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ABSTRACT  
   

Proportional-Integral-Derivative (PID) controllers are a versatile category of 

controllers that are commonly used in the industry as control systems due to the ease 

of their implementation and low cost. One problem that continues to intrigue 

control designers is the matter of finding a good combination of the three 

parameters – P, I and D of these controllers so that system stability and optimum 

performance is achieved. Also, a certain amount of robustness to the process is 

expected from the PID controllers. In the past, many different methods for tuning 

PID parameters have been developed. Some notable techniques are the Ziegler-

Nichols, Cohen-Coon, Astrom methods etc. For all these techniques, a simple 

limitation remained with the fact that for a particular system, there can be only one 

set of tuned parameters; i.e. there are no degrees of freedom involved to readjust the 

parameters for a given system to achieve, for instance, higher bandwidth. Another 

limitation in most cases is where a controller is designed in continuous time then 

converted into discrete-time for computer implementation. The drawback of this 

method is that some robustness due to phase and gain margin is lost in the process. 

In this work a method of tuning PID controllers using a loop-shaping approach has 

been developed where the bandwidth of the system can be chosen within an 

acceptable range. The loop-shaping is done against a Glover-McFarlane type ℋ∞ 

controller which is widely accepted as a robust control design method. The 

numerical computations are carried out entirely in discrete-time so there is no loss of 

robustness due to conversion and approximations near Nyquist frequencies. Some 

extra degrees of freedom owing to choice of bandwidth and capability of choosing 



  ii 

loop-shapes are also involved and are discussed in detail. Finally, comparisons of this 

method against existing techniques for tuning PID controllers both in continuous 

and in discrete-time are shown. The results tell us that our design performs well for 

loop-shapes that are achievable through a PID controller. 
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CHAPTER 1 

INTRODUCTION 

1.1 PID controllers 

Proportional-Integral-Derivative controllers (PID controllers) are the most 

common form of control systems in use today. Owing to the fact that they have only 

three terms to control their input-output behavior, their implementation is very 

simple and can be done even without the use of sophisticated 

microcontrollers/microcomputers. Although simple in structure, their field of 

applicability is quite versatile and this is the primary reason behind their widespread 

use in the industry. Some examples of their use are found in control of temperatures 

in chemical processes, control of angular position of arm like structures (robotic 

arms), controlling rotation speed of motors, controlling liquid levels and pressures 

etc. The term PID comes from the structure of the controller itself, where the output 

(plant input) signal of the controller is computed as a sum of the input (error) 

multiplied with a proportional gain KP, an integral of the input times the integral gain 

KI and a derivative of the input times a derivative gain KD. Fig. 1 shows a schematic 

of the flow of signals through a PID controller. 

 

Fig 1: Schematic representation of PID controller. 
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C(s) KP+KI
1

s
+KDs (1) 

Equation (1) shows the transfer function of the controller in continuous 

time. Although, for computational purposes and for practical implementation it is a 

general practice to put a pseudo-pole of the form Ts+1, as a denominator to the 

derivative term, to ensure that the frequency response rolls-off at high frequency. 

Thus, the transfer function takes the form shown in equation (2).  

C(s) KP+KI
1

s
+KD

s

(Ts+1)
 (2) 

The most challenging aspect in designing a PID controller is in tuning the 

three gains KP, KI and KD. The proportional gain determines how fast the controller 

will react to the error input, in other words too low a value will make the controller 

react slowly but too high of a value may make the system unstable. The integral gain 

compensates for accumulated errors and thus determines overshoot. The derivative 

gain slows the overshoot but is very sensitive to noise and can cause the system to 

become unstable due to it. Given these characteristics of each of the gains it is 

desirable to have a controller that will make the system stable and still produce fast 

responses and have some robustness properties. 

 

1.2 Literature review 

Despite the recent advancements in control theory that allows for design and 

implementation of highly sophisticated controllers, simple PID controllers are still 

preferred in the industry. Added to the simplicity is the fact that computational 

power has grown to a point where performing numerical computations to tune the 
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PID parameters are no longer a matter of concern. The only important step is to 

define a good tuning algorithm. In the past many methods have been developed to 

tune PID parameters. The manual method is where each of the gains are increased 

and decreased individually while the operator observes the behavior of the system 

until they are satisfied with the performance of the controller. Other notable 

methods are the Ziegler-Nichols method [1], Cohen-Coon method [2] and Astrom‟s 

method [3]. See O‟Dawyer [40] for a detailed set of various PID and PI controller 

tuning techniques. While some of these methods rely on a tuning scheme based on 

reduced approximations of the system model others use some form of nonlinear 

optimization in comparison to some performance measure of the system in question. 

Although Ziegler-Nichols is widely popular due its computational simplicity and 

almost no requirement of a priori knowledge of the plant, it gives up on flexibility of 

conditions on the plant for a successful implementation and also has a lack of proper 

tuning “knobs” [4]. While all the above mentioned methods work under specific 

circumstances, none of them provide enough degrees of freedom for the operator to 

be able to adjust the parameters to improve on performance based on their judgment 

and expertise.   

The lack of a unified tuning method that fits all needs can attributed to the 

dependency of the performance objective of the plant on its specific requirements in 

different applications. Also, in the case of PIDs, having only three parameters makes 

thing worse by allowing minimum wiggle room for adjustment. All the existing PID 

tuning methods have their strengths and weaknesses in terms of time to compute, 

simplicity in implementation, robustness properties etc. Comparing among methods 
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and trying to find the best one almost seems futile. With this in mind, this work tries 

to focus on specific aspects of PID tuning, namely robustness to modeling error, 

capability of choosing bandwidth for a system (adds a degree of freedom for the 

operator), ability to shape the loop of the PID to a plausible extent, ease and 

promptness of computation and the ability to incorporate this design technique with 

system identification techniques to learn about the plant/process, thus getting rid of 

or reducing the amount of trial and error involved in many other tuning methods. 

In [5], we see how Voda and Landau show how to perform an automatic 

PID controller tuning using Kessler‟s symmetrical optimum method [6]. Their 

method addresses the robustness and closed-loop performance issues of electrical 

drives. This limits the use of the methods and performance of this method in 

complex industrial systems is therefore unknown. Similarly, Nudelman and Kulesky 

in [7] have shown another PID tuning scheme for the specific purpose of controlling 

power–station loops. Kristiansson et al [8] have shown methods for optimal PI and 

PID parameter tuning by utilizing the fact that during optimization, to find the 

parameters, the high frequency pole must be incorporated for the tuned PI(D) to be 

robust. In [9], Malan et al have shown another method for robust tuning of PID 

controllers but with multiple performance specifications. Their method was to make 

use of a convergent set of inner and outer approximations of the parameters that will 

allow the system to perform robustly to the design. Tesi and Vicino, in [10], shows 

another method of designing robust controllers that are optimal and have a few 

degrees of freedom. 
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More recent work done by Tsakalis et al [11] [4] [12] [13] uses methods 

where the tuning is performed by comparing the loop-shape of a Linear Quadratic 

Regulator (LQR) based controller to that of a PID to obtain the parameters. Our 

work derives its roots mostly from the research done in [4]. However, in this work 

the loop-shaping has been done in comparison to a Glover-McFarlane ℋ∞ controller 

[14] instead of an LQR controller. In many instances, it is nowadays a common 

practice to not derive a model of the system via first principles but from system 

identification methods as is done in [13] and [15]. This work, however, assumes a 

model is available either from first principles or system identification methods and 

proceeds from there on. This allows our design to be easily integrated into methods 

that involve identifying the system computationally via input output data as was our 

original goal.  

Some of the methods for system identification in [16] [17] [18] [19] have 

been studied prior to the commencement of this work. Mostly due to their relevance 

to what we are trying to achieve, i.e. identification of a system for use in PID 

controller design. But, since identification is not the primary concern of this project, 

we do not focus on it. Rather, we have done a thorough survey of the existing 

methods for designing ℋ∞ controllers both in continuous and discrete-time, since 

that is of a more fundamental interest to us. 

In [20], Zhang et al have used Linear Matrix Inequalities (LMI) to find 

uncertainty bounds that are tolerable for robust ℋ∞ performance for discrete-time 

systems. Similarly, Crucius and Trofino have derived sufficient LMI conditions for 

ℋ∞ type output controllers [21]. In [22], we see how ℋ∞ controllers are designed for 
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linear discrete-time systems that have norm bounded nonlinear uncertainties. In [23], 

a method of designing ℋ∞ controllers with reduced orders is discussed. Glover and 

McFarlane also discuss a method of order reduction in [14]. Among other notable 

work done in discrete-time ℋ∞ design that are relevant to our work are the ones by 

Syrmos et al [24], Mirkin [25], Khargonekar et al [26], Francis et al [27] and Zhou and 

Doyle [28]. 

The most important aspect of this work lies in the fact that all the algorithms 

are built entirely in discrete-time. There are two methods of designing controllers:  

1) First, design the control system in continuous-time (s-domain) and, then use 

a phase preserving Tustin transform to achieve the discrete-time (z-domain) 

form for computer implementation. (There are still some approximation 

errors in this method.) 

2) Design the controller in discrete-time to start with (Begin with a plant that 

has been discretized either using a zero-order-hold (ZOH) method or a 

Bilinear transformation (Tustin) method). 

Ignoring any intra-sample behavior for now, the major disadvantage of using method 

(1) is that some delay is introduced into the system during sampling of the plant that 

can lead to a loss in phase margin and gain margin, especially for closed-loop 

bandwidth close to Nyquist frequency. An additional advantage of the second 

approach is that it does not require an awkward conversion of pure discrete-time 

plants to continuous time first. Such is the case in the so-called “Run-to-Run” 

control problem that appears in semiconductor manufacturing where batch 

processing is the norm; see [41], [42], [43], [44]. The loop-shaping procedure is done 
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using the normalized coprime factorization ℋ∞ design methods of Glover and 

McFarlane, as shown in [14]. However, we have adopted the discrete-time version of 

the ℋ∞ control design, done by Walker [31]. 

 

1.3 Organization of the thesis 

Chapter 2 discusses the formulation of the problem being investigated. How 

the need for a loop-shaping evolved and why ℋ∞ type controllers were chosen, 

particularly the Glover-McFarlane type. In the third Chapter the entire procedure for 

loop-shaping is shown, including algorithms for the discrete ℋ∞ controller, an LMI 

optimizer and some weight selection methods. Some results from the 

implementation of the ℋ∞ controller are also shown. Chapter 4 discusses the results 

obtained and some comparisons to other methods for PID tuning. The fifth chapter 

contains a recapitulation of the work done, conclusions obtained and suggestions for 

future work. 
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CHAPTER 2 

PROBLEM FORMULATION 

2.1 Introduction 

 All the existing methods for PID tuning rely on a sample input and the 

output the system generates in response to it; then computing the parameters based 

on some tuning rules set by these algorithms. However, once a set of parameters are 

determined for a particular system using one of these means, the control designer 

cannot attempt to achieve any different value using the same method if the original 

design did not perform well. Therefore, it results in a limitation in the degrees of 

freedom in the design. In this chapter we discuss the motivation behind our design 

idea, viz. a PID tuner that can be adjusted until a suitable design is found for a given 

plant. 

 

2.2 Background 

To get a good set of PID parameters for a process, there are some tuning 

methods that require knowledge of control systems to tune the parameters. This is a 

problem, since the operators of machinery in the industry are generally unaware of 

such techniques. Our goal was to design a tuner that will be operable by the everyday 

user thus hiding the intricate algorithms and presenting outputs that are readily 

usable. Essentially, the operator should put in the required bandwidth and the plant 

to the algorithm and it would spur out the three parameters KP, KI and KD.   
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2.2 Formulation of the Problem 

In this work our main focus is to design a PID tuner for linear, time-

invariant Single-Input-Single-Output (SISO) plant/system. The assumption being 

held is that a model of the system has already been derived either from first 

principles or from system identification experiments. Fig. 2 shows the general form 

of a feedback control system loop.  

 

Fig 2: Schematic representation of a general feedback control system. 

As depicted in the figure, the input to the controller is the error (e) between 

the reference signal and the output fed back through the sensor. The output of the 

controller is the plant input (u). So, the output “u” has signal flow: 

U(z) = K(z) * E(z) (3) 

in discrete-time. For a system like this, the PID controller we are attempting to 

design will have the following transfer function: 

K(z)  Kp+ KI
T

(z-1)
+ KD

(z-1)

Tz
                                                      (4) 

Where, KP, KI and KD are the proportional, integral and derivative gains and T is the 

sampling time of the controller. The objective of our work is to determine the three 

PID gains such that the open loop transfer function (LTF) when compensated by 

the controller C(z) will be close in the sense of the ℋ∞ norm, to the one of a chosen 
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target loop transfer function. Let, the target open LTF be L(s).  Alternatively, the 

structure for the controller can be rewritten like this: 

K(z)  
(K1z

2 + K2z + K3)

z(z-1)
                                                      (5) 

Where, 
 
K1 = KP + KD/T (6) 
 
K2 = KIT – KP – 2KD/T (7) 
 
K3 = KD/T (8) 
 
Thus, the PID parameters can be extracted from (6), (7) and (8) via the 

transformations: 

 
Kp = K1 – K3 (9) 
 
Ki = 1/T(K1 + K2 + K3) (10) 
 
Kd = K3T (11) 
 
Therefore, instead of tuning for the original PID parameters, we seek to tune for the 

coefficients of the numerator of K(z): K1, K2 and K3. The alternate linearly 

parameterized form has the advantage that any functional of the form ‖ (   

 )‖ℋ  is convex in the design parameters. “W” is a carefully selected weighting 

transfer function and “P” is the transfer function of the plant. It must be noted that 

to achieve internal stability “PK” should not contain any pole-zero cancellations 

outside the unit circle. The condition is easily met by restricting the scope of this 

controller design to minimum phase controllers. To ensure that minimality is 

observed, the following constraints are put on the coefficients of the numerator of 

K(z): 
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K1 > 0 , K2 > 0, K3 > 0 ; this ensures positivity, and 

K1 + K2 + K3 > 0, K1 - K2 + K3 > 0, K3 < K1. 

The last three conditions were derived from the Jury stability test criterion 

[29]. While, the first three ensure positivity of the gains the latter three do the same 

in addition to ensuring that the gains do not become large enough to render the 

system unstable. Before we move on to discussing how the PID tuning can be 

turned into a convex optimization problem we must probe a little further into 

computing how the closed-loop will have guaranteed stability. 

Let, the error loop transfer function be ∆   L – PK. Also, let us assume that 

PC has no pole-zero cancellations outside the unit circle. Furthermore, let us denote 

the nominal sensitivity of the closed loop system as    
 

   
. Reformulating the 

expression of the closed-loop system in terms of L and ∆ and then applying the 

small gain theorem [30] [39] to it; a sufficient condition for the closed-loop system 

can be written as 

‖So ‖ℋ   , (12) 

  ‖
 

1+L
(PK-L)‖

ℋ 
   (13) 

The inequality (3) that follows from the application of the small-gain theorem 

on   and the sensitivity transfer function can be thought of as a cost functional for 

solving the weighted approximation problem of L by PK. By further inspection we 

can also see that  

‖W(PK-L)‖
ℋ 

   (14) 
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where, W is any weighting transfer function that is stable and minimum phase given 

that: 

|
 

1+L(z)
|  ‖W(z)‖                                                  (15) 

If we observe the characteristics of this expression in terms of the Nyquist 

plot we will see that this weighting function, W(z) can make the approximation 

around the crossover frequency stand out more prominently than just the stability 

requirement. If carefully selected, this weighting function can be made to bring about 

a reduction in the sensitivity transfer function peaking and subsequently add 

additional robustness constraints with respect to modeling errors. Therefore, the 

challenge of finding the PID parameters can be translated from a frequency loop-

shape tuning into the optimization problem described below 

 
min

K1,K2,K3
‖W(PKK1,K2,K3

-L)‖
H∞

 (16) 

For the method shown above, if we assume that P and So are stable and the 

open LTF, L, has an integrator for good command following properties, then it can 

easily be shown that the closed-loop stability will be guaranteed if the value of the 

minimum in (16) is less than 1. The only problem that remains to be solved is to find 

a good target LTF. In [4], the loop transfer function was selected by first designing 

an LQR controller for the plant then incorporating it into L. However, in this work, 

we will be selecting the loop based on an ℋ∞ controller designed for the plant.  

 



13 

 

2.3 Conclusion  

In this chapter we saw how the problem has been developed and the proposed 

method for solving it. In the next chapter we will explore how the loop-shaping procedure 

has been carried out. We will also describe how we how we perform an LMI optimization to 

the loop-shape to obtain our PID parameters. 
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CHAPTER 3 

LOOP-SHAPING AND OPTIMIZATION 

3.1 Introduction 

The choice of loop-shape for our algorithm could have been any open-loop 

that is stable when closed. That being said, a good loop-shape for most plants that 

are open-loop stable would be:  ( )  
  

   
; where, T is the sampling time and a is 

any constant gain. However, our goal was to make an algorithm that would be 

generic and should work well with plants that are even open-loop unstable. This is 

why our design incorporates the use of an ℋ∞ controller. Since, the numerical 

optimization method in equation (16) will try to minimize the difference between a 

norm of the loop-shape in L against the one in PK, where K is the PID controller 

we are searching for; the better behaved the loop-shape of L, the better behaved will 

be the PID controller performance found from the optimization. Although methods 

shown in [4] [11] [12] [13] work reliably with their use of LQR controllers for choice 

of loop-shape; LQR controllers are not robust to system modeling errors. Neither 

are they good with zeros far away from the system bandwidth; the matter can be 

worse with ones outside the unit circle. On the other hand, since ℋ∞ design produce 

output controllers, they have no such problem. In fact, the work done by McFarlane 

and Glover and D. Walker in [14] and [31] respectively, shows that: designed in a 

certain way, ℋ∞ controllers can be very robust to modeling errors up to a specified 

uncertainty region.  
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Traditional methods of ℋ∞ control design depend on an iterative procedure 

where the ℋ∞ norm of certain transfer functions involving the plant and some 

carefully selected weighting functions are minimized such that the controller, that is 

found as a result of the optimization in ℋ∞, is the minimum possible stabilizing 

solution. However, the iteration can be time consuming and so the work done by 

Glover and McFarlane shows methods in which the solution to the ℋ∞ optimization 

problem can be found in one shot. This is the primary motivation behind adapting 

their method into the discrete-time space [31] and using that as our loop-shape. It 

may be appropriate to restate now that doing an ℋ∞ control design may be very apt 

in this scenario; since, it is highly likely that the model of the plants we get are found 

from system identification methods which have a certain amount of modeling error 

in them. The same would be true if the plant state-space were found from first 

principles as well; but, in the industry it is more common for system identification 

methods to be used. The next section describes how the control design is achieved. 

 

3.2 The ℋ∞ controller  

All control systems are expected to have some common properties such as good 

tracking behavior and transient response. They are also expected to have some 

stability margins whilst modeling errors, parameter variations, noise and other forms 

of uncertainty are present in the state-space that describes the system. This has been 

a recognized problem and been studied for a long time by many: [12], [13], [14] and 

[15]. The studies have led to ℋ∞ design theory; where, unstructured model 

uncertainty can be described as additive or multiplicative, infinity-norm-bounded, 
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stable transfer functions that act on the nominal plant. Using ℋ∞ theory, it is often 

possible to reduce the closed-loop system‟s susceptibility to becoming unstable with 

respect to the perturbations to the system, while maintaining sufficiently satisfactory 

system performance. 

The mechanism of incorporating modeling error suggested by Vidyasagar et 

al [30] is to represent them as a stable transfer function matrix (TFM) acting 

additively on each of the elements of a right or left coprime factorization on the 

nominal plant model.  

 

Fig 3: Schematic of unity feedback control system. 

 Let us first consider the feedback system shown in fig. 3. It has transfer 

function and state space: 

 ( )     (    )    [
  
  

] (17) 

It also has the right coprime factorization 

P = NM-1 (18) 

We will assume that (A, B) is stabilizable and (A, C) is detectable in which case we 

have the well-known realizations for the transfer function matrices satisfying 

equation (18) to be: 

[
  

  
] [

     -  
 

- 

    

       

- 

] (19) 
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Where, F and H are the stabilizing state feedback and output injection matrices 

respectively; AF = A + BF, CF=C+DF and Z1 and Z2 are arbitrary invertible 

matrices. 

Let us focus on the case where the uncertainty in P is the transfer function of 

a stable „perturbation‟ and is represented by ∆1 and ∆2, that act additively on each of 

the elements N and M of the right coprime factorization of P. Now, P is given by 

   (    )(    )
    (20) 

Now, if we add the signals u1, u2 and y to fig. 1 and replace P with P∆ we get the loop 

shown below in fig. 4: 

 

Fig 4: Schematic of unity feedback control system with P replaced by its uncertainty model. 

The feedback loop equations for this system can be written as: 

[
 
 
]  [

(    )  [    ] (    )   

(    )  [   ] (    )    
] [{
  
  
}

 
] (21) 

Where, [
  
  
]     and   [

  
  
] (22) 

Now, if we define the conjugate system of P as P*=DT+BT(z-1I-AT)-1CT. Then, for 

the state-space realization of P* given in equation (23) will be all-pass if the 

conditions in (24) and (25) is true. 



18 

 

   [         

                
], provided A is invertible (23) 

If             

DtD+BtQB = I, DtC+BtQA = 0 and Q- AtQA=CtC, then P*P=I (24) 

Similiarly, if  

DDt+CPCt = I, BDt+APCt = 0 and P- APAt=BBt, then P P* =I (25) 

In equations (24) and (25), P and Q are the solutions to the following Riccati 

equations: 

BR1
-1Bt - P + ΦPΦt - ΦP t(R2+CPCt)-1 PΦt = 0 (26) 

CtR2
-1C - Q + ΦtQΦ - ΦtQB (R1+BtQB)-1BtQΦ = 0 (26) 

Where, 

Φ = A – BR1
-1DtC, 

R1 = I + DtD and R2 = I + DDt 

Given these matrices, it is straightforward to show that an optimal bound for the 

maximum robustly stabilizable uncertainty will be 

     [  ‖
 
 
‖
 

 

]
    

 (27) 

Following the definition of     , it has been shown by Walker [31] that there exists 

suboptimal controllers with bound        which will internally stabilize the super 

plant G as shown in fig. 5, where G has the state-space realization given by equation 

(28). 

G(z) [
G11 G12

G21 G22
] [

0 M-1 M-1

I -P -P
] (28) 
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Fig 5: Feedback loop of super-plant G with K. 

We are now ready to see how the structure of the controller was formulated by 

Limebeer et al [33]. These suboptimal controllers, with bound γ, are parameterized in 

terms of strong solutions to two indefinite algebraic Riccati equations.  The first one 

in (29) has a solution X∞ that is symmetric and positive definite 

0 = Cx
tJCx+At X∞A- X∞-( Cx

tJDx+AtX∞Bx)( ̂x+Bx
t X∞Bx)

-1(Dx
tJCx+Bx

tX∞A)  (29) 

Where,  

   [    ]     [
  

 
]      [

      

  
]    ̂    

        [
  

 -   
]  (30) 

And, the second Riccati in (31) has a solution Y∞ that is also symmetric and positive 

definite 

0 = Cy
tJCy+Ay

t Y∞Ay- Y∞-( Cy
tJDy+Ay

tY∞By)( ̂y+ By
tY∞By)

-1(Dy
tJCy+By

tY∞Ay)  (31) 

Where, 

    
      [  

   
 ]     [

  
 

 
]    

 

 [   
    

 

  
]    ̂    

      (32) 
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Using the solutions of the Riccatis above, we can invoke a result that can be derived 

from a modification to theorem 3 in [16] which states that 

Z∞= Y∞(I- γ-2X∞Y∞)-1 (33) 

Now, substitution of the realization of G(z) into the Riccati equation in (29) provides 

us the following Riccati equation 

0 = (C΄D+A΄QB)(R1+B΄QB)-1(D΄C+B΄QA)+A΄X∞A-X∞                                                                        

-(C΄D+A΄QB+A΄X∞B)(R1+B΄QB+B΄X∞B)-1(D΄C+B΄QA+B΄X∞A) (34) 

Upon inspection, it immediately becomes clear the the solution to this Riccati 

equation is X∞=0. Putting this result into equation (33), it follows that  

Z∞= Y∞ (35) 

Thus, it follows that all the suboptimal controllers are paramterized via a single non-

trivial, indefinite, Riccati equation satisfying (31). In the event that the superplant G 

is strictly proper the controller state-space has a realization as shown below 

  [
(      )-      ∞    

- (      )-      ∞    
- 
 ∞  

   (      )-      ∞    
- 

   (      )-      ∞    
- 
 ∞  

] (36) 

 

3.3 The Optimization Method 

Now, that we have a form for computing our controller we can move on to 

how the loop-shaping for the PID will be done. The open-loop transfer function for 

the nominal plant, P, found using the controller, K, we just defined in the previous 

section, is L in equation (16). Then, the tuning of the PID controller is performed by 

using a convex optimization, viz. the ellipsoid algorithm mentioned, specifically the 

deep-cut ellipsoid method, in [37] where the optimization problem restated is 
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      ‖            ‖ 
 

    (37) 

Where, Z is the complementary sensitivity transfer function; K is a vector of the PID 

parameters over which the optimization is being performed and W is the necessary 

transfer function to make the product of WK similar to the complementary 

sensitivity transfer function.  , is the set of convex constraints for K. 

The deep-cut ellipsoid algorithm in [37] is stated below 

a) Initialize K(this is a vector) and A(an ellipsoid that contains feasible 

minimizers; if there are any). Compute the frequency responses of W and Z. 

The range of frequency for the frequency responses in this optimization is 

being chosen as two orders below and above the required bandwidth. This 

way, the choice of the frequency vector becomes independent of the 

problem. 

b) Check if K satisfies the constraints  , mentioned below 

K1 > 0 , K2 > 0, K3 > 0; and 

K1 + K2 + K3 > 0, K1 - K2 + K3 > 0, K3 < K1. 

If the constraints are not met, then use the active constraint sub-gradient iteration 

method in [17]. 

c) If the constraints are satisfied by K, then compute the frequency at which the 

objective |            |
 
 attains its maximum, say ω*. Then, we will use 

     {            }( 
   )   (    ) as a subgradient in the 

objective iteration. Also, we will try to see if a deep-cut may be performed to 
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further reduce the size of the ellipsoid in the same step. This will save a 

couple of iterations.  

d) Repeat steps b and c until the objective function is below a threshold.  

At this point, it will be relevant to mention that the performance of the ellipsoid 

algorithm is generally found to be adequate when the search set initialization was 

done with a radius of 1e3. But, this may deteriorate as the size of the search radius 

increases. However, greatly increased search radiuses may be required if the gains of 

the tuned PID are large. To keep the optimization quick and save programming 

overhead, we simply verify that the optimizing K is inside the initial search set. If 

not, the initialization is changed and the optimization repeated. 

 

3.4 Conclusion  

In this chapter, we have seen how the ℋ∞ controller was implemented. Also, 

we have taken a look at how the deep-cut ellipsoid algorithm was incorporated into 

our work for the convex optimization of PID parameters to obtain the loop-shape. 

In the next chapter, we will observe some results obtained using example plants and 

some comparison of the discrete-time implementation to some of the continuous-

time methods. 
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CHAPTER 4 

RESULTS 

4.1 Introduction  

In this chapter we will look at some of the simulation results from the ℋ∞ 

solver and the PID tuner programs that we created. Although the ℋ∞ solver‟s results 

are intermediary to the final output, we believe it is essential to look at them, since 

the PID tuner will attempt to minimize the difference between the PID controller 

and the ℋ∞ controller. A few specific types of SISO plants have been chosen for the 

purpose of analyzing simulation results; most of them are used as test-cases in 

various literatures. Their structures (transfer function) are shown followed by their 

ℋ∞ controller and PID tuned controller performances.  

 

4.2 Results from the ℋ∞ solver  

Before starting to present results a few more comments must be added about 

the ℋ∞ controller design algorithm that we are using. The entire program has been 

written in MATLAB. The input to the program is the plant, the sampling time, the 

required bandwidth, a pole and a zero location. Since, Glover-McFarlane method 

requires that a pre-shaped loop for the plant is entered into the solver, we augment 

the nominal plant, Po, with a filter that has an integrator, a zero and a roll-off pole.  

The pole and zero location are entered as they would lie in the s-plane (continuous 

time), and then converted to a discrete-time filter via a Tustin transformation. The 

default value for the zero is half of crossover frequency and the default for the roll-

off pole is the geometric mean of the crossover and Nyquist frequency. The 
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augmented plant, P, is then sent into the ℋ∞ controller solver as described in Section 

4.2. Then the discrete filter is taken out of P and augmented into the controller to 

achieve the final controller structure. Having said this, we will now look into the 

simulation results: 

 

a) Continuous time Plant 1: 

P(s) 
1

 
 

Discretized using ZOH 

P(z) 
    

(   )
 

The open loop plant bandwidth is 1.4137 rad/s. The results below are what we 

obtained for a bandwidth 0.5 times that value. 

Roll-off pole at -12.1673 and Integrator zero at -0.23562 (for continuous case) 

Controller Design Results 

Closed loop Bandwidth requested 0.70685 rad/s 

Closed Loop Bandwidth achieved 0.70934 rad/s 

Gamma_opt 1.7029 

Gamma 1.7199 

Step Response Characteristics   

Rise Time 2.54 Sec 

Settling Time       19.85 Sec 

Overshoot 14.1195 % 

Undershoot 0 % 

Peak 1.1412 

Time to Peak 7.13 Sec 

Table 1: Step response characteristics of Plant 1 for ℋ∞ controller. 
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Fig 6: Bode plot of ℋ∞ controller for test plant 1. 

 

Fig 7: Complementary sensitivity and sensitivity plot of ℋ∞ controller for test plant 1. 

 

Fig 8: Step input response and step disturbance response of ℋ∞ controller for test plant 1. 

Now, let us look at the results for tuner by using a closed-loop bandwidth of 5 times 

the plant bandwidth.  
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Roll-off pole at -38.4763 and Integrator zero at -2.3562 (for continuous case) 

Controller Design Results 

Closed loop Bandwidth requested 7.0685 rad/s 

Closed Loop Bandwidth achieved 7.3078 rad/s 

Gamma_opt 1.8045 

Gamma 1.8225 

Step Response Characteristics   

Rise Time 0.25 Sec 

Settling Time       2.01 Sec 

Overshoot 15.7045 % 

Undershoot 0 % 

Peak 1.157 

Time to Peak 0.7 Sec 

Table 2: Optimization results and step response characteristics of Plant 1 for faster 

PID controller. 

 

Fig 9: Bode plot of faster ℋ∞ controller for test plant 1. 
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Fig 10: Complementary sensitivity and sensitivity plot of faster ℋ∞ controller for test plant 

1. 

 

Fig 11: Step input response and step disturbance response of faster ℋ∞ controller for test 

plant 1. 

b) Continuous time Plant 2: 

P(s) 
1

   
 

Discretized using ZOH 

P(z) 
       

(      )
 

The open loop plant bandwidth is 0.9998 rad/s. The results below are what we 

obtained for a bandwidth 0.5 times that value. 

Roll-off pole at -10.2322 and Integrator zero at -0.16663 (for continuous case) 
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Controller Design Results 

Closed loop Bandwidth requested 0.4999 rad/s 

Closed Loop Bandwidth achieved 0.20613 rad/s 

Gamma_opt 1.2239 

Gamma 1.2362 

Step Response Characteristics   

Rise Time 12.11 Sec 

Settling Time       26.22 Sec 

Overshoot 0 % 

Undershoot 0 % 

Peak 0.99734 

Time to Peak 43.79 Sec 

Table 3: Step response characteristics of Plant 2 for ℋ∞ controller. 

 

Fig 12: Bode plot of ℋ∞ controller for test plant 2. 

 

Fig 13: Complementary sensitivity and sensitivity plot of ℋ∞ controller for test plant 2. 
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Fig 14: Step input response and step disturbance response of ℋ∞ controller for test plant 2. 

Now, let us look at the results for tuner by using a closed-loop bandwidth of 5 times 

the plant bandwidth.  

Roll-off pole at -32.3572 and Integrator zero at -1.6663 (for continuous case) 

Controller Design Results 

Closed loop Bandwidth requested 4.999 rad/s 

Closed Loop Bandwidth achieved 3.9469 rad/s 

Gamma_opt 1.5777 

Gamma 1.5935 

Step Response Characteristics   

Rise Time 0.52 Sec 

Settling Time       1.89 Sec 

Overshoot 3.1687 % 

Undershoot 0 % 

Peak 1.0317 

Time to Peak 1.3 Sec 

Table 4: Step response characteristics of Plant 2 for faster ℋ∞ controller. 

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Input Response

Time (sec)

A
m

p
lit

u
d
e

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Step Disturbance Response (at plant input)

Time (sec)

A
m

p
lit

u
d
e



30 

 

 

Fig 15: Bode plot of faster ℋ∞ controller for test plant 2. 

 

Fig 16: Complementary sensitivity and sensitivity plot of faster ℋ∞ controller for test plant 

2. 

 

Fig 17: Step input response and step disturbance response of faster ℋ∞ controller for test 

plant 2. 
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c) Continuous time Plant 3: 

In the next two test cases we will investigate the ℋ∞ controller performance for 

plants of type 

 ( ) 
-   

(   ) 
, where a = 0.5 in this case and a closed loop bandwidth of 1 rad/s is 

being used. 

Putting a =0.5 and discretizing using ZOH 

P(z) 
                      

                     
 

The results below are what we obtained for a bandwidth of 1 rad/s 

Roll-off pole at -14.472 and Integrator zero at -0.33333 (for continuous case) 

Controller Design Results 

Closed loop Bandwidth requested 1 rad/s 

Closed Loop Bandwidth achieved 0.25315 rad/s 

Gamma_opt 2.054 

Gamma 2.0745 

Step Response Characteristics   

Rise Time 10.81 Sec 

Settling Time       19.43 Sec 

Overshoot 0 % 

Undershoot 38.372 % 

Peak 0.99782 

Time to Peak 32.19 Sec 

Table 5: Step response characteristics of Plant 3a for ℋ∞ controller. 
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Fig 18: Bode plot of ℋ∞ controller for test plant 3a. 

 

Fig 19: Complementary sensitivity and sensitivity plot of ℋ∞ controller for test plant 3a. 

 

Fig 20: Step input response and step disturbance response of ℋ∞ controller for test plant 

3a. 

Now, let us look at the results for a= 5. 
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P(s) 
    

(   ) 
, where a = 5 in this case and a closed loop bandwidth of 1 rad/s is 

being used. 

Putting a =5 and discretizing using ZOH 

P(z) 
                     

                     
 

Roll-off pole at -14.472 and Integrator zero at -0.33333 (for continuous case) 

Controller Design Results 

Closed loop Bandwidth requested 1 rad/s 

Closed Loop Bandwidth achieved 0.42776 rad/s 

Gamma_opt 1.5798 

Gamma 1.5956 

Step Response Characteristics   

Rise Time 5.65 Sec 

Settling Time       11.95 Sec 

Overshoot 0 % 

Undershoot 1.8301 % 

Peak 0.99816 

Time to Peak 20.59 Sec 

Table 6: Step response characteristics of Plant 3b for ℋ∞ controller. 

 

Fig 21: Bode plot of ℋ∞ controller for test plant 3b. 
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Fig 22: Complementary sensitivity and sensitivity plot of ℋ∞ controller for test plant 3b. 

 

Fig 23: Step input response and step disturbance response of ℋ∞ controller for test plant 

3b. 

d) Continuous time Plant 4: 

P( ) 
   

(   ) 
, where ε is a small number, in this case ε   0.5(1/2 bandwidth) 

Discretized using ZOH 

P(z) 
          (       )

(      ) 
 

The open loop plant bandwidth is 1 rad/s. The results below are what we obtained. 

Roll-off pole at -14.472 and Integrator zero at -0.33333 (for continuous case)  
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Controller Design Results 

Closed loop Bandwidth requested 1 rad/s 

Closed Loop Bandwidth achieved 0.3327 rad/s 

Gamma_opt 1.2277 

Gamma 1.24 

Step Response Characteristics   

Rise Time 7.38 Sec 

Settling Time       15.83 Sec 

Overshoot 0 % 

Undershoot 0 % 

Peak 0.99821 

Time to Peak 27.99 Sec 

Table 7: Step response characteristics of Plant 4 for ℋ∞ controller. 

 

Fig 24: Bode plot of ℋ∞ controller for test plant 4. 

 

Fig 25: Complementary sensitivity and sensitivity plot of ℋ∞ controller for test plant 4. 
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Fig 26: Step input response and step disturbance response of ℋ∞ controller for test plant 4. 

 

4.3 Results from PID tuner  

The input to the PID tuner code is the plant, its sampling rate and the 

requested closed-loop bandwidth. If the plant is not discretized beforehand, the code 

can discretize it if a suitable discretization method is specified. The tuner then 

performs the optimization to spur out the PID controller transfer function and the 

values of the parameters KP, KI and KD. The same plants used in section 4.2 are 

tested here. 
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PID zeros at: 

  -0.999989349179974 

   0.984578057212416 

PID Parameters  : Kp = 4.6125, Ki = 7.167, Kd = -0.022878 

Optimization Results 

Closed loop Bandwidth requested 7.3078 rad/s 

Closed Loop Bandwidth achieved 6.5828 rad/s 

Optimization took 285 iterations. 

Approximation error  0.090869 

Step Response Characteristics   

Rise Time 0.28 Sec 

Settling Time       1.9 Sec 

Overshoot 17.0546% 

Undershoot 0 % 

Peak 1.1705 

Time to Peak 0.76 Sec 

Table 8: Optimization results and step response characteristics of Plant 1 for PID 

controller. 

 

Fig 27: Magnitude plot for ℋ∞ and PID loop-shape and Bode plot of ℋ∞ and PID 

controller for test plant 1. 
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Fig 28: Complementary sensitivity and sensitivity plot of PID controller for test plant 1. 

 

Fig 29: Step input response and step disturbance response of PID controller for test plant 

1. 

 

b) Continuous time Plant 2: 

P(s) 
 

   
 

Discretized using ZOH 

P(z) 
        

(      )
 

The open loop plant bandwidth is 0.9998 rad/s. The results below are what we 

obtained for a bandwidth 5 times that value.  
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  -0.999166221726185 

   0.983993523940431 

PID Parameters  : Kp = 2.7967, Ki = 4.5127, Kd = -0.013865 

Optimization Results 

Closed loop Bandwidth requested 4.999 rad/s 

Closed Loop Bandwidth achieved 3.5578 rad/s 

Optimization took 282 iterations. 

Approximation error  0.073511 

Step Response Characteristics   

Rise Time 0.55 Sec 

Settling Time       2.2 Sec 

Overshoot 5.0315% 

Undershoot 0 % 

Peak 1.0503 

Time to Peak 1.31 Sec 

Table 9: Optimization results and step response characteristics of Plant 2 for PID 

controller. 

 

Fig 30: Magnitude plot for ℋ∞ and PID loop-shape and Bode plot of ℋ∞ and PID 

controller for test plant 2. 
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Fig 31: Complementary sensitivity and sensitivity plot for PID controller for test plant 2. 

 

Fig 32: Step input response and step disturbance response of PID controller for test plant 

2. 

 

c) Continuous time Plant 3, taken from [5]: 
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The results below are what we obtained for a bandwidth of 1 rad/s.  

PID zeros at: 

   0.997305061617537 

   0.823274700016398 

PID Parameters  : Kp = 0.83727, Ki = 0.22284, Kd = 0.038417 

Optimization Results 

Closed loop Bandwidth requested 1 rad/s 

Closed Loop Bandwidth achieved 1.4423 rad/s 

Optimization took 361 iterations. 

Approximation error  0.21843 

Step Response Characteristics   

Rise Time 18.17 Sec 

Settling Time       33.32 Sec 

Overshoot 0 % 

Undershoot 33.1193% 

Peak 0.99954 

Time to Peak 72.79 Sec 

Table 10: Optimization results and step response characteristics of Plant 3a for PID 

controller. 

 

Fig 33: Magnitude plot for ℋ∞ and PID loop-shape and Bode plot of ℋ∞ and PID 

controller for test plant 3a. 
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Fig 34: Complementary sensitivity and sensitivity plot for PID controller for test plant 3a. 

 

Fig 35: Step input response and step disturbance response of PID controller for test plant 

3a. 

Now, let us look at the results for a= 5. 
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The results below are what we obtained for a bandwidth of 1 rad/s.  
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   0.840016852744668 

PID Parameters  : Kp = 0.16555, Ki = 0.065679, Kd = 0.008477 

Optimization Results 

Closed loop Bandwidth requested 1 rad/s 

Closed Loop Bandwidth achieved 0.42776 rad/s 

Optimization took 361 iterations. 

Approximation error  0.046608 

Step Response Characteristics   

Rise Time 6.45 Sec 

Settling Time       13.8 Sec 

Overshoot 0 % 

Undershoot 1.4997% 

Peak 0.99968 

Time to Peak 30.99 Sec 

Table 11: Optimization results and step response characteristics of Plant 3 for PID 

controller. 

 

Fig 36: Magnitude plot for ℋ∞ and PID loop-shape and Bode plot of ℋ∞ and PID 

controller for test plant 3b. 
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Fig 37: Complementary sensitivity and sensitivity plot for PID controller for test plant 3b. 

 

Fig 38: Step input response and step disturbance response of PID controller for test plant 

3b. 
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The results below are what we obtained for a bandwidth of 1 rad/s  
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   0.989587138716866 

PID Parameters  : Kp = 0.71025, Ki = 0.74345, Kd = -0.0035322 

Optimization Results 

Closed loop Bandwidth requested 1 rad/s 

Closed Loop Bandwidth achieved 0.3327 rad/s 

Optimization took 345 iterations. 

Approximation error  0.053938 

Step Response Characteristics   

Rise Time 7 Sec 

Settling Time       13.57 Sec 

Overshoot 0 % 

Undershoot 0 % 

Peak 0.99997 

Time to Peak 39.79 Sec 

Table 12: Optimization results and step response characteristics of Plant 4 for PID 

controller. 

 

Fig 39: Magnitude plot for ℋ∞ and PID loop-shape and Bode plot of ℋ∞ and PID 

controller for test plant 4. 
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Fig 40: Complementary sensitivity and sensitivity plot of PID controller for test plant 4. 

 

Fig 41: Step input response and step disturbance response of PID controller for test plant 

4. 
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The test plant chosen for this is 

P(s) 
 

(   ) 
 

Discretized by a sampling rate of 0.01 S/sec to 

P(z) 
            (       ) (        )

(      ) 
 

The table below summarizes the behavior of the four loops. It must be 

noted, that our key goal was to make sure that closed-loop bandwidth for all tuners 

were comparably close. 

 

Property Discrete ℋ∞ Discretized 

ℋ∞ 
Cont. ℋ∞ Cont. LQR. 

RiseTime 0.98  0.98 0.99 0.96 

SettlingTime 5.58 5.50 5.51 6.14 

Overshoot 24.38 23.08 22.94 10.55 

Undershoot 0.00  0.00 0.00 0.00 

Peak 1.24 1.23 1.23 1.11 

PeakTime 2.27    2.26 2.30 2.18 

BW achieved 2.0714    2.0813 2.0763 2.2135 

Approx. error 0.17213 0.13382 0.13394 0.26368 

Table 13: Step response characteristics of test plant using the four tuning methods. 

Another comparison we are interested in looking at is the effect of slower 

sampling rates on the two discrete PID tuners. Our design, and the method of 

converting the continuous PID tuned from an ℋ∞ loop-shape into discrete-time. It 

is our inference that high sampling rates will not adversely affect our design as it will 

the other method.  
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Fig 42: Step input response using four methods of tuning. 

 

Fig 43: Step disturbance response using four methods of tuning.  
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CHAPTER 5 

CONLUSIONS AND FUTURE WORK 

5.1 Concluding remarks  

In this work we have developed a method for PID controller tuning in 

discrete-time. An ℋ∞ controller is first designed for a given plant then the open-loop 

loop-shape is optimized against a PID controller structure via an LMI minimization 

algorithm to obtain the PID parameters.  

Comparing results from the ℋ∞ solver and the PID tuner we see that the 

PID can work well within suitable ranges. The low approximation errors and step 

response plots tell us how well the PIDs perform. In some cases we have seen that 

the optimization may fail for certain specified closed-loop bandwidths. It is 

important to point out at this point that all the results shown in chapter 4 are based 

on default values for the pole and zero location of the filter. The user can choose to 

modify those locations if the default value does not work for the required 

bandwidth. This should, in most circumstances, produce acceptable results. If the 

plant is too complicated, then a PID controller may not be a suitable form of 

controller for the plant after-all that is where PID limitations show up due to their 

simple structure. 

We have also shown that our method works comparably well in comparison 

to continuous ℋ∞ tuning and a method of discretizing the tuned ℋ∞ controller. 

There are some improvements to be done to the work and those are discussed in the 

next section. 
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5.1 Future Work  

There are many improvements that can be added to this design of ours. The 

first thing to do may be to incorporate an automatic mechanism in which the tuner 

will find out a range of suitable closed loop bandwidths from which the user can pick 

one; instead of the user having to guess it themselves. This will make things easier 

for operators in charge of machinery. Another added functionality to work on can be 

the ability of the tuner to choose the range of frequency to run the optimization 

around; this will enable the code to further minimize approximation error. Then, we 

may try to find a better way of choosing the pole and zero locations for the filter so 

that we have better loop-shapes. Ones that can be approximated by PIDs and have 

good rise-time, overshoot and bandwidth properties; essentially reducing the trade-

offs in those three system performance parameters.  

Also, some form of controller order reduction may be incorporated to the 

ℋ∞ solver. During our work, we have seen that there are test cases where the 

optimization fails for low bandwidths. This needs to be solved by delving deeper 

into the LMI algorithm so as to make the tuner more generic.  

Another important step to be incorporated is an added layer of iteration for 

the ℋ∞ solver. Right now, the solver tries to approximate the desired closed-loop 

bandwidth based on the open-loop shape of the augmented plant; but, what we get 

as closed-loop bandwidth, although close, is not exactly the number we ask for. This 

error in turn translates to the PID tuner and the tuner adds some more error to it. 

So, some iteration may be added to ensure that the controller gives us exactly the 

closed-loop bandwidth we want. Last of all, the ℋ∞ solver used in this work was 
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based on a right-coprime factorization of the plant; we may try to use a left-coprime 

factorization since that is what yields from system identification type experiments. 
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