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ABSTRACT 

A recent joint study by Arizona State University and the Arizona Department of 

Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt 

(WMA) properties in the laboratory. WMA material was taken from an actual 

ADOT project that involved two WMA sections. The first section used a foamed-

based WMA admixture, and the second section used a chemical-based WMA 

admixture. The rest of the project included control hot mix asphalt (HMA) 

mixture. The evaluation included testing of field-core specimens and laboratory 

compacted specimens. The laboratory specimens were compacted at two different 

temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan 

included four laboratory tests: the dynamic modulus (E*), indirect tensile strength 

(IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg 

Wheel-track Test. 

The dynamic modulus E* results of the field cores at 70 °F showed similar 

E* values for control HMA and foaming-based WMA mixtures; the E* values of 

the chemical-based WMA mixture were relatively higher. IDT test results of the 

field cores had comparable finding as the E* results. For the laboratory 

compacted specimens, both E* and IDT results indicated that decreasing the 

compaction temperatures from 310 °F to 270 °F did not have any negative effect 

on the material strength for both WMA mixtures; while the control HMA strength 

was affected to some extent. It was noticed that E* and IDT results of the 

chemical-based WMA field cores were high; however, the laboratory compacted 

specimens results didn’t show the same tendency. The moisture sensitivity 
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findings from TSR test disagreed with those of Hamburg test; while TSR results 

indicated relatively low values of about 60% for all three mixtures, Hamburg test 

results were quite excellent. 

In general, the results of this study indicated that both WMA mixes can be 

best evaluated through field compacted mixes/cores; the results of the laboratory 

compacted specimens were helpful to a certain extent. The dynamic moduli for 

the field-core specimens were higher than for those compacted in the laboratory. 

The moisture damage findings indicated that more investigations are needed to 

evaluate moisture damage susceptibility in field. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Warm Mix Asphalt (WMA) is a term refers to the production of asphalt mixtures 

at temperatures lower than the classic Hot Mix Asphalt (HMA) production 

temperatures. The magnitude of temperature reduction can be as much as 50 ºF 

[28 ºC] or higher (1). The idea of producing asphalt material at reduced mixing 

temperatures was carried out in 1956 by Professor Ladis Csanyi at Iowa State 

University when he attempted to foam the asphalt binder using steam (2). Warm 

mix asphalt was first introduced to the world on the mid 1990’s in Europe. Since 

the early years of exploring WMA, many trial sections were placed in Germany, 

Norway, France and other European countries. In the late 1990’s, the first WMA 

pavement was constructed in Europe (3). Later, after WMA technology was first 

brought to the U.S. in the early 2000’s, many research studies were intended to 

explore and enhance the viability of using different WMA additives and come up 

with new methods to produce WMA. The production of an asphalt mix at reduced 

temperature can be mainly achieved through either the foaming-based approach or 

the chemical-based approach. Both approaches result in a reduction of the binder 

viscosity in such that full coating of the aggregate can be achieved; however, 

different mechanisms are applicable to each approach (4). Compaction 

temperature can be reduced as low as 190 ºF (88 °C) (5). Also, production of the 

WMA can extend the paving window especially in cold weather (6). 

Foaming-based approach is the process of adding water into the asphalt 

binder during production. When water gets heated, it evaporates and turns into 



  2 

steam. Steam has the ability to expand dramatically, which allows for reduction in 

the viscosity of the binder (7). This process can be achieved using one of two 

scenarios; either by injecting the water directly through a foaming nozzle, or by 

using a hygroscopic agent material such as Zeolite.  

Chemical approach is the process of adding chemical components during 

production of asphalt mixtures in order to reduce the stiffness of the binder. 

Chemicals can be added either directly to the asphalt binder or to the mixture 

during production. Chemicals include waxes, and components that lubricate and 

enhance the coating of aggregate particles (8). Hurley and Prowell have reported 

that the usage of chemical-based approach can lead to a reduction of 30% in the 

production temperature (9).  

Producing WMA at low temperatures has raised concerns about the 

mixture properties in terms of rutting and moisture damage (9). Since WMA is 

exposed to a lesser amount of aging compared to HMA, the chance of being 

susceptible to rutting and moisture damage is high. However, most WMA 

additives have shown no evidence of increasing the rutting potential (9). The 

National Center for Asphalt Technology (NCAT) has reported that the usage of 

chemical additives has no significant effect on the complex modulus of the 

asphalt pavement (5). The usage of anti-stripping agent has a major role on 

decreasing the risk of moisture damage (9). Some studies on foaming-based 

WMA indicated a slight decrease in the TSR values.  
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1.2 Objective 

The objective of this study was to evaluate the laboratory performance of two 

different WMA mixtures using foamed-based and chemical-based modification 

processes.  Two WMA sections and a control HMA section were built on State 

Route (SR 85), Gila Bend-Buckeye Highway just outside Phoenix, Arizona.  The 

study included laboratory testing of field cored specimens as well as laboratory-

compacted specimens using field mixes at two different temperatures (270 °F and 

310 °F). 

1.3 Scope of Work 

This thesis is divided into six chapters. Chapter 1 presents a general introduction 

to warm mix asphalt concept along with the objectives and scope of work of the 

study. Chapter 2 summarizes a literature review on the available WMA 

technologies, concepts, and benefits. In addition, background of the laboratory 

testing protocols for the tests conducted in the study is included in this chapter. 

Chapter 3 presents a description of the paving project and the experimental plan 

for the laboratory testing, terminology and classification of the specimen groups.  

Chapter 4 presents the results of all laboratory testing that were conducted along 

with the statistical analysis. Finally, conclusions and recommendation for future 

research are included in Chapter 5. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Types of Asphalt Mixtures 

Asphalt mixtures as shown in FIGURE 1 can be categorized into four known 

applications according to the correspondent mixing temperature; cold mixes, half-

warm mixes, warm mixes, and hot mixes. WMA can be distinguished from the 

other types of mixtures as being mixed on the range of 200 °F to 275 °F. As the 

mixing temperature increases, asphalt mixtures are classified as follows: 

 Cold mix asphalt is mixed at temperature ranges from 68 °F to 120 °F.  

 Half warm mix asphalt is produced on the range of 120 °F to 200 °F. 

 Warm mix asphalt (WMA) is produced at temperature ranges from 200 °F 

to 275 °F. 

 Hot mix asphalt (HMA) is produced at temperatures ranges from 285 °F to 

340 °F (10). 

 

FIGURE 1 Types of asphalt mixtures. (10) 
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Hot mix asphalt (HMA) as being compacted at higher temperatures than the cold 

mixtures, it subsequently has higher stability and durability compared to the cold 

mixtures. Cold mixes are considered on the lower pavement layers for low traffic-

volume roads (11). 

2.2 WMA Technologies 

WMA technology has been growing significantly in the past decade. The idea of 

WMA production is based on the possibility of reducing the binder’s viscosity; in 

fact, most of today’s versions of WMA are based on the 1997 German Bitumen 

Forum (12). Producing an asphalt mix at lower temperature can be achieved 

mainly by following one of two main approaches; foaming approach, and 

chemical modifiers approach. Both technologies result in a reduction of the 

binder’s viscosity in order to allow for coating the aggregate propely, however, 

different mechanisms are applicable on each approach. The reduction of the 

binder’s viscosity can be achieved according to one of two procedures, either by 

foaming the binder or by adding an additive to the asphalt binder or mix (4). 

2.2.1 Foaming-based Methods 

Foaming approach is basically the procedure of adding certain amount of water to 

the asphalt binder during mixing. Due to heating, the water evaporates and turns 

into steam. It expands by factor of 1,673 (10). The amount of water added to the 

binder can control the amount of steam expansion which consequently can 

achieve the desired degree of cooling to the binder. The process of introducing the 

water into the binder can be done using one of the following two scenarios: 
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 Inject water directly through a foaming nozzle. 

 Using a hygroscopic agent material such as zeolite. 

These materials are normally blended with the hot aggregates in such that they 

release water at higher temperatures and create foaming environment allows the 

binder to effectively coat the aggregates at low temperatures. This foaming 

system lasts until the temperature drops below 212 ºF (13). 

There are many WMA products use the foaming technology; following is a 

brief summary of the available foaming agents in the industry. 

i. Advera-PQ Corp. 

Advera is a foaming-based additive used to produce WMA. It is manufactured by 

PQ Corporation, Malven, PA. It comes in a form of white fine powder that has 

18-21% of its weight as water. Advera is a synthetic Zeolite component (Sodium 

Aluminum Silicate) that releases water at temperatures above 210 °F, and 

consequently reduces the viscosity of the binder by creating water-based foam 

that increases the binder’s workability. This allows for reduction in mixing 

temperatures from 50-70 ºF. The manufacturer recommends adding Advera on 

dosages of 0.25% of the weight of the asphalt mix (typically 5 lbs/ton of mix) 

(14), (15). 

ii. Double Barrel Green-Astec 

Double barrel technology relies on creating foaming ambient by injecting a small 

amount of water via a multi-nozzle device. Water turns into steam once it contacts 

the binder and then evaporates resulting in a reduction in the viscosity of the 

binder coating the aggregates. This technology allows the binder to effectively 
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coat the aggregates at temperatures that normally range from 230-270 °F. The 

process requires injecting amount of water of 1% of the weight of the asphalt mix 

(typically 1 lb. water per ton of mix) (16), (17). 

iii. Green Machine-Gencor 

Green Machine-Gencor is a foaming process that introduces the water into the 

mixing process causing the binder to foam. Gencor system injects water into the 

foaming process, using only the energy of the pump that provides the binder. This 

process recommends injecting amount of water of 1.25% to 2% by weight of mix 

(18). 

iv. Aquablack-Maxam 

Aquablack is a foaming process uses the micro-bubble foaming technology. 

Micro-bubbles stay in the mix until it’s compacted. This process retains only ¼ 

cup of water per ton of warm mix asphalt (19). 

v. WMA System-Terex 

Terex is a foaming technology reduces the mixing temperatures by up to 90 ºF. 

The production of the foamed asphalt occurs just outside of the drum and 

immediately injects into the drum’s mixing chamber to coat the aggregates (20). 

vi. Low emission Asphalt-Suite-Kote 

The mechanism of low emission technology involves adding chemical admixture 

to the hot coarse aggregate, then followed by adding wet sand (fine aggregates) 

that creates the foaming ambient to enhance the coating of aggregates once it gets 

heated. The amount of wet sand could be as high as 40% of the weight of the mix 

and can also contains Reclaimed Asphalt Pavement (RAP) (21).  
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2.2.2 Chemical-based Methods 

Chemical approach relies upon adding chemical components during production in 

order to reduce the binder’s stiffness during mixing and compaction. Two main 

ways to add the chemicals are available; either by adding it directly to the binder, 

or to be added to the admixture during production. Additives include waxes and 

chemicals that lubricate and enhance the coating of aggregate particles (22). 

i. Evotherm-MeadWestvaco 

Evotherm is a product of MeadWestvaco Asphalt Innovations, Charleston, South 

Carolina. Evotherm utilizes chemical package that comes in a form of emulsion 

blended with binder and then mixed with hot aggregates. MeadWestvaco reports 

that Evotherm allows for mixing temperatures between 185 Fº to 240 ºF, in 

addition to the tremendous reduction in emissions (13), (14). Two products of 

Evotherm are available; DAT that (Dispersed Asphalt Technology), and 3G 

(REVIX). 3G technology is based on reducing the internal friction between 

aggregates particles and the thin films of binder by the act of the emulsion (14).  

ii. Redsit-Akzo-Nobel 

Redsit is a chemical product of Akzo-Nobel that comes in pellet form, and mostly 

added to the binder prior to mixing. Akzo-Nobel reports that Rediset is able to 

reduce the mixing and paving temperatures by at least 30 ºC. Also, the product 

has a high resistance to moisture in such that the producer claims that Redsit can 

replace the use of anti-stripping agent on the mix (23). 
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iii. Revis-Mathy-Ergon 

Revis is a product of Ergon Asphalt and Emulsions Inc. and Mathy construction 

Co. The manufacturer reports that Revix is able to reduce the mixing temperatures 

by up to 75 ºF. Rvix will be internationally marketed by WMV Specialty 

Chemical Division’s Asphalt Innovations team as MWV Evotherm 3G (24). 

There is too little information about this product in the literature. 

iv. Sasobit-Sasol 

Sasobit is a product of Sasol Wax Co. Sasobit is a fine crystalline that comes in 

bags in a form of powder. Sasobit has the ability to dissolve easily into the binder 

at temperatures above 248 ºF. Sasol describes Sasobit as an asphalt flow improver 

during mixing and compaction, where it can reduce the mixing temperatures from 

300 Fº to 250 ºF which can lead to tremendous savings in fuel consumption. For 

ultimate results, Sasol recommends adding Sasobit at 3% by weight of the mix, 

and also to be added to and blended with the hot binder (25), (14). 

2.3 Benefits of Warm Mix Asphalt Technology 

1. Reduced emissions 

Emissions and fumes generated from HMA production and compaction have been 

a major concern on the safety of the paving crew members; in fact, the National 

Institute for Occupational Safety and Health (NIOSH) in the U.S. published a 

hazard review manual in 2000 to address the health effects and consequences of 

occupational exposure to asphalt. Based on studies made on humans and 

experimental animals, NIOSH indicated that exposure to asphalt for long time can 



  10 

cause local skin carcinomas. The manual summarized the following precautions 

and practices for safety (26). 

 “Prevent dermal exposure. 

 Keep the application temperature of heated asphalt as low as possible. 

 Use engineering controls and good work practices at all work site to 

minimize worker exposure to asphalt fumes and asphalt-based aerosols. 

 Use appropriate respiratory protection.” (27) 

WMA technology could significantly minimize the risk of chemical fumes 

emitted from the asphalt plants. TABLE 1 summarizes the percentages of reduced 

emission when using different WMA additives. 

TABLE 1 Emission Reduction for WMA Compared to HMA Mixes 

Chemical 

Component 

Warm Mix Asphalt Processes 

Aspha-

Min®
1) Sasobit®

2)
 Evotherm™

3)
 

WAM-

foam
4)

 

SO2 (%) 17.6 - 81 N/A 

CO2 (%) 3.2 18 46 31 

CO (%) N/A N/A 63 29 

NOx (%) 6.1 34 58 62 

THC (%) 35.3 N/A N/A N/A 

VOC (%) N/A 8 25 N/A 

 
1)

 Data from Charlotte, North Carolina in September 2004 
 2)

 Data from M-95 Iron Mountain, Michigan in September 2006 
 3)

 Data from Road#46 in Raman, Canada in 2005 
4)

 Data from FV Frogn in Nesodden, Norway in April 2001 (28) 

 

2. Fuel and energy savings 

Energy savings and emission reduction can be defined as the most important 

WMA benefits. As WMA mixtures are mixed at lower temperatures, a 

tremendous amount of fuel will be cut compared to the conventional HMA. Many 
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researches indicated that up to 30% of the energy cost can be reduced when using 

WMA technology (26). Saving on energy could be even escalated to 50% or more 

when using the Low Energy Asphalt (LEA); where the aggregates or portion of it 

are not heated beyond the boiling point (10). Another possible benefit of mixing 

at low temperatures is the reduction on the wear of the asphalt plant as it being 

operated at lower temperatures. 

3. Viable tool to compact stiff mixtures 

WMA technology allows easier compaction for stiff mixes such as that have 

(RAP) (2). Also, the low aged binder for WMA will compensate the high stiffness 

RAP binder, so the workability will be enhanced greatly when using WMA, in 

fact, In Germany, trials have been conducted with RAP percentage as high as 

90% to 100% when Aspha-min Zeolite and Sasobit were used in trial sections (2). 

4. Enhance the thermal cracking resistance 

Most of the binder aging that an asphalt mixture undergoes occurs during mixing 

at the asphalt plant and due to the exposure to high temperatures. As the WMA 

mixtures are mixed at lower temperatures compared to the HMA mixtures, thus 

the binder will subsequently have lesser oxidization due to the lower heat. 

Therefore, the hardening of WMA mixes would be minimized and thus the 

endurance to thermal cracking will increase significantly (25). However, the low 

amount of aging that WMA undergoes may raise the concern of rutting; many 

studies stated that rutting has not been an issue with WMA (9). 
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5. Widen the compaction window 

WMA technologies allow for reduction on the binder viscosity. This can lead to 

achieving the same density as HMA with much lower compaction temperatures. 

As the WMA is mixed at lower temperatures compared to HMA, the difference 

on temperature between the mix and the ambient is consequently less. Thus, the 

rate of temperature loss will decrease significantly and WMA would cool slower 

and the allowed time for compaction would be longer. 

2.4 Testing Protocols 

2.4.1 Dynamic Modulus Test 

2.4.1.1 Background of the Dynamic Modulus Test 

 

The term modulus, in general, can be easily described as the ratio between stress 

and strain. It is known as the modulus of elasticity (E) as long as the material 

behaves in the elastic range, in such that the relation between stress and strain 

falls into a linear elastic relationship. In materials such as asphalt mixtures, the 

behavior is found to be in a visco-elastic manner. The modulus of the visco-elastic 

materials is defined by the term complex dynamic modulus (E*), which represents 

the response developed under sinusoidal loading conditions (29). 

 The dynamic modulus protocol was first introduced by Coffman and 

Pegan in the 1960’s at Ohio State University. Then the test was undertaken as the 

“Modulus Test of Choice” by the Asphalt Institute in the late 1960’s by Kallas, 

Shock and Witczak (29). Further, it was named as an ASTM procedure in 1979 

under the name “Standard Test Method for Dynamic Modulus of Asphalt 

Concrete Mixtures” (30). In 2002, NCHRP released the refined version for the 
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protocol included in the new Design Guide for New and Rehabilitated Pavements 

under NCHRP Project 1-37 that was led by Witczak and others at Arizona State 

University. Currently it is an AASHTO TP 62-07.  

 The dynamic modulus testing procedure can be generally addressed by 

applying a uniaxial load in either case of compression or tension. The modulus 

has been defined as (E*) for the case of applying compression loading, and (G*) 

for the case of applying tension loading. However, most of the testing was done 

using compression loading. 

2.4.1.2 Theoretical Background of the dynamic modulus test 

 

The dynamic modulus test for asphalt concrete mixtures, as described earlier, 

consists of applying an uniaxial sinusoidal (i.e., haversine) compressive loading to 

a cylindrical HMA specimen in either case of confined or unconfined ambient, as 

shown in FIGURE 2 (30). As the asphalt mixtures behavior falls under the linear 

visco-elastic materials, the relation between stress to strain under the sinusoidal 

loading was found to be a complex number called the complex modulus (E*) that 

is consist of a real and imaginary portions. The absolute value of the complex 

modulus |E*| is defined as the dynamic modulus which mathematically represents 

the ratio of the maximum dynamic stress (δ0) to the maximum recoverable axial 

strain (ε0) (30). 

       
δ 

ε 
 

 

 



  14 

 

FIGURE 2 Haversine loading pattern. (30) 

The theoretical term of the sinusoidal stress (δ) at any given time (t) and angular 

load frequency (ω) is defined as:                                         

δ   δ     ω   

Also, the theoretical term of the sinusoidal strain (ε) at the same time and 

frequency is defined as:                                                              

         ω     

By dividing the peak sinusoidal stress by the peak sinusoidal strain, E* can be 

defines as: 

     
δ     ω  

ε     ω    
  

By simplifying the equation, E* can be denoted as: 

      
δ    ω   

ε    ω     
 

Where,    δ  = peak (maximum) stress 

                εo = peak (maximum) strain 

                ø = phase angle, degrees 

                ω = angular velocity 

                t = time, seconds 
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                i = imaginary component of the complex modulus (29). 

The phase angle, ø, represents the viscous behavior of the asphaltic material. It 

can be simply defined as the angle by which εo lags behind δ  as shown in 

FIGURE 2 The value of ø indicates the viscous properties of the materials as 

follows: 

 If ø = 0º, the material is considered as pure elastic material and the 

complex modulus (E*) is equal to the absolute value, or dynamic modulus. 

 If ø = 90º, the material is considered as pure viscous material. 

As E* indicates the dynamics modulus for the compression case of loading and 

(G*) indicates the complex shear modulus for the tension case of loading, both 

moduli are mathematically related by the following formula: 

              

Where:    is the Poisson’s Ratio (29). 

2.4.2 Indirect Diametral Tensile Strength (IDT) Test 

The standard indirect diametral test is a part of the AASHTO TP 94 (31): 

Determining the Creep Compliance and Strength of Hot Mix Asphalt (HMA) 

Using the Indirect Tensile Test Device. The test has been recommended for 

mixture characterization in the Long-Term Pavement Performance (LTTP) 

Program (30). The test has been also in use to support the structural design in the 

1986 and 1993 AASHTO Guide for Design of Pavement Structures. The test 

gained popularity due to its simplicity and applicability to conduct on thin lifts of 

field cores. The main purpose of the test is to determine the tensile strength of the 
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tested specimens using the procedure described in Attachment A to the SHRP 

Protocol P07. The test is conducted by applying compressive loading through two 

diametrically opposed plates on a cylindrical specimen as shown in FIGURE 3. 

Tensile stress will develop upon failure along the diameter of the specimen. 

 

FIGURE 3 Indirect tensile strength testing. 

The loading of the specimen is based on maintaining a constant strain rate until 

the failure of the specimen, which is defined by splitting the specimen apart along 

its diametral axis. The peak horizontal tensile stress on the center of the specimen 

can be calculated using the following equation: 

δ   
   

   
 

Where: 

                    = Horizontal peak tensile stress 

                P    = the applied load 

                t     = thickness of the specimen or the field core 

               d    = diameter of the specimen 
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2.4.3 Moisture Sensitivity Test AASHTO T283 

The AASHTO T 283-89 is based on research performed by Lottman (32) and 

subsequently by Tunnicliff and Root (33). The ASTM D4867 is a comparable 

method, with some differences. In either test, Marshall-size specimens with and 

without moisture saturation are tested for indirect tensile strength. The specimens 

without moisture saturation are the ones that are unconditioned, and those with 

moisture saturation are the ones that are conditioned for the purpose. The TSR 

(ratio between the tensile strengths of conditioned and unconditioned specimens) 

are determined as an indication of moisture damage potential.  

The Lottman Test used in this study can be briefly described as follows: 

1. The specimens were divided into dry and wet subsets as per the protocol. 

The dry subset was stored at room temperature and then tested.  

2. The specimens of the wet subset were placed in a vacuum container filled 

of water under a vacuum of 10-26 inch Hg partial pressure (13-67 kPa 

absolute pressure) for approximately 8 minutes. 

3. The vacuum is then removed and the specimen left submerged in water for 

approximately 7 minutes then the weight of the saturated, surface-dry 

specimen after partial vacuum saturation was determined by Method a of 

AASHTO T 166 (34) to get the degree of saturation of the specimen.  

4. The samples are each wrapped with a Saran Wrap plastic film and placed 

in a plastic bag containing 10 ± 0.5 mL of water and sealed. 

5. The plastic bags were placed in a freezer at a temperature of 0 ± 5°F (-18 

± 3°C) for a minimum of 16 hours. 
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6. After this, the plastic bags are placed in a water bath at a temperature of 

140 ± 1.8°F (60 ± 1°C) for 24 ± 1 hour. 

7. The specimen is removed from the bath and unwrapped, then conditioned 

for two hours at 70°F (25 °C). 

8. The tensile strength of the wet subset was then obtained at 70 °F (25 °C). 

The specimens were placed on its side between the bearing plates of the 

testing machine and loaded till failure.  

9. The Tensile Strength Ratio (TSR) is defined as the ratio of the average 

tensile strength of the wet specimens to that of the dry specimens. 

FIGURE 4 shows an illustration of the freezing and thawing cycles of the 

tested specimens. 

 

 

FIGURE 4 Freezing and thawing cycle. 
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2.4.4 Hamburg Wheel-Track Test AASHTO T324-04 

Hamburg test is known as the Hamburg Wheel-Track testing and was developed 

and first introduced in Hamburg, Germany. The test has been widely in use to 

evaluate and assess the effects of moisture damage on HMA. Many agencies and 

DOT’s over the U.S have put extensive efforts to implement and adopt the testing 

for use in the U.S. Federal Highway Administration (FHWA) and Colorado 

Department of Transportation (CDOT) have done an extensive study to assess the 

potential of moisture damage in the state of Colorado since 1990. CDOT has put 

together Colorado Procedure CP-L 5112, which indicates the testing temperature 

according to site location and grade of the binder used (35), (36).  

 The basic concept of the test is to measure the combined effect of rutting 

and stripping on the asphalt pavement. The testing device as shown in FIGURE 5 

uses two reciprocating steel wheels moves, at the same time, over two replicates 

of rectangular slabs or gyratory compacted cylinders. The steel wheel is 203.2 

mm (8 in) in diameter and 47 mm (1.85 in) in width, and it’s designed to apply a 

load of 705 ± 4.5 N (158 lb ± 1.0 lb). The device also provided with two Linear 

Variable Differential Transducers (LVDT’s), one for each replicate in order to 

measure the rutting at the center of the specimen. The LVDT’s are made to 

measure up to 0.01 mm and designed to be self-adjusted at the beginning of each 

test. 
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FIGURE 5 Hamburg wheel-tracking testing device. 

 The test protocol indicates passing the loaded steel wheel repeatedly over 

the test specimen until the specimen fails or reaches the maximum number of 

passes of 20,000 passes. The failing criterion is defined as 20 mm (4. inches), 

which represents the maximum allowed rut depth).  The testing involves the 

conditioning of specimens for 30 minutes in a water bath that is capable to 

maintain the temperature within ±1.0 ºC of the designated test temperature. The 

water bath should have a circulation system in order to maintain a steady 

conditioning temperature. The testing temperature varies according to the grade of 

binder used in the mix. 
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CHAPTER 3. PROJECT DESCRIPTION, EXPERIMENTAL PLAN AND 

SPECIMENS PREPARATION 

3.1 Description of the Project 

In June 2009, the Arizona Department of Transportation (ADOT) constructed a 

new southbound (SB) roadway connecting the previously completed road that 

parallels the existing SR 85 mainline from approximate MP 130.71 to another 

completed section of the same roadway at approximate MP 137.00. The project 

included two WMA sections with two different additives as well as a control 

HMA mixture section. The first WMA mixture included a chemical additive and 

will be referred as chemical-based WMA; while the second WMA mixture was a 

foaming process and will be referred to as foaming-based WMA. The chemical-

based WMA mixture was placed on the right travel lane of SR 85 with a length of 

9700 feet (3166 feet south of and 6534 feet north of MP 136); while the foaming-

based WMA mixture was placed also on the right travel lane with a length of 

7232 feet (4739 feet south of and 2493 feet north of MP 133). The rest of the 

project length was completed with a control HMA mixture. The targeted 

compaction temperature for the foaming-based field WMA mixture was 230 °F to 

245 °F (110 °C to 118 °C); it was 250 °F (121 °C) for the chemical-based 

compared to a 311 °F (155 °C) for the control HMA mixture.  FIGURE 6 shows 

the milepost and location of the project different sections. 
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3.2 Mixture Design 

The mix design for this project was a 3/4” ADOT 416 special item in accordance 

with the ADOT Standard Specifications for Road and Bridge Construction.  The 

binder grade used was PG 76-16 with a design asphalt content of 4.8% and the 

target air void was 5.5+0.2 %. Hydrated lime was used as an anti-stripping agent 

mixed with aggregate in percentage of 1% of weight of aggregate. The estimated 

lab mixing temperature of the control HMA was 331 °F (166 °C) and lab 

compaction temperature was 311 °F (155 °C). TABLE 2 shows the typical 

aggregate gradation of the mix. 

MP 130 

MP 138 

MP 138.60  

MP 130.67  

Foaming WMA Section 

Chemical WMA Section 

FIGURE 6 Milepost and location of the project paved sections. (Google  FIGURE 6 Milepost and location for the test sections. (Google Maps). 
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TABLE 2 Composite Aggregate Gradation 

Sieve Size 
Composite 

w/ Admixture 
Specification 

2” 

1.25” 

1” 

100 

100 

100 (100) 

¾” 100 (90-100) 

½” 

3/8” 

86 

76 (62-77) 

¼” 

#4 

#8 

65 

57 

41 (38-47) 

#10 

#16 

#30 

#40 

38 

30 

21 

17 (11-19) 

#50 

#100 

#200 

13 

8 

5 (2.5-6.0) 

 

3.3 Experimental Design 

The experimental program for this study included two WMA mixtures and one 

conventional HMA mixture. WMA mix from the first section involved using 

Advera WMA additive and will be denoted as the Foaming-based mix. WMA 

from the second section involved using Evotherm WMA additive and will be 

denoted as the Chemical-based mix. Conventional HMA mix will be denoted as 

the Control mix. Specimens from each of the three mixes were divided into two 

categories; field-core specimens and laboratory-compacted specimens. 

A. Field-core specimens: include cores that were taken from the actual 

pavement. Cores were typically 4” (100mm) in diameter, and 2” (50mm) 

in thickness. A total of 27 cores were taken from the pavement site; 9 from 

each section. Cores were sealed in plastic bags until they were utilized for 
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testing (E* and IDT). FIGURE 7 shows example of the field core 

specimens. 

 

FIGURE 7 Field core specimens. 

B. Laboratory-compacted specimens: loose mix materials were taken from 

the paving site and brought to the lab in small buckets until they were 

reheated and compacted. In general, all of the three mixes; Control, 

Foaming-based and Chemical-based was reheated in the lab and 

compacted at two different compaction temperatures 270 °F (132 °C) and 

310 °F (154°C). Both WMA mixes had the WMA additive already on it 

prior to reheating.  

 Foaming-based mix that had the additive (Advera) been added on 

the plant will be denoted as Advera Added at Plant (AAP) mix. 

  Chemical-based mix that had the additive (Evotherm) been added 

on the plant will be denoted as Evotherm Added at Plant (EAP) 

mix. 
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C. Foaming-based mix was also intended to conduct a small study to 

investigate the effect of reheating on WMA, so Advera powder was added 

to a loose control mix on the lab (on dosage of 0.25% of the mix weight). 

This mix was also compacted at 270 °F and 310 °F and will be denoted as 

Advera Added at Lab (AAL) mix. FIGURE 8 shows example of the E* 

laboratory specimens. 

 

FIGURE 8 Laboratory E* specimens. 

FIGURE 9 shows a summary of the sampling plan diagram and terminology for 

the three mixes. 
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Compacted 
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Compacted 
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Field cores Lab-compacted 
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Control Advera 

Sampling Plan 

Field cores Lab-compacted 

specimens 

 

Advera added 

at Lab (AAL) 
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at Plant (AAP) 

Compacted 

at 270 F 

 

Compacted 

at 310 F 

 

Compacted 

at 270 F 

 

Compacted 

at 310 F 

 

Evotherm 

Evotherm added 

at Plant (EAP) 

Compacted 

at 270 F 

 

Compacted 

at 310 F 

 

Field cores Lab-compacted 

specimens 

 

FIGURE 9 Sampling plan and terminology. 
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3.4 Testing Plan 

Four laboratory testing were intended in general for this study in order to evaluate 

the WMA in comparison to the conventional HMA. The evaluation was divided 

into mixture strength evaluation and moisture damage evaluation. The mixture 

strength evaluation included; dynamic modulus as well as the indirect diametral 

tensile strength (IDT) tests. FIGURE 10 represents a summarized flowchart for 

both strength and moisture damage testing plan. 

 As illustrated in FIGURE 10, E* testing was conducted for the three 

mixes; Control, Foaming-based and Chemical-based. Each of the three mixes 

included the testing of field stacked cores as well as laboratory-compacted 

specimens. Laboratory prepared specimens were compacted at 270 °F and 310 °F. 

All field specimens were tested for E* using 3 replicates, except for the Chemical-

based field cores which had only 2 replicates because of the limited number of 

cores. Also, laboratory specimens for the Foaming-based and the Chemical-based 

used 4 replicates while the Control mix used 3 replicates. 

 IDT testing was also conducted for all three mixes and each of the three 

mixes included the testing of field cores and laboratory prepared discs that were 

cut from the E* lab specimens. Field cores for both Foaming-based and 

Chemical-based used 2 IDT replicates while the Control mix used 8 replicates. 

Laboratory specimens for the Control mix used 4 replicates at each compaction 

temperature. For the Foaming-based mix, 4 replicates were used for all 

combinations except for AAL compacted at 310 °F which had 9 replicates. For 
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the Chemical-based mix, 3 replicates were used for both combinations compacted 

at 270 °F and 310 °F. 

 TSR test was done for only laboratory specimens compacted at 270 ºF. 

Specimens were divided into conditioned and unconditioned sets. Specimens that 

were used on the IDT test were considered as the unconditioned specimens. For 

conditioned specimens, 3 replicates were used for Control and Chemical-based 

mixes while 4 replicates were used for both Foaming-based mixes AAL and AAP. 

 Hamburg Wheel Tracking test were conducted for all combinations on 

slab specimens compacted at 270 °F. 2 slab replicates were used for each mixture. 

FIGURE 10 shows the testing plan for the study. 
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FIGURE 10 Evaluation testing Plan 
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3.5 Specimen Preparation 

Samples from each section included field cores as well as loose asphalt concrete 

mixtures sampled from the field during construction. In the laboratory, the loose 

mixtures form the control section as well as the two WMA sections were reheated 

and compacted with a “Servopac Gyratory Compactor” at two different 

temperatures; 270 °F (132 °C), and 310 °F (154 °C). For both control and WMA 

mixtures, laboratory specimens were compacted into a 6-inch (150 mm) diameter 

gyratory mold. One 4-inch (100 mm) diameter sample was cored from each 

gyratory plug. The sample ends were sawn to arrive at typical test specimens of 4-

inch (100 mm) in diameter and 6-inch (150 mm) in height. 

3.5.1 Complex Modulus Sampling and Testing 

The dynamic modulus (E*), per AASHTO TP 62-07 (37) was performed in the 

laboratory at only  70 °F (21.1 °C) and six load frequencies: 25, 10, 5, 1, 0.5 and 

0.1 Hz. The stress levels were varied with the frequency to keep the specimen 

response within a linear viscoelastic limit (recoverable microstrain below 150 

microstrain). A servo hydraulic testing machine was used to load the specimens. 

A dynamic haversine stress (continuous wave) was applied and measured through 

a load cell, whereas, the deformations were measured using two spring-loaded 

LVDTs (Linear Variable Differential Transducers). The LVDTs were secured in-

place using brackets and studs glued onto the specimens. Guide rods were added 

to the instrumentation to ensure alignment.  
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As mentioned earlier, laboratory manufactured test specimens were cored and 

sawed to a typical dimension of 4-inch (100 mm) diameter and 6-inch (150 mm) 

height. For field cored specimens, the overlay thickness was only 2-inch (50 mm), 

so, three cores were stacked together using the same binder grade PG-76-16 as a 

light tack to hold the three cores together and to arrive at the required specimen 

height of approximately 6 inches (150 mm). In this case, the LVDTs were 

mounted to the middle core only with a smaller gage length of 1.5-inch (38 mm) 

instead of the 4-inch (100 mm) for a typical specimen, which satisfy the 

specification of the minimum gauge length to be greater than the maximum 

aggregate size which for this case is ¾ inch. FIGURE 11 illustrates the 

instrumented E* specimen compacted in lab as well as stacked cores from field.      

     

FIGURE 11 Instrumentation of E* specimens; (a) lab compacted specimen 

and (b) field stacked cores. 

(a) (b) 
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3.5.2 Indirect Diametral Test (IDT) specimen preparation and testing 

In this test, a specimen of 4-inch (100 mm) diameter and about 2.5-inch (63 mm) 

thickness is loaded at a constant rate of 2.0 inch per minute (0.847 millimeter per 

second) until failure. The indirect tensile strength value is then determined as the 

peak stress value. The test can be performed on specimens compacted by the 

super pave gyratory compactor by cutting cored specimen into two or three parts. 

In this study, the cored specimens were cut into three parts each 4-inch (100 mm) 

diameter by 2-inch (50 mm) height. For field cores, the average height of the 

specimens was 2 to 2.5-inch in that they were ready to be directly tested. All the 

specimens were tested at a temperature of 70 °F (21.1 °C). FIGURE 12 shows the 

test setup and failure mechanism for one of the tested specimens. 

 

FIGURE 12 (a) Indirect tension test setup and (b) failed specimen. 

 

(a) (b) 
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3.5.3 Hamburg Wheel Tracking Specimens Preparation 

This part of the study was conducted at the Arizona Department of Transportation 

laboratories. The Hamburg testing device is designed to accommodate two 

replicates at the time. The replicates could be either slab specimens or cylinders, 

in such that: 

 Slab specimens are 320 mm (12.5 in) long, 260 mm (10.25 in) wide, 

and 38 mm (1.5 in) to 100 mm (4. in) thickness. Thickness of the slab 

should be at least twice the size of the nominal maximum aggregate of 

the mixture. 

 Gyratory-compacted cylinders are arranged in 2 adjacent cylinders on 

each side of the machine. The cylinder is 150 mm (6. in) diameter and 

38 mm (1.5 in) to 100 mm (4. in) thickness. Thickness of the cylinder 

should be at least twice the nominal maximum aggregate size of the 

mixture. 

Mixing temperature of the specimens in accordance to the mix design must be 

with respect to achieve a viscosity of 170 ± 20 cSt. Also, the compaction 

temperature of specimens should meet the requirement to achieve a viscosity of 

280 ± 30 cSt. Compaction of the slab specimens must be done by using a linear 

kneading compactor as shown in FIGURE 13. 
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FIGURE 13 Compaction of beams using kneading compactor. 

After compaction to the designated air voids, slabs must be cooled at room 

temperature until it is cool to touch. Air voids then must be calculated to the beam 

in accordance with T 269 procedures as shown in Appendix B. Then, slabs should 

be mounted on trays using plaster material such as Plaster-of-Paris. The plaster is 

used to fill the voids between the tray and the beam and also with a thin layer 

underneath the slab as shown in FIGURE 14. 
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FIGURE 14 Mounting the Hamburg slab specimen. 
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CHAPTER 4. RESULTS AND ANALYSIS 

4.1 Volumetric Properties 

4.1.1 Theoretical Maximum Specific Gravity  

Theoretical maximum specific gravity (Gmm) was determined for all three mixes 

as per AASHTO T 209 procedure.  TABLE 3 summarizes the Gmm calculation 

for the three mixes. 

TABLE 3 Calculation for Control, Advera and Evotherm Trial Mixtures 

Specimen 

ID 

Mass in 

Air (g) 

Bowl+lid+water 

in air (g) 

Bowl+lid+mix 

in air (g) 

Gmm 

(g/cm3) 
Average 

Gmm  

(gm/cm3) A B C D = A/(A+B-C) 

Control 

1500.4 7752.8 8642.5 2.457 

2.456 1500.2 7752.8 8642.3 2.457 

1500.9 7752.8 8642.3 2.455 

Advera 

1500.2 7752.8 8641.3 2.453 

2.455 1500.4 7752.8 8642.7 2.458 

1500.2 7752.8 8641.7 2.454 

Evotherm 
1500.0 7742.5 8639.0 2.486 

2.454 
1500.0 7743.1 8624.1 2.423 

 

4.1.2 Air Voids Trials 

Three gyratory specimen trials were compacted for each mix at three different 

approximate air void level; 4%, 8% and 12%. The reason for that is to draw the 

air voids versus mass in mold plot which determine the corresponding mass in 

mold weight to the targeted air voids.  TABLE 4 summarizes the calculations for 

the trials of the three mixes. 
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TABLE 4 Compaction Trials for Control, Advera and Evotherm Mixtures 

Mix 

Type 

Specimen 

 ID 

Mass in 

 Mold 

(g) 

Mass 

 in air 

(g) 

Mass 

 in water 

(g) 

SSD 

 Mass 

(g) 

Volume 

(cm
3
) 

Gmb % Va 

Control 

GBHT1 6100 2610.5 1416.3 2629.8 1213.5 2.151 12.41 

GBHT2 6400 2736.0 1523.4 2756.2 1232.8 2.219 9.64 

GBHT3 6800 2905.2 1668.4 2909.0 1240.6 2.342 4.65 

Advera 

GBWT1 6100 2616.5 1429.5 2642.0 1212.5 2.158 12.10 

GBWT2 6400 2734.0 1523.3 2744.9 1221.6 2.238 8.84 

GBWT3 6800 2953.8 1705.6 2959.4 1253.8 2.356 4.04 

Evotherm 

ZE_T1 6100 2472.7 1388.4 2534.6 1146.2 2.157 12.16 

ZE_T2 6400 2583.5 1452.4 2600.3 1147.9 2.251 8.36 

ZE_T3 6800 2752.0 1590.5 2755.8 1165.3 2.362 3.84 

Air voids for the laboratory compacted specimens for all three mixtures were 

determined to be 9% in order to match the air voids level of the field core 

specimens, so the comparison between field and laboratory specimens will be 

meaningful. From the mass of mold – air voids relationship shown in FIGURE 

15, mass of mold were determined to be 6390g, 6350g and 6340g for the Control, 

Foaming-based and Chemical-based mixes respectively. 

FIGURE 15 Compaction trials for control, Advera and Evotherm mixtures. 
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4.2 Dynamic Modulus Testing (E*) 

The dynamic modulus, E* experiment was conducted in the laboratory using the 

IPC UTM 25 testing machine and included the testing of field cores as well as 

laboratory compacted specimens. As mentioned earlier, the test was conducted at 

only 70 °F (21.1 °C). A total of three replicates for each mixture type were 

prepared and instrumented for the dynamic modulus test. The average dynamic 

modulus values for the control as well as the two WMA mixtures were 

determined at different frequencies. 

4.2.1 E* Test Results for the Control Mix 

TABLE 5 summarizes the E* results for the control mixture including field 

stacked cores, lab-compacted specimens at 270 °F and lab-compacted specimens 

at 310 ºF. 

TABLE 5 E* Testing Results for the Control Mixture, MPa 

Specimen 

Type 

Specimen 

ID 

Air Voids  

(%) 

Frequency (Hz) 

25 10 5 1 0.5 0.1 

Control 

Field stacked cores 

HM1 9.96 11989 9762 7650 4568 3584 2045 

HM2 10.01 15486 11226 8881 7518 5842 3479 

HM3 8.38 21804 17182 12847 7233 5104 2616 

Control 

Compacted 

@ 270 °F 

2C8_01 8.21 13078 11195 9973 7332 6314 4295 

2C8_02 8.55 12521 10434 8918 6483 5511 3532 

2C9_02 9.22 12587 10599 9329 6616 5682 3779 

Control 

Compacted 

@ 310 °F 

3C8_01 8.87 13514 11886 10747 7729 6800 4669 

3C8_02 8.00 12918 11512 10132 7583 6622 4569 

3C9_01 9.98 12646 10348 9018 6704 5770 3845 
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4.2.2 E* Test Results for the Foaming-based Mix 

TABLE 6 summarizes the E* results for the foaming-based mix including field 

stacked cores, lab-compacted specimens at 270 °F and lab-compacted specimens 

at 310 ºF. Laboratory specimens involve mix that has the WMA additive (Advera) 

been added on the lab (AAL) as well as mix that has the WMA additive (Advera) 

been added on the plant (AAP). 

TABLE 6 E* Testing Results for the Foaming-based Mixture, MPa 

Specimen 

Type 

Specimen 

ID 

Air Voids  

(%) 

Frequency (Hz) 

25 10 5 1 0.5 0.1 

Foaming 

Field stacked  

cores 

WM1 9.96 13077 9134 7194 3998 2961 1549 

WM2 10.01 19559 16288 13921 8910 7136 4219 

WM3 8.38 16277 12008 8883 5060 3948 2938 

AAP 

Compacted 

@ 270F 

GBW52 9.17 13042 10441 8115 4844 3847 2115 

2A9_01 9.47 12914 11339 10005 7473 6505 4379 

2A9_03 9.19 12573 11029 9896.5 7237 6348 4404 

2A9_04 9.36 11989 10134 8692 6479 5646 3946 

AAP 

Compacted 

@ 310F 

GBW 02 10.24 15357 11990 9575 6107 4844 2846 

3A9_01 10.30 11117 10691 9852 7503 6574 4822 

3A9_02 9.94 12408 10551 9435 7524 6064 4209 

3A9_03 9.87 10705 9520 8522 6306 5474 3810 

AAL 

Compacted 

@ 270F 

GBH50 8.37 14257 11956 10183 7005 5898 3694 

GBH51 8.55 18798 15093 11908 7324 5904 3288 

GBH52 8.98 9303 7820 6418 4365 3640 2348 

AAL 

Compacted 

@ 310F 

GBH 01 9.23 14869 12974 11237 7175 6112 3577 

GBH 02 9.14 11137 10119 7997 5723 4882 3314 

GBH 03 9.35 15024 12645 10624 7180 5692 3098 

 

4.2.3 E* Test Results for the Chemical-based Mix 

TABLE 7 summarizes the E* results for the chemical-based mix including field 

stacked cores, lab-compacted specimens at 270 °F and lab-compacted specimens 
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at 310 ºF. Laboratory specimens involve mix that has the WMA additive 

(Evotherm) been added on the plant (EAP). 

TABLE 7 E* Testing Results for the Chemical-based Mixture, MPa 

Specimen 

Type 

Specimen 

ID 

Air Voids  

(%) 

Frequency (Hz) 

25 10 5 1 0.5 0.1 

Chemical 

Field cores 

WA-70U 8.05 25271 21468 19673 14231 12609 7555 

WB-70U 8.53 25456 25210 21995 16240 13956 9651 

EAP 

Compacted 

@ 270 °F 

2E8_01 9.97 8828 7792 6927 5232 4578 3089 

2E8_02 9.80 10848 9595 8500 6178 5160 3272 

2E8_03 9.32 19071 16126 14127 10141 8549 5537 

2E8_04 9.35 8588 7902 7267 5490 4811 3419 

EAP 

Compacted 

@ 310 °F 

3E8_01 9.71 14020 11910 10387 7345 6243 4121 

3E8_02 10.01 10786 9909.5 9071 6656 5784 3944 

3E8_03 9.16 14012 12220 10942 8332 7230 4989 

3E8_04 9.92 9709 8561 7764 5873 5261 3791 

A comparison of the dynamic modulus values between the field cores for 

the three mixtures is shown in FIGURE 16. It can be noticed that the chemical-

based WMA mixtures show higher moduli values at all test frequencies compared 

to the control HMA mixture and foaming-based WMA. In addition, both of the 

control and foaming WMA mixtures have almost the same dynamic modulus 

values. Chemical-based WMA mixture had much higher modulus compared to 

the other two mixes for reasons might be related to the sampling of the specimens, 

or the mat might be over-compacted for this particular spot were the cores were 

taken. 
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FIGURE 16 Field cores E* testing results for all mixtures. 

To investigate the effect of the compaction temperature for both of the WMA and 

control mixtures, the lab specimens were compacted at two different 

temperatures. The first compaction temperature was selected to be around the 

normal compaction temperature of conventional HMA mixtures (310 °F); while 

the second one was lower at 270 °F. The laboratory specimens for the six 

combinations were manufactured at three replicates for each combination. The 

dynamic modulus for the Control, Foaming-based and Chemical-based mixes are 

shown in FIGURES 17, 18 and 19 respectively. 
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FIGURE 17 E*testing results for lab specimens of the control mix. 

 

 

FIGURE 18 E* testing results for lab specimens of the foaming-based mix. 
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FIGURE 19 E* testing results for lab specimens of the chemical-based mix. 

The dynamic modulus values for the three mixtures at different 

compaction temperatures are shown combined in FIGURE 20Error! Reference 

ource not found.. It can be observed that, at the 310 °F compaction temperature, 

the control HMA mixture showed slightly higher moduli values when compared 

to both WMA mixtures, which showed about the same moduli values. For the 270 

°F compaction temperature, the dynamic moduli values for the three mixtures 

were about the same. This means that decreasing the compaction temperature 

from 310 °F to 270 °F would reduce the material’s stiffness of the control HMA 

mixtures. The chemical-based WMA mixture showed a similar trend as the 

control HMA mix, but at a lesser extent; while the foaming-based WMA was not 

affected at all with the compaction temperature reduction.  
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FIGURE 20 E* testing results for lab specimens of all three mixes. 

The dynamic modulus test results of the laboratory compacted specimens 

didn’t show any unusual increase in the dynamic modulus for the chemical-based 

WMA mixture; the dynamic moduli were around and/or slightly less than the 

control HMA and the foaming-based WMA mixtures. This outcome may point 

out an important consideration when sampling certain types of WMA mixtures 

from the field to be compacted and evaluated in the laboratory. This is mainly the 

question whether the WMA mixture properties will change when samples are 

reheated and compacted in the laboratory due to the release of the WMA additive.  

It may be best to compact future laboratory specimens directly after sampling 

either at the asphalt plant or at the paving site. 

Statistical analyses were performed for the three mixtures for statistical 

significance. The statistical analyses used a paired t-distribution for two variables. 
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A statistical hypothesis, two-population test (Ho:  1 =  2 {Null Hypothesis} and 

H1:  1 ≠  2 {Alternative Hypothesis}) were conducted. The critical assumptions 

of the analysis were that the mean values of the two samples were unknown and 

equal. In addition, a significance level  of 5% was assumed, and the acceptance 

criterion for a given hypothesis was when tcritical ≤ tstat α/2,υ where υ is the degree of 

freedom. 

TABLE 8 presents the statistical hypothesis testing results for the E* 

dynamic moduli of each mixture type at the two different compaction 

temperatures. The results of the statistical analysis support that there is a 

significant difference between the dynamic moduli when the compaction 

temperature was decreased for the control HMA as well as the chemical-based 

WMA mixture. On the other hand, there was no statistical significant difference 

of the dynamic modulus values due to reduction in temperature for the foaming-

based WMA mixture. 
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TABLE 8 Paired T-test for E* Results for Laboratory Mixes 

Frequency 

 (Hz) 

Control 

 lab @ 

270F 

Control 

 lab @ 

310F 

Foaming 

 lab @ 

270F 

Foaming 

 lab @ 

310F 

Chemical 

 lab @ 

270F 

Chemical 

 lab @ 

310F 

25 12729 13026 12629 12397 11834 12132 

10 10743 11249 10736 10688 10354 10650 

5 9407 9966 9177 9346 9205 9541 

1 6810 7339 6508 6860 6760 7051 

0.5 5836 6397 5586 5739 5775 6129 

0.1 3869 4361 3711 3922 3829 4211 

df 5 5 5 

t Stat -12.18 -1.19 -21.44 

t Critical 

 one-tail 
2.02 2.02 2.02 

t Critical 

 two-tail 
2.57 2.57 2.57 

Statistical 

 status 
Significant Insignificant Significant 

 

4.3 Indirect Diametral Tensile Strength Testing (IDT) 

The IDT experiment also included the testing of field cores as well as laboratory 

compacted specimens for the control HMA mixture and the WMA mixtures. The 

IDT tested field cores were obtained by un-stacking the E* specimens since no 

damage occurred during the E* test. For the laboratory test specimens, specimens 

were obtained by cutting the E* tested specimens into three discs. The laboratory 

test specimens included also specimens compacted at two different temperatures 

(310 °F and 270 °F). 
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4.3.1 IDT Test Results for the Control Mix 

TABLE 9 summarizes the IDT results for the control mixture including field 

stacked cores, lab-compacted specimens at 270 °F and lab-compacted specimens 

at 310 ºF. 

TABLE 9 IDT Results for the Control Mix 

Specimen 

Type 

Specimen 

 ID 

Average 

Thickness 

 (mm) 

Specimen 

 Air Voids 

(%) 

Peak 

 Tensile 

Strength 

(kPa) 

Mean 

Peak Tensile 

Strength 

(kPa) 

Variance 

(σ2) 

Field-cores 

H1 58.10 9.92 641 

836 44693 

H2 55.10 8.58 698 

H3 58.01 8.67 576 

H4 58.20 9.34 692 

HM1 56.50 8.36 894 

HM8 53.68 7.60 1139 

HM9 52.65 7.74 981 

HM10 56.62 8.12 1064 

Compacted 

@ 270F 

2C8_01 B 48.98 8.53 1481 

1503 453 
2C8_02 B 49.89 9.24 1512 

2C9_01 B 47.67 9.49 1490 

2C9_02 T 49.39 9.03 1528 

Compacted 

@ 310F 

3C8_01 B 47.66 9.05 1752 

1641 6577 
3C8_01 T 49.79 8.54 1592 

3C8_02 M 48.14 7.33 1648 

3C9_01 T 49.01 9.84 1571 

 

4.3.2 IDT Test Results for the Laboratory Specimen of the Foaming-based Mix 

TABLE 10 summarizes the IDT results for the foaming-based mix including field 

stacked cores, lab-compacted specimens at 270 °F and lab-compacted specimens 

at 310 ºF. Laboratory specimens involve mix that has the WMA additive (Advera) 

been added on the lab (AAL) as well as mix that has the WMA additive (Advera) 

been added on the plant (AAP). 
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TABLE 10 IDT Results for the Foaming-based Mix 

Specimen 

Type 

Specimen 

ID 

Average 

Thickness 

 (mm) 

Specimen 

 Air 

Voids  

(%) 

Peak 

 Tensile 

Strength 

(kPa) 

Mean 

Peak Tensile 

Strength 

(kPa) 

Variance 

(σ2) 

Field-cores 
W1 53.70 9.85 742 

760 647 
W2 56.34 7.94 778 

AAP 

Compacted 

@ 270F 

2A9_02 B 47.43 9.99 1489 

1491 337 
2A9_04 T 47.54 9.23 1472 

2A9_02 T 47.90 9.07 1487 

2A9_02 M 49.67 8.96 1516 

AAP 

Compacted 

@ 310F 

3A9_01 B 48.45 9.91 1297 

1495 22430 
3A9_01 M 49.77 9.60 1610 

3A9_03 B 51.74 10.32 1462 

3A9_01 T 47.08 9.50 1612 

 

4.3.3 IDT Test Results for the Laboratory Specimen of the Chemical-based Mix 

TABLE 11 summarizes the IDT results for the chemical-based mix including 

field stacked cores, lab-compacted specimens at 270 °F and lab-compacted 

specimens at 310 ºF. Laboratory specimens involve mix that has the WMA 

additive (Evotherm) been added on the plant (EAP). 

TABLE 11 IDT Results for the Chemical-based Mix 

Specimen 

Type 

Specimen 

ID 

Average 

Thickness 

 (mm) 

Specimen 

 Air Voids  

(%) 

Peak 

 Tensile 

Strength 

(kPa) 

Mean 

Peak Tensile 

Strength 

(kPa) 

Variance 

(σ2) 

Field-cores 
WM3 42.86 8.98 1388 

1303 14672 
WM10 67.05 7.41 1217 

Compacted 

@ 270F 

2E8_01 M 47.58 8.55 1347 

1283 3963 2E8_01 B 49.51 9.61 1222 

2E8_04 T 48.90 8.14 1280 

Compacted 

@ 310F 

3E8_02 T 54.27 9.59 1419 

1306 9450 3E8_02 B 47.31 9.48 1252 

3E8_04 T 47.16 8.67 1249 
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As shown in FIGURE 21, the IDT test results for the field cores showed a 

similar trend to the E* test results, where the chemical-based WMA mixture 

showed higher tensile strength values compared to both the control HMA mixture 

and the foaming-based WMA mixture.  

 

FIGURE 19 IDT testing results for field cores of all three mixes. 

The average tensile strength values were plotted for the three mixtures at 

both compaction temperatures in FIGURE 22. The plotted results at 310 °F 

compaction temperature showed that the control HMA mixture has higher indirect 

tensile strength values as compared to both WMA mixtures. At 270 °F 

compaction temperature, the control HMA mixture showed a noticeable drop of 

the IDT value while the other two WMA mixtures have almost the same IDT 
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836 760

1303

0

250

500

750

1000

1250

1500

1750

2000

Mix Type

P
ea

k
 T

en
si

le
 S

tr
en

g
th

, 
k

P
a

CONTROL

FOAMING-BASED

CHEMICAL-BASED



 

  50 

results for field cores showed the same trend as the E* test results, while the 

laboratory test results showed lower indirect tensile strength for the chemical-

based WMA mixture, which contradicted with the results from the field cores. 

This result confirmed the concern that the chemical-based WMA mixture 

properties may have changed by reheating the mixture in the laboratory. 

 

FIGURE 20 IDT testing results for lab cores of all three mixes. 
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air voids of 7%, the air voids level of the tested specimens was targeted to be 9% 

in order to simulate the average field-cores air voids. TABLE 12 summarizes the 

conditioned IDT test results after passing a freezing/thaw cycle. The results of the 

conditioned IDT test showed almost the same trend compared to those of the dry 

IDT results at 270 °F, where the control and foaming-based mixtures showed 

almost the same indirect tensile strength values and slightly higher than the 

chemical-based WMA mixture. 

TABLE 12 IDT Results for Dry and Wet Conditions for All Three Mixes 

Specimen 

Type 

Specimen 

ID 

Average 

Thickness 

(mm) 

Sample 

 Air Voids  

(%) 

Peak 

 Tensile 

Stress (kPa) 

Mean 

 (µ) 

Variance 

 (σ2) 

D
ry

 C
o

n
d

it
io

n
 

Foaming 

based 

Compacted 

@ 270F 

2A9_02 B 47.43 9.99 1489 

1491 337 
2A9_04 T 47.54 9.23 1472 

2A9_02 T 47.90 9.07 1487 

2A9_02 M 49.67 8.96 1516 

Chemical 

based 

Compacted 

@ 270F 

2E8_01 M 47.58 8.55 1347 

1283 3963 2E8_01 B 49.51 9.61 1222 

2E8_04 T 48.90 8.14 1280 

Control 

Compacted 

@ 270F 

2C8_01 B 48.98 8.53 1481 

1503 453 
2C8_02 B 49.89 9.24 1512 

2C9_01 B 47.67 9.49 1490 

2C9_02 T 49.39 9.03 1528 

W
et

 C
o

n
d

it
io

n
 

Foaming 

Compacted 

@ 270F 

GBH50B 45.78 8.30 1076 

903 22977 GBH50M 51.50 7.84 840 

GBH52B 48.35 9.26 792 

Chemical 

Compacted 

@ 270F 

2E8_01 T 48.61 9.34 741 

804 6914 2E8_04 M 48.41 7.48 898 

2E8_04 B 49.23 9.25 773 

Control 

Compacted 

@ 270F 

2C9_01 T 48.46 8.98 897 

898 35 2C9_02 M 47.15 9.04 905 

2C9_02 B 48.75 9.03 893 
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FIGURE 23 illustrates the TSR values for the three mixtures compacted at 

270 °F. As it was expected for the control mixture compacted at lower 

temperature, the TSR value didn’t exceed 0.6. On the other hand, the WMA 

mixtures showed slightly higher TSR values compared to the control HMA 

mixture. However the TSR values of the three mixtures were low. The high air 

voids level of the tested specimens, 9%, compared to the 7% specified by the test 

procedure could have significant effect in lowering the overall TSR values. 

Additional future investigation is needed to address this issue. Almost 1.5 year 

after construction, none of the mixtures showed any sign of distress or moisture 

damage in the field.  

 

FIGURE 21 TSR results for all three mixes. 
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4.5 Hamburg Wheel Tracking Test Results 

4.5.1 Hamburg Wheel Track Test Results for Three Mixes Compacted at 270 °F 

For both WMA mixtures, two slab replicates were prepared by re-heating and 

compacting loose mix using the kneading compactor at two temperatures; 270 ºF 

(132 ºC) and 310 ºF (154 ºC) to the designated 7% air-voids. The Compaction 

temperatures were intended to be parallel with other testing. All details for 

volumetric and results calculations were conducted by ADOT Pavement Materials 

group and are attached on Appendix B. As per protocol, the specimens were 

mounted and then conditioned for 30 minutes prior to testing. The process of 

conditioning and testing lasted approximately for 6 hours for each mix. All mixes 

showed a good potential of moisture resistance. FIGURE 24 shows the rutting 

versus cycles relationship for the mixtures compacted at 270 ºF. 

 

FIGURE 22 Hamburg testing results for all three mixes compacted at 270 ºF. 
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4.5.2 Hamburg Wheel Track Test Results for Three Mixes Compacted at 310 °F 

FIGURE 25 shows the rutting versus cycles relationship for the mixtures 

compacted at 270 ºF. 

 

FIGURE 23 Hamburg testing results for all three mixes compacted at 310 ºF. 
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concluded that the three mixtures have a comparable moisture susceptibility level. 

However, the TSR values implied that theses mixtures may have problem with the 

moisture damage, which is contradicted with the Hamburg Wheel-Track test 

results. This may be due to the fact that the AASHTO T283 includes both 

freezing and thawing conditions. Which can be more damaging compared to the 

Hamburg Wheel-Track test. 

4.6 The Effect of WMA Additives on the Compaction Efforts 

4.6.1 Compaction Energy 

All laboratory specimens were compacted using the gyratory compactor machine. 

The most important two factors to be considered during the compaction are the 

total number of gyrations, and the shear stress. Those two factors are important 

indicators to assess how easy the material is compacted. FIGURE 26 shows the 

average calculated air-voids for both WMA and control mixtures. The average 

air-voids for each mixture group look comparable and all the values are around 

the target 9%.  FIGURE 27 shows the compaction details for the foaming 

admixture added at lab and plant for specimens compacted at 270 °F (132 ºC), 

and 310 °F (154 ºC). The results showed that adding the foaming admixture at 

plant required relatively lower number of gyrations compared to the case when 

adding the admixture at lab for both 270 °F (132 ºC) and 310 °F (154 ºC) 

compaction temperatures. Meanwhile, WMA mixtures showed a clear reduction 

on the number of gyration compared to the control mixture. This fact indicates the 

role of the WMA additive to allow for compacting at lower temperatures, and less 
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compaction efforts. The outcomes from this study supported the conclusion from 

the re-heating study, where the foaming-based mixtures that were re-heated at the 

lab showed a comparable number of gyrations compared to the one created in the 

lab. This can be also noticed by comparing the number of gyrations of the control 

mix to the plant foaming-based mix, where the later mix showed less number of 

gyration compared to the earlier mix. This means that the WMA additives are still 

effective after laboratory storage and the re-heating before the laboratory 

compaction. It was expected based on the foaming manufacturer opinion and the 

product literature that the effect of the foaming admixture may be minimal or not 

existent after the WMA mixture got cold. This statement was based on the fact 

that the reheating of material would release the moisture and lift the minerals 

which would act as filler in the binder. However, the results from E* as well as 

the compaction effort studies showed that the WMA is still effective even after 

the reheating. 

 

FIGURE 24 Calculated air voids for the WMA and control mixtures. 
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FIGURE 25 Compaction efforts for the WMA and control mixtures. 
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being re-heated. The foaming additive was added at a dosage of 0.25% by the 

weight of the asphalt mix according to the manufacture recommendations. Both 

set of specimens were prepared and tested for the E* at 70 °F (21.1°C). 

4.7.1 Dynamic Modulus Test Results 

To investigate the effect of the compaction temperature for both plant WMA 

mixture (AAL) and the mixture that had the foaming additive added to the control 

mixture in the laboratory (AAP), the specimens were compacted at two different 

temperatures. The first compaction temperature was selected to be around the 

normal compaction temperature of conventional HMA mixtures 310 °F (154 °C); 

while the second one was lower 270 °F (132°C). The laboratory-compacted 

specimens for the four combinations were manufactured at three replicates for 

each combination. The dynamic modulus values for the two mixtures were 

determined at 6 different frequencies and at two different compaction 

temperatures as shown in FIGURE 28. 

 

FIGURE 26 Comparison of dynamic modulus of AAP and AAL mixtures. 
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From FIGURE 28, it can be observed that there is no substantial 

difference between the two foaming mixtures. Both foaming added at the lab and 

plant had almost the same dynamic modulus values. It can be observed that, at the 

310 °F (154 °C) compaction temperature, both foaming-based mixtures showed 

slightly higher modulus values when compared to the ones compacted at 270 ºF 

(132 °C).  

Statistical significance analysis was performed for the two mixtures. The 

statistical analyses used a paired t-distribution for two variables. A statistical 

hypothesis, two-population test (Ho:  1 =  2 {Null Hypothesis} and H1:  1 ≠  2 

{Alternative Hypothesis}) were conducted. The critical assumptions of the 

analysis were that the mean values of the two samples were unknown and equal. 

In addition, a significance level  of 5% was assumed, and the acceptance 

criterion for a given hypothesis was when tcritical ≤ tstat α/2,υ where υ is the degree of 

freedom. Table 13 presents the statistical hypothesis testing results for the E* 

dynamic moduli of each mixture type at the two different compaction 

temperatures. Both methods of adding the admixture either at the plant or at the 

lab gave similar modulus values. Thus, the re-heating process of the WMA seems 

not to have any negative effects on the material properties.  
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TABLE 13 Statistical Comparison Between AAL and AAP Using T-paired 

Test 

Frequency 

 (Hz) 

Dynamic Modulus (MPa)  

AAL 

@270  

AAL 

@310 

AAP 

@270  

AAP 

@310  

AAL 

@270 

AAP 

@270 

AAL 

@310 

AAP 

@310 

25 14119 13677 12843 13590 14119 12843 13677 13590 

10 11623 11913 10936 11315 11623 10936 11913 11315 

5 9503 9953 9339 9774 9503 9339 9953 9774 

1 6231 6693 6518 7149 6231 6518 6693 7149 

0.5 5147 5562 5567 5894 5147 5567 5562 5894 

0.1 3110 3330 3633 3972 3110 3633 3330 3972 

df 5 5 5 5 

t Stat -1.65 -6.755 0.52 -0.50 

t Critical 

 one-tail 
2.02 2.02 2.02 2.02 

t Critical 

 two-tail 
2.57 2.57 2.57 2.57 

Statistical 

Diff. 

Between  

Sample 

means 

Insignificant Significant Insignificant Insignificant 

The results of the statistical analysis supported that there was no statistical 

significance of the dynamic modulus values between the foaming-lab and 

foaming-plant specimens at both compaction temperatures; in fact the reduction in 

temperature did not statistically reduce the modulus values for the foaming-based 

WMA mixture. However, there was a statistical difference between the foaming 

added at plant specimens compacted at 270 ºF (132 ºC) and compacted at 310 ºF 

(154 ºC).  

mailto:AAL@270
mailto:AAL@270
mailto:AAP@270
mailto:AAP@270
mailto:AAP@310
mailto:AAP@310
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4.8 Field Evaluation Trip 

Field evaluation trip was held to the project site on January 10, 2011 with 

coordination with ADOT materials and testing section. The pavement by that time 

was 1½ year old. From the visual inspection of the three sections; control, 

foaming-based and chemical-based, all the three sections was doing quite 

excellent. The pavement had an Open-graded friction coarse layer on top of the 

control and WMA sections that was laid recently. Despite the low TSR values of 

the laboratory specimens for all mixtures, no evidence of stripping or cracking 

was noticed on the pavement. This could be due to the dry weather of the Phoenix 

area which minimizes the risk of moisture damage. FIGURE 29 shows photos 

from the field evaluation trip. 

 

FIGURE 27 Field evaluation trip. 
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CHAPTER 5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

Warm Mix Asphalt (WMA) technology has been growing significantly in the last 

decade and the future is promising for further improvements and 

implementations. The main goal of WMA is to produce asphalt mixtures at lower 

mixing temperatures compared to the classic Hot Mix Asphalt (HMA) mixing 

temperatures, and maintaining similar strength, durability and performance 

characteristics. Many agencies and state Department of Transportation (DOT’s) 

across the country have put a tremendous effort on implementing the benefit of 

lowering the mixing temperature of asphalt mixtures to reduce the emissions and 

reduce production costs. The Arizona Department of Transportation (ADOT) has 

been on track in this area and constructed several trial sections using different 

WMA additives. This study utilized materials from actual ADOT paving sections 

where field-cores and loose materials were sampled and tested at the ASU’s 

Advanced Pavement Laboratory. The study evaluated the laboratory performance 

of two different WMA mixtures (foaming-based and chemical-based) compared 

to a control HMA mixture used in field test sections. The scope of work included 

laboratory testing of field cored specimens as well as laboratory specimens 

compacted at two different temperatures. The laboratory testing program included 

the dynamic modulus E* test, the Indirect Diametral Tensile strength test, and the 

moisture sensitivity test. Because of the limited amount of mixtures and field 
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cores sampled, in general, the study was conducted with partial testing plan and 

laboratory evaluation.  

5.2 Conclusions 

From the laboratory evaluation of the three mixtures; control, foaming-based and 

chemical-based mixtures, several conclusions were drawn from each testing 

results. Summary of conclusions for the four tests are summarized in the 

following sections.  In order, they are: dynamic modulus (E*), indirect diametral 

tensile strength (IDT), tensile strength ratio (TSR) and Hamburg wheel-track test. 

The Hamburg wheel-track test was conducted at the ADOT laboratories with data 

analysis conducted at ASU. 

5.2.1 Dynamic Modulus (E*) Test 

The dynamic modulus results of the field cores for both the control HMA and 

foaming-based WMA mixtures showed a comparable E* values at 70 °F; 

however, E* values of the chemical-based WMA mixture were much higher.  

For the laboratory compacted specimens of the three mixes, E* results 

indicated that decreasing the compaction temperatures from 310 °F to 270 °F 

didn’t have any negative effect on the material stiffness or strength for both 

WMA mixtures, while the control HMA strength was affected to some extent. 

Based on the average E* values for the six loading frequencies, (laboratory 

specimens comapcted at 310 ºF to specimens compacted at 270 ºF), the 

percentages of reduction on the dynamic modulus are summarized as follows: 
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 Control: strength reduced by 8% between compaction temperatures 

 Foaming-based: strength reduced by 2%  

 Chemical-based: strength reduced by 5% 

5.2.2 Indirect Diametral Tensile Strength (IDT) Test 

IDT test results of the field cores showed similar findings to the E* results. For 

the laboratory compacted specimens, the IDT results indicated that decreasing the 

compaction temperatures from 310 °F to 270 °F didn’t have any negative effect 

on the material strength for both WMA mixtures, while the control HMA strength 

was affected to some extent. Based on the average IDT values for the laboratory 

specimens, the percentages of reduction on the IDT for specimens comapcted at 

310 ºF to specimens compacted at 270 ºF are summarized as follows: 

 Control: strength reduced by 10% between compaction temperatures 

 Foaming-based: strength reduced by 0.5% 

 Chemical-based: strength reduced by 1.8% 

5.2.3 Tensile Strength Ratio (TSR) Test 

The moisture sensitivity test results based on the TSR values for specimens 

compacted at 270 ºF for all three mixtures indicated that the WMA mixtures and 

the control mixture had comparable TSR values. However all TSR results were 

below the specification limit of 70%. Having the TSR specimens being tested at 

higher air voids level than specification (9% instead of 7%) could potentially 

affect the TSR values in comparison to specifications. Moreover, the inclusion of 
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a freezing cycle as part of the test could also be a possible cause of lowering the 

TSR values due to harsh conditioning of the freezing cycle. 

5.2.4 Hamburg Wheel-track Test 

The Hamburg Wheel-Track test results disagreed with the TSR results; in that the  

Hamburg results indicated good performance for all three mixtures at both 

compaction temperatures 270 °F (132 ºC) and 310 °F (154 ºC).  

5.2.5 The Effect of WMA Additives on the Compaction Efforts and the Effect of 

Re-heating 

The number of gyrations to achieve the same air void level for the different 

mixtures was lower for both WMA mixes compared to the control mixture. The 

compaction study results also showed that there is no significant difference 

between the re-heated Advera WMA mixture and the one prepared in the 

laboratory. Also, E* results for the re-heating study agreed with those from the 

compaction effort study.  

5.3 Recommendations 

 The validity of collecting field WMA mixtures, re-heating and 

comapacting them in the laboratory was questionable for some WMA 

processes especially those of foaming-based approach; however, this 

research study showed no significant difference in performance for WMA 

reheated mixtures at least from the E* stand point and based on the 

dynamic modulus results for Advera added at lab (AAL) and Advera 

added at plant (AAP) mixtures.  
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 Since the re-heating study was conducted for only the foaming-based 

mixture, the issue of re-heating needs to be carefully evaluated. This could 

be done through extended field and laboratory evaluation for each WMA 

process to make sure that the effectivness of the additive is not demolished 

in the process. More investigation is needed to determine if the reheating 

of WMA mixtures would reduce the effect of WMA additives. This can be 

achieved by compacting the laboratory specimens directly at the mix plant 

or at the paving site. A portable gyratory compactor can be used at the 

asphalt plant in order to avoid reheating the WMA mixtures. 

 Collection of future performance data from the field test sections is needed 

to provide the actual field performance of the WMA mixtures and 

compare them to the control HMA mixture. 
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APPENDIX A 

MIX DESIGN 
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APPENDIX B 

HAMBURG WHEEL TRACKING TESTING RESULTS 
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1. Control Mixture 

a. Control Mix Compacted at 270 °F 
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b. Control Mix Compacted at 310 °F 
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2. Foaming-based (Advera) Mixture  

a. Foaming-based  Mix Compacted at 270 °F 
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b. Foaming-based Mix Compacted at 310 °F 
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3. Chemical-based (Evotherm) Mixture 

a. Chemical-based Mix Compacted at 270 °F 
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b. Chemical-based Mix Compacted at 310 °F 

 

 

 



 

  96 

 

 

 

 



 

  97 

 

 

 

 



 

  98 

 

 

 

 

 


