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ABSTRACT  
   

While much effort in Stirling engine development is placed on making the high-

temperature region of the Stirling engine warmer, this research explores methods to lower the 

temperature of the cold region by improving heat transfer in the cooler.  

This paper presents heat transfer coefficients obtained for a Stirling engine heat 

exchanger with oscillatory flow.  The effects of oscillating frequency and input heat rate on the 

heat transfer coefficients are evaluated and details on the design and development of the heat 

exchanger test apparatus are also explained.   

Featured results include the relationship between overall heat transfer coefficients and 

oscillation frequency which increase from 21.5 to 46.1 Wm-2K-1 as the oscillation frequency 

increases from 6.0 to 19.3 Hz. A correlation for the Nusselt number on the inside of the heat 

exchange tubes in oscillatory flow is presented in a concise, dimensionless form in terms of the 

kinetic Reynolds number as a result of a statistical analysis.  The test apparatus design is proven to 

be successful throughout its implementation due to the usefulness of data and clear trends 

observed.   

The author is not aware of any other publicly-available research on a Stirling engine 

cooler to the extent presented in this paper.   Therefore, the present results are analyzed on a part-

by-part basis and compared to segments of other research; however, strong correlations with data 

from other studies are not expected. 

The data presented in this paper are part of a continuing effort to better understand heat 

transfer properties in Stirling engines as well as other oscillating flow applications. 
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PREFACE  

Since the research presented in this paper is the culmination of both an undergraduate 

honors thesis as well as a Master’s thesis, it is important to distinguish the more recent work from 

the older work.  There is no overlap of data between the undergraduate and Master’s thesis work.  

All data presented in this paper have been specifically acquired to study the effects of cross-flow 

on heat exchange at four different heat rates and five different oscillation frequencies.  New 

discoveries in this paper include the validation that the overall heat transfer coefficient continues 

to increase as frequency is increased over a wider range of frequencies.  Some of the most 

significant changes to the test apparatus between the undergraduate and Master’s thesis work 

include the implementation of isolator devices designed to prevent airborne contaminants from the 

compressor pump from fouling the heat exchange surfaces on the inside of the tube bundle and a 

mechanical diverter (“filler material”) that prevents coolant flow in areas not of interest, such as 

around the perimeter of the tube bundle, rather than through the tube bundle.  Both of these 

changes were considered necessary after a review of data from the author’s undergraduate thesis.  

Other modifications include the implementation of a DC motor to allow for precisely-controlled 

speeds that reach the lower bound of speeds used in Stirling engines, a more controlled siphoning 

technique for the coolant, and numerous measures taken to ensure the minimization of unwanted 

heat sources having an impact on the data [1], [2].  One of the methods of isolating unwanted heat 

sources includes the use of a plastic isolator coupling to break a major path of thermal conduction 

through the shell of the heat exchanger.  It is suggested that the reader briefly review the schematic 

shown in Fig. 2.1 and 2.13 for an overview of the physical setup of the experiment before 

proceeding with reading the rest of the manuscript.     

Also, due to the unique experiments that were preformed, any correlations made to other 

researcher’s works will have to be prefaced by a lengthy explanation of the difference in physical 

setups between the experiments.  Strong correlations with other research are not expected due to 

different heat exchanger geometries and test rig configurations.   
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Chapter 1: INTRODUCTION 

While extensive effort in Stirling engine research is focused on improving heat exchange 

in the higher-temperature regions of the Stirling engine, this research gives more insight to heat 

exchange that occurs on the low-temperature side of the engine.  Initially, by inspection of the 

Carnot equation for the ideal heat engine efficiency, it can be seen that reducing the low 

temperature by one unit yields a larger improvement to the overall thermal efficiency than raising 

the high temperature by the same amount in (1): 

 �J>KL = 1 − �N�O (1) 

where �J>KL is the Carnot efficiency, �N the coldest temperature, and �O the warmest temperature 

in the engine.  The same case should hold true in the present analysis: improvements to the heat 

exchanger efficiency on the cold side of the engine should yield a better overall thermal efficiency 

than making improvements to the heat exchanger on the warm side of the engine.  Despite this, 

research on Stirling regenerators and heaters far outweighs research on coolers.  In fact, one of the 

most-studied components in the Stirling engine is the regenerator, for which there are complete 

books dedicated to the subject [3].  However, this is justified since the majority of improvements 

to heat transfer are dependent on the regenerator.  A good indication of this is that 70–90% of the 

pressure drop across all components in the Stirling engine occurs in the regenerator and larger 

pressure drops are correlated with more efficient heat transfer [4].   

When the cooler is evaluated independently of the other Stirling engine components in an 

analytical model for a Space Power Research Engine (SPRE), it was found that a 25% reduction in 

the effectiveness of the cooler reduced the overall engine thermal efficiency by only 2%, whereas 

a 1.8% reduction in the effectiveness of the regenerator reduced the overall engine thermal 

efficiency by 12.2% [5], [6].  The impact of the cooler on the overall engine thermal efficiency is 

slightly less than that of the heater, where a 46% reduction in the effectiveness of the heater would 

reduce the overall engine thermal efficiency by 4.1% [5], [6].  The effectiveness of the heat 

exchangers is best described as the ratio between the measured heat transfer rate and maximum 

attainable heat transfer rate which would be realized in a counterflow heat exchanger with 



  2 

unlimited area for heat exchange [7].  This further emphasizes that if the effectiveness of the 

heater and cooler are equally weighted in the calculation of the overall thermal efficiency, then 

more research efforts should be dedicated to improving the cooler to balance the amount of 

research that has been performed on the heater.  

Oscillating flow heat transfer adds significant complexity to the analysis of Stirling 

engine heat transfer.  In fact, within the field of oscillatory flow heat transfer, consensus has not 

been reached on whether oscillations improve or reduce the heat transfer coefficients [8].  What is 

known, however, is that transition to the turbulent flow regime occurs at higher values of the 

maximum Reynolds number when the kinetic Reynolds number increases where the Reynolds 

number is defined as [9]: 

 ./ = )	%	�"  (2) 

and the kinetic Reynolds number is defined as [9]: 

 ./� = 9	��7  (3) 

where ) is the density, % the velocity,  � the diameter, " the dynamic viscosity, 9 the angular 

oscillatory frequency, and 7 the kinematic viscosity. 

 

1.1. OBJECTIVES 

Experimental data are required for the present analysis since there are few published 

expressions which correlate the overall heat transfer coefficient with different heat exchange 

parameters in oscillating flows.  Therefore, a test apparatus was designed in order to collect data 

on this unique type of heat transfer in Stirling engines.  The main objectives for this study were to: 

1) build an adaptable Stirling engine cooler test apparatus capable of obtaining data with minimal 

error; 2) present experimental data for a shell and tube heat exchanger with oscillatory air flow; 3) 

determine overall heat transfer coefficients; 4) present results in terms of similarity parameters 

which can be scaled to other research; and 5) briefly compare results to other research.   
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The foundation for this research is based on the scarcity of data relating performance 

characteristics to oscillatory flow heat exchangers when compared to uni-directional flow heat 

exchangers.  This paper will not address the issue of whether oscillating flow yields better heat 

transfer than an equivalent unidirectional flow, nor will it correlate the performance of uni-

directional flows to the performance expected by an equivalent oscillatory flow.  This is because 

the results of these experiments are intended to apply to Stirling engine heat exchangers which, by 

nature of their closed cycle, are required to use oscillating flow.  In most of the applications of 

oscillating flows, unidirectional flows are simply not an option due to the thermodynamic cycle or 

physical configuration.   

 

1.2. HEAT EXCHANGER 

 The present experiments were performed on a shell-and-tube heat exchanger subject to 

oscillating flow on the inside of the tube bundle and transverse, unidirectional water flow over the 

outside of the tubes in the tube bundle.  Fig. 1.1 represents the cross-flow arrangement of coolant 

flow over the tube bundle (since coolant flows transversely over the tube bank). 

 

Fig. 1.1. Representation of a cross-flow shell and tube heat exchanger 

 

In Fig. 1.1, the side of the cooler with the heater element is often referred to in this paper as the 

"hot side" and the opposite side with cold gas as the "cold side".  Air is alternately heated and 

cooled in each cycle as it flows over the heater element and is subsequently cooled by the coolant 
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flowing over the tubes in the tube bundle.  This process is shown in Fig. 1.2 as indicated by the 

direction and color of the arrows during the first and second halves of the cycle.   

 

 

Fig. 1.2. Air flow path during heating and cooling 

 

For air, the factors involved in the calculation of the transition to turbulent flow are the 

dimensionless oscillation amplitude, ��, and the kinetic Reynolds number, ./� [8].  These factors 

are combined in (4) to indicate the transition point from laminar to turbulent flow in oscillatory 

flows [8]: 

 ��P./� 	> 761 (4) 

where the dimensionless oscillation amplitude is defined as [8]: 

 �� = <=>?�T  (5) 

where <=>? is the maximum amplitude of working fluid displacement (assuming plug flow) and 

�T the inner diameter of the tubes [10].  From the definition given in (4), the data collected in the 

present experiment is considered to be in the transitional and turbulent flow regime; however, 

there is some uncertainly in how to define the dimensionless oscillation amplitude for the present 

experiment, which would affect the results obtained from (4).  This is because a variety of 

definitions have been used for the dimensionless oscillation amplitude.  For example, X. Tang and 
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P. Cheng and T. W. Simon and J. R. Seume define the dimensionless oscillation amplitude as [11], 

[9]: 

 �� = <=>?�  (6) 

where � is the tube length.  The definitions of the dimensionless oscillation amplitude given in 

both (5) and (6) are intended to give a measure of the amount of working fluid displacement [9].  

Higher dimensionless oscillation amplitudes indicate that a larger cold volume of air was 

displaced through the heat exchanger during each half-cycle which corresponds to a drop in the 

tube wall temperature [10].  Another physical meaning of the dimensionless oscillation amplitude 

defined in (6) is whether the oscillating fluid exits the tube during each half-cycle, or whether the 

working fluid continually oscillates inside the tube due to a small piston stroke length as studied 

by A. J. Organ [12], [9].  Organ found that when ��	 = 1 all of the working fluid passes through 

the heat exchanger whereas when ��	 > 	1  (as in the present research) the fluid passes through 

the heat exchanger while the remainder of the fluid oscillates inside the heat exchanger without 

leaving [12], [9].  Once again addressing the point of transition to turbulent flow given by T. Zhao 

and P. Cheng in (4), if the dimensionless oscillation amplitude is defined as in (5), �� would be 

1129, whereas if is defined as in (6), �� would only be 10.7 [8].  To keep in accordance with the 

way T. S. Zhao and P. Cheng define �� in (4), the dimensionless oscillation amplitude will be 

taken as 1129 and thus, the air is considered to be in the transitional and turbulent flow regimes 

[10]. 

 

1.3. THE STIRLING ENGINE 

It is important to clarify that the test rig constructed for this research is not intended to be 

used as, or part of, a Stirling engine.  In a Stirling engine, the heat provided to the working fluid is 

sufficient to expand the working fluid and produce enough force to drive the pistons, whereas in 

this experiment, heat is applied to the gas but the pistons are powered by a separate motor in order 

to simulate the working environment of a cooler in a Stirling engine.  The test rig was built to 

conduct heat transfer experiments on an isolated Stirling engine cooler.  While in use, the Stirling 
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engine cooler is a robust device and often one of the most expensive components in the engine as 

reported for Phase I of an automotive Stirling engine where the four coolers attributed for 27.7% 

of the cost for the entire Stirling engine [13].  Still, in other Stirling engines, the cooler cost has 

been reported to be as low as 2.2% of the total cost of the engine, such as in the Mod II automotive 

Stirling engine design [13].  In a typical Stirling engine cooler, helium or hydrogen gas oscillates 

within the cooler tubes at rates up to about 60 Hz (3600 RPM) [13], [14]. 

 

1.4. RELATION TO OTHER RESEARCH 

 The scale of the heat exchange tubes in the present research is the smallest scale that has 

been studied in oscillating flow, as far as the author is aware, with the exception of research 

performed on a single tube in oscillatory flow by P. Bouvier et al. [15].  The tubes are nearly the 

same size as those in other Stirling engine coolers, such as the STM 4-120 Stirling engine cooler; 

however, research on oscillating flow is typically performed on a single tube while only 

considering one or two thermal resistances [11], [10].  The small diameter of the tubes in the tube 

bank result in a very large value of the dimensionless fluid displacement, �� = 1129, when 

compared with typical values between 8 and 35 reported in other research [10]. 

Many other researchers in the field of oscillating flow perform analyses on tubes with a 

constant heat flux imposed on the outer tube walls [15], [10].  The calculations corresponding to 

their analysis assume a constant heat flux through the tube walls and almost always require known 

values of the tube wall temperature [15], [10].  In the present experiment, the small size of the 

capillary tubes in the tube bundle made it such that the tube wall temperature could not be 

measured.  It was not considered worthwhile to attempt inserting thermocouples with a diameter 

of 7.62 × 10Y m (0.003 in) into a tube wall that was 4.32 × 10\ m (0.017 in) thick.  Machining 

on such a small scale was not within the capability of the author.   

Due to the lack of a comprehensive algorithm for determining the heat transfer 

coefficients in a heat exchanger involving multiple modes of heat exchange, different analytical 

equations and correlations will be used to determine heat transfer coefficients corresponding to 

each of the resistances as shown in Fig. 1.3.  



  7 

                        Convection from the        Conduction through       Convection from the 
                          air to the tube wall              the tube wall             tube wall to the water 

 

Fig. 1.3. Diagram of thermal resistances in the shell and tube heat exchanger 

 

Each resistance in Fig. 1.3 will be analyzed separately and will involve different analytical 

methods for its calculation.  Note that the resistances can be thought of as the inverse heat transfer 

coefficients for each mode of heat transfer and will add together in a parallel resistance fashion to 

yield an overall, equivalent resistance.  
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Chapter 2: APPROACH 

In order to study the unique working environment of a Stirling engine cooler, a custom 

test apparatus needed to be designed and built.  The most important objectives that were 

considered while designing the test apparatus were to: 1) simulate, as best as possible, the working 

environment of a Stirling engine; 2) establish controls in the experiment and design for 

minimization of error in data acquisition; and 3) obtain data that accommodate all of the 

parameters needed in the equations for analysis.  Each of these factors will be discussed in the 

following sections.  Fig. 2.1 indicates all ports in the heat exchanger test apparatus which are used 

either for air flow, water flow, or instrumentation.  

 

 

Fig. 2.1. Diagram of ports included in the heat exchanger test apparatus 

 

Justification for the location of each data acquisition port and the overall design of the heat 

exchanger test apparatus will be discussed in detail in later sections of this paper. 

 

2.1. DESIGN OF HEAT EXCHANGER EXPERIMENT 

Of primary importance when designing the test apparatus was the minimization of error 

while still producing a relatively inexpensive unit that was safe, portable, and capable of 

simulating the working conditions of a Stirling engine.  Due to the safety and financial concerns of 

pressurizing warm air within the test apparatus, it was decided to simply measure the pressure 
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drop across the tube bank (using the differential pressure transducer ports shown in Fig. 2.1) and 

assume that the pressure inside the test apparatus is equal to ambient pressure.  This assumption 

was eventually verified by machining an access port into the heat exchanger and connecting a 

pressure gage to the port.  When the compressor pump in the test apparatus was activated, the 

pressure gage was unaffected by the pressures due to both the gage pressure and the pressure drop 

across the tube bundle.  Therefore, the combination of these pressures did not exceed the 34.5 kPa 

sensitivity of the pressure gauge, and pressures below this level were assumed to have a negligible 

effect on heat exchange.  

 

2.1.1. DESIGN OF HEAT EXCHANGER 

There is a wide array of configurations for Stirling engine coolers.  Some configurations 

feature an annular cooler that fits concentrically around the piston cylinder and is cooled by 

coolant in cross-flow, such as in the NASA/MTI Automotive Stirling Engine and the SPRE engine 

[13], [6].  Still others incorporate coolant that travels parallel to the cooling tubes in the cooler, 

such as with the Sunpower RE-1000 Stirling engine [6].  Most commonly, the coolant passes 

transversely over the tubes in the cooler, as represented in the STM 4-120 Stirling engine.  The 

fabricated cooler was designed to resemble an actual Stirling engine cooler from a STM 4-120 

engine as shown in Fig. 2.2. 

  



 

Fig. 2.2. Comparison 

The stainless steel tubes in the fabricated heat exchanger are positioned in aluminum perforated 

end caps held together and sealed with high

whereas the STM 4-120 cooler has a stai

tube bundle in the fabricated heat exchanger is composed of stainless steel tube

common choice for Stirling engine c

conductivity of stainless steel with respect to other metals which allows for a trade

radial (desired) and longitudinal (un

functions of the cooler is to produce a measureable temperature gradient at the cold end of the 

Stirling engine.   
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. Comparison of the fabricated cooler (left) to an STM 4-120 cooler (

 

The stainless steel tubes in the fabricated heat exchanger are positioned in aluminum perforated 

end caps held together and sealed with high-temperature and water resistant Loctite® adhesive 

120 cooler has a stainless steel construction which is brazed together.   The 

tube bundle in the fabricated heat exchanger is composed of stainless steel tubes since it is a 

common choice for Stirling engine cooler tubes.  This is most likely due to the moderate 

conductivity of stainless steel with respect to other metals which allows for a trade-off between 

radial (desired) and longitudinal (un-desired) wall conduction.  After all, one of the primary 

of the cooler is to produce a measureable temperature gradient at the cold end of the 

 

ooler (right) 

The stainless steel tubes in the fabricated heat exchanger are positioned in aluminum perforated 

adhesive 

s brazed together.   The 

since it is a 

ooler tubes.  This is most likely due to the moderate 

off between 

desired) wall conduction.  After all, one of the primary 

of the cooler is to produce a measureable temperature gradient at the cold end of the 
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Tube bundle geometries are commonly reported in terms of the dimensions shown in Fig. 

2.3 [16].     

 

Fig. 2.3. Dimensions of the staggered tube bank (adapted from [16]) 

 

These dimensions are important for similarity and scaling between experiments on 

different heat exchangers and may be found commonly reported in literature [16].  The 

corresponding dimensions in Fig. 2.3 are listed in Table 2.1 along with the dimensions of the STM 

4-120 cooler (dimensions of the STM 4-120 cooler were measured directly by the author). 

 

Table 2.1. Dimensions of the fabricated cooler and STM 4-120 cooler [16] 

 Fabricated Cooler STM 4-120 Cooler 

Outside diameter, �] (mm) 2.11 2.38 
Angle of tube staggering, 2  
(degrees) 

60 60 

Transverse tube pitch, ;( = '( (mm) 3.16 2.89 

Longitudinal tube pitch, ;1 (mm) 2.74 2.50 
 

A condensed list of the geometric properties and fluids used in the fabricated cooler and the STM 

4-120 are included in Table 2.2 for comparison.  Both heat exchangers are made from similar 

metals and have staggered tube banks [14]. 
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Table 2.2. Specifications of the fabricated cooler and STM 4-120 cooler [14] 

  Fabricated Cooler STM 4-120 Cooler 

Number of tubes 97 395 

Tube length (mm) 131.4 62.4 

Tube inner diameter (mm) 1.25 1.37 

Tube outer diameter (mm) 2.11 2.38 

Equi-distant tube spacing (mm) 3.16 2.89 

Average heat transfer area ^mm�_ ≈ 67 100 ≈ 145 000 

Hot fluid Air Hydrogen gas 

  Max. temperature (°C) 87.3 739 

 Min. temperature (°C) 38.2 - 

  Average cycle pressure (Pa) ≈ 0 13 850 000 

  Volume displaced ^mm*_ 165 900 120 000 

Cold fluid Water 50/50 water and glycol [17] 

  Max temperature (°C) 44.9 56 

  Min temperature (°C) 19.5 50 

 Volumetric flow rate ̂m*s�_ 2.19 × 10` 2.60 × 10* 

Ambient temperature (°C) 21 44 

Average Oscillation Frequency (Hz) 9.0 30 
 

Some of the most notable differences between the fabricated cooler and the STM 4-120 

cooler in Table 2.2 are the differences in average heat transfer area and volumetric flow rate of air 

[17], [14].  The heat transfer area in the fabricated cooler is 46.3% of the heat exchange surface 

area in the STM 4-120 cooler [17].  Also, the equi-distant tube spacing is more than four times 

greater than that of the STM 4-120 cooler.  This results in a lower heat transfer coefficient on the 

outside of the tube bundle since the STM 4-120 cooler will yield a larger pressure drop across the 

heat exchanger and water will have better thermal contact with the heat exchange tubes.  Of 

course, many of the similarities and differences between the heat exchangers must be considered 

and a similarity and scaling analysis should be performed before comparing the heat exchanger 

performance of one to the other.   

One concern affecting the accuracy of data taken from the test apparatus for the 

undergraduate thesis was the potential for water to flow around, rather than through, the tubes 

since there was a gap with a radial dimension of 0.01 m around the perimeter of the tube bundle.  

To resolve this issue, the heat exchanger was fitted to a PVC mechanical diverter (“filler 
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material”) with enough flow channels for water to flow through the appropriate ports as shown in 

Fig. 2.4.  The mechanical diverter had a slip fit between the tube and the outer shell of the heat 

exchanger housing.    

 

 

Fig. 2.4. Heat exchanger with tube bundle and filler material 

 

When looking at the tube bank from the perspective of one of the end caps, a simple 

diagram of the filler material is shown in Fig. 2.5. 

 

 

Fig. 2.5. Diagram of filler material adapted to the tube bank    

 

Fig. 2.4 also shows a thermal break made of high density, Air-Pro plastic (shown in dark 

blue) to minimize conduction heat transfer from the shell of the heater section to the shell around 



 

the tube bundle.  With this method, the only appreciable heat that reaches the tube bundle is from 

the heat that is transferred to the air from the heater element

 

2.1.2. DESIGN OF TEST APPARATUS

A Central Pneumatic®

adapted for purposes of shuttling air back and forth through the heat exchanger.  Part of the 

customization efforts on this compressor pump involved replacing the 

cylinder by a valve-less, aluminum cylinder head as shown in Fig. 

 

Fig. 2.6

 

From either side of the custom cylinder head, copper and PVC piping extended to 

channel air from the compressor pump to the rubber tube isolator devices as shown in Fig. 
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the tube bundle.  With this method, the only appreciable heat that reaches the tube bundle is from 

ransferred to the air from the heater element.  

DESIGN OF TEST APPARATUS 

® (model 93785) single-stage, twin-cylinder compressor pump was 

of shuttling air back and forth through the heat exchanger.  Part of the 

customization efforts on this compressor pump involved replacing the gaskets, valve seats, and 

less, aluminum cylinder head as shown in Fig. 2.6.  

 

6. Custom, valve-less compressor pump head 

From either side of the custom cylinder head, copper and PVC piping extended to 

channel air from the compressor pump to the rubber tube isolator devices as shown in Fig. 

the tube bundle.  With this method, the only appreciable heat that reaches the tube bundle is from 

compressor pump was 

of shuttling air back and forth through the heat exchanger.  Part of the 

gaskets, valve seats, and 

From either side of the custom cylinder head, copper and PVC piping extended to 

channel air from the compressor pump to the rubber tube isolator devices as shown in Fig. 2.7.   
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Fig. 2.7. Arrangement of heat exchanger, compressor pump, and connecting channels 

 

The rubber tube isolator devices were necessary in order to isolate unwanted, external 

heat inputs and minimize airborne oil in the air that oscillated in the tube bundle.  The isolator 

device, as shown in Fig. 2.8, is composed of a section of rubber bicycle tube, machined PVC 

connectors, clear plastic end caps, NPT brass fittings, miscellaneous fasteners, and an outer PVC 

shell.   

 



 

Fig. 2.8

 

The cooler was composed of a tube bundle which sealed against the inner surfaces of a water 

chamber.  O-rings were used to seal the tube bundle against the inner surfaces of the water 

chamber shell which helped to divide the water chamber from the air plenum chambers at both 

ends of the tube bundle as shown in Fig. 

 

Fig. 2.9. Fabricated 

 

The two pistons in the compressor pump are 180° out of phase such

constant volume of air in each cycle without 
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8. Rubber tube isolator device (disassembled) 

sed of a tube bundle which sealed against the inner surfaces of a water 

rings were used to seal the tube bundle against the inner surfaces of the water 

chamber shell which helped to divide the water chamber from the air plenum chambers at both 

ends of the tube bundle as shown in Fig. 2.9 (shown without filler material). 

 

Fabricated heat exchanger with separate air and water chambers 

The two pistons in the compressor pump are 180° out of phase such that they move a 

constant volume of air in each cycle without compressing the air.  The plenum chambers and the 

sed of a tube bundle which sealed against the inner surfaces of a water 

rings were used to seal the tube bundle against the inner surfaces of the water 

chamber shell which helped to divide the water chamber from the air plenum chambers at both 

they move a 

.  The plenum chambers and the 
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empty volume in the isolator devices can be thought of as the ‘mixing chambers’ on either side of 

the heat exchange tubes.  No screens or baffles were used in these chambers.  

 The fabricated cooler has two inlet and two outlet water ports with an open circuit of 

water flowing through them in order to maintain a constant inlet water temperature.  With such a 

low flow rate, water conservation and recycling was not an issue.  The inlet water was siphoned 

from an “overflow bucket” with a free surface water level located 0.48 m above the water level in 

the heat exchanger.  The water flow rate was maintained constant via the system in Fig. 2.10. 

 

 

Fig. 2.10. Water siphoning method 

 

In this system, a constant pressure head is maintained due to a smaller, constantly-overflowing 

bucket which is fed by an aquarium pump located in the larger bucket.  The temperature increase 

of the water due to the aquarium pump was considered negligible and was shown not to vary by 

more than ± 0.3°C over the course of 4 hours.  The water was siphoned through polyvinyl tubing 

with a 6.35 mm (0.25 in) inner diameter into the heat exchanger.  The exit water flow rate was 

controlled by adjusting a plastic ball valve at the outlet of the heat exchanger as shown in Fig.  

2.11. 

 



 

Fig.2.11. Outlet water bucket and water flow rate measuring tools

 

The outlet water was discharged into another small bucke

reach room temperature so that it could be reused.  

A U.S. Electrical Motors (Model M

pump through a v-belt and pulley system.  The incorporation of a DC motor facilitated the process 

of varying the oscillating frequencies since they could easily be controlled using a “manual speed” 

knob on the control panel as shown in Fig. 
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Outlet water bucket and water flow rate measuring tools 

The outlet water was discharged into another small bucket and was occasionally allowed time to 

reach room temperature so that it could be reused.   

A U.S. Electrical Motors (Model M-15) DC motor was used to power the compressor 

belt and pulley system.  The incorporation of a DC motor facilitated the process 

of varying the oscillating frequencies since they could easily be controlled using a “manual speed” 

shown in Fig. 2.12.   

 

Fig. 2.12. DC motor control panel 

 

llowed time to 

used to power the compressor 

belt and pulley system.  The incorporation of a DC motor facilitated the process 

of varying the oscillating frequencies since they could easily be controlled using a “manual speed” 
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The DC motor was able to easily produce any frequency specified between the range of 0.5 to 19.3 

Hz (30–1160 RPM).  Each revolution of the DC motor incurred a 4:5 reduction through the pulley 

and resulted in displacing 1.66 × 10\	m* of air in each piston of the compressor pump.   

Due to the high level of adaptability of the test apparatus, any component can be switched 

out with another component and the test rig can be expanded to accommodate additional devices 

such as a Stirling engine regenerator. This may be useful in future experiments because, in theory, 

the current test apparatus could be combined with other components that may make it possible to 

have a functional Stirling engine.  

As will be discussed in the following section, one of the main challenges in the design of 

the test apparatus was the minimization of external heat inputs.  This caused many problems with 

interpreting early batches of data obtained from the test rig due the large margin of error in the 

results.  A drastic redesign of the test apparatus occurred prior to collecting data for the present 

analysis [18].  

 

2.2. DATA ACQUISITION 

 The majority of the data in this experiment were collected using LabVIEW and National 

Instruments (NI) SCXI-1303 and NI SCXI-1321 data acquisition cards and a NI SCXI-1000 

chassis.  The particular sensors used in this experiment were selected based on their capability to 

take measurements at high sampling rates, as in the case of air cycling at a maximum of 19.3 Hz.  

The desired minimum sampling rate for data acquisition was set as 40 Hz, which, despite its 

appearance, is actually two times larger than the Nyquist frequency since air passes the 

thermocouples two times during a single revolution of the compressor pump.  A 40 Hz minimum 

sampling rate was also chosen because the author was reaching the limits of physical size of the 

thermocouples that could sample data at that rate.  The thermocouples that were chosen were 

Omega type J butt-welded thermocouples which had a 0.076 mm (0.003 in) diameter and were 

capable of sampling at a rate of at least 50 Hz [19].  Water temperatures were measured with 

Omega special type T spot welded/beaded-type thermocouples with a 0.508 mm (0.020 in) 

diameter since the water temperatures were not expected to incur temperature fluctuations as rapid 
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as the air temperature fluctuations [19].  The air temperatures used in this analysis were the 

average temperatures over the course of three cycles of the compressor pump.  The average air 

temperatures were calculated by importing raw temperature data into Engineering Equation Solver 

(EES) software and using lookup tables to average the data in the columns (see Appendix A for 

detailed EES code). 

A piezoelectric differential pressure transducer was selected to measure the air pressure 

drop across the tube bundle during the oscillations.  The fluctuations in differential air pressure 

allowed for a method of determining the oscillation frequency using the LabVIEW virtual 

instrument (VI).  A piezoelectric pressure transducer was selected for its relatively low cost and 

high sampling rates.  The pressure sensor was an Omega PX-137-015DV model which measured 

differential pressures up to 103.4 kPa (15 psi) and had a linearity and hysteresis error of 0.1% full 

scale (FS) typical or 0.5% maximum [20].  A schematic of the test setup and the location of all 

data collection points is shown in Fig. 2.13. 

 

 

Fig. 2.13. Schematic of test setup and all data collection points 
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Over the course of all of the experiments, the range of temperatures and pressures recorded by 

these sensors is shown in Table 2.3 along with other mass flow rate, heater power, and frequency 

data. 

 

Table 2.3. Range of tested conditions over all experiments 

 abcbded afgbded hi,k	^℃_ 122.2 201.8 hn,k	^℃_ 35.8 48.0 pqk.kr	^��B_ ≈ 0	��B t, k,kr	^�u H⁄ _ 2.1 × 10* 7.1 × 10* hw,n	^℃_ 24.2 26.4 phw	^℃_ 7.3 14.7 t, w	^!* H⁄ _ ≈ 2.26 × 10* x, y	^8_ 133.6 201.6 z	^{|_ 6.0 19.3 

 

The most notable values in Table 2.3 are the relatively high air temperatures reaching as high as 

201.8°C.  This temperature was significant because it was found that the high density, Air-Pro 

plastic that was used in the thermal break between the heater section and the tube bundle section 

had a melting point of 180 ± 10°C.  The extreme temperatures melted the thermal break, which 

needed to be re-machined and replaced three times during the course of the present experiments.  

Nevertheless, useful data were collected before the thermal break became weakened to the point 

where air escaped the system.  This issue resulted in the decision to limit the maximum heat input 

rate to 201.6 W and the minimum oscillation frequency to 6 Hz.  Due to the melting incidents, 

experiments performed at 201.6 W could not be repeated like the other data sets were. As another 

note, the ��>.>} value reported in Table 2.3 is approximately zero since the compressor pump 

cycled about ambient pressure and an elevated mean cycle pressure was not used in this 

experiment.  Finally, the average mass flow rate of air, !, >,>}, was found by a rough calculation 

involving the oscillation frequency of the compressor pump, the frontal free-flow area inside the 

tube bank, and volume displaced by each cylinder in the compressor pump.  The definition of 

!, >,>} will be described later in this paper, as well as an explanation of why more accurate 



 

methods of obtaining this value could not be implemented. 

2.13 was an optical tachometer which would indicate a step function increase in voltage whenever 

the compressor pump piston closest to the heater 

from the tachometer was not used in the present analysis; however, the tachometer serves to 

indicate the phase lag between the compressor pump cycle and the temperatures in the heat 

exchanger.    

Despite exploring more advanced and more accurate methods of 

rate, the method that was chosen involved a 25 mL graduated cylinder and a stopwatch.  At 

multiple times during each test, the author measured the time to fill the graduated cylinder t

25 mL mark and converted this value to a volumetric flow rate.  This method 

the water flow rate deviated by 

Finally, the heat rate introduced in the heat exchanger needed to be precisely controlled 

and measured.  The voltage on the 

was monitored with a clip-on ammeter as shown in Fig. 

 

Fig. 2.14. Measurement tools for the calculation of power input to the heat exchanger
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methods of obtaining this value could not be implemented.  Also, the tachometer shown in Fig. 

2.13 was an optical tachometer which would indicate a step function increase in voltage whenever 

the compressor pump piston closest to the heater was at top dead center (TDC).  The data collected 

from the tachometer was not used in the present analysis; however, the tachometer serves to 

indicate the phase lag between the compressor pump cycle and the temperatures in the heat 

more advanced and more accurate methods of measuring water flow 

method that was chosen involved a 25 mL graduated cylinder and a stopwatch.  At 

multiple times during each test, the author measured the time to fill the graduated cylinder t

25 mL mark and converted this value to a volumetric flow rate.  This method demonstrated that 

the water flow rate deviated by only ± 0.27 mL	s�.   

Finally, the heat rate introduced in the heat exchanger needed to be precisely controlled 

voltage on the heater element was controlled using a VARIAC and the current 

on ammeter as shown in Fig. 2.14.   

Measurement tools for the calculation of power input to the heat exchanger

Also, the tachometer shown in Fig. 

2.13 was an optical tachometer which would indicate a step function increase in voltage whenever 

.  The data collected 

from the tachometer was not used in the present analysis; however, the tachometer serves to 

indicate the phase lag between the compressor pump cycle and the temperatures in the heat 

water flow 

method that was chosen involved a 25 mL graduated cylinder and a stopwatch.  At 

multiple times during each test, the author measured the time to fill the graduated cylinder to the 

demonstrated that 

Finally, the heat rate introduced in the heat exchanger needed to be precisely controlled 

controlled using a VARIAC and the current 

 

Measurement tools for the calculation of power input to the heat exchanger 



 

A test of linearity was performed on the VARIAC and ammeter and the bias error

devices were checked against more accurate multimeters.  The bias and precision errors were 

taken into account before reporting a

 Many different methods were used to acquire experimental data on the maximum air 

velocity, but to no avail.  The first of these methods was the use of a 

positioned over one end of one of the tubes in the tube bundle 

ease of access as shown in Fig. 2.

 

 

Fig. 2.15. Pitot tube positioned over one end of a tube in the tube bundle

From Fig. 2.15 it is obvious that the 

manufacturer [21].  Specifically, there are static pressure taps located circumferentially around the 

end of the Pitot tube which were not in the air stream since the 

the inner diameter of one of the tubes in the tube bu

to the author that are small enough to measure the maximum velocity within one of the tubes in 

the tube bundle.   
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test of linearity was performed on the VARIAC and ammeter and the bias errors of these 

checked against more accurate multimeters.  The bias and precision errors were 

taken into account before reporting an overall power input value in the present experiment.  

Many different methods were used to acquire experimental data on the maximum air 

velocity, but to no avail.  The first of these methods was the use of a Pitot tube which was 

positioned over one end of one of the tubes in the tube bundle with the heater section removed for

ease of access as shown in Fig. 2.15. 

 

tube positioned over one end of a tube in the tube bundle 

 

it is obvious that the Pitot tube was not used in the way that it is intended

pecifically, there are static pressure taps located circumferentially around the 

tube which were not in the air stream since the Pitot tube was too large to insert in 

diameter of one of the tubes in the tube bundle.  There are simply no Pitot tubes known 

that are small enough to measure the maximum velocity within one of the tubes in 

 

of these 

checked against more accurate multimeters.  The bias and precision errors were 

ent experiment.   

Many different methods were used to acquire experimental data on the maximum air 

tube which was 

with the heater section removed for 

tube was not used in the way that it is intended by the 

pecifically, there are static pressure taps located circumferentially around the 

tube was too large to insert in 

tubes known 

that are small enough to measure the maximum velocity within one of the tubes in 



 

In another attempt, the 

positioned in the center of the air stream in the heater section of the test apparatus as shown in Fig. 

2.16.  The Pitot tube was held firmly in

around the Pitot tube in the thermocouple access port.   

 

Fig. 2.16. Pitot tube measuring max velocity in the heater section

Data were only acquired with the open end of the 

However, either way that the Pitot

unobstructed and unconstricted flow path upstream of the 

manufacturer as 8.5 diameters of the air duct 

indicated maximum velocities that were more than 5 times the values that would be considered 

reasonable.  In addition, since the 

region, the measured values are expected to indicate ve

velocity; however, the velocities already exceed

this fact.   

 The second method used to gain some measure of the maximum air velocity was the use 

of a lightweight piston that was intended to give a direct measurement of the 

length.  This required that the air was 

piston was made from nylon and was hollowed
 24 

In another attempt, the Pitot tube was inserted through one of the thermocouple ports and 

positioned in the center of the air stream in the heater section of the test apparatus as shown in Fig. 

tube was held firmly in place with a rubber stopper to prevent air from es

tube in the thermocouple access port.    

 

. Pitot tube measuring max velocity in the heater section 

 

only acquired with the open end of the Pitot tube facing away from the tube bundle.  

Pitot tube was oriented would have still violated the minimum 

unobstructed and unconstricted flow path upstream of the Pitot tube which was specified by the 

manufacturer as 8.5 diameters of the air duct [21].  The data from both of the Pitot tube tests 

indicated maximum velocities that were more than 5 times the values that would be considered 

reasonable.  In addition, since the Pitot tube clearly was not positioned in a fully-developed flow 

are expected to indicate velocities that are lower than the mean 

velocities already exceeded reasonable expectations without considering 

The second method used to gain some measure of the maximum air velocity was the use 

n that was intended to give a direct measurement of the maximum 

.  This required that the air was modeled as plug flow against the face on the piston.  The 

piston was made from nylon and was hollowed-out using a lathe to produce the most lightweight 

tube was inserted through one of the thermocouple ports and 

positioned in the center of the air stream in the heater section of the test apparatus as shown in Fig. 

a rubber stopper to prevent air from escaping 

tube facing away from the tube bundle.  

ed would have still violated the minimum 

tube which was specified by the 

e tests 

indicated maximum velocities that were more than 5 times the values that would be considered 

developed flow 

re lower than the mean 

reasonable expectations without considering 

The second method used to gain some measure of the maximum air velocity was the use 

maximum air stroke 

flow against the face on the piston.  The 

ightweight 
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piston within the author’s capabilities.  The piston outer diameter was machined to the precision 

where the piston could pull a moderate vacuum as it slid down the DOM aluminum pipe under due 

to the pull of its own weight.  DOM aluminum tube was used in order to avoid a weld joint 

common to standard steel tubing that would have caused unwanted friction and impeded the free 

gliding motion of the piston.  The piston was connected to an aluminum rod which extended out of 

the aluminum tube so that the author could gage the piston’s movement against a scale as shown 

in Fig. 2.17.  The orange flag on the end of the piston rod aided the author in taking accurate 

measurements of the stroke length. 

 

 

Fig. 2.17. Scale used to measure stroke length in the piston/tube experiments 

 

The piston/tube device was first connected directly to the outlet of the compressor pump.  During 

this experiment, with every few oscillations, the piston was observed to wander to the far end of 

the scale although it had started in a position where it was oscillating around the midpoint.  

Therefore, a second test was run with the piston/tube device located between the rubber tube 

isolator device so that it had both a pressure and vacuum applied simultaneously to either side of 

the piston as shown in Fig. 2.18.   

  



 

Fig. 2.18. Piston/tube device located between the isolator devices

Fortunately, the piston did not wander near

was expected.  Similar to the Pitot

amount of air displacement (when multiplied by the frontal area of the piston head) that was far 

too large to be reasonable.  In fact, as shown in Fig.

length was large enough to indicate that

the data including backpressure)

was only 1.66 × 10\	m*.   
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Piston/tube device located between the isolator devices 

 

Fortunately, the piston did not wander nearly as much, but the resulting data was not quite what 

Pitot tube tests, the stroke lengths corresponded to a calculated 

amount of air displacement (when multiplied by the frontal area of the piston head) that was far 

large to be reasonable.  In fact, as shown in Fig. 2.19, at only 1.67 Hz (100 RPM), the stroke

length was large enough to indicate that  2.79 × 10\	m*  of air was being displaced (according to 

the data including backpressure), although the capacity of each of the compressor pump cylinders 

 

as much, but the resulting data was not quite what 

tube tests, the stroke lengths corresponded to a calculated 

amount of air displacement (when multiplied by the frontal area of the piston head) that was far 

RPM), the stroke 

(according to 

, although the capacity of each of the compressor pump cylinders 
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Fig. 2.19. Piston/tube experimental data on stroke length 

 

The unreasonably large volumes calculated from this experiment are easily attributed to error due 

to the inertia of the piston which would tend to indicate longer stroke lengths than actually 

realized.  Unfortunately, there were no other methods known by the author to account for this 

effect, and after many attempts to calculate the air velocity directly, the author had to result to 

theoretical equations rather than experiments.  Neglecting compressibility effects and any 

dampening effects by the rubber tube isolator devices, the maximum stroke length, <=>?, was 

finally found by dividing the volume of air displaced by each piston in the compressor pump by 

the combined frontal area of all the tubes in the tube bank to yield a maximum stroke length 

(assuming plug flow) of 1.41 m.  

 

2.2.1. ERROR MINIMIZATION 

Baseline tests were performed at each oscillatory frequency with the heater element 

turned off.  Any external heat loads that were observed during these tests should be thought of as 

merely a byproduct of increasing the frequency and contributing additional friction effects.  As 

shown in Fig. 2.20, these external heat load contribution loads were minimal, especially when 
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compared to the external heat loads that were present before the modifications to the test apparatus 

were made.  Every method, within reason, has been employed to minimize these heat inputs.  For 

instance, the heat exchanger is moved further away from the compressor pump heat sink, the air 

that cycles in the compressor pump is separate from the air in the heat exchanger due to the rubber 

tube isolator devices, a plastic thermal break is located between the heater section and the air 

plenum chamber, and a fan is used to blow ambient air over the test apparatus.  All of these efforts 

resulted in dramatic improvements in accuracy of the data.  When comparing the maximum 

temperature rise of the cold side air, the temperature rise was less than 0.5 °C over 420 seconds in 

the present experiment whereas it was formerly 10 °C over the same amount of time. 

 

 

Fig. 2.20. External heat input effects on fluid temperatures during startup 
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Uncertainty of the thermocouples in Fig. 2.

thermocouples.  The thermocouples measuring water had slightly 

and ± 0.13 °C for the hot and cold water thermocouples, respectively.  

 

2.2.2. UNCERTAINTIES IN RESULTS

 When analyzing values from the 

that the cold air temperature (and likewise, the hot air temperature, although not shown)  has a 

logical correlation with the pressure drop across the tube bundle and the position of the pistons in 

the compressor pump.  To clarify, tachom

on the y-axes of Fig. 2.21 since it

of the compressor pump cylinders reaches its top dead center (TDC) position, and thus, air 

movement ceases momentarily.

reflective sticker passes by the optical sensor with each rotation of the 

 

Fig. 2.21. Three cycles of raw temperature and pressure data at 6 Hz
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of the thermocouples in Fig. 2.20 was only ± 1.2	°C for the hot and cold side air 

The thermocouples measuring water had slightly lower uncertainties of ± 0.10 °C 

and ± 0.13 °C for the hot and cold water thermocouples, respectively.   

UNCERTAINTIES IN RESULTS 

When analyzing values from the raw data sampled at 1000 Hz in Fig. 2.21, it can 

that the cold air temperature (and likewise, the hot air temperature, although not shown)  has a 

logical correlation with the pressure drop across the tube bundle and the position of the pistons in 

To clarify, tachometer voltage does not correlate with either of the scales 

since it simply serves the purpose of indicating when the piston in one 

of the compressor pump cylinders reaches its top dead center (TDC) position, and thus, air 

ceases momentarily.  The tachometer data indicate a step function increase when the 

reflective sticker passes by the optical sensor with each rotation of the pulley.   

. Three cycles of raw temperature and pressure data at 6 Hz 
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that the cold air temperature (and likewise, the hot air temperature, although not shown)  has a 

logical correlation with the pressure drop across the tube bundle and the position of the pistons in 

not correlate with either of the scales 

simply serves the purpose of indicating when the piston in one 

of the compressor pump cylinders reaches its top dead center (TDC) position, and thus, air 

a step function increase when the 
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In Fig. 2.21, the cold air temperature curve does not follow a perfect sinusoidal shape, however, 

this can easily be explained by the location of the thermocouple relative to the air stream since the 

thermocouple junction is somewhat shielded in a pocket on the cold-side end cap of the heat 

exchanger.  The cold air thermocouple receives a blast of cold air as air leaves the tube bundle, but 

is insulated from the stronger blast of air upon its return from the compressor pump cylinder.  The 

maximum and minimum values on the cold air temperature curve follow the peaks on the pressure 

and tachometer curves, as expected.  Thermocouple error was too small to be shown in Fig. 2.21 

with error bars since it was only ± 1.2	°C for the hot and cold air thermocouples.  Pressure sensor 

error was also too small to be shown on Fig. 2.21 since it was only ± 0.5% maximum. 

 As noted previously, the piezoelectric pressure transducer was only used to determine the 

oscillation frequency rather than used for pressure data.  This was due to the pressure drop data 

being outside of the display range as it exceeded ± 3.5 kPa as indicated in Fig. 2.22.   

 

 

Fig. 2.22. One cycle of pressure drop data 
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While Fig. 2.22 clearly indicates the time taken for each cycle, it does not provide any information 

on the relative amplitudes of the pressure drop since the only complete set of pressure drop data is 

at the lowest frequency when the pressure drop, and thus, the turbulent effects of the air were not 

as large. 

 The uncertainties in the results of this research were evaluated using a steady-state 

method detailed by R. J. Moffat to determine the overall uncertainty [22].  As an example of 

Moffat’s method, the overall uncertainty in the heat transferred to the water, +, , will be calculated.  

+,  is defined as: 

 +, = 6, 	��	��O,� − �N,��)  (7) 

where 6,  is the volumetric flow rate of water, �� the isobaric specific heat of water, �O,� the hot 

water temperature, �N,� the cold water temperature, and ) the density of water.  All temperature 

data in the present experiment have been shifted up or down according to the calibration error 

determined from an ice bath test.  The remaining precision error is accounted for by using 

Moffat’s formula in (8) [22].  The steady-state relative error in the calculation of +,  is as follows, 

where the numerator is the precision error and the denominator is the maximum value of measured 

variable [22]: 

 �+,+, = 	���6,6, �� + ���O,��O,� �� + ���N,��N,� �����
 (8) 

where � indicates a finite change in the following variable.  In the experiment, �O,� was found by 

adding the temperature given by the differential thermocouple to the inlet water temperature value, 

�N,�, which is already accounted for in (8).  Therefore, the �O,� in (8) will be replaced with the 

precision error and maximum values recorded by the differential thermocouple measuring the 

temperature difference between the inlet and outlet water flows.  The overall uncertainty in the 

heat transferred to the water is calculated as follows [22]: 
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 �+,+, = 	��2.7 × 10� 	m*s1.1 × 10Y 	m*s �� + �0.10	℃38	℃ �� + �0.13	℃27	℃ ���
��
 (9) 

which yields a relative error of up to ± 5.0 8, or 2.5% of +,  when +,  is at the maximum tested heat 

rate of 202 W.  Note that the error in fluid properties that were referenced in the Engineering 

Equation Solver are considered to be negligible with respect to the variations in the measured data 

and do not appear in (8) and (9).  For a sample of the Engineering Equation Solver code used in 

this analysis, refer to Appendix A.   

 

2.3. PROCEDURE FOR ANALYSIS 

Two types of analyses are performed on the data: a dimensional and nondimensional 

approach.  In the dimensional approach, correlations for the overall heat transfer coefficients are 

reported; however, heat transfer data from oscillating flow experiments are more useful for 

comparison to other data when in terms of nondimensional parameters.  When data are presented 

in nondimensional form, a scaling and similarity procedure will still need to occur before the data 

from the present experiment can be applied to other heat exchangers.   

 

2.3.1. DIMENSIONAL APPROACH 

 The approach for determining the heat transfer coefficients was divided into three steps 

by necessity since there is no fully-encompassing algorithm for this process.  The overall heat 

transfer coefficient was determined first, followed by the outside heat transfer coefficient, so that 

the inside heat transfer coefficient could be isolated in (10) provided that all other symbols are 

known. The overall heat transfer coefficient, 5, is defined as: 

 5 = 1/ � 1ℎ] +  �� + 1ℎT� (10) 

where ℎ] is the heat transfer coefficient at the steel and water interface,   the tube wall thickness, 

��� the stainless steel tube wall conductivity, and ℎT the heat transfer coefficient at the steel and air 

interface.   
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The analytical method used to solve for the overall heat transfer coefficient involved 

Newton’s law of cooling to solve for the overall heat transfer coefficient, 5: 

 +, = 5	�>}	∆�1= (11) 

where +,  is the total heat rate transferred through the tube walls to the water, �>}� the average heat 

transfer area of the tube bank, and ∆�1= the log mean temperature difference defined as [23]: 

 ��1= = ��� − ���ln^��� ���⁄ _ (12) 

where for counterflow ��� and ��� are defined by [23]: 

 ��� = �O,> − �O,� (13) 

 ��� = �N,> − �N,� (14) 

where the subscripts ℎ and � denote the hot and cold fluid temperatures, respectively.  This 

approach was based on the assumption of constant surface temperature along the length of the 

tubes.  The heat rate value in (11) was determined to be the heat rate gain by the water, +,�, since 

this is the value that represents the heat that is transferred through all of the thermal barriers shown 

in Fig. 1.3.   

 Research by W. A. Khan et al. provided a helpful coefficient to modify the standard 

Nusselt number equation shown in (15) in order to find the outside heat transfer coefficient [24]: 

 $%] = ℎ]	�]�� = �	./�/�	�&�/* (15) 

where $%] is the Nusselt number for the outside of the tube bank, ℎ] the outside heat transfer 

coefficient, �] the outside diameter of the tubes in the tube bank, �� the thermal conductivity of 

the water, ./ the Reynolds number of the water which is defined in (2), �& the Prandlt number of 

the water, and � a coefficient determined experimentally by Khan et al. for staggered tube banks 

[24]:  

 � = 0.61	0(�.���01�.�Y*	�1 − 2	exp^−1.09	01_� (16) 
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where 0( is the transverse distance between tubes in the tube bank and 01 the longitudinal distance 

between tubes in the tube bank.  Khan et al. assures that (16) is valid for a dimensionless 

longitudinal pitch within the bounds of 1.05 ≤ ;1 ≤ 3, and a dimensionless transverse pitch within 

the bounds of 1.05 ≤ ;( ≤ 3 [24].  For the present experiment, ;1 is within these bounds at a value 

of 2.74; however, ;( slightly exceeds these bounds at a value of 3.16 [24].  Due to the minor 

differences in these tested parameters, Khan et al.’s coefficient will still be considered valid for 

the present experiment.  The last value that remains unsolved from (10) is the inside heat transfer 

coefficient, ℎT, however, all other symbols in this equation have known values, so (10) is simply 

rearranged to solve for ℎT.   
 

2.3.2. NONDIMENSIONAL APPROACH 

The development of a Nusselt number correlation for the overall heat transfer coefficient 

in a Stirling engine heat exchanger was out of reach since it would involve too many independent 

variables and many questions would arise on whether certain geometrical properties of the heat 

exchanger could adequately represent the heat exchanger as a whole.  The most useful form of the 

outcomes from the present experiment is thought to be the correlation between the Nusselt number 

for the oscillating air, $%T, and various other nondimensional parameters such as Reynolds 

numbers.  There are few Nusselt numbers that are presented for oscillating air flow, whereas there 

are numerous correlations for the Nusselt number for the unidirectional water flow over tube 

banks that can be combined with the present results to find the overall heat transfer coefficient 

[24], [6].  Therefore, only the correlation for the Nusselt number for oscillating air will be 

presented here and readers are recommended to defer to research performed by Khan et al. to find 

the particular correlation for other modes of heat transfer they may have in their heat exchanger 

[24].    

Most results from research on oscillating flows are reported in nondimensional 

parameters.   Therefore, in an attempt to do the same, the Nusselt number for air will be presented 

in terms of the nondimensional parameter(s) for which it is shown to be the strongest function.  In 

general, the Nusselt number is defined as: 
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 $% = ℎT 	��  (17) 

where, in the case of air, ℎT is the inside heat transfer coefficient, � the inner tube diameter, and � 

the thermal conductivity of air.  The Nusselt number in oscillating flow is generally a function of 

the standard Reynolds number and the kinetic Reynolds number, where the kinetic number is 

defined in (3) and should only include air properties and the diameter of the inside of the tubes.  

The standard Reynolds number is defined in a unique way for oscillating flow by F. de Monte et 

al. by [6]: 

 ./ = !, 	�O����	"  (18) 

where �� is the frontal, free-flow area inside the tube bundle, " the dynamic viscosity of air, �O 

the hydraulic diameter defined by [6]: 

 �O�� = 4	��	��T  (19) 

and  !,  is the average mass flow rate of air which is approximated by: 

 !, = )	%	�� (20) 

where ) is the density of air and % the velocity of air.  Due to the previously mentioned 

complications with obtaining direct measurements of the time-varying mass flow rate and velocity 

of air (as detailed in Chapter 2.2), the velocity of air was defined simply by: 

 % = 2	�	6��  (21) 

where � is the oscillatory frequency and  6 the volume of air displaced by the piston in the 

compressor pump.    

 

2.3.3. PROCEDURE FOR COMPARISON TO OTHER METHODS 

Only the values for inside heat transfer coefficients will be compared to other research 

since no other results or correlations have been presented in other research for heat exchangers 

that resemble the heat exchanger in the present experiment.  The method that will be used for 
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comparison is based on a correlation determined experimentally by Zhao and Cheng [10].  In their 

experiment, they developed a correlation for a space-time averaged Nusselt number for laminar, 

oscillating flow which is intended to emphasize the greater role played by the kinetic Reynolds 

number with respect to the dimensionless oscillation amplitude in their Nusselt number formulas 

[10].  Zhao and Cheng defined the space-cycle averaged Nusselt number as [10]: 

 $% = -,�	�T�^�� − �=_ (22) 

where �� is the tube wall temperature, �= the mean temperature of the working fluid, and -,� the 

rate of heat flux through the wall.  In the present research, however, (22) could not be used 

because the tube wall temperatures were not able to be measured.   To compare Zhao and Cheng’s 

correlation to the present results, the present data will be arranged in a form similar to Zhao and 

Cheng’s equation for the Nusselt number of air which is scaled down by the dimensionless 

oscillation amplitude raised to the power of 0.85 [10]: 

 $% ���.�Y⁄ = 0.02	./��.Y�* (23) 

where ./� is the kinetic Reynolds number defined previously in (3) and �� the dimensionless 

oscillation amplitude defined in (5) [10].  
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Chapter 3: RESULTS 

 All data presented in this section were obtained under steady-state conditions.  Steady 

state was defined as the point when the most variable temperature—the hot air temperature— did 

not change by more than ± 1.0 °C over a time period of 4 minutes as viewed on the LabVIEW 

virtual instrument display within the limits of the display rate of 1 Hz.  The display rate of 1 Hz 

should not be mistaken for the data sampling rate which was 1000 Hz.  Steady state was typically 

reached within 45 minutes after a cold start, but steady state was usually reached within 20 

minutes for every test thereafter. 

 

3.1. TEMPERATURES 

 On the basis of temperatures, the gap between the hot and cold side air temperatures is 

shown to close at an exponentially increasing rate as the oscillation frequency increases from 6.0 

to 19.3 Hz, as shown in Fig. 3.1.  

 

 

Fig. 3.1. Three cycles of raw data for air temperatures at various oscillation frequencies 
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Once again, error bars are not shown on Fig. 3.1 due to the extremely low uncertainties of ± 1.2	℃ 

for the hot and cold side air thermocouples.  Another feature of Fig. 3.1 is the definition of cooling 

and heating half-cycles as the air is pulsed back and forth over the hot and cold side 

thermocouples.  Three distinct cycles are visible in Fig. 3.1.  

 

3.2. HEAT TRANSFER COEFFICIENTS 

 The featured result from the present research is the overall heat transfer coefficient as a 

function of oscillation frequency.  While the frequency increases from 6.0 to 19.3 Hz in Fig. 3.2, 

the overall heat transfer coefficient increases accordingly with a power law fit from 21.5 to 46.1 

W	m�	K�.     

 

 

Fig. 3.2. Overall heat transfer coefficients as a function of oscillation frequency  
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rate and surface area for heat transfer.  The higher overall heat transfer coefficient at high 

oscillation rates is most likely the cause of the hot and cold air temperatures approaching each 

other in Fig. 3.1.  The relatively low water flow rate of 0.002 kg	s� (which is held constant in 

Fig. 3.2) tends to increase the overall heat transfer coefficient values by allowing the water more 

time to pick up additional heat to carry away from the system.  A low water flow rate is also 

important to this research because air is less efficient at transferring heat, and by slowing down the 

rate of water flow, the air is able to transfer a larger amount of heat to a given mass of water 

flowing through the heat exchanger.   

 Table 3.1 shows that the overall heat transfer coefficients increase as a function of 

increasing oscillation frequency—mainly due to the inside heat transfer coefficient.  In fact, the 

outside heat transfer coefficient should be independent of oscillation frequency (since the outside 

of heat exchange tubes are not in contact with an oscillating fluid).  The variation in ℎ] values in 

Table 3.1 is attributed to the variation in water temperatures at different frequencies which has a 

small effect on fluid properties of the water.  The minimum and maximum value of the heat 

transfer coefficients across all heat rates are shown in Table 3.1.  

 

Table 3.1. Heat transfer coefficients at various oscillation frequencies 

 5 

^W	m�	K�_ 
ℎT ^W	m�	K�_ 

ℎ] 

^W	m�	K�_ 
� = 6.0	Hz 24.5–28.7 25.7–30.4 

768–787 

� = 9.3	Hz 29.8–36.6 31.7–39.5 

� = 12.7	Hz 32.2–40.5 34.5–44.1 

� = 16.0	Hz 38.5–44.7 41.7–49.2 

� = 19.3	Hz 37.1–44.9 40.1–49.3 
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The value of the overall heat transfer coefficient and inside heat transfer coefficient are nearly the 

same, but the inside heat transfer coefficient increases slightly more with increasing oscillation 

frequencies.  The outside heat transfer coefficient is much larger than the others due to the greater 

efficiency of heat transfer at the water and tube wall interface when compared to the air and tube 

wall interface.   

 From the data in Table 3.1, it might appear that the inside heat transfer coefficient has 

reached a point of saturation or perhaps an optimum frequency for heat transfer since the inside 

heat transfer coefficient ranged from 41.7 to 49.2 at 16.0 Hz and from 40.1 to 49.3 at 19.3 Hz.  

Thus, the average inside heat transfer coefficient was higher at 16.0 Hz than at 19.3 Hz.  However, 

upon further inspection of this effect in Fig. 3.3, the slight differences in the inside heat transfer 

coefficient values become less significant when considering the ± 11% bounds of error on the 

inside heat transfer coefficient value.    

 

 

Fig. 3.3. Inside heat transfer coefficients as a function of oscillation frequency  
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Furthermore, most of the curves in Fig. 3.3 indicate that the inside heat transfer coefficients are 

slowly approaching a plateau and that neither a saturation point nor optimized frequency has been 

reached in this range with enough certainty to be conclusive.   

As another check on the data, the heat transfer coefficients are presented in terms of their 

inverses, or thermal resistances.  The overall resistance of the heat exchanger is defined as: 

 .]} K>11 = .T,N]L} + .N]L� + .],N]L} (24) 

and can be calculated using: 

 .]} K>11 = 15	�>} (25) 

 .T,N]L} = 1ℎT 	�>} (26) 

 .N]L� =  ��	�>} (27) 

 .],N]L} = 1ℎ]	�>} (28) 

 

where .]} K>11 is the overall thermal resistance, .T,N]L} the convection resistance on the inside of 

the tubes, 	.N]L� the conduction resistance through the tubes,  .],N]L} the convection resistance on 

the outside of the tubes, 5 the overall heat transfer coefficient, ℎT the inside heat transfer 

coefficient, ℎ] the outside heat transfer coefficient,  � the tube wall thickness, ��� the thermal 

conductivity of the tube wall, and �>}� the average heat transfer area.  Using (24)–(28), the 

thermal resistance values are shown in Table 3.2 using average values of the heat transfer 

coefficients. 

 

  



  42 

Table 3.2. Thermal resistance values 

¡¢r£¤k¥¥ ^K	W�_ 0.42 

¡¦,n¢§r ^K	W�_ 0.39 

¡n¢§¨ ^K	W�_ 4.3 × 10\ 

¡¢,n¢§r ^K	W�_ 1.9 × 10� 

 

Table 3.2 shows that the largest contributor to the overall thermal resistance is the convection 

thermal resistance on the inside of the tubes.  The thermal resistance on the outside of the tubes is 

only 5% of the total thermal resistance while the thermal resistance by conduction through the 

tubes is less than 1% of the total thermal resistance.  The differences between these thermal 

resistances are further emphasized in Fig. 3.4. 

 

 

Fig. 3.4. Thermal resistances as a function of frequency 
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As shown in Fig. 3.4, the overall thermal resistance and thermal resistance of the inside of the 

tubes are nearly the same and decrease as the oscillation frequency increases from 6.0 to 19.3 Hz.   

 

3.3. CORRELATIONS IN TERMS OF NONDIMENSIONAL PARAMETERS 

In general, the Nusselt number for oscillating air flow is commonly thought to be 

influenced by the Reynolds number, ./, and the kinetic Reynolds number parameter, ./�, as 

reported in works by Tang and Cheng, Bouvier et al., and N. Chen and F. Griffin [11], [15], [4].  

From a statistical analysis of nonlinear fits of these parameters to the $%T values, it was found that 

only one of these parameters was necessary to sufficiently explain the variance in the Nusselt 

number.   

In order to determine correlations for the Nusselt number, three suspect nondimensional 

parameters were initially involved in a factor analysis.  These nondimensional parameters were: 

./, ./�, and �& for air.  The corresponding values for these nondimensional parameters were 

entered into STATISTICA (a powerful statistical analysis software program) to determine the 

eigenvalues for the four factors (including $%) using the method of principal components to 

extract the nondimensional parameters that account for the most variance in the dependent 

variable, $% [25].  By using principal components, the total variability in a component is 

considered in the analysis (rather than using only the variability in one component which is 

common to other components) [25].  By inspection of eigenvalues obtained by this method and 

their relation to the percent of total variance, it was found that if only the first two factors were 

extracted ($% and ./�) they would account for 95% of the cumulative variance [25].  If the 

additional factor, ./, was also extracted, it would correspond to just under 5% of the remaining 

cumulative variance, leaving the contribution of �& to the cumulative variance negligible [25].  

The decision on the number of factors to extract is at the discretion of the author, but one criterion 

that will be used, the scree test, has been proven through practice [25].  In the scree test, the 

eigenvalues are plotted as a function of the various factors considered in the analysis [25].  Factors 
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to the right of the interval where the curve levels-off sharply are eliminated [25].  This can be seen 

with eigenvalues for the nondimensional parameters as shown in Fig. 3.5.   

 

 

Fig. 3.5. Scree plot of eigenvalues 

 

Fig. 3.5 suggests that only factor 1, $%, and factor 2, ./�, should be extracted for the 

subsequent analysis since ./ borders the region at which random error takes a more significant 

effect on the data [25].  STATISTICA is then used to correlate the Nusselt number in terms of a 

power equation which yielded the best least-squares fit with the kinetic Reynolds number.  This 

correlation is presented in (29): 

 $%T = 0.70	./��.\� (29) 

where $%T is the Nusselt number on the inside of the tubes.  Generally, the Nusselt number is 

presented in terms of multiple nondimensional parameters such as both ./ and ./�, but in the 

present research, both ./ and ./� show equally-strong correlations with $% to the point where 

the extraction of an additional parameter for (29) does not yield appreciable improvement to the 

correlation.  This is due to the fact that data entered into both of the variables ./ and ./� were 

derived from the same sources.  For instance, by inspection of (18)–(21), it can be seen that the 
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only directly-measured data from the present experiment that factored into the calculation of ./ 

and ./� was the oscillation frequency.  All other variables in these equations were based on either 

the measured oscillation frequency, or on fluid properties determined with Engineering Equation 

Software at the corresponding, measured air temperatures.    

The correlation between $%T and ./� in (29) can be viewed in Fig. 3.6.    

 

 

Fig. 3.6. Correlation between Nusselt and Reynolds numbers 
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Fig. 3.7. Measured Nusselt number compared to predicted Nusselt number  

 

The 50% and 95% confidence bands in Fig. 3.7 represent the confidence intervals of the predicted 

(rather than measured) values.   

 

3.4. COMPARISON TO OTHER METHODS 

In order to compare the present data to Zhao and Cheng’s correlation for the space-time 

averaged Nusselt number in turbulent and periodically reversing air flow, the present data need to 

be adapted into the form of Zhao and Cheng’s correlation in (23) [10].  The data obtained are 

plotted in Fig. 3.8.   
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Fig. 3.8. Comparison of present data to data collected by Zhao and Cheng [10] 
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is proportional to the inside heat transfer coefficient.  However, this is not the case as shown in 

Fig. 3.8 and leads to some uncertainty in whether the definition of �� in (5) is appropriate for the 

present experiment.  Without further studies, the effect of flow regime on the differences between 

the two experiments cannot be determined.   
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Chapter 4: CONCLUSIONS 

 This research contributes additional experimental data to the under-researched field of 

oscillatory flow heat exchange in Stirling engine coolers.  A method of determining the inside, 

outside, and overall heat transfer coefficients is presented which yields results with reasonable 

trends.  The outside heat transfer coefficients were found to be significantly higher than the inside 

heat transfer coefficients, ranging from 768 to 787 W	m�	K�, while the inside heat transfer 

coefficients ranged from 26 to 49 W	m�	K�.  This study also details the design and development 

of a heat exchanger test apparatus as well as the effective measures taken to minimize external 

heat inputs and the impacts of electrical noise on the data.     

 Significant results from this study include: 1) the overall heat transfer coefficient 

increases as a function of increasing oscillation frequency from 21.5 to 46.1 W	m�	K� and is 

independent of heat rate; 2) the Nusselt number for the inside of the tubes is a strong function of 

the kinetic Reynolds number and a nondimensional correlation is provided in (29); and 3) the test 

apparatus has been successful throughout its design and development due to the minimization of 

error in the data obtained. 

Although there were no experimental data from similar experiments to compare to, the 

comparison between the present data and Zhao and Cheng’s correlation is reasonable and the 

differences can be easily explained by geometrical differences in the test setup [10]. 
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Chapter 5: FUTURE WORK 

 To produce the most meaningful data, various tube bundle geometries should be tested 

with a wider range of input heat rates.  This would allow for more opportunities to scale data 

obtained from the test apparatus to Stirling engines currently in use.  From the beginning, the heat 

exchanger test apparatus was designed to be adaptable to testing a wide variety of coolers and 

other heat exchangers, such as regenerators.  In future experiments, the test apparatus may be 

expanded to accommodate both a cooler and regenerator so that they may be tested together. 
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APPENDIX A  

ENGINEERING EQUATION SOLVER CODE 
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 The following Engineering Equation Solver (EES) code was used as a convenient way of 

determining fluid properties at the temperatures and pressures used during the experiments.  Three 

cycles of data sampled at 1000 Hz at each frequency and heat rate were imported into EES using 

lookup tables and then averaged to yield the average cycle temperatures.  A sample of code taken 

for 6 Hz (360 RPM) at a heat rate of 201 W is shown below.  

 

 P_ambient=101.325;  

"Approximate dewpoint temperature" 

DP=(5/9)*(25-32) 

"Geometric properties" 

V_a_disp=(((pi*(65/2)^2)*50)/1e9) 

d_h=0.049*0.0254 

d_o=0.083*0.0254 

A_avg=((97*pi*(d_o)*0.1314)+(97*pi*(d_h)*0.1314))/2  

d_avg=(d_h+d_o)/2 

A_in=(97*pi*(d_h)*0.1314); A_out=(97*pi*(d_o)*0.1314); L=0.1314 

t_w=0.017*0.0254 

x_max=1.406 

L_d_ratio=L/d_h 

d_L_ratio=d_h/L 

A_f_CR=(0.1314*1.7*0.0254)-(0.1314*11*0.0254*0.083) 

A_CR=(L*1.7*0.0254)-(L*11*0.0254*0.083) 

"Oscillation rate" 

Period_CR_[1]=(360/60)^(-1) 

Frequency_[1]=1/Period_CR_[1] 

"Temperatures measured with thermocouples" 

T_ca_avg_CR_[1]=avgLookup ('T4 360', 'T_ca', 1, 494) 

T_ha_avg_CR_[1]=avgLookup ('T4 360', 'T_ha', 1, 494) 
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T_a_avg_CR_[1]=(T_ca_avg_CR_[1]+T_ha_avg_CR_[1])/2 

T_cw_CR_[1]=26.27 

T_dw_avg_CR_[1]=avgLookup ('T4 360', 'T_dw', 1, 494) 

T_hw_CR_[1]=T_cw_CR_[1]+abs(T_dw_avg_CR_[1]) 

T_w_avg_CR_[1]=(T_cw_CR_[1]+T_hw_CR_[1])/2 

"Air Properties" 

P_a_avg_CR_[1]=P_ambient 

k_a_CR_[1]=Conductivity(AirH2O,T=T_a_avg_CR_[1], D=DP, P=14.65) 

"Heat rate transferred to the water" 

cp_w_CR_[1]=Cp(Water,T=T_w_avg_CR_[1],P=P_ambient) 

rho_w_CR_[1]=Density(Water,T=T_w_avg_CR_[1],P=P_ambient) 

m_dot_w_CR_[1]=(2.5e-005*rho_w_CR_[1])/11 

q_w_eqlty_CR_[1]=(m_dot_w_CR_[1]*cp_w_CR_[1])*(T_hw_CR_[1]-T_cw_CR_[1]) 

"Overall heat transfer coefficient" 

Delta_T1[1]=(T_ha_avg_CR_[1]-T_hw_CR_[1]) 

Delta_T2[1]=(T_ca_avg_CR_[1]-T_cw_CR_[1]) 

T_lm_CR_[1]=(Delta_T1[1]-Delta_T2[1])/ln(Delta_T1[1]/Delta_T2[1]) 

U[1]=q_w_eqlty_CR_[1]/(A_avg* T_lm_CR_[1]) 

"Outside heat transfer coefficient" 

x_l=0.00274 

p_t=0.00316 

sc_t=p_t/d_avg 

sc_l=x_l/d_avg 

C_Khan=(0.61*sc_t^0.091*sc_l^0.053)/(1-2*exp(-1.09*sc_l)) 

mu_w_CR_[1]=Viscosity(Water,T=T_w_avg_CR_[1],P=P_ambient) 

u_max[1]=rho_w_CR_[1]/(m_dot_w_CR_[1]*A_f_CR) 

V_max[1]=m_dot_w_CR_[1]/(rho_w_CR_[1]*A_CR) 

Re_w[1]=(rho_w_CR_[1]*d_o*V_max[1])/mu_w_CR_[1] 
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Pr_w[1]=Prandtl(Water,T=T_w_avg_CR_[1],P=P_ambient) 

Nuss_o[1]=C_Khan*(Re_w[1])^(1/2)*(Pr_w[1])^(1/3) 

k_w_CR_[1]=Conductivity(Water,T= T_w_avg_CR_[1], P=P_ambient) 

h_o[1]=(C_Khan*(Re_w[1])^(1/2)*(Pr_w[1])^(1/3)*k_w_CR_[1])/d_o 

"Inside heat transfer coefficient" 

h_a[1]=(-1*k_w_CR_[1]*h_o[1]*U[1])/(h_o[1]*t_w*U[1]+k_w_CR_[1]*(U[1]-h_o[1])); 

"Comparison to method by Zhao and Cheng" 

Nuss_Zhao[1]=(h_a[1]*d_h/k_a_CR_[1]) 

rho_a_avg_CR_[1]=(Density(AirH2O,T=T_ha_avg_CR_[1],D=DP,P=P_a_avg_CR_[1])+Density

(AirH2O,T=T_ca_avg_CR_[1],D=DP,P=P_a_avg_CR_[1]))/2 

mu_a_CR_[1]=((Viscosity(AirH2O,T=T_ha_avg_CR_[1],D=DP,P=P_ambient))+(Viscosity(AirH

2O,T=T_ca_avg_CR_[1],D=DP,P=P_ambient)))/2 

nu_a_CR_[1]=(mu_a_CR_[1])/(rho_a_avg_CR_[1]) 

Re_omega_X_[1]=(2*pi*Frequency_[1]*d_h^2)/(nu_a_CR_[1])  

 
  



 

 

 


