax of catarrhines and 
platyrrhines are poor predictors of Δz between them for these two variables; the 
platyrrhines have wider P4s for a given M1 breadth than do the catarrhines. This figure 
was compiled using the following sample sizes: cercopithecine 441, colobine 165, 
hominid 307, hylobatid 97, platyrrhine 220, total 1230. 
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Fig. 6.4. Relationship between P4 MD and M1 MD in anthropoid primates. Like the 
breadths of the P4 and M1, P4 and M1 MD length occupy a narrow band of phenotypic 
space; however, there are clearly differences in the placement of taxa relative to one 
another. This explains why the angle between pmax and Δz is greater than Ɵ = 0°. This 
figure was compiled using the following sample sizes (cercopithecine 452, colobine 170, 
hominid 332, hylobatid 151, platyrrhine 252, total 1357). 
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Despite sharing a common pmax, differences among catarrhine taxa have not 

accumulated along this pmax, as almost all estimates of Ɵpmax–Δz are significantly 

different from Ɵ = 0° (Table 6.13). Only the comparisons between hominoid taxa 

indicate that divergence has accumulated along this axis. Because platyrrhines and 

catarrhines do not share a similar pmax, the differences between them are not consistent 

with change along a shared pmax. Explanations for the high Ɵpmax–Δz values are explored 

below. 

As for the incisors, the guenons exhibit high values for Ɵpmax–Δz but minimal 

divergence in postcanine size; Δz is essentially 0 among the guenons. Comparisons of 

platyrrhines to catarrhines show that primary differences are in the size of the premolars 

relative to the size of the molars. All catarrhine primates fall in a narrow band of 

phenotypic space for P4BL and M1BL breadth (Figure 6.3), but for a given molar breadth, 

the platyrrhine P4 is broader. Another example of divergence is observed when P4MD 

length is compared to M1MD length (Figure 6.4). Here, the difference is not simply 

between catarrhines and platyrrhines; there are many gradistic shifts in premolar length, 

relative to molar length. The cercopithecids have relatively longer P4s than do hominids, 

Gorilla has a relatively shorter P4 than Pan, the Cebus P4 is MD longer relative M1MD  

length than is the Ateles P4, and hylobatids have longer P4s, relative to M1 MD, than do 

hominids. Some of the highlighted contrasts in relative P4 size capture potential 

differences in diet (e.g., Cebus vs. Ateles, Gorilla vs. Pan); however, without examining 

the functional morphology and diets for all of these contrasts, it cannot be determined 

with certainty that the departures represent adaptations to differing diets. If that is the 

case, then it makes a strong argument for selection driving postcanine Δz into dimensions 

not aligned with pmax. Though both examples (Figures 6.3 and 6.4) show that anthropoid 

postcanine size falls in a narrow band of phenotypic space, the highlighted contrasts  
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TABLE 6.13. Ɵpmax-pmax and the vector correlation, in parentheses, for 7 dimensions of 
the canine honing complex in females. Those comparisons that are significantly different 

from zero are shaded grey. 
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TABLE 6.14. Ɵpmax-pmax and the vector correlation, in parentheses, for 7 dimensions of 
the canine honing complex in males. Those comparisons that are significantly different 

from zero are shaded grey. 
 

 Cercopithecus 
cephus 

Gorilla 
gorilla 

Pan 
troglodytes

Gorilla 
gorilla 

Ɵ = 22.3 
rƟ = 0.93 

p = 0.1499 
— — 

Pan 
troglodytes 

Ɵ = 16.2 
rƟ = 0.96 

p = 0.1737 

Ɵ = 24.1 
rƟ = 0.91 

p = 0.2105 
— 

Cebus 
libidinosus 

Ɵ = 19.8 
rƟ = 0.94 

p = 0.0412 

Ɵ = 11.0 
rƟ = 0.98 

p = 0.6646 

Ɵ = 25.1 
rƟ = 0.91 

p = 0.0618 
 

 

provide morphological support for the observation that postcanine Δz between 

platyrrhines and catarrhines, and between many catarrhine taxa, did not accumulate as a 

result of change along a shared pmax. 

 

Canine honing complex pmax and Δz: In previous sections of this chapter, it was noted 

that the calculation of pmax for a suite of characters requires that all measurements be 

present in all individuals. As a result, the pmax estimates are based on fewer individuals 

than r2 values for character pairs. This is especially problematic for the canine honing 

complex, where natural wear and post-mortem breakage significantly reduces the number 

of individuals for which canine heights can be estimated (Leigh et al., 2008; personal 

observation). Unlike the other dental elements, the honing complex is highly size 

dimorphic, making it difficult to justify pooling males and females in the analysis. 

Estimates of canine honing complex pmax and Δz are considered separately for males and 

females and are restricted to only those taxa in which canine heights are well represented. 

Canine height sample sizes are sufficient for all female samples to be analyzed, but only  
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TABLE 6.15. Ɵpmax-Δz for female honing complex. Those comparisons that are 
significantly different from Ɵ = 0 are shaded grey. 
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Cerco. 
pogonias — 

Ɵ = 31.3 
rƟ = 0.85 

p = 0.0359 

Ɵ = 40.8 
rƟ = 0.76 

p = 0.0644 

Ɵ = 37.6 
rƟ = 0.79 

p = 0.0201 

Ɵ = 70.7 
rƟ = 0.33 

p < 0.0001 

Cerco. 
nictitans 

Ɵ = 15.4 
rƟ = 0.96 

p = 0.2047 
— 

Ɵ = 29.5 
rƟ = 0.87 

p = 0.0469 

Ɵ = 81.1 
rƟ = 0.15 

p < 0.0001 

Ɵ = 82.4 
rƟ = 0.13 

p < 0.0001 

Cerco. 
cephus 

Ɵ = 30.1 
rƟ = 0.87 

p = 0.3674 

Ɵ = 49.4 
rƟ = 0.65 

p = 0.0017 
— 

Ɵ = 53.1 
rƟ = 0.60 

p = 0.0044 

Ɵ = 81.3 
rƟ = 0.15 

p < 0.0001 

Macaca 
fascicularis 

Ɵ = 60.6 
rƟ = 0.49 

p = 0.0002 

Ɵ = 60.9 
rƟ = 0.49 

p = 0.0139 

Ɵ = 65.9 
rƟ = 0.41 

p < 0.0001 
— 

Ɵ = 85.9 
rƟ = 0.07 

p < 0.0001 

Colobus 
satanas 

Ɵ = 74.1 
rƟ = 0.27 

p < 0.0001 

Ɵ = 65.5 
rƟ = 0.42 

p = 0.0132 

Ɵ = 68.4 
rƟ = 0.39 

p < 0.0001 

Ɵ = 80.6 
rƟ = 0.16 

p < 0.0001 
— 

Gorilla 
gorilla 

Ɵ = 42.1 
rƟ = 0.74 

p = 0.0034 

Ɵ = 57.5 
rƟ = 0.54 

p < 0.0001 

Ɵ = 27.8 
rƟ = 0.88 

p = 0.0164 

Ɵ = 22.9 
rƟ = 0.92 

p = 0.2121 

Ɵ = 35.0 
rƟ = 0.82 

p = 0.0040 

Pan 
troglodytes 

Ɵ = 42.8 
rƟ = 0.73 

p = 0.0029 

Ɵ = 57.1 
rƟ = 0.54 

p < 0.0001 

Ɵ = 26.3 
rƟ = 0.90 

p = 0.0239 

Ɵ = 29.0 
rƟ = 0.87 

p = 0.1692 

Ɵ = 35.8 
rƟ = 0.81 

p = 0.0049 

Hylobates 
lar 

Ɵ = 28.5 
rƟ = 0.88 

p = 0.1309 

Ɵ = 34.3 
rƟ = 0.83 

p = 0.0718 

Ɵ = 20.7 
rƟ = 0.94 

p = 0.1011 

Ɵ = 49.5 
rƟ = 0.65 

p = 0.1327 

Ɵ = 44.4 
rƟ = 0.71 

p = 0.0014 

Ateles 
geoffroyi 

Ɵ = 83.1 
rƟ = 0.12 

p < 0.0001 

Ɵ = 45.8 
rƟ = 0.70 

p = 0.0236 

Ɵ = 86.9 
rƟ = 0.05 

p < 0.0001 

Ɵ = 55.7 
rƟ = 0.56 

p = 0.0029 

Ɵ = 57.8 
rƟ = 0.53 

p < 0.0001 

Cebus 
libidinosus 

Ɵ = 74.9 
rƟ = 0.26 

p < 0.0001 

Ɵ = 85.8 
rƟ = 0.07 

p < 0.0001 

Ɵ = 64.9 
rƟ = 0.42 

p = 0.0004 

Ɵ = 89.3 
rƟ = 0.01 

p < 0.0001 

Ɵ = 89.4 
rƟ = 0.01 

p < 0.0001 
(cont.) 
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TABLE 6.15 continued 
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Cerco. 
pogonias 

Ɵ = 32.1 
rƟ = 0.85 

p = 0.0037 

Ɵ = 18.1 
rƟ = 0.95 

p = 0.2607 

Ɵ = 21.8 
rƟ = 0.93 

p = 0.7574 

Ɵ = 60.2 
rƟ = 0.50 

p = 0.0009 

Ɵ = 54.2 
rƟ = 0.59 

p < 0.0001 

Cerco. 
nictitans 

Ɵ = 34.0 
rƟ = 0.83 

p = 0.0029 

Ɵ = 21.0 
rƟ = 0.93 

p = 0.2116 

Ɵ = 26.8 
rƟ = 0.89 

p = 0.5767 

Ɵ = 86.1 
rƟ = 0.07 

p < 0.0001 

Ɵ = 73.4 
rƟ = 0.29 

p < 0.0001 

Cerco. 
cephus 

Ɵ = 33.2 
rƟ = 0.84 

p = 0.0033 

Ɵ = 19.5 
rƟ = 0.94 

p = 0.2396 

Ɵ = 25.2 
rƟ = 0.90 

p = 0.5801 

Ɵ = 71.9 
rƟ = 0.31 

p < 0.0001 

Ɵ = 62.3 
rƟ = 0.47 

p < 0.0001 

Macaca 
fascicularis 

Ɵ = 30.4 
rƟ = 0.86 

p = 0.0041 

Ɵ = 18.5 
rƟ = 0.95 

p = 0.2406 

Ɵ = 28.6 
rƟ = 0.88 

p = 0.5361 

Ɵ = 76.8 
rƟ = 0.23 

p < 0.0001 

Ɵ = 68.3 
rƟ = 0.37 

p < 0.0001 

Colobus 
satanas 

Ɵ = 26.5 
rƟ = 0.89 

p = 0.0059 

Ɵ = 13.2 
rƟ = 0.97 

p = 0.3609 

Ɵ = 29.4 
rƟ = 0.87 

p = 0.5643 

Ɵ = 48.5 
rƟ = 0.66 

p = 0.0911 

Ɵ = 68.9 
rƟ = 0.36 

p < 0.0001 

Gorilla 
gorilla — 

Ɵ = 34.5 
rƟ = 0.82 

p = 0.0211 

Ɵ = 63.1 
rƟ = 0.45 

p < 0.0001 

Ɵ = 15.3 
rƟ = 0.96 

p = 0.9330 

Ɵ = 43.4 
rƟ = 0.73 

p = 0.0003 

Pan 
troglodytes 

Ɵ = 41.7 
rƟ = 0.75 

p = 0.0007 
— 

Ɵ = 68.0 
rƟ = 0.37 

p < 0.0001 

Ɵ = 14.5 
rƟ = 0.97 

p = 0.9759 

Ɵ = 37.7 
rƟ = 0.79 

p = 0.0029 

Hylobates 
lar 

Ɵ = 50.3 
rƟ = 0.64 

p = 0.0003 

Ɵ = 42.6 
rƟ = 0.74 

p = 0.0265 
— 

Ɵ = 51.4 
rƟ = 0.62 

p = 0.0213 

Ɵ = 45.7 
rƟ = 0.70 

p = 0.0003 

Ateles 
geoffroyi 

Ɵ = 28.8 
rƟ = 0.88 

p = 0.0047 

Ɵ = 11.2 
rƟ = 0.98 

p = 0.4436 

Ɵ = 25.4 
rƟ = 0.90 

p = 0.7044 
— 

Ɵ = 53.7 
rƟ = 0.59 

p < 0.0001 

Cebus 
libidinosus 

Ɵ = 32.3 
rƟ = 0.85 

p = 0.0033 

Ɵ = 14.8 
rƟ = 0.97 

p = 0.3379 

Ɵ = 39.1 
rƟ = 0.78 
p = 0.204 

Ɵ = 39.1 
rƟ = 0.78 

p = 0.0005 
— 
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TABLE 6.16. Ɵpmax-Δz for male honing complex. Those comparisons that are 

significantly different from Ɵ = 0 are shaded grey. 
 

 

 

pmax 
Cercopithecus 

cephus 

pmax 
Gorilla 
gorilla 

pmax 
Pan 

troglodytes 

pmax 
Cebus 

libidinosus 

Cercopithecus 
cephus — 

Ɵ = 16.3 
rƟ = 0.96 

p = 0.3145 

Ɵ = 45.9  
rƟ = 0.70 

p < 0.0001 

Ɵ = 72.8 
rƟ = 0.30 

p < 0.0001  

Gorilla 
gorilla 

Ɵ = 34.3 
rƟ = 0.83 

p = 0.0069 
— 

Ɵ = 29.0 
rƟ = 0.87 

p = 0.0231 

Ɵ = 23.0 
rƟ = 0.92 

p = 0.0362 

Pan 
troglodytes 

Ɵ = 44.5 
rƟ = 0.71 

p < 0.0001  

Ɵ = 17.1 
rƟ = 0.96 

p = 0.3234 
— 

Ɵ = 25.1  
rƟ = 0.91 

p = 0.0239 

Cebus 
libidinosus 

Ɵ = 89.4 
rƟ = 0.01 

p < 0.0001  

Ɵ = 16.9 
rƟ = 0.96 

p = 0.3141 

Ɵ = 36.0 
rƟ = 0.81 

p = 0.0060 
— 

 

  

4 male samples were included (Cebus libidinosus, Gorilla gorilla, Pan troglodytes, and 

Cercopithecus cephus). 

For female anthropoids, only two out of 45 comparisons of Ɵpmax-pmax for the 

honing complex are significantly different from Ɵ = 0° (both involve Cercopithecus 

nictitans) (Table 6.13) and for the males, only one out of 6 comparisons is significantly 

different from Ɵ = 0° (Table 6.14). In contrast to comparisons of pmax for the incisors and 

postcanine teeth discussed above, the Ɵ values for comparisons of the honing complex 

are larger. The lack of statistical significance results from broader confidence intervals 

(i.e., less certainty in the estimate of Ɵ) in the analyses of the canine-honing complex, 

which is a reflection of the smaller sample sizes. Nevertheless, the hypothesis that 

anthropoid primates share a similar pmax for the dimensions of the honing complex cannot 

be rejected. 
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Fig. 6.5. For females of 5 species of anthropoid primates, premolar honing surface length 

(mm) and mandibular canine height (mm). 
 

 
Fig. 6.6. For females of 5 species of anthropoid primates, mandibular canine height (mm) 
and maxillary canine height (mm). 
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Fig. 6.7. For males of 4 species of anthropoid primates, premolar honing surface length 
(mm) and mandibular canine height (mm). 

 
Fig. 6.8. For males of 4 species of anthropoid primates, mandibular canine height (mm) 
and maxillary canine height (mm). 
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The estimates of Ɵpmax-Δz for both males and females (Tables 6.15 and 6.16) 

indicate little correspondence between the two vectors. For the females, 64 out of 90 

estimates are significantly greater than Ɵ = 0°; for the males, 8 out of 12 are significantly 

different from Ɵ = 0°. Though many Ɵs are large in absolute value, comparisons of the 

platyrrhines to the cercopithecids are consistently among the largest Ɵs for both males 

and females; the morphological differences between them are not predicted by the pattern 

of pmax within either clade. Again, this result is consistent with others in this chapter; 

which showed that the most anciently diverged clades are the most divergent in 

covariance structure. As a result, the Δz between them could not have accumulated along 

a pmax estimated in the opposite infraorder. 

In the analyses of independent contrasts among species in Chapter 5, several 

large contrasts were noted for both the male and female canine honing complexes. Given 

sample size constraints, the analyses of the honing complex in this chapter are confined 

to four male samples and ten female samples. Despite the limited taxonomic coverage, 

there are clear examples of species not diverging along a shared pmax. For example, 

Figures 6.5 and 6.6 illustrate the lack of correspondence between pmax and Δz in female 

anthropoids for the length of the honing surface of the premolar and the heights of the 

maxillary and mandibular canines. Though some morphological divergence from 

estimates of pmax is expected between distantly related taxa, even comparisons of closely 

related species are seen to be divergent. Comparisons of female Pan troglodytes and 

Gorilla gorilla, which are closely related and numerically well represented, indicate that 

canine honing complex Δz between them did not accumulate along either taxon’s pmax 

(the Gorilla gorilla mandibular canine is shorter than would be expected given the 

within-species relationship in Pan troglodytes) (Figures 6.5 and 6.6). Examination of the 

male samples also indicates that the Δz did not accumulate along a shared pmax (Figures 
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6.7 and 6.8). It is also evident by comparing the above examples in males and females 

that there are some cases where the two samples’ Δz aligns closely with pmax in one sex 

but not the other. For example, in Figure 6.5 Pan troglodytes and Gorilla gorilla do not 

fall along a single line for the comparison of premolar honing surface length and 

mandibular canine height; however, in Figure 6.7 the male samples nearly fall along a 

single line. This suggests that selection is independently shifting changes in the sizes of 

the components of the complex in males and females, which is line with the model of 

sexual selection on canine size outlined in Chapter 1 (e.g., Plavcan, 1993; 2001). 

 

Discussion and Summary 

 Whether tested as a pattern of correlation using a Mantel test, a pattern of 

variance-covariance using a random skewers test, or as bootstrap tests of lines of least 

evolutionary resistance for each functional module, the pattern of constraints among 

dental characters is similar among species. These patterns for dental size are remarkably 

similar despite shifts in morphology (e.g., reduction of M3 size in platyrrhines, 

developmental of bilophodonty in cercopithecids, enhancement of mandibular premolar 

heteromorphy in catarrhines, enhancement of incisor heteromorphy in cercopithecids, 

loss of a mesial premolar in catarrhines, etc.). As patterns of variance-covariance can be 

shaped by evolutionary mechanisms (reviewed in Chapter 1), this finding suggests that 

selection has favored a consistent pattern of covariance among dental characters. That 

said, subtle differences in patterns of correlation and variance-covariance are apparent 

among taxa. Both the Mantel and random skewers tests indicated that catarrhines and 

platyrrhines are slightly divergent in correlation and variance-covariance structure. Some 

divergence in patterns of covariation between the infraorders is observed as relatively 

high Ɵpmax-pmax values in comparisons of the incisors and the postcanine dentition. 
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Based on genetic data, platyrrhines and catarrhines are estimated to have shared a most 

recent common ancestor more than 40 million years ago (Steiper and Young, 2006). If 

patterns of variance-covariance were only shaped by neutral evolutionary mechanisms 

(drift and mutation), then such stable patterns should not result. In a study of cranial size 

variance-covariance for 30 anthropoid taxa, comprising 29 catarrhine and one platyrrhine 

taxa, a “significant and positive correlation between the amount of divergence in 

correlation and covariance patterns…and their phylogenetic distances” was found (de 

Oliveira et al., 2009: 417). While that hypothesis was not tested in this study, it is 

consistent with the subtle divergence in patterns of covariation observed between 

platyrrhines and catarrhines. Whether selection or drift is responsible for the divergence 

is untested, but the minimal divergence in covariance and correlation structure implies 

that the developmental networks that underlie the pattern of variance-covariance have 

remained stable throughout anthropoid dental evolution (see also, Hlusko et al., 2010). 

 Though anthropoid dental morphology falls in a fairly restricted portion of 

phenotypic space, differentiation of species has, in general, not occurred along shared 

lines of maximum phenotypic variance. Though the bootstrapping procedure is powerful 

at detecting deviations of Δz from pmax, the lack of correspondence between Δz and 

species’ estimates is indicated by Ɵpmax- Δz values that are often quite high. Below, 

reasons for this divergence are explored using examples from each of the functional 

modules.  

For the incisors, it was noted that taxa that are similar in size (e.g., comparisons 

of guenons, the comparison of Ateles and Cebus) or that are distantly related (e.g., the 

comparison of catarrhines to platyrrhines) showed little correspondence between pmax and 

Δz. In the first case, the low correspondence should be dismissed because the taxa have 

not really diverged in size. In the second case, the lack of correspondence may reflect 
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minor deviations in pmax that have accumulated over 40+ million years, in which case it 

would be quite unlikely that Δz between platyrrhines and catarrhines would align with an 

estimate of pmax derived from a species in the opposite infraorder. In such a case, the lack 

of correspondence does not indicate that selection vectors are not generally aligned with 

pmax, but that pmax itself has slightly diverged. Despite these limitations, which result 

from the initial choice of samples for intraspecific analysis, it is also obvious that there is 

generally a lack of correspondence between incisor pmax and Δz. This is evident for both 

the whole incisor data set and for incisor breadths only. For example, Pan troglodytes and 

Gorilla gorilla are closely related, but the difference between them is not aligned with 

either sample’s pmax. For the African great apes, the lateral maxillary incisors are similar 

in MD length between Pan and Gorilla, but the central incisor is shorter MD in Pan 

(Kelley et al., 1996; Chapter 1); divergence along pmax would predict change in the same 

direction for both characters.  

The selective argument for the existence of pleiotropy among functionally related 

characters is that it facilitates coevolution and allows character states to jointly change in 

response to changing environmental conditions; as stated in Chapter 1, “it makes adaptive 

phenotypes accessible” (Wagner et al., 2007: 926). If incisor sizes are responding to 

natural selection (a reasonable assumption), then it is clear that adaptive shifts are 

frequently into dimensions not aligned with pmax. It must also be born in mind that the 

analyses in this chapter are confined to ten species. Broadening the analysis to include 

more species would only uncover more examples of divergence. Likely candidates for 

divergence were revealed in the analyses of independent contrasts. For example, in 

Figure 3.3, the large intrageneric contrast between mandibular incisor size in Macaca 

fascicularis and Macaca mulatta was noted. Divergence between the two macaques 

would not have accumulated along a shared pmax. Similarly, as already noted in Chapter 
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1, maxillary incisor size in Pongo is more heteromorphic than in the African apes. For 

hominids, the among-species correlation indicates a negative relationship among 

maxillary incisor sizes (Kelley et al., 1996; Chapter 1), which is inconsistent with change 

along the vector predicted by genetic constraints in all taxa that were analyzed in this 

chapter. Also, the analyses in this chapter did not include taxa with highly derived incisor 

morphologies (e.g., pitheciines) (Kinzey, 1992; Rosenberger, 1992). Expanding the 

taxonomic coverage would only produce more examples of character change occurring in 

dimensions not aligned with that predicted by constraint. The frequent observation that 

among species differences do not align with any species’ estimate of pmax indicates that 

selection vectors (β) for incisor size have often been oriented in a direction that is not 

aligned with the vector of constraint.  

The degree of independence that characters are expected to demonstrate among 

species is proportional to the strength of constraint among them (Marroig et al., 2009). As 

reported in Chapters 3–5, the magnitude of covariation is not high, or even moderate, 

among all character pairs within a module. For each module, the norm among 

nonhomologous dimensions is to exhibit only very low or low magnitude covariation 

(Figures 3.2, 4.2; Tables 5.4–5.11). It was shown that within some modules that there are 

teeth that consistently share the least covariation with other members of their functional 

module (e.g., I2, M3, and P2,3). Given this relationship, it may be an exceptionally strict 

expectation that character change will consistently align itself with pmax for a functional 

module. While weakly covarying characters are expected to evolve with some 

independence among species, the lack of correspondence between pmax and Δz cannot 

simply be attributed to the independence of these weakly covarying characters. For 

example, in Figure 6.4 and Figure 6.5 the sizes of the P4 and M1 are plotted for a diverse 

sample of anthropoids. Evident in the graph are gradistic shifts in the sizes of the teeth 
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relative to one another. Within species, these characters have an anthropoid average r2 of 

about 0.40 for both MD length and BL breadths (Tables 4.8 and 4.9), yet they show 

independence among species. Given that more than half of the variation in each character 

is not shared, this implies that there is considerable independent variation for selection to 

act upon and to drive the characters into unique portions of phenotypic space. In general, 

the correspondence of pmax and Δz is not simply the effect of characters being so tightly 

constrained that they cannot evolve independently of another (clearly they can and have), 

but reflects the fact that pmax and selection vectors (β) are often nearly aligned (e.g., 

Marroig and Cheverud, 2009). 

The heights of the canines were shown to be among the most strongly covarying 

character pairs in the dentition (Table 5.3, average r2 = 0.56). In Figure 6.7, it can clearly 

be seen that the female Hylobates lar distribution lies in a portion of phenotypic space 

that would not be predicted by the within species relationships of the great apes. The 

discrepancy occurs because the Hylobates lar females have a taller maxillary canine 

relative to mandibular canine height than observed in female great apes. In Figure 6.7, the 

height of the mandibular canine is plotted relative to the length of the P3 honing surface 

length. For these characters the average r2 among female hominoids is 0.59 (Table 5.12); 

however, for a given P3 honing surface length, the Gorilla gorilla mandibular canine is 

shorter than would be expected given the relationship between the characters in Pan 

troglodytes. As stated previously, the flexibility of character pairs to evolve 

independently of one another is proportional to the magnitude of constraint between them 

(i.e., the magnitude of r2). These shifts in canine size relative to one another suggest that 

selection must have been strong. Comparisons of honing complex pmax and Δz were 

restricted to a small sample of primates (especially so for the males). If more taxa were 

included in comparisons of pmax and Δz, then more instances of discordance would likely 
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be uncovered. In Chapter 5, in the among-species analysis of male maxillary canine 

height and premolar honing surface length revealed a large residual for the contrast 

between pongines and hominines (Figure 5.2). Likely, the mean size of the elements of 

the Pongo honing complex would not lie on the pmax predicted by the hominines. It is a 

common assumption that such independent behavior for characters among species 

requires a change in the variance-covariance structure uniting them (see review in 

Lockwood, 2007; de Oliveira et al., 2009). Examples of divergence in the honing 

complex relative to pmax occurred without changing the underlying pattern of variance-

covariance among the characters, as the hypothesis that pmax is the same could not be 

rejected for hominoids and there are no obvious differences in the strength of covariation 

among the characters of the honing complex (Table 5.12). The findings presented in this 

Chapter clearly indicate that considerable diversity in form among species can occur 

without altering the pattern of variance-covariance among the characters that are 

diverging. This was also the conclusion of a study of cranial size variance-covariance 

among anthropoids conducted by de Oliveira et al. (2009). If variation is present in any 

dimension, it is available for selection to act upon. The fact that highly covarying 

characters can behave with some independence among species should give caution to the 

development of constraint hypotheses to explain correlated changes in functionally 

unrelated dental characters, which share little variance. 
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Chapter 7 

DISCUSSION 

This study has attempted to determine if genetic constraints have strongly biased 

dental diversification, especially as it relates to derived hominin morphologies. In 

Chapters 3–6, the pattern and magnitude of phenotypic variance-covariance for tooth size 

and shape were thoroughly examined and used to test a variety of hypotheses, including 

1) that functional modules are variational modules, 2) that patterns of variance-

covariance are conserved among species, 3) that dental diversification occurred along 

lines of least evolutionary resistance (i.e., the vector predicted by genetic constraint), 4) 

that pleiotropy is negative between anterior (incisors and canines) and posterior teeth 

(premolars and molars), 5) that covariation is strong and positive between the incisors 

and canines, 6) that the honing complex coevolved in males but not in females, and 7) 

that the premolars and molars are quasi-independent subdivisions of a postcanine 

variational module. In addition, covariation within and among species was compared as 

an informal test of the hypothesis that magnitudes of constraint predict the relative 

independence (i.e., flexibility) of characters among species. Below, the evolution of 

anthropoid dental diversity is discussed in relation to these hypotheses.  

 

Anthropoids Share a Common Pattern of Variational Modularity and Variance-

Covariance: Evidence that patterns of variance-covariance for dental size are similar 

among species is provided by the results of three analyses. When all teeth are considered, 

the similarity in the magnitudes of correlation among characters is provided by the 

Mantel tests, which indicate statistical similarity in the 10 anthropoid taxa examined 

(Table 6.1). For all characters, the similarity of the pattern of variance-covariance is 

provided by the random skewers tests, which found that the P-matrix is similar for all 10 
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anthropoid taxa (Table 6.2). Both the Mantel and random skewers tests suggest some 

divergence between catarrhines and platyrrhines in variance-covariance/correlation 

structure, which is also reflected as divergence in pmax between catarrhines and 

platyrrhines for the postcanine teeth (Chapter 6). As stated in Chapter 6, given random 

change, some divergence in variance-covariance structure is expected over time (Roff, 

2000). de Oliveira et al (2009) tested this hypothesis for cranial size variance-covariance 

in anthropoids and found a strong correlation between intertaxon Ɵpmax-pmax values and 

their divergence dates. That dental variance-covariance structure is stable is remarkable, 

both because anthropoids are quite diverse in dental morphology and also because 

platyrrhines and catarrhines shared a most recent common ancestor more than 40 million 

years ago (Steiper and Young, 2006), implying the influence of stabilizing selection to 

maintain such a pattern (Arnold et al., 2008). 

As reviewed in Chapter 1, the functional roles of the anthropoid dentition (food 

acquisition, social signaling and weapon use, food processing) are, in general, associated 

with specific classes of teeth (incisors, canines and honing premolar, and postcanine 

teeth, respectively). Thus, the dentition is organized into functional modules. Variational 

modularity is defined by the pattern and magnitude of covariation, so that covariation is 

strong in magnitude among characters within a module and only weak in magnitude 

between characters in different modules (Wagner et al., 2007). Variational modularity is 

hypothesized to characterize systems that have functional modularity because “sets of 

traits are more often selected together than others, [which] can lead to a reinforcement of 

pleiotropic effects among co-selected traits and suppression of pleiotropic effects that are 

not selected together” (Wagner et al., 2007: 928). The covariance structure of a suite of 

traits is shaped by “modular selection” to allow “adaptive evolution to proceed 

efficiently” (Dayan et al., 2002: 521).  
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Using dental shape and size data, the hypothesis that dental functional modules 

equate with variational modules is supported in all anthropoid taxa examined (Chapters 

3–5). Within species, the highest magnitude of covariation is found within functional 

modules and only weak covariation exists between them (Figures 3.1, 3.2, 4.1, and 4.2; 

Tables 5.1–5.14).  

Within a module, covariation is moderate to high (using the criteria outline in 

Table 2.3) between teeth in the same position in the opposite arch (Tables 3.3, 3.4, 4.4–

4.7, 4.19, 4.22, and 5.3). For the postcanine teeth, the mesial portion of a maxillary tooth 

occludes with the distal portion of the mandibular tooth in the same position. As food 

processing is intimately tied to the proper occlusion of opposing teeth (Lucas, 2004), this 

produces a strong functional constraint on dental evolution (e.g., Renaud et al., 2009). 

Studies of dental covariation in carnivores (Szuma, 2000) and rodents (Renaud et al., 

2009) have identified the same pattern, suggesting that it is a fundamental aspect of 

mammalian dental covariation that has been maintained by selection (see also Kurtén, 

1953; Stock, 2001). Studies of odontogenesis have provided evidence that some genetic 

loci affect both mandibular and maxillary teeth (Stock, 2001; Wang et al., 2005; Charles 

et al., 2009; Renaud et al., 2009), which provides empirical support for the existence of 

shared genetic networks between the maxillary and mandibular teeth. 

Covariation is also high between homologous measures of adjacent teeth within 

dental classes (e.g., breadths of adjacent molars). That adjacent teeth covary to a greater 

degree than nonadjacent teeth has been observed in other studies of the mammalian 

dentition (e.g., Kurtén, 1953). More recent studies of carnivores (Szuma, 2000; Dayan et 

al., 2002; Prevosti and Lamas, 2006) and murine rodents (Renaud et al., 2009) have also 

identified this pattern, which was referred to as the “neighborhood rule” or the 

“neighboring rule” (e.g., Renaud et al, 2009; the term itself is attributed to van Valen, 
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(1970)). The neighboring rule can be seen in several cases in the anthropoid dentition; for 

example, among platyrrhine premolars and anthropoid molars, where there are three 

elements in each dental class. For the platyrrhine premolars, the P4 covaries more 

strongly in size and shape with the P3 than it does with the P2 (Tables 4.5, 4.7, and 4.13). 

For the molars, it is the M1 and M3 that share least variance, while the M2 covaries 

strongly with both the M1 and M3 (Tables 4.17–4.22). There are, however, clear 

exceptions to the neighbor rule. The mesial mandibular premolar does not covary 

strongly with any other premolar and the I2MD does not covary strongly with any other 

incisor dimension. For both of these exceptions, the neighboring rule is violated by teeth 

that are heteromorphic relative to their neighbor. Differences in the degree of 

heteromorphy among taxa are reflected in differences in the magnitude of covariation 

(e.g., greater incisor heteromorphy in cercopithecids than hominoids is associated with 

lower magnitude covariation among incisor dimensions in cercopithecids). 

The perspective that functional modules are variational modules (e.g., Wagner, 

1996; Wagner and Altenberg, 1996; Wagner and Zhang, 2001; Wagner et al., 2007; 

Wang et al., 2010) clearly predicts the low magnitude covariation between characters in 

different functional modules; however, viewing each functional module as a single 

variational module is a vast oversimplification of the pattern of covariation that is 

actually observed, as magnitudes of covariation are highly variable within each 

“variational” module. Though covariation is strong among homologous dimensions, 

between nonhomologous dimensions, the average magnitude of phenotypic covariation is 

typically low to very low (0.00 ≤ r2 < 0.40). Lumping such diverse magnitudes of 

covariation into a single unit makes it difficult to generalize expectations for evolutionary 

flexibility. For example, the expectation for the among-species behavior of I2MD relative 

to other incisor dimensions is certainly not the same as for more highly covarying 
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character pairs. Should the low levels of covariation exhibited by I2MD with other incisor 

dimensions exclude it from the incisor variational module? Are the mandibular incisors 

and maxillary incisors part of separate variational modules with overlapping pleiotropic 

effects? Are the LL breadths and the MD lengths of the mandibular incisors members of 

separate variational modules? If so, then dividing each “variational” module into finer 

and finer subdivisions so that only the most highly covarying character pairs remain 

would result in innumerable modules that have little relationship to shared function, 

which would render the concept of a variational module meaningless. The fact that most 

characters do not exhibit strong covariation indicates that there is ample genetic variance 

for selection to act upon to drive the independent evolution for most character pairs, even 

those within variational modules. 

Vestigial structures, which are under weak stabilizing selection, are more 

variable than other structures (e.g., Kurtén, 1953; Hoffmann and Merila, 1999; Dayan et 

al., 2002). While comparisons of levels of variation (quantified as the standard deviation 

or coefficient of variation) were not the object of this study, lower levels of covariation 

are observed for certain teeth within modules, such as heteromorphic teeth (e.g., I2, P2,3) 

or teeth that are small relative to the other teeth in the module. In this study, this is 

especially true for the Ateles geoffroyi and Cebus libidinosus M3s, which are small 

relative to the size of the M1 and M2 and share less covariation with the other molars than 

in catarrhines (Tables 4.16, 4.19, 4.21, 4.22, and 4.34). If a moderately developed M3 is 

taken as a starting point, then reduction of M3 size in platyrrhines required some 

parcellation from the other molars (see Figure 1.1). As reviewed by Stock (2001: 1634), 

“in order for some members of these series to evolve independently of others, there must 

exist at least some developmental and genetic individualization within the series.” The 

low magnitude of covariation expressed between the platyrrhine M3 and other molar 
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dimensions, relative to levels of covariation in catarrhines, suggests that the platyrrhine 

M3 acquired “individualism” from its neighbors.   

The first step towards the evolutionary loss of a tooth may be to parcel out the 

tooth from the remainder of the teeth in its variational module. More interesting for 

hominin evolution would be to determine if the opposite process can occur. During 

hominin evolution, mandibular premolar heteromorphy was substantially decreased over 

time (Delezene and Kimbel, 2011) and the P3 and P4 show similar trajectories of talonid 

expansion (molarization) between species (Suwa, 1988). If sample sizes in the fossil 

record were adequate in size, then the hypothesis that the loss of premolar heteromorphy 

coincided with the “integration” of the two mandibular premolars genetically (Figure 

1.1), which only weakly covary in size and shape in extant anthropoids (Chapter 4), could 

be tested. Given concerns about drift covariance between samples (Armbruster and 

Schwaegerle, 1996), then pooling samples from diverse localities would not be 

appropriate for testing such a hypothesis. 

 

Lines of Least Evolutionary Resistance and Selection: Genetic constraints are predicted 

to channel phenotypic change along lines of least evolutionary resistance (gmax), which, in 

n-dimensional space, is the vector that describes the dimension with the greatest genetic 

variance (Schluter, 1996). This study attempted to address several questions about lines 

of least evolutionary resistance; for example, were they stable during anthropoid 

evolution and did they exert a strong influence on diversification (e.g., Marroig and 

Cheverud, 2005). The stability of constraints was reviewed above, here the relationship 

between constraints and selection is reviewed. 

Selection vectors aligned with gmax (estimated in this study as pmax) are 

insufficient to explain the pattern of anthropoid dental diversification, as there are clear 
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examples of diversification of highly constrained characters occurring in dimensions not 

aligned with pmax. Examples were illustrated for all functional modules in Chapter 6 (e.g., 

Figures 6.2–6.8; Tables 6.7, 6.13, 6.15, and 6.16). The formal test of this hypothesis was, 

however, limited to comparisons of 10 taxa, which represent a fraction of anthropoid 

dental diversity. Undoubtedly, including more species (especially those with highly 

derived morphologies) would only reveal more examples. 

There is no evidence for complete pleiotropy between any dental dimensions; 

genetic constraints among dental size and shape are relative, not absolute (see Chapter 1). 

This finding, derived from estimates of phenotypic covariation, is at odds with the results 

of genetic correlations in SNPRC baboons published by Hlusko and Mahaney (2009; 

Hlusko et al., 2010), who found complete pleiotropy among 14 of 136 pairs of maxillary 

dental size. If the Hlusko and Mahaney (2009) findings are correct and generalizable 

across primates, then some character pairs would be absolutely constrained among 

species. While many within-species estimates of covariation are high and some are very 

high for homologous measures within modules, no evidence for complete pleiotropy was 

uncovered in this study. From a theoretical viewpoint, it is unexpected that dental traits 

would be absolutely constrained for, as Klingenberg (2010) reviews, absolute constraint 

indicates that all “dimensions are totally devoid of any genetic variation,” which is 

unlikely for developmental systems, such as the dentition, that involve the participation 

of many genes (e.g., Stock, 2001; Workman et al., 2002; Shimuzo et al., 2004; Hlusko et 

al., 2010). It is possible that the Hlusko and Mahaney (2009) finding is correct for the 

SNRPC baboons and perhaps has resulted from a loss of genetic variation, due to genetic 

drift, in that laboratory population.  

The flexibility of linked characters to evolve independently of one another is 

proportional to the strength of constraint between them (Marroig et al., 2009). The lower 
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the magnitude of constraint, the more flexible the characters are to evolve in an 

uncoordinated fashion. For reasons outlined below, the pattern of genetic constraint is 

insufficient to explain the pattern of diversification among species. First, there are many 

examples of low correspondence between Δz and pmax (even for highly covarying 

characters) (Figures 6.2–6.8; Tables 6.7, 6.13, 6.15, and 6.16) and, second, there are 

many cases of character pairs that covary weakly within species, but covary more 

strongly among species (e.g., incisor and postcanine size: Tables 3.7–3.10 and 3.12).  

The fact that constraints alone are insufficient for understanding among-species 

diversification can be illustrated using incisor size as an example. Within anthropoid 

species, maxillary incisor MD lengths positively covary (about r2 = 0.20; Table 3.5) and 

among all anthropoids they positively covary (about r2 = 0.45; Table 3.11); however, 

among hominid species, there is a negative correlation (Chapter 1, see data in Kelley et 

al., 1996). These discordant patterns of correlation (positive among all anthropoids, 

negative within hominids) can be explained if we recall the multivariate selection model, 

Δz = Gβ, which indicates that phenotypic change in a suite of characters is affected by 

both genetic variance-covariance and the strength and direction of selection. Simplifying 

this model to two characters, if both maxillary incisors experience selection that favors an 

increase in size,  I1MD
I2MD , where the + indicates selection for an increase in size, then 

the characters will both become larger in the descendent population. For weakly 

covarying characters, in cases where selection does not favor change in the same 

direction, I1MD
I2MD , then the characters are mostly free to change in different directions. 

Figure 7.2 depicts a scenario where two characters are strongly correlated within species 

and pmax is oriented toward the white quadrants. Selection aligned with pmax will cause 

rapid phenotypic change (e.g., Marroig and Cheverud, 2010) and create positive  
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Fig. 7.2. In this hypothetical example, characters X and Y have a positive genetic 
correlation (represented by the black ellipse with an elongated major axis) and are 
relatively constrained. Selection vectors (β) aligned with gmax will cause Δz to shift into 
the white quadrants and produce a positive correlation among species. 
 

 

 

Fig. 7.3. In this hypothetical example, characters X and Y are not genetically correlated 
(represented by the black circle with equal major and minor axes) and are equally free to 
change in any dimension; however, selection vectors (β) oriented in the gray squares will 
produce a negative correlation among populations, while selection vectors oriented in the 
white squares will produce a positive correlation among species. 
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correlations among species. This is not the pattern observed for the maxillary incisors (or 

for most characters observed in this study). The scenario depicted in Figure 7.3 

corresponds more closely to results for the maxillary incisor MD lengths. Covariation 

between maxillary incisor MD lengths is low and selection is mostly free to change 

characters in any direction among species. Within the extant hominids, selection vectors 

have been predominantly oriented toward the grey quadrants, producing a negative 

correlation; however, the more common pattern among anthropoids is for selection 

vectors to be oriented into the white quadrants. While incisors are used as an example, 

such flexibility exists for most character pairs. 

 The previous example using incisor size dealt with the ability of weakly 

covarying characters to evolve independently of one another. As the degree to which 

characters are expected to evolve independently of one another is a product of the 

strength of constraint between them (Marroig et al., 2009), then highly covarying 

characters are expected to evolve along gmax more frequently than do weakly covarying 

characters. However, selection can shift the phenotype into any dimension in which 

genetic variance is present (Klingenberg, 2010). What differs between weakly and 

strongly covarying character pairs is the amount of independent change that can be 

produced and the rate at which the means of the traits can be shifted. Selection aligned 

with gmax will produce rapid and significant change in the mean value of the characters; 

however, selection aligned with other dimensions of genetic variance produce smaller 

shifts in mean value over time (Schluter, 1996; Marroig and Cheverud, 2005; 2010). An 

artificial selection experiment on eyespot size in the butterfly Bicyclus anynana illustrates 

this principle (e.g., Beldade et al., 2002). Bicyclus anynana wings have two eyespots, one 

anterior and one posterior, and the size of these eyespots have a strong positive genetic 

correlation. The artificial selection experiment was designed to determine if selection  
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Fig. 7.1. The results of 20 generations of artificial selection on anterior and posterior 
eyespot size in the butterfly Bicyclus anynana (modified from Klingenberg, 2010). 
Selection for larger anterior and posterior eyespots (LL) and smaller anterior and 
posterior eyespots (SS), which are aligned with gmax, produced larger divergences in 
mean eyespot size than did selection for “constrained” morphotypes that favored the 
decrease in one eyespot and increase in the other. 
 

 

could generate “unconstrained” morphotypes (i.e, those that pair one small with one large 

eyespot). The results of 20 generations of artificial selection are illustrated in Figure 7.1. 

While change was possible in any dimension, it is clear that more change occurred when 

artificial selection pressures were oriented along the major axis of genetic covariation 

than when they were aligned perpendicular to the major axis. 

As a result of the considerations outlined in this section, it is important to 

consider that relative constraints cannot prevent evolution in any direction. Continued 

selection vectors (β) not aligned with gmax will produce “independent” evolutionary 
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change for pleiotropically-linked characters. When gmax and β are aligned, change is 

channeled along narrow dimensions of phenotypic space. 

 

Tradeoff Hypothesis is Not Supported: The hypothesis that the anterior and posterior 

teeth negatively covary within species has a long history in paleoanthropogy. Over 40 

years ago, Jolly (1970: 14–16) proposed a pleiotropy hypothesis to explain the 

convergent patterns of anterior dental reduction and posterior dental enlargement that 

were observed in the hominin Paranthropus and the extinct gelada Theropithecus 

brumpti. His hypothesis is printed below. 

 

To avoid the charge of Lamarckism, I should perhaps suggest some 
selectional mechanisms leading to incisal reduction in molar-dominant 
forms. . . In a monkey or hominoid adapting to a gelada-like diet, each 
unit of tooth-material allotted genetically to a molar will bring a greater 
return in food processed than a unit allotted to an incisor. Thus selection 
should favour the genotype which determines the incisors at the smallest 
size consistent with their residual function. This 'somatic budget effect' 
differs from Brace's (I963) 'random mutation effect' (criticised by 
Holloway (I966) among others) chiefly in that it proposes a positive 
advantage in reduction. 

 
A second mechanism is specific to teeth. While dental size is genetically 
(or at least antenatally) determined, the development of the alveolus 
depends partly upon the stresses placed upon it during its working life 
(Oppenheimer 1964). An under-exercised jaw may thus be too small to 
accommodate its dental series, which tends to become disadvantageously 
crowded and maloccluded. Natural selection will then favour the 
genotype which reduces the teeth to a size fitting the reduced alveolus. 
The 'Oppenheimer effect', originally proposed to explain the reduction of 
complete dentitions (as in the case of Homo sapiens after the 
introduction of cooking and food-preparation), could equally operate on 
particular dental regions, as in the case of Theropithecus and the early 
hominids, where the incisors were reduced but the molars were, if 
anything, larger than those of their forest- and woodland-dwelling 
relatives…Alternatively, the dependence might be at the genetic level, 
with canine reduction being a simple pleiotropic effect of a genotype 
which primarily determined incisal reduction. There is some evidence for 
a canine-incisal genetic 'field' in both Cercopithecoidea (Swindler et al. 
I967) and Hominoidea (Jolly & Chimene, unpublished data). It may well 
be that both selective factors are operative in canine reduction; 
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adaptation to rotary chewing favouring crown height reduction, and 
effects stemming from incisal reduction acting upon crown-area 
dimensions. Since the genetic factors determining these two parameters 
of canine size are most unlikely to be independent of each other, the two 
processes would be mutually reinforcing.” 

 

McGollum and Sharpe (2001) revived Jolly’s (1970) pleiotropy hypothesis by 

providing a developmental model that suggests that the boundary between “units” of 

developing teeth early in odontogenesis is under genetic control. In Paranthropus and 

Theropithecus, the boundary between the anterior and posterior teeth would have shifted 

mesially, relative to extant outgroups, so that the posterior teeth expanded in size and the 

anterior teeth reduced in size. There is no empirical evidence for the model produced by 

McCollum and Sharpe (2001); however, the study of genetic correlations in SNPRC 

baboons has provided limited support for the existence of negative correlations between 

anterior and posterior teeth.The notion that the anterior and posterior teeth share genetic 

covariation is not without basis. Studies of dental development indicate that, “from the 

genetic point of view, making teeth probably requires a set of similar genes whatever the 

tooth considered” (Renaud et al., 2009: 591). In various mammals, a variety of 

techniques has been used to identify genes that influence dental development. Some 

genes have phenotypic effects that cross functional modules, while others have more 

restricted effects (e.g., Stock, 2001; Renaud et al., 2009). As teeth share developmental 

networks, it should be expected that all variational modules share at least very low levels 

of size covariation between them (Figures 3.2, 4.1, 4.2, 5.4, 5.5, 5.6, 5.7–5.11, 5.13, and 

5.14). 

Though low levels of pleiotropy exist between modules, the pleiotropy/tradeoff 

hypotheses that predict strong negative within- and among-species covariation between 

the incisors and postcanine dentition are not supported by the analyses reported here. 

Within species, phenotypic covariation between incisor and  postcanine size is weak and 
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positive in direction, contra McCollum and Sharpe (2001) and Hlusko et al. (2010) 

(Figure 4.2). Covariation between incisor and postcanine size is weaker than it is among 

most dimensions within either module (Figure 3.1, 3.2, and 4.1; Tables 3.7–3.10). Among 

species, covariation is also positive in direction (Table 3.12). The among-species pattern 

did not result from selection acting on a suite of strongly constrained characters, but, 

instead, reflects the outcome of common, long-term, selective pressures that often 

favored simultaneous increases or decreases in both incisor and postcanine size. The low 

levels of within-species covariation indicate that each module is fairly free to change 

independently of the other. In this sense, the pattern of evolutionary change is expected to 

be much like that of the maxillary incisor MD lengths, reviewed above. The average 

trend for selection vectors produced positive among-species covariation when 

anthropoids are considered broadly; however, there is no reason that selection could not 

independently shift the sizes of the anterior and posterior teeth to produce negative 

among-species covariation in some clades, as likely occurred for Theropithecus and 

Paranthropus. Interspecific correlations may be poor guides to the strength of covariation 

among characters within species. As anthropoid dental size spans a wide range (consider 

the comparison of Gorilla to Callithrix), among-species correlations reveal more about 

long term average selection than they do about the pattern of covariation within any 

species.  

Even if the sign of within-species covariation between anterior and posterior 

teeth observed in this study is an error (which seems unlikely given that it was observed 

in 10 out 10 taxa), or if there is some unexplained contrast between the direction of 

covariation at the phenotypic and genetic level, it is clear that selection vectors have not 

been frequently aligned with the predicted negative genetic covariance (McCollum and 

Sharpe, 2001; Hlusko et al., 2010), as the general trend in primates is for larger incisors  
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(Asfaw et al., 1999). Thus, postcanine megadontia does not require reductions of the 

anterior dentition. As a result, anterior tooth size reduction and posterior tooth size 

enlargement should not be seen as “dependent” characters in phylogenetic reconstruction 

(contra the concerns expressed in McCollum and Sharpe (2001)). The hominin fossil 

record contains abundant examples of taxa that pair differing dental proportions with 

different masticatory configurations (e.g., review in Kimbel and Delezene, 2009), which 

removes support for the McCollum and Sharpe (2001) supposition that the masticatory 

complex is characterized by widespread genetic covariation. Even if the reduction of the 

anterior tooth size in Paranthropus represents a selective trade-off with posterior tooth 

size, this is not sufficient for considering them dependent characters (Lockwood, 2007). 

 

Pleiotropy and the Evolution of the Canine Honing Complex: A previous analysis of 

the coevolution of the canine honing complex concluded that maxillary canine projection 

and premolar honing surface length have coevolved in male but not in female anthropoids 

(Greenfield and Washburn, 1992; Greenfield, 1992). In Chapter 1, these results were 

discussed and several explanations for the pattern were offered: 1) that pleiotropy exists 

only in the male honing complex, 2) that pleiotropy is absent in both males and females 

and selective covariance drove the male pattern, or 3) that the pattern observed by 

Greenfield is an artifact of the metric used to quantify canine height. It is clear that 

Greenfield (1992: 168) did not envision a pleiotropic linkage between canine height and 

premolar honing surface length; for, he states “use of the canine as an incisor could be the 

behavior generating the selection that favors short canines and has no affect on the size of 

the occluding surface for the maxillary canines” (but see Plavcan and Kelley, 1996). 

The results of this study indicate that the characters constituting the canine 

honing complex are linked by pleiotropy and have coevolved in both male and female 
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anthropoids (Tables 5.3, 5.12., and 5.16; Figures 5.1 and 5.2). As reviewed in Chapter 1, 

Greenfield measured only the maxillary canine’s projection beyond the occlusal plane 

(Figure 1.13). Since, within species, female anthropoids typically have shorter canines 

than males, canine projection captures a smaller fraction of female canine height than 

male canine height. The contrast of the results from this study and those of Greenfield 

must be explained by his use of a different metric to capture canine “height.” Greenfield 

(1992) interpreted the patterns he observed to reflect the selective unimportance of the 

honing complex in females. As the maxillary canine is honed in both males and females 

(personal observation), has been subjected to selection so that relative canine size 

covaries with levels of agonism and competition in both sexes (Plavcan, 1993; 2001), is 

used as weapon in both sexes (e.g., McGraw et al., 2002), and because it coevolves with 

the honing premolar in both sexes, the results of this study remove support for 

Greenfield’s selective interpretation.  

The finding that the height of the maxillary canine significantly covaries with the 

length of the honing surface on the mandibular premolar is surprising, as the functional 

relationship between the two dimensions is temporally quite fleeting. Especially in males 

with large projecting canines, the maxillary canines become heavily worn during an 

individual’s lifetime and the tip is frequently broken, which results in the progressive 

reduction in canine height (e.g., Leigh et al., 2008). In taxa with large projecting canines, 

including most catarrhines, the maxillary canine begins to be honed before it is 

completely erupted (for example, the maxillary canine in Figure 1.11 is not completely 

erupted and already has visible evidence of having been honed). As a result, the 

maximum crown height of the maxillary canine exists for a very short period of time 

(Leigh et al., 2008). In contrast, the length of the premolar’s honing surface does not 

change substantially, as its wear is mostly superficial. Therefore, the relative sizes of the 
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honing surfaces must change during an individual’s lifetime. An explanation for the tight 

correlation between premolar honing surface length and the maximum height of the 

maxillary canine may be that the canine hypererupts (personal observation) after the 

crown begins to wear. As the crown height is reduced over time, the loss is offset by the 

continuing eruption of the canine, so that the apex of the canine remains at approximately 

the same height relative to the gum. Alternatively in males, the work of Leigh et al. 

(2008) indicates that the peak of reproductive success for male mandrills occurs when the 

maxillary canine is at or near its maximum crown height. If having a sharp canine 

enhances the reproductive success of males during this period, then the length of the 

premolar’s honing surface may be selected to match that of the maximum canine height, 

after which time the lack of a tight correspondence in the relative sizes of the occluding 

surfaces does not influence fitness.  

That pleiotropy is strong between canine heights and between canine heights and 

the length of the premolar’s honing surface has important implications for the strength of 

selection that acted on the complex in early hominins. If selection vectors were oriented 

in line with gmax, then a pattern of coordinated change in early hominins is expected. That 

is not the pattern that is observed in early Australopithecus or Ardipithecus ramidus, 

which provide the best evidence for the initial stages of hominin canine reduction (Suwa 

et al., 2009; Ward et al., 2010). Suwa et al. (2009) inferred that canine size dimorphism is 

minimal in Ardipithecus ramidus and resulted from the feminization of the male canine.  

In extant apes, the maxillary canine exceeds the mandibular canine in height by as much 

as 20%; however, in two associated Ardipithecus ramidus dentitions, the mandibular 

canine exceeds the maxillary canine in height by 10% (as it does in geologically younger 

hominins and humans), suggesting that the pace of canine height reduction was unequal 

for the mandibular and maxillary canines (Suwa et al., 2009). In addition, the heights and 
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the basal dimensions of early hominin canines changed independently of one another, as 

both Ardipithecus ramidus and Australopithecus anamensis have reduced canine heights 

paired with canine basal dimensions similar in size to that of Pan (Suwa et al., 2009; 

Ward et al., 2010). The pattern of character state change in early hominins suggests that 

the selection vector operating on canine size was not aligned with gmax as estimated by 

pmax in extant apes in this study. That canine bases would change independently of 

heights is not remarkable as they were shown in Chapter 5 to not covary strongly with 

one another within species (Tables 5.1 and 5.2); their flexibility among species was also 

demonstrated in the analyses of independent contrasts (Figures 5.3 and 5.4). The 

discordant reductions in canine heights are more remarkable, as canine heights are among 

the most tightly integrated characters in the anthropoid dentition (Table 5.3). While 

unexpected, there are other instances of canine size Δz not being aligned with pmax in 

hominoids; one need only look at the contrast between female Hylobates lar and the 

African apes in Figure 6.6. As Klingenberg (2010: 630) stated, relative constraints 

“cannot completely prevent evolution in any direction (although intense selection may be 

required).” The contrasts between Hylobates lar and the extant African apes and between 

Ardipithecus ramidus and the extant African apes are powerful illustrations of the ability 

of natural selection to shift linked characters in directions not aligned with gmax. 

As outlined in Marroig and Cheverud (2005) and discussed above for the 

butterfly eyespot experiment, the pace of evolutionary change is relatively slower when 

selection vectors are oriented in a dimension not aligned with gmax than it is when 

selection and gmax are aligned. If such a dichotomy exists for long enough, then the 

pattern of variance-covariance may itself be shaped by natural selection to match the 

orientation of the selection vector (e.g., Wagner et al., 2007). What remains to be 

determined for the hominins is if the pattern of uncoordinated change is coupled with a  
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Fig. 7.4. In this hypothetical example, characters X and Y have a negative genetic 
correlation (represented by the black ellipse with an elongated major axis) and are 
relatively constrained. Selection vectors (β) oriented in the gray squares will generate 
rapid changes along gmax and produce negative correlations among species.  

 

 

change in either the pattern or magnitude of covariance among the characters of the 

honing complex. If covariance itself evolved, then it would be predicted that the 

magnitude of covariation between canine heights was reduced, as was the magnitude of 

covariation between the maxillary canine height and the length of the P3 honing surface.  

Pleiotropy has been suggested to play an important role in the reduction of 

hominin canine size (see reprint of Jolly’s (1970) pleiotropy hypothesis above). 

Specifically, the pleiotropy hypothesis predicts strong positive covariation between 

canines and incisors and strong negative covariation between canines and the postcanine 

teeth (e.g., Jolly, 1970; McCollum and Sharpe, 2001). These pleiotropy/trade-off 

hypotheses are not supported by the results of this study. 

All within- and among-species covariation between canine and postcanine size 

and between canine size and incisor size is weak and positive in direction; there is no 

evidence for negative covariation among any dental dimensions (Chapter 5). Likewise, in 
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a large sample (n = 1453) of red fox, Vulpes vulpes, Szuma (2000) found no evidence for 

negative covariation between the size of the canines and the size of the postcanine 

dentition. That all size covariation is positive in direction does not imply that covariation 

is strong, as within species levels of covariation are quite weak between the honing 

complex and the incisor and postcanine variational modules (Tables 5.4–5.11). Figure 7.4 

illustrates the negative covariance between canine and postcanine size as hypothesized by 

Jolly (1970) and McCollum and Sharpe (2001). In such an arrangement, selection vectors 

aligned with gmax will shift the population ellipse into the grey-shaded quadrants, 

producing a negative correlation among species. However, as Figure 7.3 shows, a shift 

into these quadrants can be produced if the traits are genetically uncorrelated (or at least 

minimally covarying) and selection favors a tradeoff in canine and postcanine size. The 

arrangement in Figure 7.3 represents the relationship between canine size and either 

incisor or postcanine size found in this study. As such, we might expect some pairwise 

comparisons of species means to indicate that negative tradeoffs occurred (as when 

Theropithecus and hominins are contrasted with their extant outgroups), but not in other 

cases where selection has favored the simultaneous increase or decrease of canine and 

postcanine size (i.e., selective covariance; Figure 1.7), as seems to be more common 

among extant anthropoids. While there may have been a selective tradeoff between 

anterior and posterior dental size in Theropithecus and Australopithecus/Paranthropus as 

argued by Jolly (1970), this tradeoff did not occur as a result of selection acting on 

pleiotropically linked traits. 

The results of this study combined with the hindsight provided by the fossil 

record (i.e., Ardipithecus and Australopithecus anamensis) show conclusively that Jolly’s 

pleiotropy hypothesis does not explain the initial reduction of hominin canine size. The 

McCollum and Sharpe (2010) and Jolly (1970) pleiotropy hypotheses and tests of their 
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predictions within species by Scott (2010), relate to canine basal areas. As stated, canine 

heights were substantially reduced before canine basal size (Suwa et al., 2009; Ward et 

al., 2010). Hypotheses that explain this initial reduction should explain not why bases 

were reduced, but why heights were reduced, and why the rate of reduction was different 

for the maxillary and mandibular canines (Suwa et al., 2009). 

 

Implications for Cladistic Analyses: Dental characters are significantly represented in 

trait lists used in hominin cladistic analyses (e.g, Skelton and McHenry, 1992, 1998; 

Strait et al., 1997). Some have expressed concern that an overreliance on traits that are 

functionally (and presumably genetically) linked has biased hominin phylogenetic 

reconstructions in favor of certain scenarios (for example, in recognizing a monophyletic 

Paranthropus comprising Paranthropus boisei, Paranthropus robustus, and 

Paranthropus aethiopicus) (e.g., Skelton and McHenry, 1988; McCollum and Sharpe, 

2001). Genetic linkage among the dental traits used for phylogenetic reconstructions has 

not been tested, but is presusumed to be common; as Strait and Grine (1998: 115) state 

“characters may be related for a variety of reasons other than function (e.g., 

developmental constraint, pleiotropy; see Gilbert et al., 1996), and those features, too, 

should not be considered independent.” This current study was not designed to test for 

covariation for characters that have been used in particular cladistic analysis; however, 

the findings have implications.  

The highest levels of character covariation are fairly predictable among 

characters; the highest magnitudes are among occluding teeth and neighbors in functional 

modules. Otherwise, phenotypic covariation within species is typically very low or low, 

which suggests that the concern about strong genetic constraints at a broad scale among 

dental characters is unwarranted. The independence of changes in the absolute and 
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relative sizes of the incisors, canines, and postcanine teeth were already discussed above. 

A few more examples are given below. Analyses of partial correlations for postcanine 

size indicated that premolars share a pool of genetic variance that is not accessible to 

molars (Tables 4.12 and 4.13). Covariation in premolar and molar shape is also very low 

or low (Tables 4.31 and 4.32). As a result, changes in the sizes of the premolars and 

molars are not completely dependent (Figure 7.2) and changes in premolar and molar 

shapes (e.g., the molarization of the premolars occurred as a result of the expansion of the 

distal part of the crown relative to the mesial) were likely not mediated by a pleiotropic 

connection. When considered at a detailed morphological level, the assumption of 

widespread pleiotropy among dental characters is biologically untenable. Take for 

example the transformation of the hominin P3, which has been detailed elsewhere 

(Delezene and Kimbel, 2011). The morphological changes of the P3, which resulted in a 

reduction of premolar heteromorphy, required a reduction of principal cusp height, 

development of an individualized secondary cusp, a shift in the orientation of the 

transverse crest, a shift in the principal cusp’s location both mesiodistally and 

buccolingually, the elevation of both segments of the mesial marginal ridge, the fusion of 

the individual segments of the mesial marginal ridge, and a reduction in the obliquity of 

the crown’s outline. The hominin Australopithecus afarensis presents a variety of 

combinations of apomorphic and plesiomorphic states for the features mentioned above; 

however, the derived states are nearly fixed in geologically younger hominins. As a 

result, what appears to be a stable complex of features in taxa arose through a series of 

independent changes. This is not to say that selection on pleiotropically linked traits has 

played no role in hominin dental evolution (principal cusp height reduction for P3 and P3 

was hypothesized as an example in this study), only that a careful examination of dental 

morphology can produce a list of traits that probably share little genetic covariation. 
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Future Directions 

 Continued work on the evolution of the hominin honing complex will examine 

not just the functional (e.g., Zolnierz et al., 2011) and morphological transformation of 

the complex (e.g., Delezene and Kimbel, 2011), but also the role of pleiotropy in the 

transformation. Below, a few extensions of this research are outlined. 

Honing removes enamel from the canines and the mesial premolar as wear 

progresses and generates sharp edges on the canines (Figure 1.10) (Ryan, 1979; Walker, 

1984; Greenfield, 1990); however, the reciprocal honing surfaces of the premolar and 

maxillary canine are not necessarily equal in area (e.g., Greenfield, 1992). For example, 

in male Papio cynocephalus the honing surface on the maxillary canine is four times the 

area of the surface on the honing premolar (Walker, 1984). Walker hypothesized that the 

honing premolar should wear out faster than the maxillary canine unless there is a 

compensatory mechanism; he demonstrated that the enamel on the premolar’s honing 

surface was absolutely thicker than that on the maxillary canine, which ensures its 

functional longevity. Such a relationship suggests that morphological adaptations for 

honing not only include the shapes and sizes of the occluding teeth but also the relative 

thickness of enamel on the reciprocal honing surfaces. The covariance among enamel 

thicknesses between occluding surfaces has not be investigated and neither has the 

transformation of enamel thickness on the canines and honing premolars.  

Though the canine honing complex comprises the canines and mesial-most 

mandibular premolar, adjacent (nonhoning) teeth are also affected by this complex. 

During hominin evolution the specializations related to honing were lost in the P3 

(discussed in Chapter 1) and for the P3 the paracone was reduced in height and area so 

that the paracone and protocone became similar in size. In Chapter 4, the weak 
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covariation of both mesial premolars with distal premolars was discussed and in Chapter 

5, it was shown that the honing surface length of the P3 and the mesial enamel extension 

of the P3
 expressed substantial covariation within species (Table 5.15) and it was 

suggested that this covariance likely reflects the fact that both features are related to 

having tall principal cusps. Therefore, in part, premolar heteromorphy is reduced for the 

P3 and P3 by shortening the height of the principal cusp. Future work will attempt to 

uncover the extent of the pleiotropic relationship between the P3s and will also attempt to 

determine if magnitudes of covariance increased between the P3s and P4s; that is, to 

determine if the P3s became integrated with the P4s (as in Figure 1.1). 

 

Conclusion 

 The findings of this dissertation support the hypothesis that the functional 

modules of the dentition are also variational modules and that patterns of variance-

covariance are conserved among species; though subtle differences exist between taxa 

when variational modules are examined in isolation. Despite these shared patterns of 

variance-covariance, dental diversification has frequently occurred along dimensions not 

aligned with the vector of genetic constraint. As there is no evidence for absolute 

constraints on dental morphology, it is important to consider both the history of selection 

and the pattern of constraint when studying the production of dental diversity. As regards 

the canine honing complex, there is no evidence for a difference in the pleiotropic 

organization or the coevolution of characters of the complex in males and females, which 

undermines arguments that the complex is selectively important only in males. For 

hominins, this indicates that selection must have been particularly strong in driving the 

divergent reductions in mandibular and maxillary canine height. The extent to which the 

elements of the complex were parceled out from one another remains to be determined. 
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Finally, there is no evidence for strong or negative pleiotropy between variational 

modules, which falsifies hypotheses that predict such relationships between incisors and 

postcanine teeth or between the canines and either the incisors or postcanine teeth. 
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