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ABSTRACT  
   

Immunosignaturing is a new immunodiagnostic technology that uses 

random-sequence peptide microarrays to profile the humoral immune response. 

Though the peptides have little sequence homology to any known protein, binding 

of serum antibodies may be detected, and the pattern correlated to disease states. 

The aim of my dissertation is to analyze the factors affecting the binding patterns 

using monoclonal antibodies and determine how much information may be extracted 

from the sequences. Specifically, I examined the effects of antibody concentration, 

competition, peptide density, and antibody valence. Peptide binding could be 

detected at the low concentrations relevant to immunosignaturing, and a 

monoclonal's signature could even be detected in the presences of 100 fold excess 

naive IgG. I also found that peptide density was important, but this effect was not 

due to bivalent binding. Next, I examined in more detail how a polyreactive antibody 

binds to the random sequence peptides compared to protein sequence derived 

peptides, and found that it bound to many peptides from both sets, but with low 

apparent affinity. An in depth look at how the peptide physicochemical properties 

and sequence complexity revealed that there were some correlations with properties, 

but they were generally small and varied greatly between antibodies. However, on a 

limited diversity but larger peptide library, I found that sequence complexity was 

important for antibody binding. The redundancy on that library did enable the 

identification of specific sub-sequences recognized by an antibody. The current 

immunosignaturing platform has little repetition of sub-sequences, so I evaluated 

several methods to infer antibody epitopes. I found two methods that had modest 
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prediction accuracy, and I developed a software application called GuiTope to 

facilitate the epitope prediction analysis. None of the methods had sufficient 

accuracy to identify an unknown antigen from a database. In conclusion, the 

characteristics of the immunosignaturing platform observed through monoclonal 

antibody experiments demonstrate its promise as a new diagnostic technology. 

However, a major limitation is the difficulty in connecting the signature back to the 

original antigen, though larger peptide libraries could facilitate these predictions. 
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PREFACE  

 Chapter 2, “Antibodies as Biomarkers”, describes a number of experiments 

demonstrating the immunosignaturing concept.  The introduction lays out the 

justification for using antibodies as biomarkers and explains the advantages of the 

immunosignaturing method over other approaches.  The experimental data 

presented starts from the simplest case of monoclonal antibody profiles, and works 

through several levels of increasing complexity including various mixing experiments, 

responses to immunizations, finally presenting human immune response data.  By 

illustrating these different levels of complexity the manuscript attempts to 

reconstruct how the immunosignaturing method works.   

 This project was the result of the effort of a number of individuals.  S. A. 

Johnston developed the concept of immunosignaturing.  P. Stafford and S. A. 

Johnston were involved in the experiment design for all of the experiments in this 

project.  P. Stafford also performed most of the statistical analysis and drafted the 

manuscript.  J. B. Legutki was involved in development of the assay and quality 

control procedures, performing the mouse infections and immunizations, and 

assaying the human influenza patients.  D. M. Magee contributed to the design and 

analysis of the immunization and blocking experiments.   J. Galgiani was involved in 

the experiments utilizing the human Valley Fever sera samples.  All co-authors 

contributed to manuscript revisions. 

My role in this project was primarily in performing and analyzing the results 

of the experiments involving monoclonal antibodies.  I performed the experiments 

shown in Figure 2.2 that demonstrate that monoclonal antibodies have unique 
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signatures on the array.  I carried out the dilution series experiments in Figure 2.3 as 

well as estimated the half maximal binding concentrations.  I designed the custom 

arrays shown in Figure 2.4, ran those arrays, and analyzed the data.  I also designed, 

executed, and analyzed the Fab vs. IgG experiment in Figure 2.5, and the 

competition experiment in Figure 2.6.  I also contributed to writing parts of the 

manuscript pertaining to the monoclonal experiments and revising the manuscript as 

a whole. 

There are a few places where my interpretation of the data differs from what 

is presented in the manuscript.  Figure 2 shows the monoclonal binding patterns as 

median normalized data in a heatmap form.  While this does nicely illustrate that 

antibodies have unique patterns on the array, this view of the data fails to show how 

different the antibodies in the number of peptides that they bind above background.  

I believe that this is an important phenomenon to understand in predicting the 

capabilities and limitations of immunosignaturing.  I have made some observations 

of trends in which antibodies bind more peptides than others that I discuss in 

Chapter 7.  I also think that the dilution experiments (Figure 3) and competition 

experiment (Figure 6) demonstrate that the antibodies are not typically saturating the 

binding sites on the peptides at the concentrations we typically use.  I think that this 

is an important point, as it would imply that patterns of different antibodies should 

be additive, which simplifies the interpretation of immunosignaturing results.  I also 

discuss in more detail how the concentration at which these experiments were run 

compares to the antibody concentrations you would expect in a real immune 

response in my Conclusions Chapter. 
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CHAPTER 1 

INTRODUCTION 

 Antibodies have a number of characteristics that make them appealing as 

biomarkers.  The immune system is constantly monitoring changes in the body and 

new antibodies are produced when anything recognized as foreign is found.  Though 

the newly recognized antigen may be at a very low concentration, a B-cell that 

produces an antibody that binds to it may rapidly clonally expand, thus providing a 

natural amplification of the signal.  While antibody response is most classically 

thought of in the context of infectious and autoimmune disease, antibodies are 

increasingly being discovered in other diseases including cardiovascular disease, 

neurodegenerative disease, and cancer (Brettschneider et al. 2005; Cho-Chung 2006; 

Erkkila et al. 2000).  In the case of autoimmune and other chronic diseases, the 

antibody response may develop in the early stage of the disease, well before the onset 

of symptoms, thus enabling pre-symptomatic diagnosis (Arbuckle et al. 2003; 

Chapman et al. 2007; Nell et al. 2005; Whittingham et al. 1997).   Antibodies are 

rather stable, which facilitates sample processing and enables the use of archived 

serum samples.  Here I will review the current literature concerning harnessing the 

information in the antibody response, including the production, binding 

mechanisms, and cross reactivity of antibodies, current technology for discovering 

and detecting disease relevant antibodies, and methods for determining antibody 

targets and epitopes. 
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Production and Function of Antibodies 

 Each immunoglobulin molecule is composed of two identical heavy chains 

and two identical light chains.  Heavy chains are composed of three or four constant 

domains and one variable domain.  Light chains contain only one constant domain 

and one variable domain.  The variable regions of the heavy and light chains form 

the paratope, or antigen binding site.  The constant regions determine the antibody 

isotype that is responsible for the effector function.  Each immunoglobulin is a “Y” 

shaped molecule with two identical paratopes.  The variable domains are produced 

through a unique process of gene rearrangement. Antibody production consists of 

two stages: non-antigen dependent and antigen dependent.  The quantitative aspects 

of each stage are summarized in Table 1.  In the non-antigen dependent stage, the 

pre-B-cell undergoes a process of gene rearrangement to generate the variable 

regions of the antibody.  This process is capable of producing on the order of 1016 

unique B-cell receptors (Schroeder and Cavacini).  However, only 10-20% of these 

rearrangements result in functional B-cell receptors; those with non-functional B-cell 

receptors undergo apoptosis.  Each immature B-cell expresses a single arrangement 

so that all antibody molecules expressed by each B-cell have identical paratopes.  The 

naïve B-cells have a half-life of only four days without receiving further survival 

signals, which results in a turnover of a million cells per day.  At this point the 

antibody is primarily expressed as a membrane bound form and serves as a B-cell 

receptor.  The immature B-cell will not divide or further differentiate unless it is 

stimulated by binding of antigen to its receptor. 
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Table 1.1  Quantitative Summary of Antibody Production 

Stage Diversity of BCR Population 
Dynamics 

Quantity of 
Soluble 
Antibody 

Immature B-
cells 

1016
  possible 

arrangements,  
10-20% result in 
functional BCR 

Constant population 
turns over at a rate 
of a million per day 

Negligible 

Activated B-
cells 

A small number of B-
cells clonally expand, 
typically have low 
affinity for the antigen 

A population of 
~107 short lived 
plasma peaks about 
a week after antigen 
exposure  

~100ug/ml 

Germinal 
Center B-cells 

Undergo somatic 
hypermutation 
accumulating 2.8 
mutations per day, 1% 
of mutations are 
favorable 

Process takes about 
two weeks and 
results in about a 
million clonally 
related B-cells 

Negligible 

Affinity 
Matured B-
Cells 

Have an average of nine 
somatic mutations, and 
around 100 fold 
improved affinity to the 
antigen 

Long lived plasma 
cells may survive in 
the bone marrow 
for decades, 
capacity is about a 
billion cells, with 
0.1% specific to a 
particular antigen 

~10ug/ml per 
antigen 

Innate-like B 
Cells  
(B1 Cells) 

Germline encoded BCR, 
some biases exist 
compared to immature 
BCR repertoire 

Represent a small 
percentage of 
circulating B-cells, 
secret antibody 
without antigen 
dependent signaling 

~1mg/ml 

 

 When a B-cell receptor binds an antigen, the response depends on the 

context and presence or absence of other signals.  B-cells are screened for self-

reactivity and those that are self-reactive undergo apoptosis or enter an anergic state.  

When the antigen binding occurs in the context of particular co-stimulatory signals, 
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it can either become short lived plasma cell that will secrete antibody of the IgM 

isotype for a few days before undergoing apoptosis (Smith et al. 1996) or enter a 

germinal center where it undergoes affinity maturation and further differentiation.  

Germinal centers, which are specialized sites where B-cells undergo affinity 

maturation, are usually seeded within a few days after the initiation of the immune 

response (Allen, Okada, and Cyster 2007). During the process of somatic 

hypermutation, mutations into the variable regions of the antibody are introduced at 

a rate of up to 10-3 mutations per base pair per cell cycle (Schroeder and Cavacini).  

B-cells whose modified receptor has sufficient affinity to compete for binding to the 

antigen and also receive appropriate signals from T-cells are selected for survival 

(Allen, Okada, and Cyster 2007).  These B-cells may either undergo further rounds 

of mutation or differentiate into memory B-cells or plasma cells.  At this time class 

switch recombination may also occur to generate IgG or IgA antibodies (Schroeder 

and Cavacini).  Plasma cells are terminally differentiated cells that are responsible for 

secreting large quantities of antibody.  In the peripheral circulation, plasma cells will 

only survive for several weeks.  However, those that migrate to specialized niches in 

the bone marrow or sites of chronic inflammation may continue to produce antibody 

for years.  The bone marrow can support approximately 109 plasma cells, and 

approximately 106 will enter the bone marrow from any given immune response.  

These 106 plasma cells are capable of maintaining serum antibody concentrations 

around 67nM for a specific antigen (Radbruch et al. 2006).  The half life of IgG 

ranges from one to three weeks depending on the isotype (Morell, Terry, and 

Waldmann 1970).   
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 The primary function of antibodies is generally thought to be to recognize 

pathogens, and either destroys them and/or alerts other branches of the immune 

system.  The functions that antibodies are capable of include complement fixation, 

opsonization, neutralization, and signaling through Fc receptors.  The function is 

dependent on the antibody isotype and the context.  In some cases neutralizing 

antibodies are sufficient to prevent or clear an infection.  Anti-self antibodies are 

present in many autoimmune diseases and may play a causal role in some.  The role 

of antibodies in other disease that are not typically thought to be immune mediated 

is just beginning to be elucidated.  There have been many reports of the existence of 

antibodies to tumor-associated autoantigens in cancer patients, but their role in 

controlling or enabling tumor growth is still unclear (Reuschenbach, von Knebel 

Doeberitz, and Wentzensen 2009).   Similarly, a number of autoantibodies have been 

identified in association with Alzheimer ’s disease, though the extent to which each 

has pathogenic or protective role in disease progression requires further study 

(Colasanti et al. 2010).  Conversely, in atherosclerosis, a pathogenic role of anti-

oxidized low density lipoprotein IgG antibodies and a protective role of IgM 

antibodies to the same targets have been demonstrated, but their potential as 

biomarkers of disease progression remains controversial (Hansson and Hermansson 

2011).  

 

Antibody Recognition Mechanisms 

 On a conceptual level, antibody-antigen interactions may be represented as 

distances in a shape space.  The more complementary the antibody is to the antigen, 



   
6 

the closer the two are in shape space, and this distance would be proportional to the 

affinity of the interaction.  This shape space complementary is not meant to literally 

represent geometric complementary as in a lock and key binding model, but can 

represent any type of binding interaction.  Lapedes and Farber developed a method 

to transform affinity data to coordinates in a shape space (Lapedes and Farber 2001).  

This method was later applied to describe the relationship between genetic distance 

and antigenic distance between strains of the influenza virus (Smith et al. 2004).  

They also found that the dimensionality of the shape space was approximately five 

dimensions.  A comparison between the shape space distance and the number of 

mutations between two strains of influenza viruses found that the relationship was 

fairly linear, though some mutations had a disproportionately large effect. If these 

abstract dimensions could be related to physiochemical descriptors such as geometric 

complementary, electrostatic interactions, etc. the shape space concept would be an 

even more powerful framework for understanding and predicting antibody 

recognition, particularly for understanding and predicting the cross-reactivity of 

unrelated entities.   

  The current understanding of the biophysical basis of antibody recognition is 

based primarily on crystal structures of antibody-antigen complexes.  Antibody 

binding generally fits the lock and key model with the epitope and paratope having 

complementary shape and local charge.  There are some examples were induced fit 

has been found to be important to antibody recognition (Braden and Poljak 1995).  

Particularly, there is some evidence that germline encoded variable regions have 

more conformational flexibility which allows for lower specificity and lower affinity 
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binding and the process of affinity maturation increases the rigidity of the antibody 

(Manivel et al. 2000).  Additionally, the antibody structure may also depend on the 

type of antigen that it recognizes.  For example, antibodies that recognize peptides 

tend to have a more grooved paratope compared to antibodies that bind proteins 

(Chen, Van Regenmortel, and Pellequer 2009).  For the purpose of using antibodies 

as biomarkers, it will be important to understand the biophysical characteristics of 

disease relevant antibodies to optimize detection.  

 Antibodies are “Y” shaped molecules with two identical binding sites at the 

ends of the arms.  The hinge is flexible allowing the antibody to bind two antigens 

appropriately spaced apart.  The affinity of the antibody to a target that allows both 

arms to bind will approach the product of the affinity of each individual arm.  This 

bivalent binding is physiologically important allowing antibodies to be especially 

effective at binding to the repetitive features on the surface of bacteria and viruses.  

Recently, an example of heterobivalent binding was observed where an anti-HIV 

monoclonal antibody had moderate affinity for the HIV spike protein and low 

affinity for the viral lipid membrane, which led to enhanced affinity for the virus by 

being able to bind both simultaneously (Mouquet et al. 2010).  When measuring 

antibody affinity in vitro it is important to keep in mind whether the assay facilitates 

two arm binding or only permits one arm binding (Kaufman and Jain 1992). 

 

Antibody Specificity and Polyreactive Antibodies 

Much of our conceptual framework for understanding the adaptive immune 

response lies around the central principle of distinguishing self from non-self.  It is 
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commonly held that the immune system is capable of generating antibodies that 

recognize virtually any molecular shape.  A great diversity of antibody shapes is 

present in the immature B-cell population.  Those that recognize shapes found in the 

self are eliminated, altered, or suppressed at checkpoints both during and after 

maturation.  Only when a naïve B-cell encounter foreign antigen does it clonally 

expand and differentiate to produce soluble antibody, as well as trigger other arms of 

the immune response.  Under this simplified framework, the production of 

antibodies against self-molecules would only be expected as a pathological feature of 

autoimmune diseases. 

There is a class of antibodies that does not fit neatly into this framework.   

These antibodies, known as natural antibodies, are produced in the absence of 

foreign immune stimulus.  Many of these antibodies will react with self-antigens.  

They often have multiple specificities.  Typically, they are of the IgM isotype, though 

IgG and IgA natural antibodies have also been identified.  Produced by a specialized 

subset of B-cells, called B1 cells, they tend to show less deviation from the germline 

sequences.  They may play a role in fighting pathogens, as they have been shown to 

bind to some pathogen associated molecular patterns, such as bacterial 

lipopolysaccharide (LPS), so may serve an innate-like function (Zhou, Tzioufas, and 

Notkins 2007).  Another function may be anti-cancer activity as they can recognize 

the altered glycosylation patterns of tumors (Vollmers and Brandlein 2007).  

Apoptotic cells may also be targeted by natural antibodies, serving to help clean up 

cell debris.   Merbl et al. used a microarray approach to simultaneously measure 

binding of total natural immunoglobulin to several hundred potential auto antigens 
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simultaneously, which gives a much more global view of what types of antigens 

natural antibodies recognize (Merbl et al. 2007).  They were able to identify a 

common pattern of autoantigen reactivity in newborns, suggesting these antibodies 

play an important role early in life.  The importance and mechanisms of these 

beneficial functions is just beginning to be elucidated. 

Though antibodies raised to a specific target are often expected to only bind 

to the target, “specific” antibodies are frequently found to cross-react with unrelated 

targets.  For example monoclonal and polyclonal antibodies to yeast proteins were 

found to cross-react to other yeast proteins to varying degrees when tested against a 

whole yeast proteome microarray (Michaud et al. 2003).  A similar result was found 

when commercially available monoclonals were used to probe a human proteome 

array (Kijanka et al. 2009).  A variable level of cross-reactivity has also been observed 

between a number of unrelated pathogens (Vigil, Davies, and Felgner 2010).  While 

these examples with protein arrays may be the most recent and comprehensive looks 

at antibody cross-reactivity, the first observations of antibody cross-reactivity were 

identified decades ago.  In the 1980’s several studies demonstrated that monoclonal 

antibodies raised to viruses could cross-react with normal human tissues and proteins 

(Fujinami et al. 1983; Srinivasappa et al. 1986).   The role of such molecular mimicry 

in triggering autoimmune disease is still a matter of much research and debate 

(Blank, Barzilai, and Shoenfeld 2007; Oldstone 1998; Tsuchiya and Williams 1992). 
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Antibody Profiling Technologies 

 The potential of antibodies as biomarkers is increasingly being recognized 

and the number of technologies to detect them is growing.  An ideal antibody 

profiling platform would be able to detect antibodies to any type of target.  It should 

also be able to detect many antibodies in parallel, as well as being amenable to 

process a large number of sera samples for clinical studies.  The dynamic range 

should be large to be able to detect antibodies varying greatly in affinity and 

abundance.  The reproducibility of the measurements is also critical.  Biologically 

relevant information about the antibodies target would be ideal.  Finally, the cost 

may not be prohibitive.  There are a number of technologies that meet some several 

of these requirements (Table 2), but none has yet to emerge that satisfies them all. 

 
Table 1.2  Antibody profiling technologies 

Assay Number of 
markers/ 
samples per 
assay 

Dynamic Range/ 
Reproducibility 

Types of 
antibody 
targets 
detected 

Antigen/ 
Epitope 
information 

Assay 
Cost/ 
Serum 
Amount 

Spotted 
Protein 
Arrays 

hundreds to 
thousands of 
proteins/ 
dozens of 
samples 

Low Dynamic 
Range/High Batch 
to Batch Variability 

protein 
targets, 
partially 
denatured, 
no PTM’s 

Antigens 
tested 

High/ 
μLs 

Cell Lysate 
Arrays 

several 
thousand 
fractions/ 
dozens of 
samples 

Low Dynamic 
Range/High Batch 
to Batch Variability 

protein 
targets, 
partially 
denatured, 
with 
PTMS and 
disease 
relevant 
mutations/ 
isoforms 

not directly, 
may use 
other 
techniques 
such as mass 
spec to 
identify 
proteins in 
the lysate 

Mid/ 
μLs 
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Table 1.2 Antibody profiling technologies (continued) 
 
Assay Number of 

markers/ 
samples per 
assay 

Dynamic 
Range/ 
Reproducibility 

Types of 
antibody 
targets 
detected 

Antigen/ 
Epitope 
information 

Assay 
Cost/ 
Serum 
Amount 

NAPPA hundreds to 
thousands of 
proteins/ 
dozens of 
samples 

Low Dynamic 
Range/Moderate 
Reproducibility 

protein 
targets, 
functionally 
folded, little 
PTMs 

Antigens 
tested 

Mid/ 
μLs 

Luminex Up to a 
hundred 
proteins 
/dozens of 
samples 

Low Dynamic 
Range/Good 
Reproducibility 

protein 
targets, 
partially 
denatured, 
no PTM’s 

Antigens 
tested 

High/ 
μLs 

LIPS One protein at 
a time/dozens 
of samples 

High Dynamic 
Range/Good 
Reproducibility 

protein 
targets, 
folded 
though some 
interference 
from tag 

Antigens 
tested 

Mid/ 
μLs 

phage 
display 
random 
peptide 
library 

~109peptides/ 
one sample at a 
time 

not quantitative, 
sequences of top 
hits only 

mimotopes 
of any 

motifs 
sometimes 
enable 
prediction of 
linear epitope 

Low/ 
mLs 

T7-
Pep/Phip 
Seq 

~106 peptides/ 
several samples 
at time 

Low Dynamic 
Range/Moderate 
Reproducibility 

36 amino 
acid protein 
fragments 

linear 
epitopes 

Mid/ 
μLs 

Epitope 
Peptide 
Arrays 

thousands to 
tens of 
thousands of 
peptides/ 
dozens of 
samples 

Moderate 
Dynamic 
Range/Good 
Reproducibility 

<20 amino 
acid peptides 

linear 
epitopes 

Low/ 
μLs 

Immuno-
signaturing 

104 peptides/ 
dozens of 
samples 

Moderate 
Dynamic 
Range/Good 
Reproducibility 

mimotopes 
of any 

little directly Low/ 
μLs 
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Protein microarrays are a common approach to profiling the humoral 

immune response, which are solid phase assays utilizing a library of recombinant 

proteins.  Human proteins may be used for autoantibody discovery or pathogen 

proteins for infectious disease applications (Bacarese-Hamilton, Gray, and Crisanti 

2003; Mattoon et al. 2005; Robinson et al. 2002).  In the case of infectious disease, 

the pathogen must be identified and sequenced before a microarray may be designed.  

If the pathogen has a large proteome, extensive bioinformatics analysis may be done 

to predict which proteins are most likely to be immunogenic in order to identify a 

reasonable number to express and purify (Vigil, Davies, and Felgner 2010).  For both 

human and pathogen protein arrays, membrane proteins are particularly challenging, 

though specialized techniques have been developed to print them (Fang, Frutos, and 

Lahiri 2002).  In either case antibody detection is limited to the antigen set available, 

including the presence or absence of the appropriate conformation, multimeric state, 

and post-translational modifications.  A variation on the standard protein array called 

Nucleic Acid Programmable Protein Arrays (NAPPA) spots the DNA encoding the 

protein, an in vitro transcription/translation reaction is performed on the surface, and 

the protein product is captured on the same spot.  This method has better success at 

making membrane proteins and preserving protein functions than traditional protein 

arrays (Ramachandran et al. 2008).  An approach that retains the post-translational 

modification involves fractionating the proteins from a cell lysate and spotting the 

fractions in microarray format (Caiazzo et al. 2011).  However, these arrays are 

limited in their reproducibility and it may not be straightforward to identify the 

reactive antigen in the fraction (Anderson and LaBaer 2005).  Another approach to 



   
13 

detect antibodies to post-translational modifications is to chemically synthesize 

modified peptides (Kracun et al. 2010; Papini 2009) 

An alternative to including all of the possible antibody targets in a library is 

to detect antibodies through their cross-reactivity.   The most common method for 

identifying molecular mimics of antibody targets is through random peptide library 

phage display.  This method has enabled the discovery of peptides that cross-react 

with antibodies to many types of targets, including proteins, polysaccharides, and 

DNA (Meloen, Puijk, and Slootstra 2000).  Phage display random peptide libraries 

typically consists 109 different peptide sequences.  Through an iterative process of 

selection and amplification, peptides that bind to the antibody are identified.  

However, those phage displaying peptides that facilitate growth have a clear 

advantage, and can out compete those that have peptides that are better binders 

(Derda et al. 2011).  These peptides, known as mimotopes, have also been 

discovered using smaller synthetic peptide libraries (Meloen, Puijk, and Slootstra 

2000).  These peptide mimotopes may serve as reagents to detect disease specific 

antibodies.   

 Peptide microarrays arrays provide a more efficient alternative to quickly and 

simultaneously measure the activity of a peptide library.  Peptide microarrays have 

been shown to be a reliable semi-quantitative screening tool for both identifying 

binders and discovering diagnostic signatures.  Fitting binding curves yields a 

reasonable approximation of SPR affinity measurements (Tapia et al. 2007).  Off 

rates could also be estimated using peptide microarrays using time resolved imaging 

(Greving et al. 2010).  They have been most commonly used to map linear antibody 
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epitopes, as well as study protein-protein binding, and enzyme substrate interactions 

(Reimer, Reineke, and Schneider-Mergener 2002).    In these cases peptide sequences 

are typically based on existing protein sequences and substitution variants of those 

sequences.   There has been some use of peptide microarrays for immunodiagnostic 

applications, either utilizing known epitopes or for epitope discovery 

(Uttamchandani and Yao 2008).  Mimotope peptides discovered from a library 

selection approach have also shown diagnostic potential   

Another mimotope based approach called immunosignaturing utilizes a 

random-sequence peptide microarray to profile the humoral immune response.  By 

combining the high throughput advantages of the microarray approaches and the 

unbiased sampling of the phage display library, this approach has the potential to 

profile the antibody response to any disease.  By screening sera directly on a random-

sequence peptide microarray, diagnostic patterns may be discovered.  The first proof 

of concept study on influenza has demonstrated that the immunosignature is 

reproducible and stable over time (Legutki et al. 2010).  The immunosignaturing 

technique has also been successfully applied to distinguish Alzheimer’s (Restrepo et 

al. 2011), valley fever, type 1 diabetes, and several types of cancer (unpublished data).  

The immunosignaturing approach has some clear advantages in being amenable to 

processing large numbers of samples for clinical studies.  An individual slide costs 

less than one hundred dollars to produce and process compared to several thousand 

dollars for commercially available protein arrays.  Each slide has two replicate arrays 

and less than one microliter of sample is required per replicate.  The current CIM lab  
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setup enable the processing of up to 48 samples per day and additional slide 

processing stations could easily increase that number.   

 While these protein and peptide library screening approaches may be very 

useful in discovering novel antibody biomarkers, they are not necessarily ideal assays 

for use in a clinical setting.  A clinical diagnostic requires a higher standard of 

reproducibility and shouldn’t require specialized equipment or skills to run.  

Additionally, current regulations require that only markers that have shown to be 

informative are included in the test.  ELISA’s are standard clinical assays to detect 

antibodies, but require a large amount of material and are not amenable for 

multiplexing.  Luminex technology requires less sample and antigen than ELISA’s 

and also enables multiplexed measurements.  Proteins or peptides are coupled to 

color coded beads, and antibody binding is detected with secondary labeled with 

another color.  About a hundred different colored beads are available allowing up to 

a hundred different antigens to be measured simultaneously (Burbelo et al. 2010).  

While there are some luminex assays that are used as clinical diagnostics, it does 

require specialized equipment and requires large amounts of purified antigen.  

Another standard clinical assay is a radiobinding assay, which uses a radiolabeled 

antigen in an immunoprecipitation assay.  This solution phase assay has 

demonstrated superior sensitivity, specificity, and reproducibility for detecting 

antibodies to several autoimmune diseases compared to solid phase ELISA assays 

(Liu and Eisenbarth 2007).  However, these assays have declined in use because of 

the extra precautions and licensing required for using radioactivity.  A more recently 

developed solution phase assay called luciferase immunoprecipitation (LIPS), should 



   
16 

have the advantages in sensitivity and specificity of the radiobinding assay without 

requiring radioactivity (Burbelo et al. 2007).  This assay involves generating 

recombinant proteins with a luciferase tag for use in an immunoprecipitation assay.  

LIPS has shown to be amenable to screening small viral proteomes (Burbelo et al. 

2011) as well as for adaptation to a microfluidic point of care device (Zubair et al. 

2011).  Even the most efficient methods of recombinant protein production cannot 

compare to peptide synthesis in scalability, stability, ease of characterization, and 

production cost.  Perhaps a solution phase assay to measure antibody binding to 

peptides could be a good option for a clinical immunodiagnostic. 

 

Antibody Target Discovery and Epitope Mapping 

 When antibodies are discovered that serve as reliable biomarkers of a 

particular disease, understanding their role in the disease etiological could be of 

critical importance to developing new preventative or therapeutic strategies.  The 

first step in determining the antibodies role would likely be to identify the molecule 

that it was generated against.  While some of the techniques to profile the antibody 

response directly uncover the biologically relevant interactions, others simply 

generate a signature or set of markers.  Because of the cross-reactive nature of 

antibodies, the identification of a molecule that an antibody interacts with does not 

necessarily imply that the antibody was raised against that molecule.  However, there 

is no straightforward way to observe which antigen actually initiates the antibody 

response, so identifying the molecules that the antibody interacts with is the logical 

first step in analyzing the antibody response. 
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 Protein microarrays are an obvious method to identify the target of an 

unknown antibody response.  However, only targets that are present on the array 

with the relevant conformations and post-translational modifications may be 

identified.  Another common approach is 2D-electrophoresis, immunoblot, mass 

spectrometry strategy.  Proteins from a relevant cell lysate are separated in two 

dimensions by electrophoresis, transferred to a membrane and probed with the 

serum of interest.  The blotting pattern is compared to a control blot and spots that 

are different are removed and identified by mass spectrometry.  This method is 

prone to error because the most abundant protein in a spot is not necessarily the 

antigenic protein.  A recent paper has demonstrated that antigens may be identified 

more accurately if multiple separation methods are used and the overlap between 

those methods is identified (Mun et al. 2010).  This method does not appear to be 

amenable to processing a large number of clinical samples.   

 Another group has shown that phage display peptide libraries may be used to 

identify an antibody response to an unknown pathogen.  In this technique known as 

epitope mediated antigen prediction (E-MAP), antibodies are panned against a 

random peptide phage display library.  Motifs are identified from the peptide 

sequences and used to search against a protein database (Bastas et al. 2008).  This 

method has been used to identify the target antigen in a multiple myeloma 

(Sompuram et al. 2008).  A more straightforward approach to mapping epitopes also 

using phage display is to use cDNA library rather than a random peptide library.  An 

important limitation of the cDNA approach is that only a small proportion of the 

library contains in frame translations of the cDNA.  A recent method developed by 
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Larman et al. overcomes this limitation by constructing the library with synthetic 

oligonucleotides so that all of the protein fragments are designed to be in frame 

(2011).  They also developed a selection scheme that eliminates the traditional 

rounds of amplification that introduce bias.  Phage immunoprecipitation paired with 

deep sequencing enabled a more efficient identification of binders (Larman et al. 

2011).  While this approach appears more amenable to high throughput analysis than 

traditional phage display, the deep sequencing would significantly increase the cost.  

Both of these phage display techniques will only capture linear epitopes. 

 Once the antibody target has been identified, it is often of interest to locate 

the exact binding site, or epitope of the antibody.  The most straightforward method 

to map epitopes is to simply have peptides synthesized tiling the protein sequence 

and measure binding to each peptide.  However, this method is only able to map 

linear epitopes.  Crystallography is probably the most definitive method to map 

conformational epitopes or those involving post-translational modifications or non-

protein targets.  However, crystallography is quite time consuming and not always 

successful.  There has been great interest in using phage display random peptide 

libraries to map conformational epitopes.  Many algorithms and software 

applications have been developed to address the problem of aligning a linear 

sequence to the structure of a protein, but the accuracy of these methods is still 

rather low when tested on a benchmark dataset (Sun et al. 2011).  These methods are 

only applicable when the structure of the protein has previously been solved.  

 The characteristics of antibodies and previous clinical studies presented here 

demonstrate the promise of antibodies as biomarkers.  The immunosignaturing 
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technology has clear advantages as representing a universal platform for detecting 

any disease.  The cost and standardization of the assay should enable clinical studies 

of the size necessary to properly validate a biomarker.   The major limitation of the 

immunosignaturing approach is it does not provide a straightforward link to 

biologically relevant antigens.  In this respect, other antibody profiling technologies 

could be extremely complementary.  For example, sera samples identified to have a 

common immunosignature could be pooled before being used to probe a protein or 

lysate array.  It may also be possible to use the peptides identified in the 

immunosignature to capture antibodies of a common specificity for further 

characterization.  If a sophisticated bioinformatics method could be developed to 

predict epitopes from the peptide sequences, it would greatly enhance the 

information content of the immunosignaturing approach. 

 

Project Overview  

 A novel approach to profiling the humoral immune response called 

immunosignaturing was conceived by S. A. Johnston and is being developed by 

many others in the Center for Innovations in Medicine.  The immunosignaturing 

concept arose from the observation that antibodies are generally not perfectly 

specific and may cross-react with a variety of unrelated targets.  Peptides in particular 

are adept at molecular mimicry and it is possible to find peptide ligands for 

antibodies raised against both protein and non-protein targets (Meloen, Puijk, and 

Slootstra 2000).  The current immunosignaturing platform consists of a library of 

10,000 random sequence peptides covalently attached to a glass microscope slide.  
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The peptides are twenty amino acids long with a three amino acid constant linker.  

The remaining seventeen positions are randomized, with equal frequencies of all 

amino acids except for Cys, which is used for attachment.  The immunosignaturing 

assay is similar to a miniaturized ELISA: diluted serum is incubated with the 

microarray and antibody binding is detected with species specific fluorescently 

labeled secondary antibody.  The goal is to identify a common binding pattern 

among sera samples that are diagnostic of the disease of interest.  Preliminary studies 

in influenza and Alzheimer’s have already demonstrated the feasibility of this 

concept (Legutki et al. 2010; Restrepo et al. 2011).  The focus of my project has been 

to characterize the immunosignaturing platform using monoclonal antibodies with 

an emphasis on extracting information from the peptide sequences. 

 The first question that I addressed is how monoclonal antibodies behave on 

the array and the extent to which monoclonals bind to the random sequence 

peptides (if at all).  Since it will be important to know what types of antibodies may 

be easier or harder to detect in immunosignaturing experiments, I also looked for 

trends explaining the differences observed between monoclonals.  The concentration 

of specific antibody clones can be quite low in the sera, so it was important to look at 

the sensitivity of the assay.  The peptide spacing and the effect of antibody bivalency 

were other issues I examined.  The serum contains a mixture of 109 different 

antibodies of different specificities, so it is important to know how antibodies behave 

in a complex mixture.  Mixtures of monoclonal antibodies were used to examine 

how they may compete.  Monoclonal spiked in to an excess of pooled naïve  
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immunoglobulin simulate detecting a disease specific antibody among normal serum 

antibodies. 

 Polyreactive antibodies are an important part of the antibody repertoire, and 

it is important to know how they contribute to an immunosignature.  It has been 

shown that polyreactive antibodies tend to bind to more targets but with weaker 

affinity than antibodies raised to a specific target.  Chapter 3 addresses how this 

comparison holds up for random-sequence peptides.  I also address how peptides 

tiling natural protein sequences compare to the random-sequence peptides in binding 

to the polyreactive antibody.   

 One advantage of working with peptides is that many of the physiochemical 

properties can be calculated directly from the peptide sequences.  For the purpose of 

immunosignaturing, it is important to know to what extent the overall properties of 

the peptides drive binding compared to the extent to which the binding is truly 

sequence dependent.  The ability to discriminate between different antibodies is 

essential to the immunosignaturing concept, so I also analyze how the properties 

correlate with sequence specificity (Chapter 4).  Since antibodies typically recognize 

an epitope of 5-12 amino acids in length, there are potentially several antibody 

binding sites on each peptide.  However, the 10K immunosignaturing platform only 

covers about 5% of all possible 5mer sequences, which does not permit analysis by 

n-mers of relevant lengths.  I did have the opportunity to work with a prototype of a 

100K peptide chip with limited amino acid diversity and shorter peptides, which gave 

me the opportunity to see how short 5mer sequences were able to drive binding. 
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 It would be of great utility to be able to predict the epitope(s) driving the 

immune response from the immunosignaturing data.  In order to address the 

feasibility of this task, I used a set of known epitope monoclonal antibodies.  I first 

examined whether peptides with sequence similarity to the epitope would be more 

likely to bind that antibody.  Then I identified two approaches to predict the 

epitopes.  The first was a sequence alignment approach using the RELIC program 

(Mandava et al. 2004) and the second was a motif-based approach using the glam2 

program (Frith et al. 2008).  I used these results to extrapolate the feasibility of using 

the random-sequence peptide array data to simply map a monoclonal epitope or to 

search a database for an unknown antigen.   

 While the RELIC program was found to have some utility in mapping, it was 

found to have a number of critical limitations, particularly its availability.  The 

demand for a program to analyze peptide and protein sequences in a similar manner 

with improved flexibility and statistical analysis, motivated me develop the 

application GuiTope described in chapter 6.  This program is designed to identify 

regions of similarity between a set of peptides and protein(s) of interest.  It allows 

the user to access to all of the relevant parameters in a graphical user interface, and 

will estimate the statistical significance of the results.  In addition to demonstrating 

its utility in analyzing my peptide array data, I also show its utility in analyzing phage 

display data.  
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CHAPTER 2 

ANTIBODIES AS BIOMARKERS OF HEALTH STATUS 

 

Abstract 

Identifying new, effective biomarkers for diseases is proving to be a 

challenging problem.  We have proposed that antibodies may offer a solution to this 

problem.  The physical features and abundance of antibodies make them ideal as 

biomarkers.  Additionally, antibodies are often elicited early in the ontogeny of 

different chronic and infectious diseases.  We reported that antibodies from patients 

with infectious disease and separately those with Alzheimer’s disease display a 

characteristic and reproducible “immunosignature” on a microarray of 10,000 

random sequence peptides.  Here we investigate the physical and chemical 

parameters underlying how immunosignaturing works.  We first show that a variety 

of monoclonal and polyclonal antibodies raised against different classes of antigens 

produce distinct profiles on this microarray and the relative affinities are determined.  

A proposal for how antibodies bind the random sequences is tested.  Sera from 

vaccinated mice and people suffering from a fugal infection are individually assayed 

to determining the complexity of signals that can be distinguished.  Based on these 

results, we propose that this simple, general and inexpensive system could be 

optimized to generate a new class of antibody biomarkers for a wide variety of 

diseases. 
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Introduction  

The effort to make medicine preventative should include the development of 

systems to detect disease before the appearance of major symptoms.  The value of 

early detection is widely accepted and has been the spur to develop new biomarkers 

of disease that enable earlier diagnosis and treatment.  Over 100,000 biomarkers have 

been reported in the literature to date (Kurian et al. 2009) yet there are only 43 

approved by the FDA (Amur et al. 2008) including 19 genomic markers for drug use 

(FDA 2010).  This low return on investment for biomarker discovery suggests that 

new approaches are needed.  Here we characterize a method that has recently been 

proposed as an alternative for biomarker discovery. 

Discovery of biomarkers for early diagnosis of disease poses exceptional 

demands.  For example, in the case of cancer, in order to detect a small number of 

cells initiating the disease one has to overcome the blood dilution problem.  For 

example, if 106 initiating cancer cells release 1000 molecules each of a biomarker into 

five liters of blood at steady state, the concentration of this biomarker would only be 

3x10-14M.  Clearly, it would be an advantage if the response to the biomarker could 

be amplified.  Antibodies are ideal in this sense.  An activated B cell produces 5000-

20,000 antibodies per minute (Cenci and Sitia 2007; Sulzer et al. 1993) and the cell 

itself replicates every ~70hr (Cooperman et al. 2004) with a lifespan of up to 4 ½ 

months (Forster and Rajewsky 1990; Hao and Rajewsky 2001) leading to ~1011 

amplification of specific signal in a week.  Unpurified antibodies are stable in blood, 

unlike other biomarkers, allowing even historical samples to be used in testing 

(Geijersstam et al. 1998). 
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There are three key issues relative to using antibodies as biomarkers of early 

disease.  Do they respond to diseases other than infections?  Do they respond early 

in the course of disease?  Can these antibodies be identified with a simple and 

inexpensive detection system? 

There are reports in diabetes (Bonifacio et al. 2000), arthritis (Thurlings et al. 

2006), and cancer (Stockert et al. 1998) that the humoral response is activated 

specifically and early in these chronic diseases.  A number of autoantibodies have 

been identified that appear often years before the disease is diagnosed (Arbuckle et 

al. 2003b; Hampton 2003; Scofield 2004).  In the case of Type I diabetes, antibodies 

against GAD, IA2 and insulin are found in various combinations well before the 

onset of clinical disease (Leslie, Atkinson, and Notkins 1999).  In patients with 

paraneoplastic syndrome (PNS), specific neurological symptoms appear years before 

a cancer is detected (Darnell and Posner 2003; Gultekin et al. 2000; Voltz 2002).  

The immune response to the nascent tumor reacts with neurons to elicit neurological 

symptoms (Elrington et al. 1991) that correlate with future tumor appearance.  These 

examples for cancer, diabetes and arthritis also address the second issue: is there an 

immune response among different individuals that appears early in patients with the 

same disease?  The fact that the same autoantigens, or symptoms in the case of PNS, 

commonly occur indicates that antibodies might also be consistent across patients. 

The third issue, and the one we address here, is how to detect the 

informative antibodies in an efficient and simple way.  Most antibody biomarkers 

discovered to date were the product of arduous research.  Protein microarrays have 

facilitated this process (Roche et al. 2008) by immobilizing most of the proteins from 
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a pathogen or human onto a glass slide, but these arrays are expensive, exclude non-

transcribed antigens, and are pathogen or auto-antibody specific.  The ProtoArrayTM 

v5 of Life Technologies currently has ~9000 unique human proteins spotted and 

these are being used to discover autoantigens associated with a specific disease.  

However, only autoantigens are discovered and the cost impedes epidemiology-sized 

studies.  A more complicated approach has been to biochemically fractionated 

cellular proteins, spot the fractions and react the fractions with the case and control 

sera (Hanash 2003) and while this system does use authentic material, it is limited by 

having no control over the relative amounts of the proteins dispensed and require 

cells from the case subjects’ tissue. 

Screening for antibody reactivity to random peptides has been generally 

successful using phage or mRNA display of random 8-12 amino acid sequences.  

Pasqualini and Ruosiahti (1996) panned a phage library against sera from cancer and 

healthy subjects to find phage that were preferentially bound by the cancer associated 

antibodies.  This method is unbiased as to the nature of the antigen, and the 

antibody can be captured (if arduously).  Given that random sequence peptides can 

yield mimotopes of almost any type of antigen (Adda et al. 2002), any disease-

associated antigen could theoretically be detected.  However promising this method 

appeared, to date this approach has not produced disease biomarkers for a number 

of reasons.  A serious limitation is that the recurrent panning of the phage is subject 

to many influences besides just binding of the antibody, nor does this protocol lend 

itself to processing large numbers of samples quickly. 
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In order to discover and display relevant antibodies contained in the 1010 

antibody complexity in the blood simultaneously, we explored a universal technology 

for antibody biomarker discovery that combines simple, rapid and inexpensive assays 

from microarrays with the enhanced breadth of the ligand repertoire found in phage-

based systems.  We created microarrays with only 10,000 random sequence peptides 

but chose a relatively long length (17 amino acids + 3 residue linker) to allow each 

peptide to encompass much more complexity than typical epitope peptides.  The 

random sequences allow an unbiased display of antibody binding; the length 

provides many possible epitope positions per peptide and (potentially) allows for 

some structural complexity.  The array format allows the assay to be run without the 

biological complications of phage display and high-speed piezo printing onto 

commercially produced substrate allows several thousands of microarrays to be 

produced inexpensively per month.  We have recently demonstrated the potential 

utility of these arrays by immunosignaturing vaccines, infections and Alzheimer’s 

disease (Legutki et al. 2010; Restrepo et al. 2011).  In order to utilize this technology 

as a clinical diagnostic, we must first characterize the physical and chemical 

properties of antibody binding to the peptide microarray.   

 

Materials and Methods 

Peptide synthesis and microarray construction 

The peptide microarray consists of 10,000 20-residue peptides of 17 random 

sequence amino acids, with a fixed C-terminal linker of Gly-Ser-Cys-COOH, 

synthesized by Alta Biosciences, Birmingham, UK.  The synthesis scale was 2.5uM 
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(~1mg total at 75% purity) with 2% of the peptides tested at random by mass 

spectrometry.  Dry peptide was brought up in 100% dimethyl formamide until 

dissolved, then diluted 1:1 with purified water pH 5.5 + 0.5x PBS pH 7.2 to a final 

concentration of ~1mg/ml for printing.  Gold Seal glass microscope slides were 

obtained from Fisher (Fair Lawn, NJ, cat# 3010) and treated with aminosilane, 

activated with sulfo-SMCC (Pierce Biotechnology, Rockford, IL) creating a 

maleimide-activated surface designed to react with the peptide’s terminal cysteine.  

Spotting was done with a Telechem Nanoprint 60 using 48 Telechem series SMP2 

style 946 titanium pins which deposit ~500 pL of peptide per spot.  The spotting 

environment is 25oC, 55% humidity.  Fluorescent fiducials are applied asymmetrically 

using Alexa-647 and Alexa-555-labeled bulk peptides.  Slides are stored under argon 

at 4°C until used.  Quality control consists of imaging the arrays by laser scanner 

(Perkin-Elmer ProScanArray HT, Perkin Elmer, Wellesley, MA) at 647nm to image 

the spot morphology.  Print batches have <30% CV (coefficient of variance) average 

across all peptides.  Data extraction uses GenePix Pro 6.0 (Molecular Devices Inc., 

Sunnyvale, CA), data analysis uses R and GeneSpring 7.2 (Agilent, Santa Clara, CA). 

 

Binding sample to microarrays 

Slides were blocked with 1X PBS, 3% BSA, 0.05% Tween 20, 0.014% β-

mercaptohexanol for 1hr at 25oC in a darkened humidified chamber, then sera or 

antibodies were diluted in 3% BSA, 1X PBS, 0.05% Tween 20 pH 7.2 to a 10nM 

concentration for monoclonal antibodies or a 1:500 dilution for mouse and human 

sera, and allowed to bind for 1 hour at 37oC at 20 RPM rotation to the microarray 
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surface.  Later slides (Figures 2.8 and 2.9) were processed using the Tecan HS4800 

Pro Hybridization Station using custom programs that mirrored these manual steps.  

Slides were washed 3x 5’ with 1X tris-buffered saline (TBS), 0.05 tween 20 pH 7.2 

followed by 3 washes with distilled water.  The slides were dried by centrifugation 

and images were recorded using the Agilent ‘C’ Scanner at 100% laser power (SHG-

YAG laser@532nm or HeNe laser@633nm), 70% PMT.  

 

Antibody Detection 

Each antibody or IgG fraction was detected by biotinylated secondary 

antibody followed by streptavidin-conjugated Alexafluor 555 or 647 (see Table 1 for 

antibodies used).  Secondary antibodies were incubated at a concentration of 5nM, 

streptavidin at a concentration of 1nM.  Single-color experiments were performed 

exclusively, but dye choice depended on availability.  Detection wavelength did not 

affect resolution, dynamic range or reproducibility. 
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Table 2.1: List of antibodies used in Figure 2.2, their epitope (if known), the isotype 
and source. 
Protein Antibody Epitope Isotype Company Secondary 

Tubulin DM1A AALEKD (387-
392) 

IgG1 
kappa 

Labvision Invitrogen HL 

p53 (Ab1) PAb240 RHSVV (212-217) IgG1 LabVision Invitrogen HL 
p53 (Ab8) DO-7, 

BP53-12 
DLWKLL (21-26) IgG2b, 

IgG2a 
LabVision Invitrogen HL 

Interleukin2 LNKB-2 KPLEEVLNL (64-
72) 

IgG1 Santa Cruz  
Bio 

Invitrogen HL 

MHC class 
I 

MHC 3D IgG1 MBL Int’l Bethyl 

H1N1coat 
protein 

H1N1 1, 2 
and 3 

Unknown IgG1 US Bio Invitrogen HL 

Transferrin HTF-14 N-term of 
transferrin 

IgG1 Abcam Invitrogen HL 

Transferrin 11D3 Unknown IgG1 Abcam Invitrogen HL 
Transferrin 1C10 Unknown IgG1 Abcam Invitrogen HL 
2E4 polyreactive  IgM A. Notkins Novus 
B78 autoantibody GAD65 protein IgG1 A. Notkins Novus 
B96 autoantibody GAD65 protein IgG1 A. Notkins Novus 
Herceptin HER2-NEU Unknown IgG1 Genentech Novus 
8 pooled 1C10, endorphin, IL2, TP, DM1A, p53AB1, p53Ab8, LNKB2 
 

Antibody blocking with recombinant protein  

Blocking for the dnaX experiment was done by pre-incubating anti-dnaX 

antisera with His-tagged recombinant dnaX protein for two hours at 25oC.  The 

immune complexes were removed from the solution by incubation of antibody-

bound dnaX with nickel Sepharose (Amersham, Piscataway, NJ) for two hours 

followed by centrifugation.  The supernatant was quantitated for protein 

concentration and processed for binding to the microarrays.  Negative control was 

anti-dnaX antisera incubated with an irrelevant His-tagged protein (a fusion of F1-V 

from Yersinia pestis).  
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Quality Control 

Our microarray manufacturing process requires that 3 slides per 136-slide 

batch are quality checked using pooled human naïve serum.  We examine batch-to-

batch correlations extending minimally 5 print batches.  Typical array-to-array 

correlations are >0.93 and batch-to-batch correlations >0.89. 

 

Statistical Analysis 

Statistical analysis of microarray data was done using GeneSpring 7.3.1 and R 

by first importing image-processed data from GenePix Pro 6.0 as gpr text files.  

Preprocessing of raw data: median normalization and log10 transformation.  Statistical 

tests: Student’s T-test or 1-way ANOVA with 5% Family Wise Error Rate multiple 

testing corrections.  The 95th percentile minimum detectable fold-change across three 

technical replicates averaged ~1.3-fold (Stafford and Brun 2007). 

 

Human Subjects 

Human subjects were consented and de-identified according to IRB 

Protocol# 0905004024, Arizona State University.  Blood samples of 5ml were taken 

as noted in the manuscript. 

 

Animal Care 

Use of animals was approved by the Animal Care and Ethics Committee of 

Arizona State University (IACUC#10-1099R).  All animals were anaesthetized using  
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isofluorane or a cocktail of ketamine, xylazine and acepromazine.  Animals were 

sacrificed with CO2. 

 

Antibodies and Immunizations: 

For the dnaX  vaccine (DNA polymerase III subunit gamma/tau 

[Chlamydophila abortus S26/3]; CAH63776), 9 CBA/J mice were immunized via 

genetic immunization (Stemke-Hale et al. 2005; Tang, DeVit, and Johnston 1992) 

with a plasmid construct encoding the open reading frame for dnaX with and 

without a genetic adjuvant of heat-labile enterotoxin (LTA/LTB).  Immune serum 

was collected 60 days after a prime and two genetic boosts. 

 

Results   

Our basic premise is that the antibody profile from an individual reflects 

their health status.  If this profile can be displayed on a sufficiently complex array, 

the particular responses to chronic diseases will be apparent.  We manufactured 

microarrays onto which 10,000 random-sequence 20-mer peptides were printed.  

Each peptide is (from NH3 to COOH termini) 17 residues of any amino acid except 

cysteine followed by GSC as the linker.  The GS amino acids offer rotational 

freedom and the C-terminal cysteine was used to attach the peptide to the surface 

through a maleimide linkage (Figure 2.1, right) onto activated aminosilane slides, 

purchased from Schott, Inc. (Mainz, Germany).  Since the peptides have no 

relationship to any natural sequence (Halperin, Stafford, and Johnston 2011), the 

same array can be used to profile any disease, any species.  The sample is diluted, 
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applied to the array and allowed to bind.  The array is washed and detected with a 

fluorescently-labeled secondary antibody to the appropriate primary antibody 

isotype.  The array is washed, dried and scanned using a conventional microarray 

scanner.  Figure 2.1 left shows the image of a typical slide:  on the left, a naïve 

individual and right, a day-21 post-seasonal flu vaccine recipient.  The insets show 

peptides that bind differentially. 

 

 

Figure 2.1  Image of the peptide arrays.  The microarray is created in a 2-up format, 
with 10,000 peptides on top and bottom of each slide.  In this false-color image, 
human naïve serum was applied to top the microarray (left), day 21 post-influenza 
vaccine serum was applied to the bottom (right).  The yellow boxes in the small 
images indicate peptides that show differential binding.  Spots are 120um in diameter 
with intensity values ranging from ~100 to 65,000 relative fluorescence units.  
Correlation coefficients across technical replicates are typically 0.95 to 0.99.  The 
attachment chemistry is shown on the right with an example peptide attached to the 
slide through the cysteine to a maleimide linker. 
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Monoclonal Antibody Profiles   

We first asked whether well-characterized antibodies produce discernible 

profiles on the array and whether those profiles were unique.  It has been reported in 

the literature that monoclonal antibodies do bind to random peptide sequences 

(Halperin, Stafford, and Johnston 2011; Reineke et al. 2002), however we wished to 

systematically validate the underlying principals behind this observation.  In Figure 

2.2 the relative binding of antibodies to a subset of the peptides on the array is 

portrayed in a heatmap, where blue is low binding and red represents high binding.  

272 peptides were selected by ANOVA with a 5% FWER with p<1x10-12, 

representing peptides that were most consistently different across the antibodies 

listed in the figure legend.  Peptides and antibodies are arranged using hierarchical 

clustering with Euclidean distance as the measure of difference (GeneSpring 7.2.1, 

Agilent Technologies, Santa Clara, CA).  A wide variety of commercial antibodies 

were used in this experiment including those to phosphorylated or glycosylated 

proteins, against both conformational and linear epitopes.  The important 

interpretation of this heatmap is that monoclonal antibodies have reproducibly 

discernible signatures of binding to random peptides.  LDA (Linear Discriminate 

Analysis) using these 272 peptides produced a 0% cross-validation error suggesting 

that this method could be used to classify different antibodies.  This was an 

important finding and was critical in designing and understanding subsequent 

experiments.  If this finding could be applied to complex mixtures of antibodies, 

perhaps one signature could be discernible from another when those two antibodies 

were physically mixed together.  We diluted p53Ab1 into p53Ab8 (top of Figure 2.2).  
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The signatures shown here suggest that the p53Ab1 signature is discernible at a 

lower concentration than p53Ab8 but there are still a few peptides specific to Ab8 

discernible at a near equimolar ratio.  The lower heatmap in Figure 2.2 shows the 

technical replicates of the 10 most differential peptides (X-axis) across these 

antibodies (Y-axis), at p<8.23x10-23.  As few as 10 different peptides are able to 

produce a distinct and reproducible signature that distinguishes this group of 

antibodies from each other; reproducibility is extremely high.  

The actual signals span >3 logs of dynamic range; technical replicates had 

correlation coefficients 0.92 to 0.99 with an average CV (coefficient of variation) of 

~14% and a minimum detectable fold-change of 1.3-fold per 2 replicate arrays at the 

95th percentile (Stafford and Brun 2007).   We believe the binding to the arrays is 

largely driven by interaction of the variable region of the antibody and the peptides 

for two reasons.  First, the binding patterns for each antibody was different, even 

those of the same isotype from the same species.  Second, when a directly labeled 

monoclonal antibody (p53Ab1, IL2 and 11D3 were tested) was competed with 10-

fold excess Fc protein, there was no effect on the immunosignature. 
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Figure 2.2  Antibodies React with Random Sequence Peptides.  Top:  A heatmap 
represents relative binding of antibodies to 267 ANOVA-selected peptides at 
p<1x10-12 (X-axis) relative to their associated antibody (Y-axis).  The colored boxes 
represent the class of epitope for the particular antibody (left).  Blue and red in the 
heatmap indicate low and high binding respectively.  The average of three technical 
replicates is shown per antibody, expect IL2 which had 2.  Data is median 
normalized per array and log10 transformed prior to plotting.  Hierarchical clustering 
is used to group the peptides (X-axis), no grouping was done on the Y-axis.  Some 
proteins have more than one monoclonal antibody represented here (11D3, HTF14 
and 1C10 are all against human Transferrin and p53Ab1 and p53Ab8 are both 
against human TP53).  In the large heatmap we examined the outcome of mixing 
two different antibodies against human TP53: Ab1 and Ab8.  The top row shows the 
p53Ab1 signature; the ratio between Ab1 and Ab8 is reversed until the 6th row which 
is only Ab8.  Ab8 possesses a far less apparent signature than Ab1; there are but a 
few peptides that recognize Ab1 when any Ab8 is present (~15 peptides to the far 
right).  The next test was whether an equimolar mixture of 8 antibodies (IL2, 
LNKB2, 11D3, p53A1, H1N1, DM1A, TNFa, and 1C10) would yield a monotonic 
signature.  The ‘8 Antibodies mixed’ row shows reduced signature complexity, but 
far from monotonic.  The poly-reactive antibody 2E4 has low binding overall 
(Notkins 2004) but binds almost every peptide on the microarray at some level.  The 
significance of these poly-specific antibodies is being investigated (Dimitrov et al. 
2010; Halperin, Stafford, and Johnston 2011).  Bottom:  The small heatmap depicts 
the three technical replicates per antibody individually plotted using only the 10 most 
significant peptides at p<8.23x10-23.  This heatmap indicates the high reproducibility 
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of the system and the small number of peptides needed to simultaneously 
discriminate 19 different antibodies with 0% misclassification.   Antibodies used:  
11D3, HTF14 and 1C10 are against human transferrin; IL2 and LNKB2 are against 
human Interleukin 2; p53Ab1 and p53Ab8 are against human TP53; b78 and b96 are 
monoclonal autoantibodies against GAD65; Herceptin is against human 
HER2/NEU; HL is against a glycosylated target in human cell line HL60; TNF� is 
against human TNF-alpha; MHC is against the native human MHC1 complex; 
H1N11, 2, 3 are polyclonals against mouse influenza strain PR8; Endorphin is against 
human endorphin; 2E4 is a poly-reactive antibody(Zhou et al. 2007); Fc is purified 
constant region from human IgG. 

 
How do the Antibodies Bind the Array?   

It may seem surprising that each monoclonal antibody would bind strongly 

enough to so many different peptides to survive repeated and stringent washings.  

One would expect that each random peptide would have low affinity to a 

monoclonal.  We have measured the solution phase affinity of particular bound 

peptides to antibodies using SPR and calorimetry and generally find that the peptide-

antibody affinities are in the range of 10-100uM, in line with previous reports (Adda 

et al. 2002) and sharply contrasted with affinities of 1-10fM for some natural 

antibody-antigen pairs. 
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Figure 2.3 Dynamic Range of Antibody Binding.   
Top left:  Serial dilution of the p53Ab1 monoclonal is shown on the X-axis, relative 
fluorescence on Y-axis.  Each line represents a single peptide colored by its signal at 
67nM with red indicating the highest signal, blue the lowest.  One peptide 
(highlighted in black, ETRMIIKLAWETFVDHNGSC) is detected below 100pM 
(estimated kD).  Arrays were log10 transformed.  Top right: barchart shows the 
number of peptides that bind 2 stdev above background at each concentration.  ‘Not 
fit’ contains peptides that could not be fit with an RSQ>0.8.  Peptides that did not 
bind >2 stdev above background are in the ‘not fit’ bin.  Bottom left:  Dilution series 
of mouse monoclonal anti-HLA-G (clone 87G).  Unlike the p53Ab1, only a few 
peptides show significant binding above below 1nM.  An example of a peptide that 
shows significant binding at 0.8nM is highlighted in black 
(SREDKDSNDQRKDEQDSGSC).  This peptide has an estimated half maximal 
binding of 3.3nM, suggesting strong apparent affinity.  Bottom right:  Histogram of 
half maximal binding concentration for all 10,000 peptides. 

 
From Figure 2.3 we determined that the p53Ab1 antibody appears to have 

high apparent affinity to many of the peptides on the array, even in the presence of a 

competing monoclonal.  When the p53Ab1 was reacted with the array at various 

dilutions, one peptide in particular, ETRMIIKLAWETFVDHNGSC (arrow, Figure 
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2.3, top) demonstrated half maximal binding of 6nM, but it still produced signal 

detectable an order of magnitude above background at 91pM.  Most of the other 

peptides do not appear to be approaching saturation, so their apparent affinity is 

likely above 66nM, but over 500 peptides had detectable binding at 822pM.  The 

bottom of Figure 2.3 illustrates a similar experiment where we tested a mouse 

monoclonal anti-HLA-G (clone 87G).  One peptide among a very few shows 

significant binding at 0.8nM.  As opposed to the p53 peptide, the HLA peptide had 

an estimated half maximal binding of 3.3nM, suggesting that monoclonals may bind 

random sequence peptides across several orders of magnitude, but we are able to 

detect even relatively weak binding.  We conclude that even though solution affinity 

of the random peptides for an antibody may be quite low, the apparent affinity for 

some peptides on the array is very high, presumably due to surface effects (Giraudi et 

al. 1999). 

The most obvious surface effect that might contribute to the amplification of 

signal on the array would be the high local concentration of the peptides in each 

spot.  We explored the effect of peptide concentration by spotting the peptides on a 

dendrimeric surface (NSB Postech, Seoul, Korea) where the reactive sites are spaced 

9nm apart (NSB27) or 3nm apart (NSB7) (Park 2007).  As seen in Figure 2.4, the 

relative binding on the 3nm surface is on average 30-1000-fold less than on our 

standard aminosilane surface while the 9nm surface could not support a generally 

detectable signal.  We calculate that in theory the peptides may be as close as ~1nm 

apart on the microarray based on the density of binding sites of activated 

aminosilane-coated glass (Kurth and Bein 1993).  We conclude that the peptide 
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density in the spot is contributing to the high relative affinity.  For the NSB7 slides, 

we saw far fewer usable signals than the standard aminosilane slides.  When we 

examined three naïve vs. three PR8 influenza-infected C3H/HEJ mice at day 28, we 

were unable to statistically distinguish these diseases from each other implying that 

immunosignaturing needs high signal strength obtained by close packed peptides in 

order to obtain sufficient discrimination between disease states.  

The high density of peptides could lead to high effective affinity by two non-

exclusive mechanisms – cooperative binding or avidity (see above).  Cooperative 

binding could arise from two peptides binding one antibody through the interactions 

with each arm simultaneously.  We tested whether bivalent binding was a significant 

binding mechanism by comparing the binding of an intact monoclonal to its Fab 

fragment.  Overall binding was very similar between the Fab fragment of mouse 

monoclonal anti-HLA-G clone 87G and the intact IgG (Figure 2.5).  Based on this 

result we conclude that avidity through the high density of peptides in the spot may 

be sufficient to account for the high relative affinity of the antibodies, but according 

to our data this effect is dependent to some degree on sequence and to a far lesser 

degree, on the charge of the peptide during binding.
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Figure 2.4  Peptide Spacing Impacts the Binding of Antibodies   
Peptides were printed on NSB dendrimer slides (NSBPostech, Seoul, Korea) spaced 
at 3nm (top left), 9nm (middle) and standard aminosilane (right).  Colors reflect 
intensity where white and blue are high binding spots, green indicates mid-level 
binding and orange to red indicate low binding.  The p53Ab1 antibody was allowed 
to bind to the same 10,000 peptides as on the standard array, but signals notably 
decreased by 30-1000-fold on the 3nm spacing slide and were almost entirely absent 
from the 9nm slide.  Circles indicate the peptides where signal remained detectable 
across these 3 different slides.  The barchart immediately below indicates peptides 
that were selected from each of the 3 different experiments (those which bound at 
least 2 stdev above background).  AS = aminosilane, NSB = 3nm spacing.  P53Ab1 
is a mouse monoclonal against human TP53, FTU01 and FTU03 are peptides from 
the 10K array which were used as vaccines to immunize BALB/c mice, KLH 
represents mice immunized with only Keyhole Limpet Hemocyanin adjuvant.  Right: 
several peptides from the 10,000 random peptides were resynthesized to produce a 
small custom array using dilutions from 1mg/ml to 7.8ug/ml.  These small arrays 
were probed with sera from mice immunized with the same peptide.  Shown here are 
three of these peptides; where there is no image, there was no detectable spot at that 
concentration.  Directly below this image is a log-log plot of the relative fluorescence 
units measured from three technical replicates.  The signals drop off in step with the 
dilution, but the rate of signal decrease is not constant across all peptides. 
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Figure 2.5  Fab Fragment Binds Similarly to Intact IgG.  The Fab Fragment and the 
intact Ig of the same monoclonal (anti-HLA-G clone 87G) were used to probe the 
peptide array.  The signal intensity of the Fab is plotted on the X-axis against the 
signal of the intact Ig on the Y-axis; the peptides are colored by intensity.  The 
scatterplot shows that most peptides exhibit similar binding to the monovalent and 
the bivalent forms of the antibody.  The red circle highlights peptides with the 
highest pI, the blue circle contains peptides with the lowest pI values.  The 
differences between the Ig and Fab appear to be driven by the charge of the peptide 
at pH 7. 

 
Distinguishing Signatures:   

A fundamental question underlying this approach is how the mixture of 

antibodies in serum may interact, or compete, for binding to the random peptides on 

the array.  The observation that each monoclonal antibody we tested binds many 

different random-sequence peptides implies by simple projection that a collection of 

antibodies would bind at a generally high level to most peptides on the array.  This 

further suggests that it would be difficult to distinguish a signature of one antibody 

in a very large collection of different specificities, as in immune serum.  If all 

antibodies recognized the sequence space represented by the random peptides on the 
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array approximately equally, with 1010 specificities in the antibody repertoire, it would 

seem unlikely that specific antibodies would be recognized at all.  An 

immunosignature of a disease or infection would only be evident if the antibodies 

produced in response to the disease/infection had higher affinity to the random 

peptides than the normal immunoglobulins in the sera of healthy people.  To test 

this possibility, we diluted a high affinity commercial monoclonal antibody raised in 

mice against human TP53 (p53Ab1) into 10X and 100X excess immunolglobulin 

from healthy volunteers (Figure 2.6).  The left panel shows the baseline 

reproducibility (R=0.97) of two technical replicates.  The center panel shows that the 

p53Ab1 signature is apparent even when diluted by highly complex antibody 

mixtures, suggesting that antibodies in normal immunoglobulin are not competing 

for peptide binding sites of the p53 antibody at the relevant concentrations.  The 

panel on the far right shows the contribution of IgG vs. p53 antibody alone.  When 

we mixed 8 monoclonal antibodies together (Figure 2.6) we saw a number of high 

binding peptides; the naïve human IgG seems to have reached a state where 

antibodies with strong affinity to specific random-sequence peptides are at a very low 

concentration.  This implies that high affinity antibodies, as would be produced 

against an infection or chronic disease, would stand out against the background 

binding of the bulk immunoglobulins in healthy people.  This observation is key 

relative to the immunosignaturing concept and enables the analysis that follows. 
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Figure 2.6  Dilution experiment.  Left panel shows the baseline reproducibility of the 
10,000 peptides on the microarray; correlation coefficient of 0.97 across technical 
replicates.  A mixture of the mouse monoclonal p53Ab1 + 10X excess naïve human 
IgG was run.  The middle panel shows p53Ab1 + 100X excess IgG (X-axis) vs.; 
p53Ab1 + 10X excess IgG (Y-axis).  The correlation coefficient for these two arrays 
= 0.92.  The far right panel shows p53Ab1 monoclonal (X-axis) vs. 10X human IgG 
alone (Y-axis) correlation coefficient = 0.27. 

 
Analysis of Immunosignatures in a Model System   

In order to test the hypothesis that the immunosignature could detect in vivo 

changes in the antibody repertoire, we employed a mouse model.  Five mice were 

bled before and after genetic immunization with a plasmid encoding a protein from 

Chlamydia abortus, dnaX.  We had demonstrated earlier that this protein elicits a 

robust immune response administered as a gene vaccine (Stemke-Hale et al. 2005).  

In addition, five other mice were immunized with the dnaX plasmid plus a plasmid 

encoding lethal toxin (LT), a powerful genetic adjuvant (Bowman and Clements 

2001).  The control mice were mock immunized with plasmid alone, not encoding an 

antigen.  The dnaX-immunized mice on day 14 post immunization showed on 

average 210 peptides that had significantly (p<3.31x10-9) more binding than control 

mouse serum.  A representation of the differences in the arrays is presented in Figure 

2.7 (top left).  This difference was accentuated when the LT adjuvant was used.  We 
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note that total binding to the array increased upon immunization and even further 

with immunization with adjuvant, even though the total amount of immunoglobulin 

was held constant by measure of total IgG.  The use of the adjuvant increased 

binding to peptides that were high binders from the dnaX vaccine alone, as well as a 

set of new peptides that met the significance cut-off over the controls.  Our 

presumption was that most of this additional binding was driven by antibodies 

against dnaX, with some against LT alone.  In order to test this, the serum from the 

dnaX immunized mice was adsorbed with beads bearing the dnaX protein and then 

applied to the array.  The control was the same serum absorbed with an irrelevant 

protein (human Transferrin).  As can be seen in Figure 2.7 right, 35 of the 210 dnaX-

specific peptides were reduced in intensity by the dnaX adsorption.  This indicates 

that a specific immune signature induced by immunization with dnaX was actually to 

the dnaX antigen.  The peptides that were bound by the dnaX serum but not 

reduced in intensity by the absorbed serum may have been against the LT adjuvant 

protein itself.  Alternatively, the recombinant dnaX protein may not have presented 

epitopes that were presented when the protein was made in the mouse cells in vivo.  

For example, antibodies elicited to post translational modifications in the mouse cell 

would not be presented in the recombinant protein, thus it is possible that most if 

not all of the signature is to natural dnaX.  This result indicates that a specific 

immune response can be discerned on the random array.   
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Figure 2.7  Immunological Testing of Random Peptide Binding  9 BALB/c mice 
were genetically immunized with the coding region to dnaX, a DNA polymerase III 
subunit found in Chlamydophila abortus S26/3(Stemke-Hale et al. 2005; Tang, 
DeVit, and Johnston 1992).  60 days following immunization, immune sera was run 
on the arrays.  Top left: images show the peptide arrays as different immune serum is 
added.  As the adjuvant and then the antigen are examined, the total measurable 
signal on the array increased even though the total amount of IgG remained 
measurably constant.  The Venn diagram immediately below the array images 
indicates the overlap in the peptides that were 4 stdev above background for each 
selection.  Note the increasing number of peptides selected as the immune response 
increased.  Far right top: line graph showing the peptides that were significantly 
different between naïve and dnaX-immunized mice at p<3.31x10-9.  Recombinant 
dnaX protein produced in E. coli an irrelevant human protein, Transferrin, were used 
to adsorb the immune sera from the dnaX + LT-vaccinated mice.  Only the dnaX 
protein could adsorb the signal. 
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Immunosignatures in Human Serum   

An inbred mouse may have a much simpler repertoire of antibodies than a 

human.  It is possible that this immune complexity in humans would hide the 

signature of a health-affecting event.  To test this possibility we compared the 

immunosignatures of people with confirmed Valley Fever (elicited by Coccidiodes 

immitis) to the immunosignatures of uninfected control individuals.  As seen in 

Figure 2.8, individuals with Valley Fever have peptides (p<1.6x10-6) that are 

significantly more or less reactive against serum IgG in uninfected controls (‘normal 

donors’) or persons who received a seasonal flu vaccine (‘day 21 flu vaccine’).  These 

data indicate that in spite of the complexity of the immunoglobulins in humans, it is 

possible to detect a specific immune response to a health disturbance. 

  

Figure 2.8  Infectious diseases signatured by the peptide microarray  Left: Heatmap 
of 30 ANOVA-selected peptides (p<1.6x10-6) classify 6 healthy individuals, 13 day-
21 flu vaccine recipients, and 17 Valley Fever patients with 0% misclassification rate 
using LDA and Leave One Out cross-validation.  Right:  Scatterplot of the first 2 
principal components of the same 30 peptides shows the relative differences 
between disease states. 
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Distinguishing a Simulated Multiple Infection   

Lastly, we tested the concept raised in the monoclonal experiments, but with 

more complex polyclonal responses to a vaccine.  Could we distinguish two different 

disease immunosignatures from the same physical sample?  This is an important 

practical consideration since people may have several conditions, such as two 

infections or chronic or autoimmune disease at the same time.  Figure 2.9 

demonstrates the ability to distinguish a mixture of two complex ‘disease states’, 

simulated here by two different but separate vaccinations in BALB/c mice, and then 

a physical pooling of equal volumes from each cohort.  A double vaccination was 

not done due to complex interplay within the host, and the desire to rigorously test 

only the sensitivity parameters of the microarray without imposing additional 

variances.  Either KLH or a random-sequence peptide 

(PARYANANGRDLITLGIGSC) were used to vaccinate two different groups of 3 

mice each.  The 6-week immune serum for each was incubated on the 10K 

microarray, and an additional array was tested with a 50:50 mix.  The scatterplots in 

Figure 2.9 show 30 peptides from KLH (p<1.04x10-8 vs. naïve serum) and 30 

peptides from PARY-immunized peptide (p<8.68x10-11 vs. naïve).  Each scatterplot 

represents the average of the 3 mice, 1 microarray per mouse.  The heatmap on the 

bottom is a visualization of the trend using only the top 30 of the 60 total peptides 

that by ANOVA discriminate the disease classes (p<5.24x10-18). 
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Figure 2.9  Immune sera mixing experiment.  Determination of whether different 
immune sera could be detected when mixed together, simulating conditions where 
patients have simultaneous infections.  Top scatterplots:  3 BALB/c mice were each 
immunized with either KLH (Keyhole Limpet Hemocyanin) or the peptide 
PARYANANGRDLITLGIGSC; 6-week post immune serum is used.  Peptides that 
discriminated either KLH-immunized serum (30 peptides at p<1.04x10-8 vs. naïve 
serum) or PARYANANGRDLITLGIGSC-immunized serum (30 peptides at 
p<8.68x10-11) are shown.  Far left:  The Y-axis shows the PARY-immunized sera, the 
x-axis shows the KLH-immunized sera (X-axis), peptides are colored by intensity on 
the array.  The intensity differences are quite obvious when contrasting the 
unadulterated sera.  We then physically mixed the two sera and examined additional 
microarrays.  Center: The PARY peptide (Y-axis, green) and mix (X-axis, red) are 
distinguishable.  Far right: the KLH-immunized mouse (Y-axis) and the mix (X-axis) 
are also distinguishable.  The heatmap on the bottom represents a more conventional 
visualization of the trend:  these 30 peptides (p<5.24x10-18) were used to plot the 
values from the two naïve, two KLH, two PARY, and two mix microarrays.  The 
arrays can still distinguish the diseases as distinct using hierarchical clustering.  An 
LDA with Leave One Out cross-validation yields 0% misclassification. 

 



   
57 

Discussion 

We have examined several basic aspects of the immunosignaturing concept 

using an array of 10,000 relatively long peptides of random sequence.  We first 

showed that all types of monoclonal antibodies tested produced a distinct pattern of 

binding to these random peptides.  This effect has a number of clinical implications, 

but rather than base a diagnostic on a phenomenon, we investigated the mechanism 

of binding, providing evidence that the antibody signal we observe is enhanced due 

to the high peptide density.  A notable finding if this technology were to be used as a 

diagnostic was that the signature of a high affinity antibody was unchanged in the 

presence of excess immunoglobulin from healthy people.  This implies that it may be 

possible to discern newly developing, high affinity immune responses – responses 

that evolve presymptomatically in many cases.  To test this we compared the serum 

of mice immunized with a gene vaccine for dnaX to controls and found that there 

was a clear immunization signal.  This general effect has been demonstrated by 

Merbl et al. (2009) in mice with implanted cancer cells, but not on the scale we have 

demonstrated; the effect was observed but not characterized.  A portion of the 

immunization signature we identified was due to antibodies against the dnaX protein.  

We demonstrated that signatures could be detected in human sera, showing that 

people with Valley Fever infections have immunosignatures distinct from non-

infected individuals.  Finally, we demonstrated that two different disease signatures 

could theoretically be distinguished in the same person.  

It has previously been demonstrated that antibodies bind to peptides of 

random amino acid sequence on arrays (Halperin, Stafford, and Johnston 2011; 
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Merbl et al. 2009; Reineke et al. 2002).  In general, the feature complexity of arrays 

reported to date has been less than half the complexity of the peptide microarray 

used in these studies.  The 17aa variable region of 10,000 peptides could encode all 

possible 3mers and 4mers and 20% of all 5-mers if designed with non-overlapping 

sequences.  We are unable to ascertain whether significant secondary or tertiary 

structures would exist in these peptides, but calorimetry and in silico prediction 

suggest that the majority of these peptides are not folded or are only transiently non-

linear.  Even more importantly, these peptides have no significant similarity to any peptides 

in on-line sequence databases.  As most antibodies bind regions of 6-11aa it would be 

unlikely (and confirmed by database searches) that any specific recognition sequence 

from an actual antigen would be on the array.  It is unsurprising then that each 

antibody would have only weak affinity to a particular peptide, as we have found.  

Yet, we demonstrated that most of the 18 monoclonal antibody tested bind 

hundreds of peptides on the array with a dynamic range near 3 logs with high 

reproducibility.  In spite of the weak solution-phase affinity of antibodies to random 

sequence peptides, the random peptides on our microarray bind in unique and 

reproducible patterns to most any immunoglobulin molecule. 

A number of different classes of monoclonals and affinity purified polyclonal 

antibodies were tested on the peptide microarray.  This included antibodies raised to 

sugars, proteins modified with phosphates, conformational epitopes and haptens.  

All tested antibodies produced a distinct and reproducible pattern of binding.  

Polyreactive antibodies were unusual in that they tended to bind thousands of 

peptides at a moderate level, while most other monoclonals bound less than 200 
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different peptides but with relatively high intensity.  We investigated whether protein 

microarrays would work the same way; we tested 11 different monoclonals on a 

high-quality human protein microarray (Protoarray® from Invitrogen, Carlsbad, CA) 

and in each case the cognate protein or a near-identical family member had the 

strongest signal.  The peptide microarray described here demonstrates unique and 

easily discernible signals for antibodies against every antigen tested to date.   

It has been reported that aligning random sequence peptides bound by a 

monoclonal antibody against the protein immunogen could deduce the epitope that 

elicited the antibody (Burritt et al. 2001).  We have also found that this is possible in 

some circumstances, even with only 10,000 random sequence peptides.  By aligning 

the peptides bound from the dnaX serum using CLUSTAL, it was possible to map 

discontinuous (2-3 residues) portions of the immunogenic peptides onto the dnaX 

protein.  This method works best when a fairly small protein is used as the 

immunizing antigen, or if the search space of possible target proteins can be 

restricted by size, species, or protein family.  A monoclonal antibody may bind 

mimotopes on the array as well as or better than its cognate sequence (Figure 3 in 

Halperin, Stafford, and Johnston 2011) which complicates this process.  This paper 

shows that the random sequence peptide microarray exhibits a wide range of binding 

to monoclonal antibodies, but it can also find exact epitopes (Halperin, Stafford, and 

Johnston 2011).  Thus, the immune response to a pathogen or unknown antigens in 

a chronic disease is unlikely to be precisely discerned by aligning the random 

sequence peptides bound.  The absence of information about the antigen that raised 

the immune response is a limitation of the immunosignaturing approach.  Although 
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arduous, it is feasible to use the high-binding peptides from the microarray to affinity 

purify antibodies from patient serum which can then be used to identify and isolate 

the immunogenic antigen from tissue.  We accomplished this using a simple murine 

influenza virus model (Legutki et al. 2010).  We also demonstrated that the dnaX 

protein adsorbed the antibodies that made up the dnaX immunosignature (Figure 

2.7).  This same approach could be used to test candidate antigens for a given 

immunosignature.  We have found that certain peptides bind to immunoglobulin 

isotypes specifically.  Typically we use pan-isotype secondary antibodies, but we also 

examined peptides that bound serum from day 21 immunized dnaX mice and found 

that the IgG1 and IgG2a ratios differed across a fixed range.  Thus, one use 

IgG1:IgG2a ratios as markers for Th1 and Th2 lymphocytes, and other isotypes can 

be tested on the same array (Legutki et al. 2010) with direct-labeled secondary 

antibodies labeled with fluorophore.  IgM, IgA or IgE have the capacity to be more 

discerning than IgG in some disease states. 

Relative to using these arrays for assaying human serum, we present a 

preliminary example, but we have found that the approach works well for many 

types of diseases.  We show that people infected with Coccidiodes immitis (Valley Fever) 

have signatures distinct from healthy controls and from people that received the 

seasonal flu vaccine (Figure 2.8).  Any biomarker study would require thousands of 

cases and controls for validation, but these results suggest that immunosignatures of 

infected persons are highly consistent even across varied genetic backgrounds and 

HLA types.  This technology may lend itself to very large scale studies since the  
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arrays are relatively inexpensive to print and can be processed in standard automated 

systems at ~$1.50 per sample for reagents. 

A second favorable feature is that the technology is amenable to utilizing 

archived samples because of the stability of antibodies and the small amount (~1ul) 

of serum required.  The human samples used in this study were all from stored 

samples.  We tested fresh serum, fresh plasma, frozen serum and frozen plasma from 

the same volunteer with almost no discernible differences (correlation coefficient > 

0.96 at worst).  The most high-throughput application would seem to be screening a 

population with a known disease, selecting the most discriminating peptides, and 

printing in 24-up format (http://arrayit.com/Products/Microarray_Tools/Multi-

Well_Microarrays/multi-well_microarrays.html) enabling a low cost per assay, with 

robotic washers designed for ELISA plates easily conscripted. 

We have noted an unexpected aspect of the immunosignatures.  Sera from 

infected individuals demonstrate generally higher reactivity for some peptides, but 

also less reactivity relative to normal controls on other peptides (Figure 2.8).  Such a 

difference would not be detectable in standard ELISA assays.  In mouse models of 

infection this phenomenon is due to decreased humoral reactivity over time.  In the 

human samples where only one timepoint is available we cannot readily determine if 

the lack of some portion of total humoral immune reactivity is a product of the 

disease response or a precondition for the disease.  Either case is testable, and would 

be of considerable interest to disease specialists. 

We envision several potential applications of these arrays.  One is the 

identification of peptides that detect disease-specific biomarker antibodies for clinical 
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applications.  The diagnostic peptides could be used in a printed array format, SPR 

surfaces, or even solution-phase detection such as calorimetry. Alternatively, the 

peptides could be used to purify the antibodies that bind to them and then pull down 

the original antigen which could then be used as a biomarker.  It may even be 

possible to use the microarray described here to continuously monitor healthy 

individuals for a change in health status in an unbiased manner.  We have shown that 

a person’s healthy signature, while often quite different from other healthy 

signatures, is remarkably self-consistent over time until that person becomes ill or 

receives a vaccine.  After such an immune signal, the immunosignature from multiple 

individuals becomes extremely homogenous, reflecting that canonical disease 

signature. 

In summary, we present a simple, inexpensive format for profiling the 

antibody complexity in blood and an investigation of how it works.  We anticipate 

that this format will have broad applicability in research and potentially diagnostics. 
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CHAPTER 3 

A POLYREACTIVE ANTIBODY RECOGNIZES A LARGE PROPORTION 

OF BOTH RANDOM AND PROTEIN DERIVED PEPTIDE SEQUENCES 

 

Abstract 

Some antibodies found in naïve all individuals recognize a diverse set of 

antigens with low affinity.  These antibodies, known as polyreactive or natural 

antibodies typically make up 10-20% of the naïve antibody repertoire.  Little is 

known about the epitopes that these antibodies recognize.  Classical monoclonal 

antibodies raised against a particular antigen are typically assumed to have very 

specific and high affinity interactions with their cognate target.  We and others have 

previously shown that specific antibodies may cross-react with a large number of 

random-sequence peptides on a microarray.  Here we examine how a polyreactive 

monoclonal antibody and a specific monoclonal antibody compare in recognizing 

both random and protein derived sequences.  The polyreactive antibody was found 

to recognize several epitopes of two unrelated protein sequences.  As expected, the 

specific antibody only recognized one region of the protein against which it was 

raised with no cross-reactivity to peptides of an unrelated protein.  The specific and 

polyreactive antibodies also had quite different distributions of random-sequence 

peptide binding.  Several of the random sequence peptides that bound to each 

antibody were selected for further study.  The random peptides selected to bind the 

specific antibody bound those peptides almost as well it bound its epitope.  The 

polyreactive antibody bound both the protein derived and random sequence peptides 



   
69 

with similar apparent affinity, and was weaker than any of the specific antibody-

peptide interactions.  The data presented here demonstrates that the concept that 

polyreactive antibodies recognize more targets but with lower affinity than specific 

antibodies also applies to random and protein derived peptides. 

 

Introduction 

Antibodies are best known for being able to recognize their target antigen 

with high specificity and sensitivity.  However, there is a class of antibodies that bind 

to diverse sets of antigens, but with poor affinity.  These antibodies, known as 

polyreactive or natural antibodies make up about 10-20% of the naïve antibody 

repertoire (Chen et al. 1996; Chen et al. 1998; Chen, Wheeler, and Notkins 1995).   

Little is known about the epitopes recognized by these antibodies.  Highly specific 

antibodies chosen for their selectivity to a single antigen during the maturation 

process of hybridomas have also been found to cross-react with some unrelated 

targets, including random-sequence peptides (Halperin, Stafford, and Johnston 2011; 

Pinilla et al. 1999).  Here we will explore how binding of a polyreactive antibody 

compares to specific antibodies in recognizing protein sequence derived peptide and 

random-sequence peptides.   

The importance of polyreactive antibodies is implied by their evolutionary 

conservation (Marchalonis et al. 2001) and their abundance early in life (Chen et al. 

1998; Madi et al. 2009; Merbl et al. 2007).  Their functions in vivo involve recognizing 

both self antigens in the clearing of apoptotic cells (Fu et al. 2007; Litvack et al. 2010; 

Silverman 2011) and foreign antigens in their non-specific anti-microbial activity 
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(Zhou et al. 2007). They may also play a role in the pathogenesis of autoimmune 

diseases.  For example, in Lupus patients, it appears that anti-DNA antibodies may 

have originated from natural IgM polyreactive antibodies that have class switched to 

IgG (Zhang et al. 2009).  A suppressive role of autoreactive natural antibodies in 

other autoimmune diseases has also been proposed (Shimomura et al. 2008; 

Silverman 2011).  A better understanding of the epitopes that a polyreactive antibody 

may recognize may lead to better understanding of there function in health and 

disease. 

Polyreactive antibodies are characterized by their ability to bind diverse 

targets with weak affinity, usually on the order of 10-3 to 10-7 M (Notkins 2004).  

Conformational flexibility enables both multi-specificity and decreases the affinity of 

the interactions.  Polyreactive antibodies typically have more flexible paratopes than 

specific antibodies, and will adopt different conformations when binding different 

antigens (Mohan et al. 2009; Thorpe and Brooks 2007; Zhou, Tzioufas, and Notkins 

2007).  These flexible paratopes incur a significant entropic penalty upon binding, 

which decreases the affinity and slows the on-rate.  However, this same penalty 

allows the antibody to ‘probe’ and bind to an enormously larger set of protein 

domains than a typical monoclonal antibody.  Since peptides also tend be 

unstructured, it is not clear whether polyreactive antibodies would be able to 

recognize flexible peptides or if they are only able to recognize structure regions of 

proteins. 

Antibodies raised against specific antigens have also been found to cross-

react with unrelated targets.  For example, antibodies raised against viruses have been 
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found to cross-react with normal tissue (Fujinami et al. 1983; Srinivasappa et al. 

1986).   It has also been found that peptides may be selected from libraries that 

mimic conformational and carbohydrate epitopes (Hoess et al. 1994; Kieber-

Emmons 1998).  While antibodies that recognize a linear epitope usually pull out 

peptides that have sequence similarity to that epitope, sometimes they also select 

mimotope peptides with no homology to the original antigen (Stephen, Helminen, 

and Lane 1995).  Previously, it appeared that mimotopes were somewhat rare, since 

large phage display libraries were used and only a small number of sequences were 

recovered.  However, library selection methods only enrich for the best binders and 

may be influenced by other factors such as affecting phage growth and viability (Rodi 

and Makowski 1999).  Peptide arrays enable reasonable accurate estimations of 

relative affinity for smaller libraries (Tapia et al. 2007).  Recently, we have shown that 

monoclonal antibodies raised to specific antigens have measurable binding to a large 

percentage of random-sequence peptides when they are immobilized on a surface 

(Halperin, Stafford, and Johnston 2011).  Since “specific” antibodies are surprisingly 

capable of such polyreactivity, seeing how an antibody classically categorized as 

polyreactive recognizes these peptides should give insight into the recognition 

capabilities of polyreactive and specific antibodies. 

 

Methods 

Hybridoma supernatant from the polyreactive antibody 2E4 was purified 

using Mannan Binding Protein Columns (Pierce, Rockford) according to the  
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manufacturer’s instructions.  Anti-PBEF clone (E-10) was purchased from Santa 

Cruz Biotechnology.  

9500 peptide sequences were generated using a random number generator, 

with all amino acids but cysteine uniformly distributed at 17 positions with an 

additional 500 peptides constrained to 45% bias of aromatic groups.  An N-terminal 

“CSG” linker was added to each peptide sequence to allow attachment to the slide 

through the sulfyhdryl.  The C-terminus was amindated to remove the negative 

charge.  The peptides were synthesized by Sigma SIAL (St. Louis, MO).  Peptides 

were resuspended in water, then diluted to an average of 0.5mg/ml in 20mM 

HEPES, 5mM TCEP, 1mM EDTA, 10% Acetonitrile.  Aminosilane coated glass 

slides (Schott , Jena, Germany) were activated with sulfo-SMCC.  Peptides were 

printed by piezo at AMI (Tempe, AZ) with the entire peptide library replicated on 

the top and bottom of each slide.  Biotinylated peptides were printed at the top and 

bottom border of each subarray. 

Arrays were probed with the anti-PBEF and the polyreactive antibodies, each 

in triplicate.  First, slides were prewashed to remove unattached peptide with a 33% 

isopropanol, 7.33% acetonitrile, 0.55% TFA solution in nanopure water.  All 

subsequent steps were preformed on the Tecan HS4800 (Switzerland).  Slides were 

blocked with 0.014% mercaptohexanol in 3% BSA PBST for 1hr at 25C.  Then 

100nM of the antibody in 3% BSA PBST was incubated on the slide for 1hr at 37C, 

followed by 5nM biotinylated anti-Mouse IgM (Vector, Burlingame, CA in 3% BSA 

PBST for 1hr at 37C, and finally 5nM Alexa-647 Streptavadin (Invitrogen, Carlsbad, 

CA) in 3% BSA PBST for 1hr at 37C.  A 30 second TBST wash was performed after 
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each incubation step and a final 30 second water wash was performed before drying 

the slides with nitrogen for 5min.  Slides were scanned in a ‘C’ Scanner (Agilent, 

Santa Clara) on the red channel using the 0.1 xdr setting to get scans at 10PMT and 

100PMT.   

Images were aligned using GenePix Pro (Molecular Devices, Sunnyvale) and 

the median intensity of each spot was used as the signal in subsequent analysis.  Data 

from the high and low PMT scans were combined as described by García de la Nava, 

van Hijum, and Trelles (2004).  Briefly, peptides whose signal was greater than 200 

RFU and less than 50,000 RFU on both scans were used to fit a line.  The equation 

of the line was used to transform the signal intensities from the low scan to the scale 

of the high scan.  A weighted average of the signal intensities of the two scans was 

calculated, using the percent above background minus the percent saturated as the 

weights.  Data was imported into GeneSpring 7.0 (Agilent) for statistical analysis and 

peptide selection.   

Peptides tiling the sequences of a region of PBEF and AKT1 were designed.  

Seventeen amino acid segments were taken starting every five amino acids, and the 

CSG linker was added to the N-terminus to enable directed attachment to the slide.  

Selected peptides from the 10K library were also included.  After synthesis, peptides 

were normalized to the same concentration, and diluted from 0.8, 0.4, 0.2, 0.1, 0.05, 

and 0.025mg/ml in 20mM HEPES, 5mM TCEP, 1mM EDTA.  Aminosilane coated 

glass slides were activated with sulfo-SMCC.  Peptides were printed using a quill style 

pin printer.  Slides were processed as described above, but varying the primary 

antibody concentration and the incubation time. 
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Images were aligned as above, and data was imported into Matlab 

(Mathworks, Natick, MA).  Binding curves were fit to the equation I = imax*(h/(1-

h))+b, where I is the signal intensity, imax is the maximum signal intensity, h is the 

half maximal binding concentration and b is the background signal, using a non-

linear least squares regression.   

 

Results 

The polyreactive monoclonal IgM antibody 2E4 was used to probe the 

CIMv2 microarray.  A specific antibody of the same isotype (anti-PBEF E-10) was 

used to probe the array for comparison.  Though the anti-PBEF had a high 

background binding to the slide surface, there were clearly peptide spots well above 

background.  This high background is not unusual among other specific antibodies 

we have tested.  The polyreactive antibody bound to 72% percent of the peptides on 

the array above background compared to only 52% percent that the specific 

antibody recognized (figure 3.1).  The polyreactive antibody has a greater 

interquartile range and fewer outliers compared to the anti-PBEF and other specific 

monoclonals (data not shown). 
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Figure 3.1  Comparison of binding distribution of specific IgM and polyreactive IgM 
on CIM10K random sequence microarray.  Histograms of fluorescence intensities 
for anti-PBEF and Polyreactive 2E4 are shown.  Bars are colored by the ratio of that 
signal intensity to the background on that slide, which represents binding to the slide 
surface.  Peptides selected for further study are annotated, with those specific for 
2E4 in blue, those specific for anti-PBEF in red, and those that are recognized by 
both antibodies in pink. 
 

Selected peptides that bound to each antibody were re-synthesized for 

further study.  A t-test was used to identify peptides recognized significantly 

differently by the two antibodies.  594 peptides passed an FDR cut-off of 0.015.  Of 

these peptides the three peptides with the largest fold difference between the two 

antibodies were selected for each antibody.  Peptides recognized by both antibodies 

were selected by first identifying peptides that bound each antibody significantly 

greater than the secondary at a FDR of 0.3 (212 peptides), then identify two peptides 

with the highest geometric mean signal.  Together these 12 peptides (table 1) were 

selected for synthesis. 
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Table 3.1  List of peptides used in custom array.  The peptides shown in blue were 
selected as 2E4 specific, those shown in red were selected as PBEF specific, and 
those shown in pink were recognized similarly by both antibodies.  The log ratio 
indicates the log ratio of the signal intensity for anti-PBEF to that of 2E4.  The mean 
indicates the mean signal intensity across both antibodies.  
 
Sequence Identifier Log Ratio Mean Hydro-

pathicity 
Net Charge 
at pH7 

CSGKDIWQKH-
QDFYMATGHW 

KDIWQ -1.95 18648 -1.01 0.14 

CSGISPEEWW-
WEDSMPKYQK 

ISPEE -2.94 16374 -1.32 -1.99 

CSGQLKAGYP-
EYMSNNFPCN 

QLKAG -2.26 11237 -0.72 0.00 

CSGGLQAQSG-
CVIAILGKRC 

GLQAQ 6.42 5863 0.67 2.00 

CSGAALVKLF-
HLPTSRCQSP 

AALVK 6.36 4426 0.26 2.05 

CSGVLHGYRK-
AIVGLIKKHV 

VLHGY 6.08 3876 0.38 4.18 

CSGTFKHNMW-
VPQYWWATST 

TFKHN -0.21 35152 -0.53 0.96 

CSGLSYAEPYF-
IPLKTQNHV 

LSYAE -0.03 26943 -0.14 0.05 

 

Peptides were designed from protein sequences to compare to the random-

sequence peptides.  Ten peptides tiling the region of PBEF recognized by the anti-

PBEF IgM E-10 were synthesized along with 21 peptides tiling a region of AKT1 as 

a negative control.  Peptides were designed so that they overlap by 12 amino acids.  

These protein-sequence derived peptides along with the 12 random-sequence 

peptides were checked by MALDI that the correct mass was present.  These 39 

peptides were spotted at six concentrations and the microarrays were probed with 

anti-PBEF and the polyreactive antibody 2E4 at seven concentrations. 

The quality of the microarray array data was assessed and the effect of 

peptide concentration analyzed.  Any replicate measurements with a coefficient of 

variation greater than 0.5 were discarded.  There was no significant difference 
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between the mean signal intensities or replicate coefficients of variation between 

peptide spotting concentrations, so these were treated as replicate measurements. 

Epitopes were identified based on the peptides that the antibodies 

recognized.  Three overlapping PBEF sequence derived peptides were found to react 

strongly with the anti-PBEF (E-10).  These peptides have a seven amino acid region 

in common which likely corresponds to the PBEF (E-10) epitope (Figure 3.2).  The 

polyreactive antibody 2E10 binds 43% of the protein sequence derived peptides.  

Because so many of the peptides are recognized, it is difficult to infer if there are 

shorter epitope sequences that are driving the binding.  

 

Figure 3.2  Comparison of half maximal binding concentrations for a specific vs. a 
polyreactive IgM on protein sequence derived and random sequence peptides.  
Peptides tiling portions of the AKT1 (a) or PBEF (b) were printed along with 
peptides selected from the 10K random-sequence array (c).  Arrays were probed with 
the polyreactive antibody 2E4 or anti-PBEF at concentrations from 50nM to 
0.781nM.  The half maximal binding concentration in nM is indicated by the color.  
Black indicates that the binding curve could not be fit with and RSQ of at least 0.75 
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Half maximal binding concentration was determined to estimate relative 

affinity.   Curves were fit for 8 peptides for anti-PBEF and 23 peptides for 2E4.  The 

line graphs of the binding curves (Appendix B) show that anti-PBEF recognizes 

three consecutive PBEF tiling peptides in the 5-20 nM range.  It also recognizes four 

of the five peptides selected from the CIM10Kv2 array in the 20-60 nM range, and 

one of the peptides selected to bind only to 2E4 at around 40 nM.  The polyreactive 

antibody 2E4 recognized about half of the protein-sequence derived peptides, as well 

as three out of the five random-sequence peptides selected to bind to it, and one of 

the peptides selected to bind to PBEF, all at >100nM.  

 

Discussion 

Polyreactive antibodies recognize many random-sequence peptides and 

protein sequence derived peptides, but with low apparent affinity.  Compared to the 

specific monoclonal antibody, the polyreactive antibody had a broad distribution of 

binding intensities and recognized more peptides above the background threshold.  

The polyreactive antibody also recognized a similar proportion of the protein 

sequence derived peptides.  Using the concentration at which half maximal binding is 

observed as a measure of relative affinity, the polyreactive antibody’s interactions 

with any of the peptides were significantly weaker than the specific antibody’s 

interactions with either its epitope or the selected random sequence peptides. 

The ability of the specific antibody too cross-react with unrelated targets has 

important implications for autoimmune disease.  A common hypothesis for the 

origin of self-reactive immunity is that a pathogen has an epitope that mimics a self 
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antigen and raises an immune response that cross-reacts with the self antigen (Blank, 

Barzilai, and Shoenfeld 2007; Oldstone 1998; Tsuchiya and Williams 1992). Studies 

in animal models have suggested that molecular mimicry can play an important role 

in initiation of autoimmune disease, but self-reactivity alone is not sufficient to cause 

disease (Christen et al. 2010; Davies 1997; Sfriso et al. 2010).  The results from this 

and previous studies on antibodies binding to random-sequence peptides suggest 

that even antibodies raised to specific targets are able to recognize a diversity of 

other sequences.  This suggests that antibodies having chance reactivity with self may 

not be as rare as previously thought.   

The cross-reactivity of antibodies can be taken advantage of for diagnostic 

purposes.  Mimotope peptides discovered from a library selection approach such as 

phage display have also shown diagnostic potential (Casey et al. 2009) but a much 

faster method was described in Legutki et. al. (2010).  By screening sera directly on a 

random-sequence peptide microarray, diagnostic patterns may be discovered.  This 

approach, known as immunosignaturing, has the potential to diagnosis diseases that 

involve a humoral immune response.  Its promise has been demonstrated with 

influenza and Alzheimer’s disease (Legutki et al. 2010; Restrepo et al. 2011) as well 

other chronic and autoimmune disease (Williams in prep, Stafford in prep).  Natural 

antibodies have also been shown to have potential as biomarkers (Merbl et al. 2009; 

Quintana et al. 2004).   

The potential for polyreactive antibodies to bind to multiple sites on the 

same protein may have important implications for how they perform their function 

in vivo.  Because polyreactive antibodies have such low affinity, it is difficult to 
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imagine how they may be important biologically.  However, antibody affinity 

measures describe the interaction of a single binding arm of the Fab with a single 

antigen, while ignoring that antibodies are adept at multivalent binding.  Having 

multiple binding interactions approaches a multiplicative effect on the apparent 

affinity.  If an antibody is specific to a target, then it could bind multivalently only if 

that target is spaced appropriately, such as on the surface of a virus or bacteria where 

repeating subunits are the norm.   The ability to bind multiple targets makes it much 

more likely to be able to find binding sites at the appropriate spacing for multivalent 

binding.  For example, Moquet et al. recently showed that an anti-HIV spike protein 

antibody also has low affinity for the viral membrane.  Being able to bind to the 

spike protein with one arm and the membrane with the other greatly enhances its 

affinity for viral particles (Mouquet et al.2010).  The data presented here show that 

not only can polyreactive antibodies bind multiple targets, but they could potentially 

bind multiple sites on the same target, greatly enhancing its binding possibilities. 
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CHAPTER 4 

THE EFFECTS OF PEPTIDE PHYSIOCHEMICAL PROPERTIES AND 

SEQUENCE COMPLEXITY ON ANTIBODY BINDING 

 

Introduction 

 Antibodies are of critical importance for understanding response to 

infectious disease and vaccine development (Amanna and Slifka 2011), in the 

diagnosis and pathology of autoimmune disease (Eggert, Zettl, and Neeck 2010), and 

are increasingly of interest in cancer (Anderson and LaBaer 2005), Alzheimer 

(Colasanti et al. 2010), and atherosclerosis (Hansson and Hermansson 2011).  A 

better of understanding of the forces driving antibody recognition would have 

implications for all of these fields.  Peptides often serve as surrogates for antibody 

targets in the laboratory.  They are frequently used to map linear epitopes (Carter and 

Loomis-Price 2004).  Antibodies to a wide range of other types of targets are often 

found to bind to peptides, usually derived from a random peptide library (Meloen, 

Puijk, and Slootstra 2000).  These targets include haptens (Kalaycioglu, Russell, and 

Howard), glycans (Kieber-Emmons 1998), and tertiary and quaternary protein 

structures (Denisova, Denisov, and Bramson 2010).  In most peptide library 

approaches, only a small number of peptides identified to bind to a given antibody 

are characterized.  Here I will use several random sequence peptide microarrays to 

analyze trends in antibody recognition of peptides. 

 Previous studies on antibody peptide interactions have focused on the small 

number of antibody-peptide pairs for which crystal structures are available.  A recent 
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survey of these structures identified a number of trends in the peptides, including an 

enrichment of coil and turn secondary structures, and a bias in amino acids toward 

His, Asp, and Pro (Chen, Van Regenmortel, and Pellequer 2009).  The same study 

also found that residues in the bound peptide would not be accessible in the native 

antigen in most cases (Chen, Van Regenmortel, and Pellequer 2009).  Other studies 

have looked in detail at the mechanisms of molecular mimicry in mimotope binding.   

In some cases, the peptide truly does mimic the interactions of the cognate epitope, 

but in other cases the mimotope peptide contacts with the paratope than those made 

by the cognate epitope (Dudak, Boyaci, and Orner 2011).  In a particularly 

interesting example of the multifarious nature of mimotope interactions, two 

monoclonal antibodies to identical epitopes select non cross-reactive mimotopes (Xu 

et al. 2004).  While these structural studies highlight the versatility of recognition by 

the paratope, they do not offer any principle to predict antibody binding. 

 Attempts predict likely B-cell epitopes from protein sequences or structures 

have met with limited success.  Some sequence properties that have been identified 

to be correlated with B-cell epitopes, including hydrophilicity (Parker, Guo, and 

Hodges 1986), flexibility (Karplus and Schulz 1985), beta-turn propensity (Pellequer, 

Westhof, and Van Regenmortel 1993), and solvent accessibility (Emini et al. 1985).  

The frequency of amino acid occurrence in epitopes was used to develop an 

antigenicity scale (Kolaskar and Tongaonkar 1990).  However, predictions based on 

any amino acid scale have yielded prediction accuracy only slightly better than chance 

when evaluated on a large enough dataset (Blythe and Flower 2005).  As more 

epitope data have become available for training, various machine learning 
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approaches have been developed that have improved accuracy over the propensity 

scales alone (Blythe and Flower 2005).  When a crystal structure of the antigen is 

available, other methods that take into account geometric shape may have improved 

prediction over sequence based methods alone (El-Manzalawy and Honavar 2010).  

However, to date the best prediction methods are only achieving AUC values of less 

than 0.7 (Liang et al. 2010; Zhang et al. 2011).  Improvements are expected as more 

high quality epitope information becomes available to train on and better prediction 

methods are developed, but there are likely some inherit limitation to predicting any 

antibody epitope from the common features. 

While identifying the epitope of an antibody can be very useful, particularly 

for vaccine design, the native antigen may not be the most efficient method for 

detecting a particular antibody.  While technologies exist for producing proteins with 

mammalian post-translational modifications, they are still quite labor intensive and 

costly (Walsh 2010).  Glycans are a particularly important post-translational 

modification that antibodies target, and they may also be chemically synthesized, 

though their synthesis poses a continuing challenge for chemists (Kajihara et al. 

2010).  Conformational epitopes may not be detected in standard solid phase assays, 

so careful attention must be paid to assay design to be able to detect these important 

epitopes (Butler 2000).  Alternatively, peptides may serve as molecular mimics for 

both conformational and glycan epitopes (Meloen, Puijk, and Slootstra 2000).  

Peptide synthesis is much more cost effective and scalable than glycan synthesis or 

any protein production method (Vlieghe et al. 2010).  Additionally, peptides are 

amenable to use in standard solid phase assays, including microarray formats 
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(Uttamchandani and Yao 2008).  While most mimotope peptides have previously 

been discovered using phage display techniques, peptide microarrays can also be an 

efficient tool for mimotope discovery (Reineke et al. 2002).  Peptide microarrays are 

an efficient method to obtain semi-quantitative binding data on a large number of 

peptide simultaneously (Tapia et al. 2007).   

Several technologies exist for creating peptide microarrays.  One of the 

earliest developed was SPOT synthesis.  In this technique, drops of activated amino 

acids are deposited at predetermined locations on the surface, and in this manner the 

peptides are synthesized on the surface.  While many studies have utilized spot arrays 

to screen peptides for a variety of activities, they are limited in the density of peptides 

that can be synthesized and have substantial batch to batch variability (Volkmer 

2009).  Other peptide arrays, such as the ones employed in this study involve having 

peptides synthesized using conventional peptide synthesis techniques and spotting 

them on an activated surface.  This enables an improvement in miniaturization and 

reproducibility over the spot synthesis methods, but still does not approach the 

current density that is routine in DNA microarrays.  Another in situ technique that 

has better miniaturization compared to SPOT arrays is the light directed method 

originally described by Fodor et. al. and now commercially produced by LCSciences 

(Fodor et al. 1991).  More recently, a technique similar to a laser printer has been 

developed to make peptide microarrays, called pepperprint (Breitling et al. 2009).  

These arrays can have around a tenfold higher peptide density than conventional 

spotted arrays, but in our hands, they lack sensitivity in detecting antibody binding 

(unpublished data).  Here I will present data from a chip synthesized using a 
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photolithography technique that has 100,000 peptides on a 11mm by 11mm silicon 

wafer.   

 

Methods 

 The CIM10Kv1 production was first described in Morales et al (2009).  

Briefly, 10K random 17mer sequences containing equal probability of the 20 amino 

acids except cysteine were generated.  A C-terminal linker of Gly-Ser-Cys was added 

to each sequence to make 20mer peptides.  These peptides were synthesized by Alta 

Bioscience (Birmingham, UK), diluted in 25% DMF 75% PBS, and spotted on a 

Telechem Nanoprint quill type contact printer onto sulfo-SMCC activated 

aminosilane coated glass slides.  Antibodies were used to probe these arrays a 

described previously (Halperin, Stafford, and Johnston 2011).  Briefly, slides were 

processed using Agilent chambers (Agilent Technologies, Santa Clara CA).  Slides 

were blocked with 0.014% mercaptohexanol in 3% BSA PBST for 1hr at 25C.  Then 

100nM of the antibody in 3% BSA PBST was incubated on the slide for 1hr at 37C, 

followed by appropriate biotinylated secondary antibodies in 3% BSA PBST for 1hr 

at 37C, and finally 5nM Alexa-647 Streptavadin (Invitrogen, Carlsbad, CA) in 3% 

BSA PBST for 1hr at 37C. Three TBST washes followed by three water washes were 

performed between each step with manual agitation.  Slides were scanned on the 

ScanArray (Perkin Elmer, Waltham, MA).  Sources of antibodies are listed in table 1. 
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Table 4.1  Monoclonals summary.  Antibodies used in this chapter are listed by the 
name used here, and clone names are shown in parenthesis.  If the epitope has been 
mapped it is listed as linear; the others are unknown. 
 
Antibody 
Name 

Target Target 
Type 

Species/Isotype Source 

11D3 Transferrin Protein Mouse IgG1 Abcam 
1C10 Transferrin Protein Mouse IgG1 Abcam 
TP Cocci coccidioidomycosis 

TP Antigen 
Glycan ? D. M. Magee 

AbcamHA 
(16B12) 

Influenza HA tag peptide Mouse IgG1 Abcam 

Endorphin 
(B31.15) 

Beta-endorphin peptide Mouse IgG1 Abcam 

HTF14 Transferrin Protein Mouse IgG1 Abcam 
Herceptin HER2/neu Protein Human IgG1 D. Lake 
IL2 IL-2 Protein Mouse IgG1 Peprotech 
LNKB2 IL-2 Protein 

(linear) 
Mouse IgG1 Santa Cruz 

MHC MHC-beta2 
microglobulin 
complex 

Protein 
(quartenary 
structure) 

? D. Lake 

P53Ab1 
(pAb240) 

P53 Protein 
(linear) 

Mouse IgG1 Labvision 

P53Ab8 
(BP53-12) 

P53 Protein 
(linear) 

Mouse IgG2a Labvision 

TNF TNF-alpha Protein Mouse IgG1 Peprotech 
DM1A Tubulin-alpha Protein 

(linear) 
Mouse IgG1 Labvision 

b78 GAD65 Protein Human IgG1 ATS 
b96 GAD65 Protein Human IgG1 ATS 
cMyc (9E10) cMyc tag Peptide Mouse IgG1 AbD Serotec 
V5 V5 Tag Peptide Mouse IgG1 AbD Serotec 
LeuEnk Leu-Enkephalin Peptide Mouse IgG1 AbD Serotec 
PBEF (E-10) PBEF Protein  Mouse IgM Santa Cruz 
2E4 Polyreactive Diverse Mouse IgM A. Notkins 
 

The CIM10Kv2 was also designed with random 17mers with the same 19 

amino acids at equal frequencies.  An N-terminal Cys-Ser-Gly linker was added and 

the C-terminus was modified to an amine group.  The peptides were synthesized by 

Sigma SIAL (St. Louis, MO).  Peptides were resuspended in water, then diluted to an 

average of 0.5mg/ml in 20mM HEPES, 5mM TCEP, 1mM EDTA, 10% 

Acetonitrile.  Aminosilane coated glass slides (Schott , Jena, Germany) were activated 



   
91 

with sulfo-SMCC.  Peptides were printed by piezo at AMI (Tempe, AZ) with the 

entire peptide library replicated on the top and bottom of each slide.  Biotinylated 

peptides were printed at the top and bottom border of each subarray.  After printing, 

slides were prewashed to remove unattached peptide with a 33% isopropanol, 7.33% 

acetonitrile, 0.55% TFA solution in nanopure water.  The antibody probing assay 

was performed similarly to the assay on the CIM10Kv1 except that the process was 

largely automated using the Tecan HS4800 (Switzerland).  Slides were blocked with 

0.014% mercaptohexanol in 3% BSA PBST for 1hr at 25C.  Then 100nM of the 

antibody in 3% BSA PBST was incubated on the slide for 1hr at 37C, followed by 

appropriate biotinylated secondary antibodies in 3% BSA PBST for 1hr at 37C, and 

finally 5nM Alexa-647 Streptavadin (Invitrogen, Carlsbad, CA) in 3% BSA PBST for 

1hr at 37C.  A 30 second TBST wash was performed after each incubation step and a 

final 30 second water wash was performed before drying the slides with nitrogen for 

5min.  Slides were scanned in a ‘C’ Scanner (Agilent, Santa Clara) on the red channel 

using the 0.1 xdr setting to get scans at 10PMT and 100PMT.   

 The BioMicroChips were purchased from HealthTel (?)  Chips were 

processed in a 12 well tissue culture plate.  All steps were performed at room 

temperature and the plate was set on a rotating platform for mixing.  The chip was 

pre-incubated with 3% BSA PBST for 1hr before probing with 10nM monoclonal in 

3% BSA PBST for 1hr, followed by 5nM Alexa-647 labeled anti-Mouse IgG in 3% 

BSA PBST for 1hr.  Six two minute washes in 1% BSA TBST were performed after 

each incubation, and a final three two minute washes in deionized water were 

performed before drying with 40PSI nitrogen nozzle.  The chips were scanned in the 
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Innoscan 900 (Innopsys, Carbonne, France) scanner using custom made slide 

adapters at 50PMT low laser power on the red channel. 

Images from all three platforms were aligned in Genepix Pro 6.0 (Molecular 

Devices, Sunnyvale, CA) using appropriate GAL files.  Streaks, particulates, and 

other artifacts were visually identified and flagged.  Flagged spots were treated as 

missing data in subsequent analysis.  The spot medians were used as the signal 

intensities.  Data was imported into Matlab R2010b (Mathworks, Natick, MA) for 

further analysis.  The contribution of the secondary antibody was subtracted from 

raw signal intensity based on secondary only arrays.  The global background intensity 

for each slide was estimated based on the average signal intensity in between the 

spots, and the signal intensities were normalized by taking the ratio to the 

background intensity.  The normalized signal of any spot at or below the average 

background was set to one and the data was log transformed. Normalized signals 

were averaged across replicate arrays.  Specificity was calculated based on finding the 

pearson correlation between the signal intensities and a profile corresponding to 

having a signal of one in that antibody and zero in the others. 

Sequence properties were calculated for all peptides using Matlab.  The GSC 

(CIM10Kv1) or CSG (CIM10Kv2) linker sequences were not included in calculating 

sequence properties.  The isoelectric point was calculated using the function from 

the matlab bioinformatics package.  The average residue volume (Fauchere et al. 

1988), beta turn propensity (Chou and Fasman 1978), flexibility (Vihinen, Torkkila, 

and Riikonen 1994), and hydrophilicity (Parker, Guo, and Hodges 1986) scales were 

obtained from the AAindex database (Kawashima et al. 2008).  The accessibility 
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(Emini et al. 1985) and antigenicity (Kolaskar and Tongaonkar 1990) scales were 

obtained from the Immune Epitope DataBase antibody epitope prediction page 

(Zhang et al. 2008).   

 

Results 

 Three unique peptide libraries were created in microarray format.  The key 

differences between the microarrays are summarized in table 2.  The first microarray 

called CIM10Kv1.0 has 10,000 random-sequence peptides with seventeen 

randomized positions containing equal frequencies of all amino acids except Cys and 

a constant C-terminal Gly-Ser-Cys  linker.  The peptides were contact printed on 

aminosilane coated microscope slides that had been activated with a sulfo-SMCC 

linker to covalently link the peptide through the sulfhydryl group of the Cys.   The 

CIM10Kv2 was created in a very similar many to the first version with a few key 

differences.  The peptides were designed with an N-terminal Cys-Gly-Ser so that the 

peptides would be immobilized in the opposite orientation and the C-terminus was 

modified to an amine group to preserve the charge at the free end of the peptide.  

The spotting buffer was changed to a more aqueous buffer to in order to reduce the 

printing of hydrophobic peptide synthesis byproducts.  Piezo printing was adopted 

because it was able to print two replicate arrays on one physical slide and was able to 

print more slides in a shorter time period.  Reproducibility was also improved from 

contact printing (data not shown).   
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Table 2.  Peptide microarray platform comparison.  The two 10K microarrays are 
fairly similar, differing only in the peptide orientation, spotting buffer, and printing 
method.  The BioMicroChip are made using a completely different technology, 
allowing for many more features in a smaller array.  The first version of the 
BioMicroChip has only 12mer peptides made from eight different amino acids.  1X 
indicates randomized positions.  On the 10K arrays, the peptides are immobilized 
through the Cys (C-terminal on version 1 and N-terminal on version 2).  The 
BioMicroChip has a polyethelene glycol (Peg) linker.  2Hydrophobic amino acids are 
shown in black, hydrophilic neutral amino acids are shown in blue, negatively 
charged amino acids are shown in red, positively charged amino acids are shown in 
green, and aromatic amino acids are underlined. 
 
Microarray CIM10Kv1.0 CIM10Kv2.0 BioMicroChip v1.0 
Peptide Design1 XXXXXXXXXX

XXXXXXGSC 
CSGXXXXXXX 
XXXXXXXXX 

XXXXXXXXXXX
X-(Peg) 

Number of 
peptides 

10,000 Peptides 10,000 Peptides 100,000 Peptides 

Amino acids in 
randomized 
positions2 

GAVLIMFWP 
STYNQDEKRH 

GAVLIMFWP 
STYNQDEKRH 

GFWPEKHY 

Spotting Buffer DMF/PBS HEPES/TCEP N/A 
Printing Method Contact Printed Piezo Printed Synthesized in Situ 
Array Substrate Aminosilane 

coated glass slide 
Aminosilane coated 
glass slide 

Silicon Wafer 

Physical 
Dimensions 

75mm x 25mm 75mm x 25mm 11mm x 11mm 

 

The BioMicroChip represents an entirely different type of peptide microarray 

technology than the CIM10K arrays.  The peptides were synthesized in situ, which 

removes any potential effects of differences in peptide immobilization efficiency.  

The stepwise yield of the synthesis was approximately X% so the features should 

have approximately X% full length peptide.  The synthesis method also enables a 

much greater miniaturization, with ten times as many peptides contained in about 

13% of the area.  These chips contain shorter peptides generated from fewer amino 

acids than the 10K libraries. 

 Eight different properties were calculated from the peptide sequences.  The 

distributions of those sequence properties were examined for each of the peptide 
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library (Figure 4.1).  Note that four of the properties (beta turn, accessibility, 

flexibility, and hydrophilicity) are moderately correlated with each other 

(Pearson>0.6).  The two 10K library had very similar distributions of all properties.  

The 100K library has dramatically lower sequence complexity compared to the 10K 

libraries as a result of only containing eight amino acids.  In fact, the 95% complexity 

score of the 100K library was lower than the 5% complexity score on the 10K 

library.   

 

Figure 4.1 Platform comparisons of properties distributions.  The distributions of 
eight different sequence properties across the three random peptide libraries are 
shown as boxplots above.   
 

Monoclonal antibodies were found to bind to a significant fraction of all 

three peptide libraries.  False color images of a representative array are shown in 

Figure 4.2 for the CIM10Kv2 and BioMicroChip.  Representative images of the 

CIM10Kv1 were published previously (Halperin, Stafford, and Johnston 2011).  The 

number of peptides bound varied greatly between monoclonals with the percent 
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above background ranging from 0.1% to 86% on the 10K platforms.  The 

BioMicroChip did not have any non-printed area to be able to estimate the signal 

intensity of the background so the number of spots above background could not be 

estimated.  However, the chips demonstrated a large dynamic range spanning three 

logs of fluorescence intensity. 

 

Figure 4.2  False color  microarray images.  False color images generated in Matlab of 
the P53Ab1 antibody probing the CIM10Kv2 (A) or BioMicroChip (B). 
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The correlation of the signal intensity was examined between each 

monoclonal antibody and each peptide property (Figure 4.3A).  On the CIMv10Kv1, 

the largest correlations are seen with isoelectric point, those these vary greatly 

between antibody (mean 0.03, range: -0.47 to 0.38).  Binding is generally negatively 

correlated with flexibility (mean -0.08, range: -0.29 to 0.18), accessibility, (mean -0.07, 

range -0.19 to 0.02) and hydrophilicity (mean -0.07, range: -0.25 to 0.18).   Slight 

positive correlations were observed for sequence complexity (mean 0.05, range -0.01 

to 0.20).  These trends are quite different when examined on the CIMv10Kv2.  

Isoelectric point still showed the most variability among antibodies, but here the 

correlation was generally positive (mean 0.17, range: -0.1 to 0.46).  Correlations with 

beta turn propensity (mean 0.15, range -0.02 to 0.33), flexibility (mean 0.14, range -

0.03 to 0.30), accessibility (mean 0.13, range -0.05 to 0.32), and hydrophilicity (mean 

0.13, range -0.05 to 0.30) were generally positive.  While only three monoclonals 

were run on the 100K, all of them had moderate positive correlations with sequence 

complexity (mean 0.31, range 0.27 to 0.37), and moderately negative correlations 

with flexibility (mean -0.19, range -0.14 to -0.22), accessibility (mean -0.16, range -

0.09 to -0.20), and hydrophilicity (mean -0.13, range -0.08 to -0.14).  Remarkably, the 

only monoclonal that was run on all three platforms (P53Ab1) seems to prefer 

different properties depending on the microarray format that was used.  Correlations 

between peptide properties and specificity were also examined.  No property 

consistently correlated with peptide specificity on any platform. 
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Figure 4.3  Correlations with properties for all mAb’s and platforms.  Pearson 
correlations between signal intensities (A) or specificity (B) of monoclonal antibody 
binding and sequence properties are shown as a heatmap. 
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Figure 4.4  Correlations of amino acids counts for all mAb’s and platforms.  The 
pearson correlation between signal intensities (A) or specificity (B) of monoclonal 
antibodies and amino acid counts of peptides are shown as a heatmap. 

 

The relationship between the average signal intensities of all of the 

monoclonals run on a given platform was plotted against each peptide property.  For 

the CIMv1 and CIMv2 the relationships were fairly linear or flat (data not shown).  

More interesting relationships were observed between the properties and the average 

monoclonal signals on the 100K chip (Figure 4.5).  Boxplots revealed an inverted U 

shape curve of the average signal intensities plotted against six of the properties: 

accessibility, flexibility, hydrophilicity, isoelectric point, and residue volume.  In other 
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words, signal intensities were higher for peptides that had intermediate levels of 

these properties rather than high or low values.  This preference for intermediate 

peptides correlates with the preference for high complexity peptides as peptides with 

lower complexity tend to have more extreme values of any property. 

 

Figure 4.5  Boxplots of Properties vs. Signal Intensities on 100K Chip.  The average 
of the three monoclonal antibodies binding signal is plotted against each sequence 
property as a boxplot.  Pearson correlations between the average signal and the 
property are shown above each graph. 
  

It seems likely that the antibodies bind to a subsequence of any peptide 

rather than the whole peptide.  5mers are likely the shortest subsequence that an 

antibody recognizes, but less than 5% of all possible 5mers with 19 aa occur on 
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either 10K array.  Do to the larger library and more limited diversity, each unique 

5mer of 8aa diversity occurs a median of 25 times on the 100K array (Figure 4.6).  

The geometric rank of the signal intensity for the three monoclonals was found for 

each 5mer.  A set of 5mers stood out has having low geometric mean ranks for the 

P53Ab1 antibody.  No 5mer were identified for the other two antibodies (data not 

shown).  A scatterplot of the signal intensities of all peptides for two of the 

antibodies confirms that most of the peptides containing these 5mers bind more to 

the P53Ab1 than the invitrogen antibody.  These 5mers have very similar sequences 

to the best 5mer identified (PGGYK), but are not at all related to the epitope 

sequence of P53Ab1 (RHSVV).  Note that only one of the amino acids contained in 

the epitope was present on the 100K chip. 

 
Figure 4.6 N-mer coverage comparisons on different platforms.  The number of 
occurrences of times each unique 5mer occurs on the two different peptide library 
designs.  The 10K libraries only have about 5% of all possible 5mers, and rarely have 
any repeated.  The 100K library has every possible 5mer represented at least seven 
times and a median of 25 times.   
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Figure 4.7 5mer analyses on 100K.   All peptides were ranked by signal intensity for 
two monoclonal antibodies.  The geometric mean rank of all the peptides containing 
each 5mer where found and are plotted as a scatter plot (A).  The 5mers identified to 
have better ranks for the P53Ab1 are shown.  A scatter plot of the signal intensities 
for each peptide for the same monoclonals (B) has the peptides containing those 
5mers highlighted. 
 

Discussion 

 Three different random peptide libraries assayed on three different peptide 

microarray platforms were described.  The three peptide libraries had similar 

distributions of most sequence properties examined, except sequence complexity was 

drastically reduced on the 100K library compared to the 10K libraries.  Monoclonal 

antibodies were found to bind a variable number of peptides on all three libraries.  

Some platform specific patterns of correlations with sequence properties were noted.  

Of particular interest was that on the 100K platform binding correlated most 

strongly with sequence complexity.  The correlations between properties and 

antibody specificity tended to vary more between antibodies than with the platform.  

The more dense coverage of sequence space on the 100K platform enabled analysis 
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by 5mer subsequences.  A set of 5mers specific for one of out of the three antibodies 

was identified. 

 The two 10K libraries and the 100K library have very different amino acid 

compositions, with the 10K’s utilizing 19 amino acids and the 100K only utilizing 

eight.  Despite the limited diversity, the 100K library had a similar coverage of most 

physiochemical properties.  The eight amino acids used in the 100K included all of 

the aromatic or ring containing amino acids and thus had a distribution of average 

residue volume shifted up from the 10K libraries.  The much more dramatic 

difference between the 10K and 100K libraries was the lower sequence complexity in 

the 100K. 

 The differences in the correlations between antibody binding on the different 

platforms could be due to a number of factors.  The differences in the printing 

technologies used could have lead to differences in the peptide presentations that 

lead to differences in antibody binding.  The peptide orientation appears to play an 

important role in how antibodies recognize different properties, as the CIM10Kv1 

and 100K chip both are attached at the C-terminus and show similar correlations 

with peptide properties.  However, often the question is not which peptides bind the 

best, but which are able to differentiate between two conditions.  When examining 

antibody specificity, there does not appear to be any particular physiochemical 

property or set of properties that specific peptides have in common.   

 Sequence complexity does appear to be important in identifying specific 

peptides.  On the 10K arrays, an average of 440 highly specific peptides was 

identified for each antibody and 23 out of the 24 antibodies tested had at least one 
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highly specific peptide (Appendix C, Table 1).  Since replicate chips were not 

available for the monoclonals on the 100K, it was not possible to identify specific 

peptides in the same manner as on the 10K.  However the repetition of the 5mers on 

the 100K enabled the confident identification of 5mers that were preferentially 

bound by an antibody.  Surprisingly only one of the three antibodies was able to 

recognize specific 5mer sequences.  We also saw a similar issue with differentiating 

infected and naïve sera on the 100K platform.  While previous studies have shown 

that the 10K library can robustly distinguish mouse influenza immune sera from 

naïve mouse sera (Legutki et al. 2010 and unpublished data on the 10Kv2), we were 

not able to identify peptides that were significantly different between these sera on 

the 100K chip (Figure F-5).   

Previous studies have found that the aromatic residues are particularly 

important in paratopes, and have designed Fab libraries that contain only two to four 

different amino acids in the CDR loops.  They have been able to identify high 

affinity and specificity scFvs to a variety of ligands using these limited libraries 

(Koide and Sidhu 2009).  Instead of having a limited diversity library of paratopes, 

here we have limited diversity library of potential epitopes.  While we were able to 

identify many antibody binders to all three antibodies tested, we were only able to 

identify high specificity binders to one of the antibodies.  We conjecture that the 

paratope library relies on structural diversity to confer specificity, but since peptides 

are likely unstructured, sequence diversity is required to identify specific binders. 

 Immunosignaturing, a technique utilizing random-sequence peptide 

microarrays to profile the humoral immune response, has shown great promise as 
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diagnostic technology (Legutki et al. 2010).  While the peptides shown to be 

differentially bound by disease sera and control sera may be used a as biomarkers of 

the disease, they do not readily identify what antigen originally elicited those 

antibodies.  Previous work on the 10K libraries has shown that the sequence 

similarity between peptides recognized by a monoclonal and its epitope would not 

have been sufficient to predict the antigen had it been unknown (Halperin, Stafford, 

and Johnston 2011).  However, the 100K platform has a much denser sampling of 

sequence space, as illustrated by the repetition of 5mer sequences.  While we were 

not able to identify an epitope sequence from this library because most of the amino 

acids in the epitopes of the antibodies tested were not on the chip, we were able to 

identify other 5mers that were preferentially bound by one of the antibodies.  When 

peptides containing these 5mers were resynthesized and compared directly to a 

peptide containing the epitope sequence, much greater binding was observed for the 

epitope peptide (Figure F-11).  Therefore, we would expect that if peptides 

containing the epitope sequence were present on the 100K array, they would likely 

stand out even more than the 5mers we identified.   Although a 5mer sequence 

would not be sufficient to uniquely identify a protein out of a database of all known 

proteins, the 5mer along with other biological information such as organism, 

expected molecular weight, or sub-cellular localization could help narrow down to a 

reasonable number of candidate antigens to test experimentally.  When new versions 

of the 100K chip become available that have more amino acid diversity they are 

likely to have much more power in predicting epitopes from immunosignaturing 

experiments. 
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CHAPTER 5 

EXPLORING ANTIBODY RECOGNITION OF SEQUENCE SPACE 

THROUGH RANDOM-SEQUENCE PEPTIDE MICROARRAYS 

 

Summary 

A universal platform for efficiently mapping antibody epitopes would be of 

great use for many applications, ranging from antibody therapeutic development to 

vaccine design.  Here we tested the feasibility of using a random peptide microarray 

to map antibody epitopes.  Although peptide microarrays are physically constrained 

to ~104 peptides per array, compared to 108 permitted in library panning approaches 

such as phage display, they enable a much more high though-put and direct measure 

of binding.  Long (20mer) random sequence peptides were chosen for this study to 

look at an unbiased sampling of sequence space.  This sampling of sequence space is 

sparse, as an exact epitope sequence is unlikely to appear.  Commercial monoclonal 

antibodies with known linear epitopes or polyclonal antibodies raised against 

engineered 20mer peptides were used to evaluate this array as an epitope mapping 

platform.  Remarkably, peptides with the most sequence similarity to known epitopes 

were only slightly more likely to be recognized by the antibody than other random 

peptides.  We explored the ability of two methods singly and in combination to 

predict the actual epitope from the random sequence peptides bound.  Though the 

epitopes were not directly evident, subtle motifs were found among the top binding 

peptides for each antibody.  These motifs did have some predictive ability in 
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searching for the known epitopes among a set of decoy sequences.  The second 

approach using a windowing alignment strategy, was able to score known epitopes of 

monoclonal antibodies well within the test dataset, but did not perform as well on 

polyclonals.  Random peptide microarrays of even limited diversity may serve as a 

useful tool to prioritize candidates for epitope mapping or antigen identification. 

 

Introduction.   

Antibodies play an important role in protecting against infectious disease and 

contribute to pathology in autoimmune disease.  Understanding antibody-antigen 

interactions is important for elucidating disease etiology, as well as facilitating vaccine 

design and diagnostic test development.  In addition to their role in the immune 

system, antibodies are also very useful as affinity reagents for detection and 

purification as well as clinical diagnostic tools and pharmaceuticals.  Epitope 

mapping is often an important step in determining if an antibody is suitable for a 

particular application, sorting among antibodies or determining how it performs its 

function.  Many methods exist for identifying the epitope of an antibody, including 

crystallography, peptide tiling, and phage display (Fack et al. 1997; Reineke 2009).  In 

this study, we will examine whether a faster, less expensive array based approach 

could be applied to the epitope mapping problem 

A crystal structure of the antibody bound to the target is generally considered 

the gold standard of epitope mapping because it gives the most detailed information 

about the binding mechanism and will work for both conformational and linear 

epitopes.   To identify a linear epitope, the peptide tiling method is often preferred 
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because it is simple and straightforward.  However, the expense of synthesizing tiling 

peptides for every protein target may be prohibitive.  To avoid the costly synthesis 

step, a library approach such as phage display may be employed.  Peptides with 

random sequences can be displayed on the surface of phage, and those that bind best 

to the antibody can be selected and amplified.  In the case of a linear epitope, the 

sequences recovered generally have sequences that very closely or exactly match the 

epitope sequence (Bongartz, Bruni, and Or-Guil 2009; Cortese et al. 1994; Gershoni 

et al. 2007; Irving, Pan, and Scott 2001; Wang and Yu 2004; Yip and Ward 1999).  

However, several rounds of selection, as well as sequencing of many selected clones 

makes this process expensive and time consuming.  Furthermore, phage display has 

an inherent bias in selecting peptides that facilitate growth which reduces the 

effective size of the library.  A faster method that allows a more direct measure of 

binding would be ideal. 

Peptide arrays provide an alternative for screening a library of peptides for 

binding activity.  The challenge of the array based approach is that the size of the 

peptide library feasible is several orders of magnitude smaller than those typically 

used in phage display.  We have developed a random-sequence peptide microarray 

and are exploring its usefulness in a number of applications.  The peptide library 

consists of 10,340 random sequence peptides that have seventeen randomized 

positions and a three amino acid linker.  The library represents a very sparse 

sampling of sequence space, as only five percent of all possible 5mer sequences are 

represented.  Despite the small library size, the random-sequence peptide microarray 

was successfully used to identify protein and glycan binding peptides, and most 
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pertinent to this study, to profile humoral immune responses (Boltz et al. 2009; 

Legutki et al. 2010; Morales Betanzos et al. 2009; Williams et al. 2009).  This 

technique known as immunosignaturing is a novel method to detect changes in 

antibody reactivity has been described by our group elsewhere (Legutki et al. 2010).   

The peptides need only be mimotopes for immunosignaturing to serve its main 

purpose as a diagnostic platform.  However, it is obvious to ask how the peptide 

sequences may relate to the antigen that raised the detected antibody response.  It 

would be very useful if the peptide sequences identified in the immunosignaturing 

experiments could be used to identify the immunogenic epitopes in a pathogen or an 

autoantigen.  Some preliminary use of random peptide arrays for epitope mapping 

was done by Reinke et al., but required subsequent rounds of mutational analysis of 

the peptides to hone in on the epitope sequence (Reineke et al. 2002).  However, it 

may be possible to use a more sophisticated bioinformatics approach to infer the 

epitope from these loosely related sequences. 

In order to evaluate how well the random-sequence peptide microarray could 

work for predicting the antibody epitopes, ten antibodies with known epitopes were 

selected.  Five well characterized monoclonal antibodies that recognize linear 

epitopes were selected.  Two recognize distinct P53 epitopes, which had been 

identified through peptide tiling and phage display experiments (Stephen, Helminen, 

and Lane 1995).  The antibody against tubulin was epitope mapped using protease 

digestions, and the anti-IL2 has been co-crystallized with its target (Afonin et al. 

2001; Breitling and Little 1986).  The anti-HA monoclonal was raised against the 

peptide commonly used as an epitope tag.  Five polyclonal antibodies raised against 
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random peptides from the library were included to evaluate the more difficult task of 

predicting an epitope from a polyclonal immune response.  Using anti-peptide sera 

allows us to have a polyclonal response, but still know where the epitopes must be.  

We chose peptides from the library to facilitate comparison of the relative binding 

levels of the cognate peptide and the array of mimotopes.  This known epitope 

antibody set will allow us to evaluate our epitope prediction strategy (Fig. 1). 

Motif finding algorithms are able to find subtle patterns in sets of unaligned 

sequences.  These algorithms may be classified in two main categories: deterministic 

and optimizing.  Deterministic algorithms will exhaustively search a sequence set for 

motifs fitting a well defined set of criteria.  Some popular implementations of 

deterministic motif finding algorithms are TEIRESIAS or PRATT (Jonassen 1997; 

Rigoutsos and Floratos 1998).  The optimizing algorithms represent the motif 

probabilistically and try to maximize a scoring function.  The optimization can be 

preformed stochastically such as using Gibbs motif sampling or by expectation 

maximization as implemented in MEME (Bailey et al. 2006).  An optimization 

approach seems most appropriate for this problem because we do not know what 

criteria the motif should fulfill.  Since it is possible that gapped motifs may be useful 

here, the GLAM2 implementation of the Gibbs motif sampling algorithm will be 

used here because it allows for gaps (Frith et al. 2008). 

An alternative to finding a motif among the peptides would be to compare 

the peptides one at a time to the antigen sequence(s).  A similar sequence analysis 

problem was addressed by a group using peptides selected by phage display to bind 

to small molecules to identify analogous binding sites in real proteins.  The algorithm 
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implemented in the RELIC MATCH program compares each peptide sequence to 

the target protein sequence in five amino acid windows, and scores each window for 

similarity (Mandava et al. 2004).  The scores for all of the peptides are added up 

across the protein sequence to predict potential small molecule binding site.  A 

similar approach may be useful for predicting antibody recognition sites from 

dissimilar peptide sequences selected in a peptide microarray experiment.   

Typically, epitope mapping is performed in order to identify the specific part 

of a protein target that is recognized by the antibody.  A recent study has 

demonstrated the feasibility of using a similar approach to identify an unknown 

protein target of an antibody (Bastas et al. 2008).  Peptides from a phage display 

library can be selected against an antibody.  Motifs in the peptide sequences can be 

used to search a database of potential antibody targets.  The authors concluded that a 

motif of at least seven amino acids or two shorter motifs in combination could be 

used to reasonably identify a protein target among a database of candidates.  This 

approach could be powerful in identifying the antigenic proteins in a pathogen, 

targets in an autoimmune disease, or even discovering the cause of an unknown 

infection and the potential to translate this approach to a microarray platform will be 

explored here.  Here we determine to what extent a bioinformatics approach may be 

used to predict the epitope directly from the 10K peptide array data.  
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Figure 5.1  Experimental design schematic. 

 

Methods.  Random sequence peptide arrays were produced as described in Morales 

Betanzos et al. (2009).  Briefly, 10K random 17mer sequences containing equal 

probability of the 20 amino acids except cysteine were generated.  A C-terminal 

linker of Gly-Ser-Cys was added to each sequence to make 20mer peptides.  These 

peptides were synthesized by Alta Bioscience (Birmingham, UK), diluted in 25% 

DMF 75% PBS, and spotted on a Telechem Nanoprint quill type contact printer 

onto sulfo-SMCC activated aminosilane coated glass slides. 
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Table 5.1  Antibodies used in this study.  mAb1 is a monoclonal antibody raised 
against a peptide.  mAb2 through mAb5 are monoclonal antibodies with epitopes 
previously determined in the literature.  All of the polyclonal antibodies were raised 
against peptides selected from the random sequence peptide array.   
 
Name Immunogen Clonality Isotype Clone 

Name 
Sequence pI Hydro-

pathicity
mAb1 HA peptide Monoclonal IgG1 16B12 YPYDVPDYA 3.56 -0.9

mAb2 Human IL2 Monoclonal IGg1 LNKB2 KPLEEVLNL 4.53 -0.044

mAb3 Human p53 Monoclonal IgG1 PAb240 RHSVV 9.76 -0.02

mAb4 Human p53 Monoclonal IgG2b, 
IgG2a 

DO-7, 
BP53-
12 

SDLWKL 5.55 -0.25

mAb5 Human 
Tubulin-alpha 

Monoclonal IgG1kappa DM1A AALEKD 4.67 -0.583

pAb1 KLH-peptide Polyclonal IgG 
detected 

NA MDQDDGEGV- 
IGHFHPILGSC 

4.21 -0.185

pAb2 KLH-peptide Polyclonal IgG 
detected 

NA EFWDKEWHTR-
ADWPVWDGSC 

4.43 -1.245

pAb3 KLH-peptide Polyclonal IgG 
detected 

NA TIPAHNIFWI- 
LYFSIGTGSC 

6.4 0.87

pAb4 KLH-peptide Polyclonal IgG 
detected 

NA PAMKHREPH- 
WVIPGIIWGSC 

8.64 -0.13

pAb5 KLH-peptide Polyclonal IgG 
detected 

NA EFSNPTAQVF- 
PDFWMSDGSC 

3.49 -0.315

 

Antibodies with known epitopes were purchased from commercial suppliers.  

mAb1, mAb2, mAb3 and mAb4 were purchased from Labvision (Fremont, CA) and 

mAb5 was purchased from Abcam (Cambridge, MA).  The five polyclonal antibodies 

were produced as follows.  Mice were immunized with keyhole limpet hemocyanin 

(KLH) conjugated peptides and sera was obtained at day 35.  All animal work was 

conducted following an animal use protocol which was approved by the Arizona 

State University Institutional Animal Care and Use Committee.  Antigen specific 

antibodies were absorbed from sera by binding to KLH immobilized on 

nitrocellulose membrane.  A one by six centimeter nitrocellulose membrane was 

placed in a 15 ml conical tube with 1.0 mg/ml KLH in 2.0 ml PBS.  The membrane 

was washed three times in TBST and incubated with 1.0% BSA in TBST for at least 
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one hour or until used.  After washing three times in TBST, the membrane was 

placed into 2.0 ml of sera diluted 1:500 in 3% BSA, 0.05% Tween, PBS buffer.  

Reactivity of sera for KLH was tested in an ELISA. Sera were considered absorbed 

when no reactivity for KLH was detected at the 1:500 dilution. 

The monoclonal antibodies or polyclonal sera were used to probe the peptide 

microarrays.  After slides were passivated with 0.014% Mercaptohexanol, antibody 

was diluted to 100nM or sera were diluted 1:500 in 3% BSA, 0.05% Tween, PBS.  

Antibodies were incubated with slides for 1 hour at 37C in Agilent Chambers with 

rotation.  Slides were washed three times with TBS, 0.05% Tween and three times 

with diH2O.  The incubation and wash procedure was repeated with a biotinalyted 

secondary antibody (Bethyl Laboratories, Inc. Montgomery, TX), then with Alexa-

555 labeled Streptavadin (Invitrogen, Carlsbad, CA).   Negative control arrays with 

no primary antibody or naïve mouse sera were also run for comparison.  At least 

three replicate arrays were run for each antibody.  

Slides were aligned using GenePix Pro 6.0 (Molecular Devices) and median 

spot intensities were averaged across replicate slides.  Negative control signals were 

subtracted from antibody signals to remove the contribution of the secondary 

binding.  The top 500 peptides in fluorescent intensity were selected for each 

antibody.  The number of times each peptide occurs in one of the top 500 peptides 

lists was tabulated.  Peptides appearing in five or more lists were eliminated as they 

are likely Fc binders or other nonspecific interactions.  For the polyclonal datasets, 

the immunizing peptides were also excluded.  The peptide lists described here will be 

referred to as the binders lists in subsequent analysis. 
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Peptides from the array were compared to the epitope sequences to identify 

those with sequence similarity.  The epitope was expressed as a GLAM2 motif and 

was used in GLAM2SCAN to search against the peptides from the array inserted in 

strings of cysteines, with an alphabet of equal amino acid frequencies.  Peptides were 

sorted by the highest scoring match and lists of the best matching peptides were 

created and these lists are referred to as the aligners lists. These lists were compared 

with lists of peptides that most strongly bind to each peptide and the proportion of 

overlap was examined. 

Test datasets were generated for the monoclonal antibodies by randomly 

selecting sequences from human Swissprot and then randomly selecting a window of 

that sequence the same length as the epitope sequence.  Two hundred negative 

examples were generated for each monoclonal.  One thousand random peptides 

were generated as the negative examples for the polyclonal antibodies with equal 

frequencies of the nineteen amino acids (cysteine was not included as in the arrays).  

All of these sequences were inserted within a string of seventeen cysteines on each 

side to allow peptides to be aligned overhanging the test sequences. 

Motifs were generated from the binders peptide lists using GLAM2, with a 

starting width of five amino acids, 1,000,000 iterations without improvement, 10 

runs, and an alphabet of equal proportions of the 20 amino acids.  GLAM2SCAN 

was used to search the corresponding test sets for sequences matching the motif with 

the alphabet set as the default protein alphabet for the monoclonal antibodies or 

equal amino acid frequencies for the polyclonal antibodies.  GLAM2SCAN output is  
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the score for each place the motif matches in the test sequence set.  The test 

sequences were ranked by the highest score match within each sequence. 

The RELIC Fastaskan program was used to align the binding peptides to the 

test dataset.  The binders peptide lists were uploaded as the affinity selected peptides 

and the corresponding test dataset was uploaded as the FASTA file.  Random 

peptides were not subtracted.  Fastaskan compares each five amino acid window of 

the test sequence with the selected peptide sequence and summing scores of the 

alignments above a threshold.  It outputs a score for each test sequence 

corresponding to the window of maximum similarity between the peptides and that 

sequence. 

 

Table 5.2  Comparison of RELIC and GLAM2 approaches 

RELIC GLAM2 
Compares peptide sequences and 

database sequences pair-wise 
Looks for a motif within all of the 

peptide sequences, then uses motif to 
search database 

Uses a five amino acid window Starts with a five amino acid window, 
but can adjust window size 

Scores include amino acid similarity Finds patterns using identity only 
 

For both the GLAM2SCAN and the RELIC analysis, the rank of the true 

epitopes was compared to the test sequences using ROC analysis.  A Matlab script to 

calculate the true positive and false positive rate for each score cutoff was obtained 

from http://theoval.cmp.uea.ac.uk/~gcc/matlab/roc/ and modified to smooth tied 

scores.  The area under the ROC curve was also calculated using a Matlab script 

from the same website.  The area under the curve will be used to predict the 
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probability of finding an epitope in a database of a given size.  We will assume 

positive and negative examples will be selected from a database of a fixed size 

without replacement weighted by the probability that a positive is chosen over a 

negative as estimated by the area under the curve. 

 

Results.  The peptide array consists of randomly generated 17aa sequences with a 

3aa, C-terminal linker.   The length was chosen for two reasons. Practically, 

commercial sources of peptide synthesis limit the length to 20aa for large syntheses.  

Second, we have found that peptides longer than 20aa tend to assume secondary 

structure and are less soluble (saj, unpublished data).  We chose to print 10K 

peptides because this was the maximum number that could be printed in duplicate 

on one standard slide.  Standard glass slides were used in order to facilitate the 

processing of the slides on standard equipment and to reduce the cost.  

 In order to evaluate the peptide microarray platform, examples of antibodies 

against a known set of variable types of epitopes were chosen.  Five monoclonal 

antibodies with known linear epitopes, and five examples of anti-peptide polyclonal 

mouse sera raised against peptides selected from the array were used as the test set.  

Together these epitopes cover a wide range of lengths and physiochemical properties 

(Table 1).  These antibodies will allow us generate a dataset to test how well different 

sequence analysis approaches are able to predict these antibody epitopes.   Clear 

binding above background was observed as illustrated in the representative slide 

images shown (Fig. 2).  The monoclonal antibodies were found to bind to a median 

of 64.1% (range 37.6% -74.9%) of the random peptides above the slide surface 
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background and secondary only controls.  Polyclonal sera showed similar peptide 

reactivity with a median of 63.6% (range 54.0% - 68.6%).  The rank of the peptide 

used for immunization ranked within the top 100 peptides by signal intensity in four 

out of the five examples (Fig. 3).  Replicate slides had an average Pearson correlation 

of 0.785 for monoclonals and 0.764 for polyclonals.  The heatmap (Fig. 4) shows 

that each antibody has a distinct binding pattern on the array.  While there is some 

overlap between the peptides bound by each antibody, about 22% of the top 500 

peptides recognized by each antibody are not recognized by the other nine 

antibodies tested (Fig. 5).  The uniqueness of the peptides recognized by each 

antibody implies that the peptide sequences may contain information about antibody 

specificity.    

 

Figure 5.2  Array images.  Two representative array images are shown in 
pseudocolor, with zoom in on the same block on each array to the right. 
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Figure 5.3 Histograms of peptide binding.  The distributions of signal intensities for 
the polyclonal antibodies are shown as histograms with the signal intensities on the 
y-axis and the relative length of the bar proportional to the number of peptides with 
that signal intensity.  The arrows indicate the location of the peptide that the 
polyclonal antibody was raised against and the number indicates the rank. 
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Figure 5.4  Heatmap of arrays. Data was normalized to the median on each array and 
clustered using GeneSpring.  Averages of replicates are shown.  Red represents high 
signals, yellow intermediate signals and blue low signals. 
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Figure 5.5  Pie chart of peptide binding showing the overlap between the top five 
hundred peptides for each of the ten antibodies.  Of the 10,340 peptides, 2166 are in 
the top 500 peptides for at least one of the ten antibodies.  1103 peptides are unique 
to one of the antibodies and only 6 peptides are recognized by all ten antibodies. 
 
 

Each peptide sequence was scored for similarity against each protein 

sequence.  Most of the peptides bound by the antibodies did not show strong 

sequence similarity to the epitope (Table 3).  However, there was some enrichment 

for sequence similar peptides among the binders.  Most of the peptides bound are 

mimotopes rather than having any obvious similarity to the epitope. 
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Table 5.3  Sequence similarity vs. Binders.  The binders column indicates the number 
of peptides selected from the microarray experiments and the aligners are the number 
of peptides that had sequence similarity with the known epitope as described in the 
Methods section.  The number of peptides in common between the binders and 
aligners lists is in the both column.  Expected column lists the number of peptides 
expected to be in common if lists were drawn at random from the peptide library.  
Ratio is the ratio of both to expected.  The percentage of the binders list that is in both is 
in the last column.  The p-value describes the probability that the binder and aligner list 
overlap as much as in the both list by chance based on the Fisher’s Exact test.   
 
  binders aligner both expected ratio % of 

binders 
align 

P-
value 

mAb1 350 181 6 5.88 1.02 1.70% 0.551 
mAb2 391 379 21 13.75 1.53 5.40% 0.062 
mAb3 379 188 36 6.61 5.45 9.50% <0.001 
mAb4 354 96 2 3.15 0.63 0.60% 0.334 
mAb5 369 365 6 12.5 0.48 1.60% 0.016 
pAb1 258 722 26 17.28 1.5 10.10% 0.053 
pAb2 258 755 26 18.07 1.44 10.10% 0.068 
pAb3 263 710 18 17.32 1.04 6.80% 0.493 
pAb4 274 742 22 18.86 1.17 8.00% 0.424 
pAb5 267 699 21 17.31 1.21 7.90% 0.301 
average 316.3 483.7 18.4 13.07 1.55 6.20% 0.232 

 

In order to assess the predictive power of these sequences the alignment of 

the peptides to the epitopes was compared to their alignment with a set of negative 

examples.  The RELIC alignment program was able to align binding peptides to all 

of the monoclonal epitopes and 62.7% of the negative examples.  The true epitopes 

had an average score of 14.3 while the negative examples had an average score of 5.9.  

The ROC analysis found an area under the curve of 0.87 indicating that a true 

epitope has an 87% chance of having a higher score than randomly selected negative 

example.  All of the polyclonals also had positive peptide alignment scores as well as 



   
128 

86.5% of the positive examples.  The true epitopes had an average score of 14.7 

while the negative examples had a score of 15.2.  The ROC analysis (Fig. 6) indicates 

that a positive example has a 46% chance of having a higher score than a negative 

example based on the area under the curve.  The monoclonal epitopes were 

predicted well by this method, while the polyclonal predictions were similar to 

chance.  

An algorithm capable of detecting subtle patterns may be able to garnish 

predictive power from these peptide sequences.  Convergent motifs were identified 

for all of the antibodies using GLAM2.  The motifs for the monoclonal antibodies 

ranged from three to five amino acids in width.  The polyclonal motifs were four to 

five amino acids wide.  The monoclonal motifs matched the epitope sequences with 

an average score of 3.5, while the negative examples had an average score of -3.7.  

Polyclonal motifs matched the immunizing peptide with an average score of 3.8 

while the negative examples had an average score of 3.7.  The ROC analysis 

demonstrates that the monoclonals epitopes have an 89.8% chance of being scored 

higher than the corresponding negative examples in the motif analysis while the 

polyclonals have a 67.9% chance of scoring higher than the negatives.  The motif 

finding approach demonstrated predictive power on both datasets. 

 In order to test if combining the two approaches may improve the predictive 

ability, the scores from the RELIC analysis and the GLAM2 analysis were each 

scaled to have a minimum score of zero and a maximum score of one and averaged.  

The ROC analysis was performed on the averaged scores (Figure 5.6 and 5.7).  The 

area under the curve was 0.92 for the monoclonals and 0.69 for the polyclonals.  



   
129 

Based on the probability estimated from the ROC analysis, there is about a 70% 

chance of finding a monoclonal epitope in the top ten windows out of a one 

hundred amino acid protein.  There would be a 21% chance of correctly identifying a 

polyclonal epitope in a small virus among the top 100 hits out of a possible 1000 

amino acid database, which is a two-fold enrichment. 

While a decoy sequence set was used to estimate the accuracy of these 

prediction methods, the analysis was also run against the antibody target protein 

sequences to illustrate how the method would work for predicting an epitope of a 

known target.  P53 was used as the example since both mAb3 and mAb4 are 

directed against different epitopes of P53, and represent the easiest and hardest 

epitopes to predict respectively of the five monoclonal examples.  Figure 5.8a. and b. 

illustrate how well the motif finding and alignment approaches may work when 

binding peptides show some enrichment for sequence similarity to the epitope, as 

demonstrated by mAb3.  When compared against the whole P53 sequence, both 

approaches predict the true epitope region with the highest score (Figure 5.8c).  In 

contrast, the true epitope region was not predicted among the top regions by either 

method for mAb4 (Figure 5.8d.)
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Figure 5.6  Epitope prediction accuracy.  ROC curves of epitope predictions among 
decoy dataset.  The true positive (TP) rate is plotted on the y-axis and the false 
positive (FP) rate is plotted on the x-axis.  The area under the ROC curve (auroc) 
indicates the probability that a true epitope would rank higher than a decoy 
sequence. a. RELIC alignment predictions monoclonal epitopes.  b. RELIC 
alignment predictions of polyclonal epitopes.  c. GLAM2 motif predictions of 
monoclonal epitopes.  d. GLAM2 motif predictions of polyclonal epitopes.  e. 
Combined predictions of monoclonal epitopes.  f. Combined predictions of 
polyclonal epitopes. 
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Figure 5.7.  Chance of finding true epitope in a database.  Using the probability 
calculating from the ROC analysis, the chance of finding an epitope in a database 
was calculated.   The x-axis shows the number of hits that would be examined, and 
the y-axis shows chance the true epitope would be found among those hits.  a. 
Chance of finding a monoclonal epitope within a dataset of 100 peptides.  b. Chance 
of finding a polyclonal epitope with a set of 1000 peptides. 
 

Discussion.   

We have shown that a diverse set of antibodies will each bind a high 

percentage of the 10K random sequence peptides on our arrays. Each antibody 

bound a unique set of peptides with little overlap between sets.  The list of peptides 

that bind best to each antibody is only slightly enriched for peptides with sequence 

similarity to a known epitope or immunogen.  However, motif finding and alignment 

approaches were able to score monoclonal epitopes well among a set of decoy 

sequences.  Predicting the immunogen in a polyclonal response was more difficult, 

with only the motif finding approach having predictive power.   
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Figure 5.8 Example analyses of epitope predictions on P53.  The anti-P53 
monoclonals mAb3 and mAb4 had the best and worst enrichment respectively for 
sequence similar peptides among the binders.  a. Motif identified by Glam2 analysis 
of mAb3 binders peptides is similar to mAb3 epitope sequence RHSVV.  b.  RELIC 
MATCH alignment of mAb3 binder peptides to epitope region.  c. & d.  Scores for 
glam2 motif (- -), RELIC alignment (—), and averaged scores (—) along the p53 
sequence for mAb3 (c) and mAb4 (d).  The respective epitope locations are 
highlighted in yellow. 
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Antibodies are conventionally characterized into two groups:  polyspecific 

antibodies that recognize many different antigens at low affinity and monospecific 

antibodies that recognize one or few antigens at high affinity (Michaud et al. 2003; 

Zhou, Tzioufas, and Notkins 2007).  Polyspecific antibodies typically have flexible 

paratopes which allows them to interact with antigens of a variety of shapes and the 

conformational entropy lost upon binding prohibits high affinity interactions.  In 

contrast monospecific antibodies tend to be closer to a lock and key binding model, 

which implies that only antigens with very similar shapes should bind (James, 

Roversi, and Tawfik 2003; Mariuzza 2006).  Here we found that a set of commonly 

used and well characterized monoclonal antibodies is capable of binding to many 

peptides of unrelated sequences when presented on the surface of a microarray.  We 

also observed that polyclonal sera raised to one peptide was able to bind to a median 

of 20 peptides with higher intensities than the one the sera was raised against, and 

hundreds at intensities within a fold change of the cognate peptide (Fig. 3). 

Weak motifs can still be found using a Gibbs motif sampler algorithm as 

implemented in GLAM2.  The GLAM2 implementation was chosen because it 

allows for the insertion of variable lengths gaps in the motif.  However, none of the 

motifs found had any insertions or deletions indicating that exact spacing is probably 

important in binding.  Though the patterns identified were subtle, they were 

repeatedly found over multiple runs.  These motifs were used to search a test dataset 

and were able to score true epitopes higher than decoy sequences.  Another 

approach aligning one sequence at a time using RELIC also showed some predictive 

power, especially with the monoclonal examples.  This indicates that a few sequences 



   
134 

with a highly similar window can be informative.  The example analysis for the two 

P53 antibodies illustrate how this data may be used in practice to predict an epitope.  

The two extremes are depicted where the true epitope is clearly predicted correctly 

and when it is missed.  It is interesting to note that when the motif and alignment 

methods clearly agree, the correct region is predicted suggesting that the 

concordance may be reason for confidence in the prediction. 

We have identified several sources of error inherent to our microarray such 

as the presence of impurities and truncations from the peptide synthesis and are 

currently developing a new version of the microarray to mitigate these problems.  

Optimizing the parameters of the motif finding or alignment may be helpful, but 

would require a larger training dataset to avoid overfitting to these specific examples.   

The polyclonal is likely a more difficult problem because there may be multiple 

epitopes within the peptide sequence, but the algorithms are looking for one peak.  It 

may be possible to modify the algorithm to pick up on multiple epitopes in one 

protein.  The biggest limitation of this approach is most likely the sparse sampling of 

sequence space dictated by the peptide microarray technology employed here.  

However, much higher density peptide arrays may be produced by in situ synthesis 

methods.  Currently there are oligonucleotide arrays commercially available that have 

106 features, and it should be possible to achieve similar densities with peptide arrays 

(Gao et al. 2004).  A peptide library of that size could be designed to cover all 

possible 5mer sequences, which would enable exact matches to short epitopes to be 

present. 
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The prediction accuracy observed in the monoclonal test dataset would be 

sufficient to narrow down possible linear protein epitopes to a few peptides and have 

a good chance of correct identification.  A much more challenging but interesting 

question is predicting the immunogenic antigen(s) from polyclonal sera, as would be 

required based on an immunosignaturing experiment.  It will be important for 

investigators to know the amount of uncertainty present in inferring epitopes from 

peptide sequences as more of these studies are performed.  When identification of 

the antigen raising the immune response is desired, a number of approaches are 

possible depending on the biological information available.  For example, if one had 

an immunosignature to a pathogen and wanted to identify the immunogenic epitopes 

within that pathogen, one could use the prediction methods described here in 

conjunction with other information available such as subcellular localization to 

prioritize proteins for further testing.  In a more difficult scenario, one may suspect a 

pathogen may play a role in a chronic disease and would want to use the 

immunosignature to identify the pathogen.  A more concrete idea of the sequence 

preference of the sera would be needed in order to search a database of all pathogens 

than could be inferred directly from the random peptide array results.  Alternatively, 

if technology allowed ready production of new sets of peptides, one could build 

another array with peptides around the space of the original binders to hone in on 

the relevant sequence.  
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CHAPTER 6 

GUITOPE: AN APPLICATION FOR MAPPING RANDOM-SEQUENCE 

PEPTIDES TO PROTEIN SEQUENCES 

 
Abstract 
 
Background 

Random-sequence peptide libraries are a commonly used tool to identify 

novel ligands for binding antibodies, other proteins, and small molecules.  It is often 

of interest to compare the selected peptide sequences to the natural protein binding 

partners to infer the exact binding site or the importance of particular residues.  The 

ability to search a set of sequences for similarity to a set of peptides may sometimes 

enable the prediction of an antibody epitope or a novel binding partner.  We have 

developed a software application designed specifically for this task.  

 

Results 

GuiTope provides a graphical user interface for aligning peptide sequences to 

protein sequences.  All alignment parameters are accessible to the user including the 

ability to specify the underlying amino acid frequency in the peptide library, which 

often differs significantly from the frequencies assumed by popular alignment 

programs.  It also includes a novel feature to align dipeptide inversions, which we 

have found improves the accuracy of antibody epitope prediction from peptide 

microarray data and shows utility in analyzing phage display datasets.  Finally,  
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GuiTope can randomly select peptides from a given library to estimate a null 

distribution of scores to calculate statistical significance. 

 

Conclusions 

GuiTope provides a convenient method for comparing selected peptide 

sequences to protein sequences, including flexible alignment parameters, novel 

alignment features, ability to search a database, and statistical significance of results.  

The latest version of the software available as an executable (for PC) at 

www.immunosignature.com/software and ongoing updates and source code will be 

available at sourceforge.net. 

 
Background 
 

Random-sequence peptide library screening approaches are an increasingly 

popular and powerful tool for identifying ligands for antibodies and other proteins as 

well as carbohydrates, pharmaceuticals, and other small molecules.  Peptide library 

methods generally fall into two categories: molecular display approaches such as 

phage display, and immobilized arrays such as SPOT.  Display approaches can 

typically accommodate much larger libraries, but information is typically obtained 

only on the clones that survive several rounds of panning which is heavily biased by 

sequences that facilitate growth (Derda et al. 2011).  In contrast, array based 

approaches may be used to screen smaller libraries with higher throughput than 

display approaches and semi-quantitative binding information obtained on all of the 

peptides in the library.  New technologies both on the display side and the array 
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approach promise to overcome these limitations (Breitling et al. 2009; Takakusagi et 

al. 2008; Ullman, Frigotto, and Cooley 2011).  The decreasing cost of both 

sequencing and peptide synthesis also promise to accelerate research in this area.  

Furthermore, new applications for random-sequence peptide libraries such as 

profiling the humoral immune response (Legutki et al. 2010) promise to increase 

interest in connecting random-sequence peptides to protein sequences.  Therefore, 

an increase in the demand for appropriate algorithms and software to facilitate the 

data analysis would also be expected. 

While the peptides discovered in these library screening experiments serve as 

useful ligands in and of themselves, comparison of the sequences to natural protein 

sequences can reveal novel biological insight.  Panning phage display libraries against 

monoclonal antibodies often selects for peptides that closely match the antibody 

epitope making the sequence analysis rather straightforward (Stephen and Lane 

1992).  If a strong enough motif is uncovered among the peptide sequences, it may 

even be used to search a database to predict an antibody target (Bastas et al. 2008).  

Though current array technology does not allow sufficient coverage of sequence 

space to contain sequence closely resembling natural protein sequences by chance, 

we have shown that experiments of this type still have utility for predicting 

monoclonal epitopes (Halperin, Stafford, and Johnston 2011).  Other groups have 

shown that peptides selected to bind to other types of proteins have utility in 

understanding and predicting binding to natural binding partners (Cao and Mao 

2009; Carter et al. 2006; Nie et al. 2008).  Even small molecule binding peptides have  
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enabled biological insight on natural protein small molecule binders (Rodi et al. 1999; 

Takakusagi et al. 2008). 

Analysis of the peptide sequences obtained from any selection experiment 

has unique challenges, primarily because the structural requirements for the selected 

peptides may be met by many diverse sequences.  One approach is to identify a 

motif among the peptide sequences and use the consensus sequence or a 

probabilistic representation of the motif to compare to the sequence(s) of interest 

(Zhao and Lee 1997).  While the motif approach may be powerful in many cases, the 

peptides of interest may not always have a common pattern because different amino 

acids may match in the same region of the sequence or different peptides should 

align to different parts of the sequence(s).  Another approach would be to align every 

discovered peptide sequence to the protein sequence targets and add up the 

alignments scores at each position.  The RELIC MATCH program (not currently 

available or supported) used this approach with some success (Cao and Mao 2009; 

Carter et al. 2006; Mandava et al. 2004; Takakusagi et al. 2008).  This program also 

had several limitations in regard to transparency, flexibility, statistical analysis, and 

the ability to search multiple sequences.  Here we will present an open source 

application that gives the user access to all parameters, can empirically estimate the 

statistical significance of the results, and enables the analysis of many sequences at 

once.   
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Methods 
 
Algorithm Overview 
 

The user inputs protein sequence(s) to search, a set of selected peptides, and 

(optionally) a representative or complete list of peptides from the library.  A scoring 

matrix may be generated by the program as described below or entered by the user. 

The maximal local alignment between each selected peptide and protein sequence is 

found.  If the alignment score is greater than the user defined score threshold, the 

score at each protein residue position is added to the protein residue scores.  If the 

moving average window size is set to greater than one, after all peptides have been 

aligned to a given protein, the moving average across the protein residue positions is 

calculated and the residue scores provided correspond to the score at the start of the 

window.  The same number of peptides as in the selected list are randomly selected 

from the library if a library set was entered, and aligned to the protein(s) as described 

above for the selected peptides; this process is repeated for the specified number of 

sampling iterations.  If the subtract library scores box is checked, the average scores 

at each residue position from the randomly selected peptides from the library are 

subtracted from the residue scores.  The selected peptide scores across each protein 

sequence are graphed, as well as the maximum and average scores from the random 

sampling iterations.  The user may use the sort button to order the proteins by their 

maximal residue scores.  The text output tab may be used to view a summary table of 

the maximum alignment scores for each protein or a table of all of the alignments 

identified for the number of proteins specified. 
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Scoring Matrix 

GuiTope generates a log-odds-like scoring matrix based on a given measure 

of amino acid distances and amino acid frequencies.  The distance matrix is taken to 

be inversely proportional to the frequencies of an amino acid pair appearing in a true 

alignment after a pseudocount of 10% of the average distance is added to the 

distance matrix to avoid dividing by zero.  The rows and columns are iteratively 

scaled to sum to the expected amino acid frequencies.  This matrix is then divided by 

the product of protein and peptide amino acid frequencies at each position and log10 

transformed. 

 

Alignment Algorithm and Inversion Scoring 

The maximal gapless local alignment of each peptide with each protein is 

calculated using the Smith–Waterman algorithm.  If the inversion weight is set to 

greater than 0, it will identify places where the protein sequence at position i is the 

same as the peptide at position j +1 AND the protein at position i+1 is the same as 

the peptide at position j.  The residue scores for these inversions will be the product 

of the inversion weight and the average of the identity scores for the amino acids at 

the protein positions i and i+1. 

 

Statistical Analysis 

For each sampling iteration and each protein sequence, a set of peptides, 

with the same number of peptides as the selected peptide list, is randomly selected 

from the library and the residue scores are calculated.  After these residue scores are 
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found for all iterations, the maximum and average residue scores are calculated for 

each position.  If the ‘subtract library scores’ option is selected, the average library 

scores are subtracted from the residue scores from each iteration.  The maximum 

scores from each protein iteration by iteration are ranked.  For each protein, the 

maximum residue score from the selected peptides is compared to the ranked scores.   

The percentage of library scores that are higher than the selected peptide score is 

reported as the significance. 

 

Evaluation Datasets 

A set of peptide lists identified from a random-sequence peptide microarray 

selected to bind to monoclonal antibodies with known epitopes was previously 

described (Halperin, Stafford, and Johnston 2011).  This dataset was used to 

optimize the alignment parameters.  The polyclonal anti-peptide dataset from the 

same publication was used to evaluate the algorithm.  Additionally, another set of 

monoclonal antibodies with known epitopes was used to probe a completely 

different set of 10,000 peptides on a microarray.  The two anti-P53 antibodies from 

the first monoclonal antibody dataset were repeated on both the first and second 

version of the 10,000 peptide microarray.  Additionally, an anti-cMyc clone 9E10 

(AbD SeroTec, Raleigh), anti-Leu-Enkaphalin clone 1193/220 (AbD SeroTec, 

Raleigh), anti-PBEF clone E10 (Santa Cruz Biotechnology), and anti-V5 (AbD 

SeroTec, Raleigh) were also used to probe the array and generate peptide lists as 

described previously.  Anti-cMyc, anti-Leu-Enkaphalin, and anti-V5 recognize 

epitope tags, while the anti-PBEF was epitope mapped using tiling peptides (current 
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authors, in preparation).  Phage display datasets were selected from those listed in 

the “several binding sites” category in from Derda et al. (2011) that identified the 

greatest number of unique peptide and were downloaded from MimoDB.  These 

phage display datasets include peptides selected to a diverse set of targets including 

two human extracellular proteins, one bacterial protein, and immune sera to a virus 

and a bacterium.   

 

Implementation 

GuiTope was implemented in Visual Basic, using the Microsoft .NET 

framework.  It may be installed on any computer running Microsoft Windows XP or 

newer operating system.  It has a memory footprint of 400mb and will take seconds 

to several minutes to run a set of hundreds of peptides against a single protein with 

100 sampling iterations on a single Pentium 4 core, 3.2GHz and 2G RAM running 

Windows XP.  On the same hardware, searching a protein database of ~20,000 

proteins with a set of several hundred peptides with a single sampling iteration, it will 

utilize <3G (virtual) and use approximately 20 hours direct CPU time. 

 
Results and Discussion 

The optimal combination of parameters for GuiTope was tested on a 

previously described dataset of monoclonal antibodies with known epitopes that had 

been used to probe a random-sequence peptide array.  Epitope predictions were 

evaluated using ROC analysis.  The most critical parameter appears to be the scoring 

matrix, with the BLOSUM62 matrix having an AUROC 0.15 less than the GuiTope 
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method which adjusts for altered amino acid frequencies.  The dipeptide inversion 

method also had a substantial improvement in the AUROC score.  Since dipeptide 

inversion alignment is a novel approach, we subsequently evaluated the other 

datasets with and without using this method.  The library subtraction method only 

yields a small improvement to the score, but a large number off sampling iterations 

are required to accurately estimate the average library score, we only used library 

subtraction for evaluating individual proteins rather than for database searches in 

order to keep run times reasonable.  

Table 6.1  Parameter Optimization.  The AUROC (Area Under the Receiver 
Operator Characteristics Curve) is shown for each parameter value tested on the 1st 
Known Epitope Monoclonal Dataset shown below.  The best parameter value was 
highlighted and that value was used when each other value was varied.  
 

RELIC Glam2 Previous Methods 
0.87 0.90 

GuiTope 
Blosum62 GuiTope MethodScoring Matrix 

 0.75 0.90 
3X 3.5X 4X Score Cutoff 

(X average identity score) 0.84 0.90 0.76 
None 5 aa Moving Average 
0.90 0.89 
No Yes Library Subtraction 
0.89 0.90 

0 0.8 1 Inversion Weight 
0.81 0.84 0.90 

 

GuiTope was tested on two independent datasets that probed random-

sequence peptide microarrays with antibodies. Dataset number 1 used monoclonal 

antibodies with known linear epitopes to probe a set of 10,000 random-sequence 

peptides.  Note that this dataset used a peptide microarray with 10,000 completely 
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different sequences than those used in the training set.  The monoclonal epitopes 

could be predicted with an AUROC score of 0.75 using the inversion method and 

0.78 without inversions, from a microarray of completely random peptides.  The 

poorer performance on this dataset may indicate that the parameters were overfit on 

the training dataset, or that this set simply contains monoclonals that are more 

difficult to predict.  The second peptide microarray evaluation dataset was generated 

from polyclonal anti-peptide sera.  Here GuiTope performs similarly to previously 

tested methods with an AUROC of 0.68 using the inversion method and 0.56 

without inversions, compared to an AUROC of 0.48 using RELIC method and 0.68 

using Glam2 (Figure 6.1).  These microarray datasets are likely considerably more 

difficult than phage display datasets because of sparse sampling of sequence space. 

Phage display datasets to evaluate in GuiTope were selected based on the 

summary of the MimoDB published in Derda et al. (2011).  Two of these datasets 

consisted of peptides selected to polyclonal sera.  The phage display peptides 

selected against the anti-Nipah virus were used to map three epitopes on the 

nucleoprotein, and GuiTope also identified these epitope regions (Figure 6.2A).  

GuiTope also predicted an epitope on Glycoprotein G that was also predicted by 

DiscoTope, which uses the crystal structure to identify accessible regions (Figure 

2B).  GuiTope analysis would not have been successful at predicting the Mycoplasma 

hyopneumoniae lipoprotein epitopes that were later discovered (Meens et al. 2010).  It is 

difficult to evaluate whether the epitopes predicted by GuiTope are plausible because 

crystal structures are not available. 
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Figure 6.1  Peptide Microarray Evaluation Datasets.  Peptides selected to bind 
known epitope monoclonals (A) or anti-peptide polyclonal sera (B) were used to 
predict the epitope (A) or immunizing peptide (B) in GuiTope within a database of 
decoy sequences.  The significance scores of the true epitope or immunizing peptide 
sequences was compared to the decoy sequences using ROC plots, where the true 
positive rate is plotted against the false positive rate for all possible score thresholds.  
The results using the inversion weight as one are plotted in blue and the results 
without inversions are plotted in red.  The AUROC value shown in the legend 
indicates the probability that true sequence would score higher than a decoy 
sequence for that dataset.  
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Table 6.2 Phage display database search 

MimoDB/ 
Reference 

Target Database  
(number of 
Proteins) 

Known 
Interactor 

Rank, p-
value 
(Inv/No 
Inv) 

288 
(White et al. 
2005) 

Endothelial 
protein C 
receptor 

Human 
Extracellular and 
Cell Surface 
Proteins (5074)  

Protein C NA* 

148 
(Eshaghi, 
Tan, and 
Yusoff 
2005) 

Polyclonal Anti-
Nipah Virus 

Nipah Proteome 
(9) 

Nucleoprotein 2, <0.1/ 
2, <0.1 

753,754,755 
(Kraft et al. 
1999) 

Integerin α5β6 Human 
Extracellular and 
Cell Surface 
Proteins (5074) 

TGF beta 1 
 
TGF beta 3 

2,<0.0002/
1, <0.0002 
3,<0.0002/
2,<0.0002 

204-205 
(Yang et al. 
2005) 

Anti-M. 
hyopneumoniae 
polyclonal 
antibody 

Mycoplasma 
hyopneumoniae 
Proteome (691) 

Lipoproteins 
and p97 

None 
matched 
correct 
region 

1127 
(Carettoni et 
al. 2003) 

Escherichia coli 
FtsA 

Escherichia coli 
(4311) 

FtsA 1106,0.25/ 
2067,0.58 

 

Three protein panning datasets were also evaluated.  In the first example, 

White et al. did not identify any similarity between the peptides found to bind to the 

endothelial protein C receptor (EPCR) and Protein C or any other known EPCR 

binding partners.  GuiTope did not find any significant similarity between any known 

EPCR interactors either (Figure 6.3C).  In the second case, the peptides selected to 

bind to integrin α5β6 were mapped by GuiTope to the known interactors TGF beta 

1 and TGF beta 3 as two of the top three hits (Table 2) and correctly identified the 

important interacting amino acids (Figure 6.3B). Since these interactions were 
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discovered after the publication of the phage display study, one may suppose that 

they could have been predicted from the phage display data if the proper analysis 

tools had been available.  In the third set, the peptides selected to bind to FtsA do 

not have a clear similarity to a known FtsA interactor.  Carettoni et al. identified a 

weak motif that matched a site on FtsA, and used that site to develop a model for 

the structure of the FtsA dimer (2003).  While several lines of evidence suggest that 

E. Coli FtsA does form a dimer, it is not clear whether the model proposed based on 

this phage-display data is correct (Adams and Errington 2009). 

 
Figure 6.2  Analysis of Anti-Nipah Dataset.  A. Screen shot of GuiTope mapping of 
anti-Nipah Virus selected peptides to the Nipah Nucleoprotein. Epitopes previously 
predicted and validated from this phage display peptide set are indicated with arrows. 
B. Novel GuiTope predictions using the inversion method of Nipah Glycoprotein G 
epitopes. The GuiTope alignment detail is shown as well as the locations of these 
epitopes in the crystal structure. The underlined glutamic acid is part of the receptor 
binding site. 
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Figure 3. Protein interaction predictions.  A.  Peptides selected to bind Integrin 
AlphaV Beta6 clearly aligned in GuiTope to the integrin binding site on TGF beta 1. 
B. Detailed alignments of the peptides to TGF beta 1, with those that align to the 
binding site highlighted in yellow and those that do not contain the RGB motif 
shown in italic.  Below the WebLogo view of peptides aligning to the region 
illustrates the relative importance of amino acids C.  Peptides selected to bind to 
EPCR do not align to a particular region on protein C.  
 

The peptides that bind to a given target do not always have sequences that 

are similar to biologically relevant proteins.  This problem is confounded when 

peptide array approaches are used because peptides that are highly similar to a given 

protein are unlikely to be present in the library.  GuiTope was able to take these 

loosely similar sequences and predict antibody epitopes with modest accuracy (AUC 

0.75-0.9) in line with previously tested methods (Halperin, Stafford, and Johnston 

2011).  Random-sequence peptide microarrays have shown great promise in profiling 

the humoral immune response (Legutki et al. 2010; Restrepo et al. 2011), and it 

would be of great utility to be able to use the peptide sequences to trace back to the 
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antigen that elicited the immune response.  However, the current prediction accuracy 

would not be sufficient for this task (Halperin, Stafford, and Johnston 2011).  In 

contrast to the peptide array datasets, the phage display selected peptides can 

sometimes be used to predict interaction partners from a database very accurately.  

As less biased methods of molecular display methods are developed and higher 

density peptide arrays become available, we expect that the information content of 

the peptide sequences will improve, making the type of analysis facilitated by 

GuiTope even more useful.  

 
Conclusions 

GuiTope is a flexible and easy to use software application for comparing 

peptide to protein sequences.  Although the RELIC MATCH program served to 

some extent as a model, the additional features and open source availability set 

GuiTope apart.  The accuracy of epitope prediction is similar to previously described 

methods but GuiTope has other advantages including statistical analysis of results.  It 

also allows searching peptides against protein databases, which has utility in 

predicting antibody targets and protein binding partners.  Peptide library selection 

experiments do not always yield sequences that are similar to biologically relevant 

proteins, but when they do, GuiTope provides an efficient method to identify these 

relationships.   

 
Availability and requirements 

The executable is available on www.immunosiganture.com/software and will 

install and run on any PC with Windows XP or later.  The source code is written in 
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Visual Basic and available on sourceforge.net.  The Microsoft .NET framework is 

required. 
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CHAPTER 7 

CONCLUSIONS 

 

 Monoclonal antibodies have proven to be a useful tool in characterizing the 

immunosignaturing platform.  Individual antibody signatures have proven to be 

detectable at low nanomolar to picomolar concentrations and are largely unaffected 

by competition from naïve sera.  A polyreactive antibody appears to bind more 

peptides, but with lower apparent affinity than antibodies raised to specific antigens.  

Some trends were observed with respect to sequence properties, but these do not 

account for very much of the variance in overall binding.  Sequence similarity to the 

antibodies' epitope did not drive binding very much either, though there was some 

predictive power in mapping back to the epitope.  Software was developed to 

facilitate this mapping between random-sequence peptides and natural proteins 

sequences.  The utility of the sequence analysis approaches is expected to increase as 

higher density peptide arrays are available. 

 The most basic question underlying the immunosignaturing concept, is do 

antibodies bind the random-sequence peptide arrays.  Phage display experiments had 

previously demonstrated that it was possible to identify peptides that bound to 

diverse antibodies and were not necessarily similar to the epitope (Meloen, Puijk, and 

Slootstra 2000).  However, phage display libraries are several orders of magnitude 

larger than peptide libraries that are feasible with current technology.  From these 

studies, it seemed as though mimotope peptides were extremely rare, and large 

libraries were needed to find uncommon peptide(s) that the antibody of interest 
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would recognize (Rodi and Makowski 1999).  However, the peptides resulting from 

phage display experiments do not necessarily reflect the best or only binders.  In the 

amplification phase, peptides that give the phage even a slight growth advantage may 

outcompete other phage even if they are more highly enriched in the selection phase 

(Derda et al. 2011).  One previous study was able to show that a random-sequence 

peptide array could be used to identify antibody binders (Reineke et al. 2002).  My 

work in Chapter 1 examines a large set of monoclonal antibodies on the 

immunosignaturing arrays. 

 I found that all of the antibodies that I have tested bound to some of the 

random-sequence peptides above background.  Importantly, each antibody appears 

to have a unique pattern of peptide binding.  What I find most interesting in this set 

of experiments is that the antibodies that I have tested exhibit such a wide range of 

binding distributions.  Some bind as much as 70% of the peptides on the array and 

others bind only 0.1% of the peptides.  What accounts for this difference remains an 

open question.  One trend that I have observed is that antibodies that have higher 

background binding to the slide surface, also tend to bind more peptides above that 

background level (Figure A-1).  One possibility is that some antibodies have a 

nonspecific attraction to the slide surface, resulting in a higher local concentration at 

the slide surface, which leads to a higher effective concentration seen by the 

peptides.  Another explanation is that these antibodies bind the slide surface through 

a paratope mediated interaction.  This weak interaction could lead to enhanced 

affinity for the peptides through a heteroligation model similar to what was observed 

with an anti-HIV monoclonal (Mouquet et al. 2010).  This hypothesis could be tested 
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by comparing the binding of a high background/high binding antibody to the Fab 

fragment of the same antibody.  A second trend that I observed is that antibodies 

that are able to recognize their antigen in a denatured state tend to bind to more 

peptides on the array than those that recognize a conformation dependent epitope 

(Appendix A-2). Surveys of antibody crystal structures have found that those that 

recognize peptides tend to have a more grooved paratope than those that recognize 

proteins (Chen, Van Regenmortel, and Pellequer 2009).  It is possible that antibodies 

with a grooved paratope are more adept at binding peptides in general. 

There is still much work to be done in elucidating what types of antibodies 

bind better to the peptide array and contribute more to the immunosignature.  An 

important question that I have not addressed is the relationship between antibody 

affinity for its cognate antigen and its tendency to bind random-sequence peptides.  

The direction of this relationship is difficult to predict.  On one hand, higher affinity 

antibodies could simply be better binders and also recognize other targets better.  On 

the other hand classically polyreactive antibodies tend to have flexible paratopes 

enabling the recognition of diverse shapes, but at an entropic cost resulting in lower 

affinity.  Addressing this question would be important with respect to whether 

immunosignaturing is better able to pick up antibodies arising in a primary response, 

or those that have undergone affinity maturation.   

Most of the antibodies that I have worked with have been raised against 

protein or peptide targets.  However, antibodies recognizing glycans can be very 

important in the immune response against a wide variety of pathogens and tumors 

(Astronomo and Burton 2010).  Antibodies recognizing other protein modifications, 
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such as glycosylation and citrullination, and nucleic acids, can be important in a 

variety of autoimmune and inflammatory disease states (Dotan et al. 2006; Klareskog 

et al. 2008; Yung and Chan 2008).  In the set of monoclonals I have tested, only one 

was known to be against a non-protein target (anti-TP).  This antibody recognizes a 

glycan epitope on the fungus coccidioidomycosis.  It behaved similarly to many of the 

anti-protein antibodies, recognizing over a thousand peptides above background.  

Though there is much precedent for peptides to be able to mimic diverse non-

protein targets in the phage display literature (Meloen, Puijk, and Slootstra 2000), it 

would be unwise to assume that this should directly translate to our arrays.  Testing a 

diverse set of monoclonals against a variety of non-protein targets would be 

important to better understand the capabilities and limitations of the current 

immunosignaturing platform.  If any type of non-protein directed antibody was 

found to not be detected well on the peptide array, appropriately modified peptides 

could be included on the array to increase the chances of detecting such antibodies.   

 A critical question in assessing the power of the immunosignatuing 

technology is the sensitivity to small quantities of antibodies.  A healthy human has 

typically ~4-12mg/ml of immunoglobulin in their serum, which translates to 50-

160nM immunoglobulin on the array when the serum is diluted at 1:500 in the 

standard protocol.  While most of my monoclonal experiments were done at 100nM, 

in the range of the total sera antibody concentration, sera is far from monoclonal.  

During a specific immune response, about 100ug/ml of immunoglobulin against the 

antigen may be produced (Mei et al. 2009), corresponding to a ~1nM concentration 

when diluted on the array.  I have looked at two antibodies diluted out on the entire 
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10K array and another two on a small set of peptides selected to bind to those 

antibodies.  For the P53Ab1 antibody, 7 peptides were detectable above background 

at 1nM, and one peptide was even detectable at 100pM.  The 87G antibody did not 

bind to as many of the random-sequence peptides, but still had two peptides above 

background at 1nM.  The anti-PBEF was found to bind several of the selected 

peptides below 1nM.  The polyreactive antibody was only able to bind to peptides 

above background down to 5-10nM.  From these antibodies it appears that the 

specific antibodies will still have some peptides detectable below 1nM.  Although the 

polyreactive antibody also binds to 57% of peptides above background at 100nM, 

the signal drops off more quickly with concentration, and this antibody will be 

discussed in more detail later.  If the antibodies I have tested are a fairly 

representative set, I would expect most specific antibodies to be detectable below 

1nM.  However, a larger sampling of monoclonal antibodies should be used in 

concentration series to get a better idea of how many may be detected the relevant 

concentrations. Since the amount of antibody produced to a specific antigen would 

be diluted to about 1nM in the standard immunosignaturing protocol, these results 

suggest that we should be able to detect most specific antibodies produced in an 

immune response. 

 In addition to the low concentration of individual antibodies in the serum, 

there is also a large complexity of different antibodies in the serum.  An important 

consideration is whether antibodies are competing for a limited number of binding 

sites on the spots and if so, how the competition shapes the pattern detected.  Two 

monoclonals were mixed in varying proportions and detected with the same 
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secondary antibody.  One antibody (P53Ab1) bound many more peptides than the 

other (P53Ab8).  P53Ab1 specific peptides have fairly constant signals as the 

antibody was diluted into the other, while some of the P53Ab8 peptides start to 

decrease in signal intensity when the P53Ab8 is only 40% to 20% percent of the 

mixture.  Eight monoclonals were also mixed in equimolar proportions and the 

signal intensities were compared to the signals of those eight run individually and 

averaged.  The correlation between the physically mixed and the averaged signals was 

low (r=0.59).  Some of the noise is probably due to differences in binding curves.  

From the dilution experiments one can see that some peptides drop off in signal 

with concentration more rapidly than others.  It would be interesting to see if a set of 

monoclonals were all run at a low concentration and then pooled at that 

concentration, if the sum of the signal intensities would correlate with the pooled 

signal intensities.  I would predict that the sum of the signal intensities would 

correlate well with the pooled antibody signal intensities.  If this high correlation was 

observed, it would imply that the patterns of individual antibodies are additive.  

Additivity of binding patterns would greatly simplify the deconvolution of multiple 

disease states in one patient.   

While eight monoclonals are a substantial increase in complexity compared to 

one, it does not begin to approach the antibody complexity in sera.  To get a better 

idea of how the complexity of serum antibodies would effect an individual clone, I 

diluted a mouse monoclonal (P53Ab1) at 100nM into 10 fold or 100 fold excess 

pooled human IgG.  Surprisingly, I did not see any significant change in the binding 

pattern with or without the excess IgG.  While it is tempting to conclude that the 
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monoclonal antibody out competes the normal serum antibodies, I do not believe 

that to be the case.  It is important to note that the addition of the monoclonal does 

not change the binding pattern of the human sera either (Figure A-7).  I believe this 

indicates that the binding sites for antibodies on the spots are not being saturated so 

the antibodies are not competing for binding sites.  This idea is supported by the 

dilution series data that illustrates that most peptides do not appear to be 

approaching saturation at 100nM for the monoclonal.  The pooled naïve 

immunoglobulin also continues to increase in signal intensity above 100nM (Figure 

A,-8). 

While the previous experiment was important to establish the effect of 

competitor antibody on a monoclonal, perhaps a more realistic reconstruction 

experiment would involve lower antibody concentrations.  For example, a dilution 

series of a monoclonal going from 100nM down to 100pM in the presence of 100nM 

naïve immunoglobulin would more closely mirrors the dynamics of a real infection.  

Since competition effects were not observed in the high concentration competition 

experiment, I would be surprised if they were observed in an experiment at more 

realistic concentrations.  It would be good make sure that the presence of naïve IgG 

does not somehow interfere with detecting an antibody at low concentrations as well. 

 Based on the theoretical density of attachment sites on aminosilane, we 

would expect peptides to be close enough for antibodies to bind bivalently.  The 

binding enhancement from bivalent binding can be multiplicative, which seemed to 

be a likely explanation for being able to detect so much binding to random sequence 

peptides.  In order to examine the effect of the peptide spacing, I created custom 
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microarrays were peptides are intentionally printed at different concentrations.  As 

would be expected, the signal intensity drops off with lower concentrations.  

Another way to control the peptide density is to use NSB slides that have peptide 

attachment sites precisely spaced at 3nM or 9nM.  Less binding was observed on the 

3nM slides than the aminosilane, and very little binding was observed on the 9nM 

slides.  While there are likely differences in the surface properties of the aminosilane 

compared to the NSB slides, this data also supports the idea that the peptide spacing 

is critical to observing binding.  Surprisingly, when I compared the binding of an Fab 

fragment to that of the intact antibody of the same clone, I found very similar 

binding patterns.  The effect of the peptide spacing must not be due to antibodies 

binding bivalently, but more likely due to the high local concentration of the peptide 

leading to rebinding effects. 

 Differences in peptide density among peptides and between print runs are 

likely a source of noise.  Several methods were tested to measure the relative peptide 

density on the slide surface.  Amine reactive dyes were found to preferentially label 

positively charged peptides and not detect negatively charged peptides very well.  

Amine reactive biotin appeared to label peptides without any particular bias for 

peptide properties.  However, the biotinylation did have relatively high background, 

likely due to residual free amines that had not reacted with the linker.  It also was not 

able to detect all peptides above background, some of which had observable binding 

with sera.  Despite these apparent limitations, I developed an algorithm to normalize 

the binding experiments using the biotinylation data.  The normalization was able to  
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give small but consistent improvements in batch to batch reproducibility (Appendix 

E). 

 Batch to batch variability in peptide array production is a persistent problem 

facing the immunosignaturing technology.  I have seen great improvements in the 

reproducibility during my time in CIM.  Automation of the slide processing using the 

Tecan system is probably the biggest source of improvement.  Other changes to the 

process including the printing technology, spotting buffers, and improved peptide 

handling have each contributed to the better reproducibility.  Despite these 

improvements, the batch to batch reproducibility issues still make performing large 

studies difficult.  Continuing sources of noise probably include degradation or 

aggregation of the peptides over time, variability in the aminosilane coating, 

differences in activation efficiency, and variable printing of the full length peptide 

compared other peptide synthesis byproducts that are present.  While getting the 

peptides purified would obviously address the last issue, there does not seem to be 

any readily available solution for the other sources of noise.  The in situ synthesis 

would likely eliminate many of these sources of noise by avoiding the need to store 

peptides in solution.  Preliminary experiments show the reproducibility of the 

biomicrochips to be in the same range as the slides.  However, the biomicrochips 

were processed manually, so if automation of the chip processing has as big of an 

improvement in reproducibility has was seen on the slides, the chips would clearly be 

more reproducible. 

 The goal of immunosignaturing is to take the pattern identified in a particular 

disease state and use it as a diagnostic.  However, current regulations do not permit 
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the inclusion of markers not relevant to a disease state in a diagnostic test.  The 

reproducibility issues of the current platform also make the current format 

unappealing as a clinical diagnostic.  Others in the lab are currently developing 

methods for printing and processing custom arrays with disease specific panels of 

peptides.  While working with a smaller set of peptides may allow better control over 

the peptide handling, which may lend some improvement in reproducibility, it does 

not address most of the sources of noise on the 10K platform.  In any solid phase 

assay, there is likely to be some variability in immobilization efficiency and 

differential non-specific binding to the surface between samples.  Solution phase 

assays have been shown to have improved sensitivity and specificity compared to 

solid phase assays (Liu and Eisenbarth 2007).  However, the peptides probably have 

relatively poor solution phase affinity for the antibodies, which could make solution 

phase detection difficult.  It is possible that using a detector with high sensitivity 

could enable measurement of these interactions.  Another approach could be to 

identify amino acid substitutions that improve affinity of the peptides for the 

antibodies.  While the array format may be ideal for high throughput screening, 

translating the results into a diagnostic may require exploring other assay formats, 

particularly for diseases where the differences in the immunosignatures are subtle.  

 

Polyreactive antibody 

 Polyreactive antibodies are produced in the absence of any specific antigen 

and play an important role in host maintenance and defense (Zhou, Tzioufas, and 

Notkins 2007).  I sought to compare the reactivity of specific and polyreactive 
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antibodies to random-sequence and protein sequence derived peptides.  I found that 

the polyreactive antibody had a broader distribution of binding to the 10K peptide 

array than an isotype matched specific antibody (anti-PBEF) or any other specific 

antibody I have tested.  I selected a set of peptides that preferentially bound the 

polyreactive antibody, the anti-PBEF, or both antibodies.  I also had peptides tiling 

the region of PBEF that the antibody was raised against synthesized as well as 

peptides tiling AKT1 as negative control.  These peptides from the random-sequence 

array and the protein sequences were printed together in a custom peptide array.  

The two antibodies were used to probe the array at concentrations ranging from 

100nM to less than 1nM.  The binding curves were fit to estimate half maximal 

binding concentrations.  While I would not expect the half maximal binding to 

correspond to the solution phase dissociation constant, it should give a better 

estimate of relative affinity than the signal intensity at a signal concentration point 

(Tapia et al. 2007).  Three overlapping PBEF peptides were found to bind anti-

PBEF in the 5-20nM range, while the selected random-sequence peptides bound the 

anti-PBEF 20-60nM.  In contrast, none of the peptides appeared to approach 

saturation for the polyreactive antibody, so the half-maximal binding was estimated 

to be >100nM for about half of the protein tiling peptides.  This dataset supports the 

model that polyreactive antibodies bind to more targets, but with lower affinity than 

antibodies raised to specific targets. 

 The observation that the polyreactive antibody recognizes multiple peptides 

tiling a protein sequence may imply that it recognizes multiple epitopes on the same 

protein.  However, the recognition of a peptide does not necessarily mean that the 
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antibody would recognize that sequence in a folded structure.  A survey of crystal 

structures of antibody-peptide complexes found that most peptides bound in 

conformations that would result in steric clashes in the folded proteins (Chen, Van 

Regenmortel, and Pellequer 2009).  If several of these regions are accessible on the 

folded protein, it would imply that it might be possible for the polyreactive antibody 

to bind to multiple epitopes simultaneously.  Multivalent binding would greatly 

increase the avidity of the antibody for the target, and have a large effect on the 

ability of it to bind in vivo.   

 Polyreactive antibodies play important roles in health and disease, and in 

some cases their presence or absence may be indicative of a disease state (Merbl et al. 

2009; Shimomura et al. 2008; Zhang et al. 2009).  While the polyreactive antibody 

bound a large percentage of peptides on the array at 100nM, the signals dropped of 

quickly at lower concentrations for the small number of peptides tested on the 

custom array.  If most of the other peptides behave similarly, binding of polyreactive 

antibodies would be difficult to detect on the immunosignaturing platform.  

Extending the incubation time appears to enhance the detection of the polyreactive 

antibody more so than the specific antibody (Figure B-17).  This difference in 

kinetics could be explained by the flexibility of polyreactive antibody paratopes.  The 

polyreactive antibody may take longer to find the right conformation to bind a 

peptide, thus resulting in a slower on-rate.  If polyreactive antibodies are thought to 

be important in a particular disease state, increasing the incubation time in the 

immunosignaturing protocol may provide a simple way to enhance their detection. 
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 While the kinetic discrimination appears to be a plausible mechanism to 

enhance or reduce the contribution of polyreactive antibodies to the 

immunosignature, a more direct measure of their role would be desirable.  A method 

to enrich or deplete polyreactive antibodies from serum was used in Zhou et al. 

(2007).  Applying the enriched and depleted fractions to the peptide array would 

enable the analysis of exactly how much polyreactive antibodies are contributing to 

immunosignatures.  This fractionation would also enable the evaluation of the 

hypothesis that increasing incubation time would enhance the detection of 

polyreactive antibodies as well as explore other methods of discriminating between 

polyreactive and specific antibodies.  

 

Sequence Properties 

I sought to determine the extent to which peptide properties could predict 

antibody binding.  A variety of sequence properties have previously been shown to 

be associated with antibody epitopes, including hydrophilicity (Parker, Guo, and 

Hodges 1986), flexibility (Karplus and Schulz 1985), accessibility (Emini et al. 1985), 

beta turn propensity (Chou and Fasman 1978), and antigenicity (Kolaskar and 

Tongaonkar 1990).  In addition to these properties, I also examined isoelectric point, 

residue volume, and sequence complexity.  We have used two different 10K peptide 

libraries for immunosignaturing and I have included datasets from both libraries in 

this analysis.  Another peptide microarray technology is under development by 

HealthTel in collaboration with CIM, which enables the production of much higher 

density arrays.  I was able to test a small number of these arrays which had 100K 
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peptides, with 12mer peptides containing eight different amino acids.  The 100K 

chip had substantially less sequence complexity than the 10K arrays do to the limited 

amino acid set, and also had a moderate increase in residue volume.  Otherwise, the 

distributions of the peptide properties were similar across all three platforms.  

Overall the strongest correlations were observed between peptide isoelectric point 

and antibody binding, though the size and direction of the correlation varied greatly 

between antibodies.  The largest correlations observed were less than 0.5, indicating 

that isoelectric point explains less than 25% of the variance in antibody binding.  The 

10Kv1 array and 100K chip, antibody binding generally has a negative correlation 

with accessibility, flexibility, and hydrophilicity, while on the 10Kv2 binding was 

typically positively correlated with these properties.  On the 100K chip, there was a 

moderate correlation with sequence complexity for all three antibodies.  The denser 

sampling of sequence space on the 100K array allowed the analysis of the peptides 

by repeated 5mers.  One of the antibodies was found to preferentially recognize a set 

of similar 5mers.  

While trends were observed with respective to antibody binding levels and 

peptide properties, perhaps the more important question for immunosignaturing is 

how peptides could be identified that would be highly specific.  I did generate 

specificity scores for each peptide/antibody pair and examined the correlations with 

peptide properties.  There was more variability in the size and direction of the 

correlations between the specificity and the properties than the binding.  This 

variability is not surprising, as peptides can only be specific for one antibody.  For 

example, if one antibody strongly prefers peptides with higher isoelectric points, then 
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the other antibodies would not have high specificity scores for the high isoelectric 

point peptides.  Perhaps a better metric for examining what peptide properties are 

important for informative peptides would be dynamic range or signal to noise ratio. 

An important question for immunosignaturing is how to better detect 

antibodies that were not detected well on the current platform.  For example, the 

anti-MHC antibody bound very few peptides above background and none were 

found to be highly specific for that antibody.  This antibody only recognizes the 

MHC beta2-microglobulin quartenary structure, and will not bind to either domain 

by itself.  I have also observed that antibodies that are known to recognize their 

target denatured in a western blot tend to bind to more peptides on the array than 

those that don’t, so it may be more difficult for antibodies to highly structured 

targets to find good mimotopes.  It is possible that some antibodies may be better 

detected by more structured targets.  Cyclized peptides libraries have been shown to 

provide higher affinity ligands for some targets (Katz 1997).  These libraries generally 

utilize Cys to cyclize peptides through a disulfide bond.  This strategy would not be 

feasible on our current platform because we use Cys to attach the peptides to the 

slide.  Perhaps an orthogonal chemical reaction could be used to design cyclic 

peptides or different attachment chemistry could be used so that Cys could be used 

for cyclization.  First, more antibodies with well characterized structural 

requirements for binding should be tested on the peptide arrays to determine if 

recognition of structure is really a limitation.  

In designing the next generation of peptide libraries, there will be an 

important tradeoff to consider with respect to redundancy vs. complexity.  Having 
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5mer or longer sub-sequences repeated on the array has obvious advantages for 

identifying an antibody epitope.  Of course it would be very difficult to identify an 

epitope if the amino acids contained in that epitope are not present on the array, and 

the more amino acids are included, the less redundancy there will be.  As I have 

discussed previously, there may be advantages to including non-canonical or 

modified amino acids on the array, but this would also take space away from 

repetition of potential linear epitopes.  Of course, the cost and ease of synthesis 

would also be an important consideration in the design. 

 

Epitope Mapping 

The ability to take an immunisignature and use the peptide sequences to map 

back to the antigen that raised the immune response would be incredibly useful for 

gaining biological insight into an immunosignature.  I used a set of monoclonals with 

known epitopes to evaluate the feasibility of this mapping.  Surprisingly, peptides 

that were the best binders for each antibody were generally not enriched for peptides 

that had sequence similarity to the epitope sequence.  In spite of this negative result, 

I tested two methods for predicting epitopes from these peptide sequences.  The 

first was a motif based approach using the glam2 program (Frith et al. 2008) and the 

second was an alignment approach using the RELIC program (Mandava et al. 2004).  

I found that while there was some predictive power using these approaches, they 

would not be sufficient to identify an unknown antigen from a database. 

 The RELIC webserver was taken offline sometime in the spring of 2011 

which motivated me to further develop an alternative program for the same task.  
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While the GuiTope program had originally been written with the intention of 

improving on the predictive power of the RELIC program (see Appendix D), but 

my attempts were unsuccessful.  I did make several improvements to the 

functionality.  The GuiTope program is more transparent and flexible than the 

RELIC program as the algorithm is described in detail in a publication (submitted), it 

is open source, and the user has access to all of the parameters.  It also enables the 

searching of a set of proteins and estimates the statistical significance of results.  

Additionally, as it is a standalone program, the user does not need to be concerned 

with long queues on a webserver, as was often a problem with RELIC.  While 

GuiTope does not make a significant improvement in the prediction power, it 

provides a flexible platform for implementing future improvements. 

 A novel alignment aspect discovered during the development of GuiTope 

was that dipeptide inversions tended to appear in alignments (ex. RS aligns with SR).  

When the alignment algorithm was modified to specifically search for sequence 

inversions, I found an improvement in epitope prediction accuracy for two of the 

three known epitope datasets tested.  How the dipeptide inversion recognition works 

structurally is difficult to explain.  Some experimental evidence supporting the 

dipeptide inversion recognition was found using peptide immune sera. Sera raised 

against the FT02 peptide was found to crossreact against the FT03 peptide and vice 

versa.  These peptides were found to have a region of similar sequence that 

contained a dipeptide inversion (Figure I-1).  In a valley fever dataset, I have found 

that small amino acids tend to occur more often in the inversions than in large ones 

(Figure I-2).  Small amino acids may allow more flexibility in arranging the peptide 
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chain in the paratope.  To begin to understand how this recognition works and in 

what context inversions may be recognized, libraries of inversion mutants could be 

made and the relative binding tested.  If some inversion mutants are found to bind 

well, crystal structures of inversion mutants compared to the wild type crystal 

structures could enable seeing how these inversions are recognized.  

Predicting the epitope of an unknown antigen from the peptide array data is a 

very difficult problem for several reasons.  First, searching a database requires 

extremely good accuracy in order for the true antigen to be among the top hits.  For 

example, the UniRef100 database currently has over 13 million protein sequences.  

Even with an AUROC score of 0.99, about 130 thousand other sequences would be 

expected to score better than the true epitope.   Usually, biological information 

would be available such as organism, molecular weight of the protein, and/or sub-

cellular localization that could help to narrow down the search space.  The second 

difficulty is the sparse sampling of sequence space on the current 10K arrays, which 

have less than 5% of all possible 5mers present.  This sampling would be 

substantially improved with the recent capability to make 100K chips.  For example, 

100K 17mers with 19 amino acids could cover more than half of all possible 5mers.  

Finally, the current assay does not typically enrich for sequence similar peptides 

among the binders.  This lack of enrichment is much more difficult to address.   

It is possible that changes to the experimental parameters could lead to better 

enrichment for epitope similar peptides.  I think that the best way to approach this 

problem would be to select a set of peptides from the array that are similar to several 

known epitopes and exhibit a wide range of binding levels, and also include a set of 
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peptides that bind well to those antibodies but don't have any sequence similarity.  

The binding kinetics between these peptides and antibodies should be measured.  If 

any differences are found between the kinetics of epitope similar peptides and 

mimotope peptides, the assay temperature, incubation time, and/or wash time could 

be varied to favor the epitope peptides. 

 The best approach for improving the prediction algorithm is not obvious.  

The simplest approach is probably to use a machine learning algorithm to optimize 

the alignment parameters.  Previous attempts at this approach were not successful, 

most likely because the training set was too small.  A larger training may enable this 

approach to be more successful.  A more thorough exploration of the best way to 

approach the best motif finding algorithm and parameters would also be warranted.  

Incorporating structural predictions could potentially enhance the prediction 

capability.  However, since bioinformatics structural predictions are limited in 

accuracy, it is hard would be difficult to imagine that these could greatly enhance the 

prediction accuracy.  I believe that the greatest improvements in epitope prediction 

will likely result from higher density chips and from improvements in the assay, 

rather than from more sophisticated algorithms. 
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Figure A-1.  Spots above background vs. Average Background.  The average 
background binding to the slide surface is plotted against the number of spots that 
bind above background.  The top graph shows 16 monoclonals run on the 
CIM10Kv1, and the bottom graph shows five monoclonals run on the 10Kv2.  A 
line was fit to the data, and the equation of the line and the RSQ are shown on each 
graph.   
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Figure A-2  Monoclonal Binding Distributions by Western Blot.  Histograms of 
monoclonal binding distributions are organized by whether the antibody recognizes 
its target when it is denatured in a western blot.  Only random sequence peptides are 
shown.  Note that this is raw data, not secondary subtracted. (include table) 
 

 



   
204 

 
 
Figure A-3. Grouping of Peptides in Concentration Series.  The concentration 
series of P53Ab1 was grouped by estimated half maximal binding (see Chapter 2, 
Figure 3A). The strong binders are <67nM, moderate are 66nM to 667nM and the 
weak binders are >667nM.  Here the half maximal binding was estimating using 
constant rmax (signal at saturation), while the histogram in chapter 2 is based on 
estimates where rmax was also fit.  

 
Figure A-4.  Two Monoclonal Mixing.  The top peptides in the 80% P5Ab8 20% 
P5Ab1 experiment are shown in the line graph above.  They are colored by which 
antibody they are specific for.   
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Figure A-5. Eight Monoclonal Mixing.  Histograms of the binding distributions 
of the eight monoclonals used in the mixing experiment are shown, along with the 
mixed signal distribution and the average of the eight. 
 
 
 

 
Figure A-6. Competition with Excess Naïve IgG. Histogram view of 
competition experiment shown in figure 6 of chapter 2.   
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Figure A-7.  Pooled human IgG with and without Monoclonal.  The pooled 
naïve human IgG at 10uM (100X) was detected with a species specific secondary 
with (y-axis) and without the presence of the P53Ab1 monoclonal at 100nM. 
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Figure A-8.  Concentration Series of Pooled Human IgG with and without 
Monoclonal.  The x-axis shown the human IgG concentration series, where 0.01 
corresponds to no human IgG, 1.0 corresponds to 100nM, 10.0 corresponds to 1uM, 
and 100 corresponds to 10uM.  The graph on the left shows the human IgG alone, 
and the graph on the right shows human IgG in the presence of the P53Ab1 
monoclonal at 100nM.  All of the peptides appear to increase in intensity from 
100nM (1.0) to 1uM (10.0) in both graphs. 
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Figure A-9. Amino Silane vs NSB reproducibility.  Replicates were run on the of 
the anti-FT05 sera on both the amino silane coated slides and the NSB slides.  The 
line graph above illustrates how the replicates compare.  The amino silane slides 
appear to have more differences in peptide intensities between replicates   
 

 
Figure A-10. Incubation Time.  The p53Ab1 antibody was used to probe the array 
with different incubation times.  The peptides having signal intensities greater than 
60,000 RFU were selected for each incubation time.  The signal intensities continue 
to increase up to 18hrs. 
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Figure A-11.  Epitopes on Codelink vs. Aminosilane.  A custom microarray 
containing to monoclonal epitopes was printed on codelink and aminosilane slides.  
The codelink appears to have better separation of the cognate epitopes from the 
other peptides 
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Figure A-12. Peptides used in custom array.  These peptides were selected to be 
printed in a custom array because there was immune sera raised against them, and 
they represent a range in physiochemical properties. 

 
Figure A-13. Distribution of Peptides by pI and Aggregation Score.  All 
peptides on the 10K array are plotted by there isoelectric point vs. their aggregation 
score.  The peptides selected for the custom array are annotated.  
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Figure A- 14.  Anti-peptide sera on dilution series of peptides in custom array.  
Anti-peptide sera was used to probe the custom array.  The signals for the cognate 
peptide binding are plotted against the peptide concentration.  The color indicates 
whether the peptides were diluted in DMF (blue) or PBS (green). 
 



   
212 

 
Figure A-15. Signal Intensity vs. End Point Titer.  The signal intensity at the 
highest concentration point for anti-sera binding to the cognate peptide is plotted 
against the end point titer measured by ELISA.  There does not appear to be any 
correlation between the signal intensity and relative affinity. 
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Figure A-16. Screen Shots of Peptide Dilution Series. 
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Figure A-17. Crossreactivity of peptide immune sera by peptide concentration.  
Signal intensities for all anti-peptide sera are plotted against each peptide.  Each plot 
represents one peptide and the x-axis shows the dilutions of that peptide.  There 
does not appear to be much difference between the peptide dilution that the specific 
immune sera recognizes compared to cross-reactive immune sera. 
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Figure A-18. Crossreactivity of peptide sera summary.  Heat map shows the 
signal intensities at the tope peptide concentration for each anti-peptide sera peptide 
pair.  Sera type is shown in the rows and peptides are shown in the columns.  Data 
for peptides diluted in DMF is shown on the left and peptides in PBS is shown on 
the right.
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Figure B-1.  PBEF and 2E4 Signal Intensities by Antibody Concentration at 1 
hour.  The signal intensities for the antibodies are plotted against for peptide on the 
x-axis.  The top row shows the anti-PBEF experiments and the bottom row shows 
the 2E4 experiments.  Each line or bar represents a different antibody concentration.  
The signals across peptide concentrations were averaged for this graph. 
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Figure B-2.  Half maximal binding for all peptide conc 1hr incubation.  The 
half maximal binding concentration is shown for each peptide concentration that 
could be fit for the anti-PBEF on the left and 2E4 on the right.  Error bars represent 
95% confidence intervals on the half maximal binding estimates.   
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Figurer B-3. Binding Curves for anti-PBEF on PBEF tiling peptides 1hr 
incubation.  The signal intensities for the anti-PBEF are plotted against the anti-
PBEF concentration on the x-axis.  Each plot represents a PBEF tiling peptide and 
each line represents a peptide concentration.  The color indicates the half maximal 
binding concentration and the solid or dashed indicate the R-squared for the curve 
fit. 
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Figure B-4. Binding Curves for 2E4 on PBEF tiling peptides 1hr incubation. 
The signal intensities for the 2E4 are plotted against the 2E4 concentration on the x-
axis.  Each plot represents a PBEF tiling peptide and each line represents a peptide 
concentration.  The color indicates the half maximal binding concentration and the 
solid or dashed indicate the R-squared for the curve fit. 
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Figure B-5. Binding Curves for anti-PBEF on AKT peptides 1hr. The signal 
intensities for the anti-PBEF are plotted against the anti-PBEF concentration on the 
x-axis.  Each plot represents an AKT tiling peptide and each line represents a peptide 
concentration.  The color indicates the half maximal binding concentration and the 
solid or dashed indicate the R-squared for the curve fit. 
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Figure B-6. Binding Curves for 2E4 on PBEF peptides 1hr incubation. The 
signal intensities for the 2E4 are plotted against the 2E4 concentration on the x-axis.  
Each plot represents an AKT tiling peptide and each line represents a peptide 
concentration.  The color indicates the half maximal binding concentration and the 
solid or dashed indicate the R-squared for the curve fit. 
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Figure B-7. Binding Curves for PBEF on Rand Peptides 1hr incubation. The 
signal intensities for the anti-PBEF are plotted against the anti-PBEF concentration 
on the x-axis.  Each plot represents a peptide selected from the random sequence 
array and each line represents a peptide concentration.  The color indicates the half 
maximal binding concentration and the solid or dashed indicate the R-squared for 
the curve fit. 
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Figure B-8. Binding Curves for 2E4 on Rand Peptides 1hr Incubations.  The 
signal intensities for the 2E4 are plotted against the 2E4 concentration on the x-axis.  
Each plot represents a peptide selected from the random sequence array and each 
line represents a peptide concentration.  The color indicates the half maximal binding 
concentration and the solid or dashed indicate the R-squared for the curve fit. 
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Figure B-9.  Half maximal binding for all peptide concentrations overnight 
incubation.  The half maximal binding concentration is shown for each peptide 
concentration that could be fit for the anti-PBEF on the left and 2E4 on the right.  
Error bars represent 95% confidence intervals on the half maximal binding 
estimates.   
 



   
227 

 
Figure B-10. Binding Curves for anti-PBEF on PBEF peptides overnight 
incubation. The signal intensities for the anti-PBEF are plotted against the anti-
PBEF concentration on the x-axis.  Each plot represents a PBEF tiling peptide and 
each line represents a peptide concentration.  The color indicates the half maximal 
binding concentration and the solid or dashed indicate the R-squared for the curve 
fit. 
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Figure B-11. Binding Curves for 2E4 on PBEF Peptides overnight incubation. 
The signal intensities for the 2E4 are plotted against the 2E4 concentration on the x-
axis.  Each plot represents a PBEF tiling peptide and each line represents a peptide 
concentration.  The color indicates the half maximal binding concentration and the 
solid or dashed indicate the R-squared for the curve fit. 
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Figure B-12. Binding Curves for anti-PBEF on AKT peptides overnight 
incubation. The signal intensities for the anti-PBEF are plotted against the anti-
PBEF concentration on the x-axis.  Each plot represents an AKT tiling peptide and 
each line represents a peptide concentration.  The color indicates the half maximal 
binding concentration and the solid or dashed indicate the R-squared for the curve 
fit. 
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Figure B-13. Binding Curves for 2E4 on AKT peptides overnight incubation. 
The signal intensities for the 2E4 are plotted against the 2E4 concentration on the x-
axis.  Each plot represents an AKT tiling peptide and each line represents a peptide 
concentration.  The color indicates the half maximal binding concentration and the 
solid or dashed indicate the R-squared for the curve fit. 
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Figure B-14. Binding Curves for anti-PBEF on Rand Peptides. The signal 
intensities for the anti-PBEF are plotted against the anti-PBEF concentration on the 
x-axis.  Each plot represents a peptide selected from the random sequence array and 
each line represents a peptide concentration.  The color indicates the half maximal 
binding concentration and the solid or dashed indicate the R-squared for the curve 
fit. 
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Figure B-15. Binding Curves for 2E4 on Random Peptides.  The signal 
intensities for the anti-PBEF are plotted against the anti-PBEF concentration on the 
x-axis.  Each plot represents a peptide selected from the random sequence array and 
each line represents a peptide concentration.  The color indicates the half maximal 
binding concentration and the solid or dashed indicate the R-squared for the curve 
fit. 
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Figure B-16. .  PBEF and 2E4 Signal Intensities by Antibody Concentration 
overnight.  The signal intensities for the antibodies are plotted against for peptide 
on the x-axis.  The top row shows the anti-PBEF experiments and the bottom row 
shows the 2E4 experiments.  Each line or bar represents a different antibody 
concentration.  The signals across peptide concentrations were averaged for this 
graph 
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Figure B-17.  Half Maximal binding of anti-PBEF and 2E4 on Selected 
Peptides.  The half maximal binding concentrations were estimated from both 1hr 
incubation experiments (shown in red) and overnight incubations (shown in blue).  
The polyreactive antibody (on the right) shows decreases in the half maximal binding 
concentration at 17hrs indicating greater apparent affinity. 
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SUPPLEMENTAL DATA FOR CHAPTER 4 



   
236 

 

 

 Platform 
binders 
count 

specific 
count 

11D3 CIM10Kv1 548 14
1C10 CIM10Kv1 1448 12
AbcamHA CIM10Kv1 12 1
DM1A CIM10Kv1 5201 388
Endorphin CIM10Kv1 1813 115
HTF14 CIM10Kv1 1158 6
IL2 CIM10Kv1 2463 35
LNKB2 CIM10Kv1 2051 29
MHC CIM10Kv1 5 0
P53Ab1 CIM10Kv1 5208 1401
P53Ab8 CIM10Kv1 4423 223
TNF CIM10Kv1 5199 715
TP Cocci CIM10Kv1 1489 71
b78 CIM10Kv1 3010 256
b96 CIM10Kv1 182 5
herceptin CIM10Kv1 4618 1345
87G CIM10Kv2 123 7
LeuEnk CIM10Kv2 1440 33
P53Ab1 CIM10Kv2 288 8
P53Ab8 CIM10Kv2 28 1
PBEF CIM10Kv2 2583 88
Poly CIM10Kv2 5711 3931
V5 CIM10Kv2 27 1
cMyc CIM10Kv2 5250 1948

 
Table C-1  Antibody Specific Peptides Counts.  The “binders count” indicates 
the number of peptides found to bind above background for each antibody.  The 
“specific count” indicates the number of peptides with specificity scores (as defined 
in chapter 4) over 0.7. 
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Figure C-1.  Amino Acid Contributions to Peptide Properties.  The score for 
each amino acid for each scale used in Chapter 4 is shown as a heatmap.  The 
minimum value of each scale is shown as blue and the maximum is shown as dark 
red 
 

 
Figure C-2.  Monoclonal Signals vs. Secondary Alone Colored by pI 
CIM10Kv1.  The signal intensities for each monoclonal are plotted against the signal 
intensities of the secondary only control.  The colors represent the isoelectric point 
of that peptide.   
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Figure C-3. Monoclonal Signals vs. Secondary Alone Colored by pI 
CIM10Kv2.  The signal intensities for each monoclonal are plotted against the signal 
intensities of the secondary only control.  The colors represent the isoelectric point 
of that peptide 
.   
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Figure C-4. Monoclonal Signals vs. Secondary Alone Colored by Normalized 
Signal CIM10Kv1. The signal intensities for each monoclonal are plotted against the 
signal intensities of the secondary only control.  The peptides are colored by the 
normalized signal intensity.   
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Figure C-5. Monoclonal Signals vs. Secondary Alone Colored by Normalized 
Signals CIM10Kv2. The signal intensities for each monoclonal are plotted against 
the signal intensities of the secondary only control.  The peptides are colored by the 
normalized signal intensity.   
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Figure C-6. Monoclonal Signals vs. Secondary Alone colored by Specificity 
Score CIM10Kv1.  The signal intensities for each monoclonal are plotted against the 
signal intensities of the secondary only control.  The peptides are colored by the 
specificity score.   

 
Figure C-7. Monoclonal Signals vs. Secondary Alone colored by Specificity 
Score 10Kv2.  The signal intensities for each monoclonal are plotted against the 
signal intensities of the secondary only control.  The peptides are colored by the 
specificity score.
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APPENDIX D 

GENETIC ALGORITHM FOR OPTIMIZATION OF SUBSTITUTION 

MATRIX FOR EPITOPE MAPPING 



   
243 

 While modest prediction accuracy was found for predicting epitopes using 

the RELIC and GLAM2 programs, the accuracy was not sufficient to predict an 

epitope from a database (Chapter 5).  I identified the substitution matrix as an 

important parameter for using an alignment approach such as was implemented in 

RELIC.  However, RELIC did not publish their substitution matrix.  Clearly, 

standard substitution matrices such as BLOSUM62 were not ideal for this task, as 

they were built with the underlying assumption that the amino acid frequencies in the 

sequences are the same as those occurring in most known proteomes.  The peptide 

libraries I have been working with have equal frequencies of amino acids.  Using a 

standard substitution matrix with these peptide libraries results in giving undue 

weight to those amino acids that are rare in nature, such as Trp.  I have found that 

when I use the BLOSUM62 matrix to align selected peptides to protein sequence, I 

almost always find the alignments are anchored by Trp.  Another potential problem 

with using standard substitution matrices is that they are based on the frequency with 

which amino acids substitutions occur in evolution.  The requirements for antibody 

recognition may be different than the requirements for protein function in general. 

 I aimed to identify an optimal substitution matrix for epitope mapping from  

selected random sequence peptides using a genetic algorithm approach.  A 

population of substitution matrices would be created, they would be evaluated for 

their epitope prediction performance, those that performed well would be mutated 

and recombined, and those that did not would be eliminated.  The performance of 

the new population would be evaluated and the cycle would be repeated until there 

was no further improvement in the performance. 
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 The first step was to develop a method to generate substitution matrices.  

Since a substitution matrix consists of 400 values, independently generating each 

value did not appear to be a feasible strategy because the search space would be so 

large.  I decided to use amino acid indices to generate the matrices.  Amino acid 

indices were downloaded from the amino acid index database 

(http://www.genome.jp/aaindex/) and each was transformed to a zero to one scale.  

To create each scoring matrix, several amino acid indices were randomly selected 

from the list.  For each pair of amino acids the absolute value of the difference 

between each of the selected index values was found and that value was raised to an 

exponent.  The sum of all of the amino acid indices differences was subtracted from 

ten.  The sum of each row and column of this negative distance matrix were found.  

Each value was divided by the product of its row and column sum and log 

transformed to generate log odds like substitution matrix.  The substitution matrix 

could be recombined and mutated by exchanging or varying the amino acid indices, 

the amino acid index weights, the exponent, or the alignment score cutoff. 

 The next step was to define the epitope scoring algorithm.  First the maximal 

alignment of each peptide with the protein sequence would be found using the given 

substitution matrix.  A windowing approach like was used in RELIC, was 

implemented but I allowed the window size to be one of the parameters to evolve.  

The scores of each peptide alignment at each amino acid position of the protein were 

added to give protein residue scores.  The maximum residue score was used to rank 

the proteins.  The area under the ROC curve was used as the fitness function to 

evaluate the substitution matrices.  
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 The genetic algorithm was run using the same dataset as was used in Chapter 

5 to evaluate Glam2 and RELIC.  A leave one out approach was used where the 

genetic algorithm was trained on nine of the known epitope examples and tested on 

the example left out.  The average training fitness was found to be 0.876, but the 

average test fitness was found to be only 0.533. I think that this result indicated that 

the algorithm was over fitting to the nine examples, so it did not have any predictive 

power on the one left out.  Maybe a larger data set would allow this approach to 

succeed.  
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APPENDIX E 

PEPTIDE QUANTITATION AND NORMALIZATION 
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 Some batch to batch variation exists for the CIM10K arrays.  It has also been 

shown that peptide microarray signal intensities correlate poorly with solution phase 

affinities (REF).  I thought that both of these issues could be related to variability in 

peptide density.  I sought to develop a method to measure the peptide density and an 

algorithm to normalize for these differences.  All of the peptides on all three 

platforms have free N-terminal amines (though on the 10Kv2 the accessibility may 

be limited as the peptides are immobilized through the sulfhydryl group of the N-

terminal Cys).  The amine also an attractive labeling target because there are a 

number of well characterized and readily available chemical groups that react with 

primary amines.  However, the amine labeling strategy is not ideal because it can also 

react with primary amines on Lys, which will require an extra normalization step.  

There are also free amines on the amino silane surface.  While most of the amines 

should have reacted with the sulfo-SMCC linker, that reaction most likely does not 

go to completion leaving some available amines on the surface.  Despite these 

shortcomings, the amine labeling was the strategy I choose to test. 

 The first labeling strategy that I attempted utilized NHS-Alexa-555.  This 

strategy proved to have high background, was prone to uneven labeling across the 

slide surface, and was not able to detect a significant fraction of the peptides.  

Though I attempted to optimize the reactive dye concentration, reaction time, and 

pH of the reaction buffer, I was not able to completely eliminate these problems.  

After labeling a custom array where I had peptides spotted at different 

concentrations, I noticed that one peptide labeled better at lower concentrations.  

This peptide was highly negatively charged.  Examining the entire 10K, I saw that 
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there was strong correlation between peptide charge and labeling efficiency.  This 

effect is not surprising because the Alexa-555 dye is highly negatively charge. 

 Since most dyes are large charged molecules, I decided to try labeling the 

peptides with amine reactive biotin, and detecting with labeled streptavadin.  I tested 

three different types of reactive biotin, NHS-LC-LC-biotin, TFP-PEG-biotin, and 

PFP-biotin.  I found that the PFP-biotin had the best evenness of labeling across the 

slide surface and the most signals above background.  The PFP biotin showed an 

increase in signal with peptide concentration, as expected.  It also had only a slight 

correlation with charge which was removed after controlling for the number of Lys, 

and did not have any strong correlations with any other peptide properties. 

 After identifying the PFP-biotin as a suitable method to estimate the peptide 

density, I sought to use that data to normalize immunosignaturing experiments.  I 

tried simply taking a ratio of the sera signal to the biotin signal, but that tending to 

result in exaggerated normalized signals for peptides that had low biotin signals.  The 

relationship between the serum signals and biotin signals appeared to be non-linear, 

so I tried using non-linear regression, but that seemed to over correct where there 

where high biotin signals but low sera signals.  I found a manuscript that described a 

method to normalize protein array data using the signal intensities obtained from 

detecting a tag on all of the recombinant protein.  This method, called CDF, divided 

the peptides in windows based on the tag signal, and did a z-transformation within 

each window (REF).  I tried this approach on the peptide data and found that it did 

not work well because the standard deviations varied between the windows, so the z-

transformation distorted the distribution.   
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 I sought to develop a method based on the windowing approach used in the 

CDF method, but that maintained the shape of the distribution. I call the method 

that I developed WINdowing Quantile normalization (WINQ).  First I find the 

quantiles for the entire raw biotin signals.  Then I find the quantiles for all of the 

peptides that have the same number of Lys.  Then interpolate from the quantiles of 

the Lys groups to the corresponding signal intensity for the overall signals.  I call this 

k-norm data for Lys normalized biotin data.  I similarly use the k-norm signals to 

normalize the sera signals.  After finding the quantiles for the raw signal intensities, I 

find the quantiles for the sera signal intensities for peptides within a window of k-

norm values.  I use overlapping windows and find the average quantile.  I then 

interpolate from the window quantiles back to the original sera signal distribution. 

 I used the dataset where the replicates were run across print runs where 

TCEP was included or left out of the spotting buffer to optimize the parameters in 

the WINQ normalization.  The best parameter set did not result in an improvement 

in the correlation coefficient but did improve the average CV across replicates.  

While the improvement in CV was small, it was consistent across several datasets 

that it was evaluated on.  
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Figure E-1. Peptide Quantitation by Dye vs. Biotin.  The peptide quantitation 
signal intensity is plotted against the peptide net charge at pH7.  Direct labeling, 
shown on the left correlates strongly with peptide charge, while biotin labeling 
shown on the right, only shows a slight correlation with charge, which can be 
explained by labeling of Lys. 
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Figure E-2.  Images of subarrays for biotin quantitation and sera probing.  

 
Figure E-3. WINQ (WINdowing Quantile Normalization).  The signal 
intensities for a sera sample are plotted against the label signal that had been 
normalized for the number of Lys.  Peptides are colored by their quantile within a 
normalized label signal window.  The WINQ normalization aims to set the signal 
distribution to be similar within each window. 
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Figure E-4. Normalization Results.  The plot on the left shows a scatterplot of 
the raw signal intensities for two replicate arrays on different print batches.  The 
peptides are colored by the ratio of the biotin labeling signal between the two print 
batches.  The plot on the right shows the WINQ normalized data for the same 
replicates.  There was a small decrease in the average coefficient of variation with the 
normalization.
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APPENDIX F 

BIOMICROCHIP ANALYSIS 
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 There have been two versions of the BioMicroChip that have been made by 

HealthTel so far.  The first was a 100K peptides of which each were 10 amino acids 

long and a total of six different amino acids were used on the chip.   We received 

two wafers of the 10mer6aa chips: the first had been labeled with tamra to measure 

the stepwise yield (W11), and the second had been labeled with fluorescein (W20).  

We found that both dyes were still present on the chip surface and appeared to block 

the binding of antibodies.  Nidhi Gupta tested several methods of removing the 

dyes, but the best methods could only partially remove the dyes.  Bart Legutki and I 

attempted to optimize the antibody binding protocol.  While we were able to make 

some improvements to the dynamic range and reproducibility, there was still quite a 

bit of unevenness across the chip surface most likely due to residual dye.  The 

reproducibility was not good enough to make biological comparisons. 

 The second version of the BioMicroChip (12mer8aa) was discussed 

extensively in chapter 4.  Some additional figures are shown here. 
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Figure F-1. Pretreatments on 10mer6aa.  Six prewash protocols were tested to 
remove the fluorescein from the wafer 20.  After the prewash, all six were probed 
with sera which was detected on the red channel.  The IPA-PBST prewash seems to 
allow the most sera binding. 
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Figure F-2. Assay Optimization on 10mer6aa.  Heatmaps of signal intensities 
spatially arranged as they are laid out on the chip.  “Even” is a score indicating how 
much spatial variability there is on the chip (higher scores indicate less spatial 
variability), “DR” is dynamic range, and “qcscore” is the product of the evenness 
score and the dynamic range.  The two chips on the left hand side of the second row 
have the best QC scores.  These were acetylated, and included 1% BSA in the wash 
step 
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Figure F-3. Dilution Series of Infected vs. Naïve on 12mer8aa.  Influenza 
infected mouse sera or naïve mouse sera was diluted 1:1000, 1:10000, or 1:100000 
(labeled 1K, 10K or 100K respectively).  The heatmaps above show the signal 
intensity spatial distributions on all chips.  

 
Figure F-4. Infected vs. Naïve Dilution Series Replicate Scatter Plots.  Scatter 
plots of replicate arrays are shown above for the infected and naïve dilution series.  
Peptides are colored by the coefficient of variation (CV) for the pixels with each 
feature.  Within spot CV appears to be a useful criteria for flagging bad data. 
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Figure F-5. Infected vs. Naïve Scatter Plots colored by t-test p-value.  The 
signals for the infected sera were plotted against those of the naïve sera at each 
dilution.  Peptides are colored by the t-test p-value between the two conditions.  
None of the peptides that appear to be different between infected and naïve have 
significant p-values. 
 

 
Figure F-6. Monoclonals on 12mer8aa.  Heatmaps for the spatial distribution of 
signal intensities are shown above.  Note that the two chips on the left (Invitrogen 
and P53Ab1) were scanned at 50PMT, but the third chip (cMyc) was scanned at 
1PMT and still has higher overall signal intensities. 
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Figure F-7. Amino Acid Positional Bias.  The average signal intensity of all of the 
peptides that have each amino acid at each position are plotted as a heat map above.  
It appears that it is more favorable to have Trp at the C-terminus and His at the N-
terminus.  These trends are strikingly similar for both antibodies. 
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Figure F-8. 5mer Position Analysis.  For each of the 5mers identified as binding 
favorably to P53Ab1 in chapter 4, the position of the 5mer with the peptide was 
noted.  The signal intensity for P53Ab1 binding is plotted against the position of 
each 5mer.  No preference for a particular position was observed. 
 

 
Figure F-9. Peptides Selected for Resynthesis from 12mer8aa.  This set of 
peptides was selected from the 100K based on the criteria listed on the left.  The 
heatmap shows the median normalized signal intensities of these peptides in the 
experiments listed on the bottom. 
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Figure F-10. 100K peptides vs. Resynthesized.  The peptides selected in figure 9 
were printed in a custom array.  Here the normalized signals from the chip are 
plotted against the signals on the custom array. 
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FigureF-11.  Scatterplot of P53Ab1 vs. Secondary Alone on Resynthesized 
Peptide Array.   Peptides containing the P53Ab1 epitope sequence are shown in 
pink. The peptides containing the 5mers shown in F-9 are shown in green.
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APPENDIX G 

VIRUS N-MER ANALYSIS 
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Table 1.  Counts of Sequences in Entrez for Selected Virus.  “# Entrez names” 
indicates the number of virus strains are found in the database.  “# Entrez Seq” 
indicates the number of protein sequences for all strains in the database. 
Viruses Pathogen 
Proteome  

# Entrez 
Names 

# Entrez 
Seq 

Coronavirus 1 30
Dengue 4 43
Ebola 2 17
Herpes Simplex Virus 3 275
HIV 2 34
Human 
Papillomavirus 28 198
Influenza 3 28
Japanese encephalitis 1 14
Nipah virus 1 8
Norovirus 1 9
Orthopox 1 197
Rotavirus 0 0
Varicella Zoster Virus 1 70
West Nile virus 1 14
Sum 49 937

 
Table 2.  Counts of Unique 12mers per Virus Strain.  The number of 12mers that 
only occur in each virus strain are shown.  12mers that occur in at least 2 virus 
strains are in the “common” entry. 

Virus 
unique 
12mers

Dengue virus type 3 1
Human herpesvirus 3 (strain Dumas) 1
Human papillomavirus - 10 1
Human papillomavirus - 18 1
Human papillomavirus - 26 1
Human papillomavirus - 41 1
Human papillomavirus - 54 1
Human papillomavirus type 71 1
Human papillomavirus type 90 1
Human papillomavirus type 92 1
Influenza A virus (A-Hong Kong-1073-
99(H9N2)) 1
Influenza A virus (A-Puerto Rico-8-
34(H1N1)) 1
Human papillomavirus type 53 1517
Human papillomavirus - 34 1617
Human papillomavirus - 32 1656
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Human papillomavirus - 61 1707
Human papillomavirus type 49 1726
Human papillomavirus RTRX7 1729
Human papillomavirus - 2 1768
Human papillomavirus type 48 1769
Human immunodeficiency virus 2 1770
Human papillomavirus type 16 1781
Human papillomavirus type 50 1798
Human papillomavirus - 63 1813
Human papillomavirus - cand96 1816
Human papillomavirus type 6b 1858
Human papillomavirus type 24 1860
Human papillomavirus type 60 1913
Human papillomavirus - 5 1937
Norwalk virus 2000
Human papillomavirus type 7 2093
Human papillomavirus type 9 2134
Human papillomavirus - 1 2176
Dengue virus type 4 2261
West Nile virus 2363
Human papillomavirus - 4 2368
Japanese encephalitis virus 2374
Dengue virus type 1 2678
Human immunodeficiency virus 1 2695
Dengue virus type 2 2871
Reston ebolavirus 3424
Zaire ebolavirus 3483
Influenza B virus 3843
Nipah virus 4672
SARS coronavirus 9285
Influenza A virus 12033
Human herpesvirus 1 27066
Human herpesvirus 2 27368
Human herpesvirus 3 33275
Variola virus 52288
common 52962
Human herpesvirus 6 63421
total 349180
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Table 3.  Number of 12mers required to cover selected viruses using a tiling 
strategy.  Sequences of the proteins for these viruses were obtained from Expasy’s 
ViralZone.  The sequences were split into 12mers with a tiling step of six.  Any 
12mer occurring in more than one virus is listed in the “common” row. 
virus peptide count
common 209
Hepatitis B virus genotype C subtype ayr 
(HBV-C) 289
Adeno-associated virus 2 (AAV-2) 335
Norwalk virus (strain GI/Human/United 
States/Norwalk/1968) 
(Hu/NV/NV/1968/US) 418
Human immunodeficiency virus 1 440
Hepatitis C virus genotype 1a (isolate H) 
(HCV) 526
Rubella virus (strain Therien) (RUBV) 527
Human respiratory syncytial virus B (strain 
B1) 741
Influenza A virus (strain A/Puerto 
Rico/8/1934 H1N1) 742
Influenza B virus (strain B/Lee/1940) 771
Dengue virus type 1 (strain Nauru/West 
Pac/1974) (DENV-1) 564
Eastern equine encephalitis virus (EEEV) 
(Eastern equine encephalomyelitis virus) 617
Human hepatitis A virus genotype IB (isolate 
HM175) (HHAV) (Human hepatitis A virus 
(isolate Human/Australia/HM175/1976)) 370
total 6549
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APPENDIX H 
 

LUPUS EPITOPE PREDICITIONS 
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Ab Accession ID Protein Name Peptide Name Peptide Seq
Kyte Doolittle 
Hydrophobicity

Net Charge At 
pH7

Rank on Guitope 
Filtered Proteome

Rank on Glam2 and 
Guitope Combined

D1 Q2VPU4 MLXIP MLX‐interacting protein  MLXIP_248 DDMLYWHKHGDGWKTPVPME ‐1.21 ‐1.86 3 2
D1 P48302 EDNRB Endothelin B receptor  EDNRB_265 FMQFYKTAKDWWLFSFYFCL 0.36 0.96 2 1
D1 P56475 GBRR1 Gamma‐aminobutyric acid receptor subunit rho‐1  GBRR1_221 AYTEDDLMLYWKKGNDSLKT ‐1.01 ‐1.09 14 40
D1 Q7TN73 CASD1 CAS1 domain‐containing protein 1  CASD1_194 LLEKLAKTSDVYWVLQDPVY 0.06 ‐1.04 30 6
D1 Q60813 ADM1A Disintegrin and metalloproteinase domain‐containing pro ADM1A_222 DDLLVLTDWWSHTKYVEMFV 0.12 ‐2.99 19 4
D1 Q6P5F7 TTYH3 Protein tweety homolog 3  TTYH3_196 EVLAEQVDLYDWYRWLGYLG ‐0.16 ‐3.00 58 7

G4 Q9Z1S8 GAB2 GRB2‐associated‐binding protein 2  GAB2_15 LRKSPPEKKLRRYAWKKRWF ‐1.80 8.00 3 1
G4 Q9R1C6 DGKE Diacylglycerol kinase epsilon  DGKE_344 LDRWKVQVTNKGYYNLRKPK ‐1.44 4.95 9 2
G4 Q9R0N4 SYT10 Synaptotagmin‐10  SYT10_474 EGLGRDHWNEMLAYHRKPIT ‐1.14 0.14 13 3
G4 Q8C2K1 DEFI6 Differentially expressed in FDCP 6  DEFI6_229 LRRNWAERWFQLQPSSLCYF ‐0.63 2.00 30 11
G4 Q8BFU8 VGLU3 Vesicular glutamate transporter 3  VGLU3_4 KAFDTFKEKILKPGKEGVKN ‐1.03 2.96 34 7
G4 Q91XQ5 CHSTF Carbohydrate sulfotransferase 15  CHSTF_281 FSAIKEPHWWTRKRFGIVRL ‐0.45 4.05 127 16

D9 P46467 VPS4B Vacuolar protein sorting‐associated protein 4B  VPS4B_31 LQLYQHAVQYFLHVVKYEAQ ‐0.07 0.18 82 2
D9 Q6PHN7 TM164 Transmembrane protein 164  TM164_172 ELEIYYIQHAMLYVVPVYLL 1.00 ‐1.91 41 1
D9 Q9QX11 CYH1 Cytohesin‐1  CYH1_119 RDEFSIQVLHAFVELHEFTD ‐0.14 ‐3.86 179 5
D9 O88853 GALR3 Galanin receptor type 3  GALR3_248 WGPHHALILCFWYGRFAFSP 0.39 1.18 179 4
D9 Q8BLD9 DRD5 D(1B) dopamine receptor  DRD5_135 DRYWAISRPFRYERKMTQRV ‐1.42 3.96 182 10
D9 Q8K097 FAIM2 Fas apoptotic inhibitory molecule 2  FAIM2_242 LAVLLPFQYVPWLHAVYAVL 1.53 0.09 193 6

F9 Q6ZQ29 TAOK2 Serine/threonine‐protein kinase TAO2 TAOK2_272 SEVLLKHRFVLRERPPTVIM 0.05 2.05 14 2
F9 Q01279 EGFR Epidermal growth factor receptor  EGFR_874 EGGKVPIKWMALESILHRIY 0.06 1.09 26 6
F9 Q01098 NMDE3 Glutamate [NMDA] receptor subunit epsilon‐3  NMDE3_761 IAMQKDSHWKRAIDLALLQF ‐0.04 1.09 22 14
F9 Q99P88 NU155 Nuclear pore complex protein Nup155  NU155_647 ASMSGLTGPEIVYSGKHNGI ‐0.05 0.05 57 1
F9 Q9D2G5 SYNJ2 Synaptojanin‐2  SYNJ2_799 AWTDRVLWWRKKHPYDKTAG ‐1.34 3.00 73 16
F9 Q61137 ASTN1 Astrotactin‐1  ASTN1_240 DGYEYDITDLRHHLQRECMN ‐1.36 ‐2.86 133 3

G10 Q68FE2 ATG9A Autophagy‐related protein 9A  ATG9A_150 FIYNICCYWEIHSFYLHALR 0.50 0.18 4 5
G10 Q8C031 LRC4C Leucine‐rich repeat‐containing protein 4C  LRC4C_305 CNCDILWLSWWIRDMAPSNT 0.01 ‐1.04 22 8
G10 P53690 MMP14 Matrix metalloproteinase‐14  MMP14_472 EVFTYFYKGNKYWKFNNQKL ‐1.13 2.96 16 2
G10 Q812G0 MGT4A Alpha‐1,3‐mannosyl‐glycoprotein 4‐beta‐N‐acetylglucosamMGT4A_233 RWRTKQNLDYCFLMMYAQEK ‐1.00 1.96 40 4
G10 Q80VA0 GALT7 N‐acetylgalactosaminyltransferase 7  GALT7_468 VVEVWWDEYKDYFYASRPES ‐0.88 ‐2.99 40 4
G10 P39688 FYN Tyrosine‐protein kinase Fyn  FYN_283 GEVWLGTWNGNTKVAIKTLK ‐0.25 1.87 456 6  
Figure H-1. Peptides Selected by GuiTope and Glam2 Analysis for Lupus 
Monoclonals.  Stephanie Williams (Steven Hoffman's lab) created five monoclonal 
antibodies from a lupus mouse model, and selected them for reactivity against the 
membrane fraction of brain lysate.  She found the molecular weight of the 
monoclonal targets by western blotting, and used them to probe the CIM10Kv2 
array.  Specific peptides were selected for each.  I used in GuiTope to search against 
membrane proteins in the mouse proteome that had the corresponding molecular 
weight.  I also identified motifs using glam2 and used them to search the filtered 
proteome using glam2scan.  The predicted epitopes above are based on the averaged 
GuiTope and glam2 scores.  Those known not to be expressed in the brain were 
excluded.  Those highlighted in green were identified by Stephanie as having 
biological connection to lupus. 
 

 
Figure H-2. Control Peptides ELISA.  The plate was coated with the antibodies 
indicated at the bottom of the columns.  After blocking, it was probed with the 
biotinylated peptide corresponding to the cognate epitope sequence as labeled in the 
rows.  Binding was detected with HRP-streptavadin.  The top row was probed with 
HRP labeled anti-IgG to detect antibody coating.  At high peptide concentrations, 
two of the peptides bind to the uncoated wells, but at the low peptide concentration, 
only the cognate interaction is observed. 
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Figure H-3.  Lupus Peptides ELISA.  The ELISA was performed as described for 
figure 2, except peptides were diluted 1:50 in columns 1, 4, and 7, 1:500 in 2, 5, and 
8, and 1:5000 in 3, 6, and 9.  Columns 10, 11, and 12 contain serial dilutions of the 
cMyc, P53Ab8, and V5 peptides respectively.  Antibody coating was only detected 
for D1.  A sandwich ELISA later confirmed that no detectable IgG was present for 
the other four antibodies.  Peptides all bound better to the uncoated wells than to 
the antibody coated wells. 
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APPENDIX I 
 

DIPEPTIDE INVERSIONS 
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Figure I-1.  Crossreactivity of anti-Peptide Sera with Dipeptide Inversion.  
Mouse sera collected after immunization with the FT02 or FT03 peptides shown 
above as KLH conjugates was used in ELISA to check reactivity to both peptides.  
Sera from both peptide immunizations reacted similar with both peptides.  A region 
of similar sequence (underlined) was identified that contained a dipeptide inversion, 
shown in bold.  This data was provided by Bart Legutki. 
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Figure I-2.  Side Chain Volume vs. Inversion Frequency.  Random-sequence 
peptides found to separate Valley Fever from normals were aligned to Valley Fever 
proteins in GuiTope using default paramaters including dipeptide inversion weight as 
one.  The number of times each amino acid was found in a dipeptide inversion is 
plotted against the residues side chain volume.  A line was fit to the data and the 
equation and RSQ value are shown on the plot.   
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