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ABSTRACT  
   

Thermal interface materials (TIMs) are extensively used in thermal 

management applications especially in the microelectronics industry.  With 

the advancement in microprocessors design and speed, the thermal 

management is becoming more complex. With these advancements in 

microelectronics, there have been parallel advancements in thermal 

interface materials.   

Given the vast number of available TIM types, selection of the 

material for each specific application is crucial.  Most of the metrologies 

currently available on the market are designed to qualify TIMs between 

two perfectly flat surfaces, mimicking an ideal scenario.  However, in 

realistic applications parallel surfaces may not be the case.  In this study, 

a unique characterization method is proposed to address the need for 

TIMs characterization between non-parallel surfaces.   

Two different metrologies are custom-designed and built to 

measure the impact of tilt angle on the performance of TIMs. The first 

metrology, Angular TIM Tester, is based on the ASTM D5470 standard 

with flexibility to perform characterization of the sample under induced tilt 

angle of the rods.  The second metrology, Bare Die Tilting Metrology, is 

designed to validate the performance of TIM under induced tilt angle 

between the bare die and the cooling solution in an “in-situ” package 

testing format. 
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Several types of off-the-shelf thermal interface materials were 

tested and the results are outlined in the study.  Data were collected using 

both metrologies for all selected materials.  It was found that small tilt 

angles, up to 0.6°, have an impact on thermal resistance of all materials 

especially for in-situ testing.  In addition, resistance change between 0° 

and the selected tilt angle was found to be in close agreement between 

the two metrologies for paste-based materials and phase-change material.  

However, a clear difference in the thermal performance of the tested 

materials was observed between the two metrologies for the gap filler 

materials.   
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Chapter 1 

INTRODUCTION 

Since the 1960’s, the microelectronic industry has followed Moore’s 

Law [1], stating that the number of transistors on a chip roughly doubles 

every two years.  As a result the design scale of the microprocessors is 

getting smaller and the power density and heat dissipation increases.  The 

importance of thermal management within the overall product design 

continues to increase and is becoming one of the most important aspects 

of the overall design.  Selection of the thermal interface material (TIM) is 

becoming an integral part of the overall thermal design process. 

The reliability and life of the semiconductor component is highly 

dependent on its operating conditions especially its operating temperature.  

For this reason, the heat generated within the component must be 

removed to insure a safe operating limit for the component’s junction 

temperature. Junction temperature is the temperature of the actual 

semiconductor in an electronic device.  Computer manufacturers specify 

maximum junction temperatures from 65°C to 105°C depending on the 

desired reliability levels [2]. 

1.1 Thermal Interface Materials 

As selection of the TIM plays a key role in thermal management 

design, various TIMs have been developed.  Recent studies have shown 

enhancements in thermal interface materials with carbon nanotube arrays 
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[3, 4].  Nano-TIMs, manufactured by eletrospinning process, with nano-

SiC particles distributed in the matrix to enhance the thermal conductivity 

and decrease the thermal resistivity were also developed [5].  Other high 

conductivity materials, such as graphite, also play a key role in new TIM 

development [6]. 

With the vast number of new as well as traditional TIMs, having a 

basic understanding of their strengths, weaknesses, and applicability is a 

key to successful selection of the best interface material.  The selection of 

proper TIM depends on many factors like power density, heat dissipation, 

process requirements, Bond Line thickness (BLT), rework ability and user 

preferences [7].  Based on these basic properties TIMs can be 

categorized into the families summarized in Table 1 [8]. 



  3 

Table 1. Family of commercially available TIMs. 

 

1.1.1 Elastomeric Pads/Insulators 

Elastomeric pads/insulators were developed for application 

between discrete power devices and heat sinks. This class of product is 

0.01 to 0.12 

0.02 typ

Thermally 

Conductive 

Adhesives

0.003 to 0.025 0.08 to 0.40 0.7 to 4.0
0.03 to 0.20 

0.08 typ

Thermal 

Compounds or 

Greases

0.0005 to 

0.005 final 

bond line 

thickness

0.02 to 0.20 0.7 to 4.0

0.20 to 0.90 

0.30 typ

Thermally 

Conductive 

Cure-in-Place 

Compounds

100 to 400 

V/mil
0.3 to 4.0 0.7 to 3.0

0.12 to 0.45 

0.35 typ

0.3 to 1.7
0.06 to 0.3 

0.15 typ

0.002 to 0.012 

preform         

0.001 to 0.008 

final bond line 

thickness

Phase-Change 

Materials

Free Film 

Fiberglass 

Aluminum Foil  

Aluminum 

Kapton

2.00 to 5.00 

(for dielectric 

carrier 

versions only)

0.02 to 0.25 

0.4 to 0.5 

dielectric 

version

0.5 to 1.9
0.06 to 0.30 

0.12 typ

Free Film 

Fiberglass 

Aluminum Foil 

Expanded 

Aluminum 

Kapton

0.005 to 0.015 

Thermally 

Conductive 

Adhesive Tapes

0 to 6.0 0.20 to 1.5

Molded Parts 

Internal 

Fiberglass 

External 

Fiberglass 

Aluminum Foil 

Polyester

0.02 to 0.30

Thermally 

Conductive Gap 

Fillers

100 to 400 

V/mil
0.3 to 4.0 0.7 to 5.0

0.03 to 0.3 

0.06 typ.

Available 

Reinforcing 

Carriers

Thickness (in)TIM Category

Dielectric 

Strength 

(Vac)

Thermal 

Impedance 

(C-cm^2/W)

Thermal 

Conductivity 

(W/mK)

Typical Cost 

($/sq in)

Elastomeric 

Pads/Insulators
0.003 to 0.03

Fiberglass 

Aluminum Foil 

Kapton

2000 to 

14000

0.15 to 0.65 0.7 to 3.0
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characterized by high thermal conductivity, very high dielectric strength, 

and volume resistivity.  To work effectively, thermal pads require very high 

(greater than 1400kPa (200 psi)) clamping pressures [8]. 

1.1.2 Thermally Conductive Adhesive Tapes 

Thermally conductive adhesive tapes are acrylic or silicone 

pressure-sensitive adhesive tapes used extensively to bond heat sinks to 

microprocessors and other heat-generating microelectronic components. 

Critical practical performance factors for tapes include peel strength, lap- 

and die-shear strength, holding power, and thermal resistance [9].  These 

tapes have moderate thermal conductivity, and their thermal performance 

highly depends on the contact area between the bonding surfaces.  

For the most part, the quality of the two joining surfaces would determine 

the amount of contact achieved and the expected thermal performance. 

Shear strength decreases as tape thickness increases, and is also 

dependent on the substrate type for this TIM type. 

1.1.3 Phase Change Materials (PCMs)  

Phase-change materials have a comparable thermal performance 

with thermal grease type materials but ease of handling and installation 

that of pad-type TIMs.  They are capable of operating in two states - solid 

and liquid - over their specified temperature range.   Phase-change 

materials are solid at room temperature and behave like paste above their 

melting temperature.  The temperature at which the transition from solid to 
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liquid state occurs is defined as the melting point or phase-change 

temperature.  The melting point for typical products available ranges from 

50-90°C [10].  These materials do not provide electrical isolation because 

they may allow the two surfaces to come in contact.   

1.1.4 Thermally Conductive Gap Fillers 

Thermally conductive gap fillers are low-modulus, thermally 

conductive silicone elastomers for applications where heat must be 

conducted over large gaps between hot components and a cold surface.  

Therefore, gap fillers are sufficiently pliant to fill such gaps. These 

materials have moderate thermal conductivity [11].   

1.1.5 Thermally Conductive Cure-In-Place Compounds 

Thermally conductive cure-in-place compounds have properties 

similar to the thermally conductive gap fillers described above once they 

are cured.  They are reactive, one- or two-part silicone room-temperature 

vulcanizing or similar compounds that can be used to form thermal 

pathways in applications where the distance between a component and a 

cold surface is highly variable. A typical application would be a PC board 

with many different height components that need to be brought into 

contact with a chassis or heat sink [8].  
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1.1.6 Thermal Compounds or Greases 

Thermal compounds or greases are by far the most commonly 

used TIMs.  Thermal greases are most commonly conducting particle- 

(usually metal or metal oxide) filled silicone [12-15].  The bulk thermal 

conductivity of thermal greases is not high.  However, because the paste-

like consistency of these materials allows very thin bond line thickness 

(BLT), the thermal impedance across this TIM can be quite low.  

 The downside of the thermal greases is that it can separate and 

dry out over time.  Repeated power on/off cycles during operation of the 

microprocessor, can result in thermal grease pump-out, which causes 

significant degradation in thermal performance over time [16, 17].  Figure 

1 shows the effect of grease pump-out on thermal performance post 

power cycles. 

 

Figure 1.Thermal grease thermal impedance measurement post power cycles [12]. 
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Figure 2 and Figure 3 show observed grease pump-out after 4000 and 

6000 power cycles respectively. 

 

Figure 2. Observed grease pump-out post 4000 power cycles [16]. 

 

 

Figure 3. Observed grease pump-out post 6000 power cycles [16]. 
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1.1.7 Thermal Adhesives 

Thermal adhesives are one- or two-part adhesive compounds.  To 

enhance the bulk thermal conductivity, ceramic fillers are typically added 

to the compound.  They are typically used to bond small heat sinks to low 

power electronic components.   

1.2 Motivation 

Integrated heat spreader (IHS) or heat sink assembly to 

microprocessor can be complex.  Generally, the tilt of the cooling solution 

is not controlled as the heat sinks are attached using torque screwdrivers.  

The assembly of the IHS is even more complex as it generally done by 

applying the epoxy between the heat spreader and the component 

substrate.  An ideal IHS attach process requires optimizing the adhesive 

material, adhesive dispense pattern, adhesive quantity, placement forces, 

and hold time to achieve both the required bondline thickness of TIM in 

the chip area and the substrate coupling required to improve module 

flatness after adhesive cure [18]. 

An inadequately controlled assembly process may result in a small 

tilt between the heat sink or the IHS and the microelectronic processor.  It 

is the role of the TIM to fill in the gaps and provide adequate thermal path 

from the processor to the heat sink and this study explores the ability of 

selected TIMs to do so. 
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1.3 Objectives 

The objectives of the study are: 

1. Development of metrology for fundamental TIM characterization 

under induced tilt angle 

2. In-situ (electronic package scenario) TIM characterization under 

induced tilt angle 

3. Validate proposed metrologies using off-the-shelf TIMs. 

To meet the objectives, two types of thermal grease and gap-fillers 

each at three different perform thicknesses, along with phase-change 

material, were selected for characterization.  The goal is to characterize 

the capability of these materials to conform to an induced tilt angle.    
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Chapter 2 

BACKGROUND 

Over the past decades, the evolution of microprocessors has led to 

an increase in cooling demand due to an increase in raw power (or total 

design power TDP) as well as local power densities known as “hot spots” 

[19-22].  A historical trend chart for Intel-based microprocessor TDP vs. 

frequency is shown in Figure 4 while Figure 5 illustrates a typical die 

power map and corresponding temperature hot spot. 

 

Figure 4. Historical trend chart of microprocessor TDP versus frequency [22]. 

 

 

Figure 5. Schematic illustrating typical die power map and the hot spots on the corresponding die 
temperature map. The red region represents the highest temperature spot [22]. 
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With the increasing power density in microelectronics industry, 

thermal design and selection of thermal interface materials has become 

critical.  It is essential for the generated heat to be removed from the 

electronic package to meet the performance and reliability of the 

component.  The heat removal process is generally done by means of a 

heat sink attached to the semiconductor component.  The primary heat 

path for both bare die and lidded semiconductor packages is depicted in 

Figure 6. 

 

Figure 6. Schematic illustration of the two thermal architectures: (a) Architecture I is 

typically used in laptop applications. (b) Architecture II is typically used in desktop and 

server  (Legend: I – Heat Sink, II – TIM, III – IHS, IV – TIM, V – Die, VI – Underfill, and VII 

– Package Substrate). 

 

Architecture I, depicted in Figure 6 and generally used in laptop 

applications, is a bare die scenario.  In this case, the TIM is applied 

directly to the silicone and the heat sink is attached on top.  For 

architecture II, generally used in desktop or server configurations, a heat 

spreader is used along with the heat sink.  In such applications, there are 

two separate TIMs applied which are generally of different types.  The 
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first, TIM1, is used between the silicon die and the heat spreader and the 

second, TIM2, is used between the heat spreader and the heat sink.  In 

both architectures, the TIM plays a key role in heat removal from the 

semiconductor device [19].   

The role of the TIM is to bring two surfaces, heat generating and 

heat removing surfaces, into intimate thermal contact and therefore 

reduce thermal resistance between the surfaces.  Commercial grade 

surfaces, such as those of the heat sink, heat spreader or semiconductor 

device, have microscopic surface roughness and generally macroscopic 

non-planarity.  These characteristics can give the surfaces a concave, 

convex or twisted shape as illustrated in Figure 7. 

 

Figure 7. Surface contact configurations. 
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As apparent from Figure 7, when such surfaces come in contact, 

the actual contact only occurs at high points and the remainder forms air-

filled gaps.  Typical contact area can consist of more than 80% air voids 

[8].  As air has a very low thermal conductivity (kair = 0.026 W/mK at room 

temperature), these air-filled gaps have high thermal resistance i.e. high 

resistance to heat flow.  With high thermal resistance, the component 

junction temperature increases. 

Therefore, the goal of the TIM is to minimize these gaps by 

conforming to the uneven surfaces and reduce the overall thermal 

resistance of the contact.  TIMs have higher thermal conductivity than air 

and hence when properly selected and utilized, reduce the thermal 

resistance and ultimately the component junction temperature.   

The thermal performance of a material is generally characterized in 

terms of its thermal conductivity. For 1-dimensional heat flow in a 

homogeneous material, Fourier’s law is written as [23, 24] 

q = kA ��
�                (1) 

where k is material thermal conductivity, L the material thickness, ∆T the 

temperature difference across the material and A the cross-sectional area.  

From equation (1) the thermal resistance can then be defined as: 

R = ��
� = �

��                        (2) 

For thermal interface materials, the resistance is a measure of how 

well heat is transferred across the interface of two surfaces in contact.  In 
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the case of a semiconductor package (CPU) and heat sink interface, the 

interface resistance (per unit area) can then be written as  

R��� = ��������
�                          (3) 

where TCPU is the junction temperature of the semiconductor device and 

Ths the temperature of the heat sink.  

Figure 8 illustrates the thermal interface between two surfaces 

when no TIM and when an ideal TIM is applied. 

 

Figure 8. Exploded view of thermal interface when (a) no TIM is used (b) when an ideal TIM is 
used [25]. 

 
 The interface when no TIM is applied between two surfaces in 

contact is the worst case scenario where interface resistance is highest, 

as the contact between two surfaces occurs only at high points and the 

rest is air-filled gap.  The ideal TIM would be the best-case scenario where 

the thermal interface resistance would be at a minimum.  However, the 

ideal TIM has not been discovered, and the actual commercially available 

TIMs would not be able to fill all air gaps.  Therefore, Figure 9 illustrates a 

more realistic interface with a TIM applied. 
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Figure 9. Thermal interface with actual TIM [25]. 

 

In the more realistic scenario, the thermal interface resistance is 

composed of three resistances in series. The total interface resistance can 

then be expressed as [25] 

R��� = R� ��!��" + R� �$ + R� ��!��%                      (4) 

where Rint can also be evaluated from equation (3), Rcontact1 is the contact 

resistance between the TIM and the CPU surfaces, Rcond is the conduction 

resistance across the TIM, and Rcontact2 is the contact resistance between 

the TIM and the heat sink. 
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Combining the contact resistances in equation (4) into a single term, the 

total contact resistance can then be expressed as: 

R� ��!�� = R� ��!��" + R� ��!��%            (5) 

Therefore, equation (4) can be rewritten as 

R��� = R� ��!�� + R� �$              (6) 

Taking the derivative of the interface resistance with respect to the 

material thickness, the above equation can be written [23]: 

&'()*
&� = &'+,)*-+*

&� + &'+,).
&�                          (7) 

If it is assumed that the contact resistance is independent of the material 

thickness, equation (7) can then be reduced to 

&'()*
&� = &'+,).

&�                       (8) 

Using the definition of thermal resistance from equation (2), the 

thermal resistance of the TIM alone can be expressed as: 

R� �$ = �
�/01�

               (9) 

where kTIM is the bulk thermal conductivity of the TIM, L the material 

thickness and A the cross sectional area.  The interface resistance vs. 

thickness data therefore exhibits a linear relationship as equation (6) can 

be rewritten as: 

R��� = R� ��!�� + �
�/01�

           (10) 

Since Rcontact is assumed to be constant and the 1/kTIMA term is 

independent of TIM thickness L, equation (10) is simply a straight line with 

the slope of 1/kTIMA and an intercept of Rcontact. 
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The derivative of the TIM resistance and hence the total interface 

resistance can then be written as: 

&'+,).
&� = "

�/01�
= &'()*

&�                        (11a) 

The bulk thermal conductivity can be found using: 

k�23 = "
�

"
456()*57 8

= "
�

"
456+,).57 8

                  (11b) 

Equation (11b) shows that the bulk thermal conductivity of the TIM can be 

evaluated by determining the slope of the total thermal resistance of the 

TIM (including contact resistance) with respect to the TIM thickness [26] or 

 k�23 = "
9: ;<                      (12) 

It should be noted that the bulk thermal conductivity is independent of the 

interfacial contact resistance. Therefore, to obtain the total thermal 

performance of the TIM interface, the interfacial contact resistance must 

be accounted for as illustrated in equation (10).   

 An effective thermal conductivity keff can also be defined for TIMs.  

The effective thermal conductivity keff is defined as [23]: 

R��� = ��
� = �

�=>>�
           (13a) 

The effective thermal conductivity can then be calculated by: 

k<?? = 4��8 4
�
��8 = 4��8 4

"
'()*

8          (13b) 

It should be noted that equation (13a) incorporates the interfacial contact 

resistance, as can be seen by comparing equation (13a) with equation 

(10). Effective thermal conductivity keff also depends on the thickness of 
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the TIM, unlike the bulk thermal conductivity kTIM [23, 27, 28].  Another 

useful parameter is thermal impedance which can be defined as thermal 

resistance times cross sectional area or 

R!@<! = RA             (14) 

It is important to notice that the interface resistance is application 

specific, because of its dependence on mating surface properties.  The 

magnitude of the thermal contact resistance can have a major role in heat 

management of electronic devices and, hence, may significantly affect 

performance, reliability and life cycle of such devices [29]. 

Numerous test methods exist for quantifying thermal conduction 

characteristics of TIMs.  Many tests are carried out using ASTM Test 

Methods E1530, D5470 and F433 [30, 31].  These methods are generally 

steady-state 1D heat transfer based.  In addition to these, there are 

transient-based methods and metrologies such as the Laser Flash method 

[32]. 

The surface roughness and flatness of the mating surfaces will 

differ in each application.  As Rint is application specific, the Rint data 

measured in a given standard test facility mentioned above will not 

necessarily be applicable to different installations of a TIM.   

Thus, the TIM resistance values reported by TIM manufacturers 

may not be applicable to an actual use case.  Further, it is not clear that 

the use of a heat sink clip will provide uniform pressure on the interface 

material or that the heat sink will not be slightly tilted, and estimation of 
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interface resistance based only on the conductivity of the TIM will likely 

result in an under prediction of Rint. 

 

 

Figure 10. Ideal vs. realistic TIM application scenario. 

 

 

Figure 11. Impact of tilt to TIM bond line thickness (BLT). 

 
Figure 10 depicts the ideal versus more realistic application of the 

TIM on a bare die package where in a realistic scenario the heat sink may 

be slightly tilted.  To understand the impact of the tilt we can refer to 

schematic in Figure 11.  As discussed previously (equation (13a)) the 

interface resistance Rint is a function of TIM thickness.  The thickness of 

the TIM where tilt is present will be different compared to no tilt scenario.  

This by itself will impact the Rint.  
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For these reasons, two different metrologies were developed for 

this study to characterize TIMs.  The first metrology estimates interface 

resistance based on the conductivity of the TIM alone, while the second is 

an application specific, in-situ method for TIM characterization under 

induced angle of tilt.  Details on both metrologies are discussed in Chapter 

3. 
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Chapter 3 

METROLOGY 

In this section, design and validation of an Angular TIM Tester for 

fundamental TIM characterization are detailed.  In addition, design and 

validation of a Bare Die Tilting Metrology are also presented. 

3.1 Angular TIM Tester Overview 

The Angular TIM Tester developed for this study is based on the 

ASTM D5470 standard [31] including some improvements specific for TIM 

characterization between two non-parallel surfaces.  The overall 

dimensions of the tabletop metrology are 14x10x24 inches.  Metrology is 

aligned using high precision bearings, x-y and tilt stages allowing for 

precise alignment and actuation of the test section.  In addition, the tilt 

stage is used to perform TIM testing under a specific tilt angle.  An 

actuator with LVDT, located at the top of the metrology, is used to drive 

the test stage while the load cell is utilized for load/stress measurements 

and control.  The schematic of the metrology is illustrated in Figure 12. 
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Figure 12. Angular TIM Tester schematic. 

 
The basic idea behind the metrology is to induce one-dimensional 

heat transfer through the test sample under a known load.  To achieve 

this, two copper rods are utilized.  The diameter of each rod is 12.7 mm 

(0.5 inches) and the length is 38 mm (1.5 inches).  Figure 13 illustrates the 

rods, i.e. the test section.  
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Figure 13. Test section. 

 
The top rod--the heating stage--has two embedded cartridge 

heaters at the very top used to induce heat flux through the sample.  The 

bottom rod--the cooling stage--has an integrated cold block at the bottom 

whose temperature is controlled by an external chiller.  For precise 

temperature and heat flux measurements, four k-type 36 gauge 

thermocouples are embedded along the length of each rod as illustrated in 

Figure 13.  For accuracy of heat flux calculations, the position of each 

thermocouple was measured in a dimensional laboratory.  The 

thermocouples are positioned approximately 10 mm apart. 

A capacitance gauge, Capacitec HPB-75B-V-L3-T-5-BNC, 

positioned very close to the sample, approximately 1um, is utilized for 

precise bond line thickness (BLT) measurement of the sample under test.  
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Positioning the cap gauge close to the sample is critical to accounting for 

thermal expansion of the rods.  This will be discussed in detail in the 

metrology calibration Section 3.1.2. 

The metrology is designed so that tests can be performed under 

either load (stress) or cap gauge (displacement) control.  In either case, 

measurements are continuously collected as load and thickness are 

needed to quantify results.  As the goal of the project is to characterize 

TIM performance between two non-parallel surfaces, the metrology is 

designed so that the center of tilt is located at the top of the cooling stage 

i.e., the top of the cooling rod.  The tilt stage is used to induce the desired 

tilt of the bottom rod while digital protractor and TekScanTM are utilized to 

verify the angle. 

TekScanTM is high-resolution, thin-film tactile pressure/force sensor 

array.  It is an extremely thin (~0.1 mm) and flexible grid-based device 

which allows for minimally intrusive measurements, resulting in the least 

disturbance to the true pressure pattern.  The TekScanTM sensor consists 

of a matrix of rows and columns of a semiconductive material that 

changes its electrical resistance when force is applied to it.  These rows 

and columns intersect to form sensing elements.  By electronically 

scanning and measuring the change in resistance at each individual 

sensing element, the timing, force, and location of contacts on the sensor 

surface can be determined.  
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3.1.2 Metrology Calibration 

The two main metrology parts responsible for the accuracy of the 

results are the actuator and the capacitance gauge.  To insure accurate 

BLT measurement of the TIM, the cap gauge, located very close to the 

TIM (i.e test sample), was calibrated.  The actuator calibration was 

performed using a standard calibration method by utilizing high precision 

gauge blocks.  The cap gauge was then calibrated at room and high 

temperature using the actuator and thermal grease as a medium.  

The room temperature calibration was performed under 

displacement control at 10-um increments and both actuator and cap 

gauge data were recorded.  Both actuator and cap gauge data showed 

highly repeatable and accurate BLT values as illustrated in Figure 14. 

      

Figure 14. Cap gage and actuator calibration plot at room temperature. 

 
For high temperature calibration, to insure one-dimensional heat 

flow thermal grease was used as a medium between the two rods.  The 

initial BLT of the grease was set to 270 um and data were recorded for 
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both the actuator and cap gauge.  All the measurements were performed 

under cap gauge displacement control.  The BLT was reduced by 50-um 

increments until the 120-um set-point was reached.   After this point, the 

measurements were taken at 10-um increments.  Findings showed very 

repeatable cap gauge measurements.  Small deviation from the set-point 

of approximately 2 um was observed which was below the target for this 

project (set to +/- 5 um). 

At high temperature 110°C, rods show significant thermal 

expansion and the actuator is unable to estimate the BLT accurately.  

However, since the cap gauge is positioned very close to the sample (1 

µm), it is able to capture the thermal expansion of the rod and provide a 

much more accurate BLT measurement and therefore is utilized during 

calculations of the results.  The deviation of the actuator from the set point 

due to the thermal expansion of the rods and the accuracy of the cap 

gauge at high temperature are illustrated in Figure 15.  Room temperature 

measurements were used as a reference. 
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Figure 15. Cap gage and actuator calibration plot at high temperature (110°C). 

 

3.1.3 Accuracy Evaluation 

Measurement capability analysis (MCA), a statistical process for 

evaluating metrology capability, was performed using thermal grease as 

testing material.  Typical MCA consists of static repeatability, dynamic 

repeatability and dynamic reproducibility of the measurements to assess 

the capability of the metrology for required measurement.  

For MCA, thermal grease was selected for its good thermal 

performance and the pump-out issues.  Since thermal grease can pump-

out easily during testing, it was considered as a “worst” case material in 

terms of repeatability of measurements.  Therefore, dynamic repeatability 

MCA was performed as it includes all noise factors from measurement 

and closely mimics the actual testing scenario.   



  28 

A total of 6 measurements were collected for thermal grease under 

20, 50 and 90 psi pressure.  For each test, rods were engaged and the 

cap gauge was zeroed out.  The rods were separated and thermal grease 

was dispensed between the rods.  Rods were then engaged and heaters 

were powered so that the material temperature was approximately 90°C.  

Pressure was applied to the sample, initially 20 then 50 and finally 90 psi.  

Time was allowed at each pressure for steady state to be reached.  

Measurements of temperature, power, bond line thickness (BLT) and load 

were continuously taken during entire test time.  With the test completed, 

rods were cleaned.  New thermal grease samples were dispensed 

between the rods and the process was repeated.  Figure 16 through 

Figure 19 show MCA results for BLT, thermal resistance, thermal 

impedance, and effective thermal conductivity, respectively.  In addition 

results for each parameter are summarized in Table 2 through 5 below the 

figures. 

             

Figure 16. MCA results for measured BLT – dynamic repeatability study. 
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Table 2. Summary of MCA results for measured BLT - dynamic repeatability study. 

 
 
 
 

           

Figure 17. MCA results for thermal resistance – dynamic repeatability study. 

 
 
 
Table 3. Summary of MCA results for thermal resistance – dynamic repeatability study. 

 
 
 

20 6 0.0996 0.0014 0.0006 0.0982 0.1010

50 6 0.0788 0.0012 0.0005 0.0775 0.0800

90 6 0.0644 0.0004 0.0002 0.0639 0.0648

Upper 95%Pressure
Number of 

Measurements
Mean Std Dev Std Err Mean Lower 95%



 

Figure 18. MCA results for thermal impedance 

 
 
Table 4. Summary of MCA results for thermal impedance 

 
 
 

Figure 19. MCA results 
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MCA results for thermal impedance – dynamic repeatability study.

Summary of MCA results for thermal impedance – dynamic repeatability study. 

 

MCA results for effective thermal conductivity – dynamic repeatability study.

dynamic repeatability study. 

 

 

dynamic repeatability study. 
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Table 5. Summary of MCA results for effective thermal conductivity – dynamic repeatability study. 

 
 
 
 The overall summary of the MCA results is tabulated in Table 6.  

The results show highly repeatable measurements with low standard 

deviations for all metrics.  Three sigma (3σ), i.e. 3*standard deviation, was 

calculated for each metric at each applied pressure and is listed in the 

table.  The 3σ values will be used as error bounds for the design of 

experiments (DOE) measurements. 

 
Table 6. Overall Summary of MCA results for Angular TIM Tester. 

 

3.2 Bare Die Tilting Metrology 

 The design of the Bare Die Tilting Metrology is very similar to that 

of the Mini Angular TIM Tester with the difference of using a bare die 

package instead of copper rods for testing.  The overall dimensions of the 
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metrology are 14x12x22 inches.  As with the TIM tester, the metrology is 

aligned using high precision bearings, x-y and tilt stages allowing for 

precise alignment.  Once again, the tilt stage is used to perform testing 

under a specific tilt angle.  For this metrology, a pneumatic cylinder with 

pressure/load control is used to engage the cooling solution, cold block, 

and the electronic package and provide adequate mechanical loading to 

the package.  The metrology is depicted in Figure 20.   

 

 

Figure 20. Bare Die Tilting Metrology. 

 
 

The goniometer on the tilt stage is used for precise angle 

measurement.  It is important to indicate that the setup was designed so 
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that the pivot point was located at the top center of the die to prevent any 

horizontal translation during measurements under applied tilt angle. 

A pedestal cold block, whose temperature is controlled by a chiller, 

is used to provide cooling to the electronic package.  One k-type 

thermocouple is embedded into the center of the cold block pedestal.  The 

size of the pedestal is slightly larger than the overall size of the die.  The 

schematic of the cold block with the position of the thermocouple is 

illustrated in Figure 21.  

 

 

Figure 21. Thermocouple location in cold block. 

 

Figure 22 shows the front view schematic of a bare die electronic 

package.  As shown in Figure 22, the silicon die is connected via C4 

bumps, (solder bumps that have been deposited onto the chip pads), to 

the organic substrate.  For structure rigidity, the polymer underfill is used 

to fill the space between the C4 bumps.  A pin grid array (PGA) socket 

mounted to the enabling test board (ETB) is used for mounting the 

electronic package.  The ETB then provides the means for electrical 

connection between the package and data acquisition for the required 

thermal measurements.   
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Figure 22. Electronic package schematic. 

 

In the current study a thermal test vehicle (TTV) which closely 

represents an electronic package was used for measurements.  The TTV 

has a uniform heater on the silicon die and several thermal sensors for 

temperature measurements.  The thermal sensors on the TTV, called 

resistance temperature devices or RTDs, have linear electrical resistance 

to temperature relationship within the temperature range used in the 

current study. 

 

 

Figure 23. TTV schematic with location of the RTDs with uniform heater covering 11 x 21 mm area. 
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The cross section of the TTV package schematic with the location 

of the RTDs is shown in Figure 23.  The uniform heater covers 11 by 21 

mm area of the die. Three temperature sensors were fabricated on the 

heat-generating die to adequately measure the junction temperature of the 

bare die package.  The die has copper interconnect layers on the surface 

of the bulk silicon substrate in which the heater and RTDs are located. 

The main heater has serpentine structure and is uniformly 

distributed across the die in 11 mm by 21 mm area with line width and 

pitch on the order of a few microns.  The RTDs are also fabricated on the 

metal layer and their location is illustrated in Figure 25.  The three RTDs 

are located along the x-axis in the center of the package with RTD 1 at the 

high and RTD 3 at the low edge of the package.  The location of RTD 2 is 

at the pivot point as will be discussed later in the results section. 

Finally, the data acquisition (DAQ) system, which includes Agilent 

E8401A VXI Mainframe, Agilent 6030A 0-200V/0-17A power supply, 

Agilent E1586A and VT1586A terminal panels, is used to power the 

heater, measure the resistance of the RTDs on the TTV and measure the 

cold block thermocouple temperature. 

3.2.2 Metrology Calibration 

To obtain accurate results from the metrology it is essential to 

calibrate the RTDs.  For precise die temperature measurements, the 

RTDs were initially calibrated in an isothermal bath at five different 



  36 

temperatures.  The relationship between the electrical resistance and 

temperature was obtained and applied to get the die junction temperature 

measurement.  A typical RTD calibration curve is illustrated in Figure 24. 

 

Figure 24. Representative RTD calibration curve. 

 

3.2.3 Accuracy Evaluation 

 Metrology validation was completed by a dynamic repeatability 

study.  Thermal grease was used as the thermal interface between the 

bare die and the cold block.  Six measurements were completed at 0° and 

0.5° tilt angles.  Grease was reapplied between each measurement.  The 

angle of tilt was verified using TekScanTM and digital protractor.  The tilt 

was applied over the y-axis as indicated in Figure 25 for all 

measurements.  
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Figure 25. TTV and cold block schematic indicating the direction of the tilt. 

 
The metrology was validated by examining the change in thermal 

resistance between the die junction and cold block temperature with the 

change in tilt angle.  Thermal resistance between junction and cold block 

is defined by Equation (15): 

θB; = ∆�
D                         (15) 

where P is the total power in [W] applied to the die and ∆T = TB − T;  is the 

temperature difference between the junction temperature Tj  and cold 

block or plate temperature Tp, both in [°C].  Then the change in thermal 

resistance with change in tilt angle can be defined by 

∆θB; = θB;@!�H:< − θB;@I                                                                           (16) 

Where θB;@!�H:< is the thermal resistance at a specific angle and θB;@I is 

the thermal resistance at 0° tilt. 

 The metrology was validated by performing dynamic reproducibility 

MCA.  Unit was placed into the socket, thermal grease was dispensed and 

cold block was engaged.  Unit was powered and data was collected at 

steady state.  The criterion for steady state was +/- 0.2°C change in 



  38 

temperature over a period of 5 minutes.  The MCA results are presented 

in Figure 26 for all three sensors as discussed previously.  The importance 

of the MCA is the standard deviations, i.e. the metrology dynamic 

repeatability capability.  Once again the 3σ values will be used as error 

bounds for the DOE measurements.  Data are summarized in Table 7. 

 

 

Figure 26. Bare Die Tilting Metrology MCA results. 

 
 
 

Table 7. MCA results summary for Bare Die Tilting metrology. 
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Chapter 4 

RESULTS AND DISCUSSION 

 Three different types of TIMs were selected for measurements, 

namely thermal grease, phase change material and gap filler.  Each 

material was selected based on their characteristics, wide range of usage 

and thermal performance.   

Two types of thermal grease and phase change TIM were selected 

primarily based on the fact that they are most commonly used TIM.  In 

addition, due to their paste characteristic, thermal greases and PCMs 

have good surface wetting capability generally resulting in low contact 

resistance.  Low bond line thickness can be achieved with these TIMs and 

hence they have good thermal performance.  It was important to study the 

ability of these materials to conform to tilted surfaces and understand the 

effect of the tilt to their performance. 

The primary usage of gap fillers is to fill in large gaps between two 

surfaces in contact.   Therefore, two different gap fillers were selected to 

study their ability to fill in induced tilt angles.  Three different preform 

thicknesses, 0.5, 1.0 and 3.0 mm, of each material were tested.  Selected 

TIM specifications are summarized in Table 8. 

 

Table 8. Summary of selected TIMs specifications. 
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 All of the materials were tested in both metrologies described in 

Chapter 3. 

4.1 Angular TIM Tester Results and Discussion 

 The first set of experiments were performed on the Angular TIM 

tester (Figure 12).  The experimental procedure was kept the same 

between the TIMs.  Initially, rods were engaged to 20 psi and the 

capacitance gauge was zeroed out.  TIM was then dispensed between the 

rods, rods were engaged and heat was applied.  The applied power, in W, 

depended on the type of material under test.  The power was tuned until ~ 

90°C TIM temperature was reached.  The chiller temperature was always 

kept at 23°C (room temperature).  Tests were performed at 20, 50 and 90 

psi pressure for each TIM ensuring steady-state temperature was reached 

at each pressure.  Once again the criterion for steady state was +/- 0.2°C 

temperature change over 5 minutes period.   

First, all TIMs were tested at 0° tilt and then the process was 

repeated at 0.3° and 0.6° tilt angle.  The tilt angles were chosen based on 

the preliminary testing results on a bare die package.  It was found that at 

0.6° tilt angle all load is applied to the very edge of the die and 0.3° tilt was 

a midpoint.  This reasoning will be clearer in discussion of Bare Die Tilting 

Metrology results presented in section 4.2 
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4.1.1 Thermal Grease  

 Results for two thermal greases tested at 0° tilt angle are shown in 

Figure 27.  As expected, the thermal impedance (i.e. thermal resistance 

times cross sectional area) decreases with the increase in applied 

pressure.  The increase in pressure reduces the BLT of the TIM as well as 

the contact resistance.  For that reason the overall thermal resistance of 

the TIM decreases with increase in pressure.  As evident from the figure, 

type 1 thermal grease had a lower overall thermal resistance as compared 

to type 2 grease.  This was also expected as the bulk thermal conductivity 

of type 1 grease is ~4.5 W/mK while the bulk thermal conductivity of type 2 

grease is ~ 3 W/mK as outlined in Table 8. 

Figure 27. Thermal grease results at 0° tilt angle. 

 

 The results for thermal impedance vs. pressure at 0.3° and 0.6° tilt 

for the two greases are summarized in Figures 28 and 29.  Same as at 0°, 
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the thermal impedance at these two angles decreases with the increase in 

pressure. 

 

Figure 28. Thermal grease results at 0.3 tilt angle. 

 

Figure 29. Thermal grease results at 0.6 tilt angle. 
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 Figure 30 shows results for thermal impedance vs. tilt angle for 

thermal grease type 1.  As the angle of tilt increases so does the thermal 

impedance.  This indicates that for thermal grease, contact resistance 

increases with tilt angle.   

Figure 30. Type 1 thermal grease resistance change vs. tilt angle. 

 
 

The loading pressure also changes with the change in tilt angle.  

TekScanTM images were taken for the pressure and contact between the 

rods at each tilt angle.  The images were taken between bare rods i.e. no 

TIM.  The above results are summarized once again highlighting the 

contact pressure change with the tilt change between the rods and 

presented in Figure 31. 
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Figure 31. Impact of tilt angle on rods contact. 

 
 Figure 32 summarizes the results of thermal impedance change vs. 

tilt angle for thermal grease type 2.  The impact on thermal impedance is 

the same as for that of thermal grease type 1.  This is expected as both 

materials have similar characteristics.  In summary, tilt angle shows a 

significant impact on thermal grease performance in the Angular TIM 

tester. 
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Figure 32. Type 2 thermal grease resistance change vs. tilt angle.  

4.1.2 Phase Change TIM 

Next, PCM data was collected using the same procedure as 

described for thermal grease above.  The results for thermal impedance 

vs. tilt angle are shown in Figure 33. 

 

Figure 33. Phase change TIM results at no tilt angle. 
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 It is evident from the data in Figure 33 that the thermal impedance 

decreases with the increase in applied pressure.  As the behavior of PCM 

is similar to thermal grease above its phase change temperature (for this 

material ~70°C), the results are as expected.   

 The same response is evident for data collected at 0.3° and 0.6° 

angles.  The thermal impedance decreases with an increase in pressure 

at all angles tested.  A summary of the results at 0.3° and 0.6° are 

presented in Figures 34 and 35. 

 
Figure 34. Phase change TIM results at 0.3 tilt angle. 

 



  47 

 
Figure 35. Phase change TIM results at 0.6 tilt angle. 

 
 Next, thermal impedance vs. tilt angle was plotted for the PCM and 

the results are presented in Figure 36.  Once again, thermal impedance 

increases with the increase in tilt angle at all pressures.  As for the thermal 

grease, it is evident that the angle of tilt impacts the thermal performance 

of the PCM. 

 



  48 

 

Figure 36. Phase change TIM resistance vs. tilt angle. 

 
 

4.1.3 Gap Fillers 

Finally, data were collected on the two gap fillers following the 

same procedure.  Results for type 1 gap filler, thermal impedance vs. 

pressure for all three perform thicknesses at 0°, 0.3° and 0.6° tilt angles 

are summarized in Figures 37, 38 and 39 respectively.   
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Figure 37. Type 1 gap filler results at no tilt. 

 

 

Figure 38. Type 1 gap filler results at 0.3 tilt angle. 
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Figure 39. Type 1 gap filler results at 0.6 tilt angle. 

 
 From the above three figures it is evident that the thermal 

performance of the gap filler highly depends on its preform thickness, and 

applied pressure at all angles.  The impact of pressure on the thermal 

performance of gap fillers increases with the increase in preform thickness 

of the TIM.  For example, it was found that the percent difference for 3-mm 

preform thickness from 20 to 50 psi was ~ 40%, for 1.5-mm preform ~ 

25%, and for 0.5-mm preform ~ 18%.  Therefore, the applied pressure is a 

significant factor in the gap filler performance and higher loads should be 

applied to thicker TIM performs where possible. 

 Next, the results for gap filler type 1, thermal impedance vs. tilt 

angle for each of the three preform thicknesses are plotted in Figures 40, 

41 and 42 respectively. 
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Figure 40. Type 1 0.5-mm preform gap filler resistance vs. tilt angle. 

 

 

Figure 41. Type 1 1.5-mm preform gap filler resistance vs. tilt angle. 
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Figure 42. Type 1 3-mm preform gap filler resistance vs. tilt angle. 

  
 As evident from Figure 40 through 42, tilt angle does not seem to 

have a significant impact on thermal impedance.  At each pressure, and 

for each preform thickness, no significant change in thermal performance 

is observed with the increase in tilt angle.  The results suggest that gap 

filler preform thickness and pressure play bigger roles in the performance 

of the material then does a gap/tilt applied between two mating surfaces.  

 Gap filler type 2 results are depicted in Figures 43, 44 and 46 for 

thermal impedance vs. tilt angle.  Results for type 2 gap filler have the 

same trends as those of type 1.  Applied pressure plays a significant role 

in the thermal performance of this material with higher impact on thicker 

material preform. 
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Figure 43. Type 2 gap filler results at no tilt angle. 

 

 

Figure 44. Type 2 gap filler results at 0.3 tilt angle. 
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Figure 45. Type 2 gap filler results at 0.6 tilt angle. 

 
 Finally, the results of thermal impedance vs. tilt angle for all three 

preform thicknesses of gap filler type 2 are plotted in Figures 46 through 

48.  Once again, the angle of tilt within the range tested, seems to have no 

significant impact on this material’s thermal performance. 
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Figure 46. Type 2 0.5-mm preform gap filler resistance vs. tilt angle. 

 

 

Figure 47. Type 2 1.5-mm preform gap filler resistance vs. tilt angle. 
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Figure 48. Type 2 3-mm preform gap filler resistance vs. tilt angle. 

 

4.2 Bare Die Tilting Metrology Results and Discussion 

 As discussed earlier, Bare Die Tilting metrology was developed to 

characterize the selected materials in-situ, i.e., in actual applications.  

Constant loading was applied for all TIMs, and applied power was varied 

in dependence of the TIM such that the package junction temperature at 

steady state was ~ 90°C for all of the TIMs.  Each TIM was measured at 

0°, 0.3° and 0.6° tilt between the bare die package and the cooling 

solution.  Figure 49 shows a schematic of contact area/pressure between 

the bare die and the cooling solution for all three angles of test. 
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Figure 49. Pressure/contact profile of die and cooling solution at (a) 0° tilt angle; (b) 0.3° tilt angle; 
(c) 0.6° tilt angle 
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4.2.1 Dry Contact  

 For reference purposes, initial measurements were conducted for a 

dry contact, i.e., no TIM was applied between the bare die and the cooling 

solution.  The experimental results for Sensors 1, 2 and 3 are summarized 

in Figures 50.  As a reminder, the sensor 1, 2 and 3 are RTDs located on 

the bare die at positions high edge, off-center, and low edge as illustrated 

in Figure 50. 

 Results for dry contact show a worst case scenario impact of tilt 

angle to thermal performance of the bare die package.  They can also be 

used as evidence of the importance of the TIM material for the electronic 

package performance. 

 

Figure 50. Dry Contact (no TIM) results. 

 
The results for dry contact depicted in Figure 50 show a high 

impact on the thermal performance of the bare die with respect to tilt 

angle.  Sensor 1 data, a “lift off” edge shows a high increase in delta 

thermal resistance with the increase in tilt angle.  This is expected since 
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as the tilt angle increases, i.e. as the cooling solution is lifted off this edge 

the air gap between the cooling solution and the bare die increases.  As 

mentioned in the Introduction, air has a very low thermal conductivity and 

acts as an insulator, hence yielding a large increase in thermal resistance 

at this edge. 

Sensor 2 can be considered as a pivot point for the discussed 

experiments.  As the tilt angle changes from 0° to 0.3°, more load is 

applied to the area around sensor 2.  This causes a reduction in the air 

gap at 0.3° angle and hence a reduction in thermal resistance at this point.  

However, as the tilt angle further changes from 0.3° to 0.6° the cooling 

solution lifts off of the sensor area creating a larger air gap and therefore 

causing the thermal resistance to increase. 

 Sensor 3 is located at the “press” down edge of the die.  More 

pressure is applied to the edge as the tilt angle increases. An increase in 

pressure at the edge reduces the air gap and hence improvement in 

thermal resistance with increase in tilt angle is observed.    

All the changes in ∆θjp for dry contact are quite large.  For example 

the delta thermal resistance for Sensor 1 between 0° and 0.6° was found 

to be ~ 1.4°C/W.  With such impact of tilt angle to dry contact thermal 

performance of bare die, it is important to further examine it for the 

selected TIMs. 
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4.2.2 Thermal Grease  

 The same experimental procedure as for dry contacts was applied 

to the thermal grease.  Tilt angle impact on die thermal performance with 

applied thermal grease is summarize in Figure 51.  Once again at Sensor 

1 edge of the die, the thermal performance decreases, i.e. thermal 

resistance increases, with the increase in tilt angle.  However, the impact 

of the tilt angle is not as severe as that of the dry contact.  For thermal 

grease, the thermal resistance change between 0° and 0.6° tilt is 

approximately 0.07°C/W which is significantly lower than of the dry 

contact. 

 

Figure 51. Thermal grease results. 

 
 For the thermal grease TIM, Sensor 2 still acts as a “pivot” point so 

there is a reduction in thermal resistance between 0° and 0.3° tilt followed 

by an increase between 0.3° and 0.6° tilt.  However, one should notice 



  61 

that the change in both angles is really low--on the order of 0.005°C/W--

which is within the accuracy of the measurement and can therefore be 

considered as no significant change in performance at this point. 

 Finally, results at the press down edge, Sensor 3, for thermal 

grease show some improvement in performance on the order of ~ 

0.016°C/W at 0.3° tilt and ~ 0.019°C/W at 0.6° tilt.  Therefore, no 

significant change between 0.3° and 0.6° tilt is observed.  This suggests 

that the minimum BLT at this edge is reached at 0.3° tilt and therefore no 

further improvements are observed with the increase in pressure as the tilt 

angle increases.   

For comparison purposes of impact of the tilt angle between the dry 

contact and thermal grease contact, the data are re-plotted for all three 

sensors in Figures 52 thorough 54. 

 

Figure 52. Impact of tilt, thermal grease vs. dry contact sensor 1 results. 
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Figure 53. Impact of tilt, thermal grease vs. dry contact sensor 2 results. 

 

 

Figure 54. Impact of tilt, thermal grease vs. dry contact sensor 3 results. 
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4.2.3 Phase Change TIM  

 Next, a PCM TIM was measured under the same experimental 

procedure.  The results are summarized in Figures 55, 56 and 57 for 

Sensors 1, 2 and 3 respectfully.  Tilt angle has a very similar impact on 

bare die thermal performance when PCM is used compared to grease.  

Once again, at the Sensor 1 edge, a negative impact on thermal 

resistance is observed with the increase in tilt angle as evident from 

Figure 55.  No significant impact is observed at the Sensor 2 and Sensor 3 

locations. 

 

Figure 55. PCM results for sensor 1. 
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Figure 56. PCM results for sensor 2. 

 

Figure 57. PCM results for sensor 3. 

 

 Once again, for comparison purposes, thermal grease data along 

with PCM data for all three sensors are re-plotted and are shown in 

Figures 58 through 60.  As mentioned, there is no significant difference in 

the performance trends between these two materials. 
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Figure 58. Impact of tilt, thermal grease vs. PCM sensor 1 results. 

 
 

 
Figure 59. Impact of tilt, thermal grease vs. PCM sensor 2 results. 
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Figure 60. Impact of tilt, thermal grease vs. PCM sensor 3 results. 

 

4.2.4 Gap Fillers 

 Finally data were collected using the same procedure for two gap 

fillers.  The results for type 1 gap filler for all three preform thicknesses 

and Sensors 1, 2 and 3 are presented in Figures 61 through 63.   
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Figure 61. Gap filler type 1, results for sensor 1. 

 

 

Figure 62. Gap filler type 1, results for sensor 2. 
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Figure 63. Gap filler type 1, results for sensor 3. 

 

Compared to dry contact, the impact of tilt angle on thermal 

performance was not as severe when gap filler type 1 was used.  

However, as was found from the results of the Angular TIM Tester, 

pressure along with preform thickness of the gap filler play a significant 

role on the thermal performance of this type of material.  For this reason, 

the higher pressure experienced in the region of Sensor 2 and Sensor 3 

with the increase of tilt angle shows higher improvement for thicker 

material samples.  Therefore, the reduction of the BLT of the gap filler 

material significantly impacts its performance.  The same conclusions can 

be made for the gap filler type 2 material whose results are presented in 

Figures 64 through 66. 
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Figure 64. Gap filler type 2, results for sensor 1. 

 

 

Figure 65. Gap filler type 2, results for sensor 2. 
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Figure 66. Gap filler type 2, results for sensor 3. 

 

4.3 Angular TIM Tester vs. Bare Die Tilting Metrology 

 For comparison, the change in thermal resistance vs. tilt angle data 

obtained from both metrologies for thermal grease and PCM are plotted in 

Figures 67 and 68.  The Bare Die Tilting Metrology results are plotted for 

sensor 1 and results obtained on the Angular TIM tester for all pressures.  

Results for these two types of material are in close agreement between 

the two metrologies as illustrated in Figures 67 and 68.   
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Figure 67. Change in thermal resistance vs. tilt angle - Angular TIM Tester and Bare Die Tilting 
metrology results for thermal grease. 

 

 

Figure 68. Change in thermal resistance vs. tilt angle - Angular TIM Tester and Bare Die Tilting 
metrology results for PCM. 
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Chapter 5 

SUMMARY AND CONCLUSION 

Two different metrologies were developed to characterize TIMs 

under induced tilt.  The first metrology, “Angular TIM Tester”, is based on 

1D steady state heat conduction where a TIM sample is placed between 

two copper rods and the temperature is recorded along the rods’ lengths 

using thermocouples.  The advantage of the developed metrology is that 

the rods can be subjected to a specified tilt angle.  In addition, the 

thickness of the TIM under test is measured by a capacitance gauge 

located very close to the sample hence compensating for the thermal 

expansion of the rods during test. 

The second metrology, “Bare Die Tilting Metrology”, was developed 

for in-situ TIM characterization.  The metrology measures thermal 

resistance between the junction of the bare die package and thermal 

solution.  As with the first metrology, the advantage of the second 

metrology is that an angle of tilt can be induced between the package and 

the cooling solution. 

To qualify the developed metrologies, five different commercially 

available TIMs were selected for measurement.  Two types of thermal 

grease were selected based on the fact that thermal greases are the most 

commonly used TIMs in the electronic package industry.  Next, a phase 

change material was selected based on its good thermal performance, 

wide usage and ability to conform at temperatures above its phase change 



  73 

temperature.  Finally, two types of gap fillers were also studied.  The gap 

fillers were selected as they are widely used to fill large gaps between two 

mating surfaces. 

Experimental results obtained from the Angular TIM tester showed 

an impact of tilt angle on the thermal performance of grease type and 

phase change materials.  Data were collected at relatively small tilt angles, 

0.3° and 0.6°, for all materials.  The results for thermal grease and PCM 

showed an increase in thermal resistance with an increase in tilt angle.  

For grease (type 1), the thermal impedance increased by ~60% and for 

PCM by ~130% between 0° and 0.6° tilt at low pressure (20 psi).  On the 

other hand, the results for gap filler materials tested in the Angular TIM 

tester showed no significant impact on their thermal resistance with the 

increase in tilt angle. 

Numerous studies, along with this one, have shown that the 

thermal resistance of a TIM usually increases with increasing bond line 

thickness (BLT) [33].  The change in tilt angle causes a change in BLT of 

the TIM.  As the surfaces are tilted the resulting BLT is not uniform across 

the cross-sectional area.   

In addition to non-uniform BLT under tilted conditions, the pressure 

is also not uniform under these conditions.  The pressure plays a key role 

in thermal interface material performance [34].  This was also evident from 

the experimental results in the current study.  It was shown that for all 

types of materials tested in the Angular TIM tester, the thermal resistance 
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of the selected TIM decreased with an increase in pressure.  For thermal 

grease (type 1) and PCM, the thermal impedance reduced by ~20% by 

increasing pressure from 20 to 50 psi at 0° angle.  For gap fillers the 

impedance reduced on average by ~30% by an increase in pressure from 

20 to 50 psi at 0° angle across all thicknesses.  An increase in pressure 

reduces the BLT of the TIM and also improves the contact resistance 

between the TIM and the mating surfaces (in this case copper rods), 

thereby improving the overall resistance of the TIM.   

In-situ testing performed in the Bare Die Tilting metrology showed 

significant impact on bare die thermal performance for dry contact, i.e. no 

TIM with increasing tilt angle.  For dry contact the change in thermal 

resistance for Sensor 1 (lift off edge) between 0° and 0.6° angles was 

found to be ~ 1.4°C/W.  Dry contact data only confirmed the need for TIMs 

in electronic package applications.  The results for grease and phase 

change material showed lower impact on junction-to-plate thermal 

resistance for bare die package, but nevertheless did show impact.  For 

the grease the change in thermal resistance for Sensor 1 (lift off edge) 

between 0° and 0.6° angles was found to be ~0.07 and for PCM 

~0.08°C/W. 

The results for gap filler materials were somewhat different.  In the 

Angular TIM Tester, no significant impact on TIM resistance for these 

materials was observed with an increase in tilt angle.  However, this was 

not the case for in-situ testing further proving that TIM material 
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characterization should be performed in the actual applications for their 

performance to be verified.   For example, for 0.5-mm-thick preform gap 

filler the change in thermal resistance between 0° and 0.6° angles was 

found to be ~0.16°C/W for Sensor 1.  Even though the tilt angle showed 

impact on gap filler performance for in-situ tests, pressure and material 

thickness played a greater role in their performance.  So, for thicker gap 

filler materials, no significant change was observed at the Sensor 1 

location with an increase in tilt angle.  However, at the Sensor 3 location 

where more pressure is applied once tilt is induced, an improvement in 

thermal resistance of ~0.12°C/W is observed.  This indicates that for 

thicker gap fillers, pressure plays an important role in the performance of 

the TIM. 

In summary, analyzing TIM materials under different tilt angles 

helps thermal design engineers select appropriate materials for specific 

applications.  In addition, given the performance of TIMs under induced 

angle of tilt can help assembly process and design engineers set 

specifications for allowed angle of tilt for each or all components within a 

given assembly.  Though, for the best thermal performance, no tilt should 

be allowed, this is not a realistic scenario.  In addition, relaxing the 

specifications when and if possible can reduce the overall cost of the 

component and/or assembly process. 
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