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ABSTRACT

Source selection is one of the foremost challenges for searching deep-web. For

a user query, source selection involves selecting a subset of deep-web sources expected

to provide relevant answers to the user query. Existing source selection models employ

query-similarity based local measures for assessing source quality. These local measures

are necessary but not sufficient as they are agnostic to source trustworthiness and result

importance, which, given the autonomous and uncurated nature of deep-web, have be-

come indispensible for searching deep-web. SourceRank provides a global measure for

assessing source quality based on source trustworthiness and result importance. Source-

Rank’s effectiveness has been evaluated in single-topic deep-web environments. The goal

of the thesis is to extend sourcerank to a multi-topic deep-web environment. Topic-sensitive

sourcerank is introduced as an effective way of extending sourcerank to a deep-web en-

vironment containing a set of representative topics. In topic-sensitive sourcerank, multiple

sourcerank vectors are created, each biased towards a representative topic. At query time,

using the topic of query keywords, a query-topic sensitive, composite sourcerank vector is

computed as a linear combination of these pre-computed biased sourcerank vectors. Ex-

tensive experiments on more than a thousand sources in multiple domains show 18-85%

improvements in result quality over Google Product Search and other existing methods.
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Chapter 1

INTRODUCTION

1.1 Deep Web

Traditional web search has been limited to searching over surface-web, the part of web

comprising of static html pages. Surface web comprises of only fraction of data available

over the web. Recently with many databases being published online, a new type of web

content, called deep-web, is available over the web. Deep-web is the collection of web of

data stored in databases, concealed behind html query forms. Deep-web data is available

in the form of dynamic pages generated in response to query requests made to deep web

sources. Traditional search engines rely on the hyper-linked structure and static nature of

surface web to crawl and index surface web content. As neither of these are applicable to

deep web, search engine crawlers are unable to proceed beyond query forms, failing to

extract deep-web content. This makes deep-web literally invisible or hidden to surface-web

search engines.

Deep-web sources contain structured data and the information contained in these

sources span all the humanly definable topics [7]. Some estimates have pegged the size

of deep web to be 500 times that of surface web and the quality of data to be three times

that of surface web [7]. Searching over deep-web has become one of the most prominent

research areas in information retrieval due to the vast and comprehensive coverage of

deep-web content. Unavailability of direct access to deep-web data is one of the major

hindrance in searching deep-web as it prevents direct implementation of surface web’s

information retrieval techniques. Searching over deep web has been identified as the next

big challenge in information integration [19].

1.2 Searching over Deep Web

Surfacing and mediator systems have emerged as the two broad categories of search

strategies for searching deep-web. Surfacing or data warehousing [13] transforms the

dynamic model of deep-web into a static one by precomputing query submissions for all

html forms. The idea is to crawl various web-query forms, run queries on each of these

forms, collect results and index the resulting page urls and results. Once the contents of
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deep web sources have been converted into static pages and indexed, surface-web’s

information retrieval techniques can seamlessly be used for searching over deep-web.

Although this approach provides an innovative way of simultaneously querying over

surface and deep web, its main drawback is that it tries to convert the dynamic model of

deep web into a static one. When a user actually views these pages as a result of some

user-query, the results are stale and may not be accurate. This is specially true for

shopping-related deep-web sources as their contents change quite frequently. In addition

to reduction in precision, it leads to user dissatisfaction. Another issue with this approach

is that it requires blasting deep web sources with unwarranted queries. This can be too

taxing for deep web sources.

Mediator or federated information retrieval systems, broker user query

simultaneously over a subset of deep web sources, collect the responses and return a

ranked set of results to the user. Although mediating is much more difficult than surfacing,

it produces more timely and satisfactory results. A naive approach for mediator systems

would be to send the user query to all deep web sources, collect the results, rank them

and present them to the user. This approach is however quite inefficient, too burdening on

deep web sources and wastes lot of resources such as network bandwidth and processing

power. Majority of deep-web sources may not even be able to answer the query. A better

approach is to select the best subset of sources which are expected to provide relevant

results for user query. But in order to make informed decision in terms of selecting a

subset of sources, mediator systems need information about the content of deep web

sources. Over the web there are very few deep web sources which are cooperative and

make their entire corpus vocabularly and corpus statistics available to mediator systems.

Majority of deep web sources are non-cooperative as access to their content is restricted

to query-forms and only provide results in response to submitted queries [7]. Once the

query results are returned by selected deep web sources, another challenge for mediator

systems is to merge and rank these results irrespective of the ranking provided by deep

web sources. This work looks at the source selection problem and tries to address some

of its issues.
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1.3 Source Selection

Given a user query, the source selection problem is to pick a subset of deep web sources

expected to provide relevant results for the query. Even though there has been plenty of

research in this area, in both text and relational database community, all efforts have

concentrated on evaluating source quality based on query-similarity based relevance

measures specifically they estimate the likelihood of a source providing relevant answers

for the user query. These source selection methods use local measure for evaluating

source quality i.e. source quality is dependent on information that a source provides about

itself. Given the uncontrolled and open nature of deep web, another orthogonal but

important property to be considered during source selection is that of source

trustworthiness and result importance. Over the deep web, there may be hundreds or

thousands of sources which are equally relevant to a user query causing an abundance

problem. It is important that the mediator system identify trustworthy sources as it is quite

possible that some of the relevant sources might have artificially boosted their ranking for

economic gain.

Consider a scenario where there are two deep-web sources amazon.com and an

untrustworthy source like xyz.com. In order to lure users to their site, xyz.com may

misrepresent the information by advertising products at deep discounts. Intuitively the

mediator system should rank a trustworthy source like amazon.com higher than xyz.com.

Relevance based measures will fail to identify this and will rank amazon.com and xyz.com

equally. When the user clicks on results from xyz.com, the user might either be misled on

the product price during checkout or might be shown a completely different product

severely affecting user satisfaction. This necessitates the need for an additional metric of

source trustworthiness for assesing deep-web source quality.

Now that the necessity of having a trustworhiness measure has been established,

what should such a measure comprise of? Here are some reasonable desiderata which a

deep web source selection model should include,
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1. Source selection model should consider source trustworthiness while assessing

source quality.

2. Source trustworthiness of a source should be assessed based on a global measure.

It should’nt depend on any information that a source provides about itself but on the

endorsement of the source by other sources i.e. what the other sources say about a

particular source.

The challenges for deep web are similar to those faced by surface web for

determining page importance. Computation of page importance in surface web was aided

by the existence of hyper-links between web pages. These hyper-links gave rise to an

explicit endorsement structure between web pages. Authorities & Hubs [14] and

PageRank [8] are some of the earliest and popular surface web algorithmic tools which

exploited the linked structure of the web for identifying important or trustworthy pages.

Direct application of these surface web techniques is difficult for deep web as no such

endorsement structure exists between deep web sources.

At present, SourceRank [6] is the only work which addresses this issue. It

introduces an agreement based technique for implicitly creating an endorsement structure

between deep web sources. Although sourcerank has been shown to be effective in

identifying trustworthy and important sources, its effectiveness has only been evaluated in

single-topic deep-web environments. Given the enormous size of deep web, it is difficult to

create and maintain such single-topic environments for all topic-classes.

As part of this thesis, automated ways of extending sourcerank to multi-topic

deep-web environments are explored. Topic-sensitive sourcerank is presented as an

automated, efficient and effective way of capturing source trustworthiness and result

importance in a multi-topic deep-web environment.

1.4 Organization of Thesis

Chapter 2 contains a summary of source selection models for deep-web and related work.

As sourcerank is central to this work, a brief overview of sourcerank computation is

provided in Chapter 3. Chapter 4 discusses the types of deep-web environments and
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explores ways of extending sourcerank to a multi-topic deep-web environment. Chapter 5

provides a detailed description of the proposed approach, topic-sensitive sourcerank.

Experimental setup is discussed in detail in Chapter 6. Chapter 7 provides results of

experiments. Chapter 8 provides a conclusion of the work.
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Chapter 2

RELATED WORK

Collection selection has received lot of attention in both relational and text databases

community. In addition to relevancy, current relational database selection models use

coverage to minimize the cost of retrieving maximum number of unique records from

minimum number of sources [15]. Coverage of a database is a measure of number of

relevant tuples to the query.

CORI [10] and GlOSS [11] are among the earliest source selection techniques

employed for text databases. These techniques are purely query-based relevancy

measures. ReDDE [18] considered database size for estimating distribution of relevant

documents. Some of the current research [17] has been directed towards considering

source coverage and source overlap for minimizing retrieval costs. SourceRank [6]

introduces an orthogonal domain-independent global measure for evaluating source

quality based on trustworthiness and result importance.

Deep-web sources are non-cooperative as the sources only provide query-based

access to their content. Callan and Connell [9] proposed a query-based sampling, QBS,

technique for obtaining resource descriptions. In QBS, probe queries are sent to

collections and the results returned are used as resource descriptions.

In surface-web, Authorithies & Hubs [14] and PageRank [8] are among the earliest

and most popular link-based techniques for identifying important, trustworthy pages.

These techniques use the hyper-linked structure of surface web to extract useful

information about page importance. Topic-sensitive pagerank [12] presented a

topic-based approach for imporving effectiveness of pagerank over surface web.
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Chapter 3

SOURCERANK

As described earlier, the absence of explicit endorsement structure between deep web

sources is a major hindrance for the application of link-based ranking strategies for deep

web. This chapter provides a review SourceRank [6], a measure which evaluates source

quality based on trustworthiness and result importance and its computation details.

SourceRank introduces a domain-agnostic agreement-based technique for

implicitly creating an endorsement structure between deep web sources. The paper

presents and supports the argument that agreement of answer sets returned by deep-web

sources in response to same queries, manifests a form of implicit endorsement among

deep web sources. This endorsement is modeled as a directed weighted agreement graph

where nodes represent deep web sources and edge weights correspond to the agreement

between deep web sources. SourceRank, a measure of quality of a source based on

trustworthiness and result importance, is computed as the stationary visit probability of a

weighted random walk performed on this agreement graph. SourceRank is computed

once for each deep-web crawl and all computations are offline. At query-time, a weighted

combination of sourcerank and a relevance-based measure is used for ranking deep-web

sources based on releavance, trustworthiness and result importance.

3.1 Agreement Computation

Computing agreement among deep-web sources based on answer sets of same query is

not trivial. Various sources represent same entity differently rendering equality-based

comparisons almost ineffective. Semi-structured nature of deep-web entities provides an

interesting middle ground between fully-structured relational database tuples and free-text

of text databases. SourceRank work combines and extends record linkage model used in

structured relational databases and named entity matching used in free-text IR systems for

accurate and timely agreement computation. Agreement is computed using a three-level

similarity computation, details of which can be found in the paper [6].
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1. Attribute value similarity, SIM(vi, vj), estimates the similarity between a pair of

attribute-values vi and vj , using Soft TF-IDF with Jaro-Winkler as the similarity

measure.

2. Tuple similarity, S(t, t′), computes similarity between a pair of deep-web entitiy t and

t′.

S(t, t′) =

∑
(vi∈t,vj∈t′)∈M wijSIM(vi, vj)√∑

vi,vj∈M w2
ij

(3.1)

vi and vj are attribute values of tuple t and t′ respectively, wij is the weight assigned

to the match between vi and vj and M is the matched pairs of attribute values

between t and t′. wij is computed as the mean inverse document frequency of

tokens in vi and vj .

3. Result set agreement, A(R1q, R2q), computes the agreement between the result

sets R1q and R2q returned by deep web sources S1 and S2 respectively in response

to query q.

A(R1q, R2q) =
∑

(t∈R1q ,t′∈R2q)∈M
S(t, t′) (3.2)

M is the matched pairs of tuples between result sets R1q and R2q.

Overall agreement between a pair of sources S1 and S2, AQS
, is the aggregate of

agreements for sampling queries QS .

AQS
(S1, S2) =

∑
q∈QS

A(R1q, R2q)

|R2q|
(3.3)

SourceRank employs a greedy technique for pair-matching operations. This helps

restrict the agreement computation time to O(N2
S) where NS is the number of deep web

sources.

3.2 SourceRank Computation

Agreements between sources are modeled as a directed weighted agreement graph.

Graph nodes represent the deep-web sources and edge weights represent the agreement

between the sources. To account for sampling bias, smoothing links are added between
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every pair of nodes. The weight of an edge S1 → S2 is computed as,

w(S1 → S2) = β + (1− β)AQS
(S1, S2)

|QS |
(3.4)

The weight of out-going edges of each vertex is normalized such that they sum to

one for each vertex.

A random deep-web searcher model is used for determining source quality based

on the agreement graph. According to this model, a searcher who has been provided with

the agreement graph will start his search by randomly picking a deep-web source. If the

searcher finds the contents of the source useful, then it is highly likely that he will also find

useful the contents of sources agreeing with current source. The searcher can select any

one of these agreeing sources by selecting one of the outgoing links with a probability

equal to the weight of outgoing link and continue his search with the source at other end of

the link. If the searcher does not find the content of source interesting, then he can

randomly select any source by following one of the smoothing links. Quality of a source is

the probability with which a random deep-web searcher will visit the source which is

computed as the stationary visit probability of a random walk performed on the agreement

graph.

Sourcerank computation can also be explained in terms of eigen vector calculation.

Let M be the square stohastic agreement matrix. Value of Mij is the normalized weight of

edge Sj → Si. Let SR be the sourcerank vector. Initially all sources are assumed to be of

same quality. If there are NS number of sources, then SR is a column vector of size NS

and is initially initialized to 1/NS . SourceRank is computed iteratively by multiplyig SR with

matrix M and updating SR after each iteration. The iteration stops when SR vector

remains unchanged in successive iterations or the change is within threshold, giving the

actual sourcerank vector SR∗. SR∗ denotes the stationary visit probability of all sources of

a weighted random walk performed on the agreement graph.

SR∗ =M × SR∗ (3.5)

To guarantee convergence, M must be irreducible, i.e. the agreement graph

should be strongly connected. Smoothing links ensure this and SourceRank computation
9



converges to a fix point value. Let M ′ be a matrix with smoothing links, M ′ can be

expressed as,

M ′ = (1− γ)×M + γ × U (3.6)

where γ is the smoothing factor or the weight given to smoothing links and U is the reset

distribution matrix representing the smoothing links i.e. U = [1/NS ]NS∗NS

Hence,

SR∗ =M ′ × SR∗ (3.7)
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Chapter 4

EXTENDING SOURCERANK TO MULTI-TOPIC DEEP-WEB ENVIRONMENT

In this section a distinction is made between single-topic and multi-topic deep-web

environments and automated ways of implementing sourcerank in these environments are

explored.

A vertical mediator system for a topic class c, is essentially a federated information

retrieval system, FIRc developed for a vertical deep-web environment, DWc, for topic

class c. DWc comprises of a subset of deep-web sources Sc such that sources in Sc

contain information related to topic class c. FIRc expects that the information need of

user queries QUc posted to such a system are also related to the same topic class c. For

FIRc to be effective, it is essential that the resource descriptions of Sc reflect the

coverage of sources Sc with respect to topic class c. SourceRank SRc created for FIRc

should capture relative trustworthiness of sources in Sc and result importance with respect

to topic class c. Both, effective topic-based resource descriptions and sourcerank SRc can

be achieved by using sampling queries QSc which are representative of topic class c.

Thus the deep-web environment DWc of mediator system FIRc for topic-class c

can be defined in terms of sources Sc, sampling queries QSc and user queries QUc such

that Sc, QSc , QUc ∈ c.

DWc : Sc, QS , QU ∈ c (4.1)

where c is a topic-class.

Arifare comparison portals are one such examples of vertical applications.

SourceRank in combination with a query-relevance based measure has been found to be

quite effective in vertical deep-environments like DWc for topic-class c. The drawback of

vertical deep-web environments like DWc is that they are difficult to create and maintain

and address the information need of a very small set of users, those interested in topic

class c. Bergman [7] has shown that deep-web contains information spanning all humanly

definable topic classes. The enormous size of deep-web makes it extremely difficult if not

impossible for creating vertical mediator systems for all topic-classes.
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Manually created online, public open-directories like dmoz.org [2],

Y ahooDirectory [5] give a sense of the topic-classes spanned by deep-web. With this

information the definition of vertical deep-web environments can be extended to define the

components of a multi-topic deep-web environment, DWC , for a set of topic-classes C,

DWC : S,QS , QU ∈ C (4.2)

If C∗ is the set of topics defined in open-directories, then the complete deep-web

environment can be defined as,

DW ∗C∗ : S,QS , QU ∈ C∗ (4.3)

As the deep-web grows, it is highly likely that mediator sytems will have to handle

environments like DWC where the environment contains information related to a set of

topic-classes C (multi-topic environments), than DWc where environment contains

information related to a single topic-class c (single-topic environments). It would be

interesting to evaluate the effectiveness of sourcerank in multi-topic deep-web

environments.

In this section different approaches for extending a source trustworthiness and

result importance measure, SourceRank, to a multi-topic deep web are explored. Similar

to surface web, there can be two main approaches for extending sourcerank to deep web -

an online approach that considers query-time information for identifying trustworthy

sources and an offline-approach which is query agnostic. A detailed description of these

approaches is provided next along with their evaluation in terms of their feasibility and

effectiveness.

4.1 Online Approach - Query-Specific SourceRank, QSR

One approach for extending SourceRank to deep web is to make SourceRank

computation query specific i.e. use query-time information for identifying trustworthy

sources. This way only the sources relevant to the query topic are ranked. This is similar

to HITS [14] used in surface web for identifying authorities and hubs. HITS performs

query-time processing on a subgraph of link structure of web to deduce authorities and

12



hubs. For deep web, the question would be which subset of deep web sources to query in

order to compute QSR? As the user is interested only in relevant and trustworthy sources,

query-relevance based similarity measures can be used to identify the subset S′ of

query-relevant deep web sources to be used for computing QSR. With the enormous size

of deep web, it is quite possible that size of S′ could well be in hundreds of thousands.

Polynomial computation time of sourcerank makes sourcerank computation for hundreds

of thousands of source infeasible during query-time. For efficiency reasons, computations

can be restricted to just top-k relevant sources. But it turns out that picking this k is not

trivial. HITS provides a desiderata that the sources belonging to S′ must satisfy

1. S′ should be relatively small

2. S′ should be rich in relevant sources

3. S′ should contain most (or many) of the most trustworthy sources

In the outlined approach, it is clear that 2. is easily satisfied and 1. has an impact

on 3. Having a small value of k will affect 3. HITS found that 3. is typically satisfied when

|S′| is between 1000-5000. Using this information, SourceRank can be computed using

atleast top-1000 relevant sources and the top-k sources ranked using SourceRank will be

relevant and trustworthy. Although this approach will be able to identify important sources

for each query, it has its own share of drawbacks. Given the time required for querying

sources, retrieving results, computing pair-wise agreement between the sources and

computing sourcerank during query-time, this approach is highly inefficient. Also since

sourcerank is computed on a very small subset of deep web sources, the approach is

susceptible to localized spam. It can also lead to less diversity in the results as the top

sources are likely to agree with each other and produce similar results, a problem quite

evident in sourcerank for vertical applications.

4.2 Offline Approach - Query-Agnostic Undifferentiated-SourceRank, USR

The other approach for extending SourceRank to deep web is to compute it offline.

Although sourcerank will capture trustworthy sources across deep web, it will be query
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agnostic. At query-time, a weighted combination of sourcerank and relevance source

ranking returned by a query-similarity based measure can be used to get a ranking of

sources based on relevancy and trustworthiness. This is similar to the surface web’s

PageRank [8] approach. In surface web creation of single importance-based ranking is

easier as the explicit endorsement structure between all web pages is easily available. In

case of deep-web, this endorsement structure is implicitly created using a set of sampling

queries. As sourcerank is computed offline, the approach is not only feasible but also

efficient in terms of query-time processing.

The drawback with this approach is that the single undifferentiated importance

ranking of deep-web sources fails to capture the fact that sources considered trustworthy

for some topic-classes may not be considered trustworthy for other topics. For example,

consider a deep web environment consisting of books and camera sources. A book source

like barnesandnoble.com would be considered trustworthy for queries related to books but

highly untrustworthy for camera related queries and the converse is true for a camera

source like jr.com. This drawback will be quite evident when the deep web environment is

dominated by sources containing information related to a subset of representative topics.

In this case, sources belonging to the dominating topics will have relatively high

sourcerank as compared to other topic sources. This is based on the fact that sources

belonging to dominating topics will be quite heavily linked, leading to higher sourcerank for

these sources. Thus a single importance ranking approach will not be as effective as a FIR

system comprising of mutliple vertical systems, one for each of the representative topics.

This was also evident from the experiments carried out on a four-topic deep-web

environment. For evaluation, the performance of FIR system, using USR computed for the

four-topic deep-web environment, was compared with that of a FIR system comprising of

four vertical systems, DSR, one for each of the topic-class. Each of these domain-specific

vertical systems DSRi where i ∈ C used a relevance measure and sourcerank for

computing source ranking. The purpose of comparing USR with a system like DSR

comprising of vertical systems is that DSR will provide an upper bound on the optimum

precision that can be achieved by combining relevance measure with source
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Figure 4.1: Comparison of USR and DSR

trustworthiness. Experimental setup section provides detailed information about the two

setups. Using test queries which were a mix of the four-topic classes, the precision of the

two systems - USR and DSR, was computed. Based on the experiments, there was

20%− 50% difference in precision values between USR and DSR as shown in Figure

4.1.

After performing a per topic-class analysis of test queries for alpha=0.9, it was

found that USR was able to match DSR performance in one topic-class and there was a

significant drop in its performance for the remaining topic-classes. As shown in Figure

4.2, USR is not able to identify important sources for Camera, Movie and Music topics

as effectively as DSR, which is reflected in the drop in precision values for test-queries for

these two topics.

Query-agnostic undifferentiated-sourcerank approach turns out to be feasible and

efficient for deep-web. But its inability to identify topic-specific importance of sources leads

to non-uniform performance across different topics making it less effective.
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Figure 4.2: Topic-Class Based Comparison of USR and DSR
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Chapter 5

TOPIC-SENSITIVE SOURCERANK - TSR

The two most popular surface web link-based ranking strategies for identifying important

pages turn out to be either infeasible or ineffective for deep web. An implementation based

on HITS approach will impact query-time efficiency, fail to identify all the trustworthy

sources, will be susceptible to local spam and will impact the diversity of source selection

model. Implementation based on PageRank approach will fail to utilize query-time

information for accurate computation of trustworthy sources. Given the unique challenges

posed by deep web and polynomial computation time for SourceRank, an ideal approach

for effectively extending trustworthiness measure to deep web would be one which is

1. Feasible

2. Requires minimal query-time processing

3. Utilizes query-time information for estimating trustworthy sources with respect to a

user query

Based on the earlier definitions for single-topic and multi-topic deep-web

environments, these two environments can be viewed as two extremes of the same

spectrum. As stated earlier, a deep web environment can be defined in terms of amount of

information available with respect to topic association of deep web sources, sampling

queries and user queries. A single-topic deep web environment is based on the availability

of oracular information that the information contained in deep web sources, sampling and

user queries all belong to same single broad-topic. While for a multi-topic environment, the

deep web sources, sampling and user queries belong to a broad range of topics with no

topic-based classification available for any of these variables. Sourcerank is quite effective

in single-topic environments but such environments are hard to achieve and maintain for

every broad-topic.

Multi-topic deep-web environments represent the real web scenario, but as seen

earlier, sourcerank loses its effectiveness in this environment. In general, agreement by
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sources in the same topic-class is likely to be much more indicative of importance of a

source than endorsement by out of domain sources. Moreover, sources might have data

corresponding to multiple topics. The importance of the source might vary across those

topics. For example, Barnes & Noble might be quite good as a book source but might not

be as good as a movie source (even though it has information about both topics). These

problems are noted for surface web (e.g. Haveliwala [12]), but is more critical for the deep

web since sources are even more likely to cross topics/domains than single web pages. To

account for this fact, in this work, the deep web source selection is extended by assessing

a topic-sensitive quality metric for the sources.

Instead of creating a single importance ranking for all deep web sources, multiple

importance ranking of deep web sources are created, each biased towards one of the

representative-topic of deep-web environment. Each of these topic-specific importance

rankings are computed offline and will capture the relative authority of deep web sources

for every topic. At query-time, query-topic is computed i.e. the likelihood of the query

belonging to each of the representative topics. Using the query-topic, the individual

topic-specific importance rankings are combined to get a query-topic sensitive, composite

importance ranking. A conjunction of composite importance scores and relevance scores

returned by a query-similarity based measure is used for ranking the sources.

Not only is this approach feasible and efficient in terms of query-time processing,

but is also effective as it makes use of query-time information to accurately capture the

notion of source trustworthiness and importance for a given query-topic. TSR is not

susceptible to localized spam as the individual topic-specific sourceranks are computed on

all sources. While computing composite sourcerank, no single precomputed sourcerank

vector biased towards a particular topic is picked, instead the individual biased sourcerank

vectors are linearly combined based on the fractional topic membership of the query.

Avoiding picking winners ensures that diverse sources are selected, ensuring diversity in

results. Next section describes the steps for implementing TSR.
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5.1 Computing Topic-Specific Importance Ranking

In order to compute biased importance ranking, representative topics for deep-web

environment need to be identified. As mentioned earlier, open directories are one of the

best source for selecting representative topics for deep web. Open directories are freely

available and since they are manually constructed, they closely represent the human

notion of topics and topic hierarchies. Topic-sensitive pagerank used 16 top-level

categories listed on dmoz.org as a set of representative topics. Query-logs are another

way of identifying the broad topics that search engine users are most likely interested in.

As deep-web sources are non-cooperative, query-based sampling techniques are used for

computing pair-wise source agreement. Each topic under ODP contains links to

surface-web sites which are authoritative sources on these topics. ODP along with the

web-links to authoritative sources serve as a source for sampling queries to be used for

each representative topic.

Using the set of sampling queries for each representative topic and sourcerank

agreement computation, biased agreement graphs, AGc, are computed for each

representative topic c, as described in [6] . To account for sampling bias, smoothing links

are added between every pair of sources in the biased agreement graphs. Performing a

random walk on the biased agreement graphs, AGc produces topic-specific sourcerank

vectors, TSRc.

5.2 Query-Time Processing

The next set of computations are performed at query time. The first task is to identify the

query-topic i.e. the likelihood of the query belonging to representative topic-classes. This

can be treated as a soft-classification problem. For a user query q and a set of

representative topic-classes ci where i ∈ C, the goal is to find the fractional topic

membership of query q with each of the topics in ci. For this task, a classifier and training

data are required.
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Training Data

In order to accurately identify query-topic, training data should be a description of the

representative topic-classes. This can only be obtained from deep-web sources by posing

the right kind of questions to them. For obtaining topic-descriptions, the questions have to

be related to keywords which are representative of the topics. Query-based sampling

techniques are used for obtaining topic-descriptions. As the topic-specific sampling

queries QSi where i ∈ C are representative keywords of topic-classes, the answers

returned by deep-web sources as responses to these sampling queries will contribute

towards topic-descriptions. Top-k results returned by every deep-web source for

topic-specific sampling queries, contribute towards topic-specific descriptions. Answer-set

of topic-specific sampling queries are grouped into text documents resulting in a text

document Di for each topic-class ci. As topic-descriptions are treated as bag of words,

topic-statistics for topic-class ci are nothing but the number of occurrence of terms t in

document Di.

Classifier

The classifier tries to identify the query-topic using query-terms and training data,

consisting of topic-class descriptions. In the proposed implementation, a multinomial

naïve-Bayes classifier, NBC, is used with parameters set to maximum likelihood

estimates to determine the topic probabilities for the user query. When a user submits a

query q, the fractional membership of the query is computed for different topic-classes i.e.

the topic-class probabilities conditioned on the query q are estimated.

For a topic-class ci, this is computed as,

P (ci|q) =
P (q|ci)× P (ci)

P (q)
∝ P (ci)

∏
j

P (qj |ci) (5.1)

where qj is the jth term of user query q.

P (ci) can be set based on availability of domain knowledge but for this work

uniform probabilities are used for topic-classes. So the above equation can be updated as,

P (ci|q) =
∏
j

P (qj |ci) (5.2)
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After computing the topic probabilities of the query, the next step is to compute the

query-topic sensitive importance scores for all deep web sources. For a source sk, its

query-topic sensitive score or the composite sourcerank score, CSRk is given by,

CSRk =
∑
i

P (ci|q)× TSRki (5.3)

where TSRki is the topic-sensitive sourcerank score of source sk for topic-class ci

CSR vector gives the query-topic sensitive sourcerank for all deep-web sources.

Since CSR is computed during query-time, it is important that its processing time

is kept to a minimal. As CSR will be used in conjunction with a relevance measure,

instead of computing CSR for all sources, it can be restricted to just the relevant sources.

As long as number of representative topics is small, topic-sensitive sourcerank approach

is efficient. For large number of representative topics, CSR computation can be

performed by selecting only top-k most relevant topics for user query q to minimize

query-processing time.

5.3 Source Selection

Source selection for user query q based on relevancy and importance, involves a weighted

combination of relevance scores, R returned by a query-based similarity relevance model

and CSR computed using TSR approach. For a source sk, its overall score based on

relevancy and importance is computed as,

OverallScorek = α×Rk + (1− α)× CSRk (5.4)

where α is the weight given to query-relevancy model. In this work, α value is

experimentally estimated.

Top-k sources for user query q are selected based OverallScore and q is

brokered over the selected sources.

5.4 System Architecture

Figure 5.1 provides an overview of the system performing topic-sensitive source selection.

It consists of two main parts. An offline component which uses the crawled data for

computing topic-sensitive SourceRanks and topic-descriptions. As mentioned earlier, both
21
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Figure 5.1: Multi-Domain Deep Web Integration System Combining Online Query Classifi-
cation and TSR Based Source Selection.

these computations are influenced by the topic-specific crawl obtained using topic-specific

sampling queries. The online component consists of a classifier which performs user

query-classification using the topic-descriptions. The source selector uses the

query-classification information to combine TSRs in order to generate query specific

ranking of sources. Result fetcher queries the top-k ranked sources, merges and ranks the

results and returns top-5 results to the user.
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Chapter 6

EXPERIMENTAL SETUP

To evaluate the effectiveness of the proposed approach and compare it with other source

selection methods, experiments were performed on a multi-topic deep-web environment

with more than thousand sources in four representative topic classes - camera, book,

movie and music.

C = {camera, book,movie,music} (6.1)

Equation 6.1 represents the set of topic-class C used for the experiemental setup.

6.1 Deep-Web Sources S

For the experiments, deep-web sources were collected via Google Base. Google Base

acts as a central repository where merchants can upload their databases thereby

publishing the databases over the web. Google Base provides API-based access to data,

returning ranked results. Google Base’s Search API for shopping allows querying of data

uploaded to Google Base. Each deep-web source in Google Base is associated with a

sourceId. For selecting sources for the multi-topic deep-web environment, Google Base

was probed with a set of 40 queries. These 40 queries contained a mix of camera model

names, book, movie and music album titles. From the first 200 results of each query,

sourceIds were collected and these sourceIds were considered as a source belonging to

the multi-topic deep web environment. A total of 1440 deep web sources were collected

for the multi-topic environment.

S =
⋃
i∈C

Si (6.2)

Equation 6.2 represents the set of sources S used for the multi-topic environment.

6.2 Sampling Queries QS

For the experiments the deep-web sources were assumed to be non-cooperative.

Query-based sampling strategy is used for obtaining a sampled set for the sources. For

generating the sampling queries publicly available online resources were used. 200

camera model names were randomly selected from pbase.com [3], 200 book titles from

New York Times best sellers books [1], 200 movie titles from dmoz.org [2] and 200 music
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album names from wikipedia’s top-100 number one singles titles from 1986-2010 [4]. A

total of 800 sampling queries were used.

QS =
⋃
i∈C

QSi (6.3)

Equation 6.3 represents the set of sampling queries QS used for the multi-topic

environment.

6.3 Test Queries QU

Test query set contained a mix of queries from all four topic-classes and represents the

possible user queries QU . Test queries were selected such that there is no overlap with

the sampling queries QS . The test queries were generated by randomly removing words

from camera model names, book, movie and music album titles with probability 0.5. A total

of 200 test queries containing 50 queries from each of the representative topic were used.

QU =
⋃
i∈C

QUi (6.4)

Equation 6.4 represents the set of test queries QU used for the multi-topic

environment.

6.4 Source Selection Models

This section discusses the experimental setup of different source selection models. TSR is

compared with importance based and query similarity based source selection methods.

The agreement based methods consider the source agreement, and hence the

trustworthiness and relevance of the sources are taken into account. On the other hand,

pure query similarity measures like CORI [10] assesses the source quality based on

similarity of content with the user query; hence agnostic to the trust and importance.

Importance-Based Source Selection Models

As there has not been any related work on using importance-based measure like

sourcerank in multi-topic deep web environment, three mediator systems which employ

importance-based source selection models are created and their performance is evaluated

based on result precision. As the mediator systems differ in terms of their specific

implementations of evaluating source quality based on trustworthiness and result
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importance, the difference in their performance can be attributed to their importance

based measures. The mediator systems are represented by the specific implementation of

importance based measure. Scoring function used by importance-based source selection

models uses a weighted combination of query-based relevance measure and

trustworthiness measure, sourcerank, as defined in Equation 5.4. Though any

query-based relevance measure can be used, CORI was used as a relevance-based

measure for the experiments because of its effectiveness [16]. Importance-based source

selection models are represented by the specific implementation of importance based

measure and the corresponding α value i.e. the weight assigned to relevance based

measure. For example, a source selection model employing TSR as an importance based

measure and giving 0.9 weightage to CORI, is represented as TSR(0.9). Next section

provides details for computing trustworthiness measure for these mediator systems.

Mediator System Employing Undifferentiated SourceRank, USR

The generic case of a deep-web environment is when no topic-specific information is

available to differentiate between sources S, sampling queries QS and user queries QU .

For such scenario, a single undifferentiated sourcerank vector is created for all sources S.

Top-5 results returned for partial sampling queries, QS , are used for agreement

computation. These partial sampling queries were genrated by removing query terms with

0.5 probability. As the sampling queries were a mix from different representative

topic-classes, an undifferentiated agreement graph AGC was computed for the set of

topic-classes C. Performing a random walk on this undifferentiated agreement graph

produced an undifferentiated ranking USR of all sources S.

This undifferentiated sourcerank USR is used as part of scoring function for

ranking sources for user queries QU posed to this generic deep-web environment.

Mediator System Employing Topic-Sensitive SourceRank, TSR

The second deep-web scenario considered is similar to the generic case except

topic-specific classification is assumed to be available for sampling queries i.e. along with

QS additional information about topic-specific sampling queries QSi where i ∈ C is

available. Top-5 results returned in response to partial topic-specific sampling queries are
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used for topic-specific agreement computation, AGi for each topic-class i ∈ C. The partial

sampling queries were genrated by removing query terms with 0.5 probability.

Topic-specific sourceranks TSRi, are created by performing a random walk on the

topic-specific agreement graphs AGi.
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TSR approach also requires topic descriptions for identifying query-topic. For

creating topic descriptions for each representative topic, complete topic-specific sampling

queries, QSi where i ∈ C, were used. Top-10 results returned by every source in response

to topic-specific sampling queries were used for creating topic-specific descriptions.

Mediator System Employing Oracular Source Selection, DSR

Complete relaxation of the generic case is one where topic-specific classification is

available for sources S, sampling queries QS and user queries QU . DSR assumes that a

perfect classification of sources and queries are available. DSR is provided with the

manually determined domain information of the sources and the test queries. A mediator

system, DSR for such an environment would a combination of vertical systems, one for

each of the topics. DSR =
⋃

i∈C DSRi

DSR represents an ideal scenario, and its performance provides an upper bound

on the optimum precision that can achieved by combining relevance measure with source

trustworthiness.

Each of these vertical systems is based on the availability of an oracular

information that a deep-web environment DWc exists for each topic-class c. For collecting

deep-web sources for each of these deep-web environments, approach as described in

section 6.1 was followed but the queries used belonged to the same topic-class for which

the vertical system was being created eg. while creating deep-web environment DWbook

for book topic-class, book titles were used as queries. During this process any sourceId

which did not belong to the multi-topic deep-web environment was skipped so that sources

of DWi are a subset of S. A total of 276, 556, 572 and 281 sources were collected for

DWcamera, DWbook, DWmovie and DWmusic deep-web environment respectively.

SourceRanks for each vertical system DSRc for topic-class c were created using

the topic-specific sampling queries QSc

As DSR assumes that user queries have already been classified into their

respective topic-classes, during testing QUc for topic-class c were posed to vertical system

DSRc for topic-class c.
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The overall effectiveness of DSR was calculated as the sum of the effectiveness

of the individual vertical systems DSRc for each topic-class c ∈ C.

Query Similarity Based Measures

CORI

CORI is a query-based relevance measure. Source statistics for CORI were collected

using highest document frequency terms from the sample crawl data. 800 high-tuple

frequency terms were used as queries and top-10 results for each query were used to

create resource descriptions for CORI. Parameters found optimal by Callan et al. [10] were

used for selecting sources based on CORI.

Google Base

TSR was compared with Google Product Search results. Two-versions of Google Base

were used. 1 Gbase on dataset restricted to search only on the crawled sources, and

stand alone Gbase in which Google Base search with no restriction i.e. considers all

sources in Google Base.

6.5 Result Merging and Ranking

Using the source selection strategies, top-k sources were selected for every test query and

Google Base was made to query only on these top-k sources. Three different values of k -

top-10 sources, top-5% and top-10% sources were used for the experiments and k=10

was found to produce best precision and precision decreased as value of k was increased.

Google Base’s tuple ranking was used for ranking the resulting tuples and return top-5

tuples in response to test queries. After ranking the tuples, the methods can be directly

compared with each other.

6.6 Relevance Evaluation

Test queries defined above were used for assessing the relevance. The queries were

issued to top-k sources selected by different source selection methods. The top-5 results

returned were manually classified as relevant or irrelevant. The classification was rule

based. For example, if the test query is “Pirates Caribbean Chest“ and the original movie

1Google Product Search implements a search on Google Base, and provides API based access as well.
Though the exact searching method of Google Base in unknown, we assume that Google Base predominantly
fetch results based on query similarity based on the examination of Google Base results.
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name is “Pirates of Caribbean and Dead Man’s Chest“ then if the result entity refers to the

movie “Pirates of Caribbean and Dead Man’s Chest“ (DVD, Blue-Ray etc.) then the result

is classified as relevant and otherwise irrelevant. To avoid author bias, results from

different source selection methods were merged in a single file so that the evaluator does

not know which method each result came from while he does the classification.
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Chapter 7

RESULTS

TSR was compared with the baselines described earlier. Instead of using stand-alone

TSR, TSR was combined with query similarity based CORI measure. Experiments were

conducted with different values of weighted combination of CORI and TSR, and it was

found that TSR× 0.1 + CORI × 0.9 gives best precision. For rest of this section this

combination is denoted as TSR(0.9). Note that the the higher weightage of CORI

compared to TSR is to compensate for the fact that TSR scores have much higher

dispersion compared to CORI scores, and not an indication of relative importance of these

measures.
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CORI Gbase Gbase on dataset TSR(0.9)

Figure 7.1: Comparison of TSR and Relevance-Based Source Selection Models

7.1 Comparison with Query Similarity Based Source Selection

The first set of experiments compare precision of TSR(0.9) with query similarity based

measures i.e. CORI and Google Base discussed above. The results are illustrated in

Figure 7. Note that the improvement in precision for TSR is significant as the precision

improves approximately 85% over all competitors, including Google Base. This

considerable improvement in precision is not surprising in the light of prior research on

agreement based source selection with query based measures [6].
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Figure 7.2: Topic-Class Based Comparison of TSR and Relevance-Based Source Selection
Models
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Figure 7.3: Comparison of TSR and Agreement-Based Source Selection Models

A per topic-class analysis of test queries, Figure 7, reveals that TSR(0.9)

significantly out-performs the relevance-based source selection models for all

topic-classes. As a note on the seemingly low precision values, these are mean relevance

of the top-5 results. Many of the queries used have less than five possible relevant

answers (e.g. a book title query may have only paperback and hard cover for the book as

relevant answers). But since the top-5 results always are counted, the mean precision is

bound to be low. For example, if a method returns one relevant answer on in top-5 for all
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Figure 7.4: Topic-Class Based Comparison of TSR and Agreement-Based Source Selec-
tion Models

0.2

0.3

0.4

0.5

DSR(0.9) TSR(0.9)

Figure 7.5: Comparison of TSR and Oracular Agreement-Based Source Selection Model

queries, the top-5 precision value will be only 20%. Better values are obtained since some

queries have more than one relevant results in top-5 (e.g. Blu-Ray and DVD of a movie).

7.2 Comparison with Agreement Based Source Selection

TSR(0.9) is compared with the linear combination of USR and CORI.

USR× 0.1 + CORI × 0.9 was used for these comparisons. Linear combination of USR

with a query specific relevance is a highly intuitive way of extending a static SourceRank

multi-domain deep web search. Note that the comparison of TSR and USR is isomorphic
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Figure 7.6: Topic-Class Based Comparison of TSR and Oracular Agreement-Based Source
Selection Model

to the comparison of topic-sensitive PageRank [12], and PageRank [8] for the surface web.

The aggregated results across the domains are illustrated in Figure 7. TSR(0.9)

precision exceeds USR(0.9) by 18% and USR(0) by 40%. Since the difference are small,

the statistical significance of these results was evaluated. Sufficient number of queries

were used to guarantee that TSR(0.9) out-performs both USR(0.9) and USR(0) (i.e. stand

alone USR, not combining with CORI) with confidence levels of 0.95 or more.

Figure 7 provides per topic results. For three out of four topic-classes (Camera,

Movies, and Music), TSR(0.9) out-performs USR(0.9) and USR(0) with confidence levels

0.95 or more. For books no statistical significant difference was found between USR(0.9)

and TSR(0.9). This may be attributed to the fact that the source set was dominated by

large number of good quality book sources, biasing the ranking towards book domain.

Further, analysis revealed that there are many multi-domain sources providing good

quality results for books, movies and music domains (e.g. Amazon, eBay). These versatile

sources occupy top positions in USR as well as USR(0.9) for these three domains.

Consequently the domain independent USR performs comparable to domain specific

USR(0.9) for these three domains: music, movies and books.
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7.3 Comparison with Oracular Agreement Based Source selection

In the next set of experiments, TSR was compared with oracular source selection, DSR

described above in earlier. TSR(0.9) was compared with DSR(0.9) (i.e. linear combination

0.1×DSR+ 0.9× CORI). As shown in Figures 7 and 7, TSR(0.9) is able to match

DSR(0.9) performance for the test queries. The aggregate results across the domains is

shown in Figure 7 and domain-wise result is shown in Figure 7. Result shows that the TSR

precisions are quite comparable with that of DSR. This implies that TSR is highly effective

in categorizing sources and queries, almost matching with oracular DSR.
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Chapter 8

CONCLUSION

In this work, an attempt was made to perform multi-domain source selection sensitive to

trustworthiness and importance for the deep web. Although SourceRank, which considers

source trustworthiness and importance in assessing source quality, is effective in

single-topic environments, the need for extending it to multi-topic deep-web environments

was discussed. To help understand the problem of deep-web environments, a way of

representing a deep-web environment was formulated. Essential properties of an

importance measure for a multi-topic deep-web environment were also defined. Based on

the two most popular surface-web’s linked based techniques, different ways were explored

for extending sourcerank to multi-topic deep web environment. Topic-sensitive

SourceRank (TSR) was introduced as an efficient and effective technique for evaluating

source importance in a multi-topic deep web environment. TSR source selection was

combined with a Naïve Bayes Classifier for queries to build the final multi-domain deep

web search system. Experiments on a more than thousand sources spanning across

multiple topics shows that a TSR-based source selection is highly effective in extending

SourceRank for multi-domain deep web search. TSR is able to significantly out-perform

query similarity based retrieval selection models including Google Product Search by

around 85% in precision. Comparison with other baseline agreement-based source

selection models showed that using TSR results in statistically significant precision

improvements over baseline methods; including a domain oblivious SourceRank combined

with query similarity. Comparison with oracular DSR approach reveals effectiveness of

TSR for domain-wise query and source classification and subsequent source selection.
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