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ABSTRACT

A numerical study of incremental spin-up and spin-up from rest of a thermally-

stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls

and stress-free upper surface is presented. Thermally stratified spin-up is a typical exam-

ple of baroclinity, which is initiated by a sudden increase in rotation rate and the tilting of

isotherms gives rise to baroclinic source of vorticity. Research by (Smirnov et al. [2010a])

showed the differences in evolution of instabilities when Dirichlet and Neumann thermal

boundary conditions were applied at top and bottom walls. Study of parametric variations

carried out in this dissertation confirmed the instability patterns observed by them for given

aspect ratio and Rossby number values (ε > 0.5). Also results reveal that flow maintained

axisymmetry and stability for short aspect ratio containers independent of amount of rota-

tional increment imparted. Investigation on vorticity components provides framework for

baroclinic vorticity feedback mechanism which plays important role in delayed rise of in-

stabilities when Dirichlet thermal BCs are applied.
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Chapter 1

INTRODUCTION

One of the aspects of studying rotating fluids is to explore influence of earth’s rotation on

large scale geophysical flows. This is the list of some authors ([Linden & van Heijst, 1984;

Allen, 1973; Boyer et al., 2009; Garrett et al., 1993; Manley & Hunkins, 1985; McWilliams,

1985; Olson, 1991; Mouling & Flór, 2004; Ungarish & Mang, 2003; Hallworth et al., 2001;

Mahalov et al., 2000; Hunt et al., 2005]), who dealt with spin-up problem in regards to geo-

physical flows. Spin-up is the process through which initially rotating fluid adjusts itself,

when subjected to sudden increase in angular speed (Thomas & Rhines [2002]); whereas

stratification is formation of density profile (in this case linear) in the fluid due to variation

in temperature (or salinity). Examples of such geophysical flows are wind driven surface

flow; ocean currents in coastal regions; geophysical vortical flows e.g. ocean rings, Arctic

eddies; and the polar vortices in the atmosphere. My research focuses on time dependent

development of instabilities due to spin-up. Non-linear spin-ups are those in which Rossby

number (defined as ε = ∆Ω

Ω
i.e. ratio of change in angular velocity to final angular veloc-

ity) is (ε O(1)). This prevents one from neglecting rotational effects while solving Navier

Stokes equations (Greenspan [1968]).

Records of developments in spin-up of homogeneous and stratified fluids can be

found in (Benton & Clark [1974]) and (Duck & Foster [2001]). Various numerical and ex-

perimental studies on spin-up problems showed that two processes principally govern spin-

up phenomenon. First one is viscous dissipation of angular momentum from the sidewall,

where the imposed no-slip boundary condition at the sidewall and sidewall itself assist the

spin-up of fluid. The second process is advection of angular momentum caused by pumping

of fluid through Ekman layer on top and bottom surfaces. In case at hands shear free surface

at top prohibits formation of Ekman layer at top boundary. (Flór et al. [2002]) found that

curvature of isopycnals (constant density lines) leads to diffusive mass transport with radial

component and concomitant Sweet-Eddington azimuthal flow.
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Thus secondary flows caused by Ekman layer transport influence the spin-up pro-

cess. In homogeneous fluids the Ekman pumping occurs at time scale of E−1/2Ω−1 =

h/(νΩ)1/2, where Ekman number is E = ν/Ωh2. Here h is fluid depth and ν is kinematic

viscosity of fluid. In stratified fluids the spin-up time is influenced by buoyancy frequency

N. Stratification weakens Ekman suction. Upwelling is observed as heavy fluid near the

bottom is forced radially outwards and it rises at sidewall forming corner regions where

surfaces of constant density are deformed. Upwelling promotes the formation of sidewall

boundary layers. In case of non-linear spin-up this tends to reduce the spin-up time as side-

wall boundary layers assist in advection of angular momentum from sidewall to interior of

the fluid domain. Deformation of isopycnals may trigger baroclinic instabilities responsi-

ble for inertial oscillations and vertical vortex structures. These eddies expedite the spin-up

process by enhancing the transport of angular momentum (Greenspan [1980]). Such in-

stabilities broke axisymmetry in case of salt stratified spin-up experiments conducted by

(Kanda [2004]), (Flór et al. [2004]) and (Smirnov et al. [2005]). For incremental spin-up

(Kanda [2004]) found that viscous effects become important at sidewall indicated by delay

in the instability.

Numerical and experimental treatment of this problem had been limited mostly

to axisymmetric regime. Recently (Smirnov et al. [2010a]) studied the role of thermal

Boundary Conditions (BCs) of at horizontal walls. They conducted numerical simulations

to analyse effects of Dirichlet and Neumann thermal BCs on development of axisymmetry

breaking instabilities. In both cases instabilities were initiated by horizontal (barotropic)and

vertical (baroclinic) shears. In case of Dirichlet temperature BC at top and bottom bound-

aries of fluid, initial instabilities were suppressed for some rotations due to imposed strati-

fication by top and bottom thermal BCs. They found that baroclinic instabilities grew again

and broke the axisymmetry, leading to formation of eddies at late times. In case of Neu-

mann thermal BCs at top and bottom boundaries flow lost the axisymmetry immediately

along with growth of instabilities with no sign of suppression. Internal waves were also

generated as axisymmetry was lost along with formation of eddies.

Hence it is clear that due to weakened stratification in case of Neumann thermal

BCs offers less resistance to instabilities. Questions arised as Dirichlet BCs are applied
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(stratification was imposed) the instabilities were suppressed initially, so why did they rise

again after some rotations leading to loss of axisymmetry ? Are these instabilities specific

to space parameters ? How do these instabilities behave when subjected to spin-up from

rest ? Intending to find answers to these questions a series of numerical simulations was

carried out. Results of (Smirnov et al. [2010a]) are reproduced and extended for different

aspect ratios and rotation rates. Both Dirichlet and Neumann thermal Boundary conditions

(BC) were studied. Based on the fact that tilting of isotherms gives rise to baroclinic source

of vorticity which enhances the circulation in the vertical plane; this dissertation explores

dynamics of baroclinic vorticity in the wake of non-linear spin-up. Numerical simulations

conducted in this research provide framework for development of interactive mechanisms

causing delayed instability. Study of parametric variations allows one to identify any par-

ticular factor that affects this kind of spin-up. In next chapter information of governing

equations is provided in one subsection while the other subsection deals with numerical

methods, code validation etc. The third chapter handles the observations and results, fol-

lowed by fourth chapter on conclusions giving brief summary of inferences.
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Chapter 2

GOVERNING EQUATIONS AND NUMERICAL METHOD

2.1 Governing equations

Figure 2.1: Schematic of the Numerical simulations set-up. The cross section along r̂− ẑ
plane at θ̂ = 0 shows the isotherms at time t̂ = 0 depicting initial temperature profile used.
Below is the color scheme used to show 15 contour levels of non-dimensional temperature
Θ ∈ (0−1) with corresponding values used in all isotherm plots.

The numerical simulations are performed in cylindrical co-ordinate system with

r̂ = (r̂, θ̂ , ẑ) as radial, azimuthal and vertical directions with er, eθ , ez as unit vectors in

respective directions. The incompressible Newtonian fluid of density ρ is assumed to be

bounded by a right circular cylinder of height h and radius R so that aspect ratio can be

defined as Γ = R
h . Cylinder rotates about ẑ-axis in counter-clockwise direction as shown in

the figure 2.1. The gravity g acts along the axis of rotation so that −ez is unit vector in the

direction of gravity. Initially cylinder rotates with angular speed of Ωi. At time t̂ = 0 angular

speed of rotation is increased by ∆Ω to a new rotation rate Ω such that Ωi = Ω(1− ε). The
4



flow is described by velocity vector û which has three components ûr , ûθ and ûz in radial,

azimuthal and vertical directions respectively.

Following are the properties of the fluid used in simulations :

Property Expression Value Units
Temperature drop ∆T 20 ◦C

Mean Density ρ0 1.0 g/cm3

Gravitational Acceleration g 981 cm/s2

Kinematic Viscosity ν 0.01 cm2/s
Thermal Diffusivity κ 1.46×10−3 cm2/s

Coefficient of Thermal Expansion α 2.86×10−4 (◦C)−1

Buoyancy Frequency N 0.97 rad/s

Table 2.1: Properties of fluid used in simulations.

The full governing equations in vector form in rotational frame of reference are

given as follows :

∇̂ · û = 0 (2.1a)

Dû

Dt̂
+2Ω× û = − 1

ρ0
∇̂p̂− ρ

ρ0
gez +

ρ

ρ0
Ω

2r̂er +ν∇̂
2û (2.1b)

DT̂

Dt̂
= κ∇̂

2T̂ (2.1c)

Boussinesq approximation is used so that mean density ρ0 can be used to avoid it inter-

fering with non-linear terms. This is possible because maximum temperature difference

applied is 20◦C so that variation in density due to temperature can be neglected while cal-

culating rates of change of momentum due to acceleration (Gill [1982]). In equation 2.1,

D/Dt̂ denotes substantial derivative given by ∂/∂ t̂ + û · ∇̂; where ∇̂ is vector differential

operator. p̂ and T̂ are total pressure and total temperature functions respectively. The back-

ground temperature Tb of thermal stratification and buoyancy frequency N are defined as

follows :

Tb(z) = T0 +
∆T̂
h ẑ, and N2 = αg ∆T̂

h

∴ Tb(z) = T0 +
N2

αg z
5



N2 ≥ 0 implies that initially fluid is stably stratified. T0 and T0 +∆T̂ are the initial tem-

peratures at top and bottom of the fluid domain respectively. In further analysis reduced

pressure P̂ given by P̂ = p̂+ρ0gẑ−ρ0(Ωr̂)2/2 are used respectively. At the side wall, no-

slip boundary conditions are used for velocity and insulated boundary condition is used for

temperature. These can be represented mathematically as :

ûr = ûz = 0, ûθ =−∆Ωr̂, T̂ = T0 +
∆T̂
h

ẑ at t̂ = 0, (2.2a)

ûr = ûz = ûθ = 0 at ẑ = 0, (2.2b)

∂ ûr

∂ ẑ
=

∂ ûθ

∂ ẑ
= ûz = 0 at ẑ = h, (2.2c)

ûr = ûθ = ûz = 0,
∂ T̂
∂ r̂

= 0 at r̂ = R. (2.2d)

Following table shows characteristic parameters defined to non-dimensionalize the govern-

ing equations. Additionally variable Θ is used to denote non-dimensional temperature given

by Θ = (T̂ − T̂0)/∆T , with total initial temperature difference ∆T̂ between top and bottom

boundaries of cylinder as temperature scale. Substituting these values, dividing both sides

Parameter Expression
Length h
Time Ω−1

Velocity Ωh
Pressure Ω2h2ρ0

Temperature ∆T

Table 2.2: Characteristic Parameters Used for Non-dimensionalization

by Ω2h and for simplicity, dropping the hat mark on variables to indicate non-dimensional

form, these equations are written as follows.

∇ ·u = 0 (2.3a)

∂u

∂ t
+(u ·∇u) = −∇P+

(
B2ez−FB2rer

)
Θ +2(u× ez)+E∇

2u (2.3b)

∂Θ

∂ t
+(u ·∇Θ) =

E
σ

∇
2
Θ (2.3c)
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The boundary and initial conditions are written as :

At t = 0,ur = uz = 0,uθ =−εr,Θ = z (2.4a)

At z = 0,ur = uθ = uz = 0 (2.4b)

At z = 1,
∂ur

∂ z
=

∂uθ

∂ r
= uz = 0 (2.4c)

At r = Γ ,ur = uθ = uz = 0,
∂Θ

∂ r
= 0 (2.4d)

Following table shows the parameters that are used in above equations.

To sum-up parameter space is governed by parameters in table 2.3. Here Prandtl num-

Parameter Expression
Rossby Number ε = ∆Ω/Ω

Ekman Number E = ν/Ωh2

Aspect Ratio Γ = R/h
Burger number B = N/Ω

Rotational Froude Number F = Ω2h/g
Prandtl Number σ = ν/κ

Table 2.3: Dimensionless Parameters Used

ber stands for relative importance of momentum diffusion and thermal diffusion; Froude

number relates Centrifugal and gravitational accelerations whereas stratification parame-

ters stores information about Buoyancy force and Coriolis force. Finally Ekman number

grossly measures ratio of viscous acceleration and Coriolis force (Benton & Clark [1974]).

Table 2.4 gives detailed idea of parameter space explored:

As mentioned above the Temperature boundary conditions for 2 series are :

For Neumann BC

At z = 0,1
∂Θ

∂ z
= 0, (2.5)

For Dirichlet BC

At z = 0, Θ = 0, At z = 1, Θ = 1, (2.6)
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Dimensional parameters Expression Values

Height h [cm] 6
Radius R [cm] 6–20
Final rotation rate Ω [rad/s] 0.384
Rotation rate increment ∆Ω [rad/s] 0.279 – 0.384
Ekman layer depth δ = (ν/Ω)1/2 [cm] 0.16
Rossby deformation radius Ro = Nh/Ω [cm] 15.625
Spin-up time τE = h/(νΩ)1/2 [s] 97
Viscous time τν = R2/ν [s] 3,600−−40,000
Characteristic velocity U = ∆ΩR 1.67−−7.68

Nondimensional parameters

Aspect ratio Γ = h/R 1–3.3
Burger number B = N/Ω 2.52
Ekman number E = ν/Ωh2 7.20×10−4

Ekman layer depth δE = δ/h 2.69×10−2

Froude number F = Ω 2h/g 9.0×10−4

Prandtl number σ = ν/κ 6.85
Reynolds number Reδ =Uδ/ν 27.78−−122.8
Reynolds number rotational ReΩ =UR/ν 1,004−−15,360
Rossby number ε = ∆Ω/Ω 0.5−−1
Spin-up time tE = ΩτE/2π 5.9 rotations
Viscous time tν = ΩR2/(2πν) 2,500 rotations

Table 2.4: Range of parameters used in the simulations.

In order to sort and monitor the contributions of different terms from momentum equation,

method described in (Verzicco et al. [1997]) and adopted by (Smirnov et al. [2010a]) is

followed. Accordingly variables in equation (2.3) are decomposed into axisymmetric and

non-axisymmetric parts as shown below in equation 2.7. q̄(r,z) is the axisymmetric part rep-

resenting mean flow (hence independent of θ ), where as q′(r,θ ,z) is the non-axisymmetric

part representing the flow perturbations.

q(r,θ ,z) = q̄(r,z)+q′(r,θ ,z), (2.7)

with,

q̄(r,z) =
1

2π

∫ 2π

0
q(r,θ ,z)dθ . (2.8)

Next kinetic energy equation is obtained in terms of these azimuthal disturbances by taking

velocity u as quantity q, putting it into equation (2.3)b, taking dot product with u′ and

8



integrating over entire volume of domain V .

de
dt

=
d
dt

∫
V

1
2
|u′|2dV = −

∫
V
u′ · (u′ ·∇ū)dV +B2

∫
V

Θu′zdV

−FB2
∫

V
Θru′rdV −E

∫
V
|∇u′|2dV, (2.9)

=
4

∑
i=1

hi.

The LHS of integral equation (2.9) is the kinetic energy growth rate of the azimuthal per-

turbation. Whereas its RHS comprises of 4 Hi terms which represent (1) h1: barotropic

contribution due to shear of the mean axisymmetric flow; (2) h2: conversion of gravita-

tional potential energy (baroclinic term); (3)h3: conversion of centrifugal potential energy;

(4) h4: viscous dissipation. This way azimuthal perturbations are characterized through

total kinetic energy of the perturbations of flow evolution. Time evolution of kinetic energy

in the mth Fourier mode of solution is plotted, with help of Fourier analysis of velocity field.

This enables one to identify the most unstable wave number m as mode with highest growth

rate.

em =
1
2

∫ r=Γ

r=0

∫ z=2

z=0
um ·u∗m.r dr dz (2.10)

In addition to this following equation governs the evolution of vorticity.

(∂t +u ·∇)ω = ω ·∇u+B2
∇Θ ×ez +E ∇

2ω, (2.11)

Here first term on the RHS indicates vorticity generation by stretching and tilting, the sec-

ond term accounts for baroclinic vorticity and the third term represents vorticity diffusion.

The focus is on the production of baroclinic vorticity at the walls which can be expressed

in its components as as

∇Θ ×ez =

(
1
r

∂

∂θ
er−

∂

∂ r
eθ

)
Θ (2.12)

2.2 Numerical method and code verification

numerical method used by (Smirnov et al. [2010a]) was applied so that results can be ana-

lyzed without computational differences. In other words, staggered grid is used to discretize

the governing equations (2.3) having velocities at the faces and all scalar quantities at center

of the grid cell. Viscous and advective terms in the equations system are discretized with
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second-order central difference approximation. Fractional step method is implemented to

solve the system. Pressure-Poisson equation which accounts for incompressibility is solved

using, trigonometric expansions in the azimuthal direction and tensor product method in

other two directions. Time step is obtained by third-order Runge-Kutta method with ex-

plicit treatment of non-linear terms and implicit treatment for viscous terms. Involvement

of explicit treatment imposes stability limit of CFL <
√

3. Where CFL that is Courhant,

Friedrichs, Lewy number and is locally expressed as,

CFL = (|ur|/δ r+ |uθ |/(rδθ)+ |uz|/δ z)δ t (2.13)

where, velocities are calculated as average at center of each cell. The smallest local δ t

is found from CFL ≤ 1.5 and is used as time advancement. This code has been used by

([Verzicco & Orlandi, 1996; Verzicco & Camussi, 1997; Verzicco et al., 1997; Smirnov

et al., 2010a,b; Pacheco et al., 2011]) on many problems which involved convection in

rotating cylinder. These simulations allow one to set the grid resolution of nr× nθ × nz =

351(251)(151)× 96× 151 at aspect ratios of Γ = 3.3,2.0,1.0 respectively. For reference

code verification done in (Smirnov et al. [2010a]) is presented here, where they compared

results of simulation with experimental results of ref. (Hyun et al. [1982]) for spin-up with

thermal stratification. As seen in the figure 2.2, numerical solution of azimuthal velocity

is found to be in good agreement with the experimental results. Furthermore to check grid

sensitivity (Smirnov et al. [2010a]) did one simulation with nr×nθ ×nz = 351×96×151

and verified the grid independence by running the same case on finer grid of nr×nθ ×nz =

601×192×251.

Above figure 2.3 shows the time evolution of three velocity components at (θ ,r,z)=

(0,0.5,0.1) for two sets of grids. Up to (τ < 20) the flow remains axisymmetric with both

curves for each component overlapping each other. As perturbations increase the curves

start showing slight departure from each other. At later times the two curves show larger

differences. The reason behind these differences in values lies in the fact that perturba-

tions are triggered by truncational errors, which in-turn depend upon the implemented grid.

Hence as perturbations grow the three dimensional evolution of flow can show slight dif-

10



Figure 2.2: Comparison of stratified spin-up experiments with numerical simulations for
the azimuthal velocity ûθ . Thermal stratification: Parameters: 2H = 6cm, R = 9.5cm,
N = 0.97s−1, Ω = 0.384s−1, SΓ−1(= NH/2ΩiR) = 0.49, E(= ν/2ΩiH2) = 7.24×10−4,
ε(= ∆Ω/Ωi) = 0.222 and Ωi = 0.314s−1. The vertical and radial locations are at the mid-
depth ẑ = H and r̂/R = 0.64. The circles (◦) correspond to the laser-Doppler measurements
of (Hyun et al. [1982]) and the solid lines (—–) to our numerical simulations.

ferences depending on grid. Nevertheless it can be noted that overall trend remains almost

same for both grids. The objective of this research is to investigate causes of delayed

instabilities in Dirichlet cases. It is confirmed that grid refinement did not cause much

variation in time of evolution of instabilities. Hence with respect to objective, these dif-

ferences are sufficiently low to assume the grid independence. Hence the coarser grids of

nr×nθ ×nz = 351(251)(151)×97×151 for respective aspect ratios of 3.3,2.0 and 1.0. are

implemented for all simulations performed.
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Figure 2.3: Comparison of time evolution of three velocity components at position
(θ ,r,z) = (0,0.5,0.1) with (96×351×151)—– ; and (192×601×251) – – grids
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Chapter 3

RESULTS

In this section observations for both Neumann and Dirichlet series are put forth. It deals

with response of spin-up system to variation of Aspect ratio and Rossby number. The

numerical simulations were carried out for three different aspect ratios Γ = 1.0,2.0,3.3. For

each value of aspect ratio three cases of Rossby number ε = 0.5,0.73and1.0 are studied.

Results are presented in following sequence:

• Stability regime for both Neumann and Dirichlet cases.

• Unstable cases

• Analysis of baroclinic vorticity dynamics for unstable cases.

3.1 Stability regime for both Neumann and Dirichlet cases

  

Figure 3.1: Stability regimes for Neumann BC cases. Left column: Neumann cases and
Right column Dirichlet cases. −−�−− indicates the cases which maintained axisym-
metry and stability. −−♦−− stands for the cases which lost axisymmetry initially but
maintained the stability and retained axisymmetry at the end. −−◦−− are the the cases
where axisymmetry was completely lost and instability prevailed.
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Stability of flow is recognized from plots of Fourier energy modes in equation 2.10.

In these plots as energy curve of mth mode approaches that of (m = 0) i.e. mean current

mode, flow starts showing signs of loss of axisymmetry. Flow is defined to be unstable if

any of (m 6= 0) mode overtakes (m = 0) i.e. mean current mode.

Figure 3.2 shows the sample m-energy mode plots at labeled values of ε and Γ . It is found

(a) ε = 1.0, Γ = 1.0

(b) ε = 1.0, Γ = 2.0

Figure 3.2: Time evolution of different energy modes em at labeled aspect ratios. Γ . The
figures in the left column correspond to the spin-up with Neumann thermal BCs, and those
in the right column to the Dirichlet thermal BCs. m = 0 (—— black); m = 1 (–◦– red);
m = 2 (– – green); m = 3 (–�– blue); m = 4 (–·– orange); m = 5 (–.– brown); m = 6 (–· ·–
magenta).

that flow remains stable for ε = 0.5,0.73,1.0 and aspect ratio of Γ = 1.0,2.0. It can be seen

that for Neumann BC cases at Γ = 2.0 and ε = 0.5,0.73,1.0 the non-axisymmetric modes

gain some energy, but they remain below the energy curve of mean current flow through

out the simulation. Although initially for Γ = 2.0 at all Rossby numbers there was a slight

loss of axisymmetry in bottom half of the tank. Figure 3.3 illustrates this. It shows vector

plots of baroclinic vorticity with temperature Θ in the background. It shows clearly that

axisymmetry is regained after (t/2π) = 50

14



(a) z = 0.008

(b) z = 0.5

(c) z = 0.9

(d) Color Map

Figure 3.3: Plots of Temperature (Color Contours) and Baroclinic vorticity (Vectors) at
different z-levels and times. The case is Neumann BC at Γ = 2 and ε = 1.0

Figure 3.4 above shows time dependent plots of temperature Θ at labeled radii. Os-

cillations observed at early time at r = 1.0 get damped at about t/2π = 50, though oscilla-

tions near bottom persist longer. Short containers (Γ = 1.0,2.0) cannot produce large radial

velocity. Hence the corner regions developed in these containers are shorter in z-direction

as compared with long container (Γ = 3.3). This results in lower sloping of isotherms,

15



r = 0.05 r = 1.0 r = 1.92

Figure 3.4: Plots of Temperature at different radii as a function of time. Same color plot
used as above figure.

which fails to produce baroclinic disturbances that would cause loss of axisymmetry.
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3.2 Unstable cases

Next are cases of third aspect ratio Γ = 3.3 shown in figure 3.5 and 3.6, where instabilities

occurred.

(a) ε = 0.5, Γ = 3.3

(b) ε = 0.73, Γ = 3.3

(c) ε = 1.0, Γ = 3.3

Figure 3.5: Time evolution of different energy modes em at Γ = 3.3. The figures in the
left column correspond to the spin-up with Neumann boundary conditions, and those in the
right column to the Dirichlet boundary conditions. m = 0 (—— black); m = 1 (–◦– red);
m = 2 (– – green); m = 3 (–�– blue); m = 4 (–·– orange); m = 5 (–.– brown); m = 6 (–· ·–
magenta).

The m-energy plots clearly show that m = 1,2,3 modes overtake the mean flow

energy curve in all cases except for Dirichlet case with ε = 0.5. For higher ε values the m 6=

0 modes overtake the mean current energy curve quickly. For Neumann cases flow becomes
17



(a) ε = 0.5, Γ = 3.3

(b) ε = 0.73, Γ = 3.3

(c) ε = 1.0, Γ = 3.3

Figure 3.6: Time evolution of hi-terms and the rate of change of kinetic energy of azimuthal
perturbations. The figures in the left column correspond to the spin-up with Neumann
boundary conditions, and those in the right column to the Dirichlet boundary conditions.
Barotropic term h1 (– – red); baroclinic term h2 (– · – blue); centrifugal term h3 (· · · brown);
viscous dissipation term h4 (– · · – green); rate of change of kinetic energy de/dt =∑i hi (—-
gray).

unstable at (t/2π) = 75,40,30 respectively for ε = 0.5,0.73,1.0. In case of Dirichlet cases

unstable regime is reached at (t/2π) = 105,48 for ε = 0.73,1.0 Particularly at ε = 0.5

the flow loses axisymmetry at about (t/2π) = 85 but the central vortex core tries to regain

the axisymmetry at the end. This is because the mean current tries to dominate in the

later stages. Figure 3.6 shows the contributions from (hi) energy terms from equation 2.9.

In all cases the barotropic term h2 being initially positive serves the source of energy to

perturbations. Both horizontal and vertical shears contribute to instability. The baroclinic

and barotropic terms oscillate and act as source and sink correspondingly.

For Neumann cases the perturbations continue their growth and thus axisymmetry
18



(a) ε = 0.5, Γ = 3.3 ,
(t/2π) = 10 (t/2π) = 10

(t/2π) = 70 (t/2π) = 85

(a) ε = 0.73, Γ = 3.3
(t/2π) = 10 (t/2π) = 10

(t/2π) = 25 (t/2π) = 105

(a) ε = 1.0, Γ = 3.3
(t/2π) = 10 (t/2π) = 10

(t/2π) = 25 (t/2π) = 40

Figure 3.7: Plots of Isotherms at different times in r− z plane at 0− π cross-section for
unstable cases. 15 linearly spaced contour levels are used. Color plot in figure 3.10 show
values of isotherms contours. Left column: Neumann BC cases and Right column : Dirich-
let BC cases.

is lost quickly. Whereas in Dirichlet cases the perturbations lose energy after reaching ini-

tial local maximum and then again grow at late times. It can be observed that when this

second growth exceeds the values of initial maximum the flow becomes unstable. Hence

Dirichlet case with ε = 0.5 and Γ = 3.3 remained stable though it showed signs of loss of

axisymmetry.

Figure 3.7 shows isotherms plots for Neumann and Dirichlet cases. These isotherm plots
19



illustrate the growth of corner regions thereby tilting of isotherms and oscillations due to

internal waves generation.

These plots are isolines of temperature Θ in r− z plane at different times. Again the same

color plot is used as above for the contour levels. Plots at (t/2π) = 10 show the isotherms

when corner regions mature. The plots at later times show the internal waves / oscillations

generated. These waves can also be detected in figure 3.6 represented by oscillations of hi

terms. From both of these plots 3.6 and 3.7 it can be seen that perturbations grew earlier

in Neumann cases than Dirichlet cases. Smirnov et al. [2010a] observed this delayed rise

of instability in Dirichlet BC configurations of their simulations. Simulations conducted

herein confirmed that perturbation energy structure remains same for Dirichlet cases. All

unstable cases showed initial local maximum followed by late baroclinic growth of pertur-

bation energy. This structure can be observed for all ε values. In upcoming section attention

is given to find out mechanism behind this delayed instability.

3.3 Analysis of baroclinic vorticity dynamics for unstable Dirichlet cases.

Figure 3.8: Color plot used for the contour levels of baroclinic vorticity components.

Figure 3.9: Color plot used for the contour levels of Ωz vorticity (z-axis vorticity) compo-
nent.

Figure 3.10: Color plot used for the contour levels of temperature Θ .
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It is known that spin-up process causes formation of Ekman layer at horizontal

walls. In the case at hands there is Ekman layer formation at bottom. Ekman layer throws

fluid at sidewall due to centrifugal force and in process draws fluid in through central core.

This causes downwelling in central region and upwelling near the sidewalls. This causes

tilting of isotherms in case of thermally stratified fluid. From equation 2.11, this tilting

of isotherms causes the fourth term on RHS to become nonzero, giving rise to baroclinic

source of vorticity. The dimensional form of this baroclinic vorticity in equation 2.12 indi-

cates that it has two components viz. radial one and azimuthal one. The radial component

has magnitude due to azimuthal temperature gradients and the azimuthal one has magnitude

due to radial temperature gradients. Any azimuthal variation in temperature will lead to in-

crease in shear and vorticity in vertical plane. The fact that vortex enhances the azimuthal

Neumann, ε = 0.5, Γ = 3.3

Figure 3.11: Plots of Baroclinic vorticity for Neumann case and labeled aspect ratio. Left
hand column indicates Radial component of baroclinic vorticity and right hand column
indicates azimuthal component of baroclinic vorticity.

temperature gradients which in turn reinforce the vortex, allows one to monitor baroclinic

vorticity as a feedback that strengthens vortices. Strong stratification favors the stability of

anticyclonic vortex allowing them to last long Peltier & Potylitsin [1998]. Thus with help

of plots of two components in r− z plane the baroclinic vorticity can be monitored as a

feedback of azimuthal variation in temperature. These plots are followed by snaps of z-axis

vorticity which give the idea of vertical vortex structures (cyclones and anticyclones).
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Neumann, ε = 0.5, Γ = 3.3
z = 0.01

z = 0.5

z = 0.9

Figure 3.12: Contour plots of z-vorticity at different times and z-levels

22



Neumann ε = 0.73, Γ = 3.3

Figure 3.13: Plots of Baroclinic vorticity for Neumann case and labeled parameters. Left
hand column indicates Radial component of baroclinic vorticity and right hand column
indicates azimuthal component of baroclinic vorticity.
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Neumann ε = 0.73, Γ = 3.3
z = 0.01

z = 0.5

z = 0.9

Figure 3.14: Contour plots of z-vorticity at different z-levels and times
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Neumann ε = 1.0, Γ = 3.3

Figure 3.15: Plots of Baroclinic vorticity for Neumann case and labeled aspect ratio. Left
hand column indicates Radial component of baroclinic vorticity and right hand column
indicates azimuthal component of baroclinic vorticity.

Figures 3.11 to 3.16 are the plots for Neumann cases as labeled. At early times

(t/(2π) < 5) there is only θ component of baroclinic vorticity indicating that radial tem-

perature gradients dominate. Red spots in corner regions indicate huge radial variation in

temperature caused by tilting of isotherms. The size of red spots is larger at higher ε values.

After (t/(2π) > 10) as corner regions stop growing the r-radial component of baroclinic

vorticity starts showing higher values. When time reaches around (t/(2π) 15), the reduced

values of θ component indicate the collapse of corner regions. These plots are obtained

approximately at times when local maximum of baroclinic term in hi energy terms plots oc-

curs. Azimuthal baroclinic component plots depict the loss of axisymmetry, whereas radial

component plots show development of azimuthal temperature gradients. All z-vorticity ωz

plots indicate the loss of axisymmetry and formation of cyclones (solid colored lines)and

anticyclones (negative vorticity contours i.e. dotted lines with no coloring). Axisymmetry

is lost earlier after collapse of corner regions. For all εs the central vortex core disintegrates

into cyclones and anticyclones. Plots at later times show that anticyclones last longer than

cyclones which are disintegrated continuously. The baroclinic vorticity plots confirm this

behavior.

25



Neumann ε = 1.0, Γ = 3.3
z = 0.01

z = 0.5

z = 0.9

Figure 3.16: Contour plots of z-vorticity at different z-levels and times
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Dirichlet, ε = 0.5, Γ = 3.3

Figure 3.17: Plots of Baroclinic vorticity for Dirichlet case and labeled aspect ratio. Left
hand column indicates Radial component of baroclinic vorticity and right hand column
indicates azimuthal component of baroclinic vorticity.
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Dirichlet, ε = 0.5, Γ = 3.3
z = 0.01

z = 0.5

z = 0.9

Figure 3.18: Contour plots of z-vorticity at different z-levels and times
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Dirichlet, ε = 0.73, Γ = 3.3

Figure 3.19: Plots of Baroclinic vorticity for Dirichlet case and labeled aspect ratio. Left
hand column indicates Radial component of baroclinic vorticity and right hand column
indicates azimuthal component of baroclinic vorticity.
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Dirichlet, ε = 0.73, Γ = 3.3
z = 0.01

z = 0.5

z = 0.9

Figure 3.20: Contour plots of z-vorticity at different z-levels and times

On similar lines figures 3.17 to 3.22 are the plots of baroclinic vorticity components

and z-vorticity snap-shots for Dirichlet cases which lost axisymmetry (Γ = 3.3). At (ε =

0.5) the azimuthal component of baroclinic vorticity remains uniform and axisymmetric

which means corner regions are homogenized or isotherms are less tilted failing to create

high radial temperature gradients. Even at around (t/(2π) = 30) after the corner regions

collapse the radial component of vorticity shows small values. At late times (t/(2π) ≈
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Dirichlet, ε = 1.0, Γ = 3.3

Figure 3.21: Plots of Baroclinic vorticity for Dirichlet case and labeled aspect ratio. Left
hand column indicates Radial component of baroclinic vorticity and right hand column
indicates azimuthal component of baroclinic vorticity.

75) this radial component shows some increased values and azimuthal component shows

slight loss of axisymmetry. This is evident from late time plots of z-vorticity also. Next

for ε = 0.73 the azimuthal baroclinic vorticity shows increased values (red spot) in the

corner regions indicating considerable tilting of isotherms has occurred. Then after collapse

of corner regions azimuthal component decreases maintaining the axisymmetry, whereas

radial component shows increased values. After (t/(2π) = 50) the radial component shows

increased values and azimuthal component shows loss of axisymmetry. z-vorticity plots

show that axisymmetry is lost as central vortex core starts rotating eccentrically. At later

times (t/(2π)> 90) the vortex core splits into smaller vortices. Next is the case for ε = 1.0

where same behavior is observed but this time radial component shows high values at from

early time. Flow tries to regain the axisymmetry as shown by plot of azimuthal component

at (t/(2π)≈ 18), but quickly loses it shown by plots at (t/(2π) = 40). About same time the

vortex core disintegrates into smaller vortices as observed in z-vorticity plots.
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Dirichlet, ε = 1.0, Γ = 3.3
z = 0.01

z = 0.5

z = 0.9

Figure 3.22: Contour plots of z-vorticity at different z-levels and times

Next from 3.23 to 3.25 are the plots of isotherms in r−θ plane at different z-levels

at different times. In these plots dotted circle in black color line is shown for reference of

axisymmetry. These plots support the observations of temperature gradients done through

baroclinic vorticity plots. Initially radial temperature gradients exist due to Ekman pump-

ing, shown by concentric rings of isotherms. But as the time progresses azimuthal tempera-

ture gradients develop along with loss of axisymmetry. In these plots also the axisymmetry
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ε = 0.5, Γ = 3.3
z = 0.01

z = 0.5

z = 0.9

Figure 3.23: Contour plots isotherms at different z-levels and times

is lost via offset in the radius of concentric rings of isotherms. They start becoming ellipti-

cal at lower radii, and as the wobbling increases the vortex core starts getting stretched and

disintegrates into smaller vortices. In addition figure 3.26 shows the time evolution of total

kinetic energy of perturbations e(t/(2π)) from equation 2.9. These plots are generated by

shutting off the baroclinic term at several different times for Dirichlet cases at Γ = 3.3 and

ε = 0.73,1.0. The energy curve decreases exponentially in both cases when baroclinic term
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ε = 0.73, Γ = 3.3
z = 0.01

z = 0.5

z = 0.9

Figure 3.24: Contour plots of isotherms at different z-levels and times

is turned off. Otherwise it reaches maximum when perturbations gain energy from mean

current and starts decaying as energetic phase of the flow comes to an end. This shows that

for the Dirichlet cases the baroclinic term acts as a source of energy for perturbations and

without it flow simply decays to quiescent phase without any instabilities.

The Dirichlet case with Γ = 3.3 and ε = 0.73 is ideal to analyze as it shows exactly how

the delayed instability occurs. The perturbations induced due to truncational and computa-

tional errors, gain energy from initial shear imparted due to sudden change in rotation. The

imposed temperature boundary conditions resist their growth and flow tries to stabilize with
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ε = 1.0, Γ = 3.3
z = 0.01

z = 0.5

z = 0.9

Figure 3.25: Contour plots of isotherms at different z-levels and times

efforts to gain axisymmetry. But vortices formed due to initial rise of perturbations and sep-

aration of corner region from central vortex core, enhance the azimuthal temperature gradi-

ents. Small amount of increase in azimuthal temperature gradients causes increase in radial

component of baroclinic vorticity. This increases shears in vertical plane and make the cen-

tral core vortex stronger. This feedback cycle continues and at one point baroclinic vorticity

values become so high that vortex core starts deforming into an ellipse. This draws flow

into unstable regime with perturbations reaching local maximum again this time gaining

higher values than initial maximum. Thus the discussion of baroclinic vorticity feedback
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(a)Dirichlet ε = 0.73, Γ = 3.3 (b)Dirichlet ε = 1.0, Γ = 3.3

0 20 40 60 80 100 120 140 160
t/2π

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

e
(t
)

0 20 40 60 80 100 120 140 160
t/2π

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

e
(t
)

Figure 3.26: Plots of perturbation kinetic energy e(t/2π) for Dirichlet cases at ε =
0.73,1.0, Γ = 3.3. when baroclinic term is turned off (a) at (t/2π)= 40 (– –) ; e(t/2π)= 80
(– · –); e(t/2π)→ ∞(−−−−) and (b)(t/2π) = 30 (– –) ; e(t/2π) = 40 (– · –);e(t/2π)→
∞(−−−−)

mechanism can be ended at this point which serves the objective of this research.

36



Chapter 4

CONCLUSIONS

The results of three dimensional transient numerical simulations of non-linear thermally

stratified spin-up in a cylindrical geometry are presented in this dissertation. 18 simu-

lations were performed with 9 Neumann thermal BCs cases and 9 Dirichlet thermal BC

cases. Three aspect ratios were used (Γ = 1.0,2.0,3.3) with three Rossby numbers (ε =

0.5,0.73,1.0) at each one.

• Results for short cylinders Γ = 1.0,2.0 and ε = 0.5,0.73,1.0 show that tilting of

isotherms is not in amounts which will lead to instability and loss of axisymme-

try.

• For unstable cases the nature of interaction between different energy terms of

perturbations was verified and found to be consistent with results of (Smirnov

et al. [2010a].

• For Dirichlet cases as ε value increased the time span between initial growth of

perturbations and later instabilities considerably reduced.

The model case of Dirichlet BCs at Γ = 3.3 and ε = 0.73 is used to frame the theory of

baroclinic feedback mechanism. This mechanism can be summarized as follows.

• Central vortex core initiates the development of azimuthal temperature gradi-

ents due to presence of perturbations.

• Azimuthal gradients in the temperatures, make the baroclinic term in the vor-

ticity equation nonzero.

• The baroclinic term act as a source of vorticity that strengthens anticyclonic

vortices by developing shears in vertical plane.
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• Vortices help in mixing of fluid, thereby moving warm fluid from the inner re-

gion outward, and cold fluid from outer wall (transported due to Ekman trans-

port) inward.

• This local advective heat transport further enhances azimuthal temperature

gradients completing the feedback cycle.

As a future scope, one can study the behavior of cyclones by conducting spin-down exper-

iments with the same parameters. This will throw some more light on application of this

theory. So far these simulations are done with similar types of thermal boundary condi-

tions, hence there is a possibility of implementing combination of two types of boundary

conditions. (Dirichlet at top wall and Neumann at bottom wall; vice versa.) One of the

assumptions which is shear free surface at top, might have some role in simulations, hence

experiments should be conducted can be done in order to verify the theory. This will aid to

quantify the analysis by monitoring certain variables to define or derive clear criterion for

instability. In order to identify the role of sidewall boundary layers in these cases, one can

conduct simulations with slip-sidewall with same parameters.
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