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ABSTRACT 

 The unique structural features of deoxyribonucleic acid (DNA) that are of 

considerable biological interest also make it a valuable engineering material. 

Perhaps the most useful property of DNA for molecular engineering is its ability 

to self-assemble into predictable, double helical secondary structures. These 

interactions are exploited to design a variety of DNA nanostructures, which can 

be organized into both discrete and periodic structures. This dissertation focuses 

on studying the dynamic behavior of DNA nanostructure recognition processes. 

The thermodynamics and kinetics of nanostructure binding are evaluated, with the 

intention of improving our ability to understand and control their assembly. 

 Presented here are a series of studies toward this goal. First, multi-helical 

DNA nanostructures were used to investigate how the valency and arrangement of 

the connections between DNA nanostructures affect super-structure formation. 

The study revealed that both the number and the relative position of connections 

play a significant role in the stability of the final assembly. Next, several DNA 

nanostructures were designed to gain insight into how small changes to the 

nanostructure scaffolds, intended to vary their conformational flexibility, would 

affect their association equilibrium. This approach yielded quantitative 

information about the roles of enthalpy and entropy in the affinity of polyvalent 

DNA nanostructure interactions, which exhibit an intriguing compensating effect. 

Finally, a multi-helical DNA nanostructure was used as a model ‘chip’ for the 

detection of a single stranded DNA target. The results revealed that the rate 

constant of hybridization is strongly dominated by a rate-limiting nucleation step. 
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Chapter 1 

DNA, DNA Nanotechnology, and Assembly of DNA Nanostructures 

1.1. Introduction 

 1.1.1. DNA. “D.N.A. … has novel features which are of considerable 

biological interest.” J.D. Watson and F. H. C. Crick (1953) Nature. 171, 737-738. 

 

 

Figure 1.1. The model of double helical DNA proposed by Watson and Crick in 

1953.
1 

 

 Deoxyribonucleic acid, or DNA as it’s commonly known, is arguably the 

most important molecule in natural history. Images of double helical DNA are 

ubiquitous, featured everywhere from college textbooks to popular television 

crime dramas, a testament to modern society’s fascination with nucleic acids. 

Long before Watson and Crick solved the structure of the now iconic DNA 

double helix in 1953, DNA was inconspicuously performing its fundamental 

biological duty, genetic information storage.
1
 Often referred to as the ‘blue-print’ 

of life, individual molecules of DNA are arranged in a particular order, creating a 
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biochemical code that specifies the function of individual cells and the 

development of entire organisms. Since Johann Friedrich Miescher first extracted 

and characterized DNA from the nuclei of leukocyte cells in 1869, scientists have 

focused vast energy and resources on uncovering the details of cellular DNA 

organization, processing, function, and the relationship between DNA and the 

evolution of the natural world.
2
 Remarkably, over a century after Miescher’s 

revolutionary discovery, scientists are still redefining the role of DNA in science 

and technology.  

 1.1.2. DNA Nanotechnology. “It appears to be possible to generate 

covalently joined three-dimensional networks of nucleic acids which are periodic 

in connectivity and perhaps in space.” N. C. Seeman (1982) J. Theor. Biol. 99, 

237-247. 

 

 

Figure 1.2. A theoretical nucleic acid lattice proposed by Seeman in 1982. The 

dark lines represent stretches of double helical DNA and the circles represent 

junction regions.
2
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 In 1982 Nadrian Seeman first proposed the idea of using DNA to construct 

well defined, nanometer-scale arrangements of molecules, giving birth to the field 

of DNA nanotechnology
3
. He anticipated that the unique structural features of 

DNA that Watson and Crick recognized made it a valuable engineering material, 

completely unrelated to its recognized biological function. The suggestion that 

nucleic acid polymers might have importance outside the context of molecular 

genetics was incredibly unconventional and forward thinking. With the support 

researchers around the world, DNA nanotechnology has expanded beyond the 

production of nanoscale ‘tinker-toys’ into a diverse, multi-disciplinary field with 

the potential to develop into a pillar of nanoscale engineering technology
4
.  

1.2. Structural Properties of DNA 

 Considering the impressive collection of complex cellular functions in 

which DNA participates, it is remarkable that the biopolymer is based on 

relatively simple nucleotide monomers. The structure of DNA  

“has two helical chains each coiled round the same axis … each 

chain consists of phosphate diester groups joining β-D-

deoxyribofuranose residues with 3’, 5’ linkages. The two chains 

(but not their bases) are related by a dyad perpendicular to the fibre 

axis. Both chains follow right-handed helices, but owing to the 

dyad the sequences of the atoms in the two chains run in opposite 

directions… the bases are on the inside of the helix and the 

phosphates on the outside. The configuration of the sugar and the 

atoms near it is … ‘standard configuration’, the sugar being 

roughly perpendicular to the attached base. There is a residue on 

each chain every 3.4 Å in the z-directions”.
1
  

  

Remarkably, the molecular structure of double helical DNA that Watson and 

Crick proposed over 50 years ago has since been proven valid. Today, the helical 

‘chains’ are referred to as strands, and the opposing directionality of the strands is 
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called an antiparallel arrangement. Watson and Crick recognized that “the novel 

feature of the structure is the manner in which the two chains are held together by 

the purine and pyrimidine bases”.
1
 The hydrogen bond interactions between the 

aromatic nucleobases have since been named ‘Watson-Crick’ base pairs in honor 

of their pioneering work.  

 DNA polymers are classified according to their primary, secondary, and 

tertiary structures. The primary structure of DNA is composed of individual 

nucleotide monomers linked together by phosphodiester bonds, with each 

monomer containing a 2’-deoxy-D-ribose sugar group and an aromatic 

nucleobase.
5
 There are two purine and two pyrimidine nucleobases in DNA, 

adenine and guanine, and cytosine and thymine, respectively. The resulting 

polynucleotide chain maintains a 5’ to 3’ polarity, with amphiphilic features that 

promote the assembly and preservation of the secondary and tertiary structures.
5
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Figure 1.3. The primary structure of DNA. 

 

The predominant secondary structure observed under physiological 

conditions (and the form of DNA that corresponds to Watson and Crick’s report) 

is referred to as a B-form double helix. Double helices are formed by very specific 

hydrogen bond interactions between the nucleobases of two anti-parallel DNA 

strands. Adenines from one strand form hydrogen bonds with thymines from a 

different strand, and similarly, guanines form hydrogen bonds with cystosines.
5
 

The specific nature of Watson-Crick base pairing results in a double helix 

composed of two single strands that are said to be complementary.  
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Figure 1.4. The structure of Watson-Crick base pairs. 

 

As Watson and Crick proposed, B-form DNA adopts a right-handed 

helical structure with a hydrophobic interior composed of paired nucleobases 

stacked virtually perpendicular to the central polymer axis at 3.4 Å intervals. The 

plane of each base pair is rotated approximately 36 degrees relative to the 

adjacent plane, resulting in one complete turn per ~10 base pairs. Thus, the 

resulting ‘helical pitch’ (distance between repeating base pair unit planes x 

number of base pairs per helical turn) of B-form DNA is ~ 34 Å. The π-π stacking 

interactions between aromatic, nucleobase-paired planes provide a stabilizing 

force that helps to maintain the double helical structure.
5
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Figure 1.5. Stereoview of a B-form DNA double helix.

6 

 

The hydrophilic sugar-phosphate backbone spirals around the outside of 

the helix, imparting a net negative charge to each monomer unit. The precise 

arrangement of the sugar-phosphate backbone is described by the deoxyribose 

ring conformation and the N-glycosidic bond angles. In B-form DNA the sugar 

ring adopts a C2’-endo pucker conformation rather than the alternative C3’-endo 

conformation to avoid steric clash between two consecutive phosphate groups in 

the backbone. The N-glycosidic bond between the sugar ring and the nucleobase 

can adopt either an anti or syn conformation, with the anti configuration dominant 

in B-form DNA.
5
  

The overall chemical structure and spatial arrangement of B-form DNA 

creates two distinct helical grooves strands referred to as minor and major, which 

spiral around the outer surface of the paired strands. The major groove is wide 
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with a moderate depth, while the minor groove is narrow with a nearly equal 

depth. The bottom of both grooves are defined by the opposite sides of the 

stacked nucleobase-pair planes which result in unique hydrogen bond donor and 

acceptor patterns within the plane of the base pair.
5
 It is clear that each position 

along the double helix will possess a unique structure depending on the identity of 

the base pairs and flanking base pairs. The sequence dependent changes in local 

structure produce a microheterogeneity that can be exploited for site specific 

binding and other interactions. The overall helical structure is also influenced by 

other external factors including solvent, ionic strength, temperature, and 

hydration.
5
 Watson and Crick described the structure of B-form DNA as “an open 

one” with high water content. They predicted that at lower water content “we 

would expect the bases to tilt so that the structure could become more compact”.
1
 

Their prediction of a more compact DNA conformation in low humidity was later 

proven experimentally and is referred to as an A-form double helix. 

A-form DNA is observed when the relative humidity of the environment 

decreases to 75% and the salt concentration drops below 10%.
5
 As Watson and 

Crick predicted, the structure of A-form DNA is stout in comparison to B-form, 

adopting a right handed helix with 11 base pairs per one helical turn and a helical 

pitch of ~28 Å. The most prominent structural feature of A-form DNA is a net 

displacement of the nucleobase-pair planes away from the polymer axis 

accompanied by a 20° tilting of each plane. Another distinguishing property of A-

form DNA is that the sugar rings adopt a C3’-endo pucker conformation. Taken 
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together, these differences result in a narrow and deep major groove and a wide 

and shallow minor groove.
5
  

 

 
Figure 1.6. A comparison of the structure of A- and B- form DNA.

7 

 

In high salt conditions and an alternating purine-pyrmidine sequence, 

double helical DNA can take on an alternative conformation referred to as Z-

form. In contrast to A- and B-form DNA, Z-form DNA adopts a left-handed 

helical structure which is more elongated and slender. Z-form DNA contains 12 

nucleobase-pairs per one complete turn and a helical pitch of ~45 Å, with a wide 

and shallow major groove and a narrow and very deep minor groove. Alternating 

sugar pucker and N-glycosidic bond conformations result in a left-handed helix 

with a backbone that appears to zigzag around the outside of the helix.
5 

In addition to the linear secondary structure observed in A-, B-, and Z- 

form double helices, there are indications that DNA can adopt a number of other 

unusual structures in a natural setting. Some examples of alternative structures 
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include hairpin loops, cruciforms that appear within palindromic DNA sequences, 

pseudoknots, triple helices, branched helical junctions and quartet structures that 

contain four DNA strands.
5
 The natural ability of DNA to adopt a variety of 

structures provides evidence that DNA might be engineered to form other 

proposed structures under certain conditions.  However, to fulfill Seeman’s vision 

of using DNA to construct well defined, nanometer-scale arrangements of 

molecules, several other essential elements must be considered.  

1.3. Engineering DNA  

 The mechanical, physical, and environmental properties of materials are 

important issues that every engineer must consider before launching any 

construction project. Several examples of descriptors of these properties are 

Young’s modulus, tensile strength, thermal expansion, conductivity, melting 

temperature, resistivity, raw materials input, eco indicators, etc. A well planned 

engineering project will include evaluating a material based on these or other 

relevant properties, and reaching a compromise between ideal and available 

materials.  

In many contexts, the relevant physics of DNA is described by the worm-

like chain model which characterizes a polymer using a single parameter, the 

flexural persistence length.
8
 A very informal explanation of this parameter is to 

say that sections of the polymer that are shorter than the persistence length will 

behave like a rod, while sections that are longer than the persistence length will 

behave more flexibly, simulating a random three-dimensional walk. Although the 

mechanical properties vary according to local sequence and particular helical 
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structure, the characteristic nucleobase stacking and braided architecture of a 

DNA double helix impart an unusual level of stiffness. Rigid DNA double helices 

are necessary if DNA is to be used to build well-defined nanoscale structures, in 

which the position of each atom is relatively fixed. For double stranded DNA in 

physiological conditions, the persistence length is approximately 50 nm. Put 

another way, it takes approximately 50 times more energy to bend a DNA double 

helix into a circle than a single strand of DNA.
8
 With a 50 nm persistence length, 

short pieces of DNA, two or three full turns long (~ 7 – 10 nm), can be regarded 

as stiff building components suitable for molecular engineering.
9
  

In addition to being appropriately stiff enough, DNA is a chemically stable 

material. This is evidenced by Nature’s selection of DNA as the primary molecule 

to store and maintain vital genetic information for nearly every living organism on 

earth. Although DNA is subject to hydrolytic, oxidative, and UV-induced damage 

by external influences, careful control over the local environment can drastically 

reduce the occurrence of damage.
10

 The use of appropriate buffer solutions and 

protection from UV light should ensure minimal damage to a DNA structure. The 

double helical structure of DNA is also quite stable. For example, the expected 

melting temperature (based on the nearest neighbor model) for a random, 20 

nucleotide (~ 2 turns) long DNA double helix (ATG CAT GCA TGC ATG CAT 

GC) is approximately 55°C .
11

 With a high thermal stability, DNA can easily be 

manipulated under normal experimental conditions.  

Beyond the advantageous mechanical and physical properties of DNA, 

there are several practical aspects of DNA that facilitate its use as a material for 
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molecular engineering. The explosion of scientific interest in studying DNA, 

either to modify gene expression levels, to optimize certain cellular processes, or 

to study the molecular biology of the cell, has led to major advances in 

methodologies for synthesizing DNA.
12

 Automated phosphoramidite chemistry is 

convenient and relatively inexpensive, and permits the assembly of arbitrary 

sequences containing 100 nucleotides or even more.
13

 In addition, the needs of the 

biotechnology industry have resulted in the creation of many modified 

phosphoramidites that can be used for non-traditional purposes. Further, with the 

number of commercially available enzymes that can be used to manipulate DNA, 

either to ligate different pieces together, cleave specific sequences, phosporylate 

nucleotides, etc., it is becoming easier and easier to control the molecular 

structure and behavior of DNA. 

Perhaps the most useful property of DNA for molecular engineering is 

ability of DNA to self-assemble into a predictable, double helical secondary 

structure. In any architectural endeavor, the available tools must always be 

considered and any material that cannot be manipulated by accessible instruments 

must be avoided. This is particularly important for nano-scale engineering, where 

there is a scarcity of tools and techniques to control individual atoms and 

molecules. With appropriately designed complementarity and reaction conditions, 

single strands of DNA will self-assemble into double helices with no external 

pressure, eliminating the need for any sophisticated tools for assembly.  

Considered together, the properties of the DNA double helix are unlike 

those of any other natural or synthetic polymer and make DNA well suited to 
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serve as an engineering material.
8
 For the last 30+ years DNA nanotechnologists 

have exploited the unique properties of DNA to create an amazing variety of well-

defined nanoscale structures.  

1.4. Development of DNA Nanotechnology 

 The most essential behavior of DNA that DNA nanotechnologists rely is 

the spontaneous self-assembly of single strands into double helices through 

complementary base pairing. Adenine nearly always forms hydrogen bonds with 

thymine, and guanine with cytosine. The predictable nature of these 

intermolecular interactions allows researchers to “program” (design specific, 

complementary sequences) single stranded molecules of DNA to associate with 

one another to form double helices. Despite this remarkable ability, double helical 

molecules have linear topologies and will only sustain one dimensional 

organization. By specifically designing nucleotide sequence and local strand 

complementarity, it is possible to produce branched DNA molecules and expand 

the complexity of potential arrangements.  

 

 
Figure 1.7. 1D organization of two double helical DNA molecules. 

 

 Individual branched DNA motifs are analogous to molecular bricks, often 

referred to as ‘tiles’, and are used as the basic building blocks of nearly all DNA 
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nanostructures. Equally important as the individual building blocks is the method 

employed to bring them together. Without a dependable way to link the tiles, 

higher-order structures and patterns could not be generated. Attaching single 

stranded overhangs, or ‘sticky ends’ (analogous to molecular cement) to the 

individual components provides a consistent and convenient method for inter-

structure association. Since early in the development of DNA nanotechnology, the 

combination of branched DNA tile motifs and sticky end interactions have been 

used to generate highly structured and ordered materials.  

 

 

Figure 1.8. Formation of a 2D lattice from a branched DNA molecule with sticky 

ends. 

The very first branched DNA tiles were composed of several double 

helical ‘arms’ connected at a single branch point. Initial attempts to use these tiles 

to construct higher order structures were unsuccessful.
14

 Apparently, the inherent 

flexibility of DNA tile motifs with a single junction point did not facilitate inter-

tile association and the creation of higher order structures. The use of multiple 

crossover points between helices overcame this limitation and provided tiles the 

rigidity necessary for the assembly of larger objects. In particular, the double 
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crossover motif first reported in 1993, is the foremost motif in DNA 

nanotechnology and is used in a wide variety of discrete and periodic 

assemblies.
15

  

 Following the production of discrete, geometric DNA objects including a 

quadrilateral, a cube, and truncated octahedron, researchers used branched DNA 

tiles for the synthesis of periodic structures.
16-18

 Researchers developed a variety 

of rigid, multiple-crossover building blocks such as double and triple crossover 

molecules, multi-helical planar molecules, and bundled helix molecules and 

several types of one and two dimensional periodic networks were constructed.
15, 

19-23 
 The ability to generate precisely patterned structures represented a 

momentous development and has facilitated the organization of a variety of 

molecules including proteins, aptamers, metal nanoparticles, and quantum dots.
22-

27
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Figure 1.9. Examples of DNA nanostructure building blocks.

23
 (a) left: double 

crossover tile; center: triple crossover tile; right: 12 helix tile. (b) left: three helix 

bundle tile; right: six-helix bundle tile. (c) left: parallelogram tile; right: triangular 

tile. (d) left: cross shaped tile and corresponding AFM image (below) of a 2D 

array of self-assembled tiles; middle: triangular tile and corresponding AFM 

image (below) of a 2D array of self-assembled tiles; right: 3 point star tile and 

corresponding AFM image (below) of a 2D array of self-assembled tiles.  
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1.5. DNA Nanostructure Assembly  

 1.5.1. Intermolecular Binding Interactions. There are abundant 

examples of individual 2D and 3D DNA nanostructure building blocks that have 

been engineered for a range of functions including: scaffolding and study of 

various nanomaterials, encapsulation of nanoparticles, biosensing etc. 

Intermolecular binding interactions are vital to almost all of these functions, 

facilitating communication and cooperation between the individual building 

blocks, and also, among unique elements within a single building block. This is 

particularly important in the assembly of higher-order arrays of nanostructures. 

Incredibly, for all the diversity that exists in the building blocks themselves, they 

communicate almost exclusively by hybridization of complementary single 

stranded extensions from the individual units, linking individual DNA 

nanostructures together to form much larger nanostructure complexes and arrays. 

In addition, binding of many targets (including oligonucleotides, proteins, metal 

nanoparticles) to an underlying DNA nanostructure scaffold occurs by the same 

type of complementary single stranded interactions. The importance of these 

intermolecular binding interactions cannot be overstated; to exert full control over 

a nanosystem it is imperative to fully understand the binding character of the 

interacting units.  

 Natural systems are a testament to the importance and complexity of 

intermolecular binding. Reversible, non-covalent associations are fundamental to 

biochemistry.
28 

Noncovalent associations control gene expression, regulate 

metabolism, govern cell signaling, facilitate the immune reponse and aid in many 
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other functions. The interactions that are responsible for noncovalent association 

include hydrogen bonds, dispersion and van der Waals interactions, ionic and 

other electrostatic interactions, and hydrophobic interactions. These interactions 

are energetically weak, ranging from 1 to 5 kcal per mole. Simple thermal 

agitation is enough to disrupt a single weak interaction; however, the likelihood of 

simultaneously breaking two or more interactions is significantly reduced.
28

 A 

typical biochemical macromolecule-ligand complex will have several weak 

interactions operating simultaneously, increasing the stability of the complex. The 

use of multiple binding interactions between partners is a strategy that DNA 

nanotechnology has embraced. A single DNA nanostructure building block will 

often contain several sticky end extensions that operate cooperatively to organize 

the individual units into a more complex pattern. This strategy has played an 

essential role in the development and success of DNA nanotechnology. Thus, 

characterizing various aspects of binding phenomena among DNA nanostructures 

is of the utmost importance. 

 Non-covalent binding is often evaluated in terms of binding specificity 

and strength. Binding specificity implies the rejection of incorrect binding 

partners in favor of the correct ones and is measured in terms of binding 

constants.
28

 High specificity promotes fidelity, the faithful performance of a 

certain behavior over time, a desirable trait for DNA nanostructures. Binding 

specificity derives from the highly organized structure of the binding site and the 

three-dimensional alignment of the interacting groups. All binding events involve 

the joining of two molecular surfaces and for there to be specificity in binding the 
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two surfaces should fit together sterically, without substantial gaps in the 

interface. One of the attractive features of DNA nanostructures is the high level of 

control over the size and shape of the building blocks, and the arrangement of 

sticky ends within the structure. Thus, there are a variety of binding situations 

among DNA nanostructures that can be evaluated. 

 

 

Figure 1.10. Binding affinity and specificity. (a) closely matched complementary 

surfaces with multiple binding interactions result in high affinity. (b) partially 

matched complementary surfaces with a single binding interaction results in lower 

affinity. (c) lack of matching molecular surfaces results in minimal binding 

affinity. 

 

 There are several factors that affect molecular recognition processes. The 

amount of binding surface that is exposed to solvent has a profound impact on the 

binding between two molecules.
28

 In an unbound state, each molecular surface is 

exposed to solvent and this solvent must be removed in order for a complex to 

form. The release of bound solvent is generally entropically favorable and may 

help drive complex formation. A second, equally important factor is the 

convergence of functional groups, referred to as polyvalency, which is a potent 
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way to increase both the strength and specificity of binding.
28

 There are many 

reports that reveal that the strength of association increases dramatically with 

increasing numbers of points of attachment between two molecules. A polyvalent 

arrangement of attachment points brings all of the weak interactions together in a 

very small spatial region. The entropic penalty for gathering individual binding 

elements together is paid when each molecule is formed, thus, there is a reduced 

entropic penalty upon complex formation.  

 

 
Figure 1.11. Two molecules interact through multiple, simultaneous molecular 

contacts. 

 

 Finally, the conformational flexibility of a molecule will influence its 

binding performance.
28

 Biopolymers such as DNA or proteins are small enough 

molecules that energy fluctuations are an important determinant of their behavior. 

Noncovalent interactions are easily broken on an individual basis and are 

constantly in a state of equilibrium between formed and broken states. 

Observation of these biopolymers at equilibrium would reveal the presence of a 

mixture of conformational states and each state would have a different level of 

interaction with a binding partner. Interconversion between the various states 
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(microstates) is rapid because there are only small potential energy barriers 

between them. The fluctuation that occurs over related conformations permits 

structural flexibility in the biopolymer without the loss of essential structural 

features. Thus, the functional structure is maintained while dynamic local 

transitions are permitted. If the binding section is flexible then binding of the 

molecule to a partner will not require disruption of a stable structure. In effect, 

this will minimize the activation energy for binding. However, if binding results 

in the ordering of a flexible, conformationally fluctuating region of the binding 

site then an entropic penalty will have to be paid. Because some binding energy 

will be dissipated to cover this entropic debt, the complex will be less stable in 

terms of free energy.  

 

 
 

Figure 1.12. Energy diagram reflecting the microstates of a biopolymer.
29

 

Flexible structures will have an ensemble of related conformations, separated by 

low-energy barriers (left), while more rigid structures will have a single-energy 
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minimum (middle). In the extreme case of a completely rigid structure, the 

distribution of energy states collapses. 

 

 Each of these factors is applicable to the assembly of DNA nanostructures. 

Depending on the structural details of the individual building blocks, the binding 

region of a DNA nanostructure will have a particular degree of exposure to the 

solvent and affect the association between two building blocks. Regarding 

polyvalency, DNA nanostructures are remarkably versatile. It is possible to link 

two DNA nanostructures together through a single sticky end interaction; and, 

depending on the size and characteristics of the participating nanostructures it is 

also possible to connect them through many more interactions, with 25 or more 

readily achievable. The arrangement and relative location of linkages may also 

vary depending on the structure of the DNA building blocks. Finally, different 

DNA nanostructures exhibit an intrinsic, variable degree of conformational 

flexibility that is the result of particular structural details. There are certain DNA 

nanostructures that are inherently rigid, while others have proven to be incredibly 

flexible. Until now, very few studies have examined the effect of these factors on 

the binding of DNA nanostructures. Herein, various aspects of the role of 

polyvalency and conformational flexibility of DNA nanostructures are reported. 

 1.5.2. Characterization of DNA Nanostructure Assembly. Molecular 

recognition processes can be considered from either a thermodynamic or kinetic 

perspective, depending on whether a given system is in a state of equilibrium or 

nonequilibrium. Equilbrium phenomena are describes by thermodynamics 
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whereas the rate of change of a system is explained by kinetics. Both means of 

analysis provide useful information about a binding event. 

 Thermodynamic analysis reflects the overall energy of a system and the 

transformation of energy that occurs for a given process. Consideration of the 

thermodynamic aspects of DNA nanostructure assembly will reveal the relative 

energy (and thus stability) of the reactants and products. The stability is 

independent of the pathway between the reactants and products and is reflected by 

the equilibrium constant, Keq of the transformation. There is a fundamental 

connection between the equilibrium constant and free energy change: ∆G° = -RT 

ln Keq. The free energy change of a binding transformation provides a quantitative 

measure of the relative stabilities of the bound and unbound states of the system. 

The more negative the free energy change from reactants to products, the more 

stable the bound complex. However, knowledge of the free energy change alone 

is not sufficient to characterize the binding process because the change in free 

energy has both enthalpic (∆H) and entropic (∆S) contributions: ∆G = ∆H - T∆S.  

The magnitude of ∆H indicates the relative contributions of the weak interactions 

between the binding partners (hydrogen bonding for example), while the 

magnitude of ∆S helps to indicate the role of solvent reorganization and internal 

rigidification or flexibility.  

 The stability of a complex is often measured by a thermal denaturation 

experiment and is quantitatively described by the Tm (temperature of 

midtransition) and thermodynamics of assembly.
30

 The two most common 

methods for determining the Tm and thermodynamics of nucleic acid interactions 
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are optical detection of thermal denaturation and microcalorimetry. Although 

microcalorimetry is a direct method of measuring transition enthalpy changes, it 

requires very large sample volumes and can yield free energy values with large 

errors.
31

 Optical detection of thermal denaturation offers the advantages of high 

sensitivity, thus, very little sample is required. In addition, the entropy and 

enthalpy values of transition are derived from a two-state van’t Hoff analysis of 

optical melting curves; due to compensating errors in enthalpy and entropy, a 

van’t Hoff analysis provides very accurate measurements of the free energy and 

melting temperature of a nucleic acid structure.
31

  

 Optical detection of thermal denaturation usually involves heating/cooling 

a nucleic acid sample and monitoring the conformational changes that occur at 

various temperatures via changes in a corresponding optical signal. Often the 

optical signal is absorbance, but fluorescence is also a very common method used 

to follow a thermal denaturation experiment. Beyond simply providing a 

quantitative value for the temperature of midtransition, analysis of a thermal 

denaturation experiment (in which the folded fraction of a structure or complex is 

correlated to temperature) yields vital thermodynamic information. The simplest 

way to derive thermodynamic parameters from optical melting data is to apply the 

aforementioned van’t Hoff analysis to the data, although there are also more 

rigorous analytical methods.
32, 33

  

 In this work, Förster resonance energy transfer FRET) was employed to 

monitor thermal denaturation of dimers of discrete DNA nanostructures. For each 

dimer investigated, one nanostructure was labeled with a FRET donor, and the 
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other nanostructure was labeled with a FRET acceptor. The distance between the 

FRET pair in the assembled dimer is close to the Förster distance, permitting 

efficient FRET energy transfer between the donor and acceptor when they are 

near to one another.  At low temperatures when the dimer is stable (assembled), 

the fluorescence emission of the donor will be partially quenched by energy 

transfer to the acceptor. At high temperatures the dimer is unstable and the 

monomers will separate from one another, restoring the fluorescence emission of 

the donor.  Monitoring the change in FRET efficiency between the donor and 

acceptor with respect to temperature generates thermal melting curves, allowing 

application of the van’t Hoff analysis. Chapters 2 and 3 describe thermodynamic 

characterization of the assembly of several DNA nanostructures in which the role 

of polyvalency (Chapter 2) and conformational flexibility (Chapter 3) of the 

participating DNA nanostructures are evaluated. 

 Kinetic analysis reflects the rate of change of a given transformation and 

the time required to reach for the system to reach equilibrium. Kinetics can reveal 

the underlying mechanisms of complex functions, details that are not accessible 

through thermodynamic analysis. Kinetic stability is related to the pathway 

between reactants and products and is largely dependent on the activation energy 

for a given process. Kinetic stability determines the rate constant (k) of a 

transformation and is entirely independent of the thermodynamic stability. There 

are several factors that affect the rate of a chemical transformation including 

concentration of the reactants, steric requirements and accessibility of the 

reactants (surface area for example), the temperature at which the reaction occurs, 
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and whether or not any catalysts are present. The accessibility of reactants is a 

particularly interesting factor in DNA nanostructure assembly, with varying levels 

of accessibility to binding sites dependent on the structural details of the 

interacting components. In general, the more accessible the binding site, the faster 

the rate of transformation. This is because a more accessible binding site will 

experience a greater number of collisions with the necessary binding partner, 

leading to a higher frequency of effective collisions that result in bound 

complexes. Chapter 4 describes kinetic characterization of the capture (binding) 

of an oligonucletide target by a DNA nanostructure in which the role of binding 

site accessibility is evaluated.  
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Chapter 2 

Studies of Thermal Stability of Multivalent DNA Hybridization in 

a Nanostructured System 

Adapted with permission from Nangreave, J.; Yan, H.; Liu, Y,: Studies of thermal 

stability of multivalent DNA hybridization in a nanostructured system, Biophys. J. 

2009, 97, 563-571. Copyright 2009 Elsevier. 

2.1. Abstract 

 A fundamental understanding of molecular self-assembly processes are 

important for improving the design and construction of higher-order 

supramolecular structures. DNA tile based self-assembly has recently been used 

to generate periodic and aperiodic nanostructures of different geometries, but 

there have been very few studies that focus on the thermodynamic properties of 

the inter-tile interactions. Here we demonstrate that fluorescently-labeled 

multihelical DNA tiles can be used as a model platform to systematically 

investigate multivalent DNA hybridization. Real-time monitoring of DNA tile 

assembly using fluorescence resonance energy transfer revealed that both the 

number and the relative position of DNA sticky-ends play a significant role in the 

stability of the final assembly. As multivalent interactions are important factors in 

nature's delicate macromolecular systems, our quantitative analysis of the stability 

and cooperativity of a network of DNA sticky-end associations could lead to 

greater control over hierarchical nanostructure formation and algorithmic self-

assembly. 
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2.2. Introduction 

 Biological systems contain a myriad of macromolecular structures formed 

through self-assembly of interacting molecular components.
1
 Emulation of 

biological self-assembly processes offers great potential for nanofabrication.
2
 In 

recent years, a number of research groups have begun developing nanofabrication 

methods based on DNA self-assembly.
3-23

 The chemical properties of DNA that 

allow it to successfully function as life's information carrier have been exploited 

for advances in the field of nanotechnology.
24

 The DNA molecule has attractive 

features for use in nanotechnology as a result of its nanoscale dimensions, its 

ability to form duplexes and other higher-order structures, and its combined 

stiffness and flexibility.
25

 The exceptional specificity of Watson-Crick hydrogen-

bonding interactions allows the convenient programming of synthetic DNA via a 

simple four-letter alphabet. 

 The fabrication of a DNA nanostructure begins with the assembly of a 

collection of deliberately designed single-stranded DNA molecules into branched 

DNA motifs commonly referred to as DNA tiles. A diverse architectural toolbox 

of rigid, branched DNA nanostructural motifs that serve as “molecular bricks” has 

been developed.
26

 The most convenient way of bringing individual DNA tiles 

together to form higher-order structures is by sticky-end cohesion through 

complementary basepairing, where a sticky end is a short, single-stranded 

overhang that extends beyond the end of a double-stranded helical DNA 

molecule. 
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 Despite the importance of inter-tile sticky-end interactions in structural 

DNA nanotechnology, very few studies of the effect of multivalency and strength 

of sticky-end cohesion have been performed. Particularly, research on the effect 

of varying the number and position of sticky ends on the thermodynamics of a 

multi-tile assembly is lacking. With an enhanced understanding of the thermal 

stability of a network of sticky-end associations, greater control over 

nanostructure formation and self-assembly may be achieved. For example, one of 

the main obstacles in achieving robust algorithmic DNA self-assembly is the 

presence of several types of errors: structural, nucleation, and growth errors have 

hampered the development of this field.
 9

 It may be possible to reduce error rates 

by carefully tuning the kinetics and thermodynamics of assembly, and studies that 

provide such quantitative information could lead to better control over the self-

assembly process. 

 Analysis of the thermodynamic stability of DNA architectures has 

frequently been carried out by way of melting temperature examination. The 

melting curves of DNA complexes provide a measure of the stability and 

cooperativity of internal interactions via the transition temperature, and the width 

of the transition, respectively. Melting curves of DNA complexes are most often 

acquired by exploitation of the hyperchromatic effect of nucleotides, through 

measurement of the absorption change (at 260 nm) of basepaired oligonucleotides 

upon thermal denaturation. There have been many reports on the melting 

temperatures of discrete DNA nanostructures.
8, 27

 However; there have been very 

few reports on the thermal stability and dynamics of inter-tile sticky-end 
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associations. This is because the amplitude of the absorbance change for the 

dissociation of sticky ends (usually only 5–10 nucleotides long) is overshadowed 

by the much larger absorbance change resulting from the dissociation of the core 

of the DNA tile.
28

 In addition, the existence of multiple intermediate states during 

the melting of a DNA tile makes the assignment of particular transitions to 

distinct structural changes very difficult. Additionally, ultraviolet-based melting 

measurements are restricted to final-product analysis, which constrains the ability 

to detect and optimize the self-assembly process. 

 Recently Sacca et al. developed a method to analyze the self-assembly of 

DNA nanostructures in real-time using temperature-dependent fluorescence 

resonance energy transfer (FRET) spectroscopy.
29

 In this method, the direct 

monitoring of the self-assembly process is enabled by the precise placement of a 

pair of FRET fluorophores on two constituent oligonucleotides of a DNA 

nanostructure. The interfluorophore distance changes as a result of temperature-

dependent conformational changes. Correct assembly of the nanostructure upon 

cooling brings the FRET pair into close proximity and induces maximum FRET 

efficiency at low temperatures. In contrast, the complete dissociation of the 

nanostructure upon thermal melting results in separation of the FRET pair and 

induces minimal FRET efficiency at high temperatures. By monitoring the change 

of FRET efficiency with temperature, the equilibrium constant of the self-

assembly process at each temperature can be obtained. In the case of reversible 

assembly and disassembly of a DNA nanostructure, application of the van 't 

Hoff's law yields the enthalpy and entropy changes of the assembly process. 
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 Herein the FRET-based method was used to systematically investigate the 

behavior and thermal stability of a series of sticky-end associations occurring 

between two multihelical DNA nanostructures, illustrated in Figure 2.1a.
30

 Two 

types of multihelical tiles, 4HX and 6HX, were used, differing only in the number 

of helices contained in each tile. Within each tile, the DNA helices are arranged 

parallel to adjacent helices and are joined with oligonucleotides that cross-over 

from one helix to its neighboring helices. 

 As shown in Figure 2.1, two 4HX tiles (4HX-A and 4HX-B) capable of 

specifically associating to form heterodimers through 1–4 sticky-end connections 

were designed and constructed. Each of the 4HX tiles were formed from nine 

constituent DNA oligomers that self-assembled into the desired tiles when mixed 

together and annealed. The 3′ ends of the four helices were extended with six-

nucleotide-long, single-stranded overhangs, which functioned as sticky ends for 

the tile-tile association (on the right side of tile A and the left side of tile B). The 

complementarities of the corresponding sticky ends on tile A and B are labeled 

with numbers (1 and 1′, etc.) and represented by different colors and shapes. The 

sequences of all of the sticky ends were designed to contain the same GC content. 

A systematic study of sticky-end associations between the tiles in the dimer 

assembly was carried out by analyzing a variety of combinations of number and 

position of sticky-end pairs. Figure 2.1b illustrates the different designs of the 

4HX dimers labeled from #1 to #8. Between the tiles, the helical positions without 

sticky-end attachments were trimmed to be blunt ends to prevent them from 

interfering with dimer formation. Oligomers on the opposite (outer) end of the 
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tiles contain a poly-thymine (T4) sequence extending outward to prevent the 

undesired, nonspecific association of tiles through blunt-end stacking, thus 

ensuring that the resulting assemblies are discrete dimers. 

 To rule out the possibility that base-stacking interactions between the tiles 

(at positions without sticky-end attachments) might have an influence on the 

experimental measurements, four thymines were added to the corresponding 

oligomers in control experiments. The melting curves obtained for the standard 

and control samples were not substantially different, indicating that the end-to-

end base stacking interactions in the designs here provided no significant 

contribution to the thermal stability of the dimers. It should be noted that there are 

approximately three full helical turns (31 basepairs) separating neighboring inter-

tile crossover points, so that the two tiles in the dimer should lie within the same 

plane. However, for dimer assemblies connected by a single sticky-end 

association, tiles A and B may be positioned slightly out of plane, due to a 

twisting (underwinding) of the hybridized helical region of the connection. The 

effect of this twisting on the stability of these dimers will be discussed later. 

 Additionally, two 6HX tiles (6HX-A and 6HX-B) that are capable of 

forming heterodimers with a number of sticky-end connections ranging from one 

to six were also prepared. The 6HX tiles were formed from 14 constituent 

oligomers that self-assembled into the desired tile when mixed together and 

annealed. Similarly, selected 3′ ends of the six helices were extended with six-

nucleotide-long complementary sticky ends to facilitate dimer formation. For 

6HX tiles, the sequences of the sticky-end pairs were kept the same for designs 
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with the same number of sticky-end connections. For example, for designs with 

one sticky-end connection the same sticky-end sequence was used for each of the 

six possible positions. Additionally, for designs with two sticky-end associations, 

two pairs of unique sticky-end sequences with the same GC content were used for 

each of the 15 possible arrangements. For the 6HX system, all possible 

combinations of number and position of sticky ends were constructed and 

analyzed. 

 The thermal-stability of the various dimer assemblies was determined by 

the aforementioned FRET method. To enable the in situ monitoring of the self-

assembly process by FRET spectroscopy, the A and B tiles of the heterodimer 

were labeled with a pair of fluorescent dyes. One constituent oligomer from tile A 

was labeled with a FRET donor, Fluorescein (Abmax = 495 nm, Emmax = 520 nm) 

and one constituent oligomer from tile B was labeled with a FRET acceptor, 

TAMRA (Abmax = 559 nm, Emmax = 583 nm). The fluorescent dyes were 

covalently attached to the corresponding oligomers on the 5′ end of strands not 

carrying a sticky end, on the third and second helical positions of tiles A and B, 

respectively (Figure 2.1). All dimer constructions investigated shared the same 

pair of fluorescently-labeled oligomers. When the individual DNA strands 

comprising each tile are annealed and assembled into the dimer superstructure, the 

FRET pair is brought into proximity and induces maximum FRET efficiency. The 

dissociation of the dimer superstructure results in separation of the FRET pair and 

leads to minimal FRET efficiency. 
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Figure 2.1. (a) Schematic representation of the labeling strategy used for the 

FRET thermal analysis of the self-assembly of DNA tile dimers. The FRET pair is 

Fluorescein (orange sunburst, donor) at the right end of helix 3 on tile A, and 

TAMRA (red star, acceptor) at the left end of helix 2 on tile B. Correct formation 

of the DNA tile dimer through sticky-end association (labeled by numbers and 

represented by different colors and complementary shapes) brings the FRET pair 

into proximity leading to efficient FRET. (b) Schematic representation of the 

collection of designs (#1–#8) for the 4HX dimers formed though numbers of 

sticky ends ranging from 1 to 4, with variable sticky-end positions. 
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2.3. Materials and Methods 

 2.3.1. Self-Assembly of DNA Nanostructures. All DNA strands used for 

assembly of nanostructures were purchased from Integrated DNA Technologies  

and purified by denaturing PAGE gel electrophoresis (6–10% acrylamide in 1× 

TBE buffer: 89 mM Tris base, 89 mM Boric acid, 2mM EDTA, pH 8.0) or HPLC 

for the dye-labeled DNA oligomers. Assembly of the individual tiles as well as 

the final superstructure was performed by mixing equimolar amounts of all the 

oligomers present in the structures at a final concentration ranging from 0.6 to 1 

µM in 1× TAE Mg buffer (40 mM Tris base, 20 mM Acetic acid, 2 mM 

EDTA·Na2·12H2O, 12.5 mM (CH3COO)2Mg·4H2O). The oligomer mixture was 

heated at 95°C for 5 min and cooled down to 25°C (~ −0.1°C/min) using an 

automated real-time PCR thermocycler (Mx3005P; Stratagene, La Jolla, CA). The 

formation of self-assembled individual tiles as well as the final superstructure was 

demonstrated by nondenaturing PAGE (8% acrylamide in 1× TAE Mg buffer (40 

mM Tris base, 20 mM Acetic acid, 2 mM EDTA·Na2·12H2O, 12.5 mM 

(CH3COO)2Mg·4H2O; 150V, 20°C for 5 h) and FRET spectroscopy. 

 2.3.2. Fluorescence Spectroscopy. The fluorescence thermal curves were 

measured in eight-well optical tube strips using a MX3005P real-time 

thermocycler (Stratagene). After mixing equimolar amounts of all oligomers 

present in the nanostructures (0.3 or 0.5 µM concentration in 1× TAE Mg buffer), 

20 µL of each sample was pipetted into Stratagene optical tube strips and closed 

with Stratagene optical caps. The samples were heated to 95°C for 5 min, and 

upon excitation at 492 nm, the fluorescence emission of fluorescein (522 nm) was 
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monitored while the temperature was reduced from 80°C to 25°C with a 

temperature gradient of −0.1°C/min. Heating cycles were performed in the same 

manner: after one cooling cycle the samples were held at 25°C for 10 min and 

upon excitation at 492 nm, the fluorescence emission was monitored while the 

temperature was increased from 25°C to 80°C with a temperature gradient of 

+0.1°C/min. All experiments were repeated at least in duplicate to ensure 

reproducibility. For all the nanostructures investigated, two samples were 

prepared with identical experimental conditions: One sample contained the donor 

on tile A and the acceptor on tile B (A
D
B

A
), whereas the second sample contained 

only the donor fluorophore on tile A and corresponding unlabeled oligomer on tile 

B (A
D
B) as the reference. This scheme allowed for the measurement of the 

decrease in donor emission resulting from energy transfer to the TAMRA 

acceptor to calculate the FRET efficiency. This method also allowed for the 

variations in the donor's fluorescence as a result of changes in temperature to be 

taken into account. Analysis of the data illustrated variations in the FRET 

efficiency of the donor-acceptor pair during the self-assembly process. 

2.4. Results and Discussion 

 The proper formation of the AB tile dimers was confirmed by native 

polyacrylamide gel electrophoresis. The AB tile dimer constructs exhibited a 

distinct mobility as compared to that of the individual tiles. The efficiency of 

energy transfer (E) was determined at each temperature according to 
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where IDA and ID are, respectively, the fluorescence intensities of the FRET donor 

(Fluorescein) in the presence and absence of the FRET acceptor (TAMRA). 

Assuming the change in the fluorescence intensity of the donor is proportional to 

the formation of dimers containing the FRET pair, and that the system reaches 

equilibrium at each temperature as a result of the slow temperature gradient, the 

fraction of assembled dimer structures at any given temperature θ(T) is obtained 

by normalization of FRET efficiency as a function of temperature, 

minmax

min)(
)(

EE

ETE
T

−

−
=θ  

where Emin represents the minimum FRET efficiency that occurs when the 

superstructure is completely dissociated, and Emax represents the maximum FRET 

efficiency that occurs when the superstructure is completely assembled. θ(T) 

gives information about the equilibrium shift of the reaction of A+B ↔AB as a 

function of temperature: at Emax, all DNA tiles are fully assembled to form AB 

dimers, and therefore θ = 1. In contrast, at Emin, all DNA strands are completely 

dissociated and therefore θ = 0. 

 The intensity of fluorescence emission of the FRET donor in the presence 

and absence of the acceptor, IDA and ID, was obtained for each pair of samples. 

The raw data were plotted against temperature in the 25–80°C range and the 

heating and cooling profiles were superimposed (a typical sample is shown in 

Figure 2.2a). After determining the assembled fraction of dimers at each 

temperature using the above equations, θ was also plotted against temperature 

with the heating and cooling profiles superimposed (Figure 2.2b). It is observed 
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that the heating and cooling profiles for an individual construct followed each 

other closely with negligible hysteresis, especially for the normalized data (Figure 

2.2b), indicating the reversibility of the dimer formation and dissociation 

processes. 

 The raw fluorescence intensity data (Figure 2.2a) reflects the assembly 

process for a typical sample. During the assembly (cooling) process, the A
D
B

A
 

constructs exhibited a minor and gradual increase in the donor emission as a result 

of changes in temperature, in addition to two sharp decreases in the donor 

emission at the characteristic transition temperatures, at ~62°C and ~52°C, 

respectively. In contrast, the A
D
B reference sample (donor only) exhibited two 

sharp transitions—a similar decrease at ~62°C, but then an increase at ~52°C, in 

the opposite direction of the change for the A
D
B

A
 sample. For both samples, the 

decrease in donor emission at ~62°C corresponds to the formation of the 

individual DNA tiles from their constituent strands during the cooling phase. It is 

known that for a fluorescein dye conjugated to DNA, the fluorescence quantum 

yield decreases as the DNA transforms from single-stranded to double-stranded, 

possibly due to weak, noncovalent interactions of the dye with the DNA helix.
31

 

This transition, occurring in both samples, has a similar magnitude of change, 

thus a subtraction operation will cancel out this transition. For both samples, the 

transition at ~52°C corresponds to the dimer formation. The increase of PL for the 

A
D
B sample may result from the formation of sticky-end associations, expelling 

the donor fluorophore out of the DNA helix by electrostatic or steric repulsion, 

thereby yielding a higher fluorescence emission. On the other hand, the decrease 
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of the donor emission at ~52°C for the dimer containing the FRET pair is a result 

of the FRET donor and acceptor being forced into close proximity, inducing 

maximum FRET efficiency, thus decreasing the donor emission. The subtraction 

of the two curves and normalization results in the curves shown in Figure 2.2b, 

which exhibit only one transition that is directly related to the dimer formation. 

 The transition temperature (melting temperature) was obtained by fitting 

the first derivative of θ versus temperature with a Gaussian function,  
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where Tm is the midpoint of the transition temperature, and w is ~0.849 × the full 

width of the peak at half-height (Figure 2.2c). All the constructs analyzed showed 

a reversible thermal transition, allowing the application of the van 't Hoff law. 

 For van 't Hoff analysis, the variation of the equilibrium constant (Keq) 

with temperature is used to obtain the enthalpy and entropy changes of the 

complex formation. The equilibrium constant of dimer formation can be 

expressed as a function of the assembled fraction of dimers at equilibrium, 
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where C0 is the molar concentration of the individual tiles in the mixture, and θ is 

the assembled fraction of the dimer structure at equilibrium assuming a two-state 

transition. The following equation describes Keq as a function of temperature, 
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where ∆H is the enthalpy change and ∆S is the entropy change. Plots of ln Keq 

versus 1/T in the temperature range of the transitions were linear, indicating that 

∆H and ∆S are temperature-independent (Figure 2.2d). The van 't Hoff enthalpy 

and entropy changes for the reversible thermal transitions allowed the calculation 

of changes in free energy for the assembly process using the Gibbs equation, 

∆G=∆H−T∆S, 

where T is 298 K (25°C). 
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Figure 2.2. Illustration of data analysis for a typical sample (design #6 as shown 

in Figure 2.1b). (a) The raw data (fluorescence intensity versus temperature) are 

read directly from the real-time PCR thermocycler detector, with the heating and 

cooling curves for the A
D
B

A
 sample in orange and cyan, respectively, and the 

heating and cooling curves for A
D
B in magenta and olive, respectively. (b) The 

plot of normalized FRET efficiency, θ, as a function of temperature. Eight 

profiles for both heating (red) and cooling (blue) are plotted together here, 

exhibiting negligible hysteresis. In this figure only one transition, at ~52°C, is 

observed. (c) The first derivative of the profiles in panel B, dθ/dT, versus 

temperature is plotted, and a Gaussian fit yields the transition temperature and the 

width of the transition (again, eight profiles are superimposed). (d) A linear fit of 

the van 't Hoff plot generates the changes of enthalpy (∆H), entropy (∆S), and 

thereby the free energy change (∆G). 
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The results of data analysis for the 4HX tile constructions are shown in Table 2.1. 

Analysis of the experimental results reveals that changes in the number and 

position of sticky ends lead to significant differences in the thermal stability of 

superstructure associations. 

 

No. of 
sticky 
ends 

Positions 
of sticky 

ends 
Tm (°C) w/2 

(°C) 
−∆H 

(kcal/mol) 
−298∆S 

(kcal/mol) 
∆G 

(kcal/mol) 

1 1 28.6 ± 0.85.5 ± 0.8 85.5 ± 26 75.1 ± 26 −10.5 ± 0.5 

 2 34.4 ± 0.25.5 ± 0.4 87.5 ± 5.5 75.7 ± 5.4 −11.7 ± 0.3 

2 1, 4 42.0 ± 0.83.5 ± 0.4 82.4 ± 13 69.1 ± 12 −13.3 ± 0.8 

 2, 3 44.6 ± 2.24.9 ± 0.4 105.1 ± 7.8 89.7 ± 7.5 −15.3 ± 0.5 

 1, 2 46.5 ± 1.24.0 ± 0.9 116.6 ± 19 99.8 ± 17 −16.8 ± 1.7 

3 1, 2, 4 51.8 ± 0.22.7 ± 0.1 166.4 ± 15 143.9 ± 14 −22.5 ± 1.3 

 1, 2, 3 53.3 ± 0.53.0 ± 0.2 148.2 ± 11 126.4 ± 10 −21.7 ± 1.1 

4 1, 2, 3, 4 54.7 ± 0.92.9 ± 0.3 143.7 ± 27 121.6 ± 25 −21.9 ± 2.5 

Table 2.1. Thermostability data for the 4HX DNA dimers associated through 

various combinations of number and position of sticky-end interactions. 

Structural schemes for these samples are shown in Figure 2.1b. The ± values are 

the standard deviations of the average for both the heating and cooling curves 

from multiple repeats (12–18 curves for each sample), representing the 

uncertainty of the experimental measurements. 

 

 

 

 

 



 

 First of all, there is a clear trend of enhanced thermal
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melting temperature is accompanied by a more negative free energy change. 

Figure 2.3 summarizes the dramatic effect of increasing the number of sticky

associations on melting temperature and free energy changes for the 4HX syste

For 4HX dimers, there is a considerable increase in melting temperature, by 

13°C, when the number of sticky ends between tiles is changed from one to two. 

Previous studies have qualitatively shown that larger and more stable arrays are 

generated using two sticky

to one sticky-end association.

quantitative confirmation of this phenomenon. Increasing the number of sticky
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melting temperature of the dimer superstructure by another 

It is notable that increasing the number of sticky
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 The same trends were observed in the amplitude of the free energy 
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First of all, there is a clear trend of enhanced thermal-stability with 

increasing numbers of sticky ends for both 4HX and 6HX tiles. This increase in 

melting temperature is accompanied by a more negative free energy change. 

Figure 2.3 summarizes the dramatic effect of increasing the number of sticky

associations on melting temperature and free energy changes for the 4HX syste

For 4HX dimers, there is a considerable increase in melting temperature, by 

13°C, when the number of sticky ends between tiles is changed from one to two. 

Previous studies have qualitatively shown that larger and more stable arrays are 

two sticky-end associations between constituent tiles as compared 

end association.
32

 The results of the current study provide direct 

quantitative confirmation of this phenomenon. Increasing the number of sticky

end associations between the 4HX tiles from two to three further elevates the 

melting temperature of the dimer superstructure by another ~8°C, to above 50°C. 

It is notable that increasing the number of sticky-end associations further from 

three to four does not result in as dramatic an increase in melting temperature. 

The same trends were observed in the amplitude of the free energy 

changes (Figure 2.3b). Rather than a purely additive effect, the number of sticky

end associations between the two tiles reaches a saturation point when all of the 

sticky ends available are fully utilized. The deviation from a linear dependence of 

the increase of the melting temperature and free energy change on the number of 

sticky ends may be a result of the less-than-ideal cooperativity of binding. It 

ms that for the multihelical tiles (n> = 4), addition of the last sticky end (from 

) does not contribute significantly to the overall thermal stability of the 

stability with 

tiles. This increase in 

melting temperature is accompanied by a more negative free energy change. 

Figure 2.3 summarizes the dramatic effect of increasing the number of sticky-end 

associations on melting temperature and free energy changes for the 4HX system. 

For 4HX dimers, there is a considerable increase in melting temperature, by 

13°C, when the number of sticky ends between tiles is changed from one to two. 

Previous studies have qualitatively shown that larger and more stable arrays are 

end associations between constituent tiles as compared 

The results of the current study provide direct 

quantitative confirmation of this phenomenon. Increasing the number of sticky-

X tiles from two to three further elevates the 

8°C, to above 50°C. 

end associations further from 

increase in melting temperature.  

The same trends were observed in the amplitude of the free energy 

changes (Figure 2.3b). Rather than a purely additive effect, the number of sticky-

l of the 

sticky ends available are fully utilized. The deviation from a linear dependence of 

the increase of the melting temperature and free energy change on the number of 

ideal cooperativity of binding. It 

= 4), addition of the last sticky end (from 

) does not contribute significantly to the overall thermal stability of the 
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construct. This could be the result of more negative entropy changes, given that 

the degrees of freedom for the vibrational and rotational motions of the tile dimer 

decrease when more of the helical ends are employed for the association of two 

tiles. 

 The width of the transition reflects the degree of cooperativity of the 

assembly: the sharper (corresponding to a narrow temperature range) the 

transition is, the more cooperative the assembly process is. Here the cooperativity 

is defined vaguely as the number of species involved in the assembly. The error 

bar in Figure 2.3a represents the width of the transition, which grows smaller as 

the number of sticky ends involved increases, consistent with the notion that 

multivalency improves cooperativity. 
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Figure 2.3. (a) Transition temperature and (b) free energy change versus the 

number of sticky ends for the 4HX dimers. In panel A, the error bars reflect the 

width of the transition temperature (w/2), and in panel B, the error bars reflect the 

standard deviation of the calculated free energy changes. The variations in the 

different data points for the same number of sticky ends (one, two, and three 

sticky ends) reveal the positional effects of sticky-end placement. 
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 The melting temperature data corresponding to various numbers of sticky-

end associations for both the 4HX (squares) and 6HX systems (circles) are 

superimposed in Figure 2.4. There are considerable variations in the melting 

temperatures for dimers with the same number of sticky ends at different 

positions. The variation in the melting temperature for designs with the same 

number of sticky ends exceeds the uncertainty of the measurements indicating the 

differences are real, not merely a result of experimental errors. 

 On average, 6HX dimers exhibited overall lower melting temperatures 

than 4HX dimers with the same number of sticky-end associations. This can be 

explained in analogy to the anharmonic vibration model of a chemical bond 

between two atoms: with severe elongation of the bond, the dimer structure is 

doomed to dissociate. This bond weakening occurs when the bond distance is far 

removed from the equilibrium distance, i.e., the normal length of a B-type DNA 

duplex with six basepairs, stacked nearly in parallel with a plane gap of 0.34 nm. 

4HX and 6HX dimers with the same number of sticky-end associations can be 

considered to have the same force constant (k). Consequently, dimers formed 

from larger tiles (6HX) will have a lower vibrational resonance frequency, and 

will dissociate at a lower. The melting phenomenon of crystalline structures was 

studied by Einstein a hundred years ago.
33

 He derived that a crystalline lattice 

with a lower characteristic vibrational frequency will have a lower melting 

temperature than a lattice with a higher characteristic vibrational frequency. The 

corresponding melting temperature is referred to as the Einstein temperature. Our 

observations are in agreement with the Einstein theory. 
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Figure 2.4. Effect of the number of sticky-end associations on the melting 

temperature of 4HX dimers (squares) as compared to 6HX dimers (circles). The 

error bars on the 4HX data are the standard deviations, reflecting the repeatability 

of the melting temperature measurements using 4–6 repeats for each sample 

including both heating and cooling. The error bars for the 6HX data are not 

included to make the figure more readable. The range of the transition 

temperatures for designs with the same number of sticky ends is generally wider 

than the error of the measurements, reflecting the dramatic positional effects of 

sticky-end placement. 
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 The positions of the sticky-end connections have a distinct influence on 

the thermal-stability of the dimer structure, especially for the 6HX system, which 

has a large number of different positional combinations available. It is noted that 

the sequences of the sticky ends for designs with the same number of associations 

(e.g., 1, 2, and 3 sticky ends) are all the same for the 6HX system, thus the 

sizeable variations in the melting temperatures observed at different positions can 

only be explained by the positional effects described below. 

 First, the absolute position of sticky ends relative to the multihelical tile 

has a profound effect on the thermal stability of the tile-to-tile connection (Figure 

2.5a). Experimental results for designs with one sticky-end association indicate 

that constructs with sticky ends located at central helical positions (positions 2–5) 

are significantly more stable than those with sticky ends located at the terminal 

positions (positions 1 or 6). The same trend was observed for the 6HX dimer 

constructs with two adjacent sticky-end associations. Figure 2.5b demonstrates 

the lower melting temperature resulting from a pair of terminal sticky-end 

positions (pair position 1-2, or 5-6) as compared to a pair of central sticky-end 

positions (pair position 2-3, 3-4, or 4-5). 

 The effects of the absolute positions of sticky ends on the dimer stability 

can be explained by considering the repulsive forces that exist between the 

multihelical tiles. Constructs in which the sticky end(s) are located on terminal 

helices experience repulsive forces between the two tiles that do not pass through 

the center-of-mass of the system. This generates a torque, leading to distortions of 

the helix or helices involved in the association. Bending (in plane of the tiles) and 
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twisting (out of plane of the tiles) of the helical region corresponding to the sticky 

ends could effectively weaken the strength of the complementary base pair 

hydrogen-bond interactions and disrupt base-stacking interactions between the 

neighboring base pairs. The in-plane bending effect is expected to be less 

dramatic for constructs with sticky ends located at central helical positions due to 

a near-symmetric distribution of charge and mass, thus resulting in less of a 

reduction of thermal stability. The out-of-plane twisting effect should be less 

important for any number of sticky-end connections greater than one. 

 Second, it must be noted that the positional effect is not perfectly 

symmetric, e.g., when comparing the designs with two sticky ends on terminal 

helices, sticky ends at positions 1 and 2 yields a higher melting temperature than 

those at positions 5 and 6. This may be due to the fact that the structural strain of 

the tile is not evenly distributed, resulting in a distortion of the inner, parallel 

helices so that the tile structure is not as symmetric as illustrated in the model. 

The melting of the dimer can be thought of as an unzipping of the sticky-end 

connections, with the separation of tile A from tile B beginning from the nick 

points between sticky ends. At the same time the melting of the individual tiles 

starts from the ends of the helices with no sticky-end connections. In this context 

it is important to note that the FRET donor and acceptor fluorophores are located 

on the second and third helices of the dimer structure. When there are no sticky 

ends extended from helices where the acceptor and donor molecules are attached, 

the donor and acceptor molecule could be separated before the tiles are fully 

dissociated at the sticky ends. Consequently, dimers that have sticky-end 
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connections far away from the donor and acceptor molecule positions could show 

relatively lower melting temperatures. This can also partially explain the 

asymmetric positional effect. 

 Furthermore, for multi-sticky-end associations (n ≥ 2), the relative 

position of sticky ends with respect to each other also results in a significant effect 

on the thermal stability of the tile-to-tile association. Experimental results show 

that for two sticky-end associations, the wider the gaps between the sticky ends, 

the less stable the dimer. Figure 2.5c displays the effect of relative position of 

sticky ends on dimer melting temperature. The melting temperature for a 6HX 

dimer with two sticky ends located at the two extreme helical positions (positions 

1 and 6) is 10°C lower than that of a dimer with two sticky ends adjacent to one 

another (positions 1 and 2). The previously mentioned effect of absolute sticky-

end position on thermal stability is further illustrated with the reduction of another 

3°C in the melting temperature of dimers with adjacent sticky ends at terminal 

helical positions (e.g., positions 1 and 2) as compared to those with adjacent 

sticky ends at central positions (e.g., positions 3 and 4), as shown in Figure 2.5b. 

The same trend holds true for 6HX constructs with three sticky-end associations; 

three sticky ends adjacent to one another, located at central positions of the tile, 

result in constructs with higher melting temperatures than those with gaps 

between the sticky ends. 

 These differences are not only reflected in the changes of the melting 

temperatures, but also in the enthalpy and entropy changes (Table 2.1). Increasing 

the number of sticky-end associations from 1 to 2 is expected to double the 
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enthalpy change, but our results show that this is not the case. Table 2.1 shows 

that rather than an increase, there is a small decrease in the value of the enthalpy 

change upon addition of a second sticky-end at position 4 to a dimer with a 

sticky-end already at position 1. Nevertheless, this additional sticky-end results in 

a higher melting temperature (from 28 to 42°C) with a more negative free energy 

change. The much lower melting temperature for one sticky end located at 

position 1 can be explained by the weakening of the sticky-end association by two 

kinds of relative motions of the two tiles in the dimer: an out-of-plane motion that 

disrupts the normal helical twist and an in-plane rotational motion that disrupts 

the parallel base-stacking. The out-of-plane motion is eliminated for the dimers 

formed through two sticky ends. The in-plane motions still exist as the two sticky 

ends alternate in the stretching and compressing phases. However, as the two 

sticky ends are adjacent to one another, their motions are restricted and must be 

coordinated to avoid any steric hindrance. Since the sticky ends positioned far 

apart from one another experience more rotational freedom, this results in a 

smaller loss of entropy and a smaller enthalpy change. For example, for the 4HX 

dimers, when the sticky-end connection is changed from one sticky end at 

position 1 to two sticky ends at positions 1 and 2, the most significant 

contribution to the more negative free energy change comes from a large change 

in enthalpy. In contrast, when the sticky-end connection is changed from position 

1 to positions 1 and 4, the greater contribution to the more negative free energy 

change comes from a less negative entropy change, with a negligible difference in 

the enthalpy change. 
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Figure 2.5. (a) Effect of absolute position of one sticky end on the thermal 

stability (represented by Tm) of 6HX dimers. (b) The effect of absolute position of 

two adjacent sticky ends on the Tm of 6HX dimers. The horizontal bars in the 

figure indicate the adjacent positions of the two sticky ends. (c) The effect of 

relative position of two sticky ends on Tm of 6HX dimers. The horizontal axis is 
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the position of the second sticky end, where in all cases the first sticky end is 

positioned on helix 1. 

2.5. Conclusion 

 In summary, we have designed a set of DNA tiles for use as a model 

system to study the thermal behavior of multivalent DNA hybridization that 

would otherwise be difficult to achieve using simple DNA duplexes. The real-

time monitoring of tile-to-tile associations revealed that both the number and the 

relative position of sticky-end connections play significant roles in the stability of 

the final assembly. The differences in the melting temperature and free energy, 

resulting from various geometric arrangements of sticky ends, provide more 

options for the deliberate control of self-assembling DNA nanostructures. For 

example, one could utilize these parameters to design DNA tile sets for 

algorithmic self-assembly and/or hierarchical self-assembly based on the 

cooperative interactions determined by multivalent associations. One may also be 

able to design and produce kinetically trapped products by engineering the sticky-

end pairs. Nevertheless, more research must to be done to reveal the fundamental 

aspects of intricate DNA self-assembly systems that may in turn provide insights 

into other macromolecular assembly processes found in nature. For example, 

measurements of enthalpy by calorimetry may be used in the future to gain 

additional insights on such systems. 
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Chapter 3 

DNA Nanostructures as Models for Evaluating the Role of Enthalpy and 

Entropy in Polyvalent Binding 

Adapted with permission from Nangreave, J.; Yan, H.; Liu, Y.: DNA 

nanostructures as models for evaluating the role of enthalpy and entropy in 

polyvalent binding, J. Am. Chem. Soc.  2011, 133, 4490-4497. Copyright 2011 

American Chemical Society. 

3.1. Abstract 

 DNA nanotechnology allows the design and construction of nanoscale 

objects that have finely tuned dimensions, orientation, and structure with 

remarkable ease and convenience. Synthetic DNA nanostructures can be precisely 

engineered to model a variety of molecules and systems, providing the 

opportunity to probe very subtle biophysical phenomena. In this study, several 

such synthetic DNA nanostructures were designed to serve as models to study the 

binding behavior of polyvalent molecules and gain insight into how small changes 

to the ligand/receptor scaffolds, intended to vary their conformational flexibility, 

will affect their association equilibrium. This approach has yielded a quantitative 

identification of the roles of enthalpy and entropy in the affinity of polyvalent 

DNA nanostructure interactions, which exhibit an intriguing compensating effect. 

3.2. Introduction 

 Polyvalent interactions are essential to the function of many biological 

systems. They are characterized by the simultaneous, specific association of 

multiple ligands on one molecule to complementary receptors on another 
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molecule and may have unique collective properties as compared to the 

corresponding monovalent interactions.
1
 In medicinal chemistry there is a need to 

design more effective (efficient) polyvalent inhibitor or promoter drugs, which 

requires a clear and comprehensive understanding of the thermodynamics of the 

reaction between inhibitor and target molecules. The collection of ligands in a 

synthetic, polyvalent molecule can be covalently or non-covalently linked to a 

backbone molecule, commonly referred to as a scaffold, whose conformational 

flexibility has a considerable effect on the affinity for a target. Notably, scaffold 

flexibility can affect both the entropic and enthalpic aspects of binding. To better 

understand these effects, a polyvalent scaffold with tunable conformational 

flexibility is required. 

 DNA nanotechnology offers a unique opportunity to probe the 

thermodynamics of polyvalent interactions; synthetic DNA nanostructures can be 

used to gain insight about how subtle changes to ligand/receptor scaffolds may 

affect their association. DNA nanostructures have previously been used as models 

to demonstrate that both the number of linkers between scaffolds and their spatial 

arrangement affect the stability and thermodynamics of intermolecular binding.
2
 

The basic building blocks of DNA nanostructures, or“tiles”, are collections of 

double-helical DNA domains connected by periodic crossovers. Complementary, 

single-stranded overhangs, or “sticky ends”, are extended from the termini of the 

double helices to facilitate the intermolecular association of the tiles.
3
 For 

polyvalent binding studies, the double-helical core region of the DNA tile serves 

as the nanoscale scaffold, with the sticky ends modeling the corresponding 
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ligands/receptors of intermolecular binding. Small variations in the design of a tile 

can be introduced to modify its conformational flexibility. In particular, immobile 

Holliday junction and double crossover tiles have demonstrated unique 

conformational flexibility, allowing their use as scaffolds for subsequent study.
4-15  

 
Holliday junction (J) tiles are composed of four DNA strands that self-

assemble into four double-helical arms, which are stacked into two helical 

domains connected at a single branch point, or junction.
4 

The junction is formed 

by a reciprocal crossover, where the two linking strands traverse both helical 

domains at the same position (Figure 3.1a). There is evidence that transitions 

between the two possible stacking conformers occur with strong bias toward one 

conformer, determined by the junction sequence.
16, 17

 The J tiles used in the 

present study have been shown to adopt the stacking preference illustrated in 

Appendix B.
18

 In addition, J tiles have been shown to have a high degree of 

conformational flexibility, with a wide range of angles between the arms of the 

junction.
19

 As a result, J tiles are well suited to serve as “flexible” scaffolds. 

 DAE double crossover (DX) tiles consist of five single strands of DNA 

that self-assemble into two, side-by-side, anti-parallel helical domains with two 

reciprocal crossovers between the helices.
14

 The distance between the intra-tile 

crossovers is an even number of helical half-turns, resulting in a nearly planar tile 

(Figure 3.1b). The presence of a second crossover restricts conformational 

flexibility, and DX tiles were found to be approximately twice as stiff as double-

stranded DNA molecules of the same length.
20, 21

 Thus, DX tiles represent 

relatively “rigid” scaffolds. 
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Figure 3.1. Helical structures of J and DX core tiles. (a) Two strands of J (yellow 

and green) preserve their helical structure, while the remaining two strands (red 

and orange) form the reciprocal crossover between the helical domains. The 

equilibrium distribution between the two possible crossover isomers is primarily 

determined by strand sequence.
16-18

 J tiles are flexible at the crossover point with 

a variety of possible angles between arms.
11, 13, 22, 23 

Top view is shown on the 

right. (b) DX tiles are essentially two J tiles connected by two double-helical 

arms, with a cyclic central strand. The two crossover points are separated by an 

even number of half-turns (shown here with four half-turn separation). Side view 

is shown on the right. 
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 Here, we report the construction of a range of dimer superstructures 

composed of J and DX tile monomers, which represent flexible and rigid 

scaffolds, respectively. For both DNA tiles, two double-helical domains in the 

scaffold allow construction of “bivalent molecules”, with the attached sticky ends 

serving as the sites of intermolecular binding. The distance between the inter-tile 

crossover points is exactly two full turns, ensuring that both sticky ends can be 

paired side-by-side in the dimer. A well-established fluorescence resonance 

energy-transfer (FRET)-based method was employed to study the dimer assembly 

and disassembly reactions in real-time, permitting the determination of dimer 

melting temperature and calculation of thermodynamic parameters from the 

corresponding thermal profiles.
24, 25 

In this method, a FRET donor is attached to a 

selected strand within one DNA tile monomer, while the complementary DNA 

tile is labeled with the corresponding FRET acceptor. Formation of the dimer 

(upon cooling) brings the FRET pair into close proximity, and following the 

temperature-dependent change in FRET efficiency facilitates monitoring of the 

assembly/disassembly process. 

 Figure 3.2 illustrates the J and DX monomer tiles used for the assembly of 

dimers that can be described as flexible (J/J homo-dimer), semi-rigid (DX/J 

hetero-dimer), and rigid (DX/DX homo-dimer). A-type tiles (J-A and DX-A) 

contain two unique sticky ends that are five nucleotides each, labeled as 1 and 2, 

while B-type tiles (J-B and DX-B) contain sticky ends 1′ and 2′, complementary 

to sticky ends 1 and 2, respectively. These two pairs of complementary sticky 

ends link A- and B-type tiles together, creating a bivalent association between the 
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tile scaffolds. This design, where analogous tiles share the same sticky end 

sequences, ensures that any observed difference in the formation of dimers from 

these monomeric units is a result of variations in the scaffold core (flexible vs 

rigid), not the nature of the ligand/receptor interaction. A yellow star and a red 

triangle identify the position of the FRET donor (fluorescein) and acceptor 

(TAMRA) fluorophores, respectively. 
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Figure 3.2. Schematic representation and helical structure of the J (flexible 

scaffold in green) and DX (rigid scaffold in yellow) tiles used in the study. FRET 

donor and acceptor fluorophores are shown as yellow stars (fluorescein) and red 

triangles (TAMRA), respectively. Two pairs of complementary sticky ends, 1/1′ 

and 2/2′ (shown as complementary shapes in the schematics), were added to the 

ends of the tiles to create a bivalent association between the scaffolds. (a) J-A (32 

bp); (b) J-B (36 bp); (c) DX-A (74 bp); (d) DX-B (82 bp). The numbers mark the 

size of the hybridized domains in the tiles. For all dimers, the inter-tile junctions 

are separated by two full turns to ensure an in-plane dimer conformation. (e-g) 

The flexible, semi-rigid, and rigid dimers that contain J-A/J-B, J-A/DX-B, and 

DX-A/DX-B, respectively. 
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3.3 Results and Discussion 

 3.3.1. Real-Time Monitoring of Dimer Formation. For the FRET 

experiments, determination of the melting temperature of dimer complexes and 

extraction of thermodynamic parameters from thermal profiles has been 

previously detailed.
2, 24, 25 

For each dimer assembly, two samples were prepared 

with identical experimental conditions: one sample contained a donor fluorophore 

(5′-fluorescein-labeled oligomer) in tile A and an acceptor fluorophore (5′-

TAMRA-labeled oligomer) in tile B, while the second sample contained only the 

donor fluorophore in tile A and the corresponding unlabeled oligomer in tile B. 

Comparing the donor emission of these two samples yields the efficiency of 

energy transfer between the donor and acceptor. The inter-fluorophore distance 

(and therefore the FRET efficiency) changes as a result of temperature-dependent 

conformational changes, which directly reflects the assembly/disassembly process 

of the DNA tile dimers (the donor and acceptor pair has a Förster distance 4.8−5.0 

nm). The fluorescence thermal curves were measured with a real-time PCR 

thermocycler: for cooling profiles, the samples were held at a high temperature 

(80 °C), and the fluorescent emission of the donor at 522 nm (excited at 492 nm) 

was monitored while the temperature was decreased to 25 °C, with a gradient of 

−0.1 °C/min. Heating profiles were similarly collected, and all experiments were 

repeated at least twice in triplicate to ensure reproducibility. 

 A comprehensive description of FRET data processing can be found in 

Appendix B. Briefly, for each dimer assembly: (1) The efficiency of energy 

transfer (E) is determined at each temperature on the basis of the intensity of 
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donor/acceptor (I
DA

) and donor-only (I
D
) samples (typical results shown in Figure 

3.3a) (2) E is subsequently related to the fraction of assembled dimer structures 

(θ) by normalizing the FRET efficiencies as a function of temperature. θ is plotted 

against temperature with heating and cooling profiles superimposed (Figure 3.3b). 

It is important to note that negligible hysteresis was observed for all dimer 

assemblies, especially for the normalized data, indicating the reversibility of the 

dimer formation and dissociation processes and thermal equilibrium at each 

temperature. (3) The melting temperature (Tm) is obtained by fitting the first 

derivative of θ versus temperature with a Gaussian function and identifying the 

midpoint of the transition (Figure 3.3c). (4) As each of the dimer assemblies 

demonstrated a reversible thermal transition, it can be assumed that the system 

reached equilibrium at each temperature, allowing application of the van’t Hoff 

law where the variation of the equilibrium constant (Keq) with temperature is used 

to obtain the enthalpy (∆H) and entropy changes (∆S) of the complex formation. 

Keq of dimer formation is expressed as a function of θ at equilibrium, based on a 

bi-molecular reaction scheme. Plots of lnKeq vs 1/T in the temperature range of 

the transitions were linear, indicating that ∆H and ∆S are temperature independent 

(Figure 3.3d). (5) Finally, the van’t Hoff enthalpy and entropy changes for the 

reversible thermal transitions allow the calculation of the free energy change (∆G) 

for the assembly process using the Gibbs equation. 
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Figure 3.3. Illustration of FRET data analysis for a typical sample (DX-A/DX-B 

homo-dimer). (a) The raw data (fluorescence intensity versus temperature) were 

collected by a RT-PCR thermocycler. The heating and cooling curves for the 

donor/acceptor sample are shown in red and blue, respectively, and the heating 

and cooling curves for the donor-only sample are shown in magenta and cyan, 

respectively. (b) Plot of normalized FRET efficiency or fraction of dimer 

formation, θ, as a function of temperature. Multiple thermal profiles (heating 

cycles shown in red and cooling cycles shown in blue) are plotted together (six 

replicate profiles), exhibiting the negligible hysteresis and high reproducibility of 

the data. A single thermal transition at ~41.5 °C is observed. (c) First derivatives 

of the profiles in panel B, dθ/dT, are plotted versus temperature (dots), and a 

Gaussian fit (solid line) yields the melting temperature (41.5 °C) and the width of 

the transition (8.8 °C). (d) The linear fit of a corresponding van’t Hoff plot 
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generates the changes of enthalpy (∆H) and entropy (T∆S), and thereby the free 

energy changes (∆G). 

 The results of the FRET data analysis for each of the dimer designs 

illustrated in Figure 3.2e-3.2g are listed in Table 3.1. 

 

 

Table 3.1. Melting Temperature and Thermodynamic Characterization of Dimers 

Composed of Bivalent Monomer Scaffolds (J and DX) with Variable 

Conformational Flexibility. The structures of the monomer units are shown in 

Figure 3.2. The values listed are the mean and standard deviation of 

measurements from multiple thermal profiles (six independent samples, with 

analysis of the heating and cooling cycle for each). W/2 indicates the half-width of 

the Gaussian fit, representing the width of the thermal transition (Figure 3.3c). 

The temperature used to calculate T∆S and ∆G is 25 °C. The concentration of the 

individual tiles in each sample is 0.3 µM. The details of data analysis are 

described in Appendix B. 
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 Examination of the experimental results reveals that subtle changes in the 

conformational flexibility of the bivalent monomer scaffolds lead to significant 

differences in the thermal stability of the dimer superstructures. The melting 

temperature was the highest, 41 °C, for dimers composed of two rigid scaffolds 

(DX/DX homo-dimer) and the lowest, 31 °C, when both scaffolds were flexible 

(J/J homo-dimer). The 10 °C difference in the melting temperatures of these two 

DNA tile dimers is rather remarkable considering that both dimer structures have 

identical sticky end sequences. The semi-rigid (J/DX hetero-dimer) construct had 

a melting temperature of 36 °C, the mid-point between the flexible and rigid 

dimers. 

 The change in free energy reflected the same trend: the rigid dimer 

requires the smallest conformational change of each monomer unit, and thus it 

shows the most favorable binding, with the most negative ∆G. Interestingly, 

introducing flexibility into the scaffold significantly affects the changes in both 

the enthalpy and entropy of the corresponding dimerization reaction. For example, 

comparing the semi-rigid and rigid dimers, ∆G for the semi-rigid dimer formation 

is 1.2 kcal/mol less negative than that of the rigid dimer, which can be translated 

to an 10-fold reduction of the equilibrium constant at room temperature. This 

difference in ∆G is mostly the result of a more negative T∆S, originating from the 

larger entropic cost to form a J/DX tile compared to a rigid DX/DX dimer. On the 

other hand, for a flexible J/J dimer, its formation significantly restricts the range 

of branch angles that are available to the J monomers and carries a corresponding 

entropic penalty. It should be noted that both the ∆H and T∆S values for the 
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flexible dimer are significantly more negative than those for the rigid dimer (with 

T∆S exhibiting a larger difference). This result indicates that the association of 

two flexible tiles involves a more favorable enthalpic gain. This may be because 

the junction flexibility permits enhanced hydrogen-bonding interactions and more 

favorable base stacking between the sticky ends and their flanking base pairs, thus 

resulting in reduced energetic strain within the helical arms in the final dimer 

assembly. However, this enthalpic gain is completely offset by an even greater 

entropic loss because the conformations available to both monomeric units are 

largely restricted upon dimer formation. Overall, the thermodynamic effects result 

in a flexible dimer that is less thermally stable than the corresponding rigid dimer. 

 3.3.2. Competitive Displacement Reactions. The relative stability of the 

dimers was further demonstrated through competition assays, and the results were 

visualized using polyacrylamide gel electrophoresis (PAGE). Figure 3.4 illustrates 

the three competitive displacement reactions that were performed, each involving 

the addition of an increasing amount of secondary tile to a pre-assembled dimer.   
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Figure 3.4. Schematic representation of the competitive displacement reactions. 

Each tile of the initial dimer is present at equimolar concentration and labeled 

with a fluorescent dye. The unlabeled secondary tiles are added in a range of 

relative concentrations, from submolar to excess compared to the initial tiles. (a) 

Rigid DX tile is added to pre-assembled flexible J/J dimer. (b) Rigid DX tile is 

added to pre-assembled semi-rigid J/DX tile. (c) Flexible J tile is added to pre-

assembled rigid DX/DX dimer. 
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 Three possible outcomes of the displacement reactions are predicted on 

the basis of the relative thermal stability of the corresponding dimers: complete, 

partial, or no exchange of one tile in the initial dimer by the secondary tile. For 

the case in which the initial dimer is relatively less stable than the replacement 

dimer, as applies to the schemes shown in Figure 3.4a and 3.4b, quantitative 

displacement should be observed. For the case in which the initial dimer is 

relatively more stable, as shown in Figure 3.4c, minimal formation of the 

replacement dimers would be detected, even with a large excess of the secondary 

tile present. 

 To make identification of the gel bands corresponding to each individual 

tile and the assembled dimers possible, the tiles in the initial dimers were labeled 

with two fluorescent dyes, fluorescein and TAMRA. The dyes were placed at 

positions away from the intermolecular, sticky-end binding sites (different from 

those used in the FRET experiment with inter-dye distances a minimum 10 nm in 

the dimer) to minimize energy transfer between the fluorophores, so that the 

intensities of the fluorescent bands measured from the gel images provide a semi-

quantitative measure of the concentration of the species they represent. In 

addition, the tiles (secondary) that were added to the pre-assembled dimers 

contained no dye label, so that both a color change and a gel shift are expected if 

any exchange reaction occurs. Multicolor gel images were generated by 

superimposing the fluorescent intensity of the green (fluorescein) and red 

(TAMRA) channels (collected with a Typhoon Trio gel imaging system). 
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 The results of the competitive displacement experiments are in agreement 

with the predictions based on the FRET study. Figure 3.5 shows typical PAGE 

results for the reactions represented in Figure 3.4 (additional gel images are 

shown in Appendix B). 
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Figure 3.5. Polyacrylamide gel analysis of the reaction schemes shown in Figure 

3.4, at 20 °C. The gel images represent overlay of both green and red fluorescent 

channels. (a) Rigid DX tile added to pre-assembled flexible J/J dimer. (b) Rigid 

DX tile added to pre-assembled semi-rigid J/DX tile. (c) Flexible J tile added to 

pre-assembled rigid DX/DX dimer. Lanes 4−14 represent an increasing amount of 

secondary tile, with the molar ratio to the initial dimer ranging from 0.1:1 to 5:1. 

The amount of secondary tile (compared to 1× initial dimer) is indicated above 

the top band in each gel. The displacement reactions for all three cases were 

allowed to proceed for 2 h before loading onto the gel for analysis. Additional 
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gels for each reaction at various temperatures and different reaction times are 

included in Appendix B. 

 For each gel, lanes 1−3 contain the individual monomer units and their 

pre-formed 1:1 dimers, respectively. In addition to confirming the formation of 

each individual tile and the initial dimer, these bands (which have a unique size 

and fluorescent label) also serve as markers that help to determine the identity of 

each band in the remaining lanes. Lanes 4−14 correspond to the displacement 

reactions that contain the initial dimer with increasing amounts of secondary tile. 

The presence and relative concentrations of all species in the gels before and after 

the replacement reaction can be determined by measuring the fluorescent intensity 

of the corresponding bands. 

 The gel image in Figure 3.5a shows the equilibrium shift when the pre-

formed J-A/J-B homo-dimer was mixed with increasing amounts of DX-B 

secondary tile. The displacement of J-B in the initial dimer by DX-B to form a J-

A/DX-B hetero-dimer is readily observed, as evidenced by the disappearance of 

the middle yellow J-A/J-B dimer band, the simultaneous appearance of a lower 

red band (displaced J-B), and the appearance of an upper green band (the newly 

formed J-A/DX-B dimer). Note that the secondary DX-B tile is unlabeled, and the 

newly formed dimer contains only the green fluorescent label on J-A. The pattern 

of intensity changes that occur for each of the various bands supports the 

prediction of a quantitative displacement reaction, confirming that the semi-rigid 

J/DX dimer is thermodynamically more favored than the flexible J/J dimer. 
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 Similarly, the PAGE result shown in Figure 3.5b that corresponds to the 

reaction of pre-assembled J-B/DX-A dimer with DX-B as the secondary tile 

revealed that the favored reaction product is the rigid DX/DX dimer, with 

quantitative displacement of J-B in the dimer by DX-B. However, the PAGE 

result in Figure 3.5c, corresponding to the reaction of initial DX/DX dimer with J-

B as the secondary tile, showed that the dominant species in each reaction mixture 

was the initial, rigid DX/DX dimer, with little replacement of DX-B by J-B, even 

with a 5X molar excess of the secondary J tile. Collectively, the PAGE 

experiments support the conclusions drawn from the FRET experiments: dimers 

composed of two rigid tiles are more stable than those composed of one rigid and 

one flexible tile, and dimers composed of two flexible tiles are the least favored. 

 For each dimer, the entropy change of formation is fairly negative (see 

Table 3.1), so the relative equilibrium of the dimers is expected to change with 

temperature. For example, compared to the J/DX dimer, formation of the J/J 

dimer involves a more negative entropy change, implying that the J/J dimer 

should exhibit a greater increase in equilibrium binding constant at lower 

temperatures. The ratio of the J/DX dimer equilibrium constant to that of the J/J 

dimer is 1 at 5 °C, compared to 5 at 20 °C. Indeed, gel results reflect the 

temperature dependence of the equilibrium constants: for displacement reactions 

carried out at temperatures ranging from 5 to 20 °C, only partial exchange was 

observed at lower temperatures. At 5 °C, 30% of the initial J/J dimer (yellow 

band) remained, even with an excess of DX secondary tile compared to the J/J 

dimer, in contrast to the 20 °C reaction, in which this band completely 
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disappeared. The same trend was observed for the J/DX displacement reaction 

(DX secondary tile), in which the ratio of the DX/DX dimer equilibrium constant 

to that of J/DX dimer is expected to change from 10 at 20 °C to 6 at 5 °C. 

Collectively, the results of the gel assays for all three displacement reactions are 

in agreement with the thermodynamic data obtained by the FRET experiments. 

 3.3.3. Tiles with Variable Flexibility. To further study how the flexibility 

of a bivalent scaffold affects its association, two additional series of modified J 

tiles (in which the flexibility of the tiles were finely tuned) were constructed. The 

modified tiles were designed to form homo-dimers, and FRET analyses revealed 

an intriguing detail: the enthalpy and entropy changes associated with 

dimerization have partly compensating effects on strength of binding. In addition, 

the thermodynamics of polyvalent dimer formation clearly reflects the flexibility 

of the monomeric components. 

 The first series of modified J tiles, referred to as mesojunction tiles (Figure 

3.6a), are similar to J tiles but have two individual crossovers at separate positions 

between the two helical domains rather than a single reciprocal crossover, and this 

structural feature is expected to result in an overall increase in the conformational 

flexibility of the scaffold.
26, 27

 One of the strands that connect the two helical 

domains contains a variable number of thymine nucleotides (2T, 4T, or 6T), 

forming a single-stranded loop (shown in blue in Figure 3.6a) on the opposite side 

as the sticky ends (shown in red/orange). Among this series, the structure of the 

2T mesojunction tile is expected to be the most constrained, while the 6T 

mesojunction tile should be the most flexible. 
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Figure 3.6. Helical structure of modified J tiles of varying flexibility and DX tiles 

of various size. (a) Series of mesojunction tiles. To further tune the flexibility, the 

arms of the tile were constrained by varying the number of thymines (T) within 

one of the crossover strands (shown in blue), forming a single-stranded loop of 2, 

4, or 6T's. Note that the helical domains are not connected by a reciprocal 

crossover, as in a J tile, but are connected by two separate single-stranded 

crossovers. The blue strand has a nick at the junction position. (b) Series of 

tethered J tiles. For this series, the helical domains of each tile are connected by a 

reciprocal crossover, the same as in the unmodified J tiles. To reduce the 

flexibility of the scaffold, the two strands of the tile that do not participate in the 

crossover are connected by a short loop of 4, 8, or 12 T's, respectively, shown in 

blue. (c) Series of DX-A tiles of various sizes: 70, 78, and 86 bp, respectively. 

Binding of the DX-A tiles to their corresponding DX-B tiles results in 150, 166, 

and 182 bp homodimers. 
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 As shown in Table 3.2, all three mesojunction tile dimers have nearly the 

same melting temperature (Tm) and free energy change (∆G), with values of 30 

°C and −12 kcal/mol, respectively, which are very similar to those of the flexible 

J/J dimer. These results suggest that the mesojunction dimers have a thermal 

stability comparable to that of the J/J dimers, and the addition of multiple T's 

within each mesojunction tiles does not significantly affect their formation or 

participation in a dimer superstructure. However, the decrease in tile flexibility as 

the number of T's is reduced results in considerable differences in the enthalpy 

(∆H) and entropy (∆S) changes associated with dimer formation. The ∆H values 

for mesojunction dimer formation exhibit a clear trend (2T > 4T > 6T), becoming 

more negative as the loop size is increased; ∆S follows the same pattern. 

Meanwhile, all the mesojunction dimers have comparable ∆G of formation. This 

indicates that, while increasing the conformational flexibility of the participating 

scaffolds (with longer T loop) increases the entropic cost of dimer association, the 

same flexibility results in a more favorable gain in enthalpy, and these two effects 

are compensating, resulting in a similar thermal stability for all of the 

mesojunction dimers at room temperature. Compared to the unmodified, flexible 

J/J dimer, the ∆H values for mesojunction dimers are significantly more negative 

(more favorable), and the ∆S values are also more negative (less favorable). The 

mesojunction tiles are the only series of tiles that do not have a reciprocal 

crossover at the junction, resulting in a significant increase in the freedom of 

motion around the junction point. This freedom may interfere with the base 

stacking of nucleotides flanking the junction in unbound tiles. Dimerization of the 
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mesojunction tiles will constrain the junction and improve the base stacking for 

both tiles involved, thus resulting in a much more favorable change in enthalpy 

upon binding as compared to the other tile dimers. An approximate calculation 

indicates that 2−4 additional base-stacking interactions can account for the more 

negative ∆H for mesojunction dimer formation than for the J/J dimer. 
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Table 3.2. Melting temperature and thermodynamic characterization of dimers 

composed of bivalent monomer scaffolds (modified J and DX) with variable 

conformational flexibility and size. The structures of the monomer units are 

shown in Figure 3.6. The values listed are the mean and standard deviation of 

measurements from multiple thermal profiles (three independent samples, with 

analysis of the heating and cooling cycle for each). W/2 indicates the half-width of 

the Gaussian fit, representing the width of the thermal transition (Figure 3.3c). 

The temperature used to calculate T∆S and ∆G is 25 °C. The concentration of the 

individual tiles in each sample is 0.3 µM. The details of data analysis are 

described in Appendix B. 
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 The second series of the modified J tiles are referred to as tethered J tiles 

(Figure 3.6b), and like J tiles, they consist of four strands of DNA with a 

reciprocal crossover between the double-helical domains. However, the two 

strands that do not participate in the crossover are linked by a short loop of 

thymines (shown in blue in Figure 3.6b), ranging from 4T to 12T. Compared to 

unmodified J tiles, the entire series of tethered J tiles should be more constrained, 

with the tethered loop preventing free movement about the junction point. 

 The results of the FRET experiments reveal that the thermal stabilities of 

homo-dimers formed from the tethered tile series are similar to that of the semi-

rigid J/DX hetero-dimer, with melting temperatures of 35, 36, and 34 °C for 4T, 

8T, and 12T tiles, respectively. The ∆G values for this series of tiles also mirror 

that of the J/DX hetero-dimer, −13 kcal/mol. Interestingly, varying the number of 

T's that connect the two helical arms of the tiles does not result in significant 

differences in ∆H and ∆S. The range of ∆H, from −108 kcal/mol for the 4T tile 

dimer to −103 kcal/mol for the 12T tile dimer, is about the same as for the semi-

rigid hetero-dimer (−107 kcal/mol). Similarly, T∆S varies from −95 kcal/mol for 

the 4T tile dimer to −90 kcal/mol for the 12T tile dimer, also about the same range 

as fpr the J/DX hetero-dimer (−94 kcal/mol). Overall, the entire series of tethered 

J tiles behave as relatively rigid scaffolds, and it seems that increasing the number 

of T's in the tether loop from 4 to 12 does not effectively relieve the constraint. 

 Finally, to determine if variations in size (not only flexibility) would 

impact the binding affinities of the DNA tile scaffolds, several sizes of DX/DX 

dimers (150, 166, and 182 bp) were evaluated (Figure 3.6c). The experimental 
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data (Table 3.2) suggest that the size of the scaffold has very little effect on the 

thermal stability of the resulting dimers, as the melting temperature and ∆G 

values for all three DX/DX dimers were approximately equal. The ∆H and T∆S 

values of the smallest and largest dimers varied by less than 5 kcal/mol 

(demonstrating a small but notable dependence on size), again compensating for 

each other and yielding similar ∆G values. The sole difference in the three tiles is 

on the side opposite the sticky ends (the DNA strand sequence and length of all 

common regions are identical). One possible explanation for the observed 

difference in ∆H and ∆S is that stabilization in the central, sticky-end region of 

the dimer may propagate throughout the complex, further improving base 

stacking in the periphery. It seems that the more extended (larger) the tile is, the 

less susceptible it is to long-range stabilization. However, size-dependent effects 

cannot account for the ∆H and ∆S differences observed in the other experiments. 

The results suggest that the variation in the thermal stabilities of the other dimer 

assemblies is the product of differences in the conformational flexibility of the 

DNA scaffolds, and not merely a consequence of component tile size. 

3.4. Materials and Methods 

See APPENDIX B 

3.5. Conclusions 

 It is generally accepted that the flexibility of a DNA nanoscaffold is 

related to the number of connections between helical domains, with the least rigid 

structures formed from the fewest number of crossovers. Besides the number of 

crossovers, the structure of the connection points influences the overall flexibility 
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of the tile; e.g., compared to single crossovers, reciprocal crossovers are more 

rigid. It is also evident that appropriate use of thymine tethers can restrict the 

motion of the junction points, thereby reducing the conformational flexibility of 

the tiles. With these design parameters in mind, a collection of DNA tiles were 

constructed to characterize the influence of conformational flexibility on 

multivalent scaffold binding. 

 The most significant insights gained by this multivalent binding study are 

illustrated in Figure 3.7. First, increasing the conformational flexibility of a 

bivalent scaffold increases the entropic cost of association; however, the same 

flexibility results in a more favorable enthalpy of binding. This can be understood 

in the following way: imposing order on a flexible object through a binding event 

will carry an entropic penalty; on the other hand, adequate flexibility increases the 

likelihood that all ligand−receptor interactions can occur without energetic strain. 

Second, the overall thermal stability of bivalently linked scaffolds is highest when 

both scaffold components are rigid and lowest when both scaffolds are flexible. 

This observation indicates that reducing the entropic cost of association plays an 

important role in increasing the overall thermal stability. 
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Figure 3.7. Result summary: the conformational flexibility of two scaffolds 

linked by bivalent associations affects the enthalpy, entropy, and thermal stability 

of their binding. 
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 This study demonstrates how precisely engineered DNA nanostructures 

can be used to probe very subtle biophysical phenomena, including the effect of 

scaffold flexibility on the binding of a multivalent molecule. The use of DNA 

nanostructures as models of polyvalent binding has made it possible to quantify 

the compensating effects of enthalpy and entropy, which is a notoriously difficult 

relationship to characterize. This technique may be used to generate valuable 

structural and functional characterizations and may have applications in various 

research fields, such as polyvalent inhibitor drug discovery and the study of 

spatially controlled chemical reactions. 
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Chapter 4 

Steric Crowding and the Kinetics of DNA Hybridization in a DNA 

Nanostructure System 

Used with permission from Vidal Pinheiro, A.; Nangreave, J.; Yan, H.; Liu, Y.:  

Steric crowding and the kinetics of DNA hybridization in a DNA nanostructure 

system, submitted to J. Am. Chem. Soc., 2011. 

4.1. Abstract 

 The ability to generate precisely designed molecular networks and 

modulate the surrounding environment is of paramount importance for 

fundamental studies of chemical reactions. DNA nanotechnology simultaneously 

affords versatility and modularity for the construction of tailored, nanoscale 

molecular environments. In this work, we systematically isolate and study the 

effects of steric crowding corresponding to the hybridization of a 20-nt single 

strand of DNA to a 6-helix tile, where the number and character of the 

surrounding strands influence the molecular environment of the hybridization site. 

It was observed that both the location of the hybridization site along the tile, and 

the presence of flanking strands modestly decrease the hybridization rate constant. 

Further, the presence of secondary structures within the hybridization site 

dramatically reduces the reaction kinetics. We propose that the observed changes 

in the hybridization rate constants are related to the probability of nucleation of 

the invading single stranded DNA, determined solely by steric hindrance. 
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4.2. Introduction  

 Acquiring a fundamental understanding of the local aspects of chemical 

reactions and how complex molecular environments affect reaction kinetics is of 

great interest both to basic science and for technological applications. For 

example, the ultra-efficient electron transfer present in photosynthetic systems is 

due to the precise arrangement of various protein and chromophore components, 

and the heterogeneous catalytic reactions widely used in the chemical industry are 

characterized by large surface areas and very specific micro-environments. 

However, among the tools and approaches chemists have at their disposal to 

modulate molecular surroundings for the study of chemical reactions, few offer 

the combination of spatial accuracy and versatility.  

 In recent years, the use of DNA nanostructures has become an attractive 

method of organizing matter at the molecular level, due to the reliability of base-

pair interactions, improved DNA manipulation techniques, and easy and 

affordable custom oligonucleotide synthesis. Structural DNA nanotechnology 

allows the construction of discrete, nanometer sized structures in a variety of 

shapes and designs, with incredibly high assembly yields
1-4

. It is now possible to 

control not only the relative position of two molecules, but also the number and 

spacing of surrounding molecular interactions. This is a valuable tool for the 

study of how molecular environment influences the kinetics of chemical 

reactions.  

 As new DNA nanostructure design strategies have evolved that support 

enhanced structural complexity and function, interest in dynamic structures has 
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grown
5,6

. The next generation of dynamic DNA assemblies interacts with the 

surrounding environment, responds to external stimuli with concomitant state 

changes, and even actuates according to programmed responses. There are several 

examples of elegant ‘proof-of-concept’ structures, including reconfigurable 

topological structures
7
, a wire-frame tetrahedron with controllable dimensions

8
, 

nano-tubes for the controlled release of gold nanoparticles
9
 and DNA walkers

10-12
. 

Also, the development of DNA computing
13-16

 enables researchers to embed the 

path to a desired end state within the DNA nanostructures themselves, with an 

external input triggering an automatic system response. Understanding how 

individual molecular components interact with one another, both in terms of their 

spatial arrangement and temporal interaction within the DNA architectures is of 

paramount importance, and may lead to development of new and improved design 

rules and active motifs for the construction of dynamic DNA structures.   

 Independent of the external trigger, the fate of dynamic structures is 

governed by the kinetics of the hybridization process that occurs between 

interacting DNA strands
17-19

. Many strategies can be used to modulate the 

changes of state, thereby determining the overall arrangement of the system 

components at any given moment, including strand displacement, multimerization 

of monomeric units, binding and release of protein-aptamer complexes, 

interaction with DNA binding proteins or small molecules (hormones, ATP, 

lipids, etc.), cross-linking through photonic energy, secondary structure changes 

with varying pH, or interaction with other hetero-elements (such as single-wall 

carbon nanotubes or metal nanoparticles). Thus, the reliable modulation of 
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hybridization kinetics is extremely significant for the design and functionality of 

dynamic structures.  

 The thermodynamics and kinetics of nucleic acid hybridization have been 

thoroughly studied
20-27

, but very few reports describe the behavior of any complex 

structures, involving more than two or three DNA strands. The thermodynamics 

of DNA tile dimerization has been investigated by our group
28,29

 and others
24

. 

However, no systematic study of hybridization kinetics involving DNA nano-

structures has been reported. Here, we examined several steric factors that affect 

the kinetics of hybridization of a single-stranded DNA target to a complementary 

single stranded probe extension of a rectangular six-helix DNA tile. The steric 

factors that were evaluated include: 1) the presence/absence of elements 

surrounding the hybridization site; 2) the position of the target probe relative to 

the complete tile; and 3) the presence of secondary structure formed between the 

target probe and other components of the tile.  It is our aim to take the first step 

towards understanding the complexity of hybridization kinetics in higher-order 

DNA assemblies. This work might facilitate the development of new approaches 

to study the influence of molecular surroundings on chemical kinetics. 

4.3 Results and Discussion 

 4.3.1. System Model and Measurement. We designed a model in which 

a 20 nucleotide (nt) long DNA Target strand hybridizes to a Target Probe (TP) 

displayed at specific positions on one side of a six-helix tile (6HX) (Figure 1). 

The design of the six-helix tile was adapted from previous reports
28,30

,  and 

consists of six parallel DNA double helices joined by oligonucleotides that cross-



92 

 

over from one helix to adjacent helices. This arrangement of helices results in a 

planar, rectangular-shaped tile; the 14 constituent oligomers self-assemble into the 

desired tile when mixed together and annealed. The 3’ termini of selected helices 

were extended by twenty nucleotides, generating single-stranded overhangs that 

were designated as Target Probe (TP) or Off-Target Probe (OTP) sequences.  

Target and Off-Target strands, each 20 nt long, were designed to be fully 

complementary to the Target- and Off-Target Probes, respectively. For all 

experiments, only one of the selected helices displayed the Target Probe, while 

the remaining five helices contained Off-Target probes. This design permits 

accurate control of the number of strands surrounding the site of hybridization, as 

well as the distance between the site and neighboring strands. 
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Figure 4.1. Detailed helical structure of the 6HX tile used in this study. The core 

section of the tile is shown in gray and black, with the strands that participate in 

crossovers between adjacent helices in black. The schematic shown here 

corresponds to the design in which the Target Probe (yellow), extended from the 

right side of the core on the third helix from the top (position C), is surrounded by 

single stranded Off Target Probe extensions (blue) at every other position. The 

covalently attached FAM dye reporter is shown in green, at the interface between 

the core and the Target Probe (at position C). Poly T extensions, at every helical 

position on the left side of the core, are shown in dark green. After the addition of 

the Target (red),  the Target is hybridized to the Target Probe on helix three, 

forming a 20 bp duplex.  
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 To determine the effect of steric accessibility of the binding site on the 

rate of hybridization, several degrees of ‘crowding’ of the Target Probe were 

evaluated. First, the positional dependence of the rate of hybridization was 

examined by measuring the hybridization kinetics when the same TP sequence 

was displayed from each of the three degenerate positions (Figure 4.1, outermost 

– position A, inner – position B, and innermost – position C, helices). The degree 

of accessibility of the binding site varies depending on the position of the TP with 

respect to the 6HX tile, presumably with the accessibility of the three positions 

decreasing as the TP moves inward (A>B>C). Second, the effect of steric 

crowding on the kinetics of hybridization was further evaluated by surrounding 

the TP site with single- and double-stranded DNA at the adjacent helixes (Figure 

4.2). Three sets of experiments were performed to evaluate these effects (for all 

three sets of experiments, the TP was displayed from each of the three unique 

positions on the 6HX tile): [1] The TP was surrounded by blunt-ended helices, i.e. 

each of the five non-Target Probe helices did not contain an Off-Target Probe 

(Figure 4.2, left). This represents the least crowded scenario (Figure S1 in 

Appendix C); [2] The TP was crowded by single-stranded DNA at the 

surrounding positions (Figure 4.2, center). Each of the five non-Target Probe 

helices included a 20 nt poly(T) sequence (Figure S2 in Appendix C); [3] The TP 

was crowded by double-stranded DNA at the surrounding positions (Figure 4.2, 

right). Each of the five non-Target Probe helices contained a random, 20 nt 

sequence (Figure S3 in Appendix C). For [2], the use of a poly(T) sequence for 

the OTPs minimizes interactions between the OTPs and the TP and the Target 
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itself, which allows the steric effects on the rate of hybridization to be isolated 

from any  sequence specific interactions. For [3], the fully complementary 20 nt 

Off-Target was pre-hybridized to the OTPs to form double-stranded extensions 

prior to any kinetic measurements, aiming to further increase the level of 

crowding of the TP (Figure S3 in Appendix C). 
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Figure 4.2. Schematic representation of the series of 6HX tile designs used to 

determine the effect of steric accessibility of the binding site on the rate of 

hybridization. From top to bottom, the site of Target hybridization is located at 

position A, B and C, respectively. From left to right, the site of Target 

hybridization is not surrounded by single or double stranded extensions, and 

crowded by single and double stranded DNA, respectively. Accessibility of the 

Target to the Target Probe is expected to become increasing restricted in the 

designs shown from top to bottom and from left to right.  
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 Experiments were also designed to evaluate the influence of the secondary 

structure of the probes, and the interaction of the TP with other components of the 

tile, on the rate of Target hybridization. For these experiments, the TP was 

displayed from Position C (the innermost), while a single OTP with a specifically 

designed sequence (partially complementary to the TP) was displayed from the 

adjacent helix (Position B). The remaining four OTP positions were extended 

with 20 nt poly(T) sequences (Figures S4-S7 in Appendix C).  

 To suppress any non-specific base stacking interactions between the blunt 

ends of individual tiles that might affect the rate of diffusion and thus, the 

hybridization kinetics, four thymine nucleotides were extended from one strand in 

all helices on the side of the tile opposite to the binding domain. For the same 

reason, those experiments in which the TP was displayed without any surrounding 

single- or double-stranded DNA, three thymine nucleotides were extended from 

one strand in the five helices that did not contain the TP (on the same ‘binding’ 

side of the tile).  Additional design, sequence, and experimental details can be 

found in Appendix C.  

 Electrophoretic analysis of equilibrium products was performed to 

determine the extent of the forward and reverse reactions. 6HX tile solutions were 

analyzed before and after the addition of the Target for every reported design. The 

gel results show that at equilibrium, nearly all of the unbound 6HX tile is 

consumed to produce a Tile/Target hybridized product (Appendix C). These 

results indicate that the reverse, denaturation reaction is negligible compared to 
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the forward, hybridization reaction, allowing application of the proposed kinetic 

analysis. 

 A covalently attached fluorophore (FAM) was incorporated at the 

interface between the core of the 6HX tile and the single-stranded TP extension 

(Figure 4.1), to serve as a reporter of the rate of hybridization of the Target strand. 

The fluorophore was placed at the three different helical positions (only one 

fluorophore per experiment), corresponding to the three positions of hybridization 

described above. The initial intent was to use Förster Resonance Energy Transfer 

(FRET) between a FAM/TAMRA pair, with a FAM-labeled tile and a TAMRA-

labeled Target strand to monitor the hybridization event. However, considerable 

changes in the fluorescence quantum yields of both individual dyes, FAM and 

TAMRA, in the absence of the other dye, were observed upon hybridization. For 

FAM, a 30-40% increase in fluorescence quantum yield was detected upon 

hybridization of an unlabeled Target (Figure 4.3) to the FAM-labeled tile; and for 

TAMRA, a fluorescence quenching of ≈30% was observed upon hybridization of 

the TAMRA-labeled Target to the unlabeled tile (Figure S13 in Appendix C). 

These signal changes are opposite to the expected donor/acceptor emission 

changes that occur in FRET, compromising the reliability of the FRET method to 

monitor hybridization. However, for the FAM-labeled only samples, the 

fluorescence enhancement observed upon hybridization was investigated further 

to determine its reliability as a reporter of hybridization.  
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Figure 4.3. Fluorescence enhancement of the FAM reporter dye upon 

hybridization of the Target to the 6HX tile. The fluorescence emission spectrum 

of FAM was measured before (black trace) and after (yellow trace) the addition of 

Target to the 6HX tiles (the design corresponding to single stranded DNA 

extensions surrounding the Target Probe site located on helix 3). The spectra 

show an ≈30% increase in the fluorescence quantum yield of the dye after 

hybridization of the Target. The inset summarizes the results of steady-state 

fluorescence anisotropy measurements of the same system before (black bars) and 

after (yellow bars) the addition of Target. The anisotropy was independently 

measured for 6HX tiles with the Target Probe and the FAM reporter dye located 

at helical positions A-C. Before Target hybridization (black bars), high anisotropy 

values for all three designs (0.127-0.147) were observed, indicating the dye has 

impaired rotation during excited state deactivation. After Target hybridization 



100 

 

(yellow bars), the anisotropy values drop considerably (0.065-0.076) for all 

designs, demonstrating that the dye is experiencing a more unobstructed rotation.  

 The variations in FAM fluorescence that occur upon strand hybridization 

are the result of a combination of several, distinct photo-physical processes. The 

increase in fluorescence quantum yield and slight blue shift (2-4 nm) indicate that 

hybridization induces a change in the molecular environment of the fluorophore 

(Figure 4.3). Time-correlated fluorescence single photon counting (TCSPC) was 

employed to determine the fluorophore decay times and relative amplitudes, 

aiming to identify the population distribution of the dye subjected to different 

molecular environments. In the absence of the Target strand, the fluorescence 

decay was well fit by a bi-exponential law, with 4.4 ns (92%) and 1.7 ns (8%) 

components (Figure S17 in Appendix C). The 4.4 ns decay corresponds to the 

lifetime of free FAM dye in solution
31

.  After an excess of Target strand was 

added, the decay was also fit by a bi-exponential law, but it was dominated by the 

slower 4.1 ns component (98%), and the amplitude of the 1.7 ns component was 

only ≈2% (Figure S17 in Appendix C). Thus, hybridization of the Target to the 

6HX tile promotes the conversion of a short-lived FAM excited state population 

to a longer-lived state. No change in the extinction coefficients of absorption 

“before” and “after” Target addition was observed. Therefore, the increase in 

fluorescence quantum yield and decrease of the short lifetime component after 

hybridization can be explained by a decrease in the non-radiative decay rate 

constant of the dye. This may indicate that the dye is forced into a local 

environment with fewer quenching factors.   
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 Steady-state fluorescence anisotropy measurements were performed (each 

of the three FAM positions on the 6HX tile were independently evaluated), before 

and after Target hybridization (inset Figure 4.3). High anisotropy values were 

observed before hybridization (0.127-0.147), when compared to linear DNA 

strands functionalized with fluorescein
32,33

, demonstrating that the FAM dye 

experiences considerably restricted rotation during its excited state deactivation. 

The measured anisotropy decreased drastically after the addition of Target (0.065-

0.076), signifying that the hybridization event leads to increased free rotation of 

the dye. Taken altogether, the results strongly suggest that before hybridization, a 

fraction of the FAM population is intercalated within the single stranded TP (or 

stacked with the adjacent base at the end of the DNA helix, Figure 4.1, left),  

where the dye is expected to have a highly restricted molecular rotation, leading 

to a high anisotropy value. Stacking of the fluorophore with adjacent bases also 

leads to a lower quantum yield and a faster decay, indicating an excited state 

quenching process, likely the result of photo-induced electron-transfer from FAM 

to the adenine bases flanking the dye as was observed in simpler systems
31,34

. The 

higher conformational stringency of the DNA nano-structure is likely to enhance 

the effect of photo-induced electron transfer, more commonly observed when 

guanine bases are in the vicinity of the FAM dye
35,36

. Upon Target hybridization, 

the formation of a double helix displaces the dye from its intercalated state, 

reducing the interaction with the TP (Figure 4.1, right). This view is supported by 

the drastically decreased anisotropy, increased emission yield, and increased (up 

to 98%) amplitude of the longer life time component of the decay.  
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  It was necessary to determine if the observed increase in quantum yield is 

site-specific, i.e., if an increase in FAM emission is only observed when Target 

hybridization occurs at the same tile position. Six unique 6HX tiles were 

designed, all with the FAM dye located at Position C. For each tile, one of the six 

helices displayed the TP and the remaining five helices presented OTPs. The 

steady-state fluorescence emissions of each unique tile were independently 

measured before and after the addition of Target (Figure 4.4). The enhancement in 

fluorescence was only observed when the Target hybridized to Position C, which 

contained the reporter dye. Similar results were obtained for tiles with FAM 

labels at positions A and B. Therefore, the fluorescence change of the FAM dye 

upon DNA hybridization has exclusive site-specificity. This is presumably 

because the displacement of the dye from an intercalated state to a more freely 

rotating state involves a very specific change in the local environment of the dye. 

The single dye approach presented here offers an advantage over the FRET 

approach because it allows the addition of a large excess of unlabeled Target 

strand that simplifies the reaction rate determination, which would otherwise be 

unfeasible due to direct excitation of the acceptor dye. 
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Figure 4.4. Site specificity of the FAM single-dye reporter system. The steady 

state fluorescence emission of six designs were independently evaluated, where 

the helical position of the Target Probe was systematically changed, while the 

position of the FAM dye remained constant at position C (helix 3). Each design 

corresponds to a situation in which the site of the Target Probe is surrounded by 

single stranded DNA extensions at every non-Target helical position. The bar 

graph shows the ratio of emission intensity after and before, respectively, the 

addition of the Target. Only when the Target Probe was located on helix 3, did the 

emission of the FAM dye (located on the same helix) exhibit ≈40% enhancement 

(yellow bar).  
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 4.3.2. Dependence of the Rate Constant of Hybridization on 

Accessibility of the Hybridization Site. For the simplest system, in which the 

Target hybridizes to a single TP displayed from the 6HX tile without the 

interference of any OTPs, hybridization is expected to follow a two-step 

mechanism: 1) nucleation of a short segment of the incoming Target to the TP, 

followed by 2) realignment of both strands and ‘zipping’ up of the remaining 

nucleotides for fully complementary base-pairing
21

. Nucleation is the rate-limiting 

step of hybridization at low DNA concentrations (generally in the nano- to micro-

molar range), relying on efficient collisions between the two interacting strands so 

that a cluster of two or three consecutive bases may form base-pairs with the 

complementary strand and initiate the hybridization process. The subsequent 

strand realignment and base pairing of the remaining nucleotides are expected to 

proceed at a much faster rate. In our system, the fluorescence enhancement of the 

reporter dye only occurs after the nucleotides in the TP closest to the core of the 

6HX have formed base pairs with the 3’ end of the Target. Consequently, 

hybridization of the Target to the TP can be simplified to a bi-molecular process, 

in which an overall rate constant khyb can be obtained, but the rate constants 

associated with the nucleation and the ‘zipping’ steps cannot be distinctly 

separated. but Moreover, a large excess of Target strand can be employed to 

further simplify the kinetics, which permits the use of a pseudo-first order kinetic 

model to determine the rate constants of hybridization. This method reduces the 

experimental error associated with differences in strand concentration and 

stoichiometry, increasing the accuracy of the calculated rate constant.  
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 Figure 4.5 shows the change in the intensity of fluorescence of the FAM 

reporter as a function of time, after the addition of a 20-fold excess of Target to a 

solution of 6HX tiles (1 nM) which has the TP displayed at Position C, and no 

DNA surrounding the site of hybridization. The resulting curve was well fit by a 

mono-exponential growth equation, as expected for a pseudo-first order reaction, 

yielding a bi-molecular rate constant of (1.04 ± 0.05) × 10
6
 s

-1
M

-1
.  6HX tiles with 

TPs displayed at positions A and B (with the corresponding FAM reporters at 

positions A and B, respectively) were also tested. An approximate 10% decrease 

in the hybridization rate constants were observed for the interior positions, 

compared to the terminal position (Figure 4.6, left series). The expected decrease 

in the rate of hybridization due to reduced accessibility to the Target Probe, 

innermost>inner>outermost, was corroborated by the observed hybridization 

rates. This magnitude of change is significant based on the accuracy of our 

measurements (SD ≈ 1-2%). 
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Figure 4.5. Monitoring the hybridization of a 20nt DNA Target to a 

complementary Target Probe displayed from a 6HX Tile. The measurements 

correspond to a design in which the Target Probe is located at position C, without 

the presence of neighboring Off-Target Probes. The hybridization event is 

monitored in real time by measuring the emission change of FAM dye that occurs 

as the local environment of the dye changes. Before the addition of Target 

(schematic, left), the fluorescence emission of a 1 nM 6HX tile solution 

containing the FAM dye reporter was measured for 150 seconds, providing a 

baseline signal (gray series). Immediately after the addition of 20 equivalents of 

Target strand, fluorescence intensity of the same solution was monitored in real 

time (yellow series). The curve of emission intensity as a function of time was fit 

by a mono-exponential growth equation, yielding the bi-molecular rate constant 

of the overall hybridization reaction. 
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 When single-stranded OTPs were displayed from the five helices flanking 

the TP, a further decrease in the hybridization rate constant was observed (for all 

three positions – Figure 4.6, middle panel), compared to their counterparts with 

no OPTs. The presence of single-stranded DNA surrounding the hybridization site 

is likely to impair the approach of the Target strand, and consequently, reduce the 

rate of efficient collisions necessary for nucleation. One might argue that the 

slower kinetics was a result of a decreased effective Target concentration, due to 

partial interaction of the Target with the OTPs. However, considering the large 

excess of Target, and negligible sequence complementarity between the Target 

and the poly(T) OTPs, this scenario is highly unlikely. It is also interesting that 

the presence of single-stranded DNA surrounding the hybridization site results in 

a noticeable difference between the observed hybridization rates at Position B and 

Position C (Figure 4.6, middle panel), an effect that is not as significant for 6HX 

tiles with no OTPs. This result confirms that the DNA strands flanking the 

hybridization site further reduces access to the TP.  
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Figure 4.6. Summary of observed hybridization rate constants for various levels 

of steric crowding of the Target binding site. The left three bars correspond to 

designs in which the site of Target hybridization is not surrounded by single or 

double stranded DNA. The middle three bars correspond to designs in which the 

Target Probe is crowded by the presence of single stranded DNA. The three bars 

on the right correspond to designs in which the Target Probe is crowded by the 

presence of double stranded DNA. For all three sets of data, the green, blue, and 

red bars represent designs in which the Target Probe is located at position A, B, 

and C, respectively.  
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 6HX tiles with double-stranded DNA surrounding the TP were also 

assembled and the kinetics of hybridization was measured for different TP 

positions (Figure 4.6, right panel). Compared to the case with single stranded 

DNA surrounding the site of hybridization, the presence of double stranded DNA 

is expected to further reduce the steric accessibility of the Target to the TP, thus 

leading to a decrease in the overall rate of hybridization.  However, the results 

revealed no significant changes in the rate constants for any of the TP positions in 

these two cases. It is possible that the rigidity of double strand DNA restricts the 

distribution of available spatial orientations, while the flexibility of single 

stranded DNA allows the probe extensions to sample more space, blocking access 

to the hybridization site. Therefore, the effects of an increased mass (crowding) 

and decreased spatial distribution of the adjacent double stranded DNA cancel 

each other and result in similar kinetics as observed for the single stranded  case.   

 It has long been speculated that there is a positional and steric crowding 

effect on the equilibrium and kinetics of hybridization of a DNA nanostructure 

probe to an externally added target strand
37

.This group of experiments represents 

the first attempt to obtain quantitative information about these effects.  Indeed, the 

peripheral positions with no or few neighboring strands exhibit significantly faster 

hybridization kinetics compared to the internal ones, however, the difference is 

relatively small, only 10%.  

 The observed rate constants are 4 orders of magnitude slower than 

diffusion limited bi-molecular reaction kinetics, indicating the presence of a high 

activation energy barrier for the rate limiting step. We propose that variations in 
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the rate constants of hybridization are a direct consequence of the spatial 

confinement of the TP. This is based on two observations: first, the nucleotide 

sequence of the TP was intentionally held constant for all experiments to avoid 

any differences in the length and stability of the Target/TP complexes, so that the 

change in kinetics is not because of any change in the nucleation step. Second, the 

addition of single and double stranded DNA to a 6HX tile increases its mass and 

hydrodynamic radius, consequently affecting the diffusion coefficient of the tile, 

which might cause a reduction in the hybridization rate constant.  However, when 

comparing tiles with single- or double-stranded OTPs, for the same TP position, 

no significant difference in the rate of hybridization was observed. Therefore, the 

differences in the rate constants of hybridization of the target to the DNA tiles 

with or without OTPs cannot be attributed to differences in mass (variation in 

diffusion coefficients), but directly reflect the spatial accessibility of the TP. 

 Several questions remain: 1) does the presence of DNA surrounding the 

TP site reduce the frequency of effective collisions leading to nucleation; 2) is 

realignment of the nucleated Target impaired due to steric hindrance, or 3) is there 

a combination of both effects?  To answer these questions, the hybridization 

kinetics of all previously mentioned ‘steric accessibility’ designs was measured at 

4 different temperatures between 10 °C to 20 °C. Typical Arrhenius behavior was 

observed in all cases (Appendix C), yielding positive activation energies with 

similar values (Table 4.1) for designs with varying levels of TP accessibility. The 

energy required to realign the Target/TP pair and to overcome the charge 

repulsion and solvent reorganization are equivalent for all the presented scenarios. 
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This result indicates that the differences in kinetics are due to the frequency of 

efficient collisions between the two strands that lead to a complete hybridization 

event. Thus, nucleation in a more spatially confined environment is responsible 

for the slower hybridization kinetics, rather than ‘zipping up’ and strand 

realignment.   
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Table 4.1. Activation energies for the hybridization of a single stranded DNA 

Target to a 6HX tile for each of the designs shown in Figure 4.6. Regardless of 

the Target Probe position, or the presence/absence of DNA surrounding the 

Target Probe, the energy to initiate Target hybridization is approximately 20 

kcal/mol.  
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 4.3.3. Effects of Probe Secondary Structure and Target Probe-Off 

Target Probe Interactions. In addition to evaluating how steric crowding affects 

the rate of hybridization of a single stranded DNA target to a 6HX tile, we also 

characterized how the presence of secondary structure in the TP, and the 

interaction of the TP with other components of the tile influenced the rate of 

hybridization.  From a practical standpoint, there are many situations in which a 

given ‘probe’ sequence is flanked by neighboring single stranded DNA of a 

different sequence. As the length of the strands increases, there is greater 

probability of partial sequence complementarily between the strands. When there 

are base-pairing interactions between the TP and adjacent single stranded DNA, 

complete hybridization of the Target can only be achieved through a strand 

displacement reaction
38

. In this case, hybridization of the Target to the 6HX tile 

can no longer be regarded as a straightforward bimolecular event, but rather a 

more complex process involving at least three-steps: 1) nucleation of the 

incoming Target with a single-stranded segment of the TP,  2) realignment and 

partial hybridization of the strands in the available single-stranded stretch of the 

TP, and 3) displacement of the hybridized domain of the neighboring, single-

stranded DNA from the TP, until full hybridization of the Target strand is 

achieved. It should be noted that the interaction of the TP with adjacent, single-

stranded DNA in a DNA tile is an intramolecular interaction. As a consequence, 

the “local molecular concentration” increases dramatically, or more precisely, the 

frequency of collisions that may lead to a TP-ssNeighbor complex is much greater 

when compared to free strands in solution. Thus, even with minimal 
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complementarity between a TP and adjacent single-stranded DNA, the effect is 

amplified beyond what traditional equilibrium calculations would predict. 

 In our design, the TP and OTPs are arranged parallel to one other with the 

same polarity. In order to create partial complementarity between the probes, one 

of the strands must bend toward the other so that anti-parallel base-pairing can 

occur. To fully evaluate the influence of the interaction and secondary structure of 

the TP on hybridization kinetics, two distinct situations were considered: 1) the 

OTP bends toward the TP to form a partially hybridized complex, and 2) the TP 

bends toward one of the adjacent OTPs (Figure 4.7). The number of base-pair 

interactions between the Target and OTPs were intentionally varied and 

evaluated.  For all corresponding designs, the TP and the FAM reporter dye were 

located at helical Position C. The kinetics of hybridization was measured as 

described previously, and the resulting fluorescence signals were fit by a mono-

exponential growth law.  The observed rate constants represent a combination of 

the rates of all three hybridization steps, nucleation, realignment, and strand 

displacement, into an overall hybridization rate constant. The three phases of 

hybridization cannot be separated using the current experimental approach. 
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Figure 4.7. Summary of observed hybridization rate constants for variable probe 

interaction/structure designs. (a) The results of experiments in which the 3’ end of 

the Off Target Probe (sequence designed to be complementary to a domain of the 

Target Probe) bends toward the Target Probe, forming 5 and 8 bp double helices 

(middle two bars). The left bar represents the rate constant for a similar design 

without any complementarity between the Target and Off Target Probes. The 

right bar shows the rate constant of hybridization in the presence of a pre-bound, 

8nt Truncated Target that required displacement by the full length Target. The 

interaction between the Target and Off Target probes reduced the rate constant of 

hybridization by ≈16%.  
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Figure 4.7. continued (b) The results of experiments in which the 3’ end of the 

Target Probe (complementary to a domain of the Off Target Probe) bends toward 

the Off Target Probe, forming 5 and 8 bp double helices (middle two bars). This 

situation not only reduces the accessibility of the Target Probe to the invading 

Target, but also introduces a Target Probe structure with a different character than 

in (a). Again, the bar on the left represents the rate constant for a similar design 

without any secondary structure. This specific type of complementarity between 

the Probes and resulting structure of the Target Probe resulted in a significant 

79% decrease in the rate constant of hybridization compared to experiments with 

no interactions between the Probes. The bar on the right reveals that the rate 

constant is restored by pre-binding an 8nt Truncated Target to the Target Probe 

binding domain of the Off-Target Probe.   
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 First, situation 1 was evaluated, where the OTP bends toward the TP to 

form an 8 base-pair double helix (Figure S4 in Appendix C). A control 

experiment was designed to determine how the presence of an 8-nt Truncated 

Target (rather than the full length 20-nt Target) would interfere with the full 

Target hybridization. An excess of the Truncated Target was pre-hybridized 

(before addition of the full Target) to a complementary, 8-nt domain of the TP. 

The double helix formed between the Truncated Target and the TP left an 11-nt 

toehold at the 3’ end of the TP, which serves as a docking station for the incoming 

full Target. The observed rate constant of full Target hybridization was circa 17% 

lower than the normal case in which no Truncated Target was present (Figure 

4.7a). When the same 8-nt domain was transferred to the OTP adjacent to the TP, 

allowing the end of the OTP to bend and form an 8 base-pair double helix with 

the TP, the same hybridization rate constant that was observed in the presence of 

the 8nt Truncated Target (Figure 4.7a). Similarly, when the sequence of the OTP 

was changed to permit it to bend to form 5 base-pairs (rather than 8 base-pairs) 

with the TP (Figure S5 in Appendix C), the same hybridization rate was observed. 

These results imply that the presence of secondary structure (bending) itself in the 

OTP causes no additional interference in the rate of hybridization of the Target 

than does pre-hybridization of a Truncated Target. Varying the length of this 

partial hybridization does not cause any significant difference in the kinetics, 

either.  Therefore, the nucleation site for the hybridization event is close to the 3’ 

end of the TP, which is most accessible for the Target strand introduced in 

solution.   
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 It is noted that both the 5-nt and 8-nt OTP bending complexes have the 

same, 8-nt toehold at the 3’ end of the TP. This observation raises the question of 

whether the reduction in the observed rate (compared to the control sample) was 

due to the presence of an additional hybridization step of strand displacement, or 

due to a decrease in the number of nucleotides in the TP available for nucleation. 

Zhang and Winfree
39

 presented a model demonstrating that the kinetics of strand 

displacement reactions is dependent on the toehold length (and AT/GC content). 

The authors relate an increase in the rate constant with higher toehold binding 

energy. For a toehold mediated strand displacement reaction, their model predicts 

that an 8-nt long toehold will have a rate constant between 10
5
-10

6
 M

-1
s

-1
, 

depending on the toehold AT/GC content. This result is in the same order of 

magnitude as the hybridization rate constants measured in our system. It should 

be noted that in their study, Zhang and Winfree
39

 used simple DNA 

oligonucleotides, where the sequences were designed to eliminate any undesirable 

secondary structure. In our study, because secondary structure was intentionally 

introduced, and one of the participants in the hybridization reaction was a 6HX 

tile with much slower diffusion than simple, single-stranded DNA, it is difficult to 

quantitatively compare these two results. However, some qualitative information 

can still be inferred. Zhang and Winfree
39

 proposed a reasonable simplification of 

their three-step kinetic model (for toehold lengths greater than 5-nt), where the 

overall rate constant for a strand displacement reaction is approximately equal to 

the rate constant for the nucleation/zipper step of hybridization. This corresponds 

to the set of experiments described here, in which an 8-nt toehold was used. 
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Considering our results and those of Zhang and Winfree
39

, it is reasonable to 

assume that the observed decrease in the rate constant of Target hybridization is 

due to a decrease in the number of nucleotides available for nucleation, rather 

than the presence of an additional strand displacement step. 

 Next, situation 2 was evaluated, where the 3’ end of the TP bends to 

interact with the OTP forming a 5 base-pair double helix (Figure 4.7b). For this 

case, a rate constant of 3.1 × 10
5
 M

-1
s

-1
 was observed, representing a dramatic 

69% decrease in the hybridization rate. This result indicates that the presence of 

secondary structure within the TP further isolates it from the invading Target 

(Figure S6 in Appendix C), drastically reducing the nucleation rate and 

consequently, the hybridization process. In the case of a longer, 8-nt base-pair 

interaction between the Target and Off-Target Probes (Figure S7 in Appendix C), 

an additional decrease in the rate of hybridization was observed (a 79% decrease 

compared to experiments with no interaction between Probes, Figure 4.7b). A 

higher level of inaccessibility and/or a further reduction of the number of 

nucleation sites are expected to contribute to the slower hybridization rate. 

Finally, a free 8-nt strand was pre-hybridized to the interaction domain of the 

OTP preventing an inter-probe interaction, freeing the TP for hybridization of the 

Target. With no requirement to displace the Off-Target and without any 

secondary structure within the TP, the rate of hybridization increased to the 

expected level (Figure 4.7b). 

 We propose that the changes in hybridization rate constants reported here 

are due to a single factor: the probability of nucleation. The number of Target 
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trajectories that produce successful collisions leading to hybridization is 

dependent on the steric hindrance caused by the position of the Target Probe 

within the tile, and also the presence of other DNA surrounding the site of 

hybridization. When considering the presence of secondary structure between the 

TP and the flanking single stranded DNA, double stranded domains between the 

TP and neighboring DNA reduce the probability of nucleation. This effect is more 

pronounced at the free 3’ end of the TP than at the 5’ end, where greater shielding 

by neighboring DNA already occurs. This explains why no differences in kinetics 

between the 5-nt and 8-nt long double stranded domains were observed. 

Moreover, an equivalent interaction is attained when the TP bends towards the 

flanking neighboring strand, with a more dramatic decrease in hybridization rate 

constant. For this case, the nucleation site is more deeply entrenched among the 

neighbor strands and the tile core, reducing the number of trajectories available 

for nucleation, and thus the probability of successful collisions. 

4.4. Materials and Methods 

See APPENDIX C 

4.5. Conclusions 

 The results presented here strongly suggest that the rate constant of 

hybridization of a DNA strand to its complementary probe within a DNA tile is 

strongly dominated by a rate-limiting nucleation step. In the presence of 

additional DNA surrounding the hybridization site, the frequency of successful 

collisions between the Target and the Target Probe, and the subsequent 

hybridization of nucleotides is reduced due to the steric impairment of the Target 
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binding site. Particularly, the hybridization rate is more severely affected by the 

formation of secondary structures between the Target Probe and the adjacent 

DNA.  For all reported experiments here, the sequences of the Target and the 

Target Probe were held constant. It is reasonable to predict that changes in the 

sequences of the hybridization pairs, or those of the adjacent DNA, will produce 

different behavior, thus, additional study is required to obtain a more 

comprehensive understanding of the hybridization kinetics in DNA 

nanostructures. 

 In the context of DNA nanotechnology, it is crucial to understand how the 

thermodynamics and kinetics of the final structure formation are affected by the 

number, length, sequence, and structure of the strands connecting the 

supramolecular arrangements. We believe that the results presented here will 

contribute to a better understanding of the physical behavior of DNA 

nanostructures. It will be interesting to determine if the effects observed for a 1D 

arrangement of DNA probes will translate to more complex architectures, and 

whether the effects are cumulative and amplified when multiple hybridization 

sites are present. The design of DNA walkers and other DNA-based motors will 

benefit from such knowledge, where the arrangement of single stranded 

extensions (or tracks) in 1D or 2D arrangements may be tuned and optimized by 

considering the effects of the surrounding local environment. Notably, the 

presence of double-stranded DNA will not affect the hybridization of the walker 

to a DNA tile any more than their single-stranded DNA counterparts. In addition, 

hybridization of DNA targets to a network of probes will likely occur at a faster 
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rate for peripheral probes than for interior ones, and in the context of DNA-

walkers, this may result in walker path bias. Finally, the application of micro-

array-based platforms for disease detection can benefit from improved sequence 

design and spatial control of the probes to enhance the kinetics of DNA 

hybridization. 

 It is our hope that the work presented here expands beyond its application 

in the field of DNA nanotechnology to be used as a proof-of-concept for the study 

of other molecules and systems that require precise spatial arrangement of 

components for the study of chemical kinetics. 
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Chapter 5 

Summary and Outlook 

5.1. Conclusions 

 An important goal of nanotechnology is to develop complex, self-

assembling systems with predictable 3D structure, molecular dynamics, and 

functionality. DNA nanotechnology is an area of nanotechnology that is 

accomplishing these goals with considerable success. Structural DNA 

nanotechnology has achieved the construction of multi dimensional objects of 

varying sizes and complexity using ‘bottom-up’ DNA self-assembly, in which the 

products are a function of the equilibrium end-states of the system, and has 

culminated in the development of macroscopic materials with nanometer scale 

addressability. In contrast, dynamic DNA nanotechnology is exemplified by 

reconfigurable and autonomous devices in which the critical feature of the system 

is the non-equilibrium dynamics of the components rather than the equilibrium 

states. A number of open challenges remain to fully exploit the potential of self-

assembled DNA nanostructure systems, including reducing assembly error rates 

and finely programming the interaction between system components (beyond 

simple base complementarity). These challenges motivated an investigation of the 

equilibrium (thermodynamics) and non-equilibrium (kinetics) association 

behavior of several representative DNA nanostructures, illuminating several 

factors that govern their higher-order self-assembly. 

 The research presented in this dissertation represents fundamental steps 

toward achieving a greater understanding of the essential factors that affect the 
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organization of discrete DNA nanostructures into higher-order constructions. 

First, several discrete multi-helical DNA tiles were chosen to serve as 

representative DNA nanostructures; their assembly into higher-order dimer super-

structures through sticky end cohesion was monitored and the equilibrium 

products were analyzed. The valency of the tiles was intentionally varied to 

identify the degree with which polyvalency affects the assembly process. The 

number of interactions between the DNA nanostructures and the arrangement of 

the contact points were found to influence the thermal stability of the assembled 

super-structures. In general, the greater the number of interactions between the 

discrete structures, the higher the stability, with the highest stability reserved for 

those nanostructures in which the contact points were clustered together. 

Presumably, closely spaced interactions act in a cooperative manner as opposed to 

independently, enhancing the thermal stability of the products.   

 Next, the influence of conformational flexibility of discrete DNA 

nanostructures on their assembly into higher-order dimer super-structures through 

sticky end cohesion was investigated. Several representative DNA nanostructures 

with well-characterized structural flexibility were selected for the study and the 

equilibrium products of their association were analyzed. Flexible DNA 

nanostructures were found to assemble into dimers with moderate stability, while 

dimers composed of rigid nanostructures were significantly more stable. 

Identification of the enthalpic and entropic contributions to the overall free energy 

of nanostructure association provided a more detailed view of the assembly 

process. While the enthalpic contribution of the weak interactions (hydrogen 
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bonding, polar forces, dispersive interactions, etc.) between DNA nanostructures 

was more favorable for flexible structures, the entropic penalty was significant, 

leading to lower stability of the equilibrium products. Meanwhile, the enthalpic 

contribution of the weak interactions was not as favorable for the dimerization of 

rigid structures, however, the reduced entropic penalty lead to the most stable 

association. It is reasonable to hypothesize that increased conformational 

flexibility allows the weak interactions through which the nanostructures 

associate to adopt the most favorable arrangement in space, leading to greater 

stability. However, rigidity within a DNA nanostructure results in the effective 

pre-organization of the binding site, with the entropic cost of binding groups paid 

when the individual nanostructure is assembled. Association of the discrete DNA 

nanostructures demonstrated a well known thermodynamic phenomenon referred 

to as enthalpy-entropy compensation in which there is a linear relationship 

between the enthalpy and entropy changes. Overall, the most stable higher-order 

structures were formed from rigid components, while the least stable were formed 

from flexible components, with a very large (> 10°C) margin between the two 

cases.  

 Finally, the non-equilibrium characteristics of the assembly of DNA 

nanostructures into higher-order complexes were examined. A multi-helical DNA 

nanostructure was selected to serve as a nanoscale ‘molecular chip’, for the 

‘detection’ of an oligonucleotide ‘target’. The influence of binding site 

accessibility and character was evaluated in the study. Varying degrees of 

crowding of the binding site were achieved by inclusion or exclusion of certain 
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features of the corresponding nanostructures. Several states of crowding were 

simulated, from near complete accessibility (relative to the other states) to virtual 

inaccessibility. The rate of transformation from individual unbound DNA 

nanostructure and oligonucleotide target to bound complex was determined for 

each crowding situation, revealing that the most accessible binding site results in 

the fastest transformation from unbound to bound states. However, the difference 

in the rate of transformation for the two extreme cases of crowding was smaller 

than expected, with the least accessible binding site corresponding to 30% slower 

kinetics than the most accessible. Unexpectedly, it wasn’t crowding of the binding 

site, but interactions between the binding site and proximal elements of the DNA 

nanostructures that led to the greatest reduction in the rate of complexation. The 

formation of secondary structures between the Target Probe and neighboring 

single stranded DNA was found to significantly affect the hybridization process, 

with a nearly order of magnitude reduction in the rate of Target binding in some 

cases. Presumably, the partial occupation of the binding site by other elements of 

the DNA nanostructure reduced the number of successful collisions between the 

target and target Probe and subsequent hybridization of nucleotides. The results 

presented here strongly suggest that the rate constant of hybridization of a DNA 

strand to its complement in a DNA tile, in the presence of additional DNA 

surrounding the hybridization site, is strongly dominated by a rate-limiting 

nucleation step.  
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5.2. Future Directions 

 Considering the diversity of DNA nanostructure building blocks and 

higher-order structures that have been developed over the past 30 years, there 

have been remarkably few attempts to characterize the bottom-up self-assembly 

of DNA nanostructures. Nobel physicist Richard Feynman’s statement, “There is 

(still) plenty of room at the bottom” is an excellent description of the opportunity 

that exists in DNA nanotechnology to investigate the details of nanostructure self-

assembly.
1
 With greater knowledge of the equilibrium and non-equilibrium 

factors that govern intermolecular DNA nanostructure association, it will be 

possible to exert greater control over the self-assembly process. For example, one 

of the main obstacles in achieving robust algorithmic DNA self-assembly is the 

presence of several types of errors: structural, nucleation, and growth errors have 

hindered the development of this field.
 
 As the size of DNA nanostructure 

building blocks and the consequent DNA nanoarrays increases, the presence of 

small assembly errors lead to large defects in the products. It may be possible to 

reduce error rates by carefully tuning the kinetics and thermodynamics of 

assembly, and studies that characterize various assembly situations will lead to 

better control over the self-assembly process. In addition, this knowledge may 

lead to more efficient DNA nanostructures that are composed of the minimum 

number and arrangement of intermolecular interactions, a favorable atom-by-atom 

economy of sorts.  

 There is an ongoing effort to extend control over the self-assembly process 

to as many dimensions as possible and in some cases, this includes time.
2
 In 
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addition to exerting greater control over end point structures, knowledge of 

particular DNA nanostructure assembly details could prove useful to dynamic 

systems. Many DNA nanostructures have been developed to undergo a triggered 

change in shape with a variety of different principles used to actuate the change 

including: buffer condition, strand-displacement equilibria, and protein binding.
2
 

In addition to changes in shape, changes in the size of DNA nanostructure arrays 

can also be executed. For example a ‘hybridization chain reaction’ can be used to 

trigger the self-assembly of DNA nanostructures: the ability to perform this 

transformation comes from the potential energy that is stored in locked 

conformations of DNA, such as loops that are kinetically stable at a certain 

temperature over a long time scale. The conformations may be unlocked using a 

chain reaction of successive hybridizations initiated by a catalyst oligonucleotide. 

With knowledge of the rate of transformation of a given hybridization or 

intermolecular DNA nanostructure recognition event, it will be possible to 

maximize the performance of dynamic systems by adjusting the structural details 

of the system components. 
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Figure S1. Schematic representation of the tile to tile association for 4 and 6 helix 

tiles. DNA sequences used in this study on the self-assembly of 4HX and 6 HX 

tiles and heterodimers are shown. For detailed design and sequence information 

for the 4HX system, see Figure S2. Each 6HT consisted of fourteen different 

oligonucleotides indicated by numbers on the 5’ end of each strand. For the entire 

collection of designs explored for the 6HX system, the reporter oligomers were: 

5’-Fsc-oligomer 3 of tile A and 5’-TAMRA-oligomer 2 of tile B. Complementary 

sticky end sequences are denoted 1-6 and 1’-6’. For every design investigated 

only oligomers necessary for sticky end cohesion (actual sequence of sticky end 

portion of oligomer shown in pink) varied, the core sequences of the tiles 

remained constant. For those designs not employing sticky ends at certain 

positions, the constituent oligomers at those positions were trimmed back six 

nucleotides (corresponding to the sticky end sequence). 
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Figure S2. Schematic representation of the tile to tile association for 4 helix 

tiles. DNA sequences used in this study on the self-assembly of 4HX tiles and 

heterodimers are shown. Each 4HT consisted of nine different oligonucleotides 

indicated by numbers on the 5’ end of each strand. For the entire collection of 

designs explored for the 4HX system (a-h), the reporter oligomers were: 5’-Fsc-

oligomer 3 of tile A and 5’-TAMRA-oligomer 2 of tile B. For every design 

investigated only oligomers necessary for sticky end cohesion (actual sequence of 

sticky end portion of oligomer shown in pink) varied, the core sequences of the 

tiles remained constant. All sequences used for the 4HX system are exactly as 

shown in a-h. 
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Figure S3. Raw data (left panels), normalized FRET thermal curves (center 

panels) and Arrhenius plots (right panels) obtained for 4HX dimers at 0.5 µM. 

From (a) to (h) the raw data, normalized FRET curves, and Arrhenius plots of 

4HX designs 1-8 are shown. Left panels: the intensity of fluorescence emission of 

fluorescein (at 522 nm) is plotted against temperature in the 25 to 80 ºC range. 

The heating and cooling profiles of the donor-acceptor labeled samples are shown 

in orange and cyan, respectively. The heating and cooling profiles of the reference 

sample containing the donor only are shown in magenta and olive, respectively. 

Comparison of the thermal profiles allowed the determination of the normalized 

FRET efficiency curves illustrated in the center panels. Center panels: the 

normalized FRET efficiency is plotted against temperature in the 25 to 80 ºC 

range. The heating and cooling profiles are shown in red and blue, respectively. 

All the dimers analyzed showed a reversible and cooperative thermal transition 

which enabled the determination of thermodynamic parameters via application of 

the Van’t Hoff law. Right panels: the application of the Van’t Hoff law allowed 

for the creation of Arrhenius plots (ln Keq vs 1/T). From the slope and intercept of 

the linear regression (shown in black) the enthalpy and entropy change for the 

assembly process was obtained.  
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Figure S4. Raw data (left panels), normalized FRET thermal curves (center 

panels) and Arrhenius plots (right panels) obtained for 6HX dimers at 0.5 µM. 

From (a) to (f) the raw data, normalized FRET curves, and Arrhenius plots of 

representative 6HX designs denoted by the helix number(s) of sticky end 

associations. Left panels: the intensity of fluorescence emission of fluorescein (at 

522 nm) is plotted against temperature in the 25 to 80 ºC range. The heating and 

cooling profiles of the donor-acceptor labeled samples are shown in olive and 

cyan, respectively. The heating and cooling profiles of the reference sample 

containing the donor only are shown in magenta and orange, respectively. 

Comparison of the thermal profiles allowed the determination of the normalized 

FRET efficiency curves illustrated in the center panels. Center panels: the 

normalized FRET efficiency is plotted against temperature in the 25 to 80 ºC 

range. The heating and cooling profiles are shown in red and blue, respectively. 

All the dimers analyzed showed a reversible and cooperative thermal transition 

which enabled the determination of thermodynamic parameters via application of 

the Van’t Hoff law. Right panels: the application of the Van’t Hoff law allowed 

for the creation of Arrhenius plots (ln Keq vs 1/T). From the slope and intercept of 

the linear regression (shown in black) the enthalpy and entropy change for the 

assembly process was obtained.  
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Figure S5. Control experiment to determine the contribution of stacking 

interactions between tiles to the inter-tile association measurements. The left 

panel in (a) schematically illustrates the dissociated individual tiles and associated 

dimer superstructure for 4-Helix Design #1. The left panel in (b) schematically 

illustrates the dissociated individual tiles and associated dimer superstructure for 

4-Helix Design #1 Control, where one single strand from each of helices 2, 3, and 

4 have been modified with a poly T sequence to prevent stacking interactions 

between the left and right side tiles. The right panels in (a) and (b) are the 

corresponding normalized FRET thermal curves for 4-Helix Design #1 and 4-

Helix Design #1 Control, respectively. The normalized FRET efficiency is plotted 

against temperature in the 25 to 80 ºC range. The heating and cooling profiles are 

shown in red and blue, respectively. The graph in (c) is a superimposition of the 

FRET thermal curves for the 4-Helix Design #1 and 4-Helix Design #1 Control. 

The heating and cooling profiles of 4-Helix Design #1 are shown in red and blue, 

respectively. The heating and cooling profiles of 4-Helix Design #1 Control are 

shown in magenta and cyan, respectively. The curves for both designs show no 

considerable difference, indicating no significant contribution to the association 

between the tiles as a result of stacking interactions. 
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Structural Characterization 

 

 
 

 

Figure S6. Characterization of the self-assembled individual 4HX tiles as well 

as the final superstructure was demonstrated by non-denaturing PAGE (8% PAGE 

in 1X TAE Mg buffer running conditions: 150V, 20ºC for 5 hours, ethidium 

bromide stained). In both gels, M contains a 10 bp DNA ladder size marker. The 

gel in (a) shows 4HX constructs 1-4. From lanes 1-12 the following individual 

tiles and dimer superstructures were loaded: 4HX design #1 tile A, tile B, and 

dimer; 4HX design #2 tile A, tile B, and dimer, 4HX design #3 tile A, tile B, and 

dimer; and 4HX design #4 tile A, tile B, and dimer. All individual and dimer tile 

structures showed one major band, with individual tiles migrating faster through 

the gel than dimer tile structures. The gel in (b) shows 4HX constructs 5-8. From 

lanes 1-12 the following individual tiles and dimer superstructures were loaded: 

4HX design #5 tile A, tile B, and dimer; 4HX design #6 tile A, tile B, and dimer, 

4HX design #7 tile A, tile B, and dimer; and 4HX design #8 tile A, tile B, and 

dimer. All individual and dimer tile structures showed one major band, with 

individual tiles migrating faster through the gel than dimer tile structures. 
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Jeanette Nangreave, Hao Yan*, Yan Liu* 
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Arizona State University, Tempe, AZ, 85287, USA 

 

 

Materials and Methods 

 

Self-assembly of DNA nanostructures: All DNA strands used for assembly of 

nanostructures were purchased from Integrated DNA Technologies, Inc. 

(www.idtdna.com) and purified by denaturing polyacrylamide gel electrophoresis 

(PAGE; 6-10% acrylamide in 1X TBE buffer: 89mM Tris base, 89 mM Boric 

acid, 2mM EDTA, pH 8.0) for the unmodified DNA oligomers or by HPLC for 

the dye labeled DNA oligomers. Assembly of the individual tiles as well as the 

final dimers were performed by mixing equimolar amounts of all the oligomers 

present in the structures at a final concentration of 0.3 µM for FRET experiments 

and 0.1 µM for gel assays, in 1x TAE Mg
2
+ buffer (40 mM Tris base, 20mM 

Acetic acid, 2 mM EDTA·Na2·12H2O, 12.5 mM (CH3COO)2Mg·4H2O). A-type 

tiles contained one oligomer with a Fluorescein dye modification and B-type tiles 

contained one oligomer with a TAMRA dye modification. For FRET experiments 

self-assembly of nanostructures occurred during the spectroscopic measurement 

process; the oligomer mixtures were heated at 80ºC for 5 minutes and cooled from 

80ºC down to 25ºC (~ -0.1 ºC/min) using an automated real-time PCR 

thermocycler (Mx3005P, Strategene). The formation of self-assembled individual 

tiles as well as the final dimers were also verified by non-denaturing PAGE (7% 

acrylamide in 1x TAE Mg buffer (40 mM Tris base, 20mM Acetic acid, 2 mM 

EDTA·Na2·12H2O, 12.5 mM (CH3COO)2Mg·4H2O)) at 200V, 20ºC for ~4 hours. 

For competitive displacement experiments the preassembled nanostructures was 

prepared by heating the oligomer mixtures at 90ºC and cooling to 4ºC over 12 

hours using an automated PCR thermocycler (Mastercycler Pro, Eppendorf). 

 

FRET experiments: The fluorescence thermal curves were measured in 8 well 

optical tube strips using a MX3005P real-time thermocycler (Strategene). After 

mixing equimolar amounts of all oligomers present in the nanostructures (0.3 µM 

final concentrations in 1xTAE.Mg buffer), 20 µL of each sample was pipetted 

into Strategene optical tube strips in triplicates and closed with Strategene optical 

caps. The samples were heated to 80ºC for 5 minutes, and upon excitation at 492 

nm, the fluorescence emission of fluorescein (522 nm) was monitored while the 

temperature was reduced from 80ºC to 25ºC with a temperature gradient of -

0.1ºC/min. Heating cycles were performed in the same manner: after one cooling 

cycle the samples were held at 25ºC for 10 minutes and upon excitation at 492 
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nm, the fluorescence emission was monitored while the temperature was 

increased from 25ºC to 80ºC with a temperature gradient of +0.1ºC/min. All 

experiments were repeated at least twice in triplicates to ensure reproducibility. 

For all the nanostructures investigated, two samples were prepared with identical 

experimental conditions: One sample (A
D
B

A
) contained the donor (fluorescein) on 

Tile A and the acceptor (TAMRA) on Tile B, while the second sample (A
D
B) 

contained only the donor fluorophore on Tile A and corresponding unlabeled 

oligomer on Tile B. This scheme allowed for the measurement of the decrease in 

donor emission resulting from energy transfer to the acceptor in order to calculate 

the FRET efficiency. This method also allowed for the variations in the donor’s 

fluorescence as a result of changes in temperature to be taken into account. 

Results of all FRET experiments can be found in SI Figure 2. 

  

Competitive displacement: Initially, fluorophore labeled A
D
B

A
 dimers were 

assembled with a 0.1 µM concentration as previously described, divided into 

aliquots and placed into individual PCR tubes. Unlabeled, type B tiles 

(displacement tiles) that contain complementary sticky ends to that of A tile were 

also assembled with final concentrations of 0.02 µM and 0.2 µM. Non-denaturing 

PAGE gels (7% acrylamide in 1X TAE Mg buffer) were prepared prior to adding 

the displacement tiles to the preassembled dimers. The competitive displacement 

experiments were performed as follows: a specific volume of displacement tile 

was added to each preassembled dimer aliquot, with the actual volumes 

corresponding to particular molar ratios of replacement tile to preassembled 

dimer. The following molar ratios of secondary tile to preassembled dimer were 

investigated: 0.1:1, 0.2:1, 0.35:1, 0.5:1, 0.7:1, 1:1, 1.5:1, 2:1, 3:1, 4:1, and 5:1 

(lanes 4-14, respectively, in Figure 3.5 and SI Figures 3-5). Each mixture was 

then diluted to the same volume to maintain a constant dimer concentration for all 

samples and the competitive displacement reaction was allowed to proceed at 

constant temperature (5 ºC, 10 ºC, 15 ºC, and 20 ºC). After the elapsed time 

(ranging from 2 hours to 300 hours to allow certain reactions to reach 

equilibrium) the sample mixtures were analyzed by non-denaturing PAGE (200V, 

for 3.0-4.5 hours) at the same temperature as the corresponding displacement 

reaction. The mobility of the various structures in the PAGE gels could be 

followed via the fluorophore labeled oligomers contained within the individual 

tiles. In order to visualize the fluorescently labeled tiles the gels were imaged 

using a Typhoon Trio Variable Mode Imager (GE Healthcare) by scanning at 488 

nm and 532 nm and collecting the fluorescence emission from the two 

fluorophores (fluorescein, 520 nm and Tamra, 583nm). The intensity of each band 

was determined using ImageQuant TL gel analysis software (Amersham 

Biosciences).  

 

Thermodynamic characterization 

After raw data was collected from FRET experiments, the efficiency of energy 

transfer (E) was determined at each temperature according to the following 

equation: 
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where IDA and ID are, respectively, the fluorescence intensities of the FRET donor 

(Fluorescein) in the presence and absence of the FRET acceptor (TAMRA). 

Assuming the change in the fluorescence intensity of the donor is proportional to 

the formation of dimers containing the FRET pair, and that the system reaches 

equilibrium at each temperature as a result of the slow temperature gradient, the 

fraction of assembled dimer structures at any given temperature θ(T) is obtained 

by normalization of FRET efficiency as a function of temperature:  

minmax
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ETE
T

−

−
=θ   [2],  

where Emin represents the minimum FRET efficiency that occurs when the dimer 

is completely dissociated, and Emax represents the maximum FRET efficiency that 

occurs when the dimer is completely assembled. θ(T) gives information about the 

equilibrium shift of the reaction of A+B ⇔ AB as a function of temperature: at 

Emax all DNA tiles are fully assembled to form AB dimers, and therefore θ = 1. In 

contrast, at Emin all DNA strands are completely dissociated and therefore θ = 0.  

 

The intensity of fluorescence emission of the FRET donor in the presence and 

absence of the acceptor, IDA and ID, was obtained for each pair of samples. The 

raw data was plotted against temperature in the 25ºC to 80ºC range and the 

heating and cooling profiles were superimposed (a typical sample is shown in 

Figure 3.3a in the main text).  Emin and Emax are directly determined from E(T) 

data, obtained by equation [1], by averaging the lowest and highest range data 

from multiple samples. Emin and Emax are not temperature dependent:  Emin (high 

temperature) is close to 0 for all cases, Emax is in the range of 0.65-0.8, depending 

on the nature of the sample. The lowest Emax values are mostly for the dimers with 

lower melting temperatures, which is likely the result of instrumental limitations 

in that we did not reach 100% formation of the dimer at the lowest temperature 

available (25
o
C).  After determining the assembled fraction of dimers at each 

temperature using equations [1] and [2], θ was plotted against temperature with 

the heating and cooling profiles superimposed (Figure 3.3b). It is observed that 

the heating and cooling profiles for an individual construct followed each other 

closely with negligible hysteresis, especially for the normalized data (Figure 

3.3b), indicating the reversibility of the dimer formation and dissociation 

processes.  

The raw fluorescence intensity data (Figure 3.3a) reflects the assembly 

process for a typical sample. During the assembly process (cooling from 80°C to 

25°C), the A
Donor

B
Acceptor 

constructs exhibited a gradual increase in the donor 

emission while cooling, with a sharp drop at ~42 °C. The A
Donor

B reference 

sample also exhibited a minor and gradual increase in the donor emission, with a 

slightly steeper increase at ~42 ºC. For both samples, the change in donor 

emission at ~42 °C corresponds to the formation of the dimer superstructure.  The 
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significant drop in donor emission for the A
Donor

B
Acceptor

 sample is a result of 

efficient energy transfer to the acceptor when the FRET pair was brought into 

close proximity upon dimer formation. The slight increase for the A
Donor

B sample 

is most likely due to a change in the local environment of the dye upon dimer 

formation, which affects its emission.  

The subtraction of the two curves and normalization according to 

equations [1] and [2] results in the curves shown in Figure 3.3b, which exhibit a 

single transition that is directly related to the dimer formation.   

The transition temperature (melting temperature) was obtained by fitting 

the first derivative of θ vs. temperature with a Gaussian function,  
2

2

0
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where Tm is the midpoint of the transition temperature, and w is ~ 0.849 the full 

width of the peak at half height (Figure 3.3c). All the constructs analyzed showed 

a reversible thermal transition, allowing the application of the van’t Hoff law.  

For van’t Hoff analysis, the variation of the equilibrium constant (Keq) 

with temperature is used to obtain the enthalpy and entropy changes of the 

complex formation. The equilibrium constant of dimer formation can be 

expressed as a function of the assembled fraction of dimers at equilibrium: 

2

0 )1( θ

θ

−
=

C
Keq   [4],  

where C0 is the molar concentration of the individual tiles in the mixture, and θ  is 

the assembled fraction of the dimer structure at equilibrium assuming a two-state 

transition.  The following equation describes Keq as a function of temperature: 

 ln
R

S

RT

H
Keq

∆
+

∆−
=   [5], 

where ∆H is the enthalpy change and ∆S is the entropy change. Plots of ln Keq vs 

1/T in the temperature range of the transitions were linear, indicating that ∆H and 

∆S are temperature independent (Figure 3.3d). The van’t Hoff enthalpy and 

entropy changes for the reversible thermal transitions allowed the calculation of 

changes in free energy for the assembly process using the Gibbs equation: 

STHG ∆−∆=∆   [6],   

where T is 298 K (25 °C).  

 

Figures 

 

The design and components of the DNA tile dimers studied in this report are 

shown in SI Figure S1, including the sequences of the DNA strands used. FRET 

thermal data analysis is detailed for each sample in SI Figure S2, panels A-J.  The 

thermodynamic constants of dimer formation obtained from the data analysis are 

summarized in Table 3.1 and Table 3.2 in the main text. The competitive 

displacement reactions at temperatures ranging from 5ºC to 20ºC were analyzed 

by native gel electrophoresis and the gel images are shown in duplicate in SI 

Figures S3-18. 
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Figure S1. Design of all DNA tiles used in the study, with the corresponding 

sequences of the constituent oligonucleotides. 
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Figure S2. Results of the FRET thermal analysis, with samples identified above 

the graphs. The left panel corresponds to the raw data (fluorescence intensity vs. 

temperature) that is collected directly from the real-time PCR thermocycler, with 

the heating and cooling curves for the A
Donor

B
Acceptor

 samples in red and blue, 

respectively, and the heating and cooling curves for A
Donor

B samples in light 

magenta and cyan, respectively. The middle panel shows normalized FRET 

efficiency or fraction of dimer formation, θ,  as a function of temperature. Profiles 

for both heating (red) and cooling (blue) are plotted together, exhibiting negligible 

hysteresis for dimers. The right panel contains van’t Hoff plots with 

corresponding linear fit and is used to calculate the changes of enthalpy (∆H), 

entropy (∆S) and thereby the free energy change (∆G).      
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Figure S3. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4a. Flexible J-A /J-B dimers 

are initially assembled, followed by the addition of rigid, DX-B as indicated. The 

displacement reaction was allowed to proceed for 2 hours at 20C. Two replicate 

trials are shown. 
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Figure S4. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4a. Flexible J-A /J-B dimers 

are initially assembled, followed by the addition of rigid, DX-B as indicated. The 

displacement reaction was allowed to proceed for 2 hours at 15C. Two replicate 

trials are shown. 
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Figure S5. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4a. Flexible J-A /J-B dimers 

are initially assembled, followed by the addition of rigid, DX-B as indicated. The 

displacement reaction was allowed to proceed for 2 hours at 10C. Two replicate 

trials are shown. 
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Figure S6. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4a. Flexible J-A /J-B dimers 

are initially assembled, followed by the addition of rigid, DX-B as indicated. The 

displacement reaction was allowed to proceed for 2 hours at 5C. Two replicate 

trials are shown. 
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Figure S7. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4b. Semi-rigid DX-A/J-B 

dimers are initially assembled, followed by the addition of rigid, DX-B as 

indicated. The displacement reaction was allowed to proceed for 2 hours at 20C. 

Two replicate trials are shown. 
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Figure S8. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4b. Semi-rigid DX-A/J-B 

dimers are initially assembled, followed by the addition of rigid, DX-B as 

indicated. The displacement reaction was allowed to proceed for 2 hours at 15C. 

Two replicate trials are shown. 



169 

 

 
 

 

Figure S9. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4b. Semi-rigid DX-A/J-B 

dimers are initially assembled, followed by the addition of rigid, DX-B as 

indicated. The displacement reaction was allowed to proceed for 2 hours at 10C. 

Two replicate trials are shown. 
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Figure S10. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4b. Semi-rigid DX-A/J-B 

dimers are initially assembled, followed by the addition of rigid, DX-B as 

indicated. The displacement reaction was allowed to proceed for 2 hours at 5C. 

Two replicate trials are shown. 
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Figure S11. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4b. Semi-rigid DX-A/J-B 

dimers are initially assembled, followed by the addition of rigid, DX-B as 

indicated. The displacement reaction was allowed to proceed for 300 hours at 

20C. Two replicate trials are shown. 
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Figure S12. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4b. Semi-rigid DX-A/J-B 

dimers are initially assembled, followed by the addition of rigid, DX-B as 

indicated. The displacement reaction was allowed to proceed for 300 hours at 

15C. Two replicate trials are shown. 
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Figure S13. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4b. Semi-rigid DX-A/J-B 

dimers are initially assembled, followed by the addition of rigid, DX-B as 

indicated. The displacement reaction was allowed to proceed for 300 hours at 

10C. Two replicate trials are shown. 
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Figure S14. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4b. Semi-rigid DX-A/J-B 

dimers are initially assembled, followed by the addition of rigid, DX-B as 

indicated. The displacement reaction was allowed to proceed for 300 hours at 5C. 

Two replicate trials are shown. 



175 

 

 
 

 

Figure S15. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4c. Rigid DX-A/DX-B dimers 

are initially assembled, followed by the addition of flexible, J-B as indicated. The 

displacement reaction was allowed to proceed for 2 hours at 20C. Two replicate 

trials are shown. 



176 

 

 
 

 

Figure S16. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4c. Rigid DX-A/DX-B dimers 

are initially assembled, followed by the addition of flexible, J-B as indicated. The 

displacement reaction was allowed to proceed for 2 hours at 15C. Two replicate 

trials are shown. 
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Figure S17. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4c. Rigid DX-A/DX-B dimers 

are initially assembled, followed by the addition of flexible, J-B as indicated. The 

displacement reaction was allowed to proceed for 2 hours at 10C. Two replicate 

trials are shown. 
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Figure S18. PAGE gel results of the competitive displacement experiments 

corresponding to the reaction illustrated in Figure 3.4c. Rigid DX-A/DX-B dimers 

are initially assembled, followed by the addition of flexible, J-B as indicated. The 

displacement reaction was allowed to proceed for 2 hours at 5C. Two replicate 

trials are shown. 
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Additional comments 

Below is a graph that represents the results of analyzing multiple measurements of 

6 independent samples of the same composition. There are totally 12 Gaussian 

curve fits (black lines) generated by Origin Pro 7 Software that are overlayed, 

with two plots corresponding to a single sample, one collected while heating (red 

dots) and one while cooling (blue dots).  

 
 

The software generates each Gaussian fit and provides the Tm (xc) and width of 

each curve (w) as shown in the lower right panel of the graph below. 

 
 

The values that are determined by the software are compiled in an Excel 

spreadsheet and descriptive statistics are generated by Excel, including the 

standard deviation reported in Tables 3.1 and 3.2 with the significant numbers 

reported according to the values of the standard deviation. Below is the excel 

analysis of a typical sample. 
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DX Dimer Tm  Descriptive Statistics 

Sample 1 Cooling 41.5    
Sample 2 Cooling 41.3  Mean 41.35833 
Sample 3 Cooling 41.1  Standard Error 0.049937 
Sample 4 Cooling 41.5  Median 41.35 
Sample 5 Cooling 41.3  Mode 41.3 
Sample 6 Cooling 41.1  Standard Deviation 0.172986 
Sample 1 Heating 41.4  Sample Variance 0.029924 
Sample 2 Heating 41.2  Kurtosis -1.00592 
Sample 3 Heating 41.4  Skewness -0.10508 
Sample 4 Heating 41.6  Range 0.5 
Sample 5 Heating 41.3  Minimum 41.1 
Sample 6 Heating 41.6  Maximum 41.6 
   Sum 496.3 
   Count 12 

  

The mean and standard deviation are reported in Tables 3.1 and 3.2. W/2 is also 

generated in the similar way that provides the width of the transition. 

 

The following is an example of how the error bars are determined for ∆H, ∆S, and 

∆G.  First, Origin Pro 7 is used to generate the Van’t Hoff plots (black dots) that 

are required to determine ∆H, ∆S. The program is used to generate a linear fit of 

the data around the transition temperature (red line).  

 
 

The slope and intercept of the linear fit is provided by the program and entered in 

an excel spreadsheet for multiple replicates, each represented by cooling and 

heating data. The equation, ln
R

S

RT

H
Keq

∆
+

∆−
= , is used to relate the slope and 

intercept directly to ∆H and ∆S. The actual calculations are performed by Excel. 

A typical data set is shown below.   
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Replicate  Intercept Slope 
ÄH 

(kcal/mol) 
TÄS 

(kcal/mol) 
ÄS 

(kcal/mol*K) 
ÄG 

(kcal/mol) 
1 -142.48 49651 -98.66 -84.41 -0.283 -14.24 

2 -146.85 51093 -101.52 -87.00 -0.292 -14.52 

3 -145.73 50696 -100.73 -86.34 -0.290 -14.40 

1 -144.07 50165 -99.68 -85.35 -0.286 -14.33 

2 -141.64 49493 -98.34 -83.91 -0.281 -14.43 

3 -142.94 49846 -99.04 -84.68 -0.284 -14.36 

 

∆G is related to the experimentally determined values of ∆H and ∆S by the Gibbs 

equation, STHG ∆−∆=∆ , where T is 298 K (25 °C). The last column in the 

table above lists the calculated values of ∆G for this data set. Excel statistic 

analysis is then used to calculate the mean and standard deviation of the data as 

shown below. 

 

∆H  
(kcal/mol) Column1  

T∆S 
(kcal/mol) Column1 

-98.656    -84.411   
-101.521 Mean -99.66  -86.998 Mean -85.28 

-100.733 Standard Error 0.51  -86.335 
Standard 
Error 0.49 

-99.679 Median -99.36  -85.352 Median -85.02 
-98.343 Mode #N/A  -83.911 Mode #N/A 

-99.044 Standard Deviation 1.24  -84.682 
Standard 
Deviation 1.19 

 
Sample 
Variance 1.55   

Sample 
Variance 1.41 

 Kurtosis -1.15   Kurtosis -1.28 
 Skewness -0.64   Skewness -0.50 
 Range 3.18   Range 3.09 

 Minimum 
-

101.52   Minimum -87.00 
 Maximum -98.34   Maximum -83.91 

 Sum 
-

597.98   Sum -511.69 

 Count 6.00   Count 6.00 

       

       

∆S 
(kcal/mol*K) Column1  

∆G 
(kcal/mol) Column1 

-0.283    -14.245   
-0.292 Mean -0.286  -14.523 Mean -14.38 

-0.290 Standard Error 0.002  -14.398 
Standard 
Error 0.04 

-0.286 Median -0.285  -14.327 Median -14.38 
-0.281 Mode #N/A  -14.431 Mode #N/A 

-0.284 
Standard 
Deviation 0.004  -14.362 

Standard 
Deviation 0.09 

 Sample 0.000   Sample 0.01 
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Variance Variance 
 Kurtosis -1.279   Kurtosis 0.41 
 Skewness -0.497   Skewness -0.11 
 Range 0.010   Range 0.28 
 Minimum -0.292   Minimum -14.52 
 Maximum -0.281   Maximum -14.24 
 Sum -1.716   Sum -86.29 

 Count 6.000   Count 6.00 

 

Although the standard deviations for the experimentally determined ∆H and ∆S 

values are relatively large, when the ∆G values are calculated for each individual 

data set they all fall into a small range, yielding a very small standard deviation 

(about one tenth of the standard deviations of the ∆H and T∆S). An average ∆G 

value can also be calculated from the average ∆H and ∆S values, which would 

carry the large error to the calculated ∆G.  Here we reported the data calculated 

from individual data sets, with surprisingly small standard deviations for ∆G, 

which reveals that the errors in ∆H and ∆S measurements actually compensate 

each other.  
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APPENDIX C 

SUPPLEMENTAL INFORMATION FOR CHAPTER 4 
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Steric Crowding and the Kinetics of Hybridization in a DNA Nanostructure 

System* 

 

Jeanette Nangreave, Andre Vidal Pinheiro, Hao Yan*, Yan Liu* 

 

Department of Chemistry & Biochemistry and the Biodesign Institute 

Arizona State University, Tempe, AZ, 85287, USA 

 

 

 

EXPERIMENTAL 

 

Self-assembly of DNA nanostructures: All DNA strands (Figures S1-S3) used 

for assembly of nanostructures were purchased from Integrated DNA 

Technologies, Inc. (www.idtdna.com) and purified by denaturing polyacrylamide 

gel electrophoresis (PAGE; 6-10% acrylamide in 1X TBE buffer: 89 mM Tris 

base, 89 mM Boric acid, 2 mM EDTA, pH 8.0) for the unmodified DNA 

oligomers or by HPLC for the dye labeled DNA oligomers. The design of each 

6HX tile included one oligomer with a FAM (5-carboxyfluorescein) dye 

modification. Assembly of the 6HX tiles was performed by mixing equimolar 

amounts of all the oligomers present in the structures at a final concentration of 

500 nM, in 1x TAE Mg
2+

 buffer (40 mM Tris base, 20 mM Acetic acid, 2 mM 

EDTA·Na2·12H2O, 12.5 mM ((CH3COO)2Mg·4H2O)) for both fluorescence 

experiments and gel assays. The tiles were self-assembled by heating the oligomer 

mixtures at 90ºC and cooling to 4ºC over 12 hours, using an automated PCR 

thermocycler (Mastercycler Pro, Eppendorf). Before real time fluorescence 

analysis, the 6HX tile solutions were diluted to 1 nM concentration with 1x TAE 

Mg
2+

 buffer. For steady state fluorescence excitation, steady state fluorescence 

emission, fluorescence anisotropy measurements, and gel analysis, the samples 

were diluted to 50 nM concentration with 1x TAE Mg
2+

 buffer. The formation of 

the self-assembled 6HX tiles was verified by non-denaturing PAGE (5% 

acrylamide in 1x TAE Mg
2+

 buffer at 200V, 20ºC for ~4 hours (Figures S8-S12).  

  

Fluorescence measurements: All the fluorescence life-time decay measurements 

were analyzed by a time-correlated single-photon-counting (TCSPC) method 

using a Titanium Sapphire kilohertz laser system (Millennia/Tsunami, Spectra 

Physics) with a 130 fs pulse duration operated at 80 MHz, in a 1 cm path length 

quartz cell (Hellma). The laser output was tuned to 740 nm and sent through a 

frequency doubler and pulse selector (Spectra Physics, Model 3980) to obtain 370 

nm excitations at 4 MHz. Fluorescence emission was collected at a right angle to 

the excitation beam and detected using a double-grating monochromator (Jobin-

Yvon, Gemini-180) and a microchannel plate photomultiplier tube (Hamamatsu 

R3809U-50). Data acquisition was performed using a single photon counting card 

(Becker-Hickl, SPC-830), and the emission was collected at 520 nm. The 
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instrument response function (IRF) had a full width at half-maximum (FWHM) of 

35-45 ps, as verified by scattering from samples. Global analysis was performed 

using the in-house software package, ASUFIT. The lifetime of fluorescence decay 

of FAM in the 6HX tiles, before and after Target hybridization, was measured 

using the system described above; unless otherwise indicated, 120 µL of 250 nM 

6HX tile solution was used for all measurements.  

  

All steady state and real-time fluorescence spectra were measured by a Nanolog 

fluorometer (Horiba Jobin Yvon, L-format, equipped with a CW 450W Xenon 

light source, thermoelectrically cooled R928 PMT, and fully automated excitation 

and emission polarizers for anisotropy measurements), with a 1 cm path length 

quartz cell (Hellma); all spectra were corrected for the wavelength dependence of 

the detection system response. For real-time analysis, the temperature of the 

quartz cell was controlled/held constant by a refrigerated water recirculator 

(Thermoscientific).  Unless otherwise indicated, 120 µL of 50 nM 6HX tile 

solution was used for all measurements. 

 

Fluorescence emission spectra were collected in the same way as the excitation 

spectra, with the exception of experimental parameters. The parameters used to 

collect emission spectra were: 475 nm excitation wavelength, 5 nm excitation 

slits, 485-650 nm emission wavelength range, 5 nm emission slits, and 1 second 

integration time. 

 

Fluorescence anisotropy was also measured in the same manner with the 

following parameters: 495 nm excitation wavelength, 5 nm excitation slits, 540 

nm emission wavelength, 5 nm emission slits and 10 second integration time. 

Anisotropy values were calculated from the instrument software, FluorEssence for 

Windows by Horiba Scientific. 

 

  

Real time measurements: The kinetics of hybridization of a DNA Target to a 

6HX tile was monitored in real time via changes in a fluorescence dye reporter 

molecule (FAM). Changes in FAM fluorescence upon hybridization of the Target 

were recorded in real time using the system described above; unless otherwise 

indicated, 120 µL of 1 nM 6HX tile solution was used for all measurements. The 

parameters used to collect real-time spectra were: 485 nm excitation wavelength, 

3 nm excitation slits, 520 nm emission wavelength, 15 nm emission slits, and 0.5 

or 1 second integration time depending on the total measurement time. The tile 

bearing a FAM dye was tested for photobleaching under continuous excitation 

exposure. A reduction in overall emission of an equilibrated solution of 2-5% was 

found, over the course of each experiment. The temperature was held constant for 

the measurement period of all real-time data collection; the following 

temperatures were used: 11°C, 14°C, 16°C, 18°C, and 20°C.  

  

Data collection: first, the temperature of the fluorometer cell holder and the 6HX 

tile sample under investigation were allowed to equilibrate for a given period of 
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time before any measurements were taken. After reaching the desired 

temperature, the tile solution was loaded in the cuvette and the cuvette was 

inserted in the instrument. The temperature of the instrument and sample were 

again allowed to equilibrate for 2 and 5 minutes, then data collection was 

initiated. The fluorescent signal was collected as a function of time for a given 

period. Typically, the signal was collected for time duration of 150 to 350 

seconds, depending on the particular sample under investigation and the expected 

length of the subsequent hybridization reaction. The resulting spectra confirmed 

the stability (resistance to photobleaching) of the fluorophore in the sample over 

the course of the experiment. Next, data collection was again initiated and 20 

equivalents of unlabeled Target were directly added to the cuvette while it was 

still in the instrument (in the dark). The solution was mixed by pipetting for 1-2 

seconds and the kinetics of hybridization of the target was monitored for the 

length of the reaction. The resulting spectra reflected the changes in FAM 

emission that occurred as the Target hybridized to the 6HX tiles. The kinetic 

measurements were repeated at least 5 times for every design under investigation. 

Several control experiments were performed to confirm the sample addition 

process resulted in homogeneous mixing, and the results showed that the mixing 

delay was negligible compared to the hybridization kinetics. The kinetic curves 

were subsequently fit by a mono-exponential growth model and the bimolecular 

rate constants were extracted by dividing the time constant by the Target 

concentration.  

 

Native gel electrophoretic characterization of nanostructures: The correct 

assembly of all 6HX tile designs under consideration and subsequent 

hybridization of all Target and Off Target DNA was confirmed by non-denaturing 

polyacrylamide gel electrophoresis at 200V, 10-20ºC for ~4 hours. 7 pmoles of 

each 6HX tile, before and after addition of 5 equivalents of Target, were analyzed 

by 5% nondenaturing PAGE gels in 1x TAE Mg buffer.  

 

 

FIGURES 

 

The crossover design and components of the 6HX DNA tiles studied in this report 

are shown in SI Figures S1-S7, including the sequences of the DNA strands used. 

Results of the non-denaturing polyacrylamide gel electrophoretic 

characterizations of the designs investigated in this study are shown in Figures 

S8-S12. Addition spectra and kinetic measurements are shown in Figures S13-20.  
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Figure S1. Schematic diagram of the 6HX tile design used for experiment with no 

DNA surrounding the site of hybridization. The sequences of the constituent 

strands are indicated in the scheme. A Target Probe (20 nucleotide sequence in 

blue at the 3’ end of strand 11) is located at Position C, with FAM dye 

represented as a green star at the 5’ end of strand 3. The design of 6HX tiles with 

Target Probes located at Positions A and B are identical to the illustrated 

schematic, with the exception of the particular location of the Target Probe and 

FAM dye label. For all designs, the 3’ poly T termini (shown in pink on the left 

and right sides) of certain strands and were used to prevent non-specific 

association between 6HX tiles. 
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Figure S2. Schematic diagram of the 6HX tile design used for experiment with 

single stranded DNA surrounding the site of hybridization. A Target Probe (20 

nucleotide sequence in blue at the 3’ end of strand 11) is located at Position C, 

with FAM dye modified at the 5’ end of strand 3 (green star). Single stranded 

extensions (20 nucleotide poly T sequences shown in orange at the 3’ ends of 

strands 2, 4, 6, 10, and 12 for this design) crowding the site of Target 

hybridization. In addition, the poly T sequences used for the Off Target Probes 

ensure minimal interactions among the probes and between tiles. The design of 

6HX tiles with Target Probes located at Positions A and B are identical to the 

illustrated schematic, with the exception of the particular location of the Target 

Probe and FAM dye label.  
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Figure S3. Schematic diagram of the 6HX tile design used for experiment with 

double stranded DNA surrounding the site of hybridization. A Target Probe is 

located at Position C, with FAM dye modified at the 5’ end of strand 3 (green 

star). There are single stranded Off Target Probe extensions (20 nucleotide 

random sequences shown in orange at the 3’ ends of strands 2, 4, 6, 10, and 12 for 

this design) that are used to recruit the Off Target to specific helices (20 

nucleotide complement to the extensions, shown in brown). Off Target and Off 

Target Probe extension sequences were optimized to reduce the formation of 

undesirable secondary structures using NUPACK software (unpack.org). Before 

all analyses, including gel electrophoresis and kinetics of Target hybridization, the 

Off Target strand was hybridized to each Off Target Probe position, shielding the 

site of Target hybridization considerably. The design of 6HX tiles with Target 

Probes located at Positions A and B are identical to the illustrated schematic, with 

the exception of the particular location of the Target Probe and FAM dye label.  
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Figure S4. Schematic diagram of a 6HX tile design used for experiments to 

assess the effect of interactions of the Target Probe with a single stranded Off 

Target Probe adjacent to the site of Target hybridization and the resulting 

secondary structure, on the hybridization kinetics. The schematic corresponds to 

the design with a Target Probe (blue) located at Position C, with FAM dye 

modified at the 5’ end of strand 3 (green star). There are single stranded 

extensions (20 nucleotide poly T sequences shown in orange at the 3’ ends of 

strands 2, 6, 10, and 12 for this design) surrounding the site of Target 

hybridization. 8 nucleotides at the 3’ end of strand 4 (shown in blue) are 

complementary to 8 nucleotides of the Target Probe, resulting in the formation of 

an 8 base-pair double helix between the Target Probe and Off Target Probe 4.  
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Figure S5. Schematic diagram of a 6HX tile design used to assess the effect of 

interactions of the Target Probe with a single stranded Off Target Probe adjacent 

to the site of Target hybridization and the resulting secondary structure, on the 

hybridization kinetics. The design is the same as shown in Figure S4, except that 

5 nucleotides at the 3’ end of strand 4 (shown in blue) are complementary to 5 

nucleotides of the Target Probe, resulting in the formation of a 5 base-pair double 

helix between the Target Probe and Off Target Probe 4.  
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Figure S6. Schematic diagram of a 6HX tile design used for experiments to 

assess the effect of interactions of the Target Probe with a single stranded Off 

Target Probe adjacent to the site of Target hybridization and the resulting 

secondary structure, on the hybridization kinetics. The design is the same as 

shown in Figure S5, except that 5 nucleotides within the Off Target Probe 

extension of strand 4 (shown in blue) are complementary to 5 nucleotides of the 

Target Probe, providing a ‘docking’ station for the complementary nucleotides of 

the Target Probe.  
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Figure S7. Schematic diagram of a 6HX tile design used for experiments to 

assess the effect of interactions of the Target Probe with a single stranded Off 

Target Probe adjacent to the site of Target hybridization and the resulting 

secondary structure, on the hybridization kinetics. The design is the same as 

shown in Figure S6, except that 8 nucleotides within the Off Target Probe 

extension of strand 4 (shown in blue) are complementary to 8 nucleotides of the 

Target Probe, providing a ‘docking’ station for the complementary nucleotides of 

the Target Probe.  

 

Please not that the sequence of the Target, 5’-TGGTTGATGTACTTAGCTCA, 

remained constant for all designs. 

 

Figures S8 – S12 contain the electrophoretic characterization of all 6HX tile 

designs used in the study. All nondenaturing PAGE analyses were performed 

under the following conditions: 5% acrylamide, constant 200V, 11°C, ~4 hours, 

and ethidium bromide staining for visualization of the DNA. 
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Figure S8. Characterization of 6HX with no DNA surrounding the Target 

hybridization site. Left lane- 100 bp ladder; lanes 1, 3, and 5 contain 0.5 pmole 

of 6HX tile with a FAM label and the Target Probe at Position A, B and C, 

respectively; and lanes 2, 4, and 6 have the same contents as lanes 1, 3, and 5, 

plus 5 equivalents of Target, added after tile formation. 
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Figure S9. Characterization of 6HX with single stranded DNA surrounding 

the Target hybridization site. Left lane- 100 bp ladder; lanes 1, 3, and 5 contain 

0.5 pmole of 6HX tile with a FAM label and the Target Probe at Position A, B 

and C, respectively; and lanes 2, 4, and 6 have the same contents as lanes 1, 3, and 

5, plus 5 equivalents of Target, added after tile formation. 
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Figure S10. Characterization of 6HX with double stranded DNA 

surrounding the Target hybridization site. Left lane- 100 bp ladder; lanes 1, 3, 

and 5 contain 0.5 pmole of 6HX tile with a FAM label and the Target Probe at 

Position A, B and C, respectively; and lanes 2, 4, and 6 have the same contents as 

lanes 1, 3, and 5, plus 5 equivalents of Target, added after tile formation and Off 

Target hybridization. 
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Figure S11. Characterization of 6HX with the Off Target Probe partially 

complementary to the adjacent Target Probe (a secondary structure formed 

from interaction between the probes with the Off Target Probe bending to 

hybridize to an extended Target Probe). Left lane - 100 bp ladder; lane 1 – 

6HX tile with FAM label and Target Probe at Position C, with a 5 base pair 

interaction between the Target Probe and adjacent Off Target Probe; lane 2 – the 

same contents as in lane 1, plus 5 equivalents of Target; lane 3 – 6HX tile with 

FAM label and Target Probe at Position C, with an 8 base pair interaction 

between the Target Probe and adjacent Off Target Probe; lane 4 – the same 

contents as in lane 3, plus 5 equivalents of Target.  
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Figure S12. Characterization of 6HX with the Target Probe partially 

complementary to the adjacent Off Target Probe (the secondary structure 

formed from interaction between the probes with the Target Probe bending 

to hybridize to an extended Off Target Probe). Left lane - 100 bp ladder; lane 1 

– 6HX tile with FAM label and Target Probe at Position C with a 5 base pair 

interaction between the Target Probe and adjacent Off Target Probe; lane 2 – the 

same contents as in lane 1 plus 5 equivalents of Target; lane 3 – 6HX tile with 

FAM label and Target Probe at Position C with an 8 base pair interaction between 

the Target Probe and adjacent Off Target Probe; lane 4 – the same contents as in 

lane 3 plus 5 equivalents of Target.  

  



 

Figure S13. Effect of h

labeled Target was added to a unlabelled 6HX tile with a Target probe 

located at position C (equimolar ratio of Target and tile, both 50 nM)

and yellow trace are emission spectra of a TAMRA

and after hybridization to the 6HX tile. A 27% decrease in emission intensity and 

a 3-4 nm red-shift was observed after hybridization. 

550 nm. 
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Effect of hybridization on the emission of TAMRA. TAMRA

Target was added to a unlabelled 6HX tile with a Target probe 

(equimolar ratio of Target and tile, both 50 nM). The black 

emission spectra of a TAMRA-labeled Target strand, before 

and after hybridization to the 6HX tile. A 27% decrease in emission intensity and 

hift was observed after hybridization. Excitation was performed at 

585 610 635 660 685

Wavelength (nm)

Before

 

of TAMRA. TAMRA-

Target was added to a unlabelled 6HX tile with a Target probe 

The black 

labeled Target strand, before 

and after hybridization to the 6HX tile. A 27% decrease in emission intensity and 

Excitation was performed at 

685

Before



 

Figure S14. The positional effect of hybridization of an unlabeled Target on 

the emission of a Position C

spectra of 6HX tiles (50 nM) labeled with FAM at Position C, before (black line) 

and after (gray or yellow line) the addition of 5 equivalents of Target. Each graph 

reveals the change in FAM emission upon Target hybridization to the denoted 

position, with the position of the dye

3). The results demonstrate that an increase in emission only occurs when the 

Target hybridizes to Helix 3, the same helical position as the dye. The after/before 

hybridization enhancement ratios are shown in

Excitation was performed at 475 nm.

 

 

200 

The positional effect of hybridization of an unlabeled Target on 

the emission of a Position C-FAM-labeled 6HX tile. Steady-state emission 

0 nM) labeled with FAM at Position C, before (black line) 

and after (gray or yellow line) the addition of 5 equivalents of Target. Each graph 

reveals the change in FAM emission upon Target hybridization to the denoted 

position, with the position of the dye held constant for all cases (Position C, Helix 

3). The results demonstrate that an increase in emission only occurs when the 

Target hybridizes to Helix 3, the same helical position as the dye. The after/before 

hybridization enhancement ratios are shown in Figure 4.3 in the main text.

Excitation was performed at 475 nm. 

 

The positional effect of hybridization of an unlabeled Target on 

state emission 

0 nM) labeled with FAM at Position C, before (black line) 

and after (gray or yellow line) the addition of 5 equivalents of Target. Each graph 

reveals the change in FAM emission upon Target hybridization to the denoted 

held constant for all cases (Position C, Helix 

3). The results demonstrate that an increase in emission only occurs when the 

Target hybridizes to Helix 3, the same helical position as the dye. The after/before 

in the main text. 
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Figure S15. The positional effect of hybridization of an unlabeled Target on 

the emission of a Position A-FAM-labeled 6HX tile.  Steady-state emission 

spectra of 6HX tiles (50 nM) labeled with FAM at Position A were measured 

before and after the addition of 5 equivalents of Target. For each sample, the 

Target Probe was located at a different helical position within the tile (denoted 

beneath each bar in the graph), while the position of the FAM dye was held 

constant. The results demonstrate that enhancement in emission only occurs when 

hybridization occurs when the Target hybridizes to Helix 1, the same helical 

position as the dye. Excitation was performed at 475 nm. 
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Figure S16. The positional effect of hybridization of an unlabeled Target on 

the emission of a Position B-FAM-labeled 6HX tile.  Steady-state emission 

spectra of 6HX tiles (50 nM) labeled with FAM at Position B (helix 5) were 

measured before and after the addition of 5 equivalents of Target. For each 

sample, the Target Probe was located at a different helical position within the tile 

(denoted beneath each bar in the graph), while the position of the FAM dye was 

held constant. The results demonstrate that enhancement in emission only occurs 

when hybridization occurs when the Target hybridizes to Helix 5, the same helical 

position as the dye. Excitation was performed at 475 nm. 

+2% +1% 

+35% 

+2% -2% -9% 
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Figure S17. Time-resolved fluorescence decay spectra of FAM-labeled 6HX 

tiles (Position C) before (upper panel; gray series) and after (lower panel; 

yellow series) hybridization of the Target. The sample contains 250 nM 6HX 

tile and 1.25 µM Target. Excitation was at 370 nm, and emission collected at 520 

nm. The decays were fit by a bi-exponential law and residual analysis is presented 

below the decays. Lifetimes and normalized amplitudes are indicated in the inset 

tables. Figures S18-S20 show the Arrhenius plots of 6HX tiles in the presence of 

no-, single-stranded- and double-stranded DNA surrounding the site of Target 

hybridization. The values obtained for the activation energies and pre-exponential 

factors corresponding to the various hybridization reactions are included Table 

4.1 in the main text. 

 

 Tau (ns) Norm. Ampl. 

Component 1 4.09 0.980 

Component 2 1.72 0.020 

 Tau (ns) Norm. Ampl. 

Component 1 4.40 0.919 

Component 2 1.72 0.081 



 

Figure S18. Arrhenius Plots 

to a 6HX tile in the absence of 

Rate constants corresponding to the hybridization of a Target strand to a 6HX 

FAM-labeled tile with Target Probe located at Position A (blue series), Position B 

(green series) and Position C (red series) were measured at different temperatures. 

The plot of the rate constants as a function of temperature confirms a linear 

relationship that was fit by a linear regression. The regression equation and R

values are presented in the graph. Error bars represent the standard deviation of 

the values obtained for the rate constant at each temperature (N = 7). Kinetic 

constants were determined as previously described, using 1 nM 6HX tile and the 

addition of 20 equivalents of Target
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. Arrhenius Plots corresponding to the hybridization of the 

to a 6HX tile in the absence of DNA surrounding the site of hybridization

Rate constants corresponding to the hybridization of a Target strand to a 6HX 

labeled tile with Target Probe located at Position A (blue series), Position B 

series) and Position C (red series) were measured at different temperatures. 

The plot of the rate constants as a function of temperature confirms a linear 

relationship that was fit by a linear regression. The regression equation and R

in the graph. Error bars represent the standard deviation of 

the values obtained for the rate constant at each temperature (N = 7). Kinetic 

constants were determined as previously described, using 1 nM 6HX tile and the 

addition of 20 equivalents of Target, in 1x TAE Mg
2+

 buffer.   

 

the Target 

DNA surrounding the site of hybridization. 

Rate constants corresponding to the hybridization of a Target strand to a 6HX 

labeled tile with Target Probe located at Position A (blue series), Position B 

series) and Position C (red series) were measured at different temperatures. 

The plot of the rate constants as a function of temperature confirms a linear 

relationship that was fit by a linear regression. The regression equation and R
2
 

in the graph. Error bars represent the standard deviation of 

the values obtained for the rate constant at each temperature (N = 7). Kinetic 

constants were determined as previously described, using 1 nM 6HX tile and the 
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Figure S19. Arrhenius Plots corresponding to the hybridization of the Target 

to a 6HX tile in the presence of single stranded DNA surrounding the site of 

hybridization. Rate constants corresponding to the hybridization of a Target 

strand to a 6HX FAM-labeled tile with Target Probe located at Position A (blue 

series), Position B (green series) and Position C (red series) were measured at 

different temperatures. The plot of the rate constants as a function of temperature 

confirms a linear relationship that was fit by a linear regression. The regression 

equation and R
2
 values are presented in the graph. Error bars represent the 

standard deviation of the values obtained for the rate constant at each temperature 

(N = 7). Kinetic constants were determined as previously described, using 1 nM 

6HX tile and the addition of 20 equivalents of Target, in 1x TAE Mg
2+

 buffer.   
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Figure S20. Arrhenius Plots corresponding to the hybridization of the Target 

to a 6HX tile in the presence of double stranded DNA surrounding the site of 

hybridization. Rate constants corresponding to the hybridization of a Target 

strand to a 6HX FAM-labeled tile with Target Probe located at Position A (blue 

series), Position B (green series) and Position C (red series) were measured at 

different temperatures. The plot of the rate constants as a function of temperature 

confirms a linear relationship that was fit by a linear regression. The regression 

equation and R
2
 values are presented in the graph. Error bars represent the 

standard deviation of the values obtained for the rate constant at each temperature 

(N = 7). Kinetic constants were determined as previously described, using 1 nM 

6HX tile and the addition of 20 equivalents of Target, in 1x TAE Mg
2+

 buffer.  
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