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ABSTRACT

The accurate simulation of many-body quantum systems is a chal-

lenge for computational physics. Quantum Monte Carlo methods are a

class of algorithms that can be used to solve the many-body problem.

I study many-body quantum systems with Path Integral Monte Carlo

techniques in three related areas of semiconductor physics: (1) the role

of correlation in exchange coupling of spins in double quantum dots, (2)

the degree of correlation and hyperpolarizability in Stark shifts in In-

GaAs/GaAs dots, and (3) van der Waals interactions between 1-D metal-

lic quantum wires at finite temperature.

The two-site model is one of the simplest quantum problems, yet

the quantitative mapping from a three-dimensional model of a quantum

double dot to an effective two-site model has many subtleties requiring

careful treatment of exchange and correlation. I calculate exchange cou-

pling of a pair of spins in a double dot from the permutations in a bosonic

path integral, using Monte Carlo method. I also map this problem to

a Hubbard model and find that exchange and correlation renormalizes

the model parameters, dramatically decreasing the effective on-site re-

pulsion at larger separations.

Next, I investigated the energy, dipole moment, polarizability and

hyperpolarizability of excitonic system in InGaAs/GaAs quantum dots

of different shapes and successfully give the photoluminescence spectra

for different dots with electric fields in both the growth and transverse

direction. I also showed that my method can deal with the higher-order

hyperpolarizability, which is most relevant for fields directed in the lat-

eral direction of large dots.
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Finally, I show how van der Waals interactions between two metallic

quantum wires change with respect to the distance between them. Com-

paring the results from quantum Monte Carlo and the random phase

approximation, I find similar power law dependance. My results for the

calculation in quasi-1D and exact 1D wires include the effect of temper-

ature, which has not previously been studied.
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Chapter 1

INTRODUCTION

With the continued development of computer processor power and new

algorithms, computational physics plays an increasingly important role

in physics research. Many kinds of numerical simulation methods have

been applied to systems that are too complex for analytic calculation, or

where detailed experiments are difficult. Often, results from computer

simulations are compared with other analytical results and experimen-

tal measurements to serve as a cross-check on the theoretical interpre-

tation. Simulations give researchers new ways to understand physical

systems.

1.1 The Quantum Many-Body Problem

A commonly studied quantum many-body system is a collection of inter-

acting electrons and holes in a semiconductor nanostructure. In princi-

ple, any non-relativistic many-body systems can be described by a many-

body Schrödinger equation. Correlation between interacting particles

and Pauli exclusion make the many-body Schrödinger equation too dif-

ficult to solve exactly, even using parallel computing technology. There-

fore theorists developed high-quality approximation methods to describe

many-body systems more accurately. One approach is Quantum Monte

Carlo (QMC), a class of computer algorithms that solve the quantum

many-body systems using random walks. QMC directly deals with many-

body effects, at the cost of statistical uncertainty that can be reduced

with more simulation time. For bosons, QMC is a numerically exact
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algorithm. For fermions, one must invoke additional approximations.

QMC methods are usually separated into two categories: zero tem-

perature methods and finite temperature methods (Ceperley and Alder,

1986; Foulkes et al., 2001; Hammond et al., 1994). Zero-temperature

Monte Carlo techniques—such as variational Monte Carlo and diffu-

sion Monte Carlo—aim to compute properties of the ground state wave-

function of the system. Variational Monte Carlo directly applies the

variational principle to approximate the ground state of the system. The

accuracy of the calculation depends on the quality of the trial function,

and so it is important to optimize the wave-function as near as possible

to the ground state. Diffusion Monte Carlo is a high-accuracy method

for chemical problems, which captures most correlation energy while

scaling more efficiently than common quantum chemistry expansions.

The Path Integral Monte Carlo (PIMC) method is a finite temperature

technique. It is used to calculate thermodynamic properties such as the

internal energy from the thermal density matrix. More discussion about

PIMC will be included in Chapter 2.

When I deal with many-body systems in semiconductor nanostruc-

tures in this dissertation, I always use the effective mass approxima-

tion. Electrons and holes in the semiconductors are quasi-particles with

effective mass determined by a quadratic curvature in the small region

around the band minimum,

m∗µν = ~2 ·
[
∂2E(k)

∂kµ∂kν

]−1

. (1.1)

The notion of an effective mass assumes that the bands are differen-

tiable at the minimum. The electrons and holes interact through Cou-

2



lomb forces. Within the effective mass approximation, the Hamiltonian

for electrons and holes in the semiconductor material is

H =
∑
i

−5µ λi,µν 5ν +
∑
i<j

qiqj
ε|ri − rj|

, (1.2)

where λi,µν = ~2/2m∗µνis the inverse effective mass tensor of the ith par-

ticle, qi is the charge of the particle i, and ε is the dielectric constant of

the semiconductor.

1.2 Nanostructures

Most of the interest in semiconductors is not in their bulk properties,

but rather in heterogeneous structures. Semiconductor quantum dot

systems have generated great interest because they can be regarded

as ideal quasi-zero-dimensional systems with fully quantized, discrete

energy spectra of electrons and holes, which can be used to study exci-

tons as well as many well known effects from atomic physics. I study

two types of dots: electrostatically gated dots and self-assembled In-

GaAs/GaAs dots. Quantum wires, which confine electrons in a one-

dimensional structures, are also of interest, and I consider a generic

model applicable to GaAs wires and carbon nanotubes.

GaAs is a III/V semiconductor used in the manufacture of devices

such as infrared light-emitting diodes, laser diodes, and solar cells. The

crystal structure of GaAs is zinc blende with a lattice constant 0.565 nm.

At room temperature, GaAs has a direct 1.4 eV band-gap, which can be

used to emit light efficiently. GaAs is often used for experiments and

devices because of its good optical properties and the ability to make

high-quality, defect-free materials.

3



100 nm

Side Gate

Left G
ate

Right Gate

Center Gate

Figure 1.1: Simple sketch for double quantum dots in experiments re-
lated to our calculations. This is a top view: the negatively charged
gates deplete a 2DEG, leaving quantum dots and connecting channels.
The black circles mark the region of the quantum dots, which can trap
single electrons.

Gated GaAs Quantum Dots

First I briefly discuss the AlGaAs/GaAs two dimension electron gas (2DEG).

A 2DEG is a gas of electrons free to move in two dimensions, but tightly

confined in the third, growth direction. This tight confinement leads

to quantized energy levels for motion in the growth direction, which

can then be ignored for most problems. A 2DEG can be used in high-
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Figure 1.2: This sketch illustrates how the self-assembled quantum dots
are grown in experiments. (a) In, Ga, and As atoms are deposited on
a clean GaAs substrate using molecular beam epitaxy, (b) the InGaAs
material wets the suface, as a strained wetting layer, (c) after a critical
thickness is reached, strain causes new material to grow as islands, in
the Stransti-Krastanov growth mode. Typical coherent self-assembled
dots vary from 15 nm to 40 nm, depending on growth conditions.

electron-mobility-transistors, (HEMTs), which are field-effect transis-

tors that utilize the heterojunction between AlGaAs and GaAs materi-

als to confine electrons to a triangular quantum well. Electrons confined

to the heterojunction of HEMTs exhibit higher mobilities than those in

metal-oxide-semiconductor field-effect transistor. Thin electrodes placed

above the AlGaAs/GaAs quantum well (illustrated in Fig. 1.1) can pro-

duce both single quantum dots (Ashoori et al., 1992, 1993) and arrays of

dots (Hansen et al., 1989; Lorke and Kotthaus, 1990). Fig. 1.1 illustrates

how double quantum dots system looks like in double-dot experiments

that we simulate in Chapter 3.

InGaAs/GaAs self-assembled Quantum Dots

In experiments, InGaAs alloy material grown on a GaAs substrate can

form self-assembled quantum dots spontaneously under certain condi-

tions during molecular beam epitaxy. This is because InGaAs is not

lattice matched to the GaAs substrate, having a lattice content up to 7%

larger than GaAs in the case of pure InAs. The resulting strain pro-

duces islands on top of a two-dimensional wetting layer, as illustrated

5



in Fig. 1.2. This growth mode is called Stranski-Krastanov growth. The

InGaAs islands can be buried with more GaAs to form self-assembled

quantum dots. There are several direct experimental methods—such as

Scanning Tunneling Microscopy (STM), Transmission Electron Micro-

scopy (TEM), and X-ray diffraction—that provide some information about

the composition of the quantum dots, but all these methods have the

disadvantage of either being destructive or being limited to dots on the

surface. The development of single-dot spectroscopy exposes the opti-

cal properties of individual quantum dots under the influence of exter-

nal electric field. Charged and neutral exciton recombination has been

observed in the photoluminescence (PL) spectra of single InGaAs quan-

tum dots (Finley et al., 2001; Reimer et al., 2008; Finley et al., 2004; Fry

et al., 1999a,b; Barker and O’Reilly, 2000). Photoluminescence excita-

tion (PLE) spectra show that the charged excitons are created only for

excitation in the barrier or cladding layers of the structure. whereas the

neutral excitons shows well-defined excitation features for resonant ex-

citation of the dot. Fig. 1.2 illustrates how self-assembled quantum dots

are grown in experiments.

Quantum wires and Carbon Nanotubes

Much like gated quantum dots, electrostatic confinement on the 2DEG

in one lateral direction of an AlGaAs/GaAs quantum well can produce

a 1D quantum wire. If the density of electrons is sufficiently high to

occupy several lateral excitation states, it generates a quasi-1D wire.

When the width of wire is changed to confine the electron in a single

subband, it generates a true 1D wire (Meirav and Kastner, 1989). I
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have simulated both of these two kinds of wires have been simulated in

my research work.

It is also possible to make quantum wires using metallic carbon nan-

otubes. Carbon nanotubes (CNTs) are carbon materials with a cylin-

drical nano-structure. Due to their extraordinary electrical properties,

carbon nanotubes may have many applications in nano-structure de-

vices (Baughman et al., 2002; Tans et al., 1998). Single-walled nanotubes

(SWNTs) are an important kind of carbon nanotube with diameter of

about 1 nm and a tube length that can be many millions of times longer.

The structure of a SWNT can be considered as wrapping a graphene

layer into a cylinder represented by a pair of indices (n,m). The proper-

ties of SWNTs change significantly with the (n,m) values (Martel et al.,

2001). For example, their band gap can vary from zero to about 2 eV, and

their electrical conductivity can behave in a metallic or semiconducting

behavior.

1.3 Path Integral Monte Carlo Simulations

For my Ph. D. research work, I have applied the PIMC method to differ-

ent quantum systems. The detailed formation of PIMC technique will

be discussed in Chapter 2; in this section I briefly talk about some ad-

vantages and challenges for this technique.

Using path integral Monte Carlo methods to simulate bosons sys-

tem has been very successful, with many applications to He4 (Ceperley,

1995). When applied to fermions, the PIMC method introduce minus

signs into some terms of the partition function, which exponentially de-

crease the efficiency of simulations, especially for systems with large
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number of fermions at low temperatures. This is called the “fermion

sign problem,” and is one of the biggest challenges for the PIMC tech-

nique and other many body methods. For ground state QMC, the fixed-

node approximation was invented to overcome the fermion sign problem

(Anderson, 1975, 1995). This method has been successfully applied to

ground state simulations of molecules and solids (Foulkes et al., 2001;

Grossman, 2002; Williamson et al., 2001; Ortiz et al., 1993). The re-

stricted path approximation (Ceperley, 1992; Magro et al., 1995; Mil-

itzer and Pollock, 2000; Pierleoni et al., 1994) has been applied to finite

temperature PIMC calculations to manage the fermion sign problem. In

the fixed-node approximation, one “reference slice” in imaginary time is

selected, and the fixed-node constraint is evaluated from that slice. In

Chapter 5, I use the fixed node approximation to simulate fermions in

quantum wires.

In the theory of many-body systems, time correlation functions play

an important role in the calculation of dynamic processes, such as trans-

port properties, spectroscopic line shapes, and neutron and light scatter-

ing spectra (Thirumalai and Berne, 1983). PIMC is one of the methods

that can be used to obtain time correlation functions. With PIMC, I can

directly collect imaginary-time correlation functions of the many-body

systems. Real-time correlation functions require analytic continuation

from imaginary time (Baym and Mermin, 1961; Jarrell and Biham,

1989; Thirumalai and Berne, 1991). Often, it is very difficult to nu-

merically perform the analytic continuation, so it is useful to calculate

physical properties directly from the imaginary time correlation func-

tions, without making analytic continuation to real time. In Chapter 4,
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I use the imaginary time correlation functions to get the polarizability

and hyperpolarizability of the systems.

1.4 Overview of Dissertation

This dissertation focus on the theoretical study of three quantum sys-

tems: (1) the effect of correlation in exchange coupling of spins in dou-

ble quantum dots, (2) the role of correlation and hyperpolarizability on

Stark shifts in InGaAs / GaAs dots, and (3) van der Waals interaction

between quantum wires.

Correlation in exchange coupling of spins in double quantum dots

In the past twenty years, many papers (Divincenzo, 1995; Bennett,

1995; Barenco et al., 1995; Turchette et al., 1995) have clarified both the

theoretical potential and the experimental challenges of quantum com-

putation. In quantum computation, the state of each bit is allowed to be

any quantum mechanical state of a two-level quantum system (qubit).

However, it is extremely difficult to achieve the conditions for quantum

computation, which require precise control of Hamiltonian operations

on well-defined two-level quantum systems and a very high degree of

quantum coherence. The possibility of coherent manipulation of elec-

tron spins in low-dimensional nanostructures presents a need for deep

understanding of spin interaction. The exchange coupling between the

spins of electrons in tunnel-coupled quantum dots has been envisioned

as one of the controllable mechanisms for coherent manipulation of spin

qubits (Loss and DiVincenzo, 1998). Recently, many numerically exact

calculations have been provided to study the exchange coupling between

electron spins confined by double quantum dots.
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With collaborators, I have developed a simple and elegant PIMC al-

gorithm to calculate the exchange energy J in a double parabolic poten-

tial quantum dots. My J values are in a good agreement with the nu-

merically exact technique given by Pedersen et al. (2007). The hopping

constant t and renormalized on-site energy Ur − Vr are also calculated,

these differ significantly with traditional Hubbard model results. I have

the double occupation density in quantum dots and clearly see the ef-

fect of an instanton, when electrons hop between dots. I also plot the

correlation holes from the PIMC simulation, and compared with my col-

laborator Jesper Pedersen’s direct diagonalization calculations, in order

to deeply understand the presence of electron correlation during tunnel-

ing. Finally, I apply magnetic fields to the systems, and calculate the

exchange energy J with different magnetic field. I show that J becomes

negative when the system is in a higher magnetic field, which confirms

the validity of this PIMC method.
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Correlation and hyperpolarizability on

Stark shifts in InGaAs/GaAs dots

The quantum confined Stark effect (Bennett and Patel, 2010; Leitsmann

and Bechstedt, 2009) is the electric-field dependent shift of the photo-

luminescence energies in single quantum dots. It has been exploited

to produce electro-optical devices, since the photon absorption based on

the quantum confined Stark effect in quantum wells is one of the most

efficient processes for making optical modulators and self-electro optic

effect devices (Sanguinetti et al., 2000). Theoretical predictions show

that the light-emitting diodes (LEDs) or laser diodes (LDs) with quan-

tum dots in the active layer will lead to improved optical characteristic

such as low threshold current and weak temperature dependence of the

threshold current (Widmann et al., 1998). The analysis of the Stark

shift of excitons in quantum dots (Raymond et al., 1998) helps reveal the

electron and hole charge distribution in the dot. For example, the per-

manent dipole moment caused by electron and hole wavefunction sep-

aration has been measured in experiments (Fry et al., 1999a; Barker

and O’Reilly, 2000). Many calculations about the exciton structure in

quantum dots have been performed (Gerardot et al., 2007; Kadantsev

and Hawrylak, 2010). In the absence of structural information of quan-

tum dot shape (Tablero, 2009), dots are often modeled with pyramidal

shapes, but in many cases the dots are closer to lens and truncated-cone

shapes (Fry et al., 1999a). There are theoretical calculations that in-

dicate that the electron ground state energy level is weakly affected by

vertical fields but is strongly affected by the lateral electric fields (Li
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and Xia, 2000; Kadantsev and Hawrylak, 2010). One-band electron and

hole Hamiltonian calculations show that the hole center of mass is be-

low the electron center of mass in a constant composition dot. For a

graded composition with the In composition increasing from the bottom

to the top of the dot, the sign of the electron-hole dipole will be opposite

(Barker and O’Reilly, 2000).

I simulated exciton and biexciton binding in different electric field

strengths in a 2-D parabolic confinement, which is a good approxima-

tion for a real dot. I compared my results with Korkusinski and Reimer

(2009), which used configuration interaction method with six basis states

of harmonic oscillator. Then, I generated four InGaAs/GaAs quantum

dots with different shape and In composition, and simulate the exci-

ton (1e1h), trion (1e2h,or 2e1h), and biexciton (2e2h) states in these

quantum dots. In order to get the recombination energy spectrum as

a function of applied electric field, I directly calcuated the energy, dipole

moment, polarizability, and hyperpolarizability of the systems with zero

electric field before and after recombination, and expressed the photolu-

minescence energy in terms of these quantities. I also directly simulated

exciton and biexciton energies with an applied electric field to check my

calculations. Finally I considered the piezoelectric potential in these

dots, and showed that there exist asymmetry of polarizability in the x-y

plane.

Van der Waals interactions in quantum wires

Dispersion interactions are significant in soft matter (Rydberg et al.,

2003b) and many nanostructures. One-dimension conductors such as
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carbon nanotubes are essential components of many proposed nanotech-

nological devices, and they are currently the subject of numerous exper-

imental and theoretical studies (Girifalco et al., 2000). In recent theo-

retical studies, it was shown that the form of the van der Waals inter-

action between pairs of distant parallel thin conducting wires assumed

in many models of metallic carbon nanotubes is qualitatively wrong. A

common approach used to calculate the van der Waals interaction be-

tween two objects is to consider the pairwise interactions between vol-

ume elements with an attractive form of Udd(r) ∝ r−6, which is the van

der Waals interaction between two dipoles. Summing the interaction

over a pair of 1D parallel wires separated by a distance r leads to a

binding energy of U(r) ∝ r−5. This pairwise van der Waals model is

appropriate for insulators or for metallic wires whose radius is greater

than the screening length. However, for a thin metallic conductor such

as a single-walled carbon nanotube the method is not appropriate. In

the last several years, other researchers used the random phase approx-

imation (RPA) (Dobson et al., 2006) to consider the zero-point energy

of the delocalized, coupled, one-dimensional plasmon modes with wave

number parallel to the long axis. They found that the van der Waals

binding energy, calculated by summing of zero-point plasmon energies,

falls approximately as (Dobson et al., 2006),

U(r) ≈ −
√
rs

16πr2[log(2.39r/b)]3/2
. (1.3)

In the above equation, b is the radius of the wire, r is the distance be-

tween two wires and 2rs is the average length which contain one elec-

tron. The ground state QMC method has used to simulate the same
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system (Drummond and Needs, 2007) and verify the RPA result in zero

temperature.

I have the density-density correlation function from PIMC simula-

tions to directly calculate the Coulomb interaction between two 1-D wires

in different separation and temperature. By comparing my result with

the RPA (Dobson and Wang, 1999) and QMC (Drummond and Needs,

2007) results, I have investigated the temperature effect on van der

Waals interaction.
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Chapter 2

PATH INTEGRAL MONTE CARLO TECHNIQUE

In this chapter, I briefly review the path integral Monte Carlo (PIMC)

simulation method, which include Feynman’s path integral theory, quan-

tum statistical mechanics, and the Metropolis algorithm for high-dimensi-

onal integration.

Feynman’s paths integral formulation of quantum statistical mechan-

ics is a very useful method to describe the quantum many-body sys-

tems (Feynman, 1972). Mapping a quantum mechanical system onto

a classical model of interacting “polymers” gives us a different view of

many-body phenomena, such as Bose condensation (Feynman, 1953) and

superfluidity (Ceperley, 1995).

There are several advantages for calculating physical properties of

many-body systems with PIMC simulations. First of all, unlike vari-

ational Monte Carlo and diffusion Monte Carlo, which usually sample

particles at zero temperature, the PIMC method uses the canonical en-

semble thermal density matrix to evaluate the thermal properties of the

quantum mechanical systems. Second, since this method is a many-

body formalism, no single particle approximations are made, thus corre-

lation effects are included automatically. Finally since the path integral

method naturally averages over all quantum and thermal fluctuations, I

can directly calculate the observables in canonical ensemble rather than

finding the many-body wavefunctions for each eigenstate.
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2.1 Thermal Density Matrix

All static properties of a quantum mechanical system in thermal equilib-

rium state can be obtained from the thermal density matrix (Feynman,

1972). In this section, I discuss the mathematical properties of the den-

sity matrix and the relationship between the thermal density matrix,

path integrals, and quantum mechanical observables.

Suppose that we have a quantum many-body system with Hamilto-

nian Ĥ, and that we also know that that the eigenstates and eigenvalues

of the system are φi and Ei, respectively. When the system is in thermal

equilibrium at temperature T , in the canonical ensemble, the probability

that the system occupies state i is 1
Z
e−βEi, where the partition function

is

Z =
∑
i

e−βEi , (2.1)

and β = 1/kBT . In basis-independent notation, the thermal density ma-

trix can be written as,

ρ̂ =
1

Z
e−βH , (2.2)

where the partition function Z is needed for normalization. Hence the

thermal expectation value of an operator Ô at temperature T is

〈Ô〉 = tr(ρO) =
1

Z

∑
i

〈φi|O|φi〉e−βEi . (2.3)

From the equation above, the matrix elements of the density matrix in

the position representation are,

ρ(R,R′; β) =
1

Z
〈R|e−βH |R′〉 =

1

Z

∑
i

φi(R)φi(R
′)e−βEi , (2.4)
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where R = (r1, r2, . . . , rN) represents the position coordinates of all the

particles. Thus, when expressed in position representation, the expecta-

tion value of O becomes

〈O〉 =

∫
dRdR′ρ(R,R′; β)〈R|O|R′〉. (2.5)

2.2 Path Integrals and Quantum Mechanics

Using properties of the exponential function, the thermal density matri-

ces at a lower temperature can be expressed as a product of two density

matrices at higher temperature,

e−(β1+β2)H = e−β1He−β2H , (2.6)

In the position representation, this becomes,

〈R1|e−(β1+β2)H |R3〉 =

∫
dR2〈R1|e−β1H |R2〉〈R2|e−β2H |R3〉. (2.7)

Using this property M times, the density matrix at temperature T in

terms of the product of M short time propagators,

ρ(R,R′; β) =
1

Z

∫
dR1dR2 . . . dRM−1 〈R|e−

τH
~ |R1〉〈R1|e−

τH
~ |R2〉

· · · 〈RM−1|e−
τH
~ |R′〉,

(2.8)

where the time step is τ = β~/M . When M goes to infinity, this becomes

a continuous path connecting position R and R′ between imaginary time

0 to β~.

Usually the Hamiltonian consists of two parts, H = T + V , where T

and V are the kinetic and potential parts of the Hamiltonian. For small

τ , we can approximate,

e−
τ
~ (T+V )+ τ2

2~ [T,V ] ≈ e−
τ
~T e−

τ
~V . (2.9)
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When τ → 0, the τ 2 term on the left side is much smaller than the other

terms, so it can be neglected and gives us the primitive approximation,

e−
τ
~ (T+V ) ≈ e−

τ
2~V e−

τ
~T e−

τ
2~V . (2.10)

According the Trotter expansion,

e−β(T+V ) = lim
M→∞

[e−
τ
~T e−

τ
~V ]M . (2.11)

In position space, the primitive approximation becomes,

〈R1|e−
τ
~H |R3〉 =

∫
dR2〈R1|e−

τ
~T |R2〉〈R2|e−

τ
~V |R3〉 (2.12)

Since the potential operator is always diagonal in position representa-

tion,

〈R2|e−
τ
~V |R3〉 = e−

τ
~V (R2)δ(R2 −R3) (2.13)

The kinetic part can be evaluated using the eigenfunction expansion of

T . Thus,

〈R1|e−
τ
~T |R2〉 = (4πλτ/~)−3N/2 exp

[
− (R1 −R2)2

4λτ/~

]
, (2.14)

where λ = ~2

2m
. Using the expression above, the discrete path-integral

expression for thermal density matrix in the primitive approximation

is,

ρ(R0, RM ; β) =
1

Z(4πλτ/~)3NM/2

∫
dR1dR2 . . . dRM−1

× exp

[
−

M∑
m=1

(
(Rm−1 −Rm)2

4λτ/~
+
τ

~
V (Rm)

)] (2.15)

Taking the limit M →∞, this equation becomes the path integral equa-

tion.

ρ(R,R′; β) =
1

Z

∫
DR(τ)e−SE [R(τ)]/~. (2.16)
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The symbol DR(τ) in the integral means the sum over all random walks

R(τ) taking place in imaginary time τ , starting at R′ at imaginary time

τ = 0 and ending at R at imaginary time τ = β~. The paths are weighted

by the Euclidean action SE[R(τ)], which is the functional of the path

R(τ),

SE =

∫ β~

0

dτ

[
N∑
i=1

1

2
mi

(
dRi(τ)

dτ

)2

+ V
(
R(τ)

)]
. (2.17)

In this thesis I only calculate the expectation value of physical proper-

ties, tr(ρO) that are diagonal in the position representation, so the path

integral expression will start and end at the same coordinate R and form

a closed loop.

2.3 Bosonic Simulations And Fermion Sign Problem

Eq. (2.15) can be applied to many-body systems in which all particles

are distinguishable. However in many quantum mechanical systems

with identical bosons and fermions, I need to consider the symmetry

under exchange of identical particles. For particles of Bose and Fermi

statistics, if I label the particles with 1, 2, · · ·N , I must use symmetric or

anti-symmetric states in the PIMC formation. Paths of identical parti-

cles are allowed to close on each other, which generates the path permu-

tation terms in the path integral,

ρ(R,R′; β) =
1

Z

1

N !

∑
P

(±1)P
∫

R(0) = R′

R(β~) = PR

DR(τ)e−
1
~SE [R(τ)]. (2.18)

In Eq. (2.18), the sign is “ + 1” for bosons, and “ − 1” for fermions. The

physical properties of bosonic systems, such as liquid helium-4, can be

evaluated by directly Monte Carlo sampling to add the contributions
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from all permuting paths (Ceperley, 1995), since the permutation terms

in Eq. (2.18) are positive for all path configurations. If the path can be

sampled efficiently, including all permutations, PIMC can be a numeri-

cally exact method for bosonic systems.

For the case of fermions, odd permutations in paths will give a neg-

ative sign in path integral. This causes a big problem in calculating

the path integral for fermions. If I directly sum over all permutation

terms, because of the cancelation of positive and negative permutations,

there is a tremendous loss of efficiency. Especially for systems at low

temperature with large numbers of particles, the computational effi-

ciency goes to zero rapidly. The majority of the signal cancels but the

noise is still large. This difficulty is known as the fermion sign problem,

and it also exists in other formulation of quantum mechanics, not just

path integrals. An approximation called restricted path integral method

(Ceperley, 1991, 1992) can be used to manage this problem. This approx-

imation maps the fermions back to the solvable boson problem, and has

been successfully applied to hydrogen plasmas and electron-hole sys-

tems. In this method, I use a trial density matrix density matrix taken

from the single-particle density matrix of non-interacting particles. If

ρT (R(τ), R(τ + β~/2); β~/2) = 0 for any time τ , then the path crossed a

nodal surface, and the configuration is rejected. In Chapter 5, I use this

approximation to simulation electrons in nanowires.

2.4 Path Integral Monte Carlo Method

Now I have shown how to map a quantum system onto a classical en-

semble of paths. Next I show how to use Metropolis sampling method
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(Metropolis et al., 1953) to sample the properties of the paths, to get the

thermal physical properties of a quantum system. Monte Carlo meth-

ods use random numbers to deal with a stochastic process, which is a

sequence of states determined by random events (Kalos and Whitlock,

1986). Before talking about the sampling method, for convenience, I

introduce some new notation for describing the density matrix. For dis-

crete path integral, the time step is defined as τ ≡ β/~M and Rk =

{r1,k, . . . rN,k} is the kth time slice. A link is a pair of time slice(Ri−1, Ri),

thus the link action is defined as minus the logarithm of the density

matrix

Si ≡ − ln[ρ(Ri−1, Ri; τ)]. (2.19)

Then the path integral expression becomes

ρ(R0, RM ; β) =

∫
dR1dR2 . . . dRM−1 exp

[
−

M∑
i=1

Si
]
. (2.20)

I can separate kinetic action from the other action, and the kinetic action

of link i is

Ki =
Nd

2
ln(4πλτ) +

(Ri −Ri−1)2

4λτ
. (2.21)

The remain part of the action is called inter-action, U i = Si −Ki, which

contain all interesting interaction.

U i =
τ

2
[V (Ri−1) + V (Ri)]. (2.22)

The path integral samplings are done with a generalization of the

Metropolis et al. rejection algorithm, which is a particular type of Markov

chain. It generates a random walk through path configuration space

{x0, x1, x2, . . .}, according to a fixed transition rule, P (x → x′). If the
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transition is ergodic, which means one can move from any configuration

to any other configuration in a finite number of steps with nonzero prob-

ability. I define that π(x) is the probability distribution function of all

path configurations in equilibrium state, and P (x → x′) is the probabil-

ity of transition from state x to state x′. The transition probabilities can

be set up so that they satisfy the detailed balance: the number of moves

from configuration x to another configuration x′ is exactly equal to the

number of reverse move

π(x)P (x→ x′) = π(x′)P (x′ → x) (2.23)

The Metropolis method is used to ensure that the transition rules satisfy

detailed balance. I can split the transition probability P (x→ x′) into two

parts;

P (x→ x′) = T (x→ x′)A(x→ x′) (2.24)

Where T (x → x′) is the probability of a trial move and A(x → x′) is an

acceptance probability. Then the acceptance probability is

A(x→ x′) = min

[
1,
π(x′)T (x′ → x)

π(x)T (x→ x′)

]
(2.25)

It is easy to verify detailed balance with this definition.

2.5 Single Slice Sampling and Multi-Slice Sampling

Now that I have shown the principles of the Metropolis sampling method,

I apply these principles to my PIMC simulation. First I consider how to

deal with the simplest move: move a single slice on the path. This is

the elementary operation of the path integral algorithm. The problem is

that I need to move a slice Rk at time τ with fixed neighbor slice Rk−1
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and Rk+1 with imaginary time 0 and 2τ respectively. In this move, what

I choose the probability of a trial move is

T (R→ R′) ∝ exp

[
− (R′ − (Rk−1+Rk+1

2
))2

2λτ

]
(2.26)

This distribution is a Gaussian function with center Rk−1+Rk+1

2
and stan-

dard deviation
√
λτ , which is the free particle density matrix component.

Then I choose the probability distribution function π(R) be:

π(R) ∝ ρ(Rk−1,R; τ)ρ(R,Rk+1; τ) (2.27)

where ρ(Rk−1,R; τ) is the real system propagator with all interaction

terms. If I have free particle system, then I will always have an ac-

ceptance probability A(R → R′) = 1, which means all the moves are

accepted. From the trail move function, I can see that the average dis-

placement of this move is
√
λτ . When the value of τ decreases (since I

need the primitive approximation to be accurate), the diffusion of the

move in configuration space becomes much slower. If I have M slices

in a path integral simulation, I find that the computer time needed to

change the overall shape of a path using single slice move is proportional

to M3. This is a very inefficient way to do the simulation. This is the rea-

son why I need other kinds of move to achieve faster convergence in the

PIMC simulation.

Multilevel Monte Carlo sampling method is an efficient method which

can efficiently move multi-slices and many particles. Here I use the mul-

tilevel bisection algorithm to accomplish the multi-slices move. First I

select m− 1 = 2k − 1 slices (Ri+1, Ri+2, . . . , Ri+m−1), which have fixed end-

ing points Ri and Ri+m. The integer number k is called the level of the
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move in my simulation. Then I first move the middle slice Ri+m/2 of the

paths I selected, using the same method as single particle move. The

only difference is that now I have large move step equals to
√

2k−1λτ .

If this move is accepted, I just fix the middle slice Ri + m/2 and move

the middle slices (Ri+m/4 and Ri+3m/4) of two small interval( from Ri to

Ri+m/2, and from Ri+m/2 to Ri+m). I repeat the procedure above until the

final move of slices (Ri+1, Ri+3, . . . , Ri+m−1). I can only generate a new

path when all the moves of all level are accepted, otherwise I should

start from the initial path and move the middle slices of the total slices

I selected. The efficiency of this method comes from the fact that coarse

movements (move slice Ri+m/2) are accepted or rejected before the fine

movements (move slice (Ri+1, Ri+3, . . . , Ri+m−1)) are operated, so time is

not spent on the moves that will finally be rejected.

2.6 Permutation Sampling and Heat-Bath Transition

As mentioned above, when I simulate boson or fermion systems, identi-

cal bosons and fermions can be exchanged which leads to the permuta-

tion of the paths. In order to make the sampling ergodic, I must intro-

duce permutation sampling. When I use the multilevel sampling method

to generate a new path, I add a step to sample the permutation. I can

think the permutation sampling is the first level of multilevel sampling.

Since permutation space is discrete space, I can use an algorithm,

heat-bath transition probability. First I define the neighborhood, N(x),

of a state x as all the other states x′ which can move to state x in only one

step. From the definition, I conclude that if x is the neighbor of x′, then x′

is also the neighbor of x. In the heat-bath rule, the transition probability

24



from the neighbor of one state to the state itself is proportional to the

equilibrium probability distribution

T (x→ x′) =
π(x′)

C(x)
(2.28)

where C(x) normalized the probability,

C(x) =
∑

x′′∈N(x)

π(x′′). (2.29)

If I put Eq. (2.28) to Eq. (2.25) I will get the acceptance probability be

A(x→ x′) = min

[
1,

C(x)

C(x′)

]
(2.30)

If state x and x′ have the same neighbor then the acceptance probability

will be one, all moves are accepted. Using the heat-bath transition rules

I can get the transition probability for a permutation state is

T (P ) ∝ ρ(Ri, PRi+m), (2.31)

where P include all permutation of n particles. Since potential terms are

symmetric under particle permutation, the transition probability T (P )

is only dependent on kinetic terms. So I can generate a matrix which

include all transition probability within the neighborhood,

tk,j = exp[−(Rk,i −Rj,i+m)2/(4mλτ)]. (2.32)

The probability of a permutation of l particles with labels {k1, k2, . . . , kl}

is

T (P ) ∝ tk1,k2tk2,k3 . . . tkl,k1 . (2.33)

Besides multilevel sampling, permutation sampling, I also use some

other sampling methods depending on the system I simulate. All these

sampling methods are used to make the simulation converge faster as

well as the state be ergodic.
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2.7 Physical Properties Calculation

When finishing the sampling parts, I are ready to calculate the thermal

expectation values. In this section, I discuss some estimators for various

physical quantities. I need to express the quantum expectation value of

the density matrix as an average over a path.

Physical properties can be calculated in many different ways. A spe-

cific formula used to calculate these properties is called an estimator. It

is straightforward to calculate estimators of scalar operators, such as the

potential energy, the density, and pair correlation function which I will

use in the following chapter. They are simply averages over the paths.

Since all the time slices are equivalent, the average density is:

ρ(r) =
1

M

∑
i,t

〈δ(r − ri,t)〉, (2.34)

where ri,t is the coordinate of particle i at imaginary time t and M is the

total number of slices.

Other interesting physical properties, such as the energy, are not as

straightforward to calculate. As I all know, energy is one of the main

properties that I want to get from a simulation. There are a variety of

ways of estimating the energy. What I used in the following chapter is

the one called thermodynamic estimator. The energy of this estimator is

obtained by differentiating the partition function with respect to β,

ET = − 1

Z

dZ

dβ
. (2.35)

Apply the derivative to link i, and interpret the ration as an average

over imaginary time path, I can get

ET =

〈
3N

2τ
− (Ri −Ri−1)2

4λτ 2
+
dU i

dτ

〉
. (2.36)
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2.8 Summary

In this chapter, I have explained details of the path integral Monte Carlo

method, and how I used it to calculate physical properties. In chapter

3–5 I use PIMC method as a “black box”, specifying the temperature,

particle masses, interaction, spins and boundary condition of the quan-

tum many body systems, and calculate estimators of various observables

with error bars.
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Chapter 3

DOUBLE QUANTUM DOTS

In this chapter, I explore exchange coupling of a pair of spins in a double

dot using the frequency of exchanges in a bosonic path integral, eval-

uated with Monte Carlo. The algorithm gives insights into the role of

correlation through visualization of two-particle probability densities,

instantons, and the correlation hole. I map the problem to a Hubbard

model and see that exchange and correlation renormalize the model pa-

rameters, dramatically reducing the effective on-site repulsion at larger

separations. This work is based on the paper “A Path integral study

of the role of correlation in exchange coupling of spins in double quan-

tum dots and optical lattices.” My role in this paper was performing all

the path integral simulation for the double dot systems. My co-author

Jesper Goor Pedersen, a Ph. D. student at the Technical University of

Denmark, performed the direct diagonalization calculations and helped

write the paper.

3.1 Introduction

I use path integral Monte Carlo (PIMC) to extract accurate singlet-

triplet splitting from a spatial model. Similar PIMC algorithms have

been used to study spin dynamics in 3He (Thouless, 1965; Roger, 1984;

Ceperley and Jacucci, 1987) and Wigner crystals (Roger, 1984; Bernu

et al., 2001), and the approach is particularly simple for two-site models.

This two-particle problem has been previously solved with direct diago-

nalization (DD) methods with a careful choice of basis functions (Helle
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et al., 2005; Pedersen et al., 2007) and is amenable to variational or dif-

fusion quantum Monte Carlo (QMC) (Ghosal et al., 2006). However,

the simple and elegant PIMC approach is a more direct solution with-

out variational bias or basis-set issues and offers theoretical insights

into this important problem. I first show that the splitting energy, J , is

easily extracted from the average permutation of the two-particle path

integral, even when J � kBT . This PIMC algorithm is a good method,

which provide accurate numerical results of J for models of dots. More

importantly, PIMC allows us to see the phenomenon of quantum correla-

tion. A possible question is: do the particles exchange across the barrier

simultaneously, or do they briefly double occupy the dot? Or, does the

motion of one particle over the barrier correlate with the location of the

other particle? I answer these questions by viewing representative tra-

jectories (instantons) for a double dot and calculating pair correlation

functions. Magnetic fields are known to modulate J (Burkard et al.,

1999; Helle et al., 2005; Pedersen et al., 2007), and I show how to in-

clude them in PIMC by adding a Berry’s phase (Berry, 1984) term.

The mapping from a continuous model with interacting particles to

a lattice model introduces subtle complications. For a non-interacting

system it is reasonable to reduce the Hilbert space to just one orbital

per site, coupled by a hopping matrix element, t. The non-interacting

many-body ground state is a product state of these single particle or-

bitals. Low-energy excited states are spanned by this basis, so an effec-

tive lattice model is an excellent approximation. Interactions are typi-

cally added to this lattice model as on-site energies, U , or intersite terms,

V . For small t, this gives the well-known J = 4t2/(U − V ).
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There can be a serious flaw when considering interactions in this or-

der. When interactions are added to the continuum Hamiltonian, corre-

lation enters as virtual excitations to higher energy orbitals. At first this

seems insignificant, since there may be still a one-to-one mapping to an

effective lattice model. But, when choosing effective lattice parameters,

one must remember that many-body states in the continuum model have

quantum fluctuations that are simply not present in the lattice model.

3.2 Modeling and Method

As a specific example, consider two electrons in a double quantum dot.

This system is often represented as a two-site Hubbard model, where

the sites represent the 1s ground states of the dots. Correlation terms

involve virtual excitation of the electron to the 2px and 2py states of the

dots. These quantum fluctuations generate van der Waals attraction,

in addition to mean-field repulsion. Van der Waals attraction and other

correlations renormalize the interaction parameters to new values, Ur

and Vr.

When I consider hopping between sites, more complications emerge.

The hopping barrier has contributions from both the external potential

and electron-electron interactions. While the mean-field Hartree con-

tribution can simply be added to the effective potential, the fluctuating

part is not so trivial. In the transition state, an electron passes over a

barrier whose height has quantum fluctuations. Thus I expect interac-

tions to renormalize the hopping constant, tr. At the Hartree-Fock level,

Hund-Mulliken theory already predicts a renormalized tr and Ur due

to long-range exchange (Mattis, 1981; Burkard et al., 1999). However,
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neglect of correlation in Hund-Mulliken theory can lead to catastrophic

failure at intermediate dot separations (Pedersen et al., 2007). PIMC

includes all correlations, and illuminates their role in barrier hopping

with the concept of instantons.

I start with the two-dimensional model for the GaAs double quantum

dot studied in Pedersen et al. (2007),

H =
p2

1

2m∗
+

p2
2

2m∗
+

e2

ε|r1 − r2|
+ Vext(r1) + Vext(r2), (3.1)

with m∗ = 0.067me and ε = 12.9. The external potential comes from two

piecewise-connected parabolic potentials,

Vext(r) = 1
2
mω0{min[(x− d)2, (x+ d)2] + y2}, (3.2)

with minima at x = ±d. I report d relative to the oscillator length

r0 =
√

~/mω0. The two lowest energy two-electron states are spatially

symmetric and anti-symmetric under exchange, with energies ε+ and

ε−, respectively. The exchange coupling, J = ε− − ε+, has been calcu-

lated previously using direct diagonalization on a basis of Fock states

built from seven single particles states (Pedersen et al., 2007). Much

care was taken to test convergence with the number of states and care-

ful evaluation of Coulomb matrix elements. I note that the same quality

of direct diagonalization calculation in three dimensions would typically

take more single particle states.

QMC techniques give essentially exact answers to many problems

without basis set convergence issues, and often work just as easily in

multiple dimensions. PIMC is nice for quantum dot problems (Harowitz

et al., 2005) because it does not require a trial wavefunction. However,
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direct calculation of either ε+ or ε− with PIMC often have large statisti-

cal errors in energy (∼ 1 meV in dots). Instead, I use particle exchange

statistics to estimate energy differences J to high accuracy (∼ 1 µeV) in

PIMC.

To calculate J , I split the partition function into terms that are spa-

tially symmetric and antisymmetric under exchange, Z = Z++Z−. These

terms can be expressed as symmetrized or antisymmetrized imaginary-

time path integrals (Feynman, 1972; Ceperley, 1995)., (see E),

Z± =
1

2!

∑
P=I,P

(±1)P
∫
DR(τ)e−

1
~SE [R(τ)]. (3.3)

This is a sum over all two-particle paths R(τ) with the boundary condi-

tion R(β~) = PR(0), (P = I,P), where P swaps particle positions and

I is the identity. The symbol (±1)P takes the values (±1)I = 1 and

(±1)P = ±1. At low temperature, only one state contributes to each

partition function, so Z± = e−βε±. Thus,

e−βJ =
Z−
Z+

=

∑
P

∫
DR (−1)P e−

SE
~∑

P

∫
DR e−

SE
~

≡ 〈(−1)P 〉+, (3.4)

or J = −kBT ln〈(−1)P 〉+. Thus the exchange coupling can be calculated

by sampling a symmetric (bosonic) path integral (Ceperley, 1995) and

taking the average of (−1)P , which is +1 for identity paths and −1 for

exchanging paths.

3.3 Results

I ran PIMC simulations (Ceperley, 1995) with my open-source pi code

for the dots studied in Pedersen et al. (2007), with the results shown

in Fig. 3.1 (a). Coulomb interactions are included with a pair action

that correctly handles the cusp condition. I observed convergence of the
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Figure 3.1: PIMC results for double dot. (a) Exchange couplings J
for ~ω = 4 meV (•) and ~ω = 6 meV (◦) double dots with a piecewise
parabolic potential (inset). Dashed lines are direct diagonalization re-
sults from Pedersen et al. (2007). (b) The double dot occupation proba-
bility x. Using J and x I fit (c) tr and (d) Ur − Vr parameters for an effec-
tive two-site Hubbard model. Dashed lines in (c) show the bare hopping
t for one electron in the double dot. Dashed lines in (d) are V − U with
V = e2/2εd and U taken from a PIMC calculation on a single dot.

path integral results with 6400 discrete slices, but a higher-quality pair

action (Ceperley, 1995) could require fewer slices. I see near perfect

agreement with DD, and speculate that small deviations may be due to

the finite basis in the DD calculation or approximations in the evalua-

tion of Coulomb matrix elements at larger d (Pedersen et al., 2007).

To learn more, I collect the two-particle density, ρ(x1, x2), which is

the probability to find one electron at x1 and the other at x2, integrated

over all values of y1 and y2, and shown in Fig. 3.2 (b). I calculate double

occupation, xD, which I define as the probability for the electrons to lie
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Figure 3.2: Paths and pair densities for a double dot. (a) Simplified
instanton with double occupation of the right dot. (b) Pair densities
ρ(x1, x2) with the lowest density contour line that connects both potential
minima (+ markers) at (±d,∓d). (c) Simplified instanton with simulta-
neous exchange. (d) Actual path showing double occupation, sampled
from ~ω = 4 meV, d = 1.5r0 dots. (e) Actual path showing simultaneous
exchange, sampled from ~ω = 6 meV, d = r0 dots. Trajectories (d) and (e)
are also plotted in (b).

on the same side of the x = 0 plane(double occupation). From J and

xD I use the two-site Hubbard to deduce renormalized values for tr and

Ur − Vr, Fig. 3.1 (c) and (d). Detailed calculations are given in Appendix

D. Interactions renormalize tr to smaller values, consistent with Hund-

Mulliken theory or a larger renormalized mass. The larger J arises from

the dramatic decrease in Ur−Vr at larger dot separations, as correlation

enables more virtual hopping.

There are two minima, (x1, x2) = (±d,∓d), in the total potential,

marked ‘+’ in Fig. 3.2(b). For non-zero J , some paths must go between
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Figure 3.3: Crossing density, ρ2(x, x), equivalent to the diagonal of the
pair densities in Fig. 3.2(b).

these minima. In a semiclassical picture, the paths fluctuate around the

potential minima, with rapid crossings called instantons, in which par-

ticles exchange between the dots. An instanton can involve brief double-

occupation of a dot, illustrated in Fig. 3.2(a), or simultaneous exchange,

as in Fig. 3.2(c). Figs. 3.2(d) and (e) show paths from PIMC that resem-

ble the idealized instantons. In Fig. 3.2(b), one instanton moves from

the (d,−d) minimum, briefly double-occupies the left dot, (−d,−d), then

moves to the (−d, d) minimum, while the other instanton moves directly

between the two minima.

Contours of ρ(x1, x2), Fig. 3.2(b), reveal a trend with increasing dot

separation. For small d the highest probability is directly between the

minima (simultaneous exchange), but at larger d the highest probability

has two pathways (brief double occupation). Fig. 3.3 shows the proba-

bility density for crossing, ρ(x, x). Crossing is most likely in the middle
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Figure 3.4: Conditional density of one electron when the other electron
is in the white box, showing the correlation hole during an instanton.
Panels (a)–(c) are the ~ω = 4 meV, d = 1.5r0 dots and (d)-(f) are the
~ω = 6 meV, d = 1.0r0 dots. Numerical factors are the likelihood of the
first electron being in the white box. PIMC results are shown on the left
of each image, with direct diagonalization results (Pedersen et al., 2007)
on the right.

(x = 0) when the dots are close together. For larger d, the crossing prob-

ability has a double peak near the dots that is about twice the value at

x = 0. The double peaks are slightly larger for the wider ~ω = 4 meV

dot, indicating more double occupation.

To underscore the presence of electronic correlation during tunneling,

I plot the correlation hole in Fig. 3.4, with PIMC results next to direct

diagonalization results (Pedersen et al., 2007). While some quantitative

differences are apparent, consistent with the finite basis size in direct

diagonalization, the overall agreement is quite good. The message is

clear: in the instanton, as one electron moves between the dots, the

other electron moves away, enhancing the instanton and increasing J .
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Figure 3.5: Magnetic field dependence included with a Berry’s phase for
several double quantum dots.

For charged particles, magnetic fields can be used to tune the ex-

change coupling and even change its sign (Burkard et al., 1999; Harju

et al., 2002). In the path integral, a magnetic field is easily implemented

as a Berry’s phase qΦB, where q is the electron charge and ΦB is the total

magnetic flux enclosed by the path of the two electrons. The exchange

splitting is then J(B) = −kBT ln(〈eiqΦB(−1)P 〉+/〈eiqΦB〉+). The quantities

are averaged from the bosonic path integral with no field, so data for

different magnetic field strength may be collected simultaneously. For

very large magnetic fields the expectation value in the denominator is

small and Monte Carlo sampling errors are catastrophic. In practice, I

find that fields up to 4 T in strength are practical for the geometries I

study, yielding the results in Fig. 3.5.

3.4 Conclusion

In conclusion, I use a simple and elegant method to calculate the ex-

change energy splitting J from permutations in the bosonic path, which
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can also be used in other similar systems. Correlations renormalize tr

and Ur − Vr, with a dramatic decrease in Ur − Vr at large separation. I

also find that simultaneous paths crossing occurs more often with closely

spaced dots, while further separated dots are more likely to have instan-

tons with double occupations. Finally, magnetic field has been applied

to confirm the validity of the algorithm.
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Chapter 4

STARK EFFECT IN QUANTUM DOTS

In this chapter, I present my results obtained from path integral simu-

lations for excitonic complexes in various kinds of InGaAs quantum dot

samples. Since the photoluminescence spectra has been studied exten-

sively for an axial electric field I will first present my results for axial

fields on smaller pyramid dots and compare with the existing experi-

mental results (Finley et al., 2004). I next discuss the effect of polar-

izability (Seafert et al., 2001) and hyperpolarizabilities in the energy

shift in the axial growth direction. Then the effect of latera electric field

(Heller et al., 1998) on these dots will be discussed. Finally I present

results for a larger size lens-shaped, In-rich quantum dot to investigate

the effect of dot geometry (Moison et al., 1993; Widmann et al., 1998;

Tablero, 2009), size, and In-concentration on photoluminescence spec-

tra.

The energy of a quantum state in a uniform electric field can be ex-

panded as a power series in the field strength, E,

E(E) = E0 − Γ(1)
α Eα −

1

2!
Γ

(2)
αβEαEβ −

1

3!
Γ

(3)
αβγEαEβEγ

− 1

4!
Γ

(4)
αβγδEαEβEγEδ − . . . ,

(4.1)

where the indices are summed over x, y, and z. Since the dipole moment

couples linearly to the applied field,

dα(E) ≡ − dE

dEα
= Γ(1)

α + Γ
(2)
αβEβ +

1

2!
Γ

(3)
αβγEβEγ

+
1

3!
Γ

(4)
αβγδEβEγEδ + . . . .

(4.2)
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Thus Γ(1) is the zero-field electric dipole moment, d0, and Γ(2) is the static

polarizability.

4.1 Introduction

In previous papers, calculations on Stark shift energies and other prop-

erties of excitons and biexcitons in quantum dots were made (Warbur-

ton and Schulhauser, 2002; Sabathil et al., 2003; Pokutnyi and Jacak,

2004). An eight-band k · p Hamiltonian was used to study the anoma-

lous quantum confined Stark effect in vertically stacked InAs/GaAs self-

assembled quantum dots. This showed that the anomalous effect is

caused by the stain-field distribution (Sheng and Leburton, 2002). An

effective-mass envelope function model was also used to calculate the

electron and hole energy levels and optical transition energies (Li and

Chang, 2005; Wang and Djie, 2006). The relation of exciton and biexciton

binding to the vertical Stark effect in a quantum dot were studied with

the configuration interaction method using analytical expressions for

the single particle wavefunction. Those calculations showed that a weak

optical transition is enhanced by the vertical electric field (Tomić and

Vukmirović, 2009; Cornet et al., 2005; Korkusinski and Reimer, 2009).

The effect of biexciton binding on the Stark effect in GaAs quantum dots

has also been investigated using a time-dependent perturbation tech-

nique, which showed that the red shift that usually occurs in quantum

dot energy levels changes to a blue shift in the presence of biexcitons

(Banerjee and Shore, 2005). In all these previous works, the correlation

of excitons and biexcitons are handled in an approximate method. In
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the PIMC method, I can include all the correlation effects, which gives a

more accurate result.

4.2 Methods

Method of generating InGaAs/GaAs self-assembled dot profile

Before running the PIMC simulations, I first generated the models for

the self-assembled quantum dots. The effective mass model of a self-

assembled quantum dot were made using the following procedure; codes

and files for each step are listed in Appendix ??. Based on experimental

information, I design a model for my quantum dot structure that include

the shape, size, and composition of the dot and any wetting layer. Next,

I relaxed the atomic positions. I used a ball-and-spring model, the va-

lence force field (VFF) model, to calculate the strain energy. I relaxed

the atomic positions using conjugate gradients until the maximum force

between atoms was less than 10−6 atomic units. Finally, I calculated the

strain-modified band offsets. In Fig. 4.1, I show a calculated strained

band structure of one of my simulated quantum dots after the procedure

above.

Effective-mass modeling of quantum dots

To simulate InGaAs nanostructures I assume that the conduction band

electrons and valence band holes can be described by a single-band ef-

fective mass model,

H =
Ne∑
i=1

p2
i

2m∗e
+

Nh∑
i=1

p2
i

2m∗h
+

Ne∑
i=1

Ve(ri) +

Nh∑
i=1

Vh(ri) +
∑
i<j

qiqj
εrij

(4.3)

where Ne and Nh are the numbers of electrons and holes, m∗e and m∗h

are the effective masses of dressed electrons and holes, q = ∓e are their
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Figure 4.1: Conduction band offset for a uniform self-assembled dot in
my simulation

respective charges, and Ve(r) and Vh(r) the effective external potentials

arising from band offset (due to composition changes and strain fields)

between InAs and GaAs band edges. The last term in Eq. (4.3) repre-

sents the interaction between these dressed electrons and holes. Since

the nano-structures are composed of different materials I expect the di-

electric constant to be spatial varying, but to simplify the PIMC calcu-

lations I approximate it by the dielectric constant of GaAs (ε = 12.5)

everywhere. The effective mass of the electron is taken to be that of con-

duction band electrons, m∗e = 0.067me, in GaAs. Since the hole mobilities
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are different in the growth and transverse directions, I used anisotropic

hole effective masses: m∗h,‖ = 0.38me and m∗h,⊥ = 0.11me.

Method of getting spectra

With PIMC I can use two methods to obtain the spectra. First I can

apply an electric field directly on my dots, get the energy of exciton and

biexciton states in the electric field, and thus determine the PL energies

of the exciton and biexciton. The other method is perturbative response

theory, which I describe in Appendix B. I simulated six different states—

1e, 1h, 1e1h, 1e2h, 2e1h, and 2e2h—in the quantum dots to obtain: the

total energy E0, zero-field dipole moment d0, the polarizability α, and the

hyperpolarizabilities β and γ. Details about how I get the polarizability

and hyperpolarizabilities of the system are provided in Appendix B. The

photoluminescence transition energies are then,

EX(E) = E1e1h(E) (4.4a)

EX−(E) = E2e1h(E)− E1e(E) (4.4b)

EX+(E) = E1e2h(E)− E1h(E) (4.4c)

EXX(E) = E2e2h(E)− E1e1h(E) (4.4d)

From the equation above, I can also get the PL spectra of the exciton (X),

biexciton (XX) and the charged excitons (X+,X−). The first method—

explicit inclusion of an electric field—gives more accurate results for the

energies than the second one, because the second method is perturba-

tive. The direct calculation method has the disadvantage that it cannot

give the relative contribution of the polarizability and hyperpolarizabil-
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Figure 4.2: Sketches of InxGaAs quantum dot geometries and their In
composition profiles. Simulation done for three varities of truncated
pyramid shaped quantum dots uniform (a), peaked (b), graded (c) and
one larger lens shaped uniform dot (d).

ities of the state. In this chapter, I use both methods to calculate the PL

energies for all different cases.

Three dimensional dot models

As mentioned above, I simulated three varieties of truncated pyramid

shaped InGaAs quantum dots; namely, uniform, peaked and graded,

and also one uniform lens-shaped dot (Harowitz et al., 2005). In Fig. 4.2

I give the composition (Sabathil et al., 2003) of each dot. For periodic

boundary condition one wants to use a supercell that is as big as possi-

ble, but this is limited by computation time. I chose it to be 45×45×45

nm3, so that it is more than twice the diameter of the dot.

The uniform dot sits on a three monolayers of In0.3Ga0.7As alloy with

thickness 0.85 nm. The dot is approximately 5 nm tall and 20 nm wide.

For uniform composition it is made up with a random alloy In0.5Ga0.5As

all throughout. Fig. 4.2(a) shows its geometry and In composition profile.
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The supercell is chosen such a way that the dot sits in the middle of the

cell, and the rest of the cell is filled with binary alloy GaAs.

Like the uniform dot, the peaked one also sits on three monolayers

of In0.3Ga0.7As alloy of same thickness. It also has same dimensions as

a uniform dot. But as the name suggests, it is not uniformly composed.

Instead, the middle portion is much richer (100% In) in In than the edges

(30% In). Fig. 4.2(b) shows the geometry and In composition profile of

the dots. Once again rest of the supercell is filled binary alloy GaAs.

Like its other two variants, the graded dot too has the same dimen-

sions and sits on the same kind of wetting layer, but the In density in-

creases linearly with the height. It starts with 30% at the bottom and

smoothly increases to 100% at the top. Again, the rest of the supercell is

made of GaAs. Fig. 4.2(c) shows its composition profile.

Finally, I also considered a larger, lens-shaped dot. The lens-shaped,

uniform dot has a different composition, In0.85Ga0.15As, which is shown

in Fig. 4.2(d).
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Two dimensional simple harmonic oscillator models

I also simulated excitons and biexcitons in a parabolic quantum dot with

an electric field. I use a two dimensional simple harmonic oscillator (2D

SHO) model,

H =
Ne∑
i=1

p2
i

2m∗e
+

Nh∑
i=1

p2
i

2m∗h
− 1

2m∗e

(
eE

ωe

)2

+
Ne∑
i=1

1

2
m∗eω

2
e

[(
x− eE

m∗eω
2
e

)2

+ y2

]
− 1

2m∗h

(
eE

ωh

)2

+

Nh∑
i=1

1

2
m∗hω

2
h

[(
x+

eE

m∗hω
2
h

)2

+ y2

]
+
∑
i<j

qiqj
εrij

.

(4.5)

In order to compare the result with Korkusinski and Reimer (2009), I

used the same constant value T=12 K, ε = 12.4, m∗e = 0.055m0, m∗h =

0.11m0, ~ωe = 12 meV, and ~ωh = 6 meV.

4.3 Results

In this section I present my results and analysis from path integral sim-

ulations for excitonic complexes in a parabolic quantum dot and various

kinds of InGaAs quantum dot samples. The results will be presented in

the following order. At first I will give the spectra of exciton and biex-

citon in a parabolic quantum dot and compare the results with those

from Korkusinski and Reimer (2009), to show that my method has an

advantage in these calculations and will give more accurate results. Sec-

ondly, since the PL spectra has been studied extensively for axial electric

fields, I shall present my results for axial field on smaller pyramid dots

and compare with the existing experimental results (Finley et al., 2004).
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Figure 4.3: Photoluminescence energy shifts for exciton X and biexciton
XX in a parabolic quantum dot (~ωe = 12 meV, and ~ωh = 6 meV), versus
lateral electric field. Solid lines are results of CI calculation from Ko-
rkusinski and Reimer (2009), which use an under-converged basis con-
structed from ten non-interacting single-particle states: thick black line
is X and thin green line is XX. Data points with error bars are results of
PIMC calculations which include all correlation effects: black circles are
X and blue triangles are XX. Dotted lines are guide to the eye.

I shall also discuss the effect of polarizability (Seafert et al., 2001) and

hyperpolarizabilities in the energy shift in axial growth direction. Then

the effect of lateral field (Heller et al., 1998) on these dots will be dis-

cussed. Thirdly, I shall study my results for a larger size lens shaped

In rich quantum dots to investigate the effect of dot geometry (Moison

et al., 1993; Widmann et al., 1998) size, and In concentration on PL spec-

tra. Finally I will add the piezo-electric field to the dot, and analyze how

the piezo-electric potential affects the anisotropy of the dots.
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Parabolic quantum dot

As I mentioned in the methods section, I use the 2D SHO potential

to simulate the exciton and biexciton in a parabolic quantum dot with

different lateral electric field. I simulate the electric fields from 0 to

14 kV/cm at every 2 kV/cm. I find the energy of exciton and biexciton

state in these fields and calculate the spectra shown in Fig. 4.3. From

the graph I see that the energy difference between exciton and biex-

citon in my calculation is larger than that in Korkusinski and Reimer

(2009). The second important difference is the position of the crossing

of two spectra, which is an important region for its possibility to dis-

cern the electron-hole exchange splitting. This crossing region will be

appear at a larger field in my calculation. Finally I find that the curva-

ture of the Korkusinski and Reimer (2009) exciton curve is larger than

ours, which means they have larger polarizabilities. This is because Ko-

rkusinski and Reimer (2009) use single particle states to construct the

many-particle configuration, and lose some of the correlation effects in

their results, which makes the exciton easier to ionize. With PIMC I

can simulate the exact exciton and biexciton state in the 2D SHO model,

which includes all the correlation and gives a more accurate result.

Effect of composition on polarizability

In Fig. 4.4, correlation energies of the excitonic complexes are plotted

as a function of axial electric field, which can be directly compared with

the experiment. These curves represent the shift (Sanguinetti et al.,

2000) (Stark-shift) of the PL (Finley et al., 2001; Reimer et al., 2008)

energy peak positions as the field strength is varied. For graded dot,
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Figure 4.4: PL energies of the excitonic complexes in pyramid shaped
uniform (a), peaked (b), graded (c) InxGaAs quantum dots for axial fields.
Here the parabolic fit (broken line) coincides with PL energies (solid line)
which means hyperpolarizability effects are minimal.

comparing experimental (Fig. 1(c) of Finley et al. (2004)) Fig. 4.5 and

theoretical (Fig. 4.4(b)) PL spectra I observe that ∆E between X− and

X0 is ∼ 5 meV; also ∆E between XX and X0 is ∼ 3 − 2.5 meV matches

very well with the experiment. Though the matching of numbers (∆E)

are very good, the interpretation of the excitonic peaks (e.g. X0, X+) in

some experimental papers (e.g. Finley et al. (2004)) are very different

from ours. From figure (2a) and (2b) the ∼ 5 meV ∆E match between X−

and X0 can also be noticed for uniform and peaked dot. Observing the

PL spectra I also get a clear order of stability among excitonic complexes

i.e X0/X+ has more binding energy than XX than X−. I also notice that

my zero field dipole moments vary from 0.017 nm to 0.084 nm, which

are one order of magnitude smaller than the experimental observation.

But observing the peak positions of the PL (Fig. 4.4) spectra suggests, in

all the cases, intrinsic dipole moments (Fry et al., 1999a,b; Barker and

O’Reilly, 2000) are along the growth direction regardless of In composi-

tion profile which means the electron mainly sits near the bottom of the
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Figure 4.5: The X0 and X+ energy as a function of applied field in ex-
periment from Finley et al. (2004)
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Figure 4.6: PL energies of the excitonic complexes in pyramid shaped
uniform (a), peaked (b), graded (c) InxGaAs quantum dots for transverse
fields. Here the parabolic fit (broken line) some times deviates from PL
energies (solid lines) which means hyperpolarizability effects may not
be neglected.

dot where as holes stay near the top. I also observe for the graded dot po-

larizability αz ∼ 40 e.nm2/V which matches with the experimental value

(Fig. 2(b) of Finley et al. (2004)) remarkably well. Polarizability values

for the other dots are also very similar. My simulation suggests that

higher order hyperpolarizability contributions to PL spectra are negligi-

ble in the growth direction.
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It is important to investigate excitonic properties in the transverse

direction because of symmetry and the larger spatial/geometrical extent.

I tabulated the theoretical prediction of polarizabilities and hyperpolar-

izabilities and show the PL spectra in transverse direction in Fig. 4.6.

As expected the PL spectra in the transverse direction is symmetrical

about zero field. Due to symmetry, intrinsic dipole moments do not con-

tribute to the energy shift, and βx ∼ 0, as can be inferred from Appendix

C. Due to larger lateral extent, the transverse polarizability αx and hy-

perpolarizability γx are almost one to two orders of magnitude greater

than those in growth direction. This is clearly visible when I compare

Fig. 4.4 and 4.6, as the real data deviates from parabolic fit much more

in transverse direction than the growth direction even when maximum

applied field is only about half of that applied in growth direction. So far

the binding energy of the excitonic complexes are concerned the relative

order does not change as much as that in growth direction. Once again

∆E between X− and X0 is maximum, around 5 meV for all three dots.

Next I study the lens-shaped dot (Mui et al., 1995) which is bigger

in size and much more In rich than pyramid-shaped dots discussed ear-

lier. It sits on a two monolayers of In0.85Ga0.15As alloy of thickness 0.56

nm. Its diameter is ∼ 25 nm and height is ∼ 5 nm. It is uniformly com-

posed of the same alloy In0.85Ga0.15As. Since the dot is bigger, one needs

to use larger supercell to use periodic boundary condition correctly. My

supercell size is∼ 54×54×54 nm3, almost 20% bigger than previous sim-

ulations. The cell is chosen such a way that the dot sits at the center. As

usual it is filled with uniform GaAs. Fig. 4.2(d) shows its geometry and

In composition profile.

51



−60 −40 −20 0 20 40 60

Field [kV/cm]

1129

1130

1131

1132

1133

1134

1135

1136

1137
E

ne
rg

y
[m

eV
]

(a) Axial field
X

X+

XX

X−

−30 −20 −10 0 10 20 30

Field [kV/cm]

1129

1130

1131

1132

1133

1134

1135

1136

1137

E
ne

rg
y

[m
eV

]

(b) Transverse field

X
X+

XX

X−

Figure 4.7: PL energies of the excitonic complexes in lens shaped
InxGaAs quantum dots for axial (a) and transverse (b) fields. For axial
field the parabolic fits (broken line) exactly coincides with PL energies
(solid lines) which means hyperpolarizability effects can be neglected
where as for transverse field the parabolic fits (broken line) deviates
most from PL energies (solid lines) among all dots suggesting that hy-
perpolarizability effects are strong and should not be neglected.

The photoluminescence spectrum for lens shaped dot is given in Fig.

4.7. For an applied axial field, Fig. 4.7(a), the first thing to notice is

that the peak appears on the other side of zero, in contrast to the pyra-

mid dots, suggesting the opposite distribution of electron and hole. This

observation is important as some recent experiments show (Fry et al.,

1999a) a change of intrinsic dipole moment sign with the change of quan-

tum dot geometry. Also notice the change of binding energies of excitonic

systems in compare to the pyramid dots. Unlike X− in pyramids here

the XX is least stable, though X0 is still the most stable and ∆E be-

tween them is once again about 5 meV. The hyperpolarizability contri-

bution is negligible here too.
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Figure 4.8: PL energies of exciton and biexciton in lens shaped quantum
dot for lateral fields, broken line for parabolic fit and solid line for higher
order fit. Data points with error bars are results of PIMC calculation of
exciton and biexciton in different electric fields.

The lateral field photoluminescence spectrum is shown in Fig. 4.7(b).

Due to the symmetry one expects the intrinsic dipole moment and βx to

be zero so that the photoluminescence spectra is symmetric about zero

field, which is clearly reflected in the graph. The important thing to

notice again is the prominence of hyperpolarizability terms as can be

seen in Appendix C.

Crossing of X and XX energies in lens shaped dot

I used PIMC to calculate the exciton and biexciton in several different

electric fields to confirm my hyperpolarizability fitting method. I found

that the direct calculated energy is very closed to my fitting curve. In

Fig. 4.8, I show an increased range of the electric field from 30 kV/cm to

60 kV/cm in order to find the crossing area of exciton and biexciton in

my lens shaped quantum dot. I find that the crossing area in my dot is
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Figure 4.9: This is a top view piezoelectric potential graph of x-y plane
just above the uniform dot. From the graph I can see the distribution
of positive and negative piezoelectric potential above the dot. Below the
dot, the sign of the piezoelectric potential is reversed.

at an electric field of 42 kV/cm, much larger than that in Fig. 4.3. This is

because my quantum dot has much larger confinement (~ωe = 46 meV,

and ~ωh = 26 meV) than that dot, which makes exciton and biexciton

hard to be polarized.

Effect of piezoelectric field

In the simulation above, I did not include the piezoelectric field in the

confinement of quantum dot. In this section I consider this effect. First I

generated a piezoelectric potential, Fig. 4.9, from the strain composition

of my dot. After I added the piezoelectric potential to the simulation, I

find that polarizability in [110] is about 20% smaller than that in [110]

direction, which was very close to that without the piezoelectric field.

This clearly shows the anisotropic effect in the x-y plane when I add the

piezoelectric field. Next I applied an electric field of 50 kV/cm and −50

kV/cm along z-axis. When I applied a field of 50 kV/cm, I found that the
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polarizability increased in [110] direction and decrease in [110] direction.

This is because the applied field makes the exciton in the dot more likely

to be located in the negative region of Fig. 4.9. When I applied the neg-

ative field, the difference between the two directions increased, since in

this case the exciton is more likely to be localized in the positive region

of Fig. 4.9. This effect can be compared and contrasted to the quantum

ring simulations by McDonald and Shumway (2010). They showed how

the vertical electric field couples to in-plane anisotropy. However the

piezoelectric potential inside of a ring, which I do not have in the quan-

tum dot case, affects the exciton polarizability much more strongly than

is seen here.

4.4 Conclusion

In conclusion, the PIMC method is used to calculate the energy, dipole

moment, polarizability and hyerpolarizability of excitonic systems in

four different quantum dot samples for both growth and transverse di-

rection (Figs. 4.4, 4.6, and 4.7). From this I infer that it is possible to

change the intrinsic dipole moment direction by changing the dot ge-

ometry, as suggested by recent experiments. Another important part of

this research is the study of the effect of hyperpolarizability on the pho-

toluminescence spectra. The hyperpolarizability is a higher order term

which cannot be ignored in larger lateral dimensions (∼ 23 nm), since it

does change the spectra in large E field region. Finally I add the piezo-

electric field to the dots and find the relation how vertical electric field

cause anisotropy of the lateral polarizability.
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Chapter 5

VAN DER WAALS INTERACTIONS BETWEEN DOUBLE

QUANTUM WIRES

In this chapter, I use the PIMC method to calculate the van der Waals

interaction between two wires with different separations and tempera-

tures, in order to find the relation between them. I simulated 110 elec-

trons in two parallel, long quantum wires whose length is 1100 atomic

units radius. I do this simulation in both 2-dimension(quasi 1D) and

exact 1-D condition. In the 2-D simulations, I use the parabolic confine-

ment in y direction to make the radius of the wire be about 1 a.u.

5.1 Introduction

Parallel, thin, electrically neutral wires attract each other by van der

Waals forces. Recent investigations (Dobson et al., 2006) show that the

usual sum of R−6 contributions for elements separated by distance R can

give qualitatively wrong results for van der Waals interaction between

metallic nanowires, nanotubes, and nanolayered systems, which include

π-conjugated systems such as graphite, graphitic hydrogen storage sys-

tems (Rydberg et al., 2003a; Dion et al., 2004), and graphene planes. In

all the case above, using the correlation energy from the random phase

approximation (RPA) (Pitarke and Eguiluz, 1998; Furche, 2001; Fuchs

and Gonze, 2002; Dobson and Wang, 1999) gives van der Waals inter-

action falling off with a power of separation different from the naive

atomic result. The RPA method (Longe and Bose, 1993) considers the

zero-point energy of the delocalized coupled one dimensional plasmon
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modes with wave number parallel to the wire axis. From the RPA tech-

nique, the frequency of plasmon corresponding to wave number q is,

ω±(d) = (2N0e
2/me)

1/2|q||| ln(qb)| ±K0(qd)|1/2, (5.1)

where d is the distance between two wires, N0 is the number of electrons

in unit length, b is the radius of wires and K0 is modified Bessel function.

The van der Waals energy of two wire with separation d is the sum of

zero-point plasmon energies,

EvdW (d) =
L

2π

∫ ∞
−∞

~
2

(ω+(d) + ω−(d)− 2ω+(∞))dq. (5.2)

For the case d� b, this equation can be approximate as,

EvdW (d) ≈ − L~(2N0e
2/me)

1/2

16πd2(ln(2.39d/b))3/2
. (5.3)

Quantum Monte Carlo (QMC) methods have previously been used to

calculate the binding energies of pairs of thin metallic wires and lay-

ers modeled by 1D and 2D homogeneous electron gases with neutral-

izing backgrounds (Drummond and Needs, 2007). The QMC result are

in broad agreement with RPA in 1-D binding energy and complete dis-

agreement with the naive pairwise van der Waals model. Unlike the

previously used ground-state QMC method, the PIMC method can be

used to calculate the van der Waals interaction between two wires in

finite temperature, which can be used to study the temperature depen-

dance of the van der Waals interaction.

5.2 Method

Pair correlation functions and the Van der Waals interaction

With PIMC, I can directly collect the density-density pair correlation

function between the electrons in the one wire or two different wires,
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from which I can calculate the van der Waals interaction between two

neutral wires. I define the density-density pair correlation function as:

g(x, x′) =
〈ni(x)nj(x

′)〉
〈ni(x)〉〈nj(x′)〉

, (5.4)

where ni(x) represent the density of particles at place x. Indices i and j

refer to the wire: if i = j, I consider the correlation of electrons in one

wire; otherwise, I collect the correlation of electrons in different wires.

The quantities 〈ni(x)〉 and 〈nj(x′)〉 are just the average density of elec-

trons in the wire, N/L = 55/1100 a.u. = 0.005 a.u.−1 If there is no corre-

lation between electrons at positions x and x′ in same or different wires

the correlation function will be g(x, x′) = 1.

Using the pair correlation between wires, the van der Waals interac-

tion between two wires can be written as,

U(d) =
e2

4πε0
(
N

L
)2

∫
dxdx′

g(x, x′)− 1√
(x− x′)2 + d2

. (5.5)

In the equation above, the −1 term represent Coulomb interaction be-

tween two wires whose electrons are uniformly distributed; it can be also

considered as the neutralized background of my wires. When I subtract

that term from the total interaction, I obtain the van der Waals inter-

action between two neutralized wires, which can be treated as a similar

system as RPA and QMC simulations. From PIMC, I implemented an

estimator to collect g(x, x′). Using Eq. (5.5), I add interactions of all pairs

of x, x′ to obtain total van der Waals interaction as a function of distance

d.

As I mentioned above, when I try to calculate the van der Waals in-

teraction, I put a total of 110 electrons in two 1100 a.u. long wires in both
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2-D and 1-D conditions. In the 2-D simulations I use parabolic potential

confinement in y direction to model two parallel wires along x axis. I use

two different species of electrons; each species has 55 electrons. Spin up

electrons are confined in parabolic potential centered at y = d
2
, and spin

down electrons in a potential centered at y = d
2
, where d is the separa-

tion between wires. The reason that I do not use double well potential

for the confinement is because I want to prevent the electrons of one

species from hopping to the other wire. The Hamiltonian of the double

wire system in 2-dimension can be written as,

H =
Ne∑
i=1

p2
i

2me

+
∑
i<j

qiqj
εrij

+
∑

species1

1

2
m∗eω

2
e(y − d/2)2 +

∑
species2

1

2
m∗eω

2
e(y + d/2)2.

(5.6)

In the 1-D simulation, I did not need to put a confinement potential in y

direction. I manually separated the two wires with distance d and also

do not allow the electrons to hop between them as in the 2-D case, thus

the Hamiltonian is,

H =
Ne∑
i=1

p2
i

2me

+
∑
i<j

qiqj
εrij

. (5.7)

Since I want to calculate the van der Waals interaction between two nar-

row metallic wire and compare my results with the RPA (Dobson et al.,

2006) and QMC (Drummond and Needs, 2007) results , I use the con-

stant value, ε = 1, and ~ωe = 1 Ha. From a simple calculation I can

estimate that the radius of wire is
√

~
meωe

= 1 a.u. One of the difficult

parts in my simulation is the selection of the temperature, since both

RPA and QMC results are based on ground state condition, which is at

zero temperature. As I mentioned in Chapter 2, PIMC is a finite tem-

perature technique. So I have attempted to lower my temperature to
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make sure my results can be compared with RPA and QMC. However,

because the efficiency of the simulation will also drop with the tempera-

ture, I need to properly choose my temperature value. In my simulation,

I tried both case at different temperature, range from kBT = 0.005 Ha to

kBT = 0.1 Ha

5.3 Results

In this part I discuss and present my results in following order. At first,

I show the electron density of my 2-D simulations, where the density of

the total system is collected by averaging the position of each slice on all

the paths. Because of the translational symmetry in the wire direction,

theoretically I can anticipate that the average density in each wire is

uniform. The density profile helps show us if the system has been fully

sampled, thus helps gauge the reliability of my simulations. Secondly, I

show the density-density pair correlation function between electrons in

both the same wire and different wire. This graph gives us a straightfor-

ward sense about what pair correlation functions look like, which also

help us more clearly to understand the correlation effects between elec-

trons. Correlation in two different wires are directly used to calculate

the van der Waals interaction. Then I show the corresponding results

for 1-D simulation. Comparing these to the 2-D cases, I investigate the

similarity and difference of these two kind of simulations. Finally, I

will put the results from RPA and QMC together with my PIMC results,

compare the power law EvdW ∝ −d−P , and discuss the effect of finite

temperature.
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Figure 5.1: The density of two wires when the interwire separation d =
10 a.u. and the temperature kT = 0.1 Ha. Red part represents higher
density of the electron and blue part represent little or no electronic
density. Both x-axis and y-axis are in atomic units.

2-D simulation result

As I mentioned in the previous section, I use two SHO potentials to con-

fine the electrons in two wires, and simulate the systems at different

temperatures and for different wire separations. By changing the equi-

librium position of the parabolic potential, I simulated two wires with

separation from 8 a.u. to 20 a.u. I used three temperatures: kBT =

0.01, 0.02 and 0.1 Ha in my simulations. I collected the density from sim-

ulation with d = 10 a.u. and kT = 0.1 Ha as shown in Fig. 5.1. I can

see clearly that in the y direction, the electrons are well confined near

y = ±5 a.u., and the width of each wire is fairly small, about 1 a.u. ac-

cording to my estimation. In the x axis, instead of ploting the total wire,

I only plot about 300 a.u long part in the middle of the wire to make

the Fig. 5.1 easier to view. From Fig. 5.1, I can see that the red color

(representing high electron density) along the wire is quite uniform, al-

though there exist some small difference due to the density fluctuation.

Thus I can say that the average electron density in the wires is uni-

formly distributed, as I predicted theoretically, and from this point of

view, the sampling of my simulation is efficient enough to be used to do

the calculation.
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Figure 5.2: This is the density-density pair correlation function for a
2D simulation with wire separation d = 10 a.u. and temperature kT =
0.1 Ha. The blue line represents the pair correlation of two electrons
in same wire and the green one refers to the pair correlation function
between different wire

I present three density-density correlation function graphs Fig. 5.2,

Fig. 5.3 and Fig. 5.4in different simulation condition. In all these graphs,

the y axis show the value of the correlation function

g(x, x′) =
〈ni(x)nj(x

′)〉
〈ni(x)〉〈nj(x′)〉

. (5.8)

Due the translational symmetry along wire direction, I find that the pair

correlation function is a function of the relative position of two electrons

∆x = x − x′, which is the x-axis of all the graphs. Since I use peri-

odical boundary conditions in my simulation, the super cell size equals
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Figure 5.3: This is the density-density pair correlation function in 2D
simulation with wire separation d = 10 a.u. and temperature kT =
0.01 Ha. The blue line represents the pair correlation of two electrons
in same wire and the green one refers to the pair correlation function
between different wire

to the length of wires (1100 a.u.), the value of ∆x = x − x′ can be set

from −550 a.u. to 550 a.u. The pair correlation function equals zero in

blue line at ∆x = 0, in all figures. This is because Coulomb interaction

and Pauli exclusion prevent two electrons of the same species to be on

the exactly same spot. For the pair correlation in different wires, I also

see a relative low value at ∆x = 0 position, which shows the Coulomb

repulsive interaction also lowers the probability that two electrons are

simultaneously at the same x coordinate in different wires. This effect

dampens quickly with the increase of wire separation. Another similar

63



0 50 100 150 200

 ∆x (a.u.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
P
a
ir

 C
o
rr

e
la

ti
o
n
 F

u
n
ct

io
n

Figure 5.4: This is the density-density pair correlation function in 2D
simulation with wire separation d = 20 a.u. and temperature kT =
0.01 Ha. The blue line represents the pair correlation of two electrons
in same wire and the green one refers to the pair correlation function
between different wire

things in all three graphs is that when |∆x| becomes large (> 200 a.u.),

the value of the pair correlation function goes to 1, which means the

correlation between electrons with large distance is almost zero. Fig. 5.2

and Fig. 5.3 are density-density pair correlation function with same wire

separation and different temperature. I can clearly find the difference

between these two Figs. Fig. 5.3 has obviously more oscillations in pair

correlation function than that in Fig. 5.2. This is because at low temper-

ature, the effect of Coulomb interaction is more obvious, which makes

the correlation between electrons exist at a relative long range. When

64



−600 −400 −200 0 200 400 600

x (a.u.)

0.0230

0.0235

0.0240

0.0245

0.0250

0.0255

0.0260

0.0265

0.0270
A

ve
ra

ge
nu

m
be

r
of

el
ec

tr
on

s

Figure 5.5: The density of a 1-D simulation in the condition that sepa-
ration d = 10 a.u. and temperature kT = 0.1 Ha

I increase the temperature, the large thermal fluctuation cover the ef-

fect of this correlation, and let us only see correlation in a relative short

range. Fig. 5.3 and Fig. 5.4 are graphs with same temperature but dif-

ferent wire separation. Comparing these two figs, I find that the corre-

lation function within one wire is quite similar in the two figures, while

the correlation function between two wires separate by 20 a.u. is much

weaker than that between two wires separated by 10 a.u.

1-D simulation result

In the exact 1-D case, I cannot plot density like in 2-D case, instead I

plot the electron occupation versus wire coordinate graph in one wire to
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Figure 5.6: This is the density-density pair correlation function in 1D
simulation with wire separation d = 10 a.u. and temperature kT =
0.1 Ha. The blue line represents the pair correlation of two electrons
in same wire and the green one refers to the pair correlation function
between different wire

see the distribution of electrons. In the simulation I separate the wire

into 2200 grids, which are 0.5 a.u. long. Each grid should have 0.025

electrons in average. Fig. 5.5 gives the electron occupation of each grid.

I can find that the occupations of electrons in all grids fluctuate around

average value 0.025 and the amplitude of the fluctuation is about ±4%

of the average value. From this graph, I can also confirm the uniform

distribution in 1-D simulation.

Here, I present three corresponding pair correlation function graphs

in 1D simulation. Comparing these graph with the 2D case, I can see
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Figure 5.7: This is the density-density pair correlation function in 1D
simulation with wire separation d = 10 a.u. and temperature kT =
0.01 Ha. The blue line represents the pair correlation of two electrons
in same wire and the green one refers to the pair correlation function
between different wire

that almost all features of the correlation function remain the same.

However, in the Fig. 5.6, I find a long correlation signal in the blue lines.

Although the amplitude of this signal is not large, it dampened slowly

with the increase of ∆x. When I go back to 2D simulations, I find that

this effect is very weak and I do not treat it as a signal at first, and it

becomes much more obvious in 1D simulation. Since it only appears in

the simulation with higher temperature(kT = 0.1 Ha), I guess that this

oscillation is related to the thermal fluctuations of the systems.
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Figure 5.8: This is the density-density pair correlation function in 2D
simulation with wire separation d = 20 a.u. and temperature kT =
0.01 Ha. The blue line represents the pair correlation of two electrons
in same wire and the green one refers to the pair correlation function
between different wire

Comparison With RPA and QMC Result

After I collect all the density-density correlation function for different

wire separation and temperature. I use Eq. (5.5) to calculate the van der

Waals interaction. In order to compare with the RPA and QMC results,

I make a log-log plot which shows van der Waals interaction per particle

as a function of wire separation. Using Eq. (5.3) and atomic unit with

my simulation condition , I get,

EvdW (d) = −
√

10

16πd2(ln(2.39d))3/2
, (5.9)
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Figure 5.9: Binding energy between two wires plotted as function of wire
separation. Green dashed line is the RPA result, and the red dash line is
the QMC result. From top to bottom, there are four sets of data, top one
is from 1D simulation with kT = 0.1 Ha, then the blue one is from 2D
simulation with kT = 0.01 Ha, the red one is from 1D simulation with
kT = 0.01 Ha, and finally the bottom data is the theoretical calculation
from Eq. (5.2).

which is the green dash line in Fig. 5.9. The the fit ground state QMC

result is (Drummond and Needs, 2007),

EvdW (d) = − 0.0967

d2.17(ln(0.492d))3/2
. (5.10)

From the graph, I can see that both 1D and 2D simulation results at

temperature kT = 0.01 Ha have similar slope (power law dependance)

with QMC result lines which is a little bit steeper than that of RPA

results. This implies that both QMC and PIMC results consider the
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important correlation effect which is neglected by RPA in this regime.

Comparing my 1D and 2D results, the graph shows that 1D simulations

always give a lower van der Waals binding energy than 2D simulations

and is closer to the QMC curve line, which is also an exact one dimen-

sional simulation. In the 1D simulations d = 20 a.u., and kT = 0.01 Ha, is

not shown on the graph. This is because that the value of van der Waals

interaction is so small that it is beyond the accuracy of my simulation.

Another important information I want to investigate from this graph is

the temperature dependence of van der Waals interaction. From the re-

sult data spots of kT = 0.1 Ha and kT = 0.01 Ha, I can conclude that the

interaction increases when I heat up the systems and the slope of higher

temperature cases is flatter than that at low temperature.

5.4 Conclusion

In conclusion, I calculated density-density pair correlation functions from

PIMC simulations with different temperatures and wire separation. The

results show that the correlation effect at low temperature is more clear

than that in higher temperature, and the correlation between electrons

are very weak when they are far away from each other. I find that the

separation power dependence of van der Waals interaction in my re-

sults is closer to QMC result, and it totally disagree with the traditional

pairwise van der Waals model. Furthermore temperature effects can be

exploited from my results: with the increase of temperature, the van der

Waals interaction increase.
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Chapter 6

SUMMARY

I have looked at quantum many-body systems with different interac-

tions. In these kind of problems, one major difficulty is how to deal with

the quantum correlation between interacting particles. The path inte-

gral Monte Carlo method is one of the theoretical approximation meth-

ods that has been widely used. Comparing the PIMC technique to the

other approximation methods, I have showed that PIMC has a lot of

advantages: it automatically includes all the correlation effects when

applying a proper interaction term in the quantum system and it is a

numerically exact method when applied to bosons or classical particles.

It also has some restrictions such as it is a finite temperature method,

with the decrease of the temperature the sampling efficiency will also

decrease, and when applying PIMC to fermions, I need to include fixed

node approximations which depend on the selection of trial density ma-

trix. In this dissertation, I introduced the basic physics ideas behind the

PIMC method and applied it to three quantum systems. In this chapter

I review the content of previous chapters.

In Chapter 2, I reviewed in detail the path-integral Monte Carlo

method, how it relates to the quantum many-body systems, and how to

use it to calculate the properties of quantum many body systems. I first

discussed the mathematical basis thermal density matrix of path inte-

grals and the relationship between path integrals and physical proper-

ties. Then I showed the details about how to express the thermal expec-
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tation value of a quantum mechanics operator in terms of path integral

expressions. This integral form applies to bosonic systems by includ-

ing permutations of identical particles. Extension of bosonic PIMC to

fermion systems can be made by the fixed node approximation, which

prevents paths from crossing the nodes of a trial density matrix. I

also discussed how to use Metropolis sampling method to perform sin-

gle slices sampling, multi-slice sampling and permutation sampling. Fi-

nally, I also indicate how to calculate physical properties with the path-

integral Monte Carlo method. In Chapter 3-5, I have showed how PIMC

simulations have helped us understand the quantum many-body prob-

lems by mapping the original problem of quantum statistical-mechanics

into a domain that is easier to understand.

In Chapter 3, I have demonstrated a PIMC algorithm for comput-

ing exchange-splitting energy in double quantum dots. I found that the

exchange-splitting energy arises from instantons in the bosonic path in-

tegral. Thus I can calculate the splitting energy by dealing with the

permutation in the bosonic simulation. My splitting energy has a good

agreement with the results calculated by the direct diagonalization method.

To learn more, I collected the two-particle density and defined the dou-

ble occupation of this system from which I calculate the hopping matrix

element tr and renormalized on-site energy Ur − Vr. I have shown that

both tr and Ur−Vr have a dramatic decrease at large separation compar-

ing with the normal Hubbard model value. I also collected data on these

paths when they are crossing each other, which include double occupa-

tion and the correlation hole. I found that simultaneous crossing occurs

more often when two quantum dots are close to each other, while further
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separated dots are more likely to have instantons with double occupa-

tions. Finally, I have demonstrated the versatility of the algorithm with

the inclusion of magnetic fields.

In Chapter 4, I used PIMC to simulate a 2-D parabolic dot. Com-

paring my binding energy results with another theoretical method, di-

rector diagonalization, I showed that the PIMC method include all the

correlation effect thus get more accurate results. Then I applied PIMC

to calculate the energy, dipole moment, polarizability and hyperpolar-

izability of excitonic systems in different quantum dot samples. From

the result I successfully give the PL spectra for different dots in both

growth and transverse direction (Fig. 4.4 and 4.6). Comparing my num-

bers (growth/axial direction of the graded dot) to the existing experimen-

tal results, I find the polarizability and the energy shifts in my simula-

tion match very well. Furthermore I investigated the same quantities

for quantum dots of different shape and composition to study how these

factors affect the PL spectra. From this I infer that it is possible to

change the intrinsic dipole moment direction by changing the dot ge-

ometry as suggested by recent experiments. Another important part of

this research is the study of the influence of hyperpolarizability on the

PL spectra. The hyperpolarizability is the higher order term which was

always ignored in previous research. I showed my method can handle

it and observed that in the axial direction due to the smaller dimen-

sion of the dot (∼ 5 nm) hyperpolarizabilities are not large enough. But

in transverse direction, with is much larger dimensions ∼ 23 nm, the

hyperpolarizability does change the spectra with large electric fields. I

added a piezoelectric field to the dots and found how vertical electric
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field affect the anisotropic effect of lateral polarizability.

In Chapter 5, I used PIMC method to calculate the van der Waals

interaction between two wires with different wire separation and tem-

perature. First I showed the how to calculate the van der Waals in-

teraction from the pair correlation function. Then I simulated the sys-

tem with PIMC using 1D and 2D Hamiltonians that help us understand

interactions between thin metallic wires. The average density of elec-

trons in wires are collected in all simulations, which gives us a quali-

tative criteria for sampling efficiency in one aspect. I also plotted the

density-density pair correlation function in each case. From the graphs

I concluded that correlation effect in low temperature is more clear than

that in higher temperature, and the correlation between electrons are

very weak when they are far away from each other. When I compare

PIMC result with RPA and ground-state QMC results, I find that the

interaction-separation power law of my result is closer to QMC result,

and it totally disagrees with a naive pairwise van der Waals model. I

also show that the van der Waal interaction from 1D simulation are

lower than that from 2D simulation, thus closer to the QMC results.

Furthermore, temperature effect can be seen from my results: with the

increase of temperature, the van der Waals interaction increase. The

temperature effect can in one aspect be used to explain that fact that

PIMC result has a higher energy value than the QMC results. More

work can be done to theoretically calculate the temperature effect in

RPA and compare directly to my simulation results.
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Appendix A

Path Integral Monte Carlo Method For Quantum Dots

I use PIMC to solve for correlated electrons and holes (Harowitz et al.,

2005). The thermal density matrix can be calculated from the imaginary

time path integral (Ceperley, 1995; Shumway and Ceperley, 2000),

ρ(R,R′; β) =
1

Z
〈R|e−βĤ |R′〉

=
1

Z

∫
R(0) = R′

R(β~) = R

DR(τ) exp

(
−1

~
SE[R(τ)]

)
,

(A.1)

where R = (r1, r2, . . . , r3N) represents the 3N position coordinates of all

the quantum particles, and Z is the partition function that normalizes

the density matrix, Tr ρ = 1. The integral in the second line of the equa-

tion is the sum over random walks R(τ) taking place in imaginary time

τ , starting at R′ at imaginary time τ = 0 and ending at R at imaginary

time τ = β~. The paths are weighted by the Euclidean action SE[R(τ)],

which is the functional of the path R(τ),

SE[R(τ)] =

∫ β~

0

(
N∑
i=1

1

2
m∗

i ṙi
2 + V [R(τ)]

)
dτ (A.2)

The quantity in the integrand is the Euclidean Lagrangian, L = T + V .

The potential energy V [R(τ)] includes all the external potentials and in-

teractions between particles. The diagonal terms of the density matrix is

taken by setting R = R′,which just closes the loop of the path, and I can

get the trace by summing over all paths.Therefore the statistical quan-

tum mechanics expectation values can be calculated as a weighted sum
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over closed paths. If the particles are identical, there is an additional

sum over permutations

ρ(R,R′; β) =
1

Z

1

N !

∑
P

(−1)P
∫

R(0) = R′

R(β~) = PR

DR(τ)e−
1
~SE [R(τ)] (A.3)

which symmetrizes or antisymmetrizes the many-body wavefunction.

The factor (−1)P gives minus signs for permutations of antisymmetric

fermions.

There are two major advantages for using the imaginary-time path

integral, Eq. (A.1), to simulate the quantum dot systems. First this

method is a many-body formalism. In the path integral approach, no

single particle approximation is made, so correlation effects are included

automatically. Second the path integral method naturally averages over

all quantum and thermal fluctuations. In Eq. (A.1), the thermal average

over many-body energy eigenstates is implicit in the path integral. So I

can directly calculate the observables in canonical ensemble rather than

finding the many-body energies and wavefunctions for each eigenstate

individually
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Appendix B

Perturbative Response Theory

I use standard perturbation theory techniques in imaginary time to

study the response of the system to electric fields. It is important to

note that, unlike diagrammatic theories (Li and Xia, 2000; Ritter et al.,

2007), interactions are treated essentially exactly in path integral monte

carlo or PIMC (due to the large Trotter number and very accurate short-

time propagator), and I only use perturbation to describe an external

potential that is, by definition (Eq. 4.1), weak. Most textbooks do not

emphasize non-linear response and its connections to PIMC. For com-

pleteness, I give a brief derivation of the key equations and explain their

use in PIMC in this section.

Consider the effect of a perturbation in imaginary time on the path in-

tegral. Let the perturbation take the form,

∆S = −
∫ β~

0

eiτωnE · d(τ) dτ, (B.1)

where iωn = 2πinkBT and the total dipole moment d(τ) is a function of

the N -particle imaginary-time path,

d(τ) =
N∑
i=1

qiri(τ). (B.2)

In practice, it is convenient to work with the Fourier transform,

d(iωn) =

∫ β~

0

eiτωnd(τ) dτ, (B.3)
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Note that d(iωn) is a functional of a particular path R(τ); taking aver-

ages over all unperturbed paths yields,

〈d(iωn)〉0 =

∫
DR(τ)

(∫ β~

0

eiωnτd(τ) dτ

)
e−

1
~S0[R(τ)]

=


d0 if iωn = 0,

0 otherwise.

(B.4)

To see that this average vanishes for non-zero frequency, I note that

〈d(iωn)〉0 → eiωnτ
′〈d(iωn)〉0 when the origin of imaginary time is shifted

τ → τ + τ ′. Since this is a symmetry of the path integral, the expectation

value must vanish for iωn 6= 0. Note that a subscript “0” is used to

indicate an average over unperturbed paths. In terms of d(iωn), the

perturbation, Eq. (B.1), takes the simple form

∆S = −E · d(iωn) (B.5)

In the presence of the perturbing field, the value of the dipole moment

averaged over all paths is given by

〈d(iωn′)〉 =

∫
DR(τ)d(iωn′) e

− 1
~ (S0[R(τ)]+∆S)∫

DR(τ) e−
S0[R(τ)]

~ e−
∆S
~

=

〈
d(iωn′)e

−∆S
~

〉
0〈

e−
∆S
~

〉
0

(B.6)
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Following standard perturbation techniques, I expand the perturbing

exponentials in powers of E. For iωn 6= 0, many of these terms are zero,

by the argument following Eq. (B.4). The surviving, non-zero terms are,

〈dα(iωn′)〉 =
1

~
〈dα(iωn′)dβ(iωn)〉0 Eβ

+
1

2!~2
〈dα(iωn′)dβ(iωn)dγ(iωn)〉0 EβEγ

+
1

3!~3
〈dα(iωn′)dβ(iωn)dγ(iωn)dδ(iωn)〉0 EβEδEγ

+ . . . .

(B.7)

Even these average are non-zero are only non-zero if the frequencies

add to zero, that is, iωn′ = −iωn for the linear term, iωn′ = −2iωn for the

quadratic term, etc.

Comparing Eqs. (4.2) and (B.7) and taking the zero-frequency limit,

I see that the static polarizability and hyperpolarizabilities are given by

Γ2
αβ = lim

iωn→0

1

~
〈dα(−iωn)dβ(iωn)〉0, (B.8a)

Γ3
αβγ = lim

iωn→0

1

~2
〈dα(−2iωn)dβ(iωn)dγ(iωn)〉0, (B.8b)

Γ4
αβγδ = lim

iωn→0

1

~3
〈dα(−3iωn)dβ(iωn)dγ(iωn)dδ(iωn)〉0. (B.8c)

Since the correlation functions are only defined at discrete Matsubara

frequencies, the limit must be understood as fitting an analytic function

to the discrete data and extrapolating to zero-frequency. Such a proce-

dure assumes that all non-analytic features, such as poles on the real

frequency axis, are sufficiently far from zero that the extrapolation is

feasible. In practice, this means the temperature must be somewhat

less than the smallest energy spacings that contribute significantly to

the desired correlation function. For example, to compute the polariz-
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ability of a quantum dot, I must perform the PIMC simulations with kBT

somewhat less than the electron and hole energy spacing of the dots.

It is very straightforward to collect the averages in Eqs. (B.8a–B.8c)

in a PIMC simulation by collecting d(τ) for a path configuration, per-

forming a fast-Fourier transform, Eqs. (B.2–B.3), multiplying terms for

several small, non-zero frequencies, Eqs. (B.8a–B.8c), and averaging these

values for many path configurations. In this work, I collected aver-

ages for fifty frequencies (iω1 to iω50). Because the discretization of

the path cuts off the high frequency data, one should be careful not to

use frequencies too close to the time resolution of the discretized path.

In particular, the frequency −3iωn in Eq. (B.8c) should not be used for

n > Ntrotter/6.

If periodic boundary conditions are present, it is better to use the

imaginary-time polarization current,

J(τ) =
d

dτ
d(τ). (B.9)

With an integration-by-parts and Eq. (B.3), I have J(iωn) = −iωnd(iωn),

so Eqs. (B.8a–B.8c) become,

Γ2
αβ = lim

iωn→0

1
~ω2
n
〈Jα(−iωn)Jβ(iωn)〉0, (B.10a)

Γ3
αβγ = lim

iωn→0

i
2~2ω3

n
〈Jα(−2iωn)Jβ(iωn)Jγ(iωn)〉0, (B.10b)

Γ4
αβγδ = lim

iωn→0

−1
3~3ω4

n
〈Jα(−3iωn)Jβ(iωn)Jγ(iωn)Jδ(iωn)〉0. (B.10c)

In the present work, I use this more general formalism, even though my

dots are isolated.
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Appendix C

Raw Simulation Data for Stark Effect Study

Quantities of interest for three pyramid-shaped dots are tabulated in

Tables I and II and for a lens-shaped dot in Tables III and IV. Energy,

intrinsic dipole moments, polarizabilities and hyperpolarizabilities in

growth direction are given in Tables I and III. Transverse polarizabil-

ities and hyperpolarizabilities are given in Tables II and IV.
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Appendix D

Two-Site Hubbard Model And Formation of Renormalized Hopping

Constant and Interaction

In this part, I want to show how to calculate hopping matrix element

t and renormalized on-site repulsion U − V from a two-site Hubbard

model. The Hamiltonian is now made up of three components. The first

component is the hopping integral. The hopping integral is typically

represented by the letter t, because it represents the kinetic energy of

electrons hopping between two sites. The second term in the Hubbard

model is then the on-site repulsion, typically represented by the letter

U . It represents the potential energy when two electrons stay in the

same site. The third term is the inter-site repulsion; I use V to repre-

sent the Coulomb interaction when two electrons are in different sites.

Written out in second quantization notation, the Hubbard Hamiltonian

then takes the form:

H = −t
∑
σ

(a†1,σa2,σ + a†2,σa1,σ) + U
2∑
i=1

ni↑ni↓ + V
∑
σ,σ′

n1,σn2,σ′ , (D.1)

where number 1, 2 is the site which electron is in, and σ represent the

spin of the electrons. I expand the hamiltonian in four basis, (↑↓, 0),

(0, ↑↓), (↑, ↓) and (↓, ↑) and get the matrix expression:

H =



U 0 −t −t

0 U −t −t

−t −t V 0

−t −t 0 V


. (D.2)
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I can easily solve this matrix, and the lowest two eigenvalues are E0 =

V − 4t2

U−V , and E1 = V . I can also get the corresponding eigenstates:

ψ0 = 1√
2(1+

(U−V )2

4t2
)

((↑↓, 0) + (0, ↑↓) + U−V
2t

((↑, ↓) + (↓, ↑))) and ψ1 = 1√
2
((↑, ↓

) − (↓, ↑)). As I predicted, the ground state is a space symmetric state

and excited state is space antisymmetric. From the equation above, I

can get the splitting energy J = 4t2

U−V and double occupation probability

of ground state: xD = 1

1+
(U−V )2

4t2

. From PIMC method, I can calculate

J and xD. Inverting the equation above, I get U − V = J( 1
xD
− 1) and

t = J
2

√
( 1
xD
− 1).
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Appendix E

Form of the Discretized Path Integral and the Action

The partition function for the effective mass Hamiltonian, Eq. (3.1),

can be written as an imaginary time path integral (Feynman, 1972;

Ceperley, 1995; Harowitz et al., 2005),

Z =

∫
DR(τ)e−

1
~SE [R(τ)]. (E.1)

The path integral
∫
DR(τ) and Euclidean action SE are easiest to define

in the discretized form I used in the Monte Carlo integration. By divid-

ing imaginary time into NT discrete steps, each of length ∆τ = β~/NT ,

the path R(τ) becomes an array of positions (“beads”) rij, where i indi-

cates the slice number (0 ≤ i < NT ) and j = 1, 2 labels the two electrons.

Then the path integral becomes a multiple integral over all bead posi-

tions, ∫
DR(τ)→

NT−1∏
i=0

∫
dr1j

∫
dr2j. (E.2)

The action SE represents the terms in the effective mass Hamiltonian

and is a function of the bead coordinates,

SE =

NT−1∑
i=0

[
m∗|ri+1 1 − ri 1|2

2 ∆τ
+
m∗|ri+1 2 − ri 2|2

2 ∆τ

+2 ln(2π∆τ/m∗) + Vext(ri 1)∆τ + Vext(ri 2)∆τ

+ucoul(ri+1 1, ri+1 1, ri 2, ri 2; ∆τ)

]
. (E.3)

The first three terms (which explicitly contain m∗) are the kinetic action

and are derived from the free particle propagator in two dimensions.
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The next two terms are the action for the confining potential, Vext(r),

evaluated in the primitive approximation (Ceperley, 1995). The last

term is the pair Coulomb action (Ceperley, 1995), which I have fit to a

short-time approximation of the Coulomb propagator for the imaginary

time interval ∆τ . Because of special symmetry of the Coulomb potential,

this propagator is only a function of two coordinates, qi = (|ri+1 1−ri+1 2|+

|ri 1 − ri 2|)/2 and s2
i = |(ri+1 1 − ri+1 2)− (ri 1 − ri 2)|2. For simplicity, I have

dropped the s2 dependence; this approximation is exact as ∆τ → 0. I

evaluated the short time Coulomb propagator using the high-accuracy

Trotter method of Schmidt and Lee (1995) and stored tabulated values

of ucoul(q; ∆τ) on a grid for efficient evaluation during my Monte Carlo

simulations.

To perform the trace implicit in Eq. (E.1), I identify slice NT with slice

0 in Eq. (E.3) by setting rNT 1 = r0 1 and rNT 2 = r0 2. The division of the

partition function into spatially symmetric Z+ and antisymmetric Z−

parts may be accomplished by summing over permutations P = I,P, as

in Eq. (A.1). Permuting configurations (P = P) are handled by setting

rNT 1 = r0 2 and rNT 2 = r0 1 in Eq. (E.3).
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