Assessing Cognitive Learning of Analytical Problem Solving

by

Elodie V Billionniere

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved September 2011 by the
Graduate Supervisory Committee:

James Collofello, Co-Chair
Tirupalavanam Ganesh, Co-Chair

Kurt VanLehn
Winslow Burleson

ARIZONA STATE UNIVERSITY

December 2011

ABSTRACT

Introductory programming courses, also known as CS1, have a sgeti6t
expected outcomes related to the learning of the most basic aeadtiass
computational concepts in computer science (CS). However, two ahdise
often heard complaints in such courses are that (1) they are edivimm the
reality of application and (2) they make the learning of tlsgch@oncepts tedious.
The concepts introduced in CS1 courses are highly abstract and ngt easi
comprehensible. In general, the difficulty is intrinsic to thédfief computing,
often described as “too mathematical or too abstract.”

This dissertation presents a small-scale mixed method study ¢teddluzing
the fall 2009 semester of CS1 courses at Arizona State Umywersiis study
explored and assessed students’ comprehension of three core campltati
concepts - abstraction, arrays of objects, and inheritance — in lyuhtrah
design and problem solving. Through this investigation students’ profies
categorized based on their scores and based on their mistakgsrizatke into
instances of five computational thinking concepts: abstraction, algoerithm
scalability, linguistics, and reasoning. It was shown that dwaungh the notion of
computational thinking is not explicit in the curriculum, participgmssessed
and/or developed this skill through the learning and application of thecG®
concepts. Furthermore, problem-solving experiences had a direct imapact
participants’ knowledge skills, explanation skills, and confidence. laipdics

for teaching CS1 and for future research are also considered.

DEDICATION

| dedicate my dissertation work to my family and many friemdlspecial
feeling of gratitude to my loving mother, Ms. Edmée EugenikBniére whose
words of encouragement and push for tenacity ring in my ears eaoimgidiler
prayer has been answered.

| also dedicate this dissertation to my many friends and cHaroly who
have supported me throughout the process. | will always appredidteyahave
done, especially my friend and mentor Debra Crusoe for being tbenme
throughout the entire doctorate program. She has been my best cheerleader!

Last but not least, | dedicate this work and give all the gtorgod for
keeping me on point and showing me the way when | thought this was not
possible.

"For we were saved in this hope, but hope that is seen is not hopéryfor

does one still hope for what he sees? But if we hope for what we do not
see, we eagerly wait far with perseverance.” (Romans 8:24-25 NKJV)

ACKNOWLEDGMENTS

| wish to thank my committee members who were more than genertus wi
their expertise and precious time. A special thanks to my cdaeamb-chairs, Dr.
James Collofello for taking me under your wing as a newcomgretcomputer
science education research and Dr. Tirupalavanam Ganesh for hiessinatlirs
of reflecting, reading, and proofreading my work. Thank you to Dr. \&msl
Burleson and Dr. Kurt VanLehn for providing inputs.

| would like to acknowledge and thank my department for allowing me to
conduct my research and providing any assistance requested. 8pmuial goes
to Audrey Avant, secretary administrative, and Martha Vandeg,Berademic
success specialist, for their continued support.

Finally | would like to thank the introductory programming teachers and
teaching assistants in our department who assisted me wstlprihject. Their
flexibility and willingness to provide feedback made the completbrthis

research an enjoyable experience.

TABLE OF CONTENTS

Page
LIST OF TABLE ... et e e e e e e e e e e s Viii
LIST OF FIGURES ...t e e e e e e X
CHAPTER
l. INTRODUGCTION ... e e 1
Problem Statement ... 5
PUIDOSE ... 8
Il. BACKGROUND LITERATURE ...t 10
StUAENT SUCCESS ...ttt 10
Performance OULCOMESccccuvviviiiiiiiiiiieeeeeeeeennn 10
Engagement..........oiii 11
MOBIVALION ... 12
Program DEeSIgNccceviiiiuiiiiiiiiiiee e 13
The Nineteen Eighties Periodcocovvvvvinnnnns 13
The 21st Century Period ..., 22
Computational Thinkingoevviiiiiiiiiiieeeeee, 24
What is Computational Thinking?................ 25
Computational Thinking and Computer
SCIBNCE ...ttt 26
SUMIMABIY ..ttt e e e e eeeea e eaeeeees 31
1. METHODOLOGY ...ttt eeeeanns 33
Data Collection DeSigNcceuuuuuiiimiiiiiiaeeee e eeeeeeeeeeeinnees 35

iv

CHAPTER Page

Participants and Site............uveiiiiiiiiiiieiiieeeeeiiiis 35
Sampling Strategyeeeeeeiiieeieeeeeeeeeei 36
Sample Size and Groupseeeveiiiiiiiieeeeeeeeeeeene. 36
Data Collection Procedures and Protocols......................... 37
Survey on CS1 CONCEPLScoevvvvniieeeeiiiiieeeeeeeieinn 37
DesSIigNINg TeSES.....uuuuiiiiiiieee e 37
Recruiting Participantsccccevvveiiiiiviniiiinneen. 37
Collecting TeSISooviiieiiiiiiiiiee e 38
Think Aloud Protocol ..., 38
Survey QUESHIONNAIIESuuuiiiieeeeeeeeee e 39
Interview Questionnaire............cccevveeeeeevieviiiieeeeenns 40
Data Analysis ProCeduresuuueiiiiiiieeeeeeeeeieeeeeeiiiiiinns 40
Quantitative Data Analysiseevviiiiiinineeneennn. 40
Qualitative Data ANalySIScccovveeiieeiiiiiiiieieiiiiis 44
Verifying Data ACCUIACYuuuiiiiiieieeeeeeeeeeeeeeeetiii s 46
Avoiding Clerical Errors 46
Avoiding Subjective Errors 46
Avoiding Methodological Errors 47
Avoiding Assessment Errors.........cooceeeeeeeiiieeeeiinnnns 47
LIMITALIONS .o eeeeeeeeees a7
V. DATA ANALYSES AND RESULTS ..., 49
ReSpoNSe RAte........cccuuiiiiiii 49

CHAPTER Page

Participant Background...............uuuuiiiiiiniiiei s 51
Intercoder Reliabilitycceiiiiiiiiii 51
Quantitative ANalySIS........cooviiiiiiiieiiiiiir e 53
Testing for Normality ... 54
Dependent t-TeSt.......ccoueiiiiiiiiiiiieeee e 55
Multiple Analysis of Variance (MANOVA) 57
Peason’s Product-Moment Correlation.................. 59
Qualitative ANalYSIS.........ouuviiiiiiiiiiiiiee e 61
Analysis of Problem Designccccceoiviiieeiiininnee. 62
Problem Design Score Distributionc........ 68
Analysis of Problem Solvingoooivviiiiiiinnnns 71
Problem Solving Score Distribution 80
Analysis of Questionnaires/Interviews 84
Summary and DISCUSSION..........uuuueuuiiiiiieeeeeeeeeeeeeeeeeeeiieaens 100
V. RECOMMENDATIONS AND FUTURE RESEACH.................. 106
REFERENGCES ...ttt e e e e e e e e neaans 112
APPENDIX
A. IRB APPROVALt 119
B. SURVEY ON CS1 CONCEPTS (SENT BY EMAIL)ccceeeeeee 121
C. TEST | (FOR BOTH CSE 100 AND CSE 110)ccevviiiieeiiiiiiiiiinnnnn. 123
D. TEST Il (FOR BOTH CSE 100 AND CSE 110).......cceeiiiiieiiiiiiinnnnns 126
E. TEST I (FOR CSE 100)oveieeeeeeeeeeeeeeeeeeeee e 129

APPENDIX Page

F.

TEST Il (FOR CSE 110) ..cciiiiiiiiiiieiiiiiiii ettt 134
THINK ALOUD PROTOCOL — TASK LIST ccoviiiiiiiiiieee e 137
PRE-SURVEY QUESTIONNAIREciiiiiiiiiin 139
POST-SURVEY QUESTIONNAIREooiiiiieeii, 141
INTERVIEW QUESTIONS ... 143
EXAMPLE OF A TRADITIONAL CS1 QUIZZ.......cccooiiiiiiiiiiiiiee, 145
CSE 110 DATASET ..ot 149
CSE 100 DATASET ..ottt 151
CSI DATASET . 153

Vil

Table

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

LIST OF TABLES
Page

Letter Grade Distribution: Academic Years 2007-08 and 2008-09....... 4

A Plan is Composed of Seven Componentscooevvvviivvvvnnniinnneennn 17
CT and Computing CommonalitieSccoeeeeriiiiiiiie e 31
Scoring Grading CrHIEIA.........covveiiiiiiiiiiieae s 41
Comparing Means among Specific Pieces of Each Test 50
Participation Background Distributionccccccveiveiiiiiiiiiie e, 51
Quantitative SymmetriCc MEaSUIESccceevviiiiiiiieeeeeiiii e 53
Dataset 1 Overall Score Performance between Exercises 56
Dataset 1 Tests of Between-Subjects EffeCtS........cccccceveiieiiiiiiiiiiiiiinn, 58
Dataset 3 Tests of Between-Subjects EffeCtS........ccccccevviiiiiiiiiiiiiiiiinn, 59
Dataset 1 Correlation between UML and Coding...........ccccevvvvvvunnnnnnnn. 60
Dataset 2 Correlation between UML and Coding...........ccccevvvvvvunnnnnnnn. 60
Dataset 3 Correlation between UML and Coding...........ccccevvvvvvennnnnnnn. 61
Problem Design (UML) Score & Descriptionccoevvieeeeeeeiinnnnnnn. 63
Breakdown of UML Scoring Distribution by Course.................c...... 69
Assessment of UML Computational Thinking SKills.......................... 71
Program Solving (Code) Score & Descriptioncccoeveeeviiiiinieeenenn, 72
Breakdown of Coding Scoring Distribution by Course...........ccc......... 82
Assessment of Coding Computational Thinking SKills....................... 83
Questionnaires/Interviews Participation Distribution..............cccceee.... 84
Questionnaires/Interviews ASSESSMENL..........ccuuveiiiiiieeiiiiieeeiiie e, 85

viii

Table

22.

23.

24.

Page
Qualitative SYmmetriC MEASUIESccovvviiiieeeeeiiee e 97
Score DiIstribution fOr TESt L.....cceeeuiiieiiiiiieee e 99
Score DIstribution fOr TESt 2....c.evuuiiiiiiiiieee e 100

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

LIST OF FIGURES

Page

Letter Grade Distribution for CSE 100..........cuuuiiiiiiiiiiiiiiiiiie 5
Letter Grade Distribution for CSE 110.........cuuuiiiiiiiiiiiiiiiieiiiee 5
Pseudo-Code for the Problem 3 ... 14
SIMPIIfied GAP TIE ..o 16
Extended Version of the GAP Tree ..., 18
Assessment of Student Performance with CS1 Concepts.................... 35
Overview of Qualitative Data Analysis Procedure............cccceeeeeeenneee. 46
Sample for UML Score Excellent............coooiiiiiiiiiiiiiii e 65
Sample for UML SCOre GOOdccooeeiiiiiiiiiiiiiiiiiieeee e 65
Sample for UML SCOre AVEIageuuciiiiiiieeeeeeieeeeeeeeeiiiiiia s 66
Sample for UML Score Marginalceeeiiiiiiiiiiiiiiiiiiiinnn 67
Sample for UML Score UnsatisSfactory..........ccooeeeeeeiiiiiiieeiiiiiiiiiieennn 67
Scoring Distribution for UML for CS1 COUISES.......ccceeevvvvvviieeeeeennnnn, 68
Sample for Coding Score EXcellent..........cccoovvvviiiiiiiiiiiiiiiiiiiiicenn 74
Sample for Coding Score Very GOOodccuuieeeeiiiiiiiiieeeeiiiiiieeeeeeenns 75
Sample for Coding SCOre GOOdccooeiiiiiiiiiiiiiiiiiii e 76
Sample for Coding SCOre AVEIageuueeuiiiiiieeeeeeeeeeeeeeeeeiiiiiiiane s 77
Sample for Coding SCOIe POOIcooiiiiiiiiiiiiiiiiie e 78
Sample for Coding Score Very POOIuuuuuiiiiiiniieeeeeeeeeeeeeeeiiiiiienns 79
Sample for Coding Score Unsatisfactory.........ccccooeeveeeviiiiiiieccvceiiieen, 80
Scoring Distribution for Coding for CS1 COUISES..........cccevvvvvvvrennnnnnnn. 81

X

. INTRODUCTION

In this 21st century, the computing field has never mattered more. The
explosion of new information technologies makes it possible to dethae
trusted, accurate, and timely information to the decision makidiany
applications created have changed how work is carried out and howdsusne
organized worldwide as well as provided local and global solutions to
environmental and societal matters. Yet, inappropriate use ofttimsecan lead
to disaster for leaders and their organizations. Thus, the knowledgkilithat
computer scientists acquire are critical resources for larersociety and the
world.

Today's computer scientists are key players in problem solvinghay
identify, formulate, and solve complex real world problems. Therefioege is a
growing interest in better understanding how higher education instisyprepare
future computer scientists, especially how students write compragramming
code; which is important to success in the digital ages Widely known that
learning to program, even at a simple level, is a diffitatk to achieve. A
substantial number of students, at a rate as high as 50 percentyebngpa0
percent in the early 2000s, fail their introductory programneimgrses in every
university, worldwide [1, 2]. Despite several academic interventiblesnumber
of students failing the courses seems to increase ratherddw@ease over the
years. The computer science education community still cannotunterstand

why some students learn to program more easily and quickly whHilersot

struggle. According to Ford and Venema [1], two potential causes that mag have
direct impact on learning to program are: (1) novices’ judgroéftiteir abilities
to achieve a specific task and (2) novices’ internalization of real worldtelgad
applications. The dropout and failure rates in the introductory progmagnmi
courses at the university level are proof that learning to prograndifficult task.
Moreover, if students drop out, fail, or struggle to pass a course mdéwied
major, it is unlikely that they will enroll in the subsequent compsternce (CS)
course. Thus, there has been ongoing investigation into the study of novice
programmer errors as well as studies to examine how novice sudeta their
programs in the introductory programming courses [3-6].

Programming is the core of CS, and therefore most national CS mogtart
with introductory programming courses (referred as CS1 coulRegprdless of
the recognized importance of learning programming, there aoe pivnary
problems with CS1 courses: (1) the wide discrepancy in studepanation [7-
11] and (2) the level of complexity of material to cover [12-15]. Maigher
education institutions use their CS1 courses as general progrgrol@asses open
to majors and non-majors. This results in a group of students witthearange of
previous computer experience, learning styles, backgrounds, goals, and
expectations. Even when these classes are restricted to G&,ntlag problem
persists because the students' experience with programmiipvsdely varied.
Furthermore, students who have no prior programming experience witl mos
likely feel inadequately prepared, despite the fact that C84set$ serve as

introductory programming courses to teach programming.
2

The CS1 courses are often perceived as competitive environnvbete
students “make it or break it.” Indeed, the lack of self-confideacd the
competitive environment have been identified as major contributatgrato the
high drop-out rate in Science and Engineering courses, particularly amorepnwom
and minorities [16, 17]. The abstract concepts of programming can lge ver
challenging for CS1 students, particularly for those with liffl@egramming
background and low confidence in their abilities. Because prognragnatiilities
are at the core of CS, skills in abstraction, conceptualizationgrdeand
evaluation are essential for the success of students majoritg iootnputing
field [14, 15, 18].

The Department of Computer Science and Engineering at Ariztata S
University (ASU) is concerned with the persistence of their freshmannssualed
the improvement of student success. Students take either CSE100p(&sindi
Programming with C++) or CSE 110 (Principles of Programmirth d@va) as
their CS1 course. Both courses teach first year college stufiemiamental
programming skills such as data representation in programs, running and
compiling programs, simple input and output operations, control statesesits
as selection and repetition, and functions and parameter passing.

Many students struggle in CS1 courses and eventually are unsutaessf
their attempt to complete their first year programming courSexble 1
summarizes the letter grade distribution for the academics y2@07-08 and
2008-09 at Arizona State University for CS1 courses. According tAai State

University’s grades and grading policies, the letter gradesandl B for
3

undergraduate studies are equivalent to excellent and good standingsmMBere
D, and E are equivalent to average, passing, and failure. Thusfatr it
conclude that successful students in CS1 courses are the studentssédtbtpha
course with an A or a B whereas students who received a C, D, Brbarely
passed the course or failed the course. The letter grade Wassaged to
students who dropped or withdrew from the course for unknown reasons.

Table 1 - Letter Grade Distribution: Academic Years 2007-08 and 2008-09

CSE 100 CSE 110
Fall Spring Fall Spring | Fall Spring Fall Spring
2007 2008 2008 2009 [2007 2008 2008 2009
g‘r‘c‘jgg 323 237 400 246 | 243 162 244 16§
A 104 92 116 120 84 65 102 63
B 80 44 87 42 48 41 43 34
C 42 28 69 15 33 19 26 21
D 18 14 36 7 10 7 12 7
E 21 17 31 13 23 10 29 12
W 58 42 70 49 45 20 32 26

Based on Table 1, Figures 1 and 2 depict the percentage of studeneceilied

a particular letter grade for CS1 courses. During the acadgmaic2007-2008,
approximately 18 percent of the students enrolled in CSE 100 apdrdéént of

the students enrolled in CSE 110 dropped or withdrew from the course, and an
additional 25 percent or more failed in both courses by received ao€ ab E.
These results show that approximately 40 percent of the studentsudropfail

the CS1 courses. Similarly for the academic year 2008-200%gshks show that

approximately 35 percent of the students drop-out or fail the CS1 courses.

1 | >

[ss]

Percentage (%)

I

Figure 1:Letter Grade Distribution for CSE 100

CSE 110 Letter Distribution
60

50

an
SuU

A i A
N —
30 —J_B !B ! !.D.
20 - W £ W
| c W E = —
E £ E
" m
0 |

Fall 2007 Spring 2008 Fall 2008 Spring 2009

Percentage (%)

Letter Grade

Figure 2: Letter Grade Distribution for CSE 110

As Ford and Venema [1] stated, the current drop-out/failure tateghar
observed institutions ranges from 30 to 50 percent, and the ASU drifgitore

rate is within this range. This high rate requires a closerdottke various factors

affecting CS novices’ success in CS1 courses.

A. Problem Statement

The increase of the drop-out/failure rate in CS1 courses oviasth@ecade is
a wakeup call for the computer science education community. tttisat that

higher education institutions retain their students in their engnggeomputer
5

science programs (quantity) and better prepare engineers/corapiatetists for

the workforce (quality). Over the last few years, we havedhigam many hiring
industries that the majority of the interviewed candidates arabietto write a
basic program that prints the numbers from 1 to 100. To address thisn;aree
needs to examine what may be at the root of this problem: the initial programming
courses that students experience in their undergraduate prograsic Ba
programming is taught during the freshman year. As mentione@reatiidents

are introduced to the fundamentals and core concepts of programmingd8he
courses. Most likely if students have not mastered those basiqtanten the
more advanced concepts built upon the CS1 concepts cannot be learned
appropriately. Therefore, students either (1) drop out from thergmogr (2)
navigate through the program with skills gaps that may not be teletdxy
instructors during the course experience.

This dissertation study attempts to inform this problem by inyatstig how
students write code in CS1 courses and if any skills gaps cdertdied at such
an early stage in the computing field.

This problem of student success in first programming courges isew, and
many studies have been conducted to increase student learning en@¥S2
(refers to more advanced programming courses emphasizingstlatiures,
linked lists, binary trees and recursion) courses. Some of theesthdve used
active teaching-learning methods such as pair programming [19] andgtraci
program execution [20]. Additionally, some studies have used web-based

interactive learning such as intelligent tutoring systems aebwjames to adapt
6

instruction to the learning style of each student [20-24]Jarst-in-time Teaching
to adapt lectures based on the learning progress of students fi2Sg $tudies
have focused on improving learning through motivation and engagement.

In order to improve student success in CS1 courses, | propose toeanadyz
important factor: students' algorithm design based on CS1 core conceptssNovice
spend a lot of time learning core concepts before thinking aboutdgeaprming
language they are coding in. Core concepts allow students to go throbghge
that enables them to begin to "think more like a computer scief&t"Some of
the core concepts in CS are abstraction, dependency, decomposition,
encapsulation, iteration, and recursion [27]. As students progress ioulse,c
their algorithm design evolves and reflects the core concepthéwe learned in
class, if understood. Furthermore, in order to understand their algorigigm di¢
is important to use different methods, which vary in their informadiastraction
level.

| am not proposing that it is necessary to collect data in regaragorithm
design for students to succeed in CS1. However, analyzing suchmatanable
CS1 instructors to better assess the comprehension and inteloraliahtthe
materials presented in class and in the textbook.

The intent of this dissertation study is 1) to identify the aarecepts that
students have the most difficulty with and 2) to assess theityahildesigning
algorithms and solving problems based on the core concepts. This shsdioa
classify instances of student’s mistakes based on the computatmmazepts

described in the literature. Evaluating students on the core isnedl enable
7

documentation of the roots of the problem, if any, and help make
recommendations to overcome these barriers in terms of teacletigpds.
Furthermore, assessing students on their logical reasoning amdmnoigg skills

is essential to determine students’ skill gaps in order to niaé&enecessary
interventions to close those gaps and instill confidence in theinihgaiand
abilities. Students who are confident about their information progessiills
perform better [28] in their CS1 courses than those who are natndisient.
Students who succeed in their classes tend to be more motivated itueont

their chosen major and more engaged in the classroom than studentsewho ar

struggling with core concepts in CS.

B. Purpose

This dissertation research proposed to study how CS1 students design
algorithms by using paper-and-pencil exercises, think aloud pretoeoid
interviews with a focus on three predefined core concepts basedioreg given
to the CS1 instructors and teaching assistants. These threeocmepts were:
abstraction in object-oriented analysis, arrays of objects, and tarcai
Understanding how CS1 students think and solve problems is esserditityi
students’ skill gaps, improve teaching practices, and make requhatiens to
improve the learning of algorithm design.

The outcomes of this research study are to identify any probteowetcepts,
logical reasoning difficulties, and problem-solving difficultiésitt CS1 students

may encounter. Additionally, this study will draw pertinent profiids‘good”,

8

“average”, and “poor” students based on the outcomes from the resesthcdm
used in this study to potentially make recommendations to improghirgain

the CS1 courses.

II. BACKGROUND LITERATURE

Algorithm design is a tedious task to achieve. Over the yeamdiesthave
shown that students experience substantial difficulties with @Biises. This
literature review focuses on the various initiatives taken &e é¢he task of
learning algorithm design using supplemental activities, stuthes have
analyzed novice programmers’ problem-solution, and emergent resetatdd
to the notion of computational thinking as a mean to learn/teachcdie

principles in any discipline.

A. Student Success

Many students across the Science, Technology, Engineering, and Matisemati
(STEM) disciplines take the introductory programming courses &on lehe
fundamentals about problem-solving and algorithm design. Reseacthban
that students taking those courses confront three main challengesatieaa
direct effect on student success: performance outcomes, engageandnt
motivation.

1) Performance OutcomeJo improve student success, it is imperative to
keep motivated students in the program and help students who areistyuggl
perform better. To do so, identifying students’ skills gaps ataaly stage is
necessary to enforce intensive intervention in the course develog@#nt
Furthermore, it is of interest to discover patterns of suadessfuggling, and
repeating students enrolled in CS courses to isolate some caukes affecting

student success [30]. Some studies have shown the profile of sutsasdénts
10

in CS as passing both CS1 and CS2 on the first try with atdd&sOn the other
hand, students who have passed both CS1 and CS2 earning at most a C were
unable to continue in the program or dropped out. However, students who have
successfully repeated CS1 were able to acquire the skillseddqoi succeed in
CS2. Therefore we may conclude that doing well in CS1 is cracidle
successfully prepared for CS2. In addition, two feasible consthettsnay have

a direct impact on performance outcomes in the CS1 courseslfaeéfisacy and
mental models [1]. The importance of student’s self-efficacyteaat stake if the
content is too advanced for the students to feel capable of leatheng
programming instructions whereas mental models have a directtirapaihe
student’s ability to transfer conceptual ideas into concretes.iddaus, building

good mental models strengthens self-efficacy [1].

2) EngagementStudies have shown that the CS field is struggling with
balancing theory and practice throughout its curriculum [31-33]. Auade
environments in the computing field fail to reflect real-world peotd that
students can come across during their professional career. Additjoc&l
concepts can be difficult for new students to fully grasp. Mosthefconcepts
taught in the computing field involve an abstract knowledge base andpthere
is preferable to integrate meaningful projects to prepare astais successful
students in this field. Easy-to-understand real-world applicatsut$ as the web
crawler and the spam evaluator, enable students to connect withpliea@on

and process the concepts easier [34-36].

11

Students find themselves spending many hours in front of the computer
coding and debugging; often times they feel overwhelmed, discouraged, or
disengaged by their programming projects [12, 18]. The absence oftyyoenef
engagement results in students’ disinterest. It is essenfiialdtevays to engage
students in a fun and challenging environment without losing their cocéda
‘doing’ and by diversifying the programming projects [17, 37].

Engagement in activities such as paper and pencil exercisegdcing the
logic of programs) and kinesthetic learning activities (i.echiag types exercise
for visual understanding of data type and how parameters must match whe
passed to a function) have proven to offer an increase in studentgeereyd in
learning programming and have provided important information in texns
students' skills gap [6, 38].

3) Motivatiornt The literature suggests that high levels of academic and socia
integration will in many cases result in higher levels ofrétention of students
[39]. Social integration such as peers’ collaboration and group teegiare seen
as having an impact on students’ sense of belonging to a group anucity
[40]. Through these exercises, students are able to practive, aateractive,
and/or constructive learning [41-43]. These different ways of legrkeep all
types of learners engaged, and therefore students’ social tidegia the
computing field increased as well as students’ motivation inrgjgyart of this
community.

Teaching techniques such as visualization activities and web-base

applications enable students to assess their own knowledge and |éamalaen
12

a way that fits their learning style. These techniques h#feeed promise in
helping classrooms move toward an equitable learning environment, agicaur
students to have positive beliefs about CS, and integrating CS with othe

disciplines [44, 45].

B. Program Design

Some of the above described initiatives used to improve student sutcess
CS1 courses were based on research related to problem solvingygehisf
research provides more details on the common mistakes madegbgrpnoers as
well as insights into the programmers’ problem-solving methods, and thussenable
researchers and instructors to have a better understanding atinbewnts think
and/or program. For the purpose of the scope of this study, tharalese
investigation focused on how people, specifically novice programsiere CS1
courses are primarily composed of freshman students who have ndleor lit
experience in programming), write their programming code. Evergthowch
research has been done on how experts and novices write/solvedbeanp the
root of the problem for the inability of students to solve a problem is stilingg
It seems that the problem resides in the prerequisites to prculmng. More
investigations in this area are needed.

1) The Nineteen Eighties Perio8bloway led the way in the area of studying
the novice programmers in the 1980s. Solowdyal. [3] found that only 38
percent of novice programmers could write a program that stdiclbgsalculates

the average of a set of numbers. In one of the case studies, @wh&oloway

13

provided a clear case of novice’s programming bugs due to inappeopsatof
natural language specification strategy [46]. The student, a nowigeaprmer in
Pascal, was writing pseudo-code for the problem: "Write a @nogvhich reads
in ten integers and prints the average of those integers." Shethedi@lowing

(see Figure 3):

Repeat
(1) Read a number (Num)

(la) Count := Count+ 1
(2) Add the number to Sum

(2a) Sum := Sum + Num
(3) until Count :=10
(4) Average := Sum div Num

(5) written (‘average ="', Average)

Figure 3: Pseudo-Code for the Problem 3 in [46]
Despite some inconsistencies in the pseudo-code notation, her wigeanpect.
However, when the interviewer asked whether (la) was thené'skind of
statement” as (2a), it seems "that she thinks the Pascslata knows far more
about these roles than it does." Below is an extract fromntleeview after the
student completed her pseudo-code [46, p. 12].
Subject: How's that, are they the sarkend. Ahhh, ummm, not exactly,
because with this [la] you are adding-you initialize it as z10 you're
adding one to it [points to the right side of la], which is just a teoms
kind of thing.

Interviewer: Yes

14

Subject: [points to the right side of 2a] Sum, initialized to, uhh, Sum to
Sum plus Num, ahh-that's [points to left side of 2a] storing two saftue
one, two variables [points to Sum and Num on the right side of 2a]sThat'
[now points to la] a counter, that's what keeps the whole loop under
control. Whereas this thing [points to 2a], this was probably the most
interesting thing. . .about Pascal when | hit it. That you could Have
same, you sorta have the same thing here [points to la], iinteassting
that you could have-you could save space by having the Sum re-storing
information on the left with two different things there [points ghtiside
of 2a], so | didn't need to have two. No, they're different to me.
Interviewer: So — in summary, how do you think of 1a?
Subject: | think of this [points to la] as just a constant, something that
keeps the loop under control. And this [points to 2a] has something to do
with something that you are gonna, that stores more kinds of informati
that you are going to take out of the loop with you.
Here, we see the novice programmer believing that the prograymiamiguage
knows more about her intentions than it possibly can. Hence, their regurési
that the natural language seems to have a key effect on eadgptions and
misconceptions of programming [46]. Furthermore, Soloehwl. [47] used a
methodology named Goals and Plans (GAP) Trees, which specifies the
relationship between goals and plans, to analyze the differenbtygreors that
novice programmers make (see Figure 4). This descriptive methodology of buggy

programs is based on the cognitively plausible, deep structure know(ieglge
15

plan and goal) that describes a programming plan as a stratagypfementing a
goal. “The relationship between programming goals and plans ia tyadl can

be achieved by any one of a number of different plans and a planiveaysg to
several subgoals” [47]. Therefore the structure of a plan mauythato pieces of
knowledge that build the complete plan. These pieces of knowledge are
programming plan schemas, which are stereotyped ways of solving aocomm

programming problem [48].

PROBLEM SOLUTION

Goal Goal Goal

*(z stands for Goal
** P stands for Plan

Figure 4: Simplified GAP Tree

From the GAP Tree, a schema is defined as a “remembereevicaki [49]; the
schema captures knowledge about the structure of the situation, deoivegatst
experience. A plan schema is knowledge about the global structarproblem.
It is a series of ordered actions needed to execute the pkrddithis, then do
this, and so on [49].

There are two types of GAP trees: Inferred GAP Tree (akpkans per goal) and
Solution Subtree of a GAP Tree (one plan per goal). An Inferred Gé@refers

to all of the plans that can be used to achieve the goal @irtidem whereas a
16

Solution Subtree of a GAP Tree refers to one particular plarc#mabe used to
achieve each goal of the problem. A simplified version of the GAle & shown
in Figure 5. Using this methodology, Bonar and Soloway [46] identifexers
components that compose a plan (see Table 2).

Table 2 - A Plan is Composed of Seven Components

Components Description (using Pascal syntax)
Input READandREADLNstatements
Uit WRITEandWRITELNstatements, for writing out either messages of
variable values
Initialization Initialization type assignment statements that gaeables their initial
value
Assignment statements that change variables values
Update
Guard Conditionals, such d& statements and the termination tes\HILE,
REPEAT andFOR statements
Syntactic connectives which delimit the scope otk of code, such
Syntax
asBEGIN, END, THEN ELSE andDO
Plan An entire plan, possibly composed of many of thredoing microplan
components

Solowayet al. were able to identify four ways that a program error can aocar

plan: Missing plan, Malformed guard, Misplaced syntax, and Spurious [Bput
Missing plan occurs when thelan component is not present in the program.
Malformed guard occurs when ti&lan component is present, but it is not
properly implemented. Misplaced syntax occurs whenRla component is
present, but it is in the wrong place in the program. Spurious inputsoatien

the Plan component is present, but it should not be. Furthermore, an extended
version of the GAP Tree, see Figure 5, including the seven compaigiés as

well as the four program errors was developed by Segelman [50].

17

Goal

Malformed Malformed
Misplaced \ / Misplaced
P :,1 Output I Input |<.\: P
Missing / \ / \ Missing
Spurious Spurious
an
Malformed - Malformed

o /*"

Pl
Misplaced _: »/'/-? " Misplaced
e e /| e
Missing | 5 Missing
Spurious ’/ / \ k Spurious

Malformed / Plan Itself \\ Malformed

/

Hil

Misplaced :\ ‘:\ /| Misplaced
,-‘/‘1Initialir_atiun| ,"If \\.\ Syntax |<‘::
Missing 4 s Missing
Fe / / § \\ \
Spurious Fd / \ \\ Spurious
¥ 3 4

‘Malformed “ Mispiacedl Missing I Spurious ‘

Figure 5: Extended Version of the GAP Tree [50]

The characteristics of this knowledge used in program desigfoavard,
backward, top-down, and bottom-up design [49]. The initial approach for problem
solving defines the starting point for design, but the solution path from start to end
can often be long and complex. For example, consider a progedroalculates
the average daily rainfall for a month [48].the program design is generated
from the input (i.e. forward)then first the programmer must design the code to
read in the rainfall per day. Once the input routine has been impied)ehe
mathematical calculations in the program must be specified hangrbgrammer
will search for some plan that uses the rainfall datalthafjust been read into the
program. The program design based on the input may reach an irffqrase®,
and the output must be used to search for a solufidghe program design is

generated from the output (i.e. backwartthen first the programmer must design

18

the plan that directly achieves the problem goal, by calculatiegaverage
rainfall (i.e. total/days). For this plan to work, the total rdinfaust be found by
adding the daily rainfall to a running total inside a loop. Hencealmulate this
total, the rain must be read, and the total must be initialized to zero beforetthe star
of the loop. The complete solution is executed. For the novice programme
whose program design knowledge is limited, selection may be deé&sirby
whatever catches the attention; the novice simply captures sothatas of the
problem, or even the solution, and starts from there. If the solutiogndesgins
with a search for the input, the novice looks for "read in" or "inputn the
problem statement, and thus identifies the information needed by leegearch.
Whereas the experienced programmer searches the problemcspieciffor the
goals, retrieves plans to achieve these goals, and expands theumtiarieey
match with the input data. And thus, as knowledge about how to design arsoluti
develops, the decisions taken during design are more thought through [49].
Furthermore, Andersomrt al. explaineddecomposition design (i.e. top-down)
[51]. The knowledge of a novice consists of a set of schemas in thefaglobal
structures of the program, such as a LISP operator, genertibfyrar recursive
function. In their study, the novices retrieved a schema froraxadr from
memory and implemented it to provide a solution to the problem. At thé mos
abstract level, i.e., the program, they selected the first sltdteirschema and
retrieved a new structure to fill the slot, then repeated tloiseps until the level

of program code was achieved. The next abstract slot in the progranthen

selected and expanded, and once again the process was repeated pnoijrtme
19

was completely defined. Deviations from this approach are exglas®ynthesis
design (i.e. bottom-updnd were first recorded by Jeffries al. [52]. In their
study, novices created programs by decomposing the problem into suboblem
However, novices were unable to decompose the problem at many levels of detail.
Using abstract plan knowledge, they did an initial decomposition todesig
solution for the problem at high levels of abstraction, but made uessfat
attempts to retrieve more detailed schemas to continue the srddesefore,
often novices jumped straight to the level of program code, i.eryadegailed
level of planning. Their behavior changed to bottom-up design due to the lack of
intermediate level schemas. Overall, studies [47-49, 51] showedribgtam
design pattern depends on both the level of expertise of the programchéhe
difficulty of the problem. If a programmer knows all the requirédtiact and
detailed schemas, the design shows a pattern of top-down and forwardnsol
approach, whereas a novice programmer has to create all the dgojams and
design, and so his/her design shows a bottom-up and backward solution approach.
Within this context of studying novice programmers, Perkins andrsothe

described novice learner's problem-solving strategies. Two tgpdgarning
styles were identified: “stoppers” and “movers” [4]. Stoppers apjpegive up on
the programming task at the first sign of difficulty, wher@overs use natural
language knowledge to get a partial solution.

“Stoppers and extreme movers can be viewed as being at endpoints of a

continuum based on the ratio of time spent thinking (or time spent sitting

in front of a terminal and not typing) to time spent entering and testing
20

code. But this image of a continuum is in a way misleading. It suggests a
distribution with most students in the middle while extreme stoppers and
movers occupy the statistically rare tails. On the contrary, the descriptions
of stoppers and movers are not caricatures of the norm. Extreme stoppers
or movers are common” [4, p.266].
Perkins found that stoppers can become movers if instructors enabtinage to
decompose the problem and concentrate on a simpler subproblem only.
Furthermore, Perkins and Martin [53] reported students have “fiagieledge”
of basic programming concepts and a “shortfall in elementary pnesddving
strategies.” This fragile knowledge is manifested through ngs&nowledge,
inert knowledge, and misused knowledge [5B]issing knowledgecan be
observed when a novice is asked to apply that knowledge in a prograrmeand t
student “sort of knows, has some fragments, can make some movas)dtam,
without being able to marshal enough knowledge with sufficient poeciw
carry a problem through to a clean solution” [53, p.214]. This knowledge is
commonly seen when students did not retain the knowledge talrgt.
knowledgecan be observed when simple nonspecific prompts lead the stuments t
recover the relevant knowledge and proceed correctly. In other wordsgithey
not initially “retrieve command knowledge but in fact possessed it” [53, p.215].
Studies of programming instruction have reported that a considératiien of
novice programmers’ knowledge of commands in a programming lgagisa
inert. Also, this type of knowledge was also shown in the context tofeac

programming, where there is almost no gap to transfer acrosSgpMisused
21

knowledgecan be observed when students mix up several disparate elemamts in
attempt to fix the situation when they are uncertain [53-55]. This k& is
commonly seen when students newly acquired knowledge.

2) The 2% Century PeriodAt the turn of the millennium, the research group
of McCracken assessed the programming competency of 216 fstg®
students, Java and C++ programmers, from four universities acrogeimuies
[57]. Each student was required to write a program from a sebbfepns. Most
students performed poorly and many students did not even complete Warsoft
development task from design to coding. The average grade was qnéyczht.
Based on these results, McCrackenal. [57] suggested that students in the
computing field are not taught programming adequately. However, the
McCracken Group could not identify conclusive reasons for why thdests
struggled, but they speculated that it may due to inability of stade problem-
solve. The group defined problem-solving as an iterative five step process:

(1) Abstract the problem from its description,

(2) Generate sub-problems,

(3) Transform sub-problems into sub-solutions,

(4) Re-compose the sub-solutions into a working program, and

(5) Evaluate and iterate.
While the work of the McCracken Group pointed out the current sfatevice
programmers, subsequent work is required to analyze the root prdhkem,
specifically if it is a language problem (i.e. object-orientationif it is a design

problem (i.e. thinking process). To clearly make a distinction betwiee two,
22

one way is to ask students to demonstrate their understanding figexisde.
This task does not involve problem solving. Building upon the McCracken
research, the Leeds Group studied performance of students fromcsewdries

on programming-related tasks. The novice programmers were Etuiagswer
multiple choice questions based on two types: “fixed code” questions and
“skeleton code” questions [58Fixed codeguestions, also known as single value
tracing, required students to predict the outcome value in a varatde
execution of a given code. This type of questions required studentsersiamd

the constructs in the given code as well as to be able tolyaband through
code. In contrasgkeleton codguestions required students to identify the correct
missing lines of code from a set of four options. The results trosmstudy
showed that many students performed weakly at these task#jcafigcthe
skeleton questions which suggest that these students are “lackingedgeveind
skills that are precursor to problem-solving” [58, p.139]. Thereforerdhates to

the inability of students to read code rather than to write codefuitber
investigate these results, the BRACElet project currentliguses on the
relationship between tracing iterative code, explaining code, anthgviabde
[59]. So far, their findings have indicated that students who do ace twode
cannot explain the code in plain English, and students who usuallyrpesfelt

at code writing are usually capable of tracing code and explaining codgjvell

23

C. Computational Thinking

In the midst of the struggle to resolve the underlying miscoiwrephat
equates CS with programming, a new movement has emerged called
“computational thinking” [60, 61]. Computational Thinking (CT) is one of the
key practices of CS; a combination of logic skills with core d@8cepts as an
approach to problem solving.

The idea of CT is to integrate problem solving techniques andaqipes into
all disciplines, from the sciences to humanities. Just as theentuthree
fundamental skills - reading, writing, and arithmetic - CT isuadamental
analytical skill needed for every citizen to function in todaylsbal society [60,

61, 62]. These fundamental skills are to “describe and explain copmblems

to others” [71]. Wing [60] goes even further by prophesizing thaw@iTbe a
fundamental skill used by everyone in the world by the middlehef 21st
century. Recent recognition by the National Science Foundation (B&iR)s to
support the idea that CT is an important component for scienteolegy, and
society; and thus deserves our immediate attention. The NSFgufamand
Information Science and Engineering (CISE) directorate hsested that most
proposals include a discussion of how their projects advance computationa
thinking. In particular, the NSF CISE Pathways to Revitalized tgrdduate
Computing Education initiative has asked educators to present projedts
introduce computational thinking into some aspect of education, researth, a
outreach. Furthermore, from the website of Carnegie-Mellon Uniyar&enter

for Computational Thinking, one can read “it is nearly impossibJe foresearch
24

in any scientific or engineering discipline without an abilitg think
computationally. [...] [We] advocate for the widespread use of compotdti
thinking to improve people’s lives” [63].

1) What is Computational Thinking@T is a way of reasoning in such a
manner that one defines problems, processes and relationships taheslee
problems. Seymour Papert first introduced this term in 1996 as aonsglve
problems more efficiently using novel approaches to problem-solving [64
Nowadays, the concept of CT is being spearheaded by Jeannette Wing,
President’s Professor of computer science and department he@drreggie
Mellon University who also works at the NSF as Assistant Direfor its CISE
Directorate. Wing [60] defined CT as follows:

“Computational thinking involves solving problems, designing systems,
and understanding human behavior, by drawing on the concepts
fundamental to computer science. Computational thinking includes a
range of mental tools that reflect the breadth of the fieldoohputer
science.”
Wing defined CT as the use of CS concepts to solve a problem idoamgin.
Some “everyday examples” [60] of computational thinking that shenestli
include:
“When your daughter goes to school in the morning, she puts in her
backpack the things she needs for the day; that's prefetching andgsachi
When your son loses his mittens, you suggest he retrace his btjss; t

backtracking. At what point do you stop renting skis and buy youaself
25

pair?; that's online algorithms. Which line do you stand in at the
supermarket?; that's performance modeling for multi-serveesyst\Why
does your telephone still work during a power outrage?; that's
independence of failure and redundancy in design.”
Furthermore, to help clarify the notion of computational thinking, WiB@j] [
listed six characteristics:
1. CT is conceptualizing via multiple levels of abstraction
2. CT is a fundamental skill needed for everyone to function in modern
society
3. CT is not about solving problems like computers, but rather it devalbps
critical skills of humans to solve problems
4. CT complements and combines mathematics and engineering thinking
5. CT is principally concerned with ideas as opposed to artifacts
6. CT should be an integral part of everyone’s education
Despite the great efforts from the computer science educ#tersiefinition of
CT at the present remains abstract, and thus this method oftistris difficult
to apply without knowing exactly what we expect students to learn [65, 66, 67].
2) Computational Thinking and Computer Scien€a: has a long history
within CS. Known in the 1950s and 1960s as “algorithmic thinking”, it meant a
mental practice to formulating problems in terms of steptby-grocedures
involving the conversions of some input to an output to solve the problems [68]
Today, the term CT has been expanded to include (1) thinking with maelg le

of abstractions to understand and solve problems more effectivelysé2pf
26

mathematics to develop more efficient, fair, and secure #igmj and (3)
examining how well a solution scales across different sizepralflems for
efficiency, economic and social reasons [63, 69, 70].

Furthermore, CT is seen by the computer science community as a
revolutionary movement to define what the core of the field is abmptovide a
way to reverse the decline of enroliments in the CS field &kimg the field more
attractive for students to major in and for other disciplines tolumide with, and
to recognize CS as a legitimate field of science. Manypten scientists view
CT as comparable to other basic cognitive abilities such atematical,
linguistic, and logical reasoning that the average individual in mosiecrety
should possess [71]. Thus, the CS1 and CS2 courses are changiegttthe
needs of students in other disciplines who are using computation and
programming; thus programming is presented as a tool used to intestigas
from all disciplines (i.e. computer science, other sciences, andnittespand an
essential part of CT [69, 70, 71]. The primary objective is to @vsolid
foundation of basic programming and establish an understanding of the
algorithmic thought process [69]. Programming is a language fpressing
ideas, and therefore, you have to first learn how to read and wiitanigaage to
be able to think in that language [71]. The teaching of CT should coatsennh
creating vocabularies and symbols to describe computation and abstrac
recommend information and execution, and provide notation around which mental

models (i.e. abstractions and methods) of processes can be build [60].

27

CT was defined in a number of ways such as 1) notions of pratedur
thinking, 2) study of mechanisms of intelligence, 3) processdsy@llation of
precise method of doing things, and 5) open-ended and growing list adptenc
that reflects the “dynamic nature of technology and human learfiidgy’ These
definitions are ideas extracted from the discussions among conspigatists at
a workshop on CT.

According to Wing [70], computing is defined as the “automation of our
abstractions” whereas CT focuses on the process of creating amaginga
abstractions, and defining relationships between layers of abstradVing
argued that CS has developed a set of CT skills that have direct impact beyond the
computing field. She stated that such ideas as abstraction, tagéabstractions,
and automation are fundamental CS concepts that have alreadydyredde
insights. To assess CT in the CS field, one can look at the faljoiwe CT
concepts described in Table 3: abstraction, algorithm, scalabdagpning, and
linguistics.

Abstraction can be defined as the process of eliminating theiguifiesant
details of a problem to concentrate on the relevant details amddtaionships.
Abstraction is an essential core concept in CT. Wing mentionedQhats
“conceptualizing” and “thinking at multiple levels of abstractio®0]. However,
the concept of abstraction has been difficult to translate into ddo8dses. By
categorizing abstraction as a “soft idea,” Hazzan [72] ineicéhat teaching this
concept by lecture is not enough to increase students’ awarahess$ the

concept of abstraction. Students must be able to identify thedéwadistraction,
28

recognize the existence of different abstraction levels, andhsteaction in the
learning process. If students are not able to apply abstractionttheay be of
interest to “train” them for such task [73]. This remark weasde by Kramer
through the observation that in the CS curriculum offered at laip@dllege, no
one course explicitly focuses on teaching the concept of abstraction.

Algorithm is another fundamental CT concept that is often introduc€&bil
courses as a set of rules that describes how to solve a problenitigdconcept
may be described as a program, pseudo-code or step-by-step eéxplénatlain
English) of how to do something. This CT concept shows the ability of students to
specify a problem precisely and construct a correct afgorib a given problem
using basic action steps.

Scalability is the ability of an algorithm and design to handleréugrowth
plan in a graceful manner or its ability to be enlarged to acumiate that
growth. It must be suitably efficient to plan ahead for scalalderithm and
design based on potential future growth of the problem. This CT pbmse
sometimes introduced in the CS1 curriculum towards the end of rinesta. If
not, it is definitely covered in CS2 courses. Usually, scalghditreferred in the
curriculum when covering sorting and searching algorithm techniquélp
students to understand how to improve a problem solution; and thus the
importance to design and construct scalable problem solutions [75].

Reasoning constitutes rules that underlie logical and mathemstticatures
in the algorithm and design. The formulation of reasoning is #gengh logic

constructs such as automation, loops, and recursion. This involves the repeating of
29

a procedure until a desired goal is reached suchcamditions then conclusion
This CT concept underlines the ability to apply mathematical eaitstto the
algorithm [63].

Linguistics includes primarily semantics and syntax. Semaitigaoblem
design and solution is the meaning that is used to express thactabstrof
information whereas syntax is mainly bounded to the programmiggadae used
and/or modeling language annotations. This CT concept provides clear and
meaningful descriptive annotations and follows the principles and rol&srang
the behavior of the chosen programming/modeling language used to design and
solve the problem.

Through those CT concepts, it is expected that undergraduate taugét
during the freshmen year would enable students to “adopt the thinkirtg badi
reasoning methods of computer scientists”, i.e. students would leaut thie
core computational concepts [71]. However, as of today, the computaceci
education community is still focusing on exploring the scope andenaf what

CT is/is not and its cognitive and educational implications [70, 71].

30

Table 3 — CT Concepts

CT Concepts Description

Abstraction - Deciding what details need to be highlighted et
details need to be ignored
- Defining the layers of interest such as clasdatg
members, methods, and the relationships betwedayhes

Algorithm Correctness of the program should andiverfollowing
questions:
- Does it do anything?
- Does it do the right thing?
- Does it compute the right answer?

Scalability Ability of the program to be enlarged faiccommodate
growth in a graceful manner

Reasoning Correctness of the controls such asgieayriteration, and
conditional statements

Linguistics Correctness of the syntax and semsintic

D. Summary

Today, with universities attempting to improve student success iC8ie
courses, many computer science programs are trying diffenetéges. The
visual web-based and real-world applications may be way®foe programs to
check whether their efforts are successful or whethenduddjustments need to
be made. Certainly, the research investigation is more insighifeih students’
problem-solving and program design is tracked through those applicaibes r

than a focus on the number of correct answers. Finally, it is iargaid further

31

investigate program design in our current era of computer sci€nedvicCraken
and Lister working groups came to the conclusion that many &est-y
programming students cannot program at the end of their CS1 coutisgsdna
to difficulty with problem-solving. From their observations, they deslidhat
knowledge and skills are the precursors to problem solving. Thus, thiogieal
research step is to assess students’ algorithm design andnprsddieng skills,
students’ knowledge of the CS1 computational concepts, and clabgity t
mistakes in their work in terms of computational concepts; wisi¢he intent of

my proposed study.

32

II1. METHODOLOGY

This study was designed to understand the skills that freshmetoplene
their introductory computer programming courses. This studydaiimeanform
CS1 instructors with a better understanding of how their studentgndesi
algorithms (Unified Modeling Language, also known as UML) and Howir t
students solve a given problem through programming (coding). UMksnas an
architecture tool providing a high level view of the problems kyaekng key
information such as classes, data members, methods, and connections showing
relationships. Coding creates a program that exhibits a certsiredldoehavior
that requires basic instructions such as input, output, arithmetic, iooadlit
execution, and repetition. To investigate skills such as design arenr
solving, | collected quantitative and qualitative data describé&dgure 6. At the
beginning of the Fall 2009 semester, instructors and teachsistaags (TAS)
were first surveyed on the concepts that students struggle thewtiostased on
the instructors and TAs’ teaching experience within the pasteaos. Based on
their answers and the curriculum, with the assistance of theudtwmts, |
developed paper-and-pencil exercises which focus on these particularsoooble
concepts. Each paper-and-pencil exercise was divided into threensect
algorithm design, problem-solving, and bonus points pertinent to “fresh”
knowledge (i.e. material covered the day prior or the day of theisgg The
paper-and-pencil exercises were given to the CS1 studentsednduliing the

Fall 2009 semester. The CS1 students representing the student botbpkvtwe

33

written exercises are referred as “Group 1”. From these {aaqukepencil
exercises, a letter grade was assigned based on spett#itacto assess the
identified concepts. The exercises were scored to ensure s@EpBssent
guantitative data. Furthermore, students from “Group 1” were invited to
participate in a think aloud experiment as well as an intertgeexplain their
algorithm design and problem-solving method. This small set of stident
referred as “Group 2”. Data obtained through these methods eapsalitative
data.

The primary aim was to identify any problematic concepts, lbgéasoning
difficulties and problem-solving difficulties that CS1 students neagounter
when attempting to do the paper-and-pencil exercises. Secondagg i be
examined included the comparison of students’ level of expertiserdwind)
pertinent profiles of “good”, “average”, and “poor” students based hen t

outcomes from the research methods used in this study.

34

E GROUP 1 i..-..-..-..-..-..-..-..-..-.:-..-..-..-..-SQM-I.E.-..-..-..-..-.
L

I GROUP2

>
=
=

@rennannas

PAPER-AND-PENCIL EXERCISES

Troublesome

concepts and
thought proce:

|
i

Troublesome
concepts

LSurvey on concepts (dependent variable
\

iCreativity (independent variable) gﬂzmgfi\\t/lgeoﬁg ngl(i)t"aeticvt‘zc?ata
AL))) Collecte
- Bonus points (independent variable) l

L _Pretest (dependent variable) _
| —

;Posttest (dependent variable)

L Interview (dependent variable)

Figure 6: Assessment of Student Performance with CS1 Concepts

A. Data Collection Design

The data collection design was developed during the Summer 20@3tsem
to ensure that permission to conduct research was obtained frontilosaik
Review Board (IRB) so | could begin the study during the fall semester.

1) Participants and Site:The “Group 1" was composed of all students

enrolled inCS1 courses whereas the “Group 2” was a subset of “Group 1”

35

composed of students of age at least 18. This age limitation for Grouwgs 2
chosen to avoid the challenge of seeking parental permission tddy s
participants who are younger than 18 years of age. The instfac©61 courses
used the paper-and-pencil exercise as quizzes in his cladsesingtructor
provided me with a copy of students’ responses to these exemidesut
revealing students’ identity. The study was conducted at the Peédpe campus.
The paper-and-pencil exercises were in-class tests, and/é¢hesonducted in the
classrooms where the lectures were held on a Thursday whleestisnk aloud
and interview exercises took place the following Monday in a nonrolass
setting.

2) Sampling StrategyBased on Patton [76, p. 243], the sampling strategy
was a maximum variation sampling to ensure that the selected emisirior the
think aloud and interview exercises were diverse in terms of gmuging
language, age, gender, grade, and major; and thus, well-represeatatie CS1
student body in the sampling.

3) Sample Size and GroupEnrollment for CSE 100 (Class# 72301) and
CSE 110(Class# 72321) was at 81 and 64 students respectively. Out of these 145
students, six to ten students volunteered to do the think aloud andewtervi
exercises. This study included two groups. Group 1 is the group oftG&ints
who did the tests in-class whereas Group 2 is a smaller gfoGpoup 1 who

volunteered to do the think aloud and interview exercises.

36

B. Data Collection Procedures & Protocols

The data collection procedures and protocols were designed while tiogple
the IRB application for the approval of this study (Appendix A).tAd processes
described in this section were required as part of the IRB afiplicbefore any
study may take place.

1) Survey on CS1 ConceptBased on the procedure used in [77, 78] to
identify the most difficult topics in CS1, | similarly survelyky email, instructors
and teaching assistants (TAs) in CS1 courses to identify the tnooblesome
concepts in the courses (see Appendix B) and then | rank-orderedubksome
concepts based on the frequency of their occurrences. From this rathidrey
were three top troublesome concepts: abstraction in object-orientgégisna
arrays of objects, and inheritance.

2) Designing TestsBased on the outcomes of the survey given to the
instructors and TAs, paper-and-pencil tests were developed to sdldeebasic
elements that encompass each troublesome concept. The instruotéaught
CSE 100 and CSE 110 courses then reviewed these tests. The ingjavetor
some feedback and/or made necessary changes based on the prageess m
class. The first two tests (see Appendices C and D) wersdime for both
courses and the last one (see Appendices E and F) was differansddoe class
CSE 100 was behind in the curriculum; thus, adjustment was needadlyo f
assess the participants based on what they have learned in class.

3) Recruiting Participants:To recruit participants from the CS1 courses, |

asked permission from the CS1 instructor to come into his classake an
37

announcement and have the TAs to email the recruitment forms tmstes.
Once I received all the forms back, | tried to select students for pattan in the
study to reflect the overall CS1 student body in terms of diyeirsiage, major
and gender. However, ultimately, participants were chosen basedean t
availabilities in order to maximize the number of student participants in the stud

4) Collecting TestsTo collect the in-class tests, | met with the instructor
after the classes ended and he handed me the copies to make photddbpies
Then | returned the copies to him within 24 hours. A random numerical number
was assigned to each participant. These numbers were used thrahghstutly
to maintain the confidentiality of all information concerning resegarticipants.
This information included, but was not limited to, all identifyingommhation and
research data of participants and all information accruing f@om direct or
indirect contact | had with the participants.

5) Think Aloud ProtocolThis protocol was used for the selected volunteers
who decided to partake in the survey and interview phases (i.e. “Qfoup
explained to the participants about the verbalization that | expected throtig&out
exercise (see Appendix G) and a warm-up exercise was condoaedure that
the participants fully understood the think aloud protocol. Then the parisi
were prompted to complete the test as they stated aloud theinthiwvkile the
participants were audiotaped. The participants all had the same apfidiome to
complete the test, which was 30 minutes. This protocol may astfstthe
assessment of subjects’ communication skills and detection of their

misconceptions and confusions about the concepts.
38

6) Survey Questionnairegifter completing a paper-and-pencil exercise on a
Thursday, participants were asked to come back the following Mondaggond
to individualized pretest and posttest surveys (see Appendices Hl amavell as
an interview. The surveys were developed based on a simidy ghat
investigated the struggles encountered with CS1 concepts [78]. Ttiappats’
answers to the pretest and posttest surveys helped asgesnpé€l) knowledge
skills and (2) explanation skills such as:
a) Comprehension of the core concept (1, 2)
b) Rephrasing of the core concept with no technical words (1)
c) Prior knowledge needed to gain a good understanding of the core concept,
if any (1)
d) Real-world examples in regards to the core concept (2)
e) Context of utility of the core concept (1)
f) Thoughts and reactions, before, during and after the process of solving the
paper-and- pencil exercise based on the core concept (2)
g) Concepts and/or elements where the participants were stuadlstabut
then became clearer, if applicable (1, 2)
h) Concepts and/or elements where the participants were stuck antidyow t
dealt with this situation (1, 2)
i) Concepts and/or elements where the participants were stuck and
suggestions/advice to help other students who might be strugglintheith

same concepts and/or elements (2)

39

J) Impact that the understanding of the core concept has on other things,

any (1, 2)

7) Interview QuestionnaireThe interview was added in case that the think
aloud protocol was not very conclusive. Also, it provided a temporal dimension to
the thought processes that arose within the context of solving the problem (see
Appendix J). Participants had a chance to reflect on the given problem over
couple days, precisely four days, and come back to debrief on their answers as

well as to reiterate their reactions and thoughts when solving the problem.

C. Data Analysis Procedures

The data analysis was divided into two parts: quantitative cetlysas and
gualitative data analysis.

1) Quantitative Data AnalysisThe tests were assessed using grading criteria
for each section. For example, the grading of the first exeweas based on the

assessment criteria indicated in Table 4.

40

Table 4 — Scoring Grading Criteria

Tests

Criteria

Problem design
(Part | — 4 points)

A N N N NN

Successfully indicated classes

Successfully identified data members
Successfully identified methods

Assigned proper data types to data members
Assigned proper parameters and return types

methods

to

Problem solving
(Part Il — 6 points)

Properly formed method signatures
Properly formed variable declarations
Properly formed method invocations
Included correct methods

Properly formed variable assignment
Properly formed method declarations
Proper reasoning/logics

Proper syntax

Bonus points criteria
(Part 11l — 5 points)

AN N NN Y U N NN

Problem design solution to bonus points exerg

Creativity

ise

The instructor of the courses determined the assigned points foresicim.s

The base score was 10 points, which does not include the two independent

variables - bonus points and creativity.

The sections of the tests (i.e. quizzes) were open-ended queStienspen-

ended questions used in tests often require a more in-depth thin&mgttie

students and can disclose more about how students understand and reason with

the course concepts than do multiple choice questions. Traditional (segts

example in Appendix K) often do not disclose much about how students think

about the course concepts. Since students do not have to use theiruancept

understanding, their solutions often accentuate a single value respitimsr a

41

numeric answer when tracing code or an alphabet answer whesirdhao
response from a multiple-choice question; and thus such type otlestnd a
single correct response. The instructor and/or TA can only optdignasy full
credit or no credit. Whereas in tests with open-ended questions, stuougsits
give a solution that accentuates how they came up with an andwar @an be
more informative than traditional tests; showing students’ understaraidy
to reason, and ability to apply knowledge in less traditional ctmt&uch tests
can communicate the levels of student achievement more clearlymultiple-
choice items, and thus, give better guidance for instructions.

An application of Amabile’s consensual assessment techniquetifoy the
tests was applied. Based on [79], the three requirements foskhigsilf must be
satisfied [79, p.1001]:

1) The programming task did not depend on specialized skills. It way solel
based on what was taught in the classroom/lab setting. Themneowas-
requisite for CS1 courses and, therefore, no prior knowledge in
programming was expected.

2) The programming task was an open-ended question, which enabled
flexibility in responses. For example, a typical exercise {Based on
your UML diagram above, please develop tG&afsNamgclass”.

3) The programming task was a paper-and-pencil type exereisa,written
response, which was easily accessible.

In addition, this study used the following assessment procedure [79, p. 1002]:

42

1) The judges were two graduate students (one female and oneimtide)
computing field who have taken the CS1 courses as part of their
undergraduate curriculum. If the two judges have a different point of view,
a third judge, another graduate student in the program, would evdleate t
specific test(s) to break the tie. However, in this study, d fholge was
not needed as the two judges were able to come to an agreenahtHer
participants.

2) The judges assessed tests based on their “own subjective défioition
each criteria such as logic, clarity, identificatiorattfibutes and methods,
type parameters, syntax, and more without consulting each other.

3) The judges assessed each programming exercise by compuaréng
programming exercise to another one.

4) The judges were given a stack of completed tests, which inclugeesc
of each programming exercise. The order of the copies in ea¢hvaiac
random for each judge.

Furthermore, using Amabile’s assessment technique, creatiagyassessed for
section 2 of each test, which was the problem solving (code). rEad¢ivaty in
section 1, the algorithm design (UML diagram), would have been affiuttito
assess. This section was a straightforward exercise amdotigethis section was
not assessed for creativity to stay away from negative eitgafror example, a
few students, who were unable to retrieve their knowledge abouUlhe
diagram, came up with ‘strange’ answers such as a spiral aneé-paragraph

write-up. One may have thought that their answers were \cedatit the display
43

of their knowledge about algorithm design was very poor. Based on tiba 0b
“creativity,” some of the initial impressions of the data evésund in students
who did the following:

1) Checked for positive deposit. Only a few of them thought about error
handling for deposit. Who would think about making a deposit of a
negative amount?

2) Used an array in test 1 when it was not the concept testet was |
supposed to be in test 2 since arrays were learned after the test 1.

3) Underlined methods and attributes in the problem description

4) Used Boolean methods instead of void methods

5) Named the variables

The assessment of quantitative data was conducted using thearsoft
Statistical Package for the Social Sciences (SPSS). Wiestisal analysis
explored the overall student performances over the three tebtati@mpted to
find any correlations existing among exercises. Furthermat, oh students’
background were collected, and thus, comparison within-students wasdatopl
differentiate any students’ design and problem-solving performaased on
factors such as course, major, gender, ethnicity, and prior programming
experience.

2) Qualitative Data AnalysisEven in quizzes with open ended questions it
may not be that simple to see how a student was thinking on a problhy or
they answered a particular way. In such a case, the computeces@ducation

researcher may decide to conduct interviews with some of thenstudéhe
44

written data (tests) and the verbal data (think aloud/interviesss® assessed by

first identifying episodes demonstrating some skills and therjutthges came
together to compare their respective episodes and agreed dillhéosuse for
assessment. The goal of the written data is to present sawiplstident
performance to showcase common mistakes made by the student body
participating in this study. Whereas the goal of the verbal idat@a present the

skills that were identified in the think aloud and interview protoaals showcase
some interesting excerpts from the interviews that areerklad the CS core
concepts described earlier and the skills identified.

In this study, participants were students enrolled in at leasbbtiee CS1
courses and the problems were open-ended design problems. Thregsdatas
Problem design, Problem solving, and Think aloud/Interviews - can be
distinguished in Figure 7 below. Three different analyses were ctattuthich
included students’ profiles, computational thinking skills, and core concepts

abilities.

45

Analysis | Analysis Il Analysis IlI
Scoring Distribution Computational Core Concepts
Profiles Thinking Assessment Assessment

ﬁ Dataset : D ﬂ Dataset : D Dataset :

Figure 7 — Overview of Qualitative Data Analysis Procedure

D. Verifying Data Accuracy

The data accuracy was verified during the data collection. h&sstudy
progressed, changes were made to avoid clerical errors, subjentivs, and
methodological errors.

1) Avoiding Clerical Errors The data collection worksheets were checked
against the original source of documents (i.e. copies) to ensusgstency with
the assigned identification numbers for both the verbal and wdéen Only one
individual was in charge of recording the data in question td lmbnsistency
and inaccuracy.

2) Avoiding Subjective ErrorsVhen dealing with data involving subjective
ratings such as those provided by teaching assistants, an \effierinade to
determine the accuracy of the rating system. This was accompligleeimining
the rating scale to determine how clear and comprehensive thgtiess were
of the various rating categories. To ensure accuracy, a desigmalgidual

double-checked the grades entered based on the assessment criteria.
46

3) Avoiding Methodological Errors Of the data collection techniques
existing, surveys are most prone to methodological error. The sunstyment
(i.e. questionnaires) was reviewed for possible bias by a dissermmmittee
member and the Office of Research Integrity and Assurance at ASU.

4) Avoiding Assessment Errordhe assessment of both qualitative and
guantitative analyses was conducted by two graduate students who scored the data
independently using the assessment criteria described earles chapter. Then
the two judges got together and compared their assigned d€ohesscores were
the same then this was the final score. Otherwise, the judges heassess the

data until they came into an agreement.

E. Limitations

This study was limited by the number of college students witbrgarticipate
in the interview process. Although the study began with 145 students98nly
participants from CS1 courses took part in all tests (49 from CSE 100 and 44 from
CSE 110). Thus, the study only looked at this subset of 93 participants to
determine their overall performance across the three testheFuaore, only 6
students were interested in participating in the corresponding #ioud and
interview phases. There was a delay in curricular implementaturing the
semester, closer to the time when the third test was to bermpted. As a
result, the third test had to be adjusted to reflect the latatgrial covered in
class and the initially planned assessment could not be fully exdeddécause

this exercise was finally implemented closer to the endhef demester, the

a7

number of participants for the corresponding interview and think aloud protocol
was low. Although the data collected was useful, the delay in ularic
implementation bounded the data collection for think aloud and interviews to
primarily the first two tests. Nonetheless, this study imsesful results that will
inform instructors of CS1 courses.

A secondary limitation to the study was the time needed to conduct
assessment on additional troublesome concepts. Due to the fullukurric
already in place for CS1 courses, the study focused only on the ¢éepctimcepts
identified by the survey given to the instructors and TAs.

Last but not least, the duration of each test was only 30 minutesh vgha
short time to complete the exercises. Therefore students hadk decisions
rapidly, and the scope for reflection was limited, especially for the bomusise.

This time limitation for test was due to the allocation of tifoe lecture and

review of materials prior to taking the test.

48

IV. DATA ANALYSES AND RESULTS

In this chapter the results of the data are presented. The dataeliected
and then processed in response to the problems posed in chaptehis of t
dissertation. Two fundamental goals drove the collection of the catathe
subsequent data analysis. Those goals were to develop a base of knekiksige
about what CS1 students know or do not know about the core concepts in terms of
the computational thinking’s characteristics: abstraction, dlguori scalability,
reasoning, and linguistics; and to compare their overall designpeoidlem-
solving solutions. These objectives were accomplished. The findinganpedsn
this chapter demonstrate the potential for making significaainmenendations to

the CS1 instructors.

A. Response Rate

One hundred and forty five CS1 students were initially identifiecke the
tests, including 81 in CSE 100 and 64 in CSE 110. However, only 93 participants
completed all tests. With 93 participants out of 145, the responsevasté4
percent. Furthermore, the last test for CSE 100 did not include esigndand
coding due to a delay in the curricular implementation which bounded tae da
collection for CSE100 to the first tests. Therefore, 93 participants wasidered
and only the first two tests for CSE 100 were considered tedienhate for this
research. Two hundred and seventy-nine tests were obtained but only Blg0 usa
responses (98 in CSE 100 and 132 in CSE 110) were analyzed. With 230 usable

responses out of 279, the utility rate was 82 percent.
49

| compared the means from the two samples in each course to thadute
actual sample that | am using represents the students whdotésts. The first
sample (ilUML1, iUML2, iIUMLS3, iCodingl, iCoding2, and iCoding3) represents
all the students who did not take each specific piece of eachviteseas the
second sample (UML1, UML2, UML3, Codingl, Coding2, and Coding3)
represents the students who took all three tests (see Table 5).

Table 5 — Comparing Means among Specific Pieces of Each Test

Pieces of each Test CSE 100 mean CSE 110 mean
iUML1 .790 .653
UML1 .801 .622
iUML2 .864 .629
UML2 .847 .660
iUML3 n/a .748
UML3 n/a 773
iCodingl .613 .520
Codingl .626 .583
iCoding2 .739 .790
Coding2 724 .789
iCoding3 n/a .750
Coding3 n/a 778

As it can be noticed, the difference in means is somewhat mjrama thus
the proposed sample that | used (93 participants) in this stubcurate and also

very close to the source sample (145 participants).

50

B. Participant Background

Of the 93 participants, 53 percent were enrolled in CSE 100 (C+d+jan

percent were enrolled in CSE 110 (Java). Table 6 represents thall over

background information of the participants based on major, gender, sthard

prior programming experience. Even though the study attemptedhievac

balance, this was not possible due to the student population in CS1 tintha

Nonetheless, the participant background distribution is a good reptesemi

the CS1 students at Arizona State University.

Table 6 — Patrticipation Background Distribution

Prior
Major Gender Ethnicity Programming
Experience
CS | Non-CS | Female | Male White | Non-White | Yes No
CSE 100 | 82% 18% 31% 69% 59% 41% 10% 90
CSE 110 | 93% 7% 25% 75% 64% 36% 43% 57¢
CSE 100
N 87% 13% 28% 72% 61% 39% 26% 74
CSE 110
Total 100% 100% 100% 100%

C. Intercoder Reliability

As mentioned in the previous chapter, two judges independently evhthate

tests and reached an agreement. As Neuendorf indicated hufitthe

establishment of reliability, content analysis measures amdesss [80].

Furthermore, Kolbe and Burnett [81] note that “interjudge religbik often

perceived as the standard measure of research quality. Highs lefe

51

disagreement among judges suggest weakness in research mettiads)g the

possibility of poor operational definitions, categories, and judge migainirhus,

intercode reliability is necessary because its proper assessmakes coding
more efficient and all the work involved - data gathering, amglyand

interpretation - is unlikely to be dismissed by skeptical reviewers [82].

There are many different measures of intercoder reliataihty despite all the
efforts devoted to develop and test measures, there is no consensus on one
universally accepted measure [82]. However, the Cohen’s kappaimmezems
to be the norm in research that involves behavior and learning [88{dition,
Cohen’s kappa can be calculated using SPSS. To do so, in the dataseatp f
each row represented a single case (i.e. a single particgrachtach column
represented the coding judgments of a particular coder for mytartvariable
(i,e. UML1, Codingl, and etc). It is rare that a perfect agreensergached.
Different people have different interpretations. As a rule of thwalues of
Kappa from 0.40 to 0.59 are considered moderate, 0.60 to 0.79 substantial, and
0.80 outstanding [84]. Most statisticians prefer for Kappa valubs tat least 0.6
and most often higher than 0.7 before claiming a good level ofragréeFrom
the SPSS program outputs, the level of reliability for the kapgex for UMLL,
Codingl, UML2, Coding2, UML3, and Coding3 is summarized in Table 7.y¥n an
case the level of reliability is always acceptable ashallKappa coefficients are

greater than 0.90.

52

Table 7 — Quantitative Symmetric Measures

Measure of Agreement Kappa

Vale Approx. Sig. | N of Valid Cases
UML1_cl* UML1_c2 919 .000 93
UML2_c1 * UML2_c2 919 .000 93
UML3_c1* UML3_c2 911 .000 44
CODING1_c1 * CODING1_c2 914 .000 93
CODING2_c1 * CODING2_c2 .933 .000 93
CODING3_c1 * CODING3 c2 .940 .000 44

Disagreements in the reliability coding were resolved bywlejidges as an
agreement was reached after a second round of evaluation and thus jildges

came to the same conclusion for all the participants.

D. Quantitative Analysis

As presented in the previous chapter, the quantitative analysisondscted
on the tests which are primarily divided into three specific pied&IL (design),
Coding (problem-solving), and bonus points. For the scope of this study, ive lim
the analysis of each test on the first two pieces, UML and Coding.
The statistical data analysis of the exercises focusésediollowing research
guestion hypotheses:
1) How did the group perform on the three tests overall?
2) Are there any differences between how students scored on specific parts of
testl compared to test 2 (and test 2 compared to test 3)?
3) Are there any relationships between any of the four factaag(rgender,
ethnicity, and prior programming experience) and student performance

scores for each specific pieces of each test?
53

4) Are there any relationships between how students scored on specific
of test 1 compared to test 2 (and test 2 compared to test 3)?

To answer the above research hypotheses, | used the anabftiwakre SPSS
to test the data sets for normality; and to conduct dependest, tteltiple
analysis of variance test (MONAVA), and the correlation. téstthermore, since
CSE 100 participants were bounded to test 1 and test 2, | have thiesislathe
first dataset analyzed the three tests for CSE 110 (Appendith&)second
dataset analyzed the first two tests for CSE 100 (Appendixahd the third
dataset is a combination of the two first datasets for an amaliythe overall CS1
student performance (Appendix M). The data sets included the p&restares
for each UML exercise (UML1, UML2, and UML3) and each Codaxgrcise
(CODING1, CODING2, and CODING3).

1) Testing for Normality A test for normality is a prerequisite for many
statistical tests where normal distribution of data is an lyidgrassumption in
parametric testing. There are two main methods to assesslibgrgraphically
and numerically. Numerical tests have the advantage of making artivabjec
judgment of normality but are disadvantaged by sometimes not beirsitive
enough at low sample sizes or overly sensitive to large sanzgle. $braphical
interpretation has the advantage of allowing good judgment tesassemality in
situations when numerical tests might be over or under sensitiveudks since
my data sets are of small size samples (< 100 samplesg¢dl thenormal Q-Q

Plot as a graphical representation of normality. Based on the plots,téhpailiats

54

were close enough to the diagonal line to conclude that the theeseda can be
considered as normal distributions.

2) Dependent t-TesiThe dependent t-test compares the means between two
related groups on the same continuous variable. In this study, agjrivaphman
students enrolled in one of the introductory courses were selected from the student
population to investigate whether design (UML) and problem-solving (Coding)
improve their performance in the course. In order to test whétkeee types of
exercises are useful measures that can show an improvemenfoimpece, the
sample groups were first tested for their performance irltestd then measured
again (test 2 and test 3) before the end of the semester.

Using SPSS paired-samples t-test procedure, from the two taBlased
Sample Statisticand Paired Samples Test the first data set (i.e. CSE 110
participants for all three tests) showed the following score improvement:

Due to the significance level value of UML1-UML2 and CODING2-
CODING3 (p > 0.05), there was no statistically significant score
improvement between UML1 and UML2 and CODING2 and CODING3.

t(43) = -3.513,p < 0.05. There was a statistically significant paired
difference for UML2 (0.66 + 0.24 pt) - UML3 (0.77 £ 0.20 pt);

t(43) = -3.218,p < 0.05. There was a statistically significant paired
difference for UML1 (0.62 + 0.32 pt) - UML3 (0.77 £ 0.20 pt);

t(43) = -3.707,p < 0.05. There was a statistically significant paired
difference for CODING1 (0.58 + .34 pt) - CODING2 (0.79 = 0.26 pt);

t(43) = -3.605,p < 0.05. There was a statistically significant paired
difference for CODING1 (0.58 + .34 pt) - CODING3 (0.78 + 0.23 pt);

55

Based on the first dataset results shown above (means and directioa tof
value), a summary of the overall score performance betweenspactiic piece
of each test is presented in Table 8 below.

Table 8 — Dataset 1 Overall Score Performance between Exercises

Significant Score If Yes then
Performance e .
. Positive or Negative
Difference

Pair 1 |UML1 - UML2 No

Pair 2 |UML2 - UML3 Yes Positive
Pair 3 | UML1 - UML3 Yes Positive
Pair 4 | CODING1 - CODING2 Yes Positive
Pair 5 | CODING2 - CODING3 No

Pair 6 | CODING1 - CODING3 Yes Positive

From this table, | concluded that overall CSE 110 students’ problagndsesores
improved significantly. Even though, CSE 110 students’ problem solving scores
improved significantly, the scores between test2 and test3 wailarswith a
mean difference of 0.01.

The second dataset (i.e. CSE 100 participants for the first twg) swwed
the following score improvement:

Due to the significance level value of UML1-UML2 (p > 0.0%kre was
no statistically significant score improvement between UML1 and UML2.

t(48) = -3.020,p < 0.05. There was a statistically paired difference for
CODINGL1 (0.63 +0.27 pt) - CODING2 (0.72 £ 0.27 pt);

Based on the second data set results shown above, | concluded that@SErall
100 students’ problem design scores improved (but not significamtly)a mean

difference of 0.05, and thus this shows that students scored were absainthe

56

However, CSE 100 students’ problem solving scores improved significant
thus this shows that students scored better.

The third dataset (i.e. CS1 participants for the first twdés}yeshowed the
following score improvement:

t(92) = -4.707,P < 0.05. There was a statistically significant paired
difference for CODING1 (0.61 + .30 pt) - CODING2 (0.76 + 0.27 pt);

Based on the third data set results shown above, similarly tetathsoncluded
that overall CS1 students’ problem design scores improved (but notcagtiif)
with a mean difference of 0.04, and thus this shows that students scared w
about the same. Whereas, CSE 100 students’ problem solving scores dnprove
significantly, and thus this shows that students scored better yapribgressed
through the semester. However, it is important to keep in mindrthhisi dataset
there are more CSE 100 students than CSE 110 so this differencaunfe@ts
may have played a role in the overall CS1 student performance.

3) Multiple Analysis of Variance (MANOVAYIANOVA is used to answer
the research question: “Are there any relationships betwedadioes and all (or
each of) the dependent variables?” In this section, | only preksgrdgial
multivariate tests tables with relevant information (i.e. p < 0.05).

In the first dataset, there was a significant relationfi@pveen major and
Coding3 and ethnicity and Coding3. Also, the combined factors major and

ethnicity were found significant with Coding3 (See Table 9).

57

Table 9 — Dataset 1 Tests of Between-Subjects Effects

Type llI
Dependent Sum of
Source Variable Squares | Df | Mean Squarq F Sig.
MAJOR UML1 .040(1 .040 392 .535
UML2 009 1 .009 A36(715
UML3 A33(1 133 3.387] .074
CODING1 005 1 .005 .049(.826
CODING2 094 1 .094(1.808] .188
CODING3 422 1 422 11.210] .002
ETHNICITY UML1 073 1 .073 704 .407
UML2 013 1 .013 186 .669
UML3 162 1 162 4.123] .050
CODING1 071 1 .071 .657(.423
CODING2 087 1 .087(1.666| .205
CODING3 A77 1 A77(4.707) .037
MAJOR * UML1 A34(1 134 1.300] .262
ETHNICITY UML2 .005] 1 .005 .067(.798
UML3 222 1 222 5.654| .023
CODING1 005 1 .005 .045(.833
CODING2 011 1 .011 .210(.650
CODING3 260 1 .260[6.902] .013

In the second dataset, no significant relationships between toesfacid the
specific pieces of the tests were found.

In the third dataset, there was a significant relationship leetweurse and
both UML1 and UML2. Also, the combined factors major and gendeg foeind

significant with all three Coding tests (See Table 10).

58

Table 10 — Dataset 3 Tests of Between-Subjects Effects

Type llI
Sum of Mean
Source Dependent Variable Squares | df [Square| F | Sig.
COURSE UML1 118 1 .118| 1.657| .202
UML2 309 1 .309]| 6.411) .014
CODING1 .006| 1 .006| .065| .799
CODING2 .018] 1 .018] .277] .600
MAJOR * UML1 .062| 1 .062| .877| .352
GENDER UML2 027 1 .027| .565]| .455
CODING1 526 1 .526| 6.020] .017
CODING2 274 1 .274| 4.165| .045

CSE 110 dataset shows that computer science male students petiayhezd
in the third coding exercise than the rest of the students. Fudle@$1 dataset
shows that CSE 100 students performed higher in the second UMlisexéran
CSE 110 students. Also, computer science male students performed higher in both
the second and third coding exercises than the rest of the students.

4) Pearson’s Product-Moment Correlatiomhis correlation test aims at
comparing the scores obtained in UNHsts and CODING tests to determine if
there is a relationship. The research question is: “Does a stwtenperformed
well in UML1 also performed well in Codingl?” The Pearson product-embm
correlation was run to determine the relationship between UML peaftce test
scores and Coding performance test scores. Since | am perfosausgal
correlations, | must consider a corrected significance leweiminimize the
chances of making a Type | error. | used the Bonferroni approacth wdquired

dividing .05 by the number of computed correlations. | used .0056 (0.05/9) for the

59

first dataset and .0125 (0.05/4) for the second and third datasets. Frdirstthe
dataset, students scored similarly on both UML1 and Coding2, on UML2 and
Coding2 and Coding3, and on UML3 and Coding3 (p < 0.0056) (See Table 10).
From the second dataset, students scored similarly on both UML1 ahidgC,

and on UML2 and Codingl and Coding2 (p < 0.0125) (See Table 12). Whereas
from the third dataset, students scored similarly on both UML2Caing2, and

on UML1 and Codingl and Coding2 (p < 0.0125) (See Table 13)

Table 11 — Dataset 1 Correlation between UML and Coding

UML1 | UML2 | UML3 | CODING1 | CODING2 | CODING3

UML1 Pearson Correlatio .091 423 .395"
Sig. (2-tailed) 557 .004 .008

UML2 Pearson Correlatio .093 .510° 485"
Sig. (2-tailed) 549 .000 .001

UML3 Pearson Correlatio 151 377 788"
Sig. (2-tailed) .329 012 .000

**_Correlation is significant at the 0.01 leveH@iled).

*. Correlation is significant at the 0.05 level t@led).

Table 12 — Dataset 2 Correlation between UML and Coding

UML1 | UML2 | CODING1 | CODING2

UML1 Pearson Correlatio 548" 274
Sig. (2-tailed) .000 .057

UML2 Pearson Correlation 456" 481"
Sig. (2-tailed) .001 .000

**_Correlation is significant at the 0.01 leveH@&iled).

*. Correlation is significant at the 0.05 levelt@led).

60

Table 13 — Dataset 3 Correlation between UML and Coding

UML1 | UML2 | CODING1 | CODING2

UML1 Pearson Correlation 277 .289"
Sig. (2-tailed) .007 .005

UML2 Pearson Correlation 241 .389"
Sig. (2-tailed) .02(.000

**_Correlation is significant at the 0.01 levek@iled).

*. Correlation is significant at the 0.05 levelt@led).

E. Qualitative Analysis

In this section | provide a sample of student performance prafiésdentify
the computational thinking errors that students made, if any. To dorstoa f
scoring guide was developed to assess the quality of studentnpenfi in
relation to design, coding, and troublesome concepts. The scoring guidbs f
exercises indicate specific criteria to describe a rangepasiible student
responses and a consistent set of guidelines to grade student work.

| describe below the scoring guides for both problem design (UMLceses)
and problem solving (Coding exercises). Since the UML class dmagvas
assigned 4 points by the instructor, its scoring guide is dividediv@a@dtegories
- excellent, good, average, marginal, and unsatisfactory. The Codingises
was assigned 6 points by the instructor and thus its scoring iguilildded into
seven categories - excellent, very good, good, average, poor, veryapoor,
unsatisfactory. In addition, | have included samples of student respforses
common mistakes found. The three tests given to the students cauanbeirio

Appendices C to F.

61

1) Analysis of Problem Desigihe problem-design scoring guide was used
as anassessment todd judge the quality of student performance in relation to
UML content standards. The scoring criteria were primarilyegeted based on
the following concepts: classes, data members, methods, conneatidrsynéax

(Table 14).

62

Table 14 — Problem Design (UML) Score & Description

SCORING

DESCRIPTION

EXCELLENT
S=4

Classes were named with descriptive names

All data members are well-described and includerthe
data types

All methods including constructors are well-desedb
and include their parameters’ data type and retypes

All connections are indicated correctly
UML class diagram format is correct

GOOD
4<S<3

+/-

+/-

Classes were named with descriptive names

Most data members are well-described and includée th
data types

Most methods including constructors are well-desadi
and include their parameters’ data type and retypes

All connections are indicated correctly
UML class diagram format is correct

AVERAGE
3<S<2

Classes were named with descriptive names

Few or no data members are well-described and declu
their data types

Most methods are well-described and include their
parameters’ data type and return types. Constraatay
or may not be included

All connections are indicated correctly
UML class diagram format is correct

MARGINAL
2<S<1

+/-

+/-

Classes may or may not be named (with descriptive
names)

Few or no data members are included with their data
types
Few or no methods are included with their paranseter

data type and return types. Constructors may or nuay
be included

Connections may not be indicated correctly
UML class diagram format is correct

UNSATISFACTORY
1<S<0

+/-

+/-

Classes may or may not be named (with descriptive
names)

Few or no data members are included with their data
types

Few or no methods are included with their paranseter
data type or return types. Constructors are nduded

Connections are not indicated
UML class diagram format may not be correct

63

The student performance in problem design (UML) was meashree times
over the semester. The first UML exercise was given sewsakwafter school
began. Students were knowledgeable about classes, data members, and objects
The second UML exercise was given five weeks after theUkét exercise was
given. Students were knowledgeable about arrays of objects, conditional
statements, and repetition. The last UML exercise was gfiwee weeks after the
second UML. Students were knowledgeable about abstraction, inheritarte
polymorphism.

Based on the student performance in UML throughout the semesigve
included samples of student performance below indicated the commakesist
found frequently. Figure 8 shows an example of an excellent response f
problem design. The student listed the relevant data members with theatikespe
data types. In addition, the student listed all the relevant methadigding the
constructor, with their respective parameters’ data type ananrtypes. This
example shows that the student was able to abstract the raldeamation from
the given problem as well as organized the information in such a mdrate
he/she understood the concepts of class, data members, and methods.
Furthermore, he/she specified the return types of each methodhirasnanner
that it is clear that he/she understood how the outputs will bessed,

particularly the method getBalance().

64

\’ ASUBork A cionnt

— noeme | ghe
— oo Lkh!\' N Ler o ‘nr\“‘
- L\erv_n*%a\mnu. L double

+ yoird wthdvaw (dewtle)
+ Voic& (g_a.posijr (Anu\a\{,)
+ double «3&\’ Bedaace (Y
+ ASURanc Account ()
+ ASURark Acconrt (S*TE":),"“J‘» ouble) |

Figure 8 — Sample for UML Score Excellent
The next example, Figure 9, shows an overall good response frivteats The
student listed the relevant data members with their respectiie tgpes.
However, the data type for the array is not consistent with tteetgipe for the
final average. Furthermore, the relevant methods are listed ingluthie
constructors. However, the student did not include the parametersypdetand
thus failed to abstract all the relevant details from the given problem.

f: ASU S Yuden Y

- Shadent Moo ')}-4-.\'-13

- Ch‘-\ﬁ ARt - ‘ {vnﬂ\)
- fe'*'k/ o‘w“& v
- ﬁ-*‘\ N ‘VMAHJQ (}w!;LL

e staw

+ void red Exon Searnt ()
F ovord culeBrenne Ave-se (1
+ voud Johr_“;.,hmo\--.dt ¢ }

’+ ASW Shedunb ()

Figure 9 — Sample for UML Score Good

65

Figure 10 shows another example where the student’'s problem daisghto
abstract the relevant information form the given problem. First, the nyapbitine
data members are not indicated except for one, balance. Secondlypfnimst
methods are included except for the constructor. Last but not le@stesponse
included the incorrect return type for the method viewBalance(a Aesult, this

student’s response was categorized as average.

=
| \ov -dirpley the
Pz‘; / W%A;axocgjuaé'.*‘d‘

;:uf;‘ ore BanleAeaun t /
- dowdle o\u?aw\')

U vend tie duict | dowwle wihdie]
W E;::ﬂ-::“{'::’&:&nut - A““\?\b b&kahw
- cotisponding ks dnt
woev cmeice -
_ “9("5 a switth
d Skatement

1 Gall fhe oW '
el bunchiod—=> buckion degeshi ydw: view Bedanee (dodd

l 24 gab wo®N '

Ay twmoict
" (\EYNE
R\ —
& Aishy
Ft-\hf/i‘ (ol

Figure 10 — Sample for UML Score Average
Figure 11 is similar to the mistakes made in Figure 10rmgef the abstraction
of the relevant data members, but also the student failed to ttpmletine the
data. For example, the syntax to define an array is incomdcs@me of the data
types for the data members are incorrect such as letdde.gFurthermore, the
methods do not include their parameters’ data type and thein tgpes. Last but

not least, the constructor was omitted. Thus, this response was scored asl.margina

66

T4 @am Seeres OfJ

Slr(*\? V\"LW\L

' ~“Loé E((U-\ Suwu
i Cﬁ{vd'\cl FE){L&\"\\\\IB

“_1..&%%:3&,

Figure 11 — Sample for UML Score Marginal

Figure 12 is an example of a student who was unsuccesshé abstraction of

the information as well as the correctness of his/her problengrdes$ihis

response is omitting the constructors as well as the return ¢yghe toString()

method. The data members are not properly defined. It seems tlgatrthe

defined as methods. In addition, the relationship for inheritance betiveawa

classes is incorrect. The arrow should be pointing in the other direction.

."275‘1’;‘@
$ et

Carg{; 5

- |i'3’g‘

"

f“ae{m;%x/ ()

Rowg {7}
\re:s:;f ()

Figure 12 — Sample for UML Score Unsatisfactory

67

2) Problem Design Score Distributioifhe scoring distribution for the three
UML exercises is indicated with respect to their score rgihgble 13). Note that
the ‘good’ score percentage is the only score that consistemtheased
throughout the study. Also, the ‘unsatisfactory’ score is the onlyestuat
consistently decreased throughout the study and at the end aidgene student
response was rated ‘unsatisfactory.” The two primary reasorhd ‘excellent’
score decreasing for UML3 are: (1) this exercise was @dgssed for CSE 110
and (2) many students identified one constructor instead of two cdpsstuc
Furthermore, when combining the top two scores for each UML egem@d®ut
two-third of the CS1 students received an “excellent” or “gooddgraquivalent
to the letter grade A or B, in UML1 and UML2. Furthermorehegfudents out

of nine students performed above *average’ in UML3.

UML Scoring Distribution

UML1
W Excellent
| Good

UML2 Average
m Marginal

Types of Exercise

B Unsatisfactory

61%
UML3

0% 102 20% 30% 40% 50% 60% 70%

Percentage of Students

Figure 13: Scoring Distribution for UML for CS1 Courses

68

In addition, the UML1 and UML2 percentage scores with respetiié course
variable shows that the majority of the students performing bel@rage are
enrolled in CSE 110 (Table 15). However, the study included 44 CSE 110
participants compared to 49 CSE 100 participants so this diffenercstudents
may have played some role in this difference between the twosesour
Nevertheless, the difference is high so a closer look into the ypenistakes
found across the two courses may be useful.

Table 15 — Breakdown of UML Scoring Distribution by Course

UML1 UML2
CSE 110 CSE 100 CSE 110 CSE 1qQ0
Excellent 36% 64% 22% 78%
Good 36% 64% 41% 59%
Average 76% 24% 71% 29%
Marginal 50% 50% 100% 0%
Unsatisfactory 83% 17% 100% 0%

UML is a tool used to model/design a problem at the abstraction level in terms

of the relevant information from a given problem. As a result, $sessment of

the types of mistakes made by the students during the sensebtsed on the
following two computational thinking criteria: abstraction and diisgics (Table

3). Table 16 illustrates a more descriptive disparity amongnbeckasses. In the

first test, both CSE 100 and CSE 110 students scored similartpdooverall
mistakes made in abstraction and linguistics when modeling theeprobl
However CSE 100 students’ mistakes were found more than twicghaashtheir

CS 110 peers’ mistakes for data members and methods. In contrastl 10SE

students’ mistakes were found more than twice as high as thEirlC& peers’
69

mistakes for returned types and more than one third as high a<C®Eir110
peers’ mistakes for parameter’'s data types. As the sanmsgressed, overall
the students’ mistakes in abstraction reduced by one third when theyh®sok
second test. While CSE 100 students’ mistakes in abstractiorcdlgstiropped,
CSE 110 students still struggled with some of the concepts suchaaseiaters’
data types. This is primarily due to the introduction of arraytheir learning.
Most students did not define an array for the exam scores Ingr ratsingle
variable to characterize all the exam scores. Students ditheot know how to
define an array in their problem design or they defined the amarpperly; thus,
the mistakes in relation to linguistics skill went up. Some studerits
recognized they had to define an array, but did not know how to, defirreddia
members instead, given that the array was limited to fivéesnirheir alternative
design of the array was correct even though they did not useticept of the
array in their problem design. Toward the end of the semesterashdekt
included two classes. The CSE 110 students failed to identify thendsec
constructor, and therefore the count for the mistakes related to tee@mof the
constructors almost went back to the count from the beginning oethesser.
Otherwise, the count would have been close to zero percent. This $tabwiset
students have not fully grasped the concept of a ‘constructor.’” If studehtded

the constructor then they did not include the parameters’ data type for it.

70

Table 16 — Assessment of UML Computational Thinking Skills

UML1 UML2 UML3

Computa_tional Thinking | CSE | CSE Al CSE CSE Al CSE
Mistakes 110 100 110 100 110
ABSTRACTION 82% 78% | 80% 7% 41% | 58% 66%
Relevant classes are 0% 0% 0% 0% 0% 0% 0%

omitted/incorrect
Relationships between the 0% 0% 0% 0% 0% 0% 7%
classes are incorrect
Relevant data members ail 7% 12% | 10% 0% 2% 1% 0%
omitted/ incorrect
Data members’ data types| 14% | 14% | 14% 34% 14% | 24% 0%
are omitted/ incorrect
Relevant methods, 5% 12% 9% 5% 0% 4% 0%
excluding constructors, are
omitted
Constructors are omitted 48% 31% | 39% 34% 8% 21% 41%
Parameters’ data types ar¢ 68% | 45% | 56% 27% 8% 17% 34%
omitted/incorrect
Return types are omitted/ | 61% | 29% | 44% 41% 6% 24% 27%
incorrect

LINGUISTICS 25% | 20% | 23% 27% 29% | 37% 14%
Improper semantics 0% 0% 0% 0% 0% 0% 0%
|mproper Syntax 25% 20% 23% 27% 29% 37% 14%

Overall, the CS1 students demonstrated computational thinking skilleegt
progressed through the semester. Students have a better graspauttiabsin
terms of data members, methods, data types, and return typasf Eheenumber
of mistakes made by the students in linguistics did not redud¢keastudents
progressed in the course, their ability in linguistics is consistent.

3) Analysis of Problem Solving he problem-solving scoring guide was used
to judge the quality of student performance in relation to prograntent
standards. The scoring criteria were generated based on preggumence,
inclusion of the classes, methods with constructors, reasoning witiinods,

and syntax. Table 17 describes the scoring for each student performance profile.

71

Table 17 — Program Solving (Code) Score & Description

SCORING DESCRIPTION
+ Sequence of the program is correct (class, datab@esnand
methods)
+ Classes include data members
+ Constructors are included and initialized
EXCSEELGENT + Methods are included with their parameters passiath types
and return types
+ Logic is performed correctly (arithmetic, conditadn
statements and repetition statements)
+ No syntax error
+ Sequence of the program is correct
+ | Classes include data members
+ | Constructors are included and initialized
VE6R: SG <050 D + Methods are included with their parameters passiath types
- and return types.
+/- | Most logic is performed correctly
+/- | Few (minor) syntax errors
+ Sequence of the program is correct
+ Classes include data members and methods
+/- | Constructors may not be included or initialized
GOOD ; ;)
5<S<4 + Methods are included with their parameters passiath types
= and return types.
+/- | Most logic is performed correctly
+/- | Few (minor) syntax errors
+ Sequence of the program may is correct
+ | Classes include data members
AVERAGE - Constructors are not be initialized properly
4<S<3 + Methods are included (excluding constructors)
+/- | Most logic is performed correctly
- Some syntax errors
+ Sequence of the program is correct
+/- | Classes include some data members
POOR - Constructors are not be initialized properly
3<S<2 +/- | Most methods are included (excluding constructors)
- Few logic is performed correctly
- Some syntax errors
+/- | Sequence of the program may not be correct
VERY POOR +/- | Few classes with data_l member§ aye_included
2 <5< 1 - Constructors are not |ncIuded/|n|t|aI|zeq
= - Few methods are implemented (excluding constructors
- Logic is performed incorrectly
- Many syntax errors
+/- | Sequence of the program may not be correct

UNSATISFACTORY
1<S<0

No classes with data members are included
Constructors are not included/initialized
No methods are implemented

Logic is omitted

Syntax is incorrect

72

Similar to student performance in problem design, the student pariognin
problem-solving (Coding) was measured three times over the senldstefirst
Coding exercise was given seven weeks after school began. Studeats we
knowledgeable about classes, data members, and objects. The second Coding
exercise was given five weeks after the first Coding@serwas given. Students
were knowledgeable about arrays of objects, conditional statgment
repetition. The last Coding exercise was given three weeks #i¢ second
Coding exercise. Students were knowledgeable about abstractiorntainéeriand
polymorphism.

Based on the student performance in coding throughout the semestee, | h
included samples of student performance below indicated the commakesist
found frequently. But first, Figure 14 shows an example of an excedispbnse
for solving a problem. The student properly defined the relevant datdbeng
with their respective data types. In addition, the student defindteallelevant
methods, including the constructor, with their respective parametata’ type
and return types. This example shows that the student was abletrectatise
relevant information from the given problem as well as organizedhformation
in such a manner that he/she understood the concept of abstraction. Fangherm
he/she used the appropriate controls within the methods when necasdargs

the conditional statement in the method withdraw().

73

sy ASOUBuK A snt
¢
pri vake
Shrin name |}
int account Mambe - 5
C‘A.U\.L\;\L NN ru‘\"‘ %ﬂm\u, 7
[JLLLJ\EL s
ASU Bark Acconnt ()
[LENEN Bonk A cio und L‘sh--'a » M‘\', ADLL‘:L‘L} :
veid withdraw (.Ls-«\gh_ ;
vord, &_&r as.‘* (J;w_\o\q_);
3 - Adowble 3(»_](Beande Q)-}
)
ASUPankAccs wntt 1 ASARank Acownt O 2 Debanlt Cordtrccho

t

name = % 7]

ltauwn~t Bumber

=0
g l‘_i_Arn_\'\‘k ?3“\(»"\&‘— = o}

AS Rank Acte ek L Al Eo\nkhc_kmm!f (SP..'rj occhNane int M&}N\Awlog_v ,doutle balamce)

) nome = &.LL,“.' Nla.n—-o,;
U-lx._.:»_»_\" MLL-\-\lsu_r = (LL(_+ N‘-‘-"‘\‘Er :
% Covrrent Belante = balance ;

\,Ia.'«\. ‘ksugnakRLLbuh-*:'_ w;‘i‘t\cl:w(cl.;mu._ v-‘{'LJuu_ws.l)

i-{— (withAd el <.. = Current %a-«l.n_nu_)
Curred Balan e = tueroe Balanee - w"H'\é“‘“w“‘l 7

else
conk g™ Yeow Ao wnok Vnve 5L~‘m(ku\“ ;u-n&-s]. " << qné\;

vorl ASM BankAccouat 17 Baponid (doubic dap)
c_’u,\'l'L“\\' F)r.\\o‘n(c; = Cearr Ln‘\'%m\.un;_g_ =+ &5.1}_13 ;

deulble ksu&&“hMum# T %Q_’"&\lﬂ'\m)

d
§

Y!._.Lv—! — (_u\vrl'n" %Cx‘-a.r\u, }‘

Figure 14 — Sample for Coding Score Excellent
The next example, Figure 15, shows an overall very good response from a
student. The student defined the relevant data members with thpecties data
types. However, the data type for the array is not consistémtiha data type for
the final average. As a result, a minor syntax error wilultelsom it in the
method calcExamAverage(). However, the student failed to uselaofowhen

initializing the exam scores. This solution is correct, buemms of scalability,

74

this approach will not be suitable when revising the size of tlag &or the exam
scores. In the method determinelLetterGrade(), the conditionansat is
improperly used. After the first “if”, the students should have tskse if” rather

then “if” for the next two conditional statement. Plus, the varidbialAverage’
IS misused.

sbbie dligy ASMShedet

%
P"."""“ Shomy sbedadNone
Fr»\.rd-“'(_ 5*"“‘3 tlegy Mo,
e ekt € _l" B Jeies (neude i
Gt T exemSuory 7 owan iat (5]
F,—f\...k, dowble LY Averey

P-P.!Dr"l, ASw 5*‘!&4]0—-/\4’('S*fr‘—.‘) J‘-—-‘-“-l.l g‘kﬂ'-“) ‘]"“1)

t

ghwdenrMume = ma.-ue-lf‘

elegyMowme = ,;,h..s'\. |.‘.l

feHerGrade = F) o

Cxmm Seuan[e] = O, ewrmbares L= e pemtioer[E)0, tmembearty fﬂ’n}enmniuvﬂ[‘q =0,
r

‘F.'-\.J N = OO,

g

Ig-._bl»'c vord veed ExemmSesray ()

i

-(.,r(RS o, ' ch‘,uIt—)'t’,Fua%; J*T)
System .g;.‘_F(n.\-H_.‘C“P}‘.“_ et mgur twee S.q»m;.);

o um Sovey (il = g“....._ﬂc_pn-l-]—,n-\'()'.

5
P.-.‘a'l;; vard celefme ~ ﬂvh-:!a,(- 3

1
Fian Kvw‘jﬂ- = (uLn.--\SLn—n [0) + eremtenren 1] * teimbinvm 02 + orummtenens 011 + gpamlierts tﬂ); 5",'

$

polaliy d edav aniing Leber Gueagle ()
4
|'P(((-n-.\!\vv&-1n. > qﬁ}
JebbeGraan = AT
¥ (-I‘.'.--\ ﬂ\vu;.ﬁ, > PO W*!?n)
et brvngle = '3\‘,'
Iﬁfﬁ'n_‘ﬁ.vk.’, s= 70 w4 <3'0)
leMegpruse = ‘L")
el
Je M brrede = 'F:-

Figure 15 — Sample for Coding Score Very Good

75

Figure 16 shows another example where the student’'s problem daisghto
initialize the constructor Ship(). In addition, in the last methodsthéent should
have used the ‘super’ for the variable ‘name’ and ‘year’ dwesd variables are

defined in the super class Ship(). As a result, this studentfpres was

categorized as good.

Public. Lless .SL.F ()

{

P(‘DM <, i nav\-(_.;
P“'O-J-Pc.ﬂJ 'n 4 Y g,,(-;;

Pub].‘(_ SL;P(,_,J .
£

3

Puble 5.]-,-—,',5 ;,S#r—:‘nj()

é
s

W

g7 ST W et - "b A ,
o W ~ Laa(‘/

3

Robl'e (loss Lo Slip extends Sy ()
1@“4‘0‘04’(- I'ad rrex C,Pc(_}“}-j/’
Polle (-cr‘?ﬂ Sﬁ»‘f?(-ﬁ*m‘:j ren f'n_’- hwtﬂﬂ’;ﬂ+ M,-}le#r)

:

Super, neme T Vami)
SuEE WOT = ey Yeor,
ek Cope L A4 = nes Cop)

Peble Siring P SAripa ()

¢

Mehren pope 4+ boilt a4 e + “hes a e

¥ [] ’
Jﬁ'cﬁ' C-'f#t.‘i{b s~ “ m”L[ﬂPo"'-‘:}/

Figure 16 — Sample for Coding Score Good

76

Figure 17 is an example of an average score. The constructor dbawveotts
parameters passing and the two methods for toString() do not haveethen
types and a space should be included between the two variablesigplaged.
In the last toString() method, there should be a dot after ‘superally, the

maxCapacity variable was not initialized in the constructor CargoShip().

DUt E BT e WSS wmeen (Sl ewasy
Al noss SR %
' PO Frrng e
PORAICA Wt d Lo -)’

Du&}()\\('_ S L)

O = (\.“)
MR = ol
)
QADZ:_ A@SMN:)L)
%ﬁ*ﬁwr\ '(*V\\"}

32

PUCHL QA0S C.wab%w@}n
prvase e pnoxlapatty, ‘
puote (orgoSive (Srang ey, o aslagociy)
=vee o n, VD ')
5
[PESVANS ,_k.bgw'w\o\&\)

(%?{MW\ SwM
%

Ao ¥ worlaQuety),

3

Figure 17 — Sample for Coding Score Average

1

Figure 18 is an example of a poor score. Some data members areluadd and
the constructor is not properly implemented. Also, the data typeshéor t
parameters passing are omitted and the conditional statemehe imdthod
withdraw() is not included. The last method has an incorrect return type.

s Asy Bk Acumt

%' ?T‘Nhh diu‘H? hqlﬁnrlj

i S Bk Aot
IL balance = (.0,

} nE
-.‘,r.,{[J\ A[Fus{"i' {’o{g[JuS'IfJJ

Fbﬁkt
{ halang = b&lmnu t UJIEPM*“
?&{JUH{K JN-J W{-[hdr““.- {Q-H«a‘mw),’

-

" balance = lelamf - withdvaw,
i
IL ﬂh,wn Emlﬁm‘i,'

k

obhie wid check balne (1)

;

Figure 18 — Sample for Coding Score Poor

The student response below (Figure 19) has more syntax erroftheharevious

examples. The data members seemed to be defined as methods enathibets
78

do not have their return types and their parameters passintpeAinethods are

not implemented; and thus this is a very poor student response.

C‘G‘E&S ! A&L)\Bo‘np A'CC_L‘)\L\-\\—

pr'l.'\.ra\e,
¢
no‘w{.'ﬁ;
O‘“‘-"“‘“’Tﬂmmmr();

Chirment balan w Yy

?U‘Q\-L
&
“Withdwouos ¢
Atposise 3 '
a:.ﬁ,(_*h,;\m{ (\;,
Y rOcount numberc)
e ind han brlanc 0y

Cheey
Loy g,
3 n*bﬂ.‘an{.e__ﬁ. j‘:

3

ASQBo.n'pP&(mwwrr'. void wntndraw (y
2 ?

Wt elraans (d puble I}

ASUE&V\L&H_UMnx:'_ SR &(Pg-x,l\'(j

£
dt?os idouloley,

5

mu?ﬂ'ﬁ‘l"ﬁa{({ P,

t

Chotie
St nigal
2 alovge (bdiν)-
rl

Chzcld{uvmnty;a_lanmt).
,

ASU BN A puny .,

oo
; J,{*'Cia:.'»\.\n*m,imbcf{ Y,
jnﬂ@!-‘l'm_wun%nu Mgy

Figure 19 — Sample for Coding Score Very Poor
The last student response example clearly shows that the student defined the
methods as variables at the beginning of the class and the constructor does not

79

have its parameters passing and is not properly initialized. The rest of therproble
is not implemented. This response is unsatisfactory.

public dass ASUBankAccount
{

private Strs hame |
privabe 19l amun%-’ufumbﬁ*';
privade doble curren + Balance J
publc doble ,ybhclroi
vaﬁc dﬂu’bt‘e dﬂm.ﬁ"':

polic olouble phycke Baloree;
PUH'C ASU Bank accgund

¢

naml = my heunt
account Nuympe r -
cirrent Balan, -

g
Pubhc voiel cfepmflf (y

¢

i
public void withdraw ()

t

§
pble yord check Balonge (h)

t

%

Figure 20 — Sample for Coding Score Unsatisfactory
4) Problem Solving Score Distributiofihe scoring distribution for the three

Coding exercises is indicated with respect to their score range in Zlakb\ote

80

that the ‘good’ score percentage is the only score that consistently increased
throughout the study. Also, the ‘very poor’ and ‘poor’ scores are the only scores
that consistently decreased throughout the study and that at the end of the study
the ‘very poor’ score indicated that no student response failed under that category.
Furthermore, when combining the top two scores for each Coding exercise, about
one-third of the CS1 students received an “excellent” or “good” grade, equivalent
to the letter grade A or B, in Codingl and two-third of CS1 students received an
“excellent” or “good” grade, equivalent to the letter grade A or B in Coding2.

Furthermore, nine students out of 10 students performed above ‘average’ in

Codings3.
Coding Scoring Distribution
CODING3
@ 36%
R Unsatisfactory
i
¢ W \Very Poor
]
5 CODING2 mPoor
v
g 38% W Average
|2" H Good
n
CODING1 Very Good
M Excellent
0% 10% 20% 30% 40% 50% 60% 70%
Percentage of Students

Figure 21: Scoring Distribution for Coding for CS1 courses

A closer look at Codingl and Coding2 percentage scores with respdioe
course variable shows that half of the students for both CSE 100 stadehts

CSE 110 students performed above average for Codingl (Table 18). However, the
81

CSE 110 students performed higher for Coding2. The difference imalibut a
closer look into the types of mistakes found across the two courses may be useful.

Table 18 — Breakdown of Coding Scoring Distribution by Course

CODING1 CODING2
CSE 110 CSE 100f CSE 110 CSE 140
Excellent 18% 25% 43% 33%
Very Good 14% 10% 21% 25%
Good 20% 16% 16% 6%
Average 18% 18% 7% 12%
Poor 9% 25% 9% 18%
Very Poor 7% 4% 2% 6%
Unsatisfactory 14% 2% 2% 0%

Coding is a detailed approach used to problem solve which requiresisxpert
in abstraction, algorithm, reasoning, linguistics and scahabilthese abilities are
part of the assessment of the types of mistakes made bjutents during the
semester based on computational thinking skills (Table 3). A moreiptasc
disparity among the two classes is highlighted in Table 1%hdrfitst test CSE
100 students performed almost twice as worse as the CSE 110 student
abstraction, however the two classes performed similarly oriligh, scalability,
and linguistics. As the semester progressed, overall, the numipeistakes in
abstraction reduced considerably for both courses in the second tgsiteRDiee
use of arrays in this test, students performed much better thtriirnproblem
design. Similar to problem design, in the third test, CSE 110 studslad fo
identify the second constructor, and therefore the count for the nagtlkéed to
the omission of the constructors almost double their count from theneg of

the semester. Otherwise, the count would have been minimal.
82

Table 19 — Assessment of Coding Computational Thinking Skills

CODING1 CODING 2 CODING 3
Computational CSE | CSE Overall CSE | CSE overall CSE
Thinking Mistakes| 110 100 110 100 110
ABSTRACTION | 27% | 51% 40% 16% | 16% 16% 48%
Data members are| 9% 14% 12% 14% 10% 12% 12%
omitted
Constructors are 18% 22% 20% 5% 14% 10% 30%
omitted
Methods are 11% 12% 12% 5% 8% 6% 5%
omitted
Relationships 0% 0% 0% 0% 0% 0% 14%
between the
classes are omitted

ALGORITHM 39% | 45% 42% 20% | 33% 27% 20%
Program sequence| 11% 12% 12% 5% 10% 8% 0%
order is incorrect
Program does not | 16% | 16% 16% 5% 10% 8% 2%
do anything
Program does not | 25% | 31% 28% 2% 12% 8% 11%
do the right thing
Program does not | 30% | 29% 29% 16% | 14% 15% 14%
compute the right
answer (for at least
one method)

REASONING 61% | 49% 55% 18% | 29% 24% 14%
Control statements| 14% 6% 10% 18% 29% 24% 14%
are incorrect
Control statements| 59% 43% 51% 0% 0% 0% 0%
are omitted

SCALABILITY 30% | 37% 33% 11% | 27% 19% 23%
Program requires
more flnes of code| 3006 | 3796 | 33% | 11% 27% 19% 23%
future expansion

LINGUISTICS 59% | 63% 62% 45% | 43% 44% 34%
Improper semantics 0% 0% 0% 0% 0% 0% 0%
Improper syntax 59% 63% 62% 45%| 43% 44% 34%

Overall, the CS1 students have acquired computational thinking skiteas
progressed through the semester. The students have a befpeofgahstraction
in terms of data members, methods, algorithm correctness, $tglaénd

linguistics. Even if the number of mistakes made by the studergssoning did

83

not reduce as the students progressed in the course, their abibysoning was
still satisfactory.

5) Analysis of Think-aloud/InterviewShe questionnaires and interviews were
conducted to assess students’ knowledge skills (i.e. CS core cassepsment),
explanation skills, and skills that were related to computatidnakibg skills
based on literature. As shown in Table 20, 16 participants for tead 11h
participants for test 2 were involved in this phase. Due to finales&m
examination schedule, no interviews were conducted for test 3. Thuphtse
was limited to test 1 and test 2.

Table 20 —Think-aloud/Interviews Participation Distribution

Test 1 Test 2

CSE 100| CSE 110| CSE 100| CSE 110

Think-aloud/Interviews 6 10 5 6

Students’ knowledge skills and explanation skills were assessed ba the
criteria indicated in Table 21. From this table, overall students’ letge skills
increased from test 1 to test 2, with a very similar ratehahge for both classes.
Students’ explanation skills have decreased between the twopestarily due
to the concept of arrays (i.e. modeling); and thus students struggledheir
explanations. Students’ computational thinking skills were increasimd) a
decreasing depending on the criteria of interest. In gendéualerds performed
well in the acquisition of knowledge over the two tests, but thedottion of
new concepts such as arrays of objects showed some strugdbeshirtheir

explanation skills and computational skills. Furthermore, students detane
84

memorize the materials in class rather than internalitiegnformation when it
comes to the core computational concepts. This can be observed when ode looke
at the percentage difference between in-class exampigssvether examples. In
addition, participants who were able to successfully explain ahbstia
represented a little less than two-third of the participants in this study.

Table 21 — Questionnaires/Interviews Assessment

Test 1 Test 2
o . CSE CSE CSE
Identified Skills CSE 100 110 All 100 110 All
KNOWLEDGE SKILLS
Understanding the core concept 50% 7806 67% 67% 100%88%
Recognizing prior knowledge needed to 50% 67% 60% 67% 80% 750%

apply the core concept
Knowing the context of utility of the 50% 67% 60% 67% 80% 889
core concept
Sharing examples in relation to the core
concept

Referring to/Remembering in-class

100% 78% 87% 67% 80% 88%

- . . 67% 78% 73% 67% 60% 63%

material while solving the problem
EXPLANATION SKILLS

Reph_rasmg the core concept with no 50% 67% 60% 33% 80% 63%
technical words
Reltera}tlng thoughts during the process 67% 78% 73% 33% 60% 5006
of solving the problems
S%\glr:agmconfldence when dealing with a 33% 89% 73% 33% 80% 63%
Communicating the goal or solution 67% 89% 80% 67% 80% 75%

COMPUTATIONAL SKILLS
Logically organizing and analyzing data 67% 89% 80%67% 100% | 88%
Representing data through abstractions 50% 67% 60%B3% 100% | 75%
Automating solutions through 50% | 78% | 67%| 33%| 80%| 63%
algorithmic thinking
Analyzing and implementing possible
solution with the goal of achieving the 33% 56% 47% 0% 20% 13%

most efficient and effective combination
of steps and resources

| coded the interview transcripts to illustrate students’ skidll®adly

categorized as knowledge, explanation, and computational skills (ablea 21).

85

The interview text in bold print is representative of the spesKilt that is noted
in square brackets immediately following the text.
Excerpt:

So, arraygan store data, either primitive data structures or even gjects

themselvequnderstanding the core concept and recognizing prior knowledge

to apply the core concept], and theyuseful because they can refer to
multiple since they have like indicedknowing the context of utility of the
core concept] and so forth. They can actualigre a lot of information
[understanding the core concept], whiplevents the programmer from
having to use repetitive means to declare all the variabldknowing the
context of utility of the core concept] for a program.
This participant was able to give a basic definition of the coneept, arrays of
objects, which could be characterized as a response at the le@81ofThe
participant did not use any technical words. The participant exqulaihe core
concept in his own words. | interpreted this explanation to indidae the
participant has understood the core concept in its technicality and héswvable
to explain the core concept to others (both majors and non-majors). tAés
participant’s response included the utility of arrays of objects, which inditzdé
the participant understood the context and modeling of the core concept.
Excerpt:
Objects are just a subgroup of classes. So they’re smallpmderstanding
of core concept and confidencefou know, the very vague generalized

section is the class. And then these are types of that skkéigiou know you
86

could sayyou can have a car and then the object could be the type of car,
the year of the car, the make of the car and so fortfsharing example in
relation to the core concept]
This participant was not able to provide a clear definition of the concept,
classes and objects, but rather was seeking for approval afesp®nse. |
interpreted that this participant was uncertain about the id&bfcts” and thus
showed his lack of confidence. However, the participant was abiectdl the
‘car’ example presented by the professor in-class from wa@qus lecture. The
participant has an initial understanding of the core concept buesp®nse still
presents some missing information, which prevented him from providngre
precise definition of the core concept.
Excerpt:
Well, in this particular exercisé,had to create a class that was going to
store information such as the student name, the class naraéthe student
[reiterating thought procesd]had to do some computation on the scores to
figure out what the student’s final score isfcommunicating to others the
goal]. So, thefirst thing | did was | read the problem specifications
[reiterating thought process] tonderline and list all the attributes and all
the operations or the methods that would be performedreiterating
thought process, logically organizing/analyzing data, and represestditag
through abstractionsplso, | hadto remember that | had an array as an
attribute [understanding the core conceatldso | had to perform a slightly

different series of operations on that arrayjremembering in-class material]
87

| had to remember the syntax for initializing an array [remembering in-
class material] with a certain number of elements in thayarone-
dimensional of course of this problem. And, oh, yeah. Wsien | had to
add a method to get the highest score, we had learned an algbm we
could implement for finding maximum scores [referring to in-class
material] So, | implemented the algorithby creating a variable that would
store the highest score in the element zero of the examose array and
then it would actually go through and compare it with the othe scores.
And if | found one that was actually higher, if it foundedan element there
with a value that was greater than the initial highest scoreit would
replace that variable with the element[reiterating thought process and
automating solutions through algorithmic thinking] from the — whichever
exam score element had been higher. | was able to approð way and
it's very efficient algorithm | think, well, that | know of t o find the
maximum in arrays [analyzing solution]
This participant’s response showcased knowledge, explanation and coomalitat
skills - some of them were explicit and others were impliEite participant
reiterated his thought process from reading the given problehist@ptimal
solution. The participant was able to determine that the modeling sbhison
needed an array and then was able to recall the material learnessitocigply it
to the given problem. Furthermore, the participant explained hisicgolut a
simple manner which showed the confidence and ease of the partitgpant

implement a solution. Last but not least, the participant even thalghit
88

efficiency even though it could only be based on his knowledge acquirkd. s
This indicates that participant had algorithm efficiency in mihdt tis a bit
advanced compared to the rest of his peers who participated in this study.
Excerpt:
| just underlined the important things that are probably going to be
either a variable or a method or the actual name of the obje¢dtself
[logically organizing/analyzing data and representing data through
abstraction] Things like that. Then | went ahead and did my best to put that
into a UML, which is theoretically just like a code list of gramming.
Hmmmthe problem asked for the average score grade and then the din
score letter grade[communicating to others the goalven though they
didn’t explicitly mention an array for the exam scdrgured that an array
would save me a lot of trouble with storing the scoreknowing the context
of utility of the core concept]lo calculate the exam averaggyst summed
them all up with a “for loop” and then divided by the total of exams
[reiterating the thought process and automating solutdmd then | ran out
of space so | went over here. And this is puskries of if-statements asking
if it's bigger than 90. No, is it bigger than 80? No. Is it biggeritan 70?
No. Fine then he gets an F. And then it returns that scorgeiterating the
thought process]l don’t know if they wanted me to return it or not, but |
figure because you can always have it return, | might as waltgem the

option to make their life a little easier.

89

This participant was able to abstract the data from the givenepnadohd modeled
his solution using an array. The participant understood the advantagm@fan
array over multiple variables and thus reiterated his thought préacethe array
using logic to determine the solution for the problem. The particigguiained
the thought process behind the if-statements to determine thdefiteal grade.
This showed that the participant was confident in his algorithm thinking.
Excerpt:
Because we kind of were taught that we should look at medts as sort of
the actions and the variables are the — basically variables as theuns in
a problem statement]referring to the material in-clasd]was abldo deduce
that name, account number and current balance were attributedo
variables that held a string value, an integer value, and a double s
[understanding the core concept, and logically organizing/analyztg] d
And that the verbs that you wanted to deposit or withdraw or chec&ntu
balance were all methods. And by having that kind of — by beingtable
compare then in that way, it was easier to take the problemtatement,
decompose it into its component part§confidence] and then create the
UML from there. For the coding section, first we have the basicdsrd
declaration that its enumeration is publtoobviously is a class and we give
the class name so that it encapsulates the entire classden that name.
We go on just to state that the variables in this class are ggnto be
accessible only by the class itself and so other classed| wave to

instantiate the object in order to be able to access those vables. So
90

obviously | declared each variable in itself as private. | thergo on to
declare some of my methods and | start out be creating theonstructor
method, which is the basic method used to call an object arse that
object [reiterating thought process and understanding the core conlté&pt]
simply passing values into it and then storing them into thebtasiawhich
will allow the other methods to manipulate the variables late©ome. of the
tasks that the problem description wanted me to perform waslepositing
and withdrawing [communicating the goal] created two methods. One that
had no returns so it was a vo#ll it simply did was set the current balance
equal to the current balance at that time plus the additioal of money or
basically adding in money to the account, which is what a depbsvould
do. Withdraw was simply taking a double value — oh yeah and both of
these methods have parameters. So in this case, the withdr is going to
be a double type and it's going to be subtracting the money drthen it's
going to set the current balance equal to the current bala®c minus
money [automating solution]Hmmm 1 should have added an if statement
that checked for overdraft, which would have been the propething to do
[analyzing the solution]Otherwise| feel quite confident that my program
would perform as it should if I complied [confidence] But because I'm
quite new at writing code on paper and not compiling it, |1 did Isorae
misgivings about if it would throw up a compilation error or if sonmeghin
my program might have a logical err@ut overall, | felt pretty confident

that this particular class would assist in solving the probleniconfidence]
91

The participant was able to share all three skills — knowleglgdanation and
computational. The participant recalled the material learnethgs-@nd thus was
able to deduce the abstraction of the data from the given problerheiffaote,
the participant was able to describe the step-by-step procedw@ripute the
higher score with a variable and the array. However, thecjpatit's description
presented many technical words.
Excerpt:
Object is the instance of the class. So, class someHoanfidence]unifies
the data. It has members. It has functions. So, class operai@s data but
the way it does, it has variables, member variables, and member
functions [understanding the core concegiiit when they create object, this
is actually implementation of the clag®r example, if we have let's say a
triangle. There are a whole bunch of different triangles, but w can create
a class triangle because they all have in common, they all hateee sides
[referring to in-class examplesThey all have three angles | guess and
there are certain common characteristics that all the tangles have. So, if
we create a class that does a certain function or includesrtain variables
about this triangle then we can simplify the program., and the we can
apply it to a particular — when we create an object, we applyt to a
particular triangle [rephrasing with no technical wordfor me, the idea that
a group of data can have common characteristics that is Ivelygg me to
understand that this is a class, that this is class of trengket's say

mushrooms, yeahThere’'s a class of mushrooms, class of animals
92

[understanding core concepillaybe it's the same idea. Oh | think yeah
[confidence] we would give an example of animals that would be cool.
The participant was able to express his knowledge skills in sushnaer that
showed that he understood the abstraction concept but his knowledge still
presented some uncertainty referred as “somehow” and “makdosvever, the
participant was able to reiterate the in-class exampiengle’ except for the
details of the example. It seems that the participant wgsghaway from
explaining the common and/or certain characteristics, which bsaylue to
missing knowledge.
Below | have included excerpts that presented negative notatidhg afiteria
indicated in Table 20.
Excerpt:
| didn’t know [confidence] like how many exams they were going to enter
and so | was like trying to account for that. | have them keegiegtbut then
| was likel don’t know [confidence] how many and how am | going to keep
track of all of them sd created five variables to keep track of five scores
for a given student[understanding core concept]
In this excerpt above, the participant failed to efficiently imm@at his solution
using an array. And thus the modeling of the solution was incorrecheffombre,
the participant seemed to show that he was a bit confused about Bolwvetdhe
problem. He used the statement “I don’t know” twice in this interview excerpt.

Excerpt:

93

An array of objects is like having amray; you had the set like 0,1,1,0, and
then whatever. And you would set it up like the numbersn the left-hand
side go down in the left hand and the numbers in the right-hand side go to
the right hand. And in the middle was like what it makeslike when you
have combination[understanding the core concefh an array of- well you
could have different — it doesn’t have to be numbers in the arraguld be
like say like class members or a class of students or somgetfiou have
John, Joe, Matt, and you have like the test scores also and you have John 90 or
something.
In this excerpt above, the participant was not able to explaindieeconcept. |
interpreted this student’s response as showing that the pantiadid not fully
understand the concept of arrays.
Excerpt:
(laughing)l am panicking. | don’t know. | really don’t know [confidence]
how to solve it, just from scratch. | mean if | had a laptop and the Internet then
maybe my Java book. | probably could figure out in more than 30 minates I
sure. The biggest for me right now is to bring the code out of nothing, PI
don’t have fellow students to ask for help or see what they did twisael
did differently; help them, help me, and just me and the paper.
In this excerpt above, the participant panicked and thus he lost his caefide
before he even began. It seemed that he was out of his corafwt which

included not having access to his laptop, Internet, and textbook.

94

Below | have indicated some of the types of struggles/clggkethat participants
encountered.
Excerpt:
Its hard [confidence] in the beginning because [abstraction] is a new
concept. You have to switch your way of thinking. Instead of haviset @f
instructions and focusing on instructions, you focus on how to organize the
data. | used the program that does mind map where | can makecitomnne
like classes and objects and then | broke [them] up with alldheepts that
connected with. For me I'm a visual person so mind map for difficult things or
an abstract thing that has a lot of concepts works great. Treeeekaunch of
programs that do that [such aslind Jet, Mind Note, Mind Manager
[sharing examples]. The website for Mind Manager has a lot gléees for
teachers to use for hard concepts.
The participant noted that she encountered difficulties because theptanf
abstraction is hard for her mind to understand. The participantisuial learner
and thus abstract ideas need to be presented to her in a visual nkanner.
example, the tool Mind Map (http://www.mindmap.com/), which is a rdiag
(similar to UML) used to represent words and ideas linked totatekeyword.
This tool helps with studying/organizing information and solving problems
Excerpt:
| think sometimes people don’'t grasp some of the basics, like withtebjec
and Ihave a hard time grasping[confidence]. | am thinking I've mislabeled

a few things that were variables as objects when doing the exercise.
95

This participant showed confusion in his learning of the core coneepthas he
was unable to build up his knowledge.
Excerpt:

| kind of looked over it and | noticed that there arefeav problems

[confidence] that | had, but it was something that | would have tdtbeysat

a computer and testing it to see what would work and what wouldn’'t work.

So, like if the current balance is equal to zero, set the curréarideato the
initial balancel thought what if the person withdrew exactly to where the
current balance is zero then they would get their money bé&c|[reiterating
thought process]. So there are little things like that | havieveak and fix
before it was gerfect program [analyzing solution].
The participant was aware that his solution was not complete rins tef
efficiency. The participant needed the computer to test anakiwee. debug)
out his solution.
Last but not least, few of the excerpts were related totaaifxt concepts and
utility of learning tools. These are indicated below.
Excerpt:
| taught myself [programming]. | meal'm sure [confidence] you understand
that with programming, there’s the structure and then the synax
[understanding core concept]taught myself the structure, which is very
similar among, you know, most languages. And obviously, | taught myself
the syntax of the language | was learning as welrecognizing prior

knowledge] But because | know the structure, it's a lot easier fotarlearn
96

different languages. It’s [...] like [...] musi®©nce you learn how to read

music, it's not difficult to learn to play a different instrument [sharing

example].
The participant demonstrated his/her confidence through sharingerhis
experience in learning the concept of programming by fiesnlag the common
structure in all languages and the syntax, which is bonded to theulzartic
language.
Now let’s take a look at the score distribution of the participeuiis took both
the written and verbal protocols in this study. Sixteen ppéids were identified
in the first test and twelve participants in the second testt, Fire intercoder
reliability kappa coefficient was run on the other two variablegptanation and
abstraction for test 1, and explanation and modeling for test 2.IeVeé of
reliability for the kappa index is summarized in Table 22. Acogrdo Landis &
Koch [84], the level of reliability is “outstanding” as all the Kappa cogdfits are
greater than 0.80.

Table 22 — Qualitative Symmetric Measures

Measure of Agreement Kappa)]

Valte Approx. Sig. | N of Valid Cases
Expl_cl * Expl_c2 811 .000 16
IAbstr_c1 * Abstr _c2 .805 .000 16
Confl_cl * Confl_c2 .893 .000 16
Exp2_cl * Exp2_c2 .862 .000 12
Model_c1 * Model_c2 .862 .000 12
Conf2_cl * Conf2_c2 .862 .000 12

97

The two judges resolved disagreements in the reliability coding. A
agreement was reached after a second round of evaluation, and thw the
judges came to the same conclusion for all the participantsrdjidge was not
needed to serve as tiebreaker.

The final score distributions for the participants are indicateal\b€lable 23
and Table 24). Note that the scores of the variables explanatisiraction,
modeling, and confidence are based on a scale of zero to one. Also, across the two
tests, four participants took both written and verbal protocols fortesth; they
are highlighted in bold. From Table 23 and Table 24, participants whorped
low (i.e. scores less than 0.5) in algorithm design also performethlpvoblem
solving. Participants who performed average in problem solving @@&es
equals 0.5) performed higher in algorithm design (i.e. scores gtéate 0.5).
This indicates that even though the participants were not abl®elte the
problem, they were able to abstract key elements from the praitdeement, and
thus they knew what information were relevant. If algorithm despres were
higher than problem solving scores then participants shown some knowledge
the core concept (i.e. 0.5 out of 1). Furthermore, their difficultii ®olving the
problem had a direct impact on their confidence and explanation SKikést
explanations were not clear and demonstrated misconceptions abotréhe
concept. Participants who scored less than 0.5 in problem solvingalea zero
in confidence and either zero or 0.5 in explanation. Whereas particypaots
performed higher in problem solving (i.e. at least 0.5) also scotedsat0.5 both

in confidence and explanation. Finally, participants who successfulrgdsahe
98

problem (i.e. scores equal 1) also performed highly in algorithmgmlesi
explanation, core concept, and confidence (i.e. scores greater than 0.75).

Table 23 — Score Distribution for Test 1

UML1 Codingl Explanation| Abstractio Confidence
0.75 0.916667 1 1 1
0.625 0.75 1 0.5 0.5
0.75 1 0.5 1 1
0 0 0 0 0
0.75 0.333333 0 0.5 0.5
0.75 0.916667 1 1 1
0.5 0.5 0 0.5 0
0.666667 1 0.5 1 1
0.875 1 1 1 1
0.25 0 0.5 0 0
0.75 0.5 0.5 0.5 0
0.75 1 1 1 1
0.875 1 1 1 1
0 0.166667 0 0 0
0.5 0.666667 0 0.5 0
0.5 0 0 0.5 0

99

Table 24 — Score Distribution for Test 2

ce

UML2 Coding2 Explanation| Modeling Confiden
0.75 0.833333 1 1 1
0.875 1 1 1 1
0.75 1 1 1 1
0.75 0.5 0.5 0.5 0
0.75 0.666667 0.5 0.5 0.5
0.25 0.166667 0 0.5 0
1 1 1 1 1
0 0 0 0 0
0.75 0.916667 1 1 1
0.5 0.166667 0.5 0.5 0
0 0 0.5 0 0
0.25 0.333333 0 0.5 0

E. Summary and Discussion

This study’s purpose was to explore the core computational conoep$li
courses and to assess students’ skills in algorithm design andnprsebleng.
Due to the limitations of the study, this chapter focused on phymavo core
computational concepts — abstraction and modeling. From the partitipants
written and verbal responses, students’ profiles were drawn basdtiewn
algorithm design (i.e UML) and problem solving (i.e. coding) and students

common mistakes were categorized based on the computational thinkenig cr

described in the review of literature.

100

First, it is important to acknowledge that students are on a path f
novice to skilled programmers. That is, CS1 students first maist te solve
structured problems involving concepts, as in their introductory cquosbs
able to both formulate and solve less structured and uncertain types of
problems, as in the real-world applications. Developing such afslifiyires a
continuing back-and-forth between theory and application as the students
acquire more sophisticated skills through experience. In addition, campute
science students are primarily eighteen to twenty-two yeaksaold thus
students are still in the early phase of their cognitive devedopnstudents’
learning abilities at this phase can help computer sciencatedsicinderstand
their students’ cognitive development and thus improve assessmént a
instructions in terms of knowledge and practice. By the end of the
introductory courses, students are expected to be able to use theatmmpalt
concepts to solve specific and well-defined problems. It is asbtinag the
more they practice applying these concepts, the deeper themstamding of
the concepts become.

Findings have shown an increase in higher scores in both algoritigmde
and problem solving. Even though, the number of participants who performed
above average in algorithm design (i.e. abstraction of the, @#sbutes, and
methods) showed no significant difference between test 1 and t@9 2
percent), participants who performed at an average levelasenlefrom 18
percent to 23 percent. The number of participants who performed above

average in problem solving (i.e. implementation of the class, vasiable
101

methods, and logic) increased from 52 percent in test 1 to 7&péardest 2.

In addition, the number of mistakes identified as computation thinkitegieri
decreased from test 1 to test 2 by one-third to two-third. Whemgdide
verbal responses to the written responses, it was found that higls &tore
algorithm design were consistent with higher score in problemngpWhich

was no surprise. Abstraction is the first step before solvingldgm and thus

a well-written abstraction of a given problem enables bettetegnes for
solving the problem. However, the problem solving scores were foundéo ha
a direct impact on the other variables, particularly on explanakiis and
confidence. When solving a problem, more than two-third of the participants
referred to knowledge such as definition and examples that westlym
visited in-class. This shows that students have acquired trabkfer
knowledge, i.e. they have the ability to map problems’ solutions to very
similar problems given earlier.

It can be observed through algorithm design and problem solving that
participants have indirectly acquired some of the skills in comipotdt
thinking. Since UML represents modeling the problem, students muifyde
the relevant information from the given problem. By doing so, studerts
using a form of abstraction, which is a key aspect of computatioim&ing;
and thus, this is a fundamental step when attempting to solve a prdtdem.
described in the background literature, the ‘grand vision’ of computational
thinking is to enable everyone in any discipline of study to hagenamon

understanding of the core computational concepts in the computing field to
102

solve real world problems. In this study, the assessment o&etstr was for
participants to demonstrate their abilities in separating bluand non-
valuable information from the given problems. Also, abstraction incltited
representation of the valuable information by programming concapksas
class, object, data members, and methods. This step of abstradeaming
programming in CS1 is important because it assisted instructa@siitA
evaluating students’ modeling these concepts which served asaailyribase
for the next step in programming which was problem-solving. Thesaases
of problem solving was supported by the modeling of the abstraction step. The
assessment of problem solving was for participants to demonshate
application of abstraction to the given problems including the logicdehi
This step of problem solving in learning programming in CS1 is raedewant
because it assisted instructors/TAs in evaluating studezdasbning in terms
of basic operations such as arithmetic, conditional statesneand
repetition statements. This step enables the desgoof mistakes in basic
mathematical operations and thus incorrect logit@hking to solve a
problem. Also, in this study, the problem solvingegstincluded the
modeling of the solution using a programming largpi&Java or C++) so
instructors/TAs were able to assess specifics abputiax mistakes which
was resourceful to determine the level of complekar concept specific
syntax. Thus, abstraction and problem solving asemsal in the learning
of programming in CS1 because they represent theaimental steps that

any novice programmers would take to solve a giveblgm. It is crucial
103

that instructors teach students the importancehef dtep of abstraction
before the step of solving a problem. The correcteo of execution of
these two steps will benefit students in long tevhren they will have to
tackle more larger and complex problems.

Reinforcing the model of software design in CS1 curricula woultlena
this ‘grand vision.” In CS1 courses, instructors teach students fibm a
disciplines, i.e. computer science and non-computer science mgjparsise
of a tool, which does not require the knowledge of any programming
language, would enable instructors to assess the notion of abst atdsses,
attributes, methods, and relationships) defined by computational thinking. |
this study, UML was used as it is part of the curriculum. Fumtbeg,
problem solving of simple real-world problems that can be identifigd
students as daily activities, such as bank account transactionsaaetha@pk,
enable students to develop their basic analytic skills such asaclusty
algorithm, reasoning and scalability. Such skills are criticaackle larger
problems using the computer. Sometimes, the programming langditgys-e
compilers allow students to arrive at answers without thinkingeifstudents
have mastered debugging skills. This study used paper-and-padadpen-
ended exercises to minimize ‘guessing’ when dealing with singlae
answer. Using such type of exercises, | was able to follow howndtudame
up with an answer, which was more informative than traditional .tests
However, half of the students were thrown off by the open-endedianses

and thus they encountered some difficulties in their algorithmic tignkin
104

addition, participants wrestled with problems given in plain English tlzyd

had to translate them into step-by-step problems, which involved
mathematical operations. And one thing that is being stressed iGSkhe
courses is that in the work environment, if an individual comes to yau as
computer scientist and asks you to solve a problem stated inEpigirsh
then it is your responsibility to get this problem translated int@lzstract

problem and use your way of thinking to solve it.

105

V. RECOMMENDATIONS AND FUTURE RESEARCH

One of the recommendations to improve the understanding of the field of
computer science (i.e. tackling almost all types of problem gn)ais to use
concrete real-world examples and problems that are not onlyddiateaily
activities but also to public service matters. Learners irfighe want to make a
difference in society, and thus, problems such as voting system, paylstem,
electronic health records, and traveling salesman address #rssinand make
learning to be more engaging and relevant. Through such problems)tstacde
able to (1) combine data and ideas to solve problems, (2) createatubls
information, and (3) manipulate data using abstractions and computational
thinking. These real-world applications enable learning in confehe. CS1
concepts can be learned in the context of a computing situation reptaseof
the practice. Learning in context enable students the opportunityetadhivith
the body of knowledge in a way that connects with the practiogHmh they are
being prepared for. This type of learning helps students relatd they are
learning to how it may be used and results in a deeper understaridive field.

This means that instructors should introduce concepts in context to enable
students to both internalize and transfer knowledge to other contexidefes
making a direct connection to something real or familiar motivstiedents to be
engaged and confident in their own learning.

Computational thinking is very similar to the field of computeeisce minus

the domain-specific and the usage of the computer. It deals wittod Hifficult

106

problems are to solve, (2) how to think about and manage problems3)amaly(

to create procedures for solving them. Nowadays the emergenchilsfofiestudy

such as bioinformatics, computational biology, and computational matleemati
has given an opportunity to apply computational concepts to a specifiglidesc
such as biology, mathematics, and physics. Such fields have wagetational
science a third pillar of science, along with theory and expetatien. Thus,
computational thinking is not one more thing to add to the curriculum Iner riat
emphasizes the application of the knowledge of the core computatmmzdpts

in various fields of study. Students develop their ability to abstthe
information from a given problem and modeling the solution based on the
computational strategies which can vary depending on the individballsrtg
process. Looking at the CS1 curriculum, computational thinking is notcékpli
stated and students may not be aware that in fact they areopiegetheir
computational thinking skills through the application of the core computdti
concepts in context-specific knowledge. And therefore, another reendation

is to make computational thinking concepts more visible in the curricdlondo

so, computational thinking skills can be stated in the syllabus undeettien
“course objectives and outcomes.” In this section, the instructalressly stated

that students should have an understanding of methods and variables, gearchin
and basic sorting algorithms, and basic recursions. Also, stustemitd be able

to read, understand, and develop programs. These aptitudes are computational
thinking skills and thus methods and variables represent the concept of

“abstraction,” searching and basic sorting algorithms reprebentoncept of
107

“algorithm,” basic recursions represent the concept of “reasoramgl,’programs
represent “systems.”

In addition, the focus of assessment must be on how one thinks about a
problem, not just the correct answer. To do this, instructors shoul@mgaltheir
students with responding to open-ended questions to determine howheyell t
understand (explanation) and synthesize the concepts they have Igaimedg
process). Multiple-choice questions may not give an accuratesasss of
students’ knowledge. Students can guess an answer and get it uglentStcan
also know the answer but their thinking process to get to the canmsater may
include errors. Students may have just memorized the answer but they are not able
to transfer this answer to another similar problem. As a consequaenoere
detail-oriented response to a given question/ problem will allowuictsts to
more efficiently track down misconceptions and correct studemnsg£onceptions
at the next class period. Students focus on the approach totienprrather than
on their final answer. Moreover, the problem solving solution does not oded t
programming language-specific. In this study, it was observethtvates spent
quite some time on syntax during problem solving which took time aveay f
their algorithmic thinking. So the recommendation is to use a connguage,
which is plain English pseudo-code. This would remove the programming
language factor into the assessment equation and enable major andhjopn
CS1 students to express the solution with their own words, which can be
understood by all. Assessing students’ design and problem-solvirglskilising

open-ended problems enable students to consider the concepts tbbd\anat to
108

the situation and to demonstrate their ability to work through an anphgblem
solving process. Because the quiz is such a small part of they gnacassessment
is considered formative as it provides constructive feedback in aaingng
learning to the instructors.

This method of assessing students can only be beneficialsifaitreflective
approach of teaching. The emphasis is on acquiring a solid understahdireg
CS1 concepts while strongly discouraging memorization. This carnffmiidito
do. An inductive approach of teaching may be more efficient to helprétude
learn to use core concepts for their particular value and how tthese as a
foundation for advanced learning. For example, an instructor ngay tee class
with a problem and ask student to find out the concept that is criticde
problem. Based on their existing knowledge and experience, studentgptatibe
solve the problem with possible cases based on the attributes arnchioths
given in the problem. As they work through this process, students bexoane
of the key components relevant in all the cases. Consequentlybtiidytheir
knowledge based on the phenomenon observed. Building on the learning
experience, the instructor introduces new cases to the students so thagntén i
fundamental components. Mathematical explanations and diagramsemssgdb
as tools to help students refine their understanding of a concephegpsdo
acquire such knowledge, the instructor introduces the theory and resoitrtect
the problem. This approach differs from the deductive approach - which is
commonly used in CS1 courses where students ‘listen, see, and dioé as

instructor transfers the knowledge to novices through lecturing -(1)y
109

introducing the context first before the concept and (2) educatidgrsis to be
more reflective about their own learning as their learning rexpee is more
iterative. The role of the instructor is primarily to showdeints what to look for
and then how to explain unclear situations. Using feedback and coadieng, t
instructor’s goal for student learning is to formulate probland solve problems
using concepts. In this iterative process, the novice begins ta feam
experience and thus students are able to develop their skills and confidence.
Future research will include additional core computational conceptset
assessed. After the introduction of each computational concept &) ttlasquiz
(test) would be given to the students, and then, based on the outcames$ests,
the instructor will do an in-class intervention to go over the commistakes
found in students’ test and the reinforcing the concept learned.eShevill be
given again to the students. This second round testing would enable pareom
students’ written responses between the two tests, and thus, theegsgrégr a
given concept would be better evaluated. In addition, with computationalriyinki
as a cognitive revolution, it would be of interest to design the wstcifically
with computational thinking in mind. Since computational thinking i$ Istdad
and not clearly defined yet, the approach would be to look at thesentmsn
between CS1 computational concepts and computational thinking. The design of
the tests would still involve both algorithm design and problem solviogieder,
the problem solving part would not be programming language-spbalfficather
pseudo-code, i.e. a step-by-step procedure to solve a given problers.dtutly,

findings have shown a difference in scores between students progrgumniava
110

and students programming in C++, which is not clear whether at isotiue to

the programming language. Thus, this change in programramguége in the
coding section would allow a better assessment of students’ thinipteylation

as they will be using a common language, which is plain Englisis, Blis is in
agreement with computational thinking should be understood by all individuals
regardless of their field of study, background, and programmingu&ge.
Students would no longer spend time on syntax while solving the problgch

was one of the parameters that may have limited students’ thirllasgbut not
least, the limitation in the number of participants in this curstidly has made

the findings limited. For future research, the study will be omeralt CS1
courses, which therefore, will involve more than one CS1 instrudtorake this

into account, the assessment will look into any score distributiopreiiites
across the courses with different instructors, and thus instrudeashing
approach (deductive versus inductive). This may provide valuable data to improve

CS1 teaching.

111

REFERENCES

[1] M. Ford and S. Venema, “Assessing the success of an introguctor
programming course,” Idournal of Information Technology Educatjovol. 9,
pp. 133-145, 2010.

[2] M. Guzdial and E. Soloway, “Log on education: teaching the Nintendo
generation to program,” i@ommunications of the ACNM002, vol. 45, no. 4, pp.
17-21.

[3] E. Solowayet al, “Cognitive strategies and looping constructs: an empirical
study,” InCommunications of the ACMol. 26, no. 11, pp.853-86, 1983.

[4] D. Perkinset al, “Conditions of learning in novice programmers,”Studying
the Novice ProgrammeE. Soloway and J. Spohrer, Eds. Hillsdale, NJ: Lawrence
Erlbaum Associates, Publishers, pp. 261-279, 1989.

[5] M. McCracken et al, “A multi-national, multi-institutional study of
assessment of programming skills of first-year CS studemtsyVdrking group
reports from Innovation and Technology in Computer Science Edugcgmon
125-180, 2001.

[6] R. Listeret al, “Further evidence of a relationship between explaining, tracing
and writing skills in introductory programming,” BIGCSE Bulletinvol. 41, no.
3, pp. 161-165, 2009.

[7] S. Fincheret al, “Programmed to succeed?: a multi-national, multi-
institutional study of introductory programming courses,” Gomputing
Laboratory Technical Report 1- D&anterbury, UK: University of Kent, 2005.

[8] T. L. Friedman,The world is flat 3.0: A brief history of the twenty-first
century New York, NY: Farrar, Straus, and Giroux, 2006.

[9] J. Meadet al, “A cognitive approach to identifying measurable milestones for
programming skill acquisition,” IIBIGCSE Bulletinvol. 38, no. 4, pp. 182-194,
2006.

[10] D. Shaffer and J. GeBgfore every child is left behind: how epistemic games
can solve the coming crisis in education. WCER Working Paper No. 2005-7
Madison, Wisconsin: Wisconsin Center for Education Research, 2005.

[11] Student Affairs Leadership CouncilThe Data-Driven Student Affairs

Enterprise: Strategies and Best Practices for Instilling a Celtuof
Accountability Washington, DC: The Advisory Board Company, 2009.

112

[12] L. Carter, “Why students with an apparent aptitude for compuaience
don’t choose to major in computer science.” Bmoc. SIGCSE Technical
Symposium on Computer Science Educappn27-31, 2006.

[13] M. Clancy, “Misconceptions and attitudes that interfere witirnmg to
program,” InComputer Science Education Resear®h Petre and S. Fincher,
Eds. London, UK: Routledge Falmer, ch. 1, pp. 85-100, 2004.

[14] A. Eckerdalet al, “Putting threshold concepts into context in computer
science education,” IRroc. on Innovation and Technology in Computer Science
Education pp. 103-107, 2006.

[15] C. Schulte and J. Bennedsen, “What do teachers teach auuaotory
programming?” InProc. International Workshop on Computing Education
Researchpp. 17-28, 2006.

[16] E. Seymour, “The problem iceberg' in science, mathematiceregideering
education: student explanations for high attrition rates,Jdarnal of College
Science Teachingp. 230-232, 1992.

[17] E. Spertus, E, “Why are there so few female computentsstie?” InMIT
Atrtificial Intelligence Laboratory Technical Report: AITR- 1315, 1991.

[18] S. Hansen and E. Eddy, “Engagement and frustration in programming
projects,” In Proc. SIGCSE Technical Symposium on Computer Science
Education pp. 271-275, 2007.

[19] N. Jacobson and S. Schaefer, “Pair programming in CS1: overcoming
objections to its adoption,” IBIGCSE Bulletinvol. 40, no. 2, pp. 93-96, 2008.

[20] R. Listeret al, “Further evidence of a relationship between explaining,
tracing and writing skills in introductory programming,” $§GCSE Bulletinvol.
41, no. 3, pp. 161-165, 2009.

[21] D. Cliburn and S. Miller, “Games, stories, or something mawittonal: the
types of assignments college students prefer,”Phoc. SIGCSE Technical
Symposium on Computer Science Educappn 138-142, 2008.

[22] J. Gilbertet al, “Learning C with Adam,” Ininternational Journal on E-
Learning vol. 4, no. 3, pp. 337-350, 2005.

[23] N. Herrmanret al, “Assessment of a course redesign: introductory computer

programming using online modulesii Proc. SIGCSE Technical Symposium on
Computer Science Educatigop. 66-70, 2004.

113

[24] B. Woolf, Building Intelligent Interactive Tutors: Student-centered strategies
for revolutionizing e-learningBurlington, MA: Morgan Kaufmann, 2008.

[25] G. Novaket al, Just-in-Time Teaching: Blending Active Learning with Web
TechnologyUpper Saddle River, NJ: Prentice Hall, 1999.

[26] J. Rountree and N. Rountree, “Issues regarding threshold concepts in
computer science,” IiProc. Australasian Computing Education Conferernue.
139-145, 2009.

[27] L. Murphy et al, “A multi-institutional investigation of computer science
seniors' knowledge of programming concepts,” Rroc. SIGCSE Technical
Symposium on Computer Science Educappn510-514, 2005.

[28] A. Postlewaite and O. Compte, “Confidence enhanced perforriaimce
Penn Institute for Economic Researgbl. 94, no. 5, pp. 1536-1557, 2001.

[29] A. Seidman,College Student Retention: Formula for Student Sugcess
Westport, CT: Praeger Publishers, 2005.

[30] D. Wortman and P. Rheingans, “Visualizing trends in student peafaren
across computer science courses,’SIGCSE Bulletinvol. 39, no. 1, pp. 430-
434, 2007.

[31] I. Milliszewska et al, “Improving progression and satisfaction rates of
novice computer programming students through ACME - Analogy,
Collaboration, Mentoring, and Electronic support,” The Journal of Issues in
Informing Science and Information Technolpggl. 5, pp. 311-323, 2008.

[32] C. Ramamoorthy, “Trends and perspectives in computer sciemde a
engineering education,” IRroc. IEEE vol. 66, no. 8, pp. 872-879, 1976.

[33] R. Sloan and P. Troy, “CS 0.5: a better approach to introductory cemput
science for majors,” IProc. SIGCSE Technical Symposium on Computer Science
Education pp. 271-275, 2008.

[34] A. Pearset al, “A survey of literature on the teaching of introductory
programming,” In Proc. Innovation and Technology in Computer Science
Education pp. 204-223, 2007.

[35] L. Sudol, “Forging connections between life and class usingimga

assignments: a case study,”Rrmoc. SIGCSE Technical Symposium on Computer
Science Educatigmpp. 357-361, 2008.

114

[36] D. Stevenson and P. Wagner, “Developing real-world programming
assignments for CS1,” IRroc. SIGCSE Innovation and Technology in Computer
Science Educatiqmpp.148-162, 2006.

[37] J. Stone and E. Madigan, “The impact of providing project chac&S1,”
In ACM SIGCSE Bulletinvol. 40, no. 2, pp. 65-68, 2008.

[38] R. McCartneyet al, “Commonsense computing (episode 5): algorithm
efficiency and balloon testing,” InProc. International Computer Science
Education Researclpp. 51-62, 20009.

[39] M. Biggerset al, “Student perceptions of computer science: a retention
study comparing graduating seniors vs. CS leaversPréc. SIGCSE Technical
Symposium on Computer Science Educappn402-406, 2008.

[40] R. Sperry and P. Tedford, “Implementing peer-LED team legrnn
introductory computer science courses,” Journal of Computing Sciences in
Colleges vol. 23, no. 6, pp. 30-35, 2008.

[41] L. Beck and A. Chizhik, “An experimental study of cooperativenieay in
csl,” INACM SIGCSE Bulletinvol. 40, no. 1, pp. 205-209, 2008.

[42] M. Chi, “Active-Constructive-Interactive: A Conceptual Framewdor
Differentiating Learning Activities,” InTopics in Cognitive Scienceol. 1, pp.
73-105, 2009.

[43] J. McConnell, “Active and cooperative learning: final tips amcks (part
IV),” In ACM SIGCSE Bulletinvol. 38, no. 4, pp. 25-28, 2006.

[44] L. Ma et al, “Using cognitive conflict and visualization to improve mental
models held by novice programmers,”Rnoc. SIGCSE Technical Symposium on
Computer Science Educatigop. 342-346, 2008.

[45] W. Jin, “Pre-programming analysis tutors help studentsn |daasic
programming concepts,” IRroc. SIGCSE Technical Symposium on Computer
Science Educatiqmpp. 276-280, 2008.

[46] J. Bonar and E. Soloway, “Uncovering principles of novices programiming
In Proc. ACM Symposium on Principles of Programming Langyguyas10-13,
1983.

[47] E. Solowayet al, “A goal/plan analysis of buggy Pascal programs,” In
Human-Computer Interactigwol. 1, no. 2, pp. 163-207, 1985.

115

[48] E. Soloway, “Learning to program = learning to constructhmesms and
explanations,” IlCommunications of the AGMol. 29, pp. 850-858, 1986.

[49] R. Rist, “Knowledge creation and retrieval in program desagcomparison
of novice and intermediate student programmers,” Homan-Interaction
Computervol. 6, no. 1, pp. 1-46, 1991.

[50] S. Segelman, “A continuing study of intermediate programraingrs,” In
Computer Information Sciencé).1 Senior Research Project, 2003.

[51] J. Andersoret al, “Learning to program in LISP,” I€ognitive Sciengevol.
8, pp. 87-129, 1984.

[52] R. Jeffrieset al, “The processes involved in designing software,” In J. R.
Anderson (Ed.)Cognitive Skills and their Acquisitippp. 255-283, Hillsdale, NJ:
Laurence Erlbaum Associates, Inc, 1981.

[53] D. Perkins and F. Martin, “Fragile knowledge and neglecteategfies in
novice programmers,” In E. Soloway & S. lyengar (EdSnpirical studies of
programmersNorwood, NJ: Albex, pp. 213-229, 1986.

[54] J. Brown, and K. VanLehn, “Repair theory: a generative theotyugt in
procedural Skills,” IlCognitive Sciencevol. 4, pp. 379-426, 1980.

[55] K. VanLehn, “Bugs are not enough: empirical studies of bugs, sepand
repairs in procedural skills,” Idournal of MathematicaBehavior, vol. 3, no. 2,
pp. 3-71, 1981.

[56] D. Perkins and G. Salomon, “Teaching for transfer,” Hducational
Leadershipvol. 46, no. 1, pp. 22-32, 1988.

[57] M. McCrackenet al, “A multi-national, multi-institutional study of
assessment of programming skills of first-year CS studemtsyVdrking group
reports from Innovation and Technology in Computer Science Edugcgimon
125-180, 2001.

[58] R. Listeret al, “A multi-national study of reading and tracing skills in
novice programmers,” IBIGCSE Bulletinvol. 36, no. 4, pp. 119-150, 2004.

[59] M. Lopezet al, “Relationships between reading, tracing, and writing skills
in introductory programming,” IfProc. International Workshop on Computing
Education Resear¢ipp.101-112, 2008.

[60] J. Wing, “Computation thinking,” l€ommunications of the ACMol. 49,
no. 3, pp. 33-35, 2006.

116

[61] J. Lu and G. Fletcher, “Thinking about computational thinking,Ptoc.
ACM Technical Symposium on Computer Science Educaipor260-264, 2009.

[62] O. Astracharet al, “The present and future of computational thinking,” In
Proc. ACM Technical Symposium on Computer Science EducptioB49-550,
20009.

[63] Carnegie-Mellon University, “Center for computational thinking,”
http://cs.cmu.edu/~CompThink

[64] P. Seymour, “An exploration in the space of mathematics edo¢atn
International Journal of Computers for Mathematical Learningl.1, no.1, pp.
95-123, 1996.

[65] A. Bundy, “Computational thinking is persuasive,” Jaurnal of Scientific
and Practical Computingvol. 1, no. 2, pp. 67-69, 2007.

[66] M. Guzdial, “Paving the way for computational thinking,” In
Communications of the AGMol.51, no. 8, pp. 25-27, 2008.

[67] National Academy of Sciences on Computational ThinkiRgport of a
Workshop on the Scope and Nature Computational Thinkiagional Academies
Press, 2010.

[68] P. Denning, “Great principles of computing,” @ommunications of the
ACM, vol. 46, no. 11, pp.15-20, 2003.

[69] O. Astrachan and P. Denning, “Innovating our self image,’SIGCSE
Technical Symposium on Computer Science Educatmn 10, no. 1, pp. 178-
179, 2008.

[70] J. Wing, “Computational thinking and thinking about computing,” In
Philosophical Transactions of the Royal Socigty. 366, pp. 3717-3725, 2008.

[71] Committee for the Workshop on Computational Thinking; National Research
Council. (2010)Report on Workshop on the Scope and Nature of Computational

Thinking Available:

http://catalyst.fullerton.edu/library/Scope_and_Nature_of Computational_Thinki

ng.pdf

[72] O. Hazzan, “Reflections on teaching abstraction and other icedts,”

Inroads vol. 40, no. 2, pp. 40-43, 2008.[73] J. Kramer, “Is abstraction the key to
computing?,"Communications of the AGMol. 50, no. 4, pp. 37-41, 2007.

117

[74] F. Olsen, “Computer Scientist says all students shouldh l&arthink
‘algorithmically’,” In The Chronicle of High Educatigp2000.

[75] J. Gal-Ezer, T. Vilner, and E. Zur, “Teaching algorithmcedhcy at CS1
Level: A different Approach,” IComputer Science Educatiovol. 14, no. 3, pp.
235-248, 2004.

[76] M. Patton, Qualitative Research and Evaluation Method8rd Ed.),
Thousand Oaks, CA: Sage, 2002.

[77] N. Dale, “Most difficult topics in CS1: results of an onlisarvey of
educators,” I'5IGCSE Budtin, vol. 38, no. 2, pp. 49-53, 2006.

[78] J. Boustedet al, “Threshold concepts in computer science: do they exist and
are they useful?” IlProc. SIGCSE Technical Symposium on Computer Science
Education pp. 504-508, 2007.

[79] T. Amabile, "The Social Psychology of Creativity: A Consehsua
Assessment Technique,” Tournal of Personality and Social Psychologyl.
43, pp. 997-1013, 1982.

[80] K. NeuendorfThe content analysis guidebodkousand Oaks, CA: Sage,
2002.

[81] R. Kolbe and M. Burnett, “Content-analysis research: An examination of
applications with directives for improving research reliability and objegtivin
Journal of Marketing Researchiol. 27, pp. 185-195, 1991.

[82] M. Lombard and J. Snyder-Duch, “Content Analysis in Mass
Communication: Assessment and Reporting of Intercoder Reliabilityyuman
Communication Researgctol. 28, no. 4, pp. 587-604.

[83] R. Bakeman, “Behavioral observation and coding,” In H. T. Reis & C. M.
Judge (Eds.Handbook of research methods in social and personality psychology
(pp. 138-159). New York: Cambridge University Press, 2000.

[84] J. Landis and G. Koch, “The measurement of observer agreement for
categorical data,” lBiometrics vol. 33, pp.159-174, 1977.

118

APPENDIX A

IRB APPROVAL

119

ARIZONA STATE
UNIVERSITY

RESEARCH AND ECONOMIC AFFAIRS

Office of Research Integrity and Assurance

To: . Tirupalavanam Ganesh
EDUC- 1.

From: Mark Roosa, Chain’w\#/

\)Soc Beh IRB
Date: 09/29/2009
Committee Action: Exemption Granted
IRB Action Date: 09/28/2009
IRE Protocol #: 0902004380
Study Title: How Computer Science & Engineering Freshmen Write Computer Programs?

The above-referenced protocol is considered exempt after review by the Institutional Review Board pursuant to
Federal regulations, 45 CFR Part 48.101(b){2) .

This part of the federal regulations requires that the information be recorded by investigators in such a manner that
subjects cannot be identified, directly or through identifiers linked to the subjects. It is necessary that the information

obtained not be such that if disclosed outside the research, it could reasonably place the subjects at risk of criminal or
civil liability, or be damaging to the subjects' financial standing, employability, or reputation.

You should retain a copy of this letter for your records.

120

APPENDIX B

SURVEY ON CS1 CONCEPTS (SENT BY EMAIL)

121

How Computer Science & Engineering Freshmen Write Computer Programs?
SURVEY

Dear [X],

| am a graduate student under the direction of Dr. Tirupalav&smesh in the
Fulton Institute and Graduate School of Education and Dr. James Collofello imiha Sc
of Engineering at Arizona State University. | am conductingsaarch study to identify
skills that freshmen develop in their introductory computer progriag course. This
study will help instructors to understand and assess how theierds design their
algorithm (flowchart) and how their students write their algorithm tjoeks).

To conduct this study, | first need to identify the concepts shatents in CS1
have difficulty with. You have been selected, because you are aith@structor or a
teaching assistant in CS1 courses, to help us identify the roableésome concepts in
CS1 courses.

We thank you in advance for the information that you are aboutate.sh you
have any questions concerning the research study, please call(489)aP76-4188 or
email me at EBillion@asu.edu.

Based on your teaching experience, please list below the mbstlti¢oncepts
that students in your class encountered:

oA WNE

Comments:

Feel free to continue the list if you have identified moenthix concepts. Please
email your response #Billion@asu.edu.

122

APPENDIX C

TEST | (FOR BOTH CSE 100 AND CSE 110)

123

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University
Fall 2009. Quiz 1
10 + 4 Bonus Points, 30 Minutes

You have been asked to develop a banking application for the Bank of ASU. A
customer’'s account should have their name, account number, and the current
balance. In addition, your ASUBankAccount class should be able to support
customers who would like taithdraw from anddeposit to their bank account.

They also must be able wheck the current balance. Check current balance
method should return the current balance. Customers are NOT allowed to
overdraw on their account. Finally, tlwenstructor should take name, account
number, and the initial balance at the time of object creationsahdccount
instance variable values accordingly.

Part 1 - DESIGN [4 Points]|:

Please draw the UML diagram that represents the ASUBankAccount class above

Make sure to identify proper data types for attributes (data members).

124

Part II - CODING [6 Points]|

Based on your UML diagram above, please develop the ASUBankAccount class.

Part III - BONUS [4 bonus Points|

Add a data member (s) to store last three transactions. Then add a nzetteat
displayTransactionsthat displays the last three transactions. (Hint: you can use
string variable (s) to store transactions and can update them when you withdraw
or deposit money)

1. Please describe how difficult this problem is
1 Really easy
____2Easy
___ 30k
____ 4 Difficult
____5I'mdying, man!

Important Note: You may get a request to participate in the study entithsdv*

Computer Science & Engineering Freshmen Write Computer Programb®’
study is voluntary and will not impact your grade in any way.

125

APPENDIX D

TEST Il (FOR BOTH CSE 100 AND CSE 110)

126

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University
Fall 2009. Quiz 2
10 + 4 Bonus Points, 30 Minutes

You have been asked to develop a Student class to store, say ASbt stude
information. Student class should store the student name, class(sacheas
CSE110), letterGrade, final average, and exam scores. Assumeathastudent

has 5 exam scores. Constructor of the ASUStudent class should tadtadéet
name, class name as parameters at the time of objetibereghen, it sets the
letterGrade to ‘F and all the exam scores and the finalageeto zero.
ASUStudent class should have following methods.

readExamScores: Ask the user to enter exam scores from theakdyand set
exam scores

calculateExamAverage: This function calculates the exam geefessume that
each exam can have maximum 100 and each exam has the sameiwtight
average calculation.

determineLetterGrade: This method determine the letter gradedbon the
following criteria

final average >= 90 A
80 =< final average <90 B
70 =< final average<80 C
Otherwise F

Part 1 - DESIGN [4 Points]|:

Please draw the UML diagram that represents the ASUStudent class alaéee. M

sure to identify proper data types for attributes (data members).

127

Part II - CODING [6 Points]|

Based on your UML diagram above, please develop the ASUStudent class.

Part III - BONUS [4 bonus Points]

e Add the method getHeighestScore that returns the getHeighestScore test
score.

e Add the toString method that return the following message

<student_name>, you have earned <letter grade> for <class name>.
For example, if the Student name is John, and he has earned B for CSE 110,
then, the toString method should return the following string

John, you have earned B for CSE 110.

2. Please describe how difficult this problem is
1 Really easy
____2Easy
___ 30k
____ 4 Difficult
____5I'mdying, man!

Important Note: You may get a request to participate in the study entithedv*

Computer Science & Engineering Freshmen Write Computer Programb®’
study is voluntary and will not impact your grade in any way.

128

APPENDIX E

TEST Il (FOR CSE 100)

129

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University
Fall 2009. Quiz 3
10 Points, 30 Minutes

i) allows us to create new classes based on existing classes.
A) Polymorphism B) Inheritance C) Function overloading D) The copy constructo

E) None of the above

ii.) What is the correct syntax for defining a nelass Parakeet based on
the superclasBird ?

a. class Parakeet isa Bird{ }

b. class Bird extends Parakeet{ }

c. class Bird hasa Parakeet{ }

d. class Parakeet: public Bird{ }

iii. Inheritance is an example of what type of relationship?

a. is-a C. was-a

b. has-a d. had-a

130

2. Consider the inheritance hierarchy given below and answer following questions

Employee

employeelD: int

name:Strin

+ Employee(int, String)

+ void disnlav(
A A

SalariedEmployee HourlyPaidEmployee

- monthlySalary: double a) hourlyRate: double
hY niimheOfHnIIr<ir

+ SalariedEmployee(int, +

String, double) HourlyPaidEmployee(int,

a) [1 points] What is the base (or super) class above?

b) [2 Points] Briefly explain two benefits of inheritance

) [1 points] How many data members does the HourlyPaidEmployee have?

131

3. The following program. Assume that all the programs are correct.

class Book class Dictionary: public Book
{ {
protected : private
int pages; int definitions;
public : public
Book () Dictionary(int numPages, int
numDefinitions):Book(numPages)
pages = 0; {
} definitions =
numDefinitions;
Book (int numPages) }
{
pages = numPages; double computeRatio ()
}
if (pages > 0)
void setPages (int return definitions/pages;
numPages) else
{
pages = numPages; setPages(900);
} return definitions/pages;
}
}
int getPages ()
{ void setPages(int p)
return pages; {
} pages = p + 100;
h }
h
int main ()

Dictionary Dicl (500, 10000);

cout<< "Definitions per page: " << Dicl.computeRatio(); /-
1
Dictionary Dic2 (0, 10000);
cout<< "Definitions per page: " << Dic2.computeRatio(); /-
2
return O;
}

132

e [1 points] What is the purpose ofDictionary(int numPages, int
numDefinitions):Book(numPages)” statement in the constructor of the
Dictionary class above?

e [1 Points] What is the output generate from statement 1 in the main()
program above? Explain your answer.

e [1 points] What is the output generate from statement 2 in the main()
program above? Explain your answer.

Important Note: You may get a request to participate in the study entithsd*
Computer Science & Engineering Freshmen Write Computer Programb®’
study is voluntary and will not impact your grade in any way.

133

APPENDIX F

TEST Ill (FOR CSE 110)

134

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University
Fall 2009. Quiz 3
10 Points, 30 Minutes

i) allows us to create new classes based on existing classes.
A) Polymorphism B) Inheritance C) Function overloading D) The copy constructo

E) None of the above

ii.) What is the correct syntax for defining a nelass Parakeet based on
the superclasBird ?

a. class Parakeet isa Bird{ }

b. class Bird defines Parakeet{ }

c. class Bird hasa Parakeet{ }

d. class Parakeet extends Bird{ }

iii. Java supports both single and multiple inheritance............. (T/F).
2. Ship and CargoShip

Design a Ship class that has the following members

¢ A member variable for the name of the ship (a string)

o A member variable for the year that ship was built (an int)

e toString method that returns the name and year built
Design the CargoShip class that is derived from the Ship class. TheShgrghould
have the following members.

il. A member variable to store the max capacity (an int)

iii. A constructor that takes three parameters for the ship’s name, yéaatdiil
the capacity and sets ship’s name, year built, and the capacity atdhd tim
object creation

iv. Redefine the toString member function that returns the name, yeaahbdilt,
the capacity(this technique is called the function overriding)

135

- Draw the UML diagram that represents the above Inheritance ehgrar

I. Then, implement the Ship class and CargoShip classes

Important Note: You may get a request to participate in the study entithsd*
Computer Science & Engineering Freshmen Write Computer Programb®’
study is voluntary and will not impact your grade in any way.

136

APPENDIX G

THINK ALOUD PROTOCOL — TASK LIST

137

Introduction to the purpose of the study - explain goals of this activity

Think aloud Warm-up exercise — explain the concept of think aloud. Ask
the participant to tell everything they are thinking about froenrhoment

they read the task and when they complete it. They do not need to
plan/think out what they want to say. Just act as if you are byseibur
talking to yourself. The important thing is to keep talking. Perfarm
sample think aloud. For example:

Think aloud as you count how many windows are in your house.
Now, ask the user to try just as you did. Another example follows.
“Please think aloud as you name how many doors are in your
house?”

or

“Please re-count your actions in your morning routine before you
came to work.”

. Establish some rules during the session

1. You will not be able to answer any questions during the observation

2. If you have questions, go ahead and ask them, but you won't respond
until after the session is complete.

3. Remind them that if they're silent for more than 5-10 secondsyiou

ask them to “Please keep talking”

Reaffirm that they agree with being audiotaping

Explicitly mention in-room observers and/or videotaping

Describe the exercise being presented — three sections

Explain that you are not testing them

Reassure users about what will happen if they encounter difisutito
continue and do what they can

Clarify tasks if confusing

Confirm ending time and reassure them that they can stop &tany 30
minutes

138

APPENDIX H

PRE-SURVEY QUESTIONNAIRE

139

Interviewee ID: Date: Time:

Hello. Thank you for taking the time to meet with me and answest®pns
related to logical reasoning and programming skills. Bejoe begin, | want to
remind you that you can skip questions if you wish. If you choose not to
participate or elect to withdraw from the study at any fitiere will be no
penalty. It will not affect your grade in any way. Do you choossotdinue? Yes
or No
1. Can you tell me about X*?
2. How would you describe X to another freshman student?
3. How easy do you think X is?

1) Very Easy

2) Easy

3) Ok

4) Hard

5) Very Hard
4. How did you gain a better understanding Xf (e.g. books, websites,

discussion with a peer, instructor’s notes, teaching assistant ...)?

Thank you very much for participating in this study. Your time arsights are
greatly appreciated.

* X refers to a specific threshold concept

140

APPENDIX |

POST-SURVEY QUESTIONNAIRE

141

Interviewee ID: Date: Time:

Hello. Thank you for taking the time to meet with me and answest®pns

related to logical reasoning and programming skills. Bejore begin, | want to

remind you that can skip questions if you wish. If you choose not toipat&ar

elect to withdraw from the study at any time, there wilhbepenalty. It will not

affect your grade in any way. Do you choose to continue? Yes or No

1.

How would you go about assisting other students who might be struggling

with X?

. What concepts better helped you understand X?

What concept(s) do(es) X help you better understand?

Has X come up in other contexts? Where?

Is there something more you want to share with me about X?

Are there any other concepts you struggled with early in theseothat

became clearer at the end?

Thank you very much for participating in this study. Your time arsights are

greatly appreciated.

* X refers to a specific threshold concept

142

APPENDIX J

INTERVIEW QUESTIONS

143

Interviewee ID: Date: Time:

Hello. Thank you for taking the time to talk with me today about ybaudht

process on writing program. Before we begin, | want to remind ydul tam

planning to record our conversation today so please speak clead\stiddave

your permission to make the audio recording? [Note response]

| want to assure you that your identity will be kept strictyfidential. | will be

asking you a number of questions so please feel free to discussdgaarand

views. Are you ready to begin?

« What was your initial idea for solving this problem when you fiestd the
problem?

e Please share the thought processes you used when solving the problem.

e Please describe how you went about solving the problem.

« How did you feel when you were done solving the problem? What did you
think?

o Describe any challenges you may have had when you attemapsedve the
problem? [If yes,] How did you approach the challenge?

« Did you notice any other areas where a student might facescbeli when

solving this problem? Please describe them and discuss your reasons.

Thank you very much for participating in this study. Your time arsights are

greatly appreciated.

144

APPENDIX K
EXAMPLE OF A TRADITIONAL CS1 QUIZZ

145

l|Fage

CSE 110: Principles of Programming with Java
School of Computing, Informaties and Decision Systems Engineering, Arizona State Universicy
Fall 2009, Quiz
10 Foints Point
Student Mame:.

Parc—1:

Identify the choice that best completes the statement or answers the question

What is the output of the following Java code?

int num = 0;

while {num < 5}

{
System.cut.print{(3 - num} + " "};
num = num + |,=

}

Svyvestem.out.printlni):

] . 43210

4 3 21
4321 d. Mone of these

oo

a.
b
Suppose sum and num are int variables, and the input is
20 25 10 18 -1

What is the output of the following code? (Assume that consale is a Scanner object initialized to the
standard input device.)

sum = 0;
num = consocle.nextint();
while (num != -1}

{
if (num »= 20}
Sum = 3um + num;
else
Sum = Sum - nam;
num = console. nextInt();
] .

Syatem.out.println{sum) ;

a 17 c. 45
b 2B d. Mone of these

146

Z2|Fapge

3, Ina for loop, which of the following is executed first?
a. initial expression ¢, update expression
b. logical expression d. for loop statement

int = = 0;

for {int 1 = 0; i < 4; i++):
K+
if (% == 3)

Systam.out.printin{"*");

4, What is the output of the code above?
a & .) . &k

b, ** d. There is no output
5. What is the output of the following Java cede?

int i

for (7 = 10; j == 107 j++)
System.ovt.print(j + " "};

System.out.princln{i);

a. 10
b, 10 10

10 11
11 11

P

int x = 27;
int y = 10;

do
o= x f 3
whila (X »>= y};

6. If'y = 0, how many times would the loop above execute?

a1 c. 3
h. 2 d 4

147

3|Papgn

7. What is the output of the following Fava code?

int num = 10;
boolean found = false;

do
{
System.out.print {(num + " "};
if (num <= 2}
focund = true;
alse
T = ngm — 37
1

while (num > O && !Zound);

System.cut.println{};

a 10 7 4 ¢, 10 741
b 4 T 10 d. None of these
Part -1l

8) |3 points] What is the output of the following program? Briefly explain vour answer.

public elass Questiond

{

public static void main{String args(])
T gra bl i e
1

Answer:

!

String my3tring ="Winter is arrivingl!!”:
String nesString=" "

for (int i = myString. length) -1 5 i >0 5 i -=8)
{

newString += myString, charat(i);

} .

System. out, println(newString): |

148

APPENDIX L
CSE 110 DATASET

149

ID#

191307
191308
191310
191315
191317
191318
191319
191320
191321
191322
191324
191326
191328
191330
191331
191333
191334
191335
191336
191338
191339
191340
101342
191343
191344
101345
191346
191347
191349
191350
191351
191352
191353
191354
191355
191356
191359
191361
191362
191363
191364
191365
191367
191368

PRIOR
MAJOR GENDER ETHMNICITY PROGRAMMING UML1 UMLZ UML3 CODING1 CODINGZ CODING3

EXPERIENCE
= Male white Yes 075 Q00 Q75 sz =< 0.83
= Male white es 050 Q88 075 Q=0 L00 1.00
= Male whitz Yes 088 088 100 L0 L0 1.00
= Female whit= o 0ys G828 075 100 100 0.82
= Male white o 088 0Oz 088 sz sz 0.83
= Male white Mo 088 Gvys 030 avs L00 0.50
= Male non-White Yes 050 06 088 ez L0 1.00
= Male whit= o 075 O 075 100 100 0.57
= Female non-White Mo i00 L0O0 LOD 098 0&7 1.00
= Male white Mo 1.00 LOO 088 L00 L00 1.00
= Male whits Yes 1.00 100 Q88 a&? 1.00 1.00
= Male whitz] 075 Q88 088 17 100 0.57
= Male white Yes 050 OZ 025 aa? aa? 0.57
= Male white Yes 050 030 062 30 ez 0.50
= Female non-White Yes 1.00 088 088 a7 1.00 1.00
= Female whit= o 1.00 0O88 088 a&? 100 0.82
= Male white Yes 050 o828 L00 =< L00 1.00
= Female white Mo 030 Q& 075 o&es 042 1.00
= Male non-White Yes 100 0G88 Q75 o&es L0 1.00
= Male whit= o 000 Oz 082 o1z =] 0.58
= Male white Yes 075 L00D 0838 L00 L00 0.83
= Male white Yes 030 Q73 075 30 Q73 0.83
= Male whitz Mo 025 030 075 Qoo o&es 0.50
= Male whit= o 075 Q75 100 a=e 100 1.00
= Male non-white '] 075 L0OD L00 Oz= g 1.00
= Female white '] 1.00 0Q73 088 oz o=z 0.82
= Female non-White o 0350 O3 075 aso oz 1.00
= Male non-White o 050 O30 075 Q0o as0 0.57
= Male non-white Mo o000 Q25 025 Q0o a=8 023
= Female non-White Mo 088 Q73 088 30 30 0.83
non-5 Male whits o 0350 Q75 075 1.00 1.00 0.67
= Male non-white Yes 050 Q75 L00 (i uu] L00 1.00
= Male white Yes 050 O&2 L00 aa? 042 1.00
= Male non-white Yes 073 O& 088 L0 L0 1.00
= Male non-White o 1.00 100 Q88 a&? 1.00 0.67
= Male non-White] o000 Q32 030 sz =] 022
= Male non-white Wes 000 025 030 sz Q0o 0.50
non-5 Female non-White TN 088 030 0= oo 017 0,00
= Male non-White ez 025 08 075 a=e a&? 0.57
non-5 Female whit= o 025 0O 088 oz= oz= 0.57
= Male white Wes 1.00 Q30 075 Oz= a&e? 0.83
= Male whits Yes 000 030 L00 L0 o&es 0.83
= Male whits Mo 075 Q&2 088 Qoo asz 0.83
= Female white o 050 O30 030 f=r) =] 0.50

150

APPENDIX M
CSE 100 DATASET

151

PRIOR

IDE MAIOR GENDER ETHNICITY PROGRAMMING UMLL UMLZ CODINGL CODINGZ
EXPERIEMCE

201301 non-CS Mal= Wihit= Mo 0.63 0O.75 0.50 0.33
201302 S Female - Whiite Mo 0.7 100 1.00 0,52
201303 5 Famals - VWit Mo 0.75% 1.00 0.75 1.00
201304 5 Femal= Whit= Mo 1.00 O.EB 1.00 1.00
201305 5 Mal= - Whiite Mo 0.7% 0O.BB 0.50 0.50
201306 non-C5 Famals o=V it Mo 0.BE 0O.BB 0.33 0.42
201307 non-CS Mal= Whit= s 1.00 0.75 0.83 0.83
201311 oS Fmal= Wihit= Mo O0.BE 1.00 1.00 1.00
201312 5 Mal= Whiit= Mo 0.25 0.75 0.00 0.25
201313 5 Femal= o= VWit Mo 1.00 1.00 0.75 0.83
201314 rnon-C5 Femals= mon- White Mo 0.7 1.00 0.33 1.00
201315 = Mal= Whiit= Mo 0.73 0.73 0.58 0.83
201319 5 Mal= Wihiite= Mo 0.EE 0.75 1.00 0.75
201320 o5 Mal= Whit= Mo 1.00 1.00 1.00 0.75
201321 oS5 Mal= mon-White Mo 1.00 075 0.67 0.83
201322 S Mal= Whiite Mo 0.75 1.00 1.00 1.00
201323 5 Femal= Whit= Mo 1.00 1.00 1.00 0.592
201324 5 Mal= Wihit= Mo 0.25 0.50 0.50 1.00
201325 5 Female mon- White Mo 0.BE 1.00 1.00 1.00
201326 non-C5 Mal= Whit= Mo 1.00 1.00 0.83 0.83
201328 5 Mal= o=V it Mo 0.63 0.50 0.33 0.50
201330 = Mal= - Whiite Mo 100 0.73 .67 0.83
201331 5 Famals - VWit Mo 0.75% 0.50 0.42 0.33
201332 &5 Mal= Whit= Mo 1.00 0.75 0.83 1.00
201334 5 Mal= Whiit= Mo 100 0.73 .67 0.50
201335 5 Famals o=V it Mo 1.00 0.BEB 0.3 1.00
201336 = Mal= Whit= Mo O.BE 1.00 0.83 1.00
201337 & Mal= o=V it Mo 1.00 O.EB 0.58 0.83
201338 5 Mal= Whiit= Mo 0.BE 1.00 1.00 1.00
2013389 5 Mal= o= VWit s 0.00 0.75 0.33 1.00
201341 S Mal= o=V it Mo 0.75% 1.00 0.17 0.33
201342 non-L5 Female - Whiite Mo 100 0.73 0.50 0.58
201343 & Mal= - VWit Mo 1.00 1.00 1.00 1.00
201344 &5 Mal= Whit= Vs 0.50 1.00 0.67 0.42
201345 5 Female Whiit= Mo 0.BE 0.73 0.50 0.58
201347 5 Mal= Whiite Mo 0.BE 0O.BB 0.50 1.00
201348 non-CS Femal= Whit= Mo O.BE 0.50 0.42 0.33
201349 5 Mal= o=V it Vs 0.50 0.50 0.33 0.25
201350 5 Mal= Whiit= Mo 0.BE 0.75 0.42 0.67
201351 5 Mal= Whit= Mo 0.38 0.50 0.33 0.33
201353 5 Mal= Wihit= Mo 0.75% 0O.75 0.33 0.33
201356 = Mal= Whiit= Mo 0.7 100 042 1.00
201357 & Mal= - VWit Yux 0.75% 1.00 0.50 0.3
201358 5 Mal= Whit= Mo 0.75% 1.00 0.75 0.83
201359 5 Female Whiit= Mo 100 100 .67 0.83
201360 non-CS Mal= Whiite Mo 0.75 0O.BB 0.17 0.42
201362 5 Mal= o= VWit Mo 0.7% 1.00 0.33 0.58
201367 & Mal= Wihit= Mo 1.00 1.00 1.00 1.00
201368 5 Mal= Whiit= Mo 0.BE 0O.BB 0.58 0.17

152

APPENDIX N
CS1 DATASET

153

PRIDR
PADCAAMMINE UHL1 UMLZ CDDING] CODINGZ
o EXPERIERCE

IDa COUASE HANA GENDER ETD-IH- *

19107 a2 (=51 s o

19173305 w -] Mdc o

1¥1310 w -] o

1¥131S w -] o

11317 w -] o

1F131s - [=5-1 o

iz W CE Tea =23

191320 w b=+-1 S =N

191321 w b=+-1 S PR

191322 w b=+-1 S =

19124 w b=+-1 Tea =

1913zs e z -]

191EzE e z e]

191330 s (=1 = =

191331 s (=1 = {=F_]

191333 lawa (=1 = {=F_]

191334 s (=1 {=F_]

191335 s (=1 =R

1P1Ens - Cm = oE=

11 Ens iz ox adiz]

191339 s (=1 = = L=
191380 lawa (=1 ¥idz cLrs (=% =
191343 s (=1 = = o
171343 s (=1 ¥idz = o=
191 m8s - Cm oo oIz
1P1man - s [= 8-
171348 s (=1 = (=% =
191347 s (=1 = o
191345 s (=1 = o
191350 s (=1 = (=% =
1@1zs1 W et o LD
191ms2 - Cm = oo
191353 lawa (=1 (=K o
171354 s (=1 (=K L=
191355 lawa (=1 - o
191358 s (=1 = [=%"-3
191Esn iz ox = s
1181 w mEeE [= [=X-3
191383 lawa c (=K o=
191383 s =1 (=K c.=z=
1713584 s (=1 = c.=z=
191385 s (=1 = = L
191387 s (=1 S (=K o
171358 L - 1 £ [= (=X~
20101 mmT £ [= [-E =
201302 (=1 S L
201303 (=1 S o=
201304 (=1 S L
201305 (=1 S (=% =
20108] e L
20107 oS Tea Lz
201311 (=1 o L
201312 (=1 o o
201313 (=L (=1 o A
201314 (=L roerCS o L-.
201318 =L (=1 e -3
201319 =L (=1 e L
201320 (=L =1 e L
201321 (=L meeCS e (=X~
201322 (=L =1 e L
201323 (=L =1 e 0 L
01324 =L [=5:1 e L (=% =
01325 =L [=5:1 e o L
DO1328 (=L moE TS L = 0 =X
DOLIDS (=L -] L = (=Kt =B
IO1ES0 (=L -] L = o =
DO1LFFL (=L -] e L = (=Kt =it 3
DOLEST (=L -] L = o =X
TOLIZS L =] M = o oer
IOLIZS L =] s e o =K
D018 (=L -] i L = LN =X
DOLEST (=L -] Mdc L = o =3
DOLISS (=L -] Mdc L = 1 L
DOLIER (=L -] Mdc T o L.
I01=1 = [=-1 Wdc L

o=z = moECS = L L
IOLET (=4 = 2 b=+-1 Mas S L
IO e (=4 = 2 b=+-1 Mas Tea H =
TS (=4 = 2 b=+-1 "z S = [=%- =
IOLET (=4 = 2 b=+-1 Mas S = =
201345 (=t 23 mEeT = = [F=3
01349 i =+] M Tea o L
201350 (=t 23 (=1 ¥idz S = LA
201351 (=t 23 (=1 ¥idz S = s
201353 (=t 23 (=1 ¥idz S cLrs s
201358 (=t 23 (=1 ¥idz S 1o0 LA
TOLIET C++ Cxm Mdic Fza = L= =
201355 (=t 23 (=1 L] e 0 ™ [
201359 (=t 23 (=1 L= S = 7 o
201350 (=t 23 =1 ¥idz S F- o
201382 (=t 23 (=1 ¥idz S = =
201387 (=t 23 (=1 ¥idz S = L
201355 (=t 23 (=1 ¥idz S F- o=

154

