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ABSTRACT 

 

The focus of this research is to investigate methods for material substitution for 

the purpose of re-engineering legacy systems that involves incomplete 

information about form, fit and function of replacement parts. The primary motive 

is to extract as much useful information about a failed legacy part as possible and 

use fuzzy logic rules for identifying the unknown parameter values. Machine 

elements can fail by any number of failure modes but the most probable failure 

modes based on the service condition are considered critical failure modes. Three 

main parameters are of key interest in identifying the critical failure mode of the 

part. Critical failure modes are then directly mapped to material properties. Target 

material property values are calculated from material property values obtained 

from the originally used material and from the design goals. The material 

database is searched for new candidate materials that satisfy the goals and 

constraints in manufacturing and raw stock availability. Uncertainty in the 

extracted data is modeled using fuzzy logic. Fuzzy member functions model the 

imprecise nature of data in each available parameter and rule sets characterize the 

imprecise dependencies between the parameters and makes decisions in 

identifying the unknown parameter value based on the incompleteness. A final 

confidence level for each material in a pool of candidate material is a direct 

indication of uncertainty. All the candidates satisfy the goals and constraints to 

varying degrees and the final selection is left to the designer‟s discretion. The 

process is automated by software that inputs incomplete data; uses fuzzy logic to 
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extract more information and queries the material database with a constrained 

search for finding candidate alternatives. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background: 

 The engineering design process is one of the widely researched areas in 

the design world. The success or failure of a design ultimately decides the 

product‟s reach in the market. Emphasis is on every single stage of the design 

process from gathering customer requirements, understanding and translating the 

customer requirements to functional requirements, conceptual design, 

embodiment design, detailed design and planning for manufacturing. There is no 

definite timeline for each of these processes and in fact some of these processes 

are concurrent and some overlap. Particularly for a novel design all the processes 

are repeated several times over until sufficient number of feasible solutions is 

obtained. Of all the feasible solutions, those that perform best at a reasonable cost 

are chosen for production.  Hence decisions made in each of these phases and 

indeed in each cycle are crucial. One such critical decision is that of material 

selection during the embodiment design stage. It determines the safe life of the 

product in terms of structural integrity; plays a huge role in downstream 

manufacturing decisions, affects functionality, recyclability, weight of the 

component and all other stages of the lifecycle process. Clearly design, 

manufacturing and material selection are all interdependent and decisions made in 

one stage affects the other two.  
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Original Equipment Manufacturers (OEMs) around the world own and 

operate millions of electro-mechanical components that were designed many 

years ago. Some components last longer than expected, and those that fail, are 

repaired to bring them back to full service or for a certain pre-determined life 

rather than replacing the whole part. This situation is particularly evident in 

military equipment and commercial aircraft industry. Replacement parts for these 

systems are not readily available and even if they are available, the cost of change 

and duration of change is an expensive process. Owing to excessive cost of 

replacements, such equipment continues to be used for several decades to come, 

well beyond their intended design life. The problem is even bigger if the OEM 

manufacturer is no longer around to manufacture the spare components or has 

stopped providing service for these components. Legacy System Engineering 

(LSE) stems from such critical issues – A holistic plan that determines optimal 

strategies for prolonging the life of such products. Legacy system engineering 

generally involves deduction of design functions/performance, determining 

product interfacing constraints, extracting part geometry, identifying opportunities 

for technical upgrade and formulating a best strategy for re-manufacturing.  

1.2. Legacy System Engineering: 

Some of the tasks involved in Legacy System Engineering (LSE) are 

similar in some aspects to conventional product design process including novel 

product design and processes to improve an existing product. Both for instance, 

involve complete understanding of design intent – functions, performance 
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requirements, constraints etc… but they differ in other aspects. Some of those 

major factors are addressed here: 

1. LSE is heavily constrained: the part being re-designed or re-manufactured 

must seamlessly fit into a larger existing system whose life it needs to 

prolong. This may impose geometric constraints (must fit inside a certain 

envelope, must interface with other components at certain locations, etc.), 

structural constraints (must carry a certain load, torque), and functional 

constraints (e.g., must develop a certain pressure, operate in a certain 

way). This is the predominant difference that separates LSE from new 

product design in that, all the interfacing components of the system may 

have not been produced already. This allows for some tradeoff decisions 

that help in solving the constraints and achieving a better overall design. A 

general observation is that freedom for innovative product solutions in 

novel product design is high compared to LSE where it is considerably 

less. 

2. LSE requires small production volumes: Spare parts may be needed in 

small quantities, sometimes even one part. The part originally designed is 

best suited for mass production but the same part when re-designed 

through LSE techniques might not be economical for low production 

volumes. Thus manufacturing processes and planning for manufacturing 

plays a pivotal role in justifying the cost benefits of LSE. 
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3. Short delivery time: As mentioned earlier LSE is critical for OEMs 

producing spare parts for Military equipment and Aircraft industry where 

the failure of a critical component could hinder safe functioning of the 

whole equipment. The replacement parts are needed in a very short time 

particularly in combat situations that are far from supply centers. Thus 

delivery times are usually very short compared to novel product designs. 

4. Limited manufacturing resources: In order to handle the above mentioned 

constraints 2 & 3, concepts such as Army Mobile Part Hospitals (AMPH) 

are proposed to produce the replacement components on site, in limited 

number, in considerably short time. If it is desired to produce the 

replacement parts in the field using facilities such as the AMPH, the 

manufacturing equipment may be limited, both in variety and size. For 

instance, a field facility may only have a machine shop and some 

welding/cutting capability; it may not be able to produce a die-casting, 

forging or injection molding component given a very short delivery time 

and limited resources.  

From all these constraints, we determine that: 

 LSE process must be heavily automated in order to minimize the cost in small 

batch production and maximize the benefits. 

 Part geometry may need to be modified to reduce cost and allow production in 

existing machines 
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 Material changes/upgrades or design changes may be done to improve the 

design. Thus consequences of design changes need to be verified with 

simulation tools such as FEA for structural integrity and knowledge based 

systems to check if material selection decisions still satisfy the design 

constraints and performs equally well or better for the specified design 

objectives.  

 Manufacturing resources available in the field, service center or vendor 

facility must be taken into account. Special tooling such as dies, molds, 

fixtures should be avoided, because small batch manufacturing cannot sustain 

the cost and the lead times are substantially large. 

In light of these observations a new holistic LSE system is conceived that consists 

of three major phases: 

1. Data Extraction phase - Geometry extraction and material data from physical 

parts or legacy drawings. Also structural requirements and design functions 

are extracted that are used in downstream product re-design activities. 

2. Rapid Re-engineering phase - Evaluating the legacy design and re-engineering 

to determine specifications of replacement parts. DfM, Cost analysis, 

structural analysis and simulation of redesigned part or constraint based 

system analysis. 

3. Rapid Re-Manufacturing phase – Automated manufacturing planning and On-

site machining and fabrication. 
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The focus of this research is to investigate and implement material 

substitution in a manner that is seamless and useful for the purpose of re-

engineering legacy systems that concerns phases 1, 2 and 3.  

Material substitution as part of the holistic LSE is particularly done to 

legacy parts for any one of the following reasons: 

 Lack of availability of the existing material – the material is short in supply, 

material extraction from its natural state is too expensive, existing material is 

hazardous to work with or the lack of suppliers for the material. 

 Availability of new, better and cheaper material – A stronger, lighter, cheaper 

or easy to manufacture replacement that is abundant 

 Improved manufacturing process and tools – Faster machines and tooling that 

can work well with a different material and that can be used in mass 

production but is hard to machine the existing material. 

 Cost of reproducing a single part that was previously mass produced is too 

expensive. 

For instance, in a design of an appliance motor from General Electric, aluminum 

alloys were substituted for grey cast iron because the strength and corrosion 

resistance of aluminum alloys better met the requirements for the usage of the 

motor [1]. Because of increasing cost and decreasing availability of grey cast iron, 

designers at General Electric chose to use a better material that still fulfilled the 
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Figure 1: Interrelations of design, materials, and processing to produce a 

product.  

 

function for which it was designed. For this reason material selection and material 

substitution is a critical step in the embodiment stage of the design process. 

1.3. Material Selection/Substitution in Engineering Design: 

Material and manufacturing process that convert materials into useful 

parts dominate all of the engineering design process as is evident from all of the 

above discussions. There are over 100,000 engineering materials to choose from 

and new materials; extraction/production methods are continuously researched all 

over the world. However a design engineer typically works with only 30 to 60 

different materials, depending on the range of application [2]. These groups of 

materials are typically used for component designs existing for a long time and 

particularly if the component is an artifact, the materials are sometimes even 

considered a standard. Emphasis on product quality and cost aspects of 

manufacturing in the present-day product design, has underlined the fact that 



8 

 

design, materials and manufacturing are closely related in determining the 

performance of the final product as shown in Fig 1.  

Also the increased use of automation in industries means that 60% of the 

final product cost is attributed to material costs [2]. Essentially all the engineering 

materials available fall into six broad classes that are commonly recognized: 

ferrous and non-ferrous metals, thermoplastic and thermosetting polymers, 

elastomers, ceramics, glasses and composites. Table 1 below shows the classes of 

different materials with some examples and some common mechanical 

applications. The range of materials available to the user is much broader than 

ever before. There is thus an opportunity for innovation in design for new 

products and legacy products alike for utilizing these materials to provide greater 

performance at lower cost. A rational material selection is thus inevitable for 

reaping the above said benefits. 
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Table 1: Classes of engineering materials, examples and industrial 

applications (see Ref [2]) 

 

Material  

Classes 
Example Important Applications 

Metal &  

Metal 

Alloys 

cast iron, carbon steels, 
alloy steels, nickel, 

titanium, aluminum, 

magnesium, copper, 

various alloys of these 
base metals with other 

elements 

Structures and building materials, 

reinforcement for concrete, railway, 

surface transport such as automobiles, 
materials handling and processing 

plants, mining, power generation 

plants, ships and aircrafts etc. 

Plastics 

Polyethylene, 
polytetrafluoroether, 

polystyrene, 

polypropylene, Nylon, 

polycarbonate, 
polyvinyl chloride, 

epoxy, phenolic, 

polyester, neoprene, etc. 

Beverage bottles, chairs, automobiles 
interior, dashboard and body panels, 

bumpers, sport equipment, carpets and 

flooring, aircraft fuselage and 

interiors, electronic printed circuit 
board and housings of electronics, 

high strength fibres, automobile tires 

and medical equipment. 

Ceramics 

Alumina, concrete, 
diamond, glass, silicon 

carbide, silicon nitride, 

zirconia etc. 

Reinforcement particles for metal and 

polymer based composites, human 

joint prosthetics, cutting tools for 

metals, knives, building materials, 
thermal barrier coatings, refractories, 

magnetic hard disk substrate and 

automobile brakes. 

Composites 

Metal-based metal 

matrix composites, fiber 

reinforced plastics; 
ceramic composites 

Aircraft fuselage and interior parts, 

body and vehicle armors, sports 

equipment, building materials, cutting 
tools etc. 

Natural 

materials 

Wood, leather, silk, 

wool, cotton, bone, 
natural rubber 

Building materials, house-hold 

furniture, shoes, tires. 
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There are four main criteria for material selection: 

1. Performance characteristics (mechanical properties) – finding materials that 

have the mechanical properties matching the requirements and constraints 

posed by the design problem 

2. Processing (manufacturing) characteristics – finding the appropriate material 

that can be manufactured in the existing setup or finding the process that will 

form the material into required shape with minimal wastage and reduced cost. 

3. Environmental profile – finding a material that has least impact on the 

environment throughout its lifecycle and meeting government regulations. 

4. Business considerations – finding a cheaper alternative. Costs include the 

purchase cost of the material, manufacturing cost, part replacement cost and 

the cost of disposing the material at the end of its lifecycle. 

 Based on this criterion the general material selection process involves: 

1. Analyzing the material requirements: Determining the material property 

values based on service and environmental conditions. 

2. Screening for candidate materials: Filtering the appropriate materials from a 

material database that meet the requirements criterion.  

3. Tradespace studies: From a pool of candidate materials finding the appropriate 

material that best satisfies the cost, manufacturability and availability 

constraints for the particular application. 
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4. Experimental verification: Checking for the performance of the 

selected material tested under specific conditions to be expected during 

service through the use of simulations or prototypes.  

It can be deduced that material selection is a goal driven process as shown in Fig 

2. Functions, constraints and objectives of the component are identified before the 

initial screening for candidate materials. Understanding the functions, constraints 

and objectives helps us identify certain material properties for the material 

selection of component. The properties of engineering materials span over a range 

of values. One of the ways of visualizing this is a bar chart for each of these 

 

Figure 2: Generic Material Selection Process (Ref [1]) 
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material properties as shown in the Fig 3. This way of representing material 

properties as bar charts is not very useful for comparison studies. An alternative 

approach is plotting the properties as Ashby charts [3-4]. Ashby charts are 

traditionally used in the screening and tradespace study of materials as shown in 

Fig 4. In this instance, one property is plotted against another on logarithmic 

scales. Families of materials cluster together on the chart known as property 

envelopes. 

If there is a material selection objective, such as finding lighter materials 

of higher strength, then constant lines can be drawn across the charts at specific 

slope values. In this instance if the objective is to increase strength and reduce 

 

Figure 3: A Bar chart showing thermal conductivity for families of solid. Each bar 

represents the range of thermal conductivity offered by a material [see ref 3-4] 
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weight then a material performance index, M* can be defined such that  

M*=
 f

 
 

Taking log on both sides, the equation reduces to                  which 

is a straight line in Fig 4. This equation can be further generalized by having 

relevant material properties, α and β for different n values –  

M*=
β
n

α
=  

It is clear that the above expression is useful in comparing material selection 

 

Figure 4: Ashby chart: Strength σf, is plotted against Density ρ, on log scales [see 

ref 3-4] 

  

 

 

A 
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decisions based on two parameters (α, β) at a time. Material selection indices can 

be used for, 

 Identification of the material properties relevant to performance. 

 Determining relative importance of these material properties 

 Performance comparison of specific materials 

When three or more material properties need to be taken into consideration, as is 

the case in legacy systems, use of Ashby charts becomes very limited.  

Material database resources such as MatWeb [7] are useful in only 

providing material property values and a library of widely used engineering 

materials. It should be noted that all the material property values are not made 

available. Some specific material properties such as creep rate data, or fracture 

data are not available at all. The cost of conducting cumbersome experiments to 

obtain these material properties is very high. Also material properties of some of 

the materials are closely guarded. Hence tests need to be conducted for obtaining 

some application specific material properties.  

DFM based tools such as PSES [8] and MAMPS [9] are developed to 

perform material and manufacturing selection in preliminary stages of a design 

characterized by imprecise and uncertain requirements, parameters and 

relationships. PSES extends the parametric set matching of high level 

manufacturability analysis to the fuzzy-logic set matching and MAMPS uses 

intervals rather than fixed values for matching. The material selection module of 
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the MAMPS assesses the degree of compatibility of a material alternative and 

requirement of a product profile for eventual material filtering. 

 Meaning Driven Materials Selection (MDMS) is a method which aims to 

encourage designers to systematically involve meaning considerations in their 

materials selection process [10]. Meanings of materials refer to what we think 

about materials, what kind of values we attribute after the initial sensorial input in 

a particular context of use. There are other domain-specific and application-

specific material selections tools used in research but all these tools are loosely 

based on one of the above said techniques: Ashby charts, Material Database or 

DFM rule based techniques. These tools are useful particularly for novel designs 

where functional requirements and constraints are clear, but are not suitable for 

LSE in for reasons mentioned in the following section. 

1.4. Problem Statement: 

When only a few parts in a large legacy system are being re-engineered, 

there are some unique challenges compared to material selection in a new system:  

 Form, fit and function requirements with the legacy system – the new part 

should perform all the basic requirements as the old part if not better 

(Function), should be roughly the same size as the existing part and 

occupy the same overall volume (Form) and should have the same number 

and type of interfaces particularly in an assembly where it interacts with 
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other parts (Fit). All these criterions ensure part replaceability in an 

assembly. 

 Uncertainties about the design intent – Legacy engineered parts are 

generally designed long time back. Information about the design such as 

function, loads carried by the part and environmental conditions that can 

be handled by the part may not be easily extracted. Some information on 

the part might be available or can be extracted and rest of the information 

needs to be deduced using engineering principles and knowledge based 

systems. For example: Tapered round parts can be subjected to bending 

and torsional loads based on form synthesis principles but the actual load 

values may not be available. Hence there is uncertainty involved whenever 

decisions are made on incomplete data.  

 Frequency and the mode of failure from actual service in the field – All 

legacy engineering systems should consider the failure mode and the 

frequency of failure from actual service. The original part might be 

designed for a particular failure mode and for a pre-determined life. 

However the original part could have failed in a different failure mode 

over a prolonged life or it failed in the expected failure mode but much 

earlier than expected or combination of both instances. This information is 

used in re-evaluating the loads, boundary conditions and environmental 

conditions for redesigning the parts or find new materials that match the 

new material property values. 
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The material selections techniques currently used are not multi-attribute as is the 

need for material substitution for legacy engineered parts. Also the 

incompleteness of available data from user and uncertainties associated with it are 

not considered by the existing tools. The objective of this research is to 

investigate and implement software for material substitution that takes into 

account the uncertainties inherent in the system and identifies candidate materials 

that satisfy the functions and constraints of the component design and still 

performs the same if not better in satisfying the goals for material substitution. 
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CHAPTER 2 

MATERIAL SUBSTITUTION IN LEGACY SYSTEM ENGINEERING 

 

Material substitution for parts in legacy systems 25-50 years old, presents 

unique challenges that traditional material selections decisions are not plagued by. 

In the design of new product all the functions, constraints and goals are clearly 

laid out from the customer requirements. Based on the discussions from previous 

chapter, this information however might not be clearly defined in legacy parts. 

Thus one of the tasks involved in redesign of legacy parts is clear understanding 

of design intent. Function, environmental conditions, loads, failure information, 

service life designed for, and material properties are some of the information 

indicative of design intent. Some of this information is available, some can be 

extracted but majority of information needed to make any significant engineering 

decision is not available in a readily usable form. For example: Standard machine 

elements or artifacts have clearly defined functions, but some machine elements 

have application specific functions that may not be easy to understand without 

domain expertise. Similarly parts can be analyzed for the type of loads that it can 

withstand but the actual load value, location and direction information is hard to 

obtain.  The available data may come from several sources including OEMs 

themselves that originally manufactured the part. Not all these sources of 

information or extraction methods are same. Some data sources such as OEM 

provided information are more reliable compared to information from visual 
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inspection. This is a problem inherent of any re-engineering system. Each legacy 

system is thus analyzed for the following information before material substitution 

 Important criteria used in material substitution 

 Available data from legacy system 

 Data extraction techniques and degree of confidence 

Each of this information is discussed in the following sections. 

2.1. Important criteria for material substitution: 

Material selection is generally done in the embodiment stage of the design 

where more information is available on the design intent of the part. Not all 

information is used in material selection, and some information is critical 

compared to others [11]. Typically a design engineer bases his decision on the 

following criteria 

1. Predicted failure mode of the part; Hours of operation to failure 

2. Part function 

3. Material strength values. 

All of these parameters are used to determine the safe life of the product for 

operation. Material substitution decisions are also similar in that all the above 

mentioned information is required in some form or the other for legacy parts.  The 

criticality of each of this information is analyzed below. 
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 Failure Mode data: Mechanical equipment generally does not enjoy 

infinite life; they are bound to fail eventually. Material failure is defined as any 

change in shape, size or material properties of a structure, machine or machine 

part that renders it incapable of performing its intended function [12]. The failure 

when it occurs can lead to unpredictable repercussions and sometimes may even 

be catastrophic. In order to avoid unpredictable failure, it is imperative to 

understand the mechanics of failure, the service conditions causing the failure and 

the extent of damage. Hence failure mode plays a significant role in all material 

selection\substitution decisions.  

The design engineer always designs components for a specific life 

expectancy. The Life expectancy of a part is a characteristic of the strength of the 

material used. One of the goals of material selection is to maximize this life 

expectancy of the part based on the service conditions and the modes of material 

failure that it can undergo. Traditional failure theories are in terms of loads 

(stresses) and environment conditions exceeding certain material properties. 

Material properties are quantifiable measures of the strength of the material to 

withstand a particular failure mode. In fact material properties can also be used to 

compare different material strengths for different service conditions. Based on the 

failure theories it is possible therefore to directly relate material properties and 

failure modes as shown in the Table 2.  Some of the generally recognized failure 

modes are Brittle fracture, Yielding, Elastic deformation, High cycle fatigue, 

Wear, Corrosion, Creep and 23 other failure modes that are listed in [12-13]. 
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 Part function or Machine Element: Another important observation from 

LSE is that machine elements are generally in combined state of loading (i.e. 

different types of loads acting in the same instance). Very rarely do machine 

elements fail in only one particular failure mode. Failed parts generally provide 

Table 2: Critical failure modes vs. Material properties (see Ref [13]) 
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Buckling             

Creep             

Brittle Fracture             

Low cycle Fatigue             

High cycle Fatigue             

Fretting             

Corrosion             

Wear             

Thermal Fatigue             

Stress - corrosion 

cracking 
            

Hydrogen embrittlement             
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evidence of several possible failure modes but critically one failure mode triggers 

a sequence of other failure modes. Even a single load case in different 

environments can produce different failure modes. Parts can thus fail by one or 

more failure modes, but the most probable failure modes based on the service 

conditions of the part is considered as critical failure modes.  Even if the objective 

for material selection is to increase the strength of the part to withstand a 

particular mode of failure, care is taken to consider all other failure modes and 

ensure that its material strength is high enough to withstand other identified 

failure modes.  

Parts that are classified as a particular machine element type share some 

common part function apart from application specific part functions. Since parts 

with common functions undergo similar loading conditions, they also share 

common failure modes. The critical load for failure may however vary from 

application to application and this is addressed by different materials for different 

applications. Failure modes are thus typical of the machine element type and its 

function. For this reason a list of potential failure modes of the part is considered 

based on the part classification as a machine element type. For the purpose of this 

research machine element type is treated as an indicator of part function. Hence it 

is possible to create a table of machine elements with commonly experienced 

loading conditions, environment conditions, failure modes and the manufacturing 

processes involved in production of the part as shown in Table 3 (a) & (b). 
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Table 3: (a) machine element attributes; functional, operational, and behavioral;  

MACHINE 

ELEMENT 

LOAD 

CONDN 

STRESS 

CONDN 

ENV 

CONDN 

CONTACT 

CONDN 

FAILURE 

MODE 

Shafts 

Fluctuating 

Torque; 
Fluctuating 

Moment; 

Axial 
forces 

when 

either 

helical or 
worm gear 

is mounted 

on (or) if 
the shaft is 

vertical 

Transvers
e Shear 

Stress; 

Cyclic 

Bending 
Stress 

Corrosive 
environme

nt (with 

lubricants 
 involved 

and in 

marine 

application
s) 

Sliding 

contact with 

Journal 

Bearings 

Primary: 

Fatigue, 

Wear 

Secondary: 

Force 
induced 

Elastic 

Deformation 

Plain 

Bearings 

Journal 

bearings - 
generally 

radial loads 

Cyclic 

Hertzian 
contact 

Stress 

Oxidation 
of lubricant 

and acid 

formation, 
Friction 

generated 

heating, 

oxidized 
wear 

particles, 

foreign 
dust 

particles 

Sliding 

(frictional) 

contact with 

Journal 
Bearings 

Primary: 

Corrosion, 

Abrasive 

Wear, 
Surface-

fatigue Wear, 

Corrosive 
wear. 

Secondary: 
Yielding, 

Creep, 

Galling and 

Seizure, 
Adhesive 

Wear, 

fretting wear, 
fatigue wear. 
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Material property values: From the discussions above, it can be concluded 

that material properties are indicative of the strength of the material and that 

traditional failure theories relate these material property values to the service 

conditions (loads and environment).  Even though material selection and material 

 (b) Machine element attributes; common material, manufacturing process, and raw 

stock 

MACHINE_

ELEMENT 
COMMON_MATERIAL MFG_PROCESS RAW_STOCK 

Shafts 

Steel (ANSI 1020 -

1050);Bronze or Stainless 

steel (corrosive 

environment);Case hardened 

steel (when used as journal or 

sleeve in bearings) 

A steel strip is rolled 

into a tube, and is 

drawn over a 

mandrel (Cold 

Drawing). 

Machining and Heat 

Treatment (if 

necessary) 

Sheet Stock 

Plain 

Bearings 

Bronze bearing alloys 

(leaded, tin and aluminum 

bronze and beryllium 

copper), Babbitt metal, 

sintered porous metals, self-

lubricating non-metallic 

materials (Teflon, nylon, 

acetal, phenolic or 

polycarbonate). Silver is 

occasionally used. Elastomers 

for water-immersed 

applications 

Machining (boring) Bar Stocks 

Spur Gears 

Cast Iron and Steels for non-

corrosive environments; 

Bronze and Nonmetallic 

(Plastic Gears) for corrosive 

environments 

Casting, Forming, 

Sintering and 

Machining Process 

(Hobbing, Shaping, 

Milling and 

Broaching). 

Bar Stocks 
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substitution are similar in that they use the same type of information for decision 

making, one of the differences is in the source of information. When the material 

is selected during the embodiment stage of the design, service information (loads 

and environment conditions) is well understood. However for legacy parts the 

actual load values (magnitude, location and direction) and service environment is 

not easy to obtain or may not be available. Thus material and material property 

values are used instead as proxy for the actual load values. Also if critical failure 

modes are important to understand the loading conditions of the legacy parts, the 

material that was originally used in the component is indicative of the intended 

life expectancy of the part in service. With the original material of the part we can 

obtain the key material property values for that material from a material database.  

These properties will be the basis for further computation and choices of new 

material will be based on the newly computed properties. Even though material 

with higher strengths for a particular failure mode are of keen interest, the 

material property values associated with other possible failure modes for that 

machine element implicitly act as constraints in finding new candidate materials.  

However not all of these three parameters are readily available in legacy system 

for any decision making. Information from existing data needs to be extracted in 

order to obtain the important parameters. The parameters that are readily available 

for material substitution and their sources of information are discussed in the 

following section. 
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2.2. Available parameters for material substitution: 

Lack of usable information is characteristic of legacy engineered systems. 

Re-engineering legacy components is as challenging as engineering a new system. 

In order to develop any new automated re-engineering systems it is important to 

understand available information in legacy systems that can be used. Clearly 

material substitution is one such re-engineering system that requires 

understanding of parameters that are available and that can be used in the process 

based on the parameters that are actually needed. 

Failure Mode data: If a legacy part failure cannot be categorized into one 

of the generally recognized failure modes, then failure descriptors assist in 

identifying a particular failure mode. Failure modes can be described by three 

parameters in particular [12]: 

1. Manifestation of failure 

2. Failure inducing agents 

3. Location of failure. 

Each specific failure mode is then identified as a combination of one or more 

manifestations of failure together with one or more failure inducing agents and a 

failure location. The four manifestations of failure are: 

 Elastic deformation 

 Plastic deformation 

 Rupture or fracture 
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 Material change (Metallurgical,  hemical etc…) 

The failure inducing agents are: 

 Force (steady, transient, cyclic or random) 

 Temperature (low, room, elevated) 

 Temperature change (steady, cyclic, random and transient) 

 Time (very short, short and long) 

 Reactive environment (chemical and nuclear) 

The two failure locations are: 

 Body type  

 Surface type 

Visual inspection of the failed part can identify if the failure occurred on the 

surface or over a cross-section and also clues to identify the manifestation of 

failure. It is also easy to identify any ruptures or fractures with the help of 

laboratory tests such as NDT or microscopic inspection. Information on failure 

inducing agents is obtained from field service data or from the experiential 

knowledge of the system by the design engineers. The failure inducing agents are 

expressed in terms relative to the environment. 

 Machine element type: When legacy parts cannot be categorized into one 

of the machine element types then generalized part function data is used in 

identifying them. Every machine or piece of mechanical equipment has some 
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function to perform. The functions of mechanical equipment can be generalized 

and categorized by observing that each function consists of some action (e.g. 

Amplify, Transfer, Transform) and an object (e.g. Mass, Energy, Motion) upon 

which the action is performed. However the machine element to part function is a 

(1: n) relationship i.e. one machine element can have several part functions and 

thus it is not possible to uniquely identify a machine element based on its part 

function alone. Since most of the machine elements work in an assembly of other 

machine elements, additional information such as mating machine element and 

overall shape of the part can be used. Overall shape is the predominant feature of 

the part. Information about part function and mating machine element is entirely 

based on experiential and domain knowledge of the designer in the legacy system. 

 Material property values: Material data for the part may come from visual 

inspection or from material testing by chemical, spectral or ultrasonic techniques. 

At this point the material by which the part is made of is either exactly known, for 

e.g. 1020 cold rolled steel, or class of the material can be identified such as carbon 

steel. If the exact material is not known, but it can be classified into a family of 

material, then a range of average values for material properties can be used. If 

neither the material class nor the exact material is known, then based on the 

failure mode and the dominant load of the part, load estimates are made to 

identify the critical material property values of the existing part. 

The available data from legacy systems as is seen from above is not 

readily usable. The data that can actually be used needs to be extracted from the 
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available data using domain expertise and knowledge based systems. The data 

that can be extracted and techniques that are used in extraction are discussed in 

the following section. 

2.3. Data extraction techniques in material substitution: 

Failure Mode data: Crucial information used in identifying the failure 

modes of the part can be extracted from hours of operation before failure and 

from failure manifestations. Based on a technical study of an aeronautical parts 

overhaul company [14], it is understood that not all 23 failure modes listed in [12] 

are of critical interest with regards to legacy parts. Legacy parts predominantly 

fail by Wear and Corrosion. Even though the reliability curve in Fig 5 shown 

below is used for purposes beyond the scope of this research, the idea can be used 

in classifying the failure modes. Accordingly the three sections of the curve are 

the three classifications of the failure modes:  

 

 

Figure 5: Reliability curve of machine elements [see Ref 15]  
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 Instant failure during installation or accidental operation of the part 

 Brittle fracture 

 Yielding 

 Elastic deformation 

 Buckling 

 Worn out part 

 Wear 

 Corrosion 

 Creep 

 Fracture after prolonged service 

 High cycle-fatigue 

This classification based on hours of operation before failure can provide a good 

idea of how the part failed. If the part failed after long service the critical failure 

modes considered are Wear, Corrosion and Creep and if the service temperature is 

greater than 0.3 to 0.4 times the materials melting point (for metals) then creep is 

the dominant failure mode. If however the part is operated within the specified 

design conditions and if it fails after installation then either the estimated loads 

are incorrect or the dominant load is different than the one designed for. If the part 

is operated outside the design conditions then there is no particular reason for 

failure except the installation methods or operation conditions need to be verified. 

Fatigue life is predictable and if the part fails within the expected time it mostly is 

due to dynamic loading. Hence certain failure modes take precedence over others 
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that are critical to legacy parts. Fig 6 shows a flowchart of the failure mode 

filtering based on hours of operation. 

 Part ruptures or fractures occur due to extreme environment conditions 

(For e.g. ductile parts fail by brittle fracture in very low temperatures, or failure 

by elastic deformation at very high temperatures) or due to sudden changes in 

 

Figure 6: Failure Mode filtering based on Hours of Operation 
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loading conditions (For e.g. spalling failure of surfaces due to impact forces). A 

part that does not rupture but has deformed from its original shape has undergone 

some sort of plastic deformation (For e.g. necking is a sign of plastic deformation 

in highly ductile materials under high tensile loads). Structural parts that do not 

undergo any shape change after installation but fail to perform the function 

indicate elastic deformation due to lack of stiffness in the material. Parts under 

extreme environmental conditions undergo material and chemical change. Legacy 

part failure by elastic deformation and material change is particularly rare because 

the part was in use already for a long service life. These failure manifestations 

tend to occur in the early stages after the installation and hence their 

corresponding failure modes must have been taken into account when the part was 

originally designed. Hence some failure manifestations are more important to 

legacy parts than the others based on the service condition. 

 Machine element type: Generalized functions such as Amplify motion, 

Amplify force, Transfer energy,  onstrain motion etc… can be constructed by 

combining a selected action with a selected object. Based on these functions, the 

application of the parts can be either structural or in power transmission. Power 

transmission parts are predominantly revolved parts (round) that are designed to 

withstand torsional loads. Hence overall shape is indicative of the machine 

element application. For e.g. if one of the functions of the part is to “Transmit 

Power” and it is a machine-turned part with gears mounted on it then one possible 

machine element is a shaft. 
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 Material property value: In the case where material is exactly known 

material property values can be directly obtained from material database such as 

MatWeb. If the exact material is not known then average values of material 

properties can be obtained from the material class it is classified under. If neither 

the material not the material class is known then the dominant load estimations 

help in making estimation on the properties of the original material. Some of the 

techniques used in load estimation are: 

 Weak link analysis on overall shape for critical sections. Dominant load can 

be determined using form-synthesis techniques and from the boundary 

condition of the part. 

 Load locations are obtained from mating surfaces. Also for power 

transmission components Horse Power (HP) is a useful design variable for 

estimating torsional loads. 

 Application specific rough estimates of loads can be determined for machine 

element components from different ranges. This is an iterative process. 

 Load estimations from strain testing, service data and hours of operation or 

from OEM data. 

From the discussion in this chapter, it can be summarized that three important 

parameters in material substitution for legacy systems are of prime importance but 

only some parameters are available and the critical parameter values need to be 

extracted from available parameters. The available parameters are expressed in 

relative imprecise terms. Thus there is uncertainty whenever data extraction 
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techniques are used. Conventional systems do not consider data extraction 

uncertainty but it can play a major role in crucial decisions. For e.g. in identifying 

the failure modes, failure descriptors such as failure manifestation, failure agents 

and failure locations are used. The combination of these failure descriptors does 

not necessarily identify a failure mode every time.  However if there is a very 

high confidence in one of the failure descriptor data based on the inspection 

method used, it can help in identifying a failure mode, however the confidence in 

the data obtained should affect the downstream decision making process. So 

based on the input confidence in failure descriptors the identified failure mode 

should be handled with care and the final material selection decisions may be 

optimistic or pessimistic based on the criticality of the part in the assembly. The 

lower the uncertainty in extracted data, the higher the confidence on material 

decisions. This data uncertainty can be modeled using several established 

techniques. One such technique – Fuzzy logic is used in this research. The 

importance of fuzzy logic and its implementation in this project is discussed in 

detail in the following chapter. 
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CHAPTER 3 

FUZZY LOGIC IN MATERIAL SUBSTITUTION 

3.1. Background 

Fuzzy logic is one of the standard techniques used popularly to model 

expert knowledge and representation of information extracted from inherently 

imprecise data. Fuzzy member functions are good in modeling linguistic variables 

such as age, weight and height. Fuzzy rule sets model imprecise dependencies 

such as “IF age(x) < 25 THEN risk(x) > 60%” which are rules in a car insurance 

company. Conventional set theory is a collection of crisp sets. A crisp set is a 

collection of distinctly well-defined objects. Classical set theory deals with 

deterministic variables which are either part of the set (0) or not part of it (1). A 

classical set can be expressed by a characteristic function as shown below in Fig 

7. 

Real world variables however lack this crisp boundary definition. 

Engineering problems have variables such as part function, failure mode that has 

mA x    
1   x A
0   x A

           mA x    0,1      xample Middle Age= x a x b  

 

Figure 7: Crisp sets and characteristic function of a crisp set 
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several contributing values and each of these values has their own degree of 

contribution to the variable set. For example a part failure could be described as 

50 % chance of Fatigue, 30 % chance of Brittle fracture and 20% chance that it is 

Fretting. So clearly we cannot completely agree on one single failure mode that 

the part could fail by and any engineering decision based on the failure mode 

should consider all three failure modes. The influence on the final decision 

however is dominated by fatigue failure mode more than other failure modes.  

Legacy engineered parts have design variables commonly expressed in these 

terms because there is no clear distinction. The fuzziness in this type of data can 

be easily modeled using fuzzy member sets as shown Fig 8. 

Probability is different from fuzzy logic in that it describes the likelihood 

of occurrence of a crisp event. Probability assumes that the data obtained is 

precise and works best when there is a large volume of data. Legacy systems lack 

enough information to be modeled using probability and make any conclusive 

decisions based on the data [16]. Several other approaches to handle information 

 
A
 x    0,1      xample A=Middle age is roughly in  a,b  

 

Figure 8: Fuzzy set and fuzzy member functions 

 

 



37 

 

about uncertainty have been proposed. Interval arithmetic allows us to deal and 

compute with tolerances rather than deterministic variables [17]. Numerical 

analysis offers ways to propagate errors along with the normal computation [18]. 

However in this research, Fuzzy logic is chosen over all other methods owing to 

ease of use, ability to model linguistic variables, uncertainty modeling and the low 

computational expense required for implementing in software systems. Fuzzy 

logic is used extensively in industrial automation, power plants, thermostat 

controllers, motor controllers, vehicle controllers, electrical appliances, 

automotive applications (ex: surface adjustable brakes), traffic control and aircraft 

flight path planning. 

3.2. Steps involved in Fuzzy Logic Implementation 

Fuzzy logic generally involves fuzzification of available information, 

combining different fuzzy inputs using fuzzy operations, generating rule sets, 

rules processing and defuzzification.  Each of these steps is analyzed and the 

implementation for the legacy framework is also discussed in the following 

sections. 

3.2.1. Fuzzy member functions 

In example shown above in fig 3.1 the function for middle_age can be 

defined as being in the interval [a, b]. So in order for a person to be qualified as a 

middle age person he needs to be within the limits [a, b] and outside this limit he 

is not qualified as a middle age person. The actual values [a, b] may be [30, 50] 

for a person and [40, 60] for another person. Thus there is no clear definition for 
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middle age limits. To avoid the problem of redefining the function for each 

person, fuzzy member functions as shown in fig 3.2 can be defined. The fuzzy 

member function middle_age is defined as being roughly within the limit [a, b].  

Now the set contains people with ages „a’ and ‘b’ with a linearly decreasing 

degree of membership, i.e. the closer someone‟s age approaches „a’, the closer his 

degree of membership to the set of middle age people approaches one. In contrast 

to classical sets where an element can either belong to a set or lies completely 

outside of this set, fuzzy sets allow also partial memberships.  

In legacy engineered systems we have both deterministic and non-

deterministic variables. Those parameters for which values can be directly 

obtained are deterministic and for those that are obtained from relative imprecise 

definitions of other related parameters are non-deterministic. The deterministic 

variables have values either 0 or 1 such as the critical variables used directly in 

material substitution that are discussed in section 2.1. Non-deterministic variables 

such as the available variables that are used in finding the three critical parameters 

mentioned in section 2.2 have membership functions with values ranging from 0 

to 1. The membership function for each value of the non-deterministic variable is 

based on the user‟s perception of degree of contribution of the value in the set. 

The user‟s perception is expressed in four categories (“Very High”, “High”, 

“Low”, and “Very Low”). One of the example membership functions is shown 

below in fig 9. The X axis corresponds to the input confidence % and the Y axis 

corresponds to the equivalent fuzzy membership value for the input confidence %.  
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The fuzzy membership value for a given confidence input % may be in one or two 

confidence categories. This way of defining fuzzy sets over the domain of a 

variable is often referred to as granulation, in contrast to division of crisp sets 

(quantization) which is used by classical sets. Granulation results in a grouping of 

objects into imprecise clusters or fuzzy granules, with the objects forming a 

granule drawn together by similarity. Thus fuzzy quantization or granulation 

could also be seen as a form of fuzzy data compression. 

3.2.2. Fuzzy operations 

Fuzzy member functions help fuzzify uncertain information of real world 

variables. In engineering problems the real values of these variables are used in 

calculating other variable values with arithmetic or logical operators indicative of 

the physics of the problem. After fuzzification of the real world variables, the 

output of the member function is just a fuzzy number with values ranging from 0 

 

Figure 9: Generic Fuzzy Member Function for Fuzzy Sets in LSE 

 

 

High
High
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to 1. Thus there is a need to extend the arithmetic and logical operations such as 

Boolean operations like conjunction, disjunction and complement to fuzzy 

numbers and sets. In effect we are retrieving a new degree of membership 

resulting from an operation of one or more existing degree of membership. Thus 

an entire family of operators can be defined to derive the resulting member 

function. Lofti Zadeh [19] introduced prominent examples of these operations. 

- conjunction:  
A   

 x  min  
A
(x), 

 
(x)   

- disjunction:   
A   

 x  max  
A
(x), 

 
(x)   

- complement:   
-A

 x  1-  
A
(x)   

The above sets of operations are called as the min/max norm and it represents the 

most optimistic approach. The most pessimistic of operations for the Boolean 

conjunction and disjunction is called the product sum norm as shown below. 

- conjunction:  
A   

 x   
A
 x   

 
 x   

 - disjunction:   
A   

 x  min  
A
 x + 

 
 x ,1   

The Hurwicz criterion [20] is a compromise between the two approaches and is 

defined using the coefficient of realism, α that 0   α   1. The Weighted outcome 

is defined as  

WO= Optimistic-outcome  α+(pessimistic-outcome) (1-α) 
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However the co-efficient α is problem dependent and is the philosophy of the 

decision maker. In this research, since we are concerned with failure mode of 

parts and owing to uncertainty of available information we are inclined to use the 

most pessimistic of approach for fuzzy set operations – product sum norm.  

In legacy engineering systems, a matrix is setup with parameters paired 

against each other and each of their possible values are listed. The user also inputs 

the fuzzy member function score for each of the value input based on the 

confidence level of his data extraction techniques mentioned in section 2.3. For 

example: if the data is obtained directly from the OEM manufacturer then variable 

values have high degree of membership and for data obtained through visual 

inspection have very low degree of membership for the variable values. The 

combined score of two parameters for the combination of values selected is the 

product of their fuzzy degree of membership. This is illustrated in table 4 below.  

 

Table 4: Fuzzy score computation in Rule Matrix 

Parameter-1/ Parameter -2 

Value -1 

Value 
Member function 

score 

Value-1 

Value Consequent X1 

Member function 

Score 
X2 

Fuzzy score = 

X1*X2 
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3.2.3. Fuzzy rule selection and processing 

Fuzzy rules are used to characterize imprecise dependencies between 

different variables. Real world engineering problems are plagued by imprecise 

dependencies between variables such as the one in ECU, where CAN BUS 

messages controls the engine based on several vehicle parameters that do not have 

clearly defined equations. Consider for example a rule: 

 F vehiclespeed<30 mph AN  throttleposition>70  TH N  ngine HP>200 HP  

It would be easier if the same rule can be expressed in terms of relative linguistic 

values for variables. Most of the controller messages in engineering applications 

are expressed this way. 

 F vehiclespeedis low AN  throttlepositionis high TH N increase  ngine HP  

Thus fuzzy rules are of interest whenever problem‟s physics cannot be defined in 

clear numerical terms and a high level of precision is not desired in order to 

maintain a high level of interpretability. The generic form for this rule is then: 

 F x1is A1 AN  x2 is A2…AN  xnis An TH N y is   

Here the Ai is the antecedent and B is the consequent for the linguistic values of 

input vector x and the output variable y, respectively. These types of rules are 

called Mamdani rules [21] where the consequent is also a fuzzy number. 

Engineering controllers make their decision based on crisp real values and so 
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there is a need to defuzzify the output of a mamdani rule which is discussed in the 

next section. However there are rule types where the consequent is a crisp value 

and they are called Takagi-Sugeno rules [22]. In this research, we are interested in 

the mamdani rules due to its simplicity of setup, use and low computational 

expense required to implement the rules in a database setup.  

3.2.4. Defuzzification 

Once all the consequents are identified from mamdani rules the final step 

is the defuzzification. As mentioned before engineering decisions are based on 

crisp real values of variables but the output of a Mamdani rules are fuzzy number 

which are degree of membership of output variables. Several methods exist to 

determine a crisp output value, but the two most popularly used methods are 

Center of gravity method and Maximum value method. Center of gravity tries to 

identify the center of each of the membership function of the output variable and 

finds the weighted product sum. Maximum value finds the corresponding crisp 

output for the highest degree of membership of the output variable. Irrespective of 

the method used the crisp output is the confidence % on the selection of the 

consequents of the critical parameter identified.  In this research, a pessimistic 

approach is followed and hence the maximum value method is used, since the 

maximum value corresponds to maximum % confidence on the output parameter. 
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3.3. Application of Fuzzy logic in Material Substitution 

A Rule matrix can be setup for determining each of the three critical 

parameters discussed in section 2.1.  When the values for these parameters are 

known then the variables are considered deterministic and a pool of candidates is 

chosen based on the goals and constraints discussed in section 4.2. However when 

the critical parameters are not known then available parameters described in 

section 2.2 and 2.3 are used to identify these critical parameters. In the rule 

matrix, for each pair of value of the available parameters a consequent critical 

parameter is identified. For e.g. if the failure of the component is not known then 

for each combination of antecedents - failure manifestation, failure agents and 

failure location, a consequent – failure mode is identified to setup the failure 

mode rule matrix. Note that these kinds of rules for legacy engineering systems, 

instead of a single consequent could have multiple consequents. There can be 

several combination of rules based on the granularity of the member functions and 

the accuracy of problem (or controller) required. Multiple rules can be selected at 

a time and so there also needs to be a way to combine several fuzzy member 

functions. Fuzzy set operations help in combining two or more fuzzy membership 

values. Product/Sum operations are a pessimistic approach for combining fuzzy 

membership values, since material substitution decisions deal with failure mode 

of the part. The fuzzy rules are setup in the mamdani rule format and thus the 

output is also a fuzzy membership value. Defuzzification method such as 

Maximum value method – a pessimistic approach – is used in combining two or 

more rules. The result of a defuzzification process is an output confidence % that 
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corresponds to the output fuzzy membership value and also the value for the 

parameters identified. The higher the rule scores, higher the likelihood of the 

particular the parameter value identified being the actual parameter value. 
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CHAPTER 4 

MATERIAL SUBSTITUTION: LOGIC FOR CANDIDATE SELECTION 

 

To summarize we have discussed the parameters that are important for 

material substitution in section 2.1, the parameters that are available in section 

2.2, extraction techniques in 2.3 and modeling the uncertainty in data extraction 

using fuzzy logic in chapter 3. The final step in the material substitution process is 

the candidate material filtering from database using the critical parameters. Each 

of these candidate materials should satisfy all the design and manufacturing 

constraints explicitly mentioned by the designer, implicit constraints of the 

design, and should reach the goals specified by the design engineer. The list of 

goals and constraints considered and the sequence of steps involved in the final 

candidate selection logic are discussed in the following sections. 

4.1. Goals and Constraints in selection logic 

Material selection and material substitution is always a goal driven 

process. Without the need for a new goal, the existing material will perform 

equally well in the existing service conditions. There are several motives for 

material selection discussed in detail in section 1.2 & 1.3 and each of these 

motives can be translated to user specified goals. Some of the common objectives 

are: 

 Improve Strength of the failed component. 

 Reduce Weight of the existing component. 
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 Reduce Cost of the existing component. 

Usually a desired % improvement is also input along with the goal 

specified. Based on the target percentage, new material property values are 

calculated. The objective of improving strength is to find new materials that have 

high strengths in resisting the critical failure mode the part originally failed with 

the existing material. This implies that the designer is not satisfied with the 

performance of the existing material to withstand failure owing to the frequency 

of failure or due to the criticality of failure. Reduce weight objective is to find new 

materials that are lighter than existing material. It also implies that, the new 

materials that are lighter than the existing materials should have the same or better 

material strength values. Here in addition to the existing material properties, the 

density property is considered as function of weight. The assumption here is that 

the re-engineered part also occupies the same volume as the original part and thus 

is lighter than original part eventually after material substitution. Reduce cost is 

similar to Reduce weight in that it tries to find cheaper alternatives that are 

abundant, easily available and also critically have the same or better material 

strength values as the original part.  

Manufacturing processes available for producing the material are 

explicitly specified constraints. Even if the candidate substitute materials satisfy 

the strength requirements if they cannot be manufactured with the available 

processes then the candidate is deemed useless. Raw Stock availability of the 

material is another constraint. For instance if the new material is generally 
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available as a bar stock and as sheet stock, if the supplier provides only a bar 

stock and the user desires a sheet stock for manufacturing, the material is still 

deemed useless.  New materials that match target property values and satisfy the 

constraints are all considered as candidate materials. It is possible that no 

candidate substitutes be found for one of the following reasons: 

 The user specified targets are too ambitious for any new candidates to 

satisfy. 

 None of the candidate materials satisfy the constraints 

 Either one of the three key parameters 1) Critical failure mode, 2) machine 

element or 3) originally used material identified is incorrect. 

A pool of candidate materials after identification is presented to the user with the 

final confidence percentage calculated using fuzzy logic. The confidence 

percentage is important in that the uncertainty in the user input is directly 

indicative of the confidence level of output. 

4.2. Candidate selection logic 

 Figure 10 represents a declarative model of the overall material 

substitution process logic. There is several input information the user can provide. 

Thus there are several routes the user can traverse in the model leading to the final 

material selection. Predominantly there are five major possible cases identified 

based on the available input information and all other cases are a combination of 

the five identified cases. The cases are:  
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1. The parameters – failure mode, machine element and the originally used 

material are all known. 

2. Failure mode is not known, but machine element and the originally used 

material is known. 

3. Machine element is not known, but the failure mode and originally used 

material is known 

4. Originally used material is not known, but the failure mode and the machine 

element is known. 

5. None of the parameters – failure mode, machine element and the originally 

used material are known. 

The following sections discuss the logic in each of these cases with the sequence 

of steps leading to identifying the final candidate materials. Some of these cases 

use fuzzy logic and some don‟t.  The use of fuzzy logic based on discussions in 

chapter 2 and 3 are subject to the available input information. 

4.2.1. Case 1 – All Parameters are known 

 Machine element – known 

 failure mode – known 

 Originally used material – known 

From discussions in section 2.1 we know material substitution requires three 

essential parameters – Part Failure mode, Machine element and the originally 

used material. In this case considering that all the three necessary parameters are 
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readily available the declarative model shown in Fig 10 reduces to the simplest of 

scenarios as shown graphically in Fig 11. Again since all of the parameters are 

available, fuzzy logic will not be used in this scenario. Following are the steps 

involved in identifying the candidate materials: 

1.  From the three important parameters the first step in the process is to identify 

only the critical failure modes. Table 3(a) shows a map of all the potential 

failure modes associated with a particular machine element. For the given 

machine element a list of all possible failure modes can be obtained (table 3). 

 

Figure 11: Material substitution logic for scenario 1 - all parameters are known 
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2. The existing legacy part could have failed by more than one failure mode. To 

obtain the critical failure modes, the list of failure modes of the existing part 

and the list of all potential failure modes obtained from the machine element 

are intersected. The implication of the intersection operation is to check if the 

user specified machine element can undergo the specified failure mode. If the 

result of the intersection is null, then either the input machine element is 

incorrect or the failure modes is incorrect. The user is then prompted to 

change either the machine element or the failure mode. 

3. Table 3(a) also shows the potential failure modes of machine elements 

classified as primary and secondary. If the intersection of list of potential 

failure modes of the specified machine element and the failure modes 

specified by the user is not null, the resulting list of failure modes that are 

classified primary in table 3(a) are considered to be critical. If none of the 

resulting failure modes are primary failure modes then the secondary failure 

modes are considered to be critical. 

4. The next step in the process is to obtain the critical material properties for the 

failure modes identified. Table 2 shows a map of critical material properties 

and the failure modes. Referring the table, we can obtain a list of material 

properties associated with the critical failure modes identified. 

5. From discussions in section 2.1 the material property values from the 

originally used material is used in computing the target material property 
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values. Referring a material database the material property values for the 

originally used material can be obtained. 

6. From discussions in section 4.1, we know that material substitution is always 

a goal driven process. One such goal is improving the strength of the existing 

part. The user also specifies a target % increase in the strength desired for the 

new part.  Based on this target % increase the new material property values 

are calculated for use in searching the material database. 

7. The material database is then queried with the target material property values 

to find the candidate materials that have property values higher than the target 

property values. 

8. The user may also like to specify constraints on cost of the material and 

manufacturing processes. If such constraints are specified then the resulting 

candidate list is filtered for those materials that are within the cost limits and 

are capable of being produced with the manufacturing processes specified.  

9. The final candidate materials are then rank ordered based on the target 

property values. The final selection from the pool of candidate materials is 

left to the user‟s discretion.  

4.2.2. Case 2 – Part Failure mode not known 

 Failure modes  - not known 

 Machine element  - known 

 Originally used material – known 
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In this scenario of the three important parameters the part failure mode 

information is not available. In order to identify the part failure modes other 

parameters that describe the part failure such as failure manifestation, failure 

agents (loads, temperature, reactive environments and hours of operation before 

failure) and the failure location on the part is used to identify the actual failure 

modes as discussed in section 2.2. Clearly the information available is incomplete 

and there is uncertainty with each of these input data. Thus fuzzy logic is used in 

quantifying the uncertainty and making decisions based on that. A portion of the 

declarative model shown in Fig 10 that will be applicable to this case is shown 

graphically in Fig 12. It can also be seen that after the failure mode is identified, 

the logic follows the sequence of steps in case 1 leading to identifying the final 

candidate materials. Following are the sequence of steps in identifying the failure 

mode and the eventual candidate material selection 

1. First the three failure descriptors failure manifestation, failure agents and 

failure location information is prompted for input from the user. Table 5 

shows a list of possible values the user can choose from for each of the 

failure descriptors. The user is also prompted to input a confidence % in 

the value chosen for each of the failure descriptors. This confidence % is 

indicative of the user‟s data extraction techniques and his understanding of 

the part failure.  
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2. Each of these failure descriptors has fuzzy member functions that convert 

the input confidence % into a fuzzy member ship value. Each fuzzy 

membership functions have two categories:  LOW and HIGH confidence. 

The input confidence % falls into one or more categories and from the 

actual confidence %, the membership value for each category is computed. 

Fig 13 shows an example fuzzy membership function for failure 

manifestation with the two categories and the fuzzy value computed for 

40% input confidence %. The equations for computation are: 

 
n
=

 

 
 LOW:

1 if Xn 30 

70-Xn

70-30
if Xn>30 

 

 H  H:

Xn-30

70-30
if Xn<70 

1 if Xn 70 

 

  

Table 5: Failure Manifestation, Failure Agents and Failure Location 

Failure Manifestation 

 

Failure Agent 

Load 

 

Failure 

Agent 

Temperature 

Elastic Deformation 

 

Steady 

 

Low 

Plastic Deformation 

 

Cyclic 

 

Room 

Fracture or Rupture 

 

Transient 

 

Elevated 

Material Change 

 

Random 

 

Steady 

    

Cyclic 

    

Transient 

    

Random 

     

     Failure Agent: 

Reactive Environment 

 

Failure Agent 

Hours of Operation 

 

Failure 

Location 

Chemical  

 

Very Short 

 

Body 

Nuclear 

 

Short 

 

Surface 

  

Long 
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Where Xn is the input confidence   and  n is the equivalent membership 

Fuzzy Membership value. 

3. The next step in the process is to setup the fuzzy rules. For each value of 

the failure descriptors there is an associated failure mode. One value of 

failure descriptors can be mapped to several failure modes. Thus maps can 

be setup for each of the failure descriptors and their associated failure 

modes. Table 6 (a), (b) & (c) shows failure manifestation, failure location 

and failure agents mapped to failure modes. For the highest input 

confidence % in the three failure descriptors, failure modes mapped to 

corresponding failure descriptor value are identified as the potential failure 

modes. Then each identified failure mode is checked with the other two 

input failure descriptors referring table 6.  

  

 

Figure 13: Fuzzy Membership function with values computed for 40% 

input confidence 

 

30% 50% 70%

LOW HIGH

1

% Confidence

0.75

0.25

40%
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Table 6: (a) Failure Manifestation mapped to failure mode; (b) Failure location 

mapped to failure modes; (c) Failure agents mapped to failure modes 

 (a) 

Failure Mode Failure Manifestation 

Brittle Fracture Fracture 

Elastic deformation Elastic Deformation 

Fatigue High Cycle Fracture 

Gross Yielding Plastic Deformation 

Wear Dimensional reduction 

 

(b) 

Failure Mode Failure Location 

Brittle Fracture Surface and Body 

Elastic deformation Body 

Fatigue High Cycle 

Cracks initiated in Surface 

leading to Body failure 

Gross Yielding Body 

Wear Surface 

 

(c) 

Failure Mode Failure Load 

Failure 

Temperature 

Hours of 

Operation 

Brittle Fracture 

Steady, Cyclic, 

Random, Transient Low, Room Very Short, Short 

Elastic 

deformation Steady 

Room, 

Elevated Short 

Fatigue High 

Cycle Cyclic, Random 

Low, Room, 

Elevated Long, Short 

Gross Yielding Steady Room Short 

Wear 

Steady, Cyclic, 

Random, Transient 

Low, Room, 

Elevated Short, Long 
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A resulting fuzzy membership function similar to the one shown in Fig 13 

is setup for failure modes with two categories: HIGH and LOW. Those 

failure modes identified from the highest confidence failure descriptor 

matching the other two input failure descriptors are grouped in HIGH 

category and those that don‟t match any one of the other failure 

descriptors are grouped in LOW category. For e.g. if the input failure 

manifestation is fracture, the input failure location is surface and the input 

failure agents (Load: - cyclic, Temperature: - Room & Hours of 

Operation: - Long) and failure manifestation has highest confidence %. 

Thus the failure modes corresponding to Fracture failure manifestation are 

(Brittle fracture, Fatigue & Wear) of which (Fatigue & Wear) match the 

other two input failure descriptors and (Brittle Fracture) matches only the 

failure location. Thus (Fatigue & Wear) are grouped in HIGH category 

and (Brittle Fracture) under LOW category in the resulting failure mode 

fuzzy membership function. 

4. The next step in the process is to setup the rule table. From above for each 

input of the failure descriptors a confidence % is input and the fuzzy 

membership function converts it into a fuzzy membership value based on 

the category. Rules are setup such that for each input failure descriptor 

category, a resulting failure mode category is selected. This is similar to a 

logic table. Table 7 shows the rule table for failure mode identification. 

For e.g. if the input failure manifestation confidence % is HIGH, the input 
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failure agent confidence % is also HIGH but if the input failure location 

confidence % is LOW, the resulting failure mode should be chosen from 

HIGH category. This is also shown graphically in figure 14. The resulting 

failure mode membership value is the product of membership values of 

three descriptors based on the product-sum norm discussed in chapter 3. 

 

 

Figure 14: Rule selection and fuzzy operation for failure mode identification 

 

Table 7: Fuzzy rule table for failure mode identification 

Failure 

Manifestation 

Failure 

Agent 

Failure 

Location 

Failure 

Mode 

LOW LOW LOW LOW 

HIGH LOW LOW LOW 

LOW HIGH LOW LOW 

HIGH HIGH LOW HIGH 

LOW LOW HIGH LOW 

HIGH LOW HIGH HIGH 

LOW HIGH HIGH HIGH 

HIGH HIGH HIGH HIGH 
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For one input value of failure manifestation, failure agent and failure 

location one or more rules in the rule table can be applicable.  

5.  Final step in the process is combining the selected rules and defuzzifying 

the output to identify the failure modes.  For each of the selected the 

failure mode member function value is computed using the product-sum 

norm. From the computed values the rule corresponding to the maximum 

value is selected based on the maximum value defuzzification method 

discussed in chapter 3. Based on the resulting rule category on the failure 

mode member function, the corresponding failure modes are deemed to be 

candidate failure modes. The final confidence in the identified failure 

mode is the equivalent % value for the fuzzy membership score computed 

for the rule. If there are more than one failure modes, the final failure 

mode selection for downstream processing is left to the user discretion. 

After the user chooses a failure mode, machine element and originally 

used material input are obtained. 

6. After the three critical parameters are obtained the material substitution 

follows the sequence of steps 1-9 in case 1 in identifying the candidate 

materials. Also the confidence on the final candidate material selection 

may not be 100%. It depends on the final confidence on the identified 

failure mode.  
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4.2.3.  Case 3 – Machine element not known 

 Machine element – not known 

 Failure mode – known 

 Originally used material – known 

In this scenario of the three important parameters the machine element 

information is not available. In order to identify the machine element other 

parameters such as Part Functions and Mating components are used as discussed 

in section 2.2. Part functions are ontological descriptions of the functions a 

machine element perform such as “Amplify motion”, “Transfer motion” and 

“Store  nergy”. Mating components are the machine elements that possibly mate 

with other machine elements in an assembly. For e.g. gears are mounted on shafts 

with keys or splines.  A machine element can have several part functions. Also a 

machine element will mate one or more machine elements in an assembly. Clearly 

the information available is not adequate to uniquely identify the machine element 

in all circumstances and there is uncertainty with each of these input data. Thus 

fuzzy logic is used in quantifying the uncertainty and making decisions based on 

that. A portion of the declarative model shown in Fig 10 that will be applicable to 

this case is shown graphically in Fig 15. Similar to case 2, it can be seen that after 

the machine element is identified, the logic follows the sequence of steps in case 1 

leading to identifying the final candidate materials. Following are the sequence of 

steps in identifying the machine element and the eventual candidate material 

selection: 
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1. First the Part Function input and the Mating element information is 

prompted for input from the user. Table 8 shows a list of possible part 

functions and mating machine element the user can choose from.  The user 

 

Figure 15: Material Substitution logic for scenario 3 - Machine element is not known 
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is also prompted to input a confidence % in the value chosen for Part 

function and mating machine elements. This confidence % is indicative of 

the user‟s understanding of the function of the part.  

2. Fuzzy member functions are setup for both Part functions and Mating 

machine elements. The fuzzy member functions convert the input 

Table 8: (a) List of Part Functions (b) List of Mating machine elements 

(a) 

Part Functions 

Amplify Force 

Amplify Motion 

Constrain Motion 

Contain Mass 

Control Force 

Store Energy 

Transfer Force 

Transfer Motion 

Transform Motion 

Transmit Power 

 

(b) 

Mating Elements 

Ball Joints Engine Block Rigid Couplings 

Belleville Spring Washers Fasteners Shafts 

Bevel Gears Flexible Couplings Splines 

Brackets Flywheels Sprockets 

Brake Spring Helical Gears Spur Gears 

Chassis Keys Worm Gears 

Clutch Mechanical Seals Pressurized Cylinder 

Crank Shafts Plain Bearings Pulleys 
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confidence % for a particular variable into a fuzzy member ship value. 

Each fuzzy membership functions have three categories:  LOW, 

MEDIUM and HIGH confidence. The input confidence % falls into one or 

more categories and from the actual confidence %, the membership value 

for each category is computed. Fig 16 shows an example fuzzy 

membership function for Part Function with the three categories and the 

fuzzy value computed for a particular input confidence. The equations for 

computation are: 

 
n
=

 

 

 
 LOW:

1 if Xn 25 

50-Xn

50-25
if Xn>25  and Xn<50 

 

 
 
 

 
 

M   UM:

Xn-25

50-25
if Xn>25  and Xn>50 

1 if Xn=50 

75-Xn

75-50
 if Xn>50  and Xn<75 

 

 H  H:
Xn-50

75-50
if Xn>50  and Xn<75 

1 if Xn 75 

 

    

 

Figure 16: Fuzzy member function for Part Function input 

 

25% 50% 75%

LOW
HIGH

MEDIUM
1

% Confidence

0.5
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Where Xn is the input confidence   of the variable and  n is the 

equivalent membership Fuzzy Membership value. 

3. The next step in the process is setting up the fuzzy rules. Part functions 

can be associated with machine elements as shown in Table 9 and 

Machine elements that possibly mate with other machine elements can 

also be mapped in an adjacency matrix as shown in Table 10. Candidate 

machine elements are then extracted from table 9 or 10 based on the input 

variable that has the highest confidence %. If the Part Function has higher 

confidence than mating machine element input then machine elements are 

extracted from table 9 otherwise machine elements are  

Table 9: Part function and Machine element Map 

Function Machine Element Function Machine Element 

A
m

p
li

fy
 

F
o
rc

e Pressurized Cylinder 

S
to

re
 

E
n
er

g
y
 Brake Spring  

Pulleys Belleville Spring Washers 

Lever Flywheels 

A
m

p
li

fy
 M

o
ti

o
n
 

Bevel Gears 

T
ra

n
sf

er
 

F
o
rc

e 

Engine Block 

Worm Gears Housing 

Spur Gears Chassis  

Helical Gears Pulleys 

Sprockets 

T
ra

n
sf

er
 M

o
ti

o
n
 

Clutch 

C
o
n
st

ra
in

 M
o
ti

o
n

 

Disk Brakes Helical Gears 

Mechanical Seals Bevel Gears 

Plain Bearings Rigid Couplings 

Keys Sprockets 

Gudgeon Pins Flexible Couplings 

Fasteners Ball Joints 

Drum Brakes Worm Gears 

Bushes Spur Gears 

 



67 

 

extracted from table 10. The extracted machine elements are checked for 

their compatibility with the other input. So if machine elements are 

extracted from part functions, each of the candidate machine elements is 

checked to see if it is compatible with the mating machine element. 

Similarly if the machine elements are extracted from mating machine 

elements, each of the candidate elements is checked to see if it performs 

the part functions specified. The resulting candidate machine elements are 

grouped into three categories of confidence %: LOW, MEDIUM and 

HIGH similar to the fuzzy member function shown in Fig 16. All the 

Table 10: Machine Element compatibility adjacency matrix 

MACHINE 

ELEMENT 

B
al

l 
Jo

in
ts

 

B
el

le
v
il

le
 S

p
ri

n
g
 

W
as

h
er

s 

B
ev

el
 G

ea
rs

 

B
ra

ck
et

s 

B
ra

k
e 

S
p
ri

n
g
  

C
h
as

si
s 

 

C
lu

tc
h

 

C
ra

n
k
 S

h
af

ts
 

D
ru

m
 B

ra
k
es

 

E
n
g
in

e 
B

lo
ck

 

F
as

te
n
er

s 

F
ly

w
h
ee

ls
 

Ball Joints x         1             

Belleville 

Spring 

Washers 

  x                 1   

Bevel Gears     x                   

Brackets       x   1       1 1   

Brake Spring          x       1       

Chassis  1     1   x       1 1   

Clutch             x       1 1 

Crank Shafts               x   1     

Drum 

Brakes 
        1       x       

Engine 

Block 
      1   1   1   x 1 1 

Fasteners   1   1   1 1     1 x   

Flywheels             1     1   x 
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machine elements extracted from a specified parameter, that are 

compatible with all other specified parameter values are grouped in HIGH 

confidence category, and the ones that are compatible with at least one 

value of the other specified parameter are grouped in MEDIUM 

confidence category and those machine elements that are compatible with 

none of the values of the other specified parameter are grouped in LOW 

confidence category. For e.g. if (Store Energy) is the part function with 

higher confidence over the chosen mating machine elements (Keys, 

Shafts) then machine elements are extracted from part functions referring 

table 9 are (Brake spring, Belleville spring washers and Flywheels). 

Referring table 10, (Flywheels) are compatible with (Keys, Shafts) and so 

it is in HIGH confidence category and (Brake spring and Belleville spring 

washers) are not compatible at all and hence are grouped under LOW 

confidence category.  

4. The next step in the process is to setup the rule logic table for machine 

element identification. From above for each input confidence % the fuzzy 

member functions compute the membership value based on the input 

confidence category. Rules are setup such that for each input part function 

and mating machine element category a resulting machine element 

category is specified. Table 11 shows the rule logic table used in 

identifying the machine elements. For e.g. if the input Part Function  

confidence is categorized as HIGH and Mating part confidence is 
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categorized as HIGH then the resulting mating machine element is 

selected from the HIGH confidence category. The resulting machine 

element member function score is the product of the membership score of 

part function and the mating machine element. This is also shown 

graphically in Fig 17.  

5. Final step in the process is combining the selected rules and defuzzifying 

the output to identify the failure modes.  For each of the selected machine 

elements, member function value is computed using the product-sum norm 

discussed in chapter 3. From the computed values the rule corresponding 

to the maximum value is selected based on the maximum value 

defuzzification method. Based on the resulting rule category on the 

machine element member function, the corresponding machine elements 

are deemed to be candidate machine elements. The final confidence in the 

identified machine element is the equivalent % value for the fuzzy 

Table 11: Rule logic table for machine element identification 

Part 

Function 

Mating 

Part 

Machine 

Element 

LOW LOW LOW 

MEDIUM LOW MEDIUM 

HIGH LOW HIGH 

LOW MEDIUM MEDIUM 

MEDIUM MEDIUM MEDIUM 

HIGH MEDIUM HIGH 

LOW HIGH HIGH 

MEDIUM HIGH HIGH 

HIGH HIGH HIGH 
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membership score computed for the rule. If there are more than one 

machine elements, the final machine element selection for downstream 

processing is left to the user discretion. After the user chooses a machine 

element, failure mode and originally used material input are obtained. 

6. After the three critical parameters are obtained the material substitution 

follows the sequence of steps 1-9 in case 1 in identifying the candidate 

materials. Also the confidence on the final candidate material selection 

may not be 100%. It depends on the final confidence on the identified 

machine element.  

 

4.2.4. Case 4 – Originally used material is not known 

 Machine element – known 

 

Figure 17: Rule selection for Machine element identification 
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 Failure Mode – known 

 Originally used material – not known 

In this scenario if the originally used material is not known, there are two methods 

for obtaining the material property values. Generally all the engineering materials 

can be grouped into material classes such as carbon steels, stainless steel, and 

aluminum alloys etc…  ven if the actual material is not known and if the existing 

material can be identified as one of the material classes, the average material 

property values for the material class can be used. The confidence percentage in 

classifying the material into one of the classes is directly used as safety factor for 

downstream calculations. If the material cannot be classified into a material class, 

then a low-fidelity structural analysis can be performed to obtain stress values. 

The user is prompted to input the CAD geometry of the part and also specify the 

load values and locations. If the input geometry is an assembly of machine 

elements then equivalent boundary conditions can be applied. First for the given 

boundary condition, the dominant load is identified. Based on the section 

properties of the overall shape, for the worst combination of loads, critical stress 

hot spot regions are identified and stress values are estimated. The confidence 

percentage in estimating the loads and their locations is used as safety factor for 

downstream calculations. Once the material property values are obtained, the 

material substitution follows the sequence of steps 1-9 in case 1 in identifying the 

candidate materials. 
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4.2.5. Case 5 – None of the important parameters are known 

 Machine element – not known 

 Failure mode – not known 

 Originally used material – not known 

In this scenario, the machine element, the part failure mode or the originally used 

material is not known. This is the worst combination of all the above four 

scenarios which is indicated graphically in Figure 10. The logic in case 2 is 

followed in identifying the failure modes using the fuzzy logic. The logic in case 

3 is followed in identifying the machine element. The logic in case 4 is followed 

in obtaining the material property values. Once all of the cases above are executed 

and the machine element, failure mode and the material property values are 

identified the material substitution process follows the steps in case 1 for 

identifying the candidate materials. In this case however the confidence on the 

final candidate materials is a product of the final confidence percentage in the 

machine element, failure mode and property values identified.  
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CHAPTER 5 

MATERIAL SUBSTITUTION: SOFTWARE IMPLEMENTATION 

A part of the objective of this research is to automate the process of 

material substitution for legacy engineered systems as part of the LSE testbed. In 

order to automate the processes mentioned above a software system is 

implemented. The software primarily has two parts: the front-end Graphical User 

Interface (GUI) and the back-end database. The architecture of the software is 

represented in Fig 18.  

The material substitution software architecture is based on the generic 

model-view-controller (MVC) architecture. The MVC architecture is commonly 

used in large projects and is popularly used in software systems that involves 

database. Generally, software without any architecture has the GUI code and the 

business logic code intertwined. This is generally fast and easy to develop but has 

its disadvantages in debugging, testing and future development. The MVC 

architecture however is a framework that separates the business logic from the 

GUI so as to facilitate debugging, testing, future development and other benefits 

that are beyond the scope of the discussion. The architecture consists of three 

parts 
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1. Model – is the business logic. Here the business logic API is developed for 

several input scenarios. It assumes that the necessary parameters are available 

 

Figure 18: Material substitution software architecture 
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and produces the output based on the values of the input parameters. Function 

calls in the API are made by the controller. This module also includes the data 

stores such as material database as in this case.  

2. View – is the GUI. This part has no business logic and is unaware of the 

background processes. The main emphasis is on presentation of data and 

posing the right questions to get the right input. 

3. Controller – is the interface between Model and View. This can be a package 

of files or just one single file that controls the flow of data between the Model 

and View. This part is unaware of the actual data and its only function is to 

switch control between different modules based on the input process routes 

chosen by the user. 

The main advantage of MVC architecture is that it allows the modules to be 

developed independent of each other. The database is developed using Microsoft 

Access Database (.mdb) and the GUI of the software is developed using 

Microsoft Foundation Classes (MFC). The software is developed using the object 

oriented C++ language using Microsoft Visual Studio 2005 IDE. 

 Based on the discussion from chapter 2, 3 & 4 it is evident that any 

material substitution for legacy engineering involves three parts: – Data 

acquisition, Logic processing and Candidate selection. Each of the sections and 

the implementation is discussed in the following sections.  
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5.1. Data extraction 

Data extraction is crucial to any legacy system engineering tool because the 

success of the tool lies in the quality of information obtained during this step and 

sets the benchmark for all successive computations and comparisons. Referring 

the Figure 10 in chapter 4, we can see that there are several input parameters to be 

obtained based on the user‟s availability of the information. Predominantly there 

are 5 different modules of input: 

1. Failure mode input 

2. Machine element input 

3. Original material input 

4. Goals and Target input 

5. Constraints input 

A toolbar in the fig 19 shows different icons for different input modules. 

 

Figure 19: Material Substitution Toolbar 
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When the user clicks on failure mode input icon or the machine element input 

icon, a message is prompted to check if he knows the actual failure mode or the 

machine element. If the user wants to input the failure mode or the machine 

element directly then dialog boxes as the one shown in figure 20 are displayed for 

user input. Failure mode input, machine element input and the original material 

input material are mandatory if the user wishes to input them directly. If the user 

needs the software to identify the failure mode or the machine element for the 

user, then a dialog box with alternative parameters that are used in identifying the 

failure mode or the machine element as shown in Figure 21 is shown. For each of 

the alternative input parameter the user is also prompted for the confidence % 

input that will be used in downstream fuzzy logic processing. By default the slider 

 

Figure 20: Failure mode input dialog box 
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for confidence % input ranges from 1-100. After the alternative parameters are 

input the data is transferred to the fuzzy logic controller for identifying the critical 

parameter of interest. If candidate critical parameter values are identified the same 

dialog box as shown in Fig 20 is prompted with the list for final selection. The 

user is also notified of the confidence %  in the resulting output. Once the three 

critical input parameters are obtained or identified. The user goes on to input the 

goals and the target % improvement as shown in Fig 22. If there are any user 

constraints such as cost constraints the user can input them using the constraints 

dialog box. After all the necessary parameters are input and the values are 

obtained, the „run candidate selection logic‟ icon in Fig 19 is enabled. The icon 

triggers the candidate selection logic descried in case 1 in chapter 4 and finds a 

list of candidate material substitutes. If there are no materials found the user is 

notified. If however candidate materials are found then the display icon in Fig 19 

is enabled for the user to view the candidate material substitutes. 

 

Figure 21: Failure Mode identification input dialog box 
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5.2. Database and Logical Processor  

The logical processor performs three major functions – data validation, fuzzy 

processing and material candidate search. Several validations are critical before 

the final candidate selection process logic can be run. For e.g. the input failure 

mode or the failure mode identified through fuzzy logic processor should be one 

of the possible failure modes for the machine element specified. If not, the user is 

notified to verify and re-input the correct data. It also validates dialog box inputs 

for mandatory input check. If the mandatory input is not available the user is 

prompted to input with a message box. The fuzzy logic processor mainly 

performs four functions –  

1. Setting up the membership functions to convert the input confidence % to 

fuzzy member ship value 

2. Setting up the fuzzy rules for critical parameter identification.  

3. Initiating the rule logic table for combining member functions 

 

Figure 22: Material Substitution Goals Input 
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4. Defuzzification for combining the rules and identifying the desired critical 

parameter. It also computes the final confidence % on the identified 

critical parameter. 

Step 2 in the fuzzy logic processing above involves querying the database 

where the tables discussed in chapter 2 and 4 are stored. The database also 

contains tables with material data. The entity-relationship diagram shown in Fig 

23, 24 and 25 contains the major tables and the relationships between them that 

are used in candidate selection and Fuzzy rule setup. After the input data 

validation the logical processor tries to identify all the critical failure modes of 

interest. Once the critical failure modes are identified the key material properties 

and their values for the originally used material is obtained from database tables. 

The candidate search engine queries the material database for suitable substitutes 

 

Figure 23: ER diagram of the material property tables 
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based on the target values calculated from the goals and constraints specified by 

the user. The queries are executed through the ODBC driver setup using the 

Windows DSN. 
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CHAPTER 6 

CASE STUDIES  

In order to evaluate the effectiveness of a knowledge based system, we 

need a valid set of case studies that can endorse the rules and algorithms 

implemented in the system perform all the desired functions. The effectiveness of 

the system can be measured in two ways. Intrinsically the number of attempts the 

user takes to identify the correct failure mode of the part or the machine element 

or the material property before proceeding to find the candidate materials is a 

measure of the effectiveness of the fuzzy rules. Extrinsically the candidate 

materials identified can be evaluated against the expert selection. The material 

substitution for legacy engineered parts is a knowledge based system that is meant 

to work on data that has varying degree of uncertainty. For ex: Data extracted 

from OEMs are more reliable than data that is extracted from a failed system. 

From section 2.3 it was also clear that even within extraction techniques 

uncertainty can vary. Case studies are chosen to evaluate both the intrinsic 

effectiveness and the results are compared with expert opinion for extrinsic 

effectiveness. 

Example 1: Pressure Vessel  

Pressure vessels, from the simplest aerosol-can to the biggest boiler, are designed, 

for safety, to yield or leak before they break. Small pressure vessels are usually 

designed to allow general yield at a pressure still too low to cause any crack the 

vessel may contain to propagate (“Yield before break”). With large pressure 
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vessels, safe design is achieved by ensuring that the smallest crack that will 

propagate unstably has a length greater than the thickness of the wall (“leak 

before break”) [4 (Ref 6.11)]. The objective is to find lightweight alternatives for 

low carbon steel pressure vessels.  

Parameters: 

This is the simplest of cases where all the three important parameters are known. 

The machine element is given to be pressure vessel and the originally used 

material is given to be low carbon steels. Brittle fracture and Yielding are two 

possible dominant failure modes depending on the size of the vessel.  

Process: 

1. The equivalent machine element for pressure vessel in the list of machine 

elements in the database is pressurized cylinders. For the given machine 

element, we refer the machine element reference table and obtain a list of 

potential failure modes. 

2. From table 12 the potential failure modes are Yielding, Brittle 

fracture/Ductile Rupture, Fatigue, Stress corrosion cracking and creep. 

The failure modes are classified into two types – primary and secondary. 

The primary failure modes are the most probably failure modes and hence 

the dominant failure modes. 

3. For smaller pressure vessels the failure mode of concern is brittle fracture 

and for larger pressure vessel yielding is the failure mode of concern. Both 
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these failure modes are primary failure modes and hence are the critical 

failure modes.  

4. For the critical failure modes, we refer the failure mode and material 

property mapping (table 2) to obtain the material properties corresponding 

to the failure modes. 

5. The critical material property for yielding is “Tensile Yield strength”. The 

critical material property for brittle fracture is “KIC”. 

6. The originally used material specified is low carbon steel, which is one of 

the commonly used materials for pressure vessel from table 12. We obtain 

the original material property values for the given material. 

a. Yield Strength – 20305 psi – 348090 psi 

b. KIC – 60100- 74600 psi(in)
1/2

 

7. The objective is to find lightweight alternatives for low carbon steels. 

Hence “ mproving strength/Reduce weight” is the ratio of interest.  

Table 12: Machine Element reference table for Pressure vessels 

Machine 

Element 

 Load 

Conditions 

Stress 

Condition 

Commonly 

used 

materials 

Environment 

Conditions 

Potential Failure 

Modes 

Pressuri

zed 

Cylinder 

Tensile 

Loads; 

Thermal 

Loads (in 
certain 

cases) - 

fatigue 
loading 

Hoop 

Stresses ; 
Radial 

Stresses 

Carbon and 

Low-alloy 

steels, High 
alloy steels, 

non-ferrous 

alloys, cast 
iron, and 

ferritic 

steels 

High 

Temperature, 
Corrosive 

Fluids 

Primary: 

Yielding, Ductile 

Rupture / Brittle 

Fracture 
Secondary: 

Fatigue (Low 

cycle, Thermal or 
Corrosion), Stress 

Corrosion 

Cracking, Creep 
and Fatigue 
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8. Let us consider the case of yielding failure and so for a 10% target 

increase in the ( y/ ) ratio several candidate materials are identified. A 

shortlist of the materials of interest is shown in table 13. 

 

Verification: 

Some of the major candidate groups identified in [4 (Ref table 6.20)] are 

Stainless steels, Low alloy steels, Copper, Aluminum alloys and Titanium 

alloys. Verifying with table 13, we can see that some Aluminum alloys and 

Stainless steel alloys are identified. Aluminum alloys are commonly used in 

very light applications such as pressure tanks in rockets and Stainless steel is 

commonly used in nuclear pressure vessels. Hence the results match the 

expert opinion and the identified candidates are substitutable.  

Table 13: Candidate materials for lightweight pressure vessels 

Material Class Material 

Aluminum 

2014 -T6,6262-T9,2011 - T8,2011 -T3,2219 

-T62,6066-T6,5052-H38,3004-H38 

Ultra High strength 

steels 

Ultrahigh-strength Steel for Structural 

Applications 

Stainless Steel 

Precipitation-hardened grades, Nitrogen-

strengthened grades, T S20000 Series 

Stainless Steel 

Steel 

Air hardened steel, Mold steel, Maraging 

steel 
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Example 2: Materials for Ball Joints (incompatible machine element and failure 

mode) 

Ball joints are commonly used in automobile applications. It two linkages and 

allows rotation but no translation. Ball joints are commonly made of steel. If 

brittle fracture is one of the part failure modes, the objective is to find lightweight 

alternatives for the given material. 

Process: 

1. For the given machine element, we refer the machine element table and 

identify a list of potential failure modes. 

2. From table 14, the potential failure modes are wear, corrosion and 

corrosion fatigue. 

3. Brittle fracture is not one of the primary or secondary potential failure 

modes of ball joints. 

4. Hence an error message “Machine  lement cannot undergo the Failure 

Mode specified. Please Re-enter the Machine Element or Failure Mode 

Table 14: Machine element reference table for Ball Joints 

Machine 
Element 

 Load 
Conditions 

Stress 
Conditions 

Commonly 

used 
materials 

Environment 
Conditions 

Potential 

Failure 
Modes 

Ball 

Joints 

Axial Loads 

(tension or 

compression 
loaded 

suspensions);

Torsional 
loads 

Cyclic 
Hertzian 

contact Stress 

Carbon 
Steel or 

Alloy Steel 

Corrosive 

Environment 

Primary: 
Wear , 

Corrosion 

Secondary: 
Corrosion 

fatigue 
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data!” is displayed. 

Example 3: Materials for Splines (Ambitious targets) 

Splines are common machine element that is used to mate shafts with other 

machine elements such as gears. For one of the dominant failure modes, the 

objective is to identify lighter candidate material substitutes, if the originally used 

material is a titanium alloy.  

Process: 

1. For the given machine element, we identify a list of commonly used 

materials and a list of potential failure modes. 

2. From table 15, the potential failure modes are Fatigue, Wear and Force-

induced elastic deformation. 

 

Table 15: Machine element reference table for Splines 

Machine 
Element 

 Load 
Conditions Stress Conditions 

Commonly used 
materials 

Potential 
Failure Modes 

Splines 

(Shafts) 

Fluctuating 

Torque; 

Fluctuating 

Moment 

 

Cyclic Hertzian 

contact stress 

Steel (ANSI 1020 

-1050) 

Bronze or 

Stainless steel 

(corrosive 

environment);Case 

hardened steel 

(when used as 

journal or sleeve 

in bearings) 

Primary: 

Fatigue, Wear 

 

Secondary: 

Force induced 

Elastic 

Deformation. 
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3. The dominant failure mode of interest is Wear. Referring the failure mode 

and material-property mapping (table 2), the critical material properties 

corresponding to wear failure mode is Hardness. 

4. The hardness values for the originally used beta-titanium alloy material 

ranges from 290-485 BHN.  

5. For the objective of finding lighter candidate material substitutes, the 

target increase is 30%. 

6. Executing the material substitution logic, an error message “Sorry there 

are no materials matching the criterion. Please change the combinations 

and try again!!!” is displayed. 

Inference: 

To start with the originally used material is a titanium alloy. Titanium alloys 

have very high strength/weight ratios of all common metals. So the material is 

specified is by default very strong and very light. The objective specified is to 

find materials that have higher strength/weight ratios and the target % increase 

is 30. The combination of the originally specified material and the target 

increase is too ambitious for any other materials to satisfy and hence the error 

message. 
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Example 4: Materials for flywheel 

Flywheels store energy. Small ones found in children‟s toys are made of lead. Old 

steam engine flywheels are made of cast iron [4 (Ref 6.6)]. Steel flywheels are 

used in nuclear reactors. The flywheels on nuclear reactor coolant pump motors 

provide inertia to ensure a slow decrease in coolant flow in the event of loss of 

power; thus preventing fuel damage due to the reduced coolant flow [24]. At over 

speed operation of the pumps, the flywheel disintegrates and produces large 

missiles. The objective is to identify candidate material substitutes to avoid 

catastrophic failure. 

Process: 

1. The machine element is given as flywheel and the original material is 

steel. The only other important parameter is the failure mode which is not 

known. 

2. Since the part failure mode is not known, the first step in the process is to 

identify the failure mode using fuzzy logic. 

3. If failure mode is not known, then failure descriptors such as failure 

manifestation, failure agents and failure location help in identifying the 

failure modes. 

4. The flywheel disintegrates into large missiles and so clearly fracture is the 

failure manifestation. Also the failure location can be classified as body 

failure. Flywheels generally experience a cyclic load. Since the component 
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is used in a nuclear reactor, the temperature conditions may be higher than 

room temperature but because the flywheel is used with a coolant pump 

the conditions may not be as high. It is observed that when the pumps 

exceed the normal speed, the flywheel bursts and within a speed limit the 

flywheels are safe. It can be concluded that when the speeds exceed a 

limit, the fracture is instantaneous. 

5. For each of the input failure manifestation, failure agents and failure 

location, a specific confidence % value needs to be input. Since the failure 

manifestation and failure location is very visible the confidence in the 

input is as high as 80%.  The identified time of operation before failure is 

very short. But the load type and the temperature conditions are not known 

for certain. Thus a confidence of 55% is input. 

6. The first step in the fuzzy logic process is to convert the input confidence 

% to fuzzy membership values.  

 
n
=

 

 
 LOW:

1 if Xn 30 

70-Xn

70-30
if Xn>30 

 

 H  H:

Xn-30

70-30
if Xn<70 

1 if Xn 70 

 

  

   
Manifestation

=[H  H,1   for Xmanifestation=80   

  
location

=[H  H,1   for Xlocation=80   

 
agents

=  LOW,
70-55

70-30
 ,  H  H,

55-30

70-30
  (for XAgent=30 ) 

=> LOW,0.375 ,[H  H,0.625   
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7. The next step in the process is to setup the output failure mode member 

function. Referring table 6 (a), the list of possible failure modes are Brittle 

Fracture and Fatigue high cycle.  

8. The list of possible failure modes is then crosschecked to match with input 

in tables 6(b) & (c). Brittle fracture matches the failure location but the 

fatigue does not. Brittle fracture also matches the failure agent 

combination of (cyclic load, low temperature, and very short time) but 

fatigue only matches the cyclic load failure agent description. Thus for the 

failure mode member function with two categories (LOW and HIGH) the 

corresponding failure modes are (LOW = Fatigue, HIGH = Brittle 

fracture). 

9. The next step in the process is to combine the input and output fuzzy 

member functions in mamdani type rules. Referring the rule logic table 7 

for failure mode identification the two rules combination are 

a. If FM is HIGH and FA is LOW and FL is HIGH then Failure is 

HIGH – R1 

b. If FM is HIGH and FA is HIGH and FL is HIGH then Failure is 

HIGH. – R2 

(Where FM is Failure manifestation, FA is Failure agent and FL is Failure 

location and R1 & R2 are rules 1 & 2). 
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10. The next step in the process is to compute the output fuzzy membership 

scores for rules 1 and 2. Since Product/Sum norm is used, the membership 

score for  

R1=   
Manifestation

* 
Agent

 LOW * 
location

 = 0.375*1*1 =0.375 

R2=   
Manifestation

* 
Agent

 H  H * 
location

 = 0.625*1*1 =0.625  

11. The final step in the fuzzy logic process is to defuzzify and obtain the 

failure mode and confidence% on the corresponding failure mode 

identified. The rule scores are R1 [HIGH, 0.375] and R2 [HIGH, 0.625]. 

We use the maximum value method to defuzzify. The maximum value is 

thus 0.625 corresponding to R2. Thus the failure mode corresponding to 

HIGH category from step 8 is brittle fracture and the confidence % in the 

identified failure mode is greater than 50% but lesser than 70%. 

12. The material substitution process after identifying the part failure mode is 

similar to example 1 where all the three important parameters are known.  

13. Referring the machine element table 3 for flywheels, the potential failure 

modes of flywheels are ductile rupture/brittle fracture, fretting fatigue. 

Thus brittle fracture/rupture is one of the critical failure modes. 

14. Then referring the failure mode and material property mapping in table 2, 

the critical material property corresponding to brittle fracture is KIC. 

15.  Then material property value for the originally used steel (AISI 1000 

series) material is obtained from the material database. The objective is to 
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find lighter and stronger candidate substitute materials. The target increase 

is specified at 20%. 

16. The identified candidate substitute materials are: 

Verification:  

 Flywheels experience centrifugal loading. The design limit is when the 

centrifugal stresses exceeed the tensile strength (or fatigue strength) [4]. This 

suggests that fatigue is a probable failure mode. However based on the 

descriptions of the failure, the failure mode identified was brittle fracture. This 

agrees with results from [24].  Also alloy steels are commonly used for 

flywheels in high speed applications and alloy steel is one of the identified 

material substitutes.  

Example 5: Materials for Table legs 

Furniture designers, conceive of a light-weight table of daring simplicity: a flat 

toughened glass supported on slender, un-braced cylindrical legs. The legs must 

support the top and whatever the weight that is placed on the table without 

buckling [4 (Ref 6.4)].  The objective is to find lighter alternatives to cast iron that 

can be machined. The alternative should also be least expensive. 

Table 16: Candidate material substitute for flywheel 

Material Class Material 

Steel Low alloy steel, Medium carbon steel 

Ultra high strength 

steels 

Ultra high-strength steels for structural 

applications 
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Process: 

1. In this example, the failure mode is buckling and the original material is 

cast iron. Table legs are not one of the standard machine elements. 

However we can use the fuzzy logic system to identify an equivalent 

machine element that is similar to table legs in application and identify 

material candidates for that machine element. 

2. So the first step in the process to identify the machine element using the 

fuzzy logic process. If the machine element is not known, then part 

function and mating machine elements are used in identifying the machine 

element.  

3. The part function from the problem description can be defined as 

“Transfer force”. A confidence of 90   is also input with this part 

function since it is clearly defined. Fasteners are one of the machine 

elements that definitely mate with the machine element. We also need to 

put an equivalent machine element that represents a heavy object. Of the 

list of machine elements engine block is a prospective mating machine 

element.  However the confidence is only 30% due to the guessing of 

mating machine elements. 

4. The first step in the fuzzy logic process is to convert the input confidence 

% to fuzzy values using fuzzy membership functions. 
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n
=

 

 

 

 
 LOW:

1 if Xn 25 

50-Xn

50-25
if Xn>25  and Xn<50 

 

 
 
 

 
 

M   UM:

Xn-25

50-25
if Xn>25  and Xn>50 

1 if Xn=50 

75-Xn

75-50
 if Xn>50  and Xn<75 

 

 H  H:

Xn-50

75-50
if Xn>50  and Xn<75 

1 if Xn 75 

 

  

   
PartFunction

= H  H,1  for XPartFunction=90   

 
Mating lement

=  LOW,
50-30

50-25
 ,  M   UM,

Xn-30

50-25
  (for XMating lement=30 ) 

=> LOW,0.8 ,[M   UM,0.2  

5. The next step in the process is to setup the output machine element 

member function. The confidence is high in part function input compared 

to confidence in mating machine elements. Hence referring table 9, the list 

of potential machine elements for “Transfer force” part function is 

Chassis, Engine block, Housing and Pulleys. However engine block in 

itself is a mating machine element and hence it is ignored as candidate 

machine element. 

6. The list of possible machine elements is then cross referenced with table 

10 and the input mating machine element – Fasteners and Engine Block. 

The resulting machine element member function also has three confidence 

categories (LOW, MEDIUM and HIGH). Chassis mates with both the 

mating machine elements and so is in HIGH category. Housing mates with 

only one machine element, fastener and so it is in MEDIUM category and 
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finally pulleys don‟t mate with any of the specified machine elements and 

so it is in LOW category. 

7. The next step in the process is to combine the input and output fuzzy 

member functions in mamdani type rules. Referring the rule logic table 11 

for machine element identification the two rules combination are 

a. If PF is HIGH and MME is LOW then ME is HIGH – R1 

b. If PF is HIGH and MME is MEDIUM then ME is HIGH. – R2 

(Where PF is part function, MME is mating machine element and ME is resulting 

machine element and R1 & R2 are rules 1 & 2). 

8. The next step in the process is to compute the output fuzzy membership 

scores for rules 1 and 2. Since Product/Sum norm is used, the membership 

score for  

R1=   
PartFunction

* 
Mating lement

 LOW  = 0.8*1 =0.8 

R2=   
PartFunction

* 
Agent

 M   UM  = 0.2*1 =0.2  

9. The final step in the fuzzy logic process is to defuzzify and obtain the 

machine element and confidence% on the corresponding machine element 

identified. The rule scores are R1 [HIGH, 0.8] and R2 [HIGH, 0.2]. We 

use the maximum value method to defuzzify. The maximum value is thus 

0.8 corresponding to R1. Thus the machine element corresponding to 

HIGH category from step 7 is chassis and the confidence % in the 

identified machine element is greater than 50% but lesser than 75%. 
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10. Thus a standard machine element equivalent to the non-standard 

component table legs is chassis. For the identified machine element, 

referring the machine element reference table 17 for chassis, the list of 

potential failure modes are Elastic deformation, yielding and buckling. 

 

11. The failure mode specified is buckling. Buckling is one of the critical 

failure modes for chassis. Referring table 2, the critical material properties 

related to buckling are compressive yield strength and modulus of 

elasticity. Since the part is not yielding, we are only concerned with 

modulus of elasticity property. 

12. Then material property value for the originally used cast iron material is 

obtained from the material database. The objective is to find lighter and 

stronger candidate substitute materials. The target increase is specified at 

20%. The constraint to find least expensive alternatives and that can be 

machined. 

13. The identified candidate material substitutes are: 

 

Table 17: Machine element reference table for chassis 

Machine 

Element 

 Load 

Conditions 

Commonly used 

materials 

Potential Failure 

Modes 

Chassis  

Axial Loads, 

Bending 

Loads and 

torsional loads 

Steel, Stainless Steel, 

Plastics, Aluminum 

and Magnesium 

Primary: 

Force-induced elastic 

deformation, 

yielding, and 

buckling. 
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Verification: 

 Chassis systems even though have a much different applications, they 

essential carry the massive vehicle loads. Also the failure mode specified is one of 

the potential failure modes for chassis. Thus the equivalent machine element 

holds good. Also the candidates are some of the commonly used materials in 

modern table design. It should be noted other materials such as stainless steels, 

magnesium alloys and titanium were also identified as candidate materials but 

they were then filtered out due to the specified cost constraints and manufacturing 

constraint. 

Example 6: Materials for spring 

Springs come in many shapes and have many purposes: axial spring, leaf springs, 

helical springs and torsion bars [4 (Ref 6.7)]. Consider a helical coil spring in 

tension with a steady load, at room temperature. The objective is to find stronger 

alternative materials that can withstand higher loads. The estimated load increase 

is considered be 20% that of the normal load conditions. The originally used 

material is steel. 

Table 18: Candidate materials for table legs 

Material Class Material 

Steel Carbon steels, alloy steels, hardened steels 

Cast iron White cast iron 

Epoxy resins Molding compounds 
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Process: 

1. The machine element is spring, the originally used material is steel, but the 

failure mode is not known. This is similar to example 4 and so the first 

step is to identify the failure mode. 

2. The failure mode identification process is done with the help of fuzzy 

logic. So failure descriptors are used in identifying the actual failure mode 

of the component. The failure agents are well known to be a (load – 

steady, temperature – room). The failure hours of operation is determined 

to be short. Since all of this information is given the input confidence is 

greater than 80%. The failure manifestation is not clear. There is no 

fracture or visible plastic deformation and there is no dimensional 

reduction. Thus the only option is elastic deformation. The deformation is 

also chosen as a body failure. The failure manifestation is given a 5% 

confidence since it is derived by method of elimination and failure 

location is given a 25% confidence. 

3. Following the same sequence of steps 5-11 in example 4, the failure mode 

identified is Brittle fracture. The confidence in the identified failure mode 

is less than 30% which is alarming. 

4. The next step in the process is to obtain the potential failure modes of the 

machine element specified. Referring table 3, the potential failure modes 

of springs (brake springs) are Yielding, Fatigue, Corrosion Fatigue, 
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Fretting Fatigue, Creep, Thermal relaxation, Buckling and Surging (Force-

induced elastic deformation). 

5. Referring the identified part failure mode with the list of potential failure 

modes, it is found that the machine element cannot undergo the failure 

mode specified. Hence the material substitution process is aborted. 

Inference: 

 Some of the primary failure modes of springs are Yielding and Elastic 

deformation. They do not fail by brittle fracture. Given the input combination of 

failure agents, yielding and elastic deformation was also found out to be potential 

failure modes. However owing to very low confidence input in the identified 

failure manifestation and failure location, the yielding and elastic deformation 

failure were not deemed to be the probable part failure and the identified failure 

mode – brittle fracture - is very low in confidence. It suggests that when failure 

modes are identified with very low confidence it has to be treated with additional 

care. It suggests that closer inspection of the coil spring is required to verify the 

failure manifestation and failure location. After inspection, with higher 

confidence or with additional inputs the right failure mode may be identified with 

higher confidence. It happens so, that in this case the low confidence failure mode 

identified is incorrect. However there can be cases where machine elements may 

undergo the low confidence failure mode but it may not be the actual part failure. 

Thus output confidence % plays a huge role in downstream decision making 
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process. Similarly, the output confidence in identifying the right machine element 

is also of critical importance. 

Example 7: Materials for rudder sleeves in ships  

A ships rudder is supported on a sleeve that slides on the shaft. The rudder sleeve 

operates under the most unpleasant conditions [4 (Ref 6.17)]. On inspection it was 

found that dimensional reduction is the main manifestation of failure on the 

surface of the sleeve. The objective is to identify the right machine element and 

the right failure mode and find candidate materials that can replace bronze. 

Process: 

1. This is a worst combination of cases where the failure mode and machine 

element needs to be identified. Thus there are three steps involved.  

a. Identifying the failure mode 

b. Identifying the machine element 

c. Finding candidate substitutes 

2.  ase „a‟ is similar to example 4 , case „b‟ is similar to example 5 and 

finally case „c‟ is similar to example 1 (after cases a & b are executed);\ 

3. For case „a‟, the failure descriptors help in identifying the actual part 

failure. Dimensional reduction is identified as the main failure 

manifestation after inspection and so its confidence is very high (98%). 

The failure location is also identified as surface after measurements and 

the confidence is also high (75%). There is a very high pressure on the 
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sleeve, that is random and there is sliding force. The temperature may be 

low or room but the part fails after a very long time in service. The input 

confidence is moderate (50%). 

4. Thus for this combination of input failure manifestation, failure agent and 

failure location, the part failure mode was identified to be Wear with over 

70% confidence. 

5. For case „b‟, the part function and mating machine element help in 

identifying the actual standard machine element. The sleeve slides on a 

shaft and one of the part functions is to constrain motion. The part 

function is known with certainty but there are additional mating 

components that cannot be specified. So the part function is given a very 

high confidence (85%) and the mating machine element is given a lower 

confidence (60%). 

6. Thus for this combination of input part function and mating machine 

elements, the machine elements identified are (Brakes, Keys, Fasteners, 

Seals and Plain Bearings) with a confidence less than 75% and greater 

than 25%. Of all the machine elements identified, Plain bearings best suit 

the description and function of the component. 

7. Thus the failure mode identified is wear, the machine element is plain 

bearing and the originally used material is bronze. Thus for case „c‟ the 

sequence of steps is similar to example 1. For the objective of finding 



104 

 

improved strength and lighter candidate materials for a target 5% increase, 

the identified candidate materials are: 

 

Verification: 

The machine element given in [4] is a journal bearing. However for the purpose 

of demonstration, the machine element descriptions were used and so the machine 

element identified came out to be the actual machine element. However since 

several other machine elements were identified along with this machine element 

and with not so high confidence % the results still need to be treated with care. 

The failure mode identified as wear with quite a high confidence also corresponds 

to failure mode discussed in [4]. However of the identified candidate materials the 

phenolic is the only material suggested in [4]. However stainless steel identified is 

another candidate material that is commonly used as journal bearings in marine 

applications. Thus the results correspond to standard bearing selection alternatives 

for bronze. 

Table 19: Candidate materials for ship's rudder sleeves 

Material Class Material 

Phenolic General Purpose 

Zinc alloys Zn and Zinc alloys 

Nickel alloys Nickel alloys 

Thermoplastics Polyesters (General purpose) 

Steels Mold steel, AISI 5000 

Stainless steels Precipitation hardened steel  
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CHAPTER 7 

CONCLUSION 

 In this thesis a new knowledge based software system for material 

selection and substitution is developed. The software is particularly useful for re-

engineering legacy engineered systems, where input parameters for material 

substitution are not clearly defined. However it can also be used for material 

selection decisions where the design intent is much clear and the input parameters 

are clearly defined. First a list of parameters such as part function, part failure and 

originally used material are identified as critical for material selection and 

substitution. Since design intent is often not clear for LSE systems, such systems 

only have certain low fidelity parameters such as failure descriptions of the part 

and hours of operation that can be used in identifying the critical parameters. With 

the available parameters, extraction methods are identified for obtaining the 

critical parameters. However extracting data based on only few available 

parameters involve uncertainty. Fuzzy logic is chosen over other methods to 

model the uncertainty due to its inherent advantages. Fuzzy member functions are 

setup to model data imprecision and fuzzy rule sets are setup to model the 

imprecise dependencies of the data. All the input uncertainty translates to a final 

candidate confidence for substitution. It is observed that material selection and 

substitutions are objective driven and hence several goals and constraints are 

discussed for choosing a new candidate material. Finally, seven case studies are 

presented to understand the functioning of the knowledge system and the decision 
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making process. The results and their implications are discussed in each of the 

seven cases. 

7.1. Future Work 

The existing tool is developed on a material database that has materials 

and material property data obtained from literature and MatWeb. However new 

and advanced materials are always being developed, and hence XML based 

material exchange framework such as MatML [22] needs to be incorporated. With 

the framework, user can customize the database based on popularly used materials 

in his field of expertise. The framework can also be customized to add new user 

specific rules, goals and constraints.  
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