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ABSTRACT

Many methods of passive flow control rely on changes to surface morphology. Rough-

ening surfaces to induce boundary layer transition to turbulence and in turn delay separation

is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms

of how roughness and other means of passive flow control to delay separation on bluff

bodies is known, basic mechanisms are not well understood. Of particular interest for the

current work is understanding the role of surface dimpling on boundary layers. A compu-

tational approach is employed and the study has two main goals. The first is to understand

and advance the numerical methodology utilized for the computations. The second is to

shed some light on the details of how surface dimples distort boundary layers and cause

transition to turbulence. Simulations are performed of the flow over a simplified configura-

tion: the flow of a boundary layer over a dimpled flat plate. The flow is modeled using an

immersed boundary as a representation of the dimpled surface along with direct numerical

simulation of the Navier-Stokes equations. The dimple geometry used is fixed and is that

of a spherical depression in the flat plate with a depth-to-diameter ratio of 0.1. The dimples

are arranged in staggered rows separated by spacing of the center of the bottom of the dim-

ples by one diameter in both the spanwise and streamwise dimensions. The simulations are

conducted for both two and three staggered rows of dimples. Flow variables are normal-

ized at the inlet by the dimple depth and the Reynolds number is specified as 4000 (based

on freestream velocity and inlet boundary layer thickness). First and second order statis-

tics show the turbulent boundary layers correlate well to channel flow and flow of a zero

pressure gradient flat plate boundary layers in the viscous sublayer and the buffer layer, but

deviates further away from the wall. The forcing of transition to turbulence by the dimples

is unlike the transition caused by a naturally transitioning flow, a small perturbation such as

trip tape in experimental flows, or noise in the inlet condition for computational flows.
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I. INTRODUCTION

There exists a need to increase performance for a variety of flow conditions and as such the

need for passive flow control. The desire for passive flow control has risen out of this and as

such further understanding of the influence of dimples in turbulent flow as a boundary layer

modifier is needed. In general, the method for passive flow control is some sort of change

in surface morphology by either roughening of the surface, addition of porous media or by

dimpling. The applications for this vary greatly from adding bumps on the surface in order

to reduce shear stress on the surface [3] to dimpling of golf balls, which delays separation

of the flow, which reduces drag for a longer drive. The same effect can also be used to delay

separation on turbine blades in a low pressure environment [4]. Also, addition of a porous

media to reduce drag has been observed [5]. Modification of surface morphology by adding

dimples will induce turbulent transition, which changes the flow characteristics. While the

result of the influence of the dimples is understood, the fundamental mechanisms that cause

this are not very well understood .

For the present thesis, the Navier-Stokes (NS) equations are modified to be represent

incompressible flow and are nondimensionalized for solution over a surface geometry using

Computational Fluid Dynamics (CFD). CFD offers the ability to solve complex flows that

are difficult to solve analytically or experimentally in a practical sense. The limitations of

mathematics to solve the governing equations directly using an analytical approach are be-

yond present capability due to the closure problem as explained by [6], and the inability to

create a robust experiment in the lab has given CFD a niche in the general field of Fluid Dy-

namics. In addition, many complex turbulent flow features may be thoroughly investigated

over a computational domain, which are difficult to tease out of an experiment. Boundary

conditions used are designed such that the flow characteristics of interest are isolated as

much as possible from other effects as well. For example, the inlet velocity profile is a

scaled Blasius profile, and the velocity at the top surface of the computational domain is

also prescribed by using the Blasius solution.
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This thesis employs a direct numerical simulation (DNS) to solve the incompressible

Navier-Stokes equations on a staggered mesh using a fractional step method with a Runge-

Kutta (RK) time advancement method. The surface geometry is represented by an immersed

boundary (IB) imposed on the computational domain. For this method, all of the scales of

turbulence are resolved without the use of a turbulence model.

Fundamental understanding of the influence of the dimple on the boundary layer is in-

vestigated in this thesis. The example of surface dimpling most commonly thought of is

of course a golf ball, shown in Figure 1. The scope of the present study is limited to the

investigating the flow over a dimple, and as such the flow over an entire golf ball is not

necessary to understand the fundamental influence of dimples on the flow. In order to elim-

inate extraneous factors that will confound the results obtained by using a geometry that is

more complex than what is required, a flat plate is employed. The plate represents a surface

geometry that is similar to a section of the surface geometry of a golf ball without curvature.

Simplification of the geometry to achieve this provides two advantages. The first is that the

computational setup is simplified, and the second is that the results isolate the effect of the

dimples on the boundary layer. The geometry used for this thesis is a flat plate that is im-

mersed near the bottom of the computational domain. For the initial simulation, the flow is

computed for a plate without any dimpling. Addition of dimples in a staggered array on the

plate, shown for the two row configuration in Figure 2, is a simplified configuration of a golf

ball. After evaluating the flow properties from this simulation the addition of a third row

was added downstream of the second dimple row to further understand cumulative effects

of the dimples on the boundary layer. For the present thesis the depth, d, of the dimples

considered is used as the reference length. The diameter of the dimple, D, is 10d and the

spacing from center to center of the bottom of the dimples is
√

2D since the spacing in the

streamwise and spanwise dimension is 1.0 for both.

A. Background

In order to understand how a dimpled surface influences boundary layer flow, this thesis

investigates the influence of dimples and dimple arrangement on a flat plate. This simple

case is an approximation of what occurs on the surface of a golf ball. The motivation

2



Figure 1. Dimpled surface of a golf ball.

Figure 2. Immersed boundary geometry used in this simulation is a flat plate with
staggered rows of dimples.

behind this thesis is to understand fundamentally the characteristics of the turbulence as

a direct result of the influence from a dimple. In the golf ball case, the dimpling of the

surface modifies the boundary layer such that the separation occurs further downstream

along the surface of the ball. This results in a modification of the boundary layer, and

understanding the modification of the surface morphology by addition of dimples on the

flow is the motivation for the present work.
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For the present work, The flow upstream of the dimple rows is laminar, transitions due

to influence of the dimples on the boundary layer and becomes turbulent downstream. Iso-

lation of the effect that the dimple has on the boundary layer is desired. Choosing the

correct boundary conditions for the flow has a profound impact on how much the effect

of the dimples is “felt” by the flow. The inlet condition is chosen such that it is a Blasius

solution for a flat plate boundary layer. This condition helps to isolate the effect of the

dimples and excludes the vorticity that is produced by a uniform velocity profile at the inlet

near the wall. Prescribing an inlet profile such as this is also used in [2] , so that the tran-

sition to turbulence is captured by the solution. For [7], [8], [9], and [10] the inflow is a

fully turbulent boundary layer. For [11] the approach to the inflow is to include low level

disturbances in the boundary layer at the inlet to establish viable turbulence downstream.

For the present thesis the transition to turbulence due to the dimples is desired and charac-

terization of the resulting turbulent boundary layer is examined so the induced turbulence

by the inlet is not considered. Additionally, preliminary simulations showed that the flow

becomes turbulent if a uniform inlet condition is prescribed. Additionally, the intensity of

the interaction of dimples in the flow depends on the ratio of the boundary layer height to

the depth of the dimple. If the boundary layer is too large the dimple will have little effect

on the overall characteristics of the flow, and will not cause turbulence in the flow. The dim-

ples will force a transition in the flow from laminar upstream to turbulent downstream. The

transition would not otherwise occur without the dimples. Simulations were run in order to

determine if the flow would be turbulent with only a flat plate for the same flow conditions

that showed that the boundary layer will remain laminar. The inlet conditions were altered

to include random noise perturbations in the inlet boundary layer. The results showed that

the boundary layer would not sustain turbulence.

The rows are staggered in order to simulate similar arrangement of dimples [12, 5, 13,

14, 15]. In [16] a non-staggered array was employed. After simulation over one dimpled

geometry with two rows of dimples it was hypothesized that adding a third dimple row

would cause a cumulative effect in the turbulence characteristics downstream of the dimple

rows. The dimple geometry considered for this thesis is shown in Figure 3, where the
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depth, d = 1.0 and diameter, D = 10.0. Schematics of the dimple, and the dimple array

configurations for two and three rows simulations are shown in Figures 3–5, respectively.

Figure 3. Schematic of a cross section of the dimple.

Figure 4. Schematic of 2 row dimple configuration.

1. Coordinate System

For the present thesis the coordinate system used is nonstandard. The streamwise compo-

nent is z, the wall normal component is x, and the spanwise component is y. The compu-

tational grid used is a staggered grid with each component of velocity on the face and the

pressure at the cell center. The schematic of the coordinate system is shown in Figure 6.

2. DNS of Wall Bounded Turbulent Flows

Much of the research for turbulent flow over a flat plate with zero pressure gradient has been

an extension of the work done in [7], where flow over a zero pressure gradient flat plate was

characterized in detail forReθ = 225 toReθ = 1410 in a statistical manner. For the present
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Figure 5. Schematic of 3 row dimple configuration.

Figure 6. Schematic coordinate system for staggered grid with volume element. The
velocity components u, v, and w are shown on the faces, and the pressure, p, is computed

at the center of the volume element.

thesis, the θ subscript denoting the length scale of interest is the momentum thickness, θ.

The experimental setup was fundamental enough for following work regarding flat plate

DNS to be based upon it. The results by [7] are used in the present study along with results

from [1], [2] and [9] to show how the turbulence downstream of the dimple rows compares

well to previous work.
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Many DNS for turbulent flows over flat plate geometries have often employed periodic

condition on the streamwise velocity such as in [2] and [7]. The turbulence observed is

characterized as self-sustaining and statistically predictable as in [7]. For the present thesis,

the turbulent transition is forced to occur at a point upstream of the critical local Reynolds

number by the dimples. The flow at the inlet is a laminar Blasius boundary layer profile and

the flow remains laminar upstream of the dimples. This is done in order to show the effect

that the dimples have in causing a trip in the boundary layer. Since the value of Rez is less

than the critical Rez = 3 × 106 based on a virtual origin upstream of the computational

domain, which would permit the flow to become turbulent, the flow has been perturbed in

such away as to induce a turbulent boundary layer at a location upstream of the criticalRez .

Flow structures characteristic of flow over flat plate experiments are compared to the

results in the present thesis. Isosurfaces of the second invariant of the velocity gradient

tensor reveal flow structures in [2] and [17]. Development of vortical structures known as

hairpin vorticies begin at the wall as streamwise vorticies. As these structures grow the

vorticity induced by the structures themselves cause a turn away from the wall where they

take on the characteristic hairpin structure as they grow [17].

3. Modified Surface Investigations

Since the dimples force turbulent production directly in the boundary layer, turbulence is

of primary interest here. The interaction of the dimples with the boundary layer perturbs

the boundary layer in such a manner to foster transition to turbulence that is correlated to

an effective surface roughness. In [12] it was shown that there are a pair of longitudinal

vortical structures that are shed from dimples in an array shown in an experiment, which

occur with periodicity and are continuous. The result is inflow advection into the dimple

cavity. The turbulent structures that occur as a result of surface dimpling are predictable and

correlated to the Reynolds normal stress and mixing [12]. The vortical structures observed

are also seen in smoke visualization in [15].

Dimples in channel flow have been shown to augmenting properties of flow in a heat

transfer. A parametric study of dimples in an array with various geometries for a depth

to diameter ratio of 0.3 was done in [14]. The results from [14] showed that the spherical
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dimples and tilted cylindrical dimple arrays offer the most significant change in heat transfer

characteristics as well as eddy diffusivity of both heat and momentum. In [18] experiments

were conducted that showed flow structures similar to those in [13] and [15] for d/D = 0.2,

for [13] d/D = 0.3 and for [15] d/D = 0.2. Streamwise vortical structures are produced

along the edges of the dimples as well as in the center of the dimples [18]. Additionally,

impinging a jet normal to a dimpled flat plate has shown that separated flow caused by the

dimple on the surface reduced heat transfer to the plate from the working fluid [19].

Alternatively, In [16] dimple shaped bumps were used to represent effective roughness

correlated to known flow through duct data by using a friction factor. The results in [16]

show that the heat transfer can be enhanced considerably by employing the surface rough-

ness. Even though the surface modification is by way of of raising the surface as opposed

to dimpling, using a depression in the surface can be considered to be a roughened surface.

The dimple-shape used for [16] has a ratio of the height to diameter of 1.

4. Concerning Golf Balls

Direct numerical simulations performed by [20] show that the turbulent structures revealed

by the instantaneous vorticity resulting from the dimples on the golf ball have length scales

of the same size as the dimples themselves. It was shown in [20] that there exist shear layers

that begin at the leading edge of the dimple, and is similar to observations from both [21]

and shear layers resulting from the separation bubble from [11].

Experiments in [21] showed that the dimples on the golf ball will delay the separation

by causing instabilities in the shear layer along the ball by causing local flow separation.

The turbulence intensity is increased significantly in the shear layer as a result [21]. How

effective the dimples are can be related to the effective surface roughness of the ball [20].

Though viewing the surface morphology of a golf ball in a similar manner to surface rough-

ness, it should be noted that a “sand” rough surface that does not have the coherent dimple

structures does not behave the same way aerodynamically as a gold ball [22]. The difference

between a rough sphere and a dimpled sphere is primarily in the relationship of the drag as a

function of Reynolds number. The drag coefficient, CD, does not recover to a higher value

as in a “sand roughened” sphere, but instead remains lower in the higherReD regime. In re-
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search on the aerodynamics of golf balls it is effective to consider the roughness of the ball

in terms of the ratio of the depth of the dimple to the maximum diameter of the ball, k/D.

In [20] k/D = 6×10−3, in [22] k/D = 9×10−3, and in [21] k/D = 4×10−3. To appro-

priately compare the roughness of the dimpled region, the imprint diameter of the dimple is

used to scale the dimple to the golf ball so for the present study, k/D = 9.5× 10−3.

The overall drag characteristics are compared using the coefficient of drag, CD. The

results in [20] coincide with the results in [22] very well, but are slightly different than

[21]. The differences in the CD curves between [22] and [21] are small, but a result in the

differnce in the dimples.

5. On Bypass Transition

Normal transition to turbulence occurs on an orderly path marked by growth of Tollmien-

Schlichting waves that eventually break down the laminar flow [23]. Bypass transition is

defined as the mode of transition to turbulence that bypasses development of Tollmien-

Schlichting instabilities to transition to turbuelence. Direct numerical simulations done in

[24] show the structures of bypass transition by use of a DNS. Free stream disturbances

cause inception of the transistion by creating a turbulent spot that occurs as a result of the

perturbation of the boundary layer. The spot rings modes within the boundary layer that

grows into streamwise streaks that turn to a turbulent boundary layer downstream [24].

Bypass transition has been investigated extensively by perturbation of the boundary

layer by turbulence that exists in the free stream that causes the boundary layer to bypass

the orderly transition. In [25] investigation of the interaction of continuous modes with the

bypass transition. They found that with only two Orr-Sommerfeld modes at the inlet are

used to describe the non-linear mode development in the boundary layer by using a pene-

trating mode [25]. Further investigation in [23] of this by using a similar method of DNS

to investigate the coupling coefficient to identify the penetration depth to investigate the

effect on bypass transition. As the penetration increases in the boundary layer the intensity

of the turbulent spots increases as well [23] indicating that the spot inception is similar to

a Kelvin-Helmholtz type of instability. As the instability grows through the boundary layer

as a result of this inception, which is dependent on the mode in the free-stream disturbance.
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In the present thesis the transition from laminar to turbulence is perceived to be a type of

bypass transition, but the method of the disturbance is completely upside down. Instead

of turbulence created in the freestream, the disturbance comes from the interaction of the

boundary layer with the wall.

For the use of bypass transition as a method of flow control, work done in [26] shows

that the maximum spatial energy scales linearly with the distance from the leading edge

for Reynolds numbers larger than 100, 000. The empirical model developed in [26] can

be used then as a design for flow control for turbulent boundary layers as the mode and

intensity as the distance from the leading edge of the surface to the inception of turbulence

in predictable. This work is important when considering the transition mechanisms of the

present thesis.
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II. OBJECTIVES

A. Costs and Benefits of DNS and IB

Direct numerical simulations offer a complete computation of the full range of length and

time scales of turbulence active within the fluid of interest [6]. In DNS the Navier-Stokes

equations are by definition solved directly at every point of the grid without the use of a

turbulence model, and for this reason is the method of choice for learning about fundamental

properties of turbulence [6]. The benefit of DNS for this setup is that since all scales of

turbulence are resolved, the data that are obtained here are valuable in studying fundamental

flow problems, and since the equations are solved directly the accuracy of the turbulence

observed is dependent only the grid and the solver, but not on a turbulence model.

Historically the difficulty considering DNS is that of feasibility, and of the ability

to compute the equations efficiently enough. DNS requires considerable computational

resources to resolve even mildly complex flows, and this means that computations will

take a considerable amount of time to complete a simulation. In order to resolve all the

levels of turbulence for Reynolds number of 105 the computational power required is

O
(
Re3

)
= 1015. In order to evaluate how well the simulation is characterizing the tur-

bulence the grid spacing is evaluated in wall units. For the present thesis, the levels of

turbulence that are able to be resolved are determined by the fluid grid used to perform the

computations. Basing the gridding requirements off of work done by previous researchers

the construction of the computational mesh used in this work is sufficient to resolve all

applicable levels of turbulence without truncation of the information of the higher energy

spectra that dominate the small scale turbulence. The difficulty of DNS is resolving the

higher levels of turbulent energy well enough to resolve the flow without compromising

the time required to perform the calculations. Considering a number of prior simulations

the values of the grid spacing for streamwise, spanwise, and wall-normal dimensions are

O (15), O (15), and O (1), respectively [2],[7], [8], [9], and [10]. The grid spacing used in

this thesis is compared to reference values to verify that the experiments resolving enough

scales of turbulence and grid convergence study is run.
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The method of IB handling employed for this thesis requires no special modification

of the grid near the surface or the use of an overset grid method. of the surface, and the

method has proven to be quite robust for turbulent flows [27]. This is of great advantage as

the main concern when creating the surface geometry is only to ensure that the triangular

mesh created to represent the geometry is robust. The disadvantage of this requirement is

that additional simulations are required for the present study to validate solutions, which

require additional resources. The greatest advantage of the IB technique is that changing

the boundary surface is simple and requires minimal effort in terms of gridding. Gridding

for the code used in the present thesis is straightforward, because the grid points in the

streamwise and wall-normal directions are defined as 1D arrays to build a 3D structured

mesh at run time. For example, increasing the number of points is done in the present work

without changing the surface mesh with no changes in the solution due to the surface mesh.

B. Scope of Investigation

The purpose of this thesis is to further an understanding of the influence of dimple geom-

etry on turbulent flows using a DNS with an immersed boundary method. The geometry

investigated here is that of a flat plate with no dimples, two staggered rows of dimples and

three staggered rows of dimples with the third row dimple in line of the flow with the first

dimple.

The discussion of how the equations are solved and the immersed boundary method are

in the next section followed by the computational set up, the results and discussion of the

simulations, and finally the summary of the thesis work.
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III. GOVERNING EQUATIONS

In computational fluid dynamics the equations that are solved in some for or another for

any flow are the the Navier-Stokes (NS) equations. In many turbulent flows a model is

used to account for scales of turbulence that are too small for the grid such as in large eddy

simulations or are solved using a Reynolds averaged approach. The governing equations

solved in this thesis are solved directly without a turbulence model and are given below in

dimensional form and is signified by an overbar in Equations 1 and 2.

∂

∂x̄i
(ūi) = 0 (1)

∂

∂t̄
(ūi) +

∂

∂x̄j
(ūiūj) = −1

ρ

∂P̄

∂x̄i
+ ν

∂2ūi
∂x̄2

j

+ fi (2)

where ui is the velocity, P is the pressure, ρ is the density, and fi is a body force term

that is used to handle the immersed boundary. For direct numerical simulations (DNS)

these equations are solved without the use of a turbulence model as is done in this thesis.

Equations 1 and 2 are solved in nondimensionalized form given by

∂

∂xi
(ui) = 0 (3)

∂

∂t
(ui) +

∂

∂xj
(uiuj) = − ∂P

∂xi
+

1
Re

∂2ui
∂x2

j

(4)

The Reynolds number, given in Equation 5, is defined in terms of the dimple depth, d,

and the velocity is nondimensionalized such that the inlet freestream velocity, w0 is unity.

The kinematic viscosity, ν, is used in the code as the parameter to define the Reynolds

number.

Red =
w0d

ν
(5)

It is common to define the flow near boundaries in wall units. For this a friction velocity

is defined as shown in Equation 6. This characterizes the velocity near the wall in terms of

the stress on the wall. For this thesis the density nondimensionalized by the inlet density.

13



The shear stress is given by Equation 7.

Uτ ≡
√
τw
ρ

(6)

τw = µ
∂w

∂x

∣∣∣∣
x=0

(7)

The wall normal coordinate, x, is scaled by the friction velocity and the viscosity,

x+ =
wτx

ν
(8)

All other wall scaling in this thesis is performed in the same manner. In addition the

present thesis presents the turbulent energy by using the root mean square (RMS) velocity.

The RMS velocity is computed using Equation 9, and is used to evaluate the turbulent

energy.

UiRMS = u2
i (9)

For boundary layer statistics, Equations 10, 11 and 12 give the relationship of the mo-

mentum thickness, the momentum shape factor, and the displacement thickness, respec-

tively, to the velocity. These equations are used in the integral momentum equation for

laminar flow, but will provide for important statistics to analyze the boundary layer in the

present thesis [28].

θ =
∫ ∞

0

w̄

W∞

(
1− w̄

W∞

)
dy (10)

H =
δ∗

θ
(11)

δ∗ =
∫ ∞

0

(
1− w̄

W∞

)
dy (12)
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IV. DIMPLED SURFACE INVESTIGATION

A. Prior Investigations

The results in the present thesis are compared to DNS investigations of turbulent flow over

a flat plate since the turbulence on the flat plate in the current simulation is similar to the

solutions of turbulent flow over flat plates and the boundary layers of turbulent pipe flows.

Understanding the flow physics of a simplified geometry is key to understanding the influ-

ence of the dimples on the flow. The main simulations in this thesis are of two configura-

tions of the dimples on the flat plate, one of two rows of dimples and another of three dimple

rows. The first of these investigations performed contains two rows of dimples, as shown

in Figure 4. The array of dimples used here is similar to arrays used in [12, 13, 14, 15, 18].

The dimples in each row are staggered in the spanwise direction on the plate. The results

of this experiment prompted further investigation into the interaction of additional dimples

downstream; so an additional row of dimples was thus added downstream as seen in Figure

5. The third row of dimples that has been added behind the first two aligns with the first row

in the span to keep the same staggered row principle. The results will show a cumulation of

turbulent intensity not previously seen with only one or two rows of dimples.

This thesis compares flow statistics downstream of the dimples with work that is done

for DNS of turbulence over flat plates from [2] and [8]. The turbulent structures of the most

interest occur downstream as a direct result of the presence of the dimples, and include

streamwise vortical structures that are shed at the streamwise edges and the center of the

dimples [12]. The perturbation on the laminar boundary layer caused by the dimples as

observed by [12] is different to the turbulent boundary layer transitions seen in [2] and [7].

This is a direct result of the large contributions of streamwise vortices that the dimple has

inside of the boundary layer.

B. Coordinate system

For simplicity with the geometry the simulation is run with a Cartesian mesh. For the co-

ordinate system used in this thesis, the streamwise direction is z, the wall-normal direction

is x, and the spanwise component is y as seen in Figure 6. A picture of the geometry with

an outline of the computational domain overlay is shown in Figure 7. The red box is the
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computational domain, and the gray surface is the 3 row configuration geometry. The sur-

face used is larger than the computational domain, and extends upstream of the inlet. This

can be seen as an example of the versatility of the IB technique. The original computational

domain was much further upstream but to save wasted computations the inflow boundary

was moved up to 0.5D from the leading edge of the first dimple row. The domain extends

5D downstream of the last dimple or at z = 85, and statistics are captured up to z = 65

to accommodate the nonphysical convective boundary at the exit. In the span, the domain

extends from y = −15 to y = 15, and in the wall-normal dimension the domain begins at

x = 0. at the bottom of the dimples and extends to x = 40

Figure 7. Surface geometry of the immersed boundary with computational domain outline.

C. Geometry

The geometry chosen for this thesis is designed to isolate the effect that the dimple has

on flow characteristics from any confounding effects. Therefore, a flat plate with dimpled

rows is chosen. This is similar to [12], [13], [14], [15] and [18] for research of heat transfer

characteristics of dimpled surfaces for use in everything from ducts, tubing, and cooling

systems as well as golf balls such as shown in Figure 1 where the dimples are arranged in

a staggered configuration. Initial investigations were run without dimples and addition of

dimples began with addition of two rows. The dimples are made with d = 1 and D = 10
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as shown in Figure 3, and arranged in the configurations shown in Figure 4 and Figure 5 for

two and 3 row configurations, respectively. For both of these configurations the spacing Sz

and Sy in z and y, respectively, is 1.0.

This d/D ratio chosen such that the d/D ratio is similar enough to both golf balls (for

golf ball the d/D ratio observed is 0.038153) as well as the heat transfer dimples of 0.2 for

[18], [12] and [15] and 0.3 for [14] and [13]. The spacing chosen is such that the spacing

between the dimple edges at the flat plate surface is 0.4142D, which is similar to the spacing

on a golf ball of 0.463D The width of the geometry spans the computational domain, which

is designed to split through the center of each dimple in the second row for a span of 30,

such that there is one total dimple in each row. Since the condition in the spanwise direction

is periodic the flow will actually “see” an infinite row of dimples. This will be discussed

later in detail.

D. Grid Creation and Refinement

The grids used in this analysis are created for DNS. Initial investigations were computed

for the present thesis to identify how the dimples are influencing the flow field, and under-

standing of how the grid must be refined in what areas to evaluate all levels of turbulence.

The number of points and the grid spacing in wall units is tabulated in Table 2. The spacing

in the grids as they are refined are chosen to give the fastest computation time to under-

stand the basics of the flow and effects of the setup on the flow. The initial work to define

boundary conditions and initial conditions was performed on the first two grids. The final

computational work was done on the third grid where the spacing was chosen to resolve

enough scales of turbulence to not introduce errors. This method of evaluating the bound-

ary layer is consistent with work done in [24] where they used a refined zone to determine

if the grid they were using was “good enough” for the resolution of turbulence for DNS

quality results.

In order to make the grid fine enough to resolve all of the turbulence scales the simu-

lations run were compared to that of literature. The grid is compared by assessing the grid

spacing in wall units. The grid was refined in such a way that the spacing near the wall for

∆x+, ∆y+, and ∆z+ are about 1, 15, and 15, respectively, at a z location of 60, which is
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in the wake in the fully turbulent downstream region. This ensures that the scales of turbu-

lence are resolved by the mesh [2]. This baseline for grid spacing is taken from a variety of

sources tabulated in Table 1.

Table 1. Literature values for grid spacing for DNS.

Grid [9] [8] [2] [10] [7]

Min ∆x+ N/A 0.05 N/A 0.3 <1

Max ∆y+ 5-10 7 11.13 15 6.7

Max ∆z+ 8-16 12 5.91 10 20

Table 2. Grid refinement with wall unit

values for 3 dimple row simulations used

for grid refinement.

Grid 1 2 3

NX 231 324 355

NY 130 130 322

NZ 486 486 834

Min ∆x+ 6.71 1.26 0.80

Max ∆y+ 55.73 33.00 12.42

Max ∆z+ 27.78 31.53 16.56

E. Boundary Conditions

In order to isolate the influence of the dimpled geometry on the flow, little influence from

the boundary conditions is imposed on the flow regime. The inlet and top surface velocity

condition is a Blasius profile scaled such that the inlet boundary layer thickness is equal to

the dimple depth, d by using a virtual origin at some location upstream of the inlet. This

technique is used in a similar manner as in [2]. The streamwise velocity is given in non-

dimensional form in Equation 13. The non-dimensional wall-normal velocity is calculated

by using the non-dimensional stream function, f , relationship between the streamwise ve-
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locity given by Equation 14. This relationship and the stream function, ψ, are used to solve

for the wall normal velocity component on the top surface given in Equation 15.

u =
∂f

∂η
= f ′(η) (13)

f(η) ≡ ψ
√
ηzw0

(14)

u ≡ −∂f
∂z

=
w√
νw0
z

=
1
2
(
ηf ′ − f

)
(15)

Equations 13–15 are substituted into the momentum equation to obtain the Blasius form

given by

f ′′′ +
1
2
f ′′ = 0 (16)

This equation is solved with the boundary conditions in Equation 17–20.

w(z, x = 0) = 0→ f ′(η = 0) = 0 (17)

u(z, x = 0) = 0→ f(η = 0) = 0 (18)

w(z, x→∞) = w∞ → f ′(η →∞) = 1 (19)

w(z = 0, x) = w∞ → f ′(η →∞) = 1 (20)

Equations 19 and 20 collapse in this form however so a fourth condition is required

to achieve the required number of conditions of degrees of freedom in Equation 16. The

fourth condition is achieved by using f ′′(0) = 0.33206 [29]. The solution of the Blasius

equation is scaled as mentioned above, and the entry length is then related to the velocity,

δ99, and the viscosity by η, defined in Equation 21. η is a similarity variable used to make

the scaling of the Blasius boundary layer simpler.

η = 5.0 = δ

√
w∞
νz0

(21)
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where η is a scale factor used for the Blasius solution, w∞ is the freestream velocity, ν is

the kinematic viscosity and z0 is the distance of the virtual origin to the inlet [28]. This

equation along with Equation 22 are solved simultaneously to determine zo and ν. Both of

these parameters are given as inputs to the solver for scaling the Blasius solution as the inlet

velocity field.

Rez0 =
w0z0
ν

(22)

This condition on the top surface eliminates acceleration in the boundary layer instead of

having a slip wall on the top surface causing acceleration in the boundary layer as shown in

Figure 8.

Figure 8. Acceleration in the boundary layer. Green line is inlet profile and red line is
downstream at z = 3.

To enforce continuity across the domain as a control volume the outlet condition is a

convective condition. The convective condition assumes a constant velocity profile at the

exit and is scaled using the inlet as well as the fluid that crosses the top surface due to the

Blasius condition on the top surface. This ensures that continuity is enforced across the

domain. The convective condition is computed in a three step process, first Equation 23 is

used to calculate the volumetric flow rate, Q, at the inlet and outlet, then a scale factor, C is
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computed, shown in Equation 24. Lastly the new outlet velocity profile is calculated using

C as shown in Equation 25.

Q = wċA (23)

where A is the area, and w is the streamwise velocity, and c is a constant to scale the

outlet velocity based off of the flow out of the domain.

C =
Qin
Qout

(24)

wnew = wold × C (25)

The condition on the bottom is the immersed boundary. The geometry spans both the

spanwise and streamwise directions so that the surface boundary condition is the bottom

surface. All points underneath the boundary are marked as zero velocity, and separated

from the computational domain of interest.

In the spanwise direction the flow is assumed periodic. The periodic condition is com-

mon among flat plate solutions [9], and eliminates any effect that having a wall or other

condition has on the flow. The periodic condition is not necessarily physical [2], but in

general will reflect a flat plate that is infinite in the spanwise direction.

F. Flow Parameters

In order to isolate the influence of geometry on the turbulent flow, the parameters defining

the flow are held constant throughout the work in this thesis. The input to the code uses

1/Red, δ99, and z0, which for this thesis are 2.5 × 10−5, 1.0, and 160.0 respectively. To

determine the inlet conditions Rez0 is chosen to be about 600,000, which is a value that is

sufficiently high enough to sustain turbulence over the flat plate, but is much lower than the

critical Rez . After ν is determined to satisfy the inlet scales δ at the inlet and z0, Red is

computed by Equation 5 with the non-dimensional values of d and w0, which both are used

as the scales so they are 1. The computed value of Red is thus 4000.
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V. METHODOLOGY

A. Flow Solver

The simulations are computed using the code described by [27, 30, 31], an immersed bound-

ary, parallel, structured, direct numerical solver. This code solves the Navier-Stokes equa-

tions with a fractional step method over a staggered grid with a third order Runge-Kutta

(RK3) time advancement [31]. The staggered grid is created such that the pressure is cal-

culated at the cell center and the three velocity components are solved on the cell faces. To

illustrate this the picture in Figure 6 shows the staggered grid with face-centered velocity

components and the volume-centered pressure. The coordinate system is atypical of many

fluids solutions with the streamwise component as z, the wall-normal component is x and

the spanwise component is y.

The first step in the fractional step method is the predictor step, and is called such

because the velocity field is not divergence free [30]. This step is given by,

ûki − u
k−1
i

∆t
= γkH

(
uk−1
i

)
+ ρkH

(
uk−2
i

)
− αk

∂pk−1

∂xi
+ fki (26)

where ûi is the intermediate nonphysical velocity vector, H is a spatial operator that con-

tains the viscous and convective terms, and the script, k, denotes the step level of the frac-

tional step method. The intermediate non-solenoidal velocity field is missing the pressure

influence, which is accounted for in the correction step. The correction step consists of

solving the Laplacian of Φ, the projection operator with the gradient of the intermediate

velocity field, given in Equation 27. This operator is not exactly physical pressure, but is

such for flows where mass flow is conserved [27, 8].

∂2Φk

∂x2
i

=
1

αk∆t
∂ûki
∂xi

(27)

The last step is to project the Φ field onto the solenoidal grid given in Equation 28. The

superscript denotes the fractional step and is used here to identify the advancement level.

This step enforces continuity across the entire domain. The pressure field is corrected with
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the new value of Φ as in Equation 29. The projection in Equation 27 is approximated

by a series of two dimensional problems using trigonometric expansions which are solved

directly [31]. The disadvantage of this is that one dimension of the computational domain

must be uniformly spaced [31].

uki = ûi − αk∆t∇Φn+1 (28)

pk = pk+1 + Φk (29)

For equations 26–28 the RK3 coefficients used are: α1 = 8/15, γ1 = 8/15, ρ1 = 0,

α2 = 2/15, γ2 = 5/12, ρ2 = −17/60, α3 = 1/3, γ3 = 3/4, and ρ3 = −5/12.

B. Immersed Boundary Technique

In an immersed boundary method, the geometry of interest is interpreted by the flow solver

in such a way as to reflect the geometry of the object into the Eulerian fluid grid. The

advantages of this method are that the solver is efficient because the grid is a simple struc-

tured grid, and allows for complex geometries to be used with a simple grid. The immersed

method with this solver has proven to be both efficient and second order accurate with the

use of fairly complex geometries including flow over a cylinder, and flow through a wavy

channel [27]. The wavy channel in [27] consists of a channel in which one side is a sinu-

soidal wall. The dimpled wall of interest in the present thesis is similar to the wavy channel

geometry.

For the present thesis, the surface geometry is defined by a triangular mesh created in

Pointwise. The surface mesh is interpreted by the solver as a no-slip boundary by imposing

the boundary conditions on the fluid grid at neighboring points to the mesh. The imposition

of the body in the domain is accounted for as the body force term, f , in Equation 26. The

forcing is handled in a three step process, which is the same as in [31] and [20]. In the first

step to the code handling the surface mesh is to locate the object within the fluid grid. This

is done by marking points that lie within the boundary as solid points, the points that are

outside the surface are marked as fluid points and the forcing points.
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The forcing points are grid points in the fluid mesh that have at least one neighboring

point within the solid region [20]. The velocity on the forcing points is altered by interpo-

lation of the velocity from the neighboring points within the fluid region and the location of

the boundary where the velocity is zero.This is illustrated in Figure 9 where the fluid points

are marked as blue dots, the solid points are marked as black squares, and the forcing points

are red triangles. Identification of these three types of points is shown on a fluid domain

with an arbitrary boundary immersed shown in Figure 9.

The mechanism to identify the points is straightforward. Rays are shot normal to the

boundary surface through the forcing point to identify the neighboring fluid grid points,

which are then used to create an interpolation stencil. The interpolation of the velocity is

computed from the neighboring fluid points to the intersection of the stencil with the fluid

grid. Ultimately the velocity at the forcing points is altered such that the velocity respects

the no slip condition at the surface geometry and the velocity in the fluid region. In Figure

9 the intersection of the ray with the fluid grid is marked with a red x. The velocity at

that intersection is used to determine the velocity of the forcing point. The lines shown in

Figure 9 are rays that are used to make the interpolation stencil with the surrounding points

to reconstruct the velocity.

Figure 9. Grid points as marked by the normal lines. Blue dots are fluid points, black dots
are the solid, red triangles are forcing points, and crosses are the intersection points.
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The no-slip boundary condition is then enforced onto the fluid grid by reconstructing

the velocity at the forcing points such that the velocity at the wall is zero. The force, f , of

the solid on the fluid phase is computed by altering the velocity at the forcing points. The

body force is calculated from the solution to Equation 30.

fki =
Ûki − u

k−1
i

∆t
− γkH

(
uk−1
i

)
+ ρkH

(
uk−2
i

)
− αk

∂pk−1

∂xi
(30)

where Ûki is the reconstructed velocity that satisfies the no-slip condition at the immersed

boundary. Further detail can be found in [27, 30, 31].

C. Flow Parameters

For this solver the velocity profile at the inlet is a Blasius laminar profile scaled by providing

the virtual origin of the boundary layer, z0 and height of the boundary layer at the inlet, δi.

To understand characteristic results the reference length is chosen as d, the dimple depth.

All length variables are non-dimensionalized by d. The value input for δi is 1, which is

of course non-dimensionalized to be the same as the dimple depth. This ensures that the

boundary layer height is on the same order as the dimples so that the interaction of the

boundary with the dimple is clear in the results. The Reynolds number, Red, then reduces

to the inverse of the kinematic viscosity, because the length and time scales reduce to 1.

In order to determine z0 and ν, equations 31 and 32 are solved simultaneously, but

since there are four unknowns and only two equations, two parameters, Rez and δi are

chosen to give the desired flow conditions. Firstly, Rez = 640, 000 was chosen to provide a

sufficiently high Reynolds number, but still is an order of magnitude lower than the critical

Rez (3 × 106). The boundary layer height, δi at the inlet is chosen as the same height as

the dimple. Since, the d is the reference length, the δi is also 1. Equations 31 and 32 are

then solved simultaneously for ν and z0, which yields ν = 2.5 × 10−4 and z0 = 160.0.

The Reynolds number in terms of the dimple depth used is 4, 000, ans is equivalent to a

Reynolds number of 42,000 for a golf ball. This would be roughly the Reynolds number

for a well struck ball.
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The following equations are used to determine the conditions on the flow at the inlet,

Rez =
w∞z0
ν

(31)

η = δi

√
w∞
νz0

(32)

where w∞ is the streamwise velocity at the inlet, η is a parameter to scale the boundary

layer from the Blasius solution and is 4.95 [28], and Rez is the local Reynolds number

relative to a virtual origin upstream of the inlet.
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VI. RESULTS AND DISCUSSION

A. Preliminary Investigation

The first simulation run for the present thesis was designed to show that the flow remains

laminar over a flat plate throughout the domain, and the solver will produce the expected

result. The expected result is for the flow to remain laminar and for the boundary layer to

grow as expected with a selfsimilar boundary layer. These results show that the simulation

behaves as expected. The flat plate simulation without dimples was run for a Reynolds

number in the laminar regime to get an understanding of how an undisturbed boundary

layer exists in the set up used for the present thesis. The setup of the inlet parameters for

the first simulation is also the same for all subsequent simulations. As discussed previously,

the boundary layer height at the inlet, δi, of 1.0 is prescribed along with Rez = 640, 000 to

solve equations 31 and 32 simultaneously for z0 and ν, which are inputs into the solver to

define the flow characteristics desired for the present thesis. Since the freestream velocity

and reference length are assumed to be 1 by the solver, the viscosity, ν, is the inverse of the

Reynolds number, Red input into the solver. As stated before the inputs are ν = 2.5e − 4

and z0 = 160.0, which corresponds to Red = 4000.

This study is used to show that the Blasius profile as an inlet will produce a velocity

field of self similar velocity profiles as would be expected by a laminar boundary layer

[28]. The plot of color contours in Figure 10 for streamwise velocity shows the flow does

not transition to turbulence. The boundary condition imposed on the top of the domain

defines the velocity in the wall normal direction as the Blasius condition in order to avoid

issues with the flow accelerating in the boundary layer. Since the velocity computed for

the wall normal dimension comes from the Blasius solution the pressure gradient on the

surface on the plate is assumed to be zero. The inlet condition is prescribed by a Dirichlet

boundary condition of the velocity such that the profile from the surface of the plate to the

edge of the boundary layer is a Blasius laminar profile. The location of the top surface was

chosen for this simulation such that is is at least 20 units above the plate, and was chosen

as 4D for the dimpled plate such that the top surface is far enough from the plate to ensure

independence from the boundary condition. The grid used for this invesitgation was the
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second grid described in Table 2. The grid was chosen to compare against results with the

dimpled geometry. Since the flow here does not transition, the laminar flow can be solved

with a coarser grid than for the turbulent simulations.

Figure 10. Streamwise velocity contours. Plate surface is at x = 1.

Velocity profiles taken at various points along the length of the flat plate confirm that

the flow regime remains laminar, and the boundary layer grows as would be expected for

solution to the Blasius equation. This can be seen in Figure 11 as the profiles are scaled

using a Blasius scaling such that the velocity profile are self similar. The black line is

the inlet condition and the red are the scaled velocity profiles. By scaling the boundary

layers down the length of the flat plate the profiles collapse. To verify that the code is

indeed solving the Blasius boundary layer profile for this simulation an error evaluation

was performed by Jeff Mode in his thesis work 1. The error of the code observed in his

work, which is the code used in the present thesis, was on O (2). In addition to the error,

the convergence of the code was tested by E. Balaras in [27], and the same solver is used

for the simulations by C. Smith et. al. in [20] for the simulations over a golf ball.

B. Simulation of Two Dimple Rows

In the present thesis the dimples are arranged in staggered rows. the first investigation of

dimples in the present thesis has two rows of dimples. In order to save on computational

cost the total span of the domain is 20 units. the first dimples is placed at the center of the

span. This means that the second row contains a half dimple on either side of the span of the

domain. This arrangement is commonly seen where dimpling is used to control flow. Most

likely this is done for a couple of reasons the first being that more dimples are able to fit on

the surface and that the flow will then be more uniform in the span down the surface. For the
1Mode, J. ’Simulation of the Flow over a Flat Dimpled Plate’. Master’s Thesis. Arizona State University.

December 2010
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Figure 11. Streamwise velocity profiles. Blasius scaling employed on the wall normal
dimension. Plate surface is at x = 1.

present thesis, having only two rows the effect of having one dimple downstream of another

but offset will give insight into any possible interactions between the dimples, the flow, and

the arrangement of the dimples on the surface of interest. This simple arrangement will give

results that will show interactions between the dimple rows as well as fundamentally how

the transition mechanisms work when using dimples to control flows.

The schematic in Figure 3 shows dimple depth, d, and dimple diameter, D, as well

as how the dimple is part of the wall geometry. The ratio used for the present thesis is

d/D = 0.1. The arrangement of the dimples is shown in in Figure 4. The spacing in

the streamwise and spanwise dimensions is Sz = 1.0 and Sy = 1.0, respectively. The

second row of dimples contains half of a dimple on either side of the plate, and the periodic

condition is enforced through the center of the second dimple in the span.

The Reτ observed at z = 60 in the wake of the first dimple is 364, and Reθ is 926,

and Reτ is 290, and Reθ is 789 in the wake of the second dimple. Identifying this, it is

obvious that the turbulence seen in the wakes of the two dimples is completely different,

and between the dimples at y = 5, Reτ = 157 and Reθ = 707. The Reτ and Reθ from [1]

are 180 and 287, respectively. Reθ from [2] is 900. The scaling is indicative of turbulent

flow in the wake, and shows that compared to [1] the effective influence of the turbulence

on the free stream is on the same order as in the wake of the first dimple.
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The streamwise velocity near the wall downstream of the dimples correlates to data

from [1] and [2]. At a z location of 60 the plot in Figure 12 shows the streamwise velocity

in wall units. The data from [1] (�) is for a channel flow and the data from [2] (∆) are

for a zero pressure gradient flat plate Near the wall in the viscous sublayer the solutions

all collapse on w+ = x+ in the viscous sublayer up to x+ = 30. The red line shown on

the w+ vs. x+ plot in Figure 12 is the piecewise function give in Equation 33, and is a

reference line of the linear model in the viscous sublayer and the log-law of the wall in

the intermediate region. The intermediate or fully turbulent region begins at x+ = 30 and

extends to the outer regions. The velocity on the plate begins to deviate from the references

in this region. In Figure 12 the velocity deviates greatly in this region due to the flow not

being homogeneous in the span.

w+ =


x+ x+ < 10

1
0.41 ln (x+) + 5.2 x+ > 30

(33)

The difference in the intermediate region is indicative of the variation in the span. The

velocity profile in Figure 12 is somewhat misleading. The standard approach of ensemble

averaging the velocity in the span doe not actually hold true for this simulation due to

the nonhomogenous nature of the plate. Though Figure 12 gives a general idea as to the

boundary layer properties, an expanded approach of looking at different locations in the

span is necessary to understand how the flow varies and the level of variation. The velocity

scaled by wall units is replotted for the center of the span, between the dimple rows, and

at the edge of the span in Figures 13, 15, and 14, respectively. This is done to view the

velocity downstream of each of the dimples, and to see the difference where the flow is less

likely to have transitioned i.e. where there is not a dimple perturbing the flow upstream of

the location in the span.
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Figure 12. Span averaged mean velocity, w+ vs. x+ for two-dimple rows at z = 60. �,
[1];4, [2].

Figure 13. Mean velocity, w+ vs. x+ at y = 0 for two-dimple rows at z = 60. �, [1];4,
[2].
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Figure 14. Mean velocity, w+ vs. x+ at y = 5 for two-dimple rows at z = 60. �, [1];4,
[2].

Figure 15. Mean velocity, w+ vs. x+ at y = 10 for two dimple rows at z = 60. �, [1];4,
[2].
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RMS velocity in the wake region shows characteristics very similar to those observed

by [7] and [2]. The plots in Figure 16 show theRMS velocities at a z location of 60, which

is 4.5D downstream of the trailing edge of the first dimple with values plots from [1] and

[2]. In the viscous sublayer the agreement is quite good, but looking in the intermediate

and wake region the RMS sustains higher magnitude than either cavity or nominal zero

pressure gradient flat plate flows. It seems that influence from the dimples forces more

energy to become turbulent kinetic energy. The turbulence observed due to the influence

from the dimples agrees well with other experiments in the viscous sublayer, but deviates in

the fully turbulent intermediate layer and the wake region of the turbulent boundary layer.

This departure from the reference flows is an effect of the dimple imposing more turbulent

mixing than is seen in naturally transitioning. The RMS velocity between the dimples also

shows an interesting phenomenon. The wRMS component shows a much larger peak of

around 4 whereas compared to the literature or even the results inside of the wakes behind

the first and second dimples shows a peak of around 2.8.

Figure 16. Span averaged components of RMS velocity vs. x+. �, [2];4,[1].
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Figure 17. Components of RMS velocity vs. RMS velocity at y = 0 vs. x+. �, [2];
4,[1].

Further investigation shown in Figure 20 of the streamwise RMS velocity over the

domain shows that much of the turbulent energy occurs off the trailing edge of the dim-

ples. After the dimples in the wake region where the turbulence caused by the dimples

converges the RMS looks much like that of a zero pressure gradient flat plate. The wake is

concentrated behind the dimples, and the flow does not transition until further downstream

between the dimples.

Between the dimples the flow is less turbulent until about 2D downstream of the second

dimple. Since this region does not have the perturbation of any part of the dimple depth,

i.e. there is no turbulent production directly upstream. In contrast with many experiments

the tripping of the boundary layer here does not span the entire spanwise dimension so the

the flow must mix in spanwise dimension until about z/D = 2 downstream of the dimples.

Even at z/D = 4.5, the last contour plane shown, the flow does not fully transition across

the span. There are still two distinct wakes that exist in the RMS plot. The contour planes
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Figure 18. Components of RMS velocity at y = 5 vs. x+. �, [2];4,[1].

far downstream of the wake also confirm the behavior shown in Figure 18. The contours

shown that the higher energy flow is much further in the boundary layer at a y location

of 5 than behind the dimples at y locations of 0 and 10. During the transition where the

wakes converge there is a very higher energy region near the wall that causes the wake to

expand into the laminar regions. The transition in the regions outside of the wake occur

as the higher energy flow is entrained by the turbulent eddies next to the wall so that high

velocity flow is near the wall where the low velocity region of the laminar flow is. This

creates a situation where the higher velocity and lower velocity flow interact causing the

laminar flow to be disturbed by the turbulent wakes and thus the transition to turbulence.
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Figure 19. Components of RMS velocity at y = 10 vs. x+. �, [2];4,[1].

Figure 20. Line contours of RMS velocity in x-y planes along the streamwise direction.

36



Boundary layer growth is significantly effected by the presence of the dimples. As

shown in Figure 21 the displacement thickness, δ∗ decreases dramatically downstream of

the first dimple row as the flow becomes turbulent as would be expected. As well the

momentum thickness, θ increases at a faster rate than the Blasius solution. In Figure 21 the

δ∗ is the green line, θ, is the blue line, and H = δ∗/θ is the red line, the Blasius solution

for δ∗ and θ are the dashed and dash-dotted lines, respectively. This occurs at a Rez much

further upstream than a natural transition would occur due to the influence of the dimples

on the boundary layer.

Figure 21. Boundary layer characteristics; green line is δ∗; blue line is θ; red line is H .

Figure 21 compared to either Figure 22, 23 or 24 actually shows how nonhomogeneous

the flow is in the span. The boundary layer growth with averaging across the span does

not seem to make much sense, and that is due to the nature of the transition over the plate.

Since the transition in the first wake is due to the first dimple, this happens further upstream

than other locations, the transition due to the second dimple happens z/D = 1 downstream

of the first, and finally the transition between the rows happens at a much slower rate than

either of the wakes. The plots in Figures 22 and 24 show what is happening to the boundary
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Figure 22. Boundary layer characteristics along the length of the domain at the center of
the span; green line is δ∗; blue line is θ; red line is H .

layer thickness over the length of the transition. For example, in Figure 22 the displacement

thickness, δ∗, remains constant along the length of the dimple, but then increases sharply

after the dimple as the velocity at the edge of the dimple is turned away from the wall and

the boundary layer is stretched. After this blip in the thickness, the displacement thickness

begins to decrease as the flow transitions. As for the momentum thickness shown in Figure

22, there is an increase where the flow is transitioning, then stabilizes in a constant slope at

the same time that the displacement thickness stabilizes. The ratio of these two statistics,

the momentum shape factor, H , shows that at about z = 30 the flow has almost fully

transitioned to turbulence. The momentum shape factor will not, however, be constant

since the shape factor in a turbulent flow depends on the skin friction, which is not constant.

This same behavior also occurs at the edge of the domain through the center of the second

dimple as seen in Figure 24.
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Figure 23. Boundary layer characteristics along the length of the domain between the
dimple rows in the span; green line is δ∗; blue line is θ; red line is H .

The plot of the boundary layer statistics between the dimples in Figure 23 shows the

transition of the boundary layer has not fully occurred within the domain. The same tran-

sistion behavior as seen over the dimples is seen between if not over a much longer distance.

The disturbance of the boundary layer is happening at a much slower rate because the tran-

sition mechanism between the dimples is much different than in the wake since the distur-

bance comes from the wake of the dimples. The displacement thickness increases while the

flow is in transition. The momentum thickness also increases, and the shape factor begins

the decrease to be closer to a turbulent flow.

The boundary layer thickness in terms of 99% of the free stream velocity, δ99%, is

shown in Figure 25 on top of contours of streamwise velocity for three slices in y. The δ99%

line shows again what was seen in the previous plot regarding the transition of the flow to

turbulence. The boundary layer increases as the flow becomes turbulent, and in the wake

behind the first dimes the boundary layer is much larger than either of the other two planes.

The color contours in Figure 25 show that the boundary layer has much higher velocity
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Figure 24. Boundary layer characteristics along the length of the domain at the edge of the
span; green line is δ∗; blue line is θ; red line is H .

fluid than the laminar regime.The plane between the dimples shows that the flow has not

transitioned, but is transitioning toward the end of the domain.

Figure 25. Streamwise velocity contours with δ99% line.
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Figure 26. Wall shear stress, τW along the flat plate.

The wall shear stress shows the stabilization of the transition to turbulence behind the

dimples as shown in Figure 26. The first dimple has a much steeper increase in the shear

stress and peaks higher than behind the second dimple, but τW decreases after it peaks

before leveling out. This same behavior is not seen behind the second dimple. As well

there is a drop in the shear stress immediately after the second dimple that is not seen

behind the first. This implies that the transition to turbulence due to the second dimple is

different than the transition in the first wake. The reason for the difference is the existence

of the first dimple row. The disruption in the boundary layer from the first dimple is not

confined to the immediate wake region though that is where the majority of the influence

lies. The quiescent fluid upstream of the dimples is disrupted across the span and causes

the flow inside and the transition by the second dimple to be different than the first. By

looking at τW between the dimples the effect can be seen. The disturbance in the boundary

layer where the first dimple is (z/D =0.5 to 1.5) shows a dip then a peak before the second
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dimple. The effect is minor compared to the transition caused in the wake, but the result is

that there is a difference in that the transition in the second wake is much slower to develop

to a fully turbulent flow compared to the wake behind the first dimple row. Though the

wakes never meet in this domain the shear stress between the wakes near the edge of the

boundary does start to creep up which implies that at some point downstream the flow will

transition to turbulence, and the flow is already beginning to transition there, but at a much

slower rate than directly behind even the second row.

Figure 27. Wall shear stress, τW increases as the flow accelerates leading to the dimples.

The wall shear stress before the dimples also has an interesting charateristic that is

indicative of influence of the dimple on the boundary layer before the flow even reaches the

dimples. The plot in Figure 27 shows that the shear stress increases just before the dimples

as the boundary layer is forced to accelerate prior to entering the dimples. By looking at the

shear stress at the wall it is apparent that the assumption that the dimple did not influence

the flow upstream actually does not hold true. The flow upstream of the dimple very near

the wall shows influence of the downstream dimples. This is due to a pressure difference
42



that is caused by the dimples. Since the wall expands away from the flow a lower pressure

region is created than the upstream flow, which causes the flow in the boundary layer to

accelerate. This acceleration is not seen in the previous simulation, but is clearly an artifact

of the presence of the dimples. The entry length of the domain is not far enough from the

first dimples. The wall shear stress upstream of the first dimple increases as is indicative of

an accelerating boundary layer, but τW upstream of the second dimple decreases as would

happen with a normally increasing laminar boundary layer, then has an inflection point

about z/D = 0.7 upstream of the dimple. Since the first dimple is only z/D = 0.5 from

the inlet, the inlet is too close to the first row to be outside of the influence of the dimple.

The effect of the dimple being too close to the inlet is minimal, but the result is important

to note nonetheless.

The statistics shown previously approximate an isotropic variation in the spanwise di-

mension, but due to the nature of how the flow is tripped with a bias in the spanwise dimen-

sion this assumption is not entirely valid. There is spanwise variation that exists in the time

averaged velocity field as a result of how the flow transitions to turbulence by themselves

influence of the dimples. The plots of the streamwise velocity contours in Figures 28 and

30 show that the flow far downstream appears to have greater homogeneity, but there is still

a clear difference in the velocity field behind the dimples and between the dimples. The

approximation of the constant velocity field for this simulation breaks down in the inter-

mediate layer, and the part deviation from [1] and [2] in the velocity is accounted for here.

In Figure 30 the velocity at y = 0 and y = 10 shows a lower velocity further away from

the wall than at y = 5, and also has a higher velocity nearer to the wall. This is due to

the flow being turbulent in the wake regions and only beginning to transition between the

wakes. The difference in the velocity contours at z = 60 against the velocity contours at

z = 25 shows how the wake grows in terms of velocity. The turbulent boundary layer at

y = 0 at y = 10 grows toward each other. The resulting mixture of the wakes causes the

flow to transition in between the dimples. If the second dimple was placed closer the flow

would be more homogeneous since the transition that occurs in the wakes of the dimples

would be closer. In addition, since higher velocity fluid in the turbulent boundary layer is
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closer to the wall a dimple within the wake would cause an even larger effect on the fluid

as the perturbation of the boundary layer would be influenced more. The idea is that the

higher momentum boundary layer will have much more interaction with the dimple and the

separation within the dimple will be much smaller in the dimple in a turbulent boundary

layer than in a laminar boundary layer.

Figure 28. Streamwise velocity contours in an x-y plane at z = 25 shows variation in the
span.

Figure 29. Streamwise velocity contours in an x-y plane at z = 35 shows variation in the
span as the wake grows.

Figure 30. Streamwise velocity contours in an x-y plane at z = 60 where the wakes have
not converged at the edge of the domain.

To understand how isotropic the turbulence is at locations downstream of the dimples

wRMS is plotted in Figures 31, 29 and 33 for z = 25, z = 35 and 60, respectively. The

beginning of the turbulent transition caused by the dimple rows is distinct just at the trailing

edge of the dimples. The transition structure is also apparent in these plots. The effect that
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the turbulent wake has on the laminar regions downstream of the dimple is also apparent

in these plots. The dimples in the laminar flow cause the transition to occur, but only in a

small region in the center at the trailing edge of the dimple. The distinct turbulent structure

of the wake appears as a large oblong shapes in the plot of the wRMS velocity contours in

Figure 31 grow down the plate. The flow between the wakes of the dimples grow as the high

turbulent energy fluid near the wall disturbs the quiescent flow and in turn the flow begins

to transition. The flow between the wakes begins transition before the wakes grow enough

to converge. Though the turbulent flow does not fully develop within the computational

domain it is apparent with the dimple arrangement that the wakes converge before the flow

between transitions.

Of interest is how the region from the first dimple z/D = 1 downstream is still local-

ized. As the wakes expand from the dimples into one another the turbulence tends towards

quasi-isotropic turbulence in the y. At z = 60 there is still influence of the dimple seen.

regions localized between the dimples where the edges are upstream is still a region of lo-

calized fluctuations. Additionally, the fluctuations caused by the second row are larger than

the rest of the flow. Further downstream the flow may be able to fully mix as would be

expected, but the domain is restricted before this would occur.

Figure 31. Streamwise RMS velocity in an x-y plane at z = 25 shows the distinct wake
of the first dimple.
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Figure 32. Streamwise RMS velocity in an x-y plane at z = 35 where the first dimple has
grown and the second is developing.

Figure 33. Streamwise RMS velocity in an x-y plane at z = 60 with the transition across
the span.

The contour plots of the streamwise velocity inside of the dimples show the flow struc-

ture at the center of the dimples. In the plot in Figure 34, the flow is separated over nearly

the entire length of the dimple. The flow reattaches on the back side of the dimple. The

boundary layer is perturbed at the trailing edge of the dimple which shows downstream as

the flow transitions to turbulence. The transition to turbulence is immediately active in the

entire domain as can be seen in the second dimple row.

Figure 34. Time averaged streamwise velocity contours at the center of the first dimple.
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The time averaged flow inside of the dimple is better characterized by streamtraces

shown in Figure 35. There are two distinct eddies on either side of the center of the dimple.

The eddies inside are turning counter the bulk flow. There also is a directional bias in

the dimple from right to left as the flow moves through the dimples that appears in the

streamtraces. The production of turbulence in the dimples occurs on the back side of the

dimples. The boundary layer is thick enough to flow over most of the dimple, but does

reattach inside of the dimple. The result is production of streamwise vortices that initiate

turbulence. The region where the flow reattaches on the back side of the dimple distorts

the eddies to form a butterfly shape, and contains a region where there are more streamwise

vortical structures. The production of turbulence in the first dimple is localized on the

trailing edge since the eddies interact with the free stream velocity in this region. The

streamwise vortical structures are seen in experiments as well, and are a characteristic of

flow over dimples and initiation of transition to turbulence [18]. As a result of inducing the

change in the spanwise component in the velocity field non-localized regions are affected.

The streamtraces in Figure 36 are above the dimple at an x location of 1.1. The vortical

structure on the backside can be seen here as well as influence in the spanwise velocity

field.

Figure 35. Streamtraces in the time averaged velocity field in the first dimple.
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Figure 36. Streamtraces in the time averaged velocity field at a location of 0.1 above the
wall.

The same flow structures in the first dimple are also present in the second dimple. The

reattachment point in the second dimple is roughly at the same location in the dimple as in

the first, near the top edge on the trailing edge of the dimple. There is interaction between

the staggered dimples, as can be seen with the stream traces in Figure 38. Though this influ-

ence does exist, the effect appears to be minimal, because the effect is too small compared

to the influence of the bulk flow.
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Figure 37. Time averaged streamwise velocity contours in the second dimple.

This small alteration in the mean flow has profound influence in the flow inside of the

second dimple. Shown in Figure 38, the recirculating eddy inside of the dimple does not

have a singular distinct eddy structure, but instead has an irregular flow that increases the

amount of the turbulent production. The region of flow where the turbulent production is

highest is not significantly larger in the spanwise direction, but is further upstream inside

of the dimple as well as deeper in the dimple. Comparing the stream traces in Figure 39

shows that the structures inside of the dimples is nearly identical. Even though there is

influence of the first dimple onto the second with the velocity field being distorted in the

spanwise direction i.e. the fluid from the first dimple moves laterally into the second. It

is also apparent that this same influence from the first onto the second is also occurring

upstream of the first dimple as a result of the low pressure region of the first dimple.
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Figure 38. Streamtraces in the time averaged velocity field inside of the second dimple.

Figure 39. Streamtraces in the first and second dimples show the interaction between the
dimples.
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The flow over the first dimple shows characteristics of flow over a cavity where the flow

is separated and reattaches downstream inside of the dimple. The initiation of turbulence

occurs on the backside of the cavity due to the perturbation on the boundary layer and the

influence on the bulk flow. The instabilities in the boundary layers the primary mode of

initiation for transition mechanisms seen in the dimple. The instabilities can be seen by the

rotation seen in the stream traces in Figure 36.

Unlike a flat plate with a backward facing step the dimple does not allow for reattach-

ment along a flat surface. Instead the reattachment occurs on the upward curvature of the

dimple. The separation causes instabilities in the shear layer to propagate turbulence down-

stream as the reattachment point inside of the dimple changes over time. Investigation of

this is beyond the scope of the current work. In the instantaneous plot, however, slight os-

cillations in the streamwise velocity above the dimple show that there is some instabilities

manifest over the dimples.

The reattachment point in the center of the first dimple is visualized by the zero stream-

wise velocity line and with the vectors in the time averaged plot in Figure 40. Since the

boundary layer is the same thickness at the dimple as the dimple depth, d, the momentum

in the boundary layer carries it over most of the dimple. Since the boundary layer is sep-

arated for most of the dimple and only reattaches very near the outer edge of the dimple

where the effective length of the dimple relative to the streamwise velocity, the most signif-

icant perturbation in the boundary layer is localized to where the boundary layer interacts

directly with the dimple. The influence of this first dimple is enough however to cause the

flow to transition. The effects are seen immediately in the second row of dimples.

Even with the strongest perturbation residing near the center of the cavity, the effect of

a dimple being offset from the second row is that the flow at the leading edge of the dimple

is the same as the freestream, but the separation in the second dimple is less compared to

the first row as seen in Figure 41. Since the separation is less in the second row there is

a cumulative effect of dimples downstream and an interaction between staggered dimples

that will manifest in more turbulent production in downstream dimples.
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Figure 40. Separation of the boundary layer visualized by velocity color contours with a
zero streamwise velocity contour line inside of the first dimple.

Figure 41. Separation of the boundary layer visualized by velocity color contours with a
zero streamwise velocity contour line inside of the second dimple.

On a nominal flat plate Blasius solution the laminar boundary layer grows. For this

Red the same behavior was confirmed in the preliminary investigation, but the dimpling of

the plate causes an interesting phenomenon in the boundary layer. Instead of the expected

growth the boundary layer actually does not increase. This is due to a low level acceleration

that was seen in τW with the constant boundary layer height seen in Figure 22.
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The freestream flow above the dimple is affected as well. The flow in the outer bound-

ary begins transitioning towards turbulence as can be seen in the slight fluctuations in the

streamwise velocity shown in Figure 42. These minor fluctuations propagate downstream

to become much larger eddies in the wake region caused by small movement of the fluid

within the dimple. The low velocity of fluid rotates in the dimple in much the same way

as flow in a cavity driven by velocity on the top surface and is indicative of bypass tran-

sition [24]. The dominance of the perturbation of the boundary makes the initiation of

bypass transition difficult to discern directly behind the first dimple, but the transition of the

laminar flow between the dimples is more indicative of this behavior.

Figure 42. Instantaneous streamwise velocity contours in an x-z plane at y = 0.

The oscillations seen in the second dimple shown in Figure 43 are less pronounced than

the first possibly due to the larger boundary layer thickness at the second dimple. The peri-

odicity of the fluctuations is still present are not necessarily the same shedding frequency as

the first dimple. Since the influence of the second dimple does not interact as significantly

with the higher velocity fluid the modes of disturbance have a longer wavelength than in

the first dimple, and does not have the same short wavelength disturbance that is present

in the first dimple resulting in transition that does not develop as quickly as in the wake

of the first dimple. The result, however of the disturbances in the boundary layer is simi-

lar to dirsturbing the boundary layer by using turbulence in the freestream to penetrate the

boundary layer and ring modes to initiate turbulence as the result from [23] and [25] shows.

The dimples at the wall cause this disturbance to occur at the wall-boundary layer interface.

The disturbance of the boundary layer by the dimples must disturb the boundary layer and

initiate turbulence. In the present thesis the turbulent spot occurs at the same point in space

at the trailing edge of the dimple and initiates turbulent transition in the wake.
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The contours of streamwise velocity in Figure 45 show for a certain point in time how

the perturbation caused by the dimples grows and forces turbulent transition at three planes

in the span. There is also a periodicity to the fluctuations similar to vortex shedding of

bluff bodies or flows over cavities. The plot of the contour slices through the different

dimple rows in Figures 44 show that the velocity fluctuations in the wakes of the dimples

are essentially different. Since the perturbation in the first row is higher there are more

intense eddies in the wake than those downstream of the second dimple. The initiation of

the transition to turbulence in the wake of the first dimple is also immediate, whereas there

is a significant delay in the transition in the wake of the second. This behavior was also seen

in the τW . As the wakes themselves interact it also becomes apparent that the turbulence

becomes more isotropic in the spanwise dimension. The transition to turbulence due to the

dimple row directly downstream is telling about how the dimples interact with the boundary

layer. It is evident that the first dimple row has much greater influence immediately in the

turbulent transition because of the magnitude of the perturbation is much greater due to the

thinner boundary layer incoming to the dimple. More subtle is that the first dimple row has

changed the flow dynamic immediately downstream in a way that alters how the second

dimple interacts with the boundary layer in a profound manner. The flow structures of both

dimples is very close in shape, but the region within the dimple that interacts and perturbs

the flow in the first dimple is wider than in the second dimple. This implies that the first

dimple has more interaction and thus a greater perturbation on the boundary layer than the

second dimple. Since the perturbation in the second dimple is small, onset of the turbulent

transition occurs a slower pace.

Figures 45 and 44 show the difference of the wakes by visualization of instantaneous

velocity by plotting color contours. It is very clear in these two plots the difference in the

initiation to transition occurring much further downstream of the second dimple compared

to the transition in the first wake. In Figure 44 the mechanism for the transition of the

regions between the wakes is also apparent. The wakes “grow” as a result of the turbulent

energy in the wake as it perturbs the neighboring laminar boundary layer. The shape of the

wake is also telling of how the transition occurs over the dimples. Essentially the entire span
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is “covered” in dimples, but the entire span does not transition as a result of the dimples.

The reasoning is simple, the boundary layer height is 1, which is the deepest location on

the dimple, and so the transition is localized from the interaction from a small region on the

backside of the dimple. Even the small increase in boundary layer has a profound impact

on the transition in the second dimple. The reattachment line of the boundary layer within

the second dimple is so small that the level that the flow is perturbed is significantly less

than the perturbation from the first dimple. Even at the same Red it would be expected that

having a slightly smaller δi will have a profound impact on the result. If the dimples were

1D further upstream in the boundary, the wakes of both dimples will be more pronounced,

such that the wake of the second dimple would look very much like the current results of

the wake of the first dimple, and the wake of the first dimple will be even more pronounced.

Figure 43. Instantaneous streamwise velocity contours in an x-z plane at y = 10.

To visualize the turbulent structures in the wake of the dimples the Q-criterion is used

in a similar way as in [20]. Q is the second invariant of the velocity tensor, and is used

as a flow visualization technique to identify convex, low pressure vortex cores [20]. The

result shows how the turbulent structures take shape in the wake as well as define the shape

of the wake. The plot of Q in Figure 46 is an isosurface at 0.3 with color contours from

streamwise velocity, w. The transition in the wake behind the first dimple initiates immedi-

ately, whereas the transition of the second dimple has a bit of a delay before beginning the

transition. Clearly the transition in the second wake takes on a different mechanism for tran-

sition than the first. The perturbation from the first dimple forces the transition immediately

without the delay seen in the second dimple.
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Figure 44. Instantaneous streamwise velocity contours in x-y planes at locations along z.

Figure 45. Instantaneous streamwise velocity contours in planes at y = 0, −5 and 10.

The turbulent production begins in the first dimple and occurs on the trailing edge where

the instabilities in the boundary layer begin, and there is interaction of the turbulent wakes

downstream of the dimple rows at about z/D = 2 downstream of the second dimple row.
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This is in good agreement with what would be expected based on the velocity contours

where the instabilities occur off the trailing edge and begin to mix downstream at z/D = 2

from the leading edge of the second dimple. The turbulent production is driven by the inter-

action of the boundary layer with the dimple. Since the momentum in the reattachment and

detachment off the trailing edge is changing drastically turbulent production is expected to

be high. The turbulence due to the first dimple in the wake is apparent as a cone downstream

of the dimple but do not enter the second dimple row directly. As would be expected the

turbulent production in the second dimple is larger and over a larger region inside of the

dimple. The turbulence in the wakes converge downstream. Since the turbulence intensities

in the wakes are different complete mixing cannot occur immediately.

Figure 46. Isosurface of Q = 0.3 colored with streamwise velocity.

Figure 47. Side-view of isosurface of Q = 0.3 colored with streamwise velocity.

The vorticity contours in Figure 48 serve to visualize the structures in the boundary

layer in a way that cannot be seen by the visualization by Q. Vorticity in the first dimple

confirm that the instabilities begin towards the trailing edge where instabilities begin. The

vorticity in the wake of the first dimple row shows how the boundary layer is perturbed

slightly and turbulence develops in the wake as those initial instabilities grow in the wake.
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Figure 48. Vorticity magnitude contours in planes at y = 0, −5 and 10.

In contrast, the turbulence downstream of the second dimple develops much slower, because

the level of perturbation from the second dimple is lower than in the first dimple. This is

a direct result of the thickness of the boundary layer at the location of the second dimple

being thick enough to separate over nearly the entire dimple, as opposed to the thickness

at the first dimple which cause the separation to be less. Considering these results it seems

that there is a bit of a balance to consider for the depth of the dimple against the thickness

of the boundary layer. If the boundary layer is too short, i.e. Rez is small, compared to the

depth of the dimple then the boundary layer will remain attached through the dimple. With

a boundary layer that is too thick, even at higher Rez the perturbation in the boundary layer

will be too small to cause the flow to transition to turbulence at the same rate as in the first

dimple.

Vorticity isosurfaces of level 5 with streamwise velocity contours to show the wake

region in Figure 49 show again how the transition is similar, yet develops at a different rate

downstream of each of the dimples. Apparent with this level of vorticity visualized is the

longitudinal structures in the boundary layer near the wall and the smaller structures that

are ejected out of the boundary layer as the energy in the boundary layer increases toward

the boundary layer edge. On the trailing edge of the dimple the vorticity also highlights a

structure that is indicative of how the fluid is moving out of the surface is causing the flow to
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turn. This effect also will have a stronger impact on the flow in a regime where the boundary

is thinner. The geometry of the dimple allows for such a condition. The reattachment of

the flow just before the end of the dimple causes higher velocity flow to be nearer to the

wall which acts as a very thin boundary layer that will be disturbed. The disturbance in the

flow is amplified by the momentum of the fluid. The result is shown in the rate turbulent

transition in the first wake compared to the transition in the second wake.

Figure 49. Vorticity magnitude isosurface of 5, with streamwise velocity color.
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To visualize coherent structures in the turbulence the level of turbulence used in the iso-

surface is increased to 10 in Figure 50. The streamwise vortical structures become apparent

at this level about z/D = 0.5 downstream of the first dimple in the wake. This confirms the

notion that the transition to turbulence is delayed as a result of the perturbation in the sec-

ond dimple. By contrast, the turbulent intensity created by the first dimple is much higher

as the structures in the wake do not have a delay in the same manner.

Figure 50. Vorticity magnitude isosurface of 10, with streamwise velocity color.

The same vortical structures are seen in Figures 52 and 53 where the wakes have con-

verged. The coherent structure of the longitudinal vortices is characteristic of the structures

observed by [17] in the boundary layer closest to the wall.

60



Figure 51. Streamwise vorticity contours at x-y planes at planes along the z-axis.

Figure 52. Vorticity magnitude isosurface of 5, with streamwise velocity color in the wake
region to illustrate longitudinal vortices.
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Figure 53. Vorticity magnitude isosurface of 10, with streamwise velocity color in the
wake region to illustrate longitudinal vortices.
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C. Simulation of Three Dimple Rows

The results from the two dimple row simulation drives the motivation to investigate into

the cumulative effect of dimples downstream. Such a configuration is common in practice

e.g. a golf ball, where there are more than one or two rows of dimples. The transition to

turbulence in the boundary layer due to the first rows of dimples will alter how the bound-

ary layer/dimple interaction in downstream dimples. Momentum near the wall is higher

causing dimples downstream to have a more profound effect on the turbulent production.

This turbulent production is higher where the velocity near the wall has larger momentum

changes by the dimples.

There was some hint that the rows of dimples are influencing each other, but since there

was not direct influence in the wake the cumulative effect cannot be seen unless placed di-

rectly in the wake of the first dimple. The hypothesis is that the third row will have received

more influence in the transition mechanisms, and the transition will be much different, but

how it will be different is intriguing. The second row of dimples actually showed the tran-

sition to not occur as fast in the wake, and there was two distinct wake patterns that did

not converge even after z/D = 3.5 downstream. The interaction between the first row on

the second row is indirect in terms of the turbulent energy, but addition of a third row in

line with the first row will mean that the turbulent transition will have begun to occur di-

rectly upstream of the dimple. The fluid entering the third dimple will have a transitioning

boundary layer, which is considerably thinner than a laminar boundary layer and will have

turbulent energy entering the dimple. The third dimple will then enhance the transition.

As compared to two rows of dimples we can see that the velocity in the boundary layer

in the wake z/D = 2.5 downstream of the last dimple in Figure 54 the velocity in the

intermediate region is much different. In the viscous sublayer however the flow is very

much correlated to expected values. The boundary layer shape is altered considerably by

the addition of another row of dimples. The velocity in the viscous sublayer collapses to

w+ = x+, but the velocity in the wake region does not fit the same trend for the plots

with spanwise averaged statistics. This implies that velocity As well the variation in the

span is much less. Figures 55 through 57 are much closer together than for the two row
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configuration. The addition of the third row forces additional turbulent production and

mixing, which in turn causes the velocity field to reflect more homogeneous characteristics

than the wake in the two row configuration.

The span-averaged profile from the three-row simulation shows that the flow has the

characteristics of a turbulent boundary layer compared to the simulation of two dimple rows.

The intermediate region still does show a difference from flat plate and pipe flow solutions,

however. this may be due to the nature in how the flow transitions. Since the dimples force

perturbations to occur in locations further away from the wall than the viscous sublayer the

velocity in this region may be slower than for a flow with a much more subtle transition

mechanism.

Figure 54. Mean velocity, w+ against x+. − at z = 60, 3-row simulation; −−, 2-row
simulation; �, [1];4, [2].

At the center of the span of the domain (y = 0), there is not much difference in the

boundary layer veloctiy from the two-row simulation to the three-row simulation. The

difference is mainly in the intermediate layer where the velocity shows a more developed

turbulent boundary layer shape. The slight deviation from the reference in the intermediate
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seen in the two-row simulation is because the turbulence has not fully developed. The wake

of the second dimple shows the same behavior. This means that the boundary layer in the

second wake is not any more developed in the three-row simulation, because there is limited

influence of the third dimple on the second wake.

Figure 55. Mean velocity, w+ vs. x+ for three dimple rows at y = 0 and z = 60. −, 3-row
simulation; −−, 2-row simulation; �, [1];4, [2].
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The difference in the boundary layer at z = 60 between the center of the dimples

(y = 5) for simulation with two rows compared to the boundary layer at the same location

for the simulation with three dimples is great. The boundary layer seen in Figure 56 for

the three-row simulation is clearly a turbulent boundary layer, whereas the boundary layer

for two rows is beginning to transition only. The boundary layer at y = 5 is also showing

more development than the boundary layer at y = 10. This shows how the wake of the third

dimple is much wider than the wake of either the first or second dimples due to the level

of turbulent production in the third row compared to the other two. How this production

increases will become clear by examining the RMS velocity.

Figure 56. Mean velocity, w+ vs. x+ for three dimple rows at y = 5 and z = 60. −, 3-row
simulation; −−, 2-row simulation; �, [1];4, [2].
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Figure 57. Mean velocity, w+ vs. x+ for three dimple rows at y = 10 and z = 60. −,
3-row simulation; −−, 2-row simulation; �, [1];4, [2].
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RMS velocity contours at x-y planes along the z axis in Figure 58 show that the tur-

bulent production in the third row dominates the center of the domain. The transition of the

boundary layer due to the first dimple rows cause the flow to carry more momentum closer

to the wall in the third row. The energy peaks off the trailing edge where the boundary

layer separates and there is a localized region of highly fluctuating flow. The diminished

boundary layer is caused by the first and second dimple rows allow the third row of dimples

to cause higher fluctuations near the wall. The turbulent wake of the third dimple is also

pronounced. At the edge of the domain the wake of the third dimple has almost forced

transition over the entire domain. As well, the wake of the second dimple is still showing

immature compared to the wake from the third dimple. The influence of the transitioning

boundary layer incoming to the third row is clear in how the wake develops.

Figure 58. Contours of streamwise RMS velocity in x-y planes along the z-axis.
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The incoming turbulent energy present in the boundary layer directly effects the strength

of the turbulence caused by the dimple. The turbulent production in the boundary layer is

amplified in the third dimple row from the wake of the first dimple. It is because of this that

the third dimple row causes more turbulent mixing than either of the first or second dimples.

Though the transition caused by the third dimple is high, it is unclear by the results in the

present thesis if a dimple downstream of the third will cause a faster transition, however the

production of turbulence of a downstream turbulence will be high, because the dimple will

again perturb the boundary layer. Even in a turbulent boundary layer a small perturbation,

such as a change in surface roughness can cause another inner layer to exist inside of the

original boundary layer [32]. Additional dimples downstream might also have this effect as

the dimple can be described as an effective roughness in this case, because the perturbation

into the boundary layer is exactly at the wall and will propagate through the boundary layer.

Additionally, the RMS velocity at a z-location 2D downstream of the last dimple

shows that the flow has more kinetic energy due to the fluctuations described by the RMS

velocity shown in Figure 59. The energy in the wake of the three-row simulation do not die

out in the intermediate and wake regions like that for the two-row simulation. This gives

some insight into the transition mechanisms due to the dimples. Since the turbulent energy

does not taper off higher in the boundary layer it is apparent that the effect of the dimple

perturbing the flow is felt in the fluid far downstream of the dimple. Not only does the

streamwise RMS velocity remain higher in the intermediate layer, but also the spanwise

and wall-normal components experience much greater turbulent energy levels. Unlike the

turbulent boundary layers of [1] or [2] the boundary layer in the present thesis shows a

much greater energy level further downstream where the flow has completely transitioned

to turbulence in the wake behind the third dimple. This result is also shared with the two-

row simulation. Since the turbulence is nearly isotropic at z = 60 the plots in Figures 60,

61, and 62 show similar level and characteristics; particularly in the intermediate region.
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Figure 59. RMS velocity at z/D = 2 downstream of the trailing edge of the last dimple
for −, 3 row; −−, 2 row simulation,�, [1];4, [2].

Figure 60. RMS velocity behind the first and third rows of dimple at z/D = 2.5
downstream of the trailing edge of the last dimple for −, 3 row; −−, 2 row simulation,�,

[1];4, [2].
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Figure 61. RMS velocity between the dimple rows at z/D = 2.5 downstream of the
trailing edge of the last dimple for −, 3 row; −−, 2 row simulation,�, [1];4, [2].

Figure 62. RMS velocity at the edge of the domain at z/D = 2.5 downstream of the
trailing edge of the last dimple for −, 3 row; −−, 2 row simulation,�, [1];4, [2].
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The boundary layer growth is much different in the presence of the third dimple. The

plot of the boundary layer is shown for the three row simulation and the two row simulation

in Figure 63. Again, the boundary layer growth as an ensemble averaged statistic is quite

poor; instead breaking the growth at different characteristic locations across the span makes

more sense, and is valuable in understanding how the boundary layer varies across the

span in regions where the flow is more homogeneous in general. The three-row simulation

correlates well with the growth to the middle of the first dimple, but begins to diverge from

this solution just after the two-row configuration. The growth of θ follows the transition

to turbulence as seen before, but has a bump as a result of the third dimple. After the

third dimple θ increases at the same rate as the two-row configuration. The displacement

thickness has a completely different trend as a result of the addition of a third dimple.

After the third dimple the displacement thickness actually increases much sooner in contrast

to the two row configuration where the δ∗ decreases in the wake region until about 2D

downstream where δ∗ begins to increase when the flow is mixed enough in the wake. The

addition of the third row increases the turbulent production to force the turbulent transition

to occur further upstream.
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Figure 63. Displacement thickness, δ∗, momentum thickness, θ, and shape factor, H . −,
3-row simulation; −−, 2-row simulation; δ∗ and θ on left y-axis and H averaged in the

span.

At the center of the span the shape factor, H , shows that the addition of the third row of

dimples does not change the location where the flow appears fully transition. The momen-

tum and the displacement thicknesses are larger with the addition of the third row. In the

gap between the first and the third dimples the boundary layer statistics are much different

as well. The boundary layer fluctuates with both δ∗ and θ indicating that the third dimple

is profoundly affecting the transition in the wake of the first dimple. Consistent with the

results from the two-row simulation, the effect of a dimple downstream on the boundary

layer causes the boundary layer to become thinner.

The boundary layer between the dimples at y = 5 shows the transition to turbulence

occurs compared to the two-row simulation where it does not. Though the effects are similar

from the first two dimples, the third dimple is causing the transition to occur across the span.

Most interesting of this result is the effect the third dimple has on the displacement thickness

shows how the boundary transitions at this location is similar to the transition at the center

of the span. The boundary does not experience the acceleration at center of the dimples, but
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Figure 64. Displacement thickness, δ∗, momentum thickness, θ, and shape factor, H . −,
3-row simulation; −−, 2-row simulation; δ∗ and θ on left y-axis and H at y = 0.

still does experience the upward “bump” in δ∗. The transition in the location in the span

does also occur at a much quicker rate than seen behind the first dimple in the two-row

simulation or behind the second in either simulation. Transition occurs at about the same

rate between the dimples as it does in the third wake.
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Figure 65. Displacement thickness, δ∗, momentum thickness, θ, and shape factor, H . −,
3-row simulation; −−, 2-row simulation; δ∗ and θ on left y-axis and H at y = 5.

Figure 66. Displacement thickness, δ∗, momentum thickness, θ, and shape factor, H . −,
3-row simulation; −−, 2-row simulation; δ∗ and θ on left y-axis and H at y = 10.
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Figure 67. Wall shear stress, τW along the flat plate for the three-row simulation.

The wall shear stress is employed to understand the interaction of the boundary layer

with the wall upstream and downstream of the dimples. The shear stress (shown in Figure

67) behind the first dimple in the wake region shows the same upward trend, but because

there is a third row 1D behind this dimple the shear stress looks characteristically different

immediately leading to the third dimple row. The effect of the third dimple on the flow

can be seen as it squeezes the boundary layer down in the region before it causing the

shear stress to spike very high compared to other locations in the boundary. In addition

to the differences in the middle of the span due to the third dimple, it is clear that the

third dimple is affecting the region behind the second dimple. The shear stress appears to

level out at around z/D = 3.5 and then rise again to be equal to the rest of the domain at

z/D =4.6 to 5 where the wakes converge. As well, instead of having two distinct wakes

with a region of laminar flow as in the simulation with two dimple rows the entire span

becomes turbulent with similar boundary layer characteristics across the span. The result
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shown in Figure 67 show that the third row is dominating the flow and forces the entire

domain to transition to turbulence much quicker than with two dimple rows. There may

be a point downstream of the domain in the two dimple simulation where this occurs, but

it is clear that that the third dimple row forces the transition to turbulence to occur very

quickly downstream (approximately 1.5D). The boundary layer does not separate, but

there are regions of low shear stresses located between the dimples where the dimple edge,

and just downstream of the dimples. The stretching of the boundary layer as a result of the

dimples is seen most dramatically immediately behind the third dimple, but can also be seen

immediately behind the second dimple. The flow between the dimples at about the halfway

downstream of the third dimple shows complete detachment of the flow. In the two row

simulation the shear stress there was at the lowest point due to the dimples upstream, but

here the third dimple dominates the boundary layer. This separation causes the flow between

the dimples to transition faster than the transition behind the first dimple, but slower than

the third. This is an important result to understanding how the cumulation of the turbulence

causes rapid transition to turbulence due to the addition of dimples downstream.

The spanwise variation at the trailing edge of the last row of dimples is shown in Figure

69 and clearly shows a variation due to the dimples. In contrast to the 2-row simulation, the

velocity far downstream of the dimples appears to be generally the same as shown in Figure

70 for z = 60. The profiles do not collapse as would be expected for a nominal turbulent

boundary layer. Not only does the transition occur firther upstream, but the flow across the

span of the domain becomes turbulent as is illustrated by the plots of the xy plane at z = 60

in Figure 70. As discussed previously, this is a result of the wakes not converging from the

third dimple and the second dimple. The convergence of the wakes would be accelerated

with the addition of a fourth dimple row behind the second, but the dimples may be spaced

too far apart to directly impact the neighboring dimple columns. The contours in Figure

69 also show that immediately downstream of the dimple there is high velocity fluid very

near the wall. The higher energy fluid does dissipate, but does create an effect of a bypass

transition effect. The higher turbulent energized fluid in this region has the characteristic

“top-down” transition mechanism seen in [24].
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Figure 68. Wall shear stress, τW for the three-row simulation shows the same acceleration
leading to the firs and second dimples.

Contours of streamwise velocity in Figure 69 show the influence of the dimples on the

velocity, and as the flow moves downstream that influence is diminished significantly by

the increase in turbulent production because of the addition of the third row. The plot of the

velocity contours in a spanwise point of view does show some influence of the dimples still,

but is reduced compared to the 2-row configuration. Addition of the third row of dimples

causes more turbulent production which forces the fluid to become fully turbulent much

further upstream.

Figure 69. Streamwise velocity contours in an x-y plane at z = 35.
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Figure 70. Streamwise velocity contours in an x-y plane at z = 60.

By adding the third dimple the boundary layer is forced to transition much further up-

stream, because the wakes due to the upstream dimples is forced to interact by disturbing

the boundary layer already in transition. For the dimples the transitioning boundary layer

is favorable to enhance the turbulent production, because there is higher velocity fluid to

perturb closer to the wall. The result in the variation of the velocity at z = 35 shown in

Figure 71 is biased by the dimples upstream, but the wake is not localized and is beginning

to deteriorate into one larger wake of the entire array. Much further downstream the plot

at z = 60 in Figure 72 shows turbulence that is almost completely isotropic in y. Addition

of the third dimple induced the turbulence further upstream, which in turn has allowed the

fully turbulent wake of the entire array to occur within the computational window. The cu-

mulation of turbulence has a profound effect on the effectiveness in the level of the influence

of the dimples on the boundary layer.

Figure 71. Streamwise RMS velocity in an x-y plane at z = 35.

Separation inside the first and second dimples appears to be unaffected by the presence

of the third row of dimples. Reattachment of the boundary layer occurs in the upstream

dimples on the trailing edge of the dimple in a the same way that occurs in the two row

configuration. The flow is almost completely separated over the dimple, but the minimal

direct interaction of the flow reattaching inside of the dimple leads to perturbation, which
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Figure 72. Streamwise RMS velocity in an x-y plane at z = 60.

in turn causes the flow to transition to turbulence downstream of the dimple as the two

row simulation. It is important that the flow is already perturbed in the wake of the first

dimple to increase the effect that the third dimple has on the flow. The separation in the

second dimple is also larger in the second dimple than the first, and the reattachment point

does occur further along in the dimple. This results again in a smaller perturbation of

the boundary layer, and slower transition. For the present thesis, the boundary layer was

chosen at the inlet to be the same length as the dimple depth. For a boundary layer that is

thicker than that the transition seen in the dimples will be retarded. The transition in the

second dimple is already much slower than the first dimple. A laminar boundary layer that

is thinner will also interact with the dimple to cause transition, but the mechanisms may be

completely different. With higher momentum fluid closer to the boundary layer, the flow

detachment and reattachment can have a greater perturbation due to the dimple. Also of

note for the present thesis, the geometry of the dimple interface with the flat plate has a

sharp corner, whereas the dimples used in applications are typically manufactured to have

a beveled edge. This may have implications on how the flow interacts with the edges of

the dimples, but even with this in mind, the characteristics of how the boundary reattaches

inside of the dimple and the boundary layer stretch at the trailing edge will remain the same

though the intensity of this stretch may be reduced with a smoother transition of teh dimple

to the flat plate.

The flow inside of the third dimple is informative of the overall cumulative effect of

the dimples. The time averaged velocity shown in Figure 75 shows that the separation in

the third dimple is almost non-existent in sharp contrast to the first and second dimple rows

where most of the flow inside of the dimples is separated. The small separation region is
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Figure 73. Streamwise time-averaged velocity contours with zero velocity contour line in
the first dimple.

Figure 74. Streamwise time-averaged velocity contours with zero velocity contour line in
the second dimple.

highlighted with a zero-velocity contour line as well in Figure 75. The separation is very

small at the center of the dimple, but the perturbation on the boundary layer is coming

mostly at the edge of the dimple. As the fluid is turned away from the wall at the trailing

edge of the dimple the turbulence is forced away from the wall, and the boundary begins

again at the edge of the dimple on the flat part of the wall. This insight is key into under-
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standing how the boundary layer remains attached to the surface further downstream. Since

the boundary is forced to reform it is inherently shallow, which means that the wall shear

stress falls immediately after the dimple, but remains high and does not increase and sepa-

rate as the wall shear stress drops to nil. The contours in Figure 76 show how the separation

at the center of the dimple is minimal, as well as how the boundary layer stretches as the

wall moves away from the flow. The boundary layer is very thin at the trailing edge of the

dimple as the flow moves out of the dimple and back over the flat plate. The separation zone

here will be minimized by a bevel on the edge of the dimple, but the sudden perturbation on

the boundary layer will still occur as the wall inflects from a convex to concave shape into

the flow.

Since the flow does not separate in the same manner as the first dimple the turbulent

production is also much different. θ at the inlet of the third dimple is significantly higher

and already beginning to transition to turbulence as a result of the first and second rows

of dimples. The result seen in the third row is that the turbulent production occurs over

the entire dimple and not as a perturbation due to the trailing edge. The color contours of

time averaged streamwise velocity at the trailing edge of the third dimple in Figure 77. The

small area of low velocity fluid is a region where the wall shear stress nominally drops just

as the flow turns to the flat surface out of the dimple. The boundary layer beginning again

is seen clearly here in this figure. Though not explored in the present thesis the proximity

of dimples is of interest on the turbulent production.
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Figure 75. Streamwise time-averaged velocity contours with zero velocity contour line in
the third dimple.

Figure 76. Streamwise time-averaged velocity contours with zero velocity contour line at
the leading edge of the third dimple.

For the three-row simulation the flow paths inside of the dimple are the same as in the

two-row simulation for the first and second dimples. The streamtraces in Figure 78 show

how the flow enters the dimple and there are two large recirculation regions mirrored in the

dimple. At the center of the leading edge the flow moves over the leading edge, but this

is not part of the recirculation region. The recirculation regions are split at the center of

the dimple in the span. The shape is not circular, but has an oblong shape, because of the
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Figure 77. Streamwise time-averaged velocity contours with zero velocity contour line at
the trailing edge of the third dimple.

reattachment on the trailing edge of the dimple. In three dimensions the stream traces show

that deeper inside of the dimple the recirculation is further down in the dimple and as the

further away from the wall of the dimple the recirculation is shorter as the flow reattaches

inside of the dimple. The same characterisic flow is seen inside of the second dimple in

Figure 79, but the recirculation is much larger, which is indicative of the flow separating

for more of the dimple. This same structures and commonality is seen in the two-row

simulation.

The streamtraces of the time averaged solution shown in Figure 80 still contain two

main recirculation structures, but the reduction in the amount of time a fluid particle will

remain inside of the dimple is significantly reduced, due to the amount of separation in the

third dimple and the turbulence within the boundary layer already. This is indicated by the

number of recirculation loops inside of the dimple, and the RMS velocity plot. Since the

mean velocity has more influence inside of the dimple due to diminished separation flow

there is essentially no prolonged recirculation though the dimple does cause the boundary

layer to rotate over the streamwise dimension. Also not seen in the third dimple row is the

turbulent production localized on the back wall of the dimple and the concentration of the

flow to the center that occurs in the first and second rows. The flow exiting the dimple has
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Figure 78. Streamtraces in the time averaged velocity field inside of in the first dimple.

Figure 79. Streamtraces in the time averaged velocity field inside of in the second dimple.

a very strong spanwise component away from the center of the dimple. This will cause the

flow over the entire span to transition much faster as the turbulent fluctuations are distributed

through the span. The result is seen in the quickly transitioning flow between the dimples

that was seen in the plots of the boundary layer statistics, and the RMS velocity contour

planes along the length of the plate.
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Figure 80. Streamtraces in the time averaged velocity field inside of the third dimple.
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The plot of instantaneous streamwise velocity, w, contours in Figure 81 show the be-

ginnings of fluctuations in the velocity field above the first dimple near the trailing edge

propagate downstream and result in the flow transitioning to turbulence. The contours seen

here highlight that the flow inside of the third row is turbulent and as a result the turbulent

transition is forced upstream of the full transition by the second row of dimples. Between

the dimples

Figure 81. Contours of instananeous streamwise velocity at three planes in the span at
y = −5, 0 and 10 from top to bottom, respectively.

The structures at the center of the span begin as fluctuations at the end of the first dimple,

which perturb the boundary layer enough to initiate the transition just downstream of the

dimple seen in Figure 82. The transition in the wake of the first dimple feeds into the the

third dimple where the flow is transitioning to turbulence. In the wake of the first dimple just

before the third dimple there are a number of very small fluctuations. These fluctuations

are amplified by the third dimple as the flow passes over. In the two-row simulation the

transition occurs behind the first dimple as a result of only the first dimple, but the transition

behind the third dimple forced the turbulent transition to occur further upstream. These

fluctuations grow into the turbulence in the wake of the dimples in the center of the span

(y = 0). The contours in Figure 83 show the transition show smaller scales of turbulence at

1D downstream of the dimple. The plot here and for the two-row simulation in Figure 43
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show the transition occurs in the same manner for both simulations. The influence of the

third dimple into the wake of the second dimple does not extend directly behind the second

dimple.

Figure 82. Contours of instananeous streamwise velocity in an x-y plane at z = 0.

Figure 83. Contours of instananeous streamwise velocity in an x-y plane at z = 10.

The contours of velocity at x-y planes along the z-direction show how the turbulence

propagates through the span. Behind the first dimple the flow remains quiescent except in

the concentrated region in the wake of the first dimple. The contours here also highlight

the recirculation regions. The separation is seen over the first and second dimples, and the

two small regions on either side of the center of the third dimple. Also apparent in the

third dimple is how the separation is localized at the upstream half of the dimple and by

the trailing edge the boundary has reattached and is turbulent there. As the boundary layer

devlops there are more large structures that exist as turbulent eddies. These structures are

not existent near the dimples because of the level of perturbation just behind the dimple

causing smaller structures to exist and diminish larger eddies until the flow becomes turbu-

lent and regular structures are able to develop and form eddies that eject out of the boundary

layer. These structures can be seen by visualizing the vortical structures. The turbulence

propagates from the wake of the third dimple through most of the span. The flow structures

in the wake of the third dimple show large eddies that exist in the boundary layer, and these

structures homogenize through the span as the flow develops to a turbulent boundary layer.
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Figure 84. Contours of instananeous streamwise velocity in an x-y planes along the z-axis.

The isosurfaces of the Q-criterion shown in Figures 85 and 86 visualize the turbulent

structures present in the flow field. The turbulence is concentrated in the wakes of the

dimples as in the two-row simulation, but the transition spreads much faster across the span

and is more intense particularly in the third dimple. The wake from the first dimple is also

much wider than the second dimple due to the increased thickness of the boundary layer

at the second dimple. The wake of the first dimple is also being affected by the presence

of the third dimple downstream. As this turbulence is brought into the third dimple there

is a significant increase in the turbulent production in the boundary. The flow inside of the

third row is hardly separated, because the boundary layer has already begun transitioning

upstream of the dimple. The turbulent production in the third dimple is forced outward in

the span away from the dimple. This causes the turbulence to propagate through the span

much further upstream than the two-row simulation. The wakes of all the dimples are mixed

just downstream of the third dimple, and further upstream of the where the wakes converge

in the two-row configuration. The flow on the plate exhibits structures that are indicative of

turbulent boundary layer flows in both the two-row and three-row configuration [17].
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Figure 85. Q isosurface of 0.3 with color contours of streamwise velocity.

Figure 86. Q isosurface of 0.3 with color contours of streamwise velocity.

Looking closely there are hairpin vortical structures that are visualized by Q = 0.3 in

Figure 85. These structures exist also in the turbulent boundary layer in the two-row simula-

tion. Further examination shows the structure occurring in the region where the two wakes

Figure 87. Hairpin vortices present in the turbulent boundary layer highlighted by using Q
isosurface of 0.3.
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meet between the second and third dimple rows. Plots in Figure 87 show the hairpin vortical

structures occurring downstream of the intersection of the wakes from the second and third

dimple rows. These structures exist in turbulent boundary layers and are a characteristic

of how the turbulence interacts with the wall. As long streamwise vortical structures form

pairs with voritcal structures of opposite sign, the structures turn away from the wall and

form structures of this shape. The result on the velocity field from this shape causes lower

velocity fluid near the wall to be ejected away from the wall. The growth of these structures

is regular in the presence of a stable turbulent boundary layer. In the present thesis, these

structures occur in the transition between laminar and turbulent boundary layers due to the

nature of the transition imposed by the dimples. The dimples cause a high level of pertur-

bation that is inducing high energy streamwise vorticial structures in the wall immediately

downstream of the boundary. Also, the transition caused by the dimples is great enough to

cause the transition to occur in the immediate wake of the dimples. In contrast the typical

bypass transition studied implores the turbulence coming from outside of the boundary in

the free stream, whereas in the present thesis the turbulence is coming from the interaction

of the boundary layer and the wall. The presence of the turbulent energy in the boundary

layer forces the transition to occur much faster, because the boundary itself is already con-

tains the turbulent energy, whereas with free stream turbulence above the laminar boundary

layer must disturb the boundary interaction with the wall for the transition to occur.

The streamwise vorticity contours in Figure 89 are plotted in x-y planes at z-locations

along the length of the plate. The vorticity visualized in this plot again shows how the tur-

bulence propagates through the wake of the dimples. The turbulence was seen to propagate

rather quickly along the span the intense streamwise vorticity is moving through the span

in the wake region of the dimples. The transition to turbulence can be identified across

the span at different locations along z. In the fully turbulent flow the streamwise vortical

structures will be present near the wall as seen in the wake, including between the dimples

at approximately y = 5 downstream where the influence of the third dimple is causing the

flow to transition. In addition the vorticity in the near wall region appears to be in +/- pairs

which is indicative of longitudinal vorticities manifest for turbulence over flat plates [17].
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Figure 88. Vorticity magnitude at x-z planes through y = −5, 0, and 10. Contour level is
from 0 to 10.

The three x-z planes in Figure 88 shows the how the vorticity develops in the center

of the span, at the edge of the domain and between the dimple rows. The initiate of the

turbulence at the edge of the first dimple shows small disturbances at regular intervals within

the boundary layer. These short wavelength disturbances are a result of the structure of

the flow within the dimple, and cause the boundary layer to transition immediately in the

wake of the first dimple. In contrast, the second dimple shows a much different initiation

mechanism because of the nature of the disturbances. The influence of the second dimple

on the flow is by a long wavelength perturbation of the boundary layer. This disturbance

results in a transition of the boundary layer that takes longer to develop than in the wake of

the first dimple, because of the longer wavelength disturbance. The intensity of the energy

by the second dimple is therefore less than that in the first dimple. Of course, the influence

of the third dimple

The iso-surfaces of vorticity magnitude are used as another method of visualizing the

turbulent transition in the flow field. Smaller structures seen in the flow above the third dim-

ple is indicative of how the dimple in the presence of a turbulent boundary layer is forcing

smaller high energy turbulence into the boundary layer. These are the vortical structures

that cause the transition in the immediate wake. In Figure 90 the shape of the wake of the

third dimple shows how the spanwise component out of the dimple influences the transition
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Figure 89. Streamwise vorticity contours at x-y planes along the z-axis.

of the entire span to a turbulent boundary layer. In Figure 91 the higher value of the vorticity

shows the large longitudinal structures in the wakes. The structures, however, break over

the third dimple, because the boundary layer over the dimple are broken apart. As the wakes

converge the longitudinal structures in the near wall region start to develop toward the edge

of the domain. As the wakes converge there is a quick convergence that happens as the

influence causes the transition to occur as the vorticity on the edge of the wake influences

the boundary layer to transition as the wake grows.

Smaller turbulent structures inside of the third dimple are seen in Figure 92 by visualiza-

tion of the vorticity as before. The structures inside of the dimple are small and incoherent

as the dimple is causing turbulent energy to break the structures seen in the wake of the

first dimple. In turn this causes more of the boundary layer in the span to transition to tur-

bulence in the wake of the third dimple. Visualization of the higher order vorticity shows

how the fluid is turning on the edge of the dimple-plate interface as well as the longitudinal

structures at the surface of the wall. These structures are indicative of the high level of

vorticity on the wall. It is this level of vorticity, and the difference with the neighboring
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Figure 90. Vorticity magnitude isosurface of 5, with streamwise velocity color.

Figure 91. Vorticity magnitude isosurface of 10, with streamwise velocity color.

structures that cause the ejection of fluid away from the wall. As the transition seen in the

present thesis highlights the effect of a bottom-up turbulent transition it is important to note

how strong and how quick this influence is on the transition on the entire laminar flow into

transition. By causing the transition at predictable localized regions the need to control the

flow can be satisfied since the boundary layer can be predictable in the interaction with the

surface.
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Figure 92. Vorticity magnitude isosurface of 5, with streamwise velocity color in the wake
region illustrates turbulent structures in the third dimple vortices.

Figure 93. Vorticity magnitude isosurface of 10, with streamwise velocity color in the
wake region to illustrate the surfaces on the dimple-plate interface.
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VII. GRID CONVERGENCE STUDY

To verify the convergence of the grid two studies were performed to show the independence

of the solution from the computational grid and interpolation of the boundary from the

surface mesh. The first examination was of the influence of the surface mesh on the quality

of the solution. The second was to study the independence of the solution from the fluid

grid. Investigation of both w+ and RMS velocity at a location downstream of the dimples.

A. Independence from the Surface Mesh

The first concern for the quality of the solution is the influence of the surface mesh on the

solution. Since the boundary is interpolated onto the solution grid the approximation of the

surface mesh as a representation of the geometry can cause errors if not refined enough. In

order to evaluate the goodness of this approximation the surface mesh is refined to half the

spacing between elements. Simulations with the same fluid grid used for the present thesis

were computed with the finer surface mesh, which showed that the solution is independent

of the surface mesh as can be seen in the plots of w+ and RMS velocities in Figures 94

and 95, respectively. The solution downstream is unaffected by the size of the elements

used. In general, the surface triangles need to be refined enough to represent the immersed

boundary, but the surface used for the first simulations is accurate enough to capture the

most important flow features in the present thesis. These results show that the solution is

independent of the surface mesh.

B. Grid Refinement

To verify the independence of the solution from the Eulerian grid, the mesh is refined to

determine if decreasing the spacing between points affects the accuracy of the solution. In

most cases this is a straightforward task in the CFD field, but due to the complexity of

the simulations in the present thesis the convergence is studied in a slightly different way.

Using the same surface mesh, but using a refined grid is simple enough, but the computation

time required to perform the calculation is astronomical compared to the solution already

presented in this thesis. The wall-normal and spanwise grids must be refined globally,

but it is impractical to refine the points in the streamwise direction globally. As such it
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Figure 94. Mean velocity, w+ vs. x+ for three dimple rows. −, coarse surface mesh; −−,
fine surface mesh; �, [1]; ∆, [2]

is required to use a test domain that is 1unit long in the streamwise, z, direction in the

far wake of the solution to determine if the solution is independent. The spacing in the

wall-normal and streamwise dimensions were of particular concern in the convergence of

the fluid grid so the independence focused primarily on those two dimensions where the

spacing was doubled in the near wall region for the wall normal dimension and doubled

in the streamwise dimension for the z = 59 location. The domain in this location for the

solution in the present thesis is 355×322×13 and for the convergence test is 422×386×31.

In the interest of saving computational resources the spanwise dimension was not refined

2× as the other two dimensions were. This was based off of the spacing in the spanwise

dimension where the maximum ∆y+ value is 11.45, which is on the same spacing range as

the solutions of the references in Table 1 of values ranging from 5 to 15.
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Figure 95. RMS velocity for three dimple rows. −, coarse surface mesh; −−, fine surface
mesh; �, [2];4,[1].

For DNS, grid refinement is straightforward in terms of addition of points in the bound-

ary, but the effective use of the computational resources is always a top priority. The IB

method in the present thesis also makes changing the grid simple as the grid can be altered

without having to smooth the grid around a curved geometry as would be require without

the use of an IB. The plots of w+ and RMS velocities in figures 96 and 97, respectively,

show that there is a large difference in the resolution of the turbulence between grids 2 and

3, and a smaller yet still significant difference between grid 3 and the refined grid. The

domain in the spanwise dimension was reduced by half from grid 1 to grid 2 in the interest

on concentrating computational resources on a smaller part of the domain. Though the grid

influence is significant from grid 2 to grid 3 the results do show that there is no influence

from the periodic condition. Determination of how well the grid is resolving turbulence

must now rely solely on the grid spacing in wall units. Based upon values from literature
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the grids used for the simulations are just sufficient enough. The grid spacing in the stream-

wise direction for the three row simulation is on the higher side of the range used in other

DNS work, but should be in the zone for understanding the basic flow properties inherent

with flow over the dimples. The values for the grid spacing near the wall is tabulated once

again in Table3.
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The results presented in the present thesis were computed on grid 3. The grid was

chosen such that the grid would not influence the solution. This is done by having enough

points to resolve the viscous sublayer, which is approximately the nearest wall region where

x+ < 5 and having a small enough grid spacing to resolve all scales of turbulence to

not cause aliasing of the turbulence. The plot in Figure 96 show that the velocity from

the solution over grid 3 is independent of the grid, especially compared to grid 2. The

plots in Figures 97, 98, and 99 show wRMS , uRMS , and vRMS , respectively, to show how

independent the solution is from the grid. The impact of the second grid to the third is quite

significant, and the influence of the grid is still seen from the third grid. This indicates that

the turbulent intensity in the solutions presented in the present thesis is being over-predicted.

Since the solution is still showing influence from the grid, the simulation should be run with

a more refined grid that can show independence in order to capture the turbulence properly

for DNS.

Figure 96. Mean velocity, w+ vs. x for three dimple rows.
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Figure 97. wRMS velocity for three dimple rows.

Figure 98. uRMS velocity for three dimple rows.
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Figure 99. vRMS velocity for three dimple rows.

Table 3. Grid refinement with wall unit values for

3 dimple row simulations used for grid refinement

Grid 1* 2 3

Min ∆x+ for 3 rows 6.71 1.24 0.80

Max ∆y+ for 3 rows 55.73 32.50 12.42

Max ∆z+ for 3 rows 27.78 31.09 16.56

Min ∆x+ for 2 rows 1.20 0.74

Max ∆y+ for 2 rows 31.46 11.45

Max ∆z+ for 2 rows 30.75 15.51

* Time averaging was not performed for two dim-

ple configuration using grid 1.
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VIII. SUMMARY

A. Conclusions

In this thesis, it has been shown that the influence of the dimples on the boundary layer is

clear in that it forces transition to turbulence from a laminar boundary layer by imposing

fluctuations at the trailing edge of the dimples in the laminar regime and amplify the ef-

fectiveness of the transition in the presence of turbulence. As a result, the flow observed

transitions in the wake and is generally like a turbulent boundary layer as the wake grows

far downstream of the dimples. Periodicity evident in the wake of the dimple indicates

influence similar to flow over an open cavity causes a turbulent spot to initiate transition.

Addition of a third row of dimples shows that there is a cumulative effect of the in-

fluence of the dimples on the turbulent production. Higher energy fluid interacts with the

dimples as a result of the dimple upstream, and allow the third dimple to increase the tur-

bulent energy much more than the dimples upstream. The boundary layer separates in a

smaller region in the third dimple, and plots of the RMS velocity in the streamwise dimen-

sion coupled with the plots of Q show that turbulent production is higher inside of the third

dimple compared to the first two dimple rows.

B. Future Work

Further investigation is required into the dimple as a cavity with emphasis on shape of the

dimple itself and how this influences vortex shedding in relation to modes that initiate tran-

sition within the dimples. This will shed light into how the shape of the dimples i.e. aspect

ratio influences the level of turbulent production by the dimples. Finally, addition of more

rows of dimples needs to be investigated for a thorough analysis of the cumulative effect of

having dimples. The question as to whether there is a limit to the number of dimples that

will influence the boundary layer in the streamwise dimensions remains unanswered, as it

is definitely more than three staggered dimple rows. From the results of the grid indepen-

dence study, more refined mesh in the wall-normal and streamwise dimensions in order to

fully resolve the turbulent structures.
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