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ABSTRACT 

Introductory programming courses, also known as CS1, have a specific set of 

expected outcomes related to the learning of the most basic and essential 

computational concepts in computer science (CS). However, two of the most 

often heard complaints in such courses are that (1) they are divorced from the 

reality of application and (2) they make the learning of the basic concepts tedious. 

The concepts introduced in CS1 courses are highly abstract and not easily 

comprehensible. In general, the difficulty is intrinsic to the field of computing, 

often described as “too mathematical or too abstract.” 

This dissertation presents a small-scale mixed method study conducted during 

the fall 2009 semester of CS1 courses at Arizona State University. This study 

explored and assessed students’ comprehension of three core computational 

concepts - abstraction, arrays of objects, and inheritance – in both algorithm 

design and problem solving. Through this investigation students’ profiles were 

categorized based on their scores and based on their mistakes categorized into 

instances of five computational thinking concepts: abstraction, algorithm, 

scalability, linguistics, and reasoning. It was shown that even though the notion of 

computational thinking is not explicit in the curriculum, participants possessed 

and/or developed this skill through the learning and application of the CS1 core 

concepts. Furthermore, problem-solving experiences had a direct impact on 

participants’ knowledge skills, explanation skills, and confidence. Implications 

for teaching CS1 and for future research are also considered.  
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I. INTRODUCTION 

In this 21st century, the computing field has never mattered more. The 

explosion of new information technologies makes it possible to deliver more 

trusted, accurate, and timely information to the decision makers. Many 

applications created have changed how work is carried out and how business is 

organized worldwide as well as provided local and global solutions to 

environmental and societal matters. Yet, inappropriate use of these tools can lead 

to disaster for leaders and their organizations. Thus, the knowledge and skills that 

computer scientists acquire are critical resources for American society and the 

world. 

Today’s computer scientists are key players in problem solving as they 

identify, formulate, and solve complex real world problems. Therefore, there is a 

growing interest in better understanding how higher education institutions prepare 

future computer scientists, especially how students write computer programming 

code; which is important to success in the digital age. It is widely known that 

learning to program, even at a simple level, is a difficult task to achieve. A 

substantial number of students, at a rate as high as 50 percent, compared to 30 

percent in the early 2000s, fail their introductory programming courses in every 

university, worldwide [1, 2]. Despite several academic interventions, the number 

of students failing the courses seems to increase rather than decrease over the 

years. The computer science education community still cannot fully understand 

why some students learn to program more easily and quickly while others 
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struggle. According to Ford and Venema [1], two potential causes that may have a 

direct impact on learning to program are: (1) novices’ judgment of their abilities 

to achieve a specific task and (2) novices’ internalization of real world objects and 

applications. The dropout and failure rates in the introductory programming 

courses at the university level are proof that learning to program is a difficult task. 

Moreover, if students drop out, fail, or struggle to pass a course in their desired 

major, it is unlikely that they will enroll in the subsequent computer science (CS) 

course. Thus, there has been ongoing investigation into the study of novice 

programmer errors as well as studies to examine how novice students write their 

programs in the introductory programming courses [3-6].  

Programming is the core of CS, and therefore most national CS programs start 

with introductory programming courses (referred as CS1 courses). Regardless of 

the recognized importance of learning programming, there are two primary 

problems with CS1 courses: (1) the wide discrepancy in student preparation [7-

11] and (2) the level of complexity of material to cover [12-15]. Many higher 

education institutions use their CS1 courses as general programming classes open 

to majors and non-majors. This results in a group of students with a wide range of 

previous computer experience, learning styles, backgrounds, goals, and 

expectations. Even when these classes are restricted to CS majors, the problem 

persists because the students' experience with programming is still widely varied. 

Furthermore, students who have no prior programming experience will most 

likely feel inadequately prepared, despite the fact that CS1 classes serve as 

introductory programming courses to teach programming.  
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The CS1 courses are often perceived as competitive environments where 

students “make it or break it.” Indeed, the lack of self-confidence and the 

competitive environment have been identified as major contributing factors to the 

high drop-out rate in Science and Engineering courses, particularly among women 

and minorities [16, 17]. The abstract concepts of programming can be very 

challenging for CS1 students, particularly for those with little programming 

background and low confidence in their abilities. Because programming abilities 

are at the core of CS, skills in abstraction, conceptualization, design, and 

evaluation are essential for the success of students majoring in the computing 

field [14, 15, 18]. 

The Department of Computer Science and Engineering at Arizona State 

University (ASU) is concerned with the persistence of their freshman students and 

the improvement of student success. Students take either CSE100 (Principles of 

Programming with C++) or CSE 110 (Principles of Programming with Java) as 

their CS1 course. Both courses teach first year college students fundamental 

programming skills such as data representation in programs, running and 

compiling programs, simple input and output operations, control statements such 

as selection and repetition, and functions and parameter passing.   

Many students struggle in CS1 courses and eventually are unsuccessful in 

their attempt to complete their first year programming courses. Table 1 

summarizes the letter grade distribution for the academic years 2007-08 and 

2008-09 at Arizona State University for CS1 courses. According to Arizona State 

University’s grades and grading policies, the letter grades A and B for 
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undergraduate studies are equivalent to excellent and good standing whereas C, 

D, and E are equivalent to average, passing, and failure. Thus, it is fair to 

conclude that successful students in CS1 courses are the students who passed the 

course with an A or a B whereas students who received a C, D, or an E barely 

passed the course or failed the course. The letter grade W was assigned to 

students who dropped or withdrew from the course for unknown reasons.          

Table 1 - Letter Grade Distribution: Academic Years 2007-08 and 2008-09 

 CSE 100 CSE 110 

 
Fall 
2007 

Spring 
2008 

Fall 
2008 

Spring 
2009 

Fall 
2007 

Spring 
2008 

Fall 
2008 

Spring 
2009 

Student 
Enrolled 

323 237 409 246 243 162 244 163 

A 104 92 116 120 84 65 102 63 

B 80 44 87 42 48 41 43 34 

C 42 28 69 15 33 19 26 21 

D 18 14 36 7 10 7 12 7 

E 21 17 31 13 23 10 29 12 

W 58 42 70 49 45 20 32 26 

 

Based on Table 1, Figures 1 and 2 depict the percentage of students who received 

a particular letter grade for CS1 courses. During the academic year 2007-2008, 

approximately 18 percent of the students enrolled in CSE 100 and 15 percent of 

the students enrolled in CSE 110 dropped or withdrew from the course, and an 

additional 25 percent or more failed in both courses by received a C, D or an E. 

These results show that approximately 40 percent of the students drop-out or fail 

the CS1 courses. Similarly for the academic year 2008-2009, the results show that 

approximately 35 percent of the students drop-out or fail the CS1 courses.  
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Figure 1: Letter Grade Distribution for CSE 100 

 

Figure 2: Letter Grade Distribution for CSE 110 

As Ford and Venema [1] stated, the current drop-out/failure rate at other 

observed institutions ranges from 30 to 50 percent, and the ASU drop-out/failure 

rate is within this range. This high rate requires a closer look at the various factors 

affecting CS novices’ success in CS1 courses.     

A. Problem Statement 

The increase of the drop-out/failure rate in CS1 courses over the last decade is 

a wakeup call for the computer science education community. It is critical that 

higher education institutions retain their students in their engineering/computer 
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science programs (quantity) and better prepare engineers/computer scientists for 

the workforce (quality). Over the last few years, we have heard from many hiring 

industries that the majority of the interviewed candidates are not able to write a 

basic program that prints the numbers from 1 to 100. To address this concern, one 

needs to examine what may be at the root of this problem: the initial programming 

courses that students experience in their undergraduate program. Basic 

programming is taught during the freshman year. As mentioned earlier, students 

are introduced to the fundamentals and core concepts of programming in the CS1 

courses. Most likely if students have not mastered those basic concepts, then the 

more advanced concepts built upon the CS1 concepts cannot be learned 

appropriately. Therefore, students either (1) drop out from the program or (2) 

navigate through the program with skills gaps that may not be detected by 

instructors during the course experience.  

This dissertation study attempts to inform this problem by investigating how 

students write code in CS1 courses and if any skills gaps can be identified at such 

an early stage in the computing field.  

This problem of student success in first programming courses is not new, and 

many studies have been conducted to increase student learning in CS1 and CS2 

(refers to more advanced programming courses emphasizing data structures, 

linked lists, binary trees and recursion) courses. Some of the studies have used 

active teaching-learning methods such as pair programming [19] and tracing 

program execution [20]. Additionally, some studies have used web-based 

interactive learning such as intelligent tutoring systems and video games to adapt 
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instruction to the learning style of each student [20-24] and Just-in-time Teaching 

to adapt lectures based on the learning progress of students [25]. Those studies 

have focused on improving learning through motivation and engagement.  

In order to improve student success in CS1 courses, I propose to analyze one 

important factor:  students' algorithm design based on CS1 core concepts. Novices 

spend a lot of time learning core concepts before thinking about the programming 

language they are coding in. Core concepts allow students to go through a change 

that enables them to begin to "think more like a computer scientist" [26]. Some of 

the core concepts in CS are abstraction, dependency, decomposition, 

encapsulation, iteration, and recursion [27]. As students progress in the course, 

their algorithm design evolves and reflects the core concepts they have learned in 

class, if understood. Furthermore, in order to understand their algorithm design, it 

is important to use different methods, which vary in their information abstraction 

level.  

I am not proposing that it is necessary to collect data in regards to algorithm 

design for students to succeed in CS1. However, analyzing such data may enable 

CS1 instructors to better assess the comprehension and internalization of the 

materials presented in class and in the textbook.  

The intent of this dissertation study is 1) to identify the core concepts that 

students have the most difficulty with and 2) to assess their ability in designing 

algorithms and solving problems based on the core concepts. This study aims to 

classify instances of student’s mistakes based on the computational concepts 

described in the literature. Evaluating students on the core concepts will enable 
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documentation of the roots of the problem, if any, and help make 

recommendations to overcome these barriers in terms of teaching methods. 

Furthermore, assessing students on their logical reasoning and programming skills 

is essential to determine students’ skill gaps in order to make the necessary 

interventions to close those gaps and instill confidence in their learning and 

abilities. Students who are confident about their information processing skills 

perform better [28] in their CS1 courses than those who are not as confident. 

Students who succeed in their classes tend to be more motivated to continue in 

their chosen major and more engaged in the classroom than students who are 

struggling with core concepts in CS. 

B. Purpose 

This dissertation research proposed to study how CS1 students design 

algorithms by using paper-and-pencil exercises, think aloud protocols, and 

interviews with a focus on three predefined core concepts based on a survey given 

to the CS1 instructors and teaching assistants. These three core concepts were: 

abstraction in object-oriented analysis, arrays of objects, and inheritance. 

Understanding how CS1 students think and solve problems is essential to identify 

students’ skill gaps, improve teaching practices, and make recommendations to 

improve the learning of algorithm design. 

The outcomes of this research study are to identify any problematic concepts, 

logical reasoning difficulties, and problem-solving difficulties that CS1 students 

may encounter. Additionally, this study will draw pertinent profiles of “good”, 
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“average”, and “poor” students based on the outcomes from the research methods 

used in this study to potentially make recommendations to improve teaching in 

the CS1 courses.   
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II. BACKGROUND LITERATURE  

Algorithm design is a tedious task to achieve. Over the years, studies have 

shown that students experience substantial difficulties with CS1 courses. This 

literature review focuses on the various initiatives taken to ease the task of 

learning algorithm design using supplemental activities, studies that have 

analyzed novice programmers’ problem-solution, and emergent research related 

to the notion of computational thinking as a mean to learn/teach the core 

principles in any discipline.  

A. Student Success 

Many students across the Science, Technology, Engineering, and Mathematics 

(STEM) disciplines take the introductory programming courses to learn the 

fundamentals about problem-solving and algorithm design. Research has shown 

that students taking those courses confront three main challenges that have a 

direct effect on student success: performance outcomes, engagement, and 

motivation.  

1) Performance Outcomes: To improve student success, it is imperative to 

keep motivated students in the program and help students who are struggling to 

perform better. To do so, identifying students’ skills gaps at an early stage is 

necessary to enforce intensive intervention in the course development [29]. 

Furthermore, it is of interest to discover patterns of successful, struggling, and 

repeating students enrolled in CS courses to isolate some of the causes affecting 

student success [30]. Some studies have shown the profile of successful students 
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in CS as passing both CS1 and CS2 on the first try with at least a B. On the other 

hand, students who have passed both CS1 and CS2 earning at most a C were 

unable to continue in the program or dropped out. However, students who have 

successfully repeated CS1 were able to acquire the skills required to succeed in 

CS2.  Therefore we may conclude that doing well in CS1 is crucial to be 

successfully prepared for CS2. In addition, two feasible constructs that may have 

a direct impact on performance outcomes in the CS1 courses are self-efficacy and 

mental models [1]. The importance of student’s self-efficacy can be at stake if the 

content is too advanced for the students to feel capable of learning the 

programming instructions whereas mental models have a direct impact on the 

student’s ability to transfer conceptual ideas into concrete ideas. Thus, building 

good mental models strengthens self-efficacy [1]. 

2) Engagement: Studies have shown that the CS field is struggling with 

balancing theory and practice throughout its curriculum [31-33]. Academic 

environments in the computing field fail to reflect real-world problems that 

students can come across during their professional career. Additionally, CS 

concepts can be difficult for new students to fully grasp. Most of the concepts 

taught in the computing field involve an abstract knowledge base and, therefore, it 

is preferable to integrate meaningful projects to prepare and sustain successful 

students in this field. Easy-to-understand real-world applications, such as the web 

crawler and the spam evaluator, enable students to connect with the application 

and process the concepts easier [34-36].  
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Students find themselves spending many hours in front of the computer 

coding and debugging; often times they feel overwhelmed, discouraged, or 

disengaged by their programming projects [12, 18]. The absence of some type of 

engagement results in students’ disinterest. It is essential to find ways to engage 

students in a fun and challenging environment without losing their confidence in 

‘doing’ and by diversifying the programming projects [17, 37].  

Engagement in activities such as paper and pencil exercises (i.e. tracing the 

logic of programs) and kinesthetic learning activities (i.e. matching types exercise 

for visual understanding of data type and how parameters must match when 

passed to a function) have proven to offer an increase in students' engagement in 

learning programming and have provided important information in terms of 

students' skills gap [6, 38].  

3) Motivation: The literature suggests that high levels of academic and social 

integration will in many cases result in higher levels of the retention of students 

[39]. Social integration such as peers’ collaboration and group activities are seen 

as having an impact on students’ sense of belonging to a group or community 

[40]. Through these exercises, students are able to practice active, interactive, 

and/or constructive learning [41-43]. These different ways of learning keep all 

types of learners engaged, and therefore students’ social integration in the 

computing field increased as well as students’ motivation in staying part of this 

community. 

Teaching techniques such as visualization activities and web-based 

applications enable students to assess their own knowledge and learn materials in 
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a way that fits their learning style. These techniques have offered promise in 

helping classrooms move toward an equitable learning environment, encouraging 

students to have positive beliefs about CS, and integrating CS with other 

disciplines [44, 45].  

B. Program Design 

Some of the above described initiatives used to improve student success in 

CS1 courses were based on research related to problem solving. This type of 

research provides more details on the common mistakes made by programmers as 

well as insights into the programmers’ problem-solving methods, and thus enables 

researchers and instructors to have a better understanding of how students think 

and/or program. For the purpose of the scope of this study, the research 

investigation focused on how people, specifically novice programmers (since CS1 

courses are primarily composed of freshman students who have no or little 

experience in programming), write their programming code. Even though much 

research has been done on how experts and novices write/solve their program, the 

root of the problem for the inability of students to solve a problem is still ongoing. 

It seems that the problem resides in the prerequisites to problem solving. More 

investigations in this area are needed.  

1) The Nineteen Eighties Period: Soloway led the way in the area of studying 

the novice programmers in the 1980s. Soloway et al. [3] found that only 38 

percent of novice programmers could write a program that successfully calculates 

the average of a set of numbers.  In one of the case studies, Bonar and Soloway 
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provided a clear case of novice’s programming bugs due to inappropriate use of 

natural language specification strategy [46]. The student, a novice programmer in 

Pascal, was writing pseudo-code for the problem: "Write a program which reads 

in ten integers and prints the average of those integers." She wrote the following 

(see Figure 3): 

 

 

 

 

 

                        
 

Figure 3: Pseudo-Code for the Problem 3 in [46] 

Despite some inconsistencies in the pseudo-code notation, her write-up is correct. 

However, when the interviewer asked whether (la) was the "same kind of 

statement" as (2a), it seems "that she thinks the Pascal translator knows far more 

about these roles than it does." Below is an extract from the interview after the 

student completed her pseudo-code [46, p. 12]. 

Subject: How’s that, are they the same kind. Ahhh, ummm, not exactly, 

because with this [la] you are adding-you initialize it as zero and you're 

adding one to it [points to the right side of la], which is just a constant 

kind of thing.  

Interviewer: Yes 

Repeat 

(1) Read a number (Num) 

(l a) Count := Count + 1 

(2) Add the number to Sum 

(2a) Sum := Sum + Num 

(3) until Count :=I0 

(4) Average := Sum div Num 

(5) written ('average = ', Average) 
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Subject: [points to the right side of 2a] Sum, initialized to, uhh, Sum to 

Sum plus Num, ahh-that's [points to left side of 2a] storing two values in 

one, two variables [points to Sum and Num on the right side of 2a]. That's 

[now points to 1a] a counter, that's what keeps the whole loop under 

control. Whereas this thing [points to 2a], this was probably the most 

interesting thing. . .about Pascal when I hit it. That you could have the 

same, you sorta have the same thing here [points to la], it was interesting 

that you could have-you could save space by having the Sum re-storing 

information on the left with two different things there [points to right side 

of 2a], so I didn't need to have two. No, they're different to me.  

Interviewer: So – in summary, how do you think of 1a? 

Subject: I think of this [points to la] as just a constant, something that 

keeps the loop under control. And this [points to 2a] has something to do 

with something that you are gonna, that stores more kinds of information 

that you are going to take out of the loop with you.  

Here, we see the novice programmer believing that the programming language 

knows more about her intentions than it possibly can. Hence, their results opined 

that the natural language seems to have a key effect on early conceptions and 

misconceptions of programming [46]. Furthermore, Soloway et al. [47] used a 

methodology named Goals and Plans (GAP) Trees, which specifies the 

relationship between goals and plans, to analyze the different type of errors that 

novice programmers make (see Figure 4).  This descriptive methodology of buggy 

programs is based on the cognitively plausible, deep structure knowledge (i.e. 
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plan and goal) that describes a programming plan as a strategy for implementing a 

goal.  “The relationship between programming goals and plans is that a goal can 

be achieved by any one of a number of different plans and a plan may give rise to 

several subgoals” [47]. Therefore the structure of a plan may be cut into pieces of 

knowledge that build the complete plan. These pieces of knowledge are 

programming plan schemas, which are stereotyped ways of solving a common 

programming problem [48]. 

 

 Figure 4: Simplified GAP Tree 

From the GAP Tree, a schema is defined as a “remembered framework” [49]; the 

schema captures knowledge about the structure of the situation, derived from past 

experience. A plan schema is knowledge about the global structure of a problem. 

It is a series of ordered actions needed to execute the plan: first do this, then do 

this, and so on [49]. 

There are two types of GAP trees: Inferred GAP Tree (several plans per goal) and 

Solution Subtree of a GAP Tree (one plan per goal). An Inferred GAP Tree refers 

to all of the plans that can be used to achieve the goal of the problem whereas a 
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Solution Subtree of a GAP Tree refers to one particular plan that can be used to 

achieve each goal of the problem. A simplified version of the GAP Tree is shown 

in Figure 5. Using this methodology, Bonar and Soloway [46] identified seven 

components that compose a plan (see Table 2). 

Table 2 - A Plan is Composed of Seven Components 

Components Description (using Pascal syntax) 

Input READ and READLN statements 

 
Output 

WRITE and WRITELN statements, for writing out either messages or 

variable values 

Initialization 
Initialization type assignment statements that give variables their initial 

value 

Update 
Assignment statements that change variables values 

 

Guard 
Conditionals, such as IF statements and the termination test of WHILE, 

REPEAT, and FOR statements 

Syntax 
Syntactic connectives which delimit the scope of blocks of code, such 

as BEGIN, END, THEN, ELSE, and DO 

Plan 
An entire plan, possibly composed of many of the foregoing microplan 

components 

 

Soloway et al. were able to identify four ways that a program error can occur in a 

plan: Missing plan, Malformed guard, Misplaced syntax, and Spurious input [3]. 

Missing plan occurs when the Plan component is not present in the program. 

Malformed guard occurs when the Plan component is present, but it is not 

properly implemented. Misplaced syntax occurs when the Plan component is 

present, but it is in the wrong place in the program.  Spurious input occurs when 

the Plan component is present, but it should not be. Furthermore, an extended 

version of the GAP Tree, see Figure 5, including the seven components of plan as 

well as the four program errors was developed by Segelman [50].    
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Figure 5: Extended Version of the GAP Tree [50] 

The characteristics of this knowledge used in program design are forward, 

backward, top-down, and bottom-up design [49]. The initial approach for problem 

solving defines the starting point for design, but the solution path from start to end 

can often be long and complex. For example, consider a program that calculates 

the average daily rainfall for a month [48]. If the program design is generated 

from the input (i.e. forward), then first the programmer must design the code to 

read in the rainfall per day. Once the input routine has been implemented, the 

mathematical calculations in the program must be specified, and the programmer 

will search for some plan that uses the rainfall data that has just been read into the 

program. The program design based on the input may reach an impasse (or not), 

and the output must be used to search for a solution. If the program design is 

generated from the output (i.e. backward), then first the programmer must design 
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the plan that directly achieves the problem goal, by calculating the average 

rainfall (i.e. total/days). For this plan to work, the total rainfall must be found by 

adding the daily rainfall to a running total inside a loop. Hence, to calculate this 

total, the rain must be read, and the total must be initialized to zero before the start 

of the loop. The complete solution is executed. For the novice programmer, 

whose program design knowledge is limited, selection may be determined by 

whatever catches the attention; the novice simply captures some attributes of the 

problem, or even the solution, and starts from there. If the solution design begins 

with a search for the input, the novice looks for "read in" or "input is" in the 

problem statement, and thus identifies the information needed by keyword search. 

Whereas the experienced programmer searches the problem specification for the 

goals, retrieves plans to achieve these goals, and expands the plans until they 

match with the input data. And thus, as knowledge about how to design a solution 

develops, the decisions taken during design are more thought through [49]. 

Furthermore, Anderson et al. explained decomposition design (i.e. top-down) 

[51]. The knowledge of a novice consists of a set of schemas in the form of global 

structures of the program, such as a LISP operator, general function, or recursive 

function. In their study, the novices retrieved a schema from a text or from 

memory and implemented it to provide a solution to the problem. At the most 

abstract level, i.e., the program, they selected the first slot in the schema and 

retrieved a new structure to fill the slot, then repeated this process until the level 

of program code was achieved. The next abstract slot in the program was then 

selected and expanded, and once again the process was repeated until the program 
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was completely defined. Deviations from this approach are explained as synthesis 

design (i.e. bottom-up) and were first recorded by Jeffries et al. [52].  In their 

study, novices created programs by decomposing the problem into subproblems. 

However, novices were unable to decompose the problem at many levels of detail. 

Using abstract plan knowledge, they did an initial decomposition to design a 

solution for the problem at high levels of abstraction, but made unsuccessful 

attempts to retrieve more detailed schemas to continue the process. Therefore, 

often novices jumped straight to the level of program code, i.e. a very detailed 

level of planning. Their behavior changed to bottom-up design due to the lack of 

intermediate level schemas. Overall, studies [47-49, 51] showed that program 

design pattern depends on both the level of expertise of the programmer and the 

difficulty of the problem. If a programmer knows all the required abstract and 

detailed schemas, the design shows a pattern of top-down and forward solution 

approach, whereas a novice programmer has to create all the required plans and 

design, and so his/her design shows a bottom-up and backward solution approach. 

Within this context of studying novice programmers, Perkins and others 

described novice learner’s problem-solving strategies. Two types of learning 

styles were identified: “stoppers” and “movers” [4]. Stoppers appear to give up on 

the programming task at the first sign of difficulty, whereas movers use natural 

language knowledge to get a partial solution.  

“Stoppers and extreme movers can be viewed as being at endpoints of a 

continuum based on the ratio of time spent thinking (or time spent sitting 

in front of a terminal and not typing) to time spent entering and testing 



21 

code. But this image of a continuum is in a way misleading. It suggests a 

distribution with most students in the middle while extreme stoppers and 

movers occupy the statistically rare tails. On the contrary, the descriptions 

of stoppers and movers are not caricatures of the norm. Extreme stoppers 

or movers are common” [4, p.266]. 

Perkins found that stoppers can become movers if instructors encouraged them to 

decompose the problem and concentrate on a simpler subproblem only. 

Furthermore, Perkins and Martin [53] reported students have “fragile knowledge” 

of basic programming concepts and a “shortfall in elementary problem-solving 

strategies.” This fragile knowledge is manifested through missing knowledge, 

inert knowledge, and misused knowledge [53]. Missing knowledge can be 

observed when a novice is asked to apply that knowledge in a program and the 

student “sort of knows, has some fragments, can make some moves, has a notion, 

without being able to marshal enough knowledge with sufficient precision to 

carry a problem through to a clean solution” [53, p.214]. This knowledge is 

commonly seen when students did not retain the knowledge taught. Inert 

knowledge can be observed when simple nonspecific prompts lead the students to 

recover the relevant knowledge and proceed correctly. In other words, they did 

not initially “retrieve command knowledge but in fact possessed it” [53, p.215].  

Studies of programming instruction have reported that a considerable fraction of 

novice programmers’ knowledge of commands in a programming language is 

inert. Also, this type of knowledge was also shown in the context of active 

programming, where there is almost no gap to transfer across [52, 56]. Misused 
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knowledge can be observed when students mix up several disparate elements in an 

attempt to fix the situation when they are uncertain [53-55]. This knowledge is 

commonly seen when students newly acquired knowledge.  

2) The 21st Century Period: At the turn of the millennium, the research group 

of McCracken assessed the programming competency of 216 first-year CS 

students, Java and C++ programmers, from four universities across two countries 

[57]. Each student was required to write a program from a set of problems. Most 

students performed poorly and many students did not even complete the software 

development task from design to coding. The average grade was only 21 percent. 

Based on these results, McCracken et al. [57] suggested that students in the 

computing field are not taught programming adequately. However, the 

McCracken Group could not identify conclusive reasons for why the students 

struggled, but they speculated that it may due to inability of students to problem-

solve. The group defined problem-solving as an iterative five step process:  

(1) Abstract the problem from its description,  

(2) Generate sub-problems,  

(3) Transform sub-problems into sub-solutions,  

(4) Re-compose the sub-solutions into a working program, and  

(5) Evaluate and iterate.  

While the work of the McCracken Group pointed out the current state of novice 

programmers, subsequent work is required to analyze the root of the problem, 

specifically if it is a language problem (i.e. object-orientation) or if it is a design 

problem (i.e. thinking process). To clearly make a distinction between the two, 
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one way is to ask students to demonstrate their understanding of existing code. 

This task does not involve problem solving. Building upon the McCracken 

research, the Leeds Group studied performance of students from seven countries 

on programming-related tasks.  The novice programmers were required to answer 

multiple choice questions based on two types: “fixed code” questions and 

“skeleton code” questions [58].  Fixed code questions, also known as single value 

tracing, required students to predict the outcome value in a variable after 

execution of a given code. This type of questions required students to understand 

the constructs in the given code as well as to be able to trace by hand through 

code. In contrast, skeleton code questions required students to identify the correct 

missing lines of code from a set of four options. The results from this study 

showed that many students performed weakly at these tasks, specifically the 

skeleton questions which suggest that these students are “lacking knowledge and 

skills that are precursor to problem-solving” [58, p.139].  Therefore, this relates to 

the inability of students to read code rather than to write code. To further 

investigate these results, the BRACElet project currently focuses on the 

relationship between tracing iterative code, explaining code, and writing code 

[59]. So far, their findings have indicated that students who do not trace code 

cannot explain the code in plain English, and students who usually perform well 

at code writing are usually capable of tracing code and explaining code well [6]. 
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C. Computational Thinking 

In the midst of the struggle to resolve the underlying misconception that 

equates CS with programming, a new movement has emerged called 

“computational thinking” [60, 61]. Computational Thinking (CT) is one of the 

key practices of CS; a combination of logic skills with core CS concepts as an 

approach to problem solving.  

The idea of CT is to integrate problem solving techniques and approaches into 

all disciplines, from the sciences to humanities. Just as the current three 

fundamental skills - reading, writing, and arithmetic - CT is a fundamental 

analytical skill needed for every citizen to function in today’s global society [60, 

61, 62]. These fundamental skills are to “describe and explain complex problems 

to others” [71]. Wing [60] goes even further by prophesizing that CT will be a 

fundamental skill used by everyone in the world by the middle of the 21st 

century. Recent recognition by the National Science Foundation (NSF) seems to 

support the idea that CT is an important component for science, technology, and 

society; and thus deserves our immediate attention.  The NSF’s Computer and 

Information Science and Engineering (CISE) directorate has requested that most 

proposals include a discussion of how their projects advance computational 

thinking. In particular, the NSF CISE Pathways to Revitalized Undergraduate 

Computing Education initiative has asked educators to present projects that 

introduce computational thinking into some aspect of education, research, and 

outreach. Furthermore, from the website of Carnegie-Mellon University’s Center 

for Computational Thinking, one can read “it is nearly impossible to […] research 
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in any scientific or engineering discipline without an ability to think 

computationally. […] [We] advocate for the widespread use of computational 

thinking to improve people’s lives” [63].     

1) What is Computational Thinking? CT is a way of reasoning in such a 

manner that one defines problems, processes and relationships to solve those 

problems. Seymour Papert first introduced this term in 1996 as a way to solve 

problems more efficiently using novel approaches to problem-solving [64]. 

Nowadays, the concept of CT is being spearheaded by Jeannette Wing, 

President’s Professor of computer science and department head at Carnegie 

Mellon University who also works at the NSF as Assistant Director for its CISE 

Directorate. Wing [60] defined CT as follows: 

“Computational thinking involves solving problems, designing systems, 

and understanding human behavior, by drawing on the concepts 

fundamental to computer science. Computational thinking includes a 

range of mental tools that reflect the breadth of the field of computer 

science.”  

Wing defined CT as the use of CS concepts to solve a problem in any domain. 

Some “everyday examples” [60] of computational thinking that she outlines 

include: 

 “When your daughter goes to school in the morning, she puts in her 

backpack the things she needs for the day; that’s prefetching and caching. 

When your son loses his mittens, you suggest he retrace his steps; that’s 

backtracking. At what point do you stop renting skis and buy yourself a 
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pair?; that’s online algorithms. Which line do you stand in at the 

supermarket?; that’s performance modeling for multi-server systems. Why 

does your telephone still work during a power outrage?; that’s 

independence of failure and redundancy in design.” 

Furthermore, to help clarify the notion of computational thinking, Wing [60] 

listed six characteristics:  

1. CT is conceptualizing via multiple levels of abstraction 

2. CT is a fundamental skill needed for everyone to function in modern 

society 

3. CT is not about solving problems like computers, but rather it develops all 

critical skills of humans to solve problems 

4. CT complements and combines mathematics and engineering thinking  

5. CT is principally concerned with ideas as opposed to artifacts 

6. CT should be an integral part of everyone’s education 

Despite the great efforts from the computer science educators, the definition of 

CT at the present remains abstract, and thus this method of instruction is difficult 

to apply without knowing exactly what we expect students to learn [65, 66, 67].   

2) Computational Thinking and Computer Science: CT has a long history 

within CS. Known in the 1950s and 1960s as “algorithmic thinking”, it meant a 

mental practice to formulating problems in terms of step-by-step procedures 

involving the conversions of some input to an output to solve the problems [68]. 

Today, the term CT has been expanded to include (1) thinking with many levels 

of abstractions to understand and solve problems more effectively, (2) use of 
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mathematics to develop more efficient, fair, and secure algorithms, and (3) 

examining how well a solution scales across different sizes of problems for 

efficiency, economic and social reasons [63, 69, 70]. 

Furthermore, CT is seen by the computer science community as a 

revolutionary movement to define what the core of the field is about, to provide a 

way to reverse the decline of enrollments in the CS field by making the field more 

attractive for students to major in and for other disciplines to collaborate with, and 

to recognize CS as a legitimate field of science. Many computer scientists view 

CT as comparable to other basic cognitive abilities such as mathematical, 

linguistic, and logical reasoning that the average individual in modern society 

should possess [71]. Thus, the CS1 and CS2 courses are changing to meet the 

needs of students in other disciplines who are using computation and 

programming; thus programming is presented as a tool used to investigate areas 

from all disciplines (i.e. computer science, other sciences, and humanities) and an 

essential part of CT [69, 70, 71]. The primary objective is to give a solid 

foundation of basic programming and establish an understanding of the 

algorithmic thought process [69]. Programming is a language for expressing 

ideas, and therefore, you have to first learn how to read and write that language to 

be able to think in that language [71]. The teaching of CT should concentrate on 

creating vocabularies and symbols to describe computation and abstraction, 

recommend information and execution, and provide notation around which mental 

models (i.e. abstractions and methods) of processes can be build [60].  
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CT was defined in a number of ways such as 1) notions of procedural 

thinking, 2) study of mechanisms of intelligence, 3) processes, 4) formulation of 

precise method of doing things, and 5) open-ended and growing list of concepts 

that reflects the “dynamic nature of technology and human learning” [71]. These 

definitions are ideas extracted from the discussions among computer scientists at 

a workshop on CT.    

According to Wing [70], computing is defined as the “automation of our 

abstractions” whereas CT focuses on the process of creating and managing 

abstractions, and defining relationships between layers of abstraction. Wing 

argued that CS has developed a set of CT skills that have direct impact beyond the 

computing field. She stated that such ideas as abstraction, layering of abstractions, 

and automation are fundamental CS concepts that have already yielded new 

insights. To assess CT in the CS field, one can look at the following five CT 

concepts described in Table 3: abstraction, algorithm, scalability, reasoning, and 

linguistics.   

Abstraction can be defined as the process of eliminating the non-significant 

details of a problem to concentrate on the relevant details and their relationships. 

Abstraction is an essential core concept in CT. Wing mentioned that CT is 

“conceptualizing” and “thinking at multiple levels of abstraction” [60]. However, 

the concept of abstraction has been difficult to translate into CS1 courses. By 

categorizing abstraction as a “soft idea,” Hazzan [72] indicated that teaching this 

concept by lecture is not enough to increase students’ awareness about the 

concept of abstraction. Students must be able to identify the level of abstraction, 
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recognize the existence of different abstraction levels, and use abstraction in the 

learning process. If students are not able to apply abstraction then it may be of 

interest to “train” them for such task [73]. This remark was made by Kramer 

through the observation that in the CS curriculum offered at Imperial College, no 

one course explicitly focuses on teaching the concept of abstraction.           

Algorithm is another fundamental CT concept that is often introduced in CS1 

courses as a set of rules that describes how to solve a problem [74]. This concept 

may be described as a program, pseudo-code or step-by-step explanation (in plain 

English) of how to do something. This CT concept shows the ability of students to 

specify a problem precisely and construct a correct algorithm to a given problem 

using basic action steps.     

Scalability is the ability of an algorithm and design to handle future growth 

plan in a graceful manner or its ability to be enlarged to accommodate that 

growth. It must be suitably efficient to plan ahead for scalable algorithm and 

design based on potential future growth of the problem. This CT concept is 

sometimes introduced in the CS1 curriculum towards the end of the semester. If 

not, it is definitely covered in CS2 courses. Usually, scalability is referred in the 

curriculum when covering sorting and searching algorithm techniques to help 

students to understand how to improve a problem solution; and thus the 

importance to design and construct scalable problem solutions [75].           

Reasoning constitutes rules that underlie logical and mathematical structures 

in the algorithm and design. The formulation of reasoning is seen through logic 

constructs such as automation, loops, and recursion. This involves the repeating of 
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a procedure until a desired goal is reached such as if conditions then conclusion. 

This CT concept underlines the ability to apply mathematical constructs to the 

algorithm [63].          

Linguistics includes primarily semantics and syntax. Semantics in problem 

design and solution is the meaning that is used to express the abstraction of 

information whereas syntax is mainly bounded to the programming language used 

and/or modeling language annotations. This CT concept provides clear and 

meaningful descriptive annotations and follows the principles and rules governing 

the behavior of the chosen programming/modeling language used to design and 

solve the problem.     

Through those CT concepts, it is expected that undergraduate courses taught 

during the freshmen year would enable students to “adopt the thinking habits and 

reasoning methods of computer scientists”, i.e. students would learn about the 

core computational concepts [71].  However, as of today, the computer science 

education community is still focusing on exploring the scope and nature of what 

CT is/is not and its cognitive and educational implications [70, 71].   
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Table 3 – CT Concepts 

CT Concepts Description 

Abstraction 

 

- Deciding what details need to be highlighted and what 

details need to be ignored  

- Defining the layers of interest such as classes, data 

members, methods, and the relationships between the layers 

Algorithm Correctness of the program should answer the following 

questions:  

- Does it do anything? 

- Does it do the right thing? 

- Does it compute the right answer? 

Scalability Ability of the program to be enlarged to accommodate 

growth in a graceful manner 

Reasoning Correctness of the controls such as recursion, iteration, and 

conditional statements  

Linguistics Correctness of the syntax and  semantics  

 

D. Summary 

Today, with universities attempting to improve student success in the CS1 

courses, many computer science programs are trying different strategies. The 

visual web-based and real-world applications may be ways for some programs to 

check whether their efforts are successful or whether further adjustments need to 

be made. Certainly, the research investigation is more insightful when students’ 

problem-solving and program design is tracked through those applications rather 

than a focus on the number of correct answers. Finally, it is important to further 



32 

investigate program design in our current era of computer science. The McCraken 

and Lister working groups came to the conclusion that many first-year 

programming students cannot program at the end of their CS1 courses mainly due 

to difficulty with problem-solving. From their observations, they deducted that 

knowledge and skills are the precursors to problem solving. Thus, the next logical 

research step is to assess students’ algorithm design and problem solving skills, 

students’ knowledge of the CS1 computational concepts, and classify their 

mistakes in their work in terms of computational concepts; which is the intent of 

my proposed study. 
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III. METHODOLOGY  

This study was designed to understand the skills that freshmen develop in 

their introductory computer programming courses. This study aimed to inform 

CS1 instructors with a better understanding of how their students design 

algorithms (Unified Modeling Language, also known as UML) and how their 

students solve a given problem through programming (coding). UML works as an 

architecture tool providing a high level view of the problems by extracting key 

information such as classes, data members, methods, and connections showing 

relationships. Coding creates a program that exhibits a certain desired behavior 

that requires basic instructions such as input, output, arithmetic, conditional 

execution, and repetition. To investigate skills such as design and problem 

solving, I collected quantitative and qualitative data described in Figure 6. At the 

beginning of the Fall 2009 semester, instructors and teaching assistants (TAs) 

were first surveyed on the concepts that students struggle the most with based on 

the instructors and TAs’ teaching experience within the past two years. Based on 

their answers and the curriculum, with the assistance of the instructors, I 

developed paper-and-pencil exercises which focus on these particular troublesome 

concepts. Each paper-and-pencil exercise was divided into three sections: 

algorithm design, problem-solving, and bonus points pertinent to “fresh” 

knowledge (i.e. material covered the day prior or the day of the exercise). The 

paper-and-pencil exercises were given to the CS1 students enrolled during the 

Fall 2009 semester. The CS1 students representing the student body who took the 
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written exercises are referred as “Group 1”. From these paper-and-pencil 

exercises, a letter grade was assigned based on specific criteria to assess the 

identified concepts. The exercises were scored to ensure scores represent 

quantitative data. Furthermore, students from “Group 1” were invited to 

participate in a think aloud experiment as well as an interview to explain their 

algorithm design and problem-solving method. This small set of students is 

referred as “Group 2”. Data obtained through these methods represent qualitative 

data.  

The primary aim was to identify any problematic concepts, logical reasoning 

difficulties and problem-solving difficulties that CS1 students may encounter 

when attempting to do the paper-and-pencil exercises. Secondary issues to be 

examined included the comparison of students’ level of expertise by drawing 

pertinent profiles of “good”, “average”, and “poor” students based on the 

outcomes from the research methods used in this study.  
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Figure 6: Assessment of Student Performance with CS1 Concepts 

A. Data Collection Design 

The data collection design was developed during the Summer 2009 semester 

to ensure that permission to conduct research was obtained from Institutional 

Review Board (IRB) so I could begin the study during the fall semester. 

1) Participants and Site: The “Group 1” was composed of all students 

enrolled in CS1 courses whereas the “Group 2” was a subset of “Group 1” 
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composed of students of age at least 18. This age limitation for Group 2 was 

chosen to avoid the challenge of seeking parental permission for study 

participants who are younger than 18 years of age. The instructor for CS1 courses 

used the paper-and-pencil exercise as quizzes in his classes. The instructor 

provided me with a copy of students’ responses to these exercises without 

revealing students’ identity. The study was conducted at the ASU Tempe campus. 

The paper-and-pencil exercises were in-class tests, and thus were conducted in the 

classrooms where the lectures were held on a Thursday whereas the think aloud 

and interview exercises took place the following Monday in a non-classroom 

setting.  

2) Sampling Strategy: Based on Patton [76, p. 243], the sampling strategy 

was a maximum variation sampling to ensure that the selected volunteers for the 

think aloud and interview exercises were diverse in terms of programming 

language, age, gender, grade, and major; and thus, well-representation of the CS1 

student body in the sampling.  

3) Sample Size and Groups: Enrollment for CSE 100 (Class# 72301) and 

CSE 110 (Class# 72321) was at 81 and 64 students respectively. Out of these 145 

students, six to ten students volunteered to do the think aloud and interview 

exercises. This study included two groups. Group 1 is the group of CS1 students 

who did the tests in-class whereas Group 2 is a smaller group of Group 1 who 

volunteered to do the think aloud and interview exercises.   
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B. Data Collection Procedures & Protocols 

The data collection procedures and protocols were designed while completing 

the IRB application for the approval of this study (Appendix A). All the processes 

described in this section were required as part of the IRB application before any 

study may take place.      

1) Survey on CS1 Concepts: Based on the procedure used in [77, 78] to 

identify the most difficult topics in CS1, I similarly surveyed by email, instructors 

and teaching assistants (TAs) in CS1 courses to identify the most troublesome 

concepts in the courses (see Appendix B) and then I rank-ordered the troublesome 

concepts based on the frequency of their occurrences. From this ranking, there 

were three top troublesome concepts: abstraction in object-oriented analysis, 

arrays of objects, and inheritance. 

2) Designing Tests: Based on the outcomes of the survey given to the 

instructors and TAs, paper-and-pencil tests were developed to address the basic 

elements that encompass each troublesome concept. The instructor who taught 

CSE 100 and CSE 110 courses then reviewed these tests. The instructor gave 

some feedback and/or made necessary changes based on the progress made in 

class. The first two tests (see Appendices C and D) were the same for both 

courses and the last one (see Appendices E and F) was different because the class 

CSE 100 was behind in the curriculum; thus, adjustment was needed to fairly 

assess the participants based on what they have learned in class.    

3) Recruiting Participants: To recruit participants from the CS1 courses, I 

asked permission from the CS1 instructor to come into his class to make an 
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announcement and have the TAs to email the recruitment forms to the roster. 

Once I received all the forms back, I tried to select students for participation in the 

study to reflect the overall CS1 student body in terms of diversity in age, major 

and gender. However, ultimately, participants were chosen based on their 

availabilities in order to maximize the number of student participants in the study. 

4) Collecting Tests: To collect the in-class tests, I met with the instructor 

after the classes ended and he handed me the copies to make photocopies of them. 

Then I returned the copies to him within 24 hours. A random numerical number 

was assigned to each participant. These numbers were used throughout the study 

to maintain the confidentiality of all information concerning research participants. 

This information included, but was not limited to, all identifying information and 

research data of participants and all information accruing from any direct or 

indirect contact I had with the participants. 

5) Think Aloud Protocol: This protocol was used for the selected volunteers 

who decided to partake in the survey and interview phases (i.e. “Group 2”). I 

explained to the participants about the verbalization that I expected throughout the 

exercise (see Appendix G) and a warm-up exercise was conducted to ensure that 

the participants fully understood the think aloud protocol. Then the participants 

were prompted to complete the test as they stated aloud their thinking while the 

participants were audiotaped. The participants all had the same amount of time to 

complete the test, which was 30 minutes. This protocol may assist with the 

assessment of subjects' communication skills and detection of their 

misconceptions and confusions about the concepts. 
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6) Survey Questionnaires: After completing a paper-and-pencil exercise on a 

Thursday, participants were asked to come back the following Monday to respond 

to individualized pretest and posttest surveys (see Appendices H and I) as well as 

an interview. The surveys were developed based on a similar study that 

investigated the struggles encountered with CS1 concepts [78]. The participants’ 

answers to the pretest and posttest surveys helped assess pertinent (1) knowledge 

skills and (2) explanation skills such as: 

a) Comprehension of the core concept (1, 2) 

b) Rephrasing of the core concept with no technical words (1) 

c) Prior knowledge needed to gain a good understanding of the core concept, 

if any (1) 

d) Real-world examples in regards to the core concept (2) 

e) Context of utility of the core concept (1) 

f) Thoughts and reactions, before, during and after the process of solving the 

paper-and- pencil exercise based on the core concept (2) 

g) Concepts and/or elements where the participants were stuck at first but 

then became clearer, if applicable (1, 2) 

h) Concepts and/or elements where the participants were stuck and how they 

dealt with this situation (1, 2) 

i) Concepts and/or elements where the participants were stuck and 

suggestions/advice to help other students who might be struggling with the 

same concepts and/or elements (2) 
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j) Impact that the understanding of the core concept has on other things, if 

any (1, 2) 

7) Interview Questionnaire: The interview was added in case that the think 

aloud protocol was not very conclusive. Also, it provided a temporal dimension to 

the thought processes that arose within the context of solving the problem (see 

Appendix J). Participants had a chance to reflect on the given problem over 

couple days, precisely four days, and come back to debrief on their answers as 

well as to reiterate their reactions and thoughts when solving the problem. 

C. Data Analysis Procedures 

The data analysis was divided into two parts: quantitative data analysis and 

qualitative data analysis.  

1) Quantitative Data Analysis: The tests were assessed using grading criteria 

for each section. For example, the grading of the first exercise was based on the 

assessment criteria indicated in Table 4. 
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Table 4 – Scoring Grading Criteria 

Tests Criteria 

Problem design 

(Part I – 4 points) 

� Successfully indicated classes 

� Successfully identified data members  

� Successfully identified methods  

� Assigned proper data types to data members  

� Assigned proper parameters and return types to 

methods  

Problem solving  

(Part II – 6 points) 

 

� Properly formed method signatures  

� Properly formed variable declarations  

� Properly formed method invocations  

� Included correct methods  

� Properly formed variable assignment  

� Properly formed method declarations  

� Proper reasoning/logics 

� Proper syntax 

Bonus points criteria  

(Part III – 5 points) 

� Problem design solution to bonus points exercise  

� Creativity 

 

The instructor of the courses determined the assigned points for each section. 

The base score was 10 points, which does not include the two independent 

variables - bonus points and creativity.  

The sections of the tests (i.e. quizzes) were open-ended questions. The open-

ended questions used in tests often require a more in-depth thinking from the 

students and can disclose more about how students understand and reason with 

the course concepts than do multiple choice questions. Traditional tests (see 

example in Appendix K) often do not disclose much about how students think 

about the course concepts. Since students do not have to use their conceptual 

understanding, their solutions often accentuate a single value response either a 
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numeric answer when tracing code or an alphabet answer when choosing a 

response from a multiple-choice question; and thus such type of tests demand a 

single correct response. The instructor and/or TA can only opt by assigning full 

credit or no credit. Whereas in tests with open-ended questions, students must 

give a solution that accentuates how they came up with an answer which can be 

more informative than traditional tests; showing students’ understanding, ability 

to reason, and ability to apply knowledge in less traditional contexts. Such tests 

can communicate the levels of student achievement more clearly than multiple-

choice items, and thus, give better guidance for instructions.  

An application of Amabile’s consensual assessment technique for rating the 

tests was applied. Based on [79], the three requirements for the task itself must be 

satisfied [79, p.1001]: 

1) The programming task did not depend on specialized skills. It was solely 

based on what was taught in the classroom/lab setting. There was no pre-

requisite for CS1 courses and, therefore, no prior knowledge in 

programming was expected.    

2) The programming task was an open-ended question, which enabled 

flexibility in responses. For example, a typical exercise was “Based on 

your UML diagram above, please develop the [ClassName] class”.   

3) The programming task was a paper-and-pencil type exercise, i.e. a written 

response, which was easily accessible. 

In addition, this study used the following assessment procedure [79, p. 1002]: 
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1) The judges were two graduate students (one female and one male) in the 

computing field who have taken the CS1 courses as part of their 

undergraduate curriculum. If the two judges have a different point of view, 

a third judge, another graduate student in the program, would evaluate the 

specific test(s) to break the tie. However, in this study, a third judge was 

not needed as the two judges were able to come to an agreement for all the 

participants.  

2) The judges assessed tests based on their “own subjective definition” of 

each criteria such as logic, clarity, identification of attributes and methods, 

type parameters, syntax, and more without consulting each other.    

3) The judges assessed each programming exercise by comparing one 

programming exercise to another one.    

4) The judges were given a stack of completed tests, which included copies 

of each programming exercise. The order of the copies in each stack was 

random for each judge.  

Furthermore, using Amabile’s assessment technique, creativity was assessed for 

section 2 of each test, which was the problem solving (code). The creativity in 

section 1, the algorithm design (UML diagram), would have been a bit difficult to 

assess. This section was a straightforward exercise and therefore this section was 

not assessed for creativity to stay away from negative creativity. For example, a 

few students, who were unable to retrieve their knowledge about the UML 

diagram, came up with ‘strange’ answers such as a spiral and a one-paragraph 

write-up. One may have thought that their answers were creative but the display 
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of their knowledge about algorithm design was very poor. Based on the notion of 

“creativity,” some of the initial impressions of the data were found in students 

who did the following: 

1) Checked for positive deposit. Only a few of them thought about error 

handling for deposit. Who would think about making a deposit of a 

negative amount? 

2) Used an array in test 1 when it was not the concept tested on. It was 

supposed to be in test 2 since arrays were learned after the test 1. 

3) Underlined methods and attributes in the problem description 

4) Used Boolean methods instead of void methods    

5) Named the variables  

The assessment of quantitative data was conducted using the software 

Statistical Package for the Social Sciences (SPSS). The statistical analysis 

explored the overall student performances over the three tests and attempted to 

find any correlations existing among exercises. Furthermore, data on students’ 

background were collected, and thus, comparison within-students was applied to 

differentiate any students’ design and problem-solving performance based on 

factors such as course, major, gender, ethnicity, and prior programming 

experience. 

2) Qualitative Data Analysis: Even in quizzes with open ended questions it 

may not be that simple to see how a student was thinking on a problem or why 

they answered a particular way. In such a case, the computer science education 

researcher may decide to conduct interviews with some of the students. The 
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written data (tests) and the verbal data (think aloud/interviews) were assessed by 

first identifying episodes demonstrating some skills and then the judges came 

together to compare their respective episodes and agreed on the skills to use for 

assessment. The goal of the written data is to present samples of student 

performance to showcase common mistakes made by the student body 

participating in this study. Whereas the goal of the verbal data is to present the 

skills that were identified in the think aloud and interview protocols and showcase 

some interesting excerpts from the interviews that are related to the CS core 

concepts described earlier and the skills identified.     

In this study, participants were students enrolled in at least one of the CS1 

courses and the problems were open-ended design problems. Three datasets – 

Problem design, Problem solving, and Think aloud/Interviews - can be 

distinguished in Figure 7 below. Three different analyses were conducted which 

included students’ profiles, computational thinking skills, and core concepts 

abilities.   
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Figure 7 – Overview of Qualitative Data Analysis Procedure 

D. Verifying Data Accuracy 

The data accuracy was verified during the data collection. As the study 

progressed, changes were made to avoid clerical errors, subjective errors, and 

methodological errors.  

1) Avoiding Clerical Errors: The data collection worksheets were checked 

against the original source of documents (i.e. copies) to ensure consistency with 

the assigned identification numbers for both the verbal and written data. Only one 

individual was in charge of recording the data in question to limit inconsistency 

and inaccuracy. 

2) Avoiding Subjective Errors: When dealing with data involving subjective 

ratings such as those provided by teaching assistants, an effort was made to 

determine the accuracy of the rating system. This was accomplished by examining 

the rating scale to determine how clear and comprehensive the descriptions were 

of the various rating categories. To ensure accuracy, a designated individual 

double-checked the grades entered based on the assessment criteria.     
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3) Avoiding Methodological Errors: Of the data collection techniques 

existing, surveys are most prone to methodological error. The survey instrument 

(i.e. questionnaires) was reviewed for possible bias by a dissertation committee 

member and the Office of Research Integrity and Assurance at ASU.        

4) Avoiding Assessment Errors: The assessment of both qualitative and 

quantitative analyses was conducted by two graduate students who scored the data 

independently using the assessment criteria described earlier in this chapter. Then 

the two judges got together and compared their assigned scores. If the scores were 

the same then this was the final score. Otherwise, the judges had to reassess the 

data until they came into an agreement.         

E. Limitations  

This study was limited by the number of college students willing to participate 

in the interview process. Although the study began with 145 students, only 93 

participants from CS1 courses took part in all tests (49 from CSE 100 and 44 from 

CSE 110). Thus, the study only looked at this subset of 93 participants to 

determine their overall performance across the three tests. Furthermore, only 6 

students were interested in participating in the corresponding think aloud and 

interview phases. There was a delay in curricular implementation during the 

semester, closer to the time when the third test was to be implemented. As a 

result, the third test had to be adjusted to reflect the latest material covered in 

class and the initially planned assessment could not be fully executed. Because 

this exercise was finally implemented closer to the end of the semester, the 
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number of participants for the corresponding interview and think aloud protocol 

was low. Although the data collected was useful, the delay in curricular 

implementation bounded the data collection for think aloud and interviews to 

primarily the first two tests. Nonetheless, this study has useful results that will 

inform instructors of CS1 courses. 

A secondary limitation to the study was the time needed to conduct 

assessment on additional troublesome concepts. Due to the full curriculum 

already in place for CS1 courses, the study focused only on the top three concepts 

identified by the survey given to the instructors and TAs. 

Last but not least, the duration of each test was only 30 minutes, which is a 

short time to complete the exercises. Therefore students had to make decisions 

rapidly, and the scope for reflection was limited, especially for the bonus exercise. 

This time limitation for test was due to the allocation of time for lecture and 

review of materials prior to taking the test. 
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IV.  DATA ANALYSES AND RESULTS 

In this chapter the results of the data are presented. The data were collected 

and then processed in response to the problems posed in chapter 1 of this 

dissertation. Two fundamental goals drove the collection of the data and the 

subsequent data analysis. Those goals were to develop a base of knowledge skills 

about what CS1 students know or do not know about the core concepts in terms of 

the computational thinking’s characteristics: abstraction, algorithm, scalability, 

reasoning, and linguistics; and to compare their overall design and problem-

solving solutions. These objectives were accomplished. The findings presented in 

this chapter demonstrate the potential for making significant recommendations to 

the CS1 instructors. 

A. Response Rate 

One hundred and forty five CS1 students were initially identified to take the 

tests, including 81 in CSE 100 and 64 in CSE 110. However, only 93 participants 

completed all tests. With 93 participants out of 145, the response rate was 64 

percent. Furthermore, the last test for CSE 100 did not include any design and 

coding due to a delay in the curricular implementation which bounded the data 

collection for CSE100 to the first tests. Therefore, 93 participants were considered 

and only the first two tests for CSE 100 were considered to be legitimate for this 

research. Two hundred and seventy-nine tests were obtained but only 230 usable 

responses (98 in CSE 100 and 132 in CSE 110) were analyzed.  With 230 usable 

responses out of 279, the utility rate was 82 percent. 
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I compared the means from the two samples in each course to ensure that the 

actual sample that I am using represents the students who took the tests. The first 

sample (iUML1, iUML2, iUML3, iCoding1, iCoding2, and iCoding3) represents 

all the students who did not take each specific piece of each test whereas the 

second sample (UML1, UML2, UML3, Coding1, Coding2, and Coding3) 

represents the students who took all three tests (see Table 5). 

Table 5 – Comparing Means among Specific Pieces of Each Test 

Pieces of each Test CSE 100 mean CSE 110 mean 

iUML1 .790 .653 

UML1 .801 .622 

iUML2 .864 .629 

UML2 .847 .660 

iUML3 n/a .748 

UML3 n/a .773 

iCoding1 .613 .520 

Coding1 .626 .583 

iCoding2 .739 .790 

Coding2 .724 .789 

iCoding3 n/a .750 

Coding3 n/a .778 

 

As it can be noticed, the difference in means is somewhat minimal; and thus 

the proposed sample that I used (93 participants) in this study is accurate and also 

very close to the source sample (145 participants).  
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B. Participant Background  

Of the 93 participants, 53 percent were enrolled in CSE 100 (C++) and 47 

percent were enrolled in CSE 110 (Java). Table 6 represents the overall 

background information of the participants based on major, gender, ethnicity, and 

prior programming experience. Even though the study attempted to achieve 

balance, this was not possible due to the student population in CS1 at that time. 

Nonetheless, the participant background distribution is a good representation of 

the CS1 students at Arizona State University.        

Table 6 – Participation Background Distribution 

 
Major Gender Ethnicity 

Prior 
Programming 

Experience 
 CS Non-CS Female Male White Non-White Yes No 

CSE 100 82% 18% 31% 69% 59% 41% 10% 90% 

CSE 110 93% 7% 25% 75% 64% 36% 43% 57% 

CSE 100 

∩  

CSE 110 

87% 13% 28% 72% 61% 39% 26% 74% 

Total 100% 100% 100% 100% 

 

C. Intercoder Reliability 

As mentioned in the previous chapter, two judges independently evaluated the 

tests and reached an agreement. As Neuendorf indicated “[w]ithout the 

establishment of reliability, content analysis measures are useless” [80]. 

Furthermore, Kolbe and Burnett [81] note that “interjudge reliability is often 

perceived as the standard measure of research quality. High levels of 
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disagreement among judges suggest weakness in research methods, including the 

possibility of poor operational definitions, categories, and judge training.” Thus, 

intercode reliability is necessary because its proper assessment makes coding 

more efficient and all the work involved - data gathering, analysis, and 

interpretation - is unlikely to be dismissed by skeptical reviewers [82]. 

There are many different measures of intercoder reliability and despite all the 

efforts devoted to develop and test measures, there is no consensus on one 

universally accepted measure [82]. However, the Cohen’s kappa measure seems 

to be the norm in research that involves behavior and learning [83]. In addition, 

Cohen’s kappa can be calculated using SPSS. To do so, in the data setup format, 

each row represented a single case (i.e. a single participant) and each column 

represented the coding judgments of a particular coder for a particular variable 

(i.e. UML1, Coding1, and etc). It is rare that a perfect agreement is reached. 

Different people have different interpretations. As a rule of thumb values of 

Kappa from 0.40 to 0.59 are considered moderate, 0.60 to 0.79 substantial, and 

0.80 outstanding [84]. Most statisticians prefer for Kappa values to be at least 0.6 

and most often higher than 0.7 before claiming a good level of agreement. From 

the SPSS program outputs, the level of reliability for the kappa index for UML1, 

Coding1, UML2, Coding2, UML3, and Coding3 is summarized in Table 7. In any 

case the level of reliability is always acceptable as all the Kappa coefficients are 

greater than 0.90.      
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Table 7 – Quantitative Symmetric Measures 

 Measure of Agreement Kappa 

Value 
Approx. Sig. N of Valid Cases 

UML1_c1 * UML1_c2  .919 .000 93 

UML2_c1 * UML2_c2  .919 .000 93 

UML3_c1 * UML3_c2  .911 .000 44 

CODING1_c1 * CODING1_c2 .914 .000 93 

CODING2_c1 * CODING2_c2 .933 .000 93 

CODING3_c1 * CODING3_c2 .940 .000 44 

 

Disagreements in the reliability coding were resolved by the two judges as an 

agreement was reached after a second round of evaluation and thus the two judges 

came to the same conclusion for all the participants.           

D. Quantitative Analysis 

As presented in the previous chapter, the quantitative analysis was conducted 

on the tests which are primarily divided into three specific pieces: UML (design), 

Coding (problem-solving), and bonus points. For the scope of this study, we limit 

the analysis of each test on the first two pieces, UML and Coding.   

The statistical data analysis of the exercises focuses on the following research 

question hypotheses: 

1) How did the group perform on the three tests overall? 

2) Are there any differences between how students scored on specific parts of 

test1 compared to test 2 (and test 2 compared to test 3)?  

3) Are there any relationships between any of the four factors (major, gender, 

ethnicity, and prior programming experience) and student performance 

scores for each specific pieces of each test? 
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4) Are there any relationships between how students scored on specific parts 

of test 1 compared to test 2 (and test 2 compared to test 3)?  

To answer the above research hypotheses, I used the analytical software SPSS 

to test the data sets for normality; and to conduct dependent t-test, multiple 

analysis of variance test (MONAVA), and the correlation test. Furthermore, since 

CSE 100 participants were bounded to test 1 and test 2, I have three datasets. The 

first dataset analyzed the three tests for CSE 110 (Appendix K), the second 

dataset analyzed the first two tests for CSE 100 (Appendix L), and the third 

dataset is a combination of the two first datasets for an analysis of the overall CS1 

student performance (Appendix M). The data sets included the percentage scores 

for each UML exercise (UML1, UML2, and UML3) and each Coding exercise 

(CODING1, CODING2, and CODING3). 

1) Testing for Normality: A test for normality is a prerequisite for many 

statistical tests where normal distribution of data is an underlying assumption in 

parametric testing. There are two main methods to assess normality, graphically 

and numerically. Numerical tests have the advantage of making an objective 

judgment of normality but are disadvantaged by sometimes not being sensitive 

enough at low sample sizes or overly sensitive to large sample sizes. Graphical 

interpretation has the advantage of allowing good judgment to assess normality in 

situations when numerical tests might be over or under sensitive. As such, since 

my data sets are of small size samples (< 100 samples), I used the normal Q-Q 

Plot as a graphical representation of normality. Based on the plots, the data points 
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were close enough to the diagonal line to conclude that the three data sets can be 

considered as normal distributions.  

2) Dependent t-Test: The dependent t-test compares the means between two 

related groups on the same continuous variable. In this study, a group of freshman 

students enrolled in one of the introductory courses were selected from the student 

population to investigate whether design (UML) and problem-solving (Coding) 

improve their performance in the course. In order to test whether these types of 

exercises are useful measures that can show an improvement in performance, the 

sample groups were first tested for their performance in test 1, and then measured 

again (test 2 and test 3) before the end of the semester.  

Using SPSS paired-samples t-test procedure, from the two tables - Paired 

Sample Statistics and Paired Samples Test - the first data set (i.e. CSE 110 

participants for all three tests) showed the following score improvement: 

Due to the significance level value of UML1-UML2 and CODING2-
CODING3 (p > 0.05), there was no statistically significant score 
improvement between UML1 and UML2 and CODING2 and CODING3.  

t(43) = -3.513, p < 0.05. There was a statistically significant paired 
difference for UML2 (0.66 ± 0.24 pt) - UML3 (0.77 ± 0.20 pt);  

t(43) = -3.218, p < 0.05. There was a statistically significant paired 
difference for UML1 (0.62 ± 0.32 pt) - UML3 (0.77 ± 0.20 pt);  

t(43) = -3.707, p < 0.05. There was a statistically significant paired 
difference for CODING1 (0.58 ± .34 pt) - CODING2 (0.79 ± 0.26 pt);  

t(43) = -3.605, p < 0.05. There was a statistically significant paired 
difference for CODING1 (0.58 ± .34 pt) - CODING3 (0.78 ± 0.23 pt);  
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Based on the first dataset results shown above (means and direction of the t-

value), a summary of the overall score performance between each specific piece 

of each test is presented in Table 8 below. 

Table 8 – Dataset 1 Overall Score Performance between Exercises 

 
 

Significant Score 
Performance 
Difference 

If Yes then  
Positive or Negative 

Pair 1 UML1 - UML2 No  

Pair 2 UML2 - UML3 Yes Positive 

Pair 3 UML1 - UML3 Yes Positive 

Pair 4 CODING1 - CODING2 Yes Positive 

Pair 5 CODING2 - CODING3 No  

Pair 6 CODING1 - CODING3 Yes Positive 
 

From this table, I concluded that overall CSE 110 students’ problem design scores 

improved significantly. Even though, CSE 110 students’ problem solving scores 

improved significantly, the scores between test2 and test3 were similar with a 

mean difference of 0.01.  

The second dataset (i.e. CSE 100 participants for the first two tests) showed 

the following score improvement:  

Due to the significance level value of UML1-UML2 (p > 0.05), there was 
no statistically significant score improvement between UML1 and UML2. 

t(48) = -3.020, p < 0.05. There was a statistically paired difference for 
CODING1 (0.63 ± 0.27 pt) - CODING2 (0.72 ± 0.27 pt);  

Based on the second data set results shown above, I concluded that overall CSE 

100 students’ problem design scores improved (but not significantly) with a mean 

difference of 0.05, and thus this shows that students scored were about the same. 
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However, CSE 100 students’ problem solving scores improved significantly, and 

thus this shows that students scored better. 

The third dataset (i.e. CS1 participants for the first two tests) showed the 

following score improvement:   

t(92) = -4.707, P < 0.05. There was a statistically significant paired 
difference for CODING1 (0.61 ± .30 pt) - CODING2 (0.76 ± 0.27 pt);  

Based on the third data set results shown above, similarly to dataset2, I concluded 

that overall CS1 students’ problem design scores improved (but not significantly) 

with a mean difference of 0.04, and thus this shows that students scored were 

about the same. Whereas, CSE 100 students’ problem solving scores improved 

significantly, and thus this shows that students scored better as they progressed 

through the semester. However, it is important to keep in mind that in this dataset 

there are more CSE 100 students than CSE 110 so this difference of 6 students 

may have played a role in the overall CS1 student performance.    

3) Multiple Analysis of Variance (MANOVA): MANOVA is used to answer 

the research question: “Are there any relationships between the factors and all (or 

each of) the dependent variables?” In this section, I only presented partial 

multivariate tests tables with relevant information (i.e. p < 0.05).  

In the first dataset, there was a significant relationship between major and 

Coding3 and ethnicity and Coding3. Also, the combined factors major and 

ethnicity were found significant with Coding3 (See Table 9).  
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Table 9 – Dataset 1 Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III 

Sum of 

Squares Df Mean Square F Sig. 

MAJOR UML1 .040 1 .040 .392 .535 

UML2 .009 1 .009 .136 .715 

UML3 .133 1 .133 3.387 .074 

CODING1 .005 1 .005 .049 .826 

CODING2 .094 1 .094 1.808 .188 

CODING3 .422 1 .422 11.210 .002 

ETHNICITY UML1 .073 1 .073 .704 .407 

UML2 .013 1 .013 .186 .669 

UML3 .162 1 .162 4.123 .050 

CODING1 .071 1 .071 .657 .423 

CODING2 .087 1 .087 1.666 .205 

CODING3 .177 1 .177 4.707 .037 

MAJOR * 

ETHNICITY 

UML1 .134 1 .134 1.300 .262 

UML2 .005 1 .005 .067 .798 

UML3 .222 1 .222 5.654 .023 

CODING1 .005 1 .005 .045 .833 

CODING2 .011 1 .011 .210 .650 

CODING3 .260 1 .260 6.902 .013 
 

In the second dataset, no significant relationships between the factors and the 

specific pieces of the tests were found.  

In the third dataset, there was a significant relationship between course and 

both UML1 and UML2. Also, the combined factors major and gender were found 

significant with all three Coding tests (See Table 10). 
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Table 10 – Dataset 3 Tests of Between-Subjects Effects 

Source Dependent Variable 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

COURSE UML1 .118 1 .118 1.657 .202 

UML2 .309 1 .309 6.411 .014 

CODING1 .006 1 .006 .065 .799 

CODING2 .018 1 .018 .277 .600 

MAJOR * 

GENDER 

UML1 .062 1 .062 .877 .352 

UML2 .027 1 .027 .565 .455 

CODING1 .526 1 .526 6.020 .017 

CODING2 .274 1 .274 4.165 .045 
 

CSE 110 dataset shows that computer science male students performed higher 

in the third coding exercise than the rest of the students. Furthermore CS1 dataset 

shows that CSE 100 students performed higher in the second UML exercise than 

CSE 110 students. Also, computer science male students performed higher in both 

the second and third coding exercises than the rest of the students.  

4) Pearson’s Product-Moment Correlation: This correlation test aims at 

comparing the scores obtained in UML tests and CODING tests to determine if 

there is a relationship. The research question is: “Does a student who performed 

well in UML1 also performed well in Coding1?” The Pearson product-moment 

correlation was run to determine the relationship between UML performance test 

scores and Coding performance test scores. Since I am performing several 

correlations, I must consider a corrected significance level to minimize the 

chances of making a Type I error. I used the Bonferroni approach, which required 

dividing .05 by the number of computed correlations. I used .0056 (0.05/9) for the 
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first dataset and .0125 (0.05/4) for the second and third datasets. From the first 

dataset, students scored similarly on both UML1 and Coding2, on UML2 and 

Coding2 and Coding3, and on UML3 and Coding3 (p < 0.0056) (See Table 10). 

From the second dataset, students scored similarly on both UML1 and Coding1, 

and on UML2 and Coding1 and Coding2 (p < 0.0125) (See Table 12). Whereas 

from the third dataset, students scored similarly on both UML2 and Coding2, and 

on UML1 and Coding1 and Coding2 (p < 0.0125) (See Table 13)    

Table 11 – Dataset 1 Correlation between UML and Coding  

 UML1 UML2 UML3 CODING1 CODING2 CODING3 

UML1 Pearson Correlation  .091 .423**  .395**  

Sig. (2-tailed) .557 .004 .008 

UML2 Pearson Correlation .093 .510**  .485**  

Sig. (2-tailed) .549 .000 .001 

UML3 Pearson Correlation .151 .377* .788**  

Sig. (2-tailed) .329 .012 .000 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
 

Table 12 – Dataset 2 Correlation between UML and Coding 

 UML1 UML2 CODING1 CODING2 

UML1 Pearson Correlation  .548**  .274 

Sig. (2-tailed) .000 .057 

UML2 Pearson Correlation .456**  .481**  

Sig. (2-tailed) .001 .000 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Table 13 – Dataset 3 Correlation between UML and Coding 

 UML1 UML2 CODING1 CODING2 

UML1 Pearson Correlation  .277**  .289**  

Sig. (2-tailed) .007 .005 

UML2 Pearson Correlation .241* .389**  

Sig. (2-tailed) .020 .000 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

E. Qualitative Analysis  

In this section I provide a sample of student performance profiles and identify 

the computational thinking errors that students made, if any. To do so, first a 

scoring guide was developed to assess the quality of student performance in 

relation to design, coding, and troublesome concepts. The scoring guides for the 

exercises indicate specific criteria to describe a range of possible student 

responses and a consistent set of guidelines to grade student work.    

I describe below the scoring guides for both problem design (UML exercises) 

and problem solving (Coding exercises). Since the UML class diagram was 

assigned 4 points by the instructor, its scoring guide is divided into five categories 

- excellent, good, average, marginal, and unsatisfactory. The Coding exercises 

was assigned 6 points by the instructor and thus its scoring guide is divided into 

seven categories - excellent, very good, good, average, poor, very poor, and 

unsatisfactory. In addition, I have included samples of student responses for 

common mistakes found. The three tests given to the students can be found in 

Appendices C to F.    
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1) Analysis of Problem Design: The problem-design scoring guide was used 

as an assessment tool to judge the quality of student performance in relation to 

UML content standards. The scoring criteria were primarily generated based on 

the following concepts: classes, data members, methods, connections, and syntax 

(Table 14). 
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Table 14 – Problem Design (UML) Score & Description 

SCORING DESCRIPTION 

EXCELLENT 
S = 4 

+ 

+ 
 

+ 
 

+ 

+ 

Classes were named with descriptive names  

All data members are well-described and include their 
data types  

All methods including constructors are well-described 
and include their parameters’ data type and return types 

All connections are indicated correctly  

UML class diagram format is correct 

GOOD 
4 < S ≤ 3 

+ 

+/- 
 

+/- 
 

+ 

+ 

Classes were named with descriptive names  

Most data members are well-described and include their 
data types  

Most methods including constructors are well-described 
and include their parameters’ data type and return types 

All connections are indicated correctly  

UML class diagram format is correct 

AVERAGE 
3 < S ≤ 2 

+ 

- 
 

+/- 
 

 

+ 

+ 

Classes were named with descriptive names  

Few or no data members are well-described and include 
their data types  

Most methods are well-described and include their 
parameters’ data type and return types. Constructors may 
or may not be included 

All connections are indicated correctly  

UML class diagram format is correct 

MARGINAL 
2 <S ≤ 1 

+/- 
 

- 
 

- 
 

 

+/- 

+ 

Classes may or may not be named (with descriptive 
names) 

Few or no data members are included with their data 
types 

Few or no methods are included with their parameters’ 
data type and return types. Constructors may or may not 
be included 

Connections may not be indicated correctly  

UML class diagram format is correct 

UNSATISFACTORY 
1 < S ≤ 0 

+/- 
 

 

- 

 

- 
 

- 

+/- 

Classes may or may not be named (with descriptive 
names) 

Few or no data members are included with their data 
types 

Few or no methods are included with their parameters’ 
data type or return types. Constructors are not included 

Connections are not indicated  

UML class diagram format may not be correct 
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The student performance in problem design (UML) was measured three times 

over the semester. The first UML exercise was given seven weeks after school 

began. Students were knowledgeable about classes, data members, and objects.  

The second UML exercise was given five weeks after the first UML exercise was 

given. Students were knowledgeable about arrays of objects, conditional 

statements, and repetition. The last UML exercise was given three weeks after the 

second UML. Students were knowledgeable about abstraction, inheritance, and 

polymorphism.    

Based on the student performance in UML throughout the semester, I have 

included samples of student performance below indicated the common mistakes 

found frequently. Figure 8 shows an example of an excellent response for a 

problem design. The student listed the relevant data members with their respective 

data types. In addition, the student listed all the relevant methods, including the 

constructor, with their respective parameters’ data type and return types. This 

example shows that the student was able to abstract the relevant information from 

the given problem as well as organized the information in such a manner that 

he/she understood the concepts of class, data members, and methods. 

Furthermore, he/she specified the return types of each method in such a manner 

that it is clear that he/she understood how the outputs will be accessed, 

particularly the method getBalance().  
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Figure 8 – Sample for UML Score Excellent 

The next example, Figure 9, shows an overall good response from a student. The 

student listed the relevant data members with their respective data types. 

However, the data type for the array is not consistent with the data type for the 

final average. Furthermore, the relevant methods are listed including the 

constructors. However, the student did not include the parameters’ data type, and 

thus failed to abstract all the relevant details from the given problem.        

 

Figure 9 – Sample for UML Score Good 
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Figure 10 shows another example where the student’s problem design failed to 

abstract the relevant information form the given problem. First, the majority of the 

data members are not indicated except for one, balance. Secondly, most of the 

methods are included except for the constructor. Last but not least, this response 

included the incorrect return type for the method viewBalance(). As a result, this 

student’s response was categorized as average.      

 

Figure 10 – Sample for UML Score Average 

Figure 11 is similar to the mistakes made in Figure 10 in terms of the abstraction 

of the relevant data members, but also the student failed to correctly define the 

data. For example, the syntax to define an array is incorrect and some of the data 

types for the data members are incorrect such as letter grade. Furthermore, the 

methods do not include their parameters’ data type and their return types. Last but 

not least, the constructor was omitted. Thus, this response was scored as marginal.        
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Figure 11 – Sample for UML Score Marginal 

Figure 12 is an example of a student who was unsuccessful at the abstraction of 

the information as well as the correctness of his/her problem design. This 

response is omitting the constructors as well as the return types of the toString() 

method. The data members are not properly defined. It seems that they are 

defined as methods. In addition, the relationship for inheritance between the two 

classes is incorrect. The arrow should be pointing in the other direction.      

 

Figure 12 – Sample for UML Score Unsatisfactory 
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2) Problem Design Score Distribution: The scoring distribution for the three 

UML exercises is indicated with respect to their score range (Table 13). Note that 

the ‘good’ score percentage is the only score that consistently increased 

throughout the study. Also, the ‘unsatisfactory’ score is the only score that 

consistently decreased throughout the study and at the end of the study no student 

response was rated ‘unsatisfactory.’ The two primary reasons for the ‘excellent’ 

score decreasing for UML3 are: (1) this exercise was only assessed for CSE 110 

and (2) many students identified one constructor instead of two constructors. 

Furthermore, when combining the top two scores for each UML exercise, about 

two-third of the CS1 students received an “excellent” or “good” grade, equivalent 

to the letter grade A or B, in UML1 and UML2. Furthermore, eight students out 

of nine students performed above ‘average’ in UML3. 

 

Figure 13: Scoring Distribution for UML for CS1 Courses 
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In addition, the UML1 and UML2 percentage scores with respect to the course 

variable shows that the majority of the students performing below average are 

enrolled in CSE 110 (Table 15). However, the study included 44 CSE 110 

participants compared to 49 CSE 100 participants so this difference in 6 students 

may have played some role in this difference between the two courses. 

Nevertheless, the difference is high so a closer look into the types of mistakes 

found across the two courses may be useful. 

Table 15 – Breakdown of UML Scoring Distribution by Course 

 UML1 UML2 

 CSE 110 CSE 100 CSE 110 CSE 100 

Excellent 36% 64% 22% 78% 

Good 36% 64% 41% 59% 

Average 76% 24% 71% 29% 

Marginal 50% 50% 100% 0% 

Unsatisfactory  83% 17% 100% 0% 

 

UML is a tool used to model/design a problem at the abstraction level in terms 

of the relevant information from a given problem. As a result, the assessment of 

the types of mistakes made by the students during the semester is based on the 

following two computational thinking criteria: abstraction and linguistics (Table 

3). Table 16 illustrates a more descriptive disparity among the two classes. In the 

first test, both CSE 100 and CSE 110 students scored similarly for the overall 

mistakes made in abstraction and linguistics when modeling the problem. 

However CSE 100 students’ mistakes were found more than twice as high as their 

CS 110 peers’ mistakes for data members and methods. In contrast, CSE 110 

students’ mistakes were found more than twice as high as their CSE 110 peers’ 
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mistakes for returned types and more than one third as high as their CSE 110 

peers’ mistakes for parameter’s data types. As the semester progressed, overall 

the students’ mistakes in abstraction reduced by one third when they took the 

second test. While CSE 100 students’ mistakes in abstraction drastically dropped, 

CSE 110 students still struggled with some of the concepts such as data members’ 

data types. This is primarily due to the introduction of arrays in their learning. 

Most students did not define an array for the exam scores but rather a single 

variable to characterize all the exam scores. Students either did not know how to 

define an array in their problem design or they defined the array improperly; thus, 

the mistakes in relation to linguistics skill went up. Some students who 

recognized they had to define an array, but did not know how to, defined five data 

members instead, given that the array was limited to five entries. Their alternative 

design of the array was correct even though they did not use the concept of the 

array in their problem design. Toward the end of the semester, the last test 

included two classes. The CSE 110 students failed to identify the second 

constructor, and therefore the count for the mistakes related to the omission of the 

constructors almost went back to the count from the beginning of the semester. 

Otherwise, the count would have been close to zero percent. This shows that the 

students have not fully grasped the concept of a ‘constructor.’ If students included 

the constructor then they did not include the parameters’ data type for it. 
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Table 16 – Assessment of UML Computational Thinking Skills 

 UML1 UML2 UML3 

Computational Thinking 
Mistakes 

CSE 
110 

CSE 
100 

All 
CSE 
110 

CSE 
100 

All 
CSE 
110 

ABSTRACTION  82% 78% 80% 77% 41% 58% 66% 
Relevant classes are 
omitted/incorrect 

0% 0% 0% 0% 0% 0% 0% 

Relationships between the 
classes are incorrect 

0% 0% 0% 0% 0% 0% 7% 

Relevant data members are 
omitted/ incorrect 

7% 12% 10% 0% 2% 1% 0% 

Data members’ data types 
are omitted/ incorrect 

14% 14% 14% 34% 14% 24% 0% 

Relevant methods, 
excluding constructors, are 
omitted 

5% 12% 9% 5% 0% 4% 0% 

Constructors are omitted 48% 31% 39% 34% 8% 21% 41% 
Parameters’ data types are 
omitted/incorrect 

68% 45% 56% 27% 8% 17% 34% 

Return types are omitted/ 
incorrect  

61% 29% 44% 41% 6% 24% 27% 

LINGUISTICS 25% 20% 23% 27% 29% 37% 14% 

Improper semantics 0% 0% 0% 0% 0% 0% 0% 

Improper syntax 25% 20% 23% 27% 29% 37% 14% 
 

Overall, the CS1 students demonstrated computational thinking skills as they 

progressed through the semester. Students have a better grasp of abstraction in 

terms of data members, methods, data types, and return types. Even if the number 

of mistakes made by the students in linguistics did not reduce as the students 

progressed in the course, their ability in linguistics is consistent.  

3) Analysis of Problem Solving: The problem-solving scoring guide was used 

to judge the quality of student performance in relation to program content 

standards. The scoring criteria were generated based on program sequence, 

inclusion of the classes, methods with constructors, reasoning within methods, 

and syntax. Table 17 describes the scoring for each student performance profile. 
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Table 17 – Program Solving (Code) Score & Description 

SCORING DESCRIPTION 

EXCELLENT 
S = 6 

+ 
 

+ 
+ 
+ 

 
+ 

 
+ 

Sequence of the program is correct (class, data members, and 
methods) 
Classes include data members 
Constructors are included and initialized 
Methods are included with their parameters passing, data types, 
and return types 
Logic is performed correctly (arithmetic, conditional 
statements and repetition statements) 
No syntax error 

VERY GOOD 
6 < S ≤ 5 

+ 
+ 
+ 
+ 

 
+/- 
+/- 

Sequence of the program is correct  
Classes include data members 
Constructors are included and initialized 
Methods are included with their parameters passing, data types, 
and return types. 
Most logic is performed correctly  
Few (minor) syntax errors 

GOOD 
5 < S ≤ 4 

+ 
+ 
+/- 
+ 

 
+/- 
+/- 

Sequence of the program is correct  
Classes include data members and methods 
Constructors may not be included or initialized 
Methods are included with their parameters passing, data types, 
and return types. 
Most logic is performed correctly  
Few (minor) syntax errors 

AVERAGE 
4 <S ≤ 3 

+ 
+ 
- 
+ 
+/- 
- 

Sequence of the program may is  correct  
Classes include data members 
Constructors are not be initialized properly 
Methods are included (excluding constructors) 
Most logic is performed correctly  
Some syntax errors  

POOR 
3 <S ≤ 2 

+ 
+/- 
- 
+/- 
- 
- 

Sequence of the program is correct  
Classes include some data members  
Constructors are not be initialized properly 
Most methods are included (excluding constructors) 
Few logic is performed correctly  
Some syntax errors  

VERY POOR 
2 <S ≤ 1 

 

+/- 
+/- 
- 
- 
- 
- 

Sequence of the program may not be correct 
Few classes with data members are included 
Constructors are not included/initialized  
Few methods are implemented (excluding constructors) 
Logic is performed incorrectly  
Many syntax errors  

UNSATISFACTORY 
1 < S ≤ 0 

+/- 
- 
- 
- 
- 
- 

Sequence of the program may not be correct 
No classes with data members are included 
Constructors are not included/initialized  
No methods are implemented 
Logic is omitted  
Syntax is incorrect 
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Similar to student performance in problem design, the student performance in 

problem-solving (Coding) was measured three times over the semester. The first 

Coding exercise was given seven weeks after school began. Students were 

knowledgeable about classes, data members, and objects.  The second Coding 

exercise was given five weeks after the first Coding exercise was given. Students 

were knowledgeable about arrays of objects, conditional statements, and 

repetition. The last Coding exercise was given three weeks after the second 

Coding exercise. Students were knowledgeable about abstraction, inheritance, and 

polymorphism. 

Based on the student performance in coding throughout the semester, I have 

included samples of student performance below indicated the common mistakes 

found frequently. But first, Figure 14 shows an example of an excellent response 

for solving a problem. The student properly defined the relevant data members 

with their respective data types. In addition, the student defined all the relevant 

methods, including the constructor, with their respective parameters’ data type 

and return types. This example shows that the student was able to abstract the 

relevant information from the given problem as well as organized the information 

in such a manner that he/she understood the concept of abstraction. Furthermore, 

he/she used the appropriate controls within the methods when necessary such as 

the conditional statement in the method withdraw().  
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Figure 14 – Sample for Coding Score Excellent 

The next example, Figure 15, shows an overall very good response from a 

student. The student defined the relevant data members with their respective data 

types. However, the data type for the array is not consistent with the data type for 

the final average. As a result, a minor syntax error will result from it in the 

method calcExamAverage(). However, the student failed to use a for-loop when 

initializing the exam scores. This solution is correct, but in terms of scalability, 
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this approach will not be suitable when revising the size of the array for the exam 

scores. In the method determineLetterGrade(), the conditional statement is 

improperly used. After the first “if”, the students should have used “else if” rather 

then “if” for the next two conditional statement. Plus, the variable ‘finalAverage’ 

is misused.  

 

Figure 15 – Sample for Coding Score Very Good  
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Figure 16 shows another example where the student’s problem design failed to 

initialize the constructor Ship(). In addition, in the last method, the student should 

have used the ‘super’ for the variable ‘name’ and ‘year’ sine these variables are 

defined in the super class Ship(). As a result, this student’s response was 

categorized as good.   

 

Figure 16 – Sample for Coding Score Good  
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Figure 17 is an example of an average score. The constructor doe not have its 

parameters passing and the two methods for toString() do not have their return 

types and a space should be included between the two variables to be displayed. 

In the last toString() method, there should be a dot after ‘super’. Finally, the 

maxCapacity variable was not initialized in the constructor CargoShip().    

 

 

Figure 17 – Sample for Coding Score Average 
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Figure 18 is an example of a poor score. Some data members are not included and 

the constructor is not properly implemented. Also, the data types for the 

parameters passing are omitted and the conditional statement in the method 

withdraw() is not included. The last method has an incorrect return type.     

 

Figure 18 – Sample for Coding Score Poor 

The student response below (Figure 19) has more syntax errors than the previous 

examples. The data members seemed to be defined as methods and the methods 
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do not have their return types and their parameters passing. All the methods are 

not implemented; and thus this is a very poor student response.   

 

Figure 19 – Sample for Coding Score Very Poor 

The last student response example clearly shows that the student defined the 

methods as variables at the beginning of the class and the constructor does not 
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have its parameters passing and is not properly initialized. The rest of the problem 

is not implemented. This response is unsatisfactory.  

 

Figure 20 – Sample for Coding Score Unsatisfactory 

4) Problem Solving Score Distribution: The scoring distribution for the three 

Coding exercises is indicated with respect to their score range in Table 21. Note 
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that the ‘good’ score percentage is the only score that consistently increased 

throughout the study. Also, the ‘very poor’ and ‘poor’ scores are the only scores 

that consistently decreased throughout the study and that at the end of the study 

the ‘very poor’ score indicated that no student response failed under that category. 

Furthermore, when combining the top two scores for each Coding exercise, about 

one-third of the CS1 students received an “excellent” or “good” grade, equivalent 

to the letter grade A or B, in Coding1 and two-third of CS1 students received an 

“excellent” or “good” grade, equivalent to the letter grade A or B in Coding2. 

Furthermore, nine students out of 10 students performed above ‘average’ in 

Coding3. 

 

Figure 21: Scoring Distribution for Coding for CS1 courses 

 

A closer look at Coding1 and Coding2 percentage scores with respect to the 

course variable shows that half of the students for both CSE 100 students and 

CSE 110 students performed above average for Coding1 (Table 18). However, the 
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CSE 110 students performed higher for Coding2. The difference is minimal but a 

closer look into the types of mistakes found across the two courses may be useful. 

Table 18 – Breakdown of Coding Scoring Distribution by Course 

 CODING1 CODING2 

 CSE 110 CSE 100 CSE 110 CSE 100 

Excellent 18% 25% 43% 33% 

Very Good 14% 10% 21% 25% 

Good 20% 16% 16% 6% 

Average 18% 18% 7% 12% 

Poor 9% 25% 9% 18% 

Very Poor 7% 4% 2% 6% 

Unsatisfactory 14% 2% 2% 0% 
 

Coding is a detailed approach used to problem solve which requires expertise 

in abstraction, algorithm, reasoning, linguistics and scalability. These abilities are 

part of the assessment of the types of mistakes made by the students during the 

semester based on computational thinking skills (Table 3). A more descriptive 

disparity among the two classes is highlighted in Table 19. In the first test CSE 

100 students performed almost twice as worse as the CSE 110 students in 

abstraction, however the two classes performed similarly in algorithm, scalability, 

and linguistics. As the semester progressed, overall, the number of mistakes in 

abstraction reduced considerably for both courses in the second test. Despite the 

use of arrays in this test, students performed much better than in their problem 

design. Similar to problem design, in the third test, CSE 110 students failed to 

identify the second constructor, and therefore the count for the mistakes related to 

the omission of the constructors almost double their count from the beginning of 

the semester. Otherwise, the count would have been minimal.  



83 

Table 19 – Assessment of Coding Computational Thinking Skills  

 CODING1 CODING 2 CODING 3 

Computational 
Thinking Mistakes 

CSE 
110 

CSE 
100 

Overall 
CSE 
110 

CSE 
100 

Overall 
CSE 
 110 

ABSTRACTION 27% 51% 40% 16% 16% 16% 48% 
Data members are 
omitted 

9% 14% 12% 14% 10% 12% 12% 

Constructors are 
omitted 

18% 22% 20% 5% 14% 10% 30% 

Methods are 
omitted 

11% 12% 12% 5% 8% 6% 5% 

Relationships 
between the 
classes are omitted 

0% 0% 0% 0% 0% 0% 14% 

ALGORITHM 39% 45% 42% 20% 33% 27% 20% 
Program sequence 
order is incorrect 

11% 12% 12% 5% 10% 8% 0% 

Program does not 
do anything 

16% 16% 16% 5% 10% 8% 2% 

Program does not 
do the right thing 

25% 31% 28% 2% 12% 8% 11% 

Program does not 
compute the right 
answer (for at least 
one method) 

30% 29% 29% 16% 14% 15% 14% 

REASONING 61% 49% 55% 18% 29% 24% 14% 
Control statements 
are incorrect 

14% 6% 10% 18% 29% 24% 14% 

Control statements 
are omitted  

59% 43% 51% 0% 0% 0% 0% 

SCALABILITY 30% 37% 33% 11% 27% 19% 23% 
Program requires 
more lines of code 
than others for 
future expansion 

30% 37% 33% 11% 27% 19% 23% 

LINGUISTICS 59% 63% 62% 45% 43% 44% 34% 

Improper semantics 0% 0% 0% 0% 0% 0% 0% 

Improper syntax 59% 63% 62% 45% 43% 44% 34% 
 

Overall, the CS1 students have acquired computational thinking skills as they 

progressed through the semester. The students have a better grasp of abstraction 

in terms of data members, methods, algorithm correctness, scalability, and 

linguistics. Even if the number of mistakes made by the students in reasoning did 
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not reduce as the students progressed in the course, their ability in reasoning was 

still satisfactory. 

5) Analysis of Think-aloud/Interviews: The questionnaires and interviews were 

conducted to assess students’ knowledge skills (i.e. CS core concept assessment), 

explanation skills, and skills that were related to computational thinking skills 

based on literature. As shown in Table 20, 16 participants for test 1 and 11 

participants for test 2 were involved in this phase. Due to final semester 

examination schedule, no interviews were conducted for test 3. Thus, this phase 

was limited to test 1 and test 2.     

Table 20 –Think-aloud/Interviews Participation Distribution  

 Test 1 Test 2 

 CSE 100 CSE 110 CSE 100 CSE 110 

Think-aloud/Interviews 6 10 5 6 

 

Students’ knowledge skills and explanation skills were assessed based on the 

criteria indicated in Table 21. From this table, overall students’ knowledge skills 

increased from test 1 to test 2, with a very similar rate of change for both classes. 

Students’ explanation skills have decreased between the two tests, primarily due 

to the concept of arrays (i.e. modeling); and thus students struggled with their 

explanations. Students’ computational thinking skills were increasing and 

decreasing depending on the criteria of interest. In general, students performed 

well in the acquisition of knowledge over the two tests, but the introduction of 

new concepts such as arrays of objects showed some struggles in both their 

explanation skills and computational skills. Furthermore, students seemed to 
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memorize the materials in class rather than internalizing the information when it 

comes to the core computational concepts. This can be observed when one looked 

at the percentage difference between in-class examples versus other examples. In 

addition, participants who were able to successfully explain abstraction 

represented a little less than two-third of the participants in this study.  

Table 21 – Questionnaires/Interviews Assessment  

 Test 1 Test 2 

Identified Skills  CSE 100 
CSE 
110 

All 
CSE 
100 

CSE 
110 

All 

KNOWLEDGE SKILLS 
 

Understanding the core concept 50% 78% 67% 67% 100% 88% 
Recognizing prior knowledge needed to 
apply the core concept 

50% 67% 60% 67% 80% 75% 

Knowing the context of utility of the 
core concept 

50% 67% 60% 67% 80% 88% 

Sharing examples in relation to the core 
concept 

100% 78% 87% 67% 80% 88% 

Referring to/Remembering in-class 
material while solving the problem 

67% 78% 73% 67% 60% 63% 

EXPLANATION SKILLS 
 

Rephrasing the core concept with no 
technical words 

50% 67% 60% 33% 80% 63% 

Reiterating thoughts during the process 
of solving the problems 

67% 78% 73% 33% 60% 50% 

Having confidence when dealing with a 
problem 

33% 89% 73% 33% 80% 63% 

Communicating the goal or solution 67% 89% 80% 67% 80% 75% 

COMPUTATIONAL SKILLS 
 
 

Logically organizing and analyzing data 67% 89% 80% 67% 100% 88% 
Representing data through abstractions 50% 67% 60% 33% 100% 75% 
Automating solutions through 
algorithmic thinking  

50% 78% 67% 33% 80% 63% 

Analyzing and implementing possible 
solution with the goal of achieving the 
most efficient and effective combination 
of steps and resources 

33% 56% 47% 0% 20% 13% 

 

I coded the interview transcripts to illustrate students’ skills broadly 

categorized as knowledge, explanation, and computational skills (as in Table 21). 
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The interview text in bold print is representative of the specific skill that is noted 

in square brackets immediately following the text.  

Excerpt: 

So, arrays can store data, either primitive data structures or even objects 

themselves [understanding the core concept and recognizing prior knowledge 

to apply the core concept], and they’re useful because they can refer to 

multiple since they have like indices [knowing the context of utility of the 

core concept] and so forth. They can actually store a lot of information 

[understanding the core concept], which prevents the programmer from 

having to use repetitive means to declare all the variables [knowing the 

context of utility of the core concept] for a program. 

This participant was able to give a basic definition of the core concept, arrays of 

objects, which could be characterized as a response at the level of CS1. The 

participant did not use any technical words. The participant explained the core 

concept in his own words. I interpreted this explanation to indicate that the 

participant has understood the core concept in its technicality and he was also able 

to explain the core concept to others (both majors and non-majors). Also, the 

participant’s response included the utility of arrays of objects, which indicates that 

the participant understood the context and modeling of the core concept.   

Excerpt: 

Objects are just a subgroup of classes. So they’re smaller [understanding 

of core concept and confidence]. You know, the very vague generalized 

section is the class. And then these are types of that section like you know you 
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could say, you can have a car and then the object could be the type of car, 

the year of the car, the make of the car and so forth [sharing example in 

relation to the core concept].   

This participant was not able to provide a clear definition of the core concept, 

classes and objects, but rather was seeking for approval of his response. I 

interpreted that this participant was uncertain about the idea of “objects” and thus 

showed his lack of confidence. However, the participant was able to recall the 

‘car’ example presented by the professor in-class from the previous lecture. The 

participant has an initial understanding of the core concept but his response still 

presents some missing information, which prevented him from providing a more 

precise definition of the core concept.    

Excerpt: 

Well, in this particular exercise, I had to create a class that was going to 

store information such as the student name, the class name of the student 

[reiterating thought process]. I had to do some computation on the scores to 

figure out what the student’s final score is [communicating to others the 

goal]. So, the first thing I did was I read the problem specifications 

[reiterating thought process] to underline and list all the attributes and all 

the operations or the methods that would be performed [reiterating 

thought process, logically organizing/analyzing data, and representing data 

through abstractions]. Also, I had to remember that I had an array as an 

attribute [understanding the core concept] and so I had to perform a slightly 

different series of operations on that array [remembering in-class material]. 
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I had to remember the syntax for initializing an array [remembering in-

class material] with a certain number of elements in the array, one-

dimensional of course of this problem. And, oh, yeah. Well, when I had to 

add a method to get the highest score, we had learned an algorithm we 

could implement for finding maximum scores [referring to in-class 

material]. So, I implemented the algorithm by creating a variable that would 

store the highest score in the element zero of the exam score array and 

then it would actually go through and compare it with the other scores. 

And if I found one that was actually higher, if it founded an element there 

with a value that was greater than the initial highest score, it would 

replace that variable with the element [reiterating thought process and 

automating solutions through algorithmic thinking] from the – whichever 

exam score element had been higher. I was able to approach it that way and 

it’s very efficient algorithm I think, well, that I know of t o find the 

maximum in arrays [analyzing solution].         

This participant’s response showcased knowledge, explanation and computational 

skills - some of them were explicit and others were implicit. The participant 

reiterated his thought process from reading the given problem to his optimal 

solution. The participant was able to determine that the modeling of his solution 

needed an array and then was able to recall the material learned in class to apply it 

to the given problem. Furthermore, the participant explained his solution in a 

simple manner which showed the confidence and ease of the participant to 

implement a solution. Last but not least, the participant even thought about 
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efficiency even though it could only be based on his knowledge acquired so far. 

This indicates that participant had algorithm efficiency in mind that is a bit 

advanced compared to the rest of his peers who participated in this study.      

Excerpt: 

I just underlined the important things that are probably going to be 

either a variable or a method or the actual name of the object itself 

[logically organizing/analyzing data and representing data through 

abstraction]. Things like that. Then I went ahead and did my best to put that 

into a UML, which is theoretically just like a code list of programming. 

Hmmm the problem asked for the average score grade and then the final 

score letter grade [communicating to others the goal]. Even though they 

didn’t explicitly mention an array for the exam score, I figured that an array 

would save me a lot of trouble with storing the scores [knowing the context 

of utility of the core concept]. To calculate the exam average, I just summed 

them all up with a “for loop” and then divided by the total of exams 

[reiterating the thought process and automating solution]. And then I ran out 

of space so I went over here. And this is just a series of if-statements asking 

if it’s bigger than 90. No, is it bigger than 80? No. Is it bigger than 70? 

No. Fine then he gets an F. And then it returns that score [reiterating the 

thought process]. I don’t know if they wanted me to return it or not, but I 

figure because you can always have it return, I might as well give them the 

option to make their life a little easier. 
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This participant was able to abstract the data from the given problem and modeled 

his solution using an array. The participant understood the advantage of using an 

array over multiple variables and thus reiterated his thought process for the array 

using logic to determine the solution for the problem. The participant explained 

the thought process behind the if-statements to determine the final letter grade. 

This showed that the participant was confident in his algorithm thinking.      

Excerpt: 

Because we kind of were taught that we should look at methods as sort of 

the actions and the variables are the – basically variables as the nouns in 

a problem statement [referring to the material in-class]. I was able to deduce 

that name, account number and current balance were attributes to 

variables that held a string value, an integer value, and a double value 

[understanding the core concept, and logically organizing/analyzing data]. 

And that the verbs that you wanted to deposit or withdraw or check current 

balance were all methods. And by having that kind of – by being able to 

compare then in that way, it was easier to take the problem statement, 

decompose it into its component parts [confidence] and then create the 

UML from there. For the coding section, first we have the basic standard 

declaration that its enumeration is public. It obviously is a class and we give 

the class name so that it encapsulates the entire class under that name. 

We go on just to state that the variables in this class are going to be 

accessible only by the class itself and so other classes will have to 

instantiate the object in order to be able to access those variables. So 
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obviously I declared each variable in itself as private. I then go on to 

declare some of my methods and I start out be creating the constructor 

method, which is the basic method used to call an object or use that 

object [reiterating thought process and understanding the core concept]. It’s 

simply passing values into it and then storing them into the variables, which 

will allow the other methods to manipulate the variables later on. One of the 

tasks that the problem description wanted me to perform was depositing 

and withdrawing [communicating the goal], I created two methods. One that 

had no returns so it was a void. All it simply did was set the current balance 

equal to the current balance at that time plus the additional of money or 

basically adding in money to the account, which is what a deposit would 

do. Withdraw was simply taking a double value – oh yeah and both of 

these methods have parameters. So in this case, the withdraw is going to 

be a double type and it’s going to be subtracting the money and then it’s 

going to set the current balance equal to the current balance minus 

money [automating solution]. Hmmm I should have added an if statement 

that checked for overdraft, which would have been the proper thing to do 

[analyzing the solution]. Otherwise, I feel quite confident that my program 

would perform as it should if I complied [confidence]. But because I’m 

quite new at writing code on paper and not compiling it, I did have some 

misgivings about if it would throw up a compilation error or if something in 

my program might have a logical error. But overall, I felt pretty confident 

that this particular class would assist in solving the problem [confidence].                      
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The participant was able to share all three skills – knowledge, explanation and 

computational. The participant recalled the material learned in-class and thus was 

able to deduce the abstraction of the data from the given problem. Furthermore, 

the participant was able to describe the step-by-step procedure to compute the 

higher score with a variable and the array. However, the participant’s description 

presented many technical words.      

Excerpt:  

Object is the instance of the class. So, class somehow [confidence] unifies 

the data. It has members. It has functions. So, class operates on data but 

the way it does, it has variables, member variables, and member 

functions [understanding the core concept], but when they create object, this 

is actually implementation of the class. For example, if we have let’s say a 

triangle. There are a whole bunch of different triangles, but we can create 

a class triangle because they all have in common, they all have three sides 

[referring to in-class examples]. They all have three angles I guess and 

there are certain common characteristics that all the triangles have. So, if 

we create a class that does a certain function or includes certain variables 

about this triangle then we can simplify the program., and then we can 

apply it to a particular – when we create an object, we apply it to a 

particular triangle [rephrasing with no technical word]. For me, the idea that 

a group of data can have common characteristics that is what helps me to 

understand that this is a class, that this is class of triangles. Let’s say 

mushrooms, yeah. There’s a class of mushrooms, class of animals 
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[understanding core concept]. Maybe it’s the same idea. Oh I think yeah 

[confidence] we would give an example of animals that would be cool.  

The participant was able to express his knowledge skills in such a manner that 

showed that he understood the abstraction concept but his knowledge still 

presented some uncertainty referred as “somehow” and “maybe.” However, the 

participant was able to reiterate the in-class example ‘triangle’ except for the 

details of the example. It seems that the participant was shying away from 

explaining the common and/or certain characteristics, which may be due to 

missing knowledge. 

Below I have included excerpts that presented negative notations of the criteria 

indicated in Table 20.  

Excerpt: 

I didn’t know [confidence] like how many exams they were going to enter 

and so I was like trying to account for that. I have them keep entering but then 

I was like I don’t know  [confidence] how many and how am I going to keep 

track of all of them so I created five variables to keep track of five scores 

for a given student [understanding core concept]. 

In this excerpt above, the participant failed to efficiently implement his solution 

using an array. And thus the modeling of the solution was incorrect. Furthermore, 

the participant seemed to show that he was a bit confused about how to solve the 

problem. He used the statement “I don’t know” twice in this interview excerpt.  

Excerpt: 



94 

An array of objects is like having an array; you had the set like 0,1,1,0, and 

then whatever. And you would set it up like the numbers in the left-hand 

side go down in the left hand and the numbers in the right-hand side go to 

the right hand. And in the middle was like what it makes like when you 

have combination [understanding the core concept]. Oh an array of- well you 

could have different – it doesn’t have to be numbers in the array. It could be 

like say like class members or a class of students or something. You have 

John, Joe, Matt, and you have like the test scores also and you have John 90 or 

something.      

In this excerpt above, the participant was not able to explain the core concept. I 

interpreted this student’s response as showing that the participant did not fully 

understand the concept of arrays.  

Excerpt: 

(laughing) I am panicking. I don’t know. I really don’t know [confidence] 

how to solve it, just from scratch. I mean if I had a laptop and the Internet then 

maybe my Java book. I probably could figure out in more than 30 minutes I’m 

sure. The biggest for me right now is to bring the code out of nothing. Plus, I 

don’t have fellow students to ask for help or see what they did to see what I 

did differently; help them, help me, and just me and the paper.  

In this excerpt above, the participant panicked and thus he lost his confidence 

before he even began. It seemed that he was out of his comfort zone, which 

included not having access to his laptop, Internet, and textbook.    
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Below I have indicated some of the types of struggles/challenges that participants 

encountered.  

Excerpt: 

It’s hard [confidence] in the beginning because [abstraction] is a new 

concept. You have to switch your way of thinking. Instead of having a set of 

instructions and focusing on instructions, you focus on how to organize the 

data. I used the program that does mind map where I can make connection 

like classes and objects and then I broke [them] up with all the concepts that 

connected with. For me I’m a visual person so mind map for difficult things or 

an abstract thing that has a lot of concepts works great. There are a bunch of 

programs that do that [such as] Mind Jet, Mind Note, Mind Manager 

[sharing examples]. The website for Mind Manager has a lot of templates for 

teachers to use for hard concepts.       

The participant noted that she encountered difficulties because the concept of 

abstraction is hard for her mind to understand. The participant is a visual learner 

and thus abstract ideas need to be presented to her in a visual manner. For 

example, the tool Mind Map (http://www.mindmap.com/), which is a diagram 

(similar to UML) used to represent words and ideas linked to a central keyword. 

This tool helps with studying/organizing information and solving problems.    

Excerpt: 

I think sometimes people don’t grasp some of the basics, like with objects, 

and I have a hard time grasping [confidence]. I am thinking I’ve mislabeled 

a few things that were variables as objects when doing the exercise. 
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This participant showed confusion in his learning of the core concept, and thus he 

was unable to build up his knowledge.    

Excerpt: 

I kind of looked over it and I noticed that there are a few problems 

[confidence] that I had, but it was something that I would have to be sitting at 

a computer and testing it to see what would work and what wouldn’t work. 

So, like if the current balance is equal to zero, set the current balance to the 

initial balance. I thought what if the person withdrew exactly to where the 

current balance is zero then they would get their money back [reiterating 

thought process]. So there are little things like that I have to tweak and fix 

before it was a perfect program [analyzing solution].   

The participant was aware that his solution was not complete in terms of 

efficiency. The participant needed the computer to test and ‘tweak’ (i.e. debug) 

out his solution.    

Last but not least, few of the excerpts were related to self-taught concepts and 

utility of learning tools. These are indicated below.   

Excerpt: 

I taught myself [programming]. I mean, I’m sure [confidence] you understand 

that with programming, there’s the structure and then the syntax 

[understanding core concept]. I taught myself the structure, which is very 

similar among, you know, most languages. And obviously, I taught myself 

the syntax of the language I was learning as well [recognizing prior 

knowledge]. But because I know the structure, it’s a lot easier for me to learn 
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different languages. It’s […] like […] music. Once you learn how to read 

music, it’s not difficult to learn to play a different instrument  [sharing 

example].    

The participant demonstrated his/her confidence through sharing his/her 

experience in learning the concept of programming by first learning the common 

structure in all languages and the syntax, which is bonded to the particular 

language.   

Now let’s take a look at the score distribution of the participants who took both 

the written and verbal protocols in this study. Sixteen participants were identified 

in the first test and twelve participants in the second test. First, the intercoder 

reliability kappa coefficient was run on the other two variables – explanation and 

abstraction for test 1, and explanation and modeling for test 2. The level of 

reliability for the kappa index is summarized in Table 22. According to Landis & 

Koch [84], the level of reliability is “outstanding” as all the Kappa coefficients are 

greater than 0.80.      

Table 22 – Qualitative Symmetric Measures 

 Measure of Agreement Kappa 

Value 
Approx. Sig. N of Valid Cases 

Exp1_c1 * Exp1_c2  .811 .000 16 

Abstr_c1 * Abstr _c2  .805 .000 16 

Conf1_c1 * Conf1_c2 .893 .000 16 

Exp2_c1 * Exp2_c2  .862 .000 12 

Model_c1 * Model_c2 .862 .000 12 

Conf2_c1 * Conf2_c2 .862 .000 12 
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The two judges resolved disagreements in the reliability coding. An 

agreement was reached after a second round of evaluation, and thus the two 

judges came to the same conclusion for all the participants. A third judge was not 

needed to serve as tiebreaker. 

The final score distributions for the participants are indicated below (Table 23 

and Table 24). Note that the scores of the variables explanation, abstraction, 

modeling, and confidence are based on a scale of zero to one. Also, across the two 

tests, four participants took both written and verbal protocols for both tests; they 

are highlighted in bold. From Table 23 and Table 24, participants who performed 

low (i.e. scores less than 0.5) in algorithm design also performed low in problem 

solving. Participants who performed average in problem solving (i.e. scores 

equals 0.5) performed higher in algorithm design (i.e. scores greater than 0.5). 

This indicates that even though the participants were not able to solve the 

problem, they were able to abstract key elements from the problem statement, and 

thus they knew what information were relevant. If algorithm design scores were 

higher than problem solving scores then participants shown some knowledge of 

the core concept (i.e. 0.5 out of 1). Furthermore, their difficulty with solving the 

problem had a direct impact on their confidence and explanation skills. Their 

explanations were not clear and demonstrated misconceptions about the core 

concept. Participants who scored less than 0.5 in problem solving also scored zero 

in confidence and either zero or 0.5 in explanation. Whereas participants who 

performed higher in problem solving (i.e. at least 0.5) also scored at least 0.5 both 

in confidence and explanation. Finally, participants who successfully solved the 
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problem (i.e. scores equal 1) also performed highly in algorithm design, 

explanation, core concept, and confidence (i.e. scores greater than 0.75).        

Table 23 – Score Distribution for Test 1 

UML1 Coding1 Explanation Abstraction Confidence 

0.75 0.916667 1 1 1 

0.625 0.75 1 0.5 0.5 

0.75 1 0.5 1 1 

0 0 0 0 0 

0.75 0.333333 0 0.5 0.5 

0.75 0.916667 1 1 1 

0.5 0.5 0 0.5 0 

0.666667 1 0.5 1 1 

0.875 1 1 1 1 

0.25 0 0.5 0 0 

0.75 0.5 0.5 0.5 0 

0.75 1 1 1 1 

0.875 1 1 1 1 

0 0.166667 0 0 0 

0.5 0.666667 0 0.5 0 

0.5 0 0 0.5 0 
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Table 24 – Score Distribution for Test 2 

UML2 Coding2 Explanation Modeling Confidence 

0.75 0.833333 1 1 1 

0.875 1 1 1 1 

0.75 1 1 1 1 

0.75 0.5 0.5 0.5 0 

0.75 0.666667 0.5 0.5 0.5 

0.25 0.166667 0 0.5 0 

1 1 1 1 1 

0 0 0 0 0 

0.75 0.916667 1 1 1 

0.5 0.166667 0.5 0.5 0 

0 0 0.5 0 0 

0.25 0.333333 0 0.5 0 

 

E. Summary and Discussion 

This study’s purpose was to explore the core computational concepts in CS1 

courses and to assess students’ skills in algorithm design and problem solving. 

Due to the limitations of the study, this chapter focused on primarily two core 

computational concepts – abstraction and modeling. From the participants’ 

written and verbal responses, students’ profiles were drawn based on their 

algorithm design (i.e UML) and problem solving (i.e. coding) and students’ 

common mistakes were categorized based on the computational thinking criteria 

described in the review of literature.        
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First, it is important to acknowledge that students are on a path from 

novice to skilled programmers. That is, CS1 students first must learn to solve 

structured problems involving concepts, as in their introductory courses, to be 

able to both formulate and solve less structured and uncertain types of 

problems, as in the real-world applications. Developing such ability requires a 

continuing back-and-forth between theory and application as the students 

acquire more sophisticated skills through experience. In addition, computer 

science students are primarily eighteen to twenty-two years old, and thus 

students are still in the early phase of their cognitive development. Students’ 

learning abilities at this phase can help computer science educators understand 

their students’ cognitive development and thus improve assessment and 

instructions in terms of knowledge and practice. By the end of the 

introductory courses, students are expected to be able to use the computational 

concepts to solve specific and well-defined problems. It is assumed that the 

more they practice applying these concepts, the deeper their understanding of 

the concepts become. 

Findings have shown an increase in higher scores in both algorithm design 

and problem solving. Even though, the number of participants who performed 

above average in algorithm design (i.e. abstraction of the class, attributes, and 

methods) showed no significant difference between test 1 and test 2 (69 

percent), participants who performed at an average level, increased from 18 

percent to 23 percent. The number of participants who performed above 

average in problem solving (i.e. implementation of the class, variables, 
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methods, and logic) increased from 52 percent in test 1 to 78 percent in test 2. 

In addition, the number of mistakes identified as computation thinking criteria 

decreased from test 1 to test 2 by one-third to two-third. When adding the 

verbal responses to the written responses, it was found that high scores in 

algorithm design were consistent with higher score in problem solving which 

was no surprise. Abstraction is the first step before solving a problem and thus 

a well-written abstraction of a given problem enables better guidelines for 

solving the problem. However, the problem solving scores were found to have 

a direct impact on the other variables, particularly on explanation skills and 

confidence. When solving a problem, more than two-third of the participants 

referred to knowledge such as definition and examples that were mostly 

visited in-class. This shows that students have acquired transferable 

knowledge, i.e. they have the ability to map problems’ solutions to very 

similar problems given earlier. 

It can be observed through algorithm design and problem solving that 

participants have indirectly acquired some of the skills in computational 

thinking. Since UML represents modeling the problem, students must identify 

the relevant information from the given problem. By doing so, students are 

using a form of abstraction, which is a key aspect of computational thinking; 

and thus, this is a fundamental step when attempting to solve a problem. As 

described in the background literature, the ‘grand vision’ of computational 

thinking is to enable everyone in any discipline of study to have a common 

understanding of the core computational concepts in the computing field to 
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solve real world problems. In this study, the assessment of abstraction was for 

participants to demonstrate their abilities in separating valuable and non-

valuable information from the given problems. Also, abstraction included the 

representation of the valuable information by programming concepts such as 

class, object, data members, and methods. This step of abstraction in learning 

programming in CS1 is important because it assisted instructors/TAs in 

evaluating students’ modeling these concepts which served as a primarily base 

for the next step in programming which was problem-solving. The assessment 

of problem solving was supported by the modeling of the abstraction step. The 

assessment of problem solving was for participants to demonstrate the 

application of abstraction to the given problems including the logic behind it. 

This step of problem solving in learning programming in CS1 is very relevant 

because it assisted instructors/TAs in evaluating students’ reasoning in terms 

of basic operations such as arithmetic, conditional statements, and 

repetition statements. This step enables the discovery of mistakes in basic 

mathematical operations and thus incorrect logical thinking to solve a 

problem. Also, in this study, the problem solving step included the 

modeling of the solution using a programming language (Java or C++) so 

instructors/TAs were able to assess specifics about syntax mistakes which 

was resourceful to determine the level of complexity for concept specific 

syntax. Thus, abstraction and problem solving are essential in the learning 

of programming in CS1 because they represent the fundamental steps that 

any novice programmers would take to solve a given problem. It is crucial 



104 

that instructors teach students the importance of the step of abstraction 

before the step of solving a problem. The correct order of execution of 

these two steps will benefit students in long term when they will have to 

tackle more larger and complex problems.            

Reinforcing the model of software design in CS1 curricula would enable 

this ‘grand vision.’ In CS1 courses, instructors teach students from all 

disciplines, i.e. computer science and non-computer science majors. The use 

of a tool, which does not require the knowledge of any programming 

language, would enable instructors to assess the notion of abstraction (classes, 

attributes, methods, and relationships) defined by computational thinking. In 

this study, UML was used as it is part of the curriculum. Furthermore, 

problem solving of simple real-world problems that can be identified by 

students as daily activities, such as bank account transactions and gradebook, 

enable students to develop their basic analytic skills such as abstraction, 

algorithm, reasoning and scalability. Such skills are critical to tackle larger 

problems using the computer. Sometimes, the programming language editors-

compilers allow students to arrive at answers without thinking, if the students 

have mastered debugging skills. This study used paper-and-pencil and open-

ended exercises to minimize ‘guessing’ when dealing with single value 

answer. Using such type of exercises, I was able to follow how students came 

up with an answer, which was more informative than traditional tests. 

However, half of the students were thrown off by the open-ended questions, 

and thus they encountered some difficulties in their algorithmic thinking. In 
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addition, participants wrestled with problems given in plain English, and they 

had to translate them into step-by-step problems, which involved 

mathematical operations. And one thing that is being stressed in the CS1 

courses is that in the work environment, if an individual comes to you as a 

computer scientist and asks you to solve a problem stated in plain English 

then it is your responsibility to get this problem translated into an abstract 

problem and use your way of thinking to solve it.              
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V. RECOMMENDATIONS AND FUTURE RESEARCH 

One of the recommendations to improve the understanding of the field of 

computer science (i.e. tackling almost all types of problem situation) is to use 

concrete real-world examples and problems that are not only related to daily 

activities but also to public service matters. Learners in the field want to make a 

difference in society, and thus, problems such as voting system, banking system, 

electronic health records, and traveling salesman address this interest and make 

learning to be more engaging and relevant. Through such problems, students are 

able to (1) combine data and ideas to solve problems, (2) create tools and 

information, and (3) manipulate data using abstractions and computational 

thinking.  These real-world applications enable learning in context. The CS1 

concepts can be learned in the context of a computing situation representative of 

the practice. Learning in context enable students the opportunity to interact with 

the body of knowledge in a way that connects with the practice for which they are 

being prepared for. This type of learning helps students relate what they are 

learning to how it may be used and results in a deeper understanding of the field. 

This means that instructors should introduce concepts in context to enable 

students to both internalize and transfer knowledge to other contexts. Besides 

making a direct connection to something real or familiar motivates students to be 

engaged and confident in their own learning.            

Computational thinking is very similar to the field of computer science minus 

the domain-specific and the usage of the computer. It deals with (1) how difficult 
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problems are to solve, (2) how to think about and manage problems, and (3) how 

to create procedures for solving them. Nowadays the emergence of fields of study 

such as bioinformatics, computational biology, and computational mathematics 

has given an opportunity to apply computational concepts to a specific discipline 

such as biology, mathematics, and physics. Such fields have made computational 

science a third pillar of science, along with theory and experimentation. Thus, 

computational thinking is not one more thing to add to the curriculum but rather it 

emphasizes the application of the knowledge of the core computational concepts 

in various fields of study.  Students develop their ability to abstract the 

information from a given problem and modeling the solution based on the 

computational strategies which can vary depending on the individual’s thinking 

process. Looking at the CS1 curriculum, computational thinking is not explicitly 

stated and students may not be aware that in fact they are developing their 

computational thinking skills through the application of the core computational 

concepts in context-specific knowledge. And therefore, another recommendation 

is to make computational thinking concepts more visible in the curriculum. To do 

so, computational thinking skills can be stated in the syllabus under the section 

“course objectives and outcomes.” In this section, the instructor has already stated 

that students should have an understanding of methods and variables, searching 

and basic sorting algorithms, and basic recursions. Also, students should be able 

to read, understand, and develop programs. These aptitudes are computational 

thinking skills and thus methods and variables represent the concept of 

“abstraction,” searching and basic sorting algorithms represent the concept of 
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“algorithm,” basic recursions represent the concept of “reasoning,” and programs 

represent “systems.”  

In addition, the focus of assessment must be on how one thinks about a 

problem, not just the correct answer. To do this, instructors should challenge their 

students with responding to open-ended questions to determine how well they 

understand (explanation) and synthesize the concepts they have learned (thinking 

process). Multiple-choice questions may not give an accurate assessment of 

students’ knowledge. Students can guess an answer and get it right. Students can 

also know the answer but their thinking process to get to the correct answer may 

include errors. Students may have just memorized the answer but they are not able 

to transfer this answer to another similar problem. As a consequence, a more 

detail-oriented response to a given question/ problem will allow instructors to 

more efficiently track down misconceptions and correct students’ misconceptions 

at the next class period. Students focus on the approach to the problem rather than 

on their final answer. Moreover, the problem solving solution does not need to be 

programming language-specific. In this study, it was observed that novices spent 

quite some time on syntax during problem solving which took time away from 

their algorithmic thinking. So the recommendation is to use a common language, 

which is plain English pseudo-code. This would remove the programming 

language factor into the assessment equation and enable major and non-major 

CS1 students to express the solution with their own words, which can be 

understood by all. Assessing students’ design and problem-solving skills by using 

open-ended problems enable students to consider the concepts that are relevant to 
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the situation and to demonstrate their ability to work through an analytic problem 

solving process. Because the quiz is such a small part of the grade, the assessment 

is considered formative as it provides constructive feedback in an ongoing 

learning to the instructors.   

This method of assessing students can only be beneficial if it is a reflective 

approach of teaching. The emphasis is on acquiring a solid understanding of the 

CS1 concepts while strongly discouraging memorization. This can be difficult to 

do. An inductive approach of teaching may be more efficient to help students 

learn to use core concepts for their particular value and how to use them as a 

foundation for advanced learning. For example, an instructor may begin the class 

with a problem and ask student to find out the concept that is critical to the 

problem. Based on their existing knowledge and experience, students attempt to 

solve the problem with possible cases based on the attributes and constraints 

given in the problem. As they work through this process, students become aware 

of the key components relevant in all the cases. Consequently, they build their 

knowledge based on the phenomenon observed. Building on the learning 

experience, the instructor introduces new cases to the students so they can identify 

fundamental components. Mathematical explanations and diagrams may be used 

as tools to help students refine their understanding of a concept. As they do 

acquire such knowledge, the instructor introduces the theory and reconnects it to 

the problem. This approach differs from the deductive approach - which is 

commonly used in CS1 courses where students ‘listen, see, and do’ as the 

instructor transfers the knowledge to novices through lecturing - by (1) 
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introducing the context first before the concept and (2) educating students to be 

more reflective about their own learning as their learning experience is more 

iterative. The role of the instructor is primarily to show students what to look for 

and then how to explain unclear situations. Using feedback and coaching, the 

instructor’s goal for student learning is to formulate problems and solve problems 

using concepts. In this iterative process, the novice begins to learn from 

experience and thus students are able to develop their skills and confidence. 

Future research will include additional core computational concepts to be 

assessed. After the introduction of each computational concept in class, the quiz 

(test) would be given to the students, and then, based on the outcomes of the tests, 

the instructor will do an in-class intervention to go over the common mistakes 

found in students’ test and the reinforcing the concept learned. The test will be 

given again to the students. This second round testing would enable to compare 

students’ written responses between the two tests, and thus, their progress for a 

given concept would be better evaluated. In addition, with computational thinking 

as a cognitive revolution, it would be of interest to design the tests specifically 

with computational thinking in mind. Since computational thinking is still broad 

and not clearly defined yet, the approach would be to look at the intersection 

between CS1 computational concepts and computational thinking. The design of 

the tests would still involve both algorithm design and problem solving. However, 

the problem solving part would not be programming language-specific but rather 

pseudo-code, i.e. a step-by-step procedure to solve a given problem. In this study, 

findings have shown a difference in scores between students programming in Java 
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and students programming in C++, which is not clear whether or not it is due to 

the programming language. Thus, this change in programming language in the 

coding section would allow a better assessment of students’ thinking/explanation 

as they will be using a common language, which is plain English. Plus, this is in 

agreement with computational thinking should be understood by all individuals 

regardless of their field of study, background, and programming language. 

Students would no longer spend time on syntax while solving the problem, which 

was one of the parameters that may have limited students’ thinking. Last but not 

least, the limitation in the number of participants in this current study has made 

the findings limited. For future research, the study will be open to all CS1 

courses, which therefore, will involve more than one CS1 instructors. To take this 

into account, the assessment will look into any score distribution differences 

across the courses with different instructors, and thus instructors’ teaching 

approach (deductive versus inductive). This may provide valuable data to improve 

CS1 teaching.    
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How Computer Science & Engineering Freshmen Write Computer Programs? 

SURVEY 

Dear [X], 
 

I am a graduate student under the direction of Dr. Tirupalavanam Ganesh in the 
Fulton Institute and Graduate School of Education and Dr. James Collofello in the School 
of Engineering at Arizona State University.  I am conducting a research study to identify 
skills that freshmen develop in their introductory computer programming course. This 
study will help instructors to understand and assess how their students design their 
algorithm (flowchart) and how their students write their algorithm (methods).  

 
To conduct this study, I first need to identify the concepts that students in CS1 

have difficulty with. You have been selected, because you are either an instructor or a 
teaching assistant in CS1 courses, to help us identify the most troublesome concepts in 
CS1 courses. 

 
We thank you in advance for the information that you are about to share. If you 

have any questions concerning the research study, please call me at (480) 276-4188 or 
email me at EBillion@asu.edu. 
Based on your teaching experience, please list below the most difficult concepts 
that students in your class encountered: 
 
1. 
2. 
3. 
4. 
5. 
6. 
 
Comments:  
 
Feel free to continue the list if you have identified more than six concepts. Please 
email your response to EBillion@asu.edu. 
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TEST I (FOR BOTH CSE 100 AND CSE 110) 
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School of Computing, Informatics and Decision Systems Engineering, 
Arizona State University 

Fall 2009. Quiz 1 
10 + 4 Bonus Points, 30 Minutes  

 
--------------------------------------------------------------------------------------------------- 
 
You have been asked to develop a banking application for the Bank of ASU. A 
customer’s account should have their name, account number, and the current 
balance.  In addition, your ASUBankAccount class should be able to support 
customers who would like to withdraw from and deposit to their bank account. 
They also must be able to check the current balance. Check current balance 
method should return the current balance. Customers are NOT allowed to 
overdraw on their account. Finally, the constructor should take name, account 
number, and the initial balance at the time of object creation and set account 
instance variable values accordingly. 

 
Part 1 - DESIGN [4 Points]: 

Please draw the UML diagram that represents the ASUBankAccount class above. 

Make sure to identify proper data types for attributes (data members).  
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Part II – CODING [6 Points] 

Based on your UML diagram above, please develop the ASUBankAccount class. 

 

 

 

 

 

 

 

Part III – BONUS [4 bonus Points] 

Add a data member (s) to store last three transactions. Then add a method named 
displayTransactions that displays the last three transactions. (Hint:  you can use 
string variable (s) to store transactions and can update them when you withdraw 
or deposit money)  

 
 
 
 

1. Please describe how difficult this problem is 
___ 1 Really easy 
___ 2 Easy 
___ 3 Ok 
___ 4 Difficult 
___ 5 I’m dying, man! 

Important Note: You may get a request to participate in the study entitled “How 
Computer Science & Engineering Freshmen Write Computer Programs?”  This 
study is voluntary and will not impact your grade in any way.   
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TEST II (FOR BOTH CSE 100 AND CSE 110) 
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School of Computing, Informatics and Decision Systems Engineering, 
Arizona State University 

Fall 2009. Quiz 2 
10 + 4 Bonus Points, 30 Minutes  

 
--------------------------------------------------------------------------------------------------- 
You have been asked to develop a Student class to store, say ASU student 
information. Student class should store the student name, class name (such as 
CSE110), letterGrade, final average, and exam scores. Assume that each student 
has 5 exam scores. Constructor of the ASUStudent class should take the student 
name, class name as parameters at the time of object creation. Then, it sets the 
letterGrade to ‘F’ and all the exam scores and the final average to zero. 
ASUStudent class should have following methods. 
 
readExamScores: Ask the user to enter exam scores from the keyboard and set 
exam scores 
calculateExamAverage: This function calculates the exam average. Assume that 
each exam can have maximum 100 and each exam has the same weight in the 
average calculation. 
determineLetterGrade: This method determine the letter grade based on the 
following criteria 
final average >= 90       A 
80 =< final average <90  B 
70 =< final average<80  C 
Otherwise     F 

  
 

Part 1 - DESIGN [4 Points]: 

Please draw the UML diagram that represents the ASUStudent class above. Make 

sure to identify proper data types for attributes (data members).  
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Part II – CODING [6 Points] 

Based on your UML diagram above, please develop the ASUStudent class. 

 

 

 

 

 

Part III – BONUS [4 bonus Points] 

• Add the method getHeighestScore that returns the getHeighestScore test 
score. 
 
 

• Add the toString method that return the following message  
 

<student_name> , you have earned <letter grade> for <class name>. 
For example, if the Student name is John, and he has earned B for CSE 110, 
then, the  toString method should return the following string 

John, you have earned B for CSE 110. 
 
 

2. Please describe how difficult this problem is 
___ 1 Really easy 
___ 2 Easy 
___ 3 Ok 
___ 4 Difficult 
___ 5 I’m dying, man! 

Important Note: You may get a request to participate in the study entitled “How 
Computer Science & Engineering Freshmen Write Computer Programs?”  This 
study is voluntary and will not impact your grade in any way.  
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TEST III (FOR CSE 100) 
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School of Computing, Informatics and Decision Systems Engineering, 
Arizona State University 

Fall 2009. Quiz 3 
10 Points, 30 Minutes  

 
--------------------------------------------------------------------------------------------------- 

            1. 

i) ________ allows us to create new classes based on existing classes.    

A)  Polymorphism    B) Inheritance    C) Function overloading    D) The copy constructor    

E) None of the above   

 

     ii.) What is the correct syntax for defining a new class Parakeet  based on 

the superclass Bird ? 

a. class Parakeet isa Bird{ }  

b. class Bird extends Parakeet{ }  

c. class Bird hasa Parakeet{ }  

d. class Parakeet: public Bird{ }  

 

  iii. Inheritance is an example of what type of relationship? 

  

a. is-a c. was-a 

b. has-a d. had-a 
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2. Consider the inheritance hierarchy given below and answer following questions  

 

 

 

 

 

 

 

 

 

 

 

 

a) [1 points] What is the base (or super) class above? 

 

 

b)  [2 Points] Briefly explain two benefits of inheritance 

 

 

c) [1 points] How many data members does the   HourlyPaidEmployee have? 

Employee 

SalariedEmployee HourlyPaidEmployee 

- monthlySalary: double 

+ SalariedEmployee(int, 

String, double) 

a) hourlyRate: double 
b) numbeOfHours:int 

+ 

HourlyPaidEmployee(int, 

# employeeID: int 

# name:String 

+ Employee(int, String) 

+ void display() 
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3. The following program. Assume that all the programs are correct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX E (CONT.) 

class  Book 
{ 
  protected : 
 int  pages; 
 
   public : 
   Book () 
   { 
         pages = 0; 
   } 
   
   Book ( int  numPages) 
   { 
      pages = numPages; 
   } 
    
   void  setPages ( int  
numPages) 
   { 
      pages = numPages; 
   } 

 
   int  getPages () 
   { 
      return  pages; 
   } 
};    

   

class  Dictionary: public  Book 
{ 
  private : 
 int  definitions; 
 
   public : 
  Dictionary( int  numPages, int  
numDefinitions):Book(numPages) 
   { 
       definitions = 
numDefinitions; 
   } 
    
  double  computeRatio () 
   { 
     if (pages > 0) 
      return  definitions/pages; 
      else 
      { 
       setPages(900);  
       return  definitions/pages; 
      } 
   } 
 
 void  setPages( int  p) 
   { 
    pages = p + 100; 
   } 
}; 
 

int  main () 
   { 
     Dictionary Dic1 (500, 10000); 
     cout<< "Definitions per page: "  << Dic1.computeRatio(); //--
1                        
 
 
     Dictionary Dic2 (0, 10000); 
     cout<< "Definitions per page: "  << Dic2.computeRatio(); //--
2 
    
     return  0; 
   } 
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• [1 points] What is the purpose of  “ Dictionary(int numPages, int 

numDefinitions):Book(numPages)” statement in the constructor of the 
Dictionary class above? 

 

 

 

 

• [1 Points] What is the output generate from statement 1 in the main() 
program above? Explain your answer. 

 

 

 

 

 

 

• [1 points] What is the output generate from statement 2 in the main() 
program above? Explain your answer. 
 

 

 

 

 

Important Note: You may get a request to participate in the study entitled “How 
Computer Science & Engineering Freshmen Write Computer Programs?”  This 
study is voluntary and will not impact your grade in any way.  
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TEST III (FOR CSE 110) 
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School of Computing, Informatics and Decision Systems Engineering, 
Arizona State University 

Fall 2009. Quiz 3 
10 Points, 30 Minutes  

 
--------------------------------------------------------------------------------------------------- 

            1. 

i) ________ allows us to create new classes based on existing classes.    

A)  Polymorphism    B) Inheritance    C) Function overloading    D) The copy constructor    

E) None of the above   

     ii.) What is the correct syntax for defining a new class Parakeet  based on 

the superclass Bird ? 

a. class Parakeet isa Bird{ }  

b. class Bird defines Parakeet{ }  

c. class Bird hasa Parakeet{ }  

d. class Parakeet extends Bird{ }  

  iii. Java supports both single and multiple inheritance………….(T/F). 

           2. Ship  and CargoShip 

  Design a Ship class that has the following members 
• A member variable for the name of the ship (a string) 
• A member variable for the year that ship was built (an int) 
• toString method that returns the name and year built 

Design the CargoShip class that is derived from the Ship class. The CrargoShip should 
have the following  members. 

ii. A member variable to store the max capacity (an int) 
iii.  A constructor that takes three parameters for the ship’s name, year built, and 

the capacity and sets ship’s name,  year built, and the capacity  at the time of 
object creation 

iv. Redefine the toString member function that returns the name,  year built, and 
the capacity(this technique is called the function overriding) 
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- Draw the UML diagram that represents the above Inheritance Hierarchy 

 

 

 

 

 

 

 

 

 

i. Then, implement the Ship class and CargoShip classes 
 

 
 
 
 

 

 

 

 

 

 

Important Note: You may get a request to participate in the study entitled “How 
Computer Science & Engineering Freshmen Write Computer Programs?”  This 
study is voluntary and will not impact your grade in any way.  
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THINK ALOUD PROTOCOL – TASK LIST 
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• Introduction to the purpose of the study - explain goals of this activity 
 

• Think aloud Warm-up exercise – explain the concept of think aloud. Ask 
the participant to tell everything they are thinking about from the moment 
they read the task and when they complete it. They do not need to 
plan/think out what they want to say. Just act as if you are by yourself, 
talking to yourself. The important thing is to keep talking. Perform a 
sample think aloud. For example: 
 

Think aloud as you count how many windows are in your house.  
Now, ask the user to try just as you did. Another example follows.  
“Please think aloud as you name how many doors are in your 
house?”   
or  
“Please re-count your actions in your morning routine before you 
came to work.”  
 

A. Establish some rules during the session 
1.  You will not be able to answer any questions during the observation  
2.  If you have questions, go ahead and ask them, but you won’t respond 
until after the session is complete.  
3.  Remind them that if they’re silent for more than 5-10 seconds, you will 
ask them to “Please keep talking” 
 

• Reaffirm that they agree with being audiotaping  
 

• Explicitly mention in-room observers and/or videotaping  
 

• Describe the exercise being presented – three sections  
 

• Explain that you are not testing them  
 

• Reassure users about what will happen if they encounter difficulties – to 
continue and do what they can 

 
• Clarify tasks if confusing  

 
• Confirm ending time and reassure them that they can stop at any time – 30 

minutes 
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Interviewee ID: _________ Date: __________ Time: ___________ 

Hello. Thank you for taking the time to meet with me and answer questions 

related to logical reasoning and programming skills. Before you begin, I want to 

remind you that you can skip questions if you wish. If you choose not to 

participate or elect to withdraw from the study at any time, there will be no 

penalty. It will not affect your grade in any way. Do you choose to continue? Yes 

or No 

1. Can you tell me about X*? 

2. How would you describe X to another freshman student? 

3. How easy do you think X is? 

1) Very Easy 

2) Easy 

3) Ok 

4) Hard 

5) Very Hard 

4. How did you gain a better understanding of X (e.g. books, websites, 

discussion with a peer, instructor’s notes, teaching assistant ...)? 

Thank you very much for participating in this study. Your time and insights are 

greatly appreciated. 

* X refers to a specific threshold concept 
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Interviewee ID: _________ Date: __________ Time: ___________ 

Hello. Thank you for taking the time to meet with me and answer questions 

related to logical reasoning and programming skills. Before you begin, I want to 

remind you that can skip questions if you wish. If you choose not to participate or 

elect to withdraw from the study at any time, there will be no penalty. It will not 

affect your grade in any way. Do you choose to continue? Yes or No 

1. How would you go about assisting other students who might be struggling 

with X?  

2. What concepts better helped you understand X? 

3. What concept(s) do(es) X help you better understand? 

4. Has X come up in other contexts? Where? 

5. Is there something more you want to share with me about X? 

6. Are there any other concepts you struggled with early in the course that 

became clearer at the end? 

Thank you very much for participating in this study. Your time and insights are 

greatly appreciated.   

 

* X refers to a specific threshold concept 
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Interviewee ID: _________ Date: __________ Time: ___________ 

Hello. Thank you for taking the time to talk with me today about your thought 

process on writing program. Before we begin, I want to remind you that I am 

planning to record our conversation today so please speak clearly. Do I still have 

your permission to make the audio recording? [Note response] __________ 

I want to assure you that your identity will be kept strictly confidential. I will be 

asking you a number of questions so please feel free to discuss your ideas and 

views. Are you ready to begin? 

• What was your initial idea for solving this problem when you first read the 

problem? 

•  Please share the thought processes you used when solving the problem. 

• Please describe how you went about solving the problem. 

• How did you feel when you were done solving the problem? What did you 

think? 

• Describe any challenges you may have had when you attempted to solve the 

problem? [If yes,] How did you approach the challenge? 

• Did you notice any other areas where a student might face challenges when 

solving this problem? Please describe them and discuss your reasons.  

Thank you very much for participating in this study. Your time and insights are 

greatly appreciated.   
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CSE 110 DATASET 
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APPENDIX M 

CSE 100 DATASET 
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APPENDIX N 

CS1 DATASET 
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