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ABSTRACT    

The chemical sensitivity and spatial resolution of Raman spectroscopy, 

combined with the sensitivity of modern systems that can easily detect single 

atomic layers, have made this technique a preferred choice for the strain 

characterization of complex systems such as nanoscale complementary metal-

oxide-semiconductor - CMOS - devices. A disadvantage of Raman spectroscopy, 

however, is that the shifts associated with strain are not related to the geometrical 

deformations in any obvious way, so that careful calibrations are needed to 

determine the anharmonic coefficients (p, q and r) that relate strain to Raman 

shifts. A new set of measurements of the Raman shift in strained Ge films grown 

on relaxed SiGe buffer layers deposited on Si substrates is presented, and thereby, 

a new consistent set of values for the parameters p and q for Ge has been 

proposed. 

In this dissertation the study of the vibrational properties of Ge1-xSnx 

alloys has also been reported. The temperature dependence of the Raman 

spectrum of Ge-rich Ge1-x Snx and Ge1-x-ySi xSny alloys has been determined in the 

10 K - 450 K range. The Raman line shift and width changes as a function of 

temperature are found to be virtually identical to those observed in bulk Ge. This 

result shows that the anharmonic decay process responsible for the temperature 

dependence is extremely robust against the alloy perturbation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation of the Study 

Silicon technology has been dominating the semiconductor industry in 

high-speed microelectronics1 and optoelectronic2 applications, excluding direct-

gap applications. Group-IV alloys, namely GeSi, have played a pivotal role in the 

growing field of Si photonics 3 and commercial microprocessors4. Because of the 

ease with which these alloys can be grown epitaxially on Si and the low cost of Si 

substrates, these alloys are preferred over group-III-V alloys of comparable 

functionality5. Modern semiconductor optoelectronic devices are almost all made 

by heterostructures which are accompanied by strain6. Earlier efforts focused on 

reducing the strain to eliminate device degradation. But as the film growth  

technology has advanced and device sizes have shrunk, strain effects are found to 

be a useful tool to change the optoelectronic device characteristics and enhance 

their performance through its effects on the band structure.  

Strain engineering applications of GeSi alloys are possible due to the large 

lattice mismatch between Ge and Si. Strain engineered GeSi structures improve 

carrier mobilities resulting in increased device speeds.  GeSi virtual substrates7, 8 

are an excellent platform for integration of high speed heterostructure metal-

oxide-semiconductor field-effect transistors – MOSFETs - onto silicon substrates.  

By using strained Si layers grown upon a relaxed SiGe buffer layer, mobility 

enhancements over bulk Si of roughly 80% for electrons9 and 60% for holes10 are 
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attainable. Whereas strained Ge layers grown on a relaxed SiGe substrate have 

shown a hole mobility enhancement of nearly eight times that of co-processed 

bulk Si devices11.  

Raman scattering is a useful technique for characterizing strain in 

compound semiconductor microstructures12. But for an accurate characterization, 

one needs to know the phonon deformation potentials (DPs), or the strain-shift 

coefficient. DPs are the derivative of the optical phonon frequency with respect to 

an elastic deformation of the lattice. The strain-shift coefficient for the Raman-

active mode has been extensively measured in Si13,14. However, little work has  

been done for its Ge counterpart. The only published work we are aware of is that  

of Pezzzoli et al15 at very low strain levels. Part of this thesis will focus on 

determining the strain-shift coefficient of the Raman mode of Ge at strain levels 

comparable to those of technological interest. 

The large lattice mismatch between Si and Ge also leads to unmanageable 

strain effects when Ge is grown directly on Si substrates. In photovoltaic 

applications where thick Ge layers need to be incorporated, the generation of 

strain-relieving threading dislocations is a deterrent as it degrades device 

performance. Further, in near-IR detectors (which are of current interest in the 

industry) targeting the  1.53 – 1.68 µm spectral range, pure Ge-on-Si is in 

principle an excellent candidate, but due to its lattice mismatch with Si, it is 

difficult to grow defect-free films. In addition, Ge is an indirect band gap 

material. Its direct gap absorption edge lies outside the spectral range of the near-
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IR detectors. Hence the industry has been on the lookout for alternatives.  

Recently Bauer et al16 have grown single crystals of GeSn alloys directly on Si 

using ultrahigh vacuum CVD. The large lattice mismatch with the Si substrate is 

accommodated by Lomer-type edge dislocations. These films are fully compatible 

with complementary metal-oxide-semiconductor -CMOS- devices. Unstrained 

Ge1-xSnx alloys are predicted to exhibit a direct band gap with increasing Sn 

composition. The addition of Sn into Ge decreases the direct band gap 

systematically with increasing Sn concentration17. Hence, the electrical and 

optical properties of such alloys can be controlled over a wide range of 

compositions18. The indirect to direct transition is estimated to be at x = 0.119.  

Mathews et al20 have shown that with the presence of tensile strain the Sn 

composition required for the crossover point can be reduced. Hence, to engineer 

the optical properties of the Ge1-xSnx alloys, one should be able to determine the 

strain and Sn composition accurately. Since optical phonon modes of these alloys 

are affected by the strain and composition, an optical characterization technique, 

such as Raman spectroscopy seems an ideal technique for this purpose. In this 

thesis we have measured the compositional dependence of the Ge-Ge mode of the 

Raman spectrum of the Ge1-xSnx alloy. 

For device manufacturers heating is a source of major concern as a cause 

of device failure. Measurement of the local temperature rise is of great 

significance. Since Raman frequency and linewidth are strongly temperature 

dependent21, these can be used as parameters for temperature measurements with 
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great simplicity and accuracy. We have measured the temperature dependence of 

the lineshifts and linewidths of Ge, GeSn and SiGeSn. 

1.2 Dissertation Outline 

Chapter 2 reviews the vibrational properties of semiconductors. The 

theory of Raman scattering is explained using the classical and semi-classical 

approach. The effect of perturbations, including alloying and strain effects, on 

vibrational properties is also discussed. 

In chapter 3 we have discussed the LO phonon modes in strained Ge 

grown on relaxed SiGe. The strain induced shift of the Raman frequency and the 

corresponding x-ray strain measurements have been used to calculate the strain-

shift coefficient for the Ge-Ge mode in pure Ge. 

Chapter 4 discusses the vibrational properties of GeSn alloys. The Raman 

spectrum of each GeSn sample shows a strong peak corresponding to the Ge-Ge 

phonon mode. We also observe the disorder-activated (DA) Ge-Ge mode in the 

z(x, x) z̅ geometry. We have studied the compositional dependence of the Ge-Ge 

mode which can be explained in terms of bond distortion and mass perturbation. 

The temperature dependence of the lineshifts and the linewidths of the LO  

phonon in GeSn and SiGeSn is discussed in chapter 5. This temperature 

dependence is the result of anharmonicity. The anharmonic decay of optical 

phonons implies that when an optical phonon of frequency ω decays into two 

phonons of frequencies ��and	��, the linewidth contains a temperature dependent 

factor. We find that the temperature dependence of the Raman width and shift is 
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the same, within experimental error, as the temperature dependence observed in 

bulk Ge. 

Chapter 6 summarizes the results of the strain-shift coefficient of the Ge-

Ge mode in pure Ge and the vibrational properties of the GeSn alloys along with  

their temperature dependence.
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CHAPTER 2 

CHARACTERIZATION OF SEMICONDUCTORS USING 
 

 RAMAN SPECTROSCOPY  
 

2.1 Introduction 

Inelastic light scattering is a highly attractive tool for the characterization 

of semiconductors because of its contactless and non-destructive nature. The  

polarization properties, frequencies and intensities of semiconductor Raman  

spectra is used for the identification of materials and their crystalline structure,  

measurements of stress and strain, studying doping levels and alloy 

semiconductors. 

This chapter aims to explain the capabilities of Raman scattering as a 

characterization tool for semiconductors. The beginning section of this chapter  

defines the basic concepts of lattice dynamics and Raman spectra in 

semiconductors. This is followed by sections describing the applications relevant 

 to this thesis. 

2.2 Phonons in Semiconductor 

The vibrations of atoms about their equilibrium positions determine many 

of the physical properties of crystals. The vibrational properties of atoms derive 

from the many-electron states. For non-metallic systems, electronic and 

vibrational energies are well separated. Vibrational energies are typically about 25 

meV at room temperature whereas the lowest electronic energies are about 1 eV 

(in Si and Ge). Hence the Born-Oppenheimer approximation can be used to  
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describe the eigenstates of such systems as products of coupled vibrational and  

electronic states: 

																																															���	�	, �� = 	���	, �����	���   (2.1) 

where ν and n are the vibrational and electronic quantum numbers respectively.  

The many-electron states Φn (x, u) depend parametrically on the atoms’ 

displacements, represented collectively by u, and on the electronic coordinates x.  

These states are eigenfunctions of the many electron problem for fixed atomic  

configuration u: 

[�� + ����	� + ����	, �� + ������]	���	, �� = 	E�������	, ��  (2.2) 

where TE is the electronic kinetic energy operator and VNN(u) is the nuclear- 

nuclear potential energy operator. Then, assuming that as the atoms move, the  

system remains in its many-electron ground state, the vibrations are determined  

by taking the effective potential energy function (the crystalline potential) for the 

atoms to be equal to the many-electron ground state energy eigenvalue 

 V(u) ≡ E0(u) (2.3) 

 The atomic equilibrium configuration is defined by the minimum of V. 

The atoms’ displacements from equilibrium are given by the 3n x N dimensional  

displacement vector 

 u ≡ {uα(ℓk)} (2.4) 

where ℓ = 1,…., N labels the unit cells of the system, k labels each atom in the  

unit cell and α denotes the atomic position (x, y or z) of each atom in this cell. 
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For small displacements, the total crystalline potential can be expanded 

about the equilibrium lattice configuration in a Taylor series as: 

� = �� +� ������ℓ, ��ℓ � !� ���ℓ, ��
+ 12� � �������ℓ, ����$�ℓ%, �%�&� ���ℓ, ���$�ℓ%, �%� +	…ℓ( ($ℓ �  

          (2.5) 

At equilibrium the sum of the forces acting on the system must be zero. Hence, 

																																																					∑ *+*,-�ℓ, �ℓ � .� = 0    (2.6) 

Also, V0 does not affect vibrations (it represents the binding energy of the 

crystals) and hence can be set to zero. So the quadratic term is the first non-

vanishing term in the crystal potential. The cubic and other higher order terms are  

the anharmonic terms in the potential. Thus, within the harmonic approximation,  

the potential energy of the system is given by 

																			� = ��∑ ∑ ��$�ℓ�, ℓ%�%����ℓ, ���$�ℓ%, �%�ℓ( (ℓ   (2.7) 

where Φ is the 3Nn x 3Nn interatomic force-constant matrix, with the derivatives  

evaluated at the equilibrium configuration u = 0 

Φ	≡ 0��$�ℓ�, ℓ%�%� = *1+�,�*,-�ℓ, �*,2�ℓ(, (�3�4    (2.8)  

V(u) is the crystalline potential and the atomic displacements are represented 

collectively by u. 
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 Then the vibrational Hamiltonian is given by  

    	5 = �� �6789:6 + �7;��   (2.9) 

where the diagonal matrix  

																																																						8 = < =>>(=  (=�$    (2.10) 

contains the atoms’ masses with <  being the mass of the kth atom and p 

contains their momenta. 

Under the harmonic approximation the equations of motion for the atoms 

are given by 

< �?��ℓ, �� = 	− ������ℓ, �� 																																																									= 	−∑ ��$�ℓ�, ℓ%�%��$�ℓ%, �%�ℓ( ($  (2.11) 

Assuming a plane wave solution of the form 

																																					�ℓ �A, �� = �ℓ BCDEF[A. H�ℓ� − �I]J   (2.12)  

the normal mode frequencies are the solutions of the eigenvalue problem 

																																																			K; − �L�8MN�O� = 0    (2.13) 

where ψ(f) = ψ(ℓα|f) is the eigenvector corresponding to lattice motion with  

frequency ωf where  f = 1,……,3Nn represents the modes ,; is the 3nN x 3nN 

 force constant matrix, and M is the diagonal matrix as defined in equations 2.8  

and 2.10 respectively. 

Since both the force constant and mass matrices are real and symmetric, 

the eigenvectors of equation 2.13 satisfy the completeness and orthonormality  

conditions with respect to M: 
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 ∑ 8P�QLR� N�O�N7�O� = S    (2.14) 

and 

																																																			N7�O	�8N�O%� = =LL(   (2.15) 

so that the 3nN dimensional displacement vector u can be written as a linear  

combination of these eigenvectors through 

																																																			� = ∑ N�O�TLL      (2.16) 

where Qf are the normal coordinates of the system and are defined as 

																																																								TL = U7�O�8�V    (2.17) 

Using equations 2.13, 2.15 and 2.16, it can be shown that the Hamiltonian for  

the lattice is given by 

																																														5 = ��∑ KTWL� + �L�TL�ML    (2.18) 

The normal coordinate transformation is valid in both the classical and 

quantum mechanical treatment of the vibrational problem. This is the classical 

case and describes a collection of independent harmonic oscillators. The equation 

 of motion in normal coordinates becomes 

																																																			T?L + �L�TL = 0    (2.19) 

In the quantum mechanical case, TLand TWL	are considered as operators  

satisfying commutation relations [TL , TWL(] = iħδf f '.The vibrational Hamiltonian 

can be written as 

5 = ∑ ħ�L YZL7ZL + ��[L    (2.20) 
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where 

																																																				ZL = �\�ħ]^ KTWL − F�LTLM   (2.21) 

is the annihilation operator for mode f. 

The corresponding eigen energies are given by 

																																																_`�^a = ∑ ħ�L YbL + ��[L     (2.22) 

where bL = 0, 1, 2…, the number of quanta ħωf  in mode f. 

In both the classical and the quantum cases, the mode frequencies �L and 

the corresponding eigenvectors ψ(f) have to be obtained from the eigenvalue 

equation 2.13. which can be rewritten as 

∑ c��$�ℓ�, ℓ%�%� − �L�< =ℓℓ(=  (=�$dU�ℓ′�′f|O� = 0ℓ( ($  (2.23) 

Applying Bloch’s theorem to a periodic solid, the solution to equation 

2.23 can be expressed as plane waves of the form 

																																						U��ℓ�|Ah� = i-� |Aj�\Qk� � BCD[FA. H�ℓ��]   (2.24) 

here R(ℓk) denotes the equilibrium position of the kth atom in the ℓth primitive cell 

and 

   {eα(k|qj)} ≡  e(qj)    (2.25) 

are the phonon polarization vectors which satisfy the orthonormality and  

completeness relations given by 

																																																	l7�Ah�	l�Ah%� = =jj(    (2.26) 

where j = 1, 2, 3,….,3n label the polarization branches. Equation 2.23 reduces to 
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� ��$�ℓ�, ℓ%�%�\< < ( BCD[FA. H�ℓ%�%�]B$��′|Ah� = �L�BCD[FA. H�ℓ��]B���|Ah�ℓ( ($  

          (2.27) 

which can be written as 

 ∑ cm�$���%|A� − ���A�=  (=�$dB���%|Ah� = 0  (   (2.28) 

where 

			m�$���′|A� = �\nono( ∑ ��$�ℓ�, ℓ%�%�BCDEFA. [H�ℓ� − H�ℓ′�]Jℓ(   (2.29) 

The previous equation can be written in matrix form as 

																																															[p�A� − ���A�S]l�Ah� = 0   (2.30) 

where D(q) is called the dynamical matrix. 

Hence, we see that the plane wave solution 2.24 decouples the eigenvalue  

problem in equation 2.13 into N sets of 3n x 3n problems, one for each wave  

vector q (equation 2.30). For a non-trivial solution, 

 																																						|p�A� − ���A�S| = 0   (2.31) 

The index f, which labels the 3nN independent solutions to equation 2.13, is split  

into N wave vectors q and a branch index j that runs from 1 through 3n. These 3n  

harmonic eigenvalues ωj (q) represent the phonon dispersion curves which can be  

measured using inelastic neutron scattering (INS) and therefore represent the 

contact point between theory and experiment. For a three dimensional crystal the  

dispersion relation contains 3 acoustic branches and 3n-3 optic branches. Fig. 2.1 

shows the phonon dispersion curve for Ge. 
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Figure 2.1 Ge phonon dispersion relation 22. Copyright (1991) by the American 

Physical Society. 
 
 
Since Raman spectroscopy is kinematically restricted to q ≈ 0 phonons, its  

role as a probe of the lattice dynamics of semiconductors is limited. However,  

since second order Raman scattering involves pairs of phonons with wave vectors 

 q1 and q2 such that q1 + q2 ≈ 0, it can be used to explore phonon frequencies 

away from q = 0. In tetrahedral semiconductors the polarized second order Raman 

 spectrum is essentially proportional to the phonon density of states23. 

2.3 Anharmonic Effects on Raman-Active Phonons 

Till now we have discussed vibrations within the harmonic approximation,  

which neglects third- and higher-order terms of the crystalline potential. Within  

the harmonic approximation, the phonon modes are treated as independent  

oscillators, and once excited persist indefinitely and hence have an infinite 

lifetime. While this is a very good approximation, it is unable to account for many  

effects, such as thermal conductivity, thermal expansion, temperature- and 

pressure- dependent force and elastic constants, useful for characterization 
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purposes. An understanding of the interactions (anharmonicity) between the 

normal modes of these atomic vibrations is required for a detailed description of 

these physical properties. 

In the presence of the higher-order terms (anharmonic perturbations), the 

phonon lifetime becomes finite, which manifests itself as the width of a phonon  

peak measured using spectroscopic techniques like Raman scattering. The lifetime  

of long-wavelength longitudinal optical (LO) phonons in polar semiconductors, is  

particularly important for applications. These lifetimes are typically of the order  

of few picoseconds. These phonons couple strongly to electrons and the resulting  

scattering rates depend directly on the phonon population, which is largest for the  

longest anharmonic lifetimes24. With density functional theory it has been 

possible to calculate anharmonic effects, such as widths, shapes, and shifts of  

Raman modes25 and two-phonon absorption spectra in silicon and germanium26. 

Higher-order anharmonic effects can be treated by combining DFPT and  

frozen-phonon methods, and developing both methods may prove important to 

widening the scope of multiphonon interactions and their effects which can be 

realistically studied from theory. 

2.4 Raman Scattering by Phonons 

Consider the case of elastically reflected light. Let the field of the incident  

light be given by  

E (t) = ELcosωL(t)    (2.32) 

Then the polarization induced in the material can be written as27 
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Pi (t) = ∑ qj i j(u) EL jcosωL (t) 

= Re ∑ qj i j(u) EL jexp(-iωLt ) 

   = 
��∑ [	qj i j(u) exp(-iωLt )+ χ*

i j(u) exp(iωLt ) ] EL j 

           (2.33) 

where χi j is the system’s electronic susceptibility tensor. χ is a function of ωL. The  

scattering cross section of the electromagnetic radiation produced by this time- 

dependent polarization is given by the radiated power per unit solid angle dΩ  

divided by the incident intensity. Thus, we get27 

   
rsrt = 

uvwx1yw |∑ Bz{	{j q{jB|j |2   (2.34) 

 where V is the volume of the scattering medium and eS and eLare the unit  

polarization vectors for the scattered and incident radiation respectively. So the  

scattering cross section is proportional to the square of the magnitude of the  

fluctuations in χ: 

     
rsrt 	 ∝ 	 q{j∗ ���q{(j(���   (2.35) 

 χ depends on the electronic structure of the system and changes as the atoms  

vibrate about their mean positions. Since in semiconductors, vibrational 

frequencies are much lower than the frequencies related to electronic transitions,  

we can consider the electronic susceptibility for a frozen atomic configuration u.  

So we will average q{j∗ ���q{(j(��� over all possible configurations of the lattice: 

  〈q{j∗ 	q{(j(〉 = �����∑ B9$����( ���q{j∗ �����%���%�q{(j(������ (2.36) 

where ν is the vibrational state of the system and ��{� is the partition function. We 
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have assumed that the phonon frequency ���(is infinitely sharp. So the observed 

Raman line will be a δ-function, δ (�L	– ���(� as a function of the Raman shift 

�L	. Now we can define the Raman differential cross section as		
																																						 r1srtr]	=	uvwx1yw |∑ Bz{	{j q{jB|j|2	δ	��L		-	���(�	 	 �2.37�	
Using	the	relation 

																																														=�� − ���(� = ��� � �I	B9{K]9]��(M��9� 	 	 �2.38�	
we can write 

〈q{j∗ 	q{(j(〉	=�� − ���(� =
��� � �I	B9{]� �����∑ B9$����( ���q{j∗ ���B{]��(  ��%���%�q{(j(�������9�   (2.39) 

Now 

																																���q{j∗ ���B{]��(  ��%� = ���B{]��q{j∗ ���B9{]�(  ��%� (2.40) 

Using the Heisenberg representation 

																																																					q{j∗ ��, I� = B�¡ ħ q{j∗ ���B9{¢�/ħ   (2.41) 

we can write 

〈q{j∗ 	q{(j(〉	=�� − ���(� = ���� �I	B9{]��q{j∗ ��, I��9� q{(j(����  (2.42) 

For small displacements from equilibrium, the susceptibility can be expanded as 

  q{j��� = q{j�¤� + ∑ *¥�¦*,§�� ��¨�b�� + ⋯	� ¨    (2.43) 

Writing the displacements of the atoms in terms of the normal coordinates 

																																																															� = ∑ U�O�TLL     (2.44) 

we get 
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q{j��� = q{j�¤� +��q{j����TLL ª
�
TL 

     =	q{j�¤� + ∑ q{j,LTLL    (2.45) 

where     ∑ q{j,LTLL = ∑ *¥�¦���*«^L 3� TL   (2.46)	
Using equation (2.45) we can write 

q{j∗ ��, I�q{(j(���
= q{j∗ �¤�q{(j(�¤� +�q{j∗ �¤�q{(j(,L%TL%L%
+�q{(j(	q{j,L∗ 	TL�I� +�q{j,L∗ TL�I�	q{(j(,L%LL%L TL% 

          (2.47) 

So when we substitute equation (2.45) in equation (2.42), we find that the 

first term does not contain TL, which gives Rayleigh scattering. For finding the 

thermal average for the remaining linear and quadratic terms in TL, we use 

standard results from the quantum theory of the harmonic oscillator. Using the  

ladder operators defined by 

																																																											ZL�b¬ = √b�b − 1¬    (2.48) 

																																																				ZL7�b¬ = √b + 1�b + 1¬   (2.49) 

the normal coordinates can be written as 

																																										TL�I� = F® ħ�]^ �ZLB9{]� − ZL7B{]�   (2.50) 

																																																		TL = F® ħ�]^ �ZL − ZL7�    (2.51) 
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The thermal averages 〈TL(〉 = 0	and 〈TL�I�〉 = 0, and the thermal average for 

TL�I�TL( works out to be 

  〈TL�I�TL(〉 = ħ�]^ =LL(c〈bL + 1〉B9{]^� + 〈bL〉B{]^�d  (2.52) 

Keeping only the term contributing to Raman scattering, we get the Raman  

differential cross-section as27 

r1srtr] =					 ħ+1�yw ∑ K]¯9]^Mw]^ `KbL + 1M	=K� − �LM + bLK� + �LMa 	×L
																																																																																																																					�∑ Bz{q{j,LB|j{j ��  

          (2.53) 

where 

      〈bL〉 = ±Bħ²^o³´ − 1µ9�   (2.54) 

is the Bose-Einstein phonon occupation number for mode f and �L is the Raman 

shift. The term containing =K� − �LM corresponds to Stokes scattering (creation  

of phonon) while the term containing =K� + �LM corresponds to anti-Stokes  

scattering (annihilation of phonon). 

Equation (2.53) can be used to determine the selection rules for Raman 

scattering. If we replace the volume susceptibility q{j,L with the volume  

independent Raman tensor 	¶{j,L, equation (2.53) can be rewritten as27  

r1srtr] = ħ+1�·�¸yw∑ K]¯9]^Mw]^ `KbL + 1M	=K� − �LM + bLK� + �LMa 	×L
																																																																										�∑ Bz{¶{j,LB|j{j ��   (2.55) 
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where 

     q{j,L = ��¸® �·Q¶{j,L    (2.56) 

and ¹y and µ are the volume and the mass of the unit cell respectively. 

For diamond and zinc blende-type crystals the Raman tensors for phonons  

polarized along the x-, y- and z-axis, at q = 0, are given by27
   

¶{j,º ≡ ¶�C� = »0 0 00 0 Z0 Z 0¼ 

¶{j,½ ≡ ¶�¾� = »0 0 Z0 0 0Z 0 0¼ 

¶{j,¿ ≡ ¶�À� = »0 Z 0Z 0 00 0 0¼ 

          (2.57) 

2.5 Effect of Perturbations on Vibrations 

Many interesting phenomena, such as the addition of foreign atoms, the  

application of stress, etc., can be described as perturbations to the vibrational  

properties of semiconductors, which can be studied using Raman spectroscopy. 

The remainder of the chapter describes how Raman spectroscopy can be used to  

study these perturbations.  

These perturbations will change the force constants and the mass matrices, 

so that equation (2.13) becomes 

																																								c�; + Á;� − �L��8 + Á8�dÂ�O� = 0  (2.58) 

here, �L and Â	�O�	are the perturbed eigenfrequencies and eigenvectors. 
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In practical cases the perturbations are very small. So equation (2.58) (or  

2.13) can be rewritten in terms of the complete set of orthonormal unperturbed  

mode eigenvectors	E���O�J	and eigenfrequencies	��L. Since the unperturbed  

eigenvectors are a complete set, the perturbed eigenvectors can be written as a 

linear combination: 

 																													Â��ℓ�|O� = ∑ ÃLL(����ℓ�|O′�P�QL(    (2.59) 

here the sum is over the unperturbed modes. The coefficients ÃLL(are the  

expansion coefficients of the perturbed eigenvectors in terms of the unperturbed  

ones. Substituting equation (2.59) in equation (2.58) we get 

  ∑ cK�ÄL� − �L�M=LL( + Á;LL( − �L�Á8LL(dÃLL( = 0	L(  (2.60) 

where 

   Á8LL( = Â�7�O�Á8Â¤�O%�   (2.61) 

and 

   Á;LL( = Â�7�O�Á;Â¤�O%�   (2.62) 

are the perturbed matrix elements expressed in the basis of unperturbed 

eigenvectors. 

Equations 2.59 and 2.60 can be used as the starting point for a perturbation 

theory treatment. These equations can be used to treat isotopic disorder (for which  

Å; = 0), stress (∆M = 0), and alloying, for which both the force constant and 

mass matrices change. 
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2.6 Effect of Strain on Raman phonons 

Strain in a crystal changes the equilibrium position of the crystal atoms. 

The force constants in a strained crystal are different from those in equation (2.8) 

due to the anharmonic terms in the crystal potential. The force constants of the 

deformed crystal are now evaluated at the new equilibrium position and are given 

by 

																			;�$Æ �ℓ�, ℓ%�%� = ;�$�ℓ�, ℓ%�%� + ∑ *;-2Kℓ ,ℓ( (M*ÆÇÈ ÉÊËÊË   (2.63) 

where	ÉÊË are the components of the strain tensor (as defined by Kittel28). 

The equation of motion (2.11) now becomes 

< �?��ℓ, �� = − � ;�$�ℓ�, ℓ%�%��$�ℓ%, �%�ℓ( ($
− � �Ì�$�ℓ�, ℓ%�%��ÉÊË ÉÊË�$�ℓ( ($ÊË ℓ�, ℓ%�%� 

          (2.64) 

If we assume a plane wave solution of the same form as equation 2.12, we 

obtain the same equation as (2.31). Except now ω2 is the difference between the  

squares of the perturbed ωε and the unperturbed ω0 frequencies. Considering that  

there are two atoms in a primitive cell of diamond-type or zincblende-type 

structures, and the fact that ∆M = 0, for the triply degenerate q = 0 Raman-active 

mode in diamond structure systems equation 2.60 becomes29 
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ÎDÉºº + ÏKÉ½½ + É¿¿M − Á�{� 2ÐÉº½ 2ÐÉº¿2ÐÉº½ DÉ½½ + Ï�É¿¿ + Éºº� − Á�{� 2ÐÉ½¿2ÐÉº¿ 2ÐÉ½¿ DÉ¿¿ + ÏKÉºº + É½½M − Á�{�
Ñ»�����P¼ 

         = 0  (2.65) 

where p, q and r are the symmetry allowed anharmonic parameters called the  

phonon deformation potentials. So in the presence of strain, the q = 0 optical  

phonon splits into three modes whose frequencies are shifted by an amount (∆ωi) 

from the unstrained phonon frequencies (ω0). The strain shifts of the Raman- 

active modes are determined by the phonon deformation potentials, p, q and r. In 

principal, this can be done by setting the determinant of the coefficients of the 

above equation equal to zero. The applied strain components are known. The 

eigen vector components {u1, u2, u3} when substituted in equation (2.59) give the  

phonon eigenvector corresponding to the perturbed mode. The underlying 

analysis of the effect of strain on Raman phonons is described in detail in  

chapter 3. 

2.7 Effect of alloying on Raman phonons 

The bulk properties of the alloy A1-x B x, formed by mixing the atoms of 

two similar semiconductors (A and B), are found to be composition dependent. 

For such an alloy, Raman peaks correspond to three types of optical phonons; 

namely, A-A, A-B and B-B, which depend on the composition of the alloy. The  

compositional dependence of the Raman shift can be expressed as the sum of a  

‘mass perturbation’ and a ‘bond perturbation term’27: 
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																																					Á���C� = Á�nÒÓÓ� �C� + Á��Ä�rÓ� �C�   (2.66) 

where Á�nÒÓÓ	and Á��Ä�r are the  Raman shifts due to mass disorder and bond  

distortion respectively. The mass disorder term can be written as30 																																																																																																					Á�nÒÓÓ = −ÔÕ��    (2.67) 

here A is a proportionality constant, s is the concentration of the individual  

element. The mass disorder is due to the confinement caused by the different  

masses. The atom with the heavier mass will not be able to follow the vibrations 

 of the lighter atom, and hence will be more or less stationary. This results in the  

localization of the vibrations of the lighter atom, which leads to a reduction in its  

vibration frequency. This is the case, for example of Si atoms in Ge. But also  

optic-like Ge vibrations in Si become localized due to the very different eigen  

vector displacement patterns. 

The bond distortion term is due to the lattice mismatch of the alloying  

components A and B. The change in length of the relevant bond can be given 

by27: 

  																			Ö×× = �1 − Z∗∗� ÖÒÒ 				 	 	 	 (2.68) 

where a** is called the topological rigidity parameter 31, 32 which is a measure of 

the bond’s tendency to conserve its length as a function of composition. Tensile 

strain (lengthening of bond) generally lowers the vibration frequency whereas 

compressive strain (shortening of bond) tends to increase the mode frequency.  

The bond distortion term is written as27 

																																																								Á��Ä�rÓ = −3Ù Ö×× ��   (2.69) 
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 where γ is the Grüneisen parameter and ω0 is the unperturbed frequency. The  

combination of the mass disorder term and the bond distortion term33 explain  

qualitatively the compositional dependence of Raman modes in alloys.
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CHAPTER 3 

PHONON STRAIN-SHIFT COEFFICIENTS IN Si AND Ge 

3.1 Introduction 

Strain-engineering is nowadays essential for nanoscale CMOS devices  

because it enhances carrier mobility and is compatible with large scale 

integration34. The chemical sensitivity and spatial resolution of Raman 

spectroscopy, combined with the sensitivity of modern systems that can easily 

detect single atomic layers, have made this technique a preferred choice for the 

strain characterization of complex systems such as nanoscale CMOS devices35. A 

disadvantage of Raman spectroscopy, however, is that the shifts associated with 

strain are not related to the geometrical deformations in any obvious way, so that 

careful calibrations are needed to determine the anharmonic coefficients that  

relate strain to Raman shifts. 

The first-order strain dependence of long-wavelength optical phonons in 

diamond-cubic semiconductors is characterized by a fourth-order tensor Kijkl with 

the same form as the elastic constant tensor Cijkl 
36. Accordingly, the strain shifts 

of the Raman-active modes in diamond, Si, Ge, and α-Sn are determined by three-

parameters, p, q, and r, which represent the phonon-anharmonic analog of the C11, 

C12, and C44 elastic constants. The determination of p, q, and r, whose precise 

meaning is discussed below, is of considerable theoretical and practical interest. 

On the theoretical side, the calculation of anharmonic lattice-dynamical properties 

provides an ultimate test of the predictive capabilities of density functional theory. 
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A significant body of theory has emerged focused on the ab initio prediction of 

Raman phonon anharmonic self-energies, with special emphasis on explaining the 

lineshape of Raman peaks and their temperature and pressure dependence. 37, 38 

However, calculations of p, q, and r are rare, and the few results available are 

inconsistent. On the practical side, knowledge of these parameters is critical if 

Raman spectroscopy is to be used to monitor strain in semiconductor 

nanostructures. 

Table 3.1 shows the best sets of recommended values in the literature for 

Si and Ge. Information about p, q, and r can be obtained from three types of 

measurements: hydrostatic pressure Raman experiments using diamond anvil 

cells, uniaxial stress Raman experiments on large, bulk specimens, and Raman 

experiments on strained thin films grown by strained-layer epitaxy. 13, 14, 29, 39, 40 

However, the recommended values of p, q, and r in the literature, such as those in 

Table 3.1, are deduced only from uniaxial stress experiments, and they are 

unsatisfactory in several respects. From a theoretical perspective, we would 

expect p, q, and r to be very similar in Si and Ge when expressed in dimensionless 

form, since the interatomic potential in these materials are very similar and their 

phonon dispersion curves essentially scale with the inverse square root of the 

average mass. However, the quoted values for the dimensionless form of p, q, and 

r for Si and Ge are significantly different, and their error ranges do not overlap. 

From an experimental perspective, the phonon deformation potentials in Table 3.1 

are not entirely consistent with direct measurements in strained films. Moreover, 
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the quoted errors in these direct measurements are much less than the error 

computed from Table 3.1, suggesting that one could use the film experiments to 

reduce the errors in p, q, and r estimated from the stress experiments alone. So 

far, no attempt has been made to combine the results of the different experiments 

to reduce errors and enforce consistency across the different experimental 

approaches. In addition, the possibility of a deviation from linearity, that is, the 

possibility that p, q, and r may be strain dependent, has not been discussed in the 

literature. 

The purpose of this chapter is twofold. First, we critically re-examine all 

available literature for Si and Ge and we show that by combining the results from 

different experiments it is possible to extract a consistent set of values for the 

parameters p and q for both Si and Ge which are very similar when expressed in a 

dimensionless way—exactly as might be expected from the similarity of the 

interatomic potential in both materials—and consistent with all available 

experimental data. Critical for this analysis is to take into account the non-linear 

pressure-volume relationship in these semiconductors, as well as issues in the 

calibration of uniaxial stress rigs. In the second part of this chapter we present a 

new set of measurements of the Raman shift in strained Ge films grown on 

relaxed SiGe buffer layers deposited on Si substrates. The results are discussed in 

terms of the new, consistent set of p and q parameters and suggest that the 

combination p-q may be strain dependent. This additional complication has never 

before been addressed and suggests further studies will be necessary. 
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Table 3.1Currently recommended values for deformation potentials p, q and r  

 
 Sib Gec  

p -1.85 ± 0.06 -1.47 ± 0.20 

q -2.31 ± 0.06 -1.93 ± 0.19 

r -0.71 ± 0.02 -1.11 ± 0.19 

 

bE. Anastassakis, A. Cantarero, and M. Cardona, Phys. Rev. B 41 (11), 7529  
(1990). 
 
cF. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, Phys. Rev. B 5, 580  
(1972). 

 

3.2 Definition of Basic Parameters 

To understand the possible differences between “pressure experiments”, in 

which hydrostatic pressure is applied in a diamond anvil cell, “stress 

experiments”, in which a large bulk specimen is subject to uniaxial stress, and 

“strain experiments”, in which a thin film is grown fully strained on a lattice-

mismatched substrate, it is critical to examine the approximations leading to the 

expressions commonly used to fit the experimental data. We have seen in chapter 

2 that the secular equation for diamond and zinc blende semiconductors is given 

by (equation 2.65) 

ÎDÉºº + ÏKÉ½½ + É¿¿M − Á�{� 2ÐÉº½ 2ÐÉº¿2ÐÉº½ DÉ½½ + Ï�É¿¿ + Éºº� − Á�{� 2ÐÉ½¿2ÐÉº¿ 2ÐÉ½¿ DÉ¿¿ + ÏKÉºº + É½½M − Á�{�
Ñ»�����P¼ 

        = 0  (3.1) 
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where p, q and r are the strain deformation potentials13 and Á�{� = �Æ� − ��� is 

the difference between the squares of the perturbed (strained) and unperturbed 

frequencies and x, y and z correspond to the Cartesian coordinates in the 

crystalline cubic cell. So the strain dependent frequency is given by 

  Á�{� = �Æ� −��� (3.2) 

 																																		= ��Æ − �����Æ + ��� 
  																						≅ 	 ��Æ − ���2�� 

or 
2

0
02
i

ε

ω
ω ω

ω

∆
≈ +  (3.3) 

For non-trivial solutions

( )
( )

( )

2

2

2

2 2

2 2

2 2

xx yy zz i xy xz

xy yy zz xx i yz

xz yz zz xx yy i

p q r r

r p q r

r r p q

ε ε ε ω ε ε

ε ε ε ε ω ε

ε ε ε ε ε ω

+ + − ∆

+ + − ∆

+ + − ∆

   

                                                                                            = 0  (3.4) 

Expanding the determinant we get

( )
( ) ( )2 2

2

2 24

yy zz xx i zz xx yy i

xx yy zz i

yz

p q p q
p q

r

ε ε ε ω ε ε ε ω
ε ε ε ω

ε

   + + − ∆ + + − ∆     + + − ∆   
−  

( ){ }2 22 2 4xy xy zz xx yy i xz yzr r p q rε ε ε ε ε ω ε ε − + + − ∆ − 

 ( ){ }2 22 4 2 0
xz xy yz xz yy zz xx i

r r r p qε ε ε ε ε ε ε ω + − + + − ∆ =   
      (3.5) 

Now, a general strain tensor41 can be written as 

 
xx xy xz

yx yy yz

zx zy zz

ε ε ε

ε ε ε

ε ε ε

ε= 

    
    
    
    
    

 (3.6) 
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Due to symmetry KÉ{j = Éj{M, only six independent components are 

required to fully describe strain. When applied to a crystal structure, the trace of 

the strain tensor corresponds to the hydrostatic strain (or changes in bond length 

only), while the off- diagonal terms correspond to anisotropic or shear 

components (which involves changes in bond angles). 

For uniaxial stress, the off-diagonal elements of the stress tensor are 

zero42. For cubic systems the strain has in-plane �Éǁ� and out-of-plane �ÉÜ� 
components. For stress along [001] the strain tensor simplifies to 

 

0 0

0 0

0 0

ε

ε

ε

ε= 

�

�

⊥⊥⊥⊥

    
    
    
    
    

 (3.7) 

Using the elements defined in equations (3.7) , equation (3.5) can be rewritten for 

the case when Éºº = É½½ = Éǁ and É¿¿ = ÉÜ.  

( ) ( ) ( ){ }2 2 2
i i i

p q p q p qε ε ε ω ε ε ε ω ε ε ε ω⊥ ⊥ ⊥
     + + − ∆ + + − ∆ + + − ∆     � � � � � �   

       = 0        (3.8) 

or  ( )
22 22 0i ip q p qε ε ε ω ε ε ω⊥ ⊥

   + + − ∆ + − ∆ =  � � �       (3.9) 

So equation (3.9)  gives rise to a singlet and a doublet whose expressions 

are given by 

 2 2si p qω ε ε⊥∆ = +
�  (3.10) 

and ( )2
di

p qω ε ε ε ⊥∆ = + +
� �

 (3.11) 

Using equation (3.3) we get  
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 0
0

2

2s

p q
ε

ε ε
ω ω

ω
⊥ +

= + �  (3.12) 

and  
( )

0
02d

p q
ε

ε ε ε
ω ω

ω

⊥+ +
= +

� �  (3.13) 

For the diamond structure, in the absence of strain, the q ≈ 0 optical 

phonons are triply degenerate. Epitaxial strain along the [001] direction splits 

these degenerate modes into13 a singlet	��ÓÆ� with an eigenvector parallel to the 

strain and a doublet ��rÆ� with eigenvectors perpendicular to the strain. The 

phonon dispersion curve for Ge is shown in figure 2.1 in chapter 2. For 

backscattering along the [001] direction, the singlet gives rise to the longitudinal 

optic (LO) and the doublet gives rise to the two transverse optic (TO) phonons. 

Virtually all measurements of thin films in the literature, including ours, are based 

on the backscattering geometry, so that only the singlet mode is detected. Thus 

the strain correction to the observed Raman mode in our case will be 

    0

2

2

p q

w

ε ε
ω ⊥

+
∆ =

�

    (3.14) 

 By contrast, in stress experiments on macroscopic specimens one can use other 

scattering geometries which make it possible to observe both the singlet and the 

doublet. 

It is customary to express the shift of the measured Raman mode in terms 

of a Gruneisen parameter (γ) and a shear deformation potential (as). The 
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Gruneisen parameter, which can be obtained from the hydrostatic pressure shifts 

of the Raman modes, is defined as13 

                                                     
ln
ln

d

d V

ω
γ = −                                          (3.15) 

where ω is the frequency and V is the volume. 

If we assume hydrostatic strain that changes the equilibrium cubic lattice 

constant Z� to a, 

    0

0
xx yy zz

a a

a
ε ε ε ε

−
= = = =   

and    0
xy xz yz

ε ε ε= = =     (3.16) 

we obtain from equation (3.10)  

   
2

2 2
0 0

2i p qω
ε

ω ω

∆ +
=     (3.17) 

or, if we approximate Á�{ �� = ��Á�{� ���⁄Þ , 

    
2

0 0 0

2
2

i p q V

V

ω
ε γ

ω ω

∆ + ∆
= = −

.
   (3.18) 

Here we have expressed the Gruneisen parameter γ in terms of the p and q 

coefficients. Now since 

  ( )
3 2 3

0

1 1 3 3
V

V
ε ε ε ε

∆
= + − = + +    (3.19) 

we get, neglecting higher order terms 

     
0

3
V

V
ε

∆
=     (3.20) 
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From equations (3.18) and (3.20) we find 

    ( )2
0

1
2

6
p qγ

ω
= − +      (3.21) 

Let us now assume that the cubic cell of lattice constant a0 is distorted into a  

tetragonal cell of constants a and c. So the strains are now 

0

0
xx yy

a a

a
ε ε

−
= =   

0

0
zz

c a

a
ε

−
=  

and    0
xy xz yz

ε ε ε= = =     (3.22) 

Equations ( 3.10) and (3.11) can be rewritten as 

   

2

2 2
0 0

2
s zz xx

p qεω ε ε

ω ω

∆ +
=

    (3.23) 

and    

( )2
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ε
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ω ω
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   (3.24) 

This can be expressed in a more symmetrical way as  

                            ( ) ( )
2
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2
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3 3
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xx zz xx zz

p q p qεω
ε ε ε ε

ω ω ω
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and ( ) ( )
2

2 2 2
0 0 0

2
2

3 3
d

xx zz xx zz

p q p qεω
ε ε ε ε

ω ω ω
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= + + −  (3.26) 

or ( ) ( )
2

2
0

4
2 2

3
s

xx zz s xx zz
aεω

γ ε ε ε ε
ω

∆
= − + − −  (3.27) 
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                                  ( ) ( )
2

2
0

2
2 2

3
d

xx zz s xx zz
aεω

γ ε ε ε ε
ω

∆
= − + + −                     (3.28) 

where we have defined the shear phonon deformation potential as 

   
( )2

0

1
2sa p q
ω

= −

    
(3.29) 

which determines mode splittings under uniaxial stress along the (001) direction. 

Another way to calculate the coefficients is by generating biaxial strain by 

heteroepitaxial growth of lattice mismatched materials. For growing epitaxially on 

the substrate, the layer’s lattice parameter in the plane parallel to the surface of 

the substrate (Zǁ� should be equal to that of the substrate. This in turn will induce 

a distortion in the layer’s lattice parameter in the plane perpendicular to the 

surface of the substrate (ZÜ�, producing a tetragonally strained layer. In this 

approach the strain has to be measured independently (by HRXRD in this work).  

3.3 Pressure and Stress Experiments 

One way to determine the coefficients γ and as is to subject the samples to 

hydrostatic and uniaxial stress. Anastassakis43 was the first to measure these 

parameters simultaneously from stress experiments. An external stress applied 

along the [001] direction produces a frequency shift between the singlet and 

doublet modes. From these shifts γ and as, (or p, and q) and r can be calculated. 

The Grüneisen parameter γ can be obtained by subjecting the sample to 

hydrostatic pressure, typically via diamond anvil cells. From the strain-stress 

relations, we have, at an external pressure P:  
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 (3.30) 

or 

 ( ) 11 12
11 12 0

0 0

2
2

3
C C V V

P C C B
V V

ε
+ ∆ ∆

= − + = − =  (3.31) 

Here we have introduced the bulk modulus à� = �á�� + 2á���/3 and used 

equation (3.20). From equations (3.18) and (3.31) we obtain 

 
0 0 0

i V p

V B

ω
γ γ

ω

∆ ∆
= − = −  (3.32) 

If uniaxial stress is applied in the zz direction: 
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 (3.33) 

This gives the following two equations: 

 �á�� + á���Éºº + á��É¿¿ = 0 

 2á��Éºº + á��É¿¿ = −â 

Solving this system we find 

 
11 12

2
2xx zz

C C

σ
ε ε+ = −

+
 

and 
  
ε

xx
− ε

zz
= −

σ

C11 − C12

 (3.34) 

Inserting these into equations (3.27) and (3.28) we obtain 
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where we have defined 

    
2 2

2 2
0

2

3
s d

h

ω ω
ω ω

+
= +

 
    (3.37) 

A problem with this approach is that the relationship between strain and stress, 

assumed linear in Eqs. (3.30) and (3.34), deviates from this behavior 

experimentally. In the case of the pressure-volume relationship, the deviation can 

be expressed in terms of the so-called Murnaghan equation of state as44 

                                                                            (3.38) 

where à�% = �à�/�D|ãR�. 

3.4 Strain Experiments 

In recent years, the availability of strained-layer films has provided an 

alternative calibration method that has made it possible to bypass stress 

calibration issues by directly measuring the dependence of Raman frequencies on 

strain. This strain—typically a tetragonal distortion of the cubic symmetry—is 

simple enough to be characterized via x-ray studies. The Raman spectrum of the 

films, even very thin ones, can be easily measured with modern equipment. The 
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deformation potential can be obtained from the observed strain-induced Raman 

shift. 

If a sample of cubic lattice constant	Z� is grown along the (001) direction 

on a substrate with lattice constant a, then the following equations define the 

components of the strain produced in the planes parallel and perpendicular to the 

substrate:  

 0

0

a a

a
ε

−
= �

�  (3.39) 

 0

0

a a

a
ε ⊥

⊥

−
=  (3.40) 

Because the sample is stress free in the zz direction, we have 
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 (3.41) 

So the parallel and perpendicular components of the strain are related to 

each other as  

     

12

11

2
C

C
ε ε⊥ = −

�
     (3.42) 

This can also be derived from an energy minimization argument. We write the 

total energy as 

 
1 1 1
2 6 24IJ I J IJK I J K IJKL I J K L

IJ IJK IJKL

C C Cε ε ε ε ε ε ε ε ε εΦ = + +∑ ∑ ∑  (3.43) 
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Here we use the Voigt notation 
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 (3.44) 

Keeping terms up to quadratic 

 ( ) ( ) ( )2 2 2 2 2 2
11 1 2 3 12 1 2 1 3 2 3 44 4 5 6

1 1
2 2

C C Cε ε ε ε ε ε ε ε ε ε ε ε εΦ = + + + + + + + + (3.45) 

which in our case becomes 

 ( ) ( )2 2 2
11 12

1
2 2

2 xx zz xx xx zzC Cε ε ε ε ε εΦ = + + +  (3.46) 

Minimizing this energy with respect to εzz, we get equation 3.42. Equation 3.43 is 

useful to study higher-order corrections to equation.3.42. For Si and Ge, the third 

and fourth order elastic constants are known, but when we insert this in equation 

3.43, the condition 3.42 is affected only by 1%. 

TABLE 3.2 Elastic constants for Si and Ge from McSkimmin’s data at 25oC47 

(GPa) Si Ge 

C11 165.773 128.528 
  C12 63.924 48.26 
 B0 97.874 75.016 

    

As mentioned before for cubic crystals, the epitaxially induced strain can be 

separated into a hydrostatic (also known as isotropic) and an anisotropic  

component. The hydrostatic strain given by 
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   2
i

ε ε ε⊥= +
�

     (3.47) 

changes only the volume of the crystal and not the crystal symmetry, while 

the anisotropic strain, given by 

   
a

ε ε ε ⊥= −
�

     (3.48) 

reduces the symmetry of the crystal without changing its volume. Using equations 

(3.42) and (3.14) we can write  

    12
0 2 2

0 11 0

C pq

C
ω ω ε

ω ω

 
∆ = − 

 
�
   (3.49) 

The proportionality constant between the strain correction to the observed Raman 

mode and the strain is called the phonon strain shift coefficient. The relationship 

is expressed as 

           bω ε∆ =
�                            

(3.50) 

where    12
0 2 2

0 11 0

C pq
b

C
ω

ω ω

 
= − 

                 
(3.51) 

is the strain shift coefficient. Rearranging terms in equations (3.21) and (3.29), 

and substituting in equation (3.51) we find, 
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a C C
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    
= − + + −    
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(3.53) 

where �� is the unstrained Raman frequency.We use this expression to 

determine the Ge-Ge vibration in Si-Ge alloys. 
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3.5 Application to Silicon 

3.5.1 Grüneisen parameter 

The pressure dependence of the Raman phonon of Si has been measured at 

room temperature by Weinstein45. His result is 

 
  
ω

Si
( p) = 519.5 ± 0.8( ) + 5.2 ± 0.3( ) p − 0.07 ± 0.02( ) p

2  (3.54) 

where the pressure is in GPa. The curve is shown in Fig. 3.1 If we take the linear 

coefficient as representative of infinitesimal changes, we get 

 
  
γ = −

∆ω

p

B0

ω0









 = 5.2 ± 0.3( ) ×

97.874
519.5







= 0.98 ± 0.05

   
(3.55) 

The non-linearity of the curve can be easily displayed by attempting to fit a 

straight line to it. This is shown in Fig. 3.1, where the fit has been limited to the  

0-2 GPa range to match the uniaxial stress data to be discussed below: 
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Figure 3.1 Fitting a straight line (thick line) to the pressure dependent Raman shift 
of Si measured at room temperature by Weinstein45. 
 
 

If we use the slope of this line as the definition of our Grüneisen parameter 

we obtain 

 
  
γ = −

∆ω

p

B0

ω0









 = 5.0973×

97.874
519.5







= 0.96 ± 0.05  (3.56) 

assuming the same error as in the previous determination. Measurements at 6K 

were carried out by Ulrich et al46. They find 

   ω Si
( p) = 523.88(10) + 5.10(4) p − 0.062(4) p

2

  (3.57) 

where the pressure is in GPa. We also digitized McSkimmin’s data for C11 and 

C12 as a function of temperature47. From the digitized data we interpolate 
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B0(25ºC) = 97.8187 GPa and B0(6K) = 99.2805 GPa. Since the value at 25 ºC 

differs slightly from the value for B0 at 25 ºC proposed by McSkimmin in a 

different paper and used in Table 3.2, we “renormalize” the 6K value as follows: 

So we will use B0(6K) = 99.2805*97.874/97.8187= 99.341 GPa. Using this we 

obtain a Grüneisen parameter of 

 0

0

B∆ω 99.341
γ=- =5.0973× =0.967±0.007

p ω 523.88

   
   

  
 (3.58) 

So we see that the dependence on temperature of the Grüneisen parameter is non 

existent within experimental error. 

Let us now study the effect of taking into account the non-linear pressure-

volume relationship. Hu et al48 studied the p-V relation experimentally and they 

find good agreement with Murnaghan’s equation (3.38) using McSkimmin’s 

values B0 = 97.88 GPa and   B0
′ = 4.24. 

 

  

∆V

V0

= 1+
B

0
′

B0

p












−1 B0
′

−1

 

Using this relation we find the curve below for room temperature data. 
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Figure 3.2 Dependence of frequency-shift on volume based on Hu et al’s5 
study of the p-V relation experimentally and Weinstein’s pressure  
measurements of the Raman shifts. 

 

We can see that the dependence of the frequency shift on volume is now 

more linear than in the graph of the frequency shift versus pressure (figure 3.1). 

This means that the non-linearities in the pressure dependence of the frequencies 

are due in part to the non-linear pressure-volume relationship. 

If we fit this with a quadratic polynomial over a volume range less than 

0.04, the linear term is by definition the Grüneisen parameter, and we obtain γ = 

0.98 ± 0.05. This is exactly what we obtain from the quadratic fit to the pressure 

dependence, because for infinitesimal volume changes Murnaghan’s equation is 

equivalent to the simple linear expression in Eq. 3.32. However, for finite volume 

changes the results are different. For example, if we fit a linear expression to the 
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pressure dependence up to 2 GPa, as discussed above, we obtain γ = 0.96, but if 

we fit the volume dependence with a linear expression up to the equivalent 

volume change of 2%, we obtain γ = 1.00, so that there is a systematic difference, 

on the order of 4% between experiments that assume linear dependence on 

pressure and experiments that assume linear dependence on volume. 

3.5.2 Uniaxial stress experiments 

Uniaxial stress data for Si are available from Anastassakis et al13, 43 in two 

papers separated by twenty years. The 1990 paper shows results collected at 110K 

and with a stress up to 2 GPa. For the hydrostatic part they find ∆ωh/σ = 1.88 ± 

0.05 cm-1/GPa. Using equations (3.35) and (3.36) we obtain 

 
  
γ =

∆ω
h

σ







3B0

ω0

= 1.88 ± 0.05( ) ×
3× 99.04

523.6
= 1.07 ± 0.03

  
(3.59) 

However, the authors quote  γ= 1.08 ± 0.07. The slightly different value may be 

due to the values they use for B0 and ω0, which are not indicated. We have used 

the bulk modulus at 110K from our above-mentioned digitized McSkimmin data 

and the phonon frequency at 110K from Balkanski.49. The larger error bar quoted 

by Anastassakis is not explained in their paper and appears to contradict the error 

they quote for the “raw” measurements.  At the same level of theory one obtains a 

Grüneisen parameter of γ = 0.960 from the hydrostatic pressure experiments 

discussed above, so that there is marginal agreement between the two experiments 

when using the error bars indicated by Anastassakis, and likely disagreement 

when using the error bars that we compute. Similarly, if we compare with the data 
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from Ulrich, there seems to be a meaningful discrepancy between the pressure 

and stress experiments. 

For the singlet-doublet splitting under (001) stress, Anastassakis et al find  

ωs – ωd = -1.16 ± 0.12 cm-1/GPa, so that from (3.53), we obtain 

 
  
a

s
=

ω
d

−ω
s

σω
0

C11 − C12( ) =
1.16 ± 0.12( )

523.6
×102.465 = 0.23 ± 0.02  (3.60) 

Here we have used the elastic constants at 110K. We can now compute the strain- 

shift parameter b, using equation (3.53) 

 12 12
0

11 11

2 1 1
3

s
a C C

b
C C

γ ω
    

= − + + −    
    

   

  
= −2 1.0668 × 0.612281+ 0.0757 ×1.77544  × 523.6 = −825 ± 30cm

−1  (3.61) 

Measurements at room temperature were carried out by Anastassakis 

himself in the 1970 paper, but he has only two data points there, and also by 

Chandrasekhar et al39, using the 6471 Å excitation. However, she has fewer data 

points than Anastassakis in 1990. We have digitized her data and we find ∆ωh/σ = 

1.64 ± 0.10 cm-1/GPa. Using equations (3.35) we obtain in her case 

 
  
γ =

∆ω
h

σ







3B0

ω0

= 1.64 ± 0.10( ) ×
3× 97.874

520.0
= 0.93 ± 0.05   (3.62) 

where we have used the Bulk modulus at room temperature and Chandrasekhar’s 

own zero stress frequency. 
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Similarly, they find ωs – ωd = -1.25 ± 0.16 cm-1/GPa, so that from 

equation (3.37), we obtain 

 
  
a

s
=

ω
d

−ω
s

σω
0

C11 − C12( ) =
1.25 ± 0.16( )

520.0
×101.849 = 0.245 ± 0.030 (3.63) 

Here we have used the elastic constants at room temperature. We can now  

compute the strain-shift parameter b, using equation (3.53) 

 12 12
0

11 11

2 1 1
3

s
a C C

b
C C

γ ω
    

= − + + −    
      

10.24882 0.926 0.614389 1.77122 520.0 744 503 cm− = − × + × × = − ±
 

 (3.64) 

In summary, while the predicted strain dependence of the Si phonon 

frequency from the Anastassakis and Chandrasekhar experiments overlap within 

experimental error, there seems to be a real difference between their measured 

Grüneisen parameter. 

3.5.3 Strain experiments 

Most of the strain experiments consist of measurements of the shift in 

strained Si grown on relaxed SiGe. They are usually given in terms of the 

coefficient b. Table 3.3 shows this coefficient as measured by several authors. 
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Table 3.3 Strain-shift coefficient in Si from literature. 

Author b Number 
of 
points 

Error γ as Max 
strain 
(%) 

Nakashima(UV)51 -723 8 15 0.994 0.14±0.08 1.2 

Canonico -744  7 1.001 0.17±0.06 1.8 

Omote96 -760 29 15 0.992 0.20±0.08 1.05 

Wong50 -784 3 10 0.992 0.24±0.07 1.1 

Tsang97 -815   0.986 0.297 0.5 

(In the case of Omote and Wong we have re-evaluated their error bars) 

 

The errors are much smaller than in the stress measurements, and the error 

ranges for the strain and stress measurements do not overlap, even though the 

stress measurements have larger errors. However, it appears that the results in 

Table 3.3 may be affected by systematic errors, since the results do not agree well 

within the quoted error ranges. To obtain the as value corresponding to each 

measurement, we extract the appropriate value of the Grüneisen parameter γ from 

the dependence of frequency versus volume in Fig. 3.2. For consistency, we fit 

the change in frequency with respect to ∆V/V0 over a similar volume range as 

experienced in the strain experiments. This means a volume expansion which, in 

the case of the Nakashima et al51 experiment, is 

   ( )0 12 112 2 1xx zz xxV V C Cε ε ε∆ + = −�  
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 2 (1 0.3856) 0.012 0.014= × − × =  (3.65) 

Figure 3.3 shows a linear fit of the frequency versus volume relationship. 

The data has been fitted to a volume change of 0.014. 

 

 
 

Figure 3.3 Plot of d�/� versus ∆V/V0 for strained Si grown on SiGe. The  
measurements were made by Nakashima et al53. The data has been fitted 
with a linear fit (thick blue line). 

 

So that in this case the “effective” Grüneisen parameter applicable to the strain 

experiments is γ = 0.994. Then from equation 3.53 we obtain 

 

a
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= −
3
2

b

ω
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+ 2γ 1−
C

12
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11


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= −
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+ 2 × 0.994 × 0.614389

1.77122
= 0.14 ± 0.08

 (3.66) 
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where we assume the same 5% error in the Grüneisen parameter. All calculated 

values of as from the strain experiments are shown in Table 3.3. The largest 

source of error is the uncertainty in the Grüneisen parameter. This reverses the 

situation relative to the stress measurements. Whereas the error in as in stress 

experiments is on the order of 10%, in the strain experiments the error is as large 

as 60% because the singlet-doublet splitting is not observed directly, and makes a 

relatively small contribution to the overall singlet shift. 

A troubling aspect of the strain measurements summarized in Table 3.3, as 

indicated above, is the poor overlap of the different measurements given their 

small quoted errors. In some cases the number of experimental points is so small 

that the small error may be an artifact caused by the accidental alignment of the 

reduced number of experimental points. If we concentrate on the measurements 

with larger number of points, however, we still see discrepancies. Therefore, it is 

possible that systematic errors affect the different measurements. In this respect, it 

is important to point out that Omote et al used grazing-incidence X-ray 

diffraction, with which the in-plane lattice parameter of the top strained layer can 

be determined with a precision of 10-5. This is more than one order of magnitude 

better than the precision of conventional X-ray diffraction measurements. For 

example Nakashima et al claim a precision of 4×10-4. If their lattice constant 

measurements were off by this amount, their value of b could be as high as 750 

cm-1, and therefore agree, within error, with the results of Omote et al. In view of 

these considerations we believe that the result from Omote et al is the most 
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trustworthy value, and their error (which we computed by digitizing their data, 

since no errors were quoted in the original paper) the most realistic one, since it is 

not affected by systematic deviations in the strain estimate. 

3.6 Application to Germanium 

3.6.1 Grüneisen parameter 

The pressure dependence of the Raman phonon of Ge has been measured 

at room temperature by Olego and Cardona52. They find

 
  
ω

Ge
( p) = 300.6 ± 0.5( ) + 3.85 ± 0.05( ) p − 0.039 ± 0.006( ) p

2

 
 (3.67) 

where the pressure is in GPa. Measurements at 6K were carried out by Ulrich et 

al46. They find 

 
  
ω

Ge
( p) = 304.64 13( ) + 4.02 7( ) p − 0.059 8( ) p

2  (3.68) 

where the pressure is in GPa. 

If we take the linear coefficient as representative of infinitesimal changes, we get 

for the room temperature data: 

 
  
γ = −

∆ω

p

B0

ω0









 = 3.85 ± 0.05( ) ×

75.016
300.6







= 0.96 ± 0.01 (3.69) 

We could also try to fit a straight line to the data over the range of the 

measurements, to obtain an “effective” Grüneisen parameter over 0-2 GPa range 

to match the uniaxial stress data to be discussed below: 
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Figure 3.4 Linear fit (thick line) to the Ge mode measured by Olego 57 at room 
temperature. 
 

This means that the effective Grüneisen parameter is 

 0

0

75.016
3.793 0.94(6)

300.6

B

p

ω
γ

ω

 ∆  
= − = × =   

  
 (3.70) 

 Let us now study the effect of taking into account the non-linear pressure- 

volume relationship. Menoni et al53 studied the p-V relation experimentally and  

they find good agreement with Murnaghan’s equation using B0 = 74.9 GPa and 

à�% = 3.0. So instead of plotting the shift versus the pressure, we plot the shift 
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Figure 3.5 Plot of d�/� versus ∆V/V0 for strained Ge grown on SiGe. The 
measurements were made by Menoni et al54. The data has been fitted with a linear 
fit. 

 
relative to the change in volume in figure 3.5. This gives a linear relationship. If 

we fit a quadratic polynomial, the linear term is by definition the Gruneisen 

parameter, and we obtain γ = 0.96 ± 0.01. 

3.6.2 Uniaxial stress experiments 

Cerdeira et al8 have determined the deformation potential tensor 

components of Ge via uniaxial stress experiments. The values of the phonon 

parameters are quoted as γ = 0.89 ± 0.09, as = 0.23 ± 0.02 and r = -1.11. The error 

in their Grüneisen parameter brings it marginally within the range of the 

hydrostatic pressure experiments. To better understand this difference we have 

digitized Cerdeira’s raw data and recomputed the parameters. For the (001) stress, 

their Grüneisen parameter turns out to be γ = 0.82, which appears too small. From 

the same data their shear coefficient turns out to be as = 0.24 ± 0.01. If we look at 
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their (111) data, we find that the corresponding Gruneisen parameter is γ = 0.981 

and we deduce r = 0.94. The as value agrees with the value quoted by Cerdeira. 

The Gruneisen parameter quoted by Cerdeira appears to be an average for the two 

directions. Using the values recommended by Cerdeira, we obtain from 3.53 
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3.6.3 Previous strain experiments 

The only published experiment we are aware of is the work of Pezzoli et  

al15. They find b = - 440 ± 8 cm-1. They have three data points with up to 0.5% 

strain. This means a maximum volume expansion of 

  ( )0 12 112 2 1xx zz xxV V C Cε ε ε∆ + = −�    (3.72) 

   2 (1 0.375) 0.005 0.006= × − × =   (3.73) 

This is so small that the effective Grüneisen parameter for this case, γ = 0.965, is 

very close to the “exact” Grüneisen parameter γ = 0.961. Using equation (3.53), 

we get as = 0.23 ± 0.02.  

3.7 Theory 

Ab initio calculations were carried out by de Gironcoli54. According to his 

calculation the Si phonon frequency is 517 cm-1
 at normal volume. It shifts under 

a change (increase) in relative volume of 0.06 by -30 cm-1 and for a volume of 

0.12 by -59 cm-1. This implies γ = 0.97 for the “small” expansion and and γ = 0.93 
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for the large expansion. In the case of Ge, the relaxed phonon is at 303 cm-1. For a 

volume compression of -0.06 the shift is +18 cm-1, and for a compression of -0.11 

the shift is +39 cm-1. This implies γ = 1.07 and γ = 1.18, respectively. One can 

clearly see the difference between Si and Ge. This suggests that the Grüneisen 

parameter increases for compression and decreases for expansion. De Gironcoli 

also calculates the strain splittings, but he only gives numbers for the Si case. He 

claims that for Si grown on Ge, ωs - ωd = 3.7 cm-1 
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Using his calculated elastic constants and strains, this gives as = 0.104, 

which is small but difficult to compare with experiment due to the huge 

expansion. This would imply a b parameter of (from equation 3.53) 
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 (3.75) 

Earlier calculations by Nielsen55 yield as = 0.131. However, Methfessel 

gets as = 0.2356. Interestingly, he also gets γ = 0.99, but r = 0.97, which is in much 

better agreement with the experimental Ge than with the experimental Si value. 

This suggests that the experimental r value for Ge might be more reliable than the 

value quoted for Si. Very recently Hossain 57 published some new calculations. 

They find b = -793 for Si and b = -352 cm-1 for Ge. This small value for Ge is 
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possible because they get γ = 0.96 for Si and γ = 1.23 for Ge. 

3.8 Reconciliation of p, q, and r  

The recommended values of p, q, and r lead to Gruneisen parameters that 

are beyond the error bars of the hydrostatic pressure experiments and phonon 

strain shift coefficients b that are beyond the acceptable range as determined from 

strain experiments. We also note that the accidental error in the coefficient as as 

measured in uniaxial stress experiments is much less than the error obtained from 

strain experiments. This is because the singlet-doublet splitting is measured 

directly in stress experiments, whereas only the singlet is observed in 

conventional strain experiments. 

Let us assume that the uniaxial stress experiments of Anastassakis et al are 

affected by a systematic error in the stress calibration. This is plausible because 

stress rigs are difficult to calibrate, whereas hydrostatic pressure in diamond anvil 

cells is well characterized by the ruby emission, as evidenced by the fact that the 

Weinstein, Olego, and Ulrich experiments are in excellent agreement. We could 

then correct for this calibration error by multiplying all results by a factor 

0.96/1.07 = 0.90 which arises from dividing the Grüneisen parameter from the 

more accurate pressure experiments by the Grüneisen parameter from the stress 

experiments. This would lead to as= 0.21 ± 0.02. On the other hand, to obtain a 

value of b that can be compared with the value from the strain experiments, we 

must use the value that obtains from a linear fit of the volume dependence, which, 
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as indicated above, is γ = 1.00. Thus we would predict b = -769±40 cm-1
, perfectly 

consistent with the strain experiments of Omote et al.  

If we apply the same correction to Ge, the Grüneisen parameter obtained 

from the stress experiments for stress in the (001) direction is γ = 0.82. On the 

other hand, the value that should have been measured, from the hydrostatic 

pressure dependence of the Raman frequency, is γ = 0.94, so that the 

“renormalized” value of the shear deformation potential is as = 0.27±0.01.  Using 

the Grüneisen parameter γ = 0.96 from the volume dependence of the Raman 

frequency, we predict b = -455±10 cm-1, which is close to the value b = -440±8 

cm-1. We notice that in the case of Ge, Cerdeira et al find very different values for 

γ depending on whether the stress is in the (001) or (111) directions, so that the 

discrepancies with the pressure experiments cannot be only due to a stress 

calibration issue. We thus adjust the value of as  to bring the value of b into 

agreement with the Pezzoli data. This gives as = 0.23. Therefore, the values in 

Table 3.4 are consistent with all relevant experiments: 

Table 3.4 Recommended values of the Grüneisen parameter γ, shear phonon 
deformation potential (as ), and deformation potentials p, q and r. 
 

 Si Ge 

γ 1.00 ± 0.01 0.96 ± 0.01 

as 0.21 ± 0.02 0.23 ± 0.02 

p -1.72 ± 0.05 -1.61 ± 0.03 

q -2.14 ± 0.03 -2.07 ± 0.03 
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On the other hand, for the r value  Anastassakis gives r = -0.71 ± 0.02. 

From his quoted pressure dependence of the splitting, we obtain r = -0.70 ± 0.02. 

Moreover, from our own analysis of Chandrasekhar’s 111 data we obtain γ = 

0.923 ± 0.13 and r = -0.635 ± 0.043. If we renormalize using γ = 0.96, we obtain  

r = -0.63 ± 0.02 from Anastassakis and r = -0.66 ± 0.043 from Chandrasekhar. 

The difference with the value of r for Ge is still large and we strongly suspect it is 

unphysical, so that this parameter needs further research. 

3.9 Our strain experiment 

One troubling aspect of the existing experimental data regarding 

epitaxially strained Ge films is the low-level of strain in the films. In this section 

we extend the measurements to high levels of strain of technological and 

fundamental interest. High quality strained Ge on relaxed SiGe buffer layers 

grown in the Hoyt lab at MIT were used to measure the strain shift parameter b. 

The sample consists of (001) p-type Si substrates, followed by a graded SiGe 

buffer layer, followed by a constant concentration relaxed SiGe layer, and finally 

capped with a thin Ge layer. Figure 3.6 shows a schematic diagram of the sample.  
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Figure 3.6 Schematic diagram of the sample consisting of a strained Ge layer 
deposited on a relaxed SiGe layer. 

 
When the SiGe layer is grown on the Si substrate, it will be strained due to lattice 

mismatch. Misfit dislocations are produced to relieve excess strain. It has been 

shown58 that by first growing a compositionally graded buffer layer, the threading 

and misfit dislocations are confined to the graded buffer, producing a relaxed, 

dislocation-free SiGe layer. 
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Figure 3.7 Schematic Raman experimental setup. 

The Raman spectra were collected at room temperature in the 

backscattering configurations represented by the Porto convention, z (x, y) z̅ and 

z (x, x) z̅ ; where x, y and z correspond to the 100, 010 and 001 crystal directions 

respectively. In the Porto convention, the first and the last symbols represent the 

directions of the incident and the scattered beam; and the symbols inside the 

bracket represent the polarization directions of the incident and the scattered 

beams respectively. A schematic diagram of the experimental setup is shown in 

figure 3.7. A 532 nm laser line from a frequency doubled Nd:YAG laser with 

excitation power of 1mW was focused onto the sample with a microscope using a 
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100X objective lens. A single Acton monochromator and a liquid nitrogen-cooled 

charge coupled device detector were used to analyze the scattered light. 

 

 

Figure 3.8 Raman spectra of bulk unstrained Ge and compressively strained Ge 
(dotted line) deposited on a relaxed SiGe (57% Ge) layer. 

 

Figure 3.8 shows the Raman spectra from bulk unstrained Ge and sample 

#6688 ( Ge 57%). The modes observed are the Ge-Ge mode in SiGe (~ 290 cm-1), 

the Ge-Ge mode in Ge (307 cm-1), the SiGe mode (375 cm-1) and the Si - Si mode 

in SiGe (485 cm-1). Since the optical penetration depth in Ge at 532 nm is much 

larger than the Ge cap thicknesses we can see the underlying SiGe modes in the 

spectra. Here, we will focus on the strain shift of the Ge-Ge mode frequency 

which has been fitted using a Voigt profile. 

 



  61 

Table 3.5 Ge compositions and layer thicknesses of the samples. 

Sample Concentration graded tSiGe  const tSiGe tGe cap 

 x (%) (µm) (µm) (Å) 

6684 40.0 4.0 0.75 71.0 
6685 48.4 5.0 1.0 78.0 
6688 57.0 6.0 1.0 91.0 

MIT42C 48.0 5.5 1.5 70.0 
 
 
The Ge compositions and layer thicknesses are shown in Table 3.5. The 

fully relaxed SiGe layer has a Ge content ranging from 40% to 57%. With higher 

Ge composition in the buffer layer, the lattice mismatch between the SiGe alloy 

and the Ge-cap decreases, thereby reducing the tensile strain in the Ge cap. 

Hence, as the strain in the Ge cap decreases, the Ge-Ge mode frequency 

approaches that of the unstrained bulk Ge.  
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Figure 3.9 Raman spectra of the Ge LO phonon from the various strained Ge caps 
deposited on relaxed SiGe buffer layers. 

 

Since the thin Ge layer is hardly detectable in our X-ray experiments, we 

tentatively assumed that the in plane lattice parameter in the Ge layer matches the 

relaxed lattice parameter of the underlying SiGe layer. This leads to b = - 425 ± 8 

cm-1, in good agreement with the results from Pezzoli et al. However, as discussed 

above for the case of Si, a precision of 10-5 in the lattice constant measurement is 

required to avoid introducing large errors in b. Therefore, we obtained grazing 

incidence X-ray data for our samples by collaborating with Dr. K. Omote at the 

X-ray Research Laboratory, Rigaku Corporation, Japan.  

When the X-ray beam is incident onto the sample surface at a grazing 

angle (α) equal to its critical angle for total internal reflection (äy), X-rays are 
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totally reflected. Under this condition, X- rays can penetrate only a few 

nanometers of the surface and basically propagate parallel to the surface. When, 

as in the geometry shown in Figure 3.10, the specimen is oriented to satisfy the 

angle for Bragg diffraction in the plane of the sample, a strong diffracted beam 

can be observed. In such an arrangement, Bragg planes normal to the sample 

surface are probed. The in-plane lattice parameter (in-plane strain) can be 

measured by performing a φ−2θχ scan of the sample and the detector. 

 

 

Figure 3.10 Schematic diagram of X-ray optics for in-plane diffraction. 

 

The Rigaku ATX-G diffractometer system has been used to measure the in- 

plane lattice parameter of our strained Ge layers with an incident angle of 0.2o. 

The Raman peak shifts are plotted in figure 3.11 versus the strains  

measured using this grazing incidence geometry. 
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Figure 3.11 Plot of the strain-induced Raman shift of the Ge-Ge LO phonon in 
strained Ge. The three data points with high strain values correspond to our own 
data ,with strains from K. Omote. The two points with low strain are from Pezzoli 
(private communication). 

 

The solid line in Fig. 3.11 is a combined fit to our data (with a small 

confinement correction) and Pezzoli’s data. We find b = 404 ± 8 cm-1, below the 

Pezzoli value b = 440±8 cm-1. The dotted line in Fig. 3.11 corresponds to the 

recommended valued as = 0.23 in Table 3.4. Our lower value of b implies a much 

smaller as = 0.12. However, it is apparent from an inspection of Fig. 3.11 that the 

number of data points is too small to conclude with certainty that a smaller as 

value is needed to fit the data. In fact, the deviations of the individual points from 

the straight line fit are not much smaller that the difference between the as = 0.10 
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and as = 0.23 prediction. More data points are needed to reach a definitive 

conclusion.  

It is interesting to point out that other workers find even smaller 

magnitude b’s for Ge. Canonico (thesis) explores strains comparable to ours and 

finds b = -369 ± 8 cm-1, from which one gets as ~ 0, which seems far too low. 

Moreover, from very recent wafer bending experiments by Peng et al.59  imply an 

even lower value of b = -350 cm-1.  

3.10 Conclusion 

We have proposed a new set of parameters p and q that are internally 

consistent and also consistent with all available experimental data from all 

sources from which information about these parameters could be obtained before 

our experimental work. We have also presented new data for Ge and shown a 

deviation from the proposed new parameter set. These deviations appear modest 

in the scale of Fig. 3.11, but imply a very different set of values for p and q. It is 

apparent for the Fig. 3.11, however, that more data points are needed to confirm a 

deviation. While it is not possible to draw definitive conclusions from the present 

data, our experiments, combined with the quoted results from Canonico and the 

more recent data from Peng, suggests the tantalizing possibility that the parameter 

as may have a strain dependence. (001) backscattering Raman measurements, for 

which only the singlet is observed, are a poor way to explore these possible 

anomalies, since the shifts are mainly determined by the hydrostatic component of 
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the strain. What is needed is experiments on lateral (110) faces from which the 

position of both the single and doublet can be measured.  
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CHAPTER 4 

VIBRATIONAL PROPERTIES OF GeSn ALLOYS 

4.1 Introduction 

Ge1-xSnx alloys are currently of growing interest since their band gap can 

be engineered by varying the alloy composition. They are a possible route to 

making optoelectronic systems entirely from group IV materials. Jenkins and 

Dow60 have predicted the creation of a direct band gap Ge1-xSnx alloy with the 

composition ranging from 0.2 ˂ x ˂ 0.6. Ge is used as a material for 

photodetectors and multi-junction solar cells61 and can be integrated with Si, but 

since it is not a direct band gap material it cannot be used as the basis for optical 

emission devices such as LEDs and lasers. Ge1-xSnx alloys present the possibility 

of producing direct band gap materials directly on Si which are tunable over a 

wide range of energies. To be able to engineer the properties of the Ge1-xSnx alloy 

it is important that we have the means to determine the Sn composition of the 

alloy accurately. Raman spectroscopy is a quick, non-destructive and contactless 

technique to measure the alloy composition since the optical modes of the alloy 

are strongly affected by composition. The group IV semiconductors have 

characteristic zone center vibrational mode frequencies. If we know the 

composition dependence of the phonon frequencies, then the composition of the 

alloys can be obtained with high accuracy, provided we exclude other effects 

which can also shift the mode frequencies. 
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In this chapter we discuss the compositional dependence of the Ge-Ge  

mode of the Raman spectrum of the Ge1-xSnx alloy. We have applied strain 

corrections to the Raman shift in order to decouple the composition and strain 

contributions.  

4.2 Germanium 

From Germanium’s band structure diagram (Figure 4.1) we can see that it 

is an indirect band gap material. Its fundamental energy gap is the separation 

between the minimum of the conduction band L point [k = (2π/a)(1/2,1/2,1/2)] of 

the Brillouin zone (BZ) and the maximum of the valence band at the Γ-point 

[k=0,0,0], having a magnitude of 0.66 eV 62. The lowest direct band gap42 in Ge, 

involves the local minimum of the conduction band at the Γ-point and is 0.13 eV 

higher than the indirect band gap. 
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Figure 4.1 Electronic band structure of Ge. Reprinted, with permission, from 
Electronic Structure and Optical properties of Semiconductors (Springer-Verlag 
Berlin Heidelberg, New York 1988). 

 

For optical transitions to occur both energy and crystal momentum have to  

be conserved. But at the indirect gap, the small k-vector of the photons is 

insufficient to satisfy crystal momentum conservation for the electron. The 

additional momentum required is provided by the lattice vibrations, the phonons. 

Therefore, at the indirect band edge, the energy and momentum 

conservation describing the absorption of a photon requires that 63 
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    f i
E E ω= + ± Ω� �     (4.1) 

and    f i
≈ ±k k q� � �

    
(4.2) 

where _{ and å{ are the initial energy and wave vector of the electron, _L and åL 

are the final energy and wave vector of the electron after it absorbs a photon of 

frequency ω, (here we have neglected the momentum of the photon, since it is  

very small when compared to the momenta of the electron and the phonon), and Ω 

is the frequency of the phonon with wave vector q. The ‘+’ sign indicates that a 

phonon has been absorbed, while the ‘-’ sign indicates that a phonon has been 

emitted. 

Since indirect absorption is a higher-order process involving not only the 

electron-photon but also the electron-phonon interaction, the absorption  

coefficient near the indirect band edge is much lower than that near the direct 

band edge, where phonon activity is not required for momentum conservation. In 

Ge, the indirect gap is 0.13eV smaller than the direct gap at k = 042 at room 

temperature. Below the indirect gap there is almost no absorption. Beyond that, 

the absorption gradually increases with energy until the direct gap is reached, 

where there is an abrupt increase in absorption (direct absorption edge). 

The indirect and direct band gaps can be reduced in Ge by applying tensile 

strain to it. As a result, the absorption edge of Ge will shift to lower energies.  
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Figure 4.2 (a) Transition from indirect to direct band gap in Ge with the 
application of biaxial tensile strain. (b) Energy gaps in Ge at the Γ- and L- points 
as a function of tensile strain. Reprinted, with permission, from Nature Photonics, 
4, 527 (2010). 

 

In figure 4.2 the energy gaps in Ge at the L- and Γ- points as a function of 

tensile strain are plotted. We see that as the strain increases the energy of the gap 

at the L-point falls at a slower rate than the energy of the gap at the Γ-point. This 

implies that with increasing tensile strain there is a decrease in the energy  

difference between the the L- and Γ- points. So the band structure of Ge should  

transition to a direct gap material beyond a critical strain value64. From the plot in  

figure 4.2 we see that this occurs at around 2% strain. 
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High quality, tensile-strained thin films of Ge have been obtained by 

Ishikawa et al.65 by growing Ge on Si. However, they found that the maximum 

amount of strain produced this way is only 0.34%. Huo et al.66 have grown thin 

Ge films with tensile strain varying from 0.26% to 2.33% using graded InGaAs 

buffer layers. Since the 1980’s many attempts have been made to grow Ge on Si 

epitaxially. But due to the 4.2% lattice mismatch between Ge and Si, it leads to 

unacceptable levels of threading dislocation densities67, 68. 

It has been shown that Ge1-xSnx alloys with high crystallinity can be grown  

with Sn concentrations as high as 15%16. This is a promising way to grow   

semiconductor materials tunable over band gap energies of 0 – 0.66eV. 

4.3 GeSn alloys 

Sn occurs in two forms. It has a tetragonal structure at room temperature  

(white tin or β-Sn), and a diamond cubic structure (grey tin or α-Sn) below 

13.2oC. Groves and Paul69 were the first to calculate the band structure of α-Sn in 

1963. Figure 4.3 shows the electronic band structure of α-Sn.  Pure α-Sn is a 

semimetal, ie. it has no band gap. Its valence and conduction bands overlap at the 

[k = (0,0,0)] Γ point. 
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Figure 4.3 Electronic band structure of α-Sn. Reprinted, with permission, from 
Electronic Structure and Optical Properties of Semiconductors (Springer-Verlag 
Berlin Heidelberg, New York, 1988). 

 

With the addition of α-Sn in Ge, the direct band gap of Ge decreases until 

it reaches zero. At that point GeSn becomes a semimetal. Up to that critical point 

GeSn should behave like a semiconductor with a fundamental gap having an 

energy range from 0.0eV to 0.76 eV, depending on the composition.  

Hence, by alloying Ge with Sn we can grow direct band gap materials, 

directly on Si, over a range from 0eV to 0.76eV. This is a better alternative to  

achieving direct band gap by applying tensile strain in Ge-on Si films, where a 
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 2% strain 65 is required to bring in the transition from indirect to direct whereas 

only 0.34% strain has been obtained by applying tensile strain 66. 

4.4 Structural effects in GeSn alloys 

The average lattice constants of semiconductor alloys follow Vegard’s 

law70 quite closely. We can then write the lattice constant of Ge1-xSnx as   

    ( ) (1 ) Ge Sna x x a xa= − +    (4.3) 

 where Zæi and Zz� are the lattice constants of Ge and Sn respectively. This linear 

interpolation between the lattice parameters does not necessarily apply to the 

bond lengths31. Pauling 71 proposed that atomic radii are conserved quantities and 

remain unchanged in different chemical environments. This suggests that the 

bond lengths will be composition independent. The only way this is compatible 

with an average lattice parameter following Vegard’s law, is via a severe 

distortion of bond angles. On the other hand, if the bond lengths themselves 

follow Vegard’s law, the bond angles maintain their diamond-structure values at 

all compositions. The behavior of GeSn can be explained by adopting a degree of 

bond relaxation which lies between these two extremes. This is quantified by the  

topological rigidity parameter (or the bond relaxation parameter) defined for  

A1-x Bx alloy as 31, 32 

    Z∗∗ = ×çç�º�9×³³�º�×ççè 9×³³è     (4.4) 

where ¶éé�C� and ¶êê�C� are the A-A and B-B bond lengths in the alloy  

respectively and ¶éé�  and ¶êê�  are the bond lengths in bulk A and B  

respectively. From equation (4.4) we find that Z∗∗ = 0 in Vegard’s limit and 
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Z∗∗ = 1 in Pauling’s limit. Martin and Zunger 31 calculated Z∗∗ for GeSn to be 

0.67. 

4.5 Experimental details 

The samples were grown on Si wafers using a specially developed CVD 

method in which Ge2H6 is combined with SnD4 in the presence of high purity 

 H2 
72. The Sn concentrations were determined using Rutherford Backscattering 

experiments. XRD measurements were done to measure the lattice parameters 

using a Panalytical X’Pert system.  

The Raman spectra were collected at room temperature (experimental 

setup as shown in figure 3.7) in the backscattering configurations, z (x, y) z̅ and z 

(x, x) z̅; where x, y and z correspond to the 100, 010 and 001 crystal directions 

respectively. A 532 nm laser line from a frequency doubled Nd:YAG laser with 

excitation power of 1mW was focused onto the sample with a microscope using a 

100X objective lens. A single Acton monochromator and a liquid nitrogen-cooled 

charge coupled device detector was used to analyze the scattered light.  

4.6 Results 

Figure 4.4 shows a typical Raman spectrum obtained with a 532nm laser 

line for a representative Ge1-x Snx alloy at room temperature. In analogy with the 

extensively studied Si1-xGex alloys, we expect Raman peaks corresponding to Ge, 

Ge-Sn and Sn-Sn modes.  
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Figure 4.4 Raman spectra of Ge0.985Sn0.015 alloy in z (x,y) z̅ geometry.  

The Raman spectrum of each GeSn sample shows a strong peak 

corresponding to the Ge-Ge phonon mode. The reason that we do not observe the 

Ge-Sn and the Sn-Sn modes is due to the low Sn concentration and because the 

532nm laser line is not in resonance with the E1/ E1+ ∆1 gap of the GeSn alloys. 

We also observe a disorder-activated (DA) Ge-Ge mode shown in figure 4.5 

which was first reported for pure Ge in Si-Ge superlattices by Schorer et al73 in 

the z (x, x) z̅ geometry. 



  77 

 

Figure 4.5 Raman spectra of Ge0.985Sn0.015 alloy in z (x, x) z̅ geometry. 

 The observed Raman modes show a slight asymmetry in their shape. This  

is attributed to the fact that in the absence of a perfect translational symmetry in 

the alloy, the wavevector is no longer conserved. Also, the requirement of off- 

resonance Raman scattering is not strictly satisfied. The laser energy used is 

higher than the band gap energy of the GeSn alloys. The strong absorption of the 

laser light acts mathematically as adding an imaginary component to the photon 

wave vector, and this relaxes the wavevector conservation condition, activating 

other optical phonons with frequencies below that of the Γ- point phonon74, 

contributing to the asymmetry in the Raman line shape.  
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The Raman spectra of bulk Si, Ge, and α-Sn are well approximated by a 

Lorentzian lineshape. The experimentally observed spectrum is the convolution of 

this Lorentzian with the instrument’s response function, which can be reasonably 

well described by a Gaussian. The resulting Voigt profile75 is available as a fitting 

function in most commercial data analysis software packages, so that the intrinsic 

widths can be extracted directly from fits with these functions. Alternatively, it 

has been shown that the intrinsic component of the width is related to the width of 

the instrument resolution function by76 

   ë = ëiºã − ìí1ìîïð    (4.5) 

where ë is the intrinsic (approximately Lorentzian in the case of a perfect crystal) 

full width at half maximum (FWHM), ëæ the FWHM of the instrument resolution 

function, and ëiºã  the measured FWHM. This formula can then be used to obtain 

ë from the measured data without formally fitting with a Voigt profile.  

The analysis of the lineshape of alloy modes is much more complicated 

because, in addition to the lifetime and instrument resolution broadening, there is 

a broadening contribution from the intrinsic disorder and the relaxation of the 

wave vector conservation rule as just discussed. Unfortunately, there are no 

realistic analytical models that can be used to fit the data and correct for the 

instrument resolution. Therefore, we adopted the following approximate 

procedure. We first determine the FWHM of the Raman peaks by fitting with any 

function that gives good agreement with the data (usually a Voigt profile 75 if the 

peak looks symmetric or an exponentially-modified Gaussian76 if the peak is 
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asymmetric). Then we assume that we can still use equation (4.5) to correct for 

the instrumental broadening, even though equation (4.5) has been shown to be 

valid when the intrinsic lineshape is Lorentzian. This approach may introduce a 

small systematic error, but it will not alter the results in any significant way. In 

fact, the qualitative conclusions of this work would not change if we were to 

ignore instrumental broadening altogether and assume it part of the intrinsic 

width. 

 

 

Figure 4.6 Normalized Ge-Ge mode in Ge1-xSnx alloys.  

Figure 4.6 shows the Ge-Ge vibrations in the GeSn alloys for various Sn 

concentrations. The spectra were recorded in the z (x, y) z̅ configuration. The Ge-

Ge peak for each alloy configuration is downshifted with respect to pure Ge. The 
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vibrational frequencies decrease with increasing Sn concentrations. This decrease  

in frequency is due to the effect of mass substitution and Ge-Ge bond distance 

elongation which decreases the phonon frequency. 

Since the alloys have a small amount of strain, strain corrections are  

applied to the Raman frequencies. Strain-induced shifts are calculated by  

assuming a tetragonal distortion and then subtracting them from the observed 

Raman shifts. This gives the Raman shifts of the relaxed alloy. Strain induced 

shifts are calculated using the formula derived in chapter 2 

     Δω = bεǁ    (4.6) 

The value of b, the phonon strain coefficient, is approximately the same for all 

group-IV semiconductors. Hence we have used Ge values obtained 

experimentally in chapter 3. 

To determine the strain present in the alloys, lattice constants were 

measured by HR-XRD using a PANalytical diffractometer. Reciprocal space  

maps of the (224) reflection were used to determine the a (in-plane) and c 

(perpendicular) tetragonal lattice parameters of the GeSn samples. Then the 

relaxed cubic lattice constant was calculated using the equation 

    Z� =
y71ôõ1

ôõõ
Ò

�71ôõ1
ôõõ

     (4.7) 

where á�� and á�� are the cubic elastic constants. Kouvetakis et al 77 have given 

the elastic constant ratio as  

   
öõ1
öõõ

= 0.3738 + 0.1676C − 0.0296C�  (4.8) 
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The strain is then calculated using the formula 

     É = Ò9Òè
Òè

    (4.9)

 

Figure 4.7 Dependence of Ge-Ge mode in the Ge1-xSnx on Sn concentration 
from reference 81 and present data. 

 

Figure 4.7 is a plot of the Ge-Ge mode frequency as a function of Sn 

concentration. The compositional dependence of Raman peaks in alloy 

semiconductors can be explained as a combined effect of mass and bond 

disorder27: 

   Á��C� = Á�nÒÓÓ�C� + Á��Ä�r�C�   (4.10) 

where Á�nÒÓÓ is the Raman shift due to mass disorder which arises from 

different masses of the atoms involved and Á��Ä�r is the Raman shift due to 

bond disorder which arises when the atoms try to adjust their bond length 

mismatch during alloying. 
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Different masses cause a localization of the vibrations. If we consider the 

Ge-Ge mode, the Sn atoms will be unable to follow the motion of the Ge-Ge 

mode because of their heavier mass compared to that of Ge. Since some Ge atoms 

have Sn neighbors, this leads to a localized Ge-Ge vibration. This localization 

leads to a reduction of the Ge-Ge mode frequency. Meléndez-Lira30 found the 

mass term to be proportional to the alloy fraction 	 

Due to bond distortion a microscopic strain is introduced in the alloy. If a 

tensile strain is produced by the lengthening of the bonds, it will result in the 

reduction of the frequency of the associated Raman mode and vice versa. The 

bond distortion was calculated by Gironcoli78 by considering the displacements of 

only near-neighbor bonds. So the compositional dependence of the corresponding 

Raman peak can be written as79 

   Á��C� = −Ô��C − à��
Ö×�º�

×è
   (4.11) 

where A and B are constants. For the Ge-Ge mode, 	 is the Ge concentration, �� 

is the bulk Ge Raman frequency and ¶� is the bulk Ge bond length. Here  

Á¶�C� = ¶�C� − ¶�, and ¶�C� is the Ge-Ge bond length in the alloy. The bond 

length can be written 80 in terms of the lattice constant Z�C� and the bond rigidity  

parameter Z∗∗32 as 

   
Ö×�º�

×è
= �1 − Z∗∗� ÖÒ�º�

Òè
    (4.12) 

 Here ÁZ�C� = Z�C� − Z�, and Z�C� is the lattice constant of Ge in the alloy. 
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So equation (4.11) can be rewritten as 

   Á��C� = −Ô��C − à���1 − Z∗∗� ÖÒ�º�
Òè

  (4.13) 

Hence we fit the data in figure 4.7 with an expression of the form81 

    �æi9æi�C� =  �� − fC   (4.14) 

From the model fit we obtain the expression 

   �æi9æi�C� =  300.3 ± 0.1 − �64.0 ± 3.2�C  (4.15) 

which is in close agreement with Li’s 83 fit of  

    �æi9æi�C� = 301 − 68C   (4.16) 

The difference between the two expressions may be explained by the strain 

correction applied in our analysis which was not included by Li et al. In figure 4.7 

we have plotted the Raman shifts obtained by V. d’Costa 81 as a function of Sn 

concentrations.  
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Figure 4.8 (a) Plot of the asymmetry in the lineshapes as a function of Sn 
concentration and (b) Plot of the difference between the linewidths of the Ge-Ge 
Raman peaks and bulk Ge. 

 

Figure 4.8 (b) shows the plot of the difference between the linewidths of the Ge-

Ge mode and bulk Ge. It appears that the broadening is approximately constant 

for 0 < x < 0.04, and it grows rapidly for x > 0.04. This coincides with the 

appearance of the typical alloy asymmetries in the lineshapes, consisting of a 

broadening of the low-energy side. One way to quantify this asymmetry is to fit 

the experimental spectrum with a symmetric lineshape  Isym (ω) and define an 

asymmetry indicator α(ω) =[Isym(ω0+Γexp) - I(ω0+Γexp)]/Isym(ω0+Γexp). This 

function is shown in figure 4.8(a). The observation of asymmetric Raman peaks is 

a manifestation of the relaxation of the wave vector conservation rule. Vibrational 
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modes with frequencies close to the bulk Raman mode become Raman-active, but 

since the bulk Raman mode corresponds to the highest frequency optical phonon,  

all activated modes have lower frequency, thus appearing as a broadening of the 

low-energy side of the Raman peak 82. 

4.7 Conclusion 

We have measured the vibrational properties of Ge1-xSnx alloys using 

Raman spectroscopy. We observe the Ge-Ge and the disorder-activated Ge-Ge 

mode at ~ 280 cm-1. We have determined the compositional dependence of the 

Ge-Ge mode. This can act as a reference for accurately determining the 

composition of a given Ge1-xSnx alloy by measuring its Raman spectrum. 
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CHAPTER 5 

TEMPERATURE DEPENDENCE OF THE RAMAN MODES 

IN GeSn AND SiGeSn ALLOYS 

5.1 Introduction 

Temperature dependent Raman scattering provides a very useful tool for 

the study of anharmonic properties of crystal vibrations83, 84, 85 and has been used 

in diagnostic applications, like in situ measurements of temperature 86. Raman  

spectroscopy acts as a temperature microprobe. This microprobe can be used  

to measure the local temperature of devices under operation87. Since heating 

is one of the main causes for device failure, measurement of the local temperature 

is of great significance. Such measurements have been made in biased laser 

diodes using a Raman microprobe88. Temperature measurements can be done by  

measuring the Stokes / anti-Stokes intensity ratio89. However, these temperature 

measurements might not be accurate as several corrections need to be applied. 

Raman frequency and linewidth are also strongly temperature dependent 21 and 

hence can be used as parameters for temperature measurements with greater 

simplicity and accuracy. Ostermeier et al 88 have used the temperature dependence 

of phonon frequencies to study the temperature distribution in Si-MOSFETs. 

The use of temperature dependent frequency and linewidth for diagnostic 

studies require a knowledge of the evolution of these parameters with temperature 

for the material under study. We have established in the previous chapter, the role 

GeSn alloys are going to play in devices in the near future. It is also of benefit to 
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present the temperature dependent frequency and linewidth measurements for  

GeSn alloys for device applications. These studies are important for 

understanding the vibrational properties of the GeSn alloys and would help in  

understanding/manipulating the heat dissipation in devices based on these 

materials. 

In this chapter we have studied the temperature induced changes in the  

Ge-Ge mode of Ge1-xSnx and Si1-x-yGeySnx in the temperature interval 10K to 

450K. 

5.2 Alloy Vibrational Structure 

Localized optical vibrations are characteristic of alloys on account of the 

mass difference of the alloy components. But these do not convey the full 

complexity of the alloy vibrational structure. In fact, in many alloy systems it is 

possible to define “quasi-dispersion” relations for optical and acoustic phonon 

branches90, 91. The approximate validity of this concept in Si1-xGex alloys and 

similar systems is apparent when one studies the lineshape of their Raman modes, 

which are broader than those in the perfect crystals but much narrower than the 

Raman bands observed in amorphous materials. This indicates that the crystal 

momentum conservation rule q0 ≈ 0, valid for the wave vector of Raman-active 

modes in perfect solids, is only partially relaxed in tetrahedral semiconductor 

alloys. Similarly, phonon confinement effects akin to those observed in single 

crystal materials are seen in thin alloy films 92. 
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The quasi-dispersion concept is expected to play an important role in the 

lifetime broadening of the Raman modes. In perfect Ge and Si crystals, the width  

of the Raman peak at room temperature and below is essentially determined by  

the anharmonic decay of the Raman-active phonon of frequency ω0 into pairs of  

phonons of frequencies ω1 and ω2
21. Energy conservation requires ω1 + ω2 = ω0,  

and crystal momentum conservation implies q1 + q2 = q0 ≈ 0. In alloy systems the  

energy conservation rule remains valid, but the crystal momentum rule could be  

relaxed. Debernardi et al. have used ab initio methods to study anharmonic 

phonon decay in Si and Ge25. They find that the many pairs of modes which 

satisfy the two conservation conditions cluster around frequencies ω1 = 0.35ω0  

and ω2 = 0.65ω0, as previously proposed to explain the temperature dependence of 

the Raman linewidths 27. At these frequencies the phonon density of states for 

transverse acoustic (TA) and longitudinal acoustic (LA) phonons are quite high, 

suggesting that a relaxation of the momentum conservation rule by the alloying 

effect should activate many nearby states which have the “right” frequencies but 

the “wrong” wave vectors to participate in the decay. This should result in a 

stronger temperature dependence of the Raman linewidth. Calculated phonon 

density of states (dashed line) and the frequency-resolved final state spectrum 

(which is the probability per unit time that the LTO phonon decays into one mode 

of frequency ω and one of frequency �� − 	�) are plotted in figure 5.1 for Ge 25. 
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Figure 5.1 Calculated phonon density of states (dashed line) and frequency-

resolved final state spectrum for Ge (solid line) at zero temperature and pressure. 
Reprinted with permission96 . Copyright (1995) by the American Physical 
Society. 

 
 

The temperature dependence of the Raman spectrum of Si1-xGex alloys has 

been studied in detail by Burke and Herman92. Quite surprisingly, these authors 

find that the linewidth of the Si-Si and Ge-Ge modes in the alloy has essentially 

the same temperature dependence as in bulk Ge and Si. On the other hand, 

differences in the temperature dependence of the alloy modes relative to the 

parent semiconductors have been observed by Jiménez and co-workers93 for the 

GaAs-like modes in Al-rich AlxGa1-xAs alloys as well as by Verma et al for P-

implanted GaAs94. These examples suggest that the alloy perturbation might be 

too weak in Si1-xGex alloys to affect the temperature dependence of the Raman 

widths. Our study of the temperature dependence of the Ge-Ge mode shifts and 
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widths in Ge1-x Snx and Si1-x-yGeySnx alloys will put this hypothesis to test.  

5.3 Experiment 

Our Ge1-xSnx samples were grown using the Chemical Vapor Deposition 

method (as in the previous chapter) introduced by Bauer et al
16. The films are 

deposited directly on Si using via reactions of Ge2H6 with appropriate amounts of 

SnD4 at ~350 °C. The ternary Si1-x-yGeySnx alloys were grown by the same 

method using SnD4, Ge2H6 , and Si3H8 
17. Raman measurements were performed 

from 10K to 450K in the near backscattering configuration (Raman setup shown 

in figure 3.6), z (x, y) z̅ ; where x, y and z correspond to the 100, 010 and 001 

crystal directions respectively using the 532nm  line of a doubled Nd:YAG laser 

with excitation power of 25mW. The samples were mounted strain free in a 

closed cycle variable temperature cryostat. The collected scattered light was 

analyzed using an Acton 500 mm spectrometer and a Si CCD detector. 

5.4 Results 

Figure 5.2 shows the evolution of the Raman spectrum of a Ge0.98Sn0.02 

sample as function of temperature. The spectra were recorded in the z (x, y) z̅ 

configuration. 
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Figure 5.2 Raman spectrum of Ge0.98Sn0.2 obtained with 532 nm excitation at  
temperatures 10K, 200K and 400K.  

 

We fitted the data using equation (4.5) from the previous chapter 

   ë = ëiºã − ìí
1

ìîïð
     (5.1) 

where ë is the intrinsic (approximately Lorentzian in the case of a perfect crystal) 

full width at half maximum (FWHM), ëæ the FWHM of the instrument resolution 

function, and ëiºã  the measured FWHM, and followed the procedure therein to  

calculate the linewidths. 
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Figure 5.3 (a) Linewidths (FWHM) Γ(T) for Ge (from Ref 21), Ge (present data), 
Ge0.98Sn0.02 and Si0.09Ge0.887Sn0.023 as a function of temperature T. (b) Linewidth 
difference ∆Γ(T) between Ge0.98Sn0.02 and Ge and between Si0.09Ge0.887Sn0.023 and 
Ge. 

 

In figure 5.3 we plot the linewidths ΓGeSn T( ), Γ SiGeSn T( ), and ΓGen T( )  

together with the differences ΓGeSn T( )− ΓGe T( ) and ΓSiGeSn T( )− ΓGe T( ) , where 

all widths have been obtained following the procedure described in chapter 4. 

 In figure 5.4 we show the corresponding line shifts ωGeSn T( ), ω SiGeSn T( ) , and

ω Ge T( ) together with the differences ωGeSn T( )− ωGe T( ) andωSiGeSn T( )− ωGe T( )

We see that all these differences are remarkably constant over the entire range of 



  93 

temperatures studied here. 

 

 

Figure 5.4 (a) Peak frequencies ω(T) of the Raman modes in Ge, Ge0.98Sn0.02 and 
Si0.09Ge0.887Sn0.023 as a function of temperature T. (b) Line shift difference ∆ω(T) 
between Ge0.98Sn0.02 and Ge and between Si0.09Ge0.887Sn0.023 and Ge. 
 

In the case of the linewidth, it has been proposed that when an optical 

phonon of frequency �� decays into two phonons of frequencies �� and ��, the 

temperature dependence of the linewidth can be fit with an expression of the 

form21 

 Γ T( )= Γ0 n ω1( )+ n ω2( )+ 1   (5.2) 
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where b��� = ýexp Yħ]
 �[ − 1�

9�
 is the Bose-Einstein expectation number for a 

phonon of frequency ω0 and ë� is the linewidth at T = 0. In a rigorous derivation, 

the anharmonic linewdith is actually a sum of terms of the form (5.2), one for 

each pair of modes with frequencies ω1 and ω2 into which the Raman phonon of 

frequency ω0 can decay 95. However, this sum can be replaced by a single term if 

the possible decay frequencies cluster around a single value, as indicated above 

for the case of diamond-structure semiconductors. Under this simplification the 

coefficient Γ0 is proportional to the sum of the squared moduli of the anharmonic 

matrix elements for each individual decay channel21. These matrix elements 

contain the crystal momentum conservation principle, that is, they vanish if q1 + 

q2 ≠ 0. In the case of our alloys, we would expect the square bracket in Eq. (5.2) 

to remain the same as in bulk Ge, because the two frequencies ω1 = 0.35ω0 and ω2 

= 0.65ω0 correspond to regions with high phonon density of states, and the 

density of states will not be dramatically altered by alloying. However, precisely 

because the density of states is high, there are many nearby phonon states whose 

matrix element cancels out due to crystal momentum conservation but should be 

able to participate in the decay process if this rule is relaxed by alloying. Thus we 

might expect an increase in Γ0 as the main effect of alloying. However, this 

contradicts the results in figure 5.2, which clearly indicate that Γ0 remains 

approximately the same as in bulk Ge. Thus the anharmonic decay process 

appears to be extremely robust against perturbations such as alloying. 
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The third-order anharmonic lineshift is Kramers-Kronig related to the 

third-order contribution to the lineshift 25, so we expect the differences

ωGeSn T( )− ωGe T( ) and ωSiGeSn T( )− ωGe T( )  to be constant in view of the results 

for the linewidth. This is approximately the case from an inspection of figure 5.3. 

In the case of the ωSiGeSn T( )− ωGe T( )  difference, we see a small deviation from 

the constant-shift behavior that can be approximated by a linear T-dependence. 

This may be due to the fact that thermal expansion and fourth-order terms, 

unrelated to the third-order perturbation, make a non-negligible contribution to 

phonon shifts21. 

 

 

Figure 5.5 Plot of the difference between the linewidths of the Ge-Ge 
Raman peaks and bulk Ge and plot of the asymmetry in the lineshapes as a 
function of Sn concentration. 
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The temperature-independent difference between the width of the alloy 

Raman peaks and those of bulk Ge represent the alloy contribution to the width. 

This contribution is plotted in figure 5.4 (also plotted in figure 4.8 in chapter 4). 

For this plot we chose arbitrarily the value at 300 K, but in view of the lack of 

temperature dependence we could have chosen any other temperature. The 

broadening coincides with the appearance of the typical alloy asymmetries in the 

lineshapes. The observation of asymmetric Raman peaks is a clear manifestation 

of the relaxation of the wave vector conservation rule. Thus, while clear evidence 

is seen for a relaxation of the wave vector conservation rule in the Raman 

scattering process—corresponding to a (electron-mediated) photon-phonon 

interaction—there is no indication of a similar relaxation for the anharmonic 

decay process—corresponding to phonon-phonon interactions. While the first of 

these relaxations can be simulated by computing the Raman spectrum of large 

supercells with phonons calculated using ab initio methods, the latter requires an 

ab initio calculation of the anharmonic decay in large cells. Such calculations, 

which to the best of our knowledge have never been carried out, would shed light 

on the surprising temperature dependences reported here. 

5.5 Conclusion 

The lattice mismatch between Ge and α-Sn is 14%, as opposed to 4% in 

the Si-Ge system, so that Sn represents a much larger perturbation in Ge than Ge 

in Si. Even stronger disorder is present in the ternary alloy, where Sn atoms 

coexist with Si atoms. In spite of this enhanced alloy disorder, however, we find 
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that the temperature dependence of the Raman width and shift is the same, within 

experimental error, as the temperature dependence observed in bulk Ge. These 

results, combined with the earlier work of Burke and Herman 92, suggest that 

anharmonic decay in group-IV alloys is extremely robust against wave vector 

relaxation effects. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Introduction 

In this dissertation Raman spectroscopy has been used to study the 

vibrational properties of strained Ge films and GeSn alloys.  

6.2 Strain-shift coefficient 

The Raman shifts associated with strain are not related to the geometrical 

deformations in any obvious way, so that careful calibrations are needed to 

determine the anharmonic coefficients that relate strain to Raman shifts. In 

diamond structure systems, there are three such coefficients, denoted as p, q, and 

r, which are the components of a deformation potential tensor with the same 

symmetry as the elastic constants tensor, where the equivalent components are 

C11, C12, and C44. We present a new set of measurements of the Raman shift in 

strained Ge films grown on relaxed SiGe buffer layers deposited on Si substrates. 

Combining these results with prior measurements and the accurate determination 

of the pressure dependence of Raman modes, we propose a new consistent set of 

values for the parameters p and q for Ge. While our proposal does not include the  

remaining quantity r, p and q are the only parameters needed to predict phonon  

shifts for strained-layer epitaxy. 

6.3 Vibrational properties of GeSn alloys 

The Raman spectra of the GeSn alloy shows the presence of the Ge-Ge 

optical mode and a disorder-activated Ge mode. We discuss the compositional 
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dependence of the Ge-Ge mode on the basis of a simple alloy model. We have 

also studied the temperature dependence of the lineshifts and the linewidths of the  

Ge-Ge mode. The broadening as a function of temperature is explained in terms 

of the thermal occupation number. The temperature dependence of the Raman 

spectrum of Ge-rich Ge1-ySny and Ge1-x-ySixSny alloys has been determined in the 

10 K -450 K range. The Raman line shift and width changes as a function of 

temperature are found to be virtually identical to those observed in bulk Ge, This 

result shows that the anharmonic decay process responsible for the temperature 

dependence is extremely robust against the alloy perturbation, so that the expected 

relaxation of the wave vector conservation rule does not affect the spectra in any 

noticeable way. 

The temperature-independent difference between the width of the alloy 

Raman peaks and those of bulk Ge has been studied as a function of Sn 

concentration (x). It appears that the broadening is approximately constant for 0 < 

x < 0.04, and it grows rapidly for x > 0.04. This coincides with the appearance of 

the typical alloy asymmetries in the lineshapes, consisting of a broadening of the 

low-energy side. The observation of asymmetric Raman peaks is a clear 

manifestation of the relaxation of the wave vector conservation rule. Vibrational 

modes with frequencies close to the bulk Raman mode become Raman-active, but 

since the bulk Raman mode corresponds to the highest frequency optical phonon, 

all activated modes have lower frequency, thus appearing as a broadening of the 

low-energy side of the Raman peak. Thus, while clear evidence is seen for a 
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relaxation of the wave vector conservation rule in the Raman scattering process—

corresponding to a (electron-mediated) photon-phonon interaction—there is no 

indication of a similar relaxation for the anharmonic decay process—

corresponding to phonon-phonon interactions. While the first of these relaxations 

can be simulated by computing the Raman spectrum of large supercells with 

phonons calculated using ab initio methods, the latter requires an ab initio 

calculation of the anharmonic decay in large cells. Such calculations, which to the 

best of our knowledge have never been carried out, would shed light on the 

surprising temperature dependences reported here.
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