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ABSTRACT

This thesis describes an approach to system identification based on

compressive sensing and demonstrates its efficacy on a challenging classical

benchmark single-input, multiple output (SIMO) mechanical system consisting

of an inverted pendulum on a cart. Due to its inherent non-linearity and

unstable behavior, very few techniques currently exist that are capable of

identifying this system. The challenge in identification also lies in the coupled

behavior of the system and in the difficulty of obtaining the full-range dynamics.

The differential equations describing the system dynamics are

determined from measurements of the system’s input-output behavior. These

equations are assumed to consist of the superposition, with unknown weights,

of a small number of terms drawn from a large library of nonlinear terms.

Under this assumption, compressed sensing allows the constituent library

elements and their corresponding weights to be identified by decomposing a

time-series signal of the system’s outputs into a sparse superposition of

corresponding time-series signals produced by the library components.

The most popular techniques for non-linear system identification entail

the use of ANN’s (Artificial Neural Networks), which require a large number of

measurements of the input and output data at high sampling frequencies. The

method developed in this project requires very few samples and the accuracy

of reconstruction is extremely high. Furthermore, this method yields the

Ordinary Differential Equation (ODE) of the system explicitly. This is in contrast

to some ANN approaches that produce only a trained network which might

lose fidelity with change of initial conditions or if facing an input that wasn’t

used during its training.
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This technique is expected to be of value in system identification of

complex dynamic systems encountered in diverse fields such as Biology,

Computation, Statistics, Mechanics and Electrical Engineering.
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Chapter 1

INTRODUCTION

The methodology of building a mathematical model of a dynamical

system from the measurements of its observable outputs, in response to a

particular stimulus, constitutes the basic concept of System Identification.

System Identification aims at devising a mathematical relationship between

such sets of inputs and outputs.

System Identification has gained a considerable amount of importance

due to the fact that devising laws to bound the behavior of systems is the first

step in studying their properties. Once we can establish the behavior of the

system we can use this information to either control the system in order to

produce a desired effect or to predict future system response to specific inputs.

Due to this, control systems like say reactor temperature control of a chemical

process depend significantly on this mathematical understanding of the plant

temperature model. Hence the first task in designing controllers for a system

(i.e. plant) is to deduce the mathematical equations governing the plant

dynamics. Then we use this to either obtain the transfer function (Laplace

analysis, in the linear case) or the state space model and we appropriately

design the controller like PID, state feedback or observer based controller for

this model.

System identification for nonlinear systems is well recognized to be a

challenging problem, and the most effective methods usually rely on strong

assumptions; e.g., that the system is operating near equilibrium. To identify

such systems, researchers often try function approximations using

mathematical series like Volterra or Wiener [2]-[4].
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In recent years, compressed sensing has gained a significant amount of

research interest [5]-[10]. The Shannon-Nyquist Sampling Theorem suggests

that to accurately reconstruct a signal, it should be sampled at a frequency

which is at least twice its bandwidth. In contrast, compressed sensing

performs accurate reconstruction of signals which are sparse in a known basis,

from samples collected at sub-Nyquist frequencies. Random or deterministic

linear measurements of such sparse signals are taken and later optimization

techniques are used to reconstruct the original signal from these sets of

measurements. The sampling rate required and the success and accuracy of

the reconstruction depend significantly on the level of sparsity of the signal in

that particular basis.

This project describes a method for nonlinear system identification that

uses compressive sensing in a way that builds upon an idea introduced by

Wang et al. [28]. A library of functions of the inputs and outputs of the system

are generated using a power series expansion, and then the Basis Pursuit

technique is used to obtain the correct weights of these functions in the system

equation.

The method is demonstrated with an inverted pendulum system

operating well away from its equilibrium point. This well-studied dynamic

system has always been of interest to researchers working in the field of

system identification [34]. The main control objective of this system is to invert

the pendulum completely and make it stand at 180 degrees from its initial rest

position by moving the cart in a horizontal plane. In order to design such a

controller the system needs to be accurately identified first, which in itself is a

big challenge.

The approach described is shown to be effective in accurately

identifying the system from among a rich set of candidate system models.
2



1.1 Organization of Thesis

The remainder of the thesis is organized as follows. Chapter 2 talks in

detail about the fundamentals of System Identification and its mathematical

treatment. Chapter 3 gives the basic concepts of Compressed Sensing and

talks in detail about the mathematics involved. Chapter 4 describes the method

for system identification, briefly as given in [28] and also with the extensions

introduced here to enable its application to coupled nonlinear systems.

Chapter 5 describes the application of this extended method to the SIMO

inverted pendulum system and summarizes and discusses the results

obtained. Chapter 6 concludes the thesis and, as an after-note, outlines areas

for future work.
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Chapter 2

SYSTEM IDENTIFICATION

This chapter establishes a fundamental understanding of system

identification and explains the various processes associated with it. The first

section talks about the basic concepts of system identification and defines the

main terms involved. The next section gives a rigorous mathematical treatment

of these concepts. A compilation of various techniques of system identification

is given in [29], which also gives a good theoretical background of the subject.

2.1 Dynamic Systems

Dynamical systems are ubiquitous in both natural and engineered

systems. A significant fraction of engineered dynamical systems are

mechanical systems such as cars, elevators or the various machines that

make our lives easier. These dynamic systems can be affected using external

stimuli which may be manipulated by a design engineer. Such a stimulus is

called the input to the system and is said to “drive the system”. The system

responds to such stimuli based on internal parameters that define its behavior.

Such a response is often the signal of interest, called the output of the system,

and its observability is the key to identifying the system behavior. Also there

might be other factors like disturbances which cannot be estimated or

manipulated by the design engineer but might still exist and produce certain

effects on the outputs. An example would be that of a car, where the push of a

gas pedal (flow of fuel to the engine) might be the input, which produces the

displacement of the car as the output, subject to the friction of the road or air

resistance, which can be considered as disturbances in this system.

Establishing these three types of variables of a dynamical system, our

next step is in understanding how these variables relate to each other. Such a
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relationship is called a model of the system. A model may take several forms,

but for the purpose of this thesis we are concerned with the classical cores of

dynamic continuous-time systems modeled by a system of Ordinary

Differential Equations or discrete systems modeled by a system of Difference

Equations. Furthermore, we are particularly interested in non-linear,

multi-input, multi-output (MIMO) dynamical systems since they offer many

challenges when it comes to their model identification. To demonstrate our

methodology, we will consider mechanical systems belonging to this category

since it is very hard to model such systems-especially when they are made up

of many smaller flexible members [30].

2.2 Modeling of Systems

When it comes to mathematical modeling there are primarily two

techniques of determining the system model. The first technique deals with

deriving the system equations based on certain energy balance or mass

balance equations. This technique is known as modeling and the relationships

for such equations are based on well-known formulae derived from earlier

empirical works. The second technique known as system identification is

based on experimentation, where the input and output data of the system are

measured and the model is inferred using data fitting tools. Hence it is

extremely vital to experiment suitably on the system to gain maximum useful

information about it in order to generate accurate identified models. This

design of experiments is performed by the design engineer who determines

suitable choices for the input signals, the sampling time and the initial

conditions of the system. Once the experimental data is obtained, a class of

models is selected based on engineering intuition, physical insight and a priori

knowledge. The identification scheme where parameter adjustment is used for
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data fitting, but these parameters don’t have any real physical significance is

known as black box identification. The case where parameters are known to

represent certain physical quantities is known as grey box identification. The

best fitting model is selected by comparing the output of the identified model

and the actual system for the same input.

The various steps of the identification process and their inputs and

outputs are made clear through the flow charts in Fig. 2.1. A priori knowledge,

intuition, physical laws and empirical formulae form the basis for selection of

the class of models. Fig. 2.2 shows how the selected model from the set of

data models is validated. We see that the criterion for validation is the error

between the plant output and the selected model output. Various error metrics

might be used such as the Mean Square Error (MSE) or the Absolute Error

(AE). An acceptable bound on this error is application specific and depends on

the level of accuracy expected. In some applications an error to signal ratio of

−60 dB may be considered small enough and the corresponding identified

model may be considered a good estimate. If the model doesn’t satisfy the

desired error bound, we feed the next model from the set and again check for

the error condition. We can either stop the process after getting the first model

that satisfies the error condition or we can continue to run all the models in the

set and then select the one with the least error.
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Figure 2.1: Flow chart illustrating the system identification process.

Figure 2.2: Flow chart for validation process of the models from selected set.

2.3 Mathematical Treatment of System Identification

The prevalent method in representing dynamic systems in control

engineering, is by using vector differential or vector difference equations. For
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example, we express a m input, p output and n state time invariant and

memoryless system as:

ẋ(t) = φ[x(t), u(t)]

y(t) = ψ[x(t)]

(2.1)

with x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp.

In this expression, xi(t) are the n states of the system, ui(t) are the m inputs of

the system and yi(t) are the p outputs of the system. The functions φ and ψ

are static non-linear maps defined as φ : Rm → Rn and ψ : Rn → Rp. The

equations (2.1) constitute the Input-State-Output representation of the system.

The corresponding representation for discrete time systems is shown in

Equation (2.2).

x(k + 1) = φ[x(k), u(k)]

y(k + 1) = ψ[x(k)]

(2.2)

All these representations are for a generic class of systems. Linear Time

Invariant (LTI) systems are special case of Equations (2.1) and (2.2) where the

maps φ and ψ are linear. The non-linear mappings φ and ψ get transformed

into the matrices A,B and C, where A is the State Matrix, B is the Input matrix

and C is the Output Matrix. These are of dimensions n× n, n×m and p× n

respectively for a n state, m input and p output system. The system State

Space representation now becomes:

ẋ = Ax+Bu

y = Cx

(2.3)
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System Identification theory for such LTI systems is highly developed.

The most common methods employ parametric estimation techniques

commonly using the Least Squares Estimator as described in [31]. In case of

grey-box modeling, these methods assume a structure of the system (e.g., an

nth order polynomial) and then estimate the relative weights or the value of the

parameters of the terms in the structure. While for black box modeling, no

structural information is available, still certain properties about the system

function can often be assumed; e.g., it is an analytic function. But it is still very

difficult to perform analysis and identification of non-linear systems as

expressed in equation (2.1). For our discussions, we will be concentrating

more on such systems.

System Characterization and Identification

System characterization deals with the mathematical operator P from

an input space U to an output space Yo and the objective is to determine the

class ℘ to which P belongs. While on the other hand given a P ∈ ℘, System

Identification deals with determination of a class ℘̂ and an element P̂ ∈ ℘̂ so

that P̂ approximates P in some desired sense.

In dynamical systems P is defined by using the input-output pairs

u(t), y(t), t ∈ [0, T ]. The objective is to determine P̂ such that:

||ŷ − y||l2= ||P̂ (u)− P (u)||l2≤ ε, u ∈ U (2.4)

i.e., the difference between the identified output and the real system output for

the same input should be within a small tolerance limit 0 < ε < 1. This

difference is also termed as the identification error e = ŷ − y. Please note that

though the above equation specifies an l2 norm, any suitably defined norm

(denoted by ||·||) can be used.
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The ability to approximate the plant arises due to the following theorem:

Theorem 2.3.1. (Weierstrass Theorem) Let C([a, b]) be a set of continuous

valued functions defined on the interval [a, b] with the norm of f ∈ C([a, b])

defined by

||f ||= sup
t
{|f(t)|: t ∈ [a, b]} (2.5)

For any f ∈ C[a, b] and any ε > 0, there is a polynomial

p(t) = a0 + a1t+ . . .+ alt
d, such that ||(f − p)||< ε.

Naturally the Weierstrass theorem and its extensions for high

dimensional data find wide applications in approximation of nonlinear functions

f : Rn → Rm using polynomials. A generalization of this theorem is the

Stone-Weierstrass theorem [32].

Theorem 2.3.1. (Stone Weierstrass Theorem) Let U be a compact metric

space. If ℘ is sub-algebra of C(U,R) which contains the constant functions

and separates points of U , then ℘ is dense in C(U,R).

Corollary. If P is the plant to be identified and if P ∈ ℘ , where ℘ is a space of

continuous, bounded, time-varying and causal functions, then if P̂ satisfies the

Stone Weierstrass theorem, then a model P̂ ∈ ℘̂ can be chosen which

approximates P ∈ ℘. [33]

Using the Stone Weierstrass Theorem it has been shown in [1] and [3]

that a large class of non-linear functions under certain conditions can be

represented by a corresponding series such as Volterra series or Wiener

series. In spite of this, very few of these techniques have found wide

application in identification of a large class of practical non-linear systems.
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Following from these two theorems now we define the actual problem of

system identification as follows:

The input and output of a time-invariant, causal discrete time plant are

u(·) and yp(·), respectively, where u(·) is a uniformly bounded function of time.

The objective is to construct a suitable identification model which, when

subjected to same input u(k) as the plant produces an output ŷp(k) which

approximates the plant output yp(k) in some desired sense as (2.4).
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Chapter 3

COMPRESSED SENSING

Over the past few years a new technique called Compressed Sensing

has emerged for reconstructing signals that are sparse in a known basis, from

relatively fewer measurements or samples than suggested by the

Shannon-Nyquist Sampling Theorem. This technique has been applied in

various fields such as image processing [13]-[16], medical imaging [17]-[20],

computational biology[21]-[23], audio and speech processing [24]-[26] and

many others.

3.1 Introduction

The well-known Shannon/Nyquist Sampling Theorem says that in order

to exactly recover (in the sense of L2) an arbitrary real-valued,

continuous-time, band-limited signal from uniformly spaced samples, the

samples need to be taken at a frequency which is greater than or equal to

twice the signal’s bandwidth. This critical sampling frequency is often called

the Nyquist Frequency.

But often, it’s impractical to obtain these samples of the signal due to

many reasons. Primarily, construction of some sensors, like the ones used in

medical imaging, might require certain level of sophistication, resulting in very

high costs. Also, in other cases, the signal of interest might have some high

frequency components in it and the sensor will have to be capable of extremely

fast sampling, in order to prevent aliasing. This puts a major constraint on the

sensor’s capacities and the designer might find it very difficult to cope with this

requirement. In addition to this, the sensor might generate a large number of

samples and will require a large storage space for the sampled data. A

common example of this scenario is evident from the large file sizes of videos
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recorded using high resolution cameras. Also, the transmission of such high

frequency sampled signals might require expensive communication equipment.

This problem is often encountered in online video streaming and the resolution

of such videos has to be scaled down to prevent huge buffering durations.

In order to deal with these difficulties, the signal being sampled needs

to be compressed and the most concise representation is sought while staying

within the maximum resulting distortion bound. The two main concepts that

enable such concise representations are: Sparsity and Compressibility.

Sparsity implies that the information rate of a continuous time signal is much

less than the actual bandwidth [7] or that most amplitude coefficients of a

discrete-time signal are zero and only a few have non-zero amplitudes.

Compressibility implies the ability of representing sparse signals concisely

when they are represented in a proper basis, Ψ or that most amplitude

coefficients of a discrete-time signal are very small or negligible and only a few

have large amplitudes.

A technique underpinning most modern compression algorithms is

transform coding, an optimal variant of which is called the Karhunen-Loeve

Transform (KLT). For a signal, such as an image, sparse in the Fourier basis,

with only a few non-zero coefficients, the KLT identifies these main contributors

and discards the others, maintaining the essence of the signal. This process is

also called Sparse Approximation and forms the basis of compression

standards like JPEG, JPEG2000 or MP3. But transform coding requires

tremendous amount of computation and storage as it computes all the

coefficients and then decides which of them to discard.

Taking inspiration from this idea of sparse approximation, a new

ideology has emerged, known as Compressed Sensing. Compressed Sensing

is highly effective for signals which are sparse in a particular basis and can
13



accurately reconstruct them using far fewer linear measurements than

suggested by the Sampling Theorem. Since Compressed Sensing uses fewer

measurements than unknowns, the linear system describing the sensing

process, is highly under-determined and will have many or none solutions. But

the fact that the signal is known to be sparse in that particular basis gives

reason to choose only the sparsest from amongst the infinitely many possible

solutions.

The effects produced by the use of compressed sensing in various

fields have given promising and inspiring results. As mentioned in [27] the

speed of Magnetic Resonance Imaging has gone up by a factor of seven, still

managing to preserve the diagnostic quality of the image. Computer Aided

Tomography (CAT) also has benefited from the use of Compressed Sensing as

accurate scans are obtained in far fewer measurements, reducing the risk of

over-exposure to radiation [10].

3.2 Mathematical Treatment

Suppose we have a discrete time signal X having N samples. We

represent such a signal in form of a N × 1 vector. Suppose this signal is

sparse in an orthonormal basis Ψ, then we can represent the signal, X as a

form of weighted vector of this representation basis as:

X =
N∑
i=1

siψi or X = Ψs (3.1)

where Ψ is an N ×N matrix whose columns are the basis vectors and s is an

N × 1 vector of weighting coefficients. The sparsity assumption implies most

of the weights, si will be zero.

Now we take M linear measurements of such a signal by using an

M ×N sensing matrix {ΦM
j=1} with Φj as rows. Using this we get the M × 1

measurement vector, Y .
14



Y = ΦX = ΦΨs = Θs (3.2)

In order to obtain the accurately reconstructed signal from the

measurement vector Y , the following objectives must be met:

1) Design Φ for a K-sparse signal. (K must be generally considered

smaller than M ).

2) Design a reconstruction algorithm to solve Y = Θs in order to get the

optimally sparse s.

Designing the Sensing Matrix, Φ

The fundamental property of compressive sensing matrix Φ was

introduced by Candés in [10] and independently by Donoho in [11]. Candés

called it the Uniform Uncertainty Principle (UUP); while Donoho called it as the

Restricted Isometry Property (RIP). This property implies that the M ×N

sensing matrix Φ satisfies a “Restricted Isometry Condition". This idea was

later refined in [12].

Property 3.2.1. The Restricted Isometry Property

Let ΦA, A ⊂ 1, ..., N ; having cardinality, K be the M ×K sub-matrix of Φ,

obtained by extracting the columns of Φ corresponding to the indices in A; then

[12] defines the K-restricted isometry constant δK of ΦA which is the smallest

quantity such that:

(1− δK)||X||2l2≤ ||ΦAX||2l2≤ (1 + δK)||X||2l2 (3.3)

This implies that if Φ satisfies the RIP, then it approximately preserves

the Euclidean length of every K-sparse signal. Equivalently, all subsets of K

columns taken from Φ are nearly orthogonal. Since the Euclidean lengths are

15



preserved, it suggests that accurate reconstruction of the sparse signal is

possible with high probability.

Designing the Reconstruction Algorithm

If RIP holds for the sensing matrix Φ, then the sparse reconstruction s

of the signal X is obtained by solving the linear program [6]:

min
s∈RN
||s||l1 , subject to Θs = Y (3.4)

The reason why we use the l1 norm is explained in [6], where the

sparse vector s lies on a K-dimensional hyper plane aligned close to the axes

due to the sparseness and most of the entries being zero. The l2 ball intersects

this hyper plane at a point far away from the axes and hence an optimal

reconstruction is not obtained. But on the other hand, the l1 ball has a diamond

structure and it intersects this hyper plane at a point much closer to the axes

and hence gives a better result. As the dimensions increases this l1 structure

becomes pointier and gives better and optimal reconstructions.
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Chapter 4

METHODOLOGY OF SYSTEM IDENTIFICATION

This section deals with the actual methodology used to perform

non-linear system identification using Compressed Sensing. We study the

original technique proposed by Wang et al. in [28], then we identify some

important drawbacks which make it difficult to apply the technique to complex

dynamic systems, especially those that exhibit coupled behavior. After that we

draw some inferences, and based on these inferences, we propose our

modifications to the existing technique.

4.1 Problem Formulation

Many mechanical, electrical, chemical, biological, and other important

systems are governed, or at least well modeled, by phenomena that cause

their input and state variables to be related in constrained ways. In mechanical

systems, for example, forces, positions, velocities, and accelerations are all

related by ordinary differential equations of order no greater than two. It is also

often the case that observation of, or prior knowledge about the behavior of,

the system can suggest or impose relationships (possibly nonlinear) among

the input and state variables. In such situations, it is possible to postulate a

library of functions and derivatives of these variables that are candidates to

appear in a differential equation describing the system dynamics.

Although constrained, such a library may be large. The key assumption

that enables the use of compressive sensing ideas in this context is that the

actual system is a weighted superposition of only a small number of the library

elements. With this assumption, the system identification problem becomes

that of identifying which library elements are present, and with what weights, in

the system based on observations of its inputs and outputs. To achieve this,

17



corresponding time series segments from the system inputs and outputs and

from all of the library elements are computed and form the entries of the

sensing matrix Φ. The corresponding unknown weights are then calculated by

sparse reconstruction using optimization techniques such as the Basis Pursuit

Method.

4.2 The Method of Wang et al.

Consider a non-linear dynamic system which can be represented by

the equation ẋ = F (x) where x is the state vector containing the states

[x1, x2, x3, · · · , xn]T of the system. Wang et al. propose in [28] that the kth

component of F (x) can be written as a power series expansion as:

[F (x)]k =
P∑
l1=0

P∑
l2=0

· · ·
P∑

ln=0

[aj]l1,l2..lnx
l1
1 · xl22 · · · · · xlnn (4.1)

Where, P is the truncation of the power series and the coefficient vector

a = [aj]l1,l2···ln is to be determined from the time series data. If the time series

data for the states are available at time instants t1, t2 · · · tw then we can write

[F (x(t))]1 = g(t)a (4.2)

where

g(t) =[x1(t)0x2(t)0 · · ·xn(t)0, x1(t)0x2(t)0 · · ·xn(t)1,

· · · , x1(t)l1x2(t)l2 · · ·xn(t)ln)]

Therefore, now this can be written as a familiar system of linear equations as:

Y = Φ ·X. where Y = [F (x(t))]1 = [ẋ1(t1), ẋ1(t2), ẋ1(tw)]T Therefore:

Y =



ẋ1(t1)

ẋ1(t2)

...

ẋ1(tw)


=



g(t1)

g(t2)

...

g(tw)


(a) (4.3)

18



Thus we construct the matrix Φ from the power series expansion where the

columns denote the various terms of the power series and the rows denote the

time series evaluation of these terms at the particular time instant: tk.

4.3 The Modified Technique

Given this background we see two main drawbacks of such a scheme:

Firstly in control applications, most dynamic systems, especially mechanical

systems have a forcing input or excitation term u (e.g. the force which drives

the cart in an inverted pendulum system) and the generalized system equation

is represented as ẋ = F (x, u). Secondly, for coupled systems, it is difficult to

express F (x, u) as in Equation 4.1. To explain this, we will consider the

following Ordinary Differential Equations describing the behavior of the

inverted pendulum system, the details of which will be covered in Chapter 5.

ÿ =
1.29F − 0.0645ẏ + 0.0257θ̇ cos θ + 3.477 sin θ cos θ + 0.1774θ̇2 sin θ

1− 0.3548 cos2 θ
(4.4)

θ̈ =
−0.145θ̇ − 19.6 sin θ − 2.58F cos θ + 0.129ẏ cos θ − 0.3548θ̇2 sin θ cos θ

1− 0.3548 cos2 θ

(4.5)

Converting these two Ordinary Differential Equations to a standard

representation ẋ = F (x, u), the state vector x = [x1, x2, x3, x4]T = [y, ẏ, θ, θ̇]T

is:

ẋ1 = x2 (4.6)

ẋ2 =
1.29u−0.0645x2+0.0257x4 cosx3+3.477 sinx3 cosx3−0.1774x24 sinx3

1−cos2 x3
(4.7)

ẋ3 = x4 (4.8)

ẋ4 =
−0.15x4−19.6 sinx3−2.58u cosx3+0.13x2 cosx3−0.35x24 sinx3 cosx4

1−cos2 x3
(4.9)

Therefore, due to the denominator terms in ẋ2 and ẋ4, several non-linear terms

will be needed to represent the state space equation using a power series.
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Due to this, the assumption of the weights of library terms being a sparse

vector will no longer hold true.

Now after establishing these two main drawbacks, it’s evident that the

methodology of Wang et al. needs considerable modification in order to be

applied to reconstruct the differential equations of the Inverted Pendulum

system. We now take a different approach to solve this problem. We first lay

the groundwork by some preliminary inferences:

1) Since it’s a mechanical system, the ODE will have maximum order of

2. This is a reasonable assumption considering the physics and understanding

that main physical quantities involved are displacement, velocity and

acceleration.

2) There will be two Ordinary Differential Equations to describe the

system completely. This also is reasonable considering there are two motions

in space: the motion of the cart and the motion of the pendulum.

3) Since it is a system exhibiting oscillatory behavior the power series

expansion will have sinusoids of θ along with the polynomial terms.

Considering these inferences we now develop our library of basis

functions and the terms involved in the power series expansion. They are,

Φ = [y, ẏ, ÿ, θ, θ̇, θ̈, sin θ, cos θ, F ] (4.10)

where y is the displacement of the cart, θ is the angle between the pendulum

and the vertical in degrees and F is the force applied to the cart or the

excitation signal.

The power series now looks like:

ÿ =
P∑
l1=0

P∑
l2=0

· · ·
P∑
l9=0

[ayj]l1,l2..l9y
l1 ẏl2 ÿl3θl4 θ̇l5 θ̈l6 sinl7 θ cosl8 θF l9 (4.11)
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θ̈ =
P∑
l1=0

P∑
l2=0

· · ·
P∑
l9=0

[aθj]l1,l2..l9y
l1 ẏl2 ÿl3θl4 θ̇l5 θ̈l6 sinl7 θ cosl8 θF l9 (4.12)

We take the maximum power of the expansion, P = 2. Also it is

important to note that when we construct the Φ matrix using these terms, we

have to eliminate the column representing the term ÿ from equation (4.11) and

the term θ̈ from equation(4.12) for obvious reasons. After eliminating these

columns, we obtain two sensing matrices: Φy used in equation(4.11) and Φθ

used in equation (4.12). Thus we get the linear system of equations:

Y1 = ÿ = Φyay and Y2 = θ̈ = Φθaθ.

Now using compressed sensing we reconstruct the coefficient vectors

ay and aθ. It is important to note that these coefficient vectors are sparse due

to the fact that only a few terms amongst all the terms of the power series

expansion in Φ will form the ODE for ÿ and θ̈.

In order to get accurate reconstruction from these two systems of linear

equations using compressed sensing, Φy and Φθ should satisfy the Restricted

Isometry Property (RIP) [10]. We ensure this by normalizing the columns of Φy

and Φθ by dividing each element in the column with the l2 norm of the column

as explained in [28]. Though it is combinatorially quite complex to verify that

these normalized matrices satisfies the RIP, we can estimate its performance

with great accuracy for a sufficient number of Monte Carlo trials. After

conducting several combinatorial trials on the matrices it was found that,

1− δk ≤
||Φyay ||2l2
||ay ||2l2

≤ 1 + δk and 1− δk ≤
||Φθaθ||2l2
||aθ||2l2

≤ 1 + δk.
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Table 4.1: Monte Carlo trials for testing RIP of Φy and Φθ matrices

||Φyay ||2l2
||ay ||2l2

||Φθaθ||2l2
||aθ||2l2

Minimum 0.1901 0.7875
Mean 0.9988 1.0013
Maximum 1.9679 1.2137

To quantify these trials, the minimum, maximum and mean values are

represented as shown in table 4.1. These trials show that the mean of the δk is

very small and almost zero in both Φy and Φθ matrices. But some combination

of K elements in the Φy matrix may lead to difficulty in reconstruction due to

their large δk values as seen for the minimum and maximum case. But

generally speaking, the Φy and Φθ matrices can satisfy the RIP with great

probability for a small RIP constant δk.

We obtain the sparse reconstruction of these coefficient vectors using

the Basis Pursuit technique as:

min ||ay||`1 s.t. Φyay = ÿ

min ||aθ||`1 s.t. Φθaθ = θ̈
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Chapter 5

THE INVERTED PENDULUM ON A CART

To illustrate and demonstrate the approach developed by this project, it

has been applied to the system identification problem for an inverted pendulum

on a cart. This system has always been of research interest due to its

non-linear, unstable and non-minimum phase dynamics. It also is an

under-actuated system having more degrees of freedom than control inputs

and the full state is not always measurable, and so the identification objectives

from such limited dynamics is always a challenge. This system is widely used

in robotics, control theory, computer control and space rocket guidance

systems.

The single inverted pendulum on a cart system has two frictional

components: between the pendulum axis and the pivot joint and between the

cart wheels and the track. It becomes very difficult to model these two

components for the reasons stated in [34], adding to the complexity of the

identification problem. This chapter describes this system and establishes the

mathematical model for the system which is later used in simulation to obtain

measured time-series input and output data.

5.1 Physical Model

This physical system is shown in Fig 5.1. This system consists of a rail

on which a cart moves and a pendulum hinged on the top of the cart. The cart

and pendulum rod are constrained to move within a vertical plane. The

pendulum rod is free to rotate about its pivot joint on the cart. The cart

acceleration induces a torque on the free-moving pendulum to swing it up.

Since the pendulum is exactly centered above the cart, there are no sidelong

forces on the rod and it remains balanced upright. But any small disturbance in
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the motion of the cart for this balanced pendulum shifts it farther away from the

upright position, indicating that the upright is an unstable equilibrium point.

Also under no external force the oscillations decay and the rod comes to rest at

the 0o position which is also the stable equilibrium, known as the pendant

position. A force F is applied to the cart which is the input to the system.

Figure 5.1: Physical model of the inverted pendulum on cart system.

Positive value of F causes the cart to move towards left and negative value to

the right. This is due to the forward and reverse rotations of the motor driving

the cart and suitable mechanical amplification of this motion is achieved by a

gearing system. The angle θ of the pendulum rod with the vertical is measured

and is one of the outputs of the system, while the displacement of the cart x is

the other output. The initial conditions of this system are at zero torque where

θ = 0. Due to the Right Half Plane zeros of this system the typical inverse

response is seen, where for the cart to move to the right, it must first move to

the left and unbalance the pendulum in the correct direction. Also the cart rail

has finite length, an additional constraint on the cart motion.

The control objective is to swing up the pendulum to the upright position

and stabilize it there by moving the cart back and forth on the rail.
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The parameters of this system and their values in the test system are

given in Table 5.1. The values of these parameters are selected based on the

physical setup in [35]. These values are extremely important for the complete

swing-up of the pendulum and if chosen incorrectly the inversion of pendulum

won’t be physically possible.The parameter values can be chosen by the

designer of the system and may be different than the ones in Table 5.1, but for

the sake of this project the values in Table 5.1 will be used.

5.2 Mathematical Model

After a study of the physical setup of the pendulum on a cart system,

detailed mathematical analysis will be performed. The course notes [35] give

an excellent step by step derivation of the mathematical modeling of this

system and it will also be covered in this section. The application of the force F

results in a horizontal movement described by

(m+M)ẍ = Fccẏ

Now the cart position relative to the center-of-mass is given by

y = x− Lm

m+M
sin θ

Table 5.1: Parameters of the pendulum system

Parameter Symbol Value

Mass of Cart M 0.5 Kg
Mass of pendulum Bob m 0.275 Kg
Length of Pendulum rod L 0.5 m
Coefficient of friction
between pendulum and
pivot

cp 0.01

Coefficient of friction
between cart and track

cc 0.05
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From this, the equation for the cart motion is obtained as

(m+M)ÿ = F − ccẏ −mLθ̈ cos θ +mLθ̇2 sin θ (5.1)

Now, the rotation of pendulum around its pivot is caused by gravity and the

acceleration of the pivot point itself. From the tangential forces the following is

obtained.

mL2θ̈ = −cpθ̇ −mgL sin θ −mLÿ cos θ (5.2)

Equations 5.1 and 5.2 describe the model of the cart-and-pendulum

motion. It should be noted how these two equations of motion are

inter-dependant with each other and this shows the Coupled behavior of the

system. This is evident from the fact that the angular acceleration θ̈ of the

pendulum is dependant on the horizontal acceleration of the cart ÿ and vice

versa.

We now try to decouple these two motions in space and also substitute

the values of the parameters of Table 5.1. The following is thus obtained:

ÿ = 1.2903F − 0.0645ẏ − 0.1774θ̈ + 0.1774θ̇ cos θ (5.3)

θ̈ = −0.1455θ̇ − 19.6 sin θ − 2ÿ cos θ (5.4)

5.3 Simulating the System

We implement the Ordinary Differential Equations in SIMULINK to

simulate the behavior of the actual physical system. The purpose of this

simulation is to obtain the time-series input-output measurements of the

system which will be later used in system identification.

Since this system is non-linear and unstable, we use a stabilizing

controller initially to stabilize the system in a defined range and then use a
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broad-band square signal, in an effort to excite all possible output levels of

both outputs of the system. This approach is explained in detail in [36]. The

Figure 5.2: SIMULINK Block Diagram model of the inverted pendulum on cart
system.

SIMULATION diagram is shown in figures 5.2 and 5.3. Figure 5.2 shows the

input and output block diagram of the system. It is seen that the input from our

stabilizing controller is fed into the block and the outputs of pendulum angle

and cart position are taken out from the block. Also secondary outputs like

velocity and acceleration are derived from the primary outputs. Figure 5.3

shows the internal working of the system block. It is basically a representation

of the Ordinary Differential Equations derived in equations 5.1 and 5.2. The

input (Force F ) is shown in red and primary and secondary outputs are shown

in green. Data is generated for 10,000 discrete samples taken at 0.1 KHz

sampling frequency and the corresponding multi-square input sequence is as

shown in Figure 5.4. The corresponding outputs generated is shown in Figure

5.5 and 5.6. Even though these readings are taken over a wide range of values

for 10,000 samples, we will be selecting only a few out of these for our system
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Figure 5.3: SIMULINK model of the inverted pendulum on cart system describ-
ing the ODEs of the system.

Figure 5.4: Force applied to cart sampled at 0.1 KHz.

identification scheme. As is seen from the excitation signal, a series of square

waves both in negative and positive amplitudes is given as input to the system.

Such an input represents small motions of the cart back and forth around a

central point. Initially, the pendulum swings in the right direction, as the cart

moves towards the left due to the so called Inverse characteristics. Then as it

is about to attain its maximum swing point, the cart is moved in the opposite,

i.e. the right direction. This helps the pendulum to gain momentum and swing

up to a higher point on the right side. The reason for this gain in momentum is
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Figure 5.5: Angle of pendulum with ver-
tical in degrees. Figure 5.6: Position of cart.

evident from the fact that as the pendulum is about to come down from its

highest swing point, its potential energy is getting converted into kinetic energy

and the horizontal component of gravitational force and the force due to cart

motion add up. By moving the cart in such a way, we are able to swing the

pendulum up completely to the upright position and get enough dynamics in

order to perform suitable identification on the system. After it attains the upright

position, no input force is given and oscillations are allowed to die down to the

pendant position.

5.4 Results

The technique was tested for the data set obtained from simulation, by

varying two main criteria: number of samples used for reconstruction and the

initial condition. These two results are summarized by Figures 5.7, 5.8 and 5.9.

Figure 5.7 give the Mean Squared Error (MSE) between the original and

reconstructed ODE plotted versus the subrate or the ratio of number of

samples (M ), to the number of unknowns (N ) for the pendulum being initially

at the 00 degree or the pendant position. Figures 5.8 and 5.9 show the MSE

plotted against the subrate for varying initial conditions. Six such random initial

conditions are chosen and the performance of the technique is validated for
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Figure 5.7: MSE v/s subrate

each case. Tables 5.2 and 5.3 show the reconstruction results. It should be

noted that the tables show only the values of non-zero reconstructed

coefficients. All other coefficients were found to be zero or extremely small and

ignored. It is seen that for different initial conditions, the technique is still able

to obtain the accurate reconstructed equations, which indicates that the

technique is highly robust in this respect. Also only 45% of the samples are

sufficient for accurate reconstruction, which is a very important advantage over

Neural Network system identification methods, which need large number of

measurements for training.
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Figure 5.8: MSE v/s subrate for varying initial conditions for ÿ

Figure 5.9: MSE v/s subrate for varying initial conditions for θ̈
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Table 5.2: Reconstructed coefficients (zero initial conditions)

LHS Term Original Coefficients Reconstructed Coefficients

ÿ

F 1.2903 1.113
ẏ -0.0645 -0.0601
θ̈ -0.1774 -0.1701

θ̇ cos θ 0.1774 0.1381

θ̈
θ̇ -0.1455 -0.00973

sin θ -19.6 -19.23
ÿ cos θ -2 -1.905

Note. This experiment was performed for the pendulum to be at pendant position and
an initial force of -1 units given to the cart. The number of samples needed for accurate
reconstruction were 375 and the number of unknown terms or the size of ay or aθ was 768.
Therefore 49% samples were needed as compared to the unknowns.

Table 5.3: Reconstructed coefficients (non-zero initial conditions)

LHS Term Original Coefficients Reconstructed Coefficients

ÿ

F 1.2903 1.2481
ẏ -0.0645 -0.0272
θ̈ -0.1774 -0.1739

θ̇ cos θ 0.1774 0.1691

θ̈
θ̇ -0.1455 -0.00130

sin θ -19.6 -19.4021
ÿ cos θ -2 -1.89

Note. This experiment was performed for the pendulum to be at 28o position and an initial
force of -1 units given to the cart. The number of samples needed for accurate reconstruc-
tion were 350 and the number of terms to reconstruct or the size of ay or aθ was 768.
Therefore 45% samples were needed as compared to the unknowns.
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Chapter 6

CONCLUSION AND FUTURE SCOPE

This chapter summarizes and concludes the thesis and outlines

several areas for research to further study and improve the technique

developed herein.

6.1 Conclusion

System Identification is an extremely important aspect of control

engineer, and inverted pendulum systems are longstanding benchmarks to

analyze the efficacy of identification techniques. This thesis introduces a

technique for system identification based on Compressed Sensing. Although

based on a recent method of Wang et al., this technique provides significant

extensions to the applicability of the approach and rectifies two main

drawbacks of the method. The technique is applied to the identification of an

inverted pendulum system. In order to do this, the pendulum and cart system is

simulated and the excitation signal is constructed based on a stabilizing

controller. The time-series input-output measurement data for this system is

obtained from the simulation. The power series expansion is then formulated to

include a library of functions and later compressed sensing approach is used

to reconstruct the unknown weights of the power series expansion from the

input-output data. This technique is highly robust considering that it can

accurately reconstruct the ODE despite the different initial conditions of the

system. It also can reconstruct the ODE using very few samples as compared

to the unknowns to a great degree of accuracy.

This technique has a broad application potential, its success for the

inverted pendulum problem is a promising start.
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6.2 Future work

This work hopes to stimulate future research in certain similar areas.

There are some issues which are being currently worked on. A few will be

provided in this section.

Currently we are focusing on sinusoids of single frequency for our

power series expansion, i.e. sin θ. But for its application to a broader class of

systems, we should find a way to incorporate other frequencies as well and

include sinωθ in our basis functions. This will increase the number of terms to

be reconstructed and will in turn increase computational complexity.

Also, the columns of the Φ matrix may be highly correlated in some

scenarios where two functions approximate each other in a given range of

values. Example: θ and sin θ are almost equal for small values of θ. In this

case it becomes extremely hard for the optimizer to differentiate between the

correlated columns and reconstruct the coefficients. A method to de-correlate

the columns is essential.

We did some preliminary tests by subjecting the system to random

Gaussian white noise and tried to quantify its effects on the accuracy of the

reconstruction algorithm. This will serve to be another area of research and

finding noise bounds within which the technique works accurately remains to

be identified.

Also, in order to reduce the size of the library of non-linear terms

generated by the power-series expansion, a pre-filtering method based on

physical knowledge of the system can be invoked by restricting the total power

of a non-linear term. After invoking such conditions, the number of unknown

weights of the non-linear terms will be reduced significantly; consequently

reducing the number of samples needed to accurately identify the system.
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Furthermore, analytical studies need to be performed to understand the

effects of the nature of excitation of the system, on the RIP of the Φ matrix.

Some preliminary studies were performed in this respect; where an input

(Force) sequence generated from a random Gaussian distribution mapped to

an amplitude range of −5 to +5 units was used to stimulate the inverted

pendulum system and the output measurements in a defined window of time

were used to reconstruct the system equations to a good degree of accuracy.
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