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ABSTRACT

Free/Libre Open Source Software (FLOSS) is the product of volunteers collaborating to

build software in an open, public manner. The large number of FLOSS projects, combined

with the data that is inherently archived with this online process, make studying this phe-

nomenon attractive. Some FLOSS projects are very functional, well-known, and successful,

such as Linux, the Apache Web Server, and Firefox. However, for every successful FLOSS

project there are 100’s of projects that are unsuccessful. These projects fail to attract suf-

ficient interest from developers and users and become inactive or abandoned before useful

functionality is achieved. The goal of this research is to better understand the open source

development process and gain insight into why some FLOSS projects succeed while others

fail.

This dissertation presents an agent-based model of the FLOSS development pro-

cess. The model is built around the concept that projects must manage to attract contri-

butions from a limited pool of participants in order to progress. In the model developer

and user agents select from a landscape of competing FLOSS projects based on perceived

utility. Via the selections that are made and subsequent contributions, some projects are

propelled to success while others remain stagnant and inactive.

Findings from a diverse set of empirical studies of FLOSS projects are used to for-

mulate the model, which is then calibrated on empirical data from multiple sources of pub-

lic FLOSS data. The model is able to reproduce key characteristics observed in the FLOSS

domain and is capable of making accurate predictions. The model is used to gain a bet-

ter understanding of the FLOSS development process, including what it means for FLOSS

projects to be successful and what conditions increase the probability of project success. It

is shown that FLOSS is a producer-driven process, and project factors that are important
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for developers selecting projects are identified. In addition, it is shown that projects are

sensitive to when core developers make contributions, and the exhibited bandwagon effects

mean that some projects will be successful regardless of competing projects. Recommen-

dations for improving software engineering in general based on the positive characteristics

of FLOSS are also presented.
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CHAPTER 1

INTRODUCTION

Free/Libre Open Source Software (FLOSS) is the product of volunteers collaborating to

build software in an open, public manner. Specifically, FLOSS includes a liberal license

that makes the source code available to the public, with the intent of allowing others to

examine, modify, and improve the software. Although technically not a software engineer-

ing technique, FLOSS is often developed in a public and collaborative setting, relying on

volunteers to make contributions to the project and often, at least to outsiders, resembling

chaos. This form of developing software has been in use since the dawn of computing,

when early programmers freely shared their code with others for the purpose of using and

improving programs. However, the term open source software wasn’t coined until 1998 [1],

[2].

In order to be considered open source software, a program’s license must meet

certain criteria, including the following [3]:

• The source code must be available for minimal or no charge.

• Free redistribution of the software, as source code or binaries, must be permitted.

• Distribution of modified and derived works must be permitted without discrimination

and under the same license as the original work.
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The Open Source Initiative1 maintains a list of licenses that meet the open source definition.

As of July 2011 there are 69 verified open source licenses, excluding those that have been

superceded or retired [4].

A separate but similar concept to open source software is free software. The main

differences between these two categories are philosophical; those involved in the free soft-

ware movement believe that providing free software is an ethical issue [5], [6] while the

open source movement is interested in open development strictly for practical reasons [2].

The Free Software Foundation2 maintains a definition for free software [6]; the criteria

listed for a license to be considered free software are almost identical to the criteria included

in the open source definition. Although those involved in the free software movement prefer

to be treated separately from the open source movement, even the Free Software Foundation

admits that most open source software is also free software and vice versa3 [7]. Indeed, the

most popular license is the GNU General Public License which, while created and endorsed

by the Free Software Foundation as the preferred free software license, is also categorized

as an open source license by the Open Source Initiative.

For the purpose of this document, no differentiation is made between free versus

open source software. References to open source are intended to include both free and

open source software unless explicitly noted otherwise. The term Free/Libre Open Source

1http://www.opensource.org

2http://www.fsf.org

3The overlap can be seen by comparing the Free Software Foundation’s approved li-
censes (http://www.gnu.org/licenses/license-list.html) with the Open Source Initiative’s list
(http://www.opensource.org/licenses/alphabetical/).
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Software (FLOSS) has been adopted for this document because it encompasses both types

of software and is the most accepted term internationally4. The term “free” is meant as in

“freedom”, acknowledging the ability of anyone to examine and modify the source code.

It does not refer to free as in price, as is commonly assumed, although most free and open

source software is available without cost. The term “libre”, similar to “liberated” in the

English language, is included to accommodate Romance languages that do not include a

base word similar to free5. To differentiate from FLOSS, software that does not make the

source code available is referred to in this document as traditional, proprietary, or closed

source.

The popularity of FLOSS is growing, and it has become common to encounter

FLOSS in many situations. Examples of well-known FLOSS projects include:

• Operating systems: Linux, FreeBSD, OpenBSD, and NetBSD.

• Internet: Apache Web Server, sendmail, BIND, Mozilla, Firefox, SeaMonkey, Kon-

queror, Chromium, Links, and Lynx.

• Programming:

– Web Engines: Perl and PHP.

– Languages: Python, Ruby, and Tcl/Tk.

– Tools: GCC, Make, Autoconf, and Automake.

4OSS, FOSS, and F/OSS are other common abbreviations used to refer to free and/or
open source software.

5e.g., free (EN), frei (DE), and vrij (NL) versus libre (ES/FR), livre (PT), and libero
(IT).
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– Modeling: MASON, Repast, and Swarm.

1.1 RESEARCH MOTIVATION

Although it employs unconventional techniques, the FLOSS development process undeni-

ably produces software that includes many positive properties. A better understanding the

FLOSS development process may result in improving software engineering in general. In

addition, as FLOSS has matured, more and more individuals and companies are relying on

open source software. Being able to predict the future of certain components of FLOSS

may benefit all the stakeholders involved, including both those who are using and devel-

oping the software, and may even lead to better software being produced through a more

efficient distribution of resources (e.g., not wasting resources on inappropriate or doomed

projects).

1.1.1 Positive Characteristics of FLOSS

Software engineering remains a developing field. There is an ongoing search for techniques

and methodologies that can be applied to software engineering processes to improve the

software produced. Building software that is high quality and reliable in reduced time are

just a few of the goals for improving the software engineering process. Interestingly, many

of the activities and techniques that are part of the collaborative FLOSS development pro-

cess contradict traditional software engineering best practices, yet certain characteristics of

FLOSS are highly desirable. Notable positive properties of software developed as FLOSS

include:

• Some FLOSS projects have been shown to be of very high quality [8], [9] and to have

low defect counts [10]. Indeed, Linux has been found to have a very low bug density

that is less than 1/5 of the industry average for commercial software [11].
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• FLOSS is able to exploit parallelism in the software engineering process, resulting

in rapid development [12], [13], [14]. Unlike closed development, FLOSS is able

to tap into a very large user- and developer-base, allowing design, development, bug

identification, bug fixing, etc. to all occur simultaneously.

• FLOSS sometimes violates the bottleneck known as Brooks’ law [15], [16], which

states that “adding manpower to a late software product makes it later” [17].

• As group size increases, cooperation tends to decrease [18] and the incentive to free-

ride increases, yet FLOSS development thrives on an increasing user- and developer-

base [15].

• FLOSS has produced reliable, robust, portable, scalable, and complex software, and

is even used in mission/safety critical applications [14], [19].

In addition, in some instances FLOSS projects have managed to successfully com-

pete with commercial software, sometimes obtaining a greater market share than pay op-

tions, and in the process adding a level of legitimacy to a software engineering technique

that is largely based on the contributions of volunteers. Examples where FLOSS success-

fully competes with commercial products include:

• Approximately 1/3 of one million surveyed web servers run Linux [20].

• Approximately 2/3 of web servers run the Apache Web Server [21], [22]. The next

most popular server is Microsoft IIS with less than 20% of the market [21], [22],

making the open source solution the most popular choice.

• Of the top 10 most reliable hosting sites, 50% run Linux and 40% run FreeBSD [23].
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• The OpenDocument Format (ODF), an open standard and implementation-neutral

file format for word processing, spreadsheet, presentation, and other office docu-

ments, has been adopted by many governments, including the state of Massachusetts

and many countries in Europe [24]. Although not software itself, ODF was devel-

oped in an open manner and is based on the original XML file format generated

by the FLOSS project OpenOffice.org6 [25], which was also developed via an open

community effort [26]. Since OpenOffice.org was one of the first projects to support

ODF, some governments have also switched to using OpenOffice.org [24].

• The open source project Mozilla Firefox7 has captured 26% of the browser mar-

ket8, making a significant dent in Microsoft Internet Explorer’s market share. Google

Chrome9 has captured another 17% of the browser market10 [27], [28], [29], [30].

Ranking as the 2nd and 3rd most popular web browsers respectively, Firefox and

Chrome have eroded the market such that the once-dominant Internet Explorer, while

still the most popular browser, no longer is the choice of the majority [27], [28], [29],

6http://www.OpenOffice.org

7http://www.mozilla.org/firefox

8Based on the mean values from [27], [28], [29], [30] in June 2011.

9http://www.google.com/chrome

10Although Chrome operates under a non-FLOSS license, Google has released most of
the code as a separate open source project called Chromium (http://www.chromium.org).
Essentially, Chromium is the development version of the browser and Chrome is Google’s
rebranded stable release. Sites calculating browser statistics do not appear to differentiate
between the two versions of the browser, which appear to share the bulk of their codebase
(Chrome includes additional features such as auto-updating, built-in plug-ins, and Google
branding).
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[30]; by a slim margin more people use FLOSS browsers than Internet Explorer [27],

[28], [29], [30].

• BIND11, a FLOSS Domain Name Server (DNS), accounts for 57% of DNS’s in a

random survey and an astounding 93% for the more stable .com, .net, and .org do-

mains12 [31]. By comparison, Microsoft DNS software is running on only 1% and

0.1% of the servers surveyed respectively [31].

The positive characteristics of FLOSS are appealing to software engineering in gen-

eral. The fact that certain FLOSS projects are able to compete with commercial projects

further speaks to the legitimacy of the FLOSS development process. Furthermore, unlike

closed source development where processes and data may be highly guarded by the com-

panies developing software, FLOSS development tends to be an open process, resulting

in data being readily available for research purposes. By better understanding the FLOSS

development process, it may be possible to incorporate the FLOSS practices responsible

for these highly desirable traits into traditional software engineering in order to achieve

similar benefits. Indeed, a report from the Workshop on Advancing the Research Agenda

on Free/Open Source Software recommends that the production and organization methods

utilized by FLOSS be studied in order to understand if they can be applied to other fields as

well [32].

11http://www.isc.org/software/bind

12Timed-out requests and responses where the DNS could not be determined are omitted
from these statistics.
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1.1.2 Benefits of Predicting FLOSS

As open source has become a prominent player in the software market, more individuals

and companies are faced with the possibility of using open source projects, which often

are seen as free or low-cost solutions to software needs [33]. In the right situation, this

can benefit all parties involved. For example, IBM is a company that has embraced and

benefitted from FLOSS. When IBM chose to become involved in open source software, it

required the company to perform an 180 degree change in thinking and policy, since IBM’s

business model has traditionally been to create proprietary systems that lock customers into

IBM products for generations, whenever possible [34]. IBM has donated time, in the form

of paid programmers, and code to the FLOSS community, including proprietary code that

was previously owned and guarded by IBM [34]. Of course none of this was done strictly

to benefit the FLOSS community. In return, IBM has used FLOSS as a mechanism to

help unseat competitors, such as Microsoft, in markets where IBM’s own products were

failing [34]. For example, IBM’s web server, Domino, held less than 1% of the market

in 1998 while the Apache Web Server had roughly 50% [34]. Rather than fighting an

uphill and losing battle to gain a foothold in the web server market, IBM joined Apache,

contributing code and money to the project. While there were some initial concerns13,

three months later IBM declared it would ensure the Apache Web Server ran on all of

IBM’s hardware [34]. In return, IBM was able to tailor and include Apache in their own

WebSphere product, which subsequently became successful [34].

13IBM was concerned about legal issues in developing Apache software [34] while the
Apache community was leery of having their reputation tainted by Big Blue [34].
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IBM also contributes to Linux, estimating it saves nearly one billion dollars per year

by using the FLOSS operating system rather than developing its own software to meet the

company’s needs [34]. In essence, the cost to IBM is roughly $100 million per year [34]

and the time and resources of a handful of IBM developers who are assigned to work with

the Linux community. Beyond the monetary savings, IBM receives other benefits as well,

such as gaining respect from the open source community [35], which likely leads to more

IBM products sold. In addition, via submitting code to Linux, IBM is also able to ensure

that Linux is compatible with hardware sold by IBM. Indeed, IBM advertises that all the

company’s servers are Linux compatible [34], a campaign the company started in 2000

[35]. Meanwhile, the Linux community benefits from greater portability of their operating

system, resulting in a win-win situation.

A key to IBM’s success in working with the FLOSS community is the projects

the company selected to be involved in. In the case of Apache and Linux, both of these

projects have evolved to be wildly successful. Linux is the dominant open source operating

system, putting a dent in the commercial operating systems market14, and Apache is the

dominant web server period, even when considering commercial products [21], [22]. In

2011, it is easy to see that both of these projects are formidable forces and are likely to

remain so in the future, but what about when Apache and Linux were new projects? For

every successful FLOSS project there are dozens that are unsuccessful. Indeed, only 14%

of projects on SourceForge, the largest repository of FLOSS projects, were updated in a

14Even Microsoft has cited Linux as the main competition for Windows and a viable
threat [14], [19], [36].
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year15. If IBM had instead chosen different projects and those projects shortly later failed,

it would have been a waste of IBM’s resources. Contributing significant resources to a

soon-to-be-irrelevant project is arguably worse than not getting involved in FLOSS in the

first place [37]. Indeed, the uncertainty of the survival of FLOSS projects and worries about

being able to obtain support are cited as concerns by IT managers considering using open

source [38].

Selecting the wrong FLOSS project to be involved with is a more significant prob-

lem for small companies than with large companies. First, small firms are more likely to

adopt open source software [39] simply because they have fewer resources to begin with

and therefore see the potential for larger gains16. In many cases, it may be impossible

for a small business to write the software itself that is necessary to meet the company’s

needs. The company may have insufficient resources, including time, money, and/or em-

ployees with the necessary expertise. FLOSS is seen as a low-cost option [33] compared

to developing a full in-house solution or buying a commercial product, assuming one is

even available. If open source software with the necessary functionality already exists, a

firm may free-ride. If no such software exists, it may be possible to select a close match

from existing open source software and tailor it to meet the specific requirements. Either

option is less resource intensive than writing the software from scratch and likely cheaper

than buying a commercial solution. However, there is a significant level of risk involved

in becoming involved with FLOSS, considering that most FLOSS projects fail [37]. For

15Based on the time interval from November 28, 2007 to November 27, 2008.

16Surveys have found that firms typically contribute less to FLOSS projects than individ-
uals yet still receive the same benefits [40].
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example, a small firm may invest in a FLOSS solution only to find the FLOSS project aban-

doned a year later, at which point there will be no further enhancements to or support for

the project. Another iteration of selecting and enhancing a replacement project might be

too costly for the business to survive. Although the stakes may be lower in the case of indi-

viduals using FLOSS, adopting an open source project and then shortly later having it fail

still has negative consequences. FLOSS developers may also be interested in knowing what

projects have a greater chance of survival so that the likelihood of their contributions being

wasted is minimized. Even FLOSS projects, which often rely on other FLOSS projects,

could benefit from accurate forcasting. Thus, the ability to predict the future of a project

would be beneficial to anyone, firms and individuals alike, considering using or contributing

to a FLOSS project.

Knowing the future of a project is still beneficial even if a firm only intends to use

the software, but not actively contribute to it. Integrating software into a company comes

with costs, including the initial selection of the software, installing and configuring the soft-

ware, learning to use the software, etc. If the chosen FLOSS project becomes inactive in the

future, a replacement project may need to be selected. Even if the original project fulfilled

all the users’ needs before it was abandoned, it may still be necessary to replace the soft-

ware, partially because any form of support for the existing project has ceased to exist and

partially because software and hardware are constantly evolving; sooner or later something

will occur – a bug will be discovered, a computer will be upgraded to hardware that is not

supported – that forces the users to find a replacement project. The costs associated with

switching projects could be minimized if the future of projects could be predicted, allowing

selection from a subset of projects with expected long lives. If project lifespan wasn’t as
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important as, say, new features and functionality being added, a subset of projects predicted

to be very active could be chosen from instead.

In some cases firms don’t use the FLOSS software themselves. Instead, companies

sell components or services that are complementary to FLOSS. For example, Red Hat sells

support services for Red Hat Enterprise Linux (previously, Red Hat Linux). Likewise, a

company may market software that is complimentary and/or compatible with certain open

source projects. Again, being able to predict the future of projects allows firms to better

position their own marketable products and services. If a FLOSS project dies, commercial

products that are linked to the FLOSS project will likely die as well.

In summary, FLOSS has a number of benefits associated with it, from the poten-

tial to develop rapidly and be very high quality, to the low cost of usage and ability to

customize if necessary. However, choosing to use open source software is risky business,

partly because it is unclear which FLOSS will succeed. To choose an open source project,

only to find it stagnates or fails in the near future, could be disastrous. Accurate predic-

tion of a project’s likelihood to succeed/fail would therefore benefit those who choose to

use or develop FLOSS, allowing more informed selection of open source projects. Unlike

closed source development, where project data may be heavily guarded, data on FLOSS

projects is often public, making it easier to obtain for research purposes. Better understand-

ing the FLOSS development process may also allow all software engineering processes to

be improved.

1.2 UNDERSTANDING FLOSS

The many positive aspects of FLOSS make it worth studying from a software engineering

standpoint in order to better understand what causes these characteristics, so that similar

techniques may be applied to all forms of software engineering. However, in reality it
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is only successful FLOSS projects that exhibit these positive characteristics. In fact the

majority of FLOSS projects are abandoned before developing useful functionality. Thus

understanding why some projects are successful while most are not is also important. Ar-

guably, understanding the differences between successful and unsuccessful projects may be

at the crux of determining the mechanisms responsible for the positive characteristics of

FLOSS.

This research is built around the simple observation that projects must receive con-

tributions from developers in order to progress. Projects that are able to attract and retain

a large number of developers have greater prospects of maturing into useful software than

projects that are unattractive to the contributor community. As such, the approach taken in

this research is to specifically model the project selection process of FLOSS development.

Individuals working on FLOSS do not necessarily receive direct material incentives for

their actions; many are volunteers donating their time, energy, and skills to software devel-

opment without receiving traditional compensation. Therefore, it is critical to understand

what motivates developers to choose projects in order to understand why some projects

are successful. For example, are developers attracted to popular projects, projects with the

most potential for reputation gain, projects which offer the ability to hone and improve

one’s skills, or any number of other potentially motivating factors?

To increase the understanding of FLOSS, this research uses modeling in an attempt

to answer the following questions: Using publicly available data, is it possible to develop

an empirically-grounded agent-based model that can explain historical patterns present in

the FLOSS ecosystem? Can such a model be used to gain insight into components of

the FLOSS development process, such as how developers select projects and why some

projects are successful? What does it mean for a project to be successful in the FLOSS
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domain? What data on FLOSS is available, what methods exist for obtaining data, and

what methodological challenges exist with using the data to calibrate and validate a model?

With sufficient calibration, can a model be used to accurately predict components of the

FLOSS ecosystem?

Based on these questions, the main contributions of this dissertation to the field of

Computer Science are:

1) Creating and validating an empirically-grounded agent-based model of the FLOSS

development process.

2) Confirming existing hypotheses and qualitative data presented in literature, including:

• Showing that FLOSS development is a producer-driven process.

• Determining which factors are important to developers when selecting amongst

projects.

3) Investigating the role of consumers in the FLOSS development domain and conclud-

ing that users exhibit only a minor influence on the FLOSS development process.

4) Determining that there are differences among proposed success metrics in the FLOSS

domain.

5) Demonstrating that core developer involvement has the greatest probability of in-

creasing the chances of project success if it occurs during the mid-stages of develop-

ment.

The remainder of this document is laid out as follows: a literature review of existing

FLOSS models is presented in Chapter 2, along with recommendations and justification

for why FLOSS should be modeled. Existing work is compared and contrasted to this
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research, highlighting where important concepts from existing models have been borrowed

and incorporated into this research.

Methods for quantifying FLOSS are discussed in Chapter 3, including exploring

what success means in the FLOSS domain, what factors potentially affect FLOSS, and

what motivates developers to contribute to FLOSS.

A review of FLOSS data sources, including coverage of what data is typically avail-

able for projects, already existing databases, and techniques for mining data, is contained

in Chapter 4.

Chapter 5 presents FLOSSSimple, a very simple, theoretical model of the FLOSS

development process. FLOSSSimple is based on public goods theory and is used to explore

the impact of different definitions of success in the FLOSS environment and draw some

high-level conclusions about characteristics of the FLOSS development process.

A goal of this research is to demonstrate that key characteristics of the FLOSS de-

velopment process can reproduced via modeling. With a well-calibrated model, it may

even be possible to make predictions about the FLOSS development process. FLOSSSim-

ple is sufficient to explore the impact of different definitions of success, but it lacks many

necessary components to demonstrate reproduction of key characteristics or prediction in

the FLOSS domain. Chapter 6 therefore presents FLOSSSim, an enhanced model of the

FLOSS development process that includes additional components necessary to validate the

model with empirical FLOSS data and produce predictions about the FLOSS process. Once

FLOSSSim is calibrated and validated using publicly available data, Chapter 7 analyzes the

model and uses it for prediction, to understand the importance and influence of develop-

ers and users, and to understand which factors influence the success of projects. Several

scenarios are explored and directions for future work are presented.

15



CHAPTER 2

BACKGROUND ON EXISTING FLOSS MODELS

As FLOSS has become more popular and a formidable force in the software market, it has

become important to better understand the FLOSS development process. One method to

derive additional understanding of the FLOSS development process is through the use of

formal models.

At a workshop for advancing FLOSS research, a group of well-known FLOSS re-

searchers inquired if it might be possible to learn more about FLOSS, or even predict the

behavior of FLOSS communities, through simulation [32]. Acknowledging that FLOSS

software is sometimes as good or better than commercial software in terms of quality, func-

tionality, and maintenance, [41] considers the economics of companies continuing to de-

velop their own software or embracing a more open source process. [41] states that the next

step should be to create analytical models of open source to explore conditions for compa-

nies adopting FLOSS techniques. [42] argues for creating generalized, quantitative models

of FLOSS that could serve as prediction tools for project factors such as the success/failure

of a project, the evolution of source code, the design quality, the number of developers

attracted to a project, and the distribution of work on a project’s components.

Due to complexity, the overwhelming amount of data, time constraints, etc., [43]

suggests studying virtual communities, such as FLOSS, via models. The alternative of

running real-life experiments is both costly and requires substantially high motivation from

the participants [43]. Therefore, modeling is seen as a more promising and lower-risk

technique to gain an understanding of virtual communities [43].
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While an idea about the stability of commercial software may be obtained by an-

alyzing the vendor, for volunteer-driven FLOSS projects predicting the stability and oc-

currence of future releases may be very difficult [37]. Although nontrivial to create, [37]

indicates simulation might be a good option to help answer these types of questions. In-

deed, simulation is needed to fully understand FLOSS due to its “inherent complexity and

large heterogeneity when it comes to motives of participants, size of participation, methods

of coordination, quality of output etc.” [44].

Despite the need for high quality models of the FLOSS development process, there

are not many researchers working on simulating FLOSS [45]. Modeling and simulating the

open source development process thus remains an open research problem [46].

The following sections highlight existing work on the topic of modeling FLOSS.

Section 2.1 presents a literature review of existing FLOSS models, with many models focus-

ing on predicting aspects of FLOSS. Section 2.2 compares FLOSSSim to existing models,

highlighting what makes FLOSSSim unique from earlier work. Section 2.3 contains rec-

ommendations to follow when creating FLOSS models and includes information on how

FLOSSSim adheres to these recommendations when possible. Finally, the reason agent-

based modeling is chosen for FLOSSSim over other techniques is discussed in Section 2.4.

2.1 EXISTING FLOSS MODELS

This section provides an overview of existing FLOSS models in order to familiarize the

reader with the various FLOSS modeling efforts that have already been attempted. Con-

cepts are borrowed from these previous research examples in developing FLOSSSim, and

thus highlighting some of the different approaches to simulating and predicting FLOSS de-

velopment should make it easier to understand the components and design of the model

presented in Chapter 6.
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It should be noted that different types of models, e.g., system dynamics, agent-

based, etc., have different strengths and weaknesses and therefore the types of questions

being addressed may influence the modeling technique applied. Although agent-based mod-

eling is chosen for FLOSSSim, this section includes a review of FLOSS models regardless

of the goal or type of model in order to provide a better understanding of what has occurred

in the field. For an explanation of why FLOSSSim is implemented as an agent-based model,

see Section 2.4.

Models have been grouped according to the modeling technique. Many, but not all,

include prediction as a goal of the model.

2.1.1 Statistical Models

[47] analyzes public FLOSS data in an attempt to create a FLOSS lifespan model while

identifying FLOSS lifecycle characteristics. The ratio of downloads to page views is used

as an indicator for how many people become interested enough to download a project after

visiting the project’s homepage. In addition to downloads and page views, the number of

commits and bugs reported over time are collected for projects, and the shape of the plotted

data is analyzed. It is found that projects progress through up to four phases: 1) develop-

ment, where views, downloads, commits, and bugs increase as rapid development and fre-

quent releases occur, and the project receives good publicity; 2) stabilization, where commit

and bug counts increase less quickly while the audience shifts to only serious users; 3) ma-

turity, where the downloads-to-page-views ratio stabilizes, and the project mostly focuses

on maintenance tasks; and 4) stagnation, where the project becomes inactive. Example

projects that are in each of the phases are identified, along with some exceptions which

violate the identified lifecycle patterns. This work also identifies a number of considera-
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tions and caveats about the data. For example, FLOSS projects vary widely in code size,

audience size, etc., making it impossible to directly compare data across projects. Phase

lengths, rates of change, etc. all vary by project. However, comparisons can be made by

looking at the overall shape of the plotted data. Future work includes using trend analysis

and decision support methods for prediction purposes, with the possibility of seeding the

model with multiple projects.

2.1.2 Machine Learning

[48] uses machine learning to predict the success of FLOSS projects. Motivated by the

fact that there is no way to predict the success or failure of a project at the early stages

of development, this research attempts to forecast the success of FLOSS projects by using

data from the first nine months of development. Project data was mined from SourceForge

using scraping tools from the FLOSSmole project1 and then filtered to eliminate projects

with fewer than seven developers2 and fewer than 100 bug reports3. Projects were then

hand-sorted into successful and unsuccessful categories using five selection criteria. Next,

a k-means clustering algorithm was used to categorize projects into two groups (i.e., k =

2), where the project vectors were comprised of the following six believed-to-be-relevant

factors:

1) Number of distinct email posters

1For a description of both SourceForge as a data source and FLOSSmole, as both a data
source and data collection tool, see Chapter 4.

2This restriction was because the researchers were interested in FLOSS projects that
included a team development effort.

3A sufficient number of bugs was required for the analysis performed.
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2) Number of distinct bug reporters

3) Number of distinct bug fixers

4) Number of distinct CVS/SVN committers

5) Project outdegree4

6) Number of releases

The classifier was seeded with centroids calculated from three projects that were well-

recognized as successful and two unsuccessful projects. The classifier correctly categorized

95% of the 42 projects into successful and unsuccessful groups, and it was demonstrated

that its performance exceeded that of random classification. Reducing the number of fac-

tors necessary for prediction was then explored. The number of distinct email posters, bug

reporters, bug fixers, and committers was shown to be pairwise highly correlated, indicating

all four factors measure the same component of a project. Principal Component Analysis

was used to systematically reduce the number of factors to the most important ones. A rerun

of the classification was performed using the following revised vector components:

1) Number of distinct email posters or bug reporters or bug fixers or committers

2) Project outdegree

3) Developer outdegree5

4Borrowing a concept from social networking, this is the number of other projects de-
velopers on the current project have worked on and is a measurement of the centrality of
the project with respect to the FLOSS developer network.

5The number of developers on the current project who are also involved in the develop-
ment of other open source projects.
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4) Number of releases

Using fewer factors, the clustering algorithm miscategorized different projects but still cor-

rectly classified 95% of the data.

[49] attempts to create rules that can predict the future of projects using data from

SourceForge. First, 63 attributes were collected for a six month timespan for 55,723 projects

hosted on SourceForge. Non-negative Matrix Factorization was then used to identify sig-

nificant independent features, reducing the number of factors from 63 to 10. Attributes

found to be the most significant through this process were number of file releases, num-

ber of developers, number of help requests, and number of opened and closed tasks. The

attributes were then automatically clustered into 10 groups using the k-means algorithm

(k = 10). Based on the automatic clustering, manual rules were then created to sort projects

into their automatic categories. To test the performance of these rules, a subset of projects

was manually sorted into the following categories:

• FAIL: The project was a failure, having zero developers after six months.

• TOP10: The project ranked in the top 10.

• TOP500: The project ranked in the top 500.

• NORMAL: All remaining projects belong to this category.

Support and confidence values were calculated by comparing the results of the manual rules

to the automatic clusters. Support was very low for the TOP10 and TOP500 groups because

the number of projects in these clusters was small. The rules had much higher support for

predicting the failure of a project, with up to 78% confidence in the best case.
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2.1.3 System Dynamics Models

[43] uses system dynamics to study the behavior of participants in virtual communities.

While the study focuses on Comtella, a proprietary collaboration tool used by students at

the University of Saskatchewan, there are some common elements that apply to other virtual

communities like FLOSS, such as the inequality of contributions to the community and the

temptation to free-ride6. The goal of the model is to provide insight into the motivation

and incentive mechanisms that cause communities to develop, including the reasons why

people participate in virtual communities. In particular, the model explores different levels

of participation by users, where those that contribute are promoted to higher positions and

offered more rewards. This is similar to a FLOSS developer hierarchy, where the continuum

stretches from users, who participate at a minimal level, to core developers, who participate

fully and are also awarded the ability to commit changes to the code and make design

decisions, to possibly a “dictator” or leader of a project, such as Linus Torvalds of Linux,

with the final say on anything related to the project. The model predicts the promotion

of individuals to higher positions based on their contributions to the community. The first

iteration of modeling shows the model matches relatively well to empirical data that was

collected from students using Comtella.

2.1.4 Dynamic System Models

[42] points out the need for a category of FLOSS prediction models that can forecast

the success/failure of projects, evolution and quality of the code, bug counts, number of

programmers, etc. The authors first present a general framework and recommendations for

6For a discussion on the temptation to free-ride, see Section 3.2.1.2.2.
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building dynamic simulation models of the FLOSS development process7; they then create

and partially validate a model that follows the framework. The model is built around the

principle that crowds of developers are able to decide:

• Which projects to contribute to

• Which modules to contribute to

• Which tasks to perform

• When and how often to contribute

In the model, developers may perform four actions: 1) design and implement the first ver-

sion of a module; 2) fix an existing defect; 3) test the software; or 4) add functionality and

improve existing code8. The number of developers working on a project is determined by

both the profile of the developer and the quality of the software being developed. Evaluat-

ing the quality of an open source project is based on other studies’ findings and is measured

in the model using the increase in lines of code (LOC) between releases, the total project

averages for the rate of change of LOC and number of tasks completed, and a short-term

“interest boost factor” that occurs when a well-known hacker contributes to a project [50].

The model is calibrated for the Apache Web Server using data from [51], occasionally bor-

rowing values from other studies or making educated guesses when values are not specif-

ically available for the Apache project. The model was able to predict values three years

7Recommendations from the framework presented in [42] are included in Section 2.3.

8Although the developer preferences for each of these activities is unknown, through an
interactive calibration technique it was found that the model performed best when 6.5% of
the developers were interested in writing new code, 3.89% in debugging, 53.7% in testing,
and 35.9% in improving functionality.
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into the future9 that matched well with the actual values of the Apache project, including

LOC, defect statistics, and statistics pertaining to the four types of tasks. The model also

showed super-linear growth periods at the beginning of a project’s lifespan followed by re-

duced rates as a project matured, matching case studies of FLOSS. To demonstrate that the

good model performance on the Apache project was not the exception, the authors recali-

brated the model for the gtk+ project. The predicted values were not as close for gtk+ as

for Apache, but were still respectable.

[52] creates a model of FLOSS based on public goods theory. Specifically, the

authors model the open source phenomenon as a “game of the private provision of a pub-

lic good” [52], borrowing and adapting many assumptions and results from [53], which

looks at the “private provision of a public service,” i.e., public services that no one wants

to provide but are best created by an individual. In the model, individuals have complete

information and there is no centralized control of FLOSS projects. The model is driven

by strategies outlining when it is beneficial for an agent to immediately develop the soft-

ware versus waiting for another agent to develop it. This includes calculating an expected

lifetime utility from using the software to decide if it is advantageous to invest in devel-

oping the software now, and thus start benefiting from it immediately, or to free-ride until

someone else implements the functionality, thus avoiding the cost of writing the software

but also suffering from a delay that reduces the lifetime utility of the software. In addition,

agents’ decisions to work on a particular project are influenced by the number and quality

of other volunteers’ contributions. Data from developer surveys is used to validate part of

the model. The model finds that FLOSS projects exhibit bandwagon dynamics; a program-

9The model run started in 1996 and predicted values for 1999.

24



mer joining a project increases the likelihood of other developers also joining. Likewise,

when a developer leaves a project, the probability increases that other volunteers will also

abandon the project. In addition, the model demonstrates that good programmers attract

other skilled programmers and that projects with large numbers of complimentary modules

are more likely to thrive in an open source environment.

2.1.5 Agent-Based Models

One of the earliest attempts at modeling FLOSS is SimCode [45], a model of developers

selecting and contributing to modules within a single FLOSS project. In the model, devel-

opers’ efforts are afforded to the most rewarding tasks. The model assumes that developers

are more attracted to generic and low-level modules than high-level and highly specific

modules. For example, writing code in the Linux kernel, which is likely to be included in

many future releases and used by many users, is more rewarding than contributing code to

a file system driver, which is more rewarding than contributing code to a driver for a newly

released, obscure printer. Similarly, creating a new module is more rewarding than con-

tributing to an existing module, as there is more reputation gain from being first (similar in

the academic world to being the first to publish a paper). Finally, active and popular mod-

ules are more rewarding than stagnant modules, as there is a larger user base to notice the

contributions. In the model, agents have perfect knowledge of all modules and contribute

their individually allocated efforts to probabilistically chosen modules, where more reward-

ing modules have a higher likelihood of being selected. No attempt to match a module’s

characteristics with a developer’s skills is made. The model endeavors to replicate the high

Gini coefficients for the size of modules found in some FLOSS projects (e.g., Linux [54]).

That is, there is a huge inequality in module sizes, with most modules being very small and
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only including a single developer’s code, while a few modules grow very large and contain

contributions from multiple developers10. Although the first version of the model considers

where developers focus their code-writing efforts within a project, future work may include

modeling which competing projects developers select to receive their contributions.

The authors of [37] are motivated to predict aspects of FLOSS, such as the stabil-

ity of a project’s developer community and potential for future releases, and have created

an initial model that aims to demonstrate how developers choose projects and the global

effects of these choices. The model is able to successfully replicate certain known phe-

nomena present in FLOSS development. The authors include a social networking aspect

in their model and start development by collecting data from Advogato11, FLOSS mailing

lists, and FLOSS developers’ blogs. The data collected are used to recreate the underlying

social networks. The resulting networks are analyzed and the empirically derived network

size and density parameters are included in the model. Called OSSim, the model consists

of multiple projects, developers, and users. Developers and users are modeled as agents

with sets of software-related problems they are interested in solving, such as desiring a text

editor that can be used to modify web pages. Each of these abstract problems is then fur-

ther broken down into individual features, represented as a string from all possible features.

10SimCode studies this inequality of size and developer involvement at a micro level,
seen when looking at the modules within a project, but this phenomenon also appears at
a macro level, when looking across a group of FLOSS projects. That is, most FLOSS
projects are small and contain the work of a single developer, but a few are large and include
contributions from many developers.

11http://advogato.org is a social networking website for FLOSS developers that allows
individuals to rate FLOSS developers’ abilities; essentially, FLOSS developers’ work is
peer reviewed and the results are published for everyone to see.
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Agents select desireable projects by comparing their own problems to the features offered

by projects, using Kauffman’s NK model [55] to evaluate the fitness. The distribution of

developers’ level of skills follows data mined from Advogato. Agents learn about other

projects through the social network, and if an agent becomes dissatisfied with the project

he/she is currently working on, the agent will search for another project. The model was

explored via two experiments. In the first experiment, two competing projects were cre-

ated: one was primed with highly skilled developers while the other was assigned poorly

skilled developers. The model demonstrated the intended behavior of all agents abandon-

ing the project stocked with low skill level developers. In a second experiment, the effects

of negative interactions between features developed by different developers was explored.

Four projects were created and the effects and coupling between features was varied across

model runs. When there were high degrees of interaction between the features, development

slowed and developers more frequently changed projects. This matched expected behavior,

where large, complex, and highly coupled projects tend to progress at a slower rate than

small, simple projects. Although the authors’ goal was to model across a large number of

competing FLOSS projects, the maximum number of projects included in their published

work is four – a small number compared to the actual number of FLOSS projects in reality

that are competing for developers.

[56], [57], [58], [59] are a series of papers that use a combination of agent-based

modeling and data mining. Specifically, these papers model FLOSS social networks, where

developers and projects act as nodes and developers participating in projects form links. By

understanding the characteristics of the networks, the authors hope to gain insight into why

some projects are successful (e.g., examining the network characteristics around successful

projects). In the model, at each time step an agent chooses to create a new project, join an
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existing project, abandon a project the agent is already involved in, or do nothing, where

the probability of each of these actions is based on empirical data mined from SourceForge.

Network metrics, such as degree distribution, diameter, and clustering-coefficient, are then

collected from the simulated network and compared to data mined from SourceForge. Mod-

ifications to the model are made and then the process is reiterated, fine tuning the model to

produce networks with characteristics similar to SourceForge. [57] notes that the Source-

Forge network is scale-free and exhibits small world phenomenon (i.e., a high clustering

coefficient and small diameter). [57] also finds that core developers keep the otherwise

sparse network well-connected and these highly-connected nodes keep the degree of sep-

aration between developers low, aiding in fast communication which may help developers

make well-informed decisions when choosing open source projects.

Although [60] does not focus on predicting success, the model presented does suc-

cessfully reproduce several FLOSS characteristics. Using agent-based modeling, the model

focuses on individuals’ behavior and considers the development of FLOSS an emergent

property. Software projects are modeled as collections of modules where each module has

a fitness and complexity associated with it. Fitness is a measure of a module meeting the

users’ needs and decays over time, representing the changing needs of the users. Unlike

many FLOSS models, this model includes users, who are responsible for adding new re-

quirements to random projects. Developers also randomly move from module to module.

When a developer encounters an unfulfilled requirement, he/she may choose to develop the

code to meet the requirement. When a developer encounters an already-developed module,

he/she may refactor the code, reducing the complexity of the module but leaving the fitness

unchanged. A refactoring attempt may fail if the module is already too complex. Finally,

a developer may choose to further develop an existing module, increasing the module’s
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fitness and complexity. If a module’s fitness is already above a boredom threshold, the de-

veloper will find the work remaining on the module uninteresting and will move to another

module. To validate the model, data from the four successful FLOSS projects Arla, Gaim,

MPlayer, and Wine were collected. The following components were compared between the

model and empirical data:

1) Size: Measured by number of functions in the source code.

2) Complexity: McCabe’s cyclomatic complexity.

3) Complexity change: An indication of whether the code became more or less complex

between releases.

4) Touches: The number of times a file was added, modified, or deleted.

With calibration, the model matched well with three of the empirical data, including the

growth spurts and stagnation periods seen in the four selected projects. Touches did not

match well. The authors found that including refactoring in the model was necessary to

match the data, and users were key to causing the growth spurts through their clustering

around projects. Finally, the model was sensitive to the developers’ boredom threshold;

when set high, high-fitness modules attracted and retained developers. When low, few

projects attracted developers and those that did were eventually abandoned.

2.2 COMPARISON OF FLOSSSIM TO EXISTING MODELS

Chapters 6 and 7 include a description and analysis respectively of a new model called

FLOSSSim. FLOSSSim borrows components from some of the existing literature and

includes unique components as well, attempting to address some of the shortcomings of

existing models. Similarities to the existing models are outlined below:
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• Like [47], FLOSSSim is based on projects progressing through development phases

during the lifecycle of the project. FLOSSSim refers to these as development or

maturity stages and includes six stages in the model rather than the four outlined

in [47].

• FLOSSSim includes the concept that developers’ (and potentially users’) choices in-

fluence FLOSS development. Like [42], FLOSSSim is designed around developers

choosing both how frequently to contribute and what projects to contribute to. As

in [45], agents use probabilistic choice mechanisms to select projects based on the

perceived reward or utility of each project.

• Like [37], FLOSSSim uses a mathematical abstraction of developer’s problems and

interests (albeit the abstraction is implemented differently between FLOSSSim and

[37]) which may then be used to compare the similarity between projects and agents.

• Like many of the models, FLOSSSim is calibrated and validated using empirical data;

when data is not available, estimates are used and/or searches are performed to find

values that perform well.

Some of the key differences between existing models and FLOSSSim are the fol-

lowing:

• FLOSSSim does not use machine learning. While machine learning has been shown

to be effective for predicting the future of projects [48], [49], this technique does not

provide insight into the FLOSS development process itself, such as understanding

why some projects are successful and others are not. In other words, machine learning

acts as a black box, receiving input and producing output without providing details
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of what occurs internally. Since understanding what causes success and failure in the

FLOSS domain is part of the goal of this research, a white box approach is taken.

• FLOSSSim is designed around the concept of projects attracting developers. Namely,

if a project can attract and retain developers, then the project will progress. Including

this concept in the model means there must be a large landscape of varying projects

for developers to choose from. Almost all of the existing models that allow agents

to choose projects include only a small number of FLOSS projects, e.g., [45] focuses

on where developers contribute within a single project and [37] considers developers

choosing from up to only four projects. Yet existing literature indicates that multiple

projects, including competing projects, are relevant in a model attempting to mimic

real-world conditions. For example, [37] showed that developers switch to different

projects based on conditions of current and competing projects. To allow for the

dynamics of agents choosing from multiple, competing projects, FLOSSSim includes

a large pool of FLOSS projects.

• Several models focus on the social network formed by FLOSS developers and

projects, either modeling the network directly (e.g., [56], [57], [58], [59]) or including

the network as a medium of communication for developers in the model (e.g., [37]).

FLOSSSim does not directly include a social network component in the model.

• Many FLOSS models do not include users and none explicitly include passive users

– that is, users that contribute nothing directly to the project (e.g., they do not report

bugs, request new features, provide help to others in forums, etc.). FLOSSSim in-

cludes passive users with the intent of better understanding what impact, if any, this

group has on open source development.
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• The bulk of existing models focus heavily or exclusively on the technical factors of a

project while ignoring the surrounding social factors that may impact the FLOSS de-

velopment process12. FLOSSSim incorporates both types of factors in order to more

accurately model and therefore better understand the FLOSS development process.

A summary comparing features of existing FLOSS models is contained in Table 2.1,

while notable features borrowed from existing models and adapted for use in FLOSSSim

are summarized in Table 2.2.

2.3 RECOMMENDATIONS FOR MODELING FLOSS

There have been a number of general recommendations for modeling FLOSS. Where pos-

sible, these recommendations are followed in FLOSSSim, thus avoiding some of the prob-

lems encountered by other researchers and benefiting from concepts that have already been

peer reviewed.

It is recommended that historical data be used to calibrate FLOSS models [42].

This recommendation is followed by making extensive use of the data that is available from

the FLOSS development process itself. See Chapter 4 for an overview of data sources and

Sections 6.1 and 6.2.2.1 for details on calibrating the model with historical data. In addition,

historical data is used for validation purposes, as outlined in Section 6.2.1.

Unlike closed source software projects, [42] notes that the number of contributors

to an open source project varies widely with time and cannot be predicted. Therefore, it

is recommended that models have a function to control the number of contributions based

on project factors, such as developer interest in the project [42]. FLOSSSim provides this

12The differences between technical and social factors are outlined in Section 3.2.1.
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TABLE 2.2
Noteworthy features of existing models that are borrowed and incorporated into

FLOSSSim.

Previous
model

Noteworthy features Incorporation into FLOSSSim

[47] Work based on projects
progressing through four
development stages.

Projects progress through six
development stages.

[42] Designed around developers
choosing preferred projects and
tasks.

Developers and users choose projects
based on projects’ potential utility.

[45] Agents employ probabilistic
choice when selecting modules.

Agents employ probabilistic choice
when selecting projects.

[37] Mathematical abstraction of
agents’ needs and the ability of
projects to address those needs.

Different mathematical abstraction of
agents’ needs and the ability of
projects to address those needs.

functionality by allowing developers to choose which project(s) they will work on, where

a developer’s choice is based on a number of factors including the similarity between the

developer’s interests and the project.

Closed source software projects tend to have developers that are assigned to specific

tasks. In FLOSS, this is not the case, and developers are free to pick and choose the tasks

that hold their interest – or perform no tasks whatsoever if nothing appeals. [42] recom-

mends there be a mechanism to control the number of contributions from different classes

of developers, such as new, old, and core developers. FLOSSSim does not differentiate

between different types of developers. However, FLOSSSim does allow developers to join

and leave projects freely. In addition, developers may choose how little or much of their

resources they will contribute to a project, forming a continuous gradient from fringe to

core developers.
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Since developers are free to choose the tasks they are interested in working on, their

choice may be made based on two types of factors: factors based on the developer’s profile,

such as the personal interests and aptitude of the developer, and factors based on the project,

such as what tasks are incomplete [42]. In FLOSSSim, developers take into account both

personal and project level information when selecting which projects to contribute to.

The LOC contributed by FLOSS developers varies widely, so a model should draw

from probability distributions for the amount of code contributed by each developer [42].

Instead of LOC, in FLOSSSim developers are endowed with resources that are drawn from

a probability distribution. Developers may then contribute some or all of their resources to

the project(s) of their choice.

FLOSS projects do not include the traditional schedules and deadlines seen in

closed source software engineering. However, the amount of time to complete project

deliverables has a large variance in FLOSS and thus should be drawn from a probability

distribution when modeling open source development [42]. In addition, large tasks should,

on average, take longer to complete than small tasks [42]. FLOSSSim respects both of these

recommendations. The amount of work necessary to complete a project is drawn from a

probability distribution. Developers then work on projects, with their contributions moving

projects closer to completion, resulting in large projects on average taking longer than small

projects to complete.

FLOSS models are likely stochastic simulations. When measuring the performance

of the model, multiple runs should be averaged [42]. This is done when evaluating FLOSS-

Sim, as described in Section 6.2.3.

In the FLOSS engineering process, volunteers develop software often without

strong centralized control [13], [61]; rather, much of the code is developed in a decen-
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tralized manner by individuals. Furthermore, the participants are heterogeneous, differing

in their interests, needs, skills, etc. The focus on individuals and their behaviors makes

agent-based modeling an excellent choice for this scenario [60]. Logical rules governing

heterogeneous agents’ behavior may be implemented programatically, and the FLOSS soft-

ware produced becomes an emergent property of the collective action of the agents [45].

Following these recommendations, agent-based modeling is used in this research.

There exist many FLOSS projects and the existence of one FLOSS project is not

completely independent of other projects. Together, all projects form a software ecosys-

tem [46], where changes to one project may propagate, in one form or another, to other

projects [62]. For example, many open source projects include other open source software

as subcomponents [46]; consequently, for two linked projects a change in either project

may affect the other project. As another example, there are often multiple projects trying

to provide similar functionality. These projects may be viewed as competing and as such, a

change in one project may affect if individuals choose this or another project instead. For

this reason [46] recommends FLOSS be modeled using multiple projects, accounting for

coevolution/codevelopment links between projects. Although FLOSSSim does not include

explicit project-to-project links, multiple projects are included in the model along with the

dynamics of agents evaluating projects with respect to one another and moving between

projects based on the changing conditions.

Much of the research on FLOSS has focused on very limited groups of projects [42].

Case studies, for example, typically include only one or a few projects. While interest-

ing qualitative results have been obtained from these studies, the conclusions reached are

not necessarily globally true, or even true for most FLOSS projects [42]. For example,

many case studies examine highly successful projects but ignore obsolete or failed projects,
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bringing into question if the conclusions drawn from these studies can be universally ap-

plied. There is a need to move from project-specific models to more general models based

on quantitative data [42]. Following this recommendation, FLOSSSim avoids using highly

specific data, such as conclusions from case studies, whenever possible. When calibration

data is being collected and analyzed, care is taken to use large sample populations whenever

possible in order to keep the conclusions more general and applicable to a generic model.

2.4 CHOOSING A MODELING TECHNIQUE

The modeling technique chosen is based on the research goals and data availability. Impor-

tant items that influenced the choice include the following:

• Based on empirical evidence and findings of existing research, the model needs to

include heterogeneous attributes of the actors. Agent-based models are able to eas-

ily capture heterogeneity while other modeling techniques, such as those based on

systems of equations, are more appropriate for modeling homogeneous populations.

• While quantitative data exists, much of the available data from FLOSS developer

surveys is qualitative. Therefore, a modeling technique that can easily capture this

qualitative information is preferred. Agent-based modeling provides a natural method

to translate qualitative data into a model since rules, behaviors, etc. can be coded

programatically. Some modeling techniques, such statistical models, are driven by

quantitative data and ill-suited for capturing qualitative data.

• A goal of this research is to simulate phenomena that can be tested on empirical data,

and to explore the consequences of different assumptions on future trends. Agent-

based modeling provides a transparent, white box modeling approach that allows
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changes to be made and the effects observed. Black box modeling approaches, such

as machine learning, are unable to meet these goals and therefore are not used in this

research.

• In the case of FLOSS, there is knowledge about the actions of individual developers

based on surveys and observations, but not about the interdependencies at a global

level. When low-level data is available, bottom-up modeling techniques should be

chosen over top-down techniques. Agent-based models have been shown to be ap-

propriate in situations where there is insufficient knowledge about the interactions at

an aggregate level but there exists information about the low-level interactions [63].

• There exist aggregate FLOSS data that can be used to validate the model from the

emergent properties of an agent-based model.

Because of these requirements and data availability, agent-based modeling is se-

lected for this research.

2.5 CONCLUSION

The popularity of FLOSS has recently grown, and while the development process is rather

unconventional, it has managed to produce very high quality software. For this reason

FLOSS warrants further study in order to gain a better understanding of a different method

to develop software. Many researchers have concluded that additional knowledge can be

derived through modeling FLOSS. A limited number of attempts to model different aspects

of FLOSS have already occurred, but modeling, and predicting, FLOSS remains an open

research question. The research presented in this dissertation borrows components from ex-

isting FLOSS models, along with adding new concepts, to create a new FLOSS model that
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addresses some of the shortcomings of existing models. Agent-based modeling is chosen

as the technique that best fits the research being performed. Best practices and recommen-

dations from literature in regards to modeling FLOSS are included whenever possible when

designing FLOSSSim.
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CHAPTER 3

QUANTIFYING FLOSS

The focus of this research is to better understand the FLOSS development process, with

a particular interest in gaining insight into why some projects succeed while others fail.

This chapter provides information about FLOSS necessary to reach this goal. Section 3.1

considers what it means for an open source project to be successful, noting that traditional

software success metrics may not apply and thus new definitions of success must be created.

Section 3.2 examines a set of factors that may influence the success of a project. Finally,

Section 3.3 briefly discusses developer motivations, noting that this research aims to better

understand how developers choose which projects to join.

3.1 MEASURING SUCCESS

Being able to predict which FLOSS projects survive and which are abandoned clearly has

utility. In order to proceed, what constitutes success in a FLOSS project must first be

defined.

Inherently, FLOSS engineering is a very different process than traditional software

engineering; it is not simply traditional software engineering poorly implemented [46]. [46]

characterizes FLOSS as “a different, somewhat orthogonal approach to the development of

software systems where much of the development activity is openly visible, development

artifacts are publicly available over the Web, and generally there is no formal project man-

agement regime, budget or schedule.” In fact, much of what is considered best practices

in proprietary software engineering is completely ignored in the open source world (e.g.,
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providing known-to-be-buggy releases of commercial software is frowned upon as doing

so can substantially drive up maintenance costs while tarnishing a company’s image, yet

FLOSS encourages the release of incomplete, immature software). Therefore, it should

come as no surprise that the set of commercial software success metrics may not be entirely

applicable to FLOSS.

Section 3.1.1 outlines traditional success metrics while Section 3.1.2 introduces

success metrics proposed for the FLOSS domain.

3.1.1 Traditional Software Engineering Success Metrics

The following are metrics frequently used when evaluating the success of commercial soft-

ware projects:

Meets requirements specification [64]: The traditional software engineering process in-

cludes generating documents formally specifying the requirements of the system.

Thus, a system’s level of success can be ascertained by comparing the software func-

tionality to the requirements specifications. FLOSS projects, on the other hand, in-

frequently generate specifications for requirements of the system, at least not in the

sense of traditional specification documents [65]. Part of this may be because the

developers of FLOSS are typically also the users [13], [52], [65], [66]; there is no

incentive, and arguably less or no need, to formally capture the requirements since

those who are writing the code are also the ones who conceive the requirements

based on their own needs. [65] finds that FLOSS projects avoid the formal require-

ments elicitation, analysis, specification, validation, and management processes used

in traditional software engineering, instead developing requirements through “soft-

ware informalisms.” While some of the informalisms may produce documentation
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(e.g., discussions on mailing lists, howto guides), no single, formal specification is

generated, nor are a set of specifications deposited in a central location, making this

metric difficult to apply to open source projects.

Completed on schedule [64]: Proprietary software has schedules and deadlines that must

be met. To remain competitive in today’s fast-paced world of computers, software

must be delivered on-time to the customer in order for it to be relevant and success-

ful. Shipping a buggy or incomplete product in order to meet a deadline can, and most

likely will, lead to higher costs through maintenance and support, as well as a loss of

customers, who are displeased with the software, leading to a failed project. Interest-

ingly, FLOSS avoids this problem because there are no hard deadlines [46]. Indeed,

the customers are often the developers themselves [13], [52], [65], [66]. While this

provides an incentive for the developers to complete tasks quickly (as [13] points out,

all open source software originates from a developer’s need to scratch his/her per-

sonal itch), it also provides a reason to not produce a release version of the software

until it is functioning correctly. This is because the developer suffers directly from

poor quality software since it is the developer him/herself who is also the user. A

poor quality release may also cost the developer time and energy in providing sup-

port for the buggy software. [13] argues that the lack of deadlines gives open source

a competitive edge when it comes to building quality into the product1.

1 [13] cites two strategies incorporated into FLOSS development to avoid the “deadli-
ness of deadlines” [13] – that is, the low-quality software that results from the requirement
to complete too many features by an unreasonable deadline. One option is to keep the
deadline but relax the feature list. When the deadline occurs, only the features that have
been fully implemented and tested are included in the release version, and no promises are
made about when any particular feature will be included. The second option is to keep the
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Completed on budget [64]: Although functionality is important, software must also be

developed at a reasonable cost. Projects that are money sinks are not considered

successful. FLOSS does not operate on a traditional budget per se [46] and therefore

this metric does not apply.

Penetrates the market: A software product must be able to attract and retain a user-base.

Therefore, one way to measure the success of a project is via the market share the

product captures. With closed source software, the number of users can be tracked

because the users are required to buy the software and/or licenses. This is not the

case with FLOSS, where users may obtain the software anonymously from multiple

sources, including from other users, in most cases making it impossible to know the

number of people using the software or the percentage of the market captured2.

Turns a profit [69]: In the commercial world, a software product may be considered suc-

cessful if it turns a healthy profit for the owning company [69]. Obviously, this metric

does not apply to open source because 1) expenditures are non-existant since most of

the work and resources are donated by volunteers; few FLOSS projects have an actual

required feature list but relax the deadline. The next release will occur only after all the
features in the list have been implemented and tested.

2There are a few exceptions where the market share for open source projects can be
estimated [67]. One exception is the Apache Web Server. Web servers may be queried to
determine what web server is running. Netcraft (http://news.netcraft.com), a company that
explores, analyzes, and provides research data about the Internet [68], uses this functionality
to determine the market share held by web servers by querying on the order of 200 million
sites [21] and tallying the results. Other exceptions might include software that “phones
home,” checks for updates, includes a quality/bug feedback component, etc., which by
contacting a central location provides a mechanism to count the number of copies of the
software that are in use.
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budget; and 2) income from the project is zero because the software is distributed for

free. Without income and expenditures, using profit as a metric makes little sense.

In general, success metrics traditionally used for closed source software do not fit

well when applied to open source projects.

3.1.2 Proposed FLOSS Success Metrics

Since traditional success metrics are not necessarily applicable to open source projects, a

new set of success metrics must be considered. The following describes FLOSS success

metrics that have been proposed and discusses how this data might be collected.

Project completion [70]: If a project manages to include all the desired functionality, it

may be considered a success. In truth, this rarely occurs as most software, especially

in the FLOSS world, is never complete. Even very functional software continues to

exhibit scope creep as new functionality is desired, old bugs are fixed, etc. Further-

more, FLOSS projects rarely have end goals defined to begin with [71], making it

impossible to gauge how close a project is to completion, and the lack of formal

specifications makes FLOSS more susceptible to volatile requirements and scope

creep [71]. Thus, defining success as those projects that are 100% complete will

result in only a minute subset of projects being deemed successful.

Progression through development stages [66]: Since projects are rarely ever complete,

evaluating a project based on its progression through development stages may be a

more valid metric. SourceForge, for example, requires projects to be listed in the

following self-assigned development stages (listed in order of increasing maturity):

planning, pre-alpha, alpha, beta, production/stable, and mature. Success might there-
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fore be defined as a threshold (e.g., projects that reach the beta stage might be consid-

ered successful) or, more dynamically, as the progression of a project through stages

(e.g., occasional upgrading to a subsequent stage might indicate success while stag-

nation in any early stage might indicate failure of a project).

The metrics used to evaluate the performance of a project might differ depending on

the project’s development stage [71]. Therefore, the definition of success might differ

for a project that is in, say, the alpha stage versus the production/stable stage. In this

case, the development stage would act as an input in selecting the appropriate success

metric, but would not be part of the metric itself.

On SourceForge, a project’s development stage is viewable via the web interface.

Therefore, the information for this metric can be obtained for at least SourceForge

projects.

Developer satisfaction [70]: FLOSS is a product of developers. Therefore, if the creators

of the software are happy with the project then arguably the project is meeting its

goals and consequently can be considered successful. Indeed, interviews with devel-

opers have revealed that developers evaluate the success of projects they are working

on based on their satisfaction with the project [72]. Developer satisfaction can be

measured via surveys [70].

User satisfaction [66]: The level of satisfaction of users may be used as an indicator of

the success of a project [66]. Unfortunately, unlike the developer community, which

is a semi-well-defined group of individuals [70], the user community is poorly de-

fined. While developers typically register with a project in order to participate, users

may obtain software from multiple sources anonymously, making users impossible
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to track. As a result, user satisfaction cannot be measured with traditional surveys

as it is impossible to locate members of the target audience. Other non-traditional

methods of obtaining this data suffer from substantial drawbacks. One option is to

collect data from sites like freshmeat3 and Ohloh4, which allow users to voluntarily

review and rate open source projects. Unfortunately, the data on these sites is pro-

vided by a non-random sample of users. Indeed, most projects receive overall high

ratings with low variance, indicating only those who feel positively about a project

take the time to provide feedback [70]. Messages on mailing lists can also be mined

for users’ opinions of a project, but again this represents a non-random sample and

may be biased (e.g., users are more likely to post a message when they are expe-

riencing a problem and seeking help). A final method for obtaining data on user

satisfaction is to build surveys into the software itself. However, if the surveys are

optional or can be bypassed, again the feedback collected likely will be biased. If the

surveys are mandatory to continue to use the software, users may be interested only

in the speed of completing the survey and not in providing honest feedback. Other

problems associated with having the software itself collect and report usage data is

further described in “Popularity with users” on page 49.

Number of developers [48], [67], [70], [73], [74]: Since FLOSS projects rely on both at-

tracting and retaining developers in order to progress, the number of developers as-

sociated with a project has been proposed as a success metric [48], [67], [70], [73],

3http://freshmeat.net is a website that tracks new releases and updates for software, with
an emphasis on FLOSS. Both SourceForge and freshmeat are owned by Geeknet.

4http://www.ohloh.net is a public directory of both FLOSS projects and developers.
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[74]. [48] argues that the number of active developers should be increasing, or at

least remain constant, in order for a project to be successful. Similarly, [73] argues

that only after a project goes through a transition where it rapidly gains developers

does it enter a successful phase. Often developers must first register with a forge and

then join a project in order to contribute. Thus, the number of developers working

on a project can be obtained by checking the number of developers registered with

a project. Unfortunately, this number can be misleading as many of the registered

developers may be inactive. For example, a developer may register for a project and

later lose interest but never unregister with the project [48]. Since inactive develop-

ers do not cause a project to progress, obtaining a count of active developers may be

a better measure of success. One option is to process a project’s Software Config-

uration Management (SCM) logs and count the number of unique committers who

have contributed in the recent past [48], [70]. However, this count will only include

developers with code commit privileges, while it is often the case that people with-

out commit permissions also contribute code to a project indirectly [75]. Analyzing

recent activity in mailing lists, forums, bug lists, etc. may provide a more accurate

account of those working on a project, as it will include people who contribute ideas,

bug and feature requests, code snippets, etc. without being formally registered with

the project [48], [70].

Instead of counting all the individuals associated with a project, a variation is to only

count the core developers. As has been shown in multiple studies, the work distribu-

tion on projects is highly skewed, with a small group of core developers producing
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the bulk of the contributions5 [51], [77], [78], [79]. It has also been shown that a

small number of dedicated developers are involved in multiple projects6 [77], [80].

Thus, by counting only core developers, only the most influential members are con-

sidered when evaluating the level of success of the project. Keeping this in mind, [48]

creates a new metric called project outdegree, a count of the number of other projects

developers are involved with. Essentially, a larger number of dedicated developers

working on a project will result in a higher project outdegree, as these core develop-

ers are likely also involved in other projects. Project outdegree can be calculated by

obtaining a list of developers registered with each project and then cross referencing

the lists to discover which developers work on multiple projects.

Unfortunately, the number of developers is sensitive to the size of a project – small

projects likely have fewer developers than large projects – which makes it difficult to

compare different size projects using this metric without some form of normalization

or adjustment.

SourceForge includes the list of developers associated with a project on the project’s

homepage. Likewise, SCM logs can be downloaded and processed to discover active

committers. The availability of mailing lists and forums archives, bug reports, etc. for

5One study found that four percent of developers contribute almost 88% and 66% of new
code and code fixes respectively [76]. A different survey found that 10% of the developers
were responsible for writing 72.3% of the code base, and the top 10 developers, a mere
0.08% of those surveyed, accounted for an astounding 19.8% of the code [77].

6One survey found that 25 developers, 0.19% of those surveyed, participated in more
than 25 projects, and 250 developers, 1.9% of those surveyed, were involved in more than
five projects [77]. Using data collected by [77], [80] finds that the 100 most prolific develop-
ers contributed to 1886 FLOSS projects, averaging an astounding 19 projects per developer.
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further processing will depend on the project (e.g., not all SourceForge projects use

the bug tracking system provided by SourceForge, forum and mailing list archives

may not be public).

Popularity with users: Regardless of all other indicators, if a project is not being used

it is arguably a failure. This is supported by a survey [72] which asked developers

to define success for FLOSS projects. Opinions differed on criteria for determining

if a project was successful, but all developers agreed that a lack of users indicated

the project was a failure. Use of a project may mean direct use by end-users or the

inclusion of the project as a component in other (FLOSS) projects.

Determining the popularity of a project with users is non-trivial. Unlike the devel-

opers of a project, who can be tracked to some degree via the list of programmers

registered with the project or other digital trails, there is no simple or robust method

to accurately determine the number of users (see “Penetrates the market” on page 43

for an explanation of why this is the case). Still, there are several proposed methods

that attempt to capture the popularity of a project with users through proxies.

One possible proxy for the number of users of a project is the number of downloads

[48], [66], [81]. While download counts are available from sites like SourceForge,

these values under-represent the actual number of downloads, since users may choose

to check out the code via anonymous reads from the project’s code repository rather

than downloading a stable release. Anonymous reads are tracked separately from

download counts of stable release versions. In addition, open source licenses allow

the software to be redistributed, so there may be additional sources beyond a project’s
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homepage from which the software can be obtained7. Furthermore, downloads may

not accurately represent the number of people using the software: some individuals

may download the software but choose not to use it8; other software is frequently

used but rarely downloaded9 [70], [82].

Another proposed metric is the amount of traffic on a project’s website [64]; unfortu-

nately, project traffic suffers from some of the same problems as download counts.

Frequency of use [66] or number of uses [69] is another proposed metric that has spe-

cific advantages. Namely, there is a difference between a project that is downloaded

and used once versus a program that is downloaded and then used regularly. The

former may indicate a failed project (e.g., the user tried the program, found it unac-

ceptable, and then deleted it) while the latter may indicate success10. Unfortunately,

7In some cases a project may keep a web page on a popular forge simply as a placeholder
that links to an official homepage hosted elsewhere. Since the software is downloaded from
the non-forge site, the forge’s count will incorrect. See 4.2.2.3 for more details.

8A variation that helps address this issue is to instead consider the ratio of downloads to
page views [47]. Instead of measuring the number of people using the software, this ratio
represents the number of people who, after visiting the project’s homepage, believed the
software to have enough utility to warrant downloading, and thus is a method of measuring
the software’s perceived usefulness.

9vim, an enhanced clone of the popular vi text editor, is an example of this. Although
vim is available on essentially any UNIX installation, the software is almost always pack-
aged with the operating system distribution and thus not downloaded as an individual
project. Furthermore, vim is stable software so it is unlikely a system administrator would
ever choose to upgrade the software independently of an incidental upgrade that would
occur during a system upgrade.

10However, this may not always be true and depends on the purpose of the software. For
example, software that uploads new firmware by its very nature is run infrequently; indeed,
running the software once and then deleting it may be the normal use case.
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this metric is also difficult to obtain. In theory, the number of times a program is

executed could be recorded by the program itself and this data could occasionally be

reported to a central repository. However, this requires the source code of each project

to be modified and is likely to be frowned upon by many open source users due to this

technique’s resemblance to spyware11. Some open source software already asks the

user for permission to gather and send information back to the project’s developers

(e.g., a crash handler in OpenOffice collects data to help the developers debug the

scenario leading to the failure; the Debian Popularity Contest is a package Debian

users can install that reports packages installed and dates that components are used,

with the project aggregating this data and making it available to the public [83]).

Considering that FLOSS is an online activity, the presence of a project on the Internet

may be a method to judge the project’s popularity. Based on this, [69] proposes

using web search engines to determine the success of a project. Comparing this to

published research papers, where publications that are cited frequently are considered

influential, [69] argues the same for links to projects on the web. Namely, the projects

that are frequently linked to on the web are important and therefore successful. [69]

finds that the number of pages with backlinks to a project’s homepage corresponds

reasonably with the success of the project. Since some web search engines already

index backlinks, as well as allow querying for backlinks, the infrastructure to use this

metric already exists.

11Avoiding spyware/malware is an incentive for using FLOSS. Since the source code is
available for review, the chances of malicious code being slipped into the software unno-
ticed by the open source community is reduced. Furthermore, if malicious code is discov-
ered it can be eliminated by anyone, since the source code itself is available.
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Unfortunately, the popularity of a project is sensitive to the type of project, making

it difficult to compare the level of success of dissimilar projects. More generalized

projects (e.g., a word processor) will inherently have a larger potential audience than

highly specialized projects (e.g., an Esperanto spell checker). For this reason, mar-

ket penetration may be a better metric (see “Penetrates the market” on page 43 for

problems associated with using market penetration with FLOSS).

Number of subscribers [67]: Some projects publish announcements and information

about new releases. Counting the number of people subscribed to announcement

mailing lists, RSS feeds, etc., might be used as an indicator of success since the

number of subscribers is an indicator of the public’s interest in the project [67]. The

number of subscribers is expected to be smaller than the number of users since many

users will be content to occasionally check the status of a project rather than re-

ceive frequent announcements from the project. However, the group of subscribers

might include non-users who are interested in learning more about the project but

have not yet chosen to use the software. Even including the non-users, the number

of subscribers may better represent the group of “core” individuals interested in the

project – individuals that may be anxiously awaiting a bug fix, a feature enhance-

ment, etc., and therefore might be seen as dedicated to the project. Not all projects

post announcements or provide a way for interested individuals to subscribe. Fur-

thermore, the frequency of postings will vary from project-to-project and may have

an influence on those who subscribe (e.g., too many postings may drive away poten-

tial subscribers). Finally, like the popularity of a project with users, the number of

subscribers is also sensitive to the size of the project’s target audience. Therefore, it

may be difficult to compare projects using this metric.
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Activity level [43], [48], [64], [66], [69], [70], [74]: Possibly more important than the

number of developers working on a project is the amount of work that is actually

occurring. For this reason, the level of activity on a project may be an indicator of

success [43], [48], [64], [66], [69], [70], [74]. Activity may include code commits,

changes in lines of code, opened and closed bug reports, opened and closed feature

requests, mailing list and forum posts, official releases, etc. It might be argued that

even if minimal code is being written, a community that is active in supporting users

of the software signifies a successful project. The activity of a project can be deter-

mined by processing logs, e.g., SCM or bug report logs.

An example of a hybrid activity ranking is available from SourceForge. For each

project on the site an activity index is calculated based on a project’s commits, bug

reports and feature request, time since the last file release, time since a project ad-

ministrator logged in, etc. [84]. A list of all hosted projects, ordered by decreasing

activity value, is provided presumably to help those browsing for software to select

active and vibrant projects. freshmeat provides a similar metric called a vitality score,

which is based on the number of project announcements, date the project was created,

and date since the last version was released [85].

Turnaround time to fix bugs [48], [64], [70] and implement features [70]: The amount

of time it takes to fix bugs and/or implement new features may be indicative of the

health of a FLOSS project. Furthermore, the turnaround time to fix bugs and im-

plement new features has high variance among projects, indicating this metric may

be a good choice to differentiate among projects [70]. [48] argues that successful

projects fix bugs quickly. This measure can be further enhanced by taking into ac-
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count the severity of the bugs12 and importance of the features requested13. Instead of

using turnaround time, another option is to measure the proportion of bugs/features

that have been fixed/implemented [70], again possibly taking into account the sever-

ity/importance of the bugs/features. Most projects use software to track bug status

and feature requests so these data may be available.

Release frequency [48], [64], [66], [67], [70], [72], [74]: [13] provides the guideline to

“release early, release often” in order to foster success in open source software de-

velopment, providing examples where this school of thought has created thriving

projects. Failure to produce a release version of software most likely is a sign of a

failed project. Extending this notion, failure to produce a new version within a cer-

tain timeframe may also indicate the project is defunct14. Unfortunately, defining a

reasonable timeframe may be difficult, and some rapidly progressing projects rarely,

if ever, produce release versions, preferring instead to keep the development version

stable and available for download (e.g., stable nightly builds). Release frequency can

be considered a coarse-grained activity measure. File release lists can be obtained for

projects hosted by SourceForge.

12Bugs are often assigned a priority based on their severity. Ideally, critical bugs are
assigned high priorities and fixed quickly.

13Some projects allow the users to vote on the importance of new features as well as the
urgency of fixing bugs [70].

14In a study it was found that projects that have not created a release within the last year
are typically abandoned [72].
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Ports [70]: If a project receives many requests to port the software to other systems, it may

be an indicator of success. By requesting ports, users are acknowledging the utility

of the software over anything currently available on other systems. SourceForge lists

metadata on projects, including what systems the software will run on. As a metric,

porting does not make sense to certain types of projects, e.g., projects written in JAVA

are inherently platform independent and therefore cannot be ported.

User involvement [70]: Part of the efficiency and quality of FLOSS comes from users’

involvement in the development process. For example, users test the software and

provide valuable feedback in the form of bug reports and feature requests. Without

users providing this information, FLOSS development becomes just a group of de-

velopers creating software and loses some of the key advantages it has over closed

source development. Therefore, the number of users actively engaged in the software

improvement process may help measure the success of a project. User involvement

may be partially calculated by comparing multiple logs (e.g., people who have filed

bug reports but are not included in the SCM logs likely are users and not developers

for the project). This metric is sensitive to the type of project, making it difficult to

compare projects with different target audiences.

Project recognition [70]: In a survey [70], developers mentioned public recognition as a

measure of a project’s success. This may include links to the project on the web or

possibly connections to and/or influence of the project on other projects, including

both commercial and FLOSS software. In some cases it may be possible to measure

recognition, e.g., links to a project may be discovered with the help of search engines,

as outlined in “Popularity with users” on page 49.
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Note that many of the success metrics listed are sensitive to project size. For ex-

ample, large projects will more often than not have more developers, more activity, etc.,

than small projects. Therefore, it may be necessary to perform some form of normalization

when comparing dissimilar projects.

To effectively measure the success of FLOSS, it may be beneficial to use multiple

metrics in order to provide a more well-rounded measurement [70]. While many of the

proposed metrics have been used in research, there is no agreed upon subset that acts as

a standard for measuring open source success [70], [75]. For example, [66] considered

projects that were used more frequently, in advanced development stages, and had more

activity to be successful while [48] took into account project activity, release frequency,

and the links between a project and other open source projects.

Section 7.1.4.1 describes using FLOSSSim to explore the effects of using different

success metrics.

3.2 FACTORS INFLUENCING FLOSS PROJECT SUCCESS

What factors exist that influence the success of FLOSS projects? Do certain practices

improve the chances of a project being successful? Fortunately, much research has been

conducted to explore questions about the correlation between certain antecedents and a

project’s success. This section enumerates factors and summarizes the findings of the re-

search. The goal is to identify influential factors and incorporate them into the model.

3.2.1 Types of Factors

Factors affecting FLOSS projects include both technical and social factors.
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3.2.1.1 Technical Factors

Technical factors are aspects that relate directly to a project and its development and are

typically both objective and easy to measure. Examples of technical factors include lines of

code, number of developers, and other project attributes.

The online nature of open source development means that technical factors are often

automatically collected by the software tools used in the development process. Sites that

provide tools for FLOSS development may make these data available to the public, and thus

readily available to researchers. SourceForge, for example, makes much of the project data

it tracks available via a web interface. A sample, non-exhaustive list of technical factors

that can be obtained from SourceForge is shown in Table 3.1. For additional information

on technical factor data sources and data extraction techniques, please see Chapter 4.

3.2.1.2 Social Factors

Social factors pertain to aspects that personally motivate or discourage individuals from

engaging in open source development/use. Examples of social factors include reputation

from working on a project, matching interests between a project and the developer/user,

popularity of a project with other developers/users, and perceived importance of the code

being written (e.g., core versus fringe development [45]). Most social factors are subjective

and rather difficult, if not impossible, to measure. Despite this, it is hard to deny that these

might influence the success/failure of a project and therefore social factors are considered in

the model. Fortunately, the social factors being considered fall under the domain of public

goods, for which there is already a large body of work published (e.g., [86], [87], [88], [89],

[90]).
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TABLE 3.1
Non-exhaustive sample of technical factors available from SourceForge on a per project

basis.

Factor Description
Page views The number of project pages that have been served.
Hits to project logo Number of times a project’s logo has been served. Note that this

is different than page views; a project hosted elsewhere will not
affect SourceForge’s page view count but may affect the project
logo hit count if the offsite web pages link to the
SourceForge-hosted project logo.

Downloads The number of times each release file has been downloaded
from SourceForge.

Bytes served The amount of data served on behalf of a project.
Rank Project list ordered by amount of activity, number of downloads,

number of page views, number of project logo hits, number of
forum posts, or amount of tracker activity.

Bugs List and status of opened and closed bug reports.
Feature requests List and status of opened and closed feature requests.
Support requests List and status of support requests.
Patches List of patches.
Forum posts Messages posted to any project forums.
SCM activity CVS, SVN, etc. commits, anonymous reads, etc.
Developers List of developers registered with the project.
Administrators List of developers registered as administrators for the project.
Registration date Date the project was registered with SourceForge.
License Open source license used by the project.
Intended audience Target users for the software, e.g., advanced end-users, system

administrators, etc.
Release date Date of the most recent release version of the software.
Topic Type or category of software such as games, browsers,

networking, etc.
Operating system The operating system(s) on which the software will run.
Translations Languages available.
Development
status

The maturity stage of the software, selected from: planning,
pre-alpha, alpha, beta, production/stable, mature, and inactive.

User interface User interface, e.g., Win32, Plugins, Java Swing, X Window
System, Command line, etc.

Programming
language

Programming language(s) used by the project.
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Fig. 3.1. Types of goods based on rivalry and excludability. FLOSS is considered a public
good because it is non-rivalrous and non-excludable.

3.2.1.2.1 FLOSS as a Public Good: In economics, goods are divided

into four categories based on whether the goods are rivalrous and excludable. Rivalry means

that the good can be used up or consumed; the use of a rivalrous good by one individual

leaves less of the good remaining for others. Excludablity refers to whether others can be

stopped from using the good. Figure 3.1 illustrates the four types of goods by plotting

rivalry and excludability on separate axes.

Private goods are rivalrous and excludable. Most items that can be bought at a store

are in this category. For example, food is rivalrous in that an individual buying food leaves

less food for others to buy. Food is also excludable in that by eating it, others are unable to

also consume it.

Club goods, also called toll goods, are non-rivalrous and excludable. Examples of

club goods include movie theaters and zoos. Only those who pay or are members of a club
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may use the good. However, one person enjoying the good does not leave less for others to

enjoy.

Common goods, also called common-pool resources, are rivalrous and non-

excludable. Common examples are natural resources, such as clean fresh water or fish

in the ocean. No one can be excluded from catching fish, but each fish caught is one fewer

for others to catch.

Finally, public goods are both non-rivalrous and non-excludable. Examples include

non-encrypted broadcast radio signals and light from a streetlight. Everyone is able to freely

enjoy these goods and one person’s use does not reduce the quantity of good for others.

FLOSS is a public good [12], [52], [91], [92], [93] and may be considered part of

a new class sometimes referred to as digital public goods15 [91], [94]. It is non-excludable

in the sense that the source code is typically available to anyone for free16 17, often posted

on a website for uncontrolled download. The fact that software is a digital, reproducible

good makes it non-rivalrous; a person, for example, downloading and using a program

does not affect another person’s ability to download and use the same software. Arguably

15Another example of a digital public good is Wikipedia (http://www.wikipedia.org),
where the product is encyclopedia articles instead of software.

16Technically, the Open Source Initiative’s definition of open source allows distributors
to charge a nominal distribution fee for the source code, thus making it excludable. In
reality, this is almost never done. In addition, most open source licenses permit the code
to be redistributed for free, so even if one party chooses to sell the code, another party in
possesion of the same code may choose to redistribute it for no cost.

17In order to meet the Open Source Initiative’s definition of open source, a project’s
license must not discriminate against anyone or any group, nor limit what field the software
may be used in. Essentially, this guarantees that no one is excluded from obtaining and
using open source software.
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FLOSS is not a pure public good because the licenses typically require credit be given to

the developers (e.g., a developer’s name appears by the code he/she contributed and, as per

the license, the attribution may not be removed), whereas no part of a public good is owned

by an individual. Furthermore, some open source licenses permit the code to be privatized,

even allowing the code to be absorbed into commercial, closed source software products18.

In this sense, FLOSS may be seen as sharing features with common-pool resources [95];

that is the public code may be moved into the private domain, which threatens the future

availability of the source [95] for others to use and/or further develop19.

3.2.1.2.2 The Tragedy of the Commons: Goods that are non-excludable

are sometimes referred to as the Commons, as shown in Figure 3.1. These goods are col-

lectively owned and anyone from the collective is therefore free to use them. This results in

two potential problems. First, in the case of public goods, a characteristic emerges known

as the collective action problem [96]. Essentially, the concern is that individuals are rational

beings that are interested in maximizing their own utility. If an individual can have a good

for free, there is no incentive for that individual to contribute to or maintain that good. If

all individuals behave this way, there is the danger that the good is never created in the first

place and thus no one benefits. Individuals that use goods without contributing are known

as free-riders.

The second problem is known as the Tragedy of the Commons [97] and is tradition-

ally applied to common-pool resources. Since the use of common goods is subtractive, a

18See Section 3.2.2.1 for a description of different types of open source licensing.

19A form of licensing known as a copyleft is employed by many FLOSS projects to stop
this from occurring. See Section 3.2.2.1 for a description of copylefts.
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problem occurs when too many people use a good. The classic example is a common parcel

of land on which cattle may feed. It is to each individual’s benefit to continue adding cows

to the land even if this exceeds what the land can support. The risk is that if too many cows

are added, the grass will be exhausted and the field will no longer be able to support any

cows. The problem occurs because the benefit to the individual – gaining another cow – is

large while the damage to the resource is spread across all users of the field. The Tragedy

of the Commons occurs with many natural resources.

Although the Tragedy of the Commons originally applied to rivalrous goods, [72]

extends the definition to FLOSS, arguing tragedy in FLOSS is “when collective action

ceases before a software product is produced or reaches its full potential.” The logic is

that abandonment amounts to the same result as overuse – partially developed software that

did not reach a level of useful functionality is no longer useful to the users, just like an

overgrazed field is not useful to ranchers raising cattle. Arguably the tragedy is bigger in

FLOSS in the sense that an overgrazed field likely produces some cattle for each rancher

before being completely exhausted while a FLOSS project that is abandoned before useful

functionality is reached provides no utility to users.

Although there has been much research on the Commons and public goods, most of

this work is not specific to FLOSS; for example, some of the research explores why people

volunteer to contribute to public goods and what contextual factors increase these contribu-

tions. The findings of this literature are applied when designing the model, as are findings

from publications investigating how FLOSS works, extensive surveys of developers ask-

ing why they participate in FLOSS (e.g., [1], [98]), and comments and opinions of FLOSS

users (e.g., [38]).
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3.2.2 Existing Research on Factors

To better understand what affects the performance of FLOSS development, physical at-

tributes (e.g., programming language, software architecture design, content management

system), community attributes (e.g., degree of user involvement, leadership characteris-

tics, social capital), and institutional design (e.g., norms, formal rules, governing structure)

should be considered [99]. A number of studies have already considered various factors

and their impact on the success of open source projects. These studies can be further subdi-

vided into two subcategories: those that look at factors that directly affect a project’s success

(e.g., [64], [81], [100]) and those that look at factors that attract developers to a project, thus

indirectly affecting the success of a project (e.g., [13], [15], [52], [101]). For the purpose of

this research, both categories of factors are considered. These potential factors, along with

the findings of the studies, are presented in the following subsections.

3.2.2.1 Licensing

Licensing is at the crux of FLOSS; the license is, in fact, what makes software open source.

However, there are a large number of licenses, with the Open Source Initiative certifying

69 licenses as Open Source Definition compliant20 [4]. Do the differences in the licenses

affect the success of a project, for example by changing the attractiveness of the project to

developers/users, or are all open source licenses essentially the same?

A particular type of open source license is also known as a copyleft. Whereas tra-

ditional copyrights protect the rights of the person who created the software by prohibiting

others from copying, modifying, or redistributing a product, copylefts use copyright law

20As of July 2011. This number does not include those licenses which have been su-
perceded or retired but also meet the Open Source Definition.
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to extend these same rights to the general public. Copylefts further require that all derived

works be released under an equivalent license – often the exact same license – thus ensuring

that any code derived from copylefted software will remain open to the public. Also known

as a reciprocal license due to this requirement, this has resulted in copylefts earning the

nickname of viral licenses since the license spreads like a virus to all derivatives of copyleft

protected software. The GNU General Public License (GPL), the most popular open source

license21, is the most well-known example of a viral license.

At the other end of the spectrum from copylefts are permissive free software li-

censes. Unlike copylefts, which prohibit any additional licensing restrictions from being

added when releasing modified software, permissive licenses may allow the addition of

more restrictive terms than that of the original license when software is re-released. For ex-

ample, BSD-style licenses are a popular example of permissive licenses that allow the code

to be used in essentially any manner, even to be closed and used in proprietary software

released under a non-open source license; the only stipulation is that the programmers of

the open source code be acknowledged.

Numerous other open source licenses exist somewhere between the reciprocal li-

censes and the permissive licenses. Licenses on the former end of the spectrum are some-

times (somewhat confusingly) referred to as restrictive licenses, because they include terms

(i.e., restrictions) that require the software stay open source. Software on the latter end of

21On Sept. 12, 2010, http://sourceforge.net/softwaremap/?&fq[] lists almost 43% of the
hosted projects as using the GPL and just over 7% using the related and very similar Lesser
General Public License (LGPL). The next most popular license is the BSD License, which
is used by only 5% of the projects on SourceForge. Other studies have put the percent of
projects using the GPL as high as 72% [64], [101].
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the spectrum are sometimes called unrestrictive or nonrestrictive licenses, since the terms

allow the software to be used in any manner, provided credit is given to the authors.

Viral licensing allows software written under other licenses to be absorbed by a

viral license – the caveat being that the original project cannot benefit from modifica-

tions/improvements that occur because of the requirement that the changed version adopt

the viral license. This occurs, for example, when combining code from two different

projects, where one employs a viral license and the other does not. The resulting soft-

ware must be released under the viral license in order to satisfy the viral license’s terms.

This is a point of contention with open source developers, as this practice seems to violate

the spirit of open source, namely by not allowing improvements to be contributed directly

back to the original project so others can benefit from them as well. Modifications may still

be returned to the open source community, but they will now fall under the viral license.

It is extremely common for FLOSS projects to include other FLOSS projects as

dependencies. For example, an open source web browser may rely on an open source

library to handle decompressing JPEG’s. Two licenses are said to be compatible if code

under each license can be mixed and/or combined to create new software. Essentially, this

means that none of the terms and conditions of the two licenses conflict with one another.

Since the GPL is so popular, of particular interest is if other licenses are GPL com-

patible. If a project fails to use a GPL compatible license, it may be at a serious disadvantage

because this significantly reduces the number of other open source projects that it is possible

to collaborate with. Interestingly, other licenses may be compatible with the GPL, but once

combined with code that uses the GPL, due to the viral nature of the license, that code must

always be released under the GPL. When mixing code with different compatible licenses,

the fact that the GPL “takes over” any other license has upset some open source developers.
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Arguments abound about which is the more free, less restrictive license. The Free Software

Foundation, which created and maintains the GPL, argues that the GPL is less restrictive

because it forces the software to remain public and open. Meanwhile, those in favor of per-

missive licenses point out that when combining with the GPL, software using permissive

licenses loses freedoms, such as the ability to be modified and released as closed source.

Thus, the argument is that the GPL takes away some of the freedoms originally afforded to

the software and therefore it is actually more restrictive. For this reason some open source

licenses have added specific terms aimed at disallowing the code to be released under the

GPL, thus protecting a different notion of “free”.

The importance of licenses and license compatibility can be seen when creating a

large project from smaller projects. Through its choice of licenses, a project immediately

affects what other projects might be interested in using it and restricts what other projects

are available for it to use. Developers looking to add functionality to their project may

be forced to select a less desirable project – or worse yet, write the code themselves from

scratch – if the best project’s license is incompatible with their own project. This may

result in duplicated efforts by developers working on different projects – effort that could

have been spent on improving quality or adding other functionality. For this reason, it is

advantageous to adopt a popular license, or at least a license that is compatible with other

popular licenses, if any form of collaboration is going to occur.

It can be seen that licensing in the open source domain is a huge, complex, and

important topic. There are efforts to reduce the number of licenses and avoid the creation

of new ones unless absolutely necessary in order to simplify the complications associated

with interactions between licenses and even different versions of the same license [102],

[103]. Full coverage of issues regarding license compatibility is beyond the scope of this
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document. An overview has been provided to demonstrate that license choice may indeed

have an impact on a FLOSS project.

Reputation is often cited as a reason developers contribute to software22. That is,

developers may be interested in contributing where their work will bring them the largest

reputation boost, and licensing may be seen as affecting the potential gain. For example,

licenses that allow code to be absorbed into commercial products may be viewed as un-

desirable since the commercial product may be in direct competition with the open source

version, resulting in a reduced audience to notice the contributions of the developers [64].

By requiring that source code stays open, restrictive licenses help ensure that even small

contributions have at least the potential for long-term benefits [104]. Perhaps the worst-

case scenario would be open source software that was developed under a permissive license,

only to be privatized, improved, and released as commercial software. In this case, the very

same developers who created the original open version may end up buying the commer-

cial version, yet they will not have the ability to modify the software to meet their specific

needs [64]. Other motivations for contributing to open source also seem to favor a copyleft

license. For example, developers who are looking to improve their programming skills23

need the code to remain open in order to obtain feedback and learn from other expert pro-

grammers. Likewise, a programmer looking to increase his/her desirability to a potential

22Although reputation is frequently cited as a reason developers contribute to open
source, actually only 9.1% of developers in a survey cited reputation as a reason for joining
the open source community [1].

2378.9% of developers indicate learning and developing new skills is a reason to join the
open source community [1].
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employer24 may want to show his/her code as being included in a stable release, which

again requires the code remain in the open source domain.

Keeping in mind that the popularity of a project may be linked to a project’s level

of success, [64] considers the effects licensing has on the number of users. It is shown that

projects using nonrestrictive licenses accumulate more subscribers to project announcement

lists than projects using restrictive licenses [64]. This seems to indicate that users find more

utility in projects with flexible licenses.

Licenses likely play a part in the motivation of developers [15]. Unlike users, open

source developers may have an inherent interest in keeping the code they write in the open

source domain. If developers are more attracted to projects which ensure this through the

employment of restrictive licenses, one would expect these projects to have more develop-

ment activity. However, it has been found that the effect of license type (i.e., restrictive

versus nonrestrictive) on the number of software releases is statistically insignificant [64].

Likewise, [105] analyzed FLOSS projects in the healthcare industry but found that license

restrictiveness did not affect the probability of projects being classified as successful25.

Another study found that the average output per contributor is significantly higher for

projects with nonrestrictive licenses [104]. Further investigation into this finding showed

that projects with restrictive licenses tend to have larger numbers of developers, many of

whom contribute little and thus drag down the average [104]. The larger number of devel-

2423.9% of developers indicate improving their job opportunities is a reason to join the
open source community [1].

25In this case, success was based on project activity, project downloads, SourceForge
rank, and number of participants [105].
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opers associated with restrictive license projects may indicate an ideological motivation of

open source developers [104].

[106] considers the effect licensing schemes have on the efficiency of a project26.

While this is not a direct measure of success, arguably the efficiency of a project does

impact if a project will succeed; terribly inefficient projects, for example, will likely burn

out before producing useful software. [106] finds there is no significant difference in project

efficiency across different licenses.

Different types of FLOSS may favor different licenses. For example, projects aimed

at end-users tend to favor more restrictive licenses while projects targeted towards devel-

opers generally have less restrictive licenses [101]. This analysis can be made even more

specific than these two broad categories. For example, software written for commercial op-

erating systems with a primary language of English tends to use unrestrictive licenses while

games and software developed in a corporate setting tend to favor restrictive licenses [101].

Thus, it may be more complicated than certain licenses increasing the chance of software

being successful; the license that will most improve the chances of success may depend on

the specific type of software being written.

3.2.2.2 Organization Sponsorship

Organizations sometime choose to be involved in FLOSS projects. This is done for a va-

riety of reasons. In some cases, a company may find an open source project almost meets

their needs and choose to get involved in order to enhance the software with the additional

26 [106] uses Data Envelopment Analysis (DEA) to evaluate the efficiency of transform-
ing inputs into outputs in the context of FLOSS development. For the analysis, the number
of developers and their effort are the inputs; the size (in bytes) of the code, LOC added and
deleted, number of files, number of check-ins, and the development status are the outputs.
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functionality the firm requires. Financially, this may make more sense than purchasing

a commercial product or developing a custom solution. For example, IBM spends $100

million per year to pay a set of employees to work on the Linux operating system [34],

estimating that it saves $900 million per year over developing its own in-house operating

system to meet the company’s needs [34].

Organizations may choose to be involved with FLOSS to capitalize on positive as-

pects of open source, such as innovation and speed of development [107], [108]. For exam-

ple, the company formerly known as Sun Microsystems (now absorbed by Oracle) main-

tains two versions of their office suite: OpenOffice is a FLOSS version while StarOffice is

a commercial version. Sun pays developers to work on the open source version, benefiting

from the contributions of the community as well. Sun then uses the code from OpenOffice

as the base for releases of StarOffice.

Organizations may also become involved with FLOSS in order to widen their user-

base. A hardware company, for example, may be interested in having their products sup-

ported by open source software. By doing so, a whole section of the market becomes

available that otherwise might not be. A hardware manufacturer may even be able to corner

the market if their product is the only option that has decent support in the open source

community, and one way to increase the probability of this occurring is to work with the

FLOSS community, possibly providing hardware specifications or even donating code to

certain projects. IBM employs this strategy by making sure Linux runs on all of the servers

they sell [34], [35]. Companies may also donate resources to a project in order to gain

respect and build goodwill with the FLOSS community [35], [107]. Essentially, a firm’s in-

volvement in FLOSS may be an opportunity to advertise and build public relations, with the

hopes that open source community members will think favorably of the company the next
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time they are in the market for certain products. Even a minimal investment may have sig-

nificant payback; as pointed out by an employee of a company involved in FLOSS, “When

a company sponsors an open source project they need to realize that people are going to

perceive [that the company is]. . . far more involved in [the project] than it might actually

be,” [109].

Companies may sell products or services that are complimentary to FLOSS [107],

[108]. For example, a firm might sell training or support for a certain FLOSS project; it is

therefore in the company’s best interest to make sure the project remains active and relevant,

possibly by paying developers to work on the project.

Sometimes companies choose to sponsor open source projects in an attempt to chal-

lenge a dominating standard [108]. For example, businesses may sponsor Linux in an at-

tempt to unseat Microsoft’s dominance of the operating systems market27 [108]. In doing

so, companies are able to create a competitive project at a relatively low cost [108]. Further-

more, if the sponsored project employs a restrictive license, there is no concern that it will

be privatized in the future and turn back into the same situation which was originally being

addressed [108]. Similarly, companies may choose to sponsor projects that create/support

open standards [107], especially if a company has products that also support the standard

and there are threats of other firms creating incompatible, proprietary, or competing stan-

dards [107].

Occasionally a firm may attempt to sabotage a FLOSS project which is perceived

as a threat. In some cases a company’s association with a project alone may be enough

27A prime example of this is IBM, which jumped to support Linux after its own operating
system, OS/2, failed [34].
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to derail the project [67], [93]. In other cases, the firm may endeavor to gain control or

influence over the project in order to encourage decisions that are advantageous to the firm

but contrary to the best interests of the project and/or FLOSS community. A legal example

of sabotage occurred when, starting in 2003, SCO filed a series of lawsuits against various

entities, claiming it owned the copyright on code used in UNIX and that the same code,

which appeared in Linux, was illegal. SCO claimed that anyone using Linux was therefore

in violation of copyright law. It was revealed that Microsoft, whose dominance of the

operating systems market with Windows was (and still is) being eroded by Linux, was

instrumental in both encouraging and funding the SCO lawsuits [110]. The strategy to

eliminate Linux backfired; the lawsuits further fueled the open source community’s hate for

Microsoft, and although not all lawsuits are yet resolved, in general the rulings have been

against SCO28.

The influence of a firm’s involvement on the success of a project has the potential to

be negative or positive. One of the main principles of the Free Software Foundation is that

all software should be free, as in liberated (i.e., free to use and modify for any purpose) [6].

Indeed, 37.9% of respondents in a developer survey indicated the belief that “software

should not be a proprietary good” was a reason to stay in the FLOSS community [1]. In the

same survey, 28.9% of the developers indicated they continue to work on FLOSS “to limit

the power of large software companies” [1]. In some cases, being anti-Microsoft serves

as motivation to participate in FLOSS [15]. Thus a company’s involvement may actually

taint a project and serve as a disincentive for developers to be involved, especially for those

28In SCO vs. Novell, the court ruled that Novell, not SCO, owned the copyrights to
UNIX [111]. Novell has indicated they have no interest in suing over UNIX [112] and do
not believe Linux violates the copyrights they own [112].
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who view for-profit organizations as counter to the open source culture and ideals [67],

[93]. In the most extreme cases, companies may jockey to put their own employees in

the key positions of a FLOSS project, gaining control or even hijacking a project [113].

Inherently, there may be conflicts of interest and goals between a business, which is seeking

to maximize its own profit, versus the FLOSS community, which has other widespread

motivations for creating software [113]. If a company is successful in gaining control,

developers from the FLOSS community may abandon the project [114].

On the other hand, if an organization does not taint or try to control an open source

project, sponsorship may have a positive effect. An organization that pays developers to

work on a project or donates other resources may increase the vitality of the project [67].

Sponsorship may provide benefits to the project that otherwise wouldn’t be possible. For

example, IBM’s involvement with Linux ensures that Linux is compatible with all IBM

hardware. Linux is also frequently run on servers. With IBM’s involvement, the Linux

developer community is able to be proactive and ensure that there will be no problems with

new IBM servers [34], rather than being reactive and fixing the problem after the servers

are installed and in use by the general public.

Studies on the effects of organization sponsorship vary. [115] finds that projects

with firm sponsorship tend to be in more advanced development stages and more frequently

reach the production/stable stage. Projects with company involvement also tend to be larger

and more active [115]. [67] finds that sponsored projects increase in popularity significantly

more than unsponsored projects. However, [105] finds project sponsorship is not useful in

predicting software success.
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3.2.2.3 Target Audience

Target audience inherently is tied to the type of project. For example, office applications

appeal to a different segment of the population than network utilities. At a coarse level,

target audience can be split into two categories: developers and end-users. The majority of

the research done on target audience has used these two categories.

Most software is born from a developer scratching his/her own personal itch [13].

A developer may therefore be motivated to join projects that are interesting and can help

solve the developer’s own problems [52], [93]. Consequently, projects targeted at develop-

ers appear to have an advantage simply because the people who have a problem are also

the ones with the skills to write the software solution. Furthermore, projects that address

common problems may also be at an advantage; the more common the problem, the larger

the segment of the population that will develop the same itch and attempt to scratch it. Thus

software addressing frequently occurring needs may have a larger body of developers inter-

esting in writing the software solutions than software aimed at highly specific or unusual

tasks.

Projects targeted at developers also appear to have an advantage when considering

the user base. With the occasional exception, open source is not known for being user

friendly; FLOSS projects often lack proper or up-to-date documentation [65], [116] and

may require a high level of computer skills to install and use [116]. End-users may not

possess these skills, while many developers will. Thus, projects aimed at developers might

be more popular, albeit with skilled users, which may influence the success of the project.

In general, there are more projects aimed at developers than any other category of

target audience [117]. The class of projects aimed at developers is also the most rapidly

growing category of open source projects [117].
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One study found that FLOSS projects on topics of interest to developers and system

administrators were more successful than projects on topics of interest to end-users [66].

Interestingly, the same study also found there were more projects on topics of interest to

developers and system administrators than to end-users [66]. In addition, developer-focused

projects have been shown to increase in popularity more than end-user projects [67].

On the other hand, projects that listed developers as the intended audience were no

more successful than projects that listed end-users as the target audience [66]. It has also

been shown that the vitality of a project is not affected by the project’s target audience [67].

Finally, the efficiency of a project, where inefficient projects may be less likely to succeed,

is not affected by the intended audience [106].

3.2.2.4 Governance and Coordination

[13] famously characterizes traditional software engineering as resembling a cathedral and

FLOSS development techniques as mimicking a great babbling bazaar. Amazingly, out

of the chaos of differing ideas, agendas, and approaches materializes stable, useable, and

sometimes high quality open source software [13]. The fact that FLOSS development vio-

lates many of traditional software engineering’s best practices, including the organizational

structure, makes open source of great interest to those intent on improving traditional soft-

ware development processes.

Contrary to the initial appearance of FLOSS development being total chaos, there

does exist some form of coordination hierarchy even if it is not explicitly defined. In gen-

eral, at the top of the chain of command are project leaders and core developers. This group

performs the bulk of the work [51], [77], [78], [79]. Below this are central developers, who

semi-regularly contribute to the project, followed by peripheral developers, who contribute

infrequently. If the hierarchy is extended to users, next are active users, who provide con-
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tributions in the form of testing the software, reporting bugs, submitting feature requests,

etc. At the bottom of the hierarchy are passive users, who only use the software but do not

provide any direct contributions to the project themselves29. The number of core develop-

ers is an order of magnitude smaller than the number of central and peripheral developers,

which is an order of magnitude smaller than the number of users [51], [76].

At the top level, there are three types of governance employed by FLOSS projects:

benevolent dictatorships30, rotating dictatorships31, and boards of directors32 [119], [120].

The coordination techniques employed by a project have the potential to have a

huge impact on the project. A project that cannot effectively coordinate the efforts of its

volunteers will likely never create a usable software product. In addition, because FLOSS

is volunteer driven, the developers must be kept happy or they will abandon the project,

or possibly open source development altogether. Developers in general do not like to be

bogged down in heavy weight processes, especially when such processes provide little or

no return on investment. In short, developers who enjoy writing code would prefer to

maximize their time programming and minimize the time spent on other activities related

to the process.

29The hierarchical command structure categories outlined here are based on [118].

30Linux employees this form of governance, with Linus Torvalds having final say on
everything about the project [119]. Emacs is another example of benevolent dictatorship
[119].

31This form of governance is used by Perl [119].

32This form of governance is used by Apache [119], Mozilla [120], and FreeBSD [120].
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Despite the fact that governance and coordination techniques may significantly im-

pact a project, very little work has been done to study the effects of coordination and gov-

erning structure on project success. [120] considers the continuum from control to anarchy

in Mozilla and FreeBSD. While closed source software relies on “diligent project man-

agement,” it is found that FLOSS developers prefer minimal control and flat control struc-

tures [120]. In addition, open source developers dislike explicit rules, commands, and

centralized government, and would rather rely on norms, self-organization, and individual

autonomy [120], [121]. A balance, therefore, must be found between control and anarchy

to increase a project’s chance of success. Control, such as required code approval processes

and rigid commit procedures, is thought to increase the quality of the software [120] and is

a key component of software process improvement [122]. However, tight control, such as

freezing the code for long periods of time while performing testing or building release can-

didates, will slow down the development process [120] and possibly eliminate other advan-

tages FLOSS development has over traditional software engineering. Long freeze periods

may also cause contributors to lose motivation, as it has been shown that a key motivational

factor for developers is the ability to quickly see the results of their work [123]. Anarchy,

on the hand, is supposedly necessary to attract and retain volunteers [120]. Thus both con-

trol and anarchy seem necessary for a project to be successful, yet these two components

conflict with one another.

In addition, there is a question as to the impact certain highly ranked developers

have on the success of a project. For example, Linus Torvalds is responsible for piecing

together releases of Linux based on thousands of contributions that are made to the project.

Indeed, Torvalds admits that his job is mostly about guiding the project and controlling

quality [34]. Is Torvalds easily replaceable, with other developers able to as competently
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and skillfully perform the same job, or are his abilities in managing his project extraordi-

nary, making him key in propelling the project towards success? It has been found that

projects with highly rated administrators tend to be more successful [66]. Similarly, [124]

argues that the personalities and attitudes of those involved may affect the popularity of a

project.

3.2.2.5 Documentation

Open source projects that lack proper documentation appear to be at a severe disadvantage.

From a user standpoint, no matter how functional or high quality the software may be, if

the user cannot figure out how to install and use it, the project has little value. Beyond

users, documentation is also important to developers, especially developers interested in

volunteering for a project. Proper documentation can lead to a better overall understanding

of the project, which helps new developers get up to speed faster and may even increase the

quality of developers’ contributions [81]. Likewise, documentation can lead to increased

maintainability [81]. Therefore, documentation may tie to a project’s popularity, both with

developers and users, and thus may affect a project’s success.

Since documentation appears to be crucial to a project, one would expect open

source projects to include, at minimum, sufficient levels of documentation to install and use

the software for common tasks. The time spent writing documentation is expected to have a

high return on investment; simply put, without documentation no one, save those involved

in the project, may be able to run the software, meaning the effort invested in the project is

largely wasted since the project is unable to reach its full potential, user base, or developer

base. In reality, many projects suffer from minimal or out-of-date documentation [65],

[116].
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In a study of successful and unsuccessful projects it was found that more projects in-

clude user documentation than developer documentation [81]. However, no link was found

between either form of documentation being available and the success of a project [81].

Furthermore, [81] argues that developer documentation is not necessary since competent

developers are able to learn through project observation, e.g., examining the source code

to learn coding standards. Another study found that projects using wikis, which some-

times serve as a form of project documentation, were no more efficient33 than those without

wikis [75].

3.2.2.6 Systematic Testing

The goal of testing is to increase the reliability and quality of software by identifying bugs

(and subsequently fixing the bugs), preferably shortly after they are introduced, when they

are potentially easier to resolve. Both users and developers may be interested in quality

software; whether or not a project engages in certain forms of testing may impact the quality

and thus the interest in the project. Testing may be manual or automated.

Some projects use rigorous testing methods to rapidly discover introduced errors.

For example, some FLOSS projects use tinderboxes. A tinderbox is a computer that contin-

uously and automatically downloads the latest version of the software, builds it, runs a sets

of tests, and reports the results [120]. A single project may have multiple tinderboxes so

that the software can be tested on different hardware, operating systems, etc. [120]. Some

projects perform frequent smoke tests, possibly in addition using tinderboxes. Mozilla, for

33 [75] uses DEA to evaluate the efficiency of transforming inputs into outputs in the
context of FLOSS development. For the analysis, the number of developers and years of
existence are the inputs; the number of downloads, web hits, LOC, development status, and
size, in bytes, of the most recent source release packages are the outputs.
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example, closes the development tree to changes daily while the code is tested, and the tree

is not reopened for changes until all tests on all platforms pass [120].

There also may be control mechanisms in place to maximize the quality of code

contributions. For example, a gatekeeper may need to first be convinced a contributor’s code

is functional before allowing it to be committed to the tree [120]. Through this process, the

code may need to first pass a set of tests (e.g., unit tests, integration tests) before it is even

considered for adding to the source tree.

Projects may also have release management procedures that incorporate forms of

testing. For example, some projects will produce release candidates. Essentially, release

candidates are versions of the software that are beyond beta testing but may still have some

minor bugs. Creating a release candidate is an invitation to the community to test the

software as though it was a stable version. If bugs of sufficient concern are found, they

will be rapidly fixed and a new release candidate made available. If a release candidate is

found to be free of severe bugs, it is upgraded to a release version. Using release candidates

allows a project to take advantage of a large testing audience before declaring the software

stable – a testing strategy often employed by FLOSS projects that is rarely used in closed

source development. Prior to creating a release candidate, projects may first go through

a more rigorous testing procedure than the regular day-to-day testing [120] in preparation

for creating the release candidate. Some projects may even freeze the code for months in

advance of releasing a stable version and focus only on testing and fixing bugs during this

time [120].

A final consideration of the testing process is how a project tracks issues. Some

projects may have comprehensive plans for tracking, prioritizing, and fixing bugs. Other

projects may rely on more ad-hoc methods of managing bugs.

80



It has been found that bug tracking is more common in successful projects [81],

but projects that use Tracker, SourceForge’s issue tracking tool, are not more efficient than

projects that do not use Tracker [75]. Successful projects more frequently produce release

candidates prior to stable releases [81]. However, forms of automated testing are just as

likely to be used in successful and unsuccessful projects [81].

3.2.2.7 Quality

Quality may be an important factor when individuals select projects. Low quality projects

inherently appear to have lower utility and therefore may be rejected when considering

projects, whereas high quality projects, even if they are difficult to initially set up and

understand, may still offer sufficient return on investment to make the effort worthwhile.

The quality of software may be measured via various means, and the quality metrics applied

may differ from individual to individual. For example, quality may be evaluated based on

number of defects, reliability, performance, useability, design, etc.

Using a survey, it has been shown that a FLOSS project’s quality has a positive

effect on both its use and user satisfaction [125]. In addition, as user satisfaction increased

so did use of the FLOSS software [125]. Interestingly, the same study considered the quality

of service offered by the community surrounding a project (e.g., the project’s developers

and other users who might offer support). High quality support from the community did

not lead to increased use of the project [125].

[125] makes no attempt to understand the effect quality has on contributors to

projects. However, since the developers of FLOSS are often also the users [13], [52], [65],

[66], and users are drawn to quality, it is likely that quality also has a positive impact on

attracting developers.
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3.2.2.8 Programming Language

An advantage of FLOSS over closed source development is the ability to take advantage of

a larger pool of talent. In the case of a company developing software, there are always more

smart people outside the company than there are in the company [34]. FLOSS isn’t limited

this way, and indeed Linus’ Law [13], which states that “Given enough eyeballs, all bugs

are shallow,” is a major argument for why open source development not only works but in

some cases outperforms traditional software development.

Programming language may be an important factor in influencing success because

it immediately limits the number of developers that are eligible to work on a project. The

size of the subset of eligible developers may vary widely depending on the programming

language(s) used. Projects that use common languages, such as JAVA or C/C++, have

access to a larger percentage of the developer population than those that use uncommon or

unpopular languages, for which there may only be a handful of developers involved in the

FLOSS community. More developers means more resources to develop software, as well

as access to more talent. Thus a project using an uncommon programming language may

also be limiting the size of developer pool. A smaller pool may mean not only that there

are fewer developers to potentially join the project but also that less talent is available to

tap into. In addition, there may be fierce competition among projects for these developers

because of their scarcity.

It is possible that programming language also has an effect on the size of the user

base. For example, projects that use interpreted languages, such as JAVA or Perl, may re-

quire more skills from the users in order to setup the environment in which the software will

run. Even projects that use non-interpreted languages, such as C, may still require substan-

tial computer skills (e.g., resolving dependencies, installing libraries) in order to compile
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them. Note that it is common practice for FLOSS projects to provide release versions of the

software in the form of source code only and require the users to build the software on their

own computer. Some projects may release binaries for specific platforms, but the source

code is still available for those using systems not supported by one of the binaries. Projects

that release precompiled binaries are less likely to have the size of their user base affected

based on the programming language used. In other words, the amount of effort required

to install and run the software affects the size of the user base; programming language and

distribution method both impact the level of skill needed to get the software running and

thus also affect the number of users.

It has been found that projects using common programming languages are more

active, reach more mature development stages, and are more frequently used [66]. In addi-

tion, [105] finds that the programming language used by a project is useful for predicting

the success of a project.

3.2.2.9 Target Operating System

Similar to programming language, the target operating system of a project affects the num-

ber of developers eligible to work on the project. Obviously, if a programmer does not have

access to the operating system used by a project, he/she will not be eligible to participate

in that project. However, developer preferences may also play a role. Not surprisingly, the

overwhelming majority of FLOSS developers prefer to use FLOSS operating systems, with

only 2.2% favoring Windows [1]. Thus while the default operating system for commercial

software is Windows, open source projects targeted at open source operating systems may,

surprisingly, be at an advantage. Some projects are platform independent (e.g., projects

written in JAVA) and thus operating system does not have an effect on the number of eligi-

ble developers.
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In addition, the target operating system also has an effect on the potential user base;

many people run Microsoft operating systems while few use, say, OS/2, so the number of

eligible users for Windows applications will be higher than for OS/2.

The target operating system has been found to be a useful component in predicting

the success of an open source project [105].

3.2.2.10 Portability

Portability has the potential to affect the size of the target audience. The more platforms

that a project is ported to, the more eligible developers and eligible users there are that

may become involved with the project. Therefore, it initially appears that FLOSS projects

with multiple ports are at a distinct advantage because of their ability to tap into a larger

segment of the population. However, porting does not come without costs, as it introduces

the complexity of maintaining code for multiple platforms. In an ideal scenario, most code

can be shared across platforms, but in some cases there may be large bodies of platform-

specific code that must be written and maintained for each supported system. The design of

a project may even need to be significantly modified in order to allow convenient parallel

development of ports (e.g., redesigning the software so that platform-specific code resides in

separate modules). Side effects of the added complexities may mean less frequent releases

of the software, an increased number of defects, more developers required, the necessity of

developers to possess a wider range of skills in the form of platform-specific knowledge,

etc.

One study [81] categorized projects according to the level of portability: single

platform, hard-coded for multiple platforms, or multi-platform using an automated system.

No significant difference was found between successful and unsuccessful projects based on

the three portability categories [81].
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3.2.2.11 Version Control and Software Configuration Management

Tools like CVS, SVN, and Git are popular with open source projects to provide both ver-

sion control and software configuration management. SCM is considered a necessity for

high maturity organizations to produce quality software as evidenced by its inclusion in

CMMI level 2 [126]. SCM allows multiple developers to work on software in parallel and

solves many problems pertaining to coordination. The ability for many programmers to si-

multaneously work on the same project allows for rapid development that is a positive and

well-recognized characteristic of FLOSS development [34]. Furthermore, making SCM

repository read access public means that everyone, including users, has access to the lead-

ing edge version of the code. This means that the latest bug fixes can be acquired as soon

as they are available, rather than waiting until the next stable version is released, albeit with

the risk that other more serious bugs may exist in development versions of a project. Mak-

ing SCM repositories public also allows everyone to see where development is currently

occurring and may make it more attractive to other developers by highlighting the areas of

code that need work [81].

It has been found that the use of SCM tools is more common in successful projects

than unsuccessful projects [81] and that most projects using SCM grant read access to the

public [81]. However, it has also been found that projects that use SCM are no more efficient

than projects that do not [75].

3.2.2.12 Mailing Lists and Forums

Mailing lists and forums serve as media for fast communication and may exist for multiple

purposes. For example, developers use mailing lists and forums to discuss and coordinate

work on a FLOSS project. Users employ lists and forums both to ask questions and provide
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feedback on the project, and the content of these messages may influence future changes

and improvements to the project’s code, documentation, etc. Some projects may include

multiple mailing lists and forums, e.g., a separate developers’ and users’ list. Projects that

include mailing lists and forums appear to have a competitive edge over those that do not

because they are better able to utilize the feedback from the users to enhance the project.

In addition, these projects are also able to jump start Linus’ Law: by notifying developers

of unsolved problems via lists or forums, the chances improve that someone will produce a

good solution quickly.

Mailing lists archives serve to lighten the load on developers and users by reduc-

ing the time and energy expended addressing already answered questions. Furthermore,

archives also make it easier for users to access help without facing the potentially intimi-

dating task of posting a question and risking appearing inept. If a question has already been

answered, searching the archives is likely a faster path to obtaining an answer than posting

an inquiry and waiting for a reply. Mailing lists and forums themselves are a mechanism to

contribute to a project, and the help provided in these communication media may lead to a

larger number of people involved in the project.

It has been found that successful FLOSS projects make better use of mailing lists

[81] and more frequently include mailing list archives, with 80% of successful projects

using archives compared to 50% of unsuccessful projects [81]. However, the use of mailing

lists and/or forums has not been shown to increase the efficiency of an open source project

[75].
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3.2.2.13 Development Stage

The development stage of a project provides information about the maturity of the soft-

ware. As such, it may impact the developers and users that choose to be involved with the

software, thus influencing the success of the project.

Users likely are interested in a project for its current utility and thus may be drawn to

projects in more mature stages. A rule of thumb is that projects listed in beta or later stages

are ready for general use while projects in pre-beta stages lack significant functionality and

are less likely to be refined to a level that would be considered user friendly.

The motivation for developers to be involved in a FLOSS project varies over a

wide range. At the purest level, a developer may be interested in scratching his/her own

personal itch [13], in which case the development stage may be less important than how

close the project is to actually solving the developer’s problem. Some developers may be

motivated by other factors, such as maximizing their reputation in the FLOSS community

[1], [13], [35], [98], [119], [127], in which case projects in earlier development stages

may be preferable, as there are still opportunities to contribute to long-lasting core code

[45]. Other developers may be looking to increase their future employment prospects by

gaining skills and experience working on FLOSS [1], in which case development stage is

less important than the potential learning opportunities that a project offers. There remain

other reasons that developers report as motivation to be involved in open source projects

that may or may not revolve around development stage. It therefore remains unclear how

development stage affects the attraction of developers to a project.

Depending on the dynamics, development stage may be an indicator of a self-

exciting process with a tipping point. That is, if a project requires a minimum number

of developers and users to self-sustain, once that number is reached the project may accel-
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erate towards success, picking up more users and developers as it also advances through

development stages. Unfortunately these dynamics, and the role that development stage

plays in them, are not well understood.

Software development is a dynamic process with different activities occurring de-

pending on the development stage. [71] cautions that the expectations and goals of a project

vary over the course of development and therefore developers may evaluate the perceived

subjective and objective performance of a project differently depending on its development

stage. For example, it is suggested that accomplishing clearly defined goals is a more

important evaluation criterion for projects in later development stages. During the earlier

stages clear working procedures and routines have yet to be established and therefore goal-

oriented evaluation may not be appropriate [71]. However, developers accumulate project

management skills over time, meaning improved performance may be expected as a project

progresses [128]. On the other hand, this means joining a project in the later stages requires

more effort on the part of the developer to get up to speed on the design [129] and processes.

Keeping this in mind, it may be a project’s development stage in combination with other

factors that influence a developer’s choice to join and stay with a particular project.

Development stage has been shown to be useful in predicting a project’s success

[105].

3.2.2.14 Activity Level

The progress of a project is tied to the level of activity. Activity level might also be con-

sidered a measure of the intensity of cooperation [66], with cooperation being an important

and necessary component for creating public goods such as FLOSS. High levels of activ-

ity might therefore lead to high levels of cooperation and subsequently a project’s success.
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Projects with high activity levels have indeed been shown to be in more advanced develop-

ment stages [66].

Using machine learning, [48] identifies antecedents that can be used to predict the

success of projects at an early stage of development. Principle Component Analysis is used

to determine the most important factors. During the first nine months of development, the

number of distinct email posters, bug reporters, bug fixers, and SCM committers were found

to be interchangeable factors that accounted for 69% of the total variance when predicting

project success. Since these counts act as proxies for level of activity, this demonstrates that

activity level is useful for predicting the success of a project.

Both of the aforementioned studies seem to support the simple notion that highly

active projects are successful. What is less clear is what is the cause versus the effect.

Do high activity levels lead to continued or increasing activity levels, perhaps by drawing

attention to a project that then gains additional users and developers? Or are there other

properties of projects that attract users and developers, and high activity levels are simply a

side effect of a project improving and moving towards success?

3.2.2.15 Number of Developers

Underlying many of the previous sections is a simple notion: a project must attract at least

a minimal number of developers in order to progress and self-sustain. Having developers

associated with a project does not guarantee its success, but it certainly improves the odds,

whereas a project with zero developers has no chance of becoming successful. As pointed

out in Section 3.2.2.14, activity is necessary for a project to progress, and active projects

appear to be more successful. It follows that the number of developers affects the level of

activity and consequently might influence a project’s success.
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[66] tested the hypothesis that FLOSS projects with more developers are more

successful in that they are in more mature development stages, are more active, and are more

frequently used. The findings were mixed and only weakly supported the link between the

number of developers and success [66]. However, [48] found that the number of committers

could be used to predict the success of a project. The committers of a project are often those

developers belonging to the core team, so this supports the concept that the number of core

developers influences the success of a project.

3.3 DEVELOPER MOTIVATION

Via a large horizontal study of approximately 400 FLOSS projects, [74] concludes that the

pool of developers is limited and the resources available from developers is also scarce,

especially with respect to the number of FLOSS projects competing for developers and

their proficiencies. [64] similarly points out that making meaningful contributions to open

source software involves skills, and because there is a limited pool of individuals with the

necessary knowledge, experience, and expertise, projects may compete to attract the efforts

of these talented developers [64]. As a result, in order to understand which projects will

succeed it becomes important to gain insight into how developers select projects. The idea

is that if developers are attracted to a project, the project will progress. However, if a project

cannot both attract and retain developers, the project will remain inert and, by most success

metrics, be considered (at least temporarily) dead [74], [77].

The purpose of this research is not to understand what initially motivates individuals

to become involved with FLOSS. There exists a body of literature that already addresses

why people contribute to open source or cooperative communities in general. Motivations

that have been suggested include:
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• To gain reputation in the hacker community.

• To increase employment opportunities by both learning from expert programmers

and showcasing one’s own talent.

• To create software that fulfills a personal need.

• To increase the quality of one’s own work through the peer review that the FLOSS

community provides.

• To learn new skills.

• To share knowledge and skills, to be altruistic, and to engage in the gift-giving culture.

• To have fun, because developers enjoy programming and find the experience of work-

ing on FLOSS satisfying.

• To realize a software project that could not be written without the help of others.

• Belief that software should not be a proprietary good.

• To limit the power of certain commercial software companies.

Several large-scale surveys (e.g., [1], [98]) have been conducted that specifically ask devel-

opers why they participate in FLOSS. There are also a number of arguments for developer

motivation based on economic, social, and psychological theories (e.g., [13], [119], [127],

[130], [131]). Overviews of motivational factors are provided in [15], [35], [70].

Instead of concentrating on the reasons contributors are attracted to FLOSS in the

first place, this research focuses on how contributors choose which projects to join once

they have already decided to be involved in the open source community. The development

of FLOSS is a cooperative effort driven by volunteers, and therefore attracting and retaining
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volunteers is imperative for a project to progress and, potentially, succeed [70]. [64] argues

that in order for a project to be successful, it must attract contributions from developers, and

that developers make their selections based on properties of the projects. Therefore, in order

to better understand the FLOSS development process, this research attempts to identify the

characteristics of a project that are important to attract developers.

To gain an understanding of what project characteristics cause individuals to choose

one project over another, the following five factors are selected that are believed to influ-

ence individuals’ decisions when picking a project: similarity between an individual and a

project, current resources being contributed to a project, cumulative resources of a project,

number of downloads a project has received, and development stage or maturity of the

project. These factors are incorporated into the model via a utility function (see (6.2) on

page 156) and then the model is used to explore the currently-unknown importance of each

factor. The five factors were chosen based on existing literature covering influential factors

and a general understanding of the FLOSS development process. The specific reasons why

each factor is considered important to individuals selecting projects are explained in the

following subsections.

3.3.1 Similarity

How important is the similarity between a project and an individual? That is, how closely

must the aspects of a project match the interests of the individual in order to warrant the

individual becoming and/or staying involved with the project? For example, an individual

who has just acquired a new printer is more likely to be interested in FLOSS printing system

projects than in peer-to-peer file sharing applications, at least in the immediate future.
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FLOSS development is a voluntary process; developers both volunteer to be in-

volved with a FLOSS project and then self-assign themselves to specific FLOSS tasks

within the project [42]. This is a key difference from proprietary software engineering,

where developers are assigned by management to projects and tasks that they might find

boring, tedious, or even be unqualified for, whereas in FLOSS developers are free to choose

projects and tasks that interest them34. There is little incentive for a developer to contribute

to uninteresting projects, and a bored FLOSS developer may simply move on to other more

interesting tasks, projects, or, if nothing appeals, leave the open source community alto-

gether. Thus, the similarity between the interest of an individual and the characteristics of

a project may be an important factor when selecting projects.

Similarity may also play a role in the enjoyment that developers experience from

working on an open source project. Many FLOSS developers claim to enjoy the work they

are doing [130]. In fact some developers use their level of personal enjoyment working

on a project as metric for judging if the project is successful [133]. Other motivations for

34The self-assignment of FLOSS developers to tasks may be seen as a key advantage
of the FLOSS development process. Indeed, while discussing practices of high maturity
organizations, an anonymous participant at a Software Engineering Institute (SEI) work-
shop for CMM level 4 and 5 organizations observed that ‘“Getting the right person into
the right job on the project is still the most important aspect of project success. People are
not plug-compatible. The expertise of individuals is critical. Process is an enabler; not a
replacement.’” [132]. By allowing developers to choose tasks that interest them, FLOSS
significantly increases the chances of a well-qualified person working on each task. This
concept is affirmed by Linus’ law, which states that “Given a large enough beta-tester and
co-developer base, almost every problem will be characterized quickly and the fix obvious
to someone.” [13]. In other words, through the inherent transparency and openness of the
process, FLOSS frequently manages to have the right person fix the right problem. Fur-
thermore, FLOSS developers may be motivated to complete their tasks at an above average
level simply because they are interested, and therefore motivated, in the tasks they have
chosen.
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participating also seem to point to similarity being important. For example, a survey found

that 44.9% of developers participate in FLOSS development for intellectual stimulation [98]

and a subgroup of FLOSS developers may be considered “fun seekers” [98]. Presumably,

similarity plays a role in determining if a project is fun and/or intellectually stimulating.

Finally, software is typically created from a developer’s personal need, i.e., the

desire for a developer to scratch his/her own personal itch [13], and solving a software

problem is often listed as a reason for being involved in a FLOSS project [1], [13], [52],

[131]. Similarity may therefore be important because individuals are interested in projects

that address problems that are similar to their own.

3.3.2 Current Resources

The current resources being contributed to a project is an indicator of project activity level.

In addition to providing the literal value measuring the amount of work being completed,

it also might be used as a proxy to indicate how many active developers are currently con-

tributing to a project – that is, it indicates the popularity of a project with active developers.

This is because generally a project with more active developers will have more resources

being contributed.

Research shows that active projects are desireable. One study [67] considered fresh-

meat’s vitality score, which is an indicator of developer effort, and freshmeat’s popularity

score, which is calculated based on the number of people subscribed to a project and the

number of hits to the project’s homepage. It was found that an increase in a project’s vitality

led to an increase in popularity as well.

[113] argues that membership herding occurs in FLOSS, meaning individuals join-

ing or leaving a project encourages other individuals to also join or leave the project re-
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spectively. Indeed, a survey of 34 developers showed that 76% agreed that membership

dynamics were critical to projects progressing continuously [113]. Furthermore, develop-

ers indicated that being involved in an active community was energizing and important to

keep a project progressing [113]. Lack of activity on a project was cited as a compelling rea-

son to leave and potentially find a different project to contribute to [113]. It has been shown

that large scale-free network are prone to herding dynamics [113], and that the SourceForge

project and developer network is indeed scale-free [57].

It may be the case that popularity begets more popularity when it comes to open

source projects. It has been argued that through the structure of the underlying social net-

work, the number of members associated with a project may affect the attractiveness of

the project to other potential members [57]. [127] states that open access projects, such as

FLOSS, are stigmergic because they include a positive feedback cycle that encourages more

work to be completed in the future based on the work that is currently being performed.

In terms of consumers, active projects may be perceived as offering better support,

improved chances of adding needed features in the near future, etc. On the other hand, too

much activity may be an indicator of an unstable projects. Users may grow tired of the

need to frequently upgrade the software to fix bugs. Likewise, users may become frustrated

if each frequent upgrade introduces a plethora of new bugs or changes components, such

as the user interface, that the user must then relearn. This is more likely to occur with

projects that do not include stable releases but instead encourage users and developers alike

to download the code from the development branch35. Thus while project activity may

35An exception to this, where stable versions have been released frequently, might be the
web browser Chromium, http://www.chromium.org, which released an incredible six major
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be important to consumers as well, there may be a happy medium between stagnant and

excessively active that consumers find most desireable.

3.3.3 Cumulative Resources

Cumulative resources is a measure of the size of a project completed so far. Developers

may take into consideration the size of a project in concert with other factors, such as the

number of developers involved, when selecting a project. For example, a small project will

need fewer developers than a large project. Consequently, it may be easier for a developer

to find tasks to complete on a large project than to break into a small group of developers

already engaged in a small project.

In addition, developers may be interested in different size projects depending on the

time commitments they are able to make. Some may be interested in short-term projects

or projects that require a minimum investment in order to get up to speed. In general,

programmers find it easier to write new code than to understand and work on someone

else’s code, yet the majority of a developer’s time is spent on the latter task. This is likely

true when joining an existing project that already has a code base; the existing source code,

project design, etc. must first be understood before contributions enhancing the software can

be made. Therefore, a small project may allow a developer to get up to speed faster because

there is less code to understand before he/she can start making meaningful contributions.

On the other hand, a developer seeking a project he/she can work on long-term may not

mind the initial investment in time.

versions in 11 months, four of which occurred in five months; in one case, version 9 was
released just 15 days after the initial release of version 8 [134].
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As projects progress, knowledge among the developers accumulates [128]. For

developers who are motivated to pick up new skills, this may be an incentive to join projects

that already have a large code base; projects with minimal or no code may not have enough

work completed that can be learned from, and therefore may be of less interest to developers

looking to improve their skills.

Consumers, likewise, may consider the size when selecting a project. For exam-

ple, a user looking for an email client might be interested in something minimalistic (e.g.

Alpine, a text-based email client derived from the freeware-licensed Pine) or feature rich

(e.g., Evolution, a GUI-based email client that includes additional components such as a

calendar, address book, task organizer, etc.). The size of a project therefore helps a user

determine how lean or bloated the software is.

3.3.4 Download Count

The number of times a project has been downloaded may be used as a proxy for the impor-

tance and popularity of a project with users.

[57] simplifies existing literature [135] on classifying participants of FLOSS devel-

opment. [118] recognizes two course-grained classification groups of users and developers,

further splitting users into passive and active and developers into peripheral, central, core,

and project leader categories. Passive users are defined as those who utilize the software

without contributing anything to the respective project while active users submit bug and

feature requests and may be active in forums or mailing lists [57]. When analyzing de-

veloper communities for the purpose of modeling FLOSS social networks, [57] chooses to

ignore passive users because they do not contribute directly to FLOSS projects and there-

fore [57] does not consider them developers. However, passive users, also known as free-
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riders, do influence a project; namely, by using a project, passive users are acknowledging

the utility of the project and value of the work of the developer team. If reputation and ac-

knowledgment of one’s skills motivates developers to engage in open source development,

then passive users must be included in the model. Indeed, it has been shown that increased

user interest in a project results in increased development activity [64].

[136] analyzes crowdsourcing behavior through data from YouTube36. Although

creating videos is slightly different than developing software, the general concepts are the

same. In the case of YouTube, the content being developed is videos instead of software, but

in both instances the content is created by volunteers through collaboration and published

for consumption by the masses. [136] finds that the number of videos produced by a user is

strongly correlated to the number of times a user’s previous videos have been downloaded.

A lack of video downloads often leads to users uploading fewer videos, asymptotically ap-

proaching zero. This is similar to a developer abandoning a project because no one is using

the software. [136] suggests that the digital commons can be regarded as a private good

where the participants are paid in recognition for their efforts by download tallies instead

of money. This is in alignment with research that has shown that people are sometimes

willing to skip financial gain for attention37 [137]. Recognition has also been shown to be

important in some online communities [138]. Thus the number of users of a specific project

may indeed influence a developer when selecting software.

36http://www.YouTube.com

37An example of this in academia is publishing papers and monitoring citations [136].
The authors of a paper receive recognition for their contributions every time someone cites
their paper, when a respected journal agrees to publish their work, etc. While there is
no direct monetary compensation, the recognition and attention gained is often sufficient
incentive to continue writing papers.
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In FLOSSSim, passive users affect a download count. Each time a user downloads

a project, either the initial time the user tries the software or when updating to a newer

version, the download count of the project is incremented. In this way, the download count

becomes a measure of the popularity of a project with users. Thus developers may gauge

the importance of a project by how large the user base is and use this as a proxy for how

many people will benefit from contributions to the project38. Note that in FLOSS, devel-

opers are more often than not also users of the software they develop. FLOSSSim includes

developer’s downloads in the download count.

3.3.5 Maturity

The maturity property of a project is unique from the other factors considered in that it is

a human-assigned value. Rather than creating a set of rules or manually judging projects’

maturity based on a set of criteria, instead folksonomy principles are used to categorize

projects by using the development status. By using the developer-assigned development

stage, values are used which were assigned by experts who have critically evaluated the

projects – namely, the administrators of the projects themselves. The criteria used by each

developer may differ, but the law of averages should reduce any major biases introduced

because of this; because this is a subjective measurement, a high level of variance is both

expected and considered acceptable.

38This is similar to some open source projects which allow users to vote on which bugs
should be fixed first. In other words, the users explicitly try to channel developers’ efforts
to the problems the users find most significant. In the same way, users are “voting” by using
a project, and developers trolling for a project to work on may consider the number of users
as an indicator of the importance of the project.
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The maturity of a project influences both the objective and subjective performance

of a project [71]; specifically, the subjective assessment of a project by developers may

depend on the development stage [71]. Furthermore, research shows that the development

stage plays a significant role in predicting the success, and more specifically the level of ac-

tivity, of an open source project [105]. Therefore, it makes sense to explore the importance

of development stages to developers who are selecting projects.

If developers are interested in increasing reputation, [45] argues that developers will

prefer creating core rather than fringe code because the core code is likely to be included in

many releases of the project, thus giving developers a long-term boost to their reputation. In

this case, developers will prefer projects in lower development stages because there remains

core code to be written. However, very early development stages, which may possess the

greatest potential for reputation gain, also include significant risk that the project will die

before producing useful software, in which case there will be no reputation gain for the

developers involved.

At the other extreme, when a project becomes fully functional and enters the pro-

duction/stable and mature stages, it may also become less desirable to developers. First, if

reputation is a driving force, by this time most of the high-profile tasks are complete [67].

Secondly, the majority of the functionality is already implemented and the project transi-

tions from development to maintenance, meaning most of the “personal itches” that cause

developers to join a project have already been scratched [67].
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According to [13], in order for open source project development to commence, there

must exist at least a kernel of working code to begin with. Bazaar-style development39 can

be used for testing, debugging, and improving software once a program base is established,

but it is almost impossible to start a project in this mode. In other words, it is advantageous

for an initial version of the software to be developed cathedral-style (often this is just a

single programmer hashing out a solution to his/her own problem) before releasing the

software to the open source community. For this reason, projects that are made available

to the open source community before there is an initial working version, such as projects

posted in the planning or pre-alpha stages, may be at a serious disadvantage when it comes

to attracting developers [67].

To test if projects released into open source at later development stages are more

likely to reach higher development stages, data was mined from the FLOSSmole database40.

The development stage of projects on SourceForge in April 2009 was recorded, along with

the development stage when each project first appeared on SourceForge. The number of

projects in each development stage as of April 2009 versus projects’ initial stages when

added to SourceForge is shown in Table 3.2. Of mature projects, only 1.7% started in

the lowest two stages (planning and pre-alpha) while almost three times as many (5.1%)

started in the alpha, beta, or production/stable stage. Similarly, for projects currently in the

39 [13] famously coined the terms “cathedral” and “bazaar” to refer to traditional, closed
source development and open source development respectively. Like meticulously con-
structing a cathedral, proprietary software is carefully built by talented people working in
isolation. Open source, on the other hand, resembles a great babbling bazaar, with many
differing ideas and approaches mashed together, yet out of the chaos materializes stable
software.

40See Section 4.1.3.2 for a description of the FLOSSmole database.
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production/stable phase, only 3.5% started in planning or pre-alpha while more than three

times as many (11.9%) started in the alpha or beta stages. This supports the notion that

development stage is relevant to the success of a project since projects released as open

source in later stages are more likely to increase in development stage.

Additionally, as can be seen by looking at the main diagonal, Table 3.2 also high-

lights that most projects never change from the development stage they started in. It is

difficult to know if this phenomenon is real or a side effect that could be produced simply

by project developers failing to update a project’s status (developers are forced to supply

a development stage when registering a project on SourceForge but there is no mechanism

to force and/or remind developers to update this status indicator as the project progresses).

Table 3.2 also shows that some projects go backwards, ending in an earlier stage than they

started in. In some cases this can be expected, such as when a stable project creates a new

major release and moves back to the beta stage. In other cases, such as the 13 projects that

started in the production/stable stage and then moved back to planning, it is likely an error

in the data.

3.4 CONCLUSION

The goal of this research is to better understand the FLOSS development process, with a

particular interest in understanding why some projects are successful while others are not.

To understand what it means for a FLOSS project to be successful, success must

first be defined. Unlike proprietary software, there is no universally accepted method for

determining if a FLOSS project is successful. Since traditional metrics do not necessarily

apply, a number of FLOSS-specific metrics have been proposed. Many of these metrics

have not been well-studied or applied to real data. As such, the meanings and impact of

using different success metrics is further explored using FLOSSSim in Section 7.1.4.1.
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Understanding why some projects are successful and others are not involves exam-

ining factors that may influence the success of a project. Analyzing the impact of factors

ranges from examining technical attributes of existing projects to borrowing concepts from

public goods theory. Fortunately, much research has already been performed on under-

standing factors that may be antecedents to success, and a comprehensive review of these

factors and findings has been provided.

This research focuses not on what motivates individuals to become involved with

FLOSS in the first place but rather on how individuals select projects from the large pool

of available FLOSS. Five components believed to be important to individuals choosing

projects are selected. Through the use of agent-based modeling, the actual importance of

each of these factors will be explored.

Finally, there is currently minimal research on FLOSS consumers. To further this

largely unexplored segment of open source, this research includes modeling consumers

for the purpose of better understanding the users’ influence on the FLOSS development

process.
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CHAPTER 4

DATA

In order to calibrate and validate the model, data about the FLOSS development process

must be obtained. As pointed out by [139], traditional research in social science is theory-

driven. It involves well-designed surveys, information relatively free of errors, and tends

to be small-scale. However, with the Internet comes the ability to collect huge amounts of

data about social activities, including information on the development of FLOSS, that are

available due to the online nature of these activities. From this is born a new, non-traditional

approach to social science research that is data-driven. Often it involves crawling large-

scale networks to extract the necessary data from noisy environments [139]. Both theory-

and data-driven methods are used in this research, although there is more focus on the data-

driven approach due to the nature of the available data.

The following sections provide information about the types of data and data sources

that are available, and outline some of the problems associated with the data.

4.1 DATA SOURCES

A common problem when creating models of social systems is a general lack of data for de-

sign and validation purposes. Fortunately, the Internet is a domain where data pertaining to

social phenomena is often available. This is because online activities, from creating Face-

book pages to editing Wikipedia articles to updating blogs, typically leave a digital trail.

In some cases, these data may be readily available; in other cases, it may be necessary to
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perform data mining activities (sometimes spread out over time, such as looking at updates

to a web page over a year) in order to extract the required information.

FLOSS development falls into the online activity category. In general, there are

several mechanisms for obtaining FLOSS data, including:

• Surveys and literature

• FLOSS hosting sites

• Databases

• Extraction tools

Each of these categories is further covered in the following sections.

4.1.1 Surveys and Literature

FLOSS is actively being researched and there are many papers published on FLOSS. Al-

though the motivations of the research varies widely, many of the findings for FLOSS re-

search not directly related to predicting the success of FLOSS projects can still be applied

to modeling open source software development.

Both technical and social data are available from existing literature. In the case of

technical data, this often means researchers have collected and aggregated data using the

other techniques described in Sections 4.1.2, 4.1.3, and 4.1.4. Examples of useful data in

this category include distributions, such as what percentage of projects have one developer,

two developers, etc. [117] or what percentage of developers are working on one project,

two projects, etc. [1].

Social data often come in the form of surveys and interviews. There are several

major and well-known surveys in the FLOSS field (e.g., [1], [98]) and many other smaller
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surveys as well. These surveys cover a number of different components of FLOSS, includ-

ing, but not limited to:

• Developer demographics (e.g., age, geographic locations, marital status, occupation)

[1], [98], [130], [131], [140]

• Developer motivations (e.g., why developers contribute to FLOSS, how developers

choose projects, and what causes developers to stop contributing) [98], [130], [131],

[140]

• Developer contributions (e.g., average time spent working on FLOSS, number of

LOC contributed) [98], [130], [140]

• FLOSS usage (e.g., percent market penetration of certain FLOSS) [93], [141]

Of the categories enumerated for obtaining FLOSS data, surveys and interviews are

the most direct mechanism for gathering social data from the developers themselves. The

remaining categories focus more on the technical data, although it may be possible to gain

insight into social behaviors by studying, for example, trends in technical data as well.

4.1.2 FLOSS Hosting Sites

By its very nature, FLOSS development tends to be distributed, with volunteers potentially

involved from multiple geographic locations. The Internet has broken down geographic

boundaries and allows people to interact with others around the world with a minimum

investment via communication mechanisms such as email. In the case of FLOSS develop-

ment, there exist a number of FLOSS hosting sites that facilitate open source development.

These sites typically provide tools and resources to help with open source development

including, but not limited to:
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• Project hosting repository

• Software configuration management/version control tools

• Bug organizing and tracking software

• Feature organizing and tracking software

• Membership controls (e.g., control over who can commit code)

• Email lists and archives

Sites that provide collections of tools and services for collaborative software development

are called “forges” [142]. Forges are not inherently limited to FLOSS and may also be

employed for closed source software development.

At time of writing, the largest and most famous FLOSS site is SourceForge1, hosting

306,464 projects2 [144] and continuing to grow. The SourceForge site tracks projects, with

publicly accessible project data granularity ranging from hourly (for the last 48 hours) to

monthly (for data older than 30 days), depending on the data [145]. Select data, namely data

that does not violate privacy policies, from the SourceForge site is available for academic

research [146]. SourceForge started operation in November 1999, meaning over a decade

of projects’ history has been recorded by the site.

1http://SourceForge.net

2There are multiple methods for retrieving the number of projects hosted at SourceForge
and the numbers reported differ. The number quoted here is based on the count provided
in SourceForge’s search. According to SourceForge’s sitemap, there are 448,114 projects
[143]. It is difficult to compare the two counts to discover the discrepancies, but it is likely
that the larger list contains all projects that have ever been registered at SourceForge while
the smaller list is missing projects that have been removed from the site.
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Interestingly, SourceForge is itself comprised of open source software [147], [148]

that is, at least partially, hosted at SourceForge3.

Other FLOSS hosting sites include:

• Savannah (http://savannah.gnu.org and http://savannah.nongnu.org)

• BerliOS (http://www.berlios.de)

• Gna! (http://gna.org)

• Google Code (http://code.google.com)

• RubyForge (http://RubyForge.org)

• OW2 Forge (http://forge.ow2.org)

• Java Forge (http://javaforge.com)

• Tigris.org (http://www.tigris.org)

By their very nature, the tools at these sites track the progress of projects. Analyzing

this data can provide insight into the FLOSS development process. Some examples of data

that may be available include:

• Software Configuration Management (SCM) logs: Encompassing revision control,

SCM tracks changes to the code, documentation, and other files associated with a

project. For each change that is made, known as a “commit”, the committer’s identi-

fication, files affected, date and time, etc. are logged. Popular SCM software includes

Concurrent Versions System (CVS), Subversion (SVN), and Git.

3The SourceForge project homepage is http://sourceforge.net/projects/sourceforge/
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• Project ranks: A list of projects ordered by level of activity bounded by time. An

activity score is typically calculated using multiple metrics from a project. A project

rank may be used to compare projects hosted on the same site.

• Bug trackers: Bug tracking software provides a mechanism for organizing, prioritiz-

ing, and tracking bugs. Useful information, such as how quickly certain types of bugs

are resolved, can be calculated using data from bug tracking software.

• Feature requests: The equivalent to bug tracking software, only for tracking enhance-

ments and new features for a project.

• Forums: Email lists, wikis, chat logs, etc. provide historical data on discussions per-

taining to the software being developed. Information that can be extracted from fo-

rums include how decisions are made, who is actively participating in the project, etc.

Forums are a source of information for social data.

• Web statistics: This includes statistics that could be extracted from a web server log,

such as the number of visitors to a project’s homepage, the number of times a project

has been downloaded, etc.

Note that not all hosting sites provide data to the public. In theory, however, this

data exists, even if it is kept private by the hosting site. For those sites that do make some

of the information available, it is typically accessible via web pages on a project-by-project

basis. Manually probing this data may be sufficient when only a small number of projects

are being studied; to collect data for a large number of projects, it may be necessary to

use spidering and screen scraping techniques. As an example, data that is accessable by

browsing SourceForge’s website is contained in Table 4.1.
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TABLE 4.1
Per project data tracked by SourceForge.

Data Description
Registration date The date a project was first registered at SourceForge.
License The open source license used by a project.
Programming language The programming language(s).
Operating system Operating system(s) under which a project will run.
Topic Selected from a set of predefined values such as

networking, database, games/entertainment, telephony,
editors, emulators, etc.

Translations Original language and translations supported by the
software.

Intended audience Selected from a set of predefined values including end
users/desktop, developers, manufacturing, government, etc.

User interface type Selected from a set of predefined values including
command-line, Win32, X Window System, web-based,
Curses/Ncurses, etc.

Development stage Selected from the following subset of values: planning,
pre-alpha, alpha, beta, production/stable, and mature.

Release date Date of the most recent release version.
Number of developers The number of developers registered with the project.
Number of administrators The number of developers registered as administrators with

the project.
SCM The number of reads and writes to the software repository.
Mailing list Archive of messages posted to the mailing list.
Forum Archive of posts to the forum.
Download count Tracked individually for each project file.
Tracker Includes the number of open and closed bug reports,

support requests, feature requests, and patches.
Project web traffic Divided into three components: the total number of files

served (known as “hits”); the total number of times a
project’s web logo is served (known as “pages”); and
bandwidth.

Activity rank An aggregate measurement that indicates how active a
project is with respect to other projects. See Section 4.2.2.1
for more details on how activity rank is defined.

Popularity rank The popularity of a project compared to all other projects.
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4.1.3 Databases

For those researching FLOSS, obtaining data is a common task. Fortunately, there exist

several FLOSS databases that, in the spirit of open source, have opened their data for use

by others. In some cases these databases are provided by researchers who also needed data

on FLOSS and, rather than forcing all researcher to duplicate their efforts, have made the

collected data available to the public.

Pre-built databases provide a number of advantages over extracting the data from

hosting sites. First, the tasks of crawling and screen scraping are avoided. Both of these

tasks can be difficult, tedious, error prone, and time consuming. For example, crawling a

forge may result in the IP address of the crawler being blocked by the site4. Including a

delay between page requests reduces the chances of being blocked but also increases crawl

time. Screen scrapers are sensitive to changes in web pages; even a small change to a web

page may require the scraper to be modified. [82] outlines some of the difficulties specif-

ically with spidering and screen scraping SourceForge. Thus by using existing databases,

one can focus more on the data and less on obtaining the data.

In some cases, existing databases provide historical data that may not be available

directly from a FLOSS hosting site. Consider the case where a hosting site only provides

current, but not historical, data. If a database is built from multiple crawls of the site spread

over time, the database becomes an archive of historical data. This same data cannot be

extracted in a single pass from the site itself as only the current, and not the past values, are

available.

4FLOSS researchers at Notre Dame tried to crawl SourceForge and caused the entire
campus to be blocked from the site [149]!
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Finally, placing the data in a database creates the ability to perform sophisticated

queries using database query languages. These same queries would be much more difficult

and error prone without the use of a database.

The following sections describe three existing FLOSS databases:

4.1.3.1 SourceForge Research Data Archive

Historically, SourceForge’s policy has been to make a subset of the site’s data available

for research purposes [146]. Prior to 2006, obtaining this data meant submitting a support

request to the SourceForge staff [150]. In 2006, a research project at the University of

Notre Dame, aimed at understanding open source software5, resulted in the Department

of Computer Science and Engineering at Notre Dame agreeing to host data dumps from

SourceForge [151]. The result is the SourceForge Research Data Archive6 (SRDA). Each

month, SourceForge creates a snapshot of the site’s backend database, cleans the data of

private and sensitive information, and then makes it available to Notre Dame [152], [153].

The SRDA is a collection of these snapshots.

Requests for access to the SRDA can be gained by completing a questionnaire and

signing a sublicense agreement [154]. Access is granted on a case-by-case basis [155], and

the data is only available to academic researchers7 [154], [155].

5http://www.nd.edu/∼oss/

6http://srda.cse.nd.edu/

7Prior to the creation of the SRDA, SourceForge’s policy did not limit research data to
be used for academic purposes only [150].

113



Access is available only via the web or a web service [153]. The SourceForge

contract prohibits Notre Dame from providing dumps to researchers for local processing

[154].

4.1.3.2 FLOSSmole

FLOSSmole8, formerly OSSmole, is an open source project with the purpose of obtaining

and making publicly available data about open source projects [156]. The project maintains

a set of tools for spidering forges and converting the collected data into multiple formats

[156]. Crawls of forges are performed regularly and the data are made available to the

public. In addition, the software tools employed in the collecting and parsing process are

available under an open source license so that researchers can use them to collect their own

data [156]. Finally, the project accepts data donations, which are then integrated into the

the existing data sets and also made available for public use. Several well-known American

FLOSS researchers are involved with this project.

To increase the quality of FLOSSmole’s data, the HTML of the crawled pages is

also stored in the database [156]. This affords the possibility of reparsing the data at a later

date should a change in the HTML cause incorrect parsing but not be noticed during the

initial processing of the data. In addition, this increases versatility by allowing additional

data not originally extracted from the crawled pages to be added to the database at a later

time.

Unlike the SRDA, FLOSSmole follows the spirit of an open source and makes its

data available to anyone, researchers or otherwise [156]. Both academic and non-academic

8http://flossmole.org/
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users are welcome to the data and in most cases the data can be retrieved and used without

any form of registration. Data is available in three formats [157]:

1) Flat files: These are text files containing parsed information.

2) SQL files: These files contain “CREATE” and “INSERT” statements and can be used

with the open source MySQL database9 to create a local copy of the database.

3) Direct database access: This is an existing online MySQL database populated with

all the FLOSSmole data that interested users can request remote access to.

In addition to SourceForge, FLOSSmole also collects and/or maintains donated data

from the following sites [157]:

• freshmeat (http://www.freshmeat.net)

• RubyForge (http://rubyforge.org)

• OW2 Forge (http://forge.objectweb.org)

• Free Software Foundation (http://directory.fsf.org)

• SourceKibitzer (defunct) (http://www.sourcekibitzer.org)

• Savannah (http://savannah.gnu.org)

• GitHub (http://github.com)

FLOSSmole is itself partially hosted at SourceForge and, more recently, partially

hosted at Google Code.

9http://www.mysql.com/
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The first crawls were performed in 2004 [157]. Different forges have been added

over the years so data dating back to 2004 is not available for all forges. The intended

collection interval is 2 months but complications sometimes cause larger gaps in the data.

For example, a major site redesign of SourceForge in July 2009 broke FLOSSmole’s tools

and caused regularly-scheduled crawls to be missed. In addition, forges differ in the data

that is available; therefore FLOSSmole captures different data from different forges.

4.1.3.3 FLOSSMetrics

FLOSSMetrics10 is the newest of the three pre-built databases, commencing work in

September 2006 and scheduled to last 36 months [158], [159]. Funded by the European

Commission, and including the involvement of many European leaders in FLOSS research,

this project aims to create and analyze a large-scale public database using existing data,

proven techniques, and already available software tools [158], [159]. Providing data for

the calibration of FLOSS simulation models is included in the list of reasons for creating

FLOSSMetrics [158].

FLOSSMetrics collects data from four types of data sources [159]:

1) SCM repositories

2) Source code

3) Mailing list archives

4) Bug tracking systems

10http://flossmetrics.org/
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Data is collected in an automated fashion via a set of software tools [159]. These

tools, many of them existing prior to the start of the FLOSSMetrics project, locate FLOSS

repository data, parse SCM logs, analyze source code, parse mailing lists, store information

in database tables, etc. The tools are open source themselves and are available from http:

//forge.morfeo-project.org/projects/libresoft-tools/ .

FLOSSMetric’s data is available to the general public via http://melquiades.

flossmetrics.org . Database files can be downloaded on a per project basis or as an ag-

gregated file covering all projects [160]. An API to access the data is also under devel-

opment [160]. Data is divided into three categories: SCM and code metrics, mailing list

information, and bug tracking information [160]. Data for all three categories may not be

available for all projects [160], [161]. Although FLOSSMetrics started collecting data more

recently than FLOSSmole and the SRDA, historical data is included since the data inputs

(e.g., SCM logs, mailing lists, and bug tracking logs) inherently contain historical data.

This is a distinct advantage over crawling methods used by FLOSSmole, which relies on

regular collections to create historical data.

FLOSSMetrics continues to increase the number of projects included in the

project’s data. An initial run of 1000 projects was available in March 2009 [159]. As

of December 2009 this had expanded to include at least partial coverage of approximately

2800 projects [161], [162]. A goal of the FLOSSMetrics project is to provide data for a

minimum of 5000 projects [158], [159].

4.1.4 Extraction Tools

A final method for obtaining data on FLOSS projects is to use extraction tools. A collection

of tools, for example, is used to build the FLOSSMetrics database. However, not all projects
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are included in the FLOSSMetrics database and therefore the tools may be used to locally

supplement the existing data with projects of interest currently missing from the data set.

There may also be additional project information that is available but not currently extracted

by any of the pre-built databases. In these cases, it may be necessary to use and/or modify

an existing extraction tool in order to obtain the desired data.

The following list provides a short sample of the data extraction tools that are avail-

able:

• OSSmole Tools: Tools to spider and retrieve project information from SourceForge,

currently used by FLOSSmole [163], [164].

• CVSAnalY: Tool to parse SCM logs and store extracted data in a database [165].

Data extracted include the date, files being modified, type of modification, developer

making the commit, etc. [165]. CVSAnalY supports CVS, SVN, and Git repositories

[165].

• Mailing List Stats: Tool to analyze mbox format email files and store extracted data

in a database [166]. Data extracted includes email addresses, email fields (e.g., to,

from, date, subject fields), message body, mailing list info, etc. [166].

• Bicho: Tool to analyze bug tracking software logs and store the extracted data in

a database [167]. Data extracted includes bug id, description, priority, status, com-

ments, etc. [167].

For full details on the exact data collected by each of these tools, please see the

software’s associated documentation.
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4.1.5 Data Sources Used

All of the above described data sources were considered for this research, but due to a

number of factors (e.g., availability of desired data, ease of retrieval, data format, data

licenses), only the following subset were used in this research: existing surveys and liter-

ature, manual retrieval from SourceForge site, FLOSSmole and FLOSSMetrics databases,

and CVSAnalY extraction tool.

4.2 DATA CAVEATS

With the large number of data sources collecting copious amounts of data, FLOSS initially

appears to be ideally suited for modeling, having sufficient data for calibration and val-

idation purposes. Unfortunately, a closer examination of the data available reveals there

are considerable problems, and what initially appears as ideal data may, in some cases, be

unusable.

The following sections provide a brief overview of generic problems with online

data, followed by problems specific to the FLOSS data used in this research.

4.2.1 Problems with Online Data

Most data sets contain errors, creating what is known as “dirty” data. No matter how care-

fully data is acquired, virtually all large data sets contain at least some errors [168], [169],

[170]. These errors may be introduced by humans, bad sensors, etc. For example, a FLOSS

developer may enter incorrect metadata about a project. Some errors result in data in-

consistencies that may be detectable by creating impossible combinations or contradictory

information (e.g., having a null value where null is not an option, or having two people with

the same social security number) known as data integrity violations.
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Combining data from different sources may be necessary in order to obtain a suf-

ficiently large or unbiased data set. Data collected from different sources may be hetero-

geneous, causing complications when combining the data into a single database. There

also may be differences in data schemas among data sources that must be resolved us-

ing techniques such as transformations [171]. Even if the schemas are identical across

sources, there may still be differences in the conventions used to collect the data at each

source [172], yielding data inconsistencies that may be difficult to detect. Duplicate data is

also a potential problem when combining data from multiple sources. Detecting duplicate

data may be non-trivial, such as when time stamps for data vary slightly but all other fields

are identical [172], or when errors already exist in the data. The detection and elimination

of duplicate data is commonly referred to as the merge/purge problem [173].

Missing data is another common complication. Cases where a field is populated

for some records and missing for others can yield distorted, misleading, or even useless

query results. Removing records with missing data may result in a biased data set. Null

values may be introduced when combining data from heterogeneous sources or performing

imperfect transformations, in addition to the situation where data was never entered at the

source.

Data is not always available in structured formats. Extracting data from unstruc-

tured or semi-structured sources increases the chances of creating dirty data. For example,

screen scrapers may attempt to extract data fields from HTML. A small change in a web

page may cause a scraper to miss certain fields or to collect the wrong information en-

tirely [174].

Data cleansing is a field that includes techniques to detect errors in the data, detect

missing data, assess the usability of the data, etc. [168], [171]. In some cases it may be
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possible to fix dirty data that is detected [168]; in other instances, dirty data may simply be

removed [171].

Although all data sets are expected to contain errors, when the number of errors is

small with respect to the total number of data points, statistical methods, such as the law of

averages, may reduce the effects of these errors.

In order to extract meaningful data from any data sources, it is necessary to first

gain an understanding of the data, to investigate for potential problems and artifacts, and in

general to critically evaluate the data. Errors will still be overlooked, especially for large

data sets, but a careful prescreening of the data will help reduce erroneous and misleading

query results (i.e., garbage in, garbage out). Having domain knowledge about the data may

help detect problems.

4.2.2 Problems with FLOSS Data

A brief examination of the problems encountered while processing FLOSS data is provided

in the following subsections.

4.2.2.1 Historical Data

Examining historical data provides information about the progress of FLOSS projects. For

example, historical data can be used to examine the growth of a project over time. This

means relying on data that is collected, potentially, over years. The temporal dimension of

historical data introduces potential data complications of which to be wary.

The first concern is that data collection spread over time is consistent. Not sur-

prisingly, sites such as SourceForge have changed over the years in order to better serve the

community. This means making improvements to the system (e.g., enhancing the user inter-

face), adding new tools as they become available, and removing obsoleted features. These
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changes have both direct and indirect effects on the data that is collected. For example,

SourceForge maintains an activity ranking of all projects. This is an aggregate metric that

attempts to provide information indicating how “active” a project is, taking into account

three components: project traffic (e.g., downloads), development (e.g., age of most recent

release), and communication (e.g., forum posts) [84], [150]. In February 2005, Source-

Forge replaced the formula for calculating activity with a new formula that the SourceForge

team felt better reflected the concept of activity [150], [175]. As a result, project activity

rankings before and after this date cannot be directly compared. One must be careful if

using this data to only sample before or after February 2005, or to perform transformations

so the activity ranks are the same.

As another example, this one of tool changes that affect historical data, SourceForge

originally offered CVS as the only option for an SCM tool. SVN was later developed to

address some of the shortcomings of CVS [176] and around 2006, SourceForge added SVN

as an option. Existing projects now had the possibility of migrating from CVS to SVN;

projects could also migrate back to CVS if they found they preferred it. Likewise, for the

first time new projects were faced with the choice of selecting a repository management

system (also with the possibility of changing systems at a later date). This resulted in

some projects using CVS, some using SVN, and some using both (presumably so project

administrators still had access to the old versions of the project even while using the new

tool). In addition to creating heterogeneous data that made it difficult to compare SCM

statistics for projects using different tools (not to mention heterogeneous data for single

projects that switched between CVS and SVN), this also introduced two problems that

tainted historical data:
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1) When migrating to a different tool, the entire software project is often added to the

new system via a single commit. This distorts the SCM data as it appears that most

of the code was written at a single time, by a single developer, etc.

2) Some projects migrated to a new tool and then chose to turn off the old tool. In this

case, there was no longer any record of the development that had occurred using the

old tool, further distorting the SCM data.

SourceForge has since added other SCM software, including Git [177], Mercurial [178],

and Bazaar [179], exacerbating the problems associated with using SCM data.

SourceForge has also implemented several GUI makeovers/site redesigns to the

SourceForge website. In addition to changing the look and feel of the site, some of the

project data was relocated. For example, prior to a July 2009 redesign, all project meta-

data was available on a project’s SourceForge homepage. After the redesign, some of the

metadata, such as a project’s development status and the number of developers working on

a project, was relocated so it was included only in search results but no longer listed on a

project’s summary page. In addition to relocating these data, the data became more obscure

by requiring a search option, which by default is off, to be turned on in order to view the

information. Project metadata is important to the research presented here and after the site

redesign it appeared it was no longer available on the SourceForge site. I was about to sub-

mit a bug report when I discovered another frustrated site user had found the data and was

requesting it be relocated to the project summary page11 [180]. When significant changes

such as these are made, not just to the look and feel but also to the contents of the site,

11SourceForge closed the bug report, declaring this was actually a feature request, not a
bug. As of August 25, 2011 project metadata is still not listed on a project’s homepage.
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it affects the historical data. In this case the metadata (or lack of metadata) changes how

people locate, evaluate, and choose projects on the SourceForge website. As with the other

changes affecting historical data, there is likely a difference in data logged before and after

a major SourceForge site redesign and thus researcher must be wary when using data that

spans these dates.

SourceForge’s site redesign also changed how project administrators update meta-

data about their projects. The ease with which this data can be updated affects the data’s

accuracy, which in turn affects historical data from before and after the changes were made.

There are additional problems that are unique to collecting data via crawling. For

example, even small site redesigns can break spidering and parsing software, resulting in

holes in historical data. Although FLOSSmole’s goal is to collect data from SourceForge

every two months [181], the major site redesign in July 2009 has resulted in a much larger

gap while the FLOSSmole team scrambled to update the spiders and parsers [163], [182].

Depending on the frequency of site changes, as well as the crawling frequency, this may or

may not affect research using the data. FLOSSmole developers have expressed great frus-

tration about the constant need to rewrite software to adjust to the changes made by Source-

Forge [182], [183]; there is even talk of abandoning SourceForge crawls entirely, since there

are other sources for this data, and focusing instead on crawling the sites for which FLOSS-

mole collects data exclusively [182], [183]. To decrease the impact of changes and increase

the collected data quality, FLOSSmole stores the spidered HTML files in the database. By

doing this, parsers can be changed and rerun at a later date to correct data extraction prob-

lems. Unfortunately, changes to the structure of a website may cause a spider to not crawl

and store the correct pages, an error which cannot be corrected at a later time.
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Spidering is an inherently expensive task; crawling activities frequently include

built-in delays to prevent overloading a server and being denied access to the data via de-

nial of service attack protection mechanisms. FLOSSmole has, for example, not collected

certain available data, such as data not accessible without visiting another set of web pages,

simply because the cost of visiting additional web pages is too high [183]. In addition, not

all components of large sites like SourceForge may be fully functional or even available

during a crawl. In these cases, parts of the crawl may be missed due to partial site out-

ages (see [184] for an example of where this has occurred in a FLOSSmole crawl). Direct

database dumps, such as SRDA, are not subject to this problem.

A final problem with crawled data is it may not include data from the inception of

the repository. For example, over the years FLOSSmole has expanded the number of sites

that are crawled. Therefore, the data archives for some sites may not include very old data,

even though the particular forge may be older. A direct data dump of a forge, on the other

hand, does include data from day one of the repository’s operation.

4.2.2.2 Cleansing Data

The goal of data cleansing is to both 1) detect dirty data and 2) fix errors whenever possible.

Unfortunately, the best that can sometimes be done is to simply discard the dirty data and

retain the clean data. As long as only a small percentage of the data are dirty, this may be

an acceptable data cleansing method. Lamentably, some of the data encountered during this

research included fields that were frequently populated with erroneous values. Having no

way to fix the data, these records were discarded; what remained was sometimes too small

a data set to be useful. See Section 6.2.2.1 for examples of data filtering that resulted in

substantially smaller subsets of the starting data set.
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With sufficiently large data sets, it is possible to minimize the effect of (potentially

undetected) errors using statistical methods (e.g., the law of averages). These methods are

effective in cases where the amount of dirty data is small compared to the size of the data

set. Inherently, because of the sheer amount of data collected on FLOSS, one expects these

methods to be effective. Unfortunately, this research found much of the data to be highly

contaminated and therefore statistical techniques may not be particularly effective.

Finally, care must be taken when filtering the data to avoid introducing unwanted

side effects or biases. For example, the majority of FLOSS projects are unsuccessful and

dormant; these projects produce little interesting data. Consider examining trends in the

number of developers working on a project. The majority of projects will have a single

developer for their entire duration. Filtering out one developer projects may yield more

interesting trends, but it also eliminates a huge number of FLOSS projects. It may have

eliminated the majority of unsuccessful projects (along with a few successful projects).

Thus, the data set after filtering is likely biased towards successful projects. Therefore, one

must be careful when performing any form of filtering during the data cleansing process to

avoid unintentionally introducing undesirable side effects. See [82] for a discussion on how

filtering may affect correlations.

4.2.2.3 Missing and Misleading Data

Regardless of the data source, it is important to carefully examine and understand the orig-

inal data in order to avoid a “garbage in, garbage out” scenario. In particular, there are a

number of caveats in FLOSS data that lead to missing or, worse yet, misleading data. Some

examples of these are provided in this section.

In the case of crawling and parsing to obtain data, there is a problem of variation in

the pages being crawled. Crawling a single source, such as SourceForge, where the avail-
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able data and layout are standardized, decreases the chances of incorrectly collecting data.

Unfortunately, even sites that use back-end databases and HTML templates to generate their

displayable content contain exceptions and special cases that can lead to missed or incorrect

data being collected. For example, unexpectedly long fields or special characters can break

regular expression searches. [82] mentions difficulties differentiating HTML code from user

names that start with “<” and end with “>” (e.g. “<foo>”). Misspellings and variances in

case (e.g., “foo.bar@asu.edu” versus “foo.bar@ASU.EDU”) can introduce bugs in the data

(e.g., treating a single entity as two separate entities). Bad links, such as human entered

URL’s, can also cause problems with spidering. Without manually checking all data, it is

hard to know how many exceptions occurred in a crawling and parsing run. Discovering

even a small number of errors can make one suspicious of the validity of the data [82]. In

cases where pre-built databases are used, such as FLOSSmole or FLOSSMetrics, it may be

wise to read the documentation and mailing lists to understand how the crawls were per-

formed and what problems others have already encountered in the data. Pre-built databases

offer the advantage that, like with FLOSS development, many eyes have already inspected

the data, discovered the problems, and addressed some of the issues, resulting in a cleaner

data set.

Crawlers are also sensitive to site outages. FLOSSmole, for example, has encoun-

tered trouble retrieving the 60 day statistics for projects, which are frequently unavail-

able [184]. While the FLOSSmole spider retries multiple times to retrieve these statistics,

it eventually gives up, leaving a hole in the data collected [184]. If possible, it is recom-

mended to check a site’s status before commencing a crawl [82], although due to the size

of some sites and the amount of time it takes to completely traverse all links, it may not be

possible to complete the crawl without encountering at least some site outages.
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Some FLOSS projects choose to create a “placeholder” account on a well-known

forge but then host the actual project elsewhere. Presumably, because SourceForge has be-

come the largest open source hosting site, developers like to keep a pointer on SourceForge

so people searching for FLOSS will still find the project. Hosting the project elsewhere

may come as a personal preference, such as for the flexibility to use whatever tools are

preferred by the developers rather than the limited choices provided by SourceForge. Un-

fortunately, this semi-common practice leads to distorted data. For example, the XFree86

Project, an open source implementation of the X Windows System, has a project page on

SourceForge12 but maintains the real project homepage, CVS repository, etc. elsewhere13.

The data on SourceForge for this project is inaccurate and outdated; the project appears in-

active with version 4.6.0 being release in May 2006 [185]. The external project homepage

includes version 4.8.0, released in December 2008, with evidence of further development

occurring in 2009 [186] and support still being offered in 2011 [186]. Thus, the data on

SourceForge is misleading and regardless of how the data is obtained (i.e., via a manual

visit, an automated crawl, or a direct dump of SourceForge data) will misrepresent the

project. Compounding the problem is that outside hosting seems to occur more frequently

with successful projects. This means that data for successful projects, a small subgroup of

the projects hosted at SourceForge to begin with, is also the most likely to be incorrect due

to hosting offsite. It is difficult to detect projects in this category without human inspection

of the SourceForge project pages.

12http://sourceforge.net/projects/xfree86/

13http://www.xfree86.org
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The opposite problem also occurs: some projects are founded and developed else-

where and then are migrated to SourceForge. This also produces misleading data, such as

the project start date, which will reflect when the project was registered at SourceForge, not

when development actually commenced. An example of this is Tcl14 [82].

Certain metrics that are commonly applied when measuring FLOSS also have in-

herent complications. For example, the number of times a project has been downloaded is

tempting to use as a proxy for the popularity, or even the success, of a project. The download

count, unfortunately, only shows part of a project’s usage. SourceForge tracks download

counts but only for officially released files. Users are also often granted anonymous read

access to the SCM repositories. This means users can checkout the current developer ver-

sion of the code at any time – without affecting the official download count (although this

will increment a “read” counter in CVS or SVN). For projects that are rapidly developing,

using the latest version may be preferable, as it includes the latest features and bug fixes.

Some projects strive to keep their developer version stable through nightly builds/tests and

encourage users to checkout the latest version rather than official release versions. Since

code checkouts are not included in the download count, the download count will underrep-

resent the actual number of times the software was downloaded. Summing the download

and SCM read counts also does not provide a good popularity measure; project developers,

for example, will frequently checkout and modify code, thus inflating the SCM count even

though the popularity, in terms of number of users, is not increasing.

14http://sourceforge.net/projects/tcl/
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Some projects are very popular but infrequently downloaded, which further distorts

using a project’s download count as an indicator [82]. For example, projects like vim15

(a vi-like text editor) are included in many UNIX distributions. Users of UNIX systems

use vim frequently, but a system administrator almost never downloads and installs a new

version of vim. Thus, the download count for certain projects performs as a poor indicator

for measuring popularity.

The number of developers involved with a project is another commonly used metric

that also is problematic. Most projects have a small set of core developers that engage in

the majority of development [51], [77], [78], [79]. However, most FLOSS projects also

accept code contributions from anyone. These fringe contributors typically do not have

write access to a project; rather, peripheral developers submit patches to the core develop-

ers, who then commit the changes to the repository [187]. If simply analyzing the number

of developers via straightforward methods (e.g., on SourceForge, looking at the list of de-

velopers registered to work on a project; in general, analyzing an SCM log and counting

the unique committers), this number will be smaller than the actual number of contributors

since there will be no record of peripheral developers. A more accurate count may be ob-

tained by manually combing through the source code, which likely includes the names of

those who contributed patches (attribution is a requirement of many open source license),

and examining email lists, where contributions may appear in the form of code snippets,

pseudocode, algorithm descriptions, etc. In addition, there are non-traditional developers

that won’t appear in SCM logs. This includes people who have contributed documentation

or taken the time to accurately describe bugs and workarounds, etc. While not traditional

15http://vim.sourceforge.net/
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code contributions, these are crucial in the FLOSS development process to help produce

high quality, usable software.

While much data about FLOSS developers is available, there is almost no data avail-

able about users of FLOSS. This is partially due to the difficulty of collecting user data.

Unlike developers, who must register with a project in order to directly contribute, users are

able to download and use FLOSS projects anonymously. Automated data collection aside,

it is also difficult to target users with surveys, again because the users are largely anony-

mous. Regardless, since users are also stakeholders in FLOSS projects, user data may be

beneficial in better understanding the whole FLOSS process.

Finally, while using existing studies provides a quick and easy mechanism for ob-

taining data, care must be taken in choosing which data are applicable. Modeling FLOSS

requires an understanding of data across many projects, and as already pointed out, collect-

ing data across large numbers of projects can be a difficult task. For this reason, there are

many case studies that look at a single or a handful of FLOSS projects, e.g., [51] looks at the

Apache Web Server, [54], [130], [188] study Linux, [123] analyzes FreeBSD, [79], [189]

consider GNOME, and [187] uses Python as a case study for the research performed. Ob-

viously Apache, Linux, FreeBSD, GNOME, and Python are not the norm; these are wildly

successful projects and therefore are likely different than the average FLOSS project. This

is in fact a problem with most case studies, which almost always consider successful, well-

known projects. Indeed, individual case studies have already shown differences between

successful projects [42] and therefore relying on studies of single or just a few projects may

provide non-generalizable results [42].
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4.2.2.4 Integrating Data

As outlined in Section 4.1.3, there are multiple sources of FLOSS data. Unfortunately,

the data is heterogeneous and therefore combining across multiple data sources is non-

trivial. Some of the pre-built databases attempt to address this problem: FLOSSMetrics,

for example, collects project data from multiple sites but utilizes tools to homogenize the

data. An example of this is FLOSSMetrics’ use of CVSAnalY to collect the common data

(e.g., committer, date of commit) from multiple SCM systems [165].

The added complications of integrating data from multiple sources make using a

single data source an attractive option. However, using a single source may not be a rea-

sonable option for the following reasons:

1) Limits the number of projects: In many cases, a single data source may not have a

sufficient number of projects to study. This is one reason why SourceForge is popular

with researchers; the site is sufficiently large and thus using data only from this site

eliminates the complications of using multiple smaller sites and combining the data

in order to obtain a sufficiently large group of projects to study.

2) May introduce a bias: Certain sites cater to certain types of projects. For example,

RubyForge specializes in FLOSS projects written in Ruby. Savannah is the home of

GNU projects, introducing a bias towards the GPL and LGPL licenses. Including

multiple sources helps to eliminate (potentially unintentional) biases introduced by

poor sampling techniques.

In some cases, even data that should align perfectly does not. A number of differ-

ences have been discovered between FLOSSmetrics and the SRDA, even though both of
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these data sets represent the same data source. Understanding why there are discrepancies

can be a time consuming process.

4.3 CONCLUSION

An attractive aspect of modeling FLOSS, as compared to other social systems, is the abun-

dance of data available due to the online nature of open source development. There are

multiple approaches for gathering this data that range from using existing databases in-

tended for research to manually retrieving the data oneself. As has been illustrated, care

must be taken with all the data used, as what initially appears to be clean is often data

contaminated with artifacts, errors, missing components, etc. Therefore, it is necessary to

carefully explore and understand the data before using it. In some cases, it may be neces-

sary to clean the data by performing transformations, pruning, etc. Care must be taken not

to add unintentional biases when going through this process.
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CHAPTER 5

FLOSSSIMPLE

The progress of digital public goods such as FLOSS relies on projects being able to attract

volunteers. One of the assumptions is that the success of a project affects the attractive-

ness of a project. However, a key problem in the literature of open source software is the

ambiguity of the definition of success. Can it be measured by the number of downloads,

the frequency of releases, the number of bug fixes, or any number of other indicators (see

Section 3.1.2 for a more comprehensive list of possible metrics)?

In this chapter, a very simple, theoretical model of the evolution of populations

of digital public goods is presented; the model, called FLOSSSimple, is used to explore

the consequences of different definitions of success on FLOSS. After exploring success in

this simple model, a more complex and comprehensive model of the FLOSS development

process is presented in Chapter 6.

First, basic empirical findings from studies on open source software are presented

in Section 5.1. A description of FLOSSSimple is provided in Section 5.2 followed by an

analysis of the model in Section 5.3.

5.1 CHARACTERISTICS OF FLOSS CONTRIBUTIONS

It has been shown that contributions to open source are highly skewed. For example, the

distribution of developers working on a project is highly distorted, with 67% of projects

having only one developer and 90% of projects having fewer than 4 developers [117]. It

has also been found that 10% of the developers write 72.3% of the code [15], and the
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100 most active developers on SourceForge are involved in an astounding 1886 different

projects [80].

In order to comprehend why the contributions to FLOSS are so skewed, it is neces-

sary to understand why people contribute to or use certain digital public goods. A possible

explanation is that contributors prefer to participate in successful projects. However, what it

means for an open source project to be considered successful is ill-defined (see Section 3.1.2

for a list of proposed FLOSS success metrics). As a result, various success metrics that re-

flect the accumulation of activities and the number of individuals involved are applied to

the model and used to explore whether different definitions of success have an impact on

the patterns generated by the model.

The model presented here is based on public goods theory. Although the theory

is specifically applied to creating a model of FLOSS, the model may likely be adapted to

explore other digital public goods with minimal changes.

5.2 MODEL DESCRIPTION

The model presented is a very simplistic model of consumers and producers of an ecology

of public goods based on the observed processes of open source software development.

Given are Na agents and Np projects. At each time step an agent may 1) contribute to the

development of a project and/or 2) consume (a.k.a. use) a project. Each agent has a proba-

bility pc to contribute to a project and a probability pu to use a project. The probabilities pc

and pu are drawn from an exponential distribution with λ = 0.1 and truncated to values in

the range [0.0,1.0]. This represents the notion that most agents will have a small probability

to be active during a time step.

When an agent is active during a time step it will make a decision about which

project to contribute to or use based on how close the characteristics of a project match with
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the preferences of the agent. To define how well agent preferences match characteristics of

a project, the matching interests value Mi is calculated for each project, as shown in (5.1):

Mi = 1− (np−na)2 (5.1)

where np is the characteristics (a.k.a. needs) of the project and na the preference value

for the agent1. If both dimensions match, Mi is equal to 1. Initially values for np are

assigned randomly from a uniform distribution. However, it is assumed that agents biased

towards consuming may have certain needs (e.g., an interest in well-documented, easy-to-

use projects) while agents biased towards producing will have a different set of needs (e.g.,

an interest in projects for the challenge and to gain experience) [1], [98]. Thus values for na

are based on an agent’s producer number pc and consumer number pu. A simple function

for mapping from pc and pu to na is shown in (5.2):

na = f(pu, pc) =
pc− pu +1

2
(5.2)

A visual depiction of the mapping is shown in Fig. 5.1. Essentially, an agent’s needs can

be thought of as a continuum between 0.0 and 1.0. Lower values (na < 0.5) represent a

bias towards consuming and higher values (na > 0.5) a bias towards producing. For a given

point (x,y), mapping is done by finding the nearest point on the agent needs line and then

projecting this onto the second y-axis. Thus a full-strength producing agent has a needs

vector of 1 (f(0,1) = 1), a full strength consuming agent a needs vector of 0 (f(1,0) = 0),

1To keep variable names consistent between FLOSSSimple and the more complex
model FLOSSSim presented in Chapter 6, np and na are referred to as needs vectors. How-
ever, in this simplified model these are one-dimensional vectors and can thus be treated as
scalars.
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Fig. 5.1. Example of mapping an agent’s producer and consumer numbers to its needs
vector. For a given point (x,y), the nearest point on the agent needs line is found and then
projected onto the right y-axis.

and an equal-part producing, equal-part consuming agent a needs vector of 0.5 (f(x,x) =

0.5).

The utility Uu of a project to a consuming agent is proportional to how well the

agent’s and project’s interests match, as shown in (5.3):

Uu = Mi (5.3)

Agents who decide to contribute to a project are assumed to take into account both

how well the project matches the agent’s interests (Mi) and how successful the project is

(Si). Agents differ in their weights, α , for the two different indicators. Currently, α is

drawn from a normal distribution with a mean of 1/2 and standard deviation of 1/6. The

utility of a project for contributing agents is thus initially defined as

U ′
c = α ·Mi +(1−α) ·Si (5.4)
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where Mi and Si are normalized to values between 0 and 1. Since there is no agreement

on how to measure success Si, the consequences of the following different formulations of

success are explored:

• S1: current number of consumers

• S2: cumulative number of consumptions

• S3: current number of producers

• S4: cumulative number of contributions (a.k.a. work completed)

• S5: each project equally successful

S1 and S3 represent the current popularity, or recent popularity, of a project with consumers

and producers respectively. S2 and S4 represent long-term popularity with consumers and

producers respectively. S5 is used as a baseline for comparison purposes. Note that each

success metric is normalized. For example, for a given project P, S1 is the current number

of consumers working on P divided by the total number of agents currently consuming any

existing projects.

Finally, a switching cost sc is subtracted from the utility of production if the project

is different than the last project the agent contributed to. This reflects the transaction costs

in switching projects, which may include learning new customs and becoming familiar with

code. The final utility for contributing agents is defined in (5.5):

Uc = α ·Mi +(1−α) ·Si− sc (5.5)

If an agent makes a decision to consume or produce, it calculates the expected utility

of all available projects and chooses the project with the highest utility.
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When a project is not updated (no agent contributes to it) for a number of time steps

(using a default of 5 time steps), it is considered a dead or inactive project and is removed

from the system. Agents who produce can start a new project with a probability ps · pc,

where ps is a model-level constant controlling the probability of creating a new project.

Thus agents who have a higher tendency pc to contribute to projects are also more eager to

start new projects. In the default case ps is equal to 0.01.

Agents only contribute to a project when they expect this will lead to a utility greater

than or equal to a minimum utility Umin. Agents stay with a project they last worked on if

they choose to participate and there is no better alternative. In the default case Umin is equal

to 0.2.

Agents who contribute to a project will affect the characteristics of the project np.

The new value of np at time t (i.e., np,t) is adjusted by the average values of the prefer-

ences of the contributing agents’ na values and the previous value of np (i.e., np,t−1). The

adjustment rate between a project’s old characteristics np,t−1 and the contributing agents’

preferences na is determined by λ , which is equal to 0.85 in the default case, as shown in

(5.6):

np,t = λ ·np,t−1 +
1−λ

totcont
·

totcont

∑
i=1

na,i (5.6)

where totcont is the current number of agents contributing to a project and na,i is the pref-

erence of the ith agent contributing to the project.

Agents may not reconsume the same project within a certain time span, modeling

the assumption that consuming an unchanged or minorly changed project will not be worth

the effort (e.g., there is effort involved in downloading and installing software). The time

span limiting reconsumption is set to 10 for the model runs considered.
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The model is implemented in NetLogo2; multiple runs were executed in parallel on

a high performance computing system at Arizona State University3.

5.3 MODEL ANALYSIS

To study the model, two input parameters are varied and several resulting distributions

analyzed. The input variables considered are the definition of success and the switching

cost. The five possible success metrics were outlined as S1–S5 in Section 5.2. The switching

cost, sc, is a penalty subtracted from the utility of projects the agent did not work on during

the last time step the agent contributed to a project, as described in (5.5). This represents

the extra effort an agent must expend to familiarize itself with a new project before it can

provide meaningful contributions. Values considered for switching costs are 0.0, 0.1, 0.2,

and 0.4. Note that utility values range between 0.0 and 1.0 so a penalty of 0.4 is significant.

The model was run for 1000 time steps, thought to be sufficient to allow conditions

to stabilize, and populated with 1000 agents. Each parameter combination was run 10 times

and the results averaged to account for the stochastic nature of the model.

5.3.1 Cumulative Resources and Consumer and Producer Distributions

The following distributions were considered after the 1000th time step:

• Cumulative resources (i.e., amount of work) a project has accumulated

• Number of consumers using a project

• Number of producers contributing to a project

2http://ccl.northwestern.edu/netlogo/

3http://hpc.asu.edu
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All results were normalized for comparison of the distributions. The results for

switching costs 0.0 and 0.1, and for the five different success formulations for the three

different output data are depicted in Figs. 5.2–5.4.

The all projects equal success metric is an outlier when the switching cost is 0.0.

This is for the following reason: by causing all projects’ success to be equal, the S term in

the producer utility calculation Uc (5.5) becomes the same for all projects, causing utility

(and thus selection) to be based entirely on an agent’s and project’s matching interests Mi.

Essentially, treating all projects as equally successful is the equivalent to selecting a random

project for S, the opposite end of the spectrum of using best choice. When paired with a

switching cost of 0.0, there is a lack of stability in agents working long-term on certain

projects. Instead, agents rapidly flit from one project to another, especially as new projects

are created that better match their interests. This results in an explosion in the population

of projects, since projects rarely exist for 5 time steps without being worked on by an agent

and thus are rarely removed from the simulation. As a result, data from this success metric

are not included in the figures when the switching cost is 0.0. For non-zero switching costs

the all projects equal success metric is used as a baseline to show that agents discriminating

among projects using other success metrics does have effect on the resulting distributions.

With a switching cost of 0.0, the cumulative resources distribution is similar for

three out of four of the success metrics, with the current number of consumers being the

exception, as shown in Fig. 5.2. Essentially, most projects accumulate zero or almost no

resources. For all success metrics, as the switching cost increases, the cumulative resources

morphs towards a bimodal distribution. Projects are either small or large, and the higher the

switching cost the greater the number of large projects. A non-zero switching cost essen-

tially creates a “stickiness” factor; agents tend to continue, or stick, with the project they
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(a)

(b)

Fig. 5.2. Fraction of projects as a function of cumulative resources. (a) is with switching
cost sc equal to 0.0 and (b) is with switching cost sc equal to 0.1.

were last involved in simply because the penalty of switching to a different project over-

whelms the utility of doing so. Thus projects tend to be small, by never attracting agents,

or large, by having agents stick with them for extended periods and thus accumulating a

substantial amount of work. This is similar to data observed on SourceForge, where most

projects never get off the ground, but a few accumulate enough code to become useful soft-

ware. Note that with a switching cost of 0.1, two groupings emerge: the cumulative number

of consumptions, current number of producers, and cumulative work distributions change
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little with the increased switching cost, while current number of consumers becomes more

of an outlier. In fact the current number of consumers distribution is very similar to the

all projects equal distribution, indicating this metric is not very discriminating. This is be-

cause consumers are restricted from reconsuming the same project twice within 10 time

steps. Thus, consuming agents are constantly moving through a subset of favored projects,

which causes this metric to perform more like random selection. Note that producers be-

have at the other extreme: as the switching cost increases, a producing agent is more and

more likely to contribute to the same project in the subsequent time step.

In general, most projects have very few consumers and few projects have many con-

sumers, with a semi-smooth trend connecting the two extremes as shown in Fig. 5.3. Once

again, the current number of consumers distribution is an outlier when the switching cost

is 0.0. All other success metrics, regardless of the switching cost, seem to result in similar

distributions, including the baseline of all projects equal. This is expected since, unlike

contributing agents, consuming agents do not consider a project’s success when calculating

its utility Uu. Also unlike contributing agents, consuming agents do not include a switching

cost in their utility function; therefore, large differences are not expected among the success

metrics or by varying the switching cost. Indeed, the minor variations seen must be side

effects of other components of the model, such as where producers are contributing.

The number of producers distributions are shown in Fig. 5.4. As was seen in the cu-

mulative resources distributions, once again the current number of consumers metric is less

similar to the other success metrics and more similar to the baseline of all projects equal.

This supports the notion that the current number of consumers metric is non-discriminating.

As the switching cost increases, more producers are associated with projects. This is simi-

lar to the results of the cumulative resources distribution and again can be explained by the
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(a)

(b)

Fig. 5.3. Fraction of projects as a function of the number of consumers. (a) is with switch-
ing cost sc equal to 0.0 and (b) is with switching cost sc equal to 0.1.

increased stickiness factor. As the switching cost increases, ignored projects are removed,

but those that do attract the attention of producers tend to keep those producers and gain

additional producers, which also stay with the project long-term, over time. Note the highly

skewed distribution from the model mimics data from studies of SourceForge. Averaged

over all success metrics and with a switching cost of 0.1, 73% of the model’s projects have

zero or one developers and 85% have fewer than four developers, as compared to 67% and

90% respectively for SourceForge data [117].
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(a)

(b)

Fig. 5.4. Fraction of projects as a function of the number of producers. (a) is with switching
cost sc equal to 0.0 and (b) is with switching costs sc equal to 0.1.

At this level, the evaluated success metrics show only minor variations for the ob-

served distributions. The one exception is the current number of consumers metric, which

tracks closely with the baseline all projects equal, meaning it is similar to random choice.

Since the success metrics only impact the producers, it is not surprising that more variation

is seen when looking at cumulative resources and the number of producers distributions,

since these distributions are directly linked to producers whereas the number of consumers

distribution is only indirectly linked. Finally, switching cost also has an effect on the model,
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with projects having more producers and accumulating more resources when switching

costs are high.

5.3.2 Projects’ Needs Vector Distributions

Part of the goal of this research is to better understand what types of projects are success-

ful. Recall that new projects are continually added during a simulation run while projects

that do not receive contributions for 5 time steps are removed. Thus, at any given time the

population of projects consists of active projects, as inactive projects are continually being

eliminated. By examining the projects’ needs vector distribution, an understanding can be

gained about what types of projects survive and are therefore arguably successful. Fig. 5.5

shows the distribution of projects’ needs vectors for each of the five success metrics. There

is not significant variation with different switching costs and therefore only the switching

cost of 0.1 is shown. Note that the peaks of the distributions are slightly off center. Recall

that needs vectors less than 0.5 are biased towards consumers and greater than 0.5 towards

producers (see (5.2)). The distributions are skewed to the right, with peaks occurring in

the range [0.5, 0.6), supporting the notion that surviving projects tend to be biased to pro-

ducer needs. This is in alignment with literature that argues open source development is a

producer-driven process (e.g., [13], [66], [101]).

Finally, some additional values of surviving projects are examined. Fig. 5.6 con-

tains scatterplots of project needs vectors versus cumulative resources. Each plot contains

the results for 10 runs of the model with a switching cost of 0.1. There are separate plots for

each of the non-baseline success metrics. Consumer-oriented success metrics cause projects

to accumulate a wide range of resources over a wide range of needs vectors, as shown in

Figs. 5.6a and 5.6b. On the other hand, only a very narrow range of needs vectors accumu-
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Fig. 5.5. Fraction of surviving projects as a function of projects’ needs vectors. Values less
than 0.5 indicate a consumer bias and greater than 0.5 indicate a producer bias.

late resources for producer-oriented success metrics, as shown in Figs. 5.6c and 5.6d. The

behavior of the producer-oriented metrics is closer to that observed at SourceForge, where

only a small percentage of projects develop beyond a few lines of code. Notice that for all

success metrics the maximum resources accumulate for projects with needs vectors around

0.6, or those projects slightly biased towards producers.

Fig. 5.7 shows scatterplots of project needs vectors versus cumulative consump-

tions. Notice that the peak consumptions occur at project needs vectors less than 0.5, show-

ing a consumer bias. This is logical, as consumers, and not producers, affect the number of

times a project is downloaded. Consumer-oriented metrics result in more consumed projects

with low needs vectors. To understand why, recall that only producers affect which projects

survive. When calculating the utility Uc of a project, producers consider two factors: the

matching interests Mi and the success S. The matching interests is always biased towards

producer-oriented projects. Thus when using producer-oriented success metrics, producing

agents mostly select projects with needs vectors greater than 0.5. On the other hand, using

consumer-oriented success metrics causes the second term in the utility function to favor
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(a) Current number of consumers success
metric

(b) Cumulative number of consumers suc-
cess metric

(c) Current number of producers success
metric

(d) Cumulative work success metric

Fig. 5.6. Project needs vectors versus cumulative resources. (a) and (b) are consumer-
oriented metrics and (c) and (d) are producer-oriented metrics.

consumer-oriented projects and thus more projects with needs vectors less than 0.5 survive.

Consumers then select projects for download based solely on matching interests and thus

will gravitate towards consumer-oriented projects if any exist. The reason the peak con-

sumptions are not more off center is because most agents have only a slight consumer or

producer bias, as a result of how pc and pu are initially assigned and mapped to agent needs

vectors. Thus consumer-oriented projects with very low needs vectors do not receive as

many downloads as values just slightly less than 0.5 simply because there are more agents
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(a) Current number of consumers success
metric

(b) Cumulative number of consumers suc-
cess metric

(c) Current number of producers success
metric

(d) Cumulative work success metric

Fig. 5.7. Project needs vectors versus cumulative consumptions. (a) and (b) are consumer-
oriented metrics and (c) and (d) are producer-oriented metrics.

with mid-value needs vectors. A sample distribution of agents’ needs vectors is shown in

Fig. 5.8.

Fig. 5.9 shows scatterplots of project needs vectors versus success. With consumer-

oriented metrics, success values, even for the best projects, are low, and the project needs

vector for the most successful projects is ill-defined. The producer-oriented metrics are

just the opposite. All successful projects cluster tightly around a needs vector value of

0.59, again indicating a producer bias. As mentioned earlier, this value is not more extreme
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Fig. 5.8. Histogram of agents’ needs vectors. Most agents have only a slight consumer
(< 0.5) or producer (> 0.5) bias.

because the majority of agents have needs vectors near the center value of 0.5. The fact

that all projects have extremely high success values shows the tendency of one project to

dominate over all others. Essentially, it is almost impossible for a new project to become

successful once there is an established successful project. This is partially due to agents

always selecting the best project and is akin to the notion that popularity begets popularity.

This explains why there are more non-zero values in Figs. 5.6, 5.7, and 5.9 when using

consumer-oriented metrics. Consumer-oriented metrics cause a diversity in the population

of surviving projects through a lack of feedback loop: producers are attracted to projects

popular with consumers, while consumers are attracted to projects that match their interests.

When using producer-oriented metrics, producers flock to projects that are popular with

producers, which in turns makes those projects even more attractive to other producers.

The positive feedback loop means only a small number of projects survive, and once a

successful project is established, it becomes almost impossible for new projects to gain

developers and thus increase their success.

In summary, some differences are observed in surviving projects’ needs vectors

when using different success metrics. For example, there is more variability and a larger
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(a) Current number of consumers success
metric

(b) Cumulative number of consumers suc-
cess metric

(c) Current number of producers success
metric

(d) Cumulative work success metric

Fig. 5.9. Project needs vectors versus success. (a) and (b) are consumer-oriented metrics
and (c) and (d) are producer-oriented metrics.

number of non-zero values for cumulative resources, cumulative consumptions, and success

when using consumer-oriented metrics. There is also some minor variation in peak values,

although all metrics for cumulative resources and success show a producer bias while all

metrics for cumulative consumptions show a consumer bias. Thus, when choosing a suc-

cess metric, the exact success metric may be less important than whether it belongs to a

consumer or producer category. The differences within each of these categories are minor.
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5.4 CONCLUSION

Digital public goods, such as open source software, are produced by volunteers who con-

tribute content for free. Empirical analysis shows that digital public goods experience un-

equal distributions of various attributes, such as the number of downloads/views of a project

or the number of developers associated with a project. What causes these skewed distribu-

tions? Survey research shows that one hypothesis is that users are attracted to successful

projects. However, there is no generally agreed upon definition of a successful project.

This chapter presents a simple public goods model to study the impacts of using

different success metrics in the FLOSS domain. An analysis with different definitions of

success shows that using different forms of measuring success has an impact on the model’s

output. Success may be viewed differently by consumers versus producers. Therefore

the success metrics explored are categorized into consumer-oriented and producer-oriented

groups. In general, differences are found between these two groups. Consumer-oriented

metrics result in larger and more diverse populations of projects. Within the consumer-

oriented category, there is more variation, including some cases where the current number

of consumers metric behaves like random selection. The variability for producer-oriented

metrics is much smaller. Finally, it is demonstrated that the model is producer-driven and ar-

gued that the data generated by the model when using producer-oriented success metrics has

characteristics that more closely match real world data, supporting the notion that FLOSS

and other digital public goods are driven by the interests of producers, not consumers.
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CHAPTER 6

FLOSSSIM DESCRIPTION

Chapter 5 presented FLOSSSimple, a simple, theoretical model of the open source develop-

ment process based on public goods theory. While FLOSSSimple was used to explore the

effect of different success metrics and draw some general conclusions about the influence

of developers and users on the FLOSS development process, the next step is to incorpo-

rate additional FLOSS processes into the model so that the model may be validated with

empirical data and used for prediction purposes and scenario analysis.

This chapter presents FLOSSSim, a new model of the FLOSS development process,

that borrows from existing FLOSS models and adds improvements. Section 6.1 describes

the model and Section 6.2 provides details on the validation and calibration methods, as

well as the setup for testing. The modeling environment is described in Section 6.3. An

analysis of the model is contained in Chapter 7.

6.1 MODEL DESCRIPTION

The model universe consists of agents and FLOSS projects. Agents may choose to con-

tribute to or not contribute to, and to consume (i.e. download) or not consume FLOSS

projects.

At time zero, FLOSS projects are seeded in the model universe. These initial

projects vary randomly in the amount of resources that will be required to complete

them based on an exponential distribution, resulting in many small projects and few large

projects. Specifically, a project’s resources for completion is generated as shown in (6.1):
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TABLE 6.1
Agent properties.

Property Description Type/Range
Consumer number Propensity of an agent to consume (use)

FLOSS.
R [0.0, 1.0]

Producer number Propensity of an agent to contribute to
FLOSS.

R [0.0, 1.0]

Needs vector A vector representing the interests of the
agent.

Each scalar in vector
is R [0.0, 1.0]

Resources number A value representing the amount of work
an agent can put into FLOSS projects on
a weekly basis. A value of 1.0 represents
40 hours.

R [0.0, 1.5]

Memory A list of projects the agent knows exist.

resourcesForCompletion = maxResources ·PexpPRNG (6.1)

where

maxResources defines the resources required to complete the largest possible project in

the model (i.e. defines the upperbound size of projects)

PexpPRNG is a truncated pseudo-random number generator based on the negative expo-

nential distribution λe−λx where λ = 5 and bounded by the range [0.0,1.0]

At any time, agents may belong to zero, one, or more than one of the FLOSS

projects. The simulation is run with a time step t equal to one (40 hour) work week.

Table 6.1 contains the properties of agents. Table 6.2 contains the properties of

projects.

At each time step, agents choose to produce or consume based on their producer and

consumer numbers, values between 0.0 and 1.0 that represent probabilities that an agent

will produce or consume. Producer and consumer numbers are statically assigned when
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TABLE 6.2
Project properties.

Property Description Type/Range
Current resources The amount of resources or work

being contributed to the project
during the current time interval.

R

Cumulative resources The sum, over time increments, of
all resources contributed to the
project.

R

Resources for
completion

The total number of resources
required to complete the project.

R [0.0, maxResources]

Download count The number of times the project has
been downloaded.

N0

Maturity Six ordered stages a project
progresses through from creation to
completion.

{planning, pre-alpha,
alpha, beta,
production/stable,
mature}

Needs vector An evolving vector representing the
interests of the developers involved
in the project.

Each scalar in vector
is R [0.0, 1.0]

agents are created and are drawn from a normal distribution, where the means and standard

deviations are unknown (see Section 7.1.3.2 on page 207 for an analysis of the values used).

Agents are also statically endowed with resources, representing the amount of work an agent

can to contribute to projects on a weekly basis. Resources numbers are normalized to a 40

hour work week and are generated and assigned to agents based on a survey [1] that inquired

how long developers spend working on FLOSS projects per week, as shown in Fig. 6.1.

All agents have memory which contains a subset of all available projects, and if

producing or consuming, an agent calculates a utility score for each project in its memory.
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Fig. 6.1. Resources number distribution based on weekly time spent developing FLOSS.
Agents’ resources numbers are generated based on the distribution found in [1].

The utility function is shown in (6.2):

U = w1 · similarity(agentNeeds, pro jectNeeds)

+w2 · currentResourcesnorm

+w3 · cumulativeResourcesnorm (6.2)

+w4 ·downloadsnorm

+w5 · f(maturity)

Each term in the utility function represents a factor that attracts agents to a project,

where w1 through w5 are weights that control the importance of each factor, with 0.0 ≤

w1,w2,w3,w4,w5 ≤ 1.0 and ∑5
i=1 wi = 1.0 . Factors in the utility function were selected

based on both FLOSS literature and a personal understanding of the FLOSS development

process (see Section 3.3 for a detailed description of why these factors are considered im-

portant). Keeping it simple, a linear utility equation is used for this version of the model.

The first term represents the similarity between the interests of an agent and the direction
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of a project; it is calculated using cosine similarity between the agent’s and project’s needs

vectors. The second term captures the current popularity of the project with developers and

the third term the size of the project implemented so far. The fourth term captures the pop-

ularity of a project with consumers based on the cumulative number of downloads a project

has received. The fifth term captures the maturity stage of the project. Values with the

subscript “norm” have been normalized by dividing each project’s value by the maximum

value over all projects. For example, downloadsnormi is the ith project’s download count

divided by the maximum number of downloads that any project has received, as shown in

(6.3):

downloadsnormi =
downloadsi

max(downloads1,downloads2, . . . ,downloadsnumOfProjs)
(6.3)

where

downloadsi represents the number of downloads of the ith project

The discreet function f maps each of the six development stages into a value be-

tween 0.0 and 1.0, corresponding to the importance of each development stage in attracting

developers. The number of new developers that join a project during each stage is used

as a proxy to estimate the importance of each stage in attracting new developers. Using

empirical data, the number of new developers in each development stage was counted for a
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subset of projects; the discovered importance of each stage is shown in (6.4).

f(x) =





0.62 if x = planning,

0.47 if x = pre-alpha,

0.27 if x = alpha,

0.23 if x = beta,

0.23 if x = production/stable,

0.0 if x = mature

where x ∈ {planning, pre-alpha, alpha, beta, production/stable, mature}

(6.4)

For details on how these values were obtained, see Section 6.2.2.1.1.

Since all terms in the utility function are normalized, the utility score is always a

value between 0.0 and 1.0. In addition, the square root of the utility is used instead of

U when calculating the utility for projects an agent developed for or downloaded in the

previous time step, representing the added utility of continuing to work on the same project

due to increased familiarity with the project.

Both consumers and producers use the same utility function. This is logical, as

most FLOSS developers are also users of FLOSS [13], [66]. For consumers that are not

producers, arguably the terms represented in the utility function are still of interest when

selecting a project. There is relatively little research published on users compared to devel-

opers of FLOSS, so it is unclear if selection criteria are different between the two groups.

See Section 7.3.1 on page 230 for further exploration of consumers in the model.
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It is possible that some of the terms included in the utility function are redundant or

irrelevant. Part of the model calibration process is to determine which of these factors are

important.

Agents use utility scores in combination with a multinominal logit equation to prob-

abilistically select projects. The probability of selecting the ith project is shown in (6.5):

Pi =
eµ∗Ui

∑numOfProjs
k=1 eµ∗Uk

(6.5)

where

Pi is the probability of selecting the ith project

Ui is the utility of the ith project

{µ ∈ R|µ ≥ 0} adjusts the level of perfect choice

The multinominal logit allows for imperfect choice, i.e., not always selecting the projects

with the highest utility, and may be adjusted by changing the parameter µ . When µ is 0, all

projects are chosen with equal probability regardless of each project’s utility. The larger the

value of µ , the greater the chance an agent will select the “best” project, that is the project

with the highest utility. See Section 6.2.2.2.1 for details on how a value for µ is chosen.

Agents are limited to producing or consuming up to a maximum number of projects

at each time step. When an agent is producing, the number of projects the agent is engaged

in is generated from an exponential distribution with an upper cutoff, as shown in (6.6):

numProducing = maxNumProducing ·PexpPRNG (6.6)

where

maxNumProducing defines the upper limit for the number of projects an agent

can develop for in a single time step
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PexpPRNG is a truncated pseudo-random number generator based on the nega-

tive exponential distribution λe−λx where λ = 5 and bounded by the range

[0.0,1.0]

By using an exponential distribution, agents will frequently be involved with a small number

of projects and only occasionally develop many projects. Developer surveys have confirmed

that the majority of developers work on only one or a few projects [1], [77] and the minority

engage in many projects simultaneously [1], [80].

A truncated normal distribution is used when agents consume, as it is assumed that

most FLOSS users use a similar number of projects and are not subject to the larger time

dedication required when developers become involved in a project. Each time an agent

chooses to consume, the number of projects downloaded is determined by equation (6.7):

numConsuming = maxNumConsuming ·PnormPRNG (6.7)

where

maxNumConsuming defines the upper limit for the number of projects an agent

can download in a single time step

PnormPRNG is a truncated pseudo-random number generator based on a normal

distribution with µ = 0.5 and σ = 1/6 and bounded by the range [0.0,1.0]

See Section 7.1.3.3 on page 209 for an explanation of the values used for the maximum

number of projects an agent can produce or consume.

When producing, agents contribute their entire resources number to the project(s)

they selected. If contributing to multiple projects during a single time step, an agent’s re-
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sources are distributed directly proportionally to the utility score calculated for each project.

When consuming, the downloads count of each selected project is incremented.

There is no explicit formulation of communication between agents included in the

model; implicitly it is assumed that agents share information about other projects and thus

agents know characteristics of projects they are not currently consuming/producing. At each

time step, agents update their memory. With a certain probability an agent will be informed

of a project and add it to its memory, simulating discovering new projects. Likewise, with

a certain probability an agent will remove a project from its memory, simulating forgetting

about or losing interest in old projects. Thus, over time an agent’s memory may expand and

contract. See Section 6.2.2.2.4 for information on the probability of an agent updating its

memory.

The model does not include an explicit switching cost in the utility function. Rather,

this information is partially captured in the memory of agents, where agents are only able to

contribute to the small subset of projects they are familiar with. This can be thought of as a

switching cost threshold, where if an agent is not semi-familiar with a project to begin with,

the cost of working on the project is considered too high. In addition, the utility of a project

an agent has worked on in the previous time step is afforded a bonus by using the square

root of the utility instead of the utility. This represents the added ease of staying with a

familiar project over switching to another project contained in memory, for which the agent

might only be semi-familiar and likely will experience startup costs when switching to.

161



Projects update their needs vector at each iteration using a decaying equation, as

shown in (6.8).

pneedsi,t =

ε ∗ pneedsi,t−1 (6.8a)

+
1− ε

resourcesi,t
∗

numOfAgents

∑
l=1

(cl,i,t ∗aneedsl) (6.8b)

where

pneedsi,t is the ith project’s needs vector at time step t

pneedsi,t−1 is the ith project’s needs vector at time step (t−1)

{ε ∈ R|0.0≤ ε ≤ 1.0}

cl,i,t is the lth agent’s contribution to the ith project at time step t

aneedsl is the lth agent’s needs vector

resourcesi,t = ∑numOfAgents
l=1 cl,i,t

The ith project’s vector at time t, pneedsi,t , is partially based on the project’s needs vector

at time t−1 (6.8a) and partially on the needs vectors of the agents currently contributing to

the project (6.8b). The rate of decay is controlled by ε . An agent’s influence on the project’s

needs vector is directly proportional to the amount of work the agent is contributing to the

project with respect to other agents working on the same project at time t. This represents

the direction of a project being influenced by the developers working on it, with core devel-

opers having a larger influence than peripheral developers in steering the project. The use of

a decaying equation allows projects to change their direction based on the agents contribut-

ing to them while at the same time maintaining inertia, based on work already completed
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on the project. The speed at which a project is able to change is adjusted by changing ε .

See Section 6.2.2.2.5 for details on how the value of ε is set.

Projects are assigned to maturity stages based on the percent of the project that is

complete. Setting the thresholds for the development stages is based on empirical data; how

the boundaries were determined is described in Section 6.2.2.1.2. Projects are assigned to

development stages based on (6.9).

d(x) =





planning if 0.0≤ x < 0.11,

pre-alpha if 0.11≤ x < 0.25,

alpha if 0.25≤ x < 0.53,

beta if 0.53≤ x < 0.78,

production/stable if 0.78≤ x < 0.96,

mature if 0.96≤ x≤ 1.0

where x is the fraction of resources completed on a project, i.e., cumulativeResources
resourcesForCompletion

(6.9)

For example, a project in the model will be considered in the alpha stage if between 25%

and 53% of the work has been completed.

When created, projects’ cumulative resources may be initialized to non-zero values,

representing projects that have accumulated work before being released as FLOSS. These

values are assigned based on empirical data, further outlined in Section 6.2.2.1.4.

New projects are created and added to the model at each time step, representing the

new projects that are constantly being added to the open source community. The rate of
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creation of projects is based on empirical data from SourceForge and scaled to match the

size of the simulation. See Section 6.2.2.1.3 for further details on this data.

A project is considered complete when its cumulative resources is equal to its re-

sources for completion. Completed projects are not removed from the model. While they

are not eligible for further contributions by developing agents, these projects may still be

downloaded by users.

Finally, projects are assumed to be completely independent of one another; there

are no explicitly modeled links between projects.

6.2 MODEL EVALUATION

To aid with evaluating the model, a framework called pattern-oriented modeling is em-

ployed during both the calibration and validation stages. Pattern-oriented modeling at-

tempts to address concerns with complexity and uncertainty in bottom-up modeling [190],

[191], [192], [193], [194], such as agent-based modeling. The idea is to identify patterns,

such as emergent properties, that capture information about the internal structure and pro-

cesses of the system being modeled [194]. Models that are able to match important patterns

are also more likely to be structurally realistic. The pattern-oriented modeling framework

recommends matching multiple patterns from different hierarchical levels and scales, espe-

cially when modeling complex systems where matching a single pattern may be insufficient

to demonstrate that the model is structurally realistic [194]. The ability of a model to match

multiple patterns simultaneously increases confidence that the model is structurally real-

istic [193]. Structurally realistic models may not only reproduce the real world behavior

of a system but also their innerworkings perform in a manner that is similar to that which

occurs in the real system [195], thus lending credibility to the model. Indeed, models that
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are structurally realistic have been able to make accurate secondary predictions for which

they were not originally designed [194].

In general there is a relationship between a model’s payoff and a model’s complex-

ity. Oversimplified models may not be able to duplicate the characteristics of the real system

because they lack essential mechanisms found in the domain being modeled [194]. On the

other hand, overly complex models may be difficult to understand and gain knowledge from,

may be sensitive to parameter changes, etc. [194]. Thus, a balance must be sought between

these two extremes. Pattern-oriented modeling strives to find an ideal level of complexity

for a model by fostering the elimination of components that do not significantly contribute

to matching important patterns while retaining components that are necessary to reproduce

important phenomena [194]. In other words, pattern-oriented modeling attempts to reduce

the complexity of a model by eliminating extraneous components until all that remains is

what is necessary to reproduce the key characteristics of the system.

Finally, pattern-oriented modeling assists with the model calibration process by ad-

dressing parameter uncertainty. First, by encouraging models to be structurally realistic,

the resulting models will likely be less sensitive to parameter uncertainty [196]. Secondly,

pattern-oriented modeling helps with the process of estimating unknown or uncertain val-

ues by finding combinations of parameters that match multiple patterns simultaneously. In

instances where the parameter state space is large and only one pattern is being matched,

there may be a large number of parameter combinations that work equally well in reproduc-

ing the pattern. Matching multiple patterns simultaneously, especially when the patterns are

selected from different parts of the system and are not directly related, is likely to be non-

trivial; evidence has shown that matching multiple patterns can greatly reduce the number

of parameter combinations that are considered acceptable (e.g., see [197]). If there are no
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parameter combinations that allow a model to reasonably match the chosen patterns, it may

indicate that the model is not structurally realistic or that key mechanisms or processes from

the system are not included in the model [197]. This in turn reinforces the importance of

creating structurally realistic models when applying pattern-oriented modeling [193]. Be-

cause all patterns occur simultaneously in the real system, it is more likely that the model

will be able to match all the patterns if the model’s organization and processes are similar

to that of the actual system being modeled.

6.2.1 Validation Method

In accordance with the recommendations of pattern-oriented modeling, three patterns, in

the form of emergent properties, are chosen to validate FLOSSSim. If the model is able

to reproduce all three patterns simultaneously, confidence in the validity of the model is

increased. As recommended by the pattern-oriented modeling framework, each of the three

emergent properties is from a different area of the system being modeled, thus providing

a diverse set of patterns that is expected to be nontrivial to match and therefore useful for

calibration and validation purposes.

The following three emergent properties were chosen to validate the model:

Distribution of projects in development stages: In December 2004, [117] crawled

SourceForge and counted the number of projects in the planning, pre-alpha, alpha,

beta, production/stable, and mature development stages. Using data from FLOSS-

mole [156], the distribution of projects in development stages was independently

found to be very similar in June 2009, as shown in Fig. 6.2. The 2004 data from [117]

is used to calibrate the model. A test of the model’s ability to predict the 2009 data

when calibrated with the 2004 data is performed in Section 7.1.2.1 on page 195.
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Fig. 6.2. The percentage of SourceForge projects in six development stages. Data from a
crawl performed by [117] in December 2004 is compared to data mined from FLOSSmole’s
June 2009 crawl. Although separated by 4.5 years, the percentage of projects in each stage
is very similar, indicating this distribution has remained relatively constant over time.

Number of developers per FLOSS project: This is a highly skewed distribution, poten-

tially making it difficult and therefore useful to match for validation purposes, with

most projects having a small number of developers and only a few projects having

a large number of developers. Data is available from [117]’s December 2004 crawl

of SourceForge. Using data from FLOSSmole [156], the distribution of developers

per project was independently found to be very similar in June 2009, as shown in

Fig. 6.3, with the main difference being a larger number and more extreme outliers

(not shown in Fig. 6.3) in the 2009 data1. The 2004 data from [117] is used to cal-

1In the June 2009 FLOSSmole data, 19 projects had over 100 developers involved, with
the record set by tikiwiki (http://sourceforge.net/projects/tikiwiki/) which had an astounding
428 developers registered with the project. However, fewer than 0.1% of the projects had
more than 41 developers, adding confidence that these projects are outliers. FLOSSSim is
concerned with modeling the normal cases rather than the exceptions.
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Fig. 6.3. The percentage of SourceForge projects with N developers. Data from a crawl
performed by [117] in December 2004 is compared to data mined from FLOSSmole’s [156]
June 2009 crawl. Not shown are the fewer than 0.01% of projects in the 2009 data that have
more than 41 developers. Although separated by 4.5 years, the percentage of projects with
N developers is very similar.

ibrate the model. The model’s ability to predict the 2009 data when calibrated with

the 2004 data is explored in Section 7.1.2.1 on page 195.

Number of FLOSS projects per developer: The bulk of developers work on one or only

a few FLOSS projects while a few developers are involved in many projects. Data

is used from a survey [1] conducted from February through April 2002 of 2784 de-

velopers. Although this data is relatively old, it comes from one of the largest, well-

conducted surveys, involving many projects and developers; no equivalent surveys

have been conducted since.

By creating a model that mimics a number of key patterns based on empirical data,

confidence is derived about the model.
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6.2.2 Calibration Method

The model includes a number of parameters that must be assigned values. A subset of

these can be set to likely values based on statistics gathered from surveys or mined from

FLOSS repository databases. Parameters that are difficult or impossible to measure must

instead be estimated. As previously mentioned in Section 6.2, applying pattern-oriented

modeling can assist in estimating values by finding combinations of parameters that are

able to simultaneously match multiple patterns. The parameter values that perform well

may then be used as estimates for the real, but unmeasurable, values.

Section 6.2.2.1 discusses values that are set based on statistics mined from data

repositories. Section 6.2.2.2 outlines parameter values that are set based on literature, logic,

and personal experience while developing the model. Finally, Section 6.2.2.3 explains how

genetic algorithms are used to explore the state space, in conjunction with pattern-oriented

modeling, to efficiently find values for which there is no practical method to estimate. These

evolved parameters offer insight into the FLOSS development process and are further dis-

cussed in Section 7.1.3 on page 200.

6.2.2.1 Mined Values

Using the data sources outlined in Chapter 4, data mining was performed to extract informa-

tion necessary to configure the model. The following sections describe the mining process

used to obtain certain values used in the model.

6.2.2.1.1 Maturity Stage Importance: The model depends on knowing

the importance of each of the six maturity stages in regards to attracting developers to

projects. Are developers drawn to projects in the early stages of development, such as

planning and pre-alpha, when main design decisions are being made and core code still
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needs to be developed, or do developers prefer later stages, when the software has already

proven itself as stable? [45] argues that developers are attracted to early development stages

due to the longevity of the code, and thus long-term programmer recognition, that becomes

the cornerstone of future development. On the other hand, developers may not want to waste

their time on a project that, several months after contributing to it, becomes inactive without

ever creating usable software. In this case, developers may be interested in later stages, such

as beta and production/stable, at which point the software has already demonstrated some

functionality and thus contributions at this point may be seen as unlikely to be wasted, since

the project has already proven its ability to survive.

Counting the number of developers involved in a project at each maturity stage ini-

tially appears to be an acceptable proxy for measuring the importance of maturity stages.

More desirable development stages will have more developers involved. Unfortunately,

there is an inherent flaw in this metric. Sites like SourceForge require users to create ac-

counts, after which developers can use their accounts to join projects. The problem with

blindly counting the number of developers registered with a project for each stage is that

this count will include both active and inactive developers. That is, it is relatively common

for a developer to join a project but then, either immediately or sometime in the future,

provide no contributions. Inherently, there is a bias towards joining a project – one must

join a project to, for example, commit code – but there is no reason to remove one’s self

from a project when no longer interested in contributing. [48] includes several examples

where counting the number of developers causes a project to appear active with a steady

development team when, in fact, the project was abandoned long ago. For the work per-

formed in [48], the metric is adapted to only count active developers by checking SCM logs

to verify a developer has made a contribution within a certain timeframe. Since the focus of
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this research is understanding what maturity stages attract developers to a project, the met-

ric is further modified to count only new developers, where new developers are those that

have never worked on the project before. If a developer leaves for a period of time and then

later returns to the same project, that developer will only be counted the first time he/she

joins and not when he/she returns. This metric then helps gauge at what development stage

projects become desireable enough to join.

Obtaining the number of new developers per maturity stage involved combining

data from multiple sources. Since the goal was to determine the relative importance of

all six development stages, it was necessary to select projects that had progressed through

as many stages as possible. Starting with the projects in the FLOSSmole database [156],

after removing projects that were listed in multiple stages at the same time (considered

dirty data since projects should only have a single development status at any given time),

there were zero projects that had progressed through all six stages and only two that had

gone through five stages. This made it necessary to lower the threshold to projects that had

progressed through four or more stages in order to obtain a sufficient number of projects

to study, resulting in 76 projects. The dates each of these projects changed maturity stages

were extracted from the FLOSSmole database, but the FLOSSmole database did not include

enough information to determine when new developers joined a project. While the FLOSS-

Metrics data included the SCM data necessary to count the number of new developers,

none of the 76 FLOSSmole projects were included in the FLOSSMetrics data set. There-

fore, CVS, SVN, and git were used to manually download SCM logs for these projects and

then CVSAnalY2 [165], a tool used by FLOSSMetrics, was used to convert the SCM logs

into relational database tables. The resulting databases could then be queried to determine
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the number of new developers that joined a project bounded by the dates, extracted from

the FLOSSmole database, that indicated when a project was in each development stage.

For each project, the new developer counts were normalized by finding the stage

with the maximum number of new developers and dividing all stages by this number, as

shown in (6.10).

ndnormi, j =
ndi, j

max(ndi,planning,ndi,pre-alpha, . . . ,ndi,mature)
(6.10)

where

ndi, j is the number of new developers for the ith project in the jth development

stage

{i ∈ N1|1≤ i≤ number of projects}

j ∈ {planning, pre-alpha, alpha, beta, production/stable, mature}

For each development stage, the normalized values were averaged across the 76 projects,

resulting in a normalized importance value for each of the development stages. Projects

that had never been in a particular development stage were omitted when calculating the

average for that stage only. These values were used to define the discrete function f as

shown in (6.4).

By definition, all the developers are considered new when a project is first released

as open source, resulting in a high importance value for the planning stage. The data show

that in general, fewer and fewer new developers join as a project matures. Unfortunately, in

the data set there were only four projects that progressed to the mature stage, and none of

these projects gained new developers once in this stage. As a result of the small number of

mature projects, the zero weight reported for this stage might not be accurate.
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6.2.2.1.2 Maturity Stage Thresholds: In the model, there must be a

mechanism to determine the maturity stage of a project. In the real world, this is a human-

assigned value that is updated by a project administrator to convey information about how

mature or complete the software is. The value is ideally chosen by someone who is en-

trenched in the project, most likely a core developer, and in theory reflects the level of

functionality, stability, etc. of the project. Inherently, there appears to be a connection be-

tween development stage and the amount of work completed on a project. A project listed in

the alpha stage, for example, is generally understood to have limited functionality, whereas

software in the beta stage is expected to have the majority of the functionality implemented,

even though it may still include many bugs. There will of course be some variability from

project-to-project as to exactly what each development stage represents, but the general idea

is that the higher the development stage, the more work that will have been completed on

a project. Because of this, FLOSSSim approximates the human-assigned maturity values

by calculating the percentage of a project that is complete and assigning it a maturity stage

based on this percentage.

To map development stages into percent complete thresholds, the amount of work

that was complete when real world projects moved maturity stages is examined. The re-

sults should be averaged across many projects to provide an estimate on the amount of

work typically completed in each stage, from which point thresholds in the model can be

set. FLOSSSim tracks the amount of work performed on a project based on man hours

contributed to a project (see “resources number” in Table 6.1 and “current resources,” “cu-

mulative resources,” and “resources for completion” in Table 6.2). Unfortunately, empiri-

cal data tracking the number of hours contributed to projects is not available. Instead, code

commits, which are tracked by SCM software and therefore available for many projects, are
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Fig. 6.4. Mean percentage of code commits that occur in each development stage.

used as a proxy for work completed. Essentially both man hours and code commits measure

work completed on a project, but the former represents a fine-grained measurement while

the latter represents a more coarse measurement. That is man hours represent the raw time

spent working on a project whereas commits represent meaningful increments of work.

To calculate the maturity stage thresholds based on the percent complete of a

project, the percentage of code commits that occurred in each development stage for

projects on SourceForge that had progressed through four or more development stages

was determined. The dates projects changed stages was ascertained using the FLOSS-

mole database [156]; CVSAnalY2 [165] was then used to build database tables from each

project’s SCM logs, which were subsequently queried to determine the number of commits

in each stage. The mean percentage of commits that occur in each stage is shown in Fig. 6.4.

This information is used to define (6.9).

Not surprisingly, the data show that projects upgrade rapidly to the alpha stage once

some minimal functionality has been obtained through a small number of commits. The
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Fig. 6.5. The number of projects on SourceForge with respect to time.

majority of work is performed while projects are in the alpha and beta stages. Finally, as

projects mature the number of commits is reduced as projects shift from a development

phase, where adding new features and functionality is the predominant activity, to a main-

tenance phase, where the focus is mostly on bug fixes, support, and upkeep of the code.

6.2.2.1.3 New Project Creation Rate: To determine the number of

projects to add to the model at each time step, the growth rate of projects on SourceForge

is analyzed. Using the FLOSSmole database [156], the date of each crawl along with the

number of projects included in each crawl is calculated. Clean data was available from Oc-

tober 2004 through December 2007. Although FLOSSmole attempts to crawl SourceForge

every 60 days, there are periods when more than 60 days elapsed without a crawl, including

from October 2004 through October 2005, when crawls occurred quarterly. A plot of the

date versus number of projects on SourceForge is contained in Fig. 6.5. The equation for
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the best-fit line is shown in (6.11):

y = 1242x+88098 (6.11)

where

x is the number of months offset from October 2004 (i.e., 10/04 is 0, 11/04 is 1)

For the regression line, R2 = 0.92, indicating that the line is a good fit and supporting that

projects are added to SourceForge at a roughly linear rate, namely around 1242 projects per

month. The occasional decrease in the number of projects appears to occur when Source-

Forge performs some level of housekeeping and removes dead projects, although Source-

Forge’s policy about the removal of projects does not appear to be publicly documented

(i.e. frequency, criteria for removing a project, etc.).

FLOSSSim is normally run with a reduced set of projects, in which case the rate at

which projects are added to the simulation is appropriately scaled.

6.2.2.1.4 New Project Cumulative Resources and Maturity: Not all

FLOSS projects start from scratch as open source. Many projects are first partially de-

veloped and then released under an open source license. The development stage of projects

when first added to SourceForge, as mined from the FLOSSmole database, is shown in

Table 6.3. When creating projects, FLOSSSim initializes the cumulative resources and ma-

turity according to this distribution. The cumulative resources is set to the bottom threshold

of each development stage, i.e., if a project is created in the alpha stage, then the cumula-

tive resources is set to 25% of the resources for completion because 11% and 14% of the

resources are contributed in the planning and pre-alpha stages respectively (see Fig. 6.4).
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TABLE 6.3
Development stage of projects when first added to SourceForge, based on data mined from

the FLOSSmole database (see [156]).

Initial Development
Stage on SourceForge

Percent of Projects

planning 26.1%
pre-alpha 16.6%
alpha 18.1%
beta 22.4%
production/stable 15.6%
mature 1.2%

6.2.2.2 Defined Parameter Values

A subset of model parameters cannot be directly measured and instead must be assigned

values based on literature, logic, and experience. A summary of these model parameters

and their assigned values is contained in Table 6.4. Details describing how individual pa-

rameters are assigned values are contained in the following subsections.

6.2.2.2.1 µ: µ controls the level of perfect choice in the model when

agents are selecting projects (see (6.5)). When µ = 0, all projects are selected with an equal

probability. As µ approaches ∞, the probability of selecting the project with the highest

utility increases. Unfortunately, it is impossible to directly measure µ and therefore this

value must be estimated. As in the real world, agents in the model are only aware of a small

subset of all existing projects. Since this subset is relatively small (although the size varies

by individual), it is expected that individuals will be able to collect enough information to

make near-perfect decisions. Therefore, µ is assigned the relatively high value of 36, a

value that causes agents to make well-informed decisions. See Section 7.2.1 on page 222

for details on how this value was selected.
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TABLE 6.4
Defined FLOSSSim model parameters.

Parameter Defined
Value

Description

µ 36 Controls agents’ level of perfect choice. See (6.5).
Needs
vector

dimension

3 The dimension of projects’ and agents’ needs
vectors.

Starting
memory

size

5 The initial number of projects an agent is aware of
when the agent is created.

Memory
change

probabil-
ity

0.065 The probability of an agent, at each time step, adding
and/or removing a project from its memory.

ε 0.5 Decaying constant that controls how quickly a
project changes its needs vector to accommodate
agents working on the project. See (6.8).

Number
of agents

389 The number of agents at the start of a model run.

Number
of projects

1024 The number of projects at the start of a model run.

Maximum
resources

10,000 The amount of work required to complete the largest
possible project in the model. Controls the maximum
size of projects.

6.2.2.2.2 Needs Vector Dimension: There is no way to directly derive

from empirical data the correct dimensionality for the needs vector, since the needs vector

is already an abstraction of the real world used to represent the interests and directions of

agents and projects respectively. Therefore, this value must be estimated. When setting the

dimensionality, there is a tradeoff. If the value is set too low, this will result in insufficient

variation in projects and agents, making the similarity very close between most projects

and agents. Setting the dimensionality too high is not expected to increase the variation

in a manner that causes the model to perform more realistically, but it will increase the

computation time for calculating the similarity. Since similarity is calculated frequently by
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the model, even a small increase in time to compute the similarity can have a large effect on

overall execution time. Therefore, the goal is to use the minimum value that provides for

sufficient variation in agents’ and projects’ needs.

One and two dimensional vectors are expected to provide insufficient variation.

Experience with the model shows that values greater than two are able to reproduce the

validation patterns. A sensitivity analysis, described in Section 7.2.2 on page 225, demon-

strates that values greater than three do not result in better fitness. Therefore, the needs

vector dimension is set to three.

6.2.2.2.3 Starting Memory Size: Developers and users can only partic-

ipate in projects that they are aware of. However, it is unknown how many FLOSS projects

the average developer or consumer knows about. For the purpose of FLOSSSim, when

agents are created they are made aware of a subset of projects; over time, an agent may

learn about new projects, adding them to its memory, and forget and/or reject other projects,

removing them from its memory. The number of projects an agent’s memory is seeded with

when the agent is created must be estimated. For FLOSSSim, this value is set to five, as

determined through a sensitivity analysis outlined in Section 7.2.3 on page 225.

6.2.2.2.4 Memory Change Probability: At each time step agents may

learn about new projects, adding them to the subset of projects they can select from, or for-

get about or reject projects that are already in their memory. The probability of individuals

discovering or forgetting projects cannot be determined using available empirical data. A

sensitivity analysis, contained in Section 7.2.4 on page 227, shows the model performs well

when the change probability is 0.065.

6.2.2.2.5 ε: ε controls the amount a project’s needs vector at time t is

influenced by the project’s needs vector at time t− 1 versus the needs vector of the devel-
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opers working on the project at time t (see (6.8)). There is no method to measure ε from

empirical data and therefore this value must be estimated. A value of 0.5 is chosen, which

should allow projects to be agile and rapidly adapt as the developer population changes

while still providing a level of inertia to the project that comes from the work performed by

earlier developers.

6.2.2.2.6 Number of Agents and Projects: There are two goals to con-

sider when setting the number of agents and projects in the model runs. First is the ratio of

agents to projects. If this ratio is too high, too much work will be accomplished and projects

will progress too rapidly. If the ratio is too low, not enough work will be completed and all

projects will be stagnant. The correct ratio is also affected by the producer and consumer

number means and standard deviations. For example, a higher producer number mean

causes agents to more frequently develop, meaning the same number of agents will be able

to complete the same amount of work in less time. For an analysis of the evolved producer

and consumer number means and standard deviations, see Section 7.1.3.2 on page 207.

A second goal is to minimize execution time. It is desirable to scale down the

absolute number of agents and projects to values that still allow the model to match the real

world phenomena but that do not consume excessive computing resources with no value

added. Although execution time is secondary to the model’s primary purposes, the use of

evolutionary computation in the development of FLOSSSim results in the model being run

millions of times, making execution time important nonetheless.

A sensitivity analysis, contained in Section 7.2.5 on page 227, is used to determine

both the optimum agent-to-project ratio and the absolute values that are necessary in order

for the model to match empirical data. This results in model runs starting with 389 agents

and 1024 projects, with more projects being created during the execution of the model.
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6.2.2.2.7 Maximum Resources: The value of the maximum resources

sets the size of the largest possible project in the model. A sensitivity analysis shows that

the model performs well over a wide range of values and therefore 10,000 is chosen as

a reasonable value for the model. This means that the largest possible project that could

be created in a simulation run would take 10,000 40 hour work weeks to complete, the

equivalent of 48 people working full time on a project for 4 years.

6.2.2.3 Genetically Evolved Values

Unfortunately, not all parameters in the model can be directly measured or intelligently as-

signed values; values for these parameters must instead be sampled from bounded ranges,

using pattern-oriented modeling to guide the search for well-performing values. The

evolved values may then be examined to gain a better understanding of the FLOSS devel-

opment process. Descriptions and bounded ranges of the model parameters that are evolved

are contained in Table 6.5.

For the parameters that must be estimated, a search of the parameter space must

be performed to find the combination(s) that allow the model to most closely match the

empirical data. Due to the large state space, an exhaustive search is not possible. Since

genetic algorithms are known to perform well in high dimension, stochastic, non-linear

spaces [198], genetic algorithms are employed to find near-optimal parameter sets that result

in the model’s output closely matching the empirical data. This is done as follows: an initial

population of 30 model parameter sets is created, with each individual parameter assigned

a random value drawn from a uniform distribution that is bounded by estimated upper and

lower limits for the given parameter (see the range column in Table 6.5). The model is run

with each of the parameter sets and a fitness score is calculated based on the similarity of the

generated versus empirical data. The parameter values from these sets are then mutated or
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TABLE 6.5
Descriptions and value ranges for model parameters that are evolved. Values for these

parameters cannot be easily measured or estimated. Pattern-oriented modeling, in
conjunction with genetic algorithms, is used to estimate these parameter values by finding
combinations of parameters that result in the model producing data that closely matches

empirical data.

Parameter Description Range
w1 Similarity weight; the importance of similarity between

an agent and a project when selecting a project.
[0.0, 1.0]

w2 Current resources weight; the importance of the amount
of work currently being done when selecting a project.

[0.0, 1.0]

w3 Cumulative resources weight; the importance of the
amount of work already completed when selecting a
project.

[0.0, 1.0]

w4 Downloads weight; the importance of the popularity of a
project with consumers when selecting a project.

[0.0, 1.0]

w5 Maturity weight; the importance of a project’s
development stage when selecting a project.

[0.0, 1.0]

maximum
number
consuming

The maximum number of projects an agent can use
during a single time step.

[3, 12]

maximum
number
producing

The maximum number of projects an agent can develop
for during a single time step.

[3, 15]

producer
number mean

The mean value of the normal distribution used for
generating agents’ probability of producing.

[0.0, 1.0]

producer
number stdev

The standard deviation of the normal distribution used for
generating agents’ producer numbers.

[0.0, 1.0]

consumer
number mean

The mean value of the normal distribution used for
generating agents’ probability of consuming.

[0.0, 1.0]

consumer
number stdev

The standard deviation of the normal distribution used for
generating agents’ consumer numbers.

[0.0, 1.0]

crossed-over with other parameter sets to create a new generation of model parameter sets,

with a bias for selecting parameters sets that resulted in a high fitness; then the new gener-

ation of parameter sets are evaluated and the process is repeated. This repetition continues
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until individuals meet a fitness threshold or a maximum number of generations is evolved2.

In this case, a genetic algorithm is being used for a stochastic optimization problem for

which it is not known when a global optimum is found. Genetic algorithms are appropriate

for finding well-performing solutions in a reasonably brief amount of time and frequently

outperform other optimization techniques, such as random search and hill climbing, when

applied to non-linear, chaotic, or stochastic landscapes [198]. Reviewing the values of the

best performing parameters will help identify which factors are important/influential in the

open source software development process.

The fitness function chosen for the genetic algorithm is based on the sum of the

square of errors between the simulated and empirical data, as shown in (6.12):

f itness = 1− sum of square of errors
maximum possible sum of square of errors

(6.12)

Since there are three fitness values calculated, one per empirical data set, the three fitness

values are averaged to provide a single value for comparison purposes.

6.2.3 Setup for Testing

Since the model includes stochastic components, multiple runs with a given parameter set

are performed and the results averaged. To determine the number of runs necessary, 256

parameter sets were chosen randomly and each of these sets was evaluated 32 times. Us-

ing normal probability plots, it was determined that fitness values for each parameter set

were normally distributed. From these runs the standard error of the mean for the model

fitness was calculated, which provides information on the probability of finding the real

mean fitness of the population based on the sample size. The probability of obtaining the

2For the results presented, up to 4096 generations were evaluated.
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Fig. 6.6. Standard error of the mean fitness based on 256 random parameter sets.

actual mean of the population increases at a diminishing rate with increases in sample size.

The standard error of the mean fitness is shown in Fig. 6.6. While an increase in sample

size results in a better estimate of the population’s true mean, it also increases the compu-

tation time necessary to evaluate each parameter set. Therefore, a balance must be found

between these two conflicting issues. Based on Fig. 6.6, eight runs are performed because

1) increases in sample size beyond eight result in only a minor decrease in standard devia-

tion and 2) via the genetic algorithm, important parameter sets (i.e. those with high fitness

scores) are likely to be copied to a subsequent generation and therefore reevaluated mul-

tiple times across generations, decreasing the chances of a poor parameter set with a few

lucky runs being incorrectly categorized as a good fit. As a result of these findings, each

parameter set is evaluated eight times when evaluating the model and the averaged results

over eight runs are then compared to the empirical data.

As empirical investigations of FLOSS evolution note, it takes approximately four

years for a project of medium size to reach a mature stage [80]. To accommodate large
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projects and allow the simulation sufficient time to stabilize from startup conditions, the

model’s performance is evaluated after 250 time steps, with a time step t equal to one week,

resulting in a simulated period of just under five years. All metrics are gathered immediately

following the 250th time step.

The results of running the model as outlined here are presented in Section 7.1 on

page 190.

6.3 MODELING ENVIRONMENT

The following sections provide details of the modeling environment. The criteria for select-

ing the modeling platform are contained in Section 6.3.1, the hardware used for the sim-

ulation runs is described in Section 6.3.2, and the verification techniques employed when

developing the code are disclosed in Section 6.3.3.

6.3.1 Modeling Platform

After performing a cursory review of potential modeling environments supporting agent-

based modeling, three toolkits were selected as having the most promise:

NetLogo: (http://ccl.northwestern.edu/netlogo/) This is the modeling environment

FLOSSSimple was implemented in. In the spirit of logo programming languages, it

is high-level, but proprietary, and aims to be simple to use yet allow for rapid devel-

opment. It includes support for visualization and is itself written in JAVA, providing

for platform independence.

Repast: (http://repast.sourceforge.net) The Recursive Porous Agent Simulation Toolkit is

an open source suite of tools that support modeling and simulating. Repast has been
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reimplemented in multiple languages, meaning a version is available for most plat-

forms. Programming in Repast may be done in logo-like languages or using tradi-

tional programming languages (e.g., JAVA, C++) using Repast as a software library.

MASON: (http://cs.gmu.edu/∼eclab/projects/mason/) The Multi-Agent Simulator Of

Neighborhoods (or Networks. . . or something. . . ) is an open source JAVA library.

As such, it is platform independent, and models using MASON are implemented in

JAVA.

All three toolkits were originally developed in academic environments: NetLogo

was developed at Northwestern University, Repast at the University of Chicago, and MA-

SON at George Mason University.

When selecting from these options of modeling platforms, the following important

aspects were taken into consideration:

Execution speed: Because the model will be executed literally tens of millions of times

during development, execution speed is a very important factor. NetLogo is inher-

ently slow, as the logo language is interpreted and the interpreter itself runs in JAVA,

another slow language because it is also interpreted. Both Repast and MASON aim

to be fast, even though both are also written in JAVA. Although JAVA is at an inherent

disadvantage compared to natively compiled languages, the MASON team points out

that well-written JAVA can execute astoundingly fast [199] and a design point of the

MASON library is to efficiently support large simulations [199]. Indeed, some com-

parisons have shown that while Repast may be a more complete modeling library,

models implemented in MASON execute faster [200].
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Parallel execution support: Again, because of speed concerns, a simulation environment

that can take advantage of multiple processors is preferred. NetLogo does not sup-

port multi-threaded programming [201]. Both Repast and MASON, because they

are JAVA programming libraries, support threads through JAVA’s native support for

threads.

FLOSS license: A modeling platform that is open source itself provides all the benefits

of FLOSS, including the ability to fix bugs oneself rather than waiting for official

releases3. NetLogo is closed source, but both Repast and MASON use open source

licenses.

In addition, MASON offered several other major advantages over the competition.

Namely, MASON natively supports checkpointing so that simulations may be stopped and

restarted. This is invaluable when performing long runs that may last weeks, as it allows

restarting from the last checkpoint should a failure occur (e.g., hardware failure, power

outage). This also allows jobs to be migrated from one computer to another as resources

become available. MASON also guarantees identical results regardless of the execution

platform, meaning that migrating a job mid-execution has no effect on the results. In addi-

tion, MASON is designed to allow the attachment and detachment of modules to running

models; this allows, for example, a model to be run quickly without visualization, check-

pointed, and then restarted from the checkpoint with a visualization module attached, or

vice versa. In addition, the the Evolutionary Computation Lab at George Mason University

3In the case of MASON, I not only discovered a bug and managed to track it back to
the MASON code, but I was also able to fix the error, document it, and submit a proposed
patch to the developer mailing list. The fix has been incorporated into the project.
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that produced MASON has also written an evolutionary computation toolkit called ECJ4.

ECJ can be used with MASON to provide the genetic algorithms used in this research.

Like MASON, ECJ is optimized for speed and is also under an open source license5. ECJ

also provides built-in thread support for evaluating and breeding multiple individuals in a

generation concurrently. Additional checkpointing abilities are also built into ECJ.

Based on the advantages MASON had over the other platforms, MASON was se-

lected for implementing FLOSSSim.

6.3.2 Execution Environment

Model runs were performed on a variety of machines, from single processor PC’s to

Saguaro, a high performance computing cluster with 4560 processor cores [202]; all com-

puters were running FLOSS operating systems, namely Linux or FreeBSD.

Parallelizing the code to take advantage of multiple processors was done as follows:

FLOSSSim itself is single threaded. However, the nature of the genetic algorithm means

that all individuals in a generation can be evaluated independently of one another. This

makes it possible if the population size is N to use N processors to evaluate the population

in 1
N the time, essentially resulting in a linear speed up limited by the size of the population.

Therefore, when performing evolutionary runs, the number of threads was adjusted to take

advantage of the number of processors available, significantly cutting down on wall clock

time when exploring the model.

4http://cs.gmu.edu/ eclab/projects/ecj/

5The fact that ECJ is under an open source license allowed the library to be extended
to include features needed for this research, such as modifications that allowed for repro-
ducible results when running an arbitrary number of evaluation threads.
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The code was profiled and manually optimized to decrease execution time. On av-

erage, a single 250 step run of the model, including collecting the statistics at the end of

the run, took 0.78 seconds when executed on a computer with a 1.8 GHz Intel single-core

processor with 1 GB of memory running Linux 2.6.21 and executing under Sun Microsys-

tem’s JAVA Development Kit 1.5.0 13. Each model parameter set was evaluated 8 times

and the results averaged. Evolutionary runs consisted of 30 individuals per generation and

4096 generations, resulting in 8×30×4096 = 983040 model runs per evolutionary run, or

approximately 9 days of compute time. To reduce execution time, the data was scaled down

for the simulation runs, using thousands of projects and agents rather than the hundreds of

thousands found on SourceForge (see Section 7.2.5 for an analysis of running the model

with a reduced number of projects and agents).

6.3.3 Verification

Traditional software engineering verification techniques were employed when developing

the code to ensure correctness, including unit testing, integration testing, regression test-

ing, and code reviews. In addition, FLOSSSim will be released on the OpenABM Con-

sortium’s website6, a group which aims to improve the agent-based model development

process through the FLOSS-like practice of encouraging researchers to release their model

implementations so that others may independently verify, validate, and further study the

models [203].

6http://www.OpenABM.org
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CHAPTER 7

FLOSSSIM ANALYSIS

This chapter contains an analysis of FLOSSSim. After being calibrated and set up for

testing as described in 6.2, the ability of FLOSSSim to reproduce and predict empirical

FLOSS data is discussed in Section 7.1, along with an examination of the variance seen

when using different success metrics. The sensitivity of the model to input parameters

is presented in Section 7.2. Finally, using the model to explore scenarios is described in

Section 7.3 and future work is discussed in Section 7.4.

7.1 RESULTS

The results of the model, after calibrating and using evolutionary computation to find well-

performing sets of parameters, are included in the following sections. The model’s ability

to match the three empirical patterns is discussed in Section 7.1.1 and the ability to predict

additional patterns, including distributions the model was not calibrated for, is shown in

Section 7.1.2. An analysis of the parameters evolved by the genetic algorithm is contained

in Section 7.1.3. Finally, the effects of using different success metrics in the model is

examined in Section 7.1.4.

7.1.1 Matching Distributions

The averaged data over eight runs from the model’s best parameter set (i.e., the parameter

set resulting in the highest fitness score), along with the empirical data for the three patterns

to be matched, are shown in Figs. 7.1, 7.2, and 7.3.
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Fig. 7.1. Percentage of FLOSS projects in development stages. Empirical data from [117].

Figure 7.1 shows the model’s percentage of projects in each development stage is

very similar to the empirical data. During the development of the model, this has been the

hardest distribution to match. In earlier versions of the model, new projects were all created

in the planning stage [204]. In reality, this is not the case; many projects, by the time they

are released as open source on SourceForge, are beyond the planning stage. In fact, only

26.1% of projects start in the planning stage when they first appear on SourceForge, as

shown in Table 6.3. Mimicking this distribution when creating projects adds realism to the

model and has improved the model’s ability to match the empirical data.

Two thirds of FLOSS projects have only a single developer and 90% have fewer

than four developers [117]. As shown in Fig. 7.2, the number of developers per projects

follows a near-exponential distribution, and the simulated data is similar, especially for

projects with fewer than 13 developers. Note that the data in Fig. 7.2 uses a logarithmic

scale on the y-axis to help with a visual comparison between the two data sets. Beyond 13

developers, the values match less closely, although this difference is visually amplified as
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Fig. 7.2. Percentage of projects with N developers. Empirical data from [117].

a result of the logarithmic scale on Fig. 7.2 and is actually not as large as it might initially

appear (e.g., for 15 developers, the difference between the empirical and simulated values

is only 0.06%). Since there are very few projects with large numbers of developers in the

empirical data, the higher values may be in the noise anyhow and thus focus should be on

the similarity of the lower numbers.

In FLOSS, the distribution of projects per developer is highly skewed, with the

majority of developers working on one or just a few projects [1], [77]. Meanwhile, a small

subset of developers work on many projects [1], [80]. Figure 7.3 shows the model performs

well in matching this distribution as well.

Table 7.1 contains the mean fitness scores for each of the emergent properties for the

top performing parameter set. These values provide a quantitative mechanism for confirm-

ing the visual comparisons made above. Indeed, all three fitness scores are high, indicating

good matches for all three distributions. The combined fitness is simply the mean of the

three fitness scores, although this value could be calculated with uneven weights if, say,
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Fig. 7.3. Percentage of developers working on N projects. Empirical data from [1].

TABLE 7.1
Mean fitness scores of the best performing parameter set for the three emergent properties.

Emergent Property Fitness Score
Maturity stage 0.99947
Developers per project 0.99988
Projects per developer 0.99934
Combined (mean) 0.99956

matching each property was prioritized. Doing so would affect how the genetic algorithm

explored the parameter space. It may be the case that certain properties are easy to re-

produce in the model and work over a wide range of parameter sets, in which case these

properties may be weighted less than properties that are more difficult to match. Properties

which are always matched should be discarded from the model for evolution purposes as

they do not discriminate against different parameter sets.

Analysis of the model runs show that none of the three distributions are trivial to

match. To demonstrate this, 1000 random parameter sets were evaluated, representing a

random set of points in the state space landscape. If a distribution is trivial to match, it
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TABLE 7.2
Range of fitness scores and percent of scores exceeding 0.98 for a random sample of 1000

parameter sets.

Fitness Score Range Fitness Scores ≥ 0.98
Maturity stage [0.4184,0.9996] 45.9%
Devs per project [0.7419,0.9996] 18.4%
Projects per dev [0.5576,0.9967] 3.0%
Combined (mean) [0.6532,0.9904] 0.9%

will have high fitness scores over most or all of the state space; that is, it will be relatively

non-discriminating and thus non-helpful in locating near-optima in the landscape. Through

experience gained while developing the model, a fitness value of 0.98 is chosen as the

threshold to distinguish between good and bad fit1. The range of values and the percent of

fitness scores exceeding 0.98 are shown in Table 7.2. The wide ranges of values demonstrate

that the fitness values are not high over the entire state space; indeed, many parameters sets

result in very poor matches for each of the distributions. The maturity stage fitness is

greater than 0.98 for almost 46% of the random sample, indicating this may be the least

discriminating of the three distributions. Although this value is high, the majority of the

state space still results in poor fitness values, indicating matching this distribution helps

calibrate the model. The developers per project and projects per developer have high fitness

over a much smaller percent of the landscape, indicating these distributions are harder to

match. The combined values exceed 0.98 for only 0.9% of the random parameter sets,

1A 0.98 fitness result is actually not a very good fit between the simulated and empirical
data – using a genetic algorithm it has been possible to consistently find fitness values well
exceeding 0.99 – but for this analysis it is preferable to error on the side of categorizing too
many parameter sets as acceptable.

194



indicating matching all three distributions at the same time is difficult. Based on this, it is

concluded that all three distributions contribute in tuning the realism of the model.

7.1.2 Predictive Validity

In this section, the capability of FLOSSSim to predict components of the FLOSS devel-

opment process is explored. First, the ability of the model to predict future distributions

for data that was used in the calibration process is analyzed in Section 7.1.2.1. Secondly,

the ability of the model to predict values for which it was not calibrated is shown in Sec-

tion 7.1.2.2.

7.1.2.1 Project Development Stage and Developers per Project Distributions

The model was calibrated for project development stage and developers per project distri-

butions based on data from [117], which was collected in December 2004. As previously

mentioned in Section 6.2.1, using the FLOSSmole database [156] these distributions were

recalculated based on a June 2009 crawl of SourceForge. To determine how well the model

performs in predicting these values, the model is first calibrated using the data from De-

cember 2004 and then run an extra 4.5 years, at which point the model’s predicted values

are compared to the June 2009 data. More specifically, the model is calibrated at 250 time

steps using the 2004 data. The top performing 1% of parameter sets are then rerun, this time

for 484 time steps, representing the original 250 time steps plus an additional 4.5 years of

simulated time. The model’s predicted results after 484 steps are then compared to the 2009

empirical data.
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Fig. 7.4. Predicted versus empirical percentage of FLOSS projects in development stages
in June 2009. The model is first calibrated with December 2004 data from [117] and then
run for an additional 4.5 years. FLOSSSim’s predictions closely match the empirical data.
Empirical data compiled from FLOSSmole’s [156] June 2009 crawl of SourceForge.

FLOSSSim’s prediction for the maturity stage distribution is very similar to the

2009 SourceForge data. A sample run from one of the top performing parameter sets2

is shown in Fig. 7.4. FLOSSSim predicts slightly too high values for the percentage of

projects in the lower three development stages. The largest disparity between predicted and

empirical values occurs in the production/stable stage, where FLOSSSim’s estimate is low

by less than 4%. Overall, the model performs well in predicting the project maturity stage

distribution 4.5 years into the future.

A sample of FLOSSSim’s prediction for the developers per project distribution is

shown in Fig. 7.5. As can be seen, the model performs well in matching this distribution

2Results were relatively consistent across the top performing parameter sets and there-
fore only a sample is shown.
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Fig. 7.5. Predicted versus empirical percentage of developers per project in June 2009.
The model is first calibrated with December 2004 data from [117] and then run for an
additional 4.5 years. FLOSSSim’s predictions closely match the empirical data. Empirical
data compiled from FLOSSmole’s [156] June 2009 crawl of SourceForge.

as well for the bulk of projects. Only the extreme projects with greater than 14 developers,

which account for only 0.63% of the projects, are not reproduced.

The ability of the model to accurate predict data 4.5 years into the future increases

confidence that the model is realistic. This in turn adds confidence that the model may be

used to explore and/or predict other aspects of the FLOSS development process, including

components that cannot be directly validated.

7.1.2.2 Downloads Distribution

Section 7.1.1 demonstrates that FLOSSSim is able to reproduce the three key patterns for

which it was calibrated and Section 7.1.2.1 shows the model can predict future values for the

calibrated data, but pattern-oriented modeling suggests that the structural realism imposed

by matching multiple patterns may allow a model to match other patterns for which it was

not originally designed [194]. To determine if the model performs well outside of the
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patterns for which it was calibrated, a fourth pattern of downloads distribution is selected.

The model’s predicted values are then compared to empirical data.

The number of downloads SourceForge projects have received was mined from the

FLOSSmole database. Prior to April 2005 inclusive, monthly download counts were stored

in the database, while after April 2005 daily summaries were collected. Thus calculating the

number of downloads involved joining data from multiple parts of the database. Because

FLOSSmole crawls SourceForge roughly every 60 days, care had to be taken to avoid du-

plicate entries for a single day that occurred when two crawls were separated by fewer than

60 days. Records that included only a partial day’s downloads were filtered out; in many

cases, the complete day’s download count was available from the subsequent crawl. Unfor-

tunately, sometimes crawls occurred less frequently than every 60 days, causing holes in the

daily download counts. In addition, as outlined in Section 4.2.2.3 on page 129, download

counts from the database are expected to underrepresent the actual number downloads since

software may be obtained via methods other than downloading from a project’s Source-

Forge web page. As such, the calculated download counts should not be considered exact

values, but because problems with the data affected all projects, the mined data is considered

good enough to compare download distributions at a high level; specifically, underreported

download counts for all projects is not expected to affect the shape of the distribution. The

download counts were collected for 199,555 projects from the period of November 1999

through April 2009.

The frequency of downloads is shown in Fig. 7.6, with FLOSSSim’s prediction in

Fig. 7.6a and the empirical data in Fig. 7.6b. The shape of the distributions of the simulated

and empirical data are similar. Both follow roughly a power-law distribution, appearing

close to linear on a log-log scale when considering a line drawn through the average of
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(a) Predicted downloads distribution. (b) Empirical downloads distribution.

Fig. 7.6. Predicted versus empirical downloads distribution. The shape of the two distribu-
tions is similar, indicating the model tracks reasonably with downloads even though it was
not calibrated to predict these values.

the points. Both deviate slightly from this linearity for the number of projects receiving

small numbers of downloads. As the frequency decreases, the range of downloads becomes

more widely spread for both data sets. This makes sense, as failed projects all approach

zero downloads, but the number of downloads successful projects receive is sensitive to

other factors such as the size of the target audience, the elapsed time since the project was

created, etc., hence the larger spread.

While the actual download counts and frequencies do not match between the em-

pirical versus simulated data, for the purpose of this comparison the shape of the two dis-

tributions is more important. Having the actual values match is likely a matter of further

calibrating the model and scaling the data. For example, to reduce execution time the model

is run with fewer projects and agents than exist on SourceForge. Thus, the x-axis may be

stretched or compressed by adding or removing consumer agents respectively to the model.

Likewise, the y-axis may be adjusted by changing the number of projects in the simulation.

Once the correct ratio of consumers to projects is determined, appropriate scaling factors

199



can be applied so that the model’s output can be directly compared to the SourceForge data.

Note that the three patterns used to calibrate the model are closely tied to producers and

projects, but not consumers, and thus the calibration patterns likely provide little guidance

in regards to determining consumer parameters. Therefore it is expected that additional cal-

ibration for the number of consumers is necessary to match consumer-based patterns, such

as the project downloads distribution. The fact that the basic shapes of the two data sets are

similar without explicit calibration is encouraging; it indicates that the model is structurally

realistic enough to be used for predictive purposes and suggests that the fit may be further

improved if calibration of this consumer component is performed.

In conclusion, although calibrated using three patterns, the model is able to closely

match a fourth pattern, capturing the fact that most projects are infrequently downloaded

while a few projects receive many downloads. It is worth noting that while the three cali-

bration patterns are all developer-based, the model shows promise in predicting the fourth

pattern which is user-based. This supports the notion that the model is structurally realistic,

has predictive validity, and in general increases confidence in the validity of the model. Fi-

nally, with further calibration it is expected that the model may be able to accurately predict

downloads.

7.1.3 Evolved Parameters

Some model parameters could not be estimated from empirical data. Instead, these param-

eters were evolved via a genetic algorithm to find values that allowed the model to closely

match the empirical data. This section analyzes the evolved parameters that performed well

in order to gain insight into the FLOSS development process.
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7.1.3.1 Utility Weights

Examining the evolved utility weights of the best performing 1% of parameter sets (i.e.,

the sets resulting in the highest combined fitness values) provides insight into what factors

are important in the model for reproducing the three emergent properties examined and

consequently what factors are important to agents when selecting projects. Using normal

probability plots, it was determined that the weights from the top 1% of parameter sets were

not necessarily normally distributed. This may indicate that there are several good solutions

to the problem located in disparate sections of parameter space. To discover groups of simi-

lar parameters, clustering is performed on the weights in the parameter sets. To accomplish

this, each parameter sets’ weights are placed in a vector of the form (w1,w2,w3,w4,w5).

The k-means++ clustering algorithm [205] is used because it has been shown to reasonably

address the problem of seeding the k-means clustering algorithm [206], which is sensitive

to the selection of the initial centroids that, if chosen badly, may result in poor clusters. To

further increase the probability of finding good clusters, the k-means++ algorithm is run

128 times and the run producing the tightest clusters is chosen3. For the purpose of forming

clusters, the distance between two points is defined as the Euclidean distance.

To determine the correct number of clusters k, the clustering algorithm is run for

values k = 1 to the number of data points. For each of these an error is calculated, defined as

the sum of the square of the distances from each point to the centroid of the cluster to which

the point belongs. The elbow method [207] is then used to determine the correct number

3Neither the k-means nor k-means++ algorithm are guaranteed to find the optimal clus-
ters, although the k-means++ algorithm improves the chances of finding a good solution.
Therefore, running the algorithm multiple times increases the chances of finding the best,
or at least a better, set of clusters.
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Fig. 7.7. Determining the number of cluster for the evolved utility weights. Error is defined
as the sum of the square of the Euclidean distances between each point and its respective
group’s centroid. The data compresses well for three or fewer clusters, after which adding
more clusters results in only a minor reduction in error. Therefore the correct number of
clusters is three.

of clusters by plotting the number of clusters versus the error and finding the point where

increasing k results in minimal additional compression as compared to previous increases.

A plot of the number of clusters versus error is shown in Fig. 7.7. From this, it is

concluded that the correct number of clusters is three. The resulting three clusters, grouped

by weight, are shown in Fig. 7.8. Each point represents the mean weight and the error bars

represent one standard deviation. The number of parameter sets in each cluster is contained

in Table 7.3.

Across all clusters, the weight for similarity is stable and low, indicating similarity is

not very important in matching the empirical data. The maturity stage weight is also stable

across all three cluster, with its high value indicating the development stage of a project is

always a significant factor in selecting projects. Finally, w2, w3, and w4 vary across clusters,

with each taking on a high value in a separate cluster. Specifically, w2 is the most important
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(a) w1 utility weight clusters. (b) w2 utility weight clusters.

(c) w3 utility weight clusters. (d) w4 utility weight clusters.

(e) w5 utility weight clusters.

Fig. 7.8. Evolved utility weight clusters.
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TABLE 7.3
Utility weight cluster sizes.

Cluster Size (Percent)
1 17 (41%)
2 8 (20%)
3 16 (39%)

factor in cluster 1, w3 in cluster 2, and w4 is high and the second most important factor in

cluster 3. This indicates that there are three distinct agent profiles that work well to match

the empirical data. These profiles are: agents that focus on the popularity of a project with

developers (cluster 1), agents that key off the size and amount of work already completed on

a project (cluster 2), and agents that consider the popularity of a project with users (cluster

3). The fact that there are multiple profiles that perform well is expected. Indeed, research

has found heterogeneity in the factors that motivate developers to contribute to FLOSS;

these motivating factors are also likely tied to how developers choose projects once they

join the open source community. One survey [98] went so far as to cluster developers into

four groups, namely believers, skill improvers, fun seekers, and professionals, based on the

developers’ motivation for being involved in open source.

An analysis of each evolved weight is contained in the following sections.

7.1.3.1.1 w1 Similarity: w1, the weight for the similarity between an

agent and a project, is a stable value across groups, as shown by the close mean values and

overlapping error bars seen in Fig. 7.8a. Surprisingly, the mean is rather low, averaging

less than 5% in all cases, indicating the interests of an individual may not be one of the

most important factors in selecting a project. A possible explanation for this comes from

Linus’ Law [13], which states that “Given enough eyeballs, all bugs are shallow.” Similarly,

with a large enough pool of heterogeneous developers, if a single developer finds a program
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interesting enough to create as an open source project, then there will be other developers

that also find the program interesting. This results in similarity being less of a driving force

because there is always a pool of individuals interested in any project, and thus it is not a

discriminating factor in matching the empirical data.

7.1.3.1.2 w2 Current Resources: Current resources is a measurement of

the development activity, and cluster 1 corresponds to a profile where the current resources

is by far the most important factor in selecting a project, as seen in Fig. 7.8b. The impor-

tance of selecting projects that are being actively developed is a recurring theme in FLOSS

literature. For example, reputation is cited as a reason developers become involved in open

source development [1], [98]. Developers looking to boost their reputation should seek out

active projects, as there is more potential for reputation gain in active projects than aban-

doned projects. Similarly, some developers become involved with open source to increase

their job opportunities [1]. Active projects in effect provide better advertising for these

developers because there is an increased chance that someone else working on the project

will notice a developer’s skills and approach him/her with a job opportunity. Sharing skills

with others and learning new skills are two more reasons developers list for being involved

in FLOSS, both of which rate high in developer surveys [1], [98]. Active projects pro-

vide a better opportunity for developers to show skills and/or pick up new skills from other

talented developers. Based on this, a profile where agents highly value the development

activity when selecting projects is expected.

7.1.3.1.3 w3 Cumulative Resources: Cumulative resources is a measure

of the size of a project completed so far, and cluster 2 corresponds to a profile where cu-

mulative resources is the dominant factor when selecting a project, as seen in Fig. 7.8c.

Developers may take into account the size of the project completed so far, as it may be more
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difficult to break into the circle of developers in a small project than a large project, espe-

cially if the group of developers is already well-established and sufficient for the project.

Developers interested in picking up new skills may gravitate towards larger projects as there

may be more opportunities to gain knowledge when a large code base already exists.

7.1.3.1.4 w4 Downloads: The number of downloads may be used as

a proxy for the popularity of a project with users, and cluster 3 corresponds to an agent

profile where downloads is an important factor when selecting projects, as seen in Fig. 7.8d.

Some studies have shown that recognition is important and can be a driving force for those

participating in online communities [138]. In some cases, individuals are willing to forego

financial payment in exchange for recognition [136], [137]. Finally, it has been argued that

some participate in open source because they are altruistic [13]. Cluster 3 supports these

arguments, as there is more potential for recognition and a larger return on investment for

contributions to projects that have many users.

7.1.3.1.5 w5 Maturity: w5, the maturity weight, is also a stable value for

the top performing parameter sets. The means across all three clusters are similar and the

variances are small and overlap, as can be seen in Fig. 7.8e. The lower standard deviation

adds confidence that approximately 30% of a project’s perceived utility is based on the

development stage of the project. The high value for w5, combined with the importance

assigned to each development stage in (6.4), supports the hypothesis that developers prefer

projects in earlier stages. It has been suggested this is because more reputation can be gained

from developing core code. In addition, if developers are driven to join projects in order

to resolve their own personal problems, as a project reaches the upper stages it transitions

from development to maintenance, meaning there are fewer and fewer tasks remaining to be

written that might solve a developer’s problem and thus be an incentive to join the project.
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TABLE 7.4
Evolved producer/consumer number distributions parameters.

Producer/Consumer Number
Parameter statistics from the top
1% of parameter sets
Mean Stdev

Producer number
Mean 0.9285 0.0073
Stdev 0.0613 0.0138

Consumer number
Mean 0.5609 0.2843
Stdev 0.5827 0.2945

While empirical data supports the idea that projects with at least an initial working version

of the software have increased chances of progressing further as open source projects (see

Table 3.2), this information is not reflected in (6.4). However, this characteristic may still

be captured in w3, meaning the development stage is not as important as having at least

skeleton code, reflected in the size of a project, that helps define the design such that the

work can be divided among volunteers in an open source environment.

7.1.3.2 Producer and Consumer Numbers

Another interesting set of values evolved by the genetic algorithm are the parameters for

the producer and consumer numbers. While the producer and consumer numbers are drawn

from normal distributions bounded by 0.0 and 1.0 inclusive, neither the means nor standard

deviations of these distributions are known. Therefore, these values are evolved to find the

best performing values. The evolved mean and standard deviation for the producer and

consumer numbers averaged from the top 1% of parameter sets are contained in Table 7.4.

Notice that the mean producer number is very high at 0.9285 and relatively stable across

the top 1% of parameter sets, with a standard deviation of 0.0073. Likewise, the producer

number standard deviation is low at 0.0613 and also relatively stable with a standard devi-

ation of 0.0138. This indicates that the top performing model runs have agents with high
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propensities to develop. In other words, having most agents produce frequently (i.e., most

agents be developers) results in matching the empirical data. This is in alignment with

the notion that FLOSS is a developer-driven process [13], [66], [94], [101]. Furthermore,

the evolved producer mean indicates that agents, on average, will be developing just under

93% of the time. This value is very similar to the open source developers surveyed in [1],

where 91% reported being involved in one or more projects at the time the survey was con-

ducted, and only 9% considered themselves FLOSS developers but were currently between

projects. The similarity between these two numbers adds confidence about the validity of

the model and the process employed to find correct model parameters through the use of

genetic algorithms.

In contrast, the evolved consumer number mean is much lower and the standard

deviation is much higher compared to the producer number mean and standard deviation

respectively. Furthermore, neither the consumer number mean nor standard deviation is

particularly stable, i.e., both have large standard deviations over the top performing param-

eter sets. This indicates that the consumer number distribution has little effect on matching

the empirical data because values from 0.0 to 1.0 all appear to work equally well. In other

words, consumers have minimal effect on the ability of the model to match the empirical

data.

In conclusion, the best performing parameter sets all include many agents develop-

ing frequently, indicating developers are key to the model matching the empirical patterns.

On the other hand, the frequency of agents consuming results in high fitness over a very

wide range, indicating that while consumers may have some minor influence in the model,

they are not the main driving force in matching the empirical data.
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7.1.3.3 Maximum Number of Projects Producing and Consuming

A final set of values evolved by the genetic algorithm that should be examined are the

upper limits for the number of projects an agent can produce and, separately, consume at

any given time. Setting each of these maximums to appropriate values helps the model

match the empirical patterns.

The evolved maximum number of projects an agent can produce is found to be 12

for all but one of the top 1% of the best performing parameter sets, in which case it is 11,

making this value very stable across all runs. A sanity check of this evolved parameter can

be performed by comparing it to empirical data from [1], seen in Fig. 7.3, which shows

the percentage of developers working on N projects approaching zero for 11–15 projects.

Although the average evolved maximum value precludes the model from ever matching the

non-zero values of the empirical data above 12 projects, only 1% of developers fall into

categories developing for more than 15 projects [1], making these developers unusual and

arguably outliers. The fact that the model performs well when this value is calibrated adds

confidence that the exponential distribution used in the model to control how many projects

developers are contributing to is a decent approximation of the real distribution.

The evolved value for the maximum number of projects agents are able to consume

is three for all but two of the top 1% of parameter sets, in which case it is four. Unlike

the value for producing, the model performs best when users are limited to downloading

only a small number of projects at a time. Note that three is at the bottom end of the range

used for the evolutionary run (see Table 6.5 on page 182). Since the number of projects

agents are able to consume approaches the minimum, this makes one question if consumers

are actually hindering the model’s ability to match empirical data. Maximum values below
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three were not considered, as limiting consumers to using only one or two projects seemed

unrealistic. The effects of consumers are further explored in Section 7.3.1.

Taken along with the evolved producer and consumer numbers, it has been shown

that the empirical data is best matched when most agents are developers and some devel-

opers work on many projects. This further supports that developers are the driving force of

the FLOSS development process and instrumental in allowing FLOSSSim to match the em-

pirical data. On the other hand, the model is largely unaffected by the frequency of agents

consuming and performs best when agents download only one or a few projects at a time.

This suggests that users may not be an important component of causing the model to match

the empirical data.

7.1.4 Success Metrics

A goal of this research is to better understand both what it means for a project to be suc-

cessful and what conditions change the probability of success. To explore these concepts,

FLOSSSim is used to compare the similarities and differences among a subset of success

metrics in Section 7.1.4.1. The effects of popularity and target audience size on success are

explored in Section 7.1.4.2.

7.1.4.1 Comparing Success Metrics

Although many success metrics have been proposed for FLOSS, it is unclear which are best

or if there is even a significant difference among these metric. If there is a high correlation

between certain metrics then the “easiest” metric, such as the metric that is most conve-

nient to measure or collect, may be chosen over other metrics without affecting the results.

To explore the similarities and differences, the following adaptations of proposed success

metrics are considered:
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Maturity threshold: Projects that are in the beta stage or higher are considered success-

ful. This is based on the notion that projects that have reached the beta stage have

produced useful software.

∆ maturity: In order to demonstrate satisfactory progress, projects must progress to a

higher development stage every six months to be considered successful. Projects that

are in the production/stable or mature stages are also considered successful, as these

projects are at the upper limit and may remain active without ever moving stages.

∆ developers: The number of developers must increase every six months in order to

demonstrate the vitality of the project.

∆ downloads: The number of downloads that occur in a six month interval must increase

every six months in order to demonstrate user interest in the project.

∆ percent complete: At least 10% of the project must be completed every six months in

order for the project to be considered making satisfactory progress.

Completed projects: Projects that are complete are considered successful.

Some of these metrics are inherently difficult to measure for real projects, especially

considering the amount of dirty data from sites like SourceForge or included in the FLOSS-

mole database. Therefore, the model is used to draw inferences about the real data. These

particular success metric were chosen because they mapped into the model and therefore

were feasible to collect. The six month time limit used in several of the metrics was cho-

sen as a reasonable limit based on existing literature. As per [13]’s recommendation, open

source projects should release early and release often in order to be successful. [72] uses a

similar timeframe to the one chosen here, classifying projects as successes or failures based
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TABLE 7.5
Percentage of successful projects based on different success metrics.

Success Metric Successful Projects
Maturity threshold 39.83%
∆ maturity 18.02%
∆ developers 19.17%
∆ downloads 9.93%
∆ percent complete 0.01%
Completed projects 1.41%

on if a version is released within one year. Similarly, [48] believes successful projects will

release a stable version within six months and average at least one release per year. There-

fore, the six month timeframe in the above metrics seems to be in a range that is generally

accepted by other FLOSS researchers.

Using the evolved parameter set that produced the highest fitness, the percentage

of projects at the end of a run meeting each of the selected success criteria was calculated.

The results are shown in Table 7.5. From these results, it is clear that there are significant

differences among the varying success metrics. The least discriminating metric, maturity

threshold, categorizes almost 40% of the projects as successful while the ∆ percent com-

plete metric considers almost none of the projects successful. What is not clear is how

much overlap there is among the different metrics. Are most of the projects categorized

as successful by one metric also considered successful by other metrics? To consider the

overlap among sets of successful projects, the Jaccard similarity is calculated between each

pair of metrics. The similarity values between sets are surprisingly small, indicating there

is minimal overlap across the various metrics, as shown in Table 7.6. This indicates that

the proper choice of metric(s) is important as the metrics themselves differ. That is, “suc-

cessful” projects may not be successful according to all metrics. It has been suggested that
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TABLE 7.6
Jaccard similarity between different sets of successful projects.
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Maturity threshold 1.00 0.44 0.15 0.10 0.00 0.04
∆ maturity 0.44 1.00 0.1 0.09 0.00 0.08
∆ developers 0.15 0.10 1.00 0.18 0.00 0.00
∆ downloads 0.10 0.09 0.18 1.00 0.00 0.03
∆ percent complete 0.00 0.00 0.00 0.00 Undef. 0.00
Completed projects 0.04 0.08 0.00 0.03 0.00 1.00

multiple metrics be used in calculating if a project is successful [70], as this may result in a

more balanced evaluation process.

7.1.4.2 Target Audience Size versus Success

In order for projects to be successful, they must manage to attract and maintain developers

and, possibly, users. The similarity weights evolved by FLOSSSim are surprisingly low

(see Section 7.1.3.1), indicating that matching agents’ interests with projects has only a

small influence when selecting a project. Yet there is a common theme in FLOSS literature

that the target audience of a project does affect a project’s prospects of being successful.

For example, [66] finds evidence that projects with topics aimed at certain target audiences

are more successful than projects aimed at other target audiences. With this in mind, one

might expect that the projects with the largest target audiences are also the most popular,

and the most popular projects, by being able to tap into the skills of a larger segment of the

developer and consumer pool, are also more likely to be successful. FLOSSSim is used to

further explore this idea.
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The notion of largest target audience can be captured in FLOSSSim by measuring

the distance between an agent’s and project’s needs vectors. Essentially, the size of the

target audience can be determined by counting the number of nearby agents surrounding a

project. If each project is categorized as successful or not successful, statistical analyses

can then be performed to determine if there is a relationship between the size of the target

audience and the success of a project.

To determine if the number of agents near a project influences the project’s suc-

cess, FLOSSSim is run multiple times, each time configured with parameters from the best

performing evolved parameter sets. For each run, at the end of 250 time steps the num-

ber of agents nearby each project is counted. In order to count the number of agents that

are considered near a project, a distance threshold must be chosen. This was determined

experimentally and ultimately set to 0.15, which allowed for a sufficient spread such that

there was variety in the number of agents near projects but at the same time the distribution

wasn’t too spread out. A histogram showing the distribution from all runs can be seen in

Fig 7.9. Note that agents may be counted multiple times if they fall within the distance

diameter of multiple projects. In addition to counting the number of nearby agents, at the

completion of each run each project is tested to see if it is successful according to each of

the six success metrics outlined in Section 7.1.4.1. The results of all runs are combined and

then binary logistic regression is used to determine if the number of nearby agents has an

effect on the success of a project.

The results of the binary logistic regression for all six success metrics are shown in

Figs. 7.10–7.15. Only the results from the ∆ developers and ∆ downloads success metrics

have P-values < 0.05, indicating there is sufficient evidence for these two metrics that the

model coefficients are non-zero using an α-level of 0.05. However, for the ∆ developers
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Fig. 7.9. Distribution of nearby agent counts when the distance threshold is 0.15.

metric the goodness-of-fit tests’ P-values are < 0.05, indicating the null hypothesis that the

model adequately describes the data should be rejected. This means there is sufficient evi-

dence that the number of nearby agents is in fact linked to the success of a project only when

measuring success based on ∆ downloads. In this case, the coefficient is a small positive

number and the odds are only slightly greater than 1.0, indicating an increase in the number

of nearby agents will only slightly increase the chances that a project will be successful.

Note that this connection is logical, as there is a direct link between number of nearby

agents and the number of downloads a project receives. That is, the number of downloads a

project receives is influenced by the number of nearby agents that choose to consume. This

should remain true so long as w1, the similarity weight in the utility function, is non-zero.

The fact that w1 is small in the top performing parameter sets is reflected in the weak link

found in the binary logistic regression. While similarity plays a role in determining the util-

ity of a project, it only plays a small role. Thus, an increase in nearby agents only results in

a small increase in the chances that more agents will use a project. One might expect to see
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Binary Logistic Regression: Maturity Threshold versus Nearby Agent Count

Link Function: Logit

Response Information

Variable Value Count
Maturity Threshold 1 28803 (Event)

0 43965
Total 72768

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -0.430200 0.0187632 -22.93 0.000
Nearest agents 0.0013184 0.0031057 0.42 0.671 1.00 1.00 1.01

Log-Likelihood = -48847.628
Test that all slopes are zero: G = 0.180, DF = 1, P-Value = 0.671

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 16.6598 21 0.732
Deviance 18.9702 21 0.587
Hosmer-Lemeshow 2.8934 5 0.716

Fig. 7.10. Binary logistic regression for maturity threshold success metric versus number
of nearby agents.

a similar link for the ∆ developers metric because developers with interests near a project

are also slightly more likely to contribute to the project than developers with dissimilar in-

terests, but as already pointed out the binary logistic regression model is a poor fit for this

data. The remaining four success metrics are a step removed from such direct links, e.g., ∆

maturity may be influenced by the number of nearby developers, but it also depends on the

amount of resources that are being contributed by those developers, the size of the project,

etc.

216



Binary Logistic Regression: Change in Maturity versus Nearby Agent Count

Link Function: Logit

Response Information

Variable Value Count
Changed Maturity 1 12548 (Event)

0 60220
Total 72768

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -1.60183 0.0243305 -65.84 0.000
Nearest agents 0.0060298 0.0040126 1.50 0.133 1.01 1.00 1.01

Log-Likelihood = -33452.627
Test that all slopes are zero: G = 2.255, DF = 1, P-Value = 0.133

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 11.1107 21 0.961
Deviance 13.2188 21 0.901
Hosmer-Lemeshow 2.6573 5 0.753

Fig. 7.11. Binary logistic regression for ∆ maturity success metric versus number of nearby
agents.

Note that in this experiment there is no attempt to differentiate between consumers

and producers. All agents are treated equally when counting the number of agents near a

project, even though some types of agents (e.g., developers) may have a larger influence on

the success of a project than others types of agents (e.g., consumers).

In conclusion, the regression analyses indicate there is only a statistically signifi-

cant correlation between the number of nearby agents and the success of a project for one

of the six success metrics. For the ∆ downloads metric the link is very weak, indicating that
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Binary Logistic Regression: Change in Developers versus Nearby Agent
Count

Link Function: Logit

Response Information

Variable Value Count
Change in Developer Count 1 9311 (Event)

0 63457
Total 72768

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -2.11891 0.0278277 -76.14 0.000
Nearest agents 0.0356413 0.0044894 7.94 0.000 1.04 1.03 1.05

Log-Likelihood = -27801.035
Test that all slopes are zero: G = 62.524, DF = 1, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 46.5954 21 0.001
Deviance 52.8371 21 0.000
Hosmer-Lemeshow 26.5737 5 0.000

Fig. 7.12. Binary logistic regression for ∆ developers success metric versus number of
nearby agents.

the number of nearby agents has only a small influence on the success of a project. This

is consistent with earlier results that indicate the similarity between an agent and a project

is not a major driving factor in determining which projects are selected for contributions or

download. This is somewhat surprising, as other studies have shown there are differences in

project success based on target audience. However, the weak link discovered here may be

more pronounced if, for example, the distribution of agents needs vectors around projects

was further skewed. FLOSSSim currently distributes agents’ needs vectors approximately
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Binary Logistic Regression: Change in Downloads versus Nearby Agent
Count

Link Function: Logit

Response Information

Variable Value Count
Change in Downloads 1 4357 (Event)

0 68411
Total 72768

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -2.98422 0.0393328 -75.87 0.000
Nearest agents 0.0409120 0.0062852 6.51 0.000 1.04 1.03 1.05

Log-Likelihood = -16470.046
Test that all slopes are zero: G = 41.866, DF = 1, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 19.1331 21 0.577
Deviance 23.1036 21 0.338
Hosmer-Lemeshow 2.7680 5 0.736

Fig. 7.13. Binary logistic regression for ∆ downloads success metric versus number of
nearby agents.

evenly around interest space as a result of using an uniform random number generator when

generating needs vectors. If in the real world people’s interests cluster around popular top-

ics, then projects near these clusters of people’s interests may perform better. This may

result in more of the success metrics showing a statistically significant link (and possibly

stronger link) between the number of nearby agents and the success of a project. Unfortu-

nately, there is no method to accurately measure the real world interests of people involved

in open source for the purpose of generating needs vectors more realistically, which is why
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Binary Logistic Regression: Change in Percent Complete versus Nearby
Agent Count

Link Function: Logit

Response Information

Variable Value Count
Change in Percent Complete 1 16 (Event)

0 72752
Total 72768

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -7.87748 0.590383 -13.34 0.000
Nearest agents -0.104241 0.108316 -0.96 0.336 0.90 0.73 1.11

Log-Likelihood = -150.277
Test that all slopes are zero: G = 0.962, DF = 1, P-Value = 0.327

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 9.59669 21 0.984
Deviance 9.11537 21 0.988
Hosmer-Lemeshow 8.51295 5 0.130

Fig. 7.14. Binary logistic regression for ∆ percent complete success metric versus number
of nearby agents.

a uniform distribution is used in FLOSSSim. However, if the percentage of existing FLOSS

projects for various categories of software can be used as a proxy for people’s interests, then

there is some evidence that interests are not uniformly distributed. See [1] for an example

distribution of the types of projects surveyed developers contribute to.

7.2 SENSITIVITY ANALYSIS

Sensitivity analyses are performed by sweeping a single model parameter through a range

of values while holding all other parameters constant. The sensitivity analysis of the model
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Binary Logistic Regression: Completed Projects versus Nearby Agent Count

Link Function: Logit

Response Information

Variable Value Count
Completed Projects 1 114 (Event)

0 72654
Total 72768

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -6.79271 0.238181 -28.52 0.000
Nearest agents 0.0588159 0.0372045 1.58 0.114 1.06 0.99 1.14

Log-Likelihood = -848.994
Test that all slopes are zero: G = 2.447, DF = 1, P-Value = 0.118

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 9.6824 21 0.983
Deviance 10.7002 21 0.968
Hosmer-Lemeshow 5.1764 5 0.395

Fig. 7.15. Binary logistic regression for completed projects success metric versus number
of nearby agents.

serves several purposes. In some cases it allows for estimating parameter values which

cannot be estimated via other methods. In these cases, the best working values from the

parameter sweeps are chosen for the parameters. Where parameters are already estimated,

sweeps of nearby values demonstrate how sensitive the model is to these values. This is

especially important where only weak or approximate estimates of values may be available,

as the sensitivity analysis provides feedback in regards to how critical these values are to
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the performance of the model. Finally, understanding the ranges of values that work well

for model parameters in turn provides insight into the FLOSS development process.

The following sections contain sensitivity analyses performed for model parame-

ters.

7.2.1 µ

Agents making perfect choices when selecting projects is controlled by µ (see (6.5)). To

determine the sensitivity of the model to the level of perfect choice, the following analysis

is performed: All parameters besides µ are held constant, set to the values from the best

performing evolved parameter set. 100 runs are performed, varying µ randomly in the range

[0.0,50.0]. The relationship between µ and the model’s fitness score is then examined. The

procedure is repeated multiple times with other parameter sets from the top 1% of evolved

parameter sets to demonstrate consistency.

Scatterplots of µ versus fitness from a sample parameter set is shown in Fig. 7.16.

The combined fitness is poor for low values of µ and improves as µ approaches 30, as

shown in Fig. 7.16a. Above 30, the fitness values level off and higher values of µ do not

appear to provide any significant improvement to fitness. To better understand where the

changes in combined fitness originate, the relationships between µ and each of the three

patterns used to calculate the combined fitness are shown in Figs. 7.16b–7.16d.

One might expect the maturity distribution fitness, shown in Fig. 7.16b, to change

with µ . When µ is low, developers flit from one project to another, versus when µ is large,

developers give their resources to a more focused group of projects. Thus as µ decreases,

one might expect a shift from a few projects moving to the upper development stages, as

a result of contributions from repeat developers, to a very slow increase in maturity of all

222



(a) µ versus combined fitness. (b) µ versus maturity fitness.

(c) µ versus developers per project fitness. (d) µ versus projects per developer fitness.

Fig. 7.16. Effects of varying µ on the fitness of the model. µ impacts the combined
fitness of the model by affecting the model’s ability to match the developers per project
distribution. Values above 30 result in high fitness.

projects, as a result of developers spreading their contributions across all projects roughly

equally. However, as already shown in Table 3.2 on page 102, projects rarely change de-

velopment stages to begin with, so while the few projects that rapidly progress may be

eliminated by reducing µ , this number is dwarfed by the number of projects that make min-

imal or no progress. Thus there is no significant change in the the maturity distribution,

especially for runs of this length, over the range of µ . Longer runs may see a larger impact

from changes to µ .
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µ plays a significant role in causing the model to match the developers per project

pattern, as shown in Fig. 7.16c. With lower values of µ , imperfect choice sets in and devel-

opers move towards choosing randomly from the projects in their memory. This behavior is

incompatible with reproducing the developers per project distribution, where many projects

have a small number of developers and a few have a large number of developers. By spread-

ing the developers more evenly across the landscape of FLOSS projects, random selection

reduces the chances of a project acquiring many developers. In the real world, many devel-

opers stay long-term with projects, which allows a small minority of projects to accumulate

larger numbers of developers. Near perfect choice promotes this behavior by causing de-

velopers to contribute to the same projects multiple times; this in turn promotes matching

the developers per project pattern. Note, however, that there is a diminishing return on in-

creasing µ: beyond 30, the improvement is negligible. This is because a value of 30 results

in near perfect choice already; that is most of the time an agent will pick the project with

the highest utility and increasing µ beyond 30 results in only the occasional improvement

in choice.

Finally, µ should have no effect on the projects per developer distribution, and

Fig. 7.16d confirms it does not.

The performance of µ exhibited in this sensitivity analysis is consistent with the

performance seen during model development. When using genetic algorithms to evolve µ

to a value in the range [0.0,50.0], the best performing parameter sets always had evolved

values for µ in the 30’s and low 40’s. This has been consistent across many variations of

the model that were tested during development and indicates that µ may be an independent

variable. 36 was chosen as a good static value for µ based on the average from a number
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of experimental runs, putting it in the range of best performing values per the sensitivity

analysis.

7.2.2 Needs Vector Dimension

As mentioned in Section 6.2.2.2.2, when setting the dimensionality of the needs vector,

the goal is to find the minimum value that results in sufficient variation in the model’s

agents and projects in order to reproduce the empirical data. To determine the effect of

dimensionality on fitness, once again all parameters are held constant with the exception

of the dimensionality, which is assigned values between three, the smallest value that is

considered to provide a reasonable level of complexity when representing agents’ interests,

and six. The analysis was repeated multiple times with different parameter sets that were

known to perform well. The results from a sample parameter set are shown in Fig. 7.17.

There is no trend indicating that the overall fitness (Fig. 7.17a) nor the individual pattern

fitness values (Figs. 7.17b–7.17d) perform better or worse as the dimensionality increases.

This indicates that three is at or above the minimum value necessary to create sufficient

variation in the model in order to match the patterns. Thus, the value of three is used in the

model because it performs as well as higher values while requiring fewer calculations when

computing similarity between agents and projects.

7.2.3 Starting Memory Size

An analysis similar to the previous sections was performed to determine the optimum start-

ing memory size. While all other parameters were held constant, runs were performed

while varying the starting memory size in the range of [5,25]. Plots of the resulting fitness

values have been omitted for brevity’s sake. The starting memory size has an effect on the
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(a) Needs vector dimension versus com-
bined fitness.

(b) Needs vector dimension versus matu-
rity fitness.

(c) Needs vector dimension versus devel-
opers per project fitness.

(d) Needs vector dimension versus
projects per developer fitness.

Fig. 7.17. Effects of varying the needs vector dimension on the fitness of the model.
Higher dimensions do not increase fitness, indicating the minimum value of three provides
sufficient variation in the model to match the patterns.

number of developers per project distribution, with the lowest values resulting in the high-

est fitness. This somewhat suprising result of the best fitness values being obtained when

agents’ memories are primed with only a few projects can be explained due to scaling in

the model. To reduce execution time, FLOSSSim model runs are performed with scaled

down data, including a significantly reduced number of projects compared to the number

available in the real world. Therefore, the number of projects an agent is aware of is also

scaled down. Based on the sensitivity analysis, the value of five was chosen for the model.
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7.2.4 Memory Change Probability

An analysis similar to the previous sections was performed to determine the optimum value

for the memory change probability. The probability was varied in the range [0.05,0.5]

while all other parameters were held constant. Plots of the resulting fitness values have

been omitted to save space. Like the starting memory size, the memory change probability

has an effect on the number of developers per project. When this value is high, agents’

memory become volatile and change rapidly. This results in FLOSSSim not reproducing

the long tail seen in the empirical data. This is because the more volatile the memory,

the less likely it is that agents will work on a project long-term, meaning projects will not

manage to accumulate many developers. The model exhibited the highest fitness when the

memory change probability was 0.065. On average, this translates to just over six memory

changes per year (i.e., three adds and three removes). This number seems reasonable when

taking into account that the FLOSSSim runs include a scaled down number of projects.

7.2.5 Number of Agents and Projects

An analysis similar to the previous sections was performed to determine the optimum ratio

of agents to projects. All parameters were held constant while varying the ratio of agents

to projects in the range [0,16]4. Scatterplots from an example parameter set showing the

relationship between agents-to-projects ratio and fitness for ratios less than 1.2 are shown

in Fig. 7.18.

As expected, the ratio of agents to projects has an effect on all distributions. The

main effect is on the developers per project, which peaks when the ratio is between 0.3 and

4The ratio was varied by holding the number of projects constant and only varying the
number of agents.
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(a) Agent-to-project ratio versus com-
bined fitness.

(b) Agent-to-project ratio versus maturity
fitness.

(c) Agent-to-project ratio versus develop-
ers per project fitness.

(d) Agent-to-project ratio versus projects
per developer fitness.

Fig. 7.18. Effects of varying the agents-to-projects ratio on the fitness of the model. Vary-
ing the ratio impacts all three fitness components, with the maximum fitness occurring at
different ratio values for each of the components. In general, values below 0.2 perform
poorly.

0.4, as seen in Fig. 7.18c. For a given ratio, there is minimal variability in fitness scores for

this indicator. The fitness of the projects per developer distribution does not have a clearly

defined maximum but seems to be high for ratios greater than 0.2, as shown in Fig. 7.18d.

The peak maturity fitness occurs at different ratio values depending on the parameter set

being evaluated. An example, where high ratios result in high maturity fitness values, is

shown in Fig. 7.18b. For all three distributions there is a sharp decline in fitness when the
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ratio is too low. Ratios that are too high exhibit much more gradual changes in fitness. 0.38

was determined to be the optimal ratio of agents to projects based on the combined fitness

from a series of runs using multiple well-performing parameter sets.

To determine the absolute number of projects sufficient to replicate the data, evolu-

tionary runs were performed with 1024, 2048, and 4096 initial projects while maintaining

the ideal 0.38 ratio of agents to projects. Values less than 1024 were not tested because they

are considered too small for the system being modeled. Regardless of the starting num-

ber of projects, all runs evolved similar parameters and had similar fitness values and the

same number of clusters. Therefore, the use of 1024 projects is preferred since this reduces

execution time and produces no known negative side effects on the outcome of the model.

It is interesting to note that the optimum agent-to-project ratio is less than 1. This

seems to support the hypothesis that FLOSS developers are a limited resource in the open

source development environment. There are far more projects than there are skilled devel-

opers. The survival, and ultimately the success, of a project therefore depends on how well

it can compete with other projects to attract the attention of developers from a rather limited

pool.

7.3 SCENARIO ANALYSIS

To gain a better understanding of the FLOSS development process, FLOSSSim is used to

explore several scenarios. The scenarios were chosen based on their perceived ability to

provide valuable knowledge about the FLOSS development process. For example, while

there are many studies on FLOSS developers, almost no work has been done to understand

the impact consumers have on open source software. The effect of consumers on the open

source development process is considered in Section 7.3.1.
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While FLOSS has grown in popularity over the last several years, it is likely the

rapid growth is unsustainable. What will happen to the landscape of FLOSS projects if the

rate of growth reduces? The results of reducing the rate of creating new projects is explored

in Section 7.3.2.

Finally, core developers are frequently cited as a necessary component for FLOSS

success. Unfortunately, core developers are a limited resource. Understanding when core

developer contributions should occur in order to maximize the chances of project success is

evaluated in Section 7.3.3.

7.3.1 Effects of Consumers

As previously mentioned, the effects of consumers on the FLOSS development process has

largely not been studied. To further explore this topic, three scenarios are considered. In

the first scenario, consumers are given the ability to use different selection criteria than

producers when selecting projects. In the second scenario, consumers abandon the utility

function altogether and instead choose projects randomly. In the third scenario, consumers

are completely eliminated from the model. The results of each of these scenarios is then

compared to the default model’s results to reveal the impact consumers have on the FLOSS

development process.

7.3.1.1 Separate Selection Criteria for Consumers and Producers

The base version of FLOSSSim assumes that producers and consumers use the same criteria

when selecting projects. This may not, in fact, be the case. Passive users, for example,

may be interested in software that is user-friendly, well-documented, and easy to install.

If software requires a substantial investment in time, energy, etc., in order to use, it may

simply be rejected by potential users. On the other hand, developers likely are interested in
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a challenge. By definition, individuals interested in developing FLOSS seek projects that

have tasks remaining, while passive users probably prefer projects that are fully functional

and complete.

To allow consumers and producers the ability to select projects based on different

criteria, the utility function must be modified. To allow for easier comparisons and to

avoid introducing side effects, it is assumed that consumers evaluate projects based on the

same five factors as producers, namely similarity of the project to the consumer, current

popularity of the project with developers, cumulative size of the project, popularity of the

project with other users, and maturity of the project. However, the importance assigned to

each of these factors may differ between the two groups. Therefore, the utility function for

the two groups remains as in (6.2) with the exception of the weights: there is now a set

of weights wp1, wp2, wp3, wp4, and wp5 for producers and wc1, wc2, wc3, wc4, and wc5 for

consumers.

FLOSSSim does not categorize agents as producers or consumers; rather, agents fall

somewhere in the continuum between passive users and core developers based on their con-

sumer and producer numbers. To avoid the problem of artificially assigning each agent to a

category, and thus statically assigning a utility function for each agent to use, agents simply

use the producer weights when producing and the consumer weights when consuming.

To see the effect of consumers using their own selection criteria, an evolutionary

run is performed, allowing the producer and consumer utility weights to evolve separately.

The producer weights may then be compared to the weights evolved in the base model to

see if there is any effect from splitting producers and consumers. Likewise, the consumer

weights can be compared to the producer weights to see if there are fundamental differences

in how these two groups select projects.
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TABLE 7.7
Producer utility weight cluster sizes.

Cluster Size (Percent)
1 9 (22%)
2 17 (41%)
3 15 (37%)

The fitness values of the top 1% of parameter sets evolved is very similar to the base

version of the model, with the minor differences attributable to the normal jitter present in

the genetic algorithm and the stochasticity built into the model itself. Adding a separate set

of utility weights for consumers has neither a positive nor negative effect on the ability of

the model to match the empirical data.

Cluster analysis on the producer weights shows the correct number of groups is

three, allowing for direct comparison with the base version of the model. However, the pro-

ducer weight clusters are less tight when separate consumer utility weights are included as

compared to the combined weight clusters in the base run, indicating the producer weights

do not cluster as well when consumers are afforded their own utility function. The in-

creased variance may be explained by the additional five consumer weights wc1–wc5, which

add degrees of freedom to the model, potentially resulting in more variability to the model’s

fitness score. The clustered producer weights are shown in Fig. 7.19 and the cluster sizes in

Table 7.7. The weights for all three clusters are similar to the weights from the base model,

as can be seen by comparing Fig. 7.19 to the base model’s clusters shown in Fig. 7.8. As

with the base model, once again the clusters are defined by the current resources, cumu-

lative resources, and number of downloads, with each of these assuming a high value in a

different cluster. The similarity and maturity weights remain relatively constant across all

clusters, with similarity’s importance being low and maturity’s importance being high, sim-
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(a) Producer wp1 utility weight clusters. (b) Producer wp2 utility weight clusters.

(c) Producer wp3 utility weight clusters. (d) Producer wp4 utility weight clusters.

(e) Producer wp5 utility weight clusters.

Fig. 7.19. Producer utility weight clusters when producers and consumers use separate
utility weights.
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TABLE 7.8
Consumer utility weight cluster sizes.

Cluster Size (Percent)
1 10 (24%)
2 10 (24%)
3 13 (32%)
4 8 (20%)

ilar to the results of the base model. Essentially, splitting consumers and producers results

in minimum change to the producer utility weights. This indicates that consumers either

use the same weights as producers when selecting projects or in general have a minimal

effect on the FLOSS development process.

The evolved utility weights for consumers may be compared with the weights for

producers to determine if there are inherent differences in the way consumers and produc-

ers select projects. The evolved utility weights for consumers cluster into four groups, as

shown in Fig. 7.20, with cluster sizes shown in Table 7.8. The most noticeable difference

when comparing the consumer weights in Fig. 7.20 to the producer weights in Fig. 7.19 is

that the number of clusters differs. It appears that there are more profiles for consumers. In

particular, the profiles for clusters 1, 2, and 3 are similar between consumers and producers

in that both represent agents that value a project’s current resources, cumulative resources,

or downloads respectively when selecting projects. Consumers have a fourth profile, seen

in cluster 4, that represents individuals most interested in the maturity of a project. Interest-

ingly, similarity, which producers seem to almost completely ignore, receives a noticeably

higher weight with consumers, indicating consumers are more concerned about selecting

projects that match their interests. This makes sense. Whereas surveys have shown that

developers have a wide range of reasons for being involved in FLOSS – to solve a problem,
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(a) Consumer wc1 utility weight clusters. (b) Consumer wc2 utility weight clusters.

(c) Consumer wc3 utility weight clusters. (d) Consumer wc4 utility weight clusters.

(e) Consumer wc5 utility weight clusters.

Fig. 7.20. Consumer utility weight clusters when producers and consumers use separate
utility weights.
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to maximize reputation, to learn/share skills, to improve job opportunities, etc. – consumers

are typically simply looking for software solutions to their problems. A user’s focus is

therefore on finding software that is similar to his/her needs, hence the similarity weights

being higher for consumers. Finally, it should be noted that in general the consumer weights

do not cluster as well as the producer weights, as demonstrated by the on-average larger er-

ror bars. It is worth noting that everything else being equal, a larger number of clusters

should result in tighter clusters, yet this is not the case when comparing the producer and

consumer clusters. The lack of tight consumer clusters indicates that a larger range of

values performs well for consumer utility weights. Compared to the tighter clusters of pro-

ducer utility weights, this implies that consumers have a smaller effect than producers on

the model’s ability to match the empirical patterns.

In conclusion, the fitness values seem relatively unaffected by including separate

consumer utility weights, meaning the model is able to equally reproduce the empirical

patterns with or without this change. The fact that the consumer weights are not very sta-

ble and that the producer weights still settle into values similar to the default run indicates

that consumers have a minimal effect on the model. Furthermore, the evolved weights for

consumers and producers are largely similar, with three out of four profiles overlapping

between the two sets, indicating that using a single set of weights may be a sufficient ap-

proximation. The return on investment for including separate utility weights for consumers

is therefore not considered sufficient to warrent the added complexity to the model.

7.3.1.2 Random Project Selection by Consumers

To gain a better understanding of the impact of consumers, the model is modified so that

consumers choose projects randomly, where each project in an agent’s memory is chosen
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with an equal probability. If this change has minor or no effect on the model’s ability to

match the empirical data, it indicates that consumers have a minimal impact on the model.

When parameter sets from the top 1% of the base model runs are rerun with a

version of the model where consumers choose projects randomly, the fitness scores drop

significantly. While the maturity fitness remains roughly the same, the ability of the model

to match the developers per project and projects per developer distributions suffers. Con-

sumers randomly selecting projects does not have a direct effect on developers, but if de-

velopers are considering the number of downloads as a reason to select a project, then this

change indirectly affects them. Specifically, random selection evens out the number of

downloads projects receive, resulting in a more uniform spread of download counts across

all projects rather than the skewed distribution observed in FLOSS (as seen in Fig. 7.6b).

Based on the utility weights evolved in the base model, developers do take the number

of downloads into consideration when selecting projects, as seen in Fig. 7.8d. Therefore,

changing the distribution of downloads will affect developers’ choice of projects, which

then impacts the model’s ability to match the empirical data.

To determine if random selection of projects by consumers is more realistic than

consumers using a utility function, an evolutionary run is performed using a version of the

model where consumers choose projects randomly. Compared to the base model, where

consumers use a utility function, the best evolved fitness values are not as high when con-

sumers select projects randomly. Since the genetic algorithm fails to evolve parameter sets

that perform as well in this scenario, consumers randomly selecting projects is rejected in

favor of utility-based selection, indicating intelligent selection by consumers is likely what

occurs in the real world since random selection results in a worse match with the empirical

data. However, the fact that changing how consumers select projects has an effect on the
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TABLE 7.9
Comparison of fitness values of the top 1% of parameter sets when there are no consumers

versus the base version of the model.

No Consumers Base Version
Fitness Range [0.99931,0.99943] [0.99944,0.99956]
Average combined fitness 0.99935 0.99947
Average maturity fitness 0.99935 0.99939
Average developers per project fitness 0.99967 0.99991
Average projects per developer fitness 0.99902 0.99912

model’s ability to match empirical patterns indicates that consumers have at least a minor

effect on the model.

7.3.1.3 No Consumers

This scenario tests the influence of consumers on the model by eliminating agents from

downloading projects. This is accomplished by simply setting all agents’ consumer num-

bers to zero. The input parameter set is then re-evolved and compared to the default param-

eter set. If the model is able to produce similarly high fitness values without consumers,

this indicates that consumers may not be important for matching the evolved patterns and

therefore may, in general, be only minimally influential in the FLOSS development process.

The evolved fitness values for the top 1% of best performing parameter sets for the

no consumers scenario and the base case are contained in Table 7.9. Without consumers,

the evolutionary run fails to find parameter sets that results in fitness scores as high as for

the default version of the model. In fact the worst fitness scores from the default model

run are better than the best scores when there are no consumers, indicating the differences

in fitness scores is likely a result of the change to the model rather than jitter due to the

stochastic nature of the model runs and genetic algorithm. While all components of the

combined fitness score drop when there are no consumers, the developers per project com-
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TABLE 7.10
Comparison of the average evolved producer-related input parameters from the top 1% of

parameter sets when there are no consumers versus the base version of the model.

No Consumers Base Version
Maximum number producing 12 12
Producer number mean 0.9647 0.9285
Producer number stdev 0.0870 0.0613

ponent is reduced the most. The developers per project is a highly skewed distribution, and

including downloads in the model helps reproduce the skewed characteristic. In the default

model, agents are able to take into account the number of downloads a project has received,

resulting in developers flocking to highly-downloaded projects and thus yielding a skewed

developers per project distribution. When there are no consumers, all projects have the

same number of downloads (namely zero), meaning this is no longer a way to differentiate

between projects, resulting in a less skewed developers per project distribution. Examining

the parameters evolved for producers (consumer parameters are not relevant in this model

run since consumers have been eliminated) shows that similar values have been evolved

as in the base run, as seen in Table 7.10, demonstrating that eliminating consumers does

not affect the frequency of developers contributing; rather, the main change in the model’s

ability to match the empirical data stems from how developers choose projects without the

downloads information. Without this information, the model’s ability to match the empiri-

cal patterns decreases.

7.3.1.4 Conclusion

The influence of consumers on the FLOSS development process has not been well studied.

Using FLOSSSim to explore the impact of consumers, it is shown that users have at least

a minor, indirect impact on the process. Namely, consumers are able to influence which
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projects developers contribute to by affecting the download count of a project. In some

ways this can be thought of as consumers voting for a project. Developers may only use the

download count as a small part of deciding which projects to work on, and downloads may

be outweighted by other factors, such as the current resources being contributed to a project.

However, as long as w4, the downloads weight in the utility function (6.2), has a non-zero

value (it ranges from an average of 10% to 25% of the utility in the clusters for the base

run; see Fig. 7.8d), consumers are able influence, albeit possibly very weakly, developers.

Furthermore, FLOSSSim is able to most closely reproduce empirical data when consumers

intelligently select projects, using either a combined or separate utility function when mak-

ing decisions. When consumers choose projects randomly or are removed from the model

entirely, the ability of the model to match the empirical data drops slightly, indicating users

do have a minor effect on the model’s ability to match the empirical data. However, the

ability of the model to match empirical data almost as well when consumers are eliminated

indicates that FLOSS should be considered a developer-driven process.

7.3.2 No New Projects

What happens if the rate of new projects being created is significantly reduced or reaches

zero, and only the already-existing projects remain for developers to work on? This scenario

is already occurring with Wikipedia, which essentially employs open source processes to

write articles instead of software. In the case of popular languages, the majority of the

mainstream articles have already been created and written, with largely specialty topics that

require rare expert input or new topics, such as current events, new products, etc. being what

remains to be created and written [208]. This has resulted in a tapering off of the number

of articles being added to Wikipedia [208], [209], [210], and there has been a shift from

240



creating new articles to improving the quality and content of existing articles [208], [210].

Similarly, as there become good, high quality FLOSS solutions to common problems, the

rate of new projects being created may be significantly reduced, with new projects largely

falling into specialty categories. Likewise, the focus of open source developers may also

shift, from creating new projects to collaborating on existing projects in order to improve

and enhance them without having to reinvent the wheel. Indeed, as this occurs software

may become less about creating new projects from scratch and more about assembling the

existing, already functioning projects into larger and more complex software systems, all

with reduced software team sizes [211].

If the FLOSS project creation rate significantly slows or stops completely, what

will happen to the dynamics of the remaining projects? Will the cream of the crop – that

is, the most attractive projects – at any given time simply float up to the top maturity stages

as developers frequently contribute to these projects? Once complete, will the new cream

(although this cream will be slightly less desirable than the previous projects in terms of

attractiveness) be the next set of projects to be propelled to high maturity levels? Or will

developers spread their distributions more evenly across the remaining projects when there

are no longer good projects that stand out in the landscape of all projects? Once a particular

project matures, will other similar projects simply be ignored since there already exists a

good software solution to address this particular problem?

To consider the effects of a decreasing rate of growth, FLOSSSim is first run for

250 steps like in the default version of the model, with projects being added at a normal

rate. FLOSSSim is then allowed to run for another 500 steps with two different treatments.

In one case, projects continue to be added as normal in the simulation run, representing a

base case. In the other case, no new projects are added for the remaining 500 steps. The
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Fig. 7.21. Change in the percentage of FLOSS projects in development stages when no
new projects are created for 500 time steps. When no new projects are added, projects in
the early development stages progress to higher stages while there is minimal change for
projects already in advanced stages. The data shown is based on a sample parameter set
from the top 1% of evolved sets.

results of the two categories of runs are then compared to see how the project dynamics

change in the extreme case when no new projects are created. Runs are repeated multiple

times using parameter sets from the top 1% of the evolved parameter sets and the results

are both averaged and inspected for general trends across multiple parameter sets.

The most noteable change can be seen in the maturity stage distribution. Projects

in the planning, pre-alpha, and alpha stages receive more contributions when projects are

no longer added, pushing the number of projects in the planning stage down and increasing

the number of projects in the pre-alpha and alpha stages, as can be seen in Figure 7.21.

The percentage of projects in the beta, production/stable, and mature stages is largely un-

affected. The lack of change in the upper development stages between the two scenarios

demonstrates a lock-in effect for successful projects. Through their contributions, devel-

opers influence successful projects to better serve their interests by changing the project’s
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needs vector. This serves as a reinforcing process that causes successful projects to remain

successful. While the effect may be small due to the low value of the weight associated

with similarity, it does increase the attractiveness of the project to the existing developers.

In addition, by being popular with developers, other developers are more likely to be at-

tracted due to the utility function’s current resources weight, w2. Likewise, as the amount

of cumulative resources grows, the project becomes more desireable due to the w3 utility

weight. Combined, these properties ensure that developers continue to work on successful

projects regardless of whether or not new projects are being added

The interest in lower development stage projects comes from the maturity score as-

signed to each maturity stage used in the utility function (see (6.4)); planning is by far the

most important stage (i.e., it has the highest score by a significant margin), and pre-alpha

is also important. In the scenario where projects are no longer being added, agents have

less diversity in the projects to choose from; that is, the other factors influencing the utility

function, such as current resources or number of downloads, may be insufficient to differ-

entiate between projects. Thus the maturity becomes the discerning factor when selecting

a project. Note, however, that due to the maturity scores assigned in (6.4), developers favor

projects in the planning and pre-alpha stages. Once projects progress to the alpha stage, the

maturity score is significantly reduced, and developers abandon projects in the alpha stage

or higher in favor of other lower development stage projects, as demonstrated by the fact

that the percentage of projects in the top three maturity stages remains largely unchanged.

In general, a change in maturity has a larger influence on the utility of a project

than a change in the other components of the utility function. For example, when a project

receives additional resources, increases the cumulative work, or is downloaded, in most

cases this results in a relatively small change because each of these terms in the utility func-
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tion is normalized with respect to the largest value in the entire simulation. For example,

a project receiving a few downloads in a time step results in only a small effect when the

project’s total downloads is normalized to the maximum number of downloads any project

has received5. On the other hand, because there are only six discrete development stages,

moving between adjacent stages has a large effect on the utility as a whole, especially in the

lower stages where the change in scores between adjacent stages is most significant. This

means that in the situation where there are no new interesting projects being added and all

the existing projects are no longer desireable (or at least there are no projects that stand out

as significantly more desireable than others), the maturity term of the utility function will

tend to control the overall perceived utility of projects, hence the noticeable change in the

maturity distribution seen in Fig. 7.21.

Low development stage projects progressing while high stage projects remain

largely stagnant highlights an important point, namely that a project must be desirable

beyond simply being in a low maturity stage in order to progress long-term. A project

must have another strong component in the utility function (i.e., a large number of current

resources being contributed, a large amount of work accumulated, or a large number of

downloads) in order to maintain receiving contributions. If a project is only attractive be-

cause it is in the early stages of development, the contributions from developers will not be

sustainable, since the project will become less and less attractive as the development stage

increases. It becomes clear then that projects that are in high development stages must

5This is because for project i at time t,

downloadsi,t−downloadsi,t−1 << max(downloads1,t ,downloads2,t , . . . ,downloadsnumO f Pro js,t)

in most instances.
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overcome the lower utility they receive from the maturity component of the utility function.

If these projects are able to offset the low maturity score because of one or a combination

of high current resources, cumulative resources, or downloads, then they will likely reach

critical mass and progress to upper development stages or even project completion. On

the other hand, low maturity stage projects may attract developers due to the high scores

assigned to the early development stages, but as they mature, this drops off and the projects

are abandoned unless they have some other component of the utility that is stellar and can

overwhelm the drop off in utility from maturity. For example, a young project might accu-

mulate developers while it is in the lower stages, causing the current number of resources

term of the utility score to grow fast enough to offset the shrinking maturity term. More

often than not, this is not the case. This behavior is in agreement with [129], which argues

that projects need core code already written when released as open source in order to attract

contributors. FLOSSSim mimics this because some of the projects that start in advanced

stages excel. Meanwhile, projects in early stages may gain some contributions, but these

will likely drop off as the project matures, resulting in a stagnant and incomplete projects.

The percentage of projects that are being worked on (i.e., projects that have at least

one developer associated with them) also changes between runs, with an average of 12%

of projects being worked on when new projects are being added versus 23% when no new

projects are being created. At the same time, there is a small shift in the number of devel-

opers per project distribution. Namely, when projects are no longer added, the percentage

of projects with a single developer decreases. Note that this distribution is normalized to

include only projects with one or more developers, meaning if the percentage of projects

with a single developer decreases, the percentages of projects with more than one devel-

oper must increase. Indeed, the bulk of the change is seen in projects with two or a few
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TABLE 7.11
Change in the average percentage of projects with N developers when no new projects are
created for 500 time steps. It is slightly less common to have single developer projects in
favor of projects with just a few developers when new projects are no longer created. The

data are averages from runs with the top performing parameter sets.

Developers per Project Normal Stop Adding Projects
1 76% 68%
2 12% 16%
3 4% 5%
4 2% 3%
5 1% 2%
6 1% 2%
≥ 7 4% 4%

developers, where the percentage of projects in these categories has increased slightly, as

can be seen in Table 7.11. Considering that the number of agents remains constant, at first

it seems counterintuitive to observe an increase in the number of projects being worked on

and at the same time have the number of single developer projects reduced and replaced

with two or more developers projects. However, this can be explained as follows: when

projects are being added, there are occasionally highly desireable projects created. Some

developers will flock to these projects while the remaining developers, who might not be

aware of or view these projects as desirable, will tend to spread themselves out over many

different projects. When new projects are no longer being added, the projects that some

developers found desirable are steadily worked on and quickly become either undesirable

(e.g., the projects gradually become less desirable as they move up in development stage

as a result of (6.4)) or ineligible for additional contributions (i.e., the projects are com-

pleted). The developers who worked on these projects must now find other projects to

contribute to. Unfortunately, no new desirable projects are being added to the simulation,

so these developers must join the other developers in choosing from among the remaining,
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less-interesting projects. This results in a larger number of projects having developers asso-

ciated with them because there are no longer clusters of developers working on certain very

attractive projects; rather, the developers’ contributions are spread across more projects.

However, as shown by the change in the maturity distribution, because of the influence of

the maturity weight in the utility function, the bulk of developers are really only selecting

from projects in the lower development stages. When there were desirable projects, this

didn’t necessarily happen, since a project with, for example, a high cumulative resources

score might have a higher utility value than a project in the early development stages with

a small cumulative resources score. The tendency to select from only a subset of projects

when there are no particularly desirable projects available results in more projects within

this set having a few rather than just one developer. Essentially this is an extension of the

pigeon hole principle, which shows that as the number of pigeon holes is reduced (in this

case the number of projects developers are likely to choose from), the chances of multiple

pigeons being placed in the same pigeon hole increases (that is developers choosing the

same project).

Other distributions, including the projects per developer and downloads, are largely

unaffected when new project creation ceases during a model run.

In conclusion, FLOSSSim provides predictions of what will occur in the FLOSS

landscape if the number of projects being created significantly decreases. Based on the

change in the maturity distribution, it appears that many early stage projects will at least get

started, with developers working on these projects enough to propel them to slightly higher

development stages. However, these projects will fail to maintain the interest of developers,

as demonstrated by the fact that the percentage of high development stage projects does not

grow. Meanwhile, it is predicted that the really good projects, those that are very attractive
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to at least a subset of reliable developers, will progress to the advanced stages regardless of

whether or not new competing projects are being added, as shown by the similar percentage

of projects in the upper development stages in both runs. This is important because it

shows that projects that are uninteresting when there are new projects being added remain

uninteresting when no new projects are being added as well. Furthermore, while some of

these uninteresting project will progress when there aren’t new projects being created, and

at the same time the average number of developers per project will also increase, this won’t

necessarily result in good, usable, mature projects materializing. This behavior mimics the

real-world phenomena where a single project in a particular category becomes the “winner,”

or the default software to use to solve a particular problem. There will be other projects in

the same category that at least get started on development, but these projects most likely

will not mature into good, useable software, let alone software that can compete with a

similar, already-established, well-functioning project.

7.3.3 Effects of Core Developers

Core developers may play a key role in the probability of FLOSS projects becoming suc-

cessful. Indeed, a project with no core developers likely will never achieve success, even

if there are many contributions from peripheral developers. This is partially because core

developers act as the glue that holds a project together. They are responsible for joining

together the contributions to form a coherent, quality project. Even Linus Torvalds, one

of the best known core developers in the open source community, admits that the majority

of his time is spent piecing together the components and performing quality control and

guidance to Linux [34].
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As projects mature, the complexity of the projects also tends to increase. The core

developers, who have worked on a project long-term, accumulate knowledge and may be

the only ones who sufficiently understand the software’s design in order to provide guidance

to move the project forward [212]. If a key contributor leaves a project, knowledge is lost

and the project may eventually fail as a result [187]. Based on this observation, are there

both good and bad times for a core developer to leave a project, some of which will allow a

project to survive and others which almost always result in failure? If a core developer can

contribute to a project for only a finite amount of time, when is the most advantageous time

in a project’s lifecycle to have the core developer involved? For example, if a core developer

is involved in the early stages of project development, will this result in sufficient interest

from other contributors, possibly even causing other core developers to join the effort, such

that the project is self-sustaining even after the core developer leaves? How robust is the

FLOSS development process to core developers joining and leaving projects?

To explore the effect of core developers contributing to projects at different times

during development, FLOSSSim is modified to add and remove core developers to projects

at specific stages of development. Core developers are modeled simplistically as agents

that consistently contribute substantial resources to a project; knowledge and coordination

skills are not modeled. Three treatments of core developers are considered: core developers

involved in projects during the early stages of development (i.e., planning and pre-alpha),

the mid-stages (i.e., alpha and beta), and the late stages (i.e., production/stable and mature).

The success of projects subjected to the three treatments is then analyzed to help understand

1) at what stages it is most important for a project to have a core developer, and 2) when

core developers can be removed from a project while still leaving the project with a good

chance of survival.
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The setup for testing is as follows: In a simulation run, a subset of projects are ran-

domly selected to be the recipients of core developers. The run is then executed four times

with the same random seed. One run acts as the control case, where the selected projects

do not receive contributions explicitly from assigned core developers. The remaining three

runs add a single core developer to each project when the project is in the planning and pre-

alpha, alpha and beta, or production/stable and mature development stages. While a project

is in the selected stages, the assigned core developer consistently adds a 40 hour week

worth of work to the project (i.e., 1.0 resources are contributed) at each time step. Out-

side of the selected development stages, the core developer does not work on the project.

While contributing, a core developer’s needs vector is made to perfectly match the needs

vector of the project the developer is working on, representing the very similar interests one

would expect between a project and a highly dedicated developer working on that project.

For each experimental run, FLOSSSim is configured using parameters from the top per-

forming 1% of evolved parameter sets. Multiple runs are performed to accommodate for

the stochasticity in the model and the results averaged. The number of projects selected

to receive core developers during each run is set at eight in order to achieve a balance be-

tween the number of runs necessary to collect sufficient data and so as not to saturate the

landscape of FLOSS projects (in this case, fewer than 1% of projects have core developers

artificially assigned to them; if too many projects are artificially assigned core developers,

this will alter the dynamics of the model). After 250 time steps each of the eight projects

is checked to determine if it is successful according to the six success metrics described in

Section 7.1.4.1.

The average percentage of successful projects for each of the core developer contri-

bution periods is shown in Fig. 7.22. According to four of the success metrics, namely ma-
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Fig. 7.22. Effects of core developer contribution period on project success. Projects are
most likely to succeed when a core developer is involved during the alpha and beta stages
of development.

turity threshold, ∆ maturity, ∆ developers, and ∆ downloads, projects have the best chance

of being successful if core developers are involved during the alpha and beta stages of devel-

opment. As a reminder, the success metrics are collected at the termination of a simulation

run, after 250 time steps. This means that regardless of when during the simulation run the

project was in the mid-development stages, at the end the project was considered successful

according to 2/3 of the success metrics. In some cases this is expected. For example, the

maturity threshold metric categorizes all projects in the beta development stage or later as

successful. When the core developers are involved in the alpha and beta stages, any project

that advances to the alpha stage will continue to advance and thus likely be categorized as

successful by the end of the run. On the other hand, the remaining three success metrics that
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are highest when contributions are made in the alpha and beta stages show that a number

of projects are still advancing in maturity, gaining new developers, and being downloaded

at the end of the simulation, even though they may have advanced past the stages where

core developers contribute to the project. This indicates projects may be sustainable after

core developers leave, so long as those core contributions were made in the mid-stages of

development.

It is likely no conincidence that the most important stages to have a core developer

associated with a project are also the stages where the bulk of the commits occur (see

Fig. 6.4 on page 174). To determine if there is a difference between the core developers

contributing in the alpha versus beta development stage, the analysis is repeated two more

times, once with core developers contributing only in the alpha stage and once only in the

beta stage. For the four metrics that peaked when core developers were involved in the

middle development stages, the results were mixed. The maturity threshold metric had the

highest percentage of successful projects when core developers were involved in the alpha

stage while the ∆ maturity and ∆ downloads metrics were highest when core developers

were involved in the beta stage. The ∆ developers success metric showed a similar increase

when core developers were involved in either stage.

One might expect that if more projects are successful when core developers are

involved during the mid-development stages then there would also be an increase in the

number of successful projects when developers are involved in the late stages of develop-

ment. This is not the case for the four metrics that peak in the alpha and beta stages. Instead,

the percentage of projects that are considered successful when core developers are added in

the production/stable and mature stages is essentially the same as when no core developers

are explicitly assigned to projects. This is because these projects never make it to the upper
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development stages to collect the resources of the core developers. Instead, the projects

stall in lower stages. Thus, core developer contribution during the alpha and beta stages

can be seen as helping a project at a critical time, propelling the project through a lull that

bridges the gap between when a project is new and when it is mature.

The remaining two success metrics, ∆ percent complete and completed projects,

perform best when core developers are involved in the final stages of development. It is

not surprising that the number of completed projects increases when core developers are

involved at the end of the lifecycle. Normally, very few projects make it to the top stages and

even fewer make it all the way to completion. Having a developer consistently contribute to

projects in the upper stages will thus increase the number of projects in the top stages that

manage to progress to completion. Furthermore, the percentage of commits that occur in

the top stages is much smaller than mid-stages, resulting in consistent contributions from a

core developer in the final stages rapidly moving a project through the stages as compared

to the same size contribution in a mid-development stage. Thus it is even more likely that

a project that reaches the upper-development stages will be complete by the termination of

the simulation run if core developers join in the production/stable development stage.

Interestingly enough, having core developers involved at early stages of develop-

ment does not seem to have a positive effect on the success of a project, with the percentage

of successful projects being almost the same as when no core developers are assigned. As

previously mentioned in Section 7.3.2, projects must overcome a number of obstacles to

progress beyond the early stages of development, especially since the attractiveness of a

project according to its development stage decreases as the project matures. It appears that

even adding core developers at the early stages does not have a significant enough impact

to offset the dropoff of appeal as projects progress. In fact, removing core developers at
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the end of the pre-alpha stage may be the worst possible scenario, because a project loses

appeal by moving into the alpha stage and the utility is further reduced because the current

contributions are reduced. Indeed, several of the success metrics show a small decrease in

the percentage of successful projects when core developers are involved in the early stages

of development as compared to the control run, although the differences are small enough

that they are likely a result of noise.

Note that this experiment was performed by adding only a single core developer

per selected project. In reality there may be multiple core developers involved in a single

project, and in some cases these developers may join or leave a project at relatively similar

times. It is expected that the results will simply be more pronounced if groups of core

developers join or leave a project concurrently.

In conclusion, the bulk of success metrics indicate core developers are most impor-

tant during the alpha and beta stages of development. This makes sense, since not only does

the bulk of work on a project occur during these phases, but it is also the core developer’s

responsibility to take not only their own work but the work of others and assemble the chaos

into functioning software. Paired with evidence that projects should have at least a kernel of

working code when they are released to the open source community, this provides a major

advantage to projects that are first developed to a functional level cathedral-style and then

released into the open source domain while keeping the original developer(s) involved in

the project, at least temporarily, during the transitional period. These original developers act

as core developers, at least until replacements can be found, and help the project navigate a

critical part of the development lifecycle where many projects falter.

The analysis of the model also shows that the FLOSS development process is not

very robust to adding and removing core developers. There are times during the develop-
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ment lifecycle that it is more important to have core developers, namely during the alpha

and beta stages of development. However, core developers that are involved during other

stages of FLOSS development seem to neither influence the probability of success or fail-

ure of a project. This highlights the importance of core developers, which according to the

findings presented here, are able to influence the success of a project. Developers willing

to act as core developers are a limited resource in the FLOSS domain, and the shortage

of core developers compared to number of projects in existence may help explain why so

many projects never get off the ground.

7.4 DISCUSSION AND FUTURE WORK

An ongoing challenge with developing FLOSSSim has been finding methods to map real

world data into the model. Efforts to find additional methods to accomplish this should

continue in order to increase the realism and usefulness of the model. Building a model

that could be seeded from real world data was an original design goal of this research.

Ideally, this would mean a snapshot of the FLOSS landscape on, say, SourceForge, could

be taken and fed into the model. FLOSSSim would then be capable of mapping the relevant

project details from the snapshot into the simulated environment. By doing this, it would

be possible to explore many additional interesting and important scenarios. For example, it

would be possible to create a customized project, drop it into the simulated landscape, and

monitor its progress. The simulation could be re-run multiple times, tweaking the project

(or other projects) and looking at the long term effects of the changes. This would be

immensely helpful in answering important questions about the FLOSS development process

that are part of the motivation of this research, such as: Which projects will still be active in

N years? Which projects will thrive and which will fail? What can be done to increase the

probability that a project will be successful? Are projects the masters of their own destiny,
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or does the surrounding FLOSS landscape have a significant impact in determining what

happens with a project?

The ability to better map real world data into the simulated environment, especially

at an individual project level, would take FLOSSSim to a level where individual projects

can be studied. With this enhancement, it would be possible to study a project in a very

specific scenario versus the more generic analysis that can be performed with the current

version of the model. This could result in powerful prediction functionality. The bulk of the

analysis conducted so far has focused on aggregate analysis, looking at trends across many

projects, but not studying single projects in the landscape, let alone projects in very specific

scenarios. FLOSSSim was designed and implemented this way partly because of the data

available, which is mostly aggregate, and partly because a high-level model is the first step

in creating a more detailed model.

How to move from a “coarse” to a “fine” model remains a long-term and open

problem. Where possible, the model already uses empirical data, but even when data is

available, sometimes it cannot be easily incorporated into the model. Essentially, one of the

major obstacles is how to map real world data into the model’s representation of that data

(or, as an alternative, to change the model’s internal representation of data so that it more

easily maps to real word data). In some cases there is a natural mapping, but frequently

model data is an abstraction and/or simplification of the real world phenomena, meaning

there is not a trivial function to map between the real and simulated data. For example,

how can the topic of a project posted on SourceForge be mapped into the abstract concept

of a project’s needs vector? One possible solution would be to use the topic categories and
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subcategories that a project is listed in on SourceForge6 and map these to the needs vector.

This could be further extended to include other properties of a project as well that might be

of interest to an agent selecting a project, such as platform, programming language, license,

etc. One problem is that this may work for SourceForge, but combining data from other

forges, which may have different categories or no categories at all, will still be a problem.

In addition, there remains the constant concern about dirty data. For example, SourceForge

permits projects to be listed in multiple topic categories, but lazy project developers may

only bother listing their project in a single main category, even when other categories may

also apply7.

Another major challenge with enhancing the model’s ability to be seeded with real

world data is a lack of availability of the necessary data. For example, the needs and in-

terests of consumers of FLOSS have not been measured well at time of writing. Finding a

method that would allow for accurate measurement of this data is another open problem.

Regardless of the complications, much of the future work that can be done with

FLOSSSim depends on providing a better mechanism to map real world data into the model.

Because of the difficulty and size of this problem, this should be treated as a long-term goal

that likely will be solved in many small, incremental steps. Even minor improvements

6See http://sourceforge.net/softwaremap/?&fq[] for a list of SourceForge trove
categories.

7This may not be a problem for people looking for projects in the real world, who
are likely to use keywords to find a project that meets their needs as an alternative or in
addition to to browsing topic categories. Thus keywords found in project descriptions might
offer another option for mapping the real world data to FLOSSSim, although this is not
without complications as well, e.g., some projects may provide good descriptions on their
project summary pages while others may place this information in README files or other
documentation that isn’t necessarily indexed by the site.
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at a non-individual project level (e.g., adding more aggregate data) will help to improve

FLOSSSim’s usefulness, accuracy, and validity.

Dirty data has been major problem throughout the development of the model. Due

to time restrictions and the extensive possibilities, an incomplete sensitivity analysis has

been performed. Additional sensitivity analysis should be conducted, especially for data

that is central to the model, to discover how robust the model is to minor data perturbations.

For example, the maturity stage thresholds were calculated from data that, once filtered,

resulted in a small and incomplete data set (i.e., very few project and no projects having

progressed through all six stages). A sensitivity analysis should be performed to establish

how critical these values are to the performance of the model. If the model performs well

over a wide range of these values, the importance of obtaining exact values for the thresh-

olds from the dirty data is reduced and confidence about the performance of the model with

the current potentially imperfect data is increased.

An interesting enhancement would be to expand the model to use data from forges

other than SourceForge. There are a number of complications with doing so, most noteably

the heterogeneity of the data. Although SourceForge is the main source of data for FLOSS-

Sim, in part because it is the largest and most popular forge and because using a single

data source solves problems associated with heterogeneous data, there are some concerns

whether or not the projects on SourceForge accurately represent the FLOSS domain. Part

of the concern comes from certain categories of projects tending to be hosted elsewhere.

For example, many successful projects host their project homepages and development tools

on their own servers. Some of these projects may still maintain placeholders accounts on

SourceForge, but more than likely the SourceForge data associated with these projects will

be inaccurate due to the real data being hosted with off-site tools on an off-site host. Other
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classes of projects might also be underrepresented on SourceForge. For example, the Free

Software Foundation maintains the Savannah forge for official GNU software8 and for other

projects that meet the free software definition9. As mentioned in Chapter 1, free software

is a slightly different concept than open source, although most of the licenses used by free

software meet the definition of open source as well. This means that no official GNU soft-

ware is hosted on SourceForge. Because GNU is a major player in the FLOSS domain,

developing many high quality projects, and because the free software movement is slightly

different than the open source domain, using data only from SourceForge will result in

missing potentially important data.

Moving away from using data only from SourceForge and designing a better method

of mapping individual project data into the model might go hand-in-hand. For example,

much project-specific information can be extracted by analyzing SCM logs. Virtually all

open source projects use SCM software, regardless of where they are hosted, and most of

this software is configured to allow anonymous read access. Thus, it becomes a matter

of determining the URL to interact with each project’s SCM software. Fortunately, many

forges use a set of naming conventions for creating a project’s SCM URL so that with the

right information, such as the project’s name, the SCM URL can be determined. This is

the approach the FLOSSMetrics project uses to collect data and has the major advantage

of breaking away from a single forge while maintaining close to homogeneous data for

8http://savannah.gnu.org

9http://savannah.nongnu.org
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projects10. Of course forges also track information about a project that is not contained

in the SCM logs (e.g., project category), so becoming forge-independent may not be a

possibility.

With enhancements allowing improved mapping of the landscape of projects into

the model, it would also be possible to explore if there are major differences among the

forges. The model could initially be calibrated using, say, SourceForge data, and then

its performance measured when using data from other forges. If differences were detected

across forges, understanding the differences could significantly contribute to the knowledge

of what conditions foster successful FLOSS development.

Another possible enhancement to the model would be adding the concept of “ca-

pabilities” to agents. Essentially, the skills of developers are not all equal, nor are the

competencies required to work on a project the same for all projects. Spending one hour

on one project results in more progress than spending one hour on a second project if the

developer is skilled in the tasks that need to be completed by the first project but inexpe-

rienced in those needed by the second. Indeed, a developer not possessing certain skills

may be unable to make any progress on a project if there is only specialty work remaining.

An example would be a project that requires the developer to be a subject matter expert

for the particular domain. Developers who are not familiar with the domain may not be

able to provide meaningful contributions. As implemented now, FLOSSSim uses resource

numbers as an abstract representation of work. While agents are endowed with different

10SCM data is not quite homogeneous because different SCM software stores different
data, or possibly the same data in a different format. However, because the purpose of all
SCM software is the same, it is expected that there is more overlap than unique data stored
by the different systems, meaning much of the data is universal across all systems.
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resource numbers, there is no concept of efficiency in the work performed based on the

tasks matching the skills of the developer. Instead, any agent contributing R resources to a

project is the same as any other agent also contributing R resources to the same project. In

both cases, the project progresses the same amount.

One possibility for adding capabilities to FLOSSSim involves modifying the needs

vectors. The needs vector could be a bitstring representing all possible skills in the universe.

Each bit would correspond to a single skill, with a one representing possession of the skill

and a zero a lack of the skill. Agents would then have needs vectors that contained the

skills they possessed. Likewise, projects would have needs vectors that contained the skills

necessary to complete project tasks. Essentially, a project’s needs vector would represent

the desired functionality of the project and an agent’s needs vector would represent what

types of functionality an agent is capable of implementing. Agents and projects would need

to have overlapping bits set to one in their needs vectors in order for an agent to be able to

make a contribution to the project. Bits in a project’s needs vector could be cleared when

tasks involving the respective skill were completed and developers possessing the skill were

no longer needed. In this sense a project’s needs vector would represent the amount of work

remaining on the project. When the needs vector only contained zeros, there would be no

more tasks to complete and the project would be considered finished.

In the spirit of keeping the model as simple as possible, capabilities were not im-

plemented in this version of the model, nor is there evidence that adding capabilities to

the model will increase the model’s performance. However, a number of peers who have

reviewed the model have suggested capabilities be added to increase the realism.

Quality may be an important factor in motivating individuals to choose projects

that is not currently incorporated into FLOSSSim. Arguably quality is of more importance
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to consumers than producers because users are trapped with using the existing software

as is, whereas developers have the ability to change the software and thus work around

or improve the quality if it does not currently meet their standards. Consumers, on the

other hand, are looking for solutions to their problems and a low quality solution may not

sufficiently motivate a user to try the software. Similarly, trying a project and finding it is

low quality may cause a user to steer clear of that project in the future. Indeed, [125] finds

a positive correlation between software quality and FLOSS usage; in particular, increased

quality leads to more FLOSS use and higher user satisfaction [125]. Higher user satisfaction

also in turn increases FLOSS usage [125]. Even if quality is only important to users, the

non-zero weight w4 evolved for downloads in the FLOSSSim utility function indicates this

may still affect the FLOSS development process. The concept of quality has already been

incorporated into one other existing FLOSS model [37].

In reality, most FLOSS projects are never complete. The majority of projects that

manage to release a stable version of software will continue to add new features and make

other improvements. In many cases, as a project moves from a stable release to the next

version, the software will regress in development stage, most likely moving from a pro-

duction/stable or mature stage back to a beta or earlier stage. FLOSSSim does not include

these dynamics. Instead, when a project is created one of its properties is resources for com-

pletion, a static number indicating the amount of work necessary to complete the project.

When the cumulative resources equals the resources for completion, the project is consid-

ered finished. Assigning a resources for completion value to each project is necessary in

the model in order to calculate the maturity stage based on the percent of the project that

is complete. However, FLOSSSim could be modified so that projects occasionally increase

their resources for completion number, representing developers adding new requirements

262



to the project, expanding the scope of the project, etc. A large increase would also result in

a downgrade to the project’s maturity, since the percentage of the project that is complete

would be reduced. Allowing projects to increase in size and regress in maturity stage might

change the dynamics of the model. For example, successful projects would attract the con-

tributions of developers for longer since these projects wouldn’t simply rapidly terminate

but instead might proceed through several iterations of increasing in the resources necessary

for completion.

The majority of FLOSS projects are not standalone software. Most projects have de-

pendencies, some quite an extensive list, which are frequently other FLOSS projects. Some

projects, such as software libraries, are never intended to be standalone but are always used

by other software. Thus, there is an inherent link between many projects, meaning the wel-

fare of one project may actually affect the prospects of the many other projects that depend

on it. A possible enhancement to FLOSSSim would be to include links between projects

that depend on one another. This would allow for studying network effects as they pertain

to FLOSS project success. For example, how does the failure of a project affect all the

projects that include it as a dependency? Is there a reverse ripple effect, where a popular

project results in its dependencies also receiving more contributions, perhaps because devel-

opers from the popular project contribute to the dependencies to add functionality necessary

for the popular project, or perhaps because being listed as a dependency serves as effective

advertising for these projects? Thus by including dependencies, FLOSSSim could be used

to explore network dynamics in the FLOSS domain and answer these types of questions. It
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should be noted, however, that sites like SourceForge do not track project dependencies as

part of a project’s metadata and therefore collecting this information may be a challenge11.

Once developers join a project, it is likely that they will continue to work on the

same project in the future. This is especially evident in the case of core developers, who

typically work on a project for an extended period of time. Currently, FLOSSSim attempts

to reproduce this characteristic by giving a boost (taking the square root) of the utility func-

tion for projects worked on in the previous time step. In effect, this increases the probability

of an agent selecting the same projects to work on in the subsequent time step. Improve-

ments to the model might include adding a switching cost term to the utility function, as

was done in FLOSSSimple, representing the extra effort required to become familiar with

another project. An alternative solution can be seen in [58], which address this issue in their

FLOSS model by using probabilities based on data from SourceForge to determine when

developers continue working on or leave a project they are currently involved with.

The model’s needs vectors serve as an abstraction for representing the interests

and corresponding functionalities of the agents and projects respectively. Therefore, the

needs vector is at the crux of handling the matching of developers’ interests with appropri-

ate projects. Because the actual distribution of people’s interests is unknown, a simplistic

approach is taken and the needs vector values in FLOSSSim are assigned via a uniform dis-

11One possibility that warrants investigation for efficiently collecting dependency re-
quirements would be to look into “packages” and “package managers”. Packages are used
to make distributing software easier. Included in a package is a list of dependencies, and
part of the package manager’s job is to make sure these dependencies are also installed and,
if not, possibly to fetch and install them as well. It is not uncommon for FLOSS projects to
release versions of their software as packages for some of the more popular Linux distribu-
tions, although certainly not all FLOSS is distributed as packages. Thus mining packages
may be a method for extracting dependency information for at least some projects.
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tribution. However, exploration of the effects of other distributions may be interesting. For

example, if a normal distribution is used, projects with vector components near the mean

may have an advantage because there will be many agents with interests similar to the

projects. Projects with vector components several standard deviations from the mean will

have a much smaller set of agents whose interests are similar to these projects. A drawback

of a normal distribution is that it makes most projects similar; in reality, projects are spread

over a wide spectrum (e.g., from operating systems and drivers to business applications

and games). The challenge centers around generating needs vectors that are distributed

similarly to real people’s needs. Unfortunately, the interests of those involved in FLOSS,

especially consumers, is not known. It might be possible to use the number of already-

existing projects in predefined categories as a proxy for people’s interests and from this

gain insight on how needs vectors can be generated to match reality. Indeed, topic cate-

gories on SourceForge such as Internet and Software Development have project counts two

orders of magnitude greater than some of the other categories, such as Printing and Termi-

nals [213]. The imbalance may indicate that those participating in the FLOSS domain are

more interested in certain types of projects, such as web browsers, than in other types of

projects, such as printer drivers. However, the skewed data may also be a result of uneven

partitioning of the topics at the top level. Thus, determining the correct distribution for the

needs vector remains an open, but important, problem since needs vectors are integral to the

model. Changing the distribution used to generate the needs vectors likely would affect w1,

the evolved similarity weight in the utility function. It would also likely affect the analysis

of target audience size versus success.

While projects’ needs vectors evolve based on the contributions received from

agents, agents’ needs vectors remain static throughout a simulation run. In reality, agents’
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interests may change over time and may even be affected by the projects they work on (i.e.,

an agent may learn to like or dislike a topic based on their experiences with a project). The

ability of agents’ needs vectors to evolve based on the projects they are involved in might

increase the realism of the model.

In the real world, projects may be perturbed by exogenous events. For example,

a feature added in one project may influence other projects. This phenomenon could be

incorporated into the model by occasionally mutating a project’s needs vector randomly.

Agents who work together may influence each others’ choices in joining or leaving

projects. Currently, when an agents’ memory is updated, a randomly selected project is

added or removed, but it may be more realistic if knowledge of projects is influenced by an

agent’s peers. For example, an agent contributing to project P would be more likely to dis-

cover (i.e. add to its memory) other projects that co-developers of project P are working on.

Likewise, an agent developing for multiple projects may mention abandoning a project, in-

fluencing developers that agent interacts with while working on other projects. Occasional

random selection of projects would still be required, as agents may still independently dis-

cover or reject projects. Implementing these changes may increase the membership herding

dynamics occurring in the model.

A static number of agents is created at the beginning of a model run. Adding and

removing agents during the execution of the model would increase the realism of the model.

However, one caveat with this enhancement is that the rate at which to add and remove

agents is unclear and cannot be easily determined from empirical data. For example, the

number of developers on SourceForge appears to increase over time, but part of this may

be because developers only register, but never unregister, with the site. There is no data

available on consumers joining and leaving the open source community.
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One final complication with the model is its internal representations versus reality.

For example, a suggested strategy for success in open source projects is to release early and

release often [13]. Using this method to determine successful projects within the model is

problematic because the model includes no concept of releasing versions of software. Aug-

menting the model to include a reasonable representation of software releases is non-trivial,

if possible at all. Likewise, it is difficult to compare findings of other work on conditions

leading to success that map into this model. For example, [101] consider licensing impacts

while [81] considers version control systems, mailing lists, documentation, portability, and

systematic testing policy differences between successful and unsuccessful projects. Un-

fortunately, none of these aspects easily map into the model for comparison or validation

purposes.

7.5 CONCLUSION

A better understanding of conditions that contribute to the success of FLOSS projects is

a valuable contribution to the future of software engineering. An agent-based model was

created to explore these conditions. The model is formulated from empirical studies and

calibrated using multiple sources of FLOSS data. The calibrated version reproduces distri-

butions that closely match the three emergent properties examined. It is shown that these

distributions are non-trivial to match. In addition, the model is able to predict distributions

it was not calibrated for, adding confidence that the model is valid. From the calibrated data,

it is concluded that the current resources going towards a project, the resources a project

has already accumulated, the number of downloads a project has received, and the maturity

of a project are all important factors when selecting projects. Surprisingly, the similarity

between an agent and a project is not important in matching the empirical data. Cluster

analysis of the best performing parameter sets shows that there may be several different
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classes of agents, each with a different primary interest driving their selection of projects.

The notion that FLOSS is primarily a developer-driven process is supported, while users

are a distant second in influencing the process. Finally, different definitions of success are

explored. It is concluded that different formulations of success result in different sets of

projects being considered successful, with minimal overlap between pairs of sets. The size

of the target audience does not play a major role in influencing the success of a project.

The model is also used to evaluate several scenarios. Through this analysis the in-

fluence of consumers, a group which has not been well-studied, is further explored. It is

reaffirmed that consumers play only a minor role in influencing the FLOSS development

process, and there is insufficient evidence to show that consumers use significantly differ-

ent selection criteria than producers. In addition, it is shown that while maturity stage has a

large influence on which projects receive contributions, projects must be desirable beyond

their development stage if they are going to progress to completion. Projects that only score

high in one of the factors in the utility function will likely only perform well for a short

period of time and then burn out. Furthermore, some projects are inherently desireable.

Eliminating these projects does not make the previously undesirable projects any more de-

sirable, as illustrated by the fact that these projects do not progress to upper development

stages even when only uninteresting projects remain. Finally, it is found that core developer

participation is most important in regards to influencing project success if it occurs in the

mid-stages of development; projects that attract core developers during the mid-stages may

become self-sustaining and survive even if the core developers later leave. Core developer

participation in the final stages of development also increases the chances of a project be-

ing considered successful. Core developers are not important during the early stages of

development.
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The model presented here aids in gaining a better understanding of the conditions

necessary for open source projects to succeed. With further iterations of development, in-

cluding supplementing the model with better data-based values for parameters and adding

additional emergent properties for validation purposes, the model could move further into

the realm of prediction. In this case, it would be possible to feed real-life conditions into

the model and then observe a given project as it progresses (or lack of progresses) in the

FLOSS environment, potentially leading to a better understanding of the FLOSS develop-

ment process and the conditions necessary for project success.
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CHAPTER 8

CONCLUSION

Traditional software engineering is studied in order to understand what methods are worth-

while (e.g., what processes produce software with properties including, but not limited to:

high quality, low bug counts, fast development, safety critical, and cost effective). The

research presented here is an extension into FLOSS engineering. Namely, many of the

activities that occur in FLOSS development are contrary to traditional software engineer-

ing best practices, yet in some cases FLOSS manages to produce excellent software. This

makes the FLOSS development process worth studying in order to better understand what

causes these positive characteristics and how they may be adapted to improve all forms of

software engineering.

In general, there is concern about the lack of research using empirical data in soft-

ware engineering [214], [215], [216]. It is often difficult or impossible to obtain data from

proprietary software engineering projects. Even if data is obtainable, it may not be sharable

due to non-disclosure agreements [158]. This means the results cannot be independently

validated. The work presented here adds to the body of software engineering research that

is heavily based on empirical data. In addition, because the FLOSS data used is public,

the results can be independently replicated for validation purposes. However, at the same

time, it has been shown that extraordinary caution must be exercised when using FLOSS

data. While FLOSS is attractive to study because the process naturally captures massive

amounts of data, this does not solve the “garbage in, garbage out” problem. This is espe-

cially true with human-assigned data, such as project development status, which is prone
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to errors. Care must be taken also when dealing with data collected over time; fields may

change, as may data collection methods. Other anomalies exist that are data-specific, such

as abnormally large commits, which might seem like tremendous progress on a project but

in reality are a result of migrating from one SCM system to another. As such, the rich data

available from FLOSS development processes, upon closer inspection, actually requires

close examination and extensive filtering before it can be used. In some cases the filtering

is so severe that the resulting data sets may be insufficient from which to draw conclusions.

Hopefully projects like FLOSSmole will continue to mature and improve the quality of the

data through enhanced collection techniques. Likewise, newer data collection projects like

FLOSSMetrics are able to learn from the shortcomings and problems others have already

encountered in order to improve their own data sets. Unfortunately, until higher quality

data is available, it is mandatory that those using FLOSS data invest sufficient time in un-

derstanding the information before using it. This should lead to reduced rework and more

confidence in conclusions derived.

The goal of this research is to better understand the FLOSS development process

through the use of public data and agent-based modeling. A particular focus is on un-

derstanding why some projects are successful, what causes this success, and how success

can be influenced. Through a better understanding of the development process, positive

attributes present in FLOSS may be applied to software engineering in general.

In order to study the success of FLOSS projects, it is necessary to first understand

what success means in the FLOSS domain. Using modeling, a number of proposed success

metrics are explored. In particular, it is found that there is a difference between consumer-

oriented and producer-oriented success metrics. The different impact of these two families

of metrics on the FLOSS development process is explored. Consumer-oriented metrics re-
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sult in a larger spread of projects being worked on while producer-oriented metrics exhibit

bandwagon effects. The winner-takes-all dynamics seen when using producer-oriented met-

rics closely matches the dynamics seen in real world data, with a handful of FLOSS projects

being tremendously successful while the majority of projects remain inert. However, within

producer-oriented metrics, it is shown that there is a large difference among the proposed

metrics. The lack of overlap among the metrics indicates that choice of metrics does mat-

ter, and how success is defined may vary by person and scenario. Using multiple metrics to

judge success likely will provide a more rounded, stable, and potentially superior indicator

when evaluating the state of a FLOSS project.

In order to understand what can be done to increase the chances of success, the

approach taken by this research is to understand how consumers and developers choose

FLOSS projects. It is assumed that people, and not projects, are a limited resource and

that projects must compete for consumers’ and developers’ attention in order to survive.

FLOSSSim indeed performs best when the agents to project ratio is significantly less than

1, supporting this basic assumption and lending credibility to this approach for modeling

the FLOSS development process.

Although literature includes many reasons why people become involved in FLOSS,

ranging from pure conjecture to survey-based conclusions, this research takes a unique ap-

proach by attempting to understand the related concept of how consumers and developers

select projects within the FLOSS domain. Beyond simply identifying factors that are im-

portant, unique to this research is an attempt to derive the importance of each factor, where

the results are based on a model that is backed by publicly available project data. Of the five

factors explored for developers, a project’s maturity is found to always be important. In ad-

dition, the popularity of a project with other developers, the accumulated work on a project,
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and the popularity of a project with users are also found to sometimes be important factors

in selecting projects. Surprisingly, similarity of interests is not shown to be an important

factor. The heterogeneity of the importance of current resources, cumulative resources, and

number of downloads indicates that there is diversity in the factors that motivate individu-

als to choose projects. Much like the heterogeneity found in the reasons people participate

in FLOSS, different individuals choose projects for different reasons. For example, those

interested in the popularity of projects with developers may be driven by the potential for

reputation gain, may be interested in job opportunities, or may simply enjoy sharing and

learning new skills that are available from these projects. Those attracted to projects based

on the work already completed may be interested in opportunities that are project size de-

pendent, while those that prefer well-used projects may be motivated by recognition or

altruism.

Based on the evolved utility weights in FLOSSSim, developers exhibit the following

preferences when selecting projects:

• Projects that are popular with developers are more likely to be selected.

• Large projects with a significant portion of work already completed are more likely

to be selected.

• Projects that are popular with users are more likely to be selected.

• Projects in lower development stages are more likely to be selected.

Because projects must be selected by developers in order to progress, these findings also

provide insight into what conditions increase the probability of success.

Consumers remain a largely unstudied group in the FLOSS domain. To help address

this void, both FLOSSSimple and FLOSSSim include consumers for the purpose of better
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understanding their impact on the FLOSS development process. Exploring factors that are

important to users choosing projects reveals that, unlike developers, a project matching a

consumer’s interests is important. This is not surprising since consumers are not subject to

many of the motivating factors experienced by developers; they simply want software that

solves their problems. However, the lack of stability in FLOSSSim’s utility weights indicate

the selection of projects by consumers is not critical in order for the model to match the

empirical data. It appears that consumers’ choices of projects have only a minimal influence

on the FLOSS development process.

In order for a project to be successful, it must be desirable on multiple fronts; having

a single desirable factor is simply not enough to compete with other projects to attract de-

velopers. Projects with a single element of appeal have only a small window of opportunity

to increase their desirability before developers move on to other projects.

Some projects are inherently successful while other projects are inherently unsuc-

cessful. Inherently successful projects thrive regardless of the surrounding FLOSS land-

scape. Likewise, inherently unsuccessful projects remain unsuccessful even if the success-

ful projects are eliminated. This behavior, seen in FLOSSSim with the cessation of adding

new projects, is consistent with the winner-takes-all behavior observed in FLOSS. That is,

there is often a prevailing project satisfying the needs of the community in a category, and

other similar projects fail to compete. Most people interested in a topic will simply choose

the dominant project rather than invest in a similar underdog project. These dynamics occur

because successful projects exhibit a lock-in effect. Once a project exhibits signs of being

successful, developers have a tendency to continue working on the project, ignoring the

changes in the surrounding FLOSS landscape and helping ensure that the project remains

successful into the future. This behavior also indicates there may be a boredom threshold;
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projects that are below this static limit largely do not receive contributions and rarely reach

critical mass, even when there are no better projects for developers to work on.

A key finding of this research is that FLOSS is a producer-driven process. This

is shown consistently throughout the modeling process. From the high evolved producer

numbers to the use of producer-oriented success metrics better matching the empirical data

to the elimination of consumers from the model resulting in only slightly changed fitness

values, all indicators point to developers being the driving force of the FLOSS process.

This finding confirms that the ability of a project to attract developers is key to the project’s

success.

Passive consumers are a distant second to developers in influencing the FLOSS de-

velopment process, as demonstrated by multiple components of the models. The frequency

that consumers use software does not affect the ability of FLOSSSim to match empirical

data. If given the ability to select projects using different weights than developers, the

consumers’ weights are unstable and work over a much larger range without negatively af-

fecting the ability of FLOSSSim to match empirical data. Using consumer-oriented success

metrics results in characteristics that do not match that of empirical FLOSS data. However,

consumers are not entirely without affect on the development process. Users are able to

indirectly influence developers by affecting download counts, which are then used by de-

velopers when selecting projects. This minor influence is observed by the slightly decreased

fitness values in FLOSSSim when consumers select projects randomly or are eliminated en-

tirely from the model.

Since FLOSS is a producer-driven process, one might expect projects aimed at a

developer audience to have an increased probability of success. FLOSSSimple indicates

that projects biased towards producers needs tend to outperform projects that are biased
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towards consumer needs. FLOSSSim shows in specific circumstances a very weak link

between the target audience of a project and the probability of success. These findings are

consistent with existing FLOSS literature, which shows that projects aimed at developers

are more likely to succeed than projects aimed at end-users. However, it is pointed out

that FLOSSSim’s performance is strongly tied to the distribution of peoples’ interests and

that the assumptions used in the model may be incorrect; further investigation into target

audiences’ effect on FLOSS is therefore warranted.

Core developers are an important component of successful FLOSS. Even more than

developers, core developers are a limited resource. Because of this, FLOSSSim is used

to explore when it is most critical to receive core developer contributions. Projects that

have core developers involved during the middle stages of development have the highest

likelihood of being successful, as contributions during this time are able to propel a project

through a critical, and often fatal, period. Late core developer involvement, to a lesser

extent, also increases the chances of project success. Core developer involvement during

the early stages of a project does not in fact increase the probability of success. This is

a component of the FLOSS development process that is not very robust. Core developers

are a limited resource, and it is important that they be involved during a specific time of

development. Chances of not only attracting core developers but timing their involvement

during a critical period may be one of the reasons that few projects thrive.

The influence of core developers on the success of a project is particularly apt for

companies or individuals looking for a suitable FLOSS solution. Projects in early stages

with core developers may appear active and likely to mature, but in reality core developers

in the early stages do not increase the chances of project success. A safer choice would be

to select a project that is in the mid-stages of development and has a strong group of core
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developers, as there is a greater chance this is an up-and-coming project. The presence or

absence of core developers in the late stages of development is less relevant for predicting

the future of a project because by this time the existing features of the project can provide

a good idea of if the project is worthwhile (i.e., functional, well-documented, user-friendly,

high quality). In addition, if a project is missing key features, there is a greater chance

the functionality will be added in a young project; mature projects are more likely to be

in a maintenance and support phase, where new feature requests are not being considered.

Therefore, a mid-stage project with core developers may be a better choice over a mature

project if additional functionality or enhancements are required by those choosing the soft-

ware.

Taken together with recommendations that projects not be released into the FLOSS

domain until a kernel of working code has already been developed, projects that are ini-

tially developed outside of the FLOSS domain that then retain the original developers’

involvement as core developers, at least temporarily after being released as FLOSS, have a

substantial advantage over other projects. These projects will be significantly more likely

to survive the transition to FLOSS and become successful.

From the findings of this research, it can be seen that FLOSS has managed to ad-

dress and/or avoid some of the problems that plague traditional software engineering. For

example, this research demonstrates that FLOSS is a producer-driven process. Passive con-

sumers, those that use open source software but provide no form of contribution to projects,

have little effect on projects. Unusual to the FLOSS domain is the fact that most of the

developers are also consumers of the software – that is consumers have an itch and also the

skills to scratch the itch, making them also developers. This solves the major software engi-

neering problem of requirements elicitation. Because the developers are also the users, the
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development team inherently already understands the requirements of the software. Elimi-

nating a requirements elicitation stage removes the misunderstandings and ambiguities that

inherently occur during this phase while also increasing efficiency, allowing more time and

effort to be spent addressing the problems rather than understanding what problems need to

be addressed.

There are many approaches to improving the requirements elicitation process.

FLOSS addresses this problem extremely effectively by allowing those with knowledge of

the requirements to also write the code. Inherently this doesn’t necessarily work; it is quite

common for people from all walks of life to possess at least some limited programming

skills and thus be able to hack together software solutions to their problems. The programs

produced, however, aren’t necessarily correct, maintainable, extendable, etc. FLOSS, on

the other hand, not only is able to get users who understand the requirements to write the

code, but is also able to tap into a large pool of developers, meaning there is a better chance

of a skilled developer writing the code, resulting in both good design and correctness. Bar-

ring this, the openness of the process means that other developers are able to fix, improve,

and refactor the code as necessary. Interestingly enough, by employing this methodology,

FLOSS has largely eliminated the thought-to-be-necessary design documents associated

with high quality software engineering. This can be seen as an advantage, as many pro-

grammers loathe creating design documents (they’d rather be writing code), and building

and updating these documents takes time. If as-good or better software can be created with-

out generating official or formal design documents through an improved understanding of

requirements, this could be a goal for software engineering processes in general.

The implication of this finding is that getting the end-users more involved in the

development process will result in better software, with the users receiving the software they
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want, not what the developers think the users need. Requirements elicitation has always

been a problem in software engineering. FLOSS has managed to very successfully address

the gap between users and developers by making sure the users are also the developers.

This results is software that performs the necessary tasks, and performs them well, that the

users are most interested in. Traditional software engineering companies cannot address

this to the level done by open source. If a customer approaches a software company with

a problem, chances are the customer does not possess the necessary skills or resources to

write the code themselves. However, the more action a software engineering team takes

to include the customer throughout the development process, the better the chance that the

resulting software will indeed address the customer’s needs.

In addition to being a producer-driven process, the majority of FLOSS developers

are actively working on projects almost all the time. This is reflected in both empirical

data and the performance of FLOSSSim, where 91% and 93% of developers respectively

are actively contributing to a project at any given time. This highlights a high motivation

level that may not be present in proprietary software engineering. FLOSS developers are

self-motivated to be involved in open source development and may choose the tasks they

find interesting; developers are therefore likely excited to work and driven to perform their

best. In addition, the high participation level shows the ability of FLOSS to very efficiently

utilize limited resources; essentially all developers’ skills, regardless of what they may be,

are able to be put to use at any given time. The combined strength of motivated developers

and efficient distribution of skills has the potential to increase the quality of the software

produced and speed at which it is developed. This is something FLOSS does very well

and an area that traditional software engineering should strive to improve. Some compa-

nies understand that keeping employees interested in their tasks results in better software.
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Google, for example, insists that its employees spend 20% of their time working on any

project that interests them, so long as it is not their main project. Doing so essentially em-

braces a component of the FLOSS development process, hopefully resulting in innovative,

or at least good, solutions to software problems by highly motivated employees. Incor-

porating this FLOSS practice has worked well for Google, which claims that 50% of the

projects launched in the second half of 2005 were actually a result of the company’s 20%

time policy [217].

Of all the methods employed in proprietary software engineering, agile software

development methodologies exhibit the largest number of parallels to FLOSS development.

According to the Manifesto for Agile Software Development [218], customers should be

represented throughout the entire development process, unlike more traditional software en-

gineering processes, where customers are typically present during the initial requirements

elicitation phase and not much thereafter. FLOSS also emphasizes the importance of users’

presence throughout the entire lifecycle of project, noting that their contributions and feed-

back enhance the software produced. The fact that the developers are also the consumers in

FLOSS further ensures customer involvement throughout the development process. Agile

methods also rely on small, tightly knit groups of core developers, much like the groups of

core developers that increase the chances of FLOSS success. Agile development method-

ologies encourage short iterative lifecycles, resulting in frequent releases of working soft-

ware. Likewise, it is recommended that FLOSS projects release early and release often,

even if this means releasing incomplete software. Both agile and FLOSS development

processes function well with changing requirements, and both development methodolo-

gies seem to emphasize producing software over documentation. Agile development also

stresses the importance of individuals, noting that developers should be motivated and try-
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ing to avoid processes that unnecessarily impede progress. FLOSS ensures developers are

motivated because contributions are voluntary. Eliminating cumbersome processes is also

important in FLOSS so that projects are able to attract and retain developers. One major

difference between agile and FLOSS development is the high value agile methods place

on co-location and face-to-face communication. FLOSS, on the other hand, thrives with

widely geographically distributed teams and relies heavily on tools (e.g., email, forums) for

a communication medium.

The research presented here has focused on collaboratively written software. How-

ever, there are other digital public goods that may also benefit from this work. The most ob-

vious example is Wikipedia, which has many parallels to FLOSS. In the case of Wikipedia,

instead of software, articles are the product that is created. Like FLOSS, contributions to

Wikipedia come from volunteers with different motivations to participate. The distribution

of contributions is also skewed, with 90% of the users contributing fewer than 10% of the

edits [219]; the number of people per article and the number of edits per article follow a

power law distribution [220]. Also like FLOSS, there exists a continuum of fringe to core

contributors that are afforded different levels of control over articles. Like the FLOSS do-

main, which includes hundreds of thousands of projects, the number of articles in Wikipedia

is also huge, consisting of 73 million articles in 281 languages with 1.2 billion edits by 30

million users [221]. Significantly younger than the FLOSS movement, the online encyclo-

pedia was created in January, 2001 [222]. Unlike FLOSS, the rate of article creation is

dropping off, perhaps indicating that Wikipedia articles have a shorter development lifes-

pan compared to FLOSS projects, but not necessarily a shorter lifespan period, as there is

no evidence that Wikipedia as a source of information is becoming obsolete. Rather, many

Wikipedia articles seem to have entered a state similar to the maintenance phase in software
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development, where the quality of the articles continues to increase, even if the bulk of the

work is already complete. The motivating factors for participating in Wikipedia may be

similar to FLOSS and include reputation and commitment to group identity [223]. Finally,

success is also ambiguous for Wikipedia articles, although this may relate to article quality.

Quality is suggested to be associated with the number of edits and unique editors to an ar-

ticle [224]. Quality might also relate to factual accuracy [225] and credibility [226]. Like

with FLOSS, article creation and editing leaves a digital data trail relating to the contrib-

utors while information on consumers is not readily available. With so many similarities

between FLOSS and Wikipedia, the possibility of easily extending this research to explore

Wikipedia appears promising.

Although not exactly digital public goods, other digital phenomena such as the bl-

ogosphere, YouTube, etc. also include components of crowdsourcing. Therefore, this re-

search might also be extended to these domains as well.

In conclusion, this research uses empirical data and agent-based modeling to gain

a better understanding of the FLOSS domain. The model created is able to reproduce key

characteristics of the FLOSS development process and may even be used for prediction

purposes. Through the use of the model, a better understanding of FLOSS has been gained,

including what it means to be successful in the FLOSS domain. Factors that affect the

success of projects have also been identified, along with their importance. The positive

aspects of FLOSS combined with the findings of this research can be used to improve

software engineering in general. Finally, while the focus of this research has been FLOSS,

with relatively minor modifications it may be possible to study other similar digital public

goods.
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