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ABSTRACT  

Over the last decade copper electrodeposition has become the dominant 

process by which microelectronic interconnects are made.  Replacing ultra-high 

vacuum evaporative film growth, the technology known as the Cu damascene 

process has been widely implemented in the microelectronics industry since the 

early 2000s.  The transition from vacuum film growth to electrodeposition was 

enabled by solution chemistries that provide “bottom-up” or superfilling 

capability of vias and trenches.  While the process has been and is used widely, 

the actual mechanisms responsible for superfilling remain relatively unknown.  

This dissertation presents and discusses the background and results of 

experimental investigations that have been done using in situ electrochemical 

surface stress monitoring techniques to study the evolution of stress on Cu{111} 

thin film electrodes.  Because of its extreme sensitivity to the structure on both the 

electrode and solution sides of the interface, surface stress monitoring as 

analytical technique is well suited for the study of electrodeposition.  These ultra-

high resolution stress measurements reveal the dynamic response of copper 

electrodes to a number of electrochemical and chemical experimental variables.  

In the case of constant current pulsed deposition and stripping, the surface stress 

evolution depends not only on the magnitude of the current pulse, but also shows 

a marked response to plating bath composition.  The plating bath chemistries used 

in this work include (1) additive free, (2) deposition suppressing solutions that 

include polyethylene glycol (PEG) and sodium chloride (NaCl) as well as (3) full 

additive solution combinations which contain PEG, NaCl, and a one of two 



  ii 

deposition accelerating species (bis-(sodiumsulfopropyl)disulfide (SPS) or 

mercaptopropane sulfonic acid (MPS)).  The development of thin film stress is 

further investigated through a series of solution exchange experiments that 

correlate the magnitude of electrode exchange current density and the stress state 

of the film.  Remarkably, stress changes as large as ~8.5 N/m are observed during 

solution exchanges at the open circuit potential.  Overall, this research 

demonstrates that solution chemistry can have a large impact on thin film stress 

evolution, even for very small deposition thicknesses (e.g. <10 ML) or in the 

absence of net addition or removal of material from the electrode. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The demand for continually faster devices has been a major driving force 

for innovation and improvement in the electronics industry.  In order to meet this 

demand, the current state of the art technology employs microprocessor chips that 

contain more than a hundred million transistors per square centimeter.  This ever-

increasing transistor density requires a concomitant miniaturization that has 

necessitated technological advances in all areas of integrated circuit (IC) 

production.  The metallic interconnects currently found in logic and memory 

microelectronic chips make up a complex multilevel structure of wiring that 

ranges from micron to nanometer-sized dimensions.  The most basic function of 

this fine wiring structure is to facilitate transport of electronic signals between 

various components of the circuitry.  From the inception of IC manufacturing, 

aluminum and silicon dioxide had been employed respectively as conductor and 

insulator material for on-chip device electrical interconnects.  However, as the 

characteristic on-chip feature dimensions move below 200 nm, the signal 

transport speed is determined by the interconnect resistance-capacitance (RC) 

delay instead of the transistor switching speed1-3.  Accordingly, the beneficial 

aspects of using copper as the conductor material were recognized within the 

industry long before it was put into commercial production and it was clear that 

the incorporation of copper was an essential step in maintaining a technological 

trajectory consistent with Moore’s law4.  The transition to copper metallurgy from 
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the previous aluminum metallurgy for on-chip interconnections (including lines, 

vias, and trenches) is one of the most important developments in the history of IC 

technology.  The actual transition began around the late 1990s when researchers 

at IBM announced the accomplishment of the first working microprocessor which 

was soon followed by high-volume production of copper interconnect-containing 

chips5-7.  Prior to this eventual development of the copper damascene 

electroplating process, several forms of physical vapor deposition (PVD), 

chemical vapor deposition (CVD), and electroless plating were explored8.  

Because “[p]lating is considered by many to be more of an art than a science; 

people experience a shock when they see precious wafers being immersed in the 

blue liquids many times during the manufacturing process6.”  Yet, it was the 

unique superfilling capability of electrolytic plating that finally was chosen for 

large scale commercial wafer processing.  

In the years between the late 1980s and early 2000s, copper 

electrodeposition technology advanced through numerous application milestones 

ranging from the initial proof of concept to industrial high-volume manufacturing9.  

However, despite the widespread application of the Cu superfilling and the 

damascene process, the actual mechanisms responsible for the bottom-up trench 

filling as well as the overfill bump formation phenomena were not well 

understood.  More specifically researchers could “not predict, even qualitatively, 

the occurrence of such events for their superfilling electrolyte or any others that 

might be derived thereof.”9  
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In late 1999 and early 2000 researchers began to take a more serious 

interest in better understanding of the superfilling process.  From that point in 

time, a large series of publications began to be published in what exists today as 

an extensive body of literature dedicated to linking damascene solution 

chemistries to superfilling, leveling, and other electroplating behaviors beneficial 

to Cu IC interconnect application5-7, 10-25.  

1.2 Layout of Chapters & Appendices 

This dissertation represents the results of several projects and many types 

of experiments that were primarily focused on Cu thin film electrochemistry and 

its simultaneous surface stress evolution.  The one exception to this appears in 

Appendix F which contains the as-published form of my first journal publication 

from the Journal of Physical Chemistry C.  It contains results for electrochemical 

surface stress measurements that were collected using Pt and Au thin films.  It 

was during this first project that the concept of the electrochemical surface stress 

cell was brought to fruition and also when the fundamental technique and protocol 

for its use was developed.   This dissertation is divided conceptually into two 

major sections: Chapters 2-5 are included to briefly cover the academic 

background upon which this research was built and Chapters 7-12 contain the 

experimental procedure, results, and subsequent analysis that has been carried out 

in support of this doctoral research.  The remaining chapters constitute the 

transitions to and from these two conceptual sections in order to facilitate the flow 

of the narrative presented in this dissertation. 
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Chapter 2 presents a thorough background behind the transition from 

vacuum based aluminum interconnect technology to the state of the art copper 

technology known as the (dual) damascene process.  The virtues of copper as a 

superior interconnect material have long been recognized within the realm of 

scientific research as well as within the microelectronics industry.  Previously, 

however, the obstacles preventing the implementation of copper metallurgy (e.g. 

possibility of silicon contamination, wet chemistry processing, etc.) proved too 

costly until the late 1990s. 

The fundamentals of electrochemistry, specifically electrodeposition, and 

its relation to the damascene process are discussed in Chapter 3.  In order to 

properly treat the several theories that have been proposed to explain the 

superfilling of surface features on etched silicon wafers, the reader must be 

somewhat familiar with electrochemical kinetics of deposition processes as well 

as the mechanisms of mass transfer within the electrolytic cell.  Special 

consideration is also given to the primary, secondary, and tertiary current 

distribution models in order to introduce the concepts of leveling and non-uniform 

plating currents that are observed during the superfilling process.  Finally, the 

strengths and relative weaknesses of the two prevailing models for superfilling, 

known as the diffusion-adsorption and the curvature enhanced accelerator 

coverage models, are discussed at length. 

The background section continues with a brief introduction to surfaces and 

surface stress as given in Chapter 4.  First the concepts of both a surfaces and an 

interface are given consideration followed by a more rigorous explanation of the 
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Gibbs surface model.  The Gibbs surface model provides a good framework for a 

short description of the formalism behind thermodynamic surface quantities, 

including surface stress.  It is here that the most important equation in this 

doctoral research, the Stoney relation, is both described qualitatively and defined 

mathematically.  It is through proper application of the Stoney relation that 

quantitative thin film stress measurements are made possible. 

Chapter 5 continues with additional considerations of stress related 

phenomena in thin film structures.  Initially, the three main thin film growth 

modes and their relationship with growth stress evolution are described.  In 

addition to the intrinsic film stresses associated with a growing film, a variety of 

other stress generation mechanisms are discussed.  This includes a number of 

environmental factors that must be taken into account when performing stress 

measurements in electrochemical systems.  More specifically, the role of stress in 

integrated circuit interconnect structures is treated in the context of residual 

stresses that are built into on-chip wiring during the deposition process and can 

have a major effect on the overall reliability of IC devices. 

The narrative of the dissertation then transitions from the background 

section to the results section.  Chapter 6 contains a concise summary of the 

objectives behind this experimental research and the reasoning behind the 

electrochemical systems and the types of experiments that were chosen for 

investigation.  The experimental details and a description of the custom-designed 

electrochemical surface stress cell are contained in Chapter 7.  This chapter 

includes the details of both the surface stress monitoring system as well as the 



  6 

electrochemical techniques that were combined to produce ultra high resolution, 

real time electrochemical surface stress measurements. 

The results section of the dissertation continues with the presentation of 

the solid electrocapillarity of Cu thin films in sulfuric acid solutions.  Essentially, 

Chapter 8 shows experimental results that define the simple but important 

relationship between applied electrochemical potential and the resultant surface 

stress.  Most significantly, it was found that not only is the electrocapillarity 

response relatively small in magnitude, but it is also opposite in sign from the 

potential.  That is, within the potential range in which oxidative stripping of 

copper does not occur, the surface stress due to electrocapillarity is easily 

distinguished and usually of negligible magnitude with respect to film growth 

induced stresses. 

 Chapters 9 and 10 compose a significant portion of the experimental 

results obtained in support of this doctoral research.  They include the surface 

stress results of electrodeposited and stripped Cu thin films in a variety copper 

plating solutions that are relevant to the Cu damascene process.  Specifically, a 

well defined series of chronopotentiometric current pulses were employed at 

current densities of 1 & 5 mA/cm2 in all the various solution combinations in 

order to observe the effects of plating additives.  Overall it was found that both 

the compressive event stresses associated with deposition as well as the tensile 

event stresses due to oxidative stripping increased in magnitude as three 

component additive solution combinations were used as plating baths.  

Additionally, the bulk residual stress also increased with the use of additives, 
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providing powerful insight into the residual effects that these additives may have 

on the reliability of IC interconnects produced through this process.  

 Following the examination of the effects of additives on deposition and 

stripping induced stresses, the effect of an appreciable cuprous ion concentration 

is discussed in Chapter 11.  In this chapter, a series of chronopotentiometric 

techniques, identical to that used in Chapters 9 and 10, are used to study the 

surface stress evolution of Cu thin films in solutions that contain both cupric 

(Cu2+) and cuprous (Cu+) ions.  Because industrial damascene processing utilizes 

air saturated plating baths in which cuprous ions not stable, the effect of an 

appreciable cupreous ion concentration is not well understood.  The present work 

was motivated by recent discussion in the literature on the role of cuprous ion 

complexes in trench superfilling phenomena.  While it is generally accepted that 

Cu+ does indeed play role, there is some disagreement on the exact nature of that 

role.  In Chapter 11, the effect of an appreciable cuprous ion concentration is 

shown to be dependent on plating solution composition.  A remarkable difference 

in the resultant surface stresses was observed in electrodeposition suppressing 

solutions while no discernible effect was seen in full additive solutions. 

 Chapter 12 completes the experimental results section of the dissertation 

with a different type of experiment that was developed to study solution side 

phenomena in the absence of electrochemical control of the interface.  These 

investigations are identified as open circuit potential solution exchange 

experiments due to the fact that the open circuit is monitored simultaneously with 

the surface stress evolution while an initial electrolytic solution is carefully 
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replaced by a final solution of different composition.  In contrast to the other 

experimental results presented herein, the solution exchange experiments 

demonstrate that surprisingly large surface stresses can develop on thin film 

electrodes even in the absence of net addition/removal of material to/from the 

electrode surface.  These changes in surface stress were found to correlate well 

with the concentration dependence of the electrode exchange current density as 

described by electrochemical theory.        

 Finally, a summary of the results and conclusions presented in Chapters 8-

12 is given in Chapter 13.   The major observations and general trends seen 

throughout the various systems and experimental techniques are then tied together 

giving a view of the overall surface stress behavior of Cu thin films in electrolytic 

solutions.  Additionally, Appendices A-F can be found after the reference section.  

They contain the design (sketches & drawings) of the electrochemical surface 

stress cell (Appendix A), a reproduction of the first publication containing results 

collected using this custom designed surface stress cell (Appendix F), the Matlab 

script that was created to analyze data presented in Chapters 9 & 10 (Appendix B), 

a sketches and a brief description of the single crystal electrodes used in Chapter 

12 (Appendix D), the original data plots used to create Figures 12.3, 12.4, and 

12.5 (Appendix E), and the copyright permissions secured by the author in order 

to reproduce various figures throughout this dissertation (Appendix C).   
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CHAPTER 2 

COPPER AS AN IC INTERCONNECT MATERIAL 

2.1 Advantages of Using Copper as an Interconnect Material 

The advantages of using copper as an interconnect material have been 

considered by many groups both academic and commercial2, 3, 5-9, 26-30.  Ideally, 

this transition in conductor material was to be accompanied by a change in 

insulator as well.  It has been estimated that a three-fold reduction in RC delay 

could be achieved through the use of Cu and a low dielectric constant (ε) insulator 

such as polyimide27.  Nevertheless, because significant improvement is obtained 

by using copper as the wiring metal alone, Cu metallization was implemented 

without a low-ε insulator.    

Since the electrical resistivity of bulk Cu (~1.7 μΩ-cm) is more than 33% 

lower than that of Al (~2.7 μΩ-cm), copper wiring provides for extension of IC 

interconnects below the size threshold limit of Al.  This is mainly due to a 

significant reduction in joule heating at smaller wire thicknesses as power (I2R) 

consumption decreases as well as the reduction of RC time delay associated with 

electrical signal transport.  The RC delay decreases by a factor of two as the 

smaller Cu lines not only reduce the total line resistance but also decrease the 

areal contribution to inter-line capacitance.  In combination with the decrease of 

joule heating, the reduction of capacitive charging time also reduces the total 

energy consumption of the IC which makes the chips more amenable to battery 

powered electronic devices such as laptop computers and cellular phones.  The 

scaling down of wiring dimensions also produces a reduction in crosstalk between 
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IC chip components which has reduced noise characteristics during electrical 

signal transport7, 8, 27, 28.   

Another primary advantage of copper interconnect technology is a 

superior resistance to electromigration (EM), which has been a major source of 

interconnect and IC failure. Copper metallization has improved EM resistance of 

IC circuitry markedly with experiments showing several orders of magnitude 

improvement in interconnect time to failure (T50) over aluminum and aluminum-

copper alloys1, 3.  Additionally, a reduction in EM failure rate allows for wiring 

architecture that can sustain higher current densities at a given wire thickness as 

well as scaling of interconnect linewidths to meet miniaturization goals31. 

Beside the intrinsic advantages of using copper as an interconnect material, 

the introduction of copper wiring also yielded improvements in the back-end-of-

line (BEOL) processing.  Because copper lacks a volatile compound that can be 

used for etching at low temperature, it requires completely different 

manufacturing techniques than those used for the Al architecture32.  In fact, the 

process known as copper dual damascene reduced the number of required 

metallization steps by 20% to 30% by providing the capability of simultaneously 

filling multiple types of on-chip features (e.g. trenches, vias, etc) 6, 31. 

2.2 Challenges of Using Copper as an Interconnect Material 

In addition to the advantages afforded by the shift from aluminum to 

copper, many unique challenges associated with the transition to copper 

interconnects have arisen during the implementation of Ultra-Large-Scale 

Integration (ULSI).  These challenges included identifying the best methodology 
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for copper deposition, optimizing the metal electroplating parameters within that 

methodology, and choosing a suitable diffusion barrier material to prevent copper 

contamination of the insulating and device layers7.  Both engineering and basic 

scientific types of solutions are required in order to solve the problems 

encountered during a large technological shift such as a transition in interconnect 

material.  This fact was readily discovered during an exploratory phase in which 

all of the primary methods of metal deposition were explored as a suitable 

replacement technology for Al metallization.  Table 2.1 shows a summary of the 

advantages and disadvantages of each method of copper deposition as given by 

SEMATECH (Semiconductor Manufacturing Technology)2.  Since IBM’s 

transition in the late 1990s, Cu damascene has become the dominant technology 

for IC interconnects.  However, this transition has required an entirely different 

approach to wafer processing.   

Whereas the aluminum metallization process consists primarily of metal 

deposition followed by subtractive processing steps, the copper metallization 

process is essentially an additive process of alternating depositions of conducting 

and insulating layers8, 32.  Thus, the implementation of the copper interconnects in 

IC production was the complete transformation from a process based on 

photolithography, reactive ion etching and chemical/physical vapor deposition to 

a wet, electrochemical based process known as copper damascene.  The 

damascene process has roots in a long history of Cu electroplating and printed 

circuit board applications.  Long before the idea of superfilling (i.e. filling of 

surface trenches and vias by electrodeposition [see Section 2.4]) had even been 
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conceptualized, electrochemists were using mixtures of inorganic and organic 

additives to produce “leveled” and “bright” electrodeposits for printed circuit 

boards and other surface finishing applications26, 33, 34. 

 

 

Table 2.1 - Comparison of Copper Deposition Methods2, 7, 8 
Method Advantages Disadvantages 

Physical Vapor 
Deposition (PVD) 

similar to Aluminum process 
high metrology & film 

quality control 

uneven coverage of 
surface features poor via 

filling characteristics 

Metal Organic 
Vapor Deposition 

(MOCVD) 

excellent conformal surface 
deposition and via filling 

relatively expensive 
specialty organometallic 

chemical species required 
low deposition rate 

relatively inexpensive 
process 

 

deposit  may become 
unstable & decompose in 

solution 
 Electroless 

Deposition 
relatively fast deposition rate 
no current  source required 

poorly characterized & 
relatively unfamiliar 

process lack of control 
during plating process 

relatively inexpensive 
processing 

 

need for Cu seed layer to 
be pre-deposited on chip 

 Electrolytic 
Deposition fast deposition rate 

good conformality and via 
filling characteristics 

general concern for Cu 
contamination during 
fabrication solution 

disposal issues 
 

 

 

In order to meet the demands of defect-free, bottom-up fill of high aspect ratio 

features, a significant amount of research and development has been done to 

optimize the copper damascene process.  These efforts have included 
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investigation of the effects of varying solution compositions and concentrations, 

the application of dynamic potential/current profiles, and the manipulation of 

solution mass transfer characteristics via forced convection8. 

As an additional challenge, Cu is both a mid-band gap impurity and a fast 

diffusing contaminant in silicon, the combination of which can have deleterious 

and possibly catastrophic effects on silicon based device performance.  The 

introduction of copper bearing species into the fabrication process consequently 

constitutes a major contamination concern.  Furthermore, SiO2 is both ineffectual 

as a Cu diffusion barrier and also poor as a Cu adhesion layer.  Because of this 

challenge, tungsten remains as the silicon contact material at the lowest level of 

chip interconnects and a Cu diffusion barrier is required on all higher wiring 

levels between Cu metal and Si or SiO2.  The barrier metal is usually composed of 

TiN and/or a Ta/TaN multilayer27, 30, 35.  The diffusion barrier further serves as a 

protective layer which prevents corrosion of the copper metal as well as an 

adhesion enhancer since a copper seed layer can be deposited on it prior to “bulk” 

thin film electrodeposition32. 

2.3 Aluminum vs. Copper Wafer Patterning Process 

Conventional aluminum interconnect technology consists of fabrication by 

a subtractive method.  First, a homogeneous Al thin film of about 600 nm is 

deposited on the substrate by physical vapor deposition.   Subsequently, a layer of 

photoresist is deposited and cured.  The photoresist is then subject to ultraviolet 

light exposure and developed in order to transfer the pattern from a mask to the 

photoresist layer.  The patterned aluminum and photoresist multilayer is then 
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anisotropically etched through a reactive ion etching (RIE) process which 

removes the unprotected aluminum regions to create a network of interconnects.  

Next the remnant resist is stripped and the SiO2 inter-layer dielectric (ILD) is 

deposited over the aluminum network by chemical vapor deposition (CVD).  The 

ILD  deposition is then followed by a chemical-mechanical-planarization (CMP) 

step which creates a globally smooth multilayer surface and prepares the wafer for 

additional interconnect levels and other subsequent fabrication processes27, 36.  

Unfortunately, the reactive ion etching process is not easily adapted for the 

fabrication of copper interconnects due to the low vapor pressures of copper 

chlorides and fluorides37.  In fact, in order to reach reasonable etch rates, the 

process temperature must be raised to at least 150ºC during dry etching.  At these 

temperatures the Cu may subject to increased oxidation and corrosion rates. 

Furthermore, since the other lithographic materials used in the subtractive 

patterning process are incompatible with such elevated temperatures, the entire 

process becomes more complicated and increased in cost27.  Therefore, the 

implementation of Cu metallization requires a shift in the patterning scheme and 

approach.  A simplified depiction of the two metallization processes is presented 

in Figure 2.1. 

In contrast to the traditional subtractive patterning process, damascene 

metallization geometries are determined by features which are etched into a 

dielectric substrate.  First, the substrate is blanketed by a dielectric layer (ILD) 

into which the desired features are patterned by a conventional etch process.  

After the lithographic materials are removed, a diffusion barrier layer such as TiN 
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or Ta/TaN is deposited on the patterned ILD substrate.  Next, a thin (~100 – 1000 

Ǻ) Cu seed layer is deposited by PVD followed by bulk Cu electrochemical 

deposition (ECD). 

 

 

Figure 2.1 - Schematic comparison of the aluminum metallization process and 

copper damascene type metallization.  Illustrations adapted from Reference27. 

 

 

As a result of the ECD process, excess Cu is deposited over the entire wafer 

surface and all interconnect structures are in a state of electrical short circuit.  

This excess Cu metal is known as via overfill or overburden and is finally 

removed during chemical-mechanical planarization.  The remaining structures 

constitute a single level of networked Cu wiring and the process may then be 

etching

deposition

silicon substrate dielectric metal

deposition

chemical
mechanical 

polish
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repeated depending on the number of required interconnect levels.  The 

electrochemical nature of the Cu metallization technique, also known as dual 

damascene, allows for both trenches (interconnect wiring within a single level) 

and vias (interconnect wiring between two adjacent levels) to be filled 

simultaneously.  Because of this the dual damascene technique drastically reduces 

the number processing steps and significantly reduces the cost of IC wafer 

fabrication27. 

2.4 Copper Damascene Deposition 

The copper damascene process derives its name from the practice of 

creating metallic inlays as developed by artisans of Damascus in the middle ages7.  

The central concept behind the process and its unique features is the fact that 

submicron surface features can be filled seamlessly and produce leveled, “defect-

free” thin films by employing electroplating conditions and electrolyte solutions 

that contain certain additives in carefully balanced concentrations.  Typical 

plating parameters and solution compositions are given in Table 2.2.  

 
 
 
Table 2.2 - Typical Values for Cu Damascene Process Parameters8, 28, 38 

Nominal Cu Seed Layer Thickness 100-2000 Å 
Electroplating Current Density 3-50 mA/cm2 

Deposition Fill Time 5-40 seconds 
Cu++ Concentration 10-70 g/L 

H2SO4 Concentration 5-325 g/L 
"Accelerator" Concentration 1-25 ppm 
"Suppressor" Concentration 100-2000 ppm 

Cl- Concentration 20-100 ppm 
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In this context, defect-free and leveled films are terms that refer to desirable film 

qualities such as a mesoscopically flat surface (no overfill bumps or “momentum 

plating”) and vias that are free of voids, seams, or occluded electrolyte5, 28.  This 

bottom-up filling phenomenon demonstrated by Figure 2.2 is now known as 

superconformal filling or just superfilling5, 10. 

While copper damascene processing avoids many of the problems 

associated with Cu dry etching and dielectric deposition, the need to optimize the 

process parameters still exists.  In fact, the electrochemical characteristics of Cu 

deposition can be tuned for many on-chip applications ranging from low level 

damascene structures (>100 nm length scales) to Through-Silicon-Via (TSVs) 

technologies used in 3D integrated circuitry (~50–150 μm length scales).  In all 

cases though, the main goal is to fill vias, holes, and trenches completely and 

without voids or seams.  This becomes increasingly more difficult as the on-chip 

features shrink to less than 100 nm in width and reach aspect ratios as high as 10 

(depth:width)7, 27.  The difficulty arises from the need to fill high aspect ratio 

surface features quickly and completely.  A complete fill results from a leveling 

action that is produced during the electrolytic deposition of metal during the 

damascene process.  

The phenomenon of leveling is the continuous reduction of surface 

roughness during deposition on the surface, i.e. the seamless filling of surface 

recesses or asperities that often result from coarse mechanical polishing.  The 

historical importance of this phenomenon has ties to the surface finishing industry 

and has been used to refer to the smoothening of a non-uniform surface by  
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Figure 2.2 - Time sequence example of bottom up superfilling of vias using 

electrochemical Cu damascene technology.  Reproduced with permission from 

Reference10. 

 

 

deposition of more metal in recesses relative to the rest of the surface.  

Specifically, there are two types of leveling that are relevant to the 

electrodeposition processes, geometric leveling and true leveling.  Geometric 

leveling is produced by uniform current density and conformal deposition of 
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metal on a substrate surface.  This type of leveling typically occurs in the absence 

of leveling agents and is qualitatively illustrated in Figure 2.3.  It is characterized  

 

 

Figure 2.3 - Schematic shape evolution of a rectangular (trench) profile during 

feature filling process.  Geometric leveling is produced by uniform current 

distribution and results in seam formation while true leveling produces a “defect 

free” bottom-up fill.  Figure adapted from References27, 39. 

 

 

by deposit thicknesses that are equal on all surfaces and can result in incomplete 

feature filling.  Leveling which occurs in the presence of leveling agents is known 

as true leveling and constitutes the underlying principle of superconformal 

deposition.  True leveling arises from a non-uniform current distribution along a 

substrate profile as metal is preferentially deposited in recessed regions of the 

substrate surface (Figure 2.3).  Increased deposition rates can only be achieved by 

the use of leveling agents which induce higher current densities within a surface 

feature relative to the top region of the substrate39. 

Geometric Leveling True Leveling
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Figure 2.4 - Trench filling profiles of sub-conformal, conformal, and 

superconformal growth shown at early and late stages of the electroplating 

process.  Figure adapted from Reference5, 7. 

 

 

In practice, there are several possible results for trench filling processes.  

Figure 2.4 shows the possible trench filling profiles of both early and late stage 

electroplated copper.  In the conformal case, a metal layer of equal thickness is 

deposited over the entire feature profile (geometric leveling).  For straight walled 

or “V”-shaped trenches, conformal filling should be capable of producing a 
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perfect trench fill.  However, variations in deposition parameters or slightly re-

entrant trench geometry can lead to the creation of a seam or void.  Additionally, 

a subconformal filling profile may occur as a result of reduced current density at 

the bottom of the feature geometry relative to the top.  Under these conditions 

surface roughness may increase, voids are likely to form inside the trench, and 

longer plating times can result in ramified deposits.  Conversely, superconformal 

deposition occurs as current density and deposition rates are increased along the 

bottom and sides of the trench relative to the outside of the feature (true leveling).  

This may be accomplished through the use of leveling species that are added to 

the plating bath to produce a seamless, void free deposit and is known as 

superfilling.  Copper interconnects that are free of these defects provide effective 

conduction pathways for signal transport in integrated circuits.  However, wiring 

structures that do contain seams and voids within the trenches and vias are 

significantly more susceptible to joule heating and electromigration, phenomena 

which eventually lead to device failure8. 
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CHAPTER 3 

FUNDAMENTALS OF ELECTRODEPOSITION 

Electrochemistry allows for the addition and removal of materials from 

metallic electrode surfaces.  Both electrochemical deposition and oxidative 

stripping require the presence of both an ionically conductive solution and an 

electrically conductive electrode at an electrified interface.  The difference in the 

conductivity mechanism between the two phases, electrons in the case of the 

metal and ions in the electrolyte, requires an exchange of charge across the 

interface.  Due to the complexity of this interfacial region, the actual mechanism 

by which the discharge occurs can depend heavily on the details of the system 

such as adsorption, solution ionic conductivity, applied potential, etc.  A detailed 

understanding of the interfacial region is an important aspect of many 

electrochemical processes, but is especially pertinent to the application of 

electrodeposition of copper in the presence of additives. 

3.1 Electrochemical Kinetics 

The immersion of a copper electrode into a copper salt solution creates a 

dynamic interface, even under open circuit conditions.  At the open circuit 

potential (OCP), there is zero net current on the copper electrode and no charge 

passes between it and an auxiliary electrode in a three electrode, potentiostat setup.  

However, despite the absence of any measured current, a finite amount of anodic 

and cathodic current that is both equal and opposite exists locally at the electrode 

surface.  This exchange of charge is a property of the chemical system known as 

the exchange current density, i0.  The exchange current density is directly 
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proportional to the standard reaction rate, k0, the electrode surface area, A, and the 

Faraday constant, F, of a given chemical reaction.  It represents the amount of 

equal and opposite cathodic and anodic charge that is exchanged across the 

interface in a unit time interval.  When an overpotential is applied to the electrode, 

the cathodic and anodic currents become unequal and net electrons transfer to 

(reduction) or from (oxidation) the solution.  The kinetic relation between 

electrode overpotential and current density is known as the Butler-Volmer 

equation40: 

 

(3.1) 

 

where i, α, n, R, T, E, & E0 are the current density, the symmetry factor, the 

number electrons transferred, the gas constant, absolute temperature, applied 

potential, and standard reduction potential of the electrochemical system, 

respectively.  The standard reduction potential is a thermodynamic parameter that 

is defined by the molar free energy of the reaction, ΔG, and the number of 

electrons transferred during the reduction reaction, 

 

  (3.2) 

 

In the case of aliovalent copper, there are two ions to consider (the more highly 

oxidized species are quite unstable and irrelevant to this work).  Both cupric 

(Cu2+) and cuprous (Cu+) ions may exist in solution and are reduced to copper 
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metal during an electrodeposition reaction. The corresponding reduction reactions 

and standard reduction potentials are40:  

 

  (3.3) 

(3.4) 

 

At potentials negative or cathodic to these, the respective ions are reduced 

to copper metal and subsequently become bonded to the electrode surface.  As a 

result of a non-zero net current, copper ions are reduced to copper metal (cathodic 

case) or generated (anodic case) and material is added to or removed from the 

electrode surface, respectively.  

3.2 Mass Transfer 

The above description corresponds to an activation-controlled regime of 

the electroplating process.  It remains valid only under conditions where the 

concentration of the depositing metal ions is close to that of the bulk solution and 

the current increases exponentially as a function of applied potential according to 

eq 3.1.  In reality, the concentration of the electroactive species (e.g. metal ions) 

near the electrode surface is subject to variation as the oxidation or reduction 

reaction proceeds.  For example, metal ions are consumed during the deposition 

process and the concentration near the surface decreases.  In order for the plating 

process to be sustained, mass transfer of metal ions from the bulk of the solution 

to the surface must occur.  Mathematically this transport of ions to the interface is 

described by the Nernst-Planck equation, 

SHE  v.V 0.521           (s), Cu e  (aq)Cu 00- =↔++ E

SHE.  v.V 0.337           (s), Cu 2e  (aq)Cu 00-2 =↔++ E
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(3.5) 

 

where C, v, z, F, R, T, D, and φ  are the concentration, fluid velocity, charge, 

Faraday and gas constants, temperature, diffusivity, and electric field, respectively, 

and the subscript x refers to metal ion.  Here each of the terms on the right hand 

side of eq 3.5 corresponds to a separate ionic transport mechanism within the 

solution.  From left to right these terms refer to convection ( vCx ), migration 

( φ∇xx
x CD

RT
Fz ), and diffusion ( xx CD ∇ ), respectively, and each of these mass 

transport phenomena will be treated below. 

Convection includes ion movement due to bulk movement of the liquid 

solution by means of pumping, agitation, rotation or ultrasonication of the 

electrode-electrolyte system.  In electroplating applications, convection is often 

achieved by solution pumping or agitation but can also involve rotation of the 

electrode 8.  Generally the purpose of convection is related to maintaining a well-

mixed system to ensure a nominally constant metal ion concentration across the 

dimensions of the electrode surface.  Increased convective flow also results in a 

decrease in the thickness of the stagnant diffusion layer adjacent to the electrode 

surface.  Typically, once the diffusion layer is established (e.g. ca. 100 µm in 

stagnant aqueous systems), metal ions must travel across the layer by means of 

migration and diffusion.   

,xxxx
x

xx CDCD
RT

FzvC J ∇−∇−= φ
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Migration is the movement of ions in response to an electric field that is 

applied between the working and counter electrodes.  As a result of migration, 

cations tend to move towards the negatively biased electrode and anions migrate 

towards a positively charged electrode.  Migration effects on a particular 

electroactive species are often rendered negligible by excess charge carriers which 

are often present in the solvent (e.g. H+ and OH- ions in water) or that are 

purposefully added to solution in the form of supporting electrolyte species 

(including acids/bases)40, 41.  However, in the absence of convection, migration of 

a metal ion can become significant if the charge carrying capacity of the ion 

composes a significant portion of the charge carrying capacity of the entire 

solution.  This is determined by the transport number, 

 

(3.6) 

 

where the subscripts x and i refer to the metal ion and the ith ionic species found in 

the solution.  As the transport number of the metal ion of concern becomes a 

significant fraction of unity, migration effects on the particular ion becomes a 

significant factor in solution phase mass transport.  In typical acidified copper 

plating solutions, the transport number of protons in solution is so large that the 

migration rate of copper ions towards the electrode surface is small relative to the 

diffusion rate.  

 Diffusion is the thermally activated movement that results when a 

chemical species is distributed in a nonuniform fashion.  On a macroscopic scale, 
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diffusion tends to equalize the concentration of a chemical species throughout a 

material and the net direction of flux is along any existing concentration gradient.  

It is possible to calculate the diffusional flux, J, of a particular chemical species 

using Fick’s first law of diffusion, 

 

(3.7) 

 

which can be simplified when considering a single dimension (e.g. x-direction, as 

in diffusion towards a planar electrode during electrolysis), 

 

(3.8) 

 

which represents the only component of mass transport that cannot be neglected 

under any conditions during electrochemical consumption at an electrode.  At 

room temperature, copper ions in a plating solution generally have a diffusion 

coefficient of order ~5x10-6 cm2/s which results in a 20 μs diffusion time for a 0.1 

μm distance and a 0.2 second time across a 10 μm distance42-46.  With respect to 

the timescale of 5 to 20 seconds that is required for typical high aspect ratio 

feature filling processes, these diffusion times are small enough to allow sufficient 

replenishment of Cu ions within the vias and trenches during deposition.  This is 

somewhat remarkable given the fact that at a Cu++ concentration of 0.25 M, the 

solution volume containing enough metal ions to fill a feature with Cu metal is of 

order 200 to 400 times larger than the feature volume8. 
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At large overpotentials and/or long deposition times, the near-surface 

region known as the diffusion layer becomes depleted of metal ions and the rate 

of ion transport from the solution becomes diffusion limited.  Under these 

circumstances, the steady state diffusion rate limits the reaction, and the process 

transitions from activation control to diffusion control.  The distinguishing 

characteristic of a diffusion-controlled process is a constant current profile as a 

function of applied potential.  In this case, eq 3.1 no longer dictates the current 

behavior and a form of eq 3.5 (recognizing that i = nFJ and ∂Cx/∂x ≈ Cx,bulk/δ) 

determines the diffusion limited current density40,  

  

(3.9) 

 

where D and Cx,bulk are the diffusivity and the bulk concentration of the depositing 

metal ion and δ is the diffusion layer thickness.   Figure 3.1 illustrates the 

transition between the activation controlled region to the diffusion limited current 

density region.  In addition to the activation and diffusion controlled regions, a 

transition period exists where the current density is under mixed control of both 

potential and physical transport constraints 39.  While metal deposition occurs 

during all three regions, often the morphology and material properties of the 

electrodeposited film depend on the region in which deposition occurs46-51.  
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Figure 3.1 - Schematic representation of the actual (solid) current density 

dependence on the electrode overpotential and the behavior as predicted by 

Butler-Volmer kinetics (dashed).  Activation, diffusion and mixed control regions 

are loosely defined by the comparison between the two profiles. Figure adapted 

from Reference39. 

 

 

 

3.3 The Superfilling Process 

Copper damascene electrodeposition is the state of the art method by 

which IC interconnects are produced due to a unique phenomenon known as 

superfilling.  This bottom-up, “defect-free” filling is the most fundamental 
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requirement for any damascene application.  The superfilling capability of certain 

Cu electrolytic solutions is accomplished through the use of additives that 

enhance a nonuniform plating current across a non-planar substrate.  While the 

damascene process has been successfully applied in industrial applications for 

many years, the superfilling mechanism is not yet well characterized.  Any 

explanation or proposed mechanism of superfilling must predict the 

phenomenological observations by first taking into account the electrochemical 

parameters of the deposition and also by accounting for the additional 

modifications induced by the solution additive species. 

3.3.1 Electrochemical Current Distribution 

The physical and chemical laws that govern the transport of charge in an 

electrochemical system preclude the possibility of a completely uniform current 

density, even for simple electrode geometries.  Electrode edges and protrusions 

receive higher current densities than the average unit area of surface while 

hollows and recesses (e.g. trenches & vias) receive lower52.  Because the 

distribution of metal thickness in a deposit depends on the current efficiency as 

well as the cathodic current distribution, it is important to consider the multiple 

factors that affect electrode current distribution as it relates to electrodeposition.  

In the absence of polarization effects the current distribution is predicted by the 

primary current model27, 52-55.  The primary current distribution is calculated by 

only considering the electric field and the geometry of the electrode; electrode 

kinetics (surface overpotentials) are neglected.  The current is then determined 

only by the total ohmic resistances experienced by the current as it flows to or 
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from the different points along the electrode surface.  Thus, the primary current 

model predicts that less accessible parts of the electrode will receive a lower 

current density due to increased resistance along a longer current path.  This can 

be understood by considering a two electrode configuration as shown in Figure 

3.2.   

 

 

Figure 3.2 - Schematic representation of a two electrode electroplating 

configuration where the cathode surface is non-planar.  Within the context of 

electrochemical current distribution theory, j1 and j2 are local current densities that 

depend on the cathode-anode distances, l1 and l2, respectively. Illustration adapted 

from Reference27. 

l1

l2
i2

i1

cathodeanode

l1

l2
i2

i1

cathodeanode



  32 

Since a highly conductive electrode can be assumed to be have uniform 

potential at all points, the ratio of current distribution along this schematic profile 

is given by    

  

(3.10) 

 

where i1 & i2, and l1 & l2 are the current densities and lengths represented at either 

point 1 or 2, respectively, as indicated in Figure 3.2.  As the average distance 

between anode and cathode increases the ratio, l2/l1, tends towards unity and the 

current (and metal thickness) distribution becomes more uniform.  Wagner 

calculated the primary current distribution for the deposition of Cu on a surface 

profile with a rectangular slot (i.e. a surface trench) and found the current to be 

concentrated at the top corners of the trench.  This of course would lead to the 

subconformal type of growth and eventual void formation as shown in Figure 2.4.  

Obviously this is an undesirable result for superfilling applications; however, a 

more accurate model of the current distribution must take into account 

polarization and electrode kinetics.   

The secondary current model takes into account polarization of the 

electrode which is always present due to kinetic limitations.  In this case, the 

kinetic limitations tend to moderate the extreme non-uniformity of current density 

that is predicted by the ohmic conditions of the primary current model.  To 

estimate the magnitude of electrode polarization effects on current distribution, 

Wagner introduced a polarization parameter, κ(∂η/∂i), that is a product of the 
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ionic conductivity of the electrolyte and the slope of the polarization curve, and 

has units of length56.  When this polarization parameter is included in the 

secondary current distribution model, the ratio of current distribution along the 

schematic profile of Figure 3.2 becomes 

 

(3.11) 

 

where κ and (∂η/∂i) are the ionic conductivity of the electrolyte and the slope of 

the polarization curve, again represented at either point 1 or 2, respectively, as 

indicated in Figure 3.2.  The secondary current distribution model depends on the 

same geometry as the primary model but the effect is attenuated by kinetic 

limitations that have the equivalent effect of adding distance between the anode 

and cathode.  In fact, if the same polarization behavior applies to both points 1 & 

2, the net effect is the addition of an equal distance to both current path lengths, 

thus moderating the non-uniformity of current density. 

Whereas the primary current distribution is the same for geometrically 

similar micro- and macro-profiles, the absolute size of the surface feature 

becomes very important in the secondary model, as estimated by the 

dimensionless Wagner number, 

  

(3.12) 
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which is a ratio of Wagner’s original polarization parameter, κ(∂η/∂i), to the 

characteristic length, l, of the nonplanar surface feature in question56.  This 

number serves as a measure of the extent to which electrode kinetics can make 

current distribution (and by extension, plating thickness) more uniform.  That is, 

for extremely fast charge transfer kinetics, Wa approaches zero and the secondary 

current distribution model becomes equal to the primary model.  However, for the 

more realistic case of limited electrode kinetics, Wa becomes much greater than 

unity and current density distribution becomes more uniform, if the same current-

potential relationship applies to all points along the feature profile27, 52, 56.  This 

assumption only holds for the situation where the kinetic parameters remain 

uniform along the profile.  For example, at significant cathodic overpotentials (e.g. 

η  > ~5 mV) and in the absence of diffusion limitations, eq 3.1 simplifies to the 

Tafel equation, 

 

(3.13) 

 

which gives a simple but relatively realistic relationship between applied potential 

and the resulting current density of an electrode reaction.  The Wagner number in 

the case of Tafel kinetics then becomes 

  

(3.14) 
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which can be used to give a sense of the degree of uniformity in current 

distribution and deposit thickness that can be expected (per the secondary current 

distribution model) for a 100 nm wide Cu damascene trench.  That is, for an acid 

copper plating bath (no additives) at room temperature where α ≈ 0.5, κ ≈ 0.5 

S/cm, and a nominal current density of ~25 mA/cm2, the Tafel-estimated Wagner 

number is ~51,000, which indicates an extremely uniform current density 

distribution.  Thus it can be seen that by considering only activation overpotential, 

the secondary current model predicts a uniform current distribution along a 

nonplanar electrode profile inasmuch as the same polarization-current relationship 

applies at all points along the profile.  The extension of this prediction to a Cu 

plating application is geometric leveling and conformal deposition as shown in 

Figure 2.4.  Obviously, neither the primary nor secondary current models are able 

to explain true leveling or superfilling phenomena as it applies to Cu damascene 

applications. 

 The tertiary current model is the next step towards an accurate prediction 

of the actual electrochemical current density distribution along an electrode 

profile.  The tertiary model accounts for the concentration overpotential that 

develops over a period of seconds following the start of deposition.  This 

overpotential occurs because of mass transfer limitations which result from slow 

diffusion of reacting species from the bulk solution across the diffusion layer to 

the electrode surface.  Within the diffusion layer, mass transport of reacting ions 

occurs by diffusion only.  Outside this layer convection maintains a constant bulk 

concentration of reacting species.  Initially the diffusion layer boundary tracks the 
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surface profile, but as the diffusion layer grows to a thickness that approaches the 

length scale of the surface features, the boundary begins to deviate and become 

more planar27, 52.  Eventually a quasi-steady-state diffusion layer develops as the 

rate at which reacting species are consumed at the surface is balanced by 

convection in the bulk electrolyte.  At this point the diffusion layer varies along 

the nonplanar surface and diffusion times are longer for diffusion paths into 

surface features.  Because the diffusion rate is higher at the top of the feature 

relative to the bottom of the feature, the current distribution becomes nonuniform 

and in the case of electrodeposition this tends to produce subconformal feature 

filling.  

3.3.2 Feature Superfilling by Nonuniform Plating Currents 

Previously there has been some disagreement in the literature with respect 

to a distinction between leveling and superfilling processes7, 29.  For the sake of 

clarity, the phenomenon of superfilling is considered here in detail and in the 

context of a microscopic trench.  The superfilling of a surface feature is 

understood by considering the different deposition rates along a feature profile.  

First, it is reasonable to assume that the electrochemical current density at the 

bottom of a surface recess will vary from that of the top surface, as described by 

the primary, secondary and tertiary current distribution models.  Of course, in the 

absence of some external deposition inhibition at the top of the trench, these 

models predict conformal deposition, at best.  In order for superfilling to occur, 

the deposition must be enhanced at the bottom of the trench relative to the top.  
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More specifically, consider the illustration in Figure 3.3 in terms of the relative 

plating rates at several locations of a trench.   

 

 

Figure 3.3 - Schematic cross section of a partially filled trench indicating the 

variation of deposition rate along the profile.  In order to produce the 

superconformal filling, the local electrodeposition rate (and current density) must 

increase in order of A→B→C→D→E. Illustration adapted from Reference7. 

 

 

 

In order to fill the trench in a superconformal fashion, the current density 

should increase along the profile from points A to E.  While the largest difference 

will occur between points A & E, the differential plating rate along the trench 

side-wall is the most critical aspect of a successful superconformal fill since the 

growth from the bottom of the trench must reach the top before the side-walls 

meet.  This means that the ratio of average plating rates of the bottom growth 

front to side-wall growth must be at least twice the aspect ratio of the trench.  
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Since all points along the profile are electrically shorted, the potential difference 

of the Cu seed layer at all points will be zero.  Thus, the difference in deposition 

rates must occur due to conditions on the solution side of the interface.  In order 

to support differential plating, additive species are added to the plating bath in 

precise concentrations7.   

3.3.3 The Effects of Copper Plating Additives 

 Successful application of the Cu damascene process requires careful 

control of many integral process parameters.  One very important control 

parameter is the plating solution composition which includes additives that are 

used in complex multicomponent combinations in order to produce the desired 

deposit characteristics.  In traditional electroplating these characteristics include 

leveling and brightness of the deposits.  For copper IC interconnect applications 

the actual nature and concentration of the additive components remains 

proprietary.  However, a large body of literature surrounding copper feature 

filling has identified a prototypical set of additives that exhibits superfilling 

capabilities when added together in concentrations of a millimolar or less57.  

Typical superfilling bath chemistries include a deposition-suppressing species, a 

deposition-accelerating species, a halide ion, and in some cases a leveling agent2, 5, 

8, 10, 19, 27, 29, 31, 32, 58-62.  Suppressing species, also known as polarizing additives, 

are defined by an inhibition of cathodic plating current density relative to additive 

free conditions at a given overpotential.  Similarly, the addition of accelerating 

species or depolarizing additives will subsequently produce an increase in current 

density relative to suppressing conditions.  Figure 3.4 illustrates this phenomenon 
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with linear sweep voltammograms that show normal, inhibited, and accelerated 

copper deposition during cathodic potential excursions from the OCP (~400 mV v. 

MSE)63.  In the literature, accelerating species have also been more accurately  

 

 

Figure 3.4 - I-E characteristics for copper deposition from various solutions. The 

Cl-PEG (red) mixture yields inhibition of the deposition reaction with respect to 

the additive free solution (black) while Cl-PEG-MPS (green) system leads to a 

relative acceleration of the deposition rate.  Figure reproduced with permission 

from Reference63. 
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termed antisuppressors due to the fact that the deposition rate in these types of 

solutions is actually less than the additive free case but greater than the fully 

suppressed case.  The halide ion solution component (e.g. usually Cl-) adsorbs on 

the copper surface in ordered surface structures presumably because the OCP is 

anodic to the potential of zero charge64-68.  In the bulk solution, the halide ion acts 

as a copper coordination species and promotes slight acceleration of Cu 

deposition in solutions that are free of other organic additives8, 19, 20.  Nevertheless, 

the halide ion is required for both the suppressing and accelerating actions which 

arise from synergies between it and the other additive species.   

 The suppressing agent is usually a polyether such as polyethylene glycol 

(PEG) or polypropylene glycol (PPG) and has surfactant properties in aqueous 

solutions.  It suppresses deposition by adsorption on the chloride modified surface. 

The suppressing action is thought to occur through both an electrical screening of 

the copper surface as well as by the formation of a physical barrier known as the 

“blocking layer”11, 59, 69, 70.  Because of the relatively large concentrations of 

suppressor species contained in most plating baths, the blocking layer of order 

one monolayer in thickness forms very quickly (~0.2 s) upon immersion.  An 

additional advantage due to the surface active nature of PEG and PPG is a 

reduction of surface tension of the plating solution which aids in the wetting of 

the very small surface features and provides electrochemical access for deposition.  

The accelerating agent is generally a sulfur-bearing compound that increases the 

current density at a given potential relative to the suppressed case.  Recently, 

Moffat and Yang found that the accelerating agents such as bis-
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(sodiumsulfopropyl)disulfide (SPS) and mercaptopropane sulfonic acid (MPS) 

must contain both a thiolate (“R-S”) or disulfide (“S-S”) group as well as the 

sulfonate group (“R-SO3”) as shown in Figure 3.569.  The copper metal interacts 

strongly with the sulfur atom in the disulfide or thiolate group and the accelerator 

species adsorbs with the charged sulfonate group oriented away from the metal 

film.  It is thought that the role of the sulfonate end group and the charge 

associated with it is then essential in the repulsion of the suppressor species and 

consequently the creation of a defect in the suppressing surface film or blocking  

 

Figure 3.5 - Chemical structures of the additive species, bis-

(sodiumsulfopropyl)disulfide (SPS) and mercaptopropane sulfonic acid (MPS), 

used in this work.  Note that SPS is essentially the dimerized form of MPS. 

Illustrations adapted from Reference71.  
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PEG or PPG8, 19, 72, 73.  Leveling species are added to the plating bath in very small 

concentrations and primarily function as current suppressors at localized regions 

where growth rates are relatively large.  The most important example of this is the 

reduction of the “overfill bump” formation or “momentum plating” phenomena 

which occur above features which have been filled via bottom-up or superfilling 

action.   In the present work, leveling agents are not considered.  Only solution 

chemistries containing the halide ion, suppressing and accelerating species in 

various combinations are investigated. 

3.3.4 Proposed Mechanisms for Superfilling Phenomenon  

To date, two dominant superfilling mechanisms that involve both                                    

physical and kinetic arguments have been proposed to explain the superconformal 

filling phenomenon of surface features.  The proposed models both involve the 

presence of an accelerated deposition rate at the bottom of the feature relative to 

the top but differences between the models are found in how each accounts for 

consumption, diffusion, and competitive adsorption of the several additive species.  

The first attempt to model the superfilling mechanism is known as the diffusion-

adsorption model and was used by Andricacos et al5, 29, 59, 74, 75, followed by the 

Curvature Enhanced Accelerator Coverage (CEAC) model which was introduced 

and then later refined by Moffat et al10, 11, 21, 22, 60, 62, 63, 69, 70, 72, 76-80. 

3.3.5 Diffusion-adsorption Mechanism Model 

According to the diffusion-adsorption mechanism, the suppressing 

additives play an integral role in the nonuniform distribution of current that is 

required for bottom-up filling.  This model was first proposed with respect to 
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plating solutions that contained a single leveling additive and produced (1) bright 

deposits for surface finishing as well as (2) true leveling in printed wiring board 

applications.  The pioneering work of Foulke and Kardos as well as Watson and 

Edwards indicated that the most important factor for production of true leveling in 

these types of solutions was the diffusion control of the deposition-inhibiting 

species53, 54, 81.  Basically, the explanation is analogous to the arguments presented 

in the tertiary current distribution model.  That is, once the diffusion layer is 

established for the relatively dilute additive species, the inhibiting action depends 

on its diffusion rate from the bulk solution to the surface.  While the deposition 

current density is kept well below the diffusion limited regime of electroactive 

species (deposition is activation controlled, not diffusion controlled), the 

consumption of the inhibitor is diffusion controlled.  The inhibitor may be 

consumed by either incorporation into the film or by means electrochemical 

reaction that forms inactive product species which then desorbs and/or has no 

effect on the deposition.  Thus, the diffusion-adsorption model for true leveling 

can be understood in the context of the varying thickness of the leveling agent’s 

diffusion layer over the electrode profile, as illustrated in Figure 3.682.  The rate of 

inhibitor diffusion is greater at the peaks than at the valleys of electrode surface.  

This variation then produces differentiation in the degree of inhibition that occurs 

along the profile and promotes deposition in the valley relative to the peak.  This 

has the effect of modifying the amount of polarization and produces different 

current density-overpotential relations along the profile.  It is clear then that this  
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Figure 3.6 - Illustration of the diffusion-adsorption model of leveling/superfilling.  

Because the diffusion distance from the diffusion layer boundary to the peaks is 

shorter than to the valleys, the arrival rate of suppressor species is greater at the 

peaks.  The current distribution and deposition rate are suppressed more strongly 

at the peaks, thus more metal is deposited in the valley and the electrode profile 

becomes smoother. Illustrations adapted from Reference82.  

 

 

 

model predicts the type of current density distribution that is necessary to produce 

true leveling27.   

For many years, the diffusion-adsorption model was used to adequately 

describe the leveling and brightening performance of single additive solutions in 

surface finishing and printed wiring boards applications.  Most of this early 
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experimental works dealt with nickel or some copper plating solutions that 

utilized leveling agents such as coumarin, thiourea, and acetylenic brighteners53, 54, 

81-86.  This model was supported by findings which showed increased inhibition of 

deposition in recessed grooves and trenches as a function of decreased diffusion 

layer thickness as controlled by convection73, 87.  Additionally, several groups 

have performed numerical investigations to predict the current distribution and 

deposit thicknesses on several types of profile shapes, including damascene-like 

trench geometries5, 29, 74, 82, 88.  Generally, these investigations have supported the 

validity of this model for single additive species containing solutions, however, 

contemporary plating solutions (as mentioned above) contain complex mixtures 

of both organic and inorganic additives which act as deposition suppressors as 

well as accelerators.  To address this, several variations of the diffusion 

adsorption model have been proposed which (1) consider the diffusion limited 

inhibition as controlled by chloride ion (not polymer suppressor species) 

diffusion75, (2) take into account simultaneous surface diffusion of suppressor 

species into the feature1, 57, or (3) the diffusion and adsorption of the multiple 

additive species59.   

A schematic set of current density-overpotential characteristics which 

create a framework for experimental investigation of the diffusion-adsorption 

mechanism is shown in Figure 3.7.  The idea is that feature filling performance 

based on this mechanism can be approximated by electrochemical studies on 

planar electrodes by comparing i-η behavior on an electrode using a full additive  

 



  46 

Figure 3.7 - Representation of the current-potential (i-η) characteristics of a planar 

electrode in several types of additive containing copper plating solutions.  The 

dashed lines represent current values that could exist simultaneously on the non-

planar electrode during electrodeposition in additive containing solutions.  

According to trench filling models based on the (a) diffusion-adsorption 

mechanism, the nonuniform deposition rate is due to the reduced additive 

concentration at the trench bottom relative to the top.  Conversely, the (b) CEAC 

model attributes the superfilling action to an accumulation of accelerator species 

relative to the top of the trench. Illustrations adapted from Reference8.  
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package (three component mixture of halide ion + suppressor + accelerator) 

solution to simulate deposition on top of the electrode (the field) with the additive 

free i-η behavior to simulate deposition at the trench bottom (feature base).  

Obviously this is not strictly representative of the circumstances as formulated by 

the diffusion-adsorption mechanism, but the approximation is useful.  A 

superfilling acceleration ratio can be calculated at a given potential by comparing 

the resulting current density of the additive free case to that of the full additive 

package.  Ratios as high as 30 are often calculated based on rotating disk 

electrode (RDE) data from both solution combinations8.  

Despite the successes and relative simplicity of the diffusion-adsorption 

superfilling mechanism, there are number of phenomenological observations 

which cannot be predicted within this model.  One of these problems is the 

mechanism’s inability to account for deposition rate differentiation within the 

trenches and cavities as evidenced by the rounding of internal corners.  As 

discussed in the section 3.3.2 with respect to Figure 3.3, the current density 

should increase along the profile from points A to E in order to produce the 

superfilling effect and avoid the formation of a seam.  Second, an accurate 

superfilling model must also predict the formation of an overfill bump (also 

known as momentum plating).  This phenomenon is a characteristic of features 

that are filled using Cu damascene-type chemistries and are believed to come 

about as a result of sustained acceleration of metal deposition following the filling 

action.  The presence of the overfill bump is entirely inconsistent with the 

diffusion-adsorption mechanism and remains one of the primary motivations 
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behind the use of the second model, the curvature enhanced accelerator coverage 

(CEAC) mechanism.  

3.3.6 Curvature Enhanced Accelerator Coverage (CEAC) Mechanism Model 

 One of the major pitfalls of the models developed from traditional leveling 

theory was the lack of complexity required to account for multiple additive 

species.  More specifically, the first versions of the diffusion-adsorption model 

assumed that the diffusion limited transport of a single leveling species was the 

determining factor responsible for the nonuniform deposition rates required for 

superfilling.  Unfortunately, the models based on traditional transport limited 

leveling models fail to capture the shape evolution of the metal surface during the 

filling event and cannot predict the formation of the overfill bump following the 

fill event8, 10, 27.  In the early 2000s, The Moffat group introduced the CEAC 

mechanism to explain the experimentally observed corner rounding and general 

shape evolution both during and after superconformal filling of copper in vias and 

trenches of nanometer dimensions60, 62, 79, 80.  They concluded that superconformal 

deposition and corner rounding may be attributed to competitive adsorption of 

inhibitor and accelerator. While this model has particular value in the area of 

electrochemical copper superfilling for IC interconnect applications, it has also 

has also been applied more or less successfully to other feature filling deposition 

systems such as silver electrodeposition89, 90 and copper chemical vapor 

deposition (CVD)91, 92.  

According to the CEAC mechanism, which can be descriptively called an  

accelerator accumulation model, additives initially adsorb on the entire copper 
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seed covered wafer profile with reasonable uniformity, i.e. both on the top as well 

as within the features of the surface.  Initially, copper plating is conformal on all 

surfaces (geometric leveling) but as growth continues and the feature profile 

begins to change, the surface area within small features decreases, and 

composition of the adsorbed surface film changes (see Figure 3.8).   The shape 

change is especially apparent at the bottom corners of the trench.  According to 

the CEAC, this decrease in surface area tends to concentrate the more strongly 

adsorbing accelerator additives, leading to displacement of the suppressor species.  

Since the deposition rate is proportional to the concentration of the adsorbed 

accelerator species, an increased current develops within the features and 

naturally leads to bottom-up, superconformal film growth.  This model also lends 

itself to similar electrochemical studies as described above for the diffusion-

adsorption mechanism.  Figure 3.7 illustrates that a similar estimation of filling 

performance based on this mechanism can be approximated by electrochemical 

studies on planar electrodes by comparing i-η behavior in a full additive package 

solution to simulate deposition on top of the electrode with the i-η behavior in a 

solution of excess concentration of accelerator species to simulate deposition at 

the trench bottom.  In this case, the ratio of current at the trench bottom relative to 

the top has been observed to be around 10 for a typical range of potentials 

relevant to the Cu damascene process. This number is much more realistic (than 

e.g. the value of 30 cited in the diffusion-adsorption related experiments) when 

compared to fill acceleration rates obtained by comparing growth rates of actual 

feature filling experiments8.   
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Figure 3.8 - Depiction of the trench fill evolution during the superfilling process 

as described by the curvature enhanced accelerator coverage (CEAC) model. 

Illustration adapted from References8, 28, 70.  

 

 

 

Among all of the arguments in support of the CEAC mechanism over the 

other proposed mechanism is an important result which seems to solidify the 

validity of the work done by Moffat, et al10, 11, 21, 22, 60, 62, 63, 69, 70, 72, 76, 78-80, 93, 94.  

By means of a two step process involving “derivitization”, a ~30 second 

pretreatment of a Cu-seeded electrode by immersion in a accelerator containing 

acid bath, followed by electrodeposition in a suppressing solution, an acid Cu 

plating bath containing suppressor species only, the authors were able to 

successfully achieve superconformal deposition.  It was found that an optimal 

surface coverage of accelerator (corresponding to immersion in a solution of 

intermediate concentration of accelerator) was required in order to achieve 

superfilling.  For both very small and very large surface coverages, filling was 

ineffective and conformal deposition resulted in seam formation10, 79. Based on 

their analysis and subsequent modeling of the superfill process, Moffat et al 

determined that only the optimal surface concentration of accelerator species was 

able to produce the deposition rate differentiation necessary for superconformal 

filling of the trench.  This result is significant because it unambiguously 

demonstrates that the transport of the accelerator species from the bulk solution is 
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unnecessary.  In accordance with the CEAC mechanism, the superconformal 

filling of features is chiefly a product of a submonolayer quantity of surfaced 

confined accelerator species which becomes naturally concentrated at the feature 

bottom and produces a defect-free superconformal fill10, 79. 
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CHAPTER 4 

SURFACES AND SURFACE STRESS 

Essential to the understanding of this work are the underpinning concepts 

and definitions of surfaces and interfaces. While the terms surface and interface 

are technically distinct they are often used interchangeably.  For the purposes of 

this dissertation, the term surface has been adopted to describe the solid-liquid 

interface that forms between the electrode and solution.  A surface is chemically 

different and has an excess energy relative to the bulk of the phase because of the 

non-uniform chemical environment that exists there.  When accounting for the 

energy in macroscopic systems, the excess energy associated with a surface or 

interface is often negligibly small.  However, in the case of systems involving 

material structures that have one or more dimensions in the nanometer range, 

surface properties can significantly affect the overall energy and behavior of the 

system and therefore cannot be neglected.  This fundamental concept provides a 

framework upon which all of the work presented in this dissertation is established. 

4.1 Gibbs Surface Model 

One of the important contributions that Gibbs made to the development of 

thermodynamics is the conceptual basis of the thermodynamic representation of a 

surface.  The central concept behind the Gibbsian surface is the accounting of 

surface excess quantities.  A surface excess quantity is defined as a quantifiable 

difference at an interface between the surface of a specific material phase and the 

bulk of the phase.  In order to define these excess quantities, a reference system is 

introduced in which separate homogeneous phases are separated by a sharp 



  54 

Figure 4.1 - Schematic depictions of the (a) Gibbs dividing surface and a (b) real 

interface between two distinct material phases. Illustrations adapted from 

Reference95. 

 

 

interface of infinitesimal thickness known as the Gibbs dividing surface (see 

Figure 4.1).  For a reference system with a single interface between two phases, 

the variation in total Gibbs free energy is given as96 

 

(4.1) 

 

where S, V, γ, and μi are the entropy, volume, interfacial energy, and chemical 

potential of the ith species of the system and dT, dP, dA, and dni are the variations 
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in the system temperature, pressure, interfacial area between phases 1 & 2, and 

the number of moles of the ith species.  In this reference system all material 

properties and compositions remain at their constant bulk values directly up to the 

surface plane.  Similarly, the incremental Gibbs free energy of each phase is given 

by96 

 

(4.2) 

 

where subscripts and )1(
idn & )2(

idn  refer to phases 1 & 2, respectively.  Because 

the real system maintains an interface with finite thickness over which the 

properties and compositions transition continuously from one phase to another, 

any differences between the real system and the reference system then correspond 

to the interface.  Thus subtraction of eq 4.2 from eq 4.1 yields96 

 

(4.3) 

 

which contains several terms that correspond to the surface excess quantities and 

are defined as 
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where the σ superscript refers to the surface excess and subscripts refer the 

individual phases.  By definition, the surface excess volume is equal to zero since 

the interface is infinitesimally thick.  Thus the differential of excess energy due to 

the interface between the two phases becomes 

 

(4.5) 

 

In analogy to the case for bulk systems, a Gibbs-Duhem relation for fluid surfaces 

can then be derived96 

 

(4.6) 

 

which at constant temperature is the basis for the definition of the Gibbs isotherm 

equation 

 

(4.7) 

 

where Anii /σ=Γ is known as the surface excess and is basically the excess 

number of species i at the surface, normalized to the area.  The interpretation of 

the Gibbs isotherm is important as it pertains to the physical structure and of the 

surface and the associated energetics.  For example, the surface excess is indeed 

an excess amount of a species at the surface with respect to its concentration in 

the bulk phase and oftentimes surface concentrations do vary from the bulk.  That 
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is, Гi can take on negative or positive values which reflect lower or higher affinity 

for a surface, respectively.   

For the case of a two component system, the position of the Gibbs 

dividing surface can be chosen such that one component (usually the solvent) has 

a surface excess of zero (Г1 = 0).  Under these conditions, eq 4.8 simplifies to     

 

(4.8) 

 

which for an ideal solution in which the concentration of species 2 is dilute, the 

activity coefficient is equal to one and 222 ln cRT+= oμμ . This then allows for 

the rearrangement of eq 4.9  

 

(4.9) 

 

where R and c2 are the universal gas constant and the concentration of species 2 in 

the bulk solution, respectively.  Thus for these specific conditions, it is understood 

that a solute, species 2, that decreases the surface energy with increasing bulk 

concentration will tend to accumulate at the surface.  This result is a functional 

definition of surface active species or surfactants.   

As described in Chapter 3 above, the adsorption of certain organic and 

inorganic solution additives gives rise to the superfilling effect in the Cu 

damascene process.  It is, in fact, the synergistic effects of multiple, surface active 
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species in dilute concentrations induce the heterogeneous current density 

distribution along the profile of the vias and trenches. 

4.2 Classical Electrocapillarity 

Under the influence of an electric field, a charged species will behave 

differently than a neutral chemical species.  In the case of electrochemistry, this 

type of interaction is of principal concern.  Thus, the classical thermodynamic 

parameter of chemical potential must be modified to reflect this effect.  The 

general electrochemical potential which accounts for the presence of electrical 

potential, φ , is defined as40, 96 

 

(4.10) 

 

where the two terms correspond to a chemical contribution in the form of μi and  

an electrical contribution in the form of φFzi , where zi & F are the charge of the 

ith species and the Faraday constant, respectively.  The corresponding form of the 

Gibbs-Duhem equation, which is also known as the electrocapillarity equation for 

a liquid electrode surface, can be derived by taking into account the electrical 

contribution40 

 

(4.11) 

 

where qM and dE are the surface excess charge on the metallic side of the 

interface and the differential change in potential on the liquid metal electrode, 
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respectively.  At constant temperature, pressure and composition, dui goes to zero 

and eq 4.12  simplifies to the well known Lippman equation40 

 

(4.12) 

 

and gives a direct measure of the change in surface energy (oftentimes referred to 

as surface tension for liquid electrodes) as a function of electrode potential.  A 

characteristic feature of all classical liquid electrocapillarity curves is the 

existence of a potential at which electrocapillarity is maximized as seen in Figure 

4.2.  The implications of this result is that the slope of the surface energy vs. 

electrode potential curve is zero and by the Lippman equation, qM = 0.  For the net 

charge on the metallic side of the electrode to be equal to zero, the corresponding 

net charge in the solution must also be zero through the electroneutrality 

constraint 

 

(4.13) 

 

where qS is the excess surface charge in the electrolytic solution that compensates 

for the charge on the electrode.  Whereas qTot must always be equal to zero, the 

individual terms from both sides of the interface may take on both positive and 

negative values.  At the maximum of the liquid electrocapillarity curve, however, 

the net charge on either side of the interface is equal to zero and the 

corresponding potential is defined as the potential of zero charge (pzc).  As the 
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applied potential moves away from the pzc, equal and opposite excess charge 

accumulates on both sides of the electrode-electrolyte interface.  This is 

manifested as a decrease in surface energy (also termed interfacial tension in by 

Grahame in Figure 4.2), γ, as like charges (negative ions at positive potentials and 

vice versa) that accumulate on the surface tend to mutually repel each other and 

by so doing, counteract the cohesive tension in the liquid electrode. 

As a side note, Figure 4.2 illustrates that the electrocapillarity response of the 

mercury electrode is dependent on the supporting electrolyte species.  That is, 

there is a shift in potential at which the maximum surface energy is recorded.  

This behavior occurs as the negatively charged ions in solution accumulate at the 

electrode surface in the absence of an electrostatic driving force.  This indicates 

that anions (but not cations) have positive surface excess values due to some non-

electrochemical interaction with the electrode.  This behavior has been termed 

specific adsorption and has been observed in a wide range of electrode-electrolyte 

combinations 40.  With respect to the results presented in this dissertation and the 

theory of additive behavior, the halide ions are known to adsorb strongly on Cu 

electrodes.  Furthermore, it has been shown that Cl- is required in combination 

with the suppressing and accelerating additive species to produce the desired 

feature-filling phenomenon. 
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Figure 4.2 - Electrocapillarity curves showing the interfacial (surface) tension as a 

function of potential for a liquid mercury electrode in contact with aqueous 

solutions of the indicated salts.  The potential is plotted with respect to the pzc of 

Hg in NaF (the maximum of the electrocapillarity curve).  Figure reproduced with 

permission from Reference97. 

 

 

 

4.3 The Electric Double Layer 

As the applied potential of an electrode immersed in electrolyte moves 

away from the pzc, the equal and opposite charge begin to accumulate on both the 

metallic and solution sides of the interface.  In this sense, the system resembles a 



  62 

capacitor.  Because of this, electrochemical systems are often modeled as RC 

circuits where corresponding measurements of the capacitance of an interface are 

often used as analytical method to study the interface.  One definition of 

capacitance is based on the differential change in accumulated charge due to a 

differential change in the applied potential (relative to the pzc) 

  

(4.14) 

 

and is also equal to the second derivative of surface energy with respect to applied 

potential40, 98.  This differential capacitance measurement is obtained from the 

slope of the plot of qM vs. E at any point but in contrast to an ideal capacitor, the 

capacitance of an electrode is a function of the potential.  With reference to eq 

4.15, Bard & Faulkner note that direct differential capacity measurements are 

nearly equivalent to electrocapillarity information40.  However, for the case of 

solid electrodes, capacitance measurements have become relatively 

straightforward since the advent of electrochemical impedance spectroscopy (EIS) 

whereas pure surface energy measurements on solid electrodes have yet to be 

achieved. 

Another use of the electrochemical circuit model and the associated 

capacitance measurements becomes important in the study of the electric double 

layer.  Using the framework of the electrode-capacitor analogy, it is possible to 

construct a model that predicts the double layer structure and behavior and then 

compare those predictions to actual capacitance measurements.  The double layer 
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is defined as an ordered structure that is electrically induced in a region of 

conductive liquid media directly adjacent to an electrically charged object.  In the 

case of metallic electrodes, the large number and high mobility of charge carriers 

ensures that the potential is constant throughout the electrode.  It was Helmholtz 

that first considered the existence of an equal countercharge on the solution side 

of the electrochemical interface40, 99, 100.  In real systems the conductive liquid 

media usually consists of a complex mixture of solvated cations and anions in 

addition to a solvent (e.g. dipolar water molecules).  In the original Helmholtz 

model of the double layer, the capacitance was proposed to be due to these two 

sheets of separated charges.  However, this model results in a predicted 

capacitance that is constant and equal to that of a parallel plate capacitor 40, 

 

   (4.15) 

 

where ε, ε0, and  d are the relative dielectric permittivity, the permittivity of free 

space, and the distance of separation between sheets of charge.  Another double 

layer model that correctly predicted capacitance values at low electrolyte 

concentrations and at potentials near the pzc was independently proposed by both 

Gouy and Chapman 101-103.  The Gouy-Chapman model utilizes the concept of a 

diffuse layer of charge in solution which has a higher concentration of charge 

carriers near the electrode surface due to electrostatic forces.  However, in this 

model the electrostatically induced ordering of charge near the electrode is 

opposed by thermal fluctuations and the distance term in eq 4.16 must be replaced 
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by an effective average distance between excess charge on the electrode and the 

charge containing diffuse layer.  According to this model it is expected also that 

this effective average distance will be influenced by electrolyte concentration and 

electrode potential.  As the electrolyte concentration increases or the electrode 

becomes more highly charged, the diffuse layer tends to collapse down over a 

smaller distance and as a result the capacitance increases.  However, in the 

context of this model the effective distance of the compensating solution side 

charge can reach values that are not physically possible and the capacitance 

approaches infinity 40.  

The schematic illustration of current understanding and model of the 

aqueous double layer is illustrated in Figure 4.3.  This includes key modifications 

to both the original Helmholtz and Gouy-Chapman models as initially proposed 

by Stern 97, 105.  Stern first modified the Gouy-Chapman model by adding a 

distance of closest approach, effectively limiting the upper bound of electrode 

capacitance that is predicted.  Thus, at larger applied potentials and electrolyte 

concentrations, the distance of closest approach is of order the radius of the 

adsorbing molecule or ion.  Later, a second approach distance was introduced as 

the outer Helmholtz plane (OHP) and the Stern layer was similarly termed the 

inner Helmholtz plane (IHP) 40, 97, 106, 107.   The location of the IHP is defined by 

the locus of centers of the specifically adsorbed species that are believed to 
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Figure 4.3 - Schematic model of the electrochemical double layer at a metal 

electrode surface with specifically adsorbed anions.  Figure reproduced with 

permission from Reference104.       

 

 

penetrate the first layer of water molecules on an electrode surface.  The distance 

of the IHP from the surface is then determined by the ionic radius of the adsorbed 

species and corresponds to a distinct capacitance value 106.  The OHP is composed 

of a second layer of solvated ions (presumed to be dominated by cations that do 

not specifically adsorb).  All of this detail, of course, is relevant to an electrode at 

potentials near the pzc.  At potentials far removed from the pzc, double layer 

theory predicts an increase in electrostatic attraction of ionic and polar species and 
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the multiple layers of IHP, OHP, and diffuse regions tend to collapse together into 

a single Helmholtz like sheet of charge. 

4.4 Surface Stress 

The surface free energy, γ, is defined as the reversible work per unit area 

required to form a new surface by exposing new atoms. This value is valid for 

surfaces in which the new surface is added at the bulk equilibrium interatomic 

spacing.  This amount of energy is exactly half of the work needed to cleave a 

crystal and create two new surfaces in the absence of plastic deformation.  

However, in addition to the surface energy or surface tension term used above in 

the description of liquid electrocapillarity, it also possible to elastically create new 

surface area on solid surfaces.  Thus the surface stress, f, is the amount of 

reversible work required to deform a surface and modify surface area by changing 

the atomic density of the surface108.  The surface stress term arises during the 

consideration of solid surfaces which tend to change dimensions under the 

influence of external traction or even due to intrinsic effects associated with 

surface excesses (e.g. reduced electron density of metal surface relative to the 

bulk).  Conversely, a fluid surface which cannot support a shear stress will flow in 

response to externally applied forces and new atoms or molecules will arrive at 

the surface in order to maintain a constant areal density.  This results in a surface 

strain equal to zero and surface energy that is equal to the surface stress or fluid 

surface tension (e.g. as ∂εij→0 in eq 4.17).   
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The origin of intrinsic surface stress can be intuitively understood by 

considering a clean metal surface in a vacuum.  In the absence of any other 

external influence, a non-zero stress develops on the surface due to the absence of 

neighboring atoms on one side.  The atoms at the surface are held in registry by 

the bulk atomic lattice on only one side and experience a different electronic 

environment than those located in the bulk.  Due to this difference, the surface 

atoms will tend to adopt a non-bulk interatomic spacing in both the in- and out-of-

plane directions but are restricted in their deformation behavior by the bulk lattice.  

In many cases the surface atoms will tend to a smaller atomic spacing in order to 

maintain a local electronic density that approaches that of the bulk metal.  The 

sum of forces between the surface atoms and the underlying bulk atoms generally 

results in a tensile surface stress108.   

In Gibbs’ formulation of surface thermodynamics, the amount of 

reversible work or total excess surface free energy was defined as the product of 

surface free energy and surface area, γA.  Furthermore, both Gibbs109 & 

Shuttleworth110 noted that the amount of work required to generate a new surface 

area of a solid must account for newly created surface as well as the change in 

surface area due to strain.  By accounting for these, Shuttleworth introduced the 

mathematical formalism that defines the surface stress tensor as110 

 

(4.16) 
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where )(xfij
r  , )(xrγ , ijδ , and ijε  are the surface stress, surface energy, Kronecker 

delta, and surface strain, respectively.  For a surface of ≥ 3-fold symmetry the 

Shuttleworth equation simplifies to a scalar (e.g. f =γ+∂γ/∂ε).  In general, clean 

metal surfaces in vacuum have intrinsic surface stress values in the range of ±1-6 

N/m and generally f and γ are not equal108.  Similar to the intrinsic case, extrinsic 

factors can modify the stresses supported by the material surface.  For example, 

surface processes such as adsorption, deposition, oxidative stripping and other 

surface mediated reactions can influence the stress supported on a surface.  

However, these processes can be very complicated and in many cases the actual 

interaction mechanisms responsible for modifying the stress state are not well 

understood. 

With respect to the solid/electrolyte interface, Couchman and Davidson 

derived the Gibbs adsorption equation as111 

 

(4.17) 

 

where ε is the linear elastic strain, μi is the chemical potential of species i, and s, 

Γi, and q are respectively, surface excesses of entropy, species i, and charge, per 

unit area.  Furthermore, when T and μi  are held constant, the electrocapillarity 

equation for solid electrodes is generated108, 112, 
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This equation describes how the solid electrode/electrolyte interfacial free energy 

varies in response to a change in electrode potential for an idealized electrode at 

constant temperature and chemical potential.  This is analogous to the Lippman 

equation and its predictions for the liquid electrode/electrolyte interface. 

Moreover, the standard Lippman equation for a liquid electrode is recovered by 

setting f = γ.  Electrocapillarity measurements have been performed on both liquid 

and solid electrodes in which the measured response (e.g. electrode displacement, 

curvature, etc.) is proportional to surface energy and surface stress, respectively.  

In the case of liquid metal electrodes, surface energy is maximized at the potential 

of zero charge (pzc) whereas surface stress can have a significant slope around the 

pzc97, 98. 

4.5 The Stoney Relation 

In 1909, Stoney made observations that a when a metal film was 

electrodeposited on a relatively thick steel substrate, the substrate would bend due 

to the stress in the film.  In an attempt to analyze the process and quantify the 

magnitude of the stress, he proposed a form of the now widely used Stoney 

relation113, 114 

 

(4.19) 

 

where σfhf is the stress-thickness of the metallic film and Es
el, hs, νs, κ are the 

elastic modulus, thickness, Poisson’s ratio, and curvature of the substrate, 

respectively.  The following thought experiment provides insight into the 
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derivation of this important relation between substrate curvature and film stress.  

Consider the film-substrate system illustrated schematically in Figure 4.4.  The 

film here is initially under a biaxial state of stress (σf) which is supported by 

traction of the film to the substrate.   As the film is removed from the substrate 

and allowed to relax the stress, it assumes new dimensions.  Next, the film is 

returned to the original dimensions of the interface by application of a biaxial 

membrane force per unit width of F = σf*hf  (Figure 4.4).  The film is then brought 

back into contact with the substrate and subsequently bonded to it.  The 

membrane force, F, is removed from the film and a balance of forces brings a 

force per unit width of equal but opposite magnitude on the substrate surface.   
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Figure 4.4 - Illustration of the thought experiment used to demonstrate the 

mechanical interactions in a stressed thin film/thick substrate composite system.  

The analytical treatment of this process is used to derive the Stoney equation (eq 

4.28). Illustrations adapted from Reference115. 
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Figure 4.5 - Definition of the coordinate system used in the derivation the Stoney 

equation.  The illustrations show the locations of both the (a) midplane and the (b) 

neutral plane as described in the text. Illustration adapted from Reference115.  

 

 

 

From this thought experiment, an analysis of the internal stresses can be 

made.  First, the surface force is represented by an equivalent combination of a 

force per unit, F, width and a moment per unit width, M, at the substrate 

midplane.  By defining a coordinate system as in Figure 4.5, the stress distribution 

in the substrate can be represented by 
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where the axial
yy

axial
xx σσ Δ=Δ  represent the axial stresses at the substrate midplane,  

bend
yy

bend
xx σσ Δ=Δ represent the stress due to the moment applied at the midplane 

and where hf, hs, and z are the film thickness, substrate thickness, and the distance 

from coordinate form the substrate midplane, respectively115.  By summing these 

two stress components and setting the biaxial strain components equal to zero, the 

location of the neutral plane within the substrate can be calculated 

 

(4.22) 

 

where znp is the distance  between the substrate midplane and the plane which 

retains its original dimensions (see Figure 4.5).  From this neutral plane, the 

biaxial strain at the surface of the substrate is calculated by 

 

(4.23) 

 

where R is the radius of curvature of the curved substrate surface.  Furthermore, 

the equation for biaxial strain as a function of stress is defined by Hooke’s law   

 

 

(4.24) 
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by summing the two axial and bending stress terms acting at the midplane, z = 

hs/2, 

 

(4.25) 

 

The combination of eqs 4.24, 4.25, & 4.26 yields a relation between stress and 

strain of the thin film system  

 

(4.26) 

 

and rearrangement of eq 4.27 produces the well known Stoney equation, 

 

(4.27) 

 

in terms of the radius of curvature, R, and the biaxial modulus of the substrate, 

Ms
el = [Es

el/(1-νs)].  This relation is made equivalent to eq 4.20 above by replacing 

the radius of curvature with the reciprocal of the curvature, κ-1.  A consequence of 

the form of the Stoney equation is that the stress-thickness product (in units of 

Newton per meter) is directly proportional to the induced curvature of the 

substrate113-115.  The stress-thickness product is also numerically equivalent to 

surface stress.  In the literature, these types of measurements are often presented 

as average stress in the film which is obtained by dividing the stress-thickness by 

the thickness of the film.  However, the units and the stress distribution must be 

.
46

2
s

ff

s

ff

s

ff
xx h

h
z

h
h

h
h σσσ

σ −=−−=

( ) ,
3
241

R
h

h
h

E
s

s

ff
el
s

s
xx −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
−=

σνε

( ) ,
616

22

R
hM

R
hEh s

el
ss

s

el
s

ff =
−

−=
ν

σ



  75 

carefully considered when analyzing experimental stress results derived from the 

Stoney relation and substrate curvature data.  For example, in the case of 

intercalation processes where, species such as hydrogen or lithium are inserted 

into electrode/matrix, the average stress is an appropriate parameter116, 117.  

Conversely, processes that are confined to an electrode or substrate surface such 

as underpotential deposition or island nucleation during heteroepitaxial film 

growth are more suited to treatment in terms of stress-thickness or surface 

stress108, 118-120.  When doing thin film stress investigations, great care must be 

taken to consider these types of system details as well as the assumptions that are 

implicit in the preceding derivation of the Stoney relation.  Some of these 

assumptions are considered in the following section. 

4.6 Application of the Stoney Relation 

It is very important that the details of the physical system be accounted for 

when applying the Stoney relation to thin film curvature results.  There are several 

assumptions that were made in the derivation of the Stoney relation.  These 

assumptions include the thin film approximation, an assumption that the substrate 

curvature is always near zero, and an assumption that the apparatus geometry is 

configured such that substrate curvature effects are minimized. 

The thin film approximation is exactly as the name suggests, that is, a film 

substrate system where the thickness of the film is sufficiently thin compared to 

the substrate such that the mechanical properties of the film do not play a role in 

the support of the load.  In an effort to generalize the relation between substrate 

curvature and thin film stress, Freund and Suresh relaxed the thin film assumption 
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to determine the non-negligible effects of film thickness and film modulus on 

substrate curvature113 

 

(4.28) 

 

where κ/κSt is the ratio of the actual curvature to that predicted by the Stoney 

relation, and Ms
el, Mf

el, hs, and hf are the biaxial moduli of the substrate and film 

and the thicknesses of the substrate and film, respectively.  The interpretation of 

this relation is that a curvature ratio near unity validates the use of the Stoney 

relation and a departure from unity indicates the need to take into account non-

negligible thickness and stiffness of the film.  With respect to the work presented 

in this dissertation, the ratio of curvatures is found to be ~0.98, producing an error 

of <2% for the thin film stress measurements presented here. 

In addition to film thickness considerations, the accuracy of the 

measurements also depends on other constraints associated with the geometry of 

experimental apparatus.  Friesen noted that the cantilever sample must be thin 

enough to provide adequate sensitivity to stress induced curvature but also must 

be thick enough to ensure that the resonant frequency be much greater than the 

timescale associated with the stress inducing phenomena115.  He also pointed out 

that while the stress in the film is generally biaxial, edge effects at the boundaries 

of the film will likely induce non-zero shear components.  According to Doerner 

and Nix, the shear stresses become negligible at distances from the edge that are 

much larger than the film thickness and thus the in-plane dimensions of the films 
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should be orders of magnitude larger than the thickness to minimize errors115, 121.  

In this work the films were prepared in all cases such that ratio of width to 

thickness was of order 35,000. 

Another important consideration relating to the curvature of the thin film 

samples is the effect of clamping stresses.  Clamping stresses are those which 

arise from the boundary conditions set by the cantilevered sample.  The sample is 

clamped on the fixed end of the cantilever in order to enable deflection/curvature 

measurements.  This clamp restricts the curvature of the sample to be identically 

zero along the width of the clamp-sample interface. It is, of course, important that 

the clamping surface be as flat as possible and that the aspect ratio (length/width) 

of the sample be as large as possible.  Dahmen et al developed a finite element 

analysis based on the “dimensionality” of the bending due to the clamping and the 

resulting effect on the measured deflection/curvature as a function of aspect ratio 

and Poisson’s ratio122.  This elegant model predicts that for cantilevered beams of 

aspect ratio <0.2, the curvature along the width is restricted to zero 

(dimensionality = 1), whereas for high aspect ratio beams, spherical bending 

(dimensionality = 2) is restored at distances from the clamp that are greater than 

twice the width.  Furthermore, the authors demonstrate a smooth, well defined 

transition between these two cases that depends on the Poisson’s ratio of the 

substrate.  Previously, Mickelson has applied this analysis to the sample geometry 

used for the work presented in this dissertation.  Due to the fact that the width of 

the metallic films is less than the width of the glass substrate, Mickelson defined 

two aspect ratios, 2.0 and 0.91, which correspond to the length of the film divided 
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by the widths of the film and substrate, respectively.  Per Dahmen et al’s analysis, 

the curvature ratios, κ/κSt, that follow from these respective aspect ratios are 1.04 

and 1.076.  Moreover, Mickelson concluded that since the clamp extends the 

width of the substrate, the bending is likely defined by glass substrate width and 

that the resulting curvature is overestimated by 7.6%117, 122. 

Another possible curvature effect that merits consideration is the 

phenomenon known as bifurcation.  A thorough explanation of this phenomenon 

and the driving force behind it has been reviewed by Freund and Suresh113.  It is 

defined as a sudden transition from spherical curvature to cylindrical curvature in 

response to film strains that are larger than some critical value.  The driving force 

behind the transition is reduction in elastic strain energy which is relieved when 

the curvature in some principle direction increases significantly, in concert with 

the reduction of curvature in the orthogonal in-plane direction.  The critical strain 

value associated with this transition is dependent on the aspect ratio of the sample 

as well as the induced sample curvature123.  Based on the analysis of Finot and 

Suresh, a reasonable estimate of the critical stress-thickness for the sample 

geometry used in this work is of order 1000 N/m, which is several orders of 

magnitude larger than any stresses presented here. 
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CHAPTER 5 

STRESS RELATED PHENOMENA IN THIN FILMS 

Thin solid films have wide application across many types engineering 

systems.  They are used in many cases where the reduced dimensionality (two 

dimensions) of the material becomes advantageous due to size constraints within 

the system environment, e.g. integrated circuits, micro-electro-mechanical 

systems (MEMS), or due to relative cost or scarcity of the film material, e.g. 

precious metal films for catalysis. 

A thin film is defined as a material with constrained geometry in one 

dimension.  Moreover, thin films generally refer to material layers which range 

from one atomic/molecular layer up to several hundreds of nanometers in 

thickness.  The properties of a thin film are dependent on the methods by which it 

is deposited or formed.  The range of possible deposition methods includes ultra 

high vacuum (UHV) techniques, aqueous & non-aqueous electrochemical 

methods, as well as chemical processes which may occur via adsorption 

phenomena.  For the purpose of this work, the thin film samples of concern are 

metallic films formed by UHV physical vapor deposition (PVD) on glass 

substrates.  Following UHV sample preparation, the films are immersed in 

electrochemical plating solutions and used for the surface stress monitoring 

experiments.  For all cases herein, the initial thin film surface area was of order 2 

cm2 with film thicknesses of order several hundred nanometers. 
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5.1 Thin film Growth Modes 

The fundamental growth modes of thin films can be classified into three 

different growth modes owing to the relative properties of the substrate and the 

depositing species.  For a depositing material “A” that is deposited on a substrate 

material “B”, the properties which most significantly affect the growth behavior 

include the A-A & A-B interaction energies and the respective crystallographic 

structures and lattice parameters of both A & B.  Initially, the influence of the 

substrate on the growth behavior of the depositing materials is large but this 

influence is subsequently attenuated as the deposit grows increasingly thick.  The 

study of these growth modes dates back to the seminal paper published by Bauer 

in 1958124.  The three modes are defined as (1) island, or Volmer-Weber growth, 

(2) layer-by-layer, or Frank-van der Merwe growth, and (3) layer-plus-island, or 

Stranski-Krastanov growth.  A schematic representation of these three growth 

modes at different stages growth is illustrated in Figure 5.1115, 125.   

The Volmer-Weber (VW) growth mode is characterized by individual 

islands which nucleate on the substrate surface and grow until they impinge on 

each other.  Following impingement, the network of islands grows to a continuous 

layer which then thickens with continued deposition.  According to the classic 

work by Bauer and subsequent authors, the thermodynamic criteria for VW 

growth can be summarized by γf > γs + γi, where γf, γs, and γi are the film surface 

energy, the substrate surface energy and the interface energy, respectively115, 124, 

125.  This criterion can be qualitatively understood as a film which tends to bond to 

itself due to relatively high film surface energy and is seen often for metallic thin 
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film deposits.  The island network grows to impingement and dictates the film 

grain structure.  For deposition processes which are performed at high film 

homologous temperatures, the grains grow to equiaxed grains which are oriented 

randomly in the film plane and have low energy orientations out of the plane.  For 

films grown at low homologous temperatures, the preferentially oriented 

island/grains will grow to occlude the other grains113, 115, 126.    

 

 

Figure 5.1 - Schematic representation of the three thin film main growth modes at 

several stages of film thickness (θ).  The (a) Volmer-Weber (VW) growth mode 

occurs through island nucleation and growth, the (b) Stranski-Krastanov (SK) 

mode through a layer plus island progression and the (c) Frank-van der Merwe 

(FvM) mode grows by a layer plus layer process.  Illustration adapted  from 

References115, 125.   
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The Frank-van der Merwe (FvM) growth mode consists of layer-by-layer 

growth which arises from a favorable energetic interaction of the deposit and 

substrate materials at the interface.   The criterion for this type of thin film is γs ≥ 

γf + γi and results in a wetting overlayer of the substrate which forms upon 

deposition of a single film layer.  An additional kinetic requirement for this type 

of growth is that the deposition flux must be sufficiently low and the surface 

diffusion must be large enough for the film surface to avoid critical adatom 

concentration thresholds and remain in the two-dimensional regime.  

The third growth mode is an intermediate case known as Stranski-

Krastanov (SK) growth.  This growth mode is characterized by a thin wetting 

layer which initially form on the substrate followed by a transition to island 

growth.  Thermodynamically, the requirement for SK growth is the same as FvM 

case, however, for SK films a significant lattice mismatch between the substrate 

and the film must exist.  The strain in the film due to the lattice mismatch causes 

the eventual transition form layer growth to islanding in order to reduce the strain 

energy of the composite substrate-film system115, 125. 

5.2 Sources of Stress in Thin Films 

During film growth in both electrochemical and vacuum conditions and 

the ensuing film service conditions, thin films are subject to a variety of 

influences that generate stresses within the films.  Under vacuum conditions, the 

growth stresses and environmental factors have been studied widely and for many 

systems113, 115, 119, 120, 126-152.  In electrochemical environments, the conditions are 

more complex and consequently less well understood.  In this section, many of 
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the possible sources of stress generation are described briefly.  In the chapters that 

follow, the specific case of stress evolution of metallic thin film electrodes in 

additive-free as well as damascene-like solution chemistries is explored 

experimentally.  

5.2.1 Epitaxial Stress 

For some thin film systems, an epitaxial stress will be generated as 

material is deposited on a substrate surface.  During heteroepitaxial growth, the 

substrate provides a template for the arriving atoms of the film.  The film will 

only grow pseudomorphically in systems where free energy can be minimized 

through a coherent interface between film and substrate.  In other words, there 

must be a small lattice mismatch in order for the strain energy in the film to 

remain small.  The lattice mismatch is defined as113, 115 

 

(5.1) 

 

where as and af are the substrate and film lattice constants, respectively.  For some 

FCC metals, the lattice mismatch may range from very small (e.g. 0.002 in the 

case of Ag/Au) to very large mismatches (e.g. 0.114 in the case of Cu/Au).  As 

the thickness of the epitaxial layer increases, strain energy per unit area remains 

uniform and the strain energy per unit volume remains constant.  This essentially 

leads to an increasing amount of total strain energy in the film until it becomes 

more favorable to form misfit dislocations at the interface.  Cammarata developed 

a thermodynamic model to determine a critical thickness at which the epitaxial 
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layer will lose complete registry with the substrate due to built-up strain energy.  

By accounting for the (1) volume elastic energy, (2) the work associated with 

changing the film substrate interfacial structure, and the (3) work required to 

stretch the film surface, Cammarata et al determined that an equilibrium strain 

value as well as the critical film thickness can be calculated by energy 

minimization techniques138, 139 

5.2.2 Film Growth: Initial Compressive Stress in Volmer-Weber Films 

The deposition conditions that lead to epitaxial growth are very specific 

and depend on the film material, the substrate, growth temperature, the deposition 

rate, and the conditions of the deposition system environment.  For a large 

number of materials systems, however, films tend to grow in the VW growth 

mode and retain a polycrystalline microstructure.  This is the case for films 

deposited both in UHV as well electrochemical environments58, 153-155.  As 

described above, VW growth begins with island nucleation on the substrate 

followed by growth and coalescence of the islands.  The growth then proceeds 

from island coalescence to full film contiguity followed by deposit thickening and 

grain coarsening.  Due to the development of high resolution thin film stress 

monitoring, measurement of real time stress-structure evolution has become a 

common technique in the field of thin film science113, 144, 156, 157.  These real time 

measurements have provided insights into the many physical processes that occur 

during film formation and the dynamic relationship between these processes and 

thin film stress evolution. 
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The initial change in stress that is observed during VW film growth is a 

compressive transient that corresponds to the island nucleation events that occur 

as the depositing species first impinge on the substrate.  Because the nuclei are 

small with respect to bulk material, an excess surface stress due to large particle 

curvature creates a Laplace pressure which causes the nuclei to take smaller 

atomic lattice spacing.  As the nuclei reach a critical size and become firmly 

adhered to the substrate they become constrained from any further increase in 

lattice spacing due to traction from the substrate.  Any further size dependent 

change in the equilibrium lattice spacing is prevented by the substrate and results 

in a compressive film stress141.  The stress that is communicated through the film-

substrate interface acts to deform the substrate and is estimated by113 

 

(5.2) 

 

where f is the surface stress, R is the radius of the nucleus and Rld is the “lock-

down” radius of the crystallite (e.g. the radius at which the nucleus becomes 

locked into traction with the substrate).  

5.2.3 Film Growth: Tensile Stress Due to Grain Boundary Formation in Volmer-

Weber Films 

Following compressive stress during nucleation and the initial growth 

stages, a tensile stress is often observed during thin film deposition.  The most 

widely accepted interpretation of this behavior is related the coalescence of 
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gaps between encroaching island boundaries are closed by the formation of grain 

boundaries between the island-grains.  In order to form the boundary in the 

absence of extra material, the islands deform elastically in order to reduce free 

surface area and the excess energy associated with that area.  This process results 

in the elimination of these two free surfaces and a reduction of the total energy of 

the system.  The resulting stress can be estimated based on a simplified version of 

this model given by Freund and Suresh113 

 

(5.3) 

 

where the term [Eel/(1-ν)]f is the biaxial modulus of the film, dgr is the size of the 

island-grain, and δgap is the distance between the impinging island edges.  

Additionally, the authors suggest that the largest nominal gap that could be closed 

by this phenomenon is of the order δgap = 0.17 nm, yielding an tensile coalescence 

stress estimate of order 1 GPa113.  Further approaches to this problem have 

included hertzian contact modeling, reverse crack growth, as well as finite 

element modeling and have yielded a wide range of values in the magnitude of 

film stress generation115, 159. 
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there must be an additional compressive stress generation mechanism in addition 

to the possible existence of relaxation mechanisms which would tend to relax the 

tensile island coalescence stresses.  Often, the average stress in the film will 

approach a constant value of compressive stress that is dependent on the 

magnitude of the deposition flux as well as the temperature.  While the 

experimental observation of this behavior has been widely documented, the exact 

mechanism behind the compressive stress remains a topic of research and debate 

in the literature115, 119, 127, 133, 143, 156, 157, 160.  The proposed mechanisms for this 

compressive stress generation have been based on reconciling the observations of 

constant average compressive stress and the presence of reversible stress during 

growth interruptions58, 115, 119, 127, 129, 134, 141, 143, 150, 155, 160-168.  These so called 

reversible stresses are relaxations of the film stress to decreased magnitudes once 

film growth ceases.  They are reversible in that the magnitude of the compressive 

growth stress is re-established as film growth is resumed.  Additionally, it has 

been suggested that grain boundaries (GBs) play an important role in the 

generation of the long term growth stress evolution.  Long term tensile stresses 

have been observed for Pd films grown on a Pt single crystal surface and whereas 

Pd films grown on polycrystalline Pt substrates exhibit compressive stresses113.  

Thus, it seems possible that the compressive stresses are generated by 

incorporation of extra material into the grain boundaries during the growth 

process.  According to Spaepen, a small number of excess atoms incorporated into 

the grain boundaries could generate the magnitude of compressive stress that has 

been observed experimentally163.  His model accounts for the incorporation of the 
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extra atoms into the grain boundary through a trapping mechanism that is 

proposed to occur as adjacent ledges merge on a growing film.  Another model 

proposed by Chason et al, argues that a supersaturation of high energy, high 

mobility adatoms on a growing film surface will establish a chemical potential 

gradient between the film surface and grain boundaries.  The supersaturation is 

provided by the impinging deposition flux and adatoms are subsequently driven to 

migrate down into grain boundaries.  A compressive stress develops in the film 

which opposes further adatom migration into the GBs and a steady-state stress 

evolution is established134, 143, 145, 162, 165.  This model is convenient to the 

explanation of reversible stresses with high adatom mobility and it is argued that 

upon interruption of the deposition flux the compressive stress may be relaxed by 

the reverse migration of adatoms from the GB in the absence of a supersaturation 

of adatoms on the film surface.  

5.2.5 Stress Generation by Surface Defects 

In many cases of thin film growth, the deposition flux to the surface 

creates a large, non-equilibrium concentration of adatoms.  An excess population 

of “positive” surface defects (adatoms) may arise due to slow diffusive kinetics 

relative to depositional flux.  Analogously, in electrochemical systems a non-

equilibrium number of surface vacancies or “negative” defects may also exist 

under requisite values of electrode potential and solution pH.  Under the 

conditions of low mobility such as low homologous temperature or diffusive 

energy barriers (e.g. Ehrlich-Schwoebel), defect mobility is limited and an excess 

amount of steady state stress is generated in a metal film.  In addition to 
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interactions between adatoms or between vacancies, step ledges and kinks may 

also interact and modify the stress state of the film surface.  One of the earliest 

treatments of these types of systems was done by Lau and Kohn169.  These authors 

found that the isotropic strain field due to the force-dipole associated with homo-

adatom on an isotropically elastic surface to be 

 

(5.4) 

 

where Eel is the elastic modulus and ν is Poisson’s ratio of the material, where r 

and A are the radial distance from and force dipole associated with the homo-

adatom on the film surface.  Using this type of model, surface stresses arising 

from overlapping strain fields of excess surface defects may be estimated.  For 

identical atoms the interaction is repulsive, generating a compressive stress 

whereas for dissimilar surface adatoms the interaction may be either repulsive or 

attractive170.  Friesen et al have used force-dipole arguments to explain the 

presence of compressive stress during the growth of VW films.  They found that 

in the pre-coalescence regime of VW film growth, the presence of a non-

equilibrium adatom concentration could likely account for the observed stresses in 

absence of grain boundaries.  Furthermore, embedded atom method calculations 

yielded a value for the force-dipole magnitude (A) that was in agreement with that 

calculated from experimental stress data taken during deposition of Cu on 

Cu{111}119, 120.  The transient nature of the surface defect populations allow this 

model to be applied to the reversible stresses observed through VW thin film 
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growth.  Based on arguments and observations of several groups, it seems likely 

that both this force-dipole model and the adatom-grain boundary model 

(explained above) are applicable to stress generation in thin film systems 

depending on the specific conditions of and during certain phases of the 

deposition process. 

5.2.6 Thermally Induced Stresses 

During the process of UHV film deposition, the substrate/film composite 

structure may be subject to several different temperature variations arising from 

many sources.  These sources include controlled heating sources that are used to 

produce desired microstructures, radiative heating sources from deposition 

sources, as well as any other thermal components of the deposition system.  As 

the temperature departs from the service temperature of the sample, a stress may 

develop in the film due to a difference in thermal expansion behaviors of the film 

and substrate materials.  For a change in temperature, the thermal stress of the 

film can be calculated by 

 

(5.5) 

 

where αs and αf are the coefficients of thermal expansion of the substrate and the 

film, [Eel/(1-ν)]f is the biaxial modulus of the film and ΔT is the temperature 

difference imposed on the sample121, 152.  For the case of a film in service, joule 

heating can lead to large temperature changes and concomitant thermal stresses.  

Joule heating induced thermal stresses thus represent an especially important 
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problem for IC interconnects in relation to the reliability of conducting 

interconnect lines which are subject to large current densities (~106 A/cm2) at 

gigahertz frequencies while in service36. 

5.2.7 Grain Growth Stresses 

Film growth under non-equilibrium conditions can result in excess grain 

boundary length within the microstructure of the film.  Following the deposition 

process, a tensile stress may develop via grain growth or grain boundary 

elimination.  Chaudhari was one of the first to consider a model for this 

mechanism as a source of stress in thin films171.  Basically, this model considers 

the tensile stress to be a result of the competition between two physical processes.  

The first process is the reduction of excess energy associated with grain 

boundaries.  This basically derives from the excess nature of the grain boundary 

energy relative to that of the lattice within a grain.  Under non-equilibrium 

conditions, excess grain boundary area within the film will tend to decrease in 

order reduce the total energy of the film.  However, the densification process 

leads to an increase in elastic energy stored in the film due to the mechanical 

constraints of film adhesion to the substrate.  Thus the grain growth induced film 

stress can be calculated using the initial and final average grain sizes, L0 and L, 

the excess volume per unit grain boundary area, Δa, and the biaxial modulus, 

[Eel/(1-ν)]f 
121, 

 

(5.6) 
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5.2.8 Stress Due to Excess Vacancy Reduction 

The deposition of a film onto a substrate held at low temperatures can 

induce an excess concentration of vacancies in the growing film.  This occurs 

when the deposition flux creates a film growth rate that overcomes the diffusive 

flux of vacancies to the free surface and a non-equilibrium film structure is 

formed.  The increased number of vacancies in the film experiences a relatively 

large driving force to diffuse to and be annihilated at the surface, grain boundaries, 

dislocations and the film/substrate interface.  Because the individual grains are 

constrained at the interface by the substrate or at grain boundaries by the adjacent 

grains, a tensile stress in generated upon annihilation of the vacancies.  At grain 

boundaries, the vacancy is annihilated by the combination with a grain boundary 

atom and the magnitude of stress is estimated by 

 

(5.7) 

 

where Δc is the total number of annihilating vacancies regardless of where they 

annihilate, Ω, and Ωv are the atomic volume and the vacancy volume of the film 

material, respectively.  Whereas this estimate may yield stresses of order several 

GPa, the effective contribution to the stress is likely to be mitigated by other 

atomic scale mechanisms such as dislocation motion and unconstrained grain 

boundary void growth.  
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5.2.9 Nanotwin Formation 

A recent study has been published on the role of twin formation in 

electrolytically deposited Cu films172.  The motivation behind this study and other 

studies of highly twinned Cu stems from the fact that a high density of nanotwins 

in Cu has been shown to improve mechanical strength while maintaining both 

advantageous levels of electrical conductivity and ductility173.  According to first 

principles calculations, nanotwin formation is driven by the energy difference 

between strain relaxed nanotwinned Cu and highly strained FCC Cu, which is 

much less stable174.  Because pulsed electrodeposition of Cu leads to a higher 

density of twin boundaries, Xu et al were able to use in situ surface stress 

monitoring to study the real time stress response of pulsed deposition of Cu on a 

gold substrate.  The film was deposited by unusually large current density pulses 

(100-200 mA/cm2) over very short periods of 0.5 seconds or less.  Due to the 

deposition rate, large tensile stresses (of order a few N/m) were generated initially 

during the current pulses followed by compressive relaxations which were both 

smaller (~60% of the growth stress) and slower and occurred during ~10 second 

intervals between deposition pulses.  By means of ex situ, post deposition 

microscopy techniques, the authors correlated the compressive stress relaxations 

with nanotwin formation which they argue occurs by recrystallization of small 

nonequilibrium grains which resulted from the high deposition rate.  It is apparent 

from this study, in addition to other numerous studies of the stress relaxation 

transient behavior, that the overall stress evolution may be the result of a 

combination of factors.  In the case of the relaxation processes following high rate, 
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pulsed electrodeposition of Cu, the relaxation process involves an atomic 

rearrangement which is a true relaxation process in the sense that the relaxation 

process is (1) smaller in magnitude, (2) opposite in sign from that of the growth 

stress and (3) occurs in the absence of deposition flux.  

5.2.10 Contaminant Inclusion & Trapping of Electrolyte 

It has been found that contaminant inclusion in growing thin films can 

have a significant effect on the residual stress as well as other post deposition 

stress related phenomena.  While it is apparent that the incorporation of excess, 

foreign material in the film would likely influence the stress evolution, a 

definitive understanding or model of contaminant effects is not available.  

Hoffman assumed that a decrease in surface energy and increase in compressive 

film stress would result from impurity atoms and molecules that become trapped 

or tend to migrate into grain boundaries158.  More recently, Kennedy et al 

demonstrated that even small concentrations of oxygen contamination in Cu films 

grown under vacuum conditions contribute significantly to compressive stress 

generation131.  Under electrochemical conditions, the problem becomes 

significantly more complex.  In fact, the complexity increases drastically for 

common electroplating conditions due to additive and electrolyte chemistry.  

Several studies have found an increase in contamination for deposition processes 

performed in the presence of additives61, 175, 176.  Additive species were found to 

have a profound impact on the recrystallization behavior and simultaneous 

internal stress evolution of damascene copper films following the electroplating 

process, a phenomenon known as “self annealing.”  The self-annealing 
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phenomenon (explained in detail below) is only observed on copper films that are 

plated in additive containing solutions and is characterized by a favorable 

decrease in film resistivity as well as a compressive film stress relaxation.  Direct 

evidence is not available as to the sign or magnitude of the stress associated with 

additive incorporation; however, it will be shown in this work that the 

electrochemically induced film stresses are larger in magnitude for films 

deposited in the presence of additive species.    

5.2.11 In-situ Surface Stress Contributions: Electrochemical Considerations 

The transition from thin film stress analysis in UHV environments to 

electrochemical environments requires the consideration a significantly larger 

number of stress causing factors.  For example, the main purpose behind UHV 

work is to virtually eliminate the presence of unwanted influences (e.g. 

contaminants, temperature gradients, etc.) and create an ultra clean environment.  

In fact, ultra high vacuum work has the advantage of pressure monitoring and real 

time residual gas analysis (RGA) which both yield information that is directly 

related to the composition of the environment surrounding the sample 131.  

Conversely, electrochemical environments require the immersion of the sample 

into a condensed phase which is often subject to non-uniform temperature 

gradients, convective transport, and is usually multicomponent in nature.  

Furthermore, potential control of an electrode sample affords the electrochemist 

much more control over the prevailing thermodynamic state of the sample.  It is 

therefore extremely important to eliminate, minimize or account for all of the 

possible stress generation factors during electrochemical stress investigations. 



  96 

Electrodeposition is the process by which material is added to the 

electrode surface by reduction of ionic species.  Depending on the solution 

composition and the experimental details (e.g. potential, etc.), the material may be 

added in the form of molecular adsorbates, adatoms, ledge and kink site 

attachments, two dimensional islands, or ramified (three dimensional) deposits.  

While the stress that is generated by electrolytic deposition is highly dependent on 

many factors such as temperature, geometry/crystallography of the substrate, 

deposition rate, and plating bath composition, homoepitaxial type depositions (e.g. 

Cu on Cu) often produce compressive stresses114, 165, 177.  

Oxidative stripping or electrochemical etching is the reverse process of 

electrolytic deposition.  The removal of metal atoms from the surface may occur 

as a receding ledge or terrace or possibly as a surface vacancy.  This unique 

ability to precisely remove material in a fashion that mirrors the deposition 

process (as opposed to more destructive methods such as ion milling and 

sputtering) is one of the main advantages of electrochemical environments over 

UHV techniques.   

Electrocapillarity was described at length in Chapter 4 above but can be 

considered more simply as a change in surface stress due to a change in applied 

potential in the absence of significant adsorption or other chemical reaction.  For 

liquid electrodes, a maximum in surface tension is reached at the potential of zero 

charge (see Figure 4.2), but for solid electrodes the surface stress generally has 

significant slope and may not have an experimentally accessible maximum (see 

Appendix F)98, 178.  Experimental electrocapillarity information is often difficult to 
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collect and in many cases appears to be inaccessible by direct means due to the 

lack of well defined pzc values or due to the onset of surface reactions such as 

surface oxidation, solvent redox reactions, specific adsorption, etc.  A more in 

depth treatment of Cu electrocapillarity in sulfuric acid as it pertains to this 

research is given in Chapter 8. 

5.3 Reliability of Interconnect Structures 

As a thin film is deposited, internal stresses build up and can affect the 

properties of the film.  This introduction of residual stress due to fabrication 

processing is very difficult to avoid.  Residual stresses can induce a number of 

undesirable consequences including, excessive deformation, fracture, 

delamination, and microstructural changes in the films.  Despite these prevailing 

conditions, many thin film structures have been successfully employed in 

engineering systems to produce a wide range of technological improvements that 

affect both fundamental scientific studies as well as everyday life.  Because the 

mechanical integrity of nanoscale structures remains a major limitation in many 

technologies, the need for characterization of and engineering solutions for stress 

related failures is an ever greater challenge113.  As it relates to the reliability of IC 

interconnect structures, knowledge of stress generation during film growth, during 

the production steps that follow deposition, as well as during the service lifetime 

of the IC become crucial.   
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5.3.1 Recrystallization/Self Anneal 

During deposition of Cu films from additive containing solutions, 

nucleation characteristics are drastically different from those of the UHV or 

additive free deposition cases.  Grains are continually formed throughout the 

deposition process under damascene like conditions and the average grain size is 

relatively small (i.e. <100 nm)8, 179.  Because the grain structure is not at 

equilibrium following the deposition process (large excess defect energy 

associated with dislocations and stacking faults), the films undergo a grain growth 

process at room temperature that begins immediately following the film 

deposition180-182.  During the grain growth process, these Cu grains have been 

observed to grow to dimensions that are several times larger than the nominal film 

thickness.  In addition to grain growth processes, other characteristics of the films 

evolve simultaneously to yield electrodeposits that are more ductile, softer, have 

greater {111} texture and are ~20% more conductive.  The time duration of the 

evolution of these properties has been known last from a few days up to a few 

months depending on the initial grain structure and the impurity content of the as-

deposited film8, 175, 183. 

During the electrolytic plating process, bath additives become 

incorporated into the growing film.  Despite the fact that impurity concentrations 

are very low (of order ~1 wt% or less), impurities are known to have significant 

effect on the structure and properties of the electrodeposits184.  The incorporation 

process often involves redox reactions of the additive species and results in the 

presence of organic fragments in the grain boundaries that are relatively free to  
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Figure 5.2 - Self-annealing of a 2000 nm electroplated Cu layer (on Ta) 

investigated by resistivity and stress measurements.  The segregation and release 

of organic contaminants was measured by glow discharge optical emission 

spectrometry.  Figure reproduced with permission from Reference183. 

 

 

 

diffuse to the deposit surface and eventually desorb.  Stangl et al used glow 

discharge optical emission spectrometry to correlate the organic impurity loss 

phenomena with the resistivity and stress measurements during recrystallization 

of Cu electrodeposits shown in Figure 5.2175, 183.  The first 5 hours that follow 

deposition are interpreted as an incubation time that is needed for new secondary 

grains to nucleate within the high energy, fine-grained deposit.  Over this period, 

the resistivity decreases only slightly while a segregation of incorporated 
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impurities occurs.  After ~5 hours, significant recrystallization begins and is 

associated with a steep decrease in both resistivity and compressive film stress.  

Following the recrystallization process (~14 hours total), residual stress 

asymptotically approaches zero while the resistivity approaches a constant value 

that is close to the theoretical value for bulk Cu, 1.9 and 1.7 μΩ-cm respectively.  

5.3.2 Delamination  

Metallic interconnect structures are subject to a wide range of stresses 

during wafer processing, including intrinsic growth stresses and extrinsic thermal 

cycling stresses185.  Because Cu lines are surrounded by diffusion barriers, 

interlayer dielectric layers and the silicon substrate, serious consideration of the 

effect of thermal fluctuations must be considered.  Each interface in this 

multilayer structure has unique mechanical properties and may be subject to 

failure.  According to work done by Dunders et al, crack growth at the interface of 

two materials is dependent on both the elastic moduli and Poisson ratio of both 

sides of the interface as well as the stress intensity factors for both mode I & II 

crack loading113, 186.  The susceptibility of these structures to stress induced 

fracture is enhanced relative to planar thin films because of the complex geometry 

of the metallized structures.  The multiple edges and interfaces can function as 

stress concentration sites.  Unfortunately, the combination of a non-zero nominal 

stress and a large number of stress concentration sites makes Cu interconnect 

structures vulnerable to failure by delamination.   
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5.3.3 Electromigration 

A typical interconnect structure contains metal lines that are smaller 500 

nm wide and sustain currents of around 1 mA.  In the most extreme cases, this 

results in line current densities of order 106 A/cm2.  In combination with the large 

amount of heat that is generated due to resistive losses in the metal lines, a  

 

 

Figure 5.3 - Focused ion beam cross section image of a Cu interconnect line after 

an EM lifetime experiment.  The left side shows nascent void formation in the 

line and the right side reveals complete disconnection by the formation of a void.  

Figure reproduced with  permission from Reference176. 

 

 

process known as electromigration (EM) can occur.  Electromigration phenomena 

was first observed in circuit interconnects during the 1960s in Al circuit wiring of 

computer chips3.  It constitutes one of the most common failure mechanisms of IC 

interconnects whereby the lines fail by means of metal extrusion (hillock 

formation) or void formation (see Figure 5.3).  Due to a transfer of momentum 

from the “electron wind” to the atoms along the conducting pathway, enhanced 
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atomic displacement occurs as diffusing atoms preferentially move in the 

direction of electron transport187, 188.  The building up of atoms near the electron 

sink generates a compressively stressed region and the depletion of metal atoms 

near the electron source results in a tensile-stress region and eventually film 

rupture and/or voiding can occur181, 187.  The transition to copper interconnects 

brought about a greater resistance to EM and longer chip lifetimes, yet the issue 

remains as a primary concern  for the reliability of IC interconnects3.   

One of the main advantages of copper versus aluminum is a higher 

melting temperature.  This makes the typical IC working temperature (e.g. 100º 

C) a relatively low homologous temperature for Cu as compared to Al and 

ensures that atomic diffusion rates are significantly smaller (see Table 5.1)188.   

 

Table 5.1 - Melting Point and Diffusivities for Cu and Al188 

The subscripts of the different diffusivities refer to diffusion paths through the 

lattice, l, and along the grain boundary, GB, or a free surface, s. 

 

 

However, as it turns out the improvement is not as large one might expect.  

Whereas grain boundary is the dominant path for EM induced mass flux in Al 

 Melting 
Point (K) 

Homologous 
Temperature at 100°C 

Diffusivity at 100°C 
(cm2/s) 

Dl = 7*10-28 
DGB = 3*10-15 Copper 1356 0.275 

Ds = 10-12 
Dl = 1.5*10-19 Aluminum 933 0.4 DGB = 6*10-11 
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interconnects, Cu electromigration damage occurs by surface diffusion at 

interfaces.  Surface diffusion is important in these cases due to the poor adhesion 

characteristics of Cu structures at barrier layer and interlayer dielectric (ILD) 

interfaces, creating major short circuit pathways for diffusion that leads to 

eventual voids or ruptures.  In combination with thermally induced stresses and 

stress migration (see below) type of behavior, EM is an insidious phenomenon 

which remains a major problem and current subject of study3, 125, 176, 187-195. 

5.3.4 Stress migration 

 In addition to the residual stresses due to film growth and the EM induced 

mass flux, another contributing factor to stress in IC interconnects is thermal 

expansion mismatch between interconnect and layer/cladding materials2, 179, 196. In 

fact, like EM, stress migration behavior of Cu interconnects depends strongly on 

the characteristics of the diffusion barrier-Cu seed and Cu line-capping layer 

interfaces.  While the stress gradient is generally very anisotropic in Cu lines, the 

hydrostatic stress (i.e. the driving force for void nucleation) has been found to be 

weakly dependent on line thickness179. The term stress migration is used to refer 

to a phenomenon that is different from but related to EM.  That is, stress 

migration and stress voiding is thought to occur through the diffusion of a 

supersaturated vacancy population and perhaps micron-scale voids that result 

from the Cu deposition and annealing processes8.  For stress migration related 

failures, the root cause is usually a void or opening that forms near the base of a 

via that ultimately leads to an open circuit.  Of course if a Cu strip is not confined 

by cladding or otherwise, surfaces which serve as both extremely effective 
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sources as well as sinks for vacancies and are less susceptible to rupture since 

stresses can be relaxed at the free surface188.   However, for Cu interconnects 

encased in relatively rigid dielectric and cladding material, stresses can build 

inside the lines and are only slowly relieved by vacancy diffusion and void 

formation196.  Vacancy diffusion occurs in response to internal stress gradient and 

constitutes a mass flux which is similar to the atomic diffusion observed in EM.  

However, stress is the driving force for vacancy movement whereas electron 

transport is the mechanism by which atoms migrate.   

It has been found that the severity of the stress migration behavior is 

dependent upon a variety of factors including Cu purity, film thickness, geometry, 

fill quality, etc.  Stress measurements of Cu during thermal cycling has indicated 

that high purity films that have greater strength and lower ductility tend to 

accumulate more stress than the low purity films8.  Similarly, Alers et al 

determined that thicker films with lower yield stresses allow for plastic 

dissipation of strain energy and are therefore less susceptible to failure by stress 

migration196.  Also, the presence of voids due to incomplete filling of high aspect 

ratio trenches can lead to early failure by stress migration.  Under these 

circumstances, stress migration testing is very sensitive to fill quality because the 

fill related voids tend to migrate to the feature sidewalls or the line-via 

intersection during testing causing premature failure8. 
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CHAPTER 6 

OBJECTIVES OF THIS WORK 

The work presented in this dissertation is a product of the unique ability to 

combine real time, in situ, ultra high resolution surface stress monitoring with 

other experimental techniques that have been developed within the Friesen 

Research Group.  The measurements presented herein and in other publications 

produced by the group not only constitute some of the highest resolution surface 

stress measurements published to date, they also represent a strategic combination 

of the group’s expertise and experience in surface stress monitoring with both 

electrochemistry and UHV techniques98, 116, 131, 178, 197. 

Under electrochemical conditions, surface stress monitoring as an 

analytical tool features high sensitivity to both the electrode surface and the near-

surface solution region, including the structure of the electrochemical double-

layer and any adsorbed species.  Because of this sensitivity, surface stress 

measurements are well suited for the study of a variety of systems involving 

surfaces (interfaces).  This technique has been previously used to measure both 

the small stress changes due to atomic/molecular scale processes such as 

adsorption and adsorbate re-orientation98, 112, 198-200 and underpotential deposition 

(upd) of metals108, 118, 155, 201-203 as well as larger bulk stress changes58, 116, 128, 129, 

146, 153-155, 172 in structures approaching the micron scale in size.   

The strategy that was used in this work consisted of either characterization 

or minimization of certain stress generating processes in order to distinguish the 

stress contribution from a particular process of interest.  For example, a large 
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portion of this dissertation is centered on the surface stress evolution of short 

deposition/stripping pulses performed on Cu films in damascene like solutions.  

The stress results from these experiments include contributions from 

electrocapillarity (ecap) effects and other solution side processes (such as 

adsorption, etc.) in addition to film-growth and -etching induced surface stresses. 

Because electrocapillarity effects are always present, it was necessary to 

characterize the ecap behavior of a copper film in the acid plating solution in 

order to adequately account for it during other investigations.  Similarly, because 

deposition (and stripping) effects on stress can be relatively large and because the 

actual surface stress magnitude depends on the amount of material that is 

deposited, the deposit thicknesses were limited to small values (e.g. <10 ML) in 

order to minimize that contribution and enable the observation of other smaller 

stress generation phenomena (e.g. solution side adsorption processes).  Moreover, 

this experimental approach is reflected in all of the projects presented herein; for a 

given system the overall surface stress behavior was studied by considering and 

investigating each individual source of stress through careful control of 

electrochemical, chemical and physical experimental parameters.  Thus, the 

objective of this work was to leverage the expertise of the group in both 

electrochemistry and surface stress monitoring and study a variety of systems in 

which this expertise could yield important insight.  In the following chapters, the 

results and corresponding analysis of several projects that met this criterion are 

broken into various chapters or appendices and presented for consideration by the 

reader.  These projects include (1) the stress evolution during deposition and 
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stripping of Cu thin metal films in damascene-like solutions (Chapters 8-10), (2) 

surface stress changes of Cu thin films induced by solution side effects at the open 

circuit potential (Chapter 12), and (3) oxygen reduction and electrocapillarity of 

noble metal thin films (Appendix F).   
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CHAPTER 7 

EXPERIMENTAL DETAILS 

Several types of experiments are covered within this dissertation.  

Generally, all of the experiments follow a single pattern which was to combine a 

specially prepared solution (i.e. specific composition, pH, oxygen content, etc) 

with a patterned, UHV-deposited metal electrode in a custom designed cell that 

allowed for both electrochemical control of the cantilevered electrode as well as 

simultaneous measurement of the stress-induced deflection.  Experimental 

procedures ranged from typical electrochemical techniques to more 

unconventional electrolyte displacement procedures, all while monitoring the 

evolving surface stress of the electrode.  In every case, the sample surface was 

subjected to the stimuli of an electrochemical reaction, a molecular adsorption 

type process, or some type of environmental change (e.g. copper ion 

concentration, solution additives, etc).  The subsequent response at the electrode-

electrolyte interface produces a change in the stress state of the electrode surface 

and causes the sample to bend.   

7.1 Sample Preparation 

The cantilever/electrode assembly consisted of a 160 μm thick cleaned 

glass substrate and patterned metallic film. Samples were prepared in a 5 x 10-9 

Torr base pressure UHV system and the electrode film was patterned using a 

through hard-mask to produce the electrochemical working electrode and 

capacitance sense electrode.  The electrodes were prepared by first depositing 20 

Å of Cr as an adhesion layer followed by a Cu (or other electrode metal of 
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interest) deposition to approximately 250 nm at approximately 1 Å/s.  Under the 

stated growth conditions the films have a strong {111}-texture as confirmed by x-

ray diffraction pole figures.  In all cases the working electrode surface area was 2 

cm2. 

 

 

Figure 7.1 - Image (a) and illustration (b) of the patterned electrode sample used 

for the electrochemical surface stress measurements.  The samples consisted of a 

working electrode (WE) film and a capacitive sense (CS) electrode film. During 

the experiments the sample was clamped at the level (CL) and partially submersed 

in the electrolyte up to a level (EL).  The sample dimensions L, l, X, W, and w 

that are needed in order calibrate the cell per eq 7.6 and are defined in (b).  Figure 

reproduced with permission from Reference98. 
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As seen in Figure 7.1, each sample consisted of two electrically isolated 

films/electrodes.  The first electrode located near the bottom of the glass slide is 

immersed in the electrolyte during the experiments and serves as the working 

electrode (WE) upon which the reactions occur.  The other electrode serves as the 

capacitive sense electrode for the surface stress monitor and is used to measure 

stress-induced deflection of the cantilevered sample.  The capacitive sense 

electrode must also be isolated physically and electrically from the solution in 

order prevent catastrophic signal interference and corrosion-type damage to the 

film.  Both electrodes must be electrically connected to external electronics, the 

WE to the potentiostat and the capacitive sense electrode to the stress monitor.  

Obviously, it is paramount that these electrical connection requirements not 

interfere mechanically with the stress-induced deflections.  Furthermore, the 

wiring connections must remain electrically isolated from the rest of the apparatus, 

the electrolyte, and each other.  To this end, the sample geometry and 

corresponding UHV sample mask and holder were designed such that contact is 

made to both the working electrode and the capacitive sense electrode through 

thin metal films which are 2 mm wide and which extend to the bottom of the slide 

(see Figure 7.1).  Contact is then made through the gold wire contacts which are 

integrated into the polytetrafluoroethylene (PTFE) electrochemical cell and 

located below the clamping level (i.e. not exposed to the electrolyte).  Between 

the two main electrode areas (i.e. above the WE and below the capacitive sense 

electrode) there is a 5 mm gap which determines the fill level and the volume of 

solution that is loaded into the cell.  Because electrical contact to the capacitive 
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sense electrode must be made below the clamping level, the as-deposited, 2 mm 

wide portion of the metal film that runs the length of the glass slide is protected 

by means of a thin layer of chemically inert enamel (e.g. nail polish).   

As an ancillary but important detail of the sample preparation process, the 

careful use of an enamel is absolutely essential yet represents a possible source of 

contamination.  Great care must be taken to minimize the probability of 

contamination issues arising from the use of the enamel.  That is, the choice of 

actual brand and composition of the enamel (the product used herein for the 

enamel application was nail polish) as well as the method in which it is applied to 

the sample is important.  The application of the enamel must be sufficient to cover 

the metal film but should minimally increase the overall thickness of the sample.  

The reasoning for this is two-fold.  First, the enamel must be permitted to dry/cure 

thoroughly prior to exposure to the electrolytic solutions and a minimum amount 

of enamel reduces this time requirement.  During this drying time the WE surface 

is exposed to both ambient oxygen as well as volatile organic species that are 

being released by the enamel as it dries, both of which may result in undesirable 

surface contamination.  Second, because the composite thickness of the sample 

(glass & metal film) is small (~160 μm), the addition of superfluous amounts of 

enamel can have unwanted effects on the bending motion of the cantilever. 
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7.2 Electrochemical Surface Stress Monitoring Cell 

Figure 7.2 shows a cross sectional schematic and top view photo of the 

assembled stress measurement cell.  The major feature of the cell is that it holds 

both the capacitance-based surface stress sensor and vertically oriented 

cantilevered electrode at a fixed geometry for simplified and high throughput 

experimentation.  Affectionately referred to as “The Maytag,” the initial design of 

the cell was first conceptualized in 2006 by through a series of discussions 

 

 

 

Figure 7.2 - Image (a) and illustration (b) of the custom PTFE cell used for the 

electrochemical surface stress measurements.  The monolithic cell was machined 

such that a cantilever sample (C) could be clamped in place, the working 

electrode surface being below the electrolyte (E) level and the capacitive sense 

electrode directly adjacent to the surface stress monitor sensor (S).  Figure 

reproduced with permission from Reference98. 
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between Jordan Kennedy, Dr. Cody Friesen, and myself.  The basic concept was 

adapted from a similar apparatus that has been in use in the Carl Thompson group 

at MIT as well as the Friesen Research Group at ASU for several years115, 131.  

The sample clamp consists of triangle “push block” (see Appendix A) in which 

has a milled-out groove that has the dimensions of and receives the glass slide 

sample during mounting, significantly reducing problems related to drift and 

sample placement error.  The other face of the sample clamp has integrated gold 

contact pins for making electrical contact to both the electrochemical and 

capacitance sensing electrodes.  The electrochemical cell consisted of a 

monolithic design that was machined from a single piece of PTFE.  These 

conditions allowed for a cell that is extremely chemically inert, easy to clean, and 

most importantly, simple to construct and calibrate prior to the start of each 

experiment.  Both the initial sketches and corresponding computer assisted 

engineering drawings that were produced in order to fabricate the cell can be 

found in Appendix A.  The monolithic design of this cell not only provides for a 

simple method to take simultaneous electrochemical and surface stress 

measurements, it also facilities a significantly more straightforward stress 

measurement process over the other techniques such as the piezoelectric method, 

extensometric method, laser based wafer curvature monitoring, etc204.   

7.3 Surface Stress Monitor: Calibration & Data Collection 

Many details associated with these experimental processes have been 

presented previously98, 178.  The in situ surface stress monitoring is carried out by 

a cantilever curvature based technique.  The surface stress sensor is a device that 
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monitors cantilever tip deflection by means of a capacitive measurement.  The 

measured capacitance, C, is transduced to an output voltage, V, which scales 

linearly with deflection, d, (i.e. dVC ∝∝ ).  Because capacitance changes can be 

detected with very high sensitivity, the surface stress monitor collects data at both 

ultra high (sub-nanometer) deflection resolution and time base (of order 1 kHz) 

resolution (electronics only)119, 127.   

As explained in Chapter 4 above, the Stoney relation (eq 4.20) relates the 

curvature, κ, of a cantilevered sample to the in-plane stresses present in the film.  

However, because sample deflection is the actual experimental variable that is 

measured, the relation between deflection and curvature must be established 

based on the geometry of the sample.  Recently, Mickelson has outlined the 

derivation of the relation between the measured deflection and the stress-thickness 

for an experimental apparatus identical to that used in this work117.  The result of 

the derivation is a function which defines a relation between the change in stress-

thickness and change in output voltage of the stress monitor, i.e. 

 

(7.1) 

 

where K is the calibration factor and ΔV is the change in output voltage.  

Basically the derivation is accomplished by first relating the curvature of the WE 

to the deflection, u(x), 
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at a distance, x, from the clamped edge and where l is the length of the WE.  This 

result is then rearranged as an expression for curvature and then substituted into 

eq 4.20 to produce a relation between deflection and stress-thickness for this 

geometry 

 

(7.3) 

 

where Δu is now the change in deflection.  However, this relation must still be 

expressed in terms of the output voltage from the surface stress monitor.  To 

accomplish this, a calibration protocol was developed utilizing gravity induced 

deflections of the cantilevered sample.  The deflection of a cantilevered beam 

under uniform distributed load is given as205, 

 

(7.4) 
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elastic modulus, and the area moment of inertia of the cantilevered beam 

respectively.  The load is applied as the assembled cell is oriented such that the 

sample bends in response the force of gravity (twice, both towards and away from 

the sensor) and a corresponding total output voltage is recorded.  Thus by defining 
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and the volume and density of the sample, a final relation that relates the stress 

monitor output voltage to stress-thickness: 

 

(7.5) 

 

where ρs is the density of the glass substrate, ΔVtot is the total change in output 

voltage during the gravity calibration, and W/w is a term that appropriately scales 

the stress-voltage observation relative to the ratio of widths of the WE, w, and 

substrate, W.  Inspection of eq 7.5 reveals a the identity of the calibration factor, K, 

described in eq 7.6, 

 

(7.6) 

 

Because the geometry of the samples is essentially identical across all of the 

experiments covered in this dissertation, sample to sample variation in K is small 

and depends only on ΔVtot.  The major advantage of this gravity calibration 

protocol can be seen by inspection of eq 7.5; calibrating the experimental setup in 

this fashion removes both elastic modulus, E, and thickness, hs
2, terms by 

cancellation, both of which represent significant sources of error that are common 

to wafer curvature measurements.  

7.4 Experimental Preparation and Protocol 

The protocol for cleaning and preparation of the assembly of the sample 

and cell was virtually identical across all experiments presented in this 
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dissertation.  All the glassware, the PTFE electrochemical cell, and the Pt counter 

electrode(s) utilized in the preparation of the samples and electrolytes as well as 

during the experiments were cleaned in heated, concentrated HNO3 and H2SO4 

baths followed by rinsing in 18 MΩ-cm water.  For all experiments, a mercury-

mercurous sulfate (MSE) electrode (+640 mV v. SHE) served as a reference 

electrode.  For the electrodeposition experiments, a high surface area Pt wire 

mesh was employed as the counter (auxiliary) electrode.  In this case, the Pt 

counter electrode (CE) was placed directly in front, at a distance of approximately 

1 cm, and parallel to the working electrode surface plane.  For the open circuit 

potential/solution exchange experiments, a Pt-Ir alloy wire braid was used as the 

CE.   

The various solutions that were used in these experiments were prepared 

in a custom-made glass deaeration cell which was generally used to remove 

dissolved oxygen by bubbling nitrogen gas.  Note that there is one exception to 

this step in which ultra high purity oxygen was used as the sparging gas for an 

experiment in which the oxygen reduction reaction (ORR) was investigated and is 

presented in Appendix F.  Following the deaeration/gas bubbling step, the 

solution was then loaded into the preassembled PTFE cell in which the working, 

reference, and counter electrodes were already in place.   
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CHAPTER 8 

CYCLIC VOLTAMMETRY AND SOLID ELECTROCAPILLARITY 

8.1 Introduction 

The electrocapillarity (ecap) of solid electrodes was described generally in 

the earlier chapters of this dissertation.  It can be considered basically as a change 

in the measured surface stress due to a change in applied potential.  Ideally, the 

surface stress signal contains components that are only related to elastic stretching 

of electrode surface atoms and the structure of the double layer that forms directly 

adjacent to the electrode surface.  Unfortunately, non-ideal electrode polarization 

characteristics, the presence of oxygen or other contaminating species, as well as 

finite specific adsorption effects convolute the surface stress response and make it 

impossible to determine the true solid electrocapillarity behavior 108, 112, 206.  

However, while this convolution of signals poses a problem from the 

theoretical/analytical viewpoint, it does not affect the experimental value of the 

results due to the fact that the “electrocapillarity” curve provides a measure of 

background surface stress signal.  For example, when the electrode potential is 

scanned (as in cyclic voltammetry) or stepped (as in chronoamperometry) in order 

to study some electrochemical reaction such as metal deposition, the surface stress 

response will include electrocapillarity-type contributions in addition to the 

electrode response to the reaction of interest.  In order to determine the portion of 

the signal that corresponds to the reaction being investigated, an ecap curve can 

be determined by performing similar electrode potential manipulations in the 

absence of the electrochemical reaction (e.g. metal deposition).  This is may be 
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done by conducting experiments in “blank” solutions in which the redox species 

(or other species of interest) is missing from an otherwise identical solution or by 

performing similar potential manipulations (scanning, etc.) at potentials where the 

redox reaction does not occur.  Obviously, it is preferable to collect the solid ecap 

curve at the same potentials in blank solution rather than at different potentials 

due to the fact that the overall ecap response may change with potential, but as in 

the case of e.g. electrode oxidation (which induces a significant stress response), 

oxidizing potentials must be avoided.   

8.2 Experimental Details 

The basic preparation and experimental setup for these electrocapillarity 

experiments was nearly identical to those of all the other experiments and was 

described above in Chapter 7.  The purpose of this experiment was to characterize 

the electrocapillarity response of a Cu{111} thin film electrode over as much of  

potential space as possible.  Because the magnitude of the surface stresses 

associated with electrocapillarity is relatively small (of order 0.1 N/m), it is of 

utmost importance that the electrode surface be clean (recently removed from the 

UHV deposition system) and that the experimental apparatus and electrolytic 

solution be contaminant free.  In these cases, extra care was taken to minimize the 

time between removal of the sample from vacuum and the loading of the 

deaerated solution into the cell.  The solution used for this investigation was a 

blank solution of 0.1 M H2SO4.  In the absence of free copper ions in solution, 

undesirable redox processes are avoided by limiting the potential scans between 

the copper reduction potential (ca. -450 mV v. MSE) down to proton reduction at 
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the lower stability limit of water (ca. -640 mV v. MSE).  At potentials anodic to 

this region, copper metal is not stable and is readily oxidized and removed from 

the electrode surface.    

Figure 8.1 - Experimental results of the voltammetric (top) and the 

electrocapillary (bottom) responses of a Cu{111} thin film electrode in a blank 

0.1 M H2SO4 solution (deaerated).  The electrocapillarity response is essentially 

linear over this potential window and has a slope of ~0.0005 (N/m)/mV. 

 

 

8.3 Results and Discussion 

Figure 8.1 shows the results for both voltammetry and surface stress as a 

function of potential during two full cycles of a cyclic voltammetric (CV) 
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measurement at a scan rate of 20 mV/s.  The actual choice of scan rate is 

relatively arbitrary since both the potentiostat and surface stress monitor have 

sufficiently high time resolution, but the chosen rate provided adequate 

experimental timescales without generating excess double layer charging effects.   

Prior to the scanning, the open circuit potential (OCP) was measured at ~-445 mV 

v. MSE and the anodic and cathodic potential limits of the CV were chosen 

accordingly.  As shown in the current, a slight amount of oxidation current was 

recorded as the potential was scanned near the initial OCP.  However, the effect is 

minimal as seen in the surface stress response which appears as a linear function 

of applied potential.  The lower portion of Figure 8.1 displays the linear surface 

stress/electrocapillarity response of the Cu{111} thin film electrode over the 

entire potential window.   Over this potential window, the only processes that are 

expected to occur are non-faradaic and are associated with changes in charge 

density within the metal and corresponding electric field-induced rearrangement 

of the double layer.  The slope of the surface stress-potential curve is then a 

measure of these background electrocapillarity-type processes and is constant 

over the entire potential window.  The Δf/ΔV correction or slope was calculated 

as ca. -0.00048 (N/m)/mV from Figure 8.1.  Additionally, at a significantly faster 

scan rate of 50 mV/s this slope decreased slightly to ca. -0.00035 (N/m)/mV.    

From the cyclic voltammetric measurements, it was shown that the 

electrocapillarity (ecap) response is linear and inversely proportional to the 

potential.  This is significant because it allows us to (1) account for the expected 

ecap behavior in H2SO4 solutions and the potential region at which deposition 
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occurs and (2) reasonably extrapolate this linear behavior above the reduction 

potential of copper metal where oxidative stripping occurs.  Additionally, the 

inverse relationship between the ecap response and the potential provides a simple 

explanation for the characteristic shape evolution of the surface stress directly 

following potential steps (e.g. after deposition/stripping pulses).  This 

characteristic behavior is shown in Figure 8.2.  The figure contains a typical 

surface stress curve in response to a cathodic potential pulse.  In this case the 

pulse duration is approximately 10 seconds and the amplitude is 50 mV.  As the 

potential is pulsed cathodically from the OCP, a tensile stress transient develops 

and persists over the course of ~1 second, followed by a larger compressive stress 

associated with copper electrodeposition.  As the potential is stepped back to the 

OCP, a slightly steeper compressive slope is observed again for about 1 second 

before the stress then relaxes in the tensile direction.  These short stress transients 

that occur as a result of the potential steps can be explained in the context of the 

ecap correction term (Δf/ΔV) given above.  Based on the value determined from 

Figure 8.1, a 50 mV pulse would be expected to produce an electrocapillary 

response that is the opposite sign of the potential step (ΔV) and of order 0.025 

N/m in magnitude (see scale bar in the figure).  As indicated in Figure 8.2, the 

actual ecap response is about 0.015 N/m following both the potential steps 

(dashed grey line) of potential pulse.  Because the correction term is negative, the 

ecap response acts in opposition to the compressive (tensile) stress associated 

with incipient electrodeposition (relaxation) and the effect is somewhat mitigated 

leading to an actual response that is less than the predicted.    
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Figure 8.2 - Surface stress response of a Cu{111} thin film electrode to a -50 mV 

pulse from the OCP solution of 0.01 M CuSO4 + 0.1 M H2SO4 (deaerated).  The 

electrocapillarity (ecap) response appears as a minor perturbation, ~0.015 N/m, 

over a span of ~1 second following each of the potential steps.  A value of ~0.025 

N/m is expected from the Δf/ΔV estimate determined from Figure 8.1 and is 

shown to scale. 
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was negligibly small.  The overall surface stress evolution in Figure 8.2 provides 

a qualitative sense of this claim since the ecap contribution is approximately the 

same order of magnitude as the experimental noise in the raw data (black curve) 

and only becomes apparent in the adjacent-averaged signal (red curve).  

Quantitatively, the relative magnitude of the ecap response is ~4.7% of the total 

stress change (ca. -0.32 N/m) during the deposition pulse. 

* Chapter 8 Note:  The claim that the overpotentials associated with nearly 

all of the electrochemical techniques used in this research were ≤75 mV is 

confirmed by Figures 9.1 & 10.1.  The single exception to this claim appears in 

the measurements taken in the suppressing (PEG/Cl-) solution.  For this solution, 

the overpotential reached values as large as ~-250 mV and ~+100 mV for 

deposition and stripping events, respectively.  If a correction were to be made, it 

would be manifested as a negative and positive translation (i.e. constant 

correction across the entire thickness range) of the corresponding (red) curves in 

Figures 9.6 & 10.6, respectively.  However, because (1) this correction would 

cause the results to become incongruent with the other curves in Figures 9.6 & 

10.6 and because (2) no obvious ecap phenomena of opposite sign (as in Figure 

8.2) is observed in the PEG/Cl- stress curves (see Figures 9.3d, 9.4d, 10.3d & 

10.4d), no correction has been made to the data and the assumption of negligible 

ecap contribution appears validated.  
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8.4 Summary Outline 

•  The ecap response is linear and inversely proportional to a change in the 

potential and the correction was calculated as Δf/ΔV ≈ -0.00048 

(N/m)/mV from Figure 8.1. 

•   This correction allows for the (1) accounting of the expected ecap 

behavior in H2SO4 solutions and the potential region at which deposition 

occurs and for the (2) extrapolation of this linear behavior above the 

reduction potential of copper metal where oxidative stripping occurs. 

• Most importantly, because the magnitude of the ecap effect is relatively 

small (~0.5 (mN/m)/mV), the effect of electrocapillarity effects are 

negligibly small for this work.   
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CHAPTER 9 

CHRONOPOTENTIOMETRIC DEPOSITION 

9.1 Introduction 

The growth of thin films under both UHV and electrochemical conditions 

has been the subject of much research over the years.  Thin films function in 

many capacities and applications that require mechanical stability in addition to 

other valuable material properties (e.g. electrical, thermal etc.).  The original 

intent of the experiments described in this chapter was to mirror the deposition 

induced stress work that had been done previously under UHV conditions108, 115, 

119, 120, 127.  However, as the experiments progressed and our understanding of the 

system increased, it became apparent that this work would be best studied within 

the context of the copper damascene process and integrated circuit interconnect 

metallization.  In addition to the use of plating additives, the chemistry of copper 

and its corresponding ionic species (Cu+, Cu2+, etc) provided a rich system to 

study. 

 All of the experiments presented in this chapter present surface stress 

profiles that consist of compressive stress growth stresses followed by tensile 

relaxation stresses following the deposition events.  This is conspicuously 

different than some of the previous work done on Volmer-Weber type growth in 

heteroepitaxial systems and on amorphous substrates that exhibits the 

compressive-tensile-compressive (CTC) stress profiles associated with island 

nucleation, nuclei coalescence and zipping, and continuous film thickening58, 115, 

119, 120, 128, 129, 131, 132, 143, 146, 148, 150.  There are, however, some important similarities 
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between these studies and the results presented here.  First, the increasingly 

compressive stresses observed during electrodeposition are analogous to the 

second compressive stress region observed in the CTC type stress evolution.  The 

amount of stress generated during deposition events is dependent upon both the 

amount of material that is deposited as well as the deposition rate.  Second, a 

tensile relaxation stress is observed during growth interrupts in both the present 

work as well as during interrupts performed in the long term compressive region 

of the CTC type UHV thin film growth.  With respect to the UHV measurements, 

the relaxation has been attributed to a variety of processes including adatom 

migration into/out of grain boundaries (GBs), excess concentrations of surface 

defects, etc115, 119, 207.  However, in the case of electrochemical growth 

environments, the films are subject to a variety of other physical processes such as 

molecular adsorption, exchange current processes, and so on that likely have an 

effect on the overall stress evolution.  The purpose of these electrodeposition 

experiments was to monitor the film stress evolution during both deposition 

events as well as the relaxation events for depositions ranging from sub-

monolayer to ~8 monolayer thicknesses. 

9.2 Experimental details 

Pre-experimental preparation and setup of the apparatus for the 

electrodeposition and oxidative stripping experiments was described in Chapter 7.  

The purpose of this set of experiments was to measure the real time surface stress 

response of a Cu{111} thin film electrode before and after the deposition event 

for a series of deposition thicknesses and in a variety of solution compositions.  
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The two types (sulfate based and perchlorate based) of solution combinations 

considered in these experiments correspond to three categories: additive free, 

suppressing, and full additive solutions.  The actual compositions are shown in 

Tables 9.1 & 9.2.  The sulfate based solutions constituted the majority of the work 

that was done here and represent the most common damascene-like plating 

formulation used in the literature10, 19.  The perchlorate-based solutions were 

simply used to investigate the effect of the anion identity on the results.  In order 

to discern the contributions to surface stress due to the multiple sources 

(deposition, electrocapillarity, molecular and ionic adsorption, etc), the film stress 

evolution due to the addition of copper metal was first characterized in the  

 

 

 

Table 9.1 – Solution components and their corresponding concentrations for the 

six sulfate based solutions investigated in this work. 

Solution 
Identifier 

[H2SO4] 
(mol/L) 

[CuSO4] 
(mol/L) 

[PEG]* 
(mol/L) 

[NaCl] 
(mol/L) 

[SPS] 
(mol/L) 

[MPS] 
(mol/L) 

Additive 
Free 1 0.25 0 0 0 0 

Suppressing 1 0.25 88*10-6 10-3 0 0 
5 μM SPS 1 0.25 88*10-6 10-3 5*10-6 0 
50 μM SPS 1 0.25 88*10-6 10-3 50*10-6 0 
10 μM MPS 1 0.25 88*10-6 10-3 0 10*10-6 

100 μM 
MPS 1 0.25 88*10-6 10-3 0 100*10-6 
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additive free solutions.  Then, by accounting for and minimizing this large 

component of the overall stress, it was possible to distinguish important 

differences associated with the presence of the different additive species.  This 

was accomplished by comparing the results of the additive free experiments with 

the additive containing (suppressing and full additive) solution results.  The range 

 

 

Table 9.2 – Solution components and their corresponding concentrations for the 

six perchlorate solutions investigated in this work. 

Solution 
Identifier 

[H2ClO4] 
(mol/L) 

[Cu(ClO4)2] 
(mol/L) 

[PEG]* 
(mol/L) 

[NaCl] 
(mol/L) 

[SPS] 
(mol/L) 

Perchlorate 
Additive Free 1 0.25 0 0 0 

Perchlorate 50 
μM SPS 1 0.25 88*10-6 10-3 50*10-6 

 

 

 

of deposit thicknesses was restricted to 8 monolayers or less (see Table 9.3) in 

order to minimize the deposition induced stress contributions and facilitate the 

observation of stresses generated by other processes.  All of the deposition events 

were done using current controlled techniques.  Specifically, the experiments 

were done as a series of double step chronopotentiometric experiments wherein 

the current was fixed at zero both before and after the current pulse and the square 

current pulse had a magnitude of either -1 or -5 mA/cm2.  Table 9.3 shows the 
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equivalent deposit thicknesses and the corresponding current pulse lengths that 

were calculated and used for the series of depositions at each current density.   

 

 

Table 9.3 – Current pulse durations during deposition (& oxidative stripping) 

experiments at -1 & -5 mA/cm2 current densities. 

1 mA/cm2 5 mA/cm2 Thickness, 

θ (ML) Deposition/Stripping 
Time (ms) 

Deposition/Stripping 
Time (ms) 

0.2 113 23 
0.4 226 45 
0.6 339 68 
0.8 452 90 
1.0 565 113 
1.2 677 135 
1.4 790 158 
1.6 903 181 
1.8 1016 203 
2.0 1129 226 
2.5 1411 282 
3.0 1694 339 
3.5 1976 395 
4.0 2258 452 
5.0 2823 565 
6.0 3387 677 
7.0 3952 790 
8.0 4516 903 

 

 

 

In order to allow for the re-equilibration of the electrode-electrolyte 

system after each deposition event, the ratio of current pulse time to open circuit 
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time was large.  That is, the time spent at open circuit potential at least 100 

seconds whereas the longest current pulse was ~4.5 seconds (see Table 9.3).  The 

corresponding time profiles of both surface stress and electrode potential were 

recorded separately for each event and at an acquisition rate of 1 kHz. 

*Chapter 9 Note:  The solubility, diffusivity, and suppressing action of 

polyethylene glycol (PEG) are all known to be a function of the average PEG 

molecular weight used.  For this reason, a single source of PEG (MWPEG=3350 

gram/mole) was utilized throughout all of the experiments.  More broadly, all of 

the constituent chemical species and concentrations employed in this work were 

chosen based on the wide range of excellent studies published in the area of 

superfilling and copper damascene research.  Specifically, the chemistry used in 

these investigations most closely follows the work of the Moffat group at the 

National Institute of Standards and Technology (NIST)10,11,21, 22, 60, 62, 63, 69, 72, 76, 208. 

9.3 Results and Discussion 

 During constant current chronopotentiometry, the potential is recorded as 

a function of time.  Aside from very short-term potential transients that 

accompany the current step (on and off), the potentials in these experiments 

remained relatively constant for a given solution and at a constant current density.  

As shown in Figure 3.4, the solution composition can have a significant effect on 

the overpotential required for deposition.  Similarly, Figure 9.1 shows the typical 

overpotentials recorded in this work for each of the solutions investigated.  As 

described in Chapter 3, electroplating additives are often referred to a polarizing 
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or depolarizing in reference to the effect of increasing or decreasing, respectively, 

the required overpotential at a given current density.   

 

Figure 9.1 - Column plot comparison of typical overpotentials  recorded on a 

Cu{111} thin film electrode during chronopotentiometric deposition pulses of 1 

(red) or 5 (green) mA/cm2, illustrating the polarizing (larger overpotential) and 

depolarizing (smaller) effect of various additive species. 
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form a deposition blocking layer.  The result of this polarizing combination of 

additives is a greater overpotential that is required to sustain the specified constant 

current density.  The other solutions produce a much smaller overpotentials in 

order to support the specified current density.  Specifically, the additive free case 

requires the lowest overall potential while the four full additive solutions all 

exhibit similar values.  The full additive solutions contain an accelerating species 

which partially breaks up the PEG/Cl- blocking layer and facilitates the 

electrocrystallization process.  As was shown previously, the accelerating species 

do not fully deactivate the polarizing action of the PEG/Cl-, rather they partially 

restore the electrode activity with respect to the additive free case (see Figure 3.4).  

Figure 9.1 then represents a rough confirmation of the anticipated behavior of the 

additive species on the electrodeposition process and indicates that these solutions 

do have the ability to produce the non-uniform current density distribution 

required for feature superfilling. 

In addition to the electrochemical measurements collected during the 

deposition events, the real time surface stress signal was also recorded as a 

function of time.  One of the biggest challenges of using separate data collecting 

equipment for in situ investigations is the need to collect data simultaneously as a 

function of time.  Figure 9.2 shows an example of the results produced by these 

simultaneous data collection techniques.  Here, current density, electrode potential, 

and surface stress are shown for a ~30 second window that captures both the 

evolution of these parameters during the current pulse or deposition event as well 

as the subsequent relaxation period that follows.  In general, all of the  
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Figure 9.2 - Typical results that are collected during the constant current 

electrodeposition experiments.  Each column shows current density (red), 

electrochemical potential (black), and surface stress (green) responses of a 

Cu{111} thin film electrode to a deposition pulse of 1 (left) or 5 (right) mA/cm2. 

Pulses were done in an additive free solution and correspond to a thickness of ~ 8 

ML. 
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measurements taken for the electrodeposition of copper in this work follow these 

same trends.  Specifically, in the case of surface stress this translates into a 

compressive stress in the range of 0-2 N/m that evolves during the deposition 

event.  Following this event stress, a relaxation stress transient, usually a tensile 

transient, evolves in the seconds that follow.  The time constant associated with 

the relaxation processes is generally several times larger than the duration of the 

current pulse.  That is, for the current pulse durations used in the present work (<5 

seconds), the film relaxations reach steady state stress value within 30-45 seconds. 

Figure 9.3 shows the results of a single galvanostatic deposition pulse in 

each of the six solution combinations.  In each case the current density is 1 

mA/cm2 and the pulse duration is approximately 0.9 seconds and produces an 

equivalent thickness of ~1.6 ML.  Here it is shown that each solution combination 

does indeed produce a compressive change in surface stress during the deposition 

event.  The actual values measured in each case are labeled for each curve.  In the 

case of the additive free solution, Figure 9.3a, the deposition event stress is 

approximately -0.2 N/m whereas the relaxation stress transient following the 

event is slightly greater than +0.1 N/m.  Using these two values we can define a 

residual or intrinsic film stress of ca. -0.1 N/m that is built into the film as a total 

result of the addition of Cu metal to the surface in the absence of additives.  

Figure 9.3d shows the same process performed in a deposition suppressing 

solution containing both PEG and Cl- additions to the additive free solution.  The 

results from this suppressing solution are quantitatively similar to the additive free 
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Figure 9.3 - Current density (red) and surface stress (blue) profiles collected 

during galvanostatic pulsed deposition of ~1.6 ML of Cu in each of the six 

solution combinations.  Δf values corresponding to deposition (dep) and 

relaxation (rel) regions shown for each case.  Pulsed current density = 1 mA/cm2.  

 

 

 

case.  The event stress is ~-0.2 N/m followed by a ~+0.1 N/m relaxation.   

However, as seen in Figures 9.3b 9.3c, 9.3e & 9.3f the event stresses increase 

markedly upon addition of an accelerating species to the solution.  In all four 

cases, the SPS or MPS containing electrolytes generate larger (≥0.6 N/m) 

compressive stresses during the deposition event.  Alternatively, the relaxation 

stress transients are smaller in magnitude in the full additive package solutions 
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compared to the additive free and suppressing chemistries.  In fact, the “relaxation 

transient” evolves in the compressive direction for the solutions containing higher 

concentrations of accelerating species, namely 100 μM MPS and 50 μM SPS 

combinations (Figures 9.3e & 9.3f).   

 

 

Figure 9.4 - Current density (red) and surface stress (blue) profiles collected 

during galvanostatic pulsed deposition of ~1.6 ML of Cu in each of the six 

solution combinations.  Δf values corresponding to deposition (dep) and 

relaxation (rel) regions shown for each case.  Pulsed current density = 5 mA/cm2.  
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For the case of electrodeposition at 5 mA/cm2, the same trends appear 

across the various solution combinations.  For example, Figure 9.4 shows that a 

compressive stress develops during the current pulse and that the ensuing stress 

relaxation transient is initially tensile in direction.  In contrast, however, to the 

lower current density case, Figure 9.4 exhibits two major differences in the stress 

profiles.  First, all of the surface stress magnitudes associated with the 

compressive deposition stresses are significantly smaller than for equivalent 

deposit thicknesses carried out at 1 mA/cm2.  This difference is unsurprising in 

that previous results from both electrochemical and UHV deposition studies have 

shown that larger deposition rates produce less compressive steady state stresses 

for a variety of metal systems165, 207, 209.  The exact mechanism responsible for the 

decrease in compressive stress during deposition is not well defined but has been 

found to agree well with predictions based on the adatom-grain boundary model 

proposed by Chason et al134, 162.  The second difference observed at this larger 

deposition rate is the more negative evolution of stress during the relaxation 

region of the stress profiles following the deposition event.  Whereas, at 1 

mA/cm2 the relaxations were slightly tensile for the solutions containing a low 

concentration of accelerating species (5 μM SPS & 10 μM MPS) and were 

slightly compressive for the higher concentration solutions (50 μM SPS & 100 

μM MPS), all of the relaxations of the full additive solutions evolve 

compressively in Figure 9.4. 
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Figure 9.5 - Current density (red) and surface stress (blue) profiles collected 

during galvanostatic pulsed deposition events corresponding to ~0.8, 1.6, 3, & 6 

ML thicknesses of Cu in the full additive, 100 μM MPS solution.  Δf values 

corresponding to deposition (dep) and relaxation (rel) regions shown are given for 

each case.  Current density = 1 mA/cm2.  

 

 

Next, the consideration of the event stress values as a function of deposit 

thickness for each solution combination yields additional insight.  It follows from 

the previous work on Volmer-Weber growth of thin films under UHV conditions 

that total stress increases with the amount of material deposited.  For a given 

plating solution (e.g. full additive 100 μM MPS), the direct relation between 
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stress magnitude and thickness can be confirmed qualitatively by comparing 

several stress profiles across a range of thicknesses, as seen in Figure 9.5.  Here 

the direct relationship between thickness and compressive stress magnitude is 

confirmed for the range of 0.8 to 6 ML of copper deposited.  Moreover, a 

comprehensive sense and the exact functional relationship is obviated by Figure 

9.6, which shows the combined results of all six solutions combinations and at 

both galvanostatic current densities (1 & 5 mA/cm2).  For both the high and low 

current densities, the relationship is qualitatively similar with magnitudes being of 

order two times larger for the 1 mA/cm2 case.  At both current densities, the stress 

appears to scale linearly for all of the solutions at thicknesses greater than one or 

two monolayers.  Additionally, Figure 9.6 illustrates the existence of two distinct 

groupings of curves that exist regardless of the deposition rate. The groupings 

consist of either (1) the full additive solutions which contain the accelerator 

species and generate relatively large event stresses or (2) the additive free & 

suppressing solutions which produce smaller event stresses.  Over the range of 

thicknesses investigated (0.2 ≤ θ ≤8 ML), significantly larger surface stresses (4-5 

times) are initially imparted to the copper film during the deposition event in 

accelerator containing solutions.  The increased surface stress values must be 

associated with the solution chemistry and its relationship to the deposition 

process.  Possible explanations for the generation of these larger stresses in the 

presence of the accelerating species include the promotion of a different growth 

morphology or perhaps increased inclusion of non-metal species in the film 

deposits.  The underlying mechanism of the behavior is discussed below but from  
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Figure 9.6 - Aggregate results of surface stress generation during galvanostatic 

deposition pulses of 1 (top) and 5 (bottom) mA/cm2 for all six solution 

combinations as a function of deposit thickness (0.2 ≤ θ ≤ 8 ML).  Note that a 

larger current density yields smaller deposition pulse time for a given thickness.  
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these results it is clear that the solution chemistry has a significant effect on the 

film stress during growth processes.   

Next, inspection of the relaxation region of the multiple surface stress 

profiles reveals important information about the response of the film to the 

different solution combinations.  As shown in Figures 9.3 & 9.4, the relaxation 

transient is highly dependent upon solution chemistry.  In the case of additive free 

(Figures 9.3a & 9.4a) and suppressing conditions (Figures 9.3d & 9.4d), a 

significant (up to approximately 50%) portion of the compressive stress imparted 

to the film by deposition is relaxed following the current pulse.  A similar type of 

behavior is also seen during thin film growth interruptions in UHV 

environments119, 120, 127, 133.  However the “quenching out” of the stress relaxation 

transient in full additive package solutions must again be attributed to an extra 

electrolyte/electrode interaction that is associated with the presence of the 

accelerating species of the full additive solutions.  This is significant because this 

quenching of the tensile relaxation occurs in tandem with the increase in the 

compressive event stress that occurs in accelerating solutions.  Thus, the driving 

force for film relaxation increases; yet, the extent of film relaxation decreases.  

Rather, the release of the compressive growth stress by means of the post-

deposition relaxation processes that prevail under non-accelerating electrolytic 

conditions is inhibited by solutions containing all three additives.  The tensile 

transient does eventually appear as the deposit thickness increases and the 

compressive stress associated with deposition approaches -1 N/m.  Figure 9.5 

demonstrates this phenomena for deposition events in the 100 μM MPS, full 
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additive solution.  Initially at ~0.8 ML no tensile relaxation occurs.  However, at 

greater thicknesses the compressive film stress becomes so large that relaxation 

does occur.  Yet for this range of thicknesses the relaxation magnitudes remain 

diminished relative to the additive free case.   

The results and discussion presented in this chapter with respect to the 

surface stress evolution associated electrodeposition are a good example of how 

stress monitoring as a technique can be applied as an in situ analytical technique 

to provide additional insight into traditional electrochemical studies.  Specifically, 

inspection of the literature reveals several publications that suggest that the cause 

of various post-deposition processes (e.g. resistivity decrease, stress relaxation, 

etc.) is related to the inclusion of additive species or fragments within the film 

deposits19, 61, 175, 176, 183, 210.  Specifically, Kang and Gewirth published a well cited 

study in which they utilized secondary ion mass spectrometry (SIMS) to identify 

the relative amounts of additive-derived contamination (i.e. carbon, chlorine, 

oxygen, & sulfur) in Cu films deposited from a number of solution chemistries61.  

In their study, the authors found that the SIMS results strongly suggested the 

inclusion of SPS, sulfate, and chloride species in films deposited from 

“SPS+PEG+Cl-” solutions whereas films from additive free and “PEG+Cl-” 

solutions did not contain similar contaminant levels.  In Chapter 5, several studies 

on the segregation and release of organic impurities from copper electrodeposits 

were reviewed.  Also, Stangl et al demonstrated a correlation between the time 

required for the diffusion and release of included organic impurities and the 

incubation time required for grain growth (also referred to as recrystallization or 
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the self anneal process) and the corresponding stress relaxation.  From these 

results, the authors then infer that the diffusion and discharge of the impurities 

determines the incubation time required for “inhibited grain growth” and the 

“microstructure evolution” associated with the decrease in resistivity175, 176, 211. 

The examples described above now provide an interesting comparison to 

the present surface stress results.  The residual stress in full additive electrolytes is 

observed to increase by two mechanisms: (1) the compressive stress increases 

during the deposition event and (2) the post deposition film relaxation is partially 

hindered.  It seems likely then that the inclusion of additive-derived contaminants 

within the deposits is responsible for this bilateral increase of residual stress.  

Specifically, at constant deposit thickness, the compressive stress is increased 

relative to the additive free and suppressing cases by the introduction of non-

metal species in the deposit.  The inclusion of additional material within a deposit 

that is held under identical constraints (i.e. film clamping) would then appear in 

the stress evolution as an increase in compression of the surface layer.  Likewise, 

the contaminants included in the film likely prevent the relaxation of the built in 

stress through grain boundary pinning or similar mechanism.  

In an effort to generalize the conclusions described here with respect to the 

stress results collected in sulfate based solutions, a series of experiments were 

performed in the perchlorate based copper plating solutions shown in Table 9.2.  

The basic idea behind these investigations was to collect a series of results using 

the exact same electrochemical parameters and a pair of solutions (perchlorate 

solutions that were additive-free and perchlorate solutions that contained a full  
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Figure 9.7 - Comparison of the surface stress profiles collected for an ~8 ML 

deposit thickness at 1 mA/cm2 from additive free (a), perchlorate based additive 

free (b), full additive 50 μM SPS (c), and perchlorate based 50 μM SPS (d) 

solutions. Each deposition event generates a compressive stress followed by 

relaxations that are initially tensile.  
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additive package) in which the only difference was the identity of the supporting 

anion in the electrolytic solutions.   

Figure 9.7 shows a single stress profile collected during the deposition of 

~8 ML of copper in each of these two solutions alongside the corresponding 

results from the sulfate based solutions.  Immediately, the similarities between the 

adjacent profiles are obvious.  The event stresses are all compressive in direction 

and are of similar order of magnitude (see Figure 9.8).  Additionally, the surface 

stress behavior in the relaxation region is initially compressive for all cases, 

although it is nearly indiscernible in the case of the perchlorate 50 μM SPS curve.  

Furthermore, Figure 9.8 is also given for comparison of the thickness dependence 

of the deposition induced surface stress.  Here, the event stresses resulting from 

the deposition of 5, 6, 7, and 8 ML of copper from the perchlorate based solutions 

are plotted as points along with the additive free and 50 μM SPS curves from 

Figure 9.6.  As in the case of the electrodeposition results collected in sulfate-

based solutions, the perchlorate-based results show that the total amount of 

compressive stress built into the film during deposition increases as a function of 

deposit thickness and also increases at constant thickness when plating additives 

are used. 

The importance of these perchlorate based experimental results is related 

to the confirmation of the generalized surface stress behavior during the 

electrodeposition of copper.  That is, the overall qualitative shape of the stress 

profiles is the same in both sulfate and perchlorate solutions.  The chief  
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Figure 9.8 - Results from perchlorate based additive free and full additive (50 μM 

SPS) solutions (data points) overlaid on the previous results of the sulfate based 

solutions (lines) as presented in Figure 9.6.  Similar to the sulfate based solutions, 

the perchlorate surface stress increases as a function of deposit thickness and in 

response to the use of plating additives, though the magnitudes of these effects 

vary from the sulfate based solution results. 
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differences between the results from the two solutions rest solely in the relative 

magnitudes of the individual surface stress contributions.  Future work in this area 

would likely provide even more insight into the role of the “spectator” ions in the 

fundamental process of electrocrystallization, film growth, and morphology 

development.  However, it is clear that the overall behavior is similar and 

therefore does not affect the conclusions drawn from the core results attained in 

the sulfate based solutions. 

9.4 Summary Outline 

• Constant current electrodeposition pulses on Cu{111} thin film electrodes 

produce compressive surface stresses in the range of 0-2 N/m during the 

deposition event in all solution combinations investigated herein.  

Following the event stress, a relaxation stress transient that is generally 

tensile in nature, evolves in the seconds that follow. 

• For both the high and low current densities, the relationship between 

induced stress and deposit thickness is qualitatively similar with 

magnitudes being of order two times larger for the 1 mA/cm2 case.  At 

both current densities, the stress appears to scale linearly for all of the 

solutions at thicknesses greater than one or two monolayers. 

• Electrodeposition induced event stresses decrease (are less compressive) 

with increasing plating rates.  A result that is in agreement with previous 

results from both electrochemical and UHV deposition studies that have 

shown that larger deposition rates produce less compressive steady state 

stresses for a variety of metal systems. 
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• The magnitude of the event stresses increase markedly upon addition of an 

accelerating species in the plating solution.  Over the range of thicknesses 

investigated (0.2 ≤ θ ≤8 ML), significantly larger surface stresses (4-5 

times) are initially imparted to the copper film during the deposition event 

in accelerator containing solutions (see Figure 9.6).  The increased surface 

stress values are associated with the solution chemistry and its relationship 

to the deposition process. 

• The residual stress (ffinal - finitial) in full additive electrolytes is observed to 

increase by two mechanisms: (1) the compressive stress increases during 

the deposition event and (2) the post deposition film relaxation is partially 

hindered.  Both of which can be explained by the incorporation of 

solution-additive-derived contaminants within the deposits.  These 

conclusions are supported by a number of studies that have been published 

on the contamination of electrodeposited films in a number of solution 

combinations.    

• While the effect of the supporting anion is non-negligible, the overall 

qualitative shape of the stress profiles is the same in both sulfate and 

perchlorate based solutions.  The chief difference that is observed between 

the two solutions is the difference in relative magnitudes of the individual 

surface stress contributions.   
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CHAPTER 10 

CHRONOPOTENTIOMETRIC STRIPPING 

10.1 Introduction 

 One of the greatest advantages that electrochemical investigations have 

over ultra high vacuum work is the ability to remove material from the electrode 

surface.  For a metal (e.g. Cu) electrode in an acid electrolyte environment, an 

oxidizing current or potential induces an electrochemical etch or stripping process 

at the electrode-electrolyte interface.  Due to the small number of applications for 

electrochemical etching and because the technique of surface stress monitoring 

was well established in the UHV community before it was really widely used in 

electrochemical studies, the overwhelming majority of the electrochemical 

surface stress studies are performed on deposition and film growth type processes.  

However, the unique ability to control the thermodynamic condition of an 

electrode in an electrochemical cell provides an opportunity to study the 

electrode-electrolyte interface in, for example, Cu damascene-like systems.   

Oxidative stripping experiments were carried out in conjunction with the 

electrodeposition studies presented above in Chapter 9.  As will be explained later 

in this chapter, these results provided a number of somewhat unexpected but 

important insights into the details of the copper-solution interface.  In contrast to 

the large number of experimental studies that have been dedicated to Cu 

electrodeposition and the superfilling process, very little work has been done on 

electrochemical etching of Cu electrodes.  Even though the chemistry of both 

copper (Cu/Cu+/Cu2+, etc.) and the additive species is the same in these 
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experiments, the application of oxidizing potentials and the removal of material 

from the electrode surface produces different results in both the event and 

relaxation regions of the surface stress profile (compared to deposition). 

There are, however, a number of symmetries between these results and the 

results presented in Chapter 9.  First, the magnitude of the tensile stresses that 

were generated during the oxidizing current pulses was dependent upon both the 

amount of material that was stripped as well as the stripping rate.  Second, a 

compressive relaxation stress was observed following the stripping current pulse.  

Furthermore, as in the case of the stresses generated during electrodeposition of 

copper, both event stress profiles (i.e. during the current pulse) as well as the 

relaxation stress profiles were profoundly influenced by the presence of the 

plating additives.  It appears that in this case, the effect was related to the 

formation of the PEG/Cl- blocking layer.  Finally, as in the case of the deposition 

experiments, these oxidative stripping investigations were carried out by 

monitoring the film stress evolution during both stripping events and the 

subsequent relaxations for thicknesses ranging from sub-monolayer to ~8 

monolayers. 

10.2 Experimental details 

The oxidative stripping experiments were carried out on the same samples 

as the electrodeposition experiments.  All of the preparation and setup of the 

apparatus for these experiments was covered in Section 9.2.  Similarly, the current 

densities and pulse lengths for the oxidative stripping events were identical to 

those used for electrodeposition in Chapter 9 and are given in Table 9.3.  The 
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purpose of this set of experiments was to measure the real time surface stress 

response of a Cu{111} thin film electrode before and after the stripping event for 

a series of thicknesses and in a variety of solution compositions.  As in the case of 

deposition and the subsequent relaxation stresses, the various sources of stress 

contribution (oxidative removal of material from the electrode surface, 

electrocapillarity, molecular and ionic adsorption, etc) were studied through the 

use of the various solution compositions shown in Table 9.1.  The stripping 

experiments were done in current controlled mode; specifically, double step 

chronopotentiometric techniques were used in which the oxidizing pulses were 

performed at either -1 or -5 mA/cm2 and the current was fixed at zero both before 

and after the stripping pulse.  The ratio of current pulse time to the time held at 

zero current (the open circuit potential) was the same as the deposition events and 

equal to at least 20. The “equilibration” time spent at zero current (equivalently 

the open circuit potential in potential controlled mode) was more than enough 

time to allow both the potential and surface stress profiles to settle into relatively 

stable values (i.e. a constant value in the absence of drift).  The data acquisition 

rate was uniformly equal to 1 kHz across all of the stripping experiments as well. 

10.3 Results and Discussion 

As in the case of electrodeposition, the potential profiles that resulted from 

the oxidizing current pulses were recorded as a function of time.  The steady state 

overpotentials corresponding to each of the solution combinations are given in 

Figure 10.1.  In contrast to the overpotentials required for electrodeposition, the 

values are, as expected, much smaller for oxidative stripping.  The composition of 
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the solution again has a significant effect on the overpotential required to sustain 

the 1 & 5 mA/cm2 current densities, yet the effect is diminished with respect to 

the relative magnitudes of stripping overpotential.  For example, the suppressing 

action of the PEG & Cl- species requires a 5-fold increase in overpotential 

compared to that of the additive free case (~250mV/50mV) in order to deposit at 

1 mA/cm2.  With respect to oxidative stripping, however, the effect is only of 

order 2.5 times larger (~100mV/40mV).  The addition of the accelerator species 

to the suppressing solution restores some of the activity of the electrode and the 

full additive solutions exhibit values that are similar but slightly larger than the 

overpotential required in the additive free solution.  Thus, the 

polarizing/depolarizing effect of additives, as described in Chapter 3 in the 

context of electroplating, remains relevant during oxidation of copper in the 

various plating solutions. 

 Typical examples of the simultaneous surface stress and electrochemical 

measurements collected during the oxidative stripping events are given in Figure 

10.2 as a function of time.  In this figure, the current density, electrode potential, 

and surface stress are shown during an equivalent ~30 second window in order to 

show both the oxidizing event stress associated with the positive current pulse as 

well as the ensuing relaxation stress transient.  Generally, the curves in Figure 

10.2 directly mirror the measurements shown in Figure 9.2.  However, as 

described above, the magnitude of the measured potential transient is decreased 

and the surface stress profiles are also smaller in magnitude.  Whereas the 

compressive deposition stresses ranged from <0.1 to ~1.8 N/m during copper 
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Figure 10.1 - Column plot comparison of typical overpotentials recorded on a 

Cu{111} thin film electrode during chronopotentiometric stripping pulses of 1 

(red) or 5 (green) mA/cm2.  Here the polarizing action of the various additives has 

a decreased effect on the oxidative removal of material from the film compared to 

deposition (see Figure 9.1). 

 

 

deposition, the range of stripping stresses was limited to values below 0.6 N/m.  

Similarly, Figure 10.2 also demonstrates that a compressive relaxation stress 

transient evolves over the course of 10-45 seconds that follow the stripping event, 

despite the brevity (<5 s) of the stripping current pulses. 
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Figure 10.2 - Typical results that are collected during the constant current 

oxidative stripping experiments.  Each column shows current density (red), 

electrochemical potential (black), and surface stress (green) responses of a 

Cu{111} thin film electrode to a stripping pulse of 1 (left) or 5 (right) mA/cm2. 

Pulses were done in an additive free solution and correspond to a thickness of ~8 

ML. 
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Figure 10.3 shows the results of a single, 0.9 second long galvanostatic 

stripping pulse in each of the six solution combinations.  At a current density of 1 

mA/cm2, the equivalent of a ~1.6 ML thickness is removed from the electrode 

surface.  The results in Figure 10.3 again present an interesting symmetry to the 

deposition case in that each stripping event produces a tensile surface stress 

followed by a longer time scale compressive relaxation.   

 

 

Figure 10.3 - Current density (red) and surface stress (blue) profiles of a Cu {111} 

electrode collected during galvanostatic oxidative stripping pulses of ~1.6 ML in 

the six solution combinations.  Δf values corresponding to stripping (strip) and 

relaxation (rel) regions shown for each case.  Pulsed current density = 1 mA/cm2.  

 



  157 

The additive free results (Figure 10.3a) show that a +0.14 N/m stress is 

imparted to the film during the stripping event followed by a compressive stress 

relaxation of nearly equal magnitude.  For this case, very little residual stress 

remains in the film due to ~1.6 ML of Cu being removed from the copper surface.  

The +0.08 N/m stripping event stress in the suppressing electrolyte (Figure 10.3d) 

is similar to that of the additive free case, but both are again smaller than any of 

the event stresses generated in the full additive solutions (Figures 10.3b, 10.3c, 

10.3e, & 10.3f).  Each of the event stresses in the full additive solutions are 

approximately double the amount of surface stress that is generated by the 

identical process in the additive free and suppressing chemistries (~0.2 N/m).  The 

most striking characteristic of Figure 10.3, though, occurs within the relaxation 

region of the stress profiles.  It was noted above that the final stress state of the 

film that was stripped in the absence of additives was essentially equal to the 

initial stress value.  In contrast to that, a much larger “relaxation” stress is 

observed for stripping events carried out in any solution containing the 

suppressing species, PEG and Cl-. For the specific case of the suppressing 

solution, the event stress is ~+0.1 N/m while the compressive “relaxation” is 

nearly three times larger at ~0.3 N/m.  This is significant because not only is the 

entire tensile event stress being relieved but an additional compressive stress of at 

least 0.2 N/m is being newly generated in the seconds that follow the oxidizing 

current pulse.  Moreover, this same phenomenon of significantly larger 

compressive stresses being generated at the open circuit potential following an 

anodic current pulse is observed for all additive containing solutions.  Because 
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this stress is generated in the absence of any electrochemical manipulation, any 

plausible explanation of it must invoke the presence of a dynamic solution side 

process.     

 

Figure 10.4 - Current density (red) and surface stress (blue) profiles of a Cu {111} 

electrode collected during galvanostatic oxidative stripping pulses of ~1.6 ML in 

the six solution combinations.  Δf values corresponding to stripping (strip) and 

relaxation (rel) regions shown for each case.  Pulsed current density = 5 mA/cm2.  

 

 

A parallel set of oxidative stripping pulses was also carried out in each of 

the six solutions at 5 mA/cm2.  Again, similar trends appear in Figure 10.4 across 

the various solution combinations.  First, the stripping event stresses are tensile 
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and are smaller in magnitude when compared to the 1 mA/cm2 event stresses.  In 

the case of the additive free plating solution, the event and relaxation stresses are 

of similar magnitude and lead to little or no residual stress in the film.  Conversely, 

for stripping events in the additive containing solutions, the stress profiles in 

Figures 10.3 & 10.4 suggest that the film is subject to a nearly identical amount of 

compressive “relaxation” stress independent of the applied current density.  In  

 

 

Figure 10.5 - Surface stress results for the “relaxation” transients that occur at 

open circuit after a range of oxidative stripping pulses (0.2 ≤ θ ≤ 8 ML).  Each 

curve corresponds to the additive free (black), suppressing (red) or full additive 

(green) solutions at either 1 (squares) and 5 (triangles) mA/cm2. 
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order to confirm this behavior, the magnitude of the relaxation stress transients 

resulting from both the 1 & 5 mA/cm2 series of experiments are plotted in Figure 

10.5 for the additive free, suppressing, and full additive (50 μM SPS) solutions.  

In this figure, the relaxation results indicate that the amount of compressive stress 

that evolves after the anodic current pulse is not highly dependent on the current 

density.  Rather, within the experimental noise, the relaxation transient is 

relatively uniform for all of the solutions that contain additives (specifically PEG 

and Cl-) and is a function of the amount of material stripped. 

As in the case of deposition, the stresses due to oxidative stripping are shown in 

Figure 10.6 for both 1 and 5 mA/cm2 and as a function of thickness removed.  

Here the symmetry between the deposition and stripping results is maintained for 

event stresses. At both current densities, the two distinct groupings are again 

differentiated by magnitude; larger event stresses are generated in the full additive 

solutions and smaller stresses are observed for films that are stripped in additive 

free and suppressing solutions.  The existence of this symmetry between 

deposition and stripping event stresses as well as the symmetry observed in 

overpotential (Figure 9.1 & 10.1) is a somewhat unexpected result.  It may 

suggest a similar symmetry between the physical processes through which the 

accelerating species affect the addition and removal of copper from the electrode 

surface.  However, verification of this would require future research in this area 

using additional analytical techniques such as scanning electrochemical 

microscopy, electrochemical scanning tunneling microscopy, etc. to further 

investigate these processes on a molecular/atomic scale. 
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Figure 10.6 - Aggregate results of surface stress generation during galvanostatic 

stripping pulses of 1 (top) and 5 (bottom) mA/cm2 for all six solution 

combinations as a function of deposit thickness (0.2 ≤ θ ≤ 8 ML).  Similar to the 

behavior observed in Figure 9.6, the larger current density induces smaller surface 

stresses during stripping events as well.  
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Interestingly, the two main observations in the oxidative stripping work 

appear to be unrelated in origin and have different functional dependences on the 

amount of material stripped from the electrode.  First, large relaxation stresses 

associated with the PEG/Cl- additive combination are observed at both high and 

low current densities and are weakly dependent on thickness (Figure 10.5).  

Second, the stripping event stresses increase strongly as a function thickness and 

are also larger in accelerator containing solutions (Figure 10.6).  By performing 

the experiments in each of the three types of solutions, these effects were 

observed and attributed to the different plating additive species.  Specifically, the 

additive free solution produces small event and relaxation stresses, the 

suppressing solution exhibits small event but large relaxation stresses, and the full 

additive solutions produce large event and relaxation stresses.  More explicitly, 

consider the two groups of curves that appear in Figures 10.5 & 10.6.  First, the 

suppressing solution curves are grouped with the additive free solution and show 

small event stress generation in Figure 10.6.  Second, Figure 10.5 shows that the 

relaxation of films in the suppressing solution was large and similar in magnitude 

to the full additive solutions.  As stated above, the increase in event stress mirrors 

a similar increase in deposition event stress and is associated with the presence of 

the accelerating species (MPS or SPS) at the electrode surface.  Additionally, the 

most striking characteristic of the surface stress profiles is the magnitude of the 

compressive “relaxation” stresses.  In this case, the presence of PEG and Cl- 

induces a significant compressive stress at open circuit that exceeds the amount of 

stress generated during the current pulsed event itself.  It is well known that the 
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combination of these species in the plating solution produces an adsorbed 

blocking layer and plays an integral role in the superfilling process by suppressing 

the electrodeposition reaction.  In the case of oxidative stripping, copper metal is 

oxidized to cupric and cuprous ions and material is removed from the electrode 

surface.  One possible explanation for the excess compressive stress that evolves 

after the stripping event is related to the disruption of this interface by the 

transport of copper atoms/ions from the surface to the solution.  As shown in 

Figure 10.5, the amount of compressive relaxation stress generated is relatively 

independent of the driving force, but does scale weakly with amount of material 

removed.  If the copper atoms that are removed during the anodic pulse create 

new surface area by, for example, preferential etching at the grain boundaries, it is 

possible that the adsorption of additional PEG/Cl- species to form the blocking 

layer on this new area could be responsible for the excess compressive stress.  

Although, other mechanisms associated with the insertion of additive species into 

the grain boundaries could also be possible.  Future work in this area could 

include the investigation of film composition as a function of grain size as well as 

possible electrochemical scanning tunneling microscopy to look at surface 

evolution in response to stripping events performed in these additive containing 

solutions.   

As described in Chapter 9, additional efforts were made in an attempt to 

generalize the surface stress behavior of Cu{111} thin films during deposition and 

stripping in acidic media.  To this end, a series of experiments were performed in 
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Figure 10.7 - Comparison of the Surface stress profiles collected for a stripping 

event of ~8 ML at 1 mA/cm2 from additive free (a), perchlorate based additive 

free (b), full additive 50 μM SPS (c), and perchlorate based 50 μM SPS (d) 

solutions. Each stripping event generates a tensile stress followed by compressive 

relaxations.  
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stress profile collected during the oxidative stripping of ~8 ML of copper in each 

of the four solutions: additive free, 50 μM SPS, perchlorate additive free, and 

perchlorate 50 μM SPS.  As in the case of the deposition events shown in Figure 

9.7, the adjacent stripping profiles exhibit several similar characteristics.  First, 

the stripping event stresses are tensile and the relaxations that follow are 

uniformly compressive.  However, the relative magnitudes of each portion of the 

stress profiles are somewhat different.  In the case of the additive free solutions, 

the perchlorate based solutions yield significantly larger event stresses yet the 

relaxation stresses are similar.  For the 50 μM SPS solutions, the event stress is 

much smaller in the perchlorate solution while the relaxations are again 

comparable.  The anomalous nature of these results is further evident in Figure 

10.8 which provides the event stresses of these four series of oxidative stripping 

experiments for comparison.  Again the event stresses resulting from the 

deposition of 5, 6, 7, and 8 ML of copper from the perchlorate based solutions are 

plotted as points along with the additive free and 50 μM SPS curves shown earlier 

in Figure 10.6.  Unfortunately, these measurements do not appear to reflect the 

actual relationship between surface stress and anodic stripping of copper.   

 While the overall qualitative shape of the stress profiles is very similar 

between the sulfate and perchlorate solutions (as seen in Figure 10.7), further 

investigation is necessary in order to establish a more quantitative understanding 

of the surface stress behavior in this new electrolytic system.  In general, however, 

the perchlorate based experiments have provided one significant result.  That is, 

that the overall stress evolution during anodic current pulses follows the same 
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Figure 10.8 - Anomalous results from perchlorate based additive free and full 

additive (50 μM SPS) solutions (data points) overlaid on the previous results of 

the sulfate based solutions (lines) as presented in Figure 10.6.  Here the stripping 

event stress behavior does not follow the anticipated trends.  These results do not 

appear to be representative of the actual behavior and additional future 

investigations are required. 
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general trend as observed in the sulfate based electrolytes and that the supporting 

anion plays a minor albeit non-negligible role in the redox processes. 

10.4 Summary Outline 

• Constant current oxidative stripping pulses on Cu{111} thin film 

electrodes produce tensile surface stresses up to ~0.5 N/m during the 

stripping event in all solution combinations investigated herein.  A 

relaxation stress transient that is uniformly compressive is also observed 

following the current pulse. 

• At both 1 and 5 mA/cm2 current densities, the relationship between event 

stress and stripped thickness is qualitatively similar.  As in the deposition 

case, the magnitude of the induced stresses is larger for the 1 mA/cm2 case.  

At both current densities, the stress appears to scale linearly for all of the 

solutions at thicknesses greater than one or two monolayers. 

• Similar to the deposition case, the stripping event stresses increase 

strongly as a function thickness and are again larger for events carried out 

in accelerator containing solutions. 

• In contrast to the additive free results, a large “relaxation” stress is 

observed for stripping events carried out in all solutions that contain the 

suppressing species, PEG and Cl-.  The presence of this additive 

combination produces an excess compressive stress that is newly 

generated in the seconds that follow the oxidizing current pulse.  The 

result is a compressive residual stress (ffinal – finitial) despite the tensile 

nature of the stripping event stress.  The phenomenon is likely associated 
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with the formation or re-formation of the well known PEG/Cl- deposition 

blocking layer.    

• The magnitude of the large post-stripping relaxation in the additive 

containing solutions is independent of the applied current density and only 

weakly dependent on the magnitude of the initial compressive event stress.  

Thus, the two main observations are associated with different additive 

species and are unrelated in origin. 

• Qualitatively similar surface stress profiles are produced during oxidative 

stripping experiments in both sulfate and perchlorate based solution 

combinations.  However, for the case of the perchlorate based solutions, 

the magnitudes of the event and relaxation stresses appeared to be 

somewhat anomalous in nature and require further investigation.   
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CHAPTER 11 

EFFECT OF A CUPROUS ION CONCENTRATION 

11.1 Introduction 

Like other d-block elements, copper has multiple possible oxidation states 

due to the nature of its electronic structure.  For example, stable or quasi-stable 

forms of copper exist in the +1, +2, +3 and +4 oxidation states and the stability of 

each can be highly dependent on the environment surrounding the ionic species 

212.  Of these multiple ionic species, the cupric (Cu2+) and cuprous (Cu+) ions are 

the only relevant species under the conditions of this work.  The corresponding 

reduction equations and potentials were given in eqs 3.3 & 3.4.  The relative 

stability of these ions can be represented graphically by a Frost-Ebsworth diagram, 

as shown in Figure 11.1.  The Frost-Ebsworth diagram for copper indicates that 

the metallic form is thermodynamically favored with respect to its ionic species.  

Furthermore, the standard reduction potentials indicate that both ions are reduced 

to metallic copper at potentials within the stability limits of water.  This is 

indicated schematically in Figure 11.2a along with an additional equation that 

describes the reduction of cupric ions to cuprous ions via a single electron transfer 

step,  

 

(11.1) 

 

Considering this relation, a representation of the relevant redox chemistry of 

copper in aqueous solution is represented by a Latimer diagram in Figure 11.2b.  

SHE.  v.V 0.159           ,Cu e  Cu 0
(aq)

-
(aq)

2 =↔+ ++ E
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Still, the relative potentials of each of these reduction steps indicate the existence 

of a potential range at which cuprous ions (Cu+) may be subject to simultaneous 

oxidation and reduction.  This reaction can be represented by appropriately 

combining eqs 3.3 & 11.1 to give 

 

(11.2) 

 

which is known as the copper disproportionation reaction.  The 

disproportionation of copper is also represented by the “convex” nature of the 

curve in Figure 11.1 212.  That is, the cuprous species lies above a line connecting 

copper metal and the cupric species, indicating its relative instability with respect 

to disproportionation.  Using the potential value shown in eq 11.2, an equilibrium 

constant of Keq,Cu = [Cu2+]/[Cu+]2 ≈ 1.81*106 is calculated and indicates that 

cuprous ions will disproportionate equally into copper metal and cupric ions 

except at extremely low concentrations.  In fact, for the deposition and stripping 

experiments presented in this dissertation, the equilibrium (upper limit) cuprous 

ion concentration of a 0.25 M CuSO4 solution is ca. 400 μM.  Furthermore, any 

dissolved oxygen in the solution would react readily with the free cuprous ions 

and would lead to further removal from the equilibrium concentration. 

Previously published investigations have speculated that cuprous ion 

complexes play a significant role in the superfilling process.  More recently, there 

has been some disagreement regarding whether the important cuprous species is  

 

SHE.  v.V 0.361           (s), Cu (aq)Cu (aq)2Cu 002 =+↔ ++ E
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Figure 11.1 - Frost-Ebsworth diagram for metallic copper, Cu0, and its common 

ionic species Cu+ and Cu2+ at pH 0.  The ordinate axis is proportional to the free 

energy of each ionic species in units of volts. Figure adapted from Reference212. 

 

 

 

an adsorbed cuprous complex or a near-surface solution phase species19, 64.  In 

fact, recent attempts to model the Cu electrodeposition process assuming the 

presence of either a soluble or adsorbed form of cuprous species have yielded 

virtually identical results, suggesting that the complexity of this process is still not 
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dissolved oxygen.  With respect to the copper damascene process, the copper 

chemistry is further complicated by the addition of complexing agents, such as Cl- 

and MPS, which are known to produce stable cuprous complexes19.  In 2005, 

Vereecken et al published a significant paper in the area of damascene plating and 

the effects of the various additive species on the stability of free cuprous ions or 

cuprous complexes in the plating solution19.  In the article, the authors utilized 

rotating ring-disk electrode investigations to establish a clear relationship between 

the local concentration of cuprous species and the overpotential/current density of 

electrodeposition.  Specifically, they reported a definite correlation between the 

“acceleration” of the deposition reaction and the presence of an appreciable 

concentration of cuprous species generated at the copper electrode surface at open 

circuit and during electrodeposition at modest current densities (i.e. ≤10 mA/cm2).  

Due to this linkage between cuprous species and the required overpotential, they 

found that the plating additives either enhanced or inhibited the plating 

rate/current density by promoting or retarding the formation of soluble Cu+ 

species 19.  Specifically, chloride and accelerators (e.g. SPS) alone were found to 

promote the production and stability of cuprous intermediates while suppressing 

additive species (e.g. PEG + Cl-, etc.) virtually eliminated the presence of cuprous 

species in the solution.  
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Figure 11.2 - Schematic potential (a) and Latimer (b) diagrams that summarize 

the relevant redox chemistry of copper in aqueous solution.  In both schematics, 

reduction occurs from left to right.  In addition to the two reduction reactions 

between copper ions and metallic copper, a third reduction reaction is observed 

between the divalent and monovalent oxidation states.  Latimer diagram adapted 

from Reference212. 

 

 

 

The results presented in this chapter were collected in the same manner as 

those shown in Chapters 9 & 10.  In this case, however, the investigations were 
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both aged and fresh (i.e. deaerated, but not equilibrated) solutions of identical 

composition.     

11.2 Experimental details 

All of the preparation and setup of the apparatus for these experiments was 

as described in Chapters 7-10.  Similarly, the current densities and pulse durations 

given in Table 9.3 were again utilized in these experiments.  The purpose of this 

set of experiments was to measure the real time surface stress response of a 

Cu{111} thin film electrode in three solutions that were identical in composition 

but prepared differently.  This was done for two solution compositions, the 

suppressing solution (PEG/Cl-) and a full additive package (i.e. the 50 μM SPS) 

solution (see Table 9.1).   

For each solution composition the old, fresh, and equilibrated solutions 

were made identically using cupric sulfate (CuSO4) as the copper ion source.  

First, the equilibrated and aged solutions were produced and loaded into separate 

deaeration cells.  They were then deaerated simultaneously for >140 hours, the 

equilibrated solutions in the presence of copper metal and the aged solutions in 

the absence of copper metal.  The purpose of the copper metal was to provide a 

surface on which the copper comproportionation reaction could occur in order to 

generate an increase in the concentration of cuprous ions (Cu+) from a negligible 

amount to the equilibrium value.  This occurs as the disproportionation reaction 

(eq 11.2) occurs in the reverse direction as a small but finite amount of copper 

atom (Cu0) and cupric ion (Cu2+) pairs comproportionate (via local electron 

exchange) and then enter the solution as cuprous ions.  Because the aged solution 
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was deaerated in the absence of copper metal, the production of cuprous ions was 

not possible.  The fresh solution was also included in order to preclude electrolyte 

aging effects on the surface stress response.  The fresh solution was made with the 

same composition as the aged and equilibrated solutions, but was produced and 

deaerated in the absence of copper metal (for ~4 hours) on the day in which all 

three experiments were carried out. 

11.3 Results and Discussion 

As described above, the purpose of these experiments was to explore the 

effect of the cuprous ion (Cu+) on film stress generation in order to gain some 

insight into its relevance to the superfilling mechanism.  Because of the surface 

sensitive nature of surface stress monitoring, the strategy of these experiments 

was to compare the differences between the equilibrated electrolyte and the aged 

and fresh solutions.  As described below, the equilibration step used in these 

experiments had different effects for each of the plating solutions investigated: a 

distinct reduction in the magnitude of stress was observed in the suppressing 

solution whereas no change was observed for the 50 μM SPS containing solution.   

First, Figure 11.3 presents the results from two separate experiments that 

were carried out using equilibrated and fresh suppressing (PEG/Cl-) solutions.  

Interestingly, both the deposition and stripping stress profiles are qualitatively 

similar to each other as well as to the results presented in Chapters 9 & 10.  In 

terms of magnitude, though, a significant difference is observed during both event 

and relaxation portions of the profiles that correspond to the equilibrated solution.  

During the deposition event the equilibrated solution produces a ~-0.39 N/m  



  176 

 

Figure 11.3 - Comparison of surface stress results during ~8 ML galvanostatic 

pulses of both deposition (top) and stripping (bottom) events.  In each case the 

two solutions were prepared as equilibrated (black) and fresh (green) suppressing 

(PEG/Cl-) solutions.  In both cases, the equilibrated solution produces smaller 

stress changes in both the event and relaxation regions.  Pulsed current density = 1 

mA/cm2.  
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surface stress while the fresh electrolyte reaches a compressive stress of ~-0.66 

N/m (note the agreement of this number with the PEG/Cl-curve of Figure 9.6 at 8 

ML).  This represents a ~40% reduction in stress magnitude due to the presence 

of an appreciable cuprous ion (Cu+) concentration compared to the deaerated, 

fresh solution.  In a similar fashion the tensile relaxation is also diminished in 

magnitude by the presence of the cuprous ion.  The film in the equilibrated 

solution relaxes by ~0.25 N/m whereas the fresh solution produces a relaxation of 

~0.52 N/m.  In the case of the relaxation following the deposition event the values 

are less surprising in that the driving force (magnitude of the preceding 

compressive event stress) for relaxation is decreased in the equilibrated solution 

and therefore the relaxation decreases.  In both cases, the tensile transient 

represents a 65-75% relaxation of the initial event stress.  In the case of the 

oxidative stripping of ~8 ML of copper, Figure 11.3 again shows a difference in 

the overall surface stress evolution between the equilibrated and fresh solutions.   

During the stripping events the cuprous ion concentration produces an 

even more significant reduction in stress as the equilibrated solution and the fresh 

solution show ~0.3 and ~0.13 N/m tensile increases, respectively (again, note the 

correspondence of fresh solution with the PEG/Cl-curve of Figure 10.6).  During 

the compressive relaxations, the fresh solution produced a typical value of ~-0.60 

N/m and the equilibrated solution ~-0.11 N/m.  In contrast to the deposition 

results, however, the ratio of relaxation to event stress differs between the 

equilibrated and fresh solutions during stripping (ratio of 3.67 versus 4.69).  That 

is, the compressive relaxation in the equilibrated solution was much smaller 
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Figure 11.4 – Potential profiles recorded during galvanostatic current pulses 

corresponding to ~8 ML in suppressing (PEG/Cl-) solutions.  Both 

electrodeposition (top) and stripping (bottom) events indicate that the equilibrated 

(black) solution required a lower overpotential to support the 1 mA/cm2 current 

density.  
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 (relative to the preceding stripping event stress) than normally observed in the 

deaerated, fresh solution.  This result is not surprising though since the 

compressive relaxations are relatively decoupled from the tensile stripping event 

stress, as discussed in Chapter 10.  In fact, the smaller relative relaxation that is 

observed in the equilibrated solution suggests that the cuprous ion plays a role 

along with the PEG and Cl- species that are associated with the generation of 

excess compressive stress following the stripping event. 

The potential profiles that were collected simultaneously with surface 

stress during the deposition and stripping of ~8 ML of copper in the equilibrated 

and fresh suppressing solutions are shown in Figure 11.4.  Here, a clear 

distinction arises between the potentials required to sustain the 1 mA/cm2 current 

pulse.  The difference in overpotential was ~130 mV (~169-42 mV) for 

electrodeposition and ~69 mV (~93-24 mV) for stripping.  This result is 

consistent with the relationship between the concentration of cuprous species and 

overpotential as reported by Vereecken et al19 and appears to confirm the presence 

of Cu+ species in the solution.  Thus, by providing an appreciable concentration of 

cuprous ions by external means, the deposition process was, in effect, 

“accelerated” with respect to the deposition reaction in the deaerated, fresh 

suppressing solution.  The simultaneous measurement of potential and surface 

stress during deposition and stripping of copper provides insight into the 

relationship between cuprous species and copper thin film stress evolution.  

Specifically, an appreciable concentration of cuprous species at the interface has 

been shown to produce (1) an “acceleration” effect in the absence of accelerating 
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additives and (2) a reduction of both event and relaxation stresses in the 

suppressing solution chemistry. 

In order create the equilibrated solution used in these experiments, it was 

necessary to perform the deaeration step for an extended period of time relative to 

the protocol of ~4-18 hours that was typically used.  Specifically, using a back-of-

the-envelope estimation based on the published values of exchange current 

density of copper in copper sulfate electrolytes, it was determined that a six-day 

duration would be more than sufficient time to completely generate an 

equilibrium cuprous ion concentration within the solution.  In an effort to rule out 

any type of electrolyte aging effect, an identical set of experiments were carried 

out in an aged solution that was created and deaerated in parallel with the 

equilibrated solution.  The only difference between the aged and equilibrated 

solutions was the presence of copper metal during the six-day deaeration period.   
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Figure 11.5 - Comparison of surface stress results during ~8 ML galvanostatic 

pulses of both deposition (top) and stripping (bottom) events.  Here the two 

curves correspond to fresh (green) and aged (blue) suppressing (PEG/Cl-) 

solutions.  This demonstrates that extended deaeration does not affect the resultant 

stress profile.  Pulsed current density = 1 mA/cm2.  
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The purpose of this experiment was to compare the results from the aged solution 

with those obtained in a fresh, deaerated suppressing solution (~4 hours of 

deaeration time).  Figure 11.5 shows the surface stress results during the 

deposition and stripping of ~8 ML of copper to and from a Cu{111} thin film 

electrode in both aged and fresh solutions.  It is immediately evident that aside 

from the small difference in deposition relaxation stress, the stress responses are 

nearly identical during both electrodeposition and oxidative stripping.  This result 

confirms that the surface stress response is unaffected by the age and deaeration 

time of the electrolyte and that the reduction in stress magnitude observed in 

Figure 11.3 is indeed a result of an appreciable cuprous ion concentration. 

As stated above, an identical set of experiments was also performed in the 

full additive, 50 μM SPS containing solution.  To be precise, both equilibrium and 

aged solutions were prepared from a 50 μM SPS full additive solution by the 

same deaeration and equilibration protocol.  In this case however, the cuprous ion 

concentration had little or no effect of the stress profiles.  Figure 11.6 shows the 

stress results for the same ~8 ML deposition and stripping pulses that were carried 

out in the equilibrated and aged 50 μM SPS containing electrolytes.  In the case of 

the deposition event the stress profiles are virtually identical both qualitatively 

and quantitatively.  Similarly, the event stress associated with the stripping events 

are also nearly indistinguishable while the respective relaxation stresses show a 

slight variation (the difference between the two is <12%).  In general, these 

results indicate that in contrast to the suppressing solution case, the surface stress  
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Figure 11.6 - Comparison of surface stress results during ~8 ML galvanostatic 

pulses of both deposition (top) and stripping (bottom) events.  Here the two 

curves correspond to equilibrated (black) and aged (blue) full additive (50 μM 

SPS) solutions.  In this solution chemistry the equilibration step does not affect 

the resultant stress profile.  Pulsed current density = 1 mA/cm2.  
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response in the full additive solution remains relatively unaffected by the presence 

of a non-zero cuprous concentration.   

The interpretation of these stress results follow from the fundamental 

electrochemical work published by Vereecken et al19.  Using the rotating ring-disk 

electrode results, the authors determined that the acceleration effect required for 

damascene superfilling was correlated to the presence of a local concentration of 

cuprous species.  Additionally, they determined that this phenomenon occurred in 

the full additive solutions but was virtually nonexistent in suppressing chemistries 

due to the promotion and inhibition of cuprous ion formation, respectively.  The 

combined potential and surface stress results presented in this present work 

indicate that by providing an appreciable concentration of cuprous species by 

external means, the overall magnitude of the stress profile was reduced in the 

suppressing solution but unaffected in the full additive solution.  In the case of the 

full additive solution, these results indicate that the requisite concentration of 

cuprous species can be generated at open circuit or at low current densities such 

that the deposition and stripping reactions remain relatively unaffected by the 

external cuprous species of the equilibrium solution.  However, in the case of the 

suppressing solution where the production of cuprous species is inhibited by the 

additive species, the presence of the externally provided cuprous concentration 

produces an acceleration effect as well as a reduction in overall stress magnitude.   

The implications of these results as they pertain to industrial electroplating 

are related to the possible effects of plating bath chemistry.  Specifically, these 

results have shown that both additive chemistry and preparation can affect the 
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plating process as well as the as-deposited film properties.  The reliability of 

copper as an IC interconnect material can be affected by intrinsic stresses 

associated with the deposition process.  The results presented herein clearly 

demonstrate that the chemistry of the plating bath can affect both the superfilling 

capability of the process (via deposition “acceleration”) as well as the amount of 

intrinsic stress built into the film.  Moreover, it is likely that Cu interconnect 

residual stress resulting from industrial damascene processes could be reduced by 

implementing similar solution deaeration and equilibration process steps.  

11.4 Summary Outline 

• Both the deposition and stripping stress profiles are qualitatively similar to 

each other as well as to the results presented in Chapters 9 & 10, 

respectively.  However, a distinct reduction in the magnitude of both the 

event and relaxation stresses was observed during experiments carried out 

in Cu++/Cu+/Cu0 equilibrated suppressing solutions.  In contrast, no 

significant effect was observed for the equilibrated 50 μM SPS containing 

solution.  

• The potential profiles that were collected simultaneously with surface 

stress during the deposition and stripping in the equilibrated and fresh 

suppressing solutions reveal a clear distinction between the potentials 

required to sustain the 1 mA/cm2 current pulse.  By providing an 

appreciable concentration of cuprous ions by external means, the 

deposition process was, in effect, “accelerated” with respect to the 

deposition reaction in the deaerated, fresh suppressing solution.  This 
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result is consistent with the relationship between the concentration of 

cuprous species and overpotential as reported by Vereecken et al and 

confirms the presence of Cu+ species in the solution.     

• The surface stress response is unaffected by the age and deaeration time of 

the electrolyte. Thus the reduction in stress magnitude observed in 

equilibrated solutions is a result of the appreciable cuprous ion 

concentration not an electrolyte aging effect. 

• According to previous studies, full additive solutions are capable of 

superfilling and suppressing chemistries are not because of their respective 

tendencies to promote and inhibit cuprous ion formation.  Thus, by 

providing an appreciable concentration of cuprous species by external 

means, the overall magnitude of the stress profile was reduced in the 

suppressing solution where Cu+ is generally absent but unaffected in the 

full additive solution where the concentration of Cu+ is already sufficient. 

 

 

 

 

 

 

 

 

 



  187 

CHAPTER 12 

SURFACE STRESS CHANGES AT OPEN CIRCUIT POTENTIAL 

12.1 Introduction 

As discussed briefly in Chapter 3, the immersion of a metal (e.g. copper) 

electrode in an electrolytic solution results in the creation of a dynamic interface 

across which both mass and charge is constantly exchanged.  This is true even 

when the electrode remains at the open circuit potential and the net 

electrochemical current is zero.  Under these conditions, a finite amount of 

balanced faradaic charge passes between the electrode and the electrolyte.  This 

exchange current density has units of current per area and is defined as40 

 

(12.1) 

 

where F, k0, and α are the Faraday constant, the standard reaction rate constant, 

and  the transfer coefficient, respectively, and [O] & [R] are the concentrations of 

the oxidized and reduced species, respectively.  For the case of a copper electrode 

in a deaerated solution containing copper ions, the exchange current corresponds 

primarily to the reduction of copper ions and the oxidation of copper atoms.  

Because this parameter is not measurable by electrochemical means, the actual 

physical mechanism that corresponds to this constant redox process is not well 

defined.  Furthermore, in the case of an aliovalent system such as copper where 

more than one oxidation state is possible, the process is likely more complex. 

αα ][][ )1(0
0 ROFki −=
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 In addition to the electrochemical experiments described in the previous 

chapters, a very specialized set of experiments was designed to measure stress in 

the absence of any external electrochemical manipulation.  That is, instead of 

using current or applied potential manipulations as the experimental variable, the 

solution composition and concentration were the controlled parameters.  In one 

sense this type of experiment draws somewhat on the gas adsorption experiments 

that have been performed under UHV conditions by other members of the Friesen 

Research Group131, 213, 214.  In contrast to those studies, however, the introduction 

of surfactant species and/or the manipulation of an ionic species’ thermodynamic 

activity in electrochemical systems can have a large effect on the kinetics of the 

electrode-electrolyte interface and the associated surface stress state.     

12.2 Experimental details 

The same basic cleaning and preparation steps that were described in 

Chapter 7 were also used for the solution exchange experiments presented here. 

The minor differences in the setup of the apparatus were (1) the simultaneous 

preparation of a second electrolytic solution that was used in the solution 

exchange event and (2) a few modifications within the electrochemical surface 

stress cell itself (see Figure 12.1).  The purpose of this set of experiments was to 

measure the surface stress response of a Cu{111} thin film electrode to a change 

in the electrochemical environment.  Even though no electrochemical parameters 

were controlled during these experiments, the open circuit potential was 

monitored during the entire process.  The potential profile primarily served as a 

supplementary source of information and also provided a general indication of the 
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extent of solution exchange during that process.  The experimental protocol 

consisted in two simple steps.  First, the initial solution was loaded into the 

electrochemical surface stress cell and the system was allowed to come to a 

pseudo-steady-state surface stress value (i.e. low level signal drift [<~0.003 

(N/m)/s]).  Second, the initial solution was replaced by the final solution via a 

smooth, continuous solution exchange.  Figure 12.1 shows the experimental 

apparatus used in the solution exchange experiments and illustrates the means by 

which the solution exchange was accomplished.  Based on the experimental 

requirements of this work, several modifications were made to the 

electrochemical surface stress cell (compare Figures 12.1 & 7.2).  In order to 

separate the initial and final solutions, a machined PTFE barrier was placed inside 

the cell.  The barrier was designed such that the back-side was sloped and the top-

most portion was sharp enough to facilitate a smooth and well defined overflow 

of liquid during the exchange process.  Additionally, Figure 12.1a shows a small 

sponge (of complementary shape) that was placed on the sloped face of the barrier 

to smoothly transport the overflowing solution to the overflow compartment of 

the cell.  Again, the overarching goal behind these modifications was to 

continuously transition the working electrode surface from one electrolytic 

solution to another without creating excess noise (from e.g. vibration) in the 

surface stress signal and without breaking electrochemical contact between the 

working and reference electrodes. 
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Figure 12.1 - Image (a) and illustration (b) of the modified cell setup used for the 

solution exchange experiments at the open circuit potential.  As before, the cell 

consisted of a cantilever sample (C) with the working electrode being submersed 

in electrolyte and the stress monitor sensor (S) fixed adjacent to the sample.  

Additionally, a barrier (B) was placed in the cell to create two compartments 

within the cell and separate the initial solution (E1) from the final solution (E2) 

after flowing over the barrier.  The final solution was introduced to the 

compartment containing the working electrode via a pipette/frit device (F).  

 

 

 

Throughout this series of solution exchange experiments, several types of 

solutions were utilized. The first type of solution was a sulfate based combination 

of sulfuric acid, copper sulfate and sodium sulfate at the various concentrations 
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shown in Table 12.1.  These sulfate based solutions were specifically designed in 

order to observe the surface stress due to an increase of copper ion concentration, 

at constant sulfate concentration.  In this first type of exchange experiment, each 

exchange consisted in the replacement of a low Cu++ concentration with a higher 

concentration where the higher concentration was an order of magnitude 

larger(e.g. [Cu2+]=10-2 M → [Cu2+]=10-1 M).  As an additional experimental  

 

 

Table 12.1 – Solution components and their corresponding concentrations for the 

six solutions used in the first type of solution exchange experiments performed at 

open circuit. 

Solution 
Identifier 

[H2SO4] 
(mol/L) 

[Cu2SO4] 
(mol/L) 

[Na2SO4] 
(mol/L) 

10-6 M [Cu] 0.1 0.000001 ~1 
10-5 M [Cu] 0.1 0.00001 ~1 
10-4 M [Cu] 0.1 0.0001 ~1 
10-3 M [Cu] 0.1 0.001 ~1 
10-2 M [Cu] 0.1 0.01 0.99 
10-1 M [Cu] 0.1 0.1 0.9 

 

 

 

parameter, a new Cu(111) single crystal sample embodiment was also used in the 

first solution type.  These supplementary experiments were used to probe the role 

of grain boundaries in the stress changes associated with the solutions exchanges.  

The second solution type that was used in this series of solution exchanges was a 
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perchlorate based combination.  In this case the anion identity was changed in 

order to confirm and generalize the stress results observed in the sulfate based 

solutions just as the perchlorate solutions were used in the deposition and 

stripping experiments above (see Chapters 9 & 10).  For this solution type, only 

one exchange combination was carried out using the solutions shown in Table 

12.2.  The perchlorate based solutions were also used to replace a low 

concentration (0.01 M) of copper ions with a concentration that was ten times 

larger (0.1 M).  Also, it is important to note that during the first and second types 

of solution exchanges, the anion (sulfate or perchlorate) concentration was held 

constant across the solution exchange in order to avoid any extraneous effects.  

The third and final type of solution used in the solution exchange experiments 

differed from the previous two in that the controlled variable was not the copper 

ion concentration but rather the presence of copper plating additive species.  More 

specifically, an additive free solution (as defined in Chapters 9 & 10) was 

replaced by a suppressing solution that contained both PEG and NaCl in the 

concentrations defined by Table 12.3.  Specifically, two versions of this type of 

solution exchange experiment were carried out, one at concentrations equal to 

those of the deposition and stripping experiments described above and another at 

the lower concentrations used in first type of solution exchanges (see Tables 12.1 

& 12.3).   
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Table 12.2 – Solution components and their corresponding concentrations for the 

two solutions used in the second type of solution exchange experiments at open 

circuit. 

Solution 
Identifier 

[H2ClO4] 
(mol/L) 

[Cu(ClO4)2*6H2O] 
(mol/L) 

[NaClO4] 
(mol/L) 

10-2 M [Cu] 
perchlorate 0.1 0.01 0.98 

10-1 M [Cu]  
perchlorate 0.1 0.1 0.8 

 

 

 

One of the major challenges associated with this new experimental 

protocol was the need to either minimize or account for mixing between the two 

solutions during the exchange process.  For the first and second types of solution 

exchanges involving a change in copper ion concentration, the mixing was 

minimized by the use of the “pipette/frit device” that was designed minimize 

turbulence in the solution(s) during the exchange event.  The success of this 

device was predicated on the differences in density between the copper ion 

containing solutions of varying concentrations.  Because the solutions that 

contained higher concentrations of Cu2+ have slightly larger densities, the more 

concentrated solution settled at the bottom of the cell during the exchange.  The 

role of the pipette/frit device was then to minimize the amount of mixing that 

occurred due to the convection that was induced by the loading of the final 

solution.  The strategy that was then used to achieve an efficient transition to a  
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Table 12.3 – Solution components and their corresponding concentrations for the 

four solutions used in the third type of solution exchange experiments at open 

circuit. 

 

 

 

 

 

 

higher concentration of copper ions was to avoid mixing of the initial and final 

solutions.  Conversely, the strategy that was used in the third type of solution 

exchange involving plating additives was to anticipate mixing and adjust the 

additive concentrations accordingly.  The motivation behind this strategy was 

based on lack of a density difference between the additive free and suppressing 

solutions.  In this case, the additive concentrations were scaled such that if the 

initial and final solutions were perfectly mixed, the concentrations would be equal 

to those used in the electrodeposition and oxidative stripping experiments in 

Chapters 9 & 10 (see Table 9.1).  Based on the geometry of the electrochemical 

cell and the volumes of the respective solutions, a scaling factor of 1.79 was 

calculated.  Thus the final composition of the solution above the working 

electrode in the third type of solution exchange experiments contained at least as 

much PEG and Cl- species as the deposition suppressing solutions shown in Table 

9.1.  

Solution 
Identifier 

[H2SO4] 
(mol/L) 

[CuSO4] 
(mol/L) 

[PEG] 
(mol/L) 

[NaCl] 
(mol/L) 

Additive Free #1 0.1 0.1 0 0 
Suppressing #1 0.1 0.1 157*10-6 1.79*10-3 

Additive Free #2 1 0.25 0 0 
Suppressing #2 1 0.25 157*10-6 1.79*10-3 
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12.3 Results and Discussion 

12.3.1a - Sulfate Solution Results 

 The first type of solution exchange experiments that was carried out was 

concerned with an increase of copper ion concentration immediately around the 

working electrode surface.  The concept behind this type experiment is somewhat 

novel, given that the solution exchange provided an increase in activity and 

chemical potential of Cu++ as well as an increase in surface adatom concentration, 

without the use of an applied potential or net current.  This is significant because 

any change in surface stress during these types of experiments comes in the 

absence of a net addition or removal of material from the electrode surface.  

Moreover, the stress changes that are observed during these experiments confirm 

the existence of a dynamic electrode-electrolyte interfacial region and 

demonstrate that electrode surfaces can be subjected to large stresses upon 

immersion into electrolyte, even at open circuit potentials. 

Figure 12.2 shows a typical surface stress and potential profile that are 

collected during the solution exchange experiments.  In this specific case, a 

relatively large compressive stress change (~-8.5 N/m) evolves in response to a 

transition from 10-2 M to 10-1 M in cupric ion concentration.  Additionally, the 

change in potential is ~30 mV, which is in agreement with the value predicted by 

the Nernst equation  

 

(12.2) 
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where the oxidized (O) species is Cu2+ and the reduced species (R) is Cu0 and E, 

E0, R, T, n, and F are the electrode potential, the equilibrium potential of the redox 

couple, the gas constant, temperature, the number of electrons transferred and the 

Faraday constant, respectively40, 41. 

Surface stress changes associated with the increase in [Cu++] over the 

range of 10-5 M to 10-1 M (by one order of magnitude each time) were measured 

and are shown in Figure 12.3.  Initially, at low concentrations, no detectable 

change in surface stress was measured and the first three points are equal to zero.  

However, starting with the transition to [Cu++]=10-3 M, the stress is found to 

increase rapidly as a function of final copper ion concentration during these 

solution exchange experiments.  Overall, Figure 12.3 shows that the total stress 

change of a thin film electrode is ~12 N/m in the range from 0 to 10-1 M copper 

ions. 

 In concert with the surface stress measurements taken during the solution 

exchange experiments, electrochemical experiments were performed in each of 

the six solutions shown in Table 12.1.  First, a series of cyclic voltammetric 

experiments were used to estimate the exchange current density for a Cu{111} 

thin film electrode in each of copper sulfate concentrations.  The resulting 

current-voltage behavior was analyzed using the Tafel slope extrapolation method 

as outlined in by Bard and Faulkner40.  The results from these experiments are 

plotted in Figure 12.4 as a function of log([Cu++]).  Additionally, the data also 
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Figure 12.2 - Surface stress (green) and open circuit potential (black) responses of 

a Cu{111} thin film electrode to a solution exchange process.  The starting 

solution was 0.01 M CuSO4 + 0.1 M H2SO4 + 0.99 M Na2SO4 followed by 

replacement by 0.01 M CuSO4 + 0.1 M H2SO4 + 0.99 M Na2SO4.  The large spike 

in the stress signal at ~250 s corresponds to the physical exchange of solution in 

electrode compartment of the electrochemical surface stress cell. 

 

 

correspond to a turnover frequency (TOF) shown on the right side ordinate axis.  

In this context, the TOF was defined from the exchange current density 

measurements and the Faraday’s law type relation as the total amount of Cu (in 

equivalent monolayers) that is equally deposited and stripped in a unit time period 

(per second).   
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Figure 12.3 – Graphical representation of the surface stress changes observed on 

Cu{111} thin film (red) and Cu(111) single crystal (blue) electrodes in response 

to a series of solution exchange processes.  Each point corresponds to the change 

in stress relative to the previous point and is plotted as a function of the logarithm 

of the final Cu++ concentration.  The initial solutions were of the form 10(x-1) M 

CuSO4 + 0.1 M H2SO4 + (1-10(x-1)) M Na2SO4 and the final solutions 10x M 

CuSO4 + 0.1 M H2SO4 + (1-10x) M Na2SO4, where x is the unit on the abscissa.  
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Figure 12.4 – Exchange current density (i0) values of Cu{111} thin film (red) 

Cu(111) single crystal electrodes in solutions of 10x M CuSO4 + 0.1 M H2SO4 + 

(1-10x) M Na2SO4, where x is unit on the abscissa.  In each case the exchange 

current values were determined via the Tafel slope extrapolation of a cyclic 

voltammetric curves.  The right side ordinate axis corresponds to an equivalent 

turnover frequency in units of monolayers per second 
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Upon comparison of the data represented in Figures 12.3 & 12.4, a 

striking similarity in the functionality of the curves becomes apparent.  That is, 

both the exchange current density and the solution exchange stress change curves 

appear to exhibit exponential-type dependences on the logarithm of the copper ion 

concentration in the solution.  To further explore and quantify the possible 

relationship between these two measurements, Figure 12.5 was constructed as a 

parametric plot of the change in surface stress, Δf, and exchange current density, 

i0, with Cu++ concentration as the linking parameter.  Immediately, the resulting 

curve suggests a linear relationship between i0 and Δf.  A linear fit of the data in 

Figure 12.5 yields a relationship of Δf = -0.027*i0 + 2.19 with an R2 value of 0.98.  

While the results of these measurements do appear to be related, it should be 

noted that only a small number of data points (only three non-zero stress change 

value) were used to establish relationship, therefore the high R2 value may be 

serendipitously large. 

 

 

 

 

 

 

 

 

 



  201 

 

Figure 12.5 – Plot of surface stress response to solution exchange and the 

resulting exchange current density (and equivalently, turnover frequency on the 

top axis) of the final solution.  Here the Cu{111} thin film (red) and Cu(111) 

single crystal (blue) results from Figures 12.3 and 12.4 are plotted parametrically 

with the logarithm of the Cu++ concentration as the parameter.  A linear fit of the 

resulting curve is Δf = -0.027*i0 + 2.19 with an R2 value of 0.98.  
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 12.3.1b - Equilibrated Sulfate Solutions 

In addition to the series of solution exchange results presented in Figure 

12.3, a supplementary experiment was performed in order to investigate the effect 

of copper chemistry on the solution exchange induced surface stress.  The 

objective of this single experiment was to use an equilibrated solution of 0.1 M 

CuSO4 + 0.1 M H2SO4 + 0.9 M Na2SO4 as a final solution during a transition 

from a corresponding 0.01 M CuSO4 solution.  For this experiment, the 

equilibrated solution was prepared by following the same protocol that was used 

for the experiments described in Chapter 11.  Following the extended 

deaeration/equilibration step, the solution exchange process was carried out in the 

same fashion as the other sulfate based exchange experiments.  In this case, the 

solution exchange produced a compressive change in stress of approximately 6 

N/m.  The similarity between this value and the ~-8.5 N/m change reported in 

Figure 12.3 for the equivalent un-equilibrated transition (from 0.01 M to 0.1 M) is 

significant.  In fact, this result allows for the exclusion of extraneous stress 

generation via cuprous complex interactions with the electrode surface.    

12.3.1c - Cu(111) Single Crystal Samples in Sulfate Solutions 

 An identical set of sulfate based solution exchange experiments was 

carried out using a new sample embodiment that substituted a Cu(111) single 

crystal surface as the working electrode.  The sample was constructed using a 

small (~1 cm × ~0.65 cm × ~0.02 cm), electropolished slice from a Cu(111) 

single crystal and a UHV deposited thin film sample.  By cutting the thin film 

sample and attaching the pieces to the single crystal slice, the new sample 
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embodiment was used exactly as the thin film samples were previously used.  In 

addition to the change in sample embodiment, a small number of changes to the 

calibration equation (eq 7.6) were made (see Appendix C). 

 Figures 12.3, 12.4, and 12.5 show the exchange current density and 

surface stress values that were similarly collected using the new single crystal 

sample.  In this case, only the 0.01 M to 0.1 M CuSO4 transition yielded a 

measurable change in stress (~-2 N/m) and is represented by the single blue 

square.  The blue circles indicate that the experiments were carried out for the less 

concentrated solution exchanges but yielded no discernible change in surface 

stress.  Because of the sample construction, the sensitivity of the stress monitor-

sample system was reduced by a factor of two to three, relative to the thin film 

experiments.  It is possible then that the surface stress changes associated with the 

less concentrated solutions were not actually zero but that the data collection was 

limited by the resolution of the experimental apparatus.  However, the collected 

single crystal sample results do present a behavior that is strikingly similar to the 

thin film results.  Figure 12.5 indicates that the induced single crystal surface 

stress evolves in the compressive direction and suggests that it scales with the 

exchange current density as well.  These results demonstrate, at least qualitatively, 

that a similar stress response is induced on both polycrystalline thin film 

electrodes as well as single crystal electrodes and that grain boundaries are not 

required to produce stress in the electrode.  
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12.3.2 Perchlorate Solution Results 

 The second type of solution that was used in the exchange experiments 

were the perchlorate based electrolytes defined in Table 12.2.  Again, the research 

objective behind this set of experiments was supplementary in nature and 

therefore consisted of only a single pair of solutions.  As in the case of the 

deposition and stripping experiments, the motivation behind the use of the 

perchlorate based solutions was to investigate the effect of the supporting anion.  

The perchlorate based exchanges were carried out in the same fashion as the 

sulfate exchanges.  In this case the stress changes results were slightly more 

scattered, ranging from about -4 to -7 N/m for the transition from 0.01 M to 0.1 M 

Cu(ClO4)2*6H2O.  Figure 12.6 shows the actual stress curves that were collected 

during two runs of the perchlorate solution exchange experiment.  While the exact 

value of the stress change remains somewhat uncertain (due to the scatter in the 

data), the results are less than a factor of two different than the changes observed 

in the sulfate solutions.  As in the case of the equilibrated solution exchange, the 

magnitude of these results suggests that the effect of the anion is at most 

secondary in nature relative to the effect of the copper ion concentration.  

12.3.3 The Effect of Additives & a Stress Generation Model 

 The third type of solution that was utilized in the solution exchange 

experiments contained the deposition suppressing additives that were used in 
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Figure 12.6 – Two curves showing the surface stress response of a Cu{111} thin 

film electrode to a perchlorate solution exchange process.  The starting solution 

was 0.01 M Cu(ClO4)2*6H2O + 0.1 M HClO4 + 0.98 M NaClO4 that was 

replaced by 0.1 M Cu(ClO4)2*6H2O + 0.1 M HClO4 + 0.8 M NaClO4. Here the 

compressive stress changes begin after the solution exchange at ~0 seconds are 

approximately equal to -4 (light green) and -7 (dark green) N/m. 

 

 

Chapters 9-11.  In this case the solution exchanges occurred at constant copper 

and sulfate ion concentrations, while PEG and Cl- species were introduced into 

the system.  As described above, it has been well documented in the literature that 
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a deposition suppressing adlayer consisting of PEG and Cl- adsorbs on the copper 

surface during damascene processing.  In addition to suppressing the deposition 

process, the blocking layer is also known to suppress the exchange current density.  

This set of experiments was initially performed in anticipation of measuring the 

adsorption induced surface stress of this PEG/Cl- blocking layer.  However, as 

shown in Figure 12.7, the stress change associated with the introduction of the 

additive containing solutions was (1) uniformly tensile in nature and (2) 

somewhat larger than expected.   

First, the sign of the stress change was somewhat surprising in that all of the 

previous experiments were invariably compressive in sign, albeit the experimental 

variables were significantly different (concentration increases vs. introduction of 

additives).  Second, the magnitudes were in general larger than expected from 

purely adsorption type effects, yet were similar to the previous solution exchange 

experiments (see Figure 12.3).  It should be noted, however, that because these 

results are relatively preliminary in nature there was some scatter in the actual 

measured values.  In the case of the additive free #1 to suppressing #1 exchange, 

the values ranged from ~+1.8 to +2.6 N/m.  For the larger concentrations, the 

values ranged between ~+2.2 to +8.1 N/m. 

In summary, the entire set of solution exchange stress results can be 

interpreted within the context of exchange current densities and equilibrium 

surface adatom concentrations.  First, consider a modified version of the adatom-

grain boundary model as formulated by Chason et al162.  As described above in 
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Figure 12.7 – Two curves showing the surface stress response of a Cu{111} thin 

film electrode to a solution exchange process.  The starting solution was an 

additive free solution of CuSO4 and H2SO4 that was replaced by a suppressing 

solution of equal concentrations plus 157 μM PEG and 1.79 mM NaCl. Here the 

stress change is tensile and begins after the solution exchange at ~0 seconds. 

 

 

 

Section 5.2.4, it is assumed that a difference in chemical potential of adatoms on 

the film surface (μs) and the chemical potential of those in the grain boundaries 

(μGB) is the driving force behind a migration of atoms into the grain boundaries 
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(GBs) and the concomitant increase in compressive film stress.  The difference in 

chemical potential is then162 

 

(12.3) 

 

where Δμ0 is the difference between the surface and GB chemical potentials in the 

absence of growth or a change in adatom concentration, Δμs is the difference in 

surface chemical potential in response to deposition or a change in activity, σ is 

the normal stress acting across a vertical grain boundary, and Ω is the atomic 

volume of e.g. copper.  The magnitude of Δμ0 is expected to be small (Δμ0 ≈ 0) 

and Δμ is approximately equal to 0 both before and at long times after the solution 

exchange event.  Thus, the stress associated with a change in Cu++ activity of an 

electrolyte can be estimated (through surface concentration values) by rearranging 

eq 12.2, 

 

(12.4) 

 

Next, the equilibrium surface adatom concentrations (see Table 12.4) can be 

estimated from chronopotentiometric measurements using the method developed 

by Gerischer215.  Using the values that were obtained by this method (see Table 

12.4), the estimated stress change associated with a [Cu++]=0.01 M→[Cu++]=0.1 

M  solution exchange is then ~-33 N/m, which is approximately a factor of four 

and fifteen larger than the measured values for the polycrystalline thin film (~8.5 
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N/m) and single crystal (~-2 N/m) electrodes, respectively.  There a number of 

possible explanations for the discrepancy between the estimated and the measured 

values.  First, the value of the copper atomic volume is likely different for 

adatoms in the grain boundary (or other defect site in the case of a single crystal 

surface).  Second, when the 33 N/m estimate is divided by the thickness of the 

thin film samples, ~250 nm, the corresponding bulk stress of the Cu film 

approaches 130 MPa, which is of the same order or larger than the yield strength 

of bulk copper216.  A similar calculation for the single crystal electrode gives a 

bulk stress of ~0.3 MPa.  However, even without correction, this simple model 

seems to agree well with the observed behavior of the solution exchange 

experiments.  Interestingly, the Chason adatom model assumes that a grain 

boundary migration process is the mechanism by which stress is imparted into the 

electrode, yet the present results show that a similar stress is also induced in the 

absence of grain boundaries.  This result suggests that compressive stress due to 

the increase in adatom chemical potential can also occur at other surface sites 

such as twin boundaries, dislocation cores, or terrace sites.   

The surface stress results from the sulfate and perchlorate based solutions 

demonstrate that the electrode exchange current, equilibrium adatom 

concentration and compressive surface stress all increase as a function of copper 

ion concentration.  As shown in Figure 12.5, stress and exchange current density 

appear to be linearly related.  This empirical relationship provides a framework in 

which to interpret the stress changes observed during the introduction of PEG and 
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Table 12.4 – Equilibrium surface adatom coverages of a Cu{111} thin film 

electrode as estimated by Gerischer’s current pulse method215.  Solutions 

contained the indicated Cu++ concentration in addition to 0.1 M H2SO4 + 1 M 

Na2SO4.  Data used with permission from Dr. Lei Tang and Dr. Cody Friesen. 

log([Cu++]) ][ ++Cu
surfC (ML)

-4 0.0003678 
-3 0.0004249 
-2 0.0014642 
-1 0.0021420 
0 0.0067817 

 

 

 

Cl- additive species during solution exchanges.  First, the exchange current 

densities of the suppressing #1 and additive free #1 solutions were determined by 

the same method as the described above (~156 & ~502 μA/cm2, respectively).  

Next, using these values and the equation for the linear fit as given in Figure 12.5, 

an estimate of surface stress change due to the suppression of the exchange 

current density can be made.  In the case of the 0.1 M CuSO4 additive free to 

suppressing solution exchange, the corresponding stress change was estimated at 

~+9.3 N/m and compares favorably to the measured value of ~+2 N/m.  This 

result further supports the proposed relationship between the exchange current 

density and surface stress state of the Cu{111} film.  That is, the somewhat 

unexpected magnitude and sign of the stress during the third type of solution 

exchange experiment can be explained as a reduction of the exchange current 

density by the adsorbed PEG/Cl- adlayer.  
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12.4 Summary Outline 

• Significant changes in measured surface stress were observed during 

solution exchange experiments where various experimental parameters 

were investigated across the solution exchange.  Responses were observed 

in the absence of a net addition or removal of material from the electrode 

and corresponded to changes in [Cu++] or to the presence of solution 

additives. 

• Surface stress changes associated with the increase in [Cu++] over the 

range of 10-5 M to 10-1 M as well as exchange current densities (i0) at each 

concentration were measured and shown to be linearly related.  The 

increasingly larger values of i0 induce increasingly more compressive 

stress in the Cu electrodes.  Similarly, the suppression of the i0 by 

adsorbed molecular species (PEG/Cl-) at a given copper ion concentration 

induces a tensile change in stress. 

• Both (1) the identity of the supporting anion (ClO4
- vs. SO4

2-) and (2) an 

appreciable concentration of cuprous ions had relatively small effects on 

the magnitude of the change in stress relative to the overall copper ion 

concentration. 

• Using a modified version of Chason’s grain boundary adatom surface 

stress model, a stress value of ~-33 N/m was estimated for the stress 

change associated with a 0.01 M to 0.1 M [Cu++] solution exchange 

experiment.  Because this estimate is large enough to account for the 

stresses measures in the present work, it was proposed that migration of 
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adatoms into electrode grain boundaries and other defect sites could be 

responsible for the measured changes in stress for both polycrystalline thin 

film (~8.5 N/m) and single crystal (~-2 N/m) electrodes. 
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CHAPTER 13 

CONCLUSIONS & FUTURE WORK 

This dissertation presents the experimental background and research on 

the surface stress evolution of Cu{111} thin films in response to various 

electrochemical and chemical stimuli.  Primarily, these results are presented as 

simultaneous electrochemical and surface stress measurements as a function of 

time or applied potential.  The unifying theme throughout all of this work is that 

the intimate control of a surface by electrochemical means when paired with the 

unique sensitivity to the surface condition that is provided by surface stress 

monitoring can provide new insight into interfacial/surface phenomena.  

Specifically, this is shown through the surface stress results that provide not only 

bulk related parameters such as the sign and magnitude thin film residual stresses, 

but also yield valuable information such as real time stress evolution as it relates 

to the actual physical phenomena of electrodeposition processes.  Although thin 

film stress evolution during electrodeposition is just one example of the type of 

work that has been carried out in support of this dissertation, it represents an 

important and interesting constraint for industrial applications such as 

metallization of integrated circuit interconnects. 

In order to carry out the experiments outlined herein, a novel architecture 

that combined both the chemical inertness needed for electrochemical work with 

the technology of capacitive surface stress monitoring had to be designed.  This 

was done through a trial and error process combined with extensive collaboration 

between several members of the group as well as the Ira A. Fulton Engineering 
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machine shop.  The result is embodied in the multiple electrochemical surface 

stress cells (see Appendix A) that were used to collect all of the results presented 

in this dissertation.   

The electrocapillarity of a Cu{111} thin film electrode in sulfuric acid 

electrolyte was explored in Chapter 8.  It was found that a relatively simple, yet 

important relationship between applied potential and induced surface stress 

response was linear within a potential region that was not affected by oxidation of 

Cu electrode or hydrogen evolution.  Following the characterization of the 

electrocapillarity (ecap) response in this system, observations of this phenomenon 

during electrodeposition of Cu were discussed.  The most important conclusion 

drawn from this set of experiments was that the magnitude of the ecap response 

provided a negligible contribution to the overall surface stress evolution relative 

to the larger stresses observed during deposition/stripping and open circuit 

solution exchange experiments.  

Significant surface stress evolution was observed during electrodeposition 

and oxidative stripping events and subsequent relaxations in a variety of solution 

combinations.  In Chapters 9 & 10, six different solutions, ranging from additive 

free electrolytes to full (three) additive combinations, were used to approximate 

the range of prevailing conditions believed to exist during Cu damascene 

deposition.  It was found that while the magnitude of the event stresses associated 

with the actual current pulse (positive or negative) increased with pulse length (i.e. 

deposit thickness), larger current densities produced reduced magnitudes of stress.  

Additionally, overall residual stress as well as the individual event and relaxation 
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stress phenomena was found to increase significantly with the use of plating 

additives.  The complexity of the time dependent relaxation stresses following the 

current pulses also yielded insight into the dynamic relationship between the 

metal surface and the multiple ionic and molecular solution species.  Furthermore, 

the surface stress evolution was found to be more or less independent of the 

identity of the supporting anion as surface stress experiments in perchlorate based 

solutions yielded results that were generally similar to those collected in the more 

common sulfate based solutions. 

 In Chapter 11, the influence of an appreciable cuprous ion (Cu+) 

concentration in the plating bath was examined.  It was found that by deaerating 

an otherwise identical solution of PEG/Cl-, the magnitudes of both the event and 

relaxation surface stresses were reduced in response to the deposition and 

stripping current pulses.  These results suggest that an equilibrium or near 

equilibrium concentration of cuprous ions has a significant effect on the 

deposition mechanism in suppressing solutions.  This is a noteworthy result due to 

the fact that previous experimental and modeling efforts have been unable to 

identify the exact role of the cuprous ion.  Conversely, for the case of SPS 

containing solutions, a similar effect on the resulting stress profiles is not 

observed.  These results agree with previous observations on the local production 

and stability of cuprous species in suppressing and full additive solutions.  

Whereas cuprous species are produced at low current densities in accelerator 

containing solutions, they are not observed in the suppressing solutions.  Thus, the 

external source of cuprous species in this work had a significant effect on the 
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events performed in the suppressing solutions but not on those performed in the 

accelerator containing electrolytes. 

 A variety of results collected during open circuit solution exchange 

experiments were discussed in Chapter 12.  It was demonstrated that thin film 

electrodes are subject to stress inducing phenomena, even in the absence of net 

deposition or stripping.  A modified version of the Chason adatom-grain boundary 

model was used as a possible explanation for the large stress changes (~8.5 N/m) 

observed in response to an increase of Cu++ concentration.  Additionally, an 

empirical correlation between compressive surface stress and electrode exchange 

current density was established and subsequently used to predict the magnitude 

and sign of the stress change during the solution exchange experiments containing 

deposition suppressing additives.   

 The investigations presented in this dissertation demonstrate the 

importance and value that surface stress measurements can provide when 

combined with electrochemical techniques for the study of surfaces/interfaces.  

For example, solution exchange induced surface stress taken at the open circuit 

potential and the insight that it provides has not, to the author’s knowledge, been 

previously studied.  Considering the complexity of the copper/electrolyte systems 

studied in this work, combined with the numerous types of useful electrochemical 

techniques available, there are multiple research paths that could be pursued  in 

the future of this work. 

 Fundamentally, a number of scientific aspects of the electrodeposition and 

oxidative stripping processes are still not well understood.  One future research 
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direction could include a more in depth characterization of cuprous ion 

concentration and the role that it plays in the deposition/stripping process.  To this 

end, several experiments that follow from the results above could be performed.  

Specifically, rotating ring-disk-electrode studies could be used to correlate actual 

Cu+ concentration of equilibrated or partially equilibrated solutions with 

corresponding surface stress results.  Furthermore, chloride ions are known to 

stabilize the cuprous ion through the formation of complex species of the form 

[CuClx](1-x).  A careful exploration of the dependence of deposition/stripping 

event induced surface stresses as a function of chloride ion concentration could 

also yield interesting information on the role of Cu+. 

 In a more practical approach, another future direction would include a 

more extensive exploration of the current-potential space used for the damascene 

plating process.  As described above in the Chapter 3, a range of conditions must 

coexist on the non-planar electrodes (i.e. silicon wafer features) in order to create 

the nonuniform deposition rates necessary to achieve feature superfilling.  In this 

dissertation, current densities of 1 & 5 mA/cm2 were employed to study the 

deposition/stripping processes.  However, because current densities inside the 

trenches are thought to be of order 50-100 mA/cm2, investigations utilizing larger 

current densities would likely provide a better approximation of film stress 

generation in IC interconnects.  Unfortunately, the magnitude of the current 

density in this type of experiment will be limited by quiescent nature of the 

solution as required for surface stress monitoring.  Regardless, the above results 

demonstrate the robustness of this technique and it seems likely that much larger 
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current densities could easily be explored, especially for the short time scale 

events (≤4.5 seconds) presented in this work.  
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APPENDIX A 

SKETCHES & COMPUTER AIDED DESIGNS OF THE 

ELECTROCHEMICAL SURFACE STRESS MEASUREMENT CELL   
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            The following section is presented in two parts.  The first part consists of 

four pages of hand drawn sketches that were submitted to the Ira A. Fulton School 

of Engineering Mechanical Machine Shop. The second part of this appendix 

contains the five CAD drawings that were then produced by the machine shop and 

used to fabricate the one of the most recent versions (#5) of the electrochemical 

surface stress monitor.  These two sections represent the process of design, 

refinement, and fabrication that was one of the essential pieces of my education as 

a graduate student.  The initial cell design was a collaboration of ideas and 

discussions between Jordan Kennedy, Dr. Friesen and I.  The actual fabrication of 

all six of the individual cells was carried out by the excellent machinists in the 

Engineering Machine Shop, including Fred Sierra, Dave Gillespie, Marty Johnson 

and Forest (Ben) Schwatken.  It was the multiple versions of this novel 

electrochemical surface stress cell design that have enabled myself and other 

group members to carry out studies ranging from Pt and Au electrocapillarity to 

Cu damascene studies to Zn electrodeposition from ionic liquids and Li-ion 

battery cathode studies.  These projects have resulted in multiple academic 

publications and will comprise a part or all of at least 3 separate PhD dissertations 

(those belonging to Larry Mickelson, Erika Engstrom, and Thomas Heaton). 
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APPENDIX B  

DATA MINING SCRIPT – MATLAB M-FILE 
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The following images are copies of the Matlab m-file script that was used 

extensively during the in the analysis steps of the deposition and stripping 

experiments presented in Chapters 9 and 10.  Specifically it was used on the large 

four-column data files that were recorded by the oscilloscope.  The data files each 

contained a time column along with the electrochemical potential and current 

from the potentiostat, as well as the surface stress signal as output by the 

capacitive stress monitor.  Each of the data files spanned a range of about 1000-

1500 seconds and around ten deposition and stripping events.  The purpose of this 

script was to pick out the points that corresponded to the beginning and ending 

points of each stress event and subsequent relaxation in both time and stress.  The 

result of this script was a new data file that contained a time column and a surface 

stress column with all of the beginning and ending points collected in a simple 

format. 

I recognize the reality that this simple Matlab script played only a small 

role in the multi-step data analysis process used for one set of experiments.  

Furthermore, I must also acknowledge the numerous data analysis programs and 

scripts that were written (and re-written) by Larry Mickelson throughout our time 

in graduate school.  It was his data averaging programs that allowed many of us in 

the lab to reduce our large raw data files (collected at a rate of 1 kHz) to 

manageable sizes.  In fact, it was with his guidance and patience that I was 

actually able to create the m-file script presented in this appendix.  So while it 

may not be particularly impressive, this appendix is included in my dissertation 
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because it represents one of the skills that I acquired and an accomplishment that I 

reached along the path to a PhD.  
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APPENDIX C  

CU(111) SINGLE CRYSTAL CONSTRUCTION & CALIBRATION 
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In order to carry out the single crystal experiments that are presented in 

Chapter 12, a new sample architecture had to be designed to replace the thin film 

working electrode with a single crystal electrode surface.  The main purpose of 

this new architecture was to simply replace the thin film with the single crystal as 

the working electrode while maintaining a sample geometry that could be used in 

the electrochemical surface stress cell as were the thin film samples.  In this 

appendix, both the construction and calibration protocol are briefly reviewed.  

First, the sample was constructed from (1) a UHV Cu{111} thin film sample, (2) 

an electropolished Cu(111) single crystal slice, and (3) a chemically inert enamel, 

(4) silver paint, and (5) an ultra-thin (diameter ≈ 75 μm) nickel wire.  This was 

done by cutting the thin film sample at two locations in order to replace the Cu 

thin film working electrode with the single crystal slice.  This is demonstrated in 

Figure C.1. 

The thin film pieces and the single crystal slice were temporarily fixed in 

position with transparent adhesive tape and glass microscope slides (see Figure 

C.1).  After fixing the positions of the pieces relative to each other, the silver paint 

was applied at two locations to provide electrical contact to the working electrode 

(Cu(111) single crystal surface) and the capacitive sense electrode (see sketches 

below).  After the silver paint was sufficiently dry, the chemically inert enamel 

was applied as both (1) a structural adhesive to maintain the integrity of the 

unified pieces as a single sample and (2) an electrically insulating barrier between 

the electrolyte and the silver paint, edges, and back-side of the Cu single slice (see 

Figure C.1 and sketches below).  Once the enamel was completely dry, the single 
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crystal sample was inserted in the surface stress cell and utilized in a manner 

identical to that of the thin film electrode experiments described above. 

 

 

Figure C.1 – Image of the single crystal sample during construction.  Sample was 

made using pieces of a thin film sample (TF), a Cu(111) single crystal slice (SC), 

and a chemically inert enamel (E). 

 

 

 Due to the nature of the single crystal electrode, an individual calibration 

of the sample was not possible.  Thus, a modified version of the calibration 

protocol, as presented in Chapter 7, became necessary.  This was done by using 

the manufacturer’s output calibration value (100 μm/10 V) of the surface stress 

monitor for the ΔVtot term shown in eq 7.5.  Further modification to eq 7.5 was 

required due to the fact that the bending of the sample no longer corresponded to 

SC

TF

E

SC

TF
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stresses in a thin film-thick substrate system.  Rather the bending of the single 

crystal sample could be treated as a more straightforward beam bending problem.  

After making these modifications to eq 7.5, the calibration of the single crystal 

electrode was then a function of the final dimensions of the constructed sample 

only.  The resulting equation given by: 

 

(C.1) 

 

where MCu(111) and hB are the biaxial modulus and thickness of the Cu(111) single 

crystal slice, respectively, and the other terms refer to the dimensions of the 

constructed single crystal sample and are defined schematically in the sketches 

below.  An example calculation is included in this appendix to give a sense of the 

difference in sensitivity between the single crystal sample and the thin film 

samples.  Specifically, the value was calculated as ~36.1 N/m which is of order 3 

times larger than the average thin film sample multiplier.  
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APPENDIX D  

ORIGINAL DATA CURVES FOR SOLUTION EXCHANGE INDUCED 

STRESS CHANGES AND COPPER EXCHANGE CURRENT DENSITY  
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 The following set of figures is included as the original sources of the data 

that is presented in Figures 12.3, 12.4, and 12.5.  In each case below, the figure 

contains (1) a plot of the surface stress change induced by a solution exchange 

process and (2) a Tafel analysis of the cyclic voltammetry of a Cu{111} thin film 

electrode.  Each figure corresponds to a single copper ion concentration as 

indicated in the figure caption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 262 

-0.42 -0.39 -0.36 -0.33

-0.9

-0.6

-0.3

0.0

0.3

lo
g(

cu
rr

en
t d

en
si

ty
)

 

Potential (V v. MSE)
1000 2000

-8

-6

-4

-2

0

 

Δf
 (N

/m
)

Time (s)
-0.42 -0.39 -0.36 -0.33

-0.9

-0.6

-0.3

0.0

0.3

lo
g(

cu
rr

en
t d

en
si

ty
)

 

Potential (V v. MSE)
1000 2000

-8

-6

-4

-2

0

 

Δf
 (N

/m
)

Time (s)

 

 

 

 

 

Figure D.1 – Surface stress change (left) during the solution exchange experiment, 

0.01 M → 0.1 M CuSO4.  Here the stress change is ~-8.7 N/m.  Additionally, the 

Tafel plot (right) that was generated from the cyclic voltammetric response of a 

Cu{111} thin film in 0.1 M CuSO4 + 0.1 M H2SO4 is also shown.  Using the 

slope extrapolation method the OCP and exchange current density were estimated 

to be -369 mV and log(-0.299) = 502 μA/cm2, respectively. 
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Figure D.2 – Surface stress change (left) during the solution exchange experiment, 

0.001 M → 0.01 M CuSO4.  Here the stress change is ~-3.1 N/m.  Additionally, 

the Tafel plot (right) that was generated from the cyclic voltammetric response of 

a Cu{111} thin film in 0.01 M CuSO4 + 0.1 M H2SO4 is also shown.  Using the 

slope extrapolation method the OCP and exchange current density were estimated 

to be -398 mV and log(-0.617) = 242 μA/cm2, respectively. 
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Figure D.3 – Surface stress change (left) during the solution exchange experiment, 

10-4 M → 10-3 M CuSO4.  Here the stress change is ~-0.38 N/m.  Additionally, the 

Tafel plot (right) that was generated from the cyclic voltammetric response of a 

Cu{111} thin film in 10-3 M CuSO4 + 0.1 M H2SO4 is also shown.  Using the 

slope extrapolation method the OCP and exchange current density were estimated 

to be -420 mV and log(-0.94) ≈ 115 μA/cm2, respectively. 
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Figure D.4 – Surface stress change (left) during the solution exchange experiment, 

10-5 M → 10-4 M CuSO4.  Here the stress change is ~0 N/m.  Additionally, the 

Tafel plot (right) that was generated from the cyclic voltammetric response of a 

Cu{111} thin film in 10-4 M CuSO4 + 0.1 M H2SO4 is also shown.  Using the 

slope extrapolation method the OCP and exchange current density were estimated 

to be -433 mV and log(-1.25) ≈ 57 μA/cm2, respectively. 
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Figure D.5 – Surface stress change (left) during the solution exchange experiment, 

10-6 M → 10-5 m CuSO4.  Here the stress change is ~0 N/m.  Additionally, the 

Tafel plot (right) that was generated from the cyclic voltammetric response of a 

Cu{111} thin film in 10-5 M CuSO4 + 0.1 M H2SO4 is also shown.  Using the 

slope extrapolation method the OCP and exchange current density were estimated 

to be -429 mV and log(-1.16) ≈ 69 μA/cm2, respectively. 
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of this dissertation, the discovery and experience that I gained from this first 

project established the basis for all of my subsequent work.  In fact, the original 

electrochemical surface stress cell, “the Maytag”, was designed and fabricated in 

order to carry out these experiments while I was finishing my undergraduate 

degree.  Note that I am the first co-author on this article and that I secured 

permission from the other co-author, Professor Cody Friesen, to include this work 

in my dissertation and that the American Chemical Society extends permission to 

authors to include full copies of journal articles in their dissertation or thesis.  

    

 

 

 

 

 

 



Pt{111} and Au{111} Electrocapillarity: Interphase Structure, the pzc, and Oxygen
Reduction
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Large changes in stress (of order GPa) are observed with relatively modest variations in applied potential (on
the order of 500 mV), even in nonspecifically adsorbing electrolyte solutions. Here we present the
electrocapillarity behavior (in situ surface stress evolution) of Pt{111} and Au{111} electrodes. We relate
the magnitude and anodic/cathodic hysteresis of the stress-potential behavior to the potential dependent
water orientation at the electrode/electrolyte interface. We show that our results are strongly correlated to
previously published infrared spectroscopy data on the potential dependence of interphase structure. Finally,
measurements of Pt in oxygen saturated electrolytes are presented, allowing for a direct comparison between
features in the surface stress behavior and the “turn-on” potential for oxygen reduction. We found that oxygen
reduction occurs only once the potential was cathodic enough to begin depleting the interface of oxygen-
down oriented water.

Introduction
In recent years, surface stress measurements have become a

common technique for monitoring a variety of processes in fluid
and vacuum environments. Just a few examples include the
measurement of stress evolution during thin film growth,1-5

DNA binding and hybridization processes,6-9 MEMS devices,10

and biological process monitoring.11

A large amount of work has been performed in aqueous
environments where changes in surface stress have been
monitored as a function of adsorption processes,12-16 thin film
growth,13,17,18 and corrosion.19 In addition, surface stress-
potential behavior has been used for the actuation of nanoporous
metal structures with strains comparable to those of piezoelectric
devices, but at much lower voltages.20 Studying and understand-
ing the causes of surface stress changes in electrochemical
systems presents a significant challenge because there are always
a variety of processes occurring.

In this work, we examine surface stress changes as a function
of applied electrochemical potential under conditions where only
double-layer effects should be observed. Figure 1 shows two
representative electrocapillarity curves for Au{111} and Pt{111}
in HClO4 and NaF deareated aqueous electrolytes, respectively.
These electrolyte-electrode pairs were chosen as prototypical
nonspecifically adsorbing systems with large double-layer
regimes. Note that in both plots the total change in surface stress
is approximately 0.4 N/m, which if divided by a reasonable
surface thickness (∼3 Å) gives a bulk stress on the order of 1
GPa. Because of the magnitude of the stress changes, it is
currently difficult to interpret these measurements in electro-
chemical environments. This fact combined with the large
interest in using surface stress as a tool for the study of
electrochemical systems suggests the need to develop a full
understanding of the fundamental aspects of surface stress at
the solid electrode/electrolyte interface.

An important feature of the electrocapillarity curves in Figure
1 is the surface stress behavior at the potential of zero charge
(pzc). The surface stress is not maximized and the slope is
significant at the pzc. This behavior is different from that of
the surface free energy, which is maximized at the pzc, as
defined by the Lippmann equation.26

The cyclic surface stress behavior for Au and Pt differ
significantly, with Pt displaying a large hysteresis and Au
showing almost no difference between anodic and cathodic
scans. We show that the observed hysteresis is not time-
dependent and that it is connected to the strength of the water-
metal interaction. We connect the extensive work done on the
potential dependent orientation of water molecules at the
electrode-electrolyte interface21,27-33 to the observed surface* Corresponding author. E-mail: cfriesen@asu.edu.

Figure 1. Cyclic voltammetry and electrocapillarity behavior for (a)
Au{111} in 0.5 M HClO4 and (b) Pt{111} in deaerated 0.1 M NaF
systems. Scan rate for both systems was 20 mV/s. The up-arrow markers
are (∂2f /∂V2) anodic

max , and the down-arrow markers are (∂2f /∂V2) cathodic
max .

The dashed line and shaded region indicate the value and range of
previously reported values for the pzc (at pH 6 or corrected for pH
shift).21-25
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stress changes and demonstrate that flattening of the surface
stress-potential behavior at the anodic end of the plots in Figure
1 are due to the saturation of water dipole orientation.

We discuss all of our results in the context of oxygen
electroreduction on Pt{111}. We present data in oxygen
saturated electrolytes that suggest that dipole saturation at the
electrode-electrolyte interface prevents dissolved oxygen from
accessing the electrode. And we propose that oxygen reduction
does not occur until a sufficiently cathodic potential is reached
to decrease the population of oxygen-down oriented water at
the interface. Finally, all of the results are tied together with
work function shift data available in both vacuum and electro-
chemical environments.

Background

Water-Metal Interface. The structure of water adsorbed
from the gas phase onto metal surfaces has been studied
extensively.34,35 As described in detail by Doering and Madey,36

a (�3 × �3)R30° bilayer structure is formed when water is
adsorbed on a number of close packed metal surfaces. The
structure strongly resembles the (0001) face of Ih ice, with
hexagonal rings of molecules made up of alternating oxygen-
down oriented molecules and molecules with one oxygen-
hydrogen pair lying in the plane of the surface with the other
hydrogen pointing normal to the surface.37

The (�3 × �3)R30° structure has been reported in the case
of both Au(111) and Pt(111).34,37 In the case of Pt(111), the
structure has been observed by a range of techniques including
STM37,38 and LEED.39-42 Strong evidence of an ordered
structure on Au(111) does not exist. Gewirth’s group performed
STM studies on H2O/Au(111) and observed an amorphous
adlayer.43 Additionally, they point out that temperature pro-
grammed desorption (TPD) work on Au43,44 results in a single
desorption peak in concert with other amorphous water-metal
systems and unlike the two-peak observations in well-known
ordered systems such as Pt(111). However, more recently, Pirug
et al. observed the (�3 × �3)R30° structure on Au(111).45

The lack of agreement between groups may serve as a relative
measure of the strength of ordering in the case of Au(111) as
compared to that of Pt(111).

Work Function Downshift and The Potential of Zero
Charge. Adsorption of water on metallic surfaces tends to
decrease the work function of the metal. In the case of Pt, a
downshift of approximately -1.0 eV is observed; and for Au
the change is on the order of -0.6 eV.34,46,47 Owing to the degree
of orientation in the adsorbed layer, a decrease in work function
corresponds to water dipoles being preferentially oriented with
the oxygen end closer to the surface. The magnitude of the given
shifts demonstrates that adsorbed water is much more strongly
oriented on Pt surfaces than on that of Au, in agreement with
structural observations. The in-vacuum work function shift data
correlates well with Trasatti’s work on the connection between
the degree of dipole alignment at the interface and the position
of the pzc.48 Trasatti arrives at the expression Vpzc ) 1/q Φ -
4.61 - 0.4R, where q is the charge of an electron, Φ is the
vacuum work function (in eV), and R describes the degree of
orientation at the electrode-electrolyte interface. He assigns a
value of R ) 1 for transition metals and R ) 0 for Au and Cu,
based on empirical results. The observed difference in work
function downshift between Pt and Au in vacuum of 0.4 eV
corresponds well with the Trasatti picture and further supports
the existence of a strong (weak) preference for orientation of
water dipoles on Pt (Au).

Interphase Structure and Applied Potential. Several groups
have performed spectroscopic studies on the water-electrode
interface under potentiostatic control. 21,27-30 The results of these
works are in agreement with the classical picture of surface

charge dependent interfacial water orientation.31-33 At potentials
positive (negative) of the pzc, water molecules are oriented
oxygen down (up), and at the pzc water molecules have an
average net dipole near zero.21 The results of refs 21 and 28
are reproduced for comparison with our data in Figures 2 and
3 in the Results section.

Thermodynamic Formalism

Surface Stress. The thermodynamic surface stress is intrinsic
to the formation of a solid surface because it describes the excess
free energy associated with surface deformation and is given
by the Shuttleworth equation49

where fij, γ, δij, and εij are the surface stress, surface energy,
Kronecker delta, and surface strain, respectively. For a surface
of gthreefold symmetry, the Shuttleworth equation simplifies
to a scalar (e.g., f ) γ + ∂γ/∂ε).

Clean metal surfaces in vacuum have surface stress values
in the range of 1-6 N/m. Thermodynamics places no restrictions
on the sign of the surface stress, but typically for close-packed
surfaces f is positive or “tensile” and larger in magnitude

Figure 2. Schematic illustrations of the experimental cell (cross
section) (a) and the patterned electrode sample (b). The cell included
the cantilevered sample (C), the liquid electrolyte (E), and the capacitive
sensor (S) fixed in a single construction. The sample geometry is also
shown with the important dimensions (L, l, X, W, and w) defined. The
level of the electrolyte (EL) during the experiment is also shown above
the working electrode (WE) and below the capacitive sense (CS)
electrode.

Figure 3. Surface stress change vs potential for Au{111} in 0.5 M
HClO4. The lower scan limit was -590 mV vs MSE. The upper scan
limits are 60, 210, 310, 410, 510, and 560 mV. Scan rate, 20 mV/s.
The inset contains the coerciVity (ΔV) and the retentiVity (Δ f ) of the
electrode. The up-arrow markers are (∂2f /∂V2) anodic

max , and the down-
arrow markers are (∂2f /∂V2) cathodic

max . Squares represent the Ataka et al.21

water orientation data. The dashed line indicates a previously reported
value of the pzc.21

fij ) γδij +
∂γ
∂εij

(1)
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than γ. The magnitude of the surface stress is sensitive to any
modification to the surface. For example, adsorption processes
not only modify this quantity but can also change the sign of
surface stress.12

Electrocapillarity Behavior in Adsorbing/Nonadsorbing
Electrolytes. Vasiljevic et al.14 were the first to contrast the
interfacial free energy and surface stress changes for 1 × 1 bulk-
terminated Au(111) electrodes in both weakly and strongly
adsorbing electrolytes. The two electrolytes were the extreme
cases: one contained sulfate anions, which are known to strongly
adsorb, and the other contained fluoride anions, the prototypical
nonadsorbing or (very) weakly adsorbing anion.

It is generally not possible to directly monitor changes in
interfacial free energy in an experiment. However, by examining
the chronocuolometry of the Au(111) single crystal electrode
the authors deduced the change in γ as a function of potential
by integrating dγ ) -q dV. They found the pzc to occur at
about -130 mV vs MSE in Na2SO4 and -120 mV in NaF,
corresponding to the maximum in the γ versus potential plot.

Variation of Surface Stress with Interphase Structure. We
will demonstrate in the Results and Discussion sections that
the large surface stress changes anodic of the pzc are most likely
due to the dipolar alignment of the water molecules (oriented
oxygen-down). The Gibbs adsorption equation for a solid at
constant temperature is given by

where γ is the surface energy, f is the surface stress, ε is the
equibiaxial elastic strain (ε ) εxx ) εyy), μi and Γi are the
chemical potential and specific surface excess of species i, dV
is the change in applied voltage, and q is the charge.50 For solid
surfaces, the surface stress term is required to appropriately treat
the ability of solids to support shear stress. Adding a polarization
work term to eq 2 and taking the Legendre Transform d(γ -
Γiμi) gives

where F is the surface excess polarization, and lDL is the
thickness of the double layer. The addition of the polarization
term implies the partitioning of the double-layer capacity into
polarization and free charge displacement, qdis, terms. At fixed
Γi there is the Maxwell Relation

At the pzc, γ is maximized; and at fixed Γi, (∂V/∂ε)F;q is
reasonably taken as constant and may be approximated by a
number of approaches.14,51,52 At the pzc, under these conditions

Experimentally, it has been observed that (∂F/∂V)+pzc > (∂F/
∂V)-pzc because water is more readily polarized oxygen-down
anodic of the pzc than it is polarized hydrogen-down cathodic
of the pzc.21 It follows then that (∂f/∂V)+pzc > (∂f/∂V)-pzc so
that a transition in slope should occur at the pzc. Therefore,
under these conditions a maximum in ∂2f/∂V 2 should be
experimentally observed at the pzc. It is important to note that

this is in the absence of specific adsorption. When specifically
adsorbing anions are present, one would expect that the
maximum in ∂2f /∂V 2 would occur positive of the pzc. We will
refer to maxima in ∂2f /∂V 2 as (∂2f /∂V 2)max. In Figure 1, markers
have been placed at the points of (∂2f /∂V 2)max on both the anodic
and cathodic branches of the stress-potential plots.

In the absence of adsorption, the maximum value of ∂f/∂V at
the pzc is about -0.6 C/m2. Examining the work of Friesen et
al.13 and Vasiljevic et al.14 and extracting ∂f/∂V in the cases of
Au(111) electrodes in NaF, NaClO4, Na2SO4 electrolytes
provides values of -0.94, -0.85, and -1.8 C/m2, respectively.
These values are larger than expected from pure double-layer
effects, and this was interpreted by Vasiljevic et al. as owing
to adsorption processes.

Experimental Section

The in situ surface stress monitoring is carried out by a
cantilever curvature based device. The device is unique in that
to measure cantilever tip deflection it utilizes a capacitive
technique that allows for subnanometer deflection sensitivity
and >1 kHz time base resolution.1,53 The PTFE cell, shown
schematically in Figure 2a, is machined to hold both the
capacitance sensor (S) and vertically oriented cantilevered
electrode (C); this monolithic design significantly reduces drift
and sample placement error. The capacitance sensor must
operate in air, so the electrochemically active area and sensing
pad are separate elements and are created by depositing through
a hard mask, as shown in Figure 2b. The samples are moved
immediately from the UHV system to the carefully prepared
electrochemical environment. For each sample, a calibration is
performed with a straightforward gravitational technique. Be-
cause the sample holder, cell, and detector are in a single unit,
calibration is performed by orienting the plane of the cantilever
beam so that Earth’s gravity is collinear with its bending
direction; doing this for both the device facing up and for the
device facing down, we get a response associated with the
weight of the cantilever. Performing the calibration in this way
yields the governing relation for the change in surface stress
per change in device output voltage

where ΔVtot is the stress voltage, Fs is the density of the substrate,
ag is the gravitational constant, υ is Poisson’s ratio, and W, w,
X, L, and l are dimensional parameters defined by the sample
geometry as shown in Figure 2b. Calibrating the measurement
in this way removes the elastic moduli of the cantilever and a
squared term in cantilever thickness, two significant sources of
error in wafer curvature stress measurements.

The cantilever/electrode assembly consisted of an 80 μm thick
cleaned cover glass substrate and patterned metallic film.
Samples were prepared in a 5 × 10-10 Torr base pressure
ultrahigh vacuum system (UHV) fitted with two UHV compat-
ible DC magnetron sources (Angstrom Sciences). The electrodes
were prepared by first depositing 10 nm of Cr as an adhesion
layer followed by a Pt or Au deposition to 100 nm at
approximately 1 Å/s. Under the stated growth conditions, the
films have a strong {111}-texture. In all cases, the working
electrode surface area is 2 cm2.

The cyclic voltammetry was performed with a BASi Epsilon
Potentiostat (model no. E2-020000). The corresponding data
(potential, current, and stress) was collected via a Nicolet Sigma

Δ f*hf

ΔV ) (Ww)( Fs*ag

6(1 - υ))(X 2(6L2 - 4LX + X2)
l2

2 + l(X - l) )( 1
ΔVtot

) (6)

dγ ) 2(f - γ)dε - q dV - Γi dμi (2)

d(γ - Γi μi) ) 2( f - γ) dε + (F 1
lDL

- qdis)dV + μi dΓi (3)
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60 oscilloscope (model no. 986A0147). The working, reference,
and counter electrodes were placed in the cell prior to the loading
of the electrolyte in the cell. The systems considered in these
experiments were Au in 0.5 M HClO4, Pt in 0.1 M NaF, and Pt
in 0.1 M HClO4. In all cases, the electrolyte was deareated with
nitrogen or saturated with oxygen in a separate deareation cell
and then transferred to the PTFE cell with a corresponding gas
overpressure.

All of the glassware, the PTFE electrochemical cell, and the
Pt wire counter electrode utilized in the experiment and pre-
paration of the samples and electrolyte were cleaned in heated,
concentrated HNO3 and H2SO4 baths followed by rinsing in 18
MΩ water. In addition, the platinum counter electrode was flame
annealed in a hydrogen flame and rinsed again in the 18 MΩ
water immediately before being placed in the PTFE cell. For
all experiments, a MSE (+640 mV vs SHE) reference electrode
(Princeton Applied Research - Model no. G0093) was used.

Results

Figure 3 shows a progression of surface stress curves for Au
in 0.5 M HClO4. The curves are shifted for clarity, and each
subsequent curve corresponds to an increase in the anodic most
potential. A representative cyclic voltammetry curve is shown
in Figure 1a. Because the hysteresis in this case is so small, the
loops were plotted separately, also elucidating the nearly
identical character of the curves. As the upper bound of the
applied potential increases above the pzc, the stress begins to
turn sharply compressive. The potential at which (∂2f /∂V 2)max

occurs has been marked, in curves with a tractable maximum,
(up-arrows, anodic; down-arrows, cathodic). The average (∂2f /
∂V 2)max for the cathodic sweep is ∼68 mV, and that for the
anodic sweep is ∼94 mV. The average value is ∼81 mV, and
we take this as the potential at which there is no net dipole
orientation. For Au, both anodic and cathodic scans are similar
and the hysteresis is small. As shown in the inset, the average
difference between the anodic and cathodic (∂2f /∂V 2)max is ΔV
) ∼25 mV and Δ f ) ∼0.04N/m. Also included in Figure 3 is
spectroscopic data from Ataka et al. (squares), which describes
the degree of orientation of water dipoles at the Au-electrolyte
interface (identical electrolyte) as a function of potential.21 The
ordinates for this data range between 1 (perfectly oriented) and
0 (no preferential orientation). Note the striking similarity in
curve shape between the orientation data and our stress data.
Specifically, there is only an ∼80 mV difference in potential at
the inflection points of the two sets of data (determined by
polynomial fits of both data sets). Also, our (∂2f /∂V 2)max

potential corresponds to the potential at which the Ataka et al.
data goes to zero net orientation. The previously reported value
of the pzc is shown as a vertical dashed line21 and is approx-
imately 200 mV negative of both our (∂2f /∂V 2)max potential and
the potential where Ataka et al. also observes no net orientation.

The Pt system behaves quite differently from the Au system,
with a large hysteresis observed. A representative cyclic
voltammogram from the Pt{111} in 0.1 M NaF system is shown
in Figure 1b.

As in Figure 3, Figure 4 represents a progression of increasing
anodic potential. The qualitative characteristics of these curves
are strikingly different from those of the Au system. The
electrocapillarity loop is significantly wider in the case of Pt.
The average (∂2f /∂V 2)max potential in the cathodic direction was
-220 mV as compared to the anodic scan, which had an average
of -25 mV, a ΔV of 195 mV, and a Δ f of 0.15 N/m.

Figure 4 also includes data from Habib et al.28 (squares)
plotted with the same ordinate range as that in Figure 3. Again,
the similarity of the spectroscopic orientation data and our
electrocapillarity measurements is striking, especially noting the
saturation range at the anodic end of the curves.

Figure 5 represents a set of surface stress measurements, each
curve having a hold at the anodic limit of the scan for 0, 1, 10,
100, and 0 s, respectively. This data demonstrates that the
hysteretic observations are not temporal in nature because the
curves are all qualitatively the same. The hold periods may
account for the subtle changes in the shape of the stress-
potential loop; however, the range of stress values is very similar
and the variance is within experimental error. The total change
in surface stress over this potential range varies from 0.28 N/m
(100 s hold) to 0.21 N/m (1 s hold). Most importantly, there is
no change in the surface stress behavior in the cathodic scan
due to any hold time imposed. This is demonstrated by the small
cluster of the (∂2f /∂V2)cathodic

max markers.
The correlation between the electrocapillarity and water

orientation data in Figures 3 and 4 led the authors to consider
electrocapillarity in oxygen saturated solutions. Figure 6 presents
the results for Pt{111} immersed in 0.1 M HClO4. The cyclic
voltammetry and surface stress are displayed; the surface stress
is relatively noisy due to an oxygen flow kept over the cell

Figure 4. Surface stress change vs potential for Pt{111} in 0.1 M
NaF. The lower scan limit was -590 mV vs MSE. The upper scan
limits are -40, 60, 160, 210, 260, 310, 360, and 460 mV. Scan rate,
20 mV/s. Diamonds represent the Habib and Bockris28 water orientation
data. The shaded region indicates previously reported values of the
pzc.22-25

Figure 5. Plot of surface stress behavior for several potential hold
times for Pt{111} in 0.5 M HClO4 system. The lower scan limit was
-500 mV vs MSE. Potentiostatic holds imposed at upper potential limit
(350 mV) for 0, 1, 10, 100, and 1 s (progressively through cycles during
a single voltammetric measurement). Scan rate, 20 mV/s.
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during the experiment. Reproduced again on this plot is the
Ataka et al.21 and Habib and Bockris28 data. The Habib et al.
data is presented with a shift of +300 mV to account for the
pH difference in the present and cited work. Note again that
the qualitative shape of the cathodic scan is strikingly similar
to the water orientation data. Perhaps most interesting is the
correlation between the “turn-on” potential of ∼910 mV versus
SHE for oxygen reduction and the potential at which the oxygen-
down saturated interphase begins to diminish.

Discussion

In this work, we have examined the electrocapillarity behavior
of Au{111} and Pt{111} in aqueous, nonspecifically adsorbing
electrolytes. As discussed in the Introduction and Background
sections, it is expected from the appropriate Gibbs adsorption
equation that the thermodynamic surface stress does not go
through a maximum at the pzc, unlike the surface free energy.
However, the observed magnitude of ∂f /∂V at the pzc is
significantly larger than that expected from double-layer effects
(at about -0.6 C/m2), even in electrolytes where anion specific
adsorption is not expected. In the absence of specific adsorption,
we suggested that a measure of the pzc is given by the (∂2f /
∂V 2)max potential and have shown that in all cases our values
were positive of previously reported values. The observed
differences between our measure of the pzc and those reported
on our plots are most likely due to a combination of differences
in electrode preparation, pH, the large variance in reported
values of the pzc as a function of measurement technique, and
effects related to specific adsorption.

Trasatti empirically established that the work function of a
metal is correlated to its pzc.48 On the basis of the discussion
in the Background section comparing Trasatti’s pzc expression
and work function downshift data for Au and Pt, it appears that
the capacity for interfacial water orientation to modify the work
function is on the order of 0.4R eV, with R ) 0 and R ) 1 for
Au and Pt, respectively. In-vacuum work performed by ref 54
also supports the idea that dipoles dominate the work function
downshift for the H2O/Pt{111} system, with essentially the
entire downshift occurring within the first 2 ML of adsorption.
If polar effects are the dominant source of the work function
shift, then this result correlates well with Trasatti’s interpretation.
Figures 3 and 4 show a strong correlation between the surface
stress-potential behavior and the reproduced spectroscopy data
for both the Au and Pt systems. Between the most anodic
potential (fully oriented) and the pzc (no preferential orientation),

the observed surface stress change is approximately -0.3 N/m
(Au) and -0.4 N/m (Pt).

The work function shift associated with going from nonori-
ented to fully saturated orientation is ΔΦ ≈ -0.4 eV, and our
measured change in surface stress going from the pzc to a
potential at which fully oriented dipoles are expected is Δ f ≈
-0.4 N/m. The observed change in surface stress associated
with a change in work function may then be taken as Δ f /ΔΦ
≈ 6 × 1018 m-2. Lang and Kohn55 calculated the work function
of jellium over a range of charge densities, Needs and Godfrey56

did the same for surface stress. Combining these two data sets
provides the variation of f with respect to Φ in the charge density
range of Pt (rs ≈ 2.8a0) and Au (rs ≈ 3.0a0), giving a value of
Δ f/ΔΦ ≈ 3 × 1018 m-2. This number could plausibly represent
the ability for work function shifts to alter surface stress from
purely free-electron considerations. The agreement between the
above two values of Δ f /ΔΦ may be fortuitous. However,
considering the very different paths used to obtain them, it is
possible that potential induced reorientation of water at the
electrode interface could alone account for the measured surface
stress change positive of the pzc.

The (�3 × �3)R30° structure of the water-metal interface
is well defined and experimentally verified in the case of Pt-
(111), whereas in the case of Au(111) strong evidence of a well-
ordered interface is lacking. Also, TPD results discussed in the
Background section, in which water was observed to most likely
be amorphous on Au(111) and ordered on Pt(111), confirm this
difference. These results combined with the overlap of Pt 5d
states and unoccupied water states and the lack of any such
interaction with the much deeper Au d-electrons, provide
experimental and conceptual evidence for a significantly stronger
interaction of water with Pt than water with Au.

A strong preference for ordering also suggests a strong
dipole-dipole interaction of water molecules at the interface.
Comparing the electrocapillarity curves for Pt and Au, the most
significant qualitative difference is the magnitude of hysteresis
in the cyclic stress curves. If we make an analogy to ferroelectric
materials, then a measure of the coerciVity is given by ΔV, as
shown in Figures 3 and 4. In the same way, a measure of
retentiVity of polarization is given by Δ f, as marked in Figures
3 and 4 (because retentivity is measured at the point of zero
net polarization, the assumption made here is that the hysteresis
in (∂2f /∂V 2)max is symmetric about zero so that the midpoint of
ΔV provides this measure). It is classically understood that the
pzc (in the absence of specific adsorption) and the potential at
which there is zero net solvent orientation occur at the same
potential. The Δ f (retentivity) at the potential of zero orientation
provides a measure of polarization remanence and a measure
of the strength of the water-metal interaction. As expected from
the above arguments, the Δ f and ΔV values are small in the
case of Au{111} (Δ f ∼ 0.04 N/m, ΔV ∼ 26 mV) and
considerable for Pt{111} (Δ f ∼ 0.15 N/m, ΔV ∼ 195 mV).

To make the case that the observed hysteresis is not temporal
in nature, we performed the experiments in Figure 5. To
determine whether the hysteresis was time dependent, the
potential was held at the anodic limit of the scan range. We
found only a small variation in hysteresis going from no anodic
hold to a 100 s hold.

The sum of this work is that the potential dependent water
dipole orientation appears to have a large effect on the
electrocapillarity behavior of solid electrodes. The magnitude
of the surface stress positive of the pzc and the previously
reported work function changes demonstrate that oxygen-down
oriented water interacts strongly with metal surfaces. The

Figure 6. Plot of cyclic voltammetry and surface stress behavior for
Pt{111} in an oxygen saturated 0.1 M HClO4 system. The lower scan
limit was -500 mV vs MSE. Scan rate, 20 mV/s. Square markers are
water orientation data from Ataka et al. (Au in 0.5 M HClO4),21 and
diamonds represent water orientation data reproduced from Habib and
Bockris with a +300 mV shift to account for pH difference (Pt in 0.1
M NaF).28 The dotted line is the oxygen reduction turn-on potential.
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question that arose during this work was the following: can an
interface saturated with potential induced oxygen-down water
dipoles block oxygen reduction? And, is the origin of the
overpotential for oxygen reduction related to this blocking? In
Figure 6, it was shown that in oxygen saturated electrolytes,
oxygen reduction on Pt{111} does not occur until the surface
stress begins to decrease in magnitude (become less compres-
sive) and the dipole saturation decreases. The observed turn-on
potential of ∼910 mV is approximately 300 mV negative of
the reversible potential for oxygen reduction. If an oxygen-down
saturated interface is playing a significant role, then the 0.4 eV
potential drop across the oriented interphase is large enough to
account for the required overpotential. Additionally, the satura-
tion of an electrified interface with oriented water molecules
tends to “pack” the first layer of water into a high density
phase.57 This packing could physically block molecular oxygen
from reaching the electrode surface.

Oxygen electroreduction on Pt has been studied by many
groups over a long period of time.58-66 Much of that work has
focused on the need to understand the origins of the large
overpotential for this reaction. The typical outcome of these
works is the suggestion of a reaction pathway and/or a rate
limiting step in the reaction. However, the authors have not
found any prior work suggesting that the saturation and
subsequent packing of the interface with oriented water mol-
ecules could create both a deleterious potential drop and
physically block oxygen from reaching the interface.

Concluding Remarks

In summary, we have shown that electrocapillarity induced
surface stress changes in nonspecifically adsorbing electrolytes
are large over modest potential changes. We have shown that
electrocapillarity in the Au and Pt systems are significantly
different and have described a method for quantifying and
comparing the resulting hysteretic loops. By comparing these
surface stress results to published spectroscopic data, we have
proposed a means of observing water dipole orientation at the
polarized water/electrode interface. This potential dependent
structure of the interphase appears to have a dominant role in
the electrocapillarity of solid electrodes positive of the pzc.
Additionally, we have observed in oxygen saturated environ-
ments that the onset of oxygen reduction occurs only when the
degree of oxygen-down saturated water at the interface is
decreased. We have proposed that anodic of this point the
saturated interface may retard oxygen reduction by both blocking
molecular oxygen from the electrode and by the dipole induced
potential drop.

Our future work in this area will focus on the verification of
our proposed mechanism for the retardation of oxygen reduction
by an oxygen-down saturated water/electrode interface. Ongoing
work will involve electrocapillarity of Pt electrodes as a function
of, for example, pH, in order to further explore this subject.
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(62) Marković, N. M.; Gasteiger, H. A.; Ross, P. N., Jr. J. Phys. Chem.

1995, 99, 11.
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(65) Marković, N. M.; Gasteiger, H. A.; Ross, P. N. J. Electrochem.
Soc. 1997, 144, 5.

(66) El Kadiri, F.; Faure, R.; Durand, R. J. Electroanal. Chem. 1991,
301, 177.

Pt{111} and Au{111} Electrocapillarity J. Phys. Chem. C, Vol. 111, No. 39, 2007 14439

295


	Thomas Heaton Dissertation - written component_Final_1.pdf
	Thomas Heaton Dissertation - written component_Final_2.pdf
	Thomas Heaton Dissertation - written component_Final_3.pdf
	Heaton & Friesen - Ecap paper as published.pdf

