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ABSTRACT  

HgCdTe is the dominant material currently in use for infrared (IR) focal-

plane-array (FPA) technology. In this dissertation, transmission electron 

microscopy (TEM) was used for the characterization of epitaxial HgCdTe 

epilayers and HgCdTe-based devices.  

The microstructure of CdTe surface passivation layers deposited either by 

hot-wall epitaxy (HWE) or molecular beam epitaxy (MBE) on HgCdTe 

heterostructures was evaluated. The as-deposited CdTe passivation layers were 

polycrystalline and columnar. The CdTe grains were larger and more irregular 

when deposited by HWE, whereas those deposited by MBE were generally well-

textured with mostly vertical grain boundaries. Observations and measurements 

using several TEM techniques showed that the CdTe/HgCdTe interface became 

considerably more abrupt after annealing, and the crystallinity of the CdTe layer 

was also improved.  

The microstructure and compositional profiles of CdTe(211)B/ZnTe/Si(211) 

heterostructures grown by MBE was investigated. Many inclined {111}-type 

stacking faults were present throughout the thin ZnTe layer, terminating near the 

point of initiation of CdTe growth. A rotation angle of about 3.5° was observed 

between lattice planes of the Si substrate and the final CdTe epilayer. Lattice 

parameter measurement and elemental profiles indicated that some local 

intermixing of Zn and Cd had taken place. The average widths of the ZnTe layer 

and the (Cd, Zn)Te transition region were found to be roughly 6.5 nm and 3.5 nm, 

respectively.  



  ii 

Initial observations of CdTe(211)B/GaAs(211) heterostructures indicated 

much reduced defect densities near the vicinity of the substrate and within the 

CdTe epilayers. HgCdTe epilayers grown on CdTe(211)B/GaAs(211) composite 

substrate were generally of high quality, despite the presence of precipitates at the 

HgCdTe/CdTe interface.  

The microstructure of HgCdSe thin films grown by MBE on ZnTe/Si(112) 

and GaSb(112) substrates were investigated. The quality of the HgCdSe growth 

was dependent on the growth temperature and materials flux, independent of the 

substrate. The materials grown at 100°C were generally of high quality, while 

those grown at 140°C had {111}-type stacking defects and high dislocation 

densities. For epitaxial growth of HgCdSe on GaSb substrates, better preparation 

of the GaSb buffer layer will be essential in order to ensure that high-quality 

HgCdSe can be grown. 
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Chapter 1 

INTRODUCTION 

 

Radiation in the electromagnetic spectrum can be classified by wavelength 

into several bands, including γ-rays, X-rays, ultraviolet, visible light, infrared, 

microwave and radio waves. Infrared (IR) light is defined as electromagnetic 

radiation with a wavelength longer than that of visible light, normally measured 

from the nominal edge of visible red light at 0.74 µm, and extending 

conventionally to 300 µm. IR detectors are needed to convert IR radiation into 

some measureable output, normally an electronic signal, thus representing a vital 

connection to the invisible optical domain. Mercury cadmium telluride (MCT) has 

long been regarded as the premier material for IR detection purposes.  

 

1. 1 History of HgCdTe 

The discovery of HgCdTe in 1958 by the group led by Lawson at the Royal 

Radar Establishment in England had a major impact on the infrared (IR) detector 

community, and triggered extensive research on this material.1 Significant 

advances in focal-plane array (FPA) technology using HgCdTe have since been 

made, and it currently represents the dominant material used in all IR spectral 

bands, primarily for space and military applications.2  

Much of the original research involving HgCdTe was conducted behind 

closed doors during the early years of its development, funded by several large 

defense firms such as Texas Instruments, Hughes Aircraft, and Honeywell. 
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Mainly through the auspices of the Defense Advanced Projects Research Agency 

(DARPA), the situation was abruptly changed in 1980, and the first US Workshop 

on the Physics and Chemistry of HgCdTe was held in 1981.2  

Over more than 50 years, the ternary HgCdTe alloy has successfully 

overcome major challenges from alternative materials, such as lead-salt ternary 

alloys (PbSnTe and PbSnSe), GaAs/AlGaAs quantum-well photodetectors, InSb-

based III–V materials, and InAs/GaInSb strained layer superlattices. It has been 

predicted that, because of its excellent properties, HgCdTe technology will 

continue to expand the range of its applications well into the future.3  

 

1. 2 Material properties of HgCdTe 

HgCdTe is a pseudo-binary semiconductor alloy that crystallizes in the 

zincblende structure. Several properties of HgCdTe qualify it as being highly 

useful for infrared (IR) detection. These include adjustable bandgap over the 1–

30µm range, direct bandgap with high absorption coefficient, and the availability 

of wide bandgap lattice-matched substrates for epitaxial growth.4 

 

1.2.1 Bandgap 

Hg1−xCdxTe has the unique feature of a direct band gap that is tunable from 

visible to infrared simply by adjusting the composition x of the alloy. Because of 

its band gap tunability with x, Hg1−xCdxTe has evolved to become the most 

important material for detector applications over the entire IR range.5 A number 
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of expressions approximating the bandgap energy are available.6 The most widely 

used expression is due to Hansen et al.7  

4 2 30.302 1.93 5.35 10 (1 2 ) 0.81 0.832gE x x T x x−
= − + + × − − +

      (1.1)
 

Where Eg is bandgap energy in electron volts, x is cadmium concentration, T is 

temperature in Kelvin. 

The bandgap energy Eg for Hg1−xCdxTe versus alloy composition x at 

temperatures 77 and 300K are shown in Fig. 1.1. As the Cd composition increases, 

the energy gap for Hg1−xCdxTe gradually increases from -0.3eV for HgTe up to 

1.6eV for CdTe. Also plotted in Fig. 1.1 is the cutoff wavelength λc(x, T), defined 

as the wavelength at which the response has dropped to 50% of its peak value. 

The bandgap energy tunability results in IR detector applications that span short 

wavelength IR (SWIR: 1–3 µm), middle wavelength (MWIR: 3–5 µm), long 

wavelength (LWIR: 8–14 µm) and very long wavelength (VLWIR: 14–30 µm) 

ranges.3 

 

1.2.2 Lattice constant 

As shown in Fig. 1.1, the lattice constant of Hg1-xCdxTe alloys changes by 

only 0.02% for x compositions ranging from CdTe to HgTe. This leads to two 

important consequences for applications: Firstly, HgCdTe can be grown on 

natural infrared-transparent lattice-matched CdZnTe substrates, thus allowing 

growth of high-quality HgCdTe epitaxial layers with very low dislocation 

densities (104 cm-2). Secondly, it provides the possibility to grow complex 

multilayer heterojunctions that are needed for the third generation FPA.3  
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Fig. 1.1. Bandgap structure of HgCdTe near the Γ-point for three different values 

of the forbidden energy gap.3 

 

1.2.3 Optical coefficient 

The most important optical parameter for IR detector materials is the 

absorption coefficient near the band edge, specifically in the region within 20meV 

from the conduction band edge.3 Direct bandgap semiconductors, such as 

HgCdTe, have a sharp onset of the optical absorption as the photon energy 

increases above Eg. In contrast, indirect semiconductors, such as silicon or 

germanium, have softer absorption curves.5 The optical absorption coefficient for 

HgCdTe has been measured by Scott8 and is illustrated in Fig. 1.2 over a wide 

range of alloy compositions. The strong optical absorption allows HgCdTe 
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detector structures to absorb a very high percentage of the incident signal while 

being relatively thin, on the order of 10–20 µm. Minimizing the detector thickness 

leads to minimization of the volume of material which might otherwise generate 

noise and excess thermal carriers.3 

In high quality samples, the measured absorption in the short-wavelength 

region is in good agreement with the Kane model calculation3, while the situation 

becomes more complicated in the long-wavelength region because of the 

appearance of an absorption tail extending to energies lower than the energy gap. 

This tail has been attributed to composition-induced disorder. According to 

Finkman and Schacham9, the absorption tail obeys a modified Urbach’s rule: 

]
)(

exp[
0

0
0 TT

EE

+

−
=

σ
αα  in cm-1                (1.2) 

Where T is in Kelvin, E is in electron Volts and α0 = exp(53.62x-18.88), E0 = 

-0.3424+1.838x+0.148x2 (in electron Volts), T0 = 81.9 (in Kelvin), σ = 3.267 × 

104(1+x) (in Kelvin per electron Volts) are fitting parameters that vary smoothly 

with composition. The fitting was performed with data at x = 0.215 and x = 1 and 

for temperatures between 80 and 300K.  
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Fig. 1.2. Optical absorption coefficient of Hg1–xCdxTe as a function of x.8 

 

1.3 Growth of HgCdTe 

The growth of HgCdTe has evolved, along with many other semiconductor 

materials technologies, over the past 50 years. The principal growth methods 

include bulk growth, liquid-phase epitaxy (LPE), metalorganic chemical vapour 

deposition (MOCVD), and molecular beam epitaxy (MBE).5 The timeline for 

evolution of these growth technologies is illustrated in Fig. 1.3.  
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Fig. 1.3. Evolution of HgCdTe crystal growth technology from 1958 to the 

present.5 

 

1.3.1 Bulk methods 

Several historical reviews of the development of bulk-grown HgCdTe (MCT) 

have been published.4 Kruse and Micklethwaite10,11 gave comprehensive 

information on the growth techniques used in the 1960s and 70s. Throughout the 

1980s, various viewpoints on the merits and limitations of bulk growth methods 

were expressed.4 Electrical properties were seen to be superior to those in 

epitaxial material while structural properties and available area were seen as the 

major limitations.12 Many techniques were tried in the early years but three prime 

techniques appear to have survived. These are: solid state recrystallization (SSR), 

Bridgman, and travelling heater method (THM).4 Tennant et al.13 have provided 

an authoritative view of the major issues in these growth techniques, and pointed 
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out the problems of structural defects and size limitations for use in second 

generation devices.  

 

1.3.2 Liquid-phase epitaxy 

The technique of liquid-phase epitaxy (LPE), which had become a well-

established method for thin-film growth of III–V compounds since the early 

1960s, was not applied to growth of HgCdTe (MCT) until the late 1970s, with the 

first published paper being by Harman.14 Since then, the field has grown rapidly 

to the point that LPE is the most mature method among the various epitaxial 

techniques. In the early 1990s, bulk growth was replaced by LPE and is now 

considered very mature for production of first- and second-generation IR 

detectors. The three main approaches for LPE growth of MCT, namely tipping, 

dipping and horizontal sliding boat, have all been used for many years for III–V 

materials.4 However, LPE technology is limited for the variety of advanced MCT 

structures required for third generation detectors, due to the poor surface 

morphology and difficulties in controlling layer thicknesses and interface quality.5 

 

1.3.3 Molecular beam epitaxy 

Molecular beam epitaxy (MBE) has become one of the leading growth 

techniques in semiconductor technology for developing new compounds and 

device structures, based upon its relative simplicity and precise control over 

growth parameters.4 The first successful demonstration of epitaxial growth of 

MCT by MBE was reported in 1981.15 Since then a great deal of progress has 
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been achieved in eliminating defects, improving growth and doping control, and 

demonstrating IR electro-optical devices. At present, MBE is considered as the 

dominant vapor phase method for the growth of MCT. It offers low temperature 

growth under ultrahigh-vacuum (UHV) conditions, in situ n-type and p-type 

doping, and control of composition, doping and interfacial profiles. MBE is now 

the preferred method for growing complex layer structures for multi-color 

detectors.16 

 

1. 4 Substrates for HgCdTe growth 

Epitaxial growth of thin layers of HgCdTe (MCT) for infrared focal-plane 

array (IR FPA) requires a suitable substrate. CdTe was initially used, since it was 

available from commercial sources in reasonably large sizes. The main drawback 

of CdTe is its lattice mismatch of a few per cent with LWIR and MWIR MCT.5 In 

the mid-1980s, it was demonstrated that the addition of a few percent of ZnTe to 

CdTe (typically 4%) could create a lattice-matched substrate.4 CdTe and closely 

lattice-matched CdZnTe substrates are typically grown by the modified vertical 

and horizontal unseeded Bridgman technique.3  

CdZnTe substrates have severe drawbacks for MCT growth such as the lack 

of large areas, and high production costs. More importantly, the difference in the 

thermal expansion coefficients (TEC) in CdZnTe substrates and Si readout 

integrated circuits (ROIC), as well as recent interest in large-area IR FPAs (1024 

× 1024 and 2048 × 2048) have resulted in serious limitations for CdZnTe 

substrate application. Readily producible CdZnTe substrates are currently limited 
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to areas of approximately 30 cm2. At this size, the wafers used for growth are 

unable to accommodate more than two 1024 × 1024 FPAs.3  

For more than 30 years, materials researchers have been searching for an 

alternative substrate to lattice-matched CdZnTe for vapor-phase growth. 

Numerous materials have been tried, such as sapphire, Ge, Si, GaAs, and InSb, 

primarily utilizing MBE.2 Although all these materials have been investigated, Si 

has clear advantages over the other substrates because of its low cost, large wafer 

size, and a thermal-expansion coefficient that perfectly matches that of the Si 

readout circuitry in an FPA structure.3 In order to accommodate the large lattice 

mismatch (~19%) between HgCdTe and Si, a CdTe buffer layer is usually 

deposited by MBE on the Si substrate prior to the growth of HgCdTe.17 Using 

optimized growth conditions for Si(211)B substrates, CdTe(211)B layers with 

EPD of 1.5 × 105 cm−2 were obtained.18 While this level of EPD has little impact 

on MWIR HgCdTe/Si detectors, it must be reduced still further to achieve high-

performance LWIR detectors.  

 

1.5 Surface passivation 

The surface passivation of HgCdTe (MCT) has become a major concern due 

to several critical issues, including the problem of defect formation in the 

interface region resulting from the nonstoichiometric, contaminated, 

decomposition (Hg evaporation) or damaged surface prior to or during the 

passivation process.19 These defects induce a high density of fixed passivant 

charges and interface traps, which are usually responsible for the excessive dark 
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current, low signal, and high noise level found in the photo-detectors.20 In MBE-

grown MCT used for the third generation infrared detectors, surface leakage 

currents prove to be the performance-limiting factor.19 Thus, there has been a 

continuous, ongoing effort to achieve optimal and reliable passivation of MCT 

surfaces. Thin films of native anodic oxides, such as SiO2, ZnS, and CdTe, have 

been extensively investigated as passivants for MCT.21 Among these options, 

CdTe has become one of the major choices in the IR industry, due to its excellent 

material properties as a passivant for MCT junctions, including its chemical 

compatibility to MCT, good adhesion, and larger bandgap energy.22  

 

1.6 Detection Mechanism of HgCdTe Photodiodes 

1.6.1 Photodiodes  

A photodiode is a type of photodetector capable of converting light into 

either current or voltage, depending upon the mode of operation. The most 

common example of a photovoltaic detector is the abrupt p-n junction prepared in 

the semiconductor, which is often referred to simply as a photodiode. The 

principle of operation of the p-n junction photodiode is illustrated in Fig. 1.4. 

When a photon of sufficient energy strikes the diode, it excites an electron, 

thereby creating a mobile electron and a positively charged electron hole. If the 

absorption occurs in the depletion region of the junction, or one diffusion length 

away from it, these carriers are swept from the junction by the built-in field of the 

depletion region. Holes thus move toward the anode, and electrons toward the 
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cathode, and a photocurrent is produced, which shifts the current-voltage (I-V) 

characteristic in the direction of negative or reverse current.3  

 

 

Fig. 1.4. p–n junction photodiode: (a) structure of abrupt junction, (b) energy band 

diagram, (c) electric field and (d) I–V characteristics.3 

 

An example of a HgCdTe photodiode is shown in Fig. 1.5. An n-type layer 

of HgCdTe is grown on a CdZnTe substrate, followed by a p+-layer to form the 

junction. Mesa etching defines the individual diodes. The surface is passivated to 

prevent surface accumulation or inversion. Contacts are made to the p+-layer in 

each pixel and to the n-type layer at the edge of the array. Infrared flux is incident 

through the IR-transparent substrate.5 
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Fig. 1.5. Cross section of a mesa-etched HgCdTe photodiode.5 

 

1.6.2 Readout Multiplexers 

Once the incident photon energy becomes an electrically measurable charge, 

the charge must be collected and registered. This function occurs in the 

multiplexing readout circuitry. This multiplexing has several advantages over 

reading out every detector independently. These include reduced power 

consumption, fewer amplifiers and lines from the cold finger to the outside warm 

world, and independent optimization of detector materials and multiplexer. 

Indium bump bonding of readout electronics provides for multiplexing of the 

signals from thousands of pixels onto a few output lines, greatly simplifying the 

interface between the vacuum-enclosed cryogenic sensor and the system 

electronics.3 These multiplexers may be a separate integrated circuit connected to 

the array as a hybrid, as illustrated in Fig. 1.6.  
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Fig. 1.6. (a) Hybrid IR FPA, (b) cross section of structure, (c) indium bumps on Si 

multiplexer.3 

 

1.7 Third generation detectors 

The US Army is principally interested in developing third generation IR 

systems in order to extend both detection and identification ranges significantly 

beyond the capability of current systems.23 The definition of third generation IR 

systems is not particularly well established. According to Reago et al.24, the third 

generation is defined in order to maintain the current advantage enjoyed by US 

and allied armed forces. This class of devices includes both cooled and uncooled 

FPAs24, 25 

(1) High-performance, high-resolution cooled imagers having multi-colour 
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bands, 

(2) medium- to high-performance uncooled imagers, 

(3) very low cost expendable uncooled imagers. 

 

1.7.1 Two-color HgCdTe detectors 

Considerable progress in the development of multi-color HgCdTe FPAs has 

been recently demonstrated by many research groups, usually by employing MBE 

for the growth of a variety of devices.3  

The unit cell of two-color integrated FPAs consists of two detectors, each 

sensitive to a different spectral band. The first demonstrated two-color HgCdTe 

detector, as shown in Fig. 1.7, is the bias-selectable n-p-n triple-layer 

heterojunction (TLHJ), back-to-back photodiode. A critical step in device 

formation is connected with the in situ p-type As-doped layer with good structural 

and electrical properties to prevent internal gain from generating spectral crosstalk. 

The Band 1 and Band 2 alloy compositions can be any two x-values as long as 

Band 1 has a higher x-value than Band 2. The polarity of the bias across the 

structure determines which junction is active, and thereby the spectral band of the 

detector. The bias switching is performed by the readout integrated circuit 

(ROIC).3  
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Fig. 1.7. Cross section of two-color n-p-n detector structure.3 

 

1.7.2 Alternative materials systems  

Much effort has been expended to push the HgCdTe technology to both 

large-format and low-cost systems while still maintaining superior performance.26 

However, even with all the advances made in this technology, HgCdTe still faces 

a challenge that to date has not been overcome, namely that the dislocation 

density of HgCdTe grown on scalable substrates is two orders of magnitude 

higher than state-of-the-art HgCdTe material grown on nonscalable CdZnTe.27 A 

number of alternative materials technologies to HgCdTe have emerged over the 

years, but most have since fallen by the wayside.  

In the early 1990s, quantum-well IR photodetectors (QWIPs) were thought to 

be a competitive technology, but their time seems to have come and gone due to 

fundamental limitations associated with intersubband transitions at higher 

temperature operation (>70K) and relatively low quantum efficiencies (typically 

less than 10%).2 
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The world of bandgap engineering is currently enamored with type-II 

superlattices (T2SLs) (InAs-GaSb and related alloys) for both the MWIR and 

LWIR regions. The laws of physics are favorable for T2SLs, predicting good 

quantum efficiencies. By adjusting the strain in the superlattice, the Auger process 

can be suppressed. Additionally, the larger effective mass in the SLS material 

reduces tunneling currents in the space charge region. T2SL-based detectors have 

seen rapid progress over the past few years.2 However, the merits of this material 

system rest on yet-to-be experimentally verified predictions of higher 

performance and engineering advantages. Whether the superlattice IR 

photodetectors can outperform the ‘‘bulk’’ narrow-gap HgCdTe detectors is one 

of the most important questions for the future of IR photodetectors.26 

Among the possible small gap II-VI semiconductor alloys for IR detectors, 

HgZnTe, HgMnTe, and HgCdSe can be considered as alternatives to HgCdTe. 

However, none of these ternary alloy systems has been systematically explored in 

the device context.3 Recently, it was proposed that HgCdSe might replace 

HgCdTe for IR applications due to its advantage of having commercially 

available large-area substrates readily available.27 The lattice constant and 

bandgap of various semiconductor systems are shown in Fig. 1.8.  

Analogous to the alloying of HgTe and CdTe, HgSe and CdSe crystallize in 

the zincblende structure to form an alloy of Hg1-xCdxSe. The bandgap of this 

material can be tuned simply by adjusting the x composition to absorb any 

wavelength of IR light, similar to Hg1-xCdxTe. In addition, two commercially 

available III-V binary semiconductors, namely InAs and GaSb, can be used as 
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large-area substrates that are nearly lattice-matched to HgCdSe. With the small 

lattice mismatch present between these substrates and HgCdSe, it seems 

reasonable to assume that the final HgCdSe dislocation density could be similar to 

the dislocation densities for HgCdTe materials grown on bulk CdZnTe 

substrates.27 

 

 

Fig. 1.8. Energy gap versus lattice parameter for several semiconductor material 

systems. The shaded region highlights semiconductors that have lattice 

parameters near 6.1Å.27 

 

1.8 Outline of dissertation 

In this dissertation, microstructural characterization of LPE- and MBE-grown 

HgCdTe alloys and related materials is undertaken. Transmission electron 
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microscopy (TEM) imaging and small-probe microanalysis have been used 

throughout to characterize the materials in order to improve the growth process.  

In chapter two, the details of experimental procedures involved in this 

dissertation are summarized. Materials growth methods, including LPE and MBE, 

are briefly described. Sample preparation methods essential for TEM 

characterization, including ion milling and FIB milling, are explained in detail.  

In chapter three, the microstructure of CdTe surface passivation layers 

deposited on HgCdTe heterostructures is described and discussed. The growth of 

CdTe layers by different techniques and processing methods is compared, using 

TEM imaging and analytical techniques. TEM sample preparation by FIB milling 

is demonstrated. 

In chapter four, microstructural characterization of HgCdTe layers grown by 

MBE on both Si(211) and GaAs(211) substrates is described. The nucleation of 

ZnTe layers on stepped Si(211) surfaces, and the microstructure of the composite 

HgCdTe/CdTe(211)B/ZnTe/Si(211) material are characterized using a wide range 

of TEM imaging and analytical techniques. The microstructure of the 

CdTe(211)B/GaAs(211) heterostructure is also characterized using TEM. 

In chapter five, microstructural characterization of HgCdSe layers grown by 

MBE on GaSb(112) and ZnTe/Si(112) substrates is reported. These results 

include some of the first ever electron micrographs of HgCdSe material grown on 

GaSb substrates. Samples of HgCdSe were grown at different temperatures and 

flux ratios in order to determine the optimal growth parameters, and the 
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microstructure of the composite HgCdSe/ZnTe/Si(112) and HgCdSe/GaSb(112) 

materials are characterized by TEM methods. 

In chapter six, conclusions and opportunities for future work are presented. 

Proposals and comments for further improvement of TEM sample preparation are 

also given. 
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Chapter 2 

EXPERIMENTAL PROCEDURES 

 

This chapter first outlines the methods used for materials growth, including 

liquid-phase epitaxy (LPE) and molecular beam epitaxy (MBE). Sample 

preparation methods, including ion milling and focused-ion-beam milling, 

suitable for electron microscopy examination of HgCdTe/CdZnTe and 

HgCdTe/CdTe/Si heterostructures are then described in detail. A method of 

etching for minimizing ion-milling damage is introduced. High resolution 

transmission electron microscopy (HREM), scanning transmission electron 

microscopy (STEM) and analytical electron microscopy (AEM), which are 

heavily used in the experimental studies described in the later chapters, are also 

briefly summarized. 

 

2.1 Material growth 

2.1.1 LPE growth of HgCdTe p-n heterojunction 

The p-on-n Hg1-xCdxTe heterojunction device structures were grown by LPE 

on nominally lattice-matched CdZnTe(111)B substrates by Dr. S. Tobin and 

colleagues at BAE Systems. The x concentration was determined by carefully 

weighing the constituents then transferring the materials to the LPE “boat”. The 

boat was then heated in the furnace to several hundred degrees Celsius until a 

liquid phase was reached, after which it was slowly cooled.1 The In-doped n-type 

absorber layers were first grown in a horizontal slider system using a Te-rich melt. 
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The As-doped p-type cap layers, usually with higher x concentration 

corresponding to higher bandgap material, were grown in a vertical dipper system 

from an Hg-rich melt. Individual devices were defined by wet-chemical mesa-

etching and then passivated with ultrahigh-vacuum-deposited CdTe. Some wafers 

were annealed in Hg atmosphere at 250°C for 96h to reduce the Hg vacancy 

concentration and to cause interdiffusion between the CdTe passivation layer and 

the HgCdTe surface region.  

 

2.1.2 MBE growth of CdTe and Hg1-xCdxSe materials 

Samples of CdTe(211)B/ZnTe/Si(211), Hg1-xCdxSe/ZnTe/Si(112) and Hg1-

xCdxSe/GaSb(112) heterostructures were grown by MBE in Army Research 

Laboratory. Samples of HgCdTe/CdTe(211)B/GaAs(211) were grown by MBE in 

U.S. Army RDECOM, CERDEC Night Vision and Electronic Sensors Directorate. 

Figure 2.1 shows a schematic of a typical MBE growth chamber. The substrate 

was held in the MBE chamber in direct line of the shuttered effusion cells. The 

effusion cells were used to heat the ultra-pure materials, which slowly sublimated 

and then condensed on the wafer. During operation, reflection-high-energy 

electron diffraction (RHEED) was normally used to monitor growth of the crystal 

layers. Computer-controlled shutters were located in front of each effusion cell, 

allowing precise control of the layer thicknesses down to a single atomic layer. 

The growth temperatures were usually less than 200˚C, which was approximately 

150˚C below typical growth temperatures used for metalorganic chemical vapor 
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deposition (MOCVD). Hg, solid CdTe, Te, and Se were used as the source 

materials.  

 

 

Fig. 2.1. Schematic of an MBE system.2  

 

2.2 TEM sample preparation 

Samples suitable for TEM examination were prepared in the cross-sectional 

geometry using standard mechanical polishing and dimpling, followed by argon-

ion milling. However, the Hg-containing material studied in this dissertation 

research had to be treated very carefully in order to obtain suitable electron-

transparent thin foils due to: mechanical weakness of the substrate; poor adhesion 

between the film and the substrate; and inherent susceptibility to ion-milling 
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damage. In this section, the special procedures developed for TEM sample 

preparation in this research are described.  

 

2.2.1 HgCdTe/CdZnTe heterostructures 

Since the CdZnTe substrates were extremely weak and brittle, diamond 

blades, which are commonly used to slice Si wafers, could not be used at any time. 

Otherwise, sample vibration would easily initiate crack formation, leading to the 

propagation of cracks through the entire wafer. Samples were instead cleaved into 

pieces about 3 mm in width. Two pieces were then glued with film layers face-to-

face in the case of cross-sectional samples. The samples had to be gently pressed 

with a sample clamp to remove excess glue between the two pieces. The samples 

were then placed into an oven for curing for about 30 minutes. The oven 

temperature had to be maintained at a temperature of no more than 90°C 

throughout the entire preparation process because higher temperature would cause 

Hg diffusion and cause the original structures to be altered.  

After sample curing, standard mechanical polishing and dimpling were used 

for further thinning. The first side of the cross-sectional sample was gently ground 

down by a few millimeters depending on the initial sample thickness, followed by 

polishing with diamond lapping paper until most visible scratches around the 

target area of interest were removed. The sample was then flipped over, and the 

second side was ground down to a total thickness of ~100-120 µm, followed by 

dimpling with a cloth wheel. Since the material removal rate was extremely high, 

the samples were regularly checked under an optical microscope about every 2 
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minutes. The dimpling was usually stopped at a sample thickness of about 30µm, 

which was much thicker relative to other materials, due to the brittleness of the 

CdZnTe substrate.  

The sample was then glued onto a copper grid since the sample was still on a 

glass stub. After curing in a low temperature oven (90°C), the sample would be 

placed in fresh acetone for about an hour to remove the glass stub from the 

sample. The sample was finally argon-ion-milled at 3.5keV at liquid nitrogen 

temperature using Gatan Model 691 PIPS system until hole perforation was 

achieved.2 Low-angle, low-energy (approximately 2.0keV) milling was used for 

final thinning to minimize the formation of any amorphous surface or interfacial 

layers. All of the major steps in this procedure are illustrated in Fig 2.2.  

 

 

Figure 2.2. Schematic showing procedures used for TEM sample preparation. 
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2.2.2 HgCdTe/CdTe/Si heterostructures 

The two major problems experienced when preparing TEM samples for this 

system were film adhesion to the substrate, and differences in the rate of material 

removal during ion milling.  

Because Si substrates of the HgCdTe/CdTe/Si heterostructures had sufficient 

mechanical strength, they could usually be cut into small pieces to prepare cross-

sectional samples. Samples were cut into slabs with sizes of about 2.5 mm×2 

mm, followed by gluing two pieces together for preparation of the cross-sectional 

samples. The first side was then mechanically ground by a few millimeters 

depending on the initial sample thickness, followed by polishing with diamond 

lapping paper until most visible scratches around the target area were again 

removed. The second side was mechanically ground to a thickness of ~100-120 

µm, followed by dimpling with copper wheel to about 30 µm. Since the removal 

rate of CdTe in this polishing procedure was much greater than for Si, the sample 

was then dimpled off-center using a cloth wheel, which made the Si substrate 

thinner than the film layer. This “off-center dimpling” method allowed large thin 

areas of the CdTe/Si interface suitable for TEM observation to be obtained. Cloth-

wheel dimpling was usually stopped when the hole being formed from the 

substrate side approached close to the film/substrate interface.  

The sample was then glued onto a copper grid as it was still mounted on a 

glass stub. After curing in a low temperature oven at 90°C, the sample was placed 

in fresh acetone to remove the glass stub from the sample. Finally, the sample 

would be argon-ion-milled at 2.5keV at liquid nitrogen temperature until hole 
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perforation occurred. Low-angle, low-energy (approximately 2.0keV) milling was 

again used for final thinning to minimize the formation of any amorphous surface 

or interfacial layers. These procedures have summarized schematically in Fig. 2.3. 

Since the CdTe layers were etched away much faster than the Si substrate, the 

period of ion-milling had to be kept short. Otherwise, the entire CdTe layer would 

be gone.  

The same off-center procedure was also applied to sample preparation for 

HgCdSe/ZnTe(112)/Si, HgCdSe/GaSb(112), and CdTe(211)B/GaAs(211) 

heterostructures.  

 

 

Fig. 2.3. Schematic showing procedures used for TEM sample preparation. 
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2.2.3 Focused ion beam 

TEM cross-sectional samples were also prepared using an FEI Nova 200 

focused-ion-beam (FIB) system. The FIB technique has a major advantage over 

conventional methods of TEM specimen preparation in that samples can be 

extracted from specific sites, and large uniform thin areas can be obtained. 

However, since HgCdTe samples are known to be susceptible to ion-milling 

damage, precautions must still be taken to minimize FIB damage. A platinum 

protection layer was first deposited over the area of interest to protect the film, as 

illustrated in Fig. 2.4 (a). Low-energy low-current milling was used during the 

final stages of milling to minimize ion damage. Figure 2.4 (b) shows that no 

major structural changes in the HgCdTe layer appears to have been caused as a 

result of the FIB milling, although the CdTe layer has clearly been badly damaged.  

 

 

Fig. 2.4. (a) Scanning electron micrograph showing the Pt protection layer and the 

HgCdTe/CdTe/Si heterostructure; (b) Cross-section electron micrograph of 

sample prepared using the FIB system.  
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2.2.4 Ion-milling damage 

Ion-milling damage during TEM sample preparation has been a serious 

ongoing issue for II-VI materials for many years.3-5 During this research, it was 

consistently observed that argon-ion milling had induced severe damage in CdTe 

material, even when the sample was milled at very low energy and held properly 

at liquid nitrogen temperature. Typical high-resolution images taken at two 

different magnifications are presented in Fig. 2.5 (a) and (c). It is evident that the 

defects primarily consist of small (about 5-10 nm) dislocation loops, which lie 

mostly on {111} planes. In order to eliminate this ion-milling damage, methanol 

solutions of dilute bromine (0.01% volume concentration) were used to etch the 

samples for 10 seconds after ion milling. The loop defects observed previously 

were essentially eliminated after etching, as demonstrated in Fig. 2.5 (b). Several 

dislocations that thread through the layer, as well as defects near the interface, are 

visible, but relatively few of the dislocation loops can be seen. The high-

resolution image in Fig. 2.4 (d) shows that no stacking faults are present and only 

a perfect lattice image is visible. However, it must be stated that a consistent and 

reliable method of etching for preparation has not yet been established since the 

thin areas quickly become thick and dirty after etching.  
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Fig. 2.5. Cross-section electron micrograph of CdTe samples prepared by argon 

ion milling: (a),(c) before etching; (b),(d) after etching.  

 

2.3 Electron microscopy 

2.3.1 High resolution transmission electron microscopy (HREM) 

The electron microscopy observations reported in this dissertation were 

mostly carried out using a JEOL JEM-4000EX high-resolution electron 

microscope, operated at 400keV, and equipped with a double-tilt, top-entry-type 
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sample holder. The top-entry-type sample holder provides high stability against 

sample drift, which is essential for high resolution. All of the high-resolution 

images were taken under similar microscope operating conditions and the 

microscope was always corrected for objective-lens astigmatism and axial coma 

before final image recording took place. Both phase-contrast and diffraction –

contrast imaging were used to characterize the thin-film samples. 

 

2.3.2 Scanning transmission electron microscopy (STEM) 

High-angle annular-dark-field (HAADF) imaging and energy-dispersive x-

ray spectroscopy (EDXS) were carried out using a JEOL 2010F TEM, equipped 

with a field-emission electron gun and operated at 200keV.  

A schematic illustrating the essential components essential for the STEM 

technique is shown in Fig. 2.6. The image-forming objective lens precedes the 

specimen, and is used to form a small probe which is scanned across the specimen 

in serial mode. In state-of the-art instruments, this probe can have Ångstrom-scale 

dimensions. The focused beam passes through the sample and is then scattered in 

all directions. The transmitted beam can be used to form bright-field images, 

which resemble the normal high-resolution TEM images, or pass through 

spectrometers from which energy-filtered images and/or the electron-energy-loss 

spectrum (EELS) can be obtained. X-rays are also produced due to inelastic 

scattering of electrons by the sample, allowing the technique of energy-dispersive 

X-ray spectroscopy (EDXS) to be used for element identification. The electrons 

that are scattered to relatively high angles are collected by an annular-dark-field 
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(ADF) detector. Images that result from collection of the scattered electrons 

reaching the high-angle annular detector give bright contrast roughly 

corresponding to the mean square of the atomic number. Thus, this type of high-

angle annular-dark-field (HAADF) imaging is usually referred to as “Z-contrast” 

imaging.6-8 A major strength of HAADF imaging is that it gives an image free of 

contrast reversal over a large range of thicknesses and defocus, thereby 

overcoming the image-interpretation problems in HREM imaging caused by 

dynamical diffraction.8-10 The spatial resolution is limited by the probe size of the 

microscope (the optimization of which is achieved using the Ronchigram). In this 

research, HAADF images were obtained by using a focused probe diameter of 

~0.2 nm. 

 

2.3.3 Analytical Electron Microscopy 

EDXS was performed to analyze the composition distributions, usually 

across sample interfaces. The electron beam incident on a sample excites electron 

from inner shells, leaving vacancies in the original shell location. Electrons from 

outer, higher-energy shells then fill the holes, together with emission of X-rays. 

The corresponding energies of the emitted X-rays carry characteristic information 

about the chemical species present in the specimen. The spatial resolution of the 

EDXS signal is mainly determined by the probe size and the interaction volume 

within the sample. In this research, elemental composition profiles were obtained 

by operating the microscope in STEM mode with the probe size of ~1 nm and 

scanning the electron probe across the region of interest.  
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Fig. 2.6. Schematic showing the essential components associated with the 

scanning transmission electron microscopy technique.11 
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Chapter 3 

MICROSTRUCTURAL CHARACTERIZATION OF CDTE SURFACE 

PASSIVATION LAYERS 

 

This chapter describes the characterization of CdTe surface passivation 

layers grown on HgCdTe. The samples were provided by Dr. Steve Tobin and 

colleagues at BAE Systems (Lexington, MA). My role has been the 

microstructural characterization using electron microscopy. The major results of 

this collaborative research have been published elsewhere.1 

 

3.1 Introduction 

Surface effects in infrared detectors based on HgCdTe (MCT) largely 

dominate the lifetime of excess carriers.2 Thus, the fabrication of high-

performance MCT detectors depends on developing a process that is suitable for 

producing low surface recombination velocities. Hence, it becomes important to 

properly passivate the HgCdTe surface. The use of CdTe (CT) as a surface 

passivation layer was originally considered to be promising since CdTe is 

transparent to the infrared, it has high resistivity and it is nearly-lattice-matched to 

MCT.3 The passivation of HgCdTe infrared detectors with CdTe has since 

become the standard approach in the infrared detector industry.4 Investigations of 

long-wavelength infrared (LWIR) focal plane arrays (FPAs) using p- on n- 

HgCdTe double-layer heterojunctions have demonstrated that passivation with 

CdTe significantly improves the overall device performance.5 
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The epitaxial growth of CdTe on HgCdTe might be anticipated to reduce the 

number of dangling bonds at the MCT surface, which would in turn reduce defect 

generation centers, recombination centers, and possible defect traps at the 

CT/MCT interface.3 Furthermore, a CT/MCT heterojunction with graded 

composition could produce an electric field in the HgCdTe layer that would repel 

minority carriers away from the interface and consequently improve the surface 

recombination velocity.6 It has been reported that a thermally interdiffused 

CT/MCT interface leads to improvement in passivation, irrespective of the CdTe 

growth method used.4 Moreover, thermally-induced compositional grading near 

the CT/MCT interface has been reported to shift the effective HgCdTe electrical 

surface away from the initial defective interface.6 Such interdiffusion should lead 

to devices that are more thermally stable and do not degrade over time. Thermal 

annealing in an Hg atmosphere was reported to improve the overall 

microstructure of HgCdTe epilayers grown on CdTe buffer layers.7 This 

improvement was attributed to a decrease in the number of Hg vacancies in the 

HgCdTe epilayers. Several studies addressing aspects of CdTe passivation of 

HgCdTe have been published.2-6 However, publications describing 

microstructural characterization of the CdTe passivation layer and the CT/MCT 

interface are still very limited. 

The transmission electron microscope (TEM) is a powerful instrument that 

provides a range of imaging and analytical techniques that are well suited for 

determining the microstructure and chemistry of HgCdTe materials down to the 

atomic scale. Such information is usually considered as essential for 
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understanding defect origins. This chapter reports a microstructural investigation 

of CdTe passivation layers deposited onto MCT heterostructures by different 

methods. The effects of annealing on the CdTe passivation layer and the CT/MCT 

interface were also studied. Additionally, the use of focused-ion-beam (FIB) 

milling as an alternative approach for preparing large-area cross-sectional TEM 

specimens was briefly evaluated. 

 

3.2 Experimental details 

The devices studied consisted of thick (~10-20 µm) n-type layers and thin 

(~1-3 µm) p-type layers, with final CdTe (~0.3-0.6 µm) passivation layers. The 

Hg1-xCdxTe (x~0.2-0.4) epilayers were grown by liquid-phase epitaxy (LPE) on 

nominally lattice-matched CdZnTe (111)B substrates. The indium-doped n-type 

absorber layers were grown in a horizontal slider system using a Te-rich melt. The 

arsenic-doped p-type capping layers with larger bandgap were then grown in a 

vertical dipper system using an Hg-rich melt. The CdTe capping layers were 

deposited by two different methods, namely hot-wall epitaxy (HWE) and 

molecular beam epitaxy (MBE). One of the wafers with a CdTe layer grown by 

MBE was annealed in Hg atmosphere at 250°C for 96h, with the primary 

objective being to determine any changes in the quality of the CT/MCT interface. 

Samples for TEM characterization were usually prepared in the cross-

sectional geometry using standard mechanical polishing and dimpling to 

thicknesses of about 30-40 µm, followed by argon-ion milling with the sample 

held at liquid nitrogen temperature. It is well known that II-VI semiconductors are 
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susceptible to structural damage during TEM specimen preparation.8 Samples that 

were cooled before initiation of ion milling, however, did not exhibit defects, 

emphasizing the importance of keeping the sample at low temperature during the 

thinning process.9 Final low-angle, low-energy (2.0keV) ion milling for a short 

period was often used to minimize the thickness of any remaining amorphous 

surface layers. An FEI Nova 200 FIB instrument was also used to cross-section 

additional samples prepared with a mesa device geometry, in particular to assess 

the usefulness of this approach in allowing simultaneous access to extended 

sample regions, which is often not possible using argon ion milling. The electron 

microscopy observations were mostly carried out using a JEOL JEM-4000EX 

high-resolution electron microscopy (HREM), operated at 400keV and equipped 

with a double-tilt, top-entry-type sample holder. High-angle annular-dark-field 

(HAADF) imaging and energy-dispersive X-ray spectroscopy (EDXS) were 

carried out using a JEOL 2010F transmission electron microscopy (TEM), 

equipped with a field-emission electron gun (FEG) and operated at 200keV. 

Samples were usually oriented for TEM observation along a HgCdTe [110] 

projection so that the growth normal was aligned perpendicular to the incident 

beam direction. 

 

3.3 Results and discussion 

The as-grown CdTe passivation layers were generally found to be columnar 

and polycrystalline, as illustrated by the representative cross-sectional electron 

micrograph shown in Fig. 3.1. It appeared that the polycrystalline CdTe layers 



were only weakly bonded 

misfit dislocations being 

lattice mismatch between materials. Moreover, there were 

microstructure visible in the 

 

Fig. 3.1. Low-magnification bright

section of CdTe/HgCdTe interface.
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weakly bonded to the HgCdTe layers since there were no signs of any 

s being introduced at the CT/MCT interface, despite the ~0.2% 

lattice mismatch between materials. Moreover, there were no apparent changes

in the uppermost part of the HgCdTe layers. 

magnification bright-field electron micrograph showing cross 

/HgCdTe interface. 

s since there were no signs of any 

at the CT/MCT interface, despite the ~0.2% 

apparent changes in 

 

field electron micrograph showing cross 
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Two different growth techniques, namely hot-wall epitaxy (HWE) and 

molecular beam epitaxy (MBE), were used to deposit CdTe films on both planar 

and mesa MCT device structures, and these were found to result in different CdTe 

microstructure. As shown in Fig. 3.2, the CdTe grains were more irregular in 

shape when deposited by HWE, whereas those deposited by MBE were generally 

well-textured with mostly vertical grain boundaries. The average width of the 

CdTe grains deposited by HWE was determined to be approximately 40 nm, 

whereas the grains in the film grown by MBE were roughly 20 nm across. 

Thermal annealing not only changed the morphology of the CdTe epilayer 

that was deposited by MBE, but also altered the nature of the interface. 

Micrographs such as those shown in Fig. 3.3 established that the CT/MCT 

interfaces had become more abrupt, and comparison of electron diffraction 

patterns (DPs), such as those shown as insets, also indicated that the overall 

crystallinity of the CdTe grains was substantially improved. 

As visible in Fig. 3.4 (a), lattice fringes near the CT/MCT interface of the as-

deposited sample were often considerably blurred, which was attributed to local 

interfacial disorder and roughness. Annealing transformed the initially disordered 

regions at the interfaces into more ordered regions, such as shown in Fig. 3.4 (b). 

Based on observations of the respective crystalline lattices, and measurements 

from extensive regions of several samples, the average width of this rough and 

uneven CT/MCT interfacial region was estimated to be about 4.0 nm before 

annealing, whereas the width of this region was reduced to approximately 1.0 nm 

after annealing. 



Fig. 3.2. Cross-sectional electron micrograph

microstructure of CdTe capping layers deposited by: (a) HWE; and (b) MBE.
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sectional electron micrographs comparing the typical 

microstructure of CdTe capping layers deposited by: (a) HWE; and (b) MBE.

 

 

the typical 

microstructure of CdTe capping layers deposited by: (a) HWE; and (b) MBE. 
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Fig. 3.3. Cross-sectional electron micrographs and inset selected-area electron 

diffraction patterns comparing the CdTe/HgCdTe interface (for MBE-grown 

CdTe sample): (a) before annealing; and (b) after annealing. 
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Fig. 3.4. High-resolution electron micrographs comparing flatness of 

CdTe/HgCdTe interface: (a) before annealing; and (b) after annealing. 
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HAADF has been used previously as a method for characterizing CT/MCT 

interfaces,10 as well as MT/MCT superlattices.11 Figures 3.5 (a) and (b) show 

HAADF images of CT/MCT interfaces before and after annealing, respectively. 

Since the level of contrast in HAADF images is strongly dependent on atomic 

number, the differences between the Cd-rich layers and the Hg-rich layers are 

clearly visible. From the intensity profiles of the HAADF images, the chemical 

profiles can also be estimated. Thus, the widths of the interface transition regions, 

corresponding to the samples before and after annealing, were determined to be 

~8 nm and ~4.5 nm, respectively, based on measurements of the 10-90% change 

in intensity levels. These HAADF images and line profiles thus show the same 

trend of reduced surface abruptness after annealing. This trend is contrary to 

previous reports for epitaxial MCT/CT strained-layer superlattices,12 but 

interfacial misfit strain is likely to be a strong driving force for interdiffusion in 

this specific system, which is unlike the current set of samples. 

Figures 3.6 (a) and (b) show EDXS profiles corresponding to the lines 

arrowed in Figs. 3.5 (a) and (b). These profiles were obtained using a relatively 

large probe diameter (~1 nm) for statistical purposes. Based on measurements of 

the EDXS line profiles, the compositional abruptness of the CT/MCT interface 

was reduced from 16 nm to 11 nm by annealing. There are two major reasons for 

the differences between the line profile measurements of the interface abruptness 

from HAADF and EDXS. First, some broadening of the region excited by the 

beam (i.e., larger excitation volume) can be anticipated in the latter case. Second, 

EDXS signals are usually taken from much thicker sample areas than is the case 
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for HAADF images, also leading to beam broadening and apparent loss of spatial 

resolution. 

 

 

 

 

Fig. 3.5. HAADF images of CdTe/HgCdTe interface: (a) before annealing; and (b) 

after annealing; (c) profile along white box in (a); (d) profile along white box in 

(b). 

 

 

 

 



48 

 

 

 

 

 

Fig. 3.6. (a) EDXS profile along line arrowed in Fig. 3.5 (a); and (b) EDXS 

profile along line arrowed in Fig. 3.5 (b). 

 

 

 



49 

Cross-sectioning of TEM samples using focused-ion-beam (FIB) milling 

enables the possibility of selecting highly specific areas as well as preparing much 

larger thin areas that are suitable for TEM observation. In the case of CdTe 

deposited on mesa structures, use of the FIB allowed simultaneous TEM 

observation of the top and side walls of the mesas, which could not otherwise 

have been achieved by conventional argon-ion-milling. As an example, Fig. 3.7 is 

a cross-section electron micrograph of a sample prepared using the FIB system, 

showing the p-type HgCdTe region, as well as the CdTe passivation layers 

deposited on the top and side walls of the mesa, which are also shown at higher 

magnification in the two enlargements. No major structural changes appear to 

have been induced as a result of the FIB milling process.  
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Fig. 3.7. (a) Cross-section electron micrograph of sample prepared using FIB 

milling showing p-type HgCdTe as well as CdTe passivation layers; (b) and (c) 

enlargements from boxed regions labeled A and B in (a). 
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3.4 Conclusions 

In summary, the growth of CdTe passivation layers on HgCdTe by different 

techniques has been compared. TEM imaging was used to investigate the 

structural properties of the CdTe passivation layers, as well as to determine the 

effect of annealing on the CdTe/HgCdTe interface. The CdTe grains were larger 

and more irregular in shape when deposited by the hot-wall epitaxy method, while 

those deposited by MBE were generally well textured with mostly vertical grain 

boundaries. The flatness and abruptness of the CdTe/HgCdTe interface for the 

MBE-grown CdTe was shown by several different TEM methods to be 

substantially improved by annealing. The widths of the interface transition 

regions before and after annealing were determined to be ~8 nm and ~4.5 nm, 

respectively, and the compositional abruptness of the CdTe/HgCdTe interface was 

reduced from 16 nm to 11 nm. 
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Chapter 4 

MICROSTRUCTURAL CHARACTERIZATION OF 

CDTE(211)B/ZNTE/SI(211) AND HGCDTE/CDTE/GAAS(211) 

HETEROSTRUCTURES GROWN BY MOLECULAR BEAM EPITAXY 

 

The research described in this chapter was carried out in collaboration with 

Dr. Randy Jacobs and colleagues at U.S. Army RDECOM, CERDEC Night 

Vision and Electronic Sensors Directorate (Fort Belvoir, VA) and Dr. Yuanping 

Chen and colleagues at U.S. Army Research Laboratory (Adelphi, MD). The 

primary purpose of this specific research has been to contribute towards the 

development of improved HgCdTe (MCT) detectors and devices by investigating 

alternative substrates for MCT growth. My role has been the microstructural 

characterization using electron microscopy. Some of the results of this 

collaborative research have already been published.1   

 

4.1 Introduction 

The As-passivated Si(211) surface is currently the preferred alternative 

substrate for growth of HgCdTe by molecular beam epitaxy (MBE) for the large-

scale production of HgCdTe focal-plane arrays (FPAs).2 Si substrates offer 

overwhelming advantages relative to bulk CdZnTe for several reasons that 

include much larger size at very low cost, thermal expansion matching to Si 

readout chips, significantly reduced risk of impurity diffusion due to higher 

chemical purity, and the strength required for safe handing by automated wafer 
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processing equipment.3 However, the large (~19%) lattice mismatch between Si 

and HgCdTe, as well as the big difference (~94% at 300K) in their thermal 

expansion coefficients, are major obstacles to high quality heteroepitaxial growth. 

Indeed, the lattice mismatch is considered as the primary reason accounting for 

the relatively high dislocation densities, that in turn adversely affect current state-

of-art material.4 The observed dislocation density in such HgCdTe/CdTe/Si 

structures is reported to be mid 106 cm-2.5 A further reduction in the CdTe buffer 

dislocation density is expected to benefit long-wave infrared (LWIR) HgCdTe 

detectors.6 Close attention must, therefore, be given to controlling the generation 

and propagation of defects into the HgCdTe epilayer.  

Much research has been undertaken to improve the quality of the CdTe layer 

that is often used as an intermediary buffer between Si and HgCdTe.7-9 One 

promising approach involves deposition of thin buffer layers of ZnTe on the As-

exposed Si(211) surfaces, followed by the growth of CdTe by MBE.10 The ZnTe 

layer is commonly grown using migration-enhanced epitaxy (MEE). The MEE 

approach promotes a two-dimensional growth mode, while still minimizing the 

generation of growth defects.11-14 The stepped Si(211) surface, which is composed 

of (111) terraces and (100) edges, allows a step-flow (Frank-van der Merwe) 

growth mechanism, which leads to reduced twinning and antiphase domain 

formation.15 The primary role of the initial layer of ZnTe, which exhibits less 

lattice mismatch with Si (~12%) than CdTe with Si (~19%), is to provide 

improved B-face nucleation and better crystallinity for growth of the epitaxial 

CdTe layer.16 The best HgCdTe/CdTe/Si composite structures suitable for short-



55 

wave infrared and mid-wave infrared FPAs have been obtained using thick CdTe 

buffer layers (~ 10 µm). However, further reduction in dislocation density, by at 

least an order of magnitude, is still needed for high-performance long-wave 

infrared (LWIR) HgCdTe FPAs.17 

The initiation of ZnTe growth and the microstructure of the 

CdTe(211)B/ZnTe/Si(211) heterointerfacial region are important factors that 

impact the final material quality. Thus, improved understanding of ZnTe 

nucleation, and better knowledge of the interface structure, should help to 

facilitate growth of higher quality epitaxial CdTe and HgCdTe for large-format, 

LWIR FPAs. In this study, the nucleation of ZnTe layers on stepped Si(211) 

surfaces, and the microstructure of the composite CdTe(211)B/ZnTe/Si(211) 

material have been characterized, using a wide range of transmission electron 

microscopy imaging and analytical techniques, including high-resolution electron 

microscopy (HREM), high-angle annular-dark-field (HAADF) imaging, and 

energy-dispersive X-ray spectroscopy (EDXS).  

 

4.2 Experimental details 

In this study, Si(211) substrate preparation by a common RCA technique was 

used.18 The cleaning process consisted of degreasing in H2O:NH4OH:H2O2 

(5:1:1) , stripping of the native oxide in dilute HF, and then formation of a thin 

protective oxide layer in a solution of H2O:HCl:H2O2 (5:1:1). The final step 

involved spin-drying under a nitrogen atmosphere for 1 min. The wafer was then 

loaded into the MBE vacuum chamber, where oxide layer desorption and 
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passivation under an As flux were performed. This processing left a monolayer of 

As on the Si surface prior to deposition of ZnTe by MEE. The ZnTe layers were 

grown by alternating Zn and Te2 fluxes with the substrate held at approximately 

300°C. The full procedure consisted of 60 cycles followed by annealing at 450°C. 

The growth progress was closely monitored by observing reflection-high-energy 

electron diffraction (RHEED) patterns. Finally, the CdTe layer was deposited, and 

up to 10 cycles of periodic annealing during growth were incorporated in order to 

enhance dislocation interaction and annhiliation.19 

Samples suitable for transmission electron microscope observation were 

prepared in the cross-sectional geometry using standard mechanical polishing and 

dimpling to thicknesses of about 5-10 µm, followed by argon-ion-milling at liquid 

nitrogen temperature to avoid any ion-milling-induced artefacts.20 Low-angle, 

low-voltage (approximately 2.0keV) milling was used for final thinning to 

minimize the formation of any amorphous surface or interfacial layers. The 

electron microscopy observations were mostly carried out using a JEOL JEM-

4000EX high-resolution electron microscope (HREM), operated at 400keV and 

equipped with a double-tilt, top-entry-type specimen holder. HAADF or “Z-

contrast” imaging and EDXS analysis were carried out using a JEOL 2010F TEM, 

equipped with a field-emission electron gun and operated at 200keV. Samples 

were usually oriented for TEM observation along the common <110> projection. 

 

 

 



4.3 CdTe(211)B/ZnTe/Si(211) heterostructure

Figure 4.1 is a 

CdTe(211)B/ZnTe/Si(211)

which consisted of {111}

surface and typically terminating 

arrows. The presence of these defects would 

strain with the substrate. 

angles of ~3.5° between the 

magnification images, such as 

surface and suggested that 

across the interface.  

 

Fig. 4.1. Cross-sectional

interface. Electron diffraction pattern 

CdTe/Si crystal lattices.  
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4.3 CdTe(211)B/ZnTe/Si(211) heterostructure 

Figure 4.1 is a cross-sectional electron micrograph 

CdTe(211)B/ZnTe/Si(211) interface showing short structural defects, 

consisted of {111}-type stacking faults, originating at the Si substrate 

terminating within less than 50 nm, as indicated by the 

these defects would seem to help alleviate the large misfit 

strain with the substrate. Electron diffraction patterns (see inset) revealed

between the Si substrate and final CdTe epilayer.

magnification images, such as Fig. 4.2, showed the stepped nature of the Si(

and suggested that many of the {111} lattice fringes were continuous 

sectional electron micrograph of CdTe(211)B/ZnTe/Si(211)

Electron diffraction pattern (inset) shows slight rotation (~3.5°) between 

 

electron micrograph of the 

structural defects, most of 

originating at the Si substrate 

indicated by the 

help alleviate the large misfit 

patterns (see inset) revealed rotation 

Si substrate and final CdTe epilayer. Higher 

the Si(211) 

of the {111} lattice fringes were continuous 

 

CdTe(211)B/ZnTe/Si(211) 

) between 
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Fig. 4.2. Enlargement of Fig. 4.1 showing atomic structure at the 

ZnTe(211)/Si(211) interface region. 

 

Direct measurement of lattice-fringe spacings was used to estimate the Zn 

concentration in the Cd1-xZnxTe layer for different distances from the interface 

based on Vegard’s law. If y is the local lattice constant, which can be calculated 

from the d(111) spacings, then x can be calculated using the expression y = 6.477 

- 0.376x. The results are shown in Fig. 4.3. The concentration of Zn was estimated 

to be about 87% from the Si substrate surface up to about 4 nm, then dropping 

continuously to zero between 4 nm and 14 nm, indicating a progressive change to 

CdTe upon moving further away from the substrate. 
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Fig. 4.3. Zn concentration profiles based on Vegard’s law, as obtained from 

measurement of lattice-fringe spacings using Si substrate for calibration purposes. 

 

Compositional analysis was also used to determine elemental profiles. Figure 

4.4 (a) shows a HAADF image of the CdTe(211)B/ZnTe/Si(211) interface, and 

Fig. 4.4 (b) show an EDXS line profile from the arrowed region. A relatively 

large probe size (~1 nm) was used for acquiring the EDXS line scan. The result 

shows that the Zn signal peaks in the middle of the ZnTe layer, and also indicates 

that there is some intermixing of Zn and Cd, which is consistent with the lattice-

spacing measurements. The spectra shown in Fig. 4.4 (c) were recorded by 

placing the focused probe in turn at the ZnTe/Si interface, in the middle of the 

ZnTe buffer layer, and in the CdTe layer, as indicated by the numbers in Fig. 4.4 

(a). It is clear that As was present at the ZnTe/Si interface, and that it had not 

diffused into the ZnTe layer.  
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Fig. 4.4. (a) HAADF image showing region used for analysis; (b) EDXS 

elemental profile along line indicated in (a); (c) individual spectra taken in turn 

from three different regions, as indicated by the numbers 1, 2, and 3. 

 

As shown by the Z-contrast image in Fig. 4.5 (a), which was obtained using 

a small probe (~0.2 nm), the region of the CdTe/ZnTe interface was often quite 

disordered and uneven. The widths of the ZnTe layer and the (Cd, Zn)Te 

transition region were measured to be roughly 6.5 nm and 3.5 nm, respectively, 

for the specific growth conditions used in these experiments, as shown in Fig. 4.5 

(b). Thus, it can be concluded that the {111}-type stacking faults were present 

throughout the entire ZnTe layer, terminating near the point of initiation of the 
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CdTe growth (as shown in Fig. 4.1), which was also consistent with in situ 

RHEED pattern observations made during growth. Formation of the (Cd, Zn)Te 

transition region may happen either as a result of interdiffusion occurring at the 

onset of CdTe growth or as a result of annealing.21 

 

 

Fig. 4.5. (a) HAADF image of CdTe(211)B/ZnTe/Si(211) interfacial region; (b) 

intensity profile along box in (a). 
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4.4 The effects of in situ annealing on CdTe/Si 

It has been reported that in situ thermal cycle annealing (TCA), wherein 

annealing is performed intermittently during the growth process itself, is an 

effective means to reduce etch pit density (EPD) to the value of mid-105 cm-2 and 

improve overall crystal quality.5 The effects of annealing on the microstructure of 

CdTe layers grown by MBE on ZnTe/Si(112) substrates were studied using TEM.  

Figure 4.6 (a) and (b) are high-resolution electron micrographs showing the 

CdTe(211)B/ZnTe/Si(211) heterostructure before annealing and after 10 cycles of 

annealing, respectively. Most of the growth defects observed in the thin ZnTe 

layer consisted of {111}-type stacking faults originating at the Si substrate surface 

and typically terminating within less than 50 nm. The CdTe(211)B/ZnTe/Si(211) 

heterostructure after annealing seems to have less {111}-type stacking faults near 

the interface. Otherwise, not much change of film microstructure has been 

identified between samples before annealing and after annealing.  

Figure 4.7 (b) is the corresponding fast Fourier transform (FFT) of the region 

shown in Fig. 4.7 (a). When only the {111} reflections marked by triangles were 

used for the inverse FFT, then Fig. 4.7 (c) was obtained, with fringes due to the 

(111) planes being visible. It is apparent that the (111) lattice fringes cross the 

CdTe(211)B/ZnTe/Si(211) interface continuously, without any misfit dislocations. 

When the other two {111} reflections marked by circles were used, then Fig. 4.7 

(d) was obtained, with fringes due to the (-111) planes being visible. As shown in 

Fig. 4.7 (d), the misfit dislocations distributed evenly at the ZnTe/Si(211) 
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interface. Apparent misfit dislocations present at the CdTe(211)B/ZnTe interface 

are also visible, as arrowed in Fig. 4.7 (d). 

 

 

Fig. 4.6. High-resolution electron micrographs comparing the 

CdTe(211)B/ZnTe/Si(211) heterostructure: (a) before annealing; (b) after 10 

cycles of annealing. 
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Fig. 4.7. (a) HREM of the CdTe(211)B/ZnTe/Si(211) interface; (b) diffractogram 

of TEM image; (c) inverse fast Fourier transform image displaying (111) planes. 

(d) inverse FFT image displaying (-111) planes. 

 

4.5 Alternative GaAs-based substrates for growth of HgCdTe (MCT) 

The quest to identify alternative substrates for MCT growth also includes 

GaAs(211). Since 1983, GaAs has been the subject of much research as an 

alternative substrate for HgCdTe.22 Similar to Si, GaAs substrates are much 

stronger, available in larger areas with high quality, and less expensive than 
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CdZnTe. The lattice mismatch of GaAs with CdTe is 14.6%, considerably lower 

than that of Si which is 19.3%. GaAs has an advantage over Si as a substrate for 

MBE growth of MCT in that the temperature required for GaAs surface cleaning 

is lower than for Si, therefore reducing the likelihood of recontamination of the 

substrate surface.23 Preliminary observations of CdTe(211)B/GaAs(211) 

heterostructures grown by MBE suggest much reduced defect densities both near 

the vicinity of the substrate and within the CdTe epilayers. 

Figure 4.8 is a cross-sectional electron micrograph of 

CdTe(211)B/GaAs(211) showing examples of dislocations that originate at or 

near the interface and also terminate close to the interface. Figure 4.9 is a 

selected-area electron diffraction pattern (DP) of the interfacial region, taken 

along <110> projection. The inner spots correspond to CdTe, while the outer 

spots correspond to GaAs. The DP shows accurate alignment of the two lattices 

and also reveals the large lattice mismatch (14.6%) between CdTe and GaAs.  
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Fig. 4.8. Cross-sectional electron micrograph showing dislocations originating 

from the vicinity of CdTe(211)B/GaAs(211) interface.  

 

 



67 

 

 

 

 

Fig. 4.9. Electron diffraction pattern for the CdTe(211)B/GaAs(211) 

heterostructure showing excellent alignment between two materials.  
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Figures 4.10 (a) and (b) are cross-sectional TEM micrographs showing the 

microstructure of the CdTe(211)B/GaAs(211) heterostructure, as grown by MBE. 

Most of the growth defects observed in the CdTe layer consist of {111}-type 

stacking faults originating at the Si substrate surface and typically terminate 

within less than 50 nm, as shown in Fig. 4.10 (a). The presence of these defects 

would help to alleviate the large misfit strain with the GaAs substrate, similar to 

the case for CdTe thin films grown on Si substrates. However, there seem to be 

less {111}-type stacking faults for CdTe grown on GaAs compared with CdTe 

grown on Si.  The most likely reason could be the lattice mismatch of GaAs with 

CdTe, which is at 14.6%, is lower than that of Si (19.3%). Higher magnification 

images, as shown in Fig. 4.10 (b), showed the stepped nature of the GaAs(211)B 

surface, and suggested that the majority of the {111} lattice fringes were 

continuous across the interface.  

Figure 4.11 (b) is the corresponding FFT of the interface region shown in Fig. 

4.11 (a). When only the {111} reflections marked by the triangles were used for 

the inverse FFT, then Fig. 4.11 (c) was obtained, with fringes due to the (111) 

planes being visible. It is apparent that the (111) lattice fringes cross the 

CdTe(211)B/GaAs(211) interface continuously, without any misfit dislocations. 

When the other two {111} reflections marked by the circles were used, then Fig. 

4.11 (d) was obtained, with fringes due to the (-111) planes being visible. As 

indicated by the arrows, the misfit dislocations are distributed evenly along the 

CdTe(211)B/GaAs(211) interface.  
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Fig. 4.10. (a) Cross-sectional electron micrograph showing interface of MBE-

grown CdTe(211)B/GaAs(211) heterostructure; (b) High-resolution electron 

micrograph showing the interface between CdTe and GaAs.  
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Figure 4.11. (a) HREM of the CdTe(211)B/GaAs(211) interface; (b) 

diffractogram of TEM image; (c) inverse fast Fourier transform image displaying 

(111) planes. (d) inverse fast Fourier transform image displaying (-111) planes. 

 

Figure 4.12 is a cross-sectional electron micrograph showing the presence of 

precipitates and stacking faults at the CdTe surface, which are indicated by the  

white and black arrows. These precipitates were initially observed at the CdTe 

surface, before growth of the HgCdTe epilayer.  
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Figure 4.12. Cross-sectional electron micrograph showing precipitates and 

stacking faults on CdTe(211)B/GaAs(211) surface.  

 

Similar precipitates were later observed at the HgCdTe/CdTe interface of a 

composite HgCdTe/CdTe(211)B/GaAs(211) sample, as shown in Fig. 4.13. The 

formation of these precipitates could possibly be caused by the growth 

interruption that occurred because deposition of the CdTe buffer layer and growth 

of the subsequent HgCdTe epilayer were carried out sequentially in two separate 

MBE chambers. It appears that no defects in the HgCdTe layer were caused by 

these precipitates, but whether or not these precipitates are detrimental to detector 

performance is not yet been known.  
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Figure 4.13. Cross-sectional electron micrograph showing 

HgCdTe(211)/CdTe(211)B heterostructure. Arrows indicate the presence of 

precipitates.  

 

Figure 4.14 is a cross-sectional electron micrograph showing an example of 

dislocations that originate at the HgCdTe/CdTe interface and terminate at the 

early stages of HgCdTe growth. 

High-resolution electron micrographs such as Fig. 4.15 confirmed that high 

quality HgCdTe could be achieved on CdTe(211)B/GaAs(211) composite 

substrate. No dislocations or stacking faults were observed at or near the interface 

in this region. Indeed, the precise position of the HgCdTe/CdTe interface is 

difficult to determine because of the uniform contrast between HgCdTe and CdTe. 

However, since CdTe was greatly damaged by argon-ion milling, whereas 
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HgCdTe was relatively free of ion-milling damage, the position of the 

HgCdTe/CdTe interface as indicated by the arrows can be determined by 

observing structural differences between the two layers.  

Figure 4.16 is a cross-sectional electron micrograph taken near the top 

surface of the HgCdTe. In general, the bulk HgCdTe material was generally of 

high quality, whereas the region near the top surface was found to be quite 

defective.  

 

 

Figure 4.14. Cross-sectional electron micrograph showing 

HgCdTe(211)/CdTe(211)B heterostructure.  
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Figure 4.15. High-resolution electron micrograph showing the interface between 

HgCdTe and CdTe. 
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Fig. 4.16. Cross-sectional electron micrograph showing microstructure near the 

top surface of the HgCdTe. 
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4.4 Conclusions 

In summary, CdTe(211)B/ZnTe/Si(211) and CdTe(211)B/GaAs(211)B 

heterostructures grown by MBE have been evaluated using different electron 

microscopy techniques. HREM imaging revealed the morphology of the 

CdTe(211)B/ZnTe/Si(211) interface and showed that most stacking faults formed 

at the Si substrate surface continued through the entire ZnTe layer, terminating 

near the point of initiation of CdTe growth. Lattice-spacing measurements and 

microanalytical studies mapped out chemical profiles across the 

CdTe(211)B/ZnTe/Si heterostructures, and indicated that interdiffusion between 

CdTe and ZnTe had occurred. HAADF imaging revealed that the region of the 

CdTe/ZnTe interface was quite disordered and uneven in thickness. The average 

width of the ZnTe layer and the (Cd, Zn)Te transition region were measured to be 

approximately 6.5 nm and 3.5 nm, respectively. Preliminary observation of 

CdTe(211)B/GaAs(211) heterostructures suggests much reduced defect densities 

both near the vicinity of the substrate and within the CdTe epilayers. HgCdTe 

epilayers grown on CdTe(211)B/GaAs(211) composite substrates were generally 

of high quality, despite the presence of precipitates at the HgCdTe/CdTe interface.   
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Chapter 5 

MICROSTRUCTURAL CHARACTERIZATION OF HGCDTE GROWN BY 

MOLECULAR BEAM EPITAXY ON ZNTE/SI(112) AND GASB(112) 

SUBSTRATES 

 

The research described in this chapter was carried out in collaboration with 

Dr. Greg Brill and colleagues from U.S. Army Research Laboratory (Adelphi, 

MD). The overall purpose of this project is to develop a better understanding of 

the proper conditions needed to achieve high-quality HgCdSe growth by 

molecular beam epitaxy (MBE) on ZnTe/Si(112) and GaSb(112) substrates. My 

role has been the microstructural characterization using electron microscopy. The 

results of this study have recently been submitted for publication.1 

 

5.1 Introduction 

HgCdTe has played a significant role in infrared (IR) focal-plane-array (FPA) 

technology for more than 50 years, and it continues to be a dominant material 

technology for all IR spectral bands.2 The ongoing development of IRFPAs 

requires high sensitivity, small pixel size, large-area substrates, low cost, low 

dislocation density, and long-term thermal-cycling reliability.3 However, the 

development of third-generation IRFPAs using HgCdTe grown on scalable 

substrates, such as Si, has been hindered by the approximately 100 times greater 

dislocation density relative to material grown on CdZnTe substrates.4 This higher 
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dislocation density results in lower device performance, especially in the long-

wavelength infrared (LWIR) regime.5 

It has been proposed that HgCdSe could provide performance similar to 

HgCdTe in terms of its IR response, with the added advantage that large-area 

substrates are readily available commercially.6 Analogous to the alloying of HgTe 

and CdTe, HgSe and CdSe crystallize in the zincblende structure and also form 

continuous alloys of Hg1-xCdxSe. The bandgap of this alloyed material can then be 

tuned simply by adjusting the composition x to absorb any IR wavelength, similar 

to the situation for Hg1-xCdxTe. In addition, two commercially available III-V 

binary semiconductors, namely InAs and GaSb, are nearly lattice-matched to 

HgCdSe and can thus be used as large-area substrates. With the small lattice 

mismatch between these substrates and HgCdSe, it seems reasonable to expect 

that the final HgCdSe dislocation density could be similar to the dislocation 

densities obtained for HgCdTe grown on bulk CdZnTe substrates. 

 There is very little information about the epitaxial growth of HgCdSe 

published in the scientific literature, even though the first paper about the growth 

of HgCdSe on ZnTe and CdZnTe substrates using molecular beam epitaxy (MBE) 

was published in 1993.7 Recently, HgCdSe growth by MBE on ZnTe/Si(112) and 

GaSb(112) substrates was demonstrated.6 It was reported that the optimal 

substrate temperature range for HgCdSe growth was between 80°C and 100°C, 

and it was found that materials grown at higher temperature generally had poorer 

quality, as determined using X-ray diffraction (XRD) rocking curves and 

Nomarski optical microscopy studies of surface morphology. In this chapter, 
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transmission electron microscopy (TEM) has been used to characterize samples of 

HgCdSe grown by MBE at different temperatures on closely-lattice-matched 

substrates of ZnTe/Si(112) and GaSb(112).  

 

5.2 Experimental details 

The ZnTe/Si(112) and GaSb(112) substrate surfaces were prepared carefully 

before the HgCdSe growth was initiated. The ZnTe/Si substrate preparation was 

similar to that used for CdTe/Si substrates intended for HgCdTe growth. 

Methanol solutions of dilute bromine were used to remove approximately 0.3 µm 

of the ZnTe surface layer, followed by several methanol rinses and a dilute 

HCL:deionized (DI) water dip to remove any residual oxide. The samples were 

then rinsed in DI water for 2 min to 4 min. Once loaded into the MBE chamber, 

the substrates were heated to remove any excess Te. The final heating was done 

under Te overpressure to ensure that no surface roughening occurred. This 

process was monitored in situ by reflection-high-energy electron diffraction 

(RHEED). The GaSb substrates were firstly heated to 590°C under an Sb flux in a 

III-V MBE system to remove the native oxide layer from the surface, followed by 

deposition of an approximate 0.2 µm-thick GaSb homoepitaxial layer at 500°C. 

This substrate preparation process was taken directly from the III-V growth 

process normally used for GaSb(001) substrates. A thin layer of As was then 

deposited at room temperature to prevent reoxidation of the GaSb surface during 

transportation from the III-V system through atmosphere to the II-VI system. The 

As layer was then thermally desorbed in the II-VI MBE chamber. HgCdSe growth 
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was conducted using elemental Hg, Cd, and Se sources, with variations in growth 

temperature and flux to investigate the effects on the Hg1-xCdxSe material quality. 

The Hg1-xCdxSe layers were typically grown to thicknesses in the range of 4-10 

µm, with x ranging from 0.18 to 0.28. 

Samples suitable for TEM observation were prepared in the cross-sectional 

geometry using standard mechanical polishing and dimpling to thicknesses of 

about 30µm, followed by argon-ion-milling at liquid nitrogen temperature to 

minimize any ion-milling-induced artefacts.8 Low-angle, low-voltage 

(approximately 2.0keV) milling was used for final thinning to minimize the 

formation of any amorphous surface or interfacial layers. The electron 

microscopy observations were mostly carried out using a JEOL JEM-4000EX 

high-resolution electron microscope (HREM), operated at 400keV and equipped 

with a double-tilt, top-entry-type specimen holder. HAADF or “Z-contrast” 

imaging and EDXS analysis were carried out using a JEOL 2010F TEM, 

equipped with a field-emission electron gun and operated at 200keV. Samples 

were usually oriented for TEM observation along the common <110> projection. 

Nomarski microscopy, also known as differential interference contrast 

microscopy, was used to examine the topography of the the top surface of the 

epitaxial grown HgCdSe layers. 

 

5.3 Results and discussion 

For epitaxial Hg0.71Cd0.29Se layers grown on ZnTe/Si(112) composite 

substrates at 100°C, very few structural defects were observed in cross-sectional 
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TEM images, as shown in Fig. 5.1 (a), and the top surfaces were generally smooth, 

as shown by the corresponding Nomarski optical micrograph in Fig. 5.1 (b). For 

Hg0.80Cd0.20Se layers grown at 140°C, additional {111}-type stacking defects 

were visible near the HgCdSe/ZnTe interface, as shown arrowed in Fig. 5.1 (c), 

while the top Hg0.80Cd0.20Se surface showed evidence for pitting, as visible in Fig. 

5.1 (d). When the Se/Hg flux ratio was increased at the same growth temperature 

of 140°C, high dislocation densities were observed in parts of the Hg0.79Cd0.21Se 

epilayer, as shown in Fig. 5.1 (e), and the surface displayed an odd type of defect 

structure which has not yet been identified, as shown in Fig. 5.1 (f). The high-

resolution electron micrograph of the Hg0.71Cd0.29Se/ZnTe interface region shown 

in Fig. 5.2 confirmed the high-quality Hg0.71Cd0.29Se epitaxial growth achieved at 

the lower growth temperature (T=100°C). 
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Fig. 5.1. (a), (c) and (e): cross-sectional electron micrographs of Hg1-

xCdxSe/ZnTe(112) heterostructure grown at T=100°C, 140°C and 140°C; (b), (d), 

and (f): Nomarski optical images of the corresponding Hg1-xCdxSe surface. 

 

 



Fig. 5.2. High-resolution electron microgra

interface showing high-quality epitaxial growth of Hg

T=100°C on ZnTe/Si(112) composite substrate.

 

The epitaxial Hg0.81

GaSb(112) buffer layers were generally of good quality, and most growth defects 

again terminated close to the interface, as shown by the representative cross

sectional electron micrograph in Fig. 5.3. The high

shown in Fig. 5.4 confirmed that high quality epitaxial growth of 

layers could be achieved, despite the lack of flatness of the GaSb(112) buffer 

layer surface. When growth of the GaSb buffer layer was not well op

poorer quality HgCdSe layers were produced. 
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resolution electron micrograph of Hg0.71Cd0.29Se/ZnTe(112) 

quality epitaxial growth of Hg0.71Cd0.29Se achieved at 

on ZnTe/Si(112) composite substrate. 

0.81Cd0.19Se films grown on GaSb(112) substrates with 

GaSb(112) buffer layers were generally of good quality, and most growth defects 

again terminated close to the interface, as shown by the representative cross

sectional electron micrograph in Fig. 5.3. The high-resolution electron micrograph 

shown in Fig. 5.4 confirmed that high quality epitaxial growth of Hg0.81

layers could be achieved, despite the lack of flatness of the GaSb(112) buffer 

layer surface. When growth of the GaSb buffer layer was not well op

gCdSe layers were produced.  

 

Se/ZnTe(112) 

Se achieved at 

Se films grown on GaSb(112) substrates with 

GaSb(112) buffer layers were generally of good quality, and most growth defects 

again terminated close to the interface, as shown by the representative cross-

solution electron micrograph 

0.81Cd0.19Se 

layers could be achieved, despite the lack of flatness of the GaSb(112) buffer 

layer surface. When growth of the GaSb buffer layer was not well optimized, 
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Fig. 5.3. Cross-sectional electron micrograph of Hg0.81Cd0.19Se/GaSb(112) 

heterostructure grown at T=110°C showing Hg0.81Cd0.19Se film with low density 

of dislocations.  
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Fig. 5.4. High-resolution electron micrograph of Hg0.81Cd0.19Se/GaSb(112) 

interface showing epitaxial growth of Hg0.81Cd0.19Se at T=110°C.  

 

Figure 5.5 shows an example where the HgCdSe/GaSb buffer interface was 

very uneven, causing the subsequent HgCdSe layer to develop a pronounced 

columnar structure. This result demonstrates the importance of optimizing the 

buffer growth, and indicates that a new buffer growth process will need to be 

developed for future studies involving GaSb(112) surfaces. 

 

 

 

 

 



 

Fig. 5.5. Cross-sectional electron micrograph of HgCdSe/GaSb buffer/GaSb(112) 

heterostructure showing polycrystalline HgCdSe film with columnar structure.

 

The Z-contrast image in

Hg0.81Cd0.19Se/GaSb interface

along the arrowed region.

the surface of the GaSb buffer layer, which was presumably caused when the 

substrate was heated to remove As and
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sectional electron micrograph of HgCdSe/GaSb buffer/GaSb(112) 

showing polycrystalline HgCdSe film with columnar structure.

contrast image in Fig. 5.6 (a) shows a region of dark contrast at 

interface and Fig. 5.6 (b) shows an EDXS line profile taken 

the arrowed region. These results reveal the presence of a Ga-rich region at 

the surface of the GaSb buffer layer, which was presumably caused when the 

substrate was heated to remove As and O, also causing removal of Sb.  

 

sectional electron micrograph of HgCdSe/GaSb buffer/GaSb(112) 

showing polycrystalline HgCdSe film with columnar structure. 

g. 5.6 (a) shows a region of dark contrast at the 

an EDXS line profile taken 

rich region at 

the surface of the GaSb buffer layer, which was presumably caused when the 
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Strain fields were also observed originating from the presence of small plate-

like defects, as shown in Fig. 5.7 (a), but it has not yet been established whether 

these features are dislocation loops or precipitates. Figure 5.7 (b) is a high-

resolution electron micrograph showing the atomic-scale microstructure of one of 

these defects, which lies predominantly along {111}HgCdSe planes. Although the 

defect is not fully coherent with the HgCdSe matrix, no missing or extra planes 

are visible. It has proven to be difficult to analyze these precipitates in detail 

because of their small size and low density. Similar types of defects have been 

previously reported to occur during growth of HgCdTe.9  
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Fig. 5.6. Compositional analysis of Hg0.81Cd0.19Se/GaSb(112) heterostructure. (a) 

HAADF image of Hg0.81Cd0.19Se/GaSb(112) interfacial region used for analysis; 

(b) EDXS elemental profile along line indicated in (a). 
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Fig. 5.7. (a) Low magnification electron micrograph showing small plate-like 

defects present in HgCdSe epilayer; (b) high-resolution electron micrograph 

showing microstructure of plate-like defects observed in cross-section. 
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5. 4 Conclusions 

In summary, the microstructure of HgCdSe thin films grown by MBE on 

ZnTe/Si(112) and GaSb(112) substrates has been characterized. The quality of the 

HgCdSe growth was dependent on the growth temperature and materials flux, 

independent of the substrate. The materials grown at 100°C were generally of 

high quality, while those grown at 140°C had {111}-type stacking defects and 

higher dislocation densities. For epitaxial growth of HgCdSe on GaSb(112) 

substrates, better preparation of the GaSb buffer layer will be needed in order to 

ensure that  high-quality HgCdSe can be grown on a consistent basis.  
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Chapter 6 

SUMMARY AND FUTURE WORK 

 

6.1 Summary 

The research of this dissertation has involved the use of transmission 

electron microscopy (TEM) to characterize HgCdTe and HgCdSe epilayers and 

HgCdTe-based devices grown by liquid-phase epitaxy (LPE) and molecular beam 

epitaxy (MBE).  

The growth of CdTe passivation layers on HgCdTe by different techniques 

has been compared.1 TEM imaging was used to investigate the structural 

properties of the CdTe passivation layers, as well as to determine the effect of 

annealing on the CdTe/HgCdTe interface. The CdTe grains were larger and more 

irregular in shape when deposited by the hot-wall epitaxy method, while those 

deposited by MBE were generally well textured with mostly vertical grain 

boundaries. The flatness and abruptness of the CdTe/HgCdTe interface for the 

MBE-grown CdTe was shown by several different TEM methods to be 

substantially improved by annealing. 

The CdTe(211)B/ZnTe/Si(211) heterostructures grown by MBE were 

evaluated using different TEM techniques.2 HREM imaging revealed the 

morphology of the CdTe(211)B/ZnTe/Si(211) interface and showed that most 

stacking faults formed at the Si substrate surface continued through the thin ZnTe 

layer, terminating near the point of initiation of CdTe growth. Lattice-spacing 

measurements and microanalytical studies mapped out chemical profiles across 
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the CdTe(211)B/ZnTe/Si heterostructures, and indicated that interdiffusion 

between CdTe and ZnTe had occurred. HAADF imaging revealed that the region 

of the CdTe/ZnTe interface was quite disordered and uneven in thickness. The 

average width of the ZnTe layer and the (Cd, Zn)Te transition region were 

measured to be approximately 6.5 nm and 3.5 nm, respectively. Preliminary 

observations of CdTe(211)B/GaAs(211) heterostructures suggest much reduced 

defect densities both near the vicinity of the substrate and within the CdTe 

epilayers. The HgCdTe epilayer grown on the CdTe(211)B/GaAs(211) composite 

substrate was generally of high quality, despite the presence of small precipitates 

at the HgCdTe/CdTe interface. 

The microstructure of HgCdSe thin films grown by MBE on ZnTe/Si(112) 

and GaSb(112) substrates was characterized.3 The quality of the HgCdSe growth 

was dependent on the growth temperature and materials flux, independent of the 

substrate. The materials grown at 100°C were generally of good quality, while 

those grown at 140°C had {111}-type stacking defects and increased dislocation 

densities. For epitaxial growth of HgCdSe on GaSb substrates, careful preparation 

of the GaSb buffer layer was shown to be essential in order to ensure that high-

quality HgCdSe could be grown.  

 

6.2 Future work 

6.2.1 Minimization of ion-milling damage 

Ion-milling damage during TEM sample preparation has been a serious 

ongoing issue for II-VI materials for many years.4-6 During this research, it was 
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consistently observed that argon-ion milling had induced severe damage in CdTe 

material, even when the sample was milled at very low energy and held properly 

at liquid nitrogen temperature. In order to eliminate this ion-milling damage, 

methanol solutions of either dilute bromine or dilute iodine should be used to etch 

the samples after ion milling.  

 

6.2.2 Origins of precipitates at the HgCdTe/CdTe interface 

Precipitates were observed at the HgCdTe/CdTe interface were observed, but 

it was unclear what had caused the formation of these defects. Further high-

resolution electron microscopy and small-probe microanalysis of the precipitates 

need to be carried out. In order to do this, samples will need to be very carefully 

prepared so that the region of interest is very thin and free of contamination.  

 

6.2.3 Identification of the chemistry of precipitates in HgCdSe 

Strain fields were observed originating from the presence of small plate-like 

defects in HgCdSe epilayers, but it has not yet been established whether these 

features are dislocation loops or precipitates.3 It has proven to be difficult to 

analyze these precipitates in detail because of their small size and low density. 

Sample contamination might be another serious drawback since modification of 

the sample may occur as a result of plasma cleaning. Further studies are essential 

to identify the chemistry of the precipitates by utilizing Z-contrast imaging 

together with small-probe microanalysis.  
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6.2.4 Growth of HgCdSe by MBE 

TEM characterization of HgCdSe epitaxial material was carried out for the 

first time.3 It is clear that much attention will need to be directed towards 

developing proper growth conditions to achieve high-quality HgCdSe by MBE on 

either ZnTe/Si(112) or GaSb(112) substrates. The optimal window of the growth 

temperature still needs to be established. Substrate surface cleaning methods will 

also need to be improved in order to achieve better quality HgCdSe material.  
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CT                   CdTe 

EDXS              Energy Dispersive X-ray Spectroscopy 

EELS               Electron Energy Loss Spectroscopy 

EPD                 Etch Pit Density 

FIB                  Focused Ion Beam 

FPA                 Focal Plane Array 

HAADF          High Angle Annular Dark Field 

HREM            High Resolution Electron Microscopy 

HWE               Hot Wall Epitaxy 

IR                    Infrared 

LPE                 Liquid Phase Epitaxy 

LWIR              Long Wavelength Infrared 

MBE               Molecular Beam Epitaxy 

MCT               HgCdTe 

MWIR             Mid Wavelength Infrared 

RHEED           Reflection High Energy Electron Diffraction 

STEM             Scanning Transmission Electron Microscopy 

SWIR              Short Wavelength Infrared 

TEM                Transmission Electron Microscopy 

 


