

Assessing Cognitive Learning of Analytical Problem Solving

by

Elodie V Billionniere

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved September 2011 by the
Graduate Supervisory Committee:

James Collofello, Co-Chair

Tirupalavanam Ganesh, Co-Chair
Kurt VanLehn

Winslow Burleson

ARIZONA STATE UNIVERSITY

December 2011

i

ABSTRACT

Introductory programming courses, also known as CS1, have a specific set of

expected outcomes related to the learning of the most basic and essential

computational concepts in computer science (CS). However, two of the most

often heard complaints in such courses are that (1) they are divorced from the

reality of application and (2) they make the learning of the basic concepts tedious.

The concepts introduced in CS1 courses are highly abstract and not easily

comprehensible. In general, the difficulty is intrinsic to the field of computing,

often described as “too mathematical or too abstract.”

This dissertation presents a small-scale mixed method study conducted during

the fall 2009 semester of CS1 courses at Arizona State University. This study

explored and assessed students’ comprehension of three core computational

concepts - abstraction, arrays of objects, and inheritance – in both algorithm

design and problem solving. Through this investigation students’ profiles were

categorized based on their scores and based on their mistakes categorized into

instances of five computational thinking concepts: abstraction, algorithm,

scalability, linguistics, and reasoning. It was shown that even though the notion of

computational thinking is not explicit in the curriculum, participants possessed

and/or developed this skill through the learning and application of the CS1 core

concepts. Furthermore, problem-solving experiences had a direct impact on

participants’ knowledge skills, explanation skills, and confidence. Implications

for teaching CS1 and for future research are also considered.

ii

DEDICATION

I dedicate my dissertation work to my family and many friends. A special

feeling of gratitude to my loving mother, Ms. Edmée Eugenie Billionnière whose

words of encouragement and push for tenacity ring in my ears each morning. Her

prayer has been answered.

I also dedicate this dissertation to my many friends and church family who

have supported me throughout the process. I will always appreciate all they have

done, especially my friend and mentor Debra Crusoe for being there for me

throughout the entire doctorate program. She has been my best cheerleader!

Last but not least, I dedicate this work and give all the glory to God for

keeping me on point and showing me the way when I thought this was not

possible.

“For we were saved in this hope, but hope that is seen is not hope; for why
does one still hope for what he sees? But if we hope for what we do not
see, we eagerly wait for it with perseverance.” (Romans 8:24-25 NKJV)

iii

ACKNOWLEDGMENTS

I wish to thank my committee members who were more than generous with

their expertise and precious time. A special thanks to my committee co-chairs, Dr.

James Collofello for taking me under your wing as a newcomer to the computer

science education research and Dr. Tirupalavanam Ganesh for his countless hours

of reflecting, reading, and proofreading my work. Thank you to Dr. Winslow

Burleson and Dr. Kurt VanLehn for providing inputs.

I would like to acknowledge and thank my department for allowing me to

conduct my research and providing any assistance requested. Special thanks goes

to Audrey Avant, secretary administrative, and Martha Vander Berg, academic

success specialist, for their continued support.

Finally I would like to thank the introductory programming teachers and

teaching assistants in our department who assisted me with this project. Their

flexibility and willingness to provide feedback made the completion of this

research an enjoyable experience.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLE ... viii

LIST OF FIGURES ...x

CHAPTER

I. INTRODUCTION ..1

Problem Statement ...5

Purpose ...8

II. BACKGROUND LITERATURE ..10

Student Success ..10

Performance Outcomes ..10

Engagement..11

Motivation ..12

Program Design ...13

The Nineteen Eighties Period13

The 21st Century Period ..22

Computational Thinking ..24

What is Computational Thinking?25

Computational Thinking and Computer

Science ..26

Summary ..31

III. METHODOLOGY ...33

Data Collection Design ..35

v

CHAPTER Page

Participants and Site ...35

Sampling Strategy ..36

Sample Size and Groups ..36

Data Collection Procedures and Protocols37

Survey on CS1 Concepts37

Designing Tests ..37

Recruiting Participants ..37

Collecting Tests ...38

Think Aloud Protocol ..38

Survey Questionnaires ...39

Interview Questionnaire ...40

Data Analysis Procedures ..40

Quantitative Data Analysis40

Qualitative Data Analysis44

Verifying Data Accuracy ...46

 Avoiding Clerical Errors 46

 Avoiding Subjective Errors 46

 Avoiding Methodological Errors 47

Avoiding Assessment Errors..................................47

Limitations ...47

IV. DATA ANALYSES AND RESULTS ...49

Response Rate ..49

vi

CHAPTER Page

Participant Background ..51

Intercoder Reliability ...51

Quantitative Analysis ...53

Testing for Normality ..54

Dependent t-Test ..55

Multiple Analysis of Variance (MANOVA)57

Peason’s Product-Moment Correlation59

Qualitative Analysis ...61

Analysis of Problem Design62

Problem Design Score Distribution68

Analysis of Problem Solving71

Problem Solving Score Distribution80

Analysis of Questionnaires/Interviews84

Summary and Discussion ...100

V. RECOMMENDATIONS AND FUTURE RESEACH106

REFERENCES ..112

APPENDIX

A. IRB APPROVAL ...119

B. SURVEY ON CS1 CONCEPTS (SENT BY EMAIL)121

C. TEST I (FOR BOTH CSE 100 AND CSE 110)123

D. TEST II (FOR BOTH CSE 100 AND CSE 110)126

E. TEST III (FOR CSE 100) ...129

vii

APPENDIX Page

F. TEST III (FOR CSE 110) ..134

G. THINK ALOUD PROTOCOL – TASK LIST137

H. PRE-SURVEY QUESTIONNAIRE ..139

I. POST-SURVEY QUESTIONNAIRE ...141

J. INTERVIEW QUESTIONS ..143

K. EXAMPLE OF A TRADITIONAL CS1 QUIZZ145

L. CSE 110 DATASET ..149

M. CSE 100 DATASET ..151

N. CS1 DATASET ...153

viii

LIST OF TABLES

Table Page

1. Letter Grade Distribution: Academic Years 2007-08 and 2008-094

2. A Plan is Composed of Seven Components ..17

3. CT and Computing Commonalities ...31

4. Scoring Grading Criteria ..41

5. Comparing Means among Specific Pieces of Each Test50

6. Participation Background Distribution ..51

7. Quantitative Symmetric Measures ...53

8. Dataset 1 Overall Score Performance between Exercises56

9. Dataset 1 Tests of Between-Subjects Effects.......................................58

10. Dataset 3 Tests of Between-Subjects Effects.......................................59

11. Dataset 1 Correlation between UML and Coding................................60

12. Dataset 2 Correlation between UML and Coding................................60

13. Dataset 3 Correlation between UML and Coding................................61

14. Problem Design (UML) Score & Description63

15. Breakdown of UML Scoring Distribution by Course69

16. Assessment of UML Computational Thinking Skills71

17. Program Solving (Code) Score & Description72

18. Breakdown of Coding Scoring Distribution by Course82

19. Assessment of Coding Computational Thinking Skills83

20. Questionnaires/Interviews Participation Distribution84

21. Questionnaires/Interviews Assessment ..85

ix

Table Page

22. Qualitative Symmetric Measures ...97

23. Score Distribution for Test 1..99

24. Score Distribution for Test 2..100

x

LIST OF FIGURES

Figure Page

1. Letter Grade Distribution for CSE 100 ..5

2. Letter Grade Distribution for CSE 110 ..5

3. Pseudo-Code for the Problem 3 ...14

4. Simplified GAP Tree ...16

5. Extended Version of the GAP Tree ...18

6. Assessment of Student Performance with CS1 Concepts35

7. Overview of Qualitative Data Analysis Procedure46

8. Sample for UML Score Excellent ..65

9. Sample for UML Score Good ..65

10. Sample for UML Score Average ...66

11. Sample for UML Score Marginal ..67

12. Sample for UML Score Unsatisfactory..67

13. Scoring Distribution for UML for CS1 Courses68

14. Sample for Coding Score Excellent ...74

15. Sample for Coding Score Very Good ..75

16. Sample for Coding Score Good ...76

17. Sample for Coding Score Average ..77

18. Sample for Coding Score Poor ..78

19. Sample for Coding Score Very Poor ...79

20. Sample for Coding Score Unsatisfactory ...80

21. Scoring Distribution for Coding for CS1 courses81

1

I. INTRODUCTION

In this 21st century, the computing field has never mattered more. The

explosion of new information technologies makes it possible to deliver more

trusted, accurate, and timely information to the decision makers. Many

applications created have changed how work is carried out and how business is

organized worldwide as well as provided local and global solutions to

environmental and societal matters. Yet, inappropriate use of these tools can lead

to disaster for leaders and their organizations. Thus, the knowledge and skills that

computer scientists acquire are critical resources for American society and the

world.

Today’s computer scientists are key players in problem solving as they

identify, formulate, and solve complex real world problems. Therefore, there is a

growing interest in better understanding how higher education institutions prepare

future computer scientists, especially how students write computer programming

code; which is important to success in the digital age. It is widely known that

learning to program, even at a simple level, is a difficult task to achieve. A

substantial number of students, at a rate as high as 50 percent, compared to 30

percent in the early 2000s, fail their introductory programming courses in every

university, worldwide [1, 2]. Despite several academic interventions, the number

of students failing the courses seems to increase rather than decrease over the

years. The computer science education community still cannot fully understand

why some students learn to program more easily and quickly while others

2

struggle. According to Ford and Venema [1], two potential causes that may have a

direct impact on learning to program are: (1) novices’ judgment of their abilities

to achieve a specific task and (2) novices’ internalization of real world objects and

applications. The dropout and failure rates in the introductory programming

courses at the university level are proof that learning to program is a difficult task.

Moreover, if students drop out, fail, or struggle to pass a course in their desired

major, it is unlikely that they will enroll in the subsequent computer science (CS)

course. Thus, there has been ongoing investigation into the study of novice

programmer errors as well as studies to examine how novice students write their

programs in the introductory programming courses [3-6].

Programming is the core of CS, and therefore most national CS programs start

with introductory programming courses (referred as CS1 courses). Regardless of

the recognized importance of learning programming, there are two primary

problems with CS1 courses: (1) the wide discrepancy in student preparation [7-

11] and (2) the level of complexity of material to cover [12-15]. Many higher

education institutions use their CS1 courses as general programming classes open

to majors and non-majors. This results in a group of students with a wide range of

previous computer experience, learning styles, backgrounds, goals, and

expectations. Even when these classes are restricted to CS majors, the problem

persists because the students' experience with programming is still widely varied.

Furthermore, students who have no prior programming experience will most

likely feel inadequately prepared, despite the fact that CS1 classes serve as

introductory programming courses to teach programming.

3

The CS1 courses are often perceived as competitive environments where

students “make it or break it.” Indeed, the lack of self-confidence and the

competitive environment have been identified as major contributing factors to the

high drop-out rate in Science and Engineering courses, particularly among women

and minorities [16, 17]. The abstract concepts of programming can be very

challenging for CS1 students, particularly for those with little programming

background and low confidence in their abilities. Because programming abilities

are at the core of CS, skills in abstraction, conceptualization, design, and

evaluation are essential for the success of students majoring in the computing

field [14, 15, 18].

The Department of Computer Science and Engineering at Arizona State

University (ASU) is concerned with the persistence of their freshman students and

the improvement of student success. Students take either CSE100 (Principles of

Programming with C++) or CSE 110 (Principles of Programming with Java) as

their CS1 course. Both courses teach first year college students fundamental

programming skills such as data representation in programs, running and

compiling programs, simple input and output operations, control statements such

as selection and repetition, and functions and parameter passing.

Many students struggle in CS1 courses and eventually are unsuccessful in

their attempt to complete their first year programming courses. Table 1

summarizes the letter grade distribution for the academic years 2007-08 and

2008-09 at Arizona State University for CS1 courses. According to Arizona State

University’s grades and grading policies, the letter grades A and B for

4

undergraduate studies are equivalent to excellent and good standing whereas C,

D, and E are equivalent to average, passing, and failure. Thus, it is fair to

conclude that successful students in CS1 courses are the students who passed the

course with an A or a B whereas students who received a C, D, or an E barely

passed the course or failed the course. The letter grade W was assigned to

students who dropped or withdrew from the course for unknown reasons.

Table 1 - Letter Grade Distribution: Academic Years 2007-08 and 2008-09

 CSE 100 CSE 110

Fall
2007

Spring
2008

Fall
2008

Spring
2009

Fall
2007

Spring
2008

Fall
2008

Spring
2009

Student
Enrolled

323 237 409 246 243 162 244 163

A 104 92 116 120 84 65 102 63

B 80 44 87 42 48 41 43 34

C 42 28 69 15 33 19 26 21

D 18 14 36 7 10 7 12 7

E 21 17 31 13 23 10 29 12

W 58 42 70 49 45 20 32 26

Based on Table 1, Figures 1 and 2 depict the percentage of students who received

a particular letter grade for CS1 courses. During the academic year 2007-2008,

approximately 18 percent of the students enrolled in CSE 100 and 15 percent of

the students enrolled in CSE 110 dropped or withdrew from the course, and an

additional 25 percent or more failed in both courses by received a C, D or an E.

These results show that approximately 40 percent of the students drop-out or fail

the CS1 courses. Similarly for the academic year 2008-2009, the results show that

approximately 35 percent of the students drop-out or fail the CS1 courses.

5

Figure 1: Letter Grade Distribution for CSE 100

Figure 2: Letter Grade Distribution for CSE 110

As Ford and Venema [1] stated, the current drop-out/failure rate at other

observed institutions ranges from 30 to 50 percent, and the ASU drop-out/failure

rate is within this range. This high rate requires a closer look at the various factors

affecting CS novices’ success in CS1 courses.

A. Problem Statement

The increase of the drop-out/failure rate in CS1 courses over the last decade is

a wakeup call for the computer science education community. It is critical that

higher education institutions retain their students in their engineering/computer

6

science programs (quantity) and better prepare engineers/computer scientists for

the workforce (quality). Over the last few years, we have heard from many hiring

industries that the majority of the interviewed candidates are not able to write a

basic program that prints the numbers from 1 to 100. To address this concern, one

needs to examine what may be at the root of this problem: the initial programming

courses that students experience in their undergraduate program. Basic

programming is taught during the freshman year. As mentioned earlier, students

are introduced to the fundamentals and core concepts of programming in the CS1

courses. Most likely if students have not mastered those basic concepts, then the

more advanced concepts built upon the CS1 concepts cannot be learned

appropriately. Therefore, students either (1) drop out from the program or (2)

navigate through the program with skills gaps that may not be detected by

instructors during the course experience.

This dissertation study attempts to inform this problem by investigating how

students write code in CS1 courses and if any skills gaps can be identified at such

an early stage in the computing field.

This problem of student success in first programming courses is not new, and

many studies have been conducted to increase student learning in CS1 and CS2

(refers to more advanced programming courses emphasizing data structures,

linked lists, binary trees and recursion) courses. Some of the studies have used

active teaching-learning methods such as pair programming [19] and tracing

program execution [20]. Additionally, some studies have used web-based

interactive learning such as intelligent tutoring systems and video games to adapt

7

instruction to the learning style of each student [20-24] and Just-in-time Teaching

to adapt lectures based on the learning progress of students [25]. Those studies

have focused on improving learning through motivation and engagement.

In order to improve student success in CS1 courses, I propose to analyze one

important factor: students' algorithm design based on CS1 core concepts. Novices

spend a lot of time learning core concepts before thinking about the programming

language they are coding in. Core concepts allow students to go through a change

that enables them to begin to "think more like a computer scientist" [26]. Some of

the core concepts in CS are abstraction, dependency, decomposition,

encapsulation, iteration, and recursion [27]. As students progress in the course,

their algorithm design evolves and reflects the core concepts they have learned in

class, if understood. Furthermore, in order to understand their algorithm design, it

is important to use different methods, which vary in their information abstraction

level.

I am not proposing that it is necessary to collect data in regards to algorithm

design for students to succeed in CS1. However, analyzing such data may enable

CS1 instructors to better assess the comprehension and internalization of the

materials presented in class and in the textbook.

The intent of this dissertation study is 1) to identify the core concepts that

students have the most difficulty with and 2) to assess their ability in designing

algorithms and solving problems based on the core concepts. This study aims to

classify instances of student’s mistakes based on the computational concepts

described in the literature. Evaluating students on the core concepts will enable

8

documentation of the roots of the problem, if any, and help make

recommendations to overcome these barriers in terms of teaching methods.

Furthermore, assessing students on their logical reasoning and programming skills

is essential to determine students’ skill gaps in order to make the necessary

interventions to close those gaps and instill confidence in their learning and

abilities. Students who are confident about their information processing skills

perform better [28] in their CS1 courses than those who are not as confident.

Students who succeed in their classes tend to be more motivated to continue in

their chosen major and more engaged in the classroom than students who are

struggling with core concepts in CS.

B. Purpose

This dissertation research proposed to study how CS1 students design

algorithms by using paper-and-pencil exercises, think aloud protocols, and

interviews with a focus on three predefined core concepts based on a survey given

to the CS1 instructors and teaching assistants. These three core concepts were:

abstraction in object-oriented analysis, arrays of objects, and inheritance.

Understanding how CS1 students think and solve problems is essential to identify

students’ skill gaps, improve teaching practices, and make recommendations to

improve the learning of algorithm design.

The outcomes of this research study are to identify any problematic concepts,

logical reasoning difficulties, and problem-solving difficulties that CS1 students

may encounter. Additionally, this study will draw pertinent profiles of “good”,

9

“average”, and “poor” students based on the outcomes from the research methods

used in this study to potentially make recommendations to improve teaching in

the CS1 courses.

10

II. BACKGROUND LITERATURE

Algorithm design is a tedious task to achieve. Over the years, studies have

shown that students experience substantial difficulties with CS1 courses. This

literature review focuses on the various initiatives taken to ease the task of

learning algorithm design using supplemental activities, studies that have

analyzed novice programmers’ problem-solution, and emergent research related

to the notion of computational thinking as a mean to learn/teach the core

principles in any discipline.

A. Student Success

Many students across the Science, Technology, Engineering, and Mathematics

(STEM) disciplines take the introductory programming courses to learn the

fundamentals about problem-solving and algorithm design. Research has shown

that students taking those courses confront three main challenges that have a

direct effect on student success: performance outcomes, engagement, and

motivation.

1) Performance Outcomes: To improve student success, it is imperative to

keep motivated students in the program and help students who are struggling to

perform better. To do so, identifying students’ skills gaps at an early stage is

necessary to enforce intensive intervention in the course development [29].

Furthermore, it is of interest to discover patterns of successful, struggling, and

repeating students enrolled in CS courses to isolate some of the causes affecting

student success [30]. Some studies have shown the profile of successful students

11

in CS as passing both CS1 and CS2 on the first try with at least a B. On the other

hand, students who have passed both CS1 and CS2 earning at most a C were

unable to continue in the program or dropped out. However, students who have

successfully repeated CS1 were able to acquire the skills required to succeed in

CS2. Therefore we may conclude that doing well in CS1 is crucial to be

successfully prepared for CS2. In addition, two feasible constructs that may have

a direct impact on performance outcomes in the CS1 courses are self-efficacy and

mental models [1]. The importance of student’s self-efficacy can be at stake if the

content is too advanced for the students to feel capable of learning the

programming instructions whereas mental models have a direct impact on the

student’s ability to transfer conceptual ideas into concrete ideas. Thus, building

good mental models strengthens self-efficacy [1].

2) Engagement: Studies have shown that the CS field is struggling with

balancing theory and practice throughout its curriculum [31-33]. Academic

environments in the computing field fail to reflect real-world problems that

students can come across during their professional career. Additionally, CS

concepts can be difficult for new students to fully grasp. Most of the concepts

taught in the computing field involve an abstract knowledge base and, therefore, it

is preferable to integrate meaningful projects to prepare and sustain successful

students in this field. Easy-to-understand real-world applications, such as the web

crawler and the spam evaluator, enable students to connect with the application

and process the concepts easier [34-36].

12

Students find themselves spending many hours in front of the computer

coding and debugging; often times they feel overwhelmed, discouraged, or

disengaged by their programming projects [12, 18]. The absence of some type of

engagement results in students’ disinterest. It is essential to find ways to engage

students in a fun and challenging environment without losing their confidence in

‘doing’ and by diversifying the programming projects [17, 37].

Engagement in activities such as paper and pencil exercises (i.e. tracing the

logic of programs) and kinesthetic learning activities (i.e. matching types exercise

for visual understanding of data type and how parameters must match when

passed to a function) have proven to offer an increase in students' engagement in

learning programming and have provided important information in terms of

students' skills gap [6, 38].

3) Motivation: The literature suggests that high levels of academic and social

integration will in many cases result in higher levels of the retention of students

[39]. Social integration such as peers’ collaboration and group activities are seen

as having an impact on students’ sense of belonging to a group or community

[40]. Through these exercises, students are able to practice active, interactive,

and/or constructive learning [41-43]. These different ways of learning keep all

types of learners engaged, and therefore students’ social integration in the

computing field increased as well as students’ motivation in staying part of this

community.

Teaching techniques such as visualization activities and web-based

applications enable students to assess their own knowledge and learn materials in

13

a way that fits their learning style. These techniques have offered promise in

helping classrooms move toward an equitable learning environment, encouraging

students to have positive beliefs about CS, and integrating CS with other

disciplines [44, 45].

B. Program Design

Some of the above described initiatives used to improve student success in

CS1 courses were based on research related to problem solving. This type of

research provides more details on the common mistakes made by programmers as

well as insights into the programmers’ problem-solving methods, and thus enables

researchers and instructors to have a better understanding of how students think

and/or program. For the purpose of the scope of this study, the research

investigation focused on how people, specifically novice programmers (since CS1

courses are primarily composed of freshman students who have no or little

experience in programming), write their programming code. Even though much

research has been done on how experts and novices write/solve their program, the

root of the problem for the inability of students to solve a problem is still ongoing.

It seems that the problem resides in the prerequisites to problem solving. More

investigations in this area are needed.

1) The Nineteen Eighties Period: Soloway led the way in the area of studying

the novice programmers in the 1980s. Soloway et al. [3] found that only 38

percent of novice programmers could write a program that successfully calculates

the average of a set of numbers. In one of the case studies, Bonar and Soloway

14

provided a clear case of novice’s programming bugs due to inappropriate use of

natural language specification strategy [46]. The student, a novice programmer in

Pascal, was writing pseudo-code for the problem: "Write a program which reads

in ten integers and prints the average of those integers." She wrote the following

(see Figure 3):

Figure 3: Pseudo-Code for the Problem 3 in [46]

Despite some inconsistencies in the pseudo-code notation, her write-up is correct.

However, when the interviewer asked whether (la) was the "same kind of

statement" as (2a), it seems "that she thinks the Pascal translator knows far more

about these roles than it does." Below is an extract from the interview after the

student completed her pseudo-code [46, p. 12].

Subject: How’s that, are they the same kind. Ahhh, ummm, not exactly,

because with this [la] you are adding-you initialize it as zero and you're

adding one to it [points to the right side of la], which is just a constant

kind of thing.

Interviewer: Yes

Repeat

(1) Read a number (Num)

(l a) Count := Count + 1

(2) Add the number to Sum

(2a) Sum := Sum + Num

(3) until Count :=I0

(4) Average := Sum div Num

(5) written ('average = ', Average)

15

Subject: [points to the right side of 2a] Sum, initialized to, uhh, Sum to

Sum plus Num, ahh-that's [points to left side of 2a] storing two values in

one, two variables [points to Sum and Num on the right side of 2a]. That's

[now points to 1a] a counter, that's what keeps the whole loop under

control. Whereas this thing [points to 2a], this was probably the most

interesting thing. . .about Pascal when I hit it. That you could have the

same, you sorta have the same thing here [points to la], it was interesting

that you could have-you could save space by having the Sum re-storing

information on the left with two different things there [points to right side

of 2a], so I didn't need to have two. No, they're different to me.

Interviewer: So – in summary, how do you think of 1a?

Subject: I think of this [points to la] as just a constant, something that

keeps the loop under control. And this [points to 2a] has something to do

with something that you are gonna, that stores more kinds of information

that you are going to take out of the loop with you.

Here, we see the novice programmer believing that the programming language

knows more about her intentions than it possibly can. Hence, their results opined

that the natural language seems to have a key effect on early conceptions and

misconceptions of programming [46]. Furthermore, Soloway et al. [47] used a

methodology named Goals and Plans (GAP) Trees, which specifies the

relationship between goals and plans, to analyze the different type of errors that

novice programmers make (see Figure 4). This descriptive methodology of buggy

programs is based on the cognitively plausible, deep structure knowledge (i.e.

16

plan and goal) that describes a programming plan as a strategy for implementing a

goal. “The relationship between programming goals and plans is that a goal can

be achieved by any one of a number of different plans and a plan may give rise to

several subgoals” [47]. Therefore the structure of a plan may be cut into pieces of

knowledge that build the complete plan. These pieces of knowledge are

programming plan schemas, which are stereotyped ways of solving a common

programming problem [48].

 Figure 4: Simplified GAP Tree

From the GAP Tree, a schema is defined as a “remembered framework” [49]; the

schema captures knowledge about the structure of the situation, derived from past

experience. A plan schema is knowledge about the global structure of a problem.

It is a series of ordered actions needed to execute the plan: first do this, then do

this, and so on [49].

There are two types of GAP trees: Inferred GAP Tree (several plans per goal) and

Solution Subtree of a GAP Tree (one plan per goal). An Inferred GAP Tree refers

to all of the plans that can be used to achieve the goal of the problem whereas a

17

Solution Subtree of a GAP Tree refers to one particular plan that can be used to

achieve each goal of the problem. A simplified version of the GAP Tree is shown

in Figure 5. Using this methodology, Bonar and Soloway [46] identified seven

components that compose a plan (see Table 2).

Table 2 - A Plan is Composed of Seven Components

Components Description (using Pascal syntax)

Input READ and READLN statements

Output

WRITE and WRITELN statements, for writing out either messages or

variable values

Initialization
Initialization type assignment statements that give variables their initial

value

Update
Assignment statements that change variables values

Guard
Conditionals, such as IF statements and the termination test of WHILE,

REPEAT, and FOR statements

Syntax
Syntactic connectives which delimit the scope of blocks of code, such

as BEGIN, END, THEN, ELSE, and DO

Plan
An entire plan, possibly composed of many of the foregoing microplan

components

Soloway et al. were able to identify four ways that a program error can occur in a

plan: Missing plan, Malformed guard, Misplaced syntax, and Spurious input [3].

Missing plan occurs when the Plan component is not present in the program.

Malformed guard occurs when the Plan component is present, but it is not

properly implemented. Misplaced syntax occurs when the Plan component is

present, but it is in the wrong place in the program. Spurious input occurs when

the Plan component is present, but it should not be. Furthermore, an extended

version of the GAP Tree, see Figure 5, including the seven components of plan as

well as the four program errors was developed by Segelman [50].

18

Figure 5: Extended Version of the GAP Tree [50]

The characteristics of this knowledge used in program design are forward,

backward, top-down, and bottom-up design [49]. The initial approach for problem

solving defines the starting point for design, but the solution path from start to end

can often be long and complex. For example, consider a program that calculates

the average daily rainfall for a month [48]. If the program design is generated

from the input (i.e. forward), then first the programmer must design the code to

read in the rainfall per day. Once the input routine has been implemented, the

mathematical calculations in the program must be specified, and the programmer

will search for some plan that uses the rainfall data that has just been read into the

program. The program design based on the input may reach an impasse (or not),

and the output must be used to search for a solution. If the program design is

generated from the output (i.e. backward), then first the programmer must design

19

the plan that directly achieves the problem goal, by calculating the average

rainfall (i.e. total/days). For this plan to work, the total rainfall must be found by

adding the daily rainfall to a running total inside a loop. Hence, to calculate this

total, the rain must be read, and the total must be initialized to zero before the start

of the loop. The complete solution is executed. For the novice programmer,

whose program design knowledge is limited, selection may be determined by

whatever catches the attention; the novice simply captures some attributes of the

problem, or even the solution, and starts from there. If the solution design begins

with a search for the input, the novice looks for "read in" or "input is" in the

problem statement, and thus identifies the information needed by keyword search.

Whereas the experienced programmer searches the problem specification for the

goals, retrieves plans to achieve these goals, and expands the plans until they

match with the input data. And thus, as knowledge about how to design a solution

develops, the decisions taken during design are more thought through [49].

Furthermore, Anderson et al. explained decomposition design (i.e. top-down)

[51]. The knowledge of a novice consists of a set of schemas in the form of global

structures of the program, such as a LISP operator, general function, or recursive

function. In their study, the novices retrieved a schema from a text or from

memory and implemented it to provide a solution to the problem. At the most

abstract level, i.e., the program, they selected the first slot in the schema and

retrieved a new structure to fill the slot, then repeated this process until the level

of program code was achieved. The next abstract slot in the program was then

selected and expanded, and once again the process was repeated until the program

20

was completely defined. Deviations from this approach are explained as synthesis

design (i.e. bottom-up) and were first recorded by Jeffries et al. [52]. In their

study, novices created programs by decomposing the problem into subproblems.

However, novices were unable to decompose the problem at many levels of detail.

Using abstract plan knowledge, they did an initial decomposition to design a

solution for the problem at high levels of abstraction, but made unsuccessful

attempts to retrieve more detailed schemas to continue the process. Therefore,

often novices jumped straight to the level of program code, i.e. a very detailed

level of planning. Their behavior changed to bottom-up design due to the lack of

intermediate level schemas. Overall, studies [47-49, 51] showed that program

design pattern depends on both the level of expertise of the programmer and the

difficulty of the problem. If a programmer knows all the required abstract and

detailed schemas, the design shows a pattern of top-down and forward solution

approach, whereas a novice programmer has to create all the required plans and

design, and so his/her design shows a bottom-up and backward solution approach.

Within this context of studying novice programmers, Perkins and others

described novice learner’s problem-solving strategies. Two types of learning

styles were identified: “stoppers” and “movers” [4]. Stoppers appear to give up on

the programming task at the first sign of difficulty, whereas movers use natural

language knowledge to get a partial solution.

“Stoppers and extreme movers can be viewed as being at endpoints of a

continuum based on the ratio of time spent thinking (or time spent sitting

in front of a terminal and not typing) to time spent entering and testing

21

code. But this image of a continuum is in a way misleading. It suggests a

distribution with most students in the middle while extreme stoppers and

movers occupy the statistically rare tails. On the contrary, the descriptions

of stoppers and movers are not caricatures of the norm. Extreme stoppers

or movers are common” [4, p.266].

Perkins found that stoppers can become movers if instructors encouraged them to

decompose the problem and concentrate on a simpler subproblem only.

Furthermore, Perkins and Martin [53] reported students have “fragile knowledge”

of basic programming concepts and a “shortfall in elementary problem-solving

strategies.” This fragile knowledge is manifested through missing knowledge,

inert knowledge, and misused knowledge [53]. Missing knowledge can be

observed when a novice is asked to apply that knowledge in a program and the

student “sort of knows, has some fragments, can make some moves, has a notion,

without being able to marshal enough knowledge with sufficient precision to

carry a problem through to a clean solution” [53, p.214]. This knowledge is

commonly seen when students did not retain the knowledge taught. Inert

knowledge can be observed when simple nonspecific prompts lead the students to

recover the relevant knowledge and proceed correctly. In other words, they did

not initially “retrieve command knowledge but in fact possessed it” [53, p.215].

Studies of programming instruction have reported that a considerable fraction of

novice programmers’ knowledge of commands in a programming language is

inert. Also, this type of knowledge was also shown in the context of active

programming, where there is almost no gap to transfer across [52, 56]. Misused

22

knowledge can be observed when students mix up several disparate elements in an

attempt to fix the situation when they are uncertain [53-55]. This knowledge is

commonly seen when students newly acquired knowledge.

2) The 21st Century Period: At the turn of the millennium, the research group

of McCracken assessed the programming competency of 216 first-year CS

students, Java and C++ programmers, from four universities across two countries

[57]. Each student was required to write a program from a set of problems. Most

students performed poorly and many students did not even complete the software

development task from design to coding. The average grade was only 21 percent.

Based on these results, McCracken et al. [57] suggested that students in the

computing field are not taught programming adequately. However, the

McCracken Group could not identify conclusive reasons for why the students

struggled, but they speculated that it may due to inability of students to problem-

solve. The group defined problem-solving as an iterative five step process:

(1) Abstract the problem from its description,

(2) Generate sub-problems,

(3) Transform sub-problems into sub-solutions,

(4) Re-compose the sub-solutions into a working program, and

(5) Evaluate and iterate.

While the work of the McCracken Group pointed out the current state of novice

programmers, subsequent work is required to analyze the root of the problem,

specifically if it is a language problem (i.e. object-orientation) or if it is a design

problem (i.e. thinking process). To clearly make a distinction between the two,

23

one way is to ask students to demonstrate their understanding of existing code.

This task does not involve problem solving. Building upon the McCracken

research, the Leeds Group studied performance of students from seven countries

on programming-related tasks. The novice programmers were required to answer

multiple choice questions based on two types: “fixed code” questions and

“skeleton code” questions [58]. Fixed code questions, also known as single value

tracing, required students to predict the outcome value in a variable after

execution of a given code. This type of questions required students to understand

the constructs in the given code as well as to be able to trace by hand through

code. In contrast, skeleton code questions required students to identify the correct

missing lines of code from a set of four options. The results from this study

showed that many students performed weakly at these tasks, specifically the

skeleton questions which suggest that these students are “lacking knowledge and

skills that are precursor to problem-solving” [58, p.139]. Therefore, this relates to

the inability of students to read code rather than to write code. To further

investigate these results, the BRACElet project currently focuses on the

relationship between tracing iterative code, explaining code, and writing code

[59]. So far, their findings have indicated that students who do not trace code

cannot explain the code in plain English, and students who usually perform well

at code writing are usually capable of tracing code and explaining code well [6].

24

C. Computational Thinking

In the midst of the struggle to resolve the underlying misconception that

equates CS with programming, a new movement has emerged called

“computational thinking” [60, 61]. Computational Thinking (CT) is one of the

key practices of CS; a combination of logic skills with core CS concepts as an

approach to problem solving.

The idea of CT is to integrate problem solving techniques and approaches into

all disciplines, from the sciences to humanities. Just as the current three

fundamental skills - reading, writing, and arithmetic - CT is a fundamental

analytical skill needed for every citizen to function in today’s global society [60,

61, 62]. These fundamental skills are to “describe and explain complex problems

to others” [71]. Wing [60] goes even further by prophesizing that CT will be a

fundamental skill used by everyone in the world by the middle of the 21st

century. Recent recognition by the National Science Foundation (NSF) seems to

support the idea that CT is an important component for science, technology, and

society; and thus deserves our immediate attention. The NSF’s Computer and

Information Science and Engineering (CISE) directorate has requested that most

proposals include a discussion of how their projects advance computational

thinking. In particular, the NSF CISE Pathways to Revitalized Undergraduate

Computing Education initiative has asked educators to present projects that

introduce computational thinking into some aspect of education, research, and

outreach. Furthermore, from the website of Carnegie-Mellon University’s Center

for Computational Thinking, one can read “it is nearly impossible to […] research

25

in any scientific or engineering discipline without an ability to think

computationally. […] [We] advocate for the widespread use of computational

thinking to improve people’s lives” [63].

1) What is Computational Thinking? CT is a way of reasoning in such a

manner that one defines problems, processes and relationships to solve those

problems. Seymour Papert first introduced this term in 1996 as a way to solve

problems more efficiently using novel approaches to problem-solving [64].

Nowadays, the concept of CT is being spearheaded by Jeannette Wing,

President’s Professor of computer science and department head at Carnegie

Mellon University who also works at the NSF as Assistant Director for its CISE

Directorate. Wing [60] defined CT as follows:

“Computational thinking involves solving problems, designing systems,

and understanding human behavior, by drawing on the concepts

fundamental to computer science. Computational thinking includes a

range of mental tools that reflect the breadth of the field of computer

science.”

Wing defined CT as the use of CS concepts to solve a problem in any domain.

Some “everyday examples” [60] of computational thinking that she outlines

include:

 “When your daughter goes to school in the morning, she puts in her

backpack the things she needs for the day; that’s prefetching and caching.

When your son loses his mittens, you suggest he retrace his steps; that’s

backtracking. At what point do you stop renting skis and buy yourself a

26

pair?; that’s online algorithms. Which line do you stand in at the

supermarket?; that’s performance modeling for multi-server systems. Why

does your telephone still work during a power outrage?; that’s

independence of failure and redundancy in design.”

Furthermore, to help clarify the notion of computational thinking, Wing [60]

listed six characteristics:

1. CT is conceptualizing via multiple levels of abstraction

2. CT is a fundamental skill needed for everyone to function in modern

society

3. CT is not about solving problems like computers, but rather it develops all

critical skills of humans to solve problems

4. CT complements and combines mathematics and engineering thinking

5. CT is principally concerned with ideas as opposed to artifacts

6. CT should be an integral part of everyone’s education

Despite the great efforts from the computer science educators, the definition of

CT at the present remains abstract, and thus this method of instruction is difficult

to apply without knowing exactly what we expect students to learn [65, 66, 67].

2) Computational Thinking and Computer Science: CT has a long history

within CS. Known in the 1950s and 1960s as “algorithmic thinking”, it meant a

mental practice to formulating problems in terms of step-by-step procedures

involving the conversions of some input to an output to solve the problems [68].

Today, the term CT has been expanded to include (1) thinking with many levels

of abstractions to understand and solve problems more effectively, (2) use of

27

mathematics to develop more efficient, fair, and secure algorithms, and (3)

examining how well a solution scales across different sizes of problems for

efficiency, economic and social reasons [63, 69, 70].

Furthermore, CT is seen by the computer science community as a

revolutionary movement to define what the core of the field is about, to provide a

way to reverse the decline of enrollments in the CS field by making the field more

attractive for students to major in and for other disciplines to collaborate with, and

to recognize CS as a legitimate field of science. Many computer scientists view

CT as comparable to other basic cognitive abilities such as mathematical,

linguistic, and logical reasoning that the average individual in modern society

should possess [71]. Thus, the CS1 and CS2 courses are changing to meet the

needs of students in other disciplines who are using computation and

programming; thus programming is presented as a tool used to investigate areas

from all disciplines (i.e. computer science, other sciences, and humanities) and an

essential part of CT [69, 70, 71]. The primary objective is to give a solid

foundation of basic programming and establish an understanding of the

algorithmic thought process [69]. Programming is a language for expressing

ideas, and therefore, you have to first learn how to read and write that language to

be able to think in that language [71]. The teaching of CT should concentrate on

creating vocabularies and symbols to describe computation and abstraction,

recommend information and execution, and provide notation around which mental

models (i.e. abstractions and methods) of processes can be build [60].

28

CT was defined in a number of ways such as 1) notions of procedural

thinking, 2) study of mechanisms of intelligence, 3) processes, 4) formulation of

precise method of doing things, and 5) open-ended and growing list of concepts

that reflects the “dynamic nature of technology and human learning” [71]. These

definitions are ideas extracted from the discussions among computer scientists at

a workshop on CT.

According to Wing [70], computing is defined as the “automation of our

abstractions” whereas CT focuses on the process of creating and managing

abstractions, and defining relationships between layers of abstraction. Wing

argued that CS has developed a set of CT skills that have direct impact beyond the

computing field. She stated that such ideas as abstraction, layering of abstractions,

and automation are fundamental CS concepts that have already yielded new

insights. To assess CT in the CS field, one can look at the following five CT

concepts described in Table 3: abstraction, algorithm, scalability, reasoning, and

linguistics.

Abstraction can be defined as the process of eliminating the non-significant

details of a problem to concentrate on the relevant details and their relationships.

Abstraction is an essential core concept in CT. Wing mentioned that CT is

“conceptualizing” and “thinking at multiple levels of abstraction” [60]. However,

the concept of abstraction has been difficult to translate into CS1 courses. By

categorizing abstraction as a “soft idea,” Hazzan [72] indicated that teaching this

concept by lecture is not enough to increase students’ awareness about the

concept of abstraction. Students must be able to identify the level of abstraction,

29

recognize the existence of different abstraction levels, and use abstraction in the

learning process. If students are not able to apply abstraction then it may be of

interest to “train” them for such task [73]. This remark was made by Kramer

through the observation that in the CS curriculum offered at Imperial College, no

one course explicitly focuses on teaching the concept of abstraction.

Algorithm is another fundamental CT concept that is often introduced in CS1

courses as a set of rules that describes how to solve a problem [74]. This concept

may be described as a program, pseudo-code or step-by-step explanation (in plain

English) of how to do something. This CT concept shows the ability of students to

specify a problem precisely and construct a correct algorithm to a given problem

using basic action steps.

Scalability is the ability of an algorithm and design to handle future growth

plan in a graceful manner or its ability to be enlarged to accommodate that

growth. It must be suitably efficient to plan ahead for scalable algorithm and

design based on potential future growth of the problem. This CT concept is

sometimes introduced in the CS1 curriculum towards the end of the semester. If

not, it is definitely covered in CS2 courses. Usually, scalability is referred in the

curriculum when covering sorting and searching algorithm techniques to help

students to understand how to improve a problem solution; and thus the

importance to design and construct scalable problem solutions [75].

Reasoning constitutes rules that underlie logical and mathematical structures

in the algorithm and design. The formulation of reasoning is seen through logic

constructs such as automation, loops, and recursion. This involves the repeating of

30

a procedure until a desired goal is reached such as if conditions then conclusion.

This CT concept underlines the ability to apply mathematical constructs to the

algorithm [63].

Linguistics includes primarily semantics and syntax. Semantics in problem

design and solution is the meaning that is used to express the abstraction of

information whereas syntax is mainly bounded to the programming language used

and/or modeling language annotations. This CT concept provides clear and

meaningful descriptive annotations and follows the principles and rules governing

the behavior of the chosen programming/modeling language used to design and

solve the problem.

Through those CT concepts, it is expected that undergraduate courses taught

during the freshmen year would enable students to “adopt the thinking habits and

reasoning methods of computer scientists”, i.e. students would learn about the

core computational concepts [71]. However, as of today, the computer science

education community is still focusing on exploring the scope and nature of what

CT is/is not and its cognitive and educational implications [70, 71].

31

Table 3 – CT Concepts

CT Concepts Description

Abstraction

- Deciding what details need to be highlighted and what

details need to be ignored

- Defining the layers of interest such as classes, data

members, methods, and the relationships between the layers

Algorithm Correctness of the program should answer the following

questions:

- Does it do anything?

- Does it do the right thing?

- Does it compute the right answer?

Scalability Ability of the program to be enlarged to accommodate

growth in a graceful manner

Reasoning Correctness of the controls such as recursion, iteration, and

conditional statements

Linguistics Correctness of the syntax and semantics

D. Summary

Today, with universities attempting to improve student success in the CS1

courses, many computer science programs are trying different strategies. The

visual web-based and real-world applications may be ways for some programs to

check whether their efforts are successful or whether further adjustments need to

be made. Certainly, the research investigation is more insightful when students’

problem-solving and program design is tracked through those applications rather

than a focus on the number of correct answers. Finally, it is important to further

32

investigate program design in our current era of computer science. The McCraken

and Lister working groups came to the conclusion that many first-year

programming students cannot program at the end of their CS1 courses mainly due

to difficulty with problem-solving. From their observations, they deducted that

knowledge and skills are the precursors to problem solving. Thus, the next logical

research step is to assess students’ algorithm design and problem solving skills,

students’ knowledge of the CS1 computational concepts, and classify their

mistakes in their work in terms of computational concepts; which is the intent of

my proposed study.

33

III. METHODOLOGY

This study was designed to understand the skills that freshmen develop in

their introductory computer programming courses. This study aimed to inform

CS1 instructors with a better understanding of how their students design

algorithms (Unified Modeling Language, also known as UML) and how their

students solve a given problem through programming (coding). UML works as an

architecture tool providing a high level view of the problems by extracting key

information such as classes, data members, methods, and connections showing

relationships. Coding creates a program that exhibits a certain desired behavior

that requires basic instructions such as input, output, arithmetic, conditional

execution, and repetition. To investigate skills such as design and problem

solving, I collected quantitative and qualitative data described in Figure 6. At the

beginning of the Fall 2009 semester, instructors and teaching assistants (TAs)

were first surveyed on the concepts that students struggle the most with based on

the instructors and TAs’ teaching experience within the past two years. Based on

their answers and the curriculum, with the assistance of the instructors, I

developed paper-and-pencil exercises which focus on these particular troublesome

concepts. Each paper-and-pencil exercise was divided into three sections:

algorithm design, problem-solving, and bonus points pertinent to “fresh”

knowledge (i.e. material covered the day prior or the day of the exercise). The

paper-and-pencil exercises were given to the CS1 students enrolled during the

Fall 2009 semester. The CS1 students representing the student body who took the

34

written exercises are referred as “Group 1”. From these paper-and-pencil

exercises, a letter grade was assigned based on specific criteria to assess the

identified concepts. The exercises were scored to ensure scores represent

quantitative data. Furthermore, students from “Group 1” were invited to

participate in a think aloud experiment as well as an interview to explain their

algorithm design and problem-solving method. This small set of students is

referred as “Group 2”. Data obtained through these methods represent qualitative

data.

The primary aim was to identify any problematic concepts, logical reasoning

difficulties and problem-solving difficulties that CS1 students may encounter

when attempting to do the paper-and-pencil exercises. Secondary issues to be

examined included the comparison of students’ level of expertise by drawing

pertinent profiles of “good”, “average”, and “poor” students based on the

outcomes from the research methods used in this study.

35

Survey on concepts (dependent variable)

Creativity (independent variable)

Bonus points (independent variable)

Pretest (dependent variable)

Posttest (dependent variable)

Interview (dependent variable)

Troublesome
concepts

Figure 6: Assessment of Student Performance with CS1 Concepts

A. Data Collection Design

The data collection design was developed during the Summer 2009 semester

to ensure that permission to conduct research was obtained from Institutional

Review Board (IRB) so I could begin the study during the fall semester.

1) Participants and Site: The “Group 1” was composed of all students

enrolled in CS1 courses whereas the “Group 2” was a subset of “Group 1”

Algorithm Design

(UML)

Problem-Solving
(Code)

Bonus Points
(2 to 3 lines of code)

CS1 Concepts
Assessment

Student Performance

Explanation

 Qualitative Data
Collected

Quantitative and
Qualitative Data

Collected

GGRROOUUPP 22

GGRROOUUPP 11

PPAAPPEERR--AANNDD--PPEENNCCII LL EEXXEERRCCII SSEESS

AALLLL

SSOOMMEE

Troublesome
concepts and

thought process

36

composed of students of age at least 18. This age limitation for Group 2 was

chosen to avoid the challenge of seeking parental permission for study

participants who are younger than 18 years of age. The instructor for CS1 courses

used the paper-and-pencil exercise as quizzes in his classes. The instructor

provided me with a copy of students’ responses to these exercises without

revealing students’ identity. The study was conducted at the ASU Tempe campus.

The paper-and-pencil exercises were in-class tests, and thus were conducted in the

classrooms where the lectures were held on a Thursday whereas the think aloud

and interview exercises took place the following Monday in a non-classroom

setting.

2) Sampling Strategy: Based on Patton [76, p. 243], the sampling strategy

was a maximum variation sampling to ensure that the selected volunteers for the

think aloud and interview exercises were diverse in terms of programming

language, age, gender, grade, and major; and thus, well-representation of the CS1

student body in the sampling.

3) Sample Size and Groups: Enrollment for CSE 100 (Class# 72301) and

CSE 110 (Class# 72321) was at 81 and 64 students respectively. Out of these 145

students, six to ten students volunteered to do the think aloud and interview

exercises. This study included two groups. Group 1 is the group of CS1 students

who did the tests in-class whereas Group 2 is a smaller group of Group 1 who

volunteered to do the think aloud and interview exercises.

37

B. Data Collection Procedures & Protocols

The data collection procedures and protocols were designed while completing

the IRB application for the approval of this study (Appendix A). All the processes

described in this section were required as part of the IRB application before any

study may take place.

1) Survey on CS1 Concepts: Based on the procedure used in [77, 78] to

identify the most difficult topics in CS1, I similarly surveyed by email, instructors

and teaching assistants (TAs) in CS1 courses to identify the most troublesome

concepts in the courses (see Appendix B) and then I rank-ordered the troublesome

concepts based on the frequency of their occurrences. From this ranking, there

were three top troublesome concepts: abstraction in object-oriented analysis,

arrays of objects, and inheritance.

2) Designing Tests: Based on the outcomes of the survey given to the

instructors and TAs, paper-and-pencil tests were developed to address the basic

elements that encompass each troublesome concept. The instructor who taught

CSE 100 and CSE 110 courses then reviewed these tests. The instructor gave

some feedback and/or made necessary changes based on the progress made in

class. The first two tests (see Appendices C and D) were the same for both

courses and the last one (see Appendices E and F) was different because the class

CSE 100 was behind in the curriculum; thus, adjustment was needed to fairly

assess the participants based on what they have learned in class.

3) Recruiting Participants: To recruit participants from the CS1 courses, I

asked permission from the CS1 instructor to come into his class to make an

38

announcement and have the TAs to email the recruitment forms to the roster.

Once I received all the forms back, I tried to select students for participation in the

study to reflect the overall CS1 student body in terms of diversity in age, major

and gender. However, ultimately, participants were chosen based on their

availabilities in order to maximize the number of student participants in the study.

4) Collecting Tests: To collect the in-class tests, I met with the instructor

after the classes ended and he handed me the copies to make photocopies of them.

Then I returned the copies to him within 24 hours. A random numerical number

was assigned to each participant. These numbers were used throughout the study

to maintain the confidentiality of all information concerning research participants.

This information included, but was not limited to, all identifying information and

research data of participants and all information accruing from any direct or

indirect contact I had with the participants.

5) Think Aloud Protocol: This protocol was used for the selected volunteers

who decided to partake in the survey and interview phases (i.e. “Group 2”). I

explained to the participants about the verbalization that I expected throughout the

exercise (see Appendix G) and a warm-up exercise was conducted to ensure that

the participants fully understood the think aloud protocol. Then the participants

were prompted to complete the test as they stated aloud their thinking while the

participants were audiotaped. The participants all had the same amount of time to

complete the test, which was 30 minutes. This protocol may assist with the

assessment of subjects' communication skills and detection of their

misconceptions and confusions about the concepts.

39

6) Survey Questionnaires: After completing a paper-and-pencil exercise on a

Thursday, participants were asked to come back the following Monday to respond

to individualized pretest and posttest surveys (see Appendices H and I) as well as

an interview. The surveys were developed based on a similar study that

investigated the struggles encountered with CS1 concepts [78]. The participants’

answers to the pretest and posttest surveys helped assess pertinent (1) knowledge

skills and (2) explanation skills such as:

a) Comprehension of the core concept (1, 2)

b) Rephrasing of the core concept with no technical words (1)

c) Prior knowledge needed to gain a good understanding of the core concept,

if any (1)

d) Real-world examples in regards to the core concept (2)

e) Context of utility of the core concept (1)

f) Thoughts and reactions, before, during and after the process of solving the

paper-and- pencil exercise based on the core concept (2)

g) Concepts and/or elements where the participants were stuck at first but

then became clearer, if applicable (1, 2)

h) Concepts and/or elements where the participants were stuck and how they

dealt with this situation (1, 2)

i) Concepts and/or elements where the participants were stuck and

suggestions/advice to help other students who might be struggling with the

same concepts and/or elements (2)

40

j) Impact that the understanding of the core concept has on other things, if

any (1, 2)

7) Interview Questionnaire: The interview was added in case that the think

aloud protocol was not very conclusive. Also, it provided a temporal dimension to

the thought processes that arose within the context of solving the problem (see

Appendix J). Participants had a chance to reflect on the given problem over

couple days, precisely four days, and come back to debrief on their answers as

well as to reiterate their reactions and thoughts when solving the problem.

C. Data Analysis Procedures

The data analysis was divided into two parts: quantitative data analysis and

qualitative data analysis.

1) Quantitative Data Analysis: The tests were assessed using grading criteria

for each section. For example, the grading of the first exercise was based on the

assessment criteria indicated in Table 4.

41

Table 4 – Scoring Grading Criteria

Tests Criteria

Problem design

(Part I – 4 points)

� Successfully indicated classes

� Successfully identified data members

� Successfully identified methods

� Assigned proper data types to data members

� Assigned proper parameters and return types to

methods

Problem solving

(Part II – 6 points)

� Properly formed method signatures

� Properly formed variable declarations

� Properly formed method invocations

� Included correct methods

� Properly formed variable assignment

� Properly formed method declarations

� Proper reasoning/logics

� Proper syntax

Bonus points criteria

(Part III – 5 points)

� Problem design solution to bonus points exercise

� Creativity

The instructor of the courses determined the assigned points for each section.

The base score was 10 points, which does not include the two independent

variables - bonus points and creativity.

The sections of the tests (i.e. quizzes) were open-ended questions. The open-

ended questions used in tests often require a more in-depth thinking from the

students and can disclose more about how students understand and reason with

the course concepts than do multiple choice questions. Traditional tests (see

example in Appendix K) often do not disclose much about how students think

about the course concepts. Since students do not have to use their conceptual

understanding, their solutions often accentuate a single value response either a

42

numeric answer when tracing code or an alphabet answer when choosing a

response from a multiple-choice question; and thus such type of tests demand a

single correct response. The instructor and/or TA can only opt by assigning full

credit or no credit. Whereas in tests with open-ended questions, students must

give a solution that accentuates how they came up with an answer which can be

more informative than traditional tests; showing students’ understanding, ability

to reason, and ability to apply knowledge in less traditional contexts. Such tests

can communicate the levels of student achievement more clearly than multiple-

choice items, and thus, give better guidance for instructions.

An application of Amabile’s consensual assessment technique for rating the

tests was applied. Based on [79], the three requirements for the task itself must be

satisfied [79, p.1001]:

1) The programming task did not depend on specialized skills. It was solely

based on what was taught in the classroom/lab setting. There was no pre-

requisite for CS1 courses and, therefore, no prior knowledge in

programming was expected.

2) The programming task was an open-ended question, which enabled

flexibility in responses. For example, a typical exercise was “Based on

your UML diagram above, please develop the [ClassName] class”.

3) The programming task was a paper-and-pencil type exercise, i.e. a written

response, which was easily accessible.

In addition, this study used the following assessment procedure [79, p. 1002]:

43

1) The judges were two graduate students (one female and one male) in the

computing field who have taken the CS1 courses as part of their

undergraduate curriculum. If the two judges have a different point of view,

a third judge, another graduate student in the program, would evaluate the

specific test(s) to break the tie. However, in this study, a third judge was

not needed as the two judges were able to come to an agreement for all the

participants.

2) The judges assessed tests based on their “own subjective definition” of

each criteria such as logic, clarity, identification of attributes and methods,

type parameters, syntax, and more without consulting each other.

3) The judges assessed each programming exercise by comparing one

programming exercise to another one.

4) The judges were given a stack of completed tests, which included copies

of each programming exercise. The order of the copies in each stack was

random for each judge.

Furthermore, using Amabile’s assessment technique, creativity was assessed for

section 2 of each test, which was the problem solving (code). The creativity in

section 1, the algorithm design (UML diagram), would have been a bit difficult to

assess. This section was a straightforward exercise and therefore this section was

not assessed for creativity to stay away from negative creativity. For example, a

few students, who were unable to retrieve their knowledge about the UML

diagram, came up with ‘strange’ answers such as a spiral and a one-paragraph

write-up. One may have thought that their answers were creative but the display

44

of their knowledge about algorithm design was very poor. Based on the notion of

“creativity,” some of the initial impressions of the data were found in students

who did the following:

1) Checked for positive deposit. Only a few of them thought about error

handling for deposit. Who would think about making a deposit of a

negative amount?

2) Used an array in test 1 when it was not the concept tested on. It was

supposed to be in test 2 since arrays were learned after the test 1.

3) Underlined methods and attributes in the problem description

4) Used Boolean methods instead of void methods

5) Named the variables

The assessment of quantitative data was conducted using the software

Statistical Package for the Social Sciences (SPSS). The statistical analysis

explored the overall student performances over the three tests and attempted to

find any correlations existing among exercises. Furthermore, data on students’

background were collected, and thus, comparison within-students was applied to

differentiate any students’ design and problem-solving performance based on

factors such as course, major, gender, ethnicity, and prior programming

experience.

2) Qualitative Data Analysis: Even in quizzes with open ended questions it

may not be that simple to see how a student was thinking on a problem or why

they answered a particular way. In such a case, the computer science education

researcher may decide to conduct interviews with some of the students. The

45

written data (tests) and the verbal data (think aloud/interviews) were assessed by

first identifying episodes demonstrating some skills and then the judges came

together to compare their respective episodes and agreed on the skills to use for

assessment. The goal of the written data is to present samples of student

performance to showcase common mistakes made by the student body

participating in this study. Whereas the goal of the verbal data is to present the

skills that were identified in the think aloud and interview protocols and showcase

some interesting excerpts from the interviews that are related to the CS core

concepts described earlier and the skills identified.

In this study, participants were students enrolled in at least one of the CS1

courses and the problems were open-ended design problems. Three datasets –

Problem design, Problem solving, and Think aloud/Interviews - can be

distinguished in Figure 7 below. Three different analyses were conducted which

included students’ profiles, computational thinking skills, and core concepts

abilities.

46

Figure 7 – Overview of Qualitative Data Analysis Procedure

D. Verifying Data Accuracy

The data accuracy was verified during the data collection. As the study

progressed, changes were made to avoid clerical errors, subjective errors, and

methodological errors.

1) Avoiding Clerical Errors: The data collection worksheets were checked

against the original source of documents (i.e. copies) to ensure consistency with

the assigned identification numbers for both the verbal and written data. Only one

individual was in charge of recording the data in question to limit inconsistency

and inaccuracy.

2) Avoiding Subjective Errors: When dealing with data involving subjective

ratings such as those provided by teaching assistants, an effort was made to

determine the accuracy of the rating system. This was accomplished by examining

the rating scale to determine how clear and comprehensive the descriptions were

of the various rating categories. To ensure accuracy, a designated individual

double-checked the grades entered based on the assessment criteria.

Analysis I
Scoring Distribution

Profiles

Analysis II
Computational

Thinking Assessment

Analysis III
Core Concepts

Assessment

Dataset 1 Dataset 2 Dataset 3

47

3) Avoiding Methodological Errors: Of the data collection techniques

existing, surveys are most prone to methodological error. The survey instrument

(i.e. questionnaires) was reviewed for possible bias by a dissertation committee

member and the Office of Research Integrity and Assurance at ASU.

4) Avoiding Assessment Errors: The assessment of both qualitative and

quantitative analyses was conducted by two graduate students who scored the data

independently using the assessment criteria described earlier in this chapter. Then

the two judges got together and compared their assigned scores. If the scores were

the same then this was the final score. Otherwise, the judges had to reassess the

data until they came into an agreement.

E. Limitations

This study was limited by the number of college students willing to participate

in the interview process. Although the study began with 145 students, only 93

participants from CS1 courses took part in all tests (49 from CSE 100 and 44 from

CSE 110). Thus, the study only looked at this subset of 93 participants to

determine their overall performance across the three tests. Furthermore, only 6

students were interested in participating in the corresponding think aloud and

interview phases. There was a delay in curricular implementation during the

semester, closer to the time when the third test was to be implemented. As a

result, the third test had to be adjusted to reflect the latest material covered in

class and the initially planned assessment could not be fully executed. Because

this exercise was finally implemented closer to the end of the semester, the

48

number of participants for the corresponding interview and think aloud protocol

was low. Although the data collected was useful, the delay in curricular

implementation bounded the data collection for think aloud and interviews to

primarily the first two tests. Nonetheless, this study has useful results that will

inform instructors of CS1 courses.

A secondary limitation to the study was the time needed to conduct

assessment on additional troublesome concepts. Due to the full curriculum

already in place for CS1 courses, the study focused only on the top three concepts

identified by the survey given to the instructors and TAs.

Last but not least, the duration of each test was only 30 minutes, which is a

short time to complete the exercises. Therefore students had to make decisions

rapidly, and the scope for reflection was limited, especially for the bonus exercise.

This time limitation for test was due to the allocation of time for lecture and

review of materials prior to taking the test.

49

IV. DATA ANALYSES AND RESULTS

In this chapter the results of the data are presented. The data were collected

and then processed in response to the problems posed in chapter 1 of this

dissertation. Two fundamental goals drove the collection of the data and the

subsequent data analysis. Those goals were to develop a base of knowledge skills

about what CS1 students know or do not know about the core concepts in terms of

the computational thinking’s characteristics: abstraction, algorithm, scalability,

reasoning, and linguistics; and to compare their overall design and problem-

solving solutions. These objectives were accomplished. The findings presented in

this chapter demonstrate the potential for making significant recommendations to

the CS1 instructors.

A. Response Rate

One hundred and forty five CS1 students were initially identified to take the

tests, including 81 in CSE 100 and 64 in CSE 110. However, only 93 participants

completed all tests. With 93 participants out of 145, the response rate was 64

percent. Furthermore, the last test for CSE 100 did not include any design and

coding due to a delay in the curricular implementation which bounded the data

collection for CSE100 to the first tests. Therefore, 93 participants were considered

and only the first two tests for CSE 100 were considered to be legitimate for this

research. Two hundred and seventy-nine tests were obtained but only 230 usable

responses (98 in CSE 100 and 132 in CSE 110) were analyzed. With 230 usable

responses out of 279, the utility rate was 82 percent.

50

I compared the means from the two samples in each course to ensure that the

actual sample that I am using represents the students who took the tests. The first

sample (iUML1, iUML2, iUML3, iCoding1, iCoding2, and iCoding3) represents

all the students who did not take each specific piece of each test whereas the

second sample (UML1, UML2, UML3, Coding1, Coding2, and Coding3)

represents the students who took all three tests (see Table 5).

Table 5 – Comparing Means among Specific Pieces of Each Test

Pieces of each Test CSE 100 mean CSE 110 mean

iUML1 .790 .653

UML1 .801 .622

iUML2 .864 .629

UML2 .847 .660

iUML3 n/a .748

UML3 n/a .773

iCoding1 .613 .520

Coding1 .626 .583

iCoding2 .739 .790

Coding2 .724 .789

iCoding3 n/a .750

Coding3 n/a .778

As it can be noticed, the difference in means is somewhat minimal; and thus

the proposed sample that I used (93 participants) in this study is accurate and also

very close to the source sample (145 participants).

51

B. Participant Background

Of the 93 participants, 53 percent were enrolled in CSE 100 (C++) and 47

percent were enrolled in CSE 110 (Java). Table 6 represents the overall

background information of the participants based on major, gender, ethnicity, and

prior programming experience. Even though the study attempted to achieve

balance, this was not possible due to the student population in CS1 at that time.

Nonetheless, the participant background distribution is a good representation of

the CS1 students at Arizona State University.

Table 6 – Participation Background Distribution

Major Gender Ethnicity

Prior
Programming

Experience
 CS Non-CS Female Male White Non-White Yes No

CSE 100 82% 18% 31% 69% 59% 41% 10% 90%

CSE 110 93% 7% 25% 75% 64% 36% 43% 57%

CSE 100

∩

CSE 110

87% 13% 28% 72% 61% 39% 26% 74%

Total 100% 100% 100% 100%

C. Intercoder Reliability

As mentioned in the previous chapter, two judges independently evaluated the

tests and reached an agreement. As Neuendorf indicated “[w]ithout the

establishment of reliability, content analysis measures are useless” [80].

Furthermore, Kolbe and Burnett [81] note that “interjudge reliability is often

perceived as the standard measure of research quality. High levels of

52

disagreement among judges suggest weakness in research methods, including the

possibility of poor operational definitions, categories, and judge training.” Thus,

intercode reliability is necessary because its proper assessment makes coding

more efficient and all the work involved - data gathering, analysis, and

interpretation - is unlikely to be dismissed by skeptical reviewers [82].

There are many different measures of intercoder reliability and despite all the

efforts devoted to develop and test measures, there is no consensus on one

universally accepted measure [82]. However, the Cohen’s kappa measure seems

to be the norm in research that involves behavior and learning [83]. In addition,

Cohen’s kappa can be calculated using SPSS. To do so, in the data setup format,

each row represented a single case (i.e. a single participant) and each column

represented the coding judgments of a particular coder for a particular variable

(i.e. UML1, Coding1, and etc). It is rare that a perfect agreement is reached.

Different people have different interpretations. As a rule of thumb values of

Kappa from 0.40 to 0.59 are considered moderate, 0.60 to 0.79 substantial, and

0.80 outstanding [84]. Most statisticians prefer for Kappa values to be at least 0.6

and most often higher than 0.7 before claiming a good level of agreement. From

the SPSS program outputs, the level of reliability for the kappa index for UML1,

Coding1, UML2, Coding2, UML3, and Coding3 is summarized in Table 7. In any

case the level of reliability is always acceptable as all the Kappa coefficients are

greater than 0.90.

53

Table 7 – Quantitative Symmetric Measures

 Measure of Agreement Kappa

Value
Approx. Sig. N of Valid Cases

UML1_c1 * UML1_c2 .919 .000 93

UML2_c1 * UML2_c2 .919 .000 93

UML3_c1 * UML3_c2 .911 .000 44

CODING1_c1 * CODING1_c2 .914 .000 93

CODING2_c1 * CODING2_c2 .933 .000 93

CODING3_c1 * CODING3_c2 .940 .000 44

Disagreements in the reliability coding were resolved by the two judges as an

agreement was reached after a second round of evaluation and thus the two judges

came to the same conclusion for all the participants.

D. Quantitative Analysis

As presented in the previous chapter, the quantitative analysis was conducted

on the tests which are primarily divided into three specific pieces: UML (design),

Coding (problem-solving), and bonus points. For the scope of this study, we limit

the analysis of each test on the first two pieces, UML and Coding.

The statistical data analysis of the exercises focuses on the following research

question hypotheses:

1) How did the group perform on the three tests overall?

2) Are there any differences between how students scored on specific parts of

test1 compared to test 2 (and test 2 compared to test 3)?

3) Are there any relationships between any of the four factors (major, gender,

ethnicity, and prior programming experience) and student performance

scores for each specific pieces of each test?

54

4) Are there any relationships between how students scored on specific parts

of test 1 compared to test 2 (and test 2 compared to test 3)?

To answer the above research hypotheses, I used the analytical software SPSS

to test the data sets for normality; and to conduct dependent t-test, multiple

analysis of variance test (MONAVA), and the correlation test. Furthermore, since

CSE 100 participants were bounded to test 1 and test 2, I have three datasets. The

first dataset analyzed the three tests for CSE 110 (Appendix K), the second

dataset analyzed the first two tests for CSE 100 (Appendix L), and the third

dataset is a combination of the two first datasets for an analysis of the overall CS1

student performance (Appendix M). The data sets included the percentage scores

for each UML exercise (UML1, UML2, and UML3) and each Coding exercise

(CODING1, CODING2, and CODING3).

1) Testing for Normality: A test for normality is a prerequisite for many

statistical tests where normal distribution of data is an underlying assumption in

parametric testing. There are two main methods to assess normality, graphically

and numerically. Numerical tests have the advantage of making an objective

judgment of normality but are disadvantaged by sometimes not being sensitive

enough at low sample sizes or overly sensitive to large sample sizes. Graphical

interpretation has the advantage of allowing good judgment to assess normality in

situations when numerical tests might be over or under sensitive. As such, since

my data sets are of small size samples (< 100 samples), I used the normal Q-Q

Plot as a graphical representation of normality. Based on the plots, the data points

55

were close enough to the diagonal line to conclude that the three data sets can be

considered as normal distributions.

2) Dependent t-Test: The dependent t-test compares the means between two

related groups on the same continuous variable. In this study, a group of freshman

students enrolled in one of the introductory courses were selected from the student

population to investigate whether design (UML) and problem-solving (Coding)

improve their performance in the course. In order to test whether these types of

exercises are useful measures that can show an improvement in performance, the

sample groups were first tested for their performance in test 1, and then measured

again (test 2 and test 3) before the end of the semester.

Using SPSS paired-samples t-test procedure, from the two tables - Paired

Sample Statistics and Paired Samples Test - the first data set (i.e. CSE 110

participants for all three tests) showed the following score improvement:

Due to the significance level value of UML1-UML2 and CODING2-
CODING3 (p > 0.05), there was no statistically significant score
improvement between UML1 and UML2 and CODING2 and CODING3.

t(43) = -3.513, p < 0.05. There was a statistically significant paired
difference for UML2 (0.66 ± 0.24 pt) - UML3 (0.77 ± 0.20 pt);

t(43) = -3.218, p < 0.05. There was a statistically significant paired
difference for UML1 (0.62 ± 0.32 pt) - UML3 (0.77 ± 0.20 pt);

t(43) = -3.707, p < 0.05. There was a statistically significant paired
difference for CODING1 (0.58 ± .34 pt) - CODING2 (0.79 ± 0.26 pt);

t(43) = -3.605, p < 0.05. There was a statistically significant paired
difference for CODING1 (0.58 ± .34 pt) - CODING3 (0.78 ± 0.23 pt);

56

Based on the first dataset results shown above (means and direction of the t-

value), a summary of the overall score performance between each specific piece

of each test is presented in Table 8 below.

Table 8 – Dataset 1 Overall Score Performance between Exercises

Significant Score
Performance
Difference

If Yes then
Positive or Negative

Pair 1 UML1 - UML2 No

Pair 2 UML2 - UML3 Yes Positive

Pair 3 UML1 - UML3 Yes Positive

Pair 4 CODING1 - CODING2 Yes Positive

Pair 5 CODING2 - CODING3 No

Pair 6 CODING1 - CODING3 Yes Positive

From this table, I concluded that overall CSE 110 students’ problem design scores

improved significantly. Even though, CSE 110 students’ problem solving scores

improved significantly, the scores between test2 and test3 were similar with a

mean difference of 0.01.

The second dataset (i.e. CSE 100 participants for the first two tests) showed

the following score improvement:

Due to the significance level value of UML1-UML2 (p > 0.05), there was
no statistically significant score improvement between UML1 and UML2.

t(48) = -3.020, p < 0.05. There was a statistically paired difference for
CODING1 (0.63 ± 0.27 pt) - CODING2 (0.72 ± 0.27 pt);

Based on the second data set results shown above, I concluded that overall CSE

100 students’ problem design scores improved (but not significantly) with a mean

difference of 0.05, and thus this shows that students scored were about the same.

57

However, CSE 100 students’ problem solving scores improved significantly, and

thus this shows that students scored better.

The third dataset (i.e. CS1 participants for the first two tests) showed the

following score improvement:

t(92) = -4.707, P < 0.05. There was a statistically significant paired
difference for CODING1 (0.61 ± .30 pt) - CODING2 (0.76 ± 0.27 pt);

Based on the third data set results shown above, similarly to dataset2, I concluded

that overall CS1 students’ problem design scores improved (but not significantly)

with a mean difference of 0.04, and thus this shows that students scored were

about the same. Whereas, CSE 100 students’ problem solving scores improved

significantly, and thus this shows that students scored better as they progressed

through the semester. However, it is important to keep in mind that in this dataset

there are more CSE 100 students than CSE 110 so this difference of 6 students

may have played a role in the overall CS1 student performance.

3) Multiple Analysis of Variance (MANOVA): MANOVA is used to answer

the research question: “Are there any relationships between the factors and all (or

each of) the dependent variables?” In this section, I only presented partial

multivariate tests tables with relevant information (i.e. p < 0.05).

In the first dataset, there was a significant relationship between major and

Coding3 and ethnicity and Coding3. Also, the combined factors major and

ethnicity were found significant with Coding3 (See Table 9).

58

Table 9 – Dataset 1 Tests of Between-Subjects Effects

Source

Dependent

Variable

Type III

Sum of

Squares Df Mean Square F Sig.

MAJOR UML1 .040 1 .040 .392 .535

UML2 .009 1 .009 .136 .715

UML3 .133 1 .133 3.387 .074

CODING1 .005 1 .005 .049 .826

CODING2 .094 1 .094 1.808 .188

CODING3 .422 1 .422 11.210 .002

ETHNICITY UML1 .073 1 .073 .704 .407

UML2 .013 1 .013 .186 .669

UML3 .162 1 .162 4.123 .050

CODING1 .071 1 .071 .657 .423

CODING2 .087 1 .087 1.666 .205

CODING3 .177 1 .177 4.707 .037

MAJOR *

ETHNICITY

UML1 .134 1 .134 1.300 .262

UML2 .005 1 .005 .067 .798

UML3 .222 1 .222 5.654 .023

CODING1 .005 1 .005 .045 .833

CODING2 .011 1 .011 .210 .650

CODING3 .260 1 .260 6.902 .013

In the second dataset, no significant relationships between the factors and the

specific pieces of the tests were found.

In the third dataset, there was a significant relationship between course and

both UML1 and UML2. Also, the combined factors major and gender were found

significant with all three Coding tests (See Table 10).

59

Table 10 – Dataset 3 Tests of Between-Subjects Effects

Source Dependent Variable

Type III

Sum of

Squares df

Mean

Square F Sig.

COURSE UML1 .118 1 .118 1.657 .202

UML2 .309 1 .309 6.411 .014

CODING1 .006 1 .006 .065 .799

CODING2 .018 1 .018 .277 .600

MAJOR *

GENDER

UML1 .062 1 .062 .877 .352

UML2 .027 1 .027 .565 .455

CODING1 .526 1 .526 6.020 .017

CODING2 .274 1 .274 4.165 .045

CSE 110 dataset shows that computer science male students performed higher

in the third coding exercise than the rest of the students. Furthermore CS1 dataset

shows that CSE 100 students performed higher in the second UML exercise than

CSE 110 students. Also, computer science male students performed higher in both

the second and third coding exercises than the rest of the students.

4) Pearson’s Product-Moment Correlation: This correlation test aims at

comparing the scores obtained in UML tests and CODING tests to determine if

there is a relationship. The research question is: “Does a student who performed

well in UML1 also performed well in Coding1?” The Pearson product-moment

correlation was run to determine the relationship between UML performance test

scores and Coding performance test scores. Since I am performing several

correlations, I must consider a corrected significance level to minimize the

chances of making a Type I error. I used the Bonferroni approach, which required

dividing .05 by the number of computed correlations. I used .0056 (0.05/9) for the

60

first dataset and .0125 (0.05/4) for the second and third datasets. From the first

dataset, students scored similarly on both UML1 and Coding2, on UML2 and

Coding2 and Coding3, and on UML3 and Coding3 (p < 0.0056) (See Table 10).

From the second dataset, students scored similarly on both UML1 and Coding1,

and on UML2 and Coding1 and Coding2 (p < 0.0125) (See Table 12). Whereas

from the third dataset, students scored similarly on both UML2 and Coding2, and

on UML1 and Coding1 and Coding2 (p < 0.0125) (See Table 13)

Table 11 – Dataset 1 Correlation between UML and Coding

 UML1 UML2 UML3 CODING1 CODING2 CODING3

UML1 Pearson Correlation .091 .423** .395**

Sig. (2-tailed) .557 .004 .008

UML2 Pearson Correlation .093 .510** .485**

Sig. (2-tailed) .549 .000 .001

UML3 Pearson Correlation .151 .377* .788**

Sig. (2-tailed) .329 .012 .000

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Table 12 – Dataset 2 Correlation between UML and Coding

 UML1 UML2 CODING1 CODING2

UML1 Pearson Correlation .548** .274

Sig. (2-tailed) .000 .057

UML2 Pearson Correlation .456** .481**

Sig. (2-tailed) .001 .000

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

61

Table 13 – Dataset 3 Correlation between UML and Coding

 UML1 UML2 CODING1 CODING2

UML1 Pearson Correlation .277** .289**

Sig. (2-tailed) .007 .005

UML2 Pearson Correlation .241* .389**

Sig. (2-tailed) .020 .000

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

E. Qualitative Analysis

In this section I provide a sample of student performance profiles and identify

the computational thinking errors that students made, if any. To do so, first a

scoring guide was developed to assess the quality of student performance in

relation to design, coding, and troublesome concepts. The scoring guides for the

exercises indicate specific criteria to describe a range of possible student

responses and a consistent set of guidelines to grade student work.

I describe below the scoring guides for both problem design (UML exercises)

and problem solving (Coding exercises). Since the UML class diagram was

assigned 4 points by the instructor, its scoring guide is divided into five categories

- excellent, good, average, marginal, and unsatisfactory. The Coding exercises

was assigned 6 points by the instructor and thus its scoring guide is divided into

seven categories - excellent, very good, good, average, poor, very poor, and

unsatisfactory. In addition, I have included samples of student responses for

common mistakes found. The three tests given to the students can be found in

Appendices C to F.

62

1) Analysis of Problem Design: The problem-design scoring guide was used

as an assessment tool to judge the quality of student performance in relation to

UML content standards. The scoring criteria were primarily generated based on

the following concepts: classes, data members, methods, connections, and syntax

(Table 14).

63

Table 14 – Problem Design (UML) Score & Description

SCORING DESCRIPTION

EXCELLENT
S = 4

+

+

+

+

+

Classes were named with descriptive names

All data members are well-described and include their
data types

All methods including constructors are well-described
and include their parameters’ data type and return types

All connections are indicated correctly

UML class diagram format is correct

GOOD
4 < S ≤ 3

+

+/-

+/-

+

+

Classes were named with descriptive names

Most data members are well-described and include their
data types

Most methods including constructors are well-described
and include their parameters’ data type and return types

All connections are indicated correctly

UML class diagram format is correct

AVERAGE
3 < S ≤ 2

+

-

+/-

+

+

Classes were named with descriptive names

Few or no data members are well-described and include
their data types

Most methods are well-described and include their
parameters’ data type and return types. Constructors may
or may not be included

All connections are indicated correctly

UML class diagram format is correct

MARGINAL
2 <S ≤ 1

+/-

-

-

+/-

+

Classes may or may not be named (with descriptive
names)

Few or no data members are included with their data
types

Few or no methods are included with their parameters’
data type and return types. Constructors may or may not
be included

Connections may not be indicated correctly

UML class diagram format is correct

UNSATISFACTORY
1 < S ≤ 0

+/-

-

-

-

+/-

Classes may or may not be named (with descriptive
names)

Few or no data members are included with their data
types

Few or no methods are included with their parameters’
data type or return types. Constructors are not included

Connections are not indicated

UML class diagram format may not be correct

64

The student performance in problem design (UML) was measured three times

over the semester. The first UML exercise was given seven weeks after school

began. Students were knowledgeable about classes, data members, and objects.

The second UML exercise was given five weeks after the first UML exercise was

given. Students were knowledgeable about arrays of objects, conditional

statements, and repetition. The last UML exercise was given three weeks after the

second UML. Students were knowledgeable about abstraction, inheritance, and

polymorphism.

Based on the student performance in UML throughout the semester, I have

included samples of student performance below indicated the common mistakes

found frequently. Figure 8 shows an example of an excellent response for a

problem design. The student listed the relevant data members with their respective

data types. In addition, the student listed all the relevant methods, including the

constructor, with their respective parameters’ data type and return types. This

example shows that the student was able to abstract the relevant information from

the given problem as well as organized the information in such a manner that

he/she understood the concepts of class, data members, and methods.

Furthermore, he/she specified the return types of each method in such a manner

that it is clear that he/she understood how the outputs will be accessed,

particularly the method getBalance().

65

Figure 8 – Sample for UML Score Excellent

The next example, Figure 9, shows an overall good response from a student. The

student listed the relevant data members with their respective data types.

However, the data type for the array is not consistent with the data type for the

final average. Furthermore, the relevant methods are listed including the

constructors. However, the student did not include the parameters’ data type, and

thus failed to abstract all the relevant details from the given problem.

Figure 9 – Sample for UML Score Good

66

Figure 10 shows another example where the student’s problem design failed to

abstract the relevant information form the given problem. First, the majority of the

data members are not indicated except for one, balance. Secondly, most of the

methods are included except for the constructor. Last but not least, this response

included the incorrect return type for the method viewBalance(). As a result, this

student’s response was categorized as average.

Figure 10 – Sample for UML Score Average

Figure 11 is similar to the mistakes made in Figure 10 in terms of the abstraction

of the relevant data members, but also the student failed to correctly define the

data. For example, the syntax to define an array is incorrect and some of the data

types for the data members are incorrect such as letter grade. Furthermore, the

methods do not include their parameters’ data type and their return types. Last but

not least, the constructor was omitted. Thus, this response was scored as marginal.

67

Figure 11 – Sample for UML Score Marginal

Figure 12 is an example of a student who was unsuccessful at the abstraction of

the information as well as the correctness of his/her problem design. This

response is omitting the constructors as well as the return types of the toString()

method. The data members are not properly defined. It seems that they are

defined as methods. In addition, the relationship for inheritance between the two

classes is incorrect. The arrow should be pointing in the other direction.

Figure 12 – Sample for UML Score Unsatisfactory

68

2) Problem Design Score Distribution: The scoring distribution for the three

UML exercises is indicated with respect to their score range (Table 13). Note that

the ‘good’ score percentage is the only score that consistently increased

throughout the study. Also, the ‘unsatisfactory’ score is the only score that

consistently decreased throughout the study and at the end of the study no student

response was rated ‘unsatisfactory.’ The two primary reasons for the ‘excellent’

score decreasing for UML3 are: (1) this exercise was only assessed for CSE 110

and (2) many students identified one constructor instead of two constructors.

Furthermore, when combining the top two scores for each UML exercise, about

two-third of the CS1 students received an “excellent” or “good” grade, equivalent

to the letter grade A or B, in UML1 and UML2. Furthermore, eight students out

of nine students performed above ‘average’ in UML3.

Figure 13: Scoring Distribution for UML for CS1 Courses

69

In addition, the UML1 and UML2 percentage scores with respect to the course

variable shows that the majority of the students performing below average are

enrolled in CSE 110 (Table 15). However, the study included 44 CSE 110

participants compared to 49 CSE 100 participants so this difference in 6 students

may have played some role in this difference between the two courses.

Nevertheless, the difference is high so a closer look into the types of mistakes

found across the two courses may be useful.

Table 15 – Breakdown of UML Scoring Distribution by Course

 UML1 UML2

 CSE 110 CSE 100 CSE 110 CSE 100

Excellent 36% 64% 22% 78%

Good 36% 64% 41% 59%

Average 76% 24% 71% 29%

Marginal 50% 50% 100% 0%

Unsatisfactory 83% 17% 100% 0%

UML is a tool used to model/design a problem at the abstraction level in terms

of the relevant information from a given problem. As a result, the assessment of

the types of mistakes made by the students during the semester is based on the

following two computational thinking criteria: abstraction and linguistics (Table

3). Table 16 illustrates a more descriptive disparity among the two classes. In the

first test, both CSE 100 and CSE 110 students scored similarly for the overall

mistakes made in abstraction and linguistics when modeling the problem.

However CSE 100 students’ mistakes were found more than twice as high as their

CS 110 peers’ mistakes for data members and methods. In contrast, CSE 110

students’ mistakes were found more than twice as high as their CSE 110 peers’

70

mistakes for returned types and more than one third as high as their CSE 110

peers’ mistakes for parameter’s data types. As the semester progressed, overall

the students’ mistakes in abstraction reduced by one third when they took the

second test. While CSE 100 students’ mistakes in abstraction drastically dropped,

CSE 110 students still struggled with some of the concepts such as data members’

data types. This is primarily due to the introduction of arrays in their learning.

Most students did not define an array for the exam scores but rather a single

variable to characterize all the exam scores. Students either did not know how to

define an array in their problem design or they defined the array improperly; thus,

the mistakes in relation to linguistics skill went up. Some students who

recognized they had to define an array, but did not know how to, defined five data

members instead, given that the array was limited to five entries. Their alternative

design of the array was correct even though they did not use the concept of the

array in their problem design. Toward the end of the semester, the last test

included two classes. The CSE 110 students failed to identify the second

constructor, and therefore the count for the mistakes related to the omission of the

constructors almost went back to the count from the beginning of the semester.

Otherwise, the count would have been close to zero percent. This shows that the

students have not fully grasped the concept of a ‘constructor.’ If students included

the constructor then they did not include the parameters’ data type for it.

71

Table 16 – Assessment of UML Computational Thinking Skills

 UML1 UML2 UML3

Computational Thinking
Mistakes

CSE
110

CSE
100

All
CSE
110

CSE
100

All
CSE
110

ABSTRACTION 82% 78% 80% 77% 41% 58% 66%
Relevant classes are
omitted/incorrect

0% 0% 0% 0% 0% 0% 0%

Relationships between the
classes are incorrect

0% 0% 0% 0% 0% 0% 7%

Relevant data members are
omitted/ incorrect

7% 12% 10% 0% 2% 1% 0%

Data members’ data types
are omitted/ incorrect

14% 14% 14% 34% 14% 24% 0%

Relevant methods,
excluding constructors, are
omitted

5% 12% 9% 5% 0% 4% 0%

Constructors are omitted 48% 31% 39% 34% 8% 21% 41%
Parameters’ data types are
omitted/incorrect

68% 45% 56% 27% 8% 17% 34%

Return types are omitted/
incorrect

61% 29% 44% 41% 6% 24% 27%

LINGUISTICS 25% 20% 23% 27% 29% 37% 14%

Improper semantics 0% 0% 0% 0% 0% 0% 0%

Improper syntax 25% 20% 23% 27% 29% 37% 14%

Overall, the CS1 students demonstrated computational thinking skills as they

progressed through the semester. Students have a better grasp of abstraction in

terms of data members, methods, data types, and return types. Even if the number

of mistakes made by the students in linguistics did not reduce as the students

progressed in the course, their ability in linguistics is consistent.

3) Analysis of Problem Solving: The problem-solving scoring guide was used

to judge the quality of student performance in relation to program content

standards. The scoring criteria were generated based on program sequence,

inclusion of the classes, methods with constructors, reasoning within methods,

and syntax. Table 17 describes the scoring for each student performance profile.

72

Table 17 – Program Solving (Code) Score & Description

SCORING DESCRIPTION

EXCELLENT
S = 6

+

+
+
+

+

+

Sequence of the program is correct (class, data members, and
methods)
Classes include data members
Constructors are included and initialized
Methods are included with their parameters passing, data types,
and return types
Logic is performed correctly (arithmetic, conditional
statements and repetition statements)
No syntax error

VERY GOOD
6 < S ≤ 5

+
+
+
+

+/-
+/-

Sequence of the program is correct
Classes include data members
Constructors are included and initialized
Methods are included with their parameters passing, data types,
and return types.
Most logic is performed correctly
Few (minor) syntax errors

GOOD
5 < S ≤ 4

+
+
+/-
+

+/-
+/-

Sequence of the program is correct
Classes include data members and methods
Constructors may not be included or initialized
Methods are included with their parameters passing, data types,
and return types.
Most logic is performed correctly
Few (minor) syntax errors

AVERAGE
4 <S ≤ 3

+
+
-
+
+/-
-

Sequence of the program may is correct
Classes include data members
Constructors are not be initialized properly
Methods are included (excluding constructors)
Most logic is performed correctly
Some syntax errors

POOR
3 <S ≤ 2

+
+/-
-
+/-
-
-

Sequence of the program is correct
Classes include some data members
Constructors are not be initialized properly
Most methods are included (excluding constructors)
Few logic is performed correctly
Some syntax errors

VERY POOR
2 <S ≤ 1

+/-
+/-
-
-
-
-

Sequence of the program may not be correct
Few classes with data members are included
Constructors are not included/initialized
Few methods are implemented (excluding constructors)
Logic is performed incorrectly
Many syntax errors

UNSATISFACTORY
1 < S ≤ 0

+/-
-
-
-
-
-

Sequence of the program may not be correct
No classes with data members are included
Constructors are not included/initialized
No methods are implemented
Logic is omitted
Syntax is incorrect

73

Similar to student performance in problem design, the student performance in

problem-solving (Coding) was measured three times over the semester. The first

Coding exercise was given seven weeks after school began. Students were

knowledgeable about classes, data members, and objects. The second Coding

exercise was given five weeks after the first Coding exercise was given. Students

were knowledgeable about arrays of objects, conditional statements, and

repetition. The last Coding exercise was given three weeks after the second

Coding exercise. Students were knowledgeable about abstraction, inheritance, and

polymorphism.

Based on the student performance in coding throughout the semester, I have

included samples of student performance below indicated the common mistakes

found frequently. But first, Figure 14 shows an example of an excellent response

for solving a problem. The student properly defined the relevant data members

with their respective data types. In addition, the student defined all the relevant

methods, including the constructor, with their respective parameters’ data type

and return types. This example shows that the student was able to abstract the

relevant information from the given problem as well as organized the information

in such a manner that he/she understood the concept of abstraction. Furthermore,

he/she used the appropriate controls within the methods when necessary such as

the conditional statement in the method withdraw().

74

Figure 14 – Sample for Coding Score Excellent

The next example, Figure 15, shows an overall very good response from a

student. The student defined the relevant data members with their respective data

types. However, the data type for the array is not consistent with the data type for

the final average. As a result, a minor syntax error will result from it in the

method calcExamAverage(). However, the student failed to use a for-loop when

initializing the exam scores. This solution is correct, but in terms of scalability,

75

this approach will not be suitable when revising the size of the array for the exam

scores. In the method determineLetterGrade(), the conditional statement is

improperly used. After the first “if”, the students should have used “else if” rather

then “if” for the next two conditional statement. Plus, the variable ‘finalAverage’

is misused.

Figure 15 – Sample for Coding Score Very Good

76

Figure 16 shows another example where the student’s problem design failed to

initialize the constructor Ship(). In addition, in the last method, the student should

have used the ‘super’ for the variable ‘name’ and ‘year’ sine these variables are

defined in the super class Ship(). As a result, this student’s response was

categorized as good.

Figure 16 – Sample for Coding Score Good

77

Figure 17 is an example of an average score. The constructor doe not have its

parameters passing and the two methods for toString() do not have their return

types and a space should be included between the two variables to be displayed.

In the last toString() method, there should be a dot after ‘super’. Finally, the

maxCapacity variable was not initialized in the constructor CargoShip().

Figure 17 – Sample for Coding Score Average

78

Figure 18 is an example of a poor score. Some data members are not included and

the constructor is not properly implemented. Also, the data types for the

parameters passing are omitted and the conditional statement in the method

withdraw() is not included. The last method has an incorrect return type.

Figure 18 – Sample for Coding Score Poor

The student response below (Figure 19) has more syntax errors than the previous

examples. The data members seemed to be defined as methods and the methods

79

do not have their return types and their parameters passing. All the methods are

not implemented; and thus this is a very poor student response.

Figure 19 – Sample for Coding Score Very Poor

The last student response example clearly shows that the student defined the

methods as variables at the beginning of the class and the constructor does not

80

have its parameters passing and is not properly initialized. The rest of the problem

is not implemented. This response is unsatisfactory.

Figure 20 – Sample for Coding Score Unsatisfactory

4) Problem Solving Score Distribution: The scoring distribution for the three

Coding exercises is indicated with respect to their score range in Table 21. Note

81

that the ‘good’ score percentage is the only score that consistently increased

throughout the study. Also, the ‘very poor’ and ‘poor’ scores are the only scores

that consistently decreased throughout the study and that at the end of the study

the ‘very poor’ score indicated that no student response failed under that category.

Furthermore, when combining the top two scores for each Coding exercise, about

one-third of the CS1 students received an “excellent” or “good” grade, equivalent

to the letter grade A or B, in Coding1 and two-third of CS1 students received an

“excellent” or “good” grade, equivalent to the letter grade A or B in Coding2.

Furthermore, nine students out of 10 students performed above ‘average’ in

Coding3.

Figure 21: Scoring Distribution for Coding for CS1 courses

A closer look at Coding1 and Coding2 percentage scores with respect to the

course variable shows that half of the students for both CSE 100 students and

CSE 110 students performed above average for Coding1 (Table 18). However, the

82

CSE 110 students performed higher for Coding2. The difference is minimal but a

closer look into the types of mistakes found across the two courses may be useful.

Table 18 – Breakdown of Coding Scoring Distribution by Course

 CODING1 CODING2

 CSE 110 CSE 100 CSE 110 CSE 100

Excellent 18% 25% 43% 33%

Very Good 14% 10% 21% 25%

Good 20% 16% 16% 6%

Average 18% 18% 7% 12%

Poor 9% 25% 9% 18%

Very Poor 7% 4% 2% 6%

Unsatisfactory 14% 2% 2% 0%

Coding is a detailed approach used to problem solve which requires expertise

in abstraction, algorithm, reasoning, linguistics and scalability. These abilities are

part of the assessment of the types of mistakes made by the students during the

semester based on computational thinking skills (Table 3). A more descriptive

disparity among the two classes is highlighted in Table 19. In the first test CSE

100 students performed almost twice as worse as the CSE 110 students in

abstraction, however the two classes performed similarly in algorithm, scalability,

and linguistics. As the semester progressed, overall, the number of mistakes in

abstraction reduced considerably for both courses in the second test. Despite the

use of arrays in this test, students performed much better than in their problem

design. Similar to problem design, in the third test, CSE 110 students failed to

identify the second constructor, and therefore the count for the mistakes related to

the omission of the constructors almost double their count from the beginning of

the semester. Otherwise, the count would have been minimal.

83

Table 19 – Assessment of Coding Computational Thinking Skills

 CODING1 CODING 2 CODING 3

Computational
Thinking Mistakes

CSE
110

CSE
100

Overall
CSE
110

CSE
100

Overall
CSE
 110

ABSTRACTION 27% 51% 40% 16% 16% 16% 48%
Data members are
omitted

9% 14% 12% 14% 10% 12% 12%

Constructors are
omitted

18% 22% 20% 5% 14% 10% 30%

Methods are
omitted

11% 12% 12% 5% 8% 6% 5%

Relationships
between the
classes are omitted

0% 0% 0% 0% 0% 0% 14%

ALGORITHM 39% 45% 42% 20% 33% 27% 20%
Program sequence
order is incorrect

11% 12% 12% 5% 10% 8% 0%

Program does not
do anything

16% 16% 16% 5% 10% 8% 2%

Program does not
do the right thing

25% 31% 28% 2% 12% 8% 11%

Program does not
compute the right
answer (for at least
one method)

30% 29% 29% 16% 14% 15% 14%

REASONING 61% 49% 55% 18% 29% 24% 14%
Control statements
are incorrect

14% 6% 10% 18% 29% 24% 14%

Control statements
are omitted

59% 43% 51% 0% 0% 0% 0%

SCALABILITY 30% 37% 33% 11% 27% 19% 23%
Program requires
more lines of code
than others for
future expansion

30% 37% 33% 11% 27% 19% 23%

LINGUISTICS 59% 63% 62% 45% 43% 44% 34%

Improper semantics 0% 0% 0% 0% 0% 0% 0%

Improper syntax 59% 63% 62% 45% 43% 44% 34%

Overall, the CS1 students have acquired computational thinking skills as they

progressed through the semester. The students have a better grasp of abstraction

in terms of data members, methods, algorithm correctness, scalability, and

linguistics. Even if the number of mistakes made by the students in reasoning did

84

not reduce as the students progressed in the course, their ability in reasoning was

still satisfactory.

5) Analysis of Think-aloud/Interviews: The questionnaires and interviews were

conducted to assess students’ knowledge skills (i.e. CS core concept assessment),

explanation skills, and skills that were related to computational thinking skills

based on literature. As shown in Table 20, 16 participants for test 1 and 11

participants for test 2 were involved in this phase. Due to final semester

examination schedule, no interviews were conducted for test 3. Thus, this phase

was limited to test 1 and test 2.

Table 20 –Think-aloud/Interviews Participation Distribution

 Test 1 Test 2

 CSE 100 CSE 110 CSE 100 CSE 110

Think-aloud/Interviews 6 10 5 6

Students’ knowledge skills and explanation skills were assessed based on the

criteria indicated in Table 21. From this table, overall students’ knowledge skills

increased from test 1 to test 2, with a very similar rate of change for both classes.

Students’ explanation skills have decreased between the two tests, primarily due

to the concept of arrays (i.e. modeling); and thus students struggled with their

explanations. Students’ computational thinking skills were increasing and

decreasing depending on the criteria of interest. In general, students performed

well in the acquisition of knowledge over the two tests, but the introduction of

new concepts such as arrays of objects showed some struggles in both their

explanation skills and computational skills. Furthermore, students seemed to

85

memorize the materials in class rather than internalizing the information when it

comes to the core computational concepts. This can be observed when one looked

at the percentage difference between in-class examples versus other examples. In

addition, participants who were able to successfully explain abstraction

represented a little less than two-third of the participants in this study.

Table 21 – Questionnaires/Interviews Assessment

 Test 1 Test 2

Identified Skills CSE 100
CSE
110

All
CSE
100

CSE
110

All

KNOWLEDGE SKILLS

Understanding the core concept 50% 78% 67% 67% 100% 88%
Recognizing prior knowledge needed to
apply the core concept

50% 67% 60% 67% 80% 75%

Knowing the context of utility of the
core concept

50% 67% 60% 67% 80% 88%

Sharing examples in relation to the core
concept

100% 78% 87% 67% 80% 88%

Referring to/Remembering in-class
material while solving the problem

67% 78% 73% 67% 60% 63%

EXPLANATION SKILLS

Rephrasing the core concept with no
technical words

50% 67% 60% 33% 80% 63%

Reiterating thoughts during the process
of solving the problems

67% 78% 73% 33% 60% 50%

Having confidence when dealing with a
problem

33% 89% 73% 33% 80% 63%

Communicating the goal or solution 67% 89% 80% 67% 80% 75%

COMPUTATIONAL SKILLS

Logically organizing and analyzing data 67% 89% 80% 67% 100% 88%
Representing data through abstractions 50% 67% 60% 33% 100% 75%
Automating solutions through
algorithmic thinking

50% 78% 67% 33% 80% 63%

Analyzing and implementing possible
solution with the goal of achieving the
most efficient and effective combination
of steps and resources

33% 56% 47% 0% 20% 13%

I coded the interview transcripts to illustrate students’ skills broadly

categorized as knowledge, explanation, and computational skills (as in Table 21).

86

The interview text in bold print is representative of the specific skill that is noted

in square brackets immediately following the text.

Excerpt:

So, arrays can store data, either primitive data structures or even objects

themselves [understanding the core concept and recognizing prior knowledge

to apply the core concept], and they’re useful because they can refer to

multiple since they have like indices [knowing the context of utility of the

core concept] and so forth. They can actually store a lot of information

[understanding the core concept], which prevents the programmer from

having to use repetitive means to declare all the variables [knowing the

context of utility of the core concept] for a program.

This participant was able to give a basic definition of the core concept, arrays of

objects, which could be characterized as a response at the level of CS1. The

participant did not use any technical words. The participant explained the core

concept in his own words. I interpreted this explanation to indicate that the

participant has understood the core concept in its technicality and he was also able

to explain the core concept to others (both majors and non-majors). Also, the

participant’s response included the utility of arrays of objects, which indicates that

the participant understood the context and modeling of the core concept.

Excerpt:

Objects are just a subgroup of classes. So they’re smaller [understanding

of core concept and confidence]. You know, the very vague generalized

section is the class. And then these are types of that section like you know you

87

could say, you can have a car and then the object could be the type of car,

the year of the car, the make of the car and so forth [sharing example in

relation to the core concept].

This participant was not able to provide a clear definition of the core concept,

classes and objects, but rather was seeking for approval of his response. I

interpreted that this participant was uncertain about the idea of “objects” and thus

showed his lack of confidence. However, the participant was able to recall the

‘car’ example presented by the professor in-class from the previous lecture. The

participant has an initial understanding of the core concept but his response still

presents some missing information, which prevented him from providing a more

precise definition of the core concept.

Excerpt:

Well, in this particular exercise, I had to create a class that was going to

store information such as the student name, the class name of the student

[reiterating thought process]. I had to do some computation on the scores to

figure out what the student’s final score is [communicating to others the

goal]. So, the first thing I did was I read the problem specifications

[reiterating thought process] to underline and list all the attributes and all

the operations or the methods that would be performed [reiterating

thought process, logically organizing/analyzing data, and representing data

through abstractions]. Also, I had to remember that I had an array as an

attribute [understanding the core concept] and so I had to perform a slightly

different series of operations on that array [remembering in-class material].

88

I had to remember the syntax for initializing an array [remembering in-

class material] with a certain number of elements in the array, one-

dimensional of course of this problem. And, oh, yeah. Well, when I had to

add a method to get the highest score, we had learned an algorithm we

could implement for finding maximum scores [referring to in-class

material]. So, I implemented the algorithm by creating a variable that would

store the highest score in the element zero of the exam score array and

then it would actually go through and compare it with the other scores.

And if I found one that was actually higher, if it founded an element there

with a value that was greater than the initial highest score, it would

replace that variable with the element [reiterating thought process and

automating solutions through algorithmic thinking] from the – whichever

exam score element had been higher. I was able to approach it that way and

it’s very efficient algorithm I think, well, that I know of t o find the

maximum in arrays [analyzing solution].

This participant’s response showcased knowledge, explanation and computational

skills - some of them were explicit and others were implicit. The participant

reiterated his thought process from reading the given problem to his optimal

solution. The participant was able to determine that the modeling of his solution

needed an array and then was able to recall the material learned in class to apply it

to the given problem. Furthermore, the participant explained his solution in a

simple manner which showed the confidence and ease of the participant to

implement a solution. Last but not least, the participant even thought about

89

efficiency even though it could only be based on his knowledge acquired so far.

This indicates that participant had algorithm efficiency in mind that is a bit

advanced compared to the rest of his peers who participated in this study.

Excerpt:

I just underlined the important things that are probably going to be

either a variable or a method or the actual name of the object itself

[logically organizing/analyzing data and representing data through

abstraction]. Things like that. Then I went ahead and did my best to put that

into a UML, which is theoretically just like a code list of programming.

Hmmm the problem asked for the average score grade and then the final

score letter grade [communicating to others the goal]. Even though they

didn’t explicitly mention an array for the exam score, I figured that an array

would save me a lot of trouble with storing the scores [knowing the context

of utility of the core concept]. To calculate the exam average, I just summed

them all up with a “for loop” and then divided by the total of exams

[reiterating the thought process and automating solution]. And then I ran out

of space so I went over here. And this is just a series of if-statements asking

if it’s bigger than 90. No, is it bigger than 80? No. Is it bigger than 70?

No. Fine then he gets an F. And then it returns that score [reiterating the

thought process]. I don’t know if they wanted me to return it or not, but I

figure because you can always have it return, I might as well give them the

option to make their life a little easier.

90

This participant was able to abstract the data from the given problem and modeled

his solution using an array. The participant understood the advantage of using an

array over multiple variables and thus reiterated his thought process for the array

using logic to determine the solution for the problem. The participant explained

the thought process behind the if-statements to determine the final letter grade.

This showed that the participant was confident in his algorithm thinking.

Excerpt:

Because we kind of were taught that we should look at methods as sort of

the actions and the variables are the – basically variables as the nouns in

a problem statement [referring to the material in-class]. I was able to deduce

that name, account number and current balance were attributes to

variables that held a string value, an integer value, and a double value

[understanding the core concept, and logically organizing/analyzing data].

And that the verbs that you wanted to deposit or withdraw or check current

balance were all methods. And by having that kind of – by being able to

compare then in that way, it was easier to take the problem statement,

decompose it into its component parts [confidence] and then create the

UML from there. For the coding section, first we have the basic standard

declaration that its enumeration is public. It obviously is a class and we give

the class name so that it encapsulates the entire class under that name.

We go on just to state that the variables in this class are going to be

accessible only by the class itself and so other classes will have to

instantiate the object in order to be able to access those variables. So

91

obviously I declared each variable in itself as private. I then go on to

declare some of my methods and I start out be creating the constructor

method, which is the basic method used to call an object or use that

object [reiterating thought process and understanding the core concept]. It’s

simply passing values into it and then storing them into the variables, which

will allow the other methods to manipulate the variables later on. One of the

tasks that the problem description wanted me to perform was depositing

and withdrawing [communicating the goal], I created two methods. One that

had no returns so it was a void. All it simply did was set the current balance

equal to the current balance at that time plus the additional of money or

basically adding in money to the account, which is what a deposit would

do. Withdraw was simply taking a double value – oh yeah and both of

these methods have parameters. So in this case, the withdraw is going to

be a double type and it’s going to be subtracting the money and then it’s

going to set the current balance equal to the current balance minus

money [automating solution]. Hmmm I should have added an if statement

that checked for overdraft, which would have been the proper thing to do

[analyzing the solution]. Otherwise, I feel quite confident that my program

would perform as it should if I complied [confidence]. But because I’m

quite new at writing code on paper and not compiling it, I did have some

misgivings about if it would throw up a compilation error or if something in

my program might have a logical error. But overall, I felt pretty confident

that this particular class would assist in solving the problem [confidence].

92

The participant was able to share all three skills – knowledge, explanation and

computational. The participant recalled the material learned in-class and thus was

able to deduce the abstraction of the data from the given problem. Furthermore,

the participant was able to describe the step-by-step procedure to compute the

higher score with a variable and the array. However, the participant’s description

presented many technical words.

Excerpt:

Object is the instance of the class. So, class somehow [confidence] unifies

the data. It has members. It has functions. So, class operates on data but

the way it does, it has variables, member variables, and member

functions [understanding the core concept], but when they create object, this

is actually implementation of the class. For example, if we have let’s say a

triangle. There are a whole bunch of different triangles, but we can create

a class triangle because they all have in common, they all have three sides

[referring to in-class examples]. They all have three angles I guess and

there are certain common characteristics that all the triangles have. So, if

we create a class that does a certain function or includes certain variables

about this triangle then we can simplify the program., and then we can

apply it to a particular – when we create an object, we apply it to a

particular triangle [rephrasing with no technical word]. For me, the idea that

a group of data can have common characteristics that is what helps me to

understand that this is a class, that this is class of triangles. Let’s say

mushrooms, yeah. There’s a class of mushrooms, class of animals

93

[understanding core concept]. Maybe it’s the same idea. Oh I think yeah

[confidence] we would give an example of animals that would be cool.

The participant was able to express his knowledge skills in such a manner that

showed that he understood the abstraction concept but his knowledge still

presented some uncertainty referred as “somehow” and “maybe.” However, the

participant was able to reiterate the in-class example ‘triangle’ except for the

details of the example. It seems that the participant was shying away from

explaining the common and/or certain characteristics, which may be due to

missing knowledge.

Below I have included excerpts that presented negative notations of the criteria

indicated in Table 20.

Excerpt:

I didn’t know [confidence] like how many exams they were going to enter

and so I was like trying to account for that. I have them keep entering but then

I was like I don’t know [confidence] how many and how am I going to keep

track of all of them so I created five variables to keep track of five scores

for a given student [understanding core concept].

In this excerpt above, the participant failed to efficiently implement his solution

using an array. And thus the modeling of the solution was incorrect. Furthermore,

the participant seemed to show that he was a bit confused about how to solve the

problem. He used the statement “I don’t know” twice in this interview excerpt.

Excerpt:

94

An array of objects is like having an array; you had the set like 0,1,1,0, and

then whatever. And you would set it up like the numbers in the left-hand

side go down in the left hand and the numbers in the right-hand side go to

the right hand. And in the middle was like what it makes like when you

have combination [understanding the core concept]. Oh an array of- well you

could have different – it doesn’t have to be numbers in the array. It could be

like say like class members or a class of students or something. You have

John, Joe, Matt, and you have like the test scores also and you have John 90 or

something.

In this excerpt above, the participant was not able to explain the core concept. I

interpreted this student’s response as showing that the participant did not fully

understand the concept of arrays.

Excerpt:

(laughing) I am panicking. I don’t know. I really don’t know [confidence]

how to solve it, just from scratch. I mean if I had a laptop and the Internet then

maybe my Java book. I probably could figure out in more than 30 minutes I’m

sure. The biggest for me right now is to bring the code out of nothing. Plus, I

don’t have fellow students to ask for help or see what they did to see what I

did differently; help them, help me, and just me and the paper.

In this excerpt above, the participant panicked and thus he lost his confidence

before he even began. It seemed that he was out of his comfort zone, which

included not having access to his laptop, Internet, and textbook.

95

Below I have indicated some of the types of struggles/challenges that participants

encountered.

Excerpt:

It’s hard [confidence] in the beginning because [abstraction] is a new

concept. You have to switch your way of thinking. Instead of having a set of

instructions and focusing on instructions, you focus on how to organize the

data. I used the program that does mind map where I can make connection

like classes and objects and then I broke [them] up with all the concepts that

connected with. For me I’m a visual person so mind map for difficult things or

an abstract thing that has a lot of concepts works great. There are a bunch of

programs that do that [such as] Mind Jet, Mind Note, Mind Manager

[sharing examples]. The website for Mind Manager has a lot of templates for

teachers to use for hard concepts.

The participant noted that she encountered difficulties because the concept of

abstraction is hard for her mind to understand. The participant is a visual learner

and thus abstract ideas need to be presented to her in a visual manner. For

example, the tool Mind Map (http://www.mindmap.com/), which is a diagram

(similar to UML) used to represent words and ideas linked to a central keyword.

This tool helps with studying/organizing information and solving problems.

Excerpt:

I think sometimes people don’t grasp some of the basics, like with objects,

and I have a hard time grasping [confidence]. I am thinking I’ve mislabeled

a few things that were variables as objects when doing the exercise.

96

This participant showed confusion in his learning of the core concept, and thus he

was unable to build up his knowledge.

Excerpt:

I kind of looked over it and I noticed that there are a few problems

[confidence] that I had, but it was something that I would have to be sitting at

a computer and testing it to see what would work and what wouldn’t work.

So, like if the current balance is equal to zero, set the current balance to the

initial balance. I thought what if the person withdrew exactly to where the

current balance is zero then they would get their money back [reiterating

thought process]. So there are little things like that I have to tweak and fix

before it was a perfect program [analyzing solution].

The participant was aware that his solution was not complete in terms of

efficiency. The participant needed the computer to test and ‘tweak’ (i.e. debug)

out his solution.

Last but not least, few of the excerpts were related to self-taught concepts and

utility of learning tools. These are indicated below.

Excerpt:

I taught myself [programming]. I mean, I’m sure [confidence] you understand

that with programming, there’s the structure and then the syntax

[understanding core concept]. I taught myself the structure, which is very

similar among, you know, most languages. And obviously, I taught myself

the syntax of the language I was learning as well [recognizing prior

knowledge]. But because I know the structure, it’s a lot easier for me to learn

97

different languages. It’s […] like […] music. Once you learn how to read

music, it’s not difficult to learn to play a different instrument [sharing

example].

The participant demonstrated his/her confidence through sharing his/her

experience in learning the concept of programming by first learning the common

structure in all languages and the syntax, which is bonded to the particular

language.

Now let’s take a look at the score distribution of the participants who took both

the written and verbal protocols in this study. Sixteen participants were identified

in the first test and twelve participants in the second test. First, the intercoder

reliability kappa coefficient was run on the other two variables – explanation and

abstraction for test 1, and explanation and modeling for test 2. The level of

reliability for the kappa index is summarized in Table 22. According to Landis &

Koch [84], the level of reliability is “outstanding” as all the Kappa coefficients are

greater than 0.80.

Table 22 – Qualitative Symmetric Measures

 Measure of Agreement Kappa

Value
Approx. Sig. N of Valid Cases

Exp1_c1 * Exp1_c2 .811 .000 16

Abstr_c1 * Abstr _c2 .805 .000 16

Conf1_c1 * Conf1_c2 .893 .000 16

Exp2_c1 * Exp2_c2 .862 .000 12

Model_c1 * Model_c2 .862 .000 12

Conf2_c1 * Conf2_c2 .862 .000 12

98

The two judges resolved disagreements in the reliability coding. An

agreement was reached after a second round of evaluation, and thus the two

judges came to the same conclusion for all the participants. A third judge was not

needed to serve as tiebreaker.

The final score distributions for the participants are indicated below (Table 23

and Table 24). Note that the scores of the variables explanation, abstraction,

modeling, and confidence are based on a scale of zero to one. Also, across the two

tests, four participants took both written and verbal protocols for both tests; they

are highlighted in bold. From Table 23 and Table 24, participants who performed

low (i.e. scores less than 0.5) in algorithm design also performed low in problem

solving. Participants who performed average in problem solving (i.e. scores

equals 0.5) performed higher in algorithm design (i.e. scores greater than 0.5).

This indicates that even though the participants were not able to solve the

problem, they were able to abstract key elements from the problem statement, and

thus they knew what information were relevant. If algorithm design scores were

higher than problem solving scores then participants shown some knowledge of

the core concept (i.e. 0.5 out of 1). Furthermore, their difficulty with solving the

problem had a direct impact on their confidence and explanation skills. Their

explanations were not clear and demonstrated misconceptions about the core

concept. Participants who scored less than 0.5 in problem solving also scored zero

in confidence and either zero or 0.5 in explanation. Whereas participants who

performed higher in problem solving (i.e. at least 0.5) also scored at least 0.5 both

in confidence and explanation. Finally, participants who successfully solved the

99

problem (i.e. scores equal 1) also performed highly in algorithm design,

explanation, core concept, and confidence (i.e. scores greater than 0.75).

Table 23 – Score Distribution for Test 1

UML1 Coding1 Explanation Abstraction Confidence

0.75 0.916667 1 1 1

0.625 0.75 1 0.5 0.5

0.75 1 0.5 1 1

0 0 0 0 0

0.75 0.333333 0 0.5 0.5

0.75 0.916667 1 1 1

0.5 0.5 0 0.5 0

0.666667 1 0.5 1 1

0.875 1 1 1 1

0.25 0 0.5 0 0

0.75 0.5 0.5 0.5 0

0.75 1 1 1 1

0.875 1 1 1 1

0 0.166667 0 0 0

0.5 0.666667 0 0.5 0

0.5 0 0 0.5 0

100

Table 24 – Score Distribution for Test 2

UML2 Coding2 Explanation Modeling Confidence

0.75 0.833333 1 1 1

0.875 1 1 1 1

0.75 1 1 1 1

0.75 0.5 0.5 0.5 0

0.75 0.666667 0.5 0.5 0.5

0.25 0.166667 0 0.5 0

1 1 1 1 1

0 0 0 0 0

0.75 0.916667 1 1 1

0.5 0.166667 0.5 0.5 0

0 0 0.5 0 0

0.25 0.333333 0 0.5 0

E. Summary and Discussion

This study’s purpose was to explore the core computational concepts in CS1

courses and to assess students’ skills in algorithm design and problem solving.

Due to the limitations of the study, this chapter focused on primarily two core

computational concepts – abstraction and modeling. From the participants’

written and verbal responses, students’ profiles were drawn based on their

algorithm design (i.e UML) and problem solving (i.e. coding) and students’

common mistakes were categorized based on the computational thinking criteria

described in the review of literature.

101

First, it is important to acknowledge that students are on a path from

novice to skilled programmers. That is, CS1 students first must learn to solve

structured problems involving concepts, as in their introductory courses, to be

able to both formulate and solve less structured and uncertain types of

problems, as in the real-world applications. Developing such ability requires a

continuing back-and-forth between theory and application as the students

acquire more sophisticated skills through experience. In addition, computer

science students are primarily eighteen to twenty-two years old, and thus

students are still in the early phase of their cognitive development. Students’

learning abilities at this phase can help computer science educators understand

their students’ cognitive development and thus improve assessment and

instructions in terms of knowledge and practice. By the end of the

introductory courses, students are expected to be able to use the computational

concepts to solve specific and well-defined problems. It is assumed that the

more they practice applying these concepts, the deeper their understanding of

the concepts become.

Findings have shown an increase in higher scores in both algorithm design

and problem solving. Even though, the number of participants who performed

above average in algorithm design (i.e. abstraction of the class, attributes, and

methods) showed no significant difference between test 1 and test 2 (69

percent), participants who performed at an average level, increased from 18

percent to 23 percent. The number of participants who performed above

average in problem solving (i.e. implementation of the class, variables,

102

methods, and logic) increased from 52 percent in test 1 to 78 percent in test 2.

In addition, the number of mistakes identified as computation thinking criteria

decreased from test 1 to test 2 by one-third to two-third. When adding the

verbal responses to the written responses, it was found that high scores in

algorithm design were consistent with higher score in problem solving which

was no surprise. Abstraction is the first step before solving a problem and thus

a well-written abstraction of a given problem enables better guidelines for

solving the problem. However, the problem solving scores were found to have

a direct impact on the other variables, particularly on explanation skills and

confidence. When solving a problem, more than two-third of the participants

referred to knowledge such as definition and examples that were mostly

visited in-class. This shows that students have acquired transferable

knowledge, i.e. they have the ability to map problems’ solutions to very

similar problems given earlier.

It can be observed through algorithm design and problem solving that

participants have indirectly acquired some of the skills in computational

thinking. Since UML represents modeling the problem, students must identify

the relevant information from the given problem. By doing so, students are

using a form of abstraction, which is a key aspect of computational thinking;

and thus, this is a fundamental step when attempting to solve a problem. As

described in the background literature, the ‘grand vision’ of computational

thinking is to enable everyone in any discipline of study to have a common

understanding of the core computational concepts in the computing field to

103

solve real world problems. In this study, the assessment of abstraction was for

participants to demonstrate their abilities in separating valuable and non-

valuable information from the given problems. Also, abstraction included the

representation of the valuable information by programming concepts such as

class, object, data members, and methods. This step of abstraction in learning

programming in CS1 is important because it assisted instructors/TAs in

evaluating students’ modeling these concepts which served as a primarily base

for the next step in programming which was problem-solving. The assessment

of problem solving was supported by the modeling of the abstraction step. The

assessment of problem solving was for participants to demonstrate the

application of abstraction to the given problems including the logic behind it.

This step of problem solving in learning programming in CS1 is very relevant

because it assisted instructors/TAs in evaluating students’ reasoning in terms

of basic operations such as arithmetic, conditional statements, and

repetition statements. This step enables the discovery of mistakes in basic

mathematical operations and thus incorrect logical thinking to solve a

problem. Also, in this study, the problem solving step included the

modeling of the solution using a programming language (Java or C++) so

instructors/TAs were able to assess specifics about syntax mistakes which

was resourceful to determine the level of complexity for concept specific

syntax. Thus, abstraction and problem solving are essential in the learning

of programming in CS1 because they represent the fundamental steps that

any novice programmers would take to solve a given problem. It is crucial

104

that instructors teach students the importance of the step of abstraction

before the step of solving a problem. The correct order of execution of

these two steps will benefit students in long term when they will have to

tackle more larger and complex problems.

Reinforcing the model of software design in CS1 curricula would enable

this ‘grand vision.’ In CS1 courses, instructors teach students from all

disciplines, i.e. computer science and non-computer science majors. The use

of a tool, which does not require the knowledge of any programming

language, would enable instructors to assess the notion of abstraction (classes,

attributes, methods, and relationships) defined by computational thinking. In

this study, UML was used as it is part of the curriculum. Furthermore,

problem solving of simple real-world problems that can be identified by

students as daily activities, such as bank account transactions and gradebook,

enable students to develop their basic analytic skills such as abstraction,

algorithm, reasoning and scalability. Such skills are critical to tackle larger

problems using the computer. Sometimes, the programming language editors-

compilers allow students to arrive at answers without thinking, if the students

have mastered debugging skills. This study used paper-and-pencil and open-

ended exercises to minimize ‘guessing’ when dealing with single value

answer. Using such type of exercises, I was able to follow how students came

up with an answer, which was more informative than traditional tests.

However, half of the students were thrown off by the open-ended questions,

and thus they encountered some difficulties in their algorithmic thinking. In

105

addition, participants wrestled with problems given in plain English, and they

had to translate them into step-by-step problems, which involved

mathematical operations. And one thing that is being stressed in the CS1

courses is that in the work environment, if an individual comes to you as a

computer scientist and asks you to solve a problem stated in plain English

then it is your responsibility to get this problem translated into an abstract

problem and use your way of thinking to solve it.

106

V. RECOMMENDATIONS AND FUTURE RESEARCH

One of the recommendations to improve the understanding of the field of

computer science (i.e. tackling almost all types of problem situation) is to use

concrete real-world examples and problems that are not only related to daily

activities but also to public service matters. Learners in the field want to make a

difference in society, and thus, problems such as voting system, banking system,

electronic health records, and traveling salesman address this interest and make

learning to be more engaging and relevant. Through such problems, students are

able to (1) combine data and ideas to solve problems, (2) create tools and

information, and (3) manipulate data using abstractions and computational

thinking. These real-world applications enable learning in context. The CS1

concepts can be learned in the context of a computing situation representative of

the practice. Learning in context enable students the opportunity to interact with

the body of knowledge in a way that connects with the practice for which they are

being prepared for. This type of learning helps students relate what they are

learning to how it may be used and results in a deeper understanding of the field.

This means that instructors should introduce concepts in context to enable

students to both internalize and transfer knowledge to other contexts. Besides

making a direct connection to something real or familiar motivates students to be

engaged and confident in their own learning.

Computational thinking is very similar to the field of computer science minus

the domain-specific and the usage of the computer. It deals with (1) how difficult

107

problems are to solve, (2) how to think about and manage problems, and (3) how

to create procedures for solving them. Nowadays the emergence of fields of study

such as bioinformatics, computational biology, and computational mathematics

has given an opportunity to apply computational concepts to a specific discipline

such as biology, mathematics, and physics. Such fields have made computational

science a third pillar of science, along with theory and experimentation. Thus,

computational thinking is not one more thing to add to the curriculum but rather it

emphasizes the application of the knowledge of the core computational concepts

in various fields of study. Students develop their ability to abstract the

information from a given problem and modeling the solution based on the

computational strategies which can vary depending on the individual’s thinking

process. Looking at the CS1 curriculum, computational thinking is not explicitly

stated and students may not be aware that in fact they are developing their

computational thinking skills through the application of the core computational

concepts in context-specific knowledge. And therefore, another recommendation

is to make computational thinking concepts more visible in the curriculum. To do

so, computational thinking skills can be stated in the syllabus under the section

“course objectives and outcomes.” In this section, the instructor has already stated

that students should have an understanding of methods and variables, searching

and basic sorting algorithms, and basic recursions. Also, students should be able

to read, understand, and develop programs. These aptitudes are computational

thinking skills and thus methods and variables represent the concept of

“abstraction,” searching and basic sorting algorithms represent the concept of

108

“algorithm,” basic recursions represent the concept of “reasoning,” and programs

represent “systems.”

In addition, the focus of assessment must be on how one thinks about a

problem, not just the correct answer. To do this, instructors should challenge their

students with responding to open-ended questions to determine how well they

understand (explanation) and synthesize the concepts they have learned (thinking

process). Multiple-choice questions may not give an accurate assessment of

students’ knowledge. Students can guess an answer and get it right. Students can

also know the answer but their thinking process to get to the correct answer may

include errors. Students may have just memorized the answer but they are not able

to transfer this answer to another similar problem. As a consequence, a more

detail-oriented response to a given question/ problem will allow instructors to

more efficiently track down misconceptions and correct students’ misconceptions

at the next class period. Students focus on the approach to the problem rather than

on their final answer. Moreover, the problem solving solution does not need to be

programming language-specific. In this study, it was observed that novices spent

quite some time on syntax during problem solving which took time away from

their algorithmic thinking. So the recommendation is to use a common language,

which is plain English pseudo-code. This would remove the programming

language factor into the assessment equation and enable major and non-major

CS1 students to express the solution with their own words, which can be

understood by all. Assessing students’ design and problem-solving skills by using

open-ended problems enable students to consider the concepts that are relevant to

109

the situation and to demonstrate their ability to work through an analytic problem

solving process. Because the quiz is such a small part of the grade, the assessment

is considered formative as it provides constructive feedback in an ongoing

learning to the instructors.

This method of assessing students can only be beneficial if it is a reflective

approach of teaching. The emphasis is on acquiring a solid understanding of the

CS1 concepts while strongly discouraging memorization. This can be difficult to

do. An inductive approach of teaching may be more efficient to help students

learn to use core concepts for their particular value and how to use them as a

foundation for advanced learning. For example, an instructor may begin the class

with a problem and ask student to find out the concept that is critical to the

problem. Based on their existing knowledge and experience, students attempt to

solve the problem with possible cases based on the attributes and constraints

given in the problem. As they work through this process, students become aware

of the key components relevant in all the cases. Consequently, they build their

knowledge based on the phenomenon observed. Building on the learning

experience, the instructor introduces new cases to the students so they can identify

fundamental components. Mathematical explanations and diagrams may be used

as tools to help students refine their understanding of a concept. As they do

acquire such knowledge, the instructor introduces the theory and reconnects it to

the problem. This approach differs from the deductive approach - which is

commonly used in CS1 courses where students ‘listen, see, and do’ as the

instructor transfers the knowledge to novices through lecturing - by (1)

110

introducing the context first before the concept and (2) educating students to be

more reflective about their own learning as their learning experience is more

iterative. The role of the instructor is primarily to show students what to look for

and then how to explain unclear situations. Using feedback and coaching, the

instructor’s goal for student learning is to formulate problems and solve problems

using concepts. In this iterative process, the novice begins to learn from

experience and thus students are able to develop their skills and confidence.

Future research will include additional core computational concepts to be

assessed. After the introduction of each computational concept in class, the quiz

(test) would be given to the students, and then, based on the outcomes of the tests,

the instructor will do an in-class intervention to go over the common mistakes

found in students’ test and the reinforcing the concept learned. The test will be

given again to the students. This second round testing would enable to compare

students’ written responses between the two tests, and thus, their progress for a

given concept would be better evaluated. In addition, with computational thinking

as a cognitive revolution, it would be of interest to design the tests specifically

with computational thinking in mind. Since computational thinking is still broad

and not clearly defined yet, the approach would be to look at the intersection

between CS1 computational concepts and computational thinking. The design of

the tests would still involve both algorithm design and problem solving. However,

the problem solving part would not be programming language-specific but rather

pseudo-code, i.e. a step-by-step procedure to solve a given problem. In this study,

findings have shown a difference in scores between students programming in Java

111

and students programming in C++, which is not clear whether or not it is due to

the programming language. Thus, this change in programming language in the

coding section would allow a better assessment of students’ thinking/explanation

as they will be using a common language, which is plain English. Plus, this is in

agreement with computational thinking should be understood by all individuals

regardless of their field of study, background, and programming language.

Students would no longer spend time on syntax while solving the problem, which

was one of the parameters that may have limited students’ thinking. Last but not

least, the limitation in the number of participants in this current study has made

the findings limited. For future research, the study will be open to all CS1

courses, which therefore, will involve more than one CS1 instructors. To take this

into account, the assessment will look into any score distribution differences

across the courses with different instructors, and thus instructors’ teaching

approach (deductive versus inductive). This may provide valuable data to improve

CS1 teaching.

112

REFERENCES

[1] M. Ford and S. Venema, “Assessing the success of an introductory
programming course,” In Journal of Information Technology Education, vol. 9,
pp. 133-145, 2010.

[2] M. Guzdial and E. Soloway, “Log on education: teaching the Nintendo
generation to program,” in Communications of the ACM, 2002, vol. 45, no. 4, pp.
17-21.

[3] E. Soloway et al., “Cognitive strategies and looping constructs: an empirical
study,” In Communications of the ACM, vol. 26, no. 11, pp.853-86, 1983.

[4] D. Perkins et al., “Conditions of learning in novice programmers,” In Studying
the Novice Programmer, E. Soloway and J. Spohrer, Eds. Hillsdale, NJ: Lawrence
Erlbaum Associates, Publishers, pp. 261-279, 1989.

[5] M. McCracken et al., “A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students,” In Working group
reports from Innovation and Technology in Computer Science Education, pp.
125-180, 2001.

[6] R. Lister et al., “Further evidence of a relationship between explaining, tracing
and writing skills in introductory programming,” In SIGCSE Bulletin, vol. 41, no.
3, pp. 161-165, 2009.

[7] S. Fincher et al., “Programmed to succeed?: a multi-national, multi-
institutional study of introductory programming courses,” In Computing
Laboratory Technical Report 1- 05, Canterbury, UK: University of Kent, 2005.

[8] T. L. Friedman, The world is flat 3.0: A brief history of the twenty-first
century, New York, NY: Farrar, Straus, and Giroux, 2006.

[9] J. Mead et al, “A cognitive approach to identifying measurable milestones for
programming skill acquisition,” In SIGCSE Bulletin, vol. 38, no. 4, pp. 182-194,
2006.

[10] D. Shaffer and J. Gee, Before every child is left behind: how epistemic games
can solve the coming crisis in education. WCER Working Paper No. 2005-7,
Madison, Wisconsin: Wisconsin Center for Education Research, 2005.

[11] Student Affairs Leadership Council, The Data-Driven Student Affairs
Enterprise: Strategies and Best Practices for Instilling a Culture of
Accountability, Washington, DC: The Advisory Board Company, 2009.

113

[12] L. Carter, “Why students with an apparent aptitude for computer science
don’t choose to major in computer science.” In Proc. SIGCSE Technical
Symposium on Computer Science Education, pp. 27-31, 2006.

[13] M. Clancy, “Misconceptions and attitudes that interfere with learning to
program,” In Computer Science Education Research, M. Petre and S. Fincher,
Eds. London, UK: Routledge Falmer, ch. 1, pp. 85-100, 2004.

[14] A. Eckerdal et al., “Putting threshold concepts into context in computer
science education,” In Proc. on Innovation and Technology in Computer Science
Education, pp. 103–107, 2006.

[15] C. Schulte and J. Bennedsen, “What do teachers teach in introductory
programming?” In Proc. International Workshop on Computing Education
Research, pp. 17-28, 2006.

[16] E. Seymour, “The problem iceberg' in science, mathematics, and engineering
education: student explanations for high attrition rates,” In Journal of College
Science Teaching, pp. 230-232, 1992.

[17] E. Spertus, E, “Why are there so few female computer scientists?” In MIT
Artificial Intelligence Laboratory, Technical Report: AITR- 1315, 1991.

[18] S. Hansen and E. Eddy, “Engagement and frustration in programming
projects,” In Proc. SIGCSE Technical Symposium on Computer Science
Education, pp. 271-275, 2007.

[19] N. Jacobson and S. Schaefer, “Pair programming in CS1: overcoming
objections to its adoption,” In SIGCSE Bulletin, vol. 40, no. 2, pp. 93-96, 2008.

[20] R. Lister et al., “Further evidence of a relationship between explaining,
tracing and writing skills in introductory programming,” In SIGCSE Bulletin, vol.
41, no. 3, pp. 161-165, 2009.

[21] D. Cliburn and S. Miller, “Games, stories, or something more traditional: the
types of assignments college students prefer,” In Proc. SIGCSE Technical
Symposium on Computer Science Education, pp. 138-142, 2008.

[22] J. Gilbert et al., “Learning C with Adam,” In International Journal on E-
Learning, vol. 4, no. 3, pp. 337-350, 2005.

[23] N. Herrmann et al., “Assessment of a course redesign: introductory computer
programming using online modules,” In Proc. SIGCSE Technical Symposium on
Computer Science Education, pp. 66-70, 2004.

114

[24] B. Woolf, Building Intelligent Interactive Tutors: Student-centered strategies
for revolutionizing e-learning, Burlington, MA: Morgan Kaufmann, 2008.

[25] G. Novak et al., Just-in-Time Teaching: Blending Active Learning with Web
Technology, Upper Saddle River, NJ: Prentice Hall, 1999.

[26] J. Rountree and N. Rountree, “Issues regarding threshold concepts in
computer science,” In Proc. Australasian Computing Education Conference, pp.
139-145, 2009.

[27] L. Murphy et al., “A multi-institutional investigation of computer science
seniors' knowledge of programming concepts,” In Proc. SIGCSE Technical
Symposium on Computer Science Education, pp. 510-514, 2005.

[28] A. Postlewaite and O. Compte, “Confidence enhanced performance,” In
Penn Institute for Economic Research, vol. 94, no. 5, pp. 1536-1557, 2001.

[29] A. Seidman, College Student Retention: Formula for Student Success,
Westport, CT: Praeger Publishers, 2005.

[30] D. Wortman and P. Rheingans, “Visualizing trends in student performance
across computer science courses,” In SIGCSE Bulletin, vol. 39, no. 1, pp. 430-
434, 2007.

[31] I. Milliszewska et al., “Improving progression and satisfaction rates of
novice computer programming students through ACME – Analogy,
Collaboration, Mentoring, and Electronic support,” In The Journal of Issues in
Informing Science and Information Technology, vol. 5, pp. 311-323, 2008.

[32] C. Ramamoorthy, “Trends and perspectives in computer science and
engineering education,” In Proc. IEEE, vol. 66, no. 8, pp. 872-879, 1976.

[33] R. Sloan and P. Troy, “CS 0.5: a better approach to introductory computer
science for majors,” In Proc. SIGCSE Technical Symposium on Computer Science
Education, pp. 271-275, 2008.

[34] A. Pears et al., “A survey of literature on the teaching of introductory
programming,” In Proc. Innovation and Technology in Computer Science
Education, pp. 204-223, 2007.

[35] L. Sudol, “Forging connections between life and class using reading
assignments: a case study,” In Proc. SIGCSE Technical Symposium on Computer
Science Education, pp. 357-361, 2008.

115

[36] D. Stevenson and P. Wagner, “Developing real-world programming
assignments for CS1,” In Proc. SIGCSE Innovation and Technology in Computer
Science Education, pp.148-162, 2006.

[37] J. Stone and E. Madigan, “The impact of providing project choices in CS1,”
In ACM SIGCSE Bulletin, vol. 40, no. 2, pp. 65-68, 2008.

[38] R. McCartney et al., “Commonsense computing (episode 5): algorithm
efficiency and balloon testing,” In Proc. International Computer Science
Education Research, pp. 51-62, 2009.

[39] M. Biggers et al., “Student perceptions of computer science: a retention
study comparing graduating seniors vs. CS leavers,” In Proc. SIGCSE Technical
Symposium on Computer Science Education, pp. 402-406, 2008.

[40] R. Sperry and P. Tedford, “Implementing peer-LED team learning in
introductory computer science courses,” In Journal of Computing Sciences in
Colleges, vol. 23, no. 6, pp. 30-35, 2008.

[41] L. Beck and A. Chizhik, “An experimental study of cooperative learning in
cs1,” In ACM SIGCSE Bulletin, vol. 40, no. 1, pp. 205-209, 2008.

[42] M. Chi, “Active-Constructive-Interactive: A Conceptual Framework for
Differentiating Learning Activities,” In Topics in Cognitive Science, vol. 1, pp.
73-105, 2009.

[43] J. McConnell, “Active and cooperative learning: final tips and tricks (part
IV),” In ACM SIGCSE Bulletin, vol. 38, no. 4, pp. 25-28, 2006.

[44] L. Ma et al., “Using cognitive conflict and visualization to improve mental
models held by novice programmers,” In Proc. SIGCSE Technical Symposium on
Computer Science Education, pp. 342-346, 2008.

[45] W. Jin, “Pre-programming analysis tutors help students learn basic
programming concepts,” In Proc. SIGCSE Technical Symposium on Computer
Science Education, pp. 276-280, 2008.

[46] J. Bonar and E. Soloway, “Uncovering principles of novices programming,”
In Proc. ACM Symposium on Principles of Programming Languages, pp. 10-13,
1983.

[47] E. Soloway et al., “A goal/plan analysis of buggy Pascal programs,” In
Human-Computer Interaction, vol. 1, no. 2, pp. 163-207, 1985.

116

[48] E. Soloway, “Learning to program = learning to construct mechanisms and
explanations,” In Communications of the ACM, vol. 29, pp. 850-858, 1986.

[49] R. Rist, “Knowledge creation and retrieval in program design: a comparison
of novice and intermediate student programmers,” In Human-Interaction
Computer, vol. 6, no. 1, pp. 1-46, 1991.

[50] S. Segelman, “A continuing study of intermediate programming errors,” In
Computer Information Science, 60.1 Senior Research Project, 2003.

[51] J. Anderson et al., “Learning to program in LISP,” In Cognitive Science, vol.
8, pp. 87-129, 1984.

[52] R. Jeffries et al., “The processes involved in designing software,” In J. R.
Anderson (Ed.), Cognitive Skills and their Acquisition, pp. 255-283, Hillsdale, NJ:
Laurence Erlbaum Associates, Inc, 1981.

[53] D. Perkins and F. Martin, “Fragile knowledge and neglected strategies in
novice programmers,” In E. Soloway & S. Iyengar (Eds.), Empirical studies of
programmers, Norwood, NJ: Albex, pp. 213-229, 1986.

[54] J. Brown, and K. VanLehn, “Repair theory: a generative theory of bugs in
procedural Skills,” In Cognitive Science, vol. 4, pp. 379-426, 1980.

[55] K. VanLehn, “Bugs are not enough: empirical studies of bugs, impasses and
repairs in procedural skills,” In Journal of Mathematical Behavior, vol. 3, no. 2,
pp. 3-71, 1981.

[56] D. Perkins and G. Salomon, “Teaching for transfer,” In Educational
Leadership, vol. 46, no. 1, pp. 22-32, 1988.

[57] M. McCracken et al., “A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students,” In Working group
reports from Innovation and Technology in Computer Science Education, pp.
125-180, 2001.

[58] R. Lister et al., “A multi-national study of reading and tracing skills in
novice programmers,” In SIGCSE Bulletin, vol. 36, no. 4, pp. 119-150, 2004.

[59] M. Lopez et al., “Relationships between reading, tracing, and writing skills
in introductory programming,” In Proc. International Workshop on Computing
Education Research, pp.101-112, 2008.

[60] J. Wing, “Computation thinking,” In Communications of the ACM, vol. 49,
no. 3, pp. 33-35, 2006.

117

[61] J. Lu and G. Fletcher, “Thinking about computational thinking,” In Proc.
ACM Technical Symposium on Computer Science Education, pp. 260-264, 2009.

[62] O. Astrachan et al., “The present and future of computational thinking,” In
Proc. ACM Technical Symposium on Computer Science Education, pp. 549-550,
2009.

[63] Carnegie-Mellon University, “Center for computational thinking,”
http://cs.cmu.edu/~CompThink

[64] P. Seymour, “An exploration in the space of mathematics education,” In
International Journal of Computers for Mathematical Learning, vol.1, no.1, pp.
95-123, 1996.

[65] A. Bundy, “Computational thinking is persuasive,” In Journal of Scientific
and Practical Computing, vol. 1, no. 2, pp. 67-69, 2007.

[66] M. Guzdial, “Paving the way for computational thinking,” In
Communications of the ACM, vol.51, no. 8, pp. 25-27, 2008.

[67] National Academy of Sciences on Computational Thinking, Report of a
Workshop on the Scope and Nature Computational Thinking, National Academies
Press, 2010.

[68] P. Denning, “Great principles of computing,” In Communications of the
ACM, vol. 46, no. 11, pp.15-20, 2003.

[69] O. Astrachan and P. Denning, “Innovating our self image,” In SIGCSE
Technical Symposium on Computer Science Education, vol. 10, no. 1, pp. 178-
179, 2008.

[70] J. Wing, “Computational thinking and thinking about computing,” In
Philosophical Transactions of the Royal Society, vol. 366, pp. 3717-3725, 2008.

[71] Committee for the Workshop on Computational Thinking; National Research
Council. (2010). Report on Workshop on the Scope and Nature of Computational
Thinking. Available:
http://catalyst.fullerton.edu/library/Scope_and_Nature_of_Computational_Thinki
ng.pdf

[72] O. Hazzan, “Reflections on teaching abstraction and other soft ideas,”
Inroads, vol. 40, no. 2, pp. 40-43, 2008.[73] J. Kramer, “Is abstraction the key to
computing?,” Communications of the ACM, vol. 50, no. 4, pp. 37-41, 2007.

118

[74] F. Olsen, “Computer Scientist says all students should learn to think
‘algorithmically’,” In The Chronicle of High Education, 2000.

[75] J. Gal-Ezer, T. Vilner, and E. Zur, “Teaching algorithm efficiency at CS1
Level: A different Approach,” In Computer Science Education, vol. 14, no. 3, pp.
235-248, 2004.

[76] M. Patton, Qualitative Research and Evaluation Methods, (3rd Ed.),
Thousand Oaks, CA: Sage, 2002.

[77] N. Dale, “Most difficult topics in CS1: results of an online survey of
educators,” In SIGCSE Bulletin, vol. 38, no. 2, pp. 49-53, 2006.

[78] J. Boustedt et al., “Threshold concepts in computer science: do they exist and
are they useful?” In Proc. SIGCSE Technical Symposium on Computer Science
Education, pp. 504-508, 2007.

[79] T. Amabile, "The Social Psychology of Creativity: A Consensual
Assessment Technique," In Journal of Personality and Social Psychology, vol.
43, pp. 997-1013, 1982.

[80] K. Neuendorf, The content analysis guidebook. Thousand Oaks, CA: Sage,
2002.

[81] R. Kolbe and M. Burnett, “Content-analysis research: An examination of
applications with directives for improving research reliability and objectivity,” In
Journal of Marketing Research, vol. 27, pp. 185-195, 1991.

[82] M. Lombard and J. Snyder-Duch, “Content Analysis in Mass
Communication: Assessment and Reporting of Intercoder Reliability,” In Human
Communication Research, vol. 28, no. 4, pp. 587-604.

[83] R. Bakeman, “Behavioral observation and coding,” In H. T. Reis & C. M.
Judge (Eds.), Handbook of research methods in social and personality psychology
(pp. 138-159). New York: Cambridge University Press, 2000.

[84] J. Landis and G. Koch, “The measurement of observer agreement for
categorical data,” In Biometrics, vol. 33, pp.159-174, 1977.

119

APPENDIX A

IRB APPROVAL

120

121

APPENDIX B

SURVEY ON CS1 CONCEPTS (SENT BY EMAIL)

122

How Computer Science & Engineering Freshmen Write Computer Programs?

SURVEY

Dear [X],

I am a graduate student under the direction of Dr. Tirupalavanam Ganesh in the
Fulton Institute and Graduate School of Education and Dr. James Collofello in the School
of Engineering at Arizona State University. I am conducting a research study to identify
skills that freshmen develop in their introductory computer programming course. This
study will help instructors to understand and assess how their students design their
algorithm (flowchart) and how their students write their algorithm (methods).

To conduct this study, I first need to identify the concepts that students in CS1

have difficulty with. You have been selected, because you are either an instructor or a
teaching assistant in CS1 courses, to help us identify the most troublesome concepts in
CS1 courses.

We thank you in advance for the information that you are about to share. If you

have any questions concerning the research study, please call me at (480) 276-4188 or
email me at EBillion@asu.edu.
Based on your teaching experience, please list below the most difficult concepts
that students in your class encountered:

1.
2.
3.
4.
5.
6.

Comments:

Feel free to continue the list if you have identified more than six concepts. Please
email your response to EBillion@asu.edu.

123

APPENDIX C

TEST I (FOR BOTH CSE 100 AND CSE 110)

124

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University

Fall 2009. Quiz 1
10 + 4 Bonus Points, 30 Minutes

You have been asked to develop a banking application for the Bank of ASU. A
customer’s account should have their name, account number, and the current
balance. In addition, your ASUBankAccount class should be able to support
customers who would like to withdraw from and deposit to their bank account.
They also must be able to check the current balance. Check current balance
method should return the current balance. Customers are NOT allowed to
overdraw on their account. Finally, the constructor should take name, account
number, and the initial balance at the time of object creation and set account
instance variable values accordingly.

Part 1 - DESIGN [4 Points]:

Please draw the UML diagram that represents the ASUBankAccount class above.

Make sure to identify proper data types for attributes (data members).

125

Part II – CODING [6 Points]

Based on your UML diagram above, please develop the ASUBankAccount class.

Part III – BONUS [4 bonus Points]

Add a data member (s) to store last three transactions. Then add a method named
displayTransactions that displays the last three transactions. (Hint: you can use
string variable (s) to store transactions and can update them when you withdraw
or deposit money)

1. Please describe how difficult this problem is
___ 1 Really easy
___ 2 Easy
___ 3 Ok
___ 4 Difficult
___ 5 I’m dying, man!

Important Note: You may get a request to participate in the study entitled “How
Computer Science & Engineering Freshmen Write Computer Programs?” This
study is voluntary and will not impact your grade in any way.

126

APPENDIX D

TEST II (FOR BOTH CSE 100 AND CSE 110)

127

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University

Fall 2009. Quiz 2
10 + 4 Bonus Points, 30 Minutes

You have been asked to develop a Student class to store, say ASU student
information. Student class should store the student name, class name (such as
CSE110), letterGrade, final average, and exam scores. Assume that each student
has 5 exam scores. Constructor of the ASUStudent class should take the student
name, class name as parameters at the time of object creation. Then, it sets the
letterGrade to ‘F’ and all the exam scores and the final average to zero.
ASUStudent class should have following methods.

readExamScores: Ask the user to enter exam scores from the keyboard and set
exam scores
calculateExamAverage: This function calculates the exam average. Assume that
each exam can have maximum 100 and each exam has the same weight in the
average calculation.
determineLetterGrade: This method determine the letter grade based on the
following criteria
final average >= 90 A
80 =< final average <90 B
70 =< final average<80 C
Otherwise F

Part 1 - DESIGN [4 Points]:

Please draw the UML diagram that represents the ASUStudent class above. Make

sure to identify proper data types for attributes (data members).

128

Part II – CODING [6 Points]

Based on your UML diagram above, please develop the ASUStudent class.

Part III – BONUS [4 bonus Points]

• Add the method getHeighestScore that returns the getHeighestScore test
score.

• Add the toString method that return the following message

<student_name> , you have earned <letter grade> for <class name>.
For example, if the Student name is John, and he has earned B for CSE 110,
then, the toString method should return the following string

John, you have earned B for CSE 110.

2. Please describe how difficult this problem is
___ 1 Really easy
___ 2 Easy
___ 3 Ok
___ 4 Difficult
___ 5 I’m dying, man!

Important Note: You may get a request to participate in the study entitled “How
Computer Science & Engineering Freshmen Write Computer Programs?” This
study is voluntary and will not impact your grade in any way.

129

APPENDIX E

TEST III (FOR CSE 100)

130

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University

Fall 2009. Quiz 3
10 Points, 30 Minutes

 1.

i) ________ allows us to create new classes based on existing classes.

A) Polymorphism B) Inheritance C) Function overloading D) The copy constructor

E) None of the above

 ii.) What is the correct syntax for defining a new class Parakeet based on

the superclass Bird ?

a. class Parakeet isa Bird{ }

b. class Bird extends Parakeet{ }

c. class Bird hasa Parakeet{ }

d. class Parakeet: public Bird{ }

 iii. Inheritance is an example of what type of relationship?

a. is-a c. was-a

b. has-a d. had-a

131

2. Consider the inheritance hierarchy given below and answer following questions

a) [1 points] What is the base (or super) class above?

b) [2 Points] Briefly explain two benefits of inheritance

c) [1 points] How many data members does the HourlyPaidEmployee have?

Employee

SalariedEmployee HourlyPaidEmployee

- monthlySalary: double

+ SalariedEmployee(int,

String, double)

a) hourlyRate: double
b) numbeOfHours:int

+

HourlyPaidEmployee(int,

employeeID: int

name:String

+ Employee(int, String)

+ void display()

132

3. The following program. Assume that all the programs are correct.

APPENDIX E (CONT.)

class Book
{
 protected :
 int pages;

 public :
 Book ()
 {
 pages = 0;
 }

 Book (int numPages)
 {
 pages = numPages;
 }

 void setPages (int
numPages)
 {
 pages = numPages;
 }

 int getPages ()
 {
 return pages;
 }
};

class Dictionary: public Book
{
 private :
 int definitions;

 public :
 Dictionary(int numPages, int
numDefinitions):Book(numPages)
 {
 definitions =
numDefinitions;
 }

 double computeRatio ()
 {
 if (pages > 0)
 return definitions/pages;
 else
 {
 setPages(900);
 return definitions/pages;
 }
 }

 void setPages(int p)
 {
 pages = p + 100;
 }
};

int main ()
 {
 Dictionary Dic1 (500, 10000);
 cout<< "Definitions per page: " << Dic1.computeRatio(); //--
1

 Dictionary Dic2 (0, 10000);
 cout<< "Definitions per page: " << Dic2.computeRatio(); //--
2

 return 0;
 }

133

• [1 points] What is the purpose of “ Dictionary(int numPages, int

numDefinitions):Book(numPages)” statement in the constructor of the
Dictionary class above?

• [1 Points] What is the output generate from statement 1 in the main()
program above? Explain your answer.

• [1 points] What is the output generate from statement 2 in the main()
program above? Explain your answer.

Important Note: You may get a request to participate in the study entitled “How
Computer Science & Engineering Freshmen Write Computer Programs?” This
study is voluntary and will not impact your grade in any way.

134

APPENDIX F

TEST III (FOR CSE 110)

135

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University

Fall 2009. Quiz 3
10 Points, 30 Minutes

 1.

i) ________ allows us to create new classes based on existing classes.

A) Polymorphism B) Inheritance C) Function overloading D) The copy constructor

E) None of the above

 ii.) What is the correct syntax for defining a new class Parakeet based on

the superclass Bird ?

a. class Parakeet isa Bird{ }

b. class Bird defines Parakeet{ }

c. class Bird hasa Parakeet{ }

d. class Parakeet extends Bird{ }

 iii. Java supports both single and multiple inheritance………….(T/F).

 2. Ship and CargoShip

 Design a Ship class that has the following members
• A member variable for the name of the ship (a string)
• A member variable for the year that ship was built (an int)
• toString method that returns the name and year built

Design the CargoShip class that is derived from the Ship class. The CrargoShip should
have the following members.

ii. A member variable to store the max capacity (an int)
iii. A constructor that takes three parameters for the ship’s name, year built, and

the capacity and sets ship’s name, year built, and the capacity at the time of
object creation

iv. Redefine the toString member function that returns the name, year built, and
the capacity(this technique is called the function overriding)

136

- Draw the UML diagram that represents the above Inheritance Hierarchy

i. Then, implement the Ship class and CargoShip classes

Important Note: You may get a request to participate in the study entitled “How
Computer Science & Engineering Freshmen Write Computer Programs?” This
study is voluntary and will not impact your grade in any way.

137

APPENDIX G

THINK ALOUD PROTOCOL – TASK LIST

138

• Introduction to the purpose of the study - explain goals of this activity

• Think aloud Warm-up exercise – explain the concept of think aloud. Ask
the participant to tell everything they are thinking about from the moment
they read the task and when they complete it. They do not need to
plan/think out what they want to say. Just act as if you are by yourself,
talking to yourself. The important thing is to keep talking. Perform a
sample think aloud. For example:

Think aloud as you count how many windows are in your house.
Now, ask the user to try just as you did. Another example follows.
“Please think aloud as you name how many doors are in your
house?”
or
“Please re-count your actions in your morning routine before you
came to work.”

A. Establish some rules during the session
1. You will not be able to answer any questions during the observation
2. If you have questions, go ahead and ask them, but you won’t respond
until after the session is complete.
3. Remind them that if they’re silent for more than 5-10 seconds, you will
ask them to “Please keep talking”

• Reaffirm that they agree with being audiotaping

• Explicitly mention in-room observers and/or videotaping

• Describe the exercise being presented – three sections

• Explain that you are not testing them

• Reassure users about what will happen if they encounter difficulties – to
continue and do what they can

• Clarify tasks if confusing

• Confirm ending time and reassure them that they can stop at any time – 30

minutes

139

APPENDIX H

PRE-SURVEY QUESTIONNAIRE

140

Interviewee ID: _________ Date: __________ Time: ___________

Hello. Thank you for taking the time to meet with me and answer questions

related to logical reasoning and programming skills. Before you begin, I want to

remind you that you can skip questions if you wish. If you choose not to

participate or elect to withdraw from the study at any time, there will be no

penalty. It will not affect your grade in any way. Do you choose to continue? Yes

or No

1. Can you tell me about X*?

2. How would you describe X to another freshman student?

3. How easy do you think X is?

1) Very Easy

2) Easy

3) Ok

4) Hard

5) Very Hard

4. How did you gain a better understanding of X (e.g. books, websites,

discussion with a peer, instructor’s notes, teaching assistant ...)?

Thank you very much for participating in this study. Your time and insights are

greatly appreciated.

* X refers to a specific threshold concept

141

APPENDIX I

POST-SURVEY QUESTIONNAIRE

142

Interviewee ID: _________ Date: __________ Time: ___________

Hello. Thank you for taking the time to meet with me and answer questions

related to logical reasoning and programming skills. Before you begin, I want to

remind you that can skip questions if you wish. If you choose not to participate or

elect to withdraw from the study at any time, there will be no penalty. It will not

affect your grade in any way. Do you choose to continue? Yes or No

1. How would you go about assisting other students who might be struggling

with X?

2. What concepts better helped you understand X?

3. What concept(s) do(es) X help you better understand?

4. Has X come up in other contexts? Where?

5. Is there something more you want to share with me about X?

6. Are there any other concepts you struggled with early in the course that

became clearer at the end?

Thank you very much for participating in this study. Your time and insights are

greatly appreciated.

* X refers to a specific threshold concept

143

APPENDIX J

INTERVIEW QUESTIONS

144

Interviewee ID: _________ Date: __________ Time: ___________

Hello. Thank you for taking the time to talk with me today about your thought

process on writing program. Before we begin, I want to remind you that I am

planning to record our conversation today so please speak clearly. Do I still have

your permission to make the audio recording? [Note response] __________

I want to assure you that your identity will be kept strictly confidential. I will be

asking you a number of questions so please feel free to discuss your ideas and

views. Are you ready to begin?

• What was your initial idea for solving this problem when you first read the

problem?

• Please share the thought processes you used when solving the problem.

• Please describe how you went about solving the problem.

• How did you feel when you were done solving the problem? What did you

think?

• Describe any challenges you may have had when you attempted to solve the

problem? [If yes,] How did you approach the challenge?

• Did you notice any other areas where a student might face challenges when

solving this problem? Please describe them and discuss your reasons.

Thank you very much for participating in this study. Your time and insights are

greatly appreciated.

145

APPENDIX K

EXAMPLE OF A TRADITIONAL CS1 QUIZZ

146

147

148

149

APPENDIX L

CSE 110 DATASET

150

151

APPENDIX M

CSE 100 DATASET

152

153

APPENDIX N

CS1 DATASET

154

