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ABSTRACT  

Raman scattering from Ge-Si core-shell nanowires is 

investigated theoretically and experimentally. A theoretical model that 

makes it possible to extract quantitative strain information from the 

measured Raman spectra is presented for the first time. Geometrical 

and elastic simplifications are introduced to keep the model analytical, 

which facilitates comparison with experimental results. In particular, 

the nanowires are assumed to be cylindrical, and their elastic 

constants isotropic. The simple analytical model is subsequently 

validated by performing numerical calculations using realistic 

nanowire geometries and cubic, anisotropic elastic constants. The 

comparison confirms that the analytic model is an excellent 

approximation that greatly facilitates quantitative Raman work, with 

expected errors in the strain determination that do not exceed 10%.  

 Experimental Raman spectra of a variety of core-shell nanowires 

are presented, and the strain in the nanowires is assessed using the 

models described above. It is found that all structures present a 

significant degree of strain relaxation relative to ideal, fully strained 

Ge-Si core-shell structures. The analytical models are modified to 

quantify this strain relaxation. 
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INTRODUCTION  

1.1 Background on nanowires   

 Work in the field of Nanotechnology has been done for centuries, but 

only recently a few areas of this field have been recognized. In 1857 

Michael Faraday1 performed one of the first experiments with 

nanoparticles. He examined the interaction of light with gold colloids 

and also observed the ruby color of the colloids. In 1985, Turkevich J. 

found that the average size of the gold colloids was 6 2  nm.2 Michael 

Faraday‘s observation was presumably the first scientific observation 

and introduction to quantum size effects.  

 Over the past few decades scientists have made impressive 

progress in the research of semiconductor nanostructures, by 

progressing from the study of the electronic, optical and transport 

properties of bulk semiconductors to the analysis of the same 

properties in reduced size systems. Examples include two dimensional 

quantum-well systems, one dimensional nanowire and zero 

dimensional quantum dots.  

  Semiconducting nanowires are nowadays attractive for 

nanoscience3,4  research along with nanotechnology5,6,7 applications. 

Compared with other nanosize materials, nanowires have two 

quantum confined directions with one unrestrained direction.3 

Quantum confinement in the nanowire causes the energy levels to be 
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different from the traditional continuum of energy bands found in bulk 

materials. Accordingly, in the limit of small diameters nanowires are 

observed to exhibit different optical, electrical, and magnetic properties 

relative to their bulk counterparts. The unique properties of nanowires 

also hold promise from an application perspective because some of the 

material‘s parameters can be independently restrained or enhanced 

non–linearly.      

 Nanowires are mostly synthesized by a bottom–up fabrication 

technique. Vapor–Liquid–Solid (VSL) is one of the most popular 

growth methods. In 1964, Wager and Eliss8,9  first fabricated 

micrometer–sized Si whiskers from the Vapor–Liquid–Solid(VSL). The 

VSL technique has now become a widely used method for generating 

semiconductor nanowires from a wide variety of pure elemental 

semiconductors10,11,12(group IV) to III–V13,14,15 semiconductors.  

  In the late 1980s, Wharam16 and Wees17 researched the 

electronic transport properties of nanowires and found that if the 

nanowire‘s diameter is comparable to the Fermi wavelength of the 

electron, the conductance is quantized and each quantum state 

contributes an integral number of 22 /e   to the electrical conductance. 

The study of thermoelectric properties started as early as 1993 by 

Hicks et. al..18,19 Both theoretically20 and experimentally21 it was 

shown that lattice thermal conductivity decreased by more than 90%, a 
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significant advantage for thermoelectricity, which is characterized by 

the figure of merit 2 /ZT S T  where S is the Seebeck Coeffecient, T 

is the average temperature,   is the electrical conductivity and  is 

the thermal conductivity. Bi nanowires became an important material 

to study the magneto resistive properties of nanowires. In 2000, the 

Dresselhaus22 group performed extensive study on the nanowire‘s 

magneto resistance properties. Recent research23 shows that magneto 

resistivity is similar to electric resistance at low temperatures. The 

research of transport properties also took place at same time. Studies 

of the optical properties24 of nanowires have shown that if the wire‘s 

diameter is less than the effective Bohr radius, excitonic behavior can 

be observed at room temperature in the photoluminescence or 

absorption peak spectra. Therefore recent studies have demonstrated 

the potential for nanowires to achieve new and useful properties and to 

advance the nanowire applications.    

 At the beginning of 21st century researchers started to fabricate 

nanowire electronic devices, diodes, transistors, logic gates etc. and 

realized that nanowires can be used in miniaturization of conventional 

devices in a cost–effective way. Over the last ten years, researchers 

have shown tremendous progress in the development of nanowires for 

applications in nanoelectronics. One of the first functional nanoscale 

devices was fabricated by Cui et al.25 Te and Zn doped n and p – type 
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Indium phosphide nanowires were used to assemble p n  junction 

diodes. Later Cui .et al.26 assembled passive p n junction diodes, 

bipolar transistors and inverter-like nanostructures from boron and 

phosphorous doped silicon nanowires. Gallium Nitride(GaN) nanowires 

were next used by Huang et al 27  and Kim et al 28 to develop nanoscale 

devices which lead to the fabrication of  Nanowire FETs  and Schottky 

diodes from a single crystal of GaN nanowire. During the last five 

years, IBM29,30,31,32 has carried out extensive research in the 

formulation of nanoelectronics based on nanowires. One of their major 

advances is the construction of different Nanowire FET 

architectures29,30,31,32 which has led to the realization that the 

performance of nanowire FETs depend largely on their diameter. It 

has been found that nanowires with small diameters show better 

device functionality and performance. A nanowire thermoelectric 

device was first demonstrated by Li et al.,33 who suggested an array of 

Silicon nanowires with low thermal conductivity, which would help in 

fabrication of cooling and energy–harvesting ICs. In 2008 it was found 

that etched Silicon nanowires34 have enhanced thermoelectric 

performance and hence have potential for applications in 

thermoelectric cooling processes. Nanowires also hold promise in the 

fabrication of optoelectronic devices.35,36 
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 In an era of developing technology, nanowire hetrostructures37 

evolved in the early 21st century and are now being fabricated in 

industry. With the development of hetrostructures, the issue of strain 

in nanowires38 was introduced. In the literature, stress–strain studies 

are mostly restricted to simple nanowires. Sadowski39 et. al. have done 

comprehensive ab initio study  to analyze  the uniaxial strain effect on 

the nanowire  and   Liang40 et al.  studied strain in Si-Ge core-shell 

structures with the assumption of similar elastic constants for both 

core and shell. Recently Søndergaard41 et. al. calculated the strain field 

in GaP core and GaAs shell nanowires using the continuum elasticity 

theory. A more detailed work has been presented by Grönqvist42 et. al..  

Grönqvist42 et. al., computed the strain field distributions in the core-

shell nanowire using both the continuum theory of elasticity and 

valence field force model.   

 

1.2 Motivation 

Core-shell semiconductor nanowires open up interesting opportunities 

for their potential applications in nanoelectronics and 

nanooptics.6,43,44,45 A significant characteristic of these structures is the 

presence of large strains developed due to lattice mismatch  between 

the core and shell materials.46,41,42,47 Strain modifies the phonon 

frequencies in anharmonic crystal lattices, which can then be used to 
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monitor the strain spectroscopically, mainly via Raman scattering.  

However, the methodology to extract strain values from core-shell 

nanowires spectroscopic measurements is not yet established. The 

strain tensors from the core-shell nanowires have complex symmetries 

and are position-dependent.  Raman spectroscopy is potentially a 

useful tool for the study of strain in nanowires because of it can be 

applied in various environments and geometries.48 It also provides a 

simple, quick, non-destructive approach to study the vibrational 

properties of the nanowire with a good spatial resolution. 

Unfortunately, extracting strain values from Raman measurements on 

nanowires are far more complex than using Raman spectroscopy to 

measure strain in epitaxial two-dimensional films— a traditional 

application for which the Raman approach to the determination of 

strain is well established. A preliminary strain study has been 

conducted by Laneuville49 et. al. who used Raman spectroscopy on 

single nanowire and then estimated the strain exerted by the AlN shell 

on the GaN core using a simplified model that neglects the in-plane 

strain. In general, we found a lack of realistic, quantitative studies of 

strain in nanowires heterostructures using micro-Raman spectroscopy. 

This was the main motivation to study the vibrational properties of 

semiconductor nanowires, with emphasis on using micro-Raman 

spectroscopy as a method to analyze strain effects in core-shell 



7 

nanowires both experimentally and theoretically. In this dissertation 

we develop a continuum model of the strain and compare it with 

realistic computer simulations using the commercial package 

ABAQUS. The next step was to develop the theory of the strain-

dependent modifications of optical phonons of semiconductors, which 

was later adapted to the case of core-shell nanowires. Finally, Raman 

spectra of the nanowires were computed and analyzed in terms of 

scattering selection rules. The theoretical results were then compared 

with the micro-Raman experimental results with emphasis on strain 

relaxation. 

 

1.3 Dissertation Outline  

 Chapter 2 introduces the basic elasticity theory of solids. It is 

followed by the discussion of strain effects in core-shell nanowires. 

Sections 2.3 and 2.4 describe a more realistic solution of the core–shell 

nanowire. In these sections some of the assumptions of the Section 2.2 

are removed and a relaxation term is introduced.     

 Chapter 3 starts with a review of lattice vibrations. Section 3.2-

3.4 describes the classical, semi classical and quantum theory of 

Raman scattering. In the latter two sections Raman selection rules and 

the experimental set-up are described.   
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 Chapter 4 discusses a simplified continuum model of the core-

shell nanowire. Section 4.1 deals with the problem of optical phonon in 

<110>- and <111>-oriented nanowires. The latter sections describe the 

simulations of the Raman spectra due to strain effect in nanowires 

with different polarizations.    

 Chapter 5 discusses the strain predicted by the numerical 

method with the strain obtained from our analytical model, and later 

we compute the Raman spectrum corresponding to the numerical 

strain model by averaging over the nanowire cross section.   

 Chapter 6 discusses the experimental Raman data on the 

nanowires and compares with the predictions from the analytical 

strain model that includes the strain relaxation term.    

 Chapter 7 summarizes the results of strain effects on Raman 

spectra of core-shell nanowire. 
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CHAPTER 2 

STRAIN EFFECTS IN CORE-SHELL NANOWIRE   

 2.1 Introduction  

 The strain distribution47 in core–shell nanowires can be computed 

analytically under the assumption of isotropic elastic properties and 

cylindrical geometry. Within the isotropic material and cylindrical 

geometry approximations, the solution of the elastic problem 

represented by core-shell nanowires is a variant of the standard 

"shrink-fit" problem discussed in elasticity textbooks. Liang et al.40 

used this approach to solve the Si-Ge core-shell elastic problem under 

the assumption that the average Young modulus E and average 

Poisson ratio   are the same for both materials. Liang's approximation 

is too crude for Raman calculations, so we extend their model by 

assigning the different Si and Ge Young moduli. The Poisson ratio is 

kept the same, since the ratios of elastic constants are nearly the same 

for Si and Ge, and hence their corresponding Poisson ratios are very 

similar for any arbitrary crystallographic orientation. 

 

2.2 Review of theory of elasticity in solids  

Deformations50  in solid structures are caused when stress is applied. 

Hooke‘s Law gives a proportionality relation between stress and 
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deformation. It states that when the deformation is in the elastic limit, 

the strain   is directly proportional to the stress, which is given by  

              ,c         (2.1) 

 where c is the elastic stiffness constant.        

The generalized form of Hooke‘s law is given by  

                                                  ,ij ijkl kl

kl

c                                               (2.2) 

where ij and kl  are the components of the stress and strain tensors, 

respectively and the  ijklc  denote  the 81 components of the elastic 

stiffness fourth-order tensor. Since the stress as well as the strain 

tensors are symmetric, it follows that 

                                   .ijkl jikl ijlk jilkc c c c                                         (2.3) 

When a unit volume deforms by differential amounts jd , the free 

energy change due to the work done by the stresses on the element is 

expressed as  

                .ij ij ijkl k
ij kli

l ijdF dW d c d                                     (2.4) 

Thus    

                                      
2

.
kl

ijkl

ij

F
c

 




 
                                                 (2.5) 

Since the free energy is a state function, the order of the derivatives is 

immaterial, and therefore              

                                                     .ijkl klijc c                                                    (2.6) 
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The permutation of the first and last two suffixes of 
ijklc  make it 

possible to introduce a contracted index notation such that ijkl mnc c , 

with the following correspondence:  

Table(2.1): Relationship between four-index and contracted notation. 

      or             11        22      33      23,32      31 ,13     12 ,21 

      or             1          2        3         4           5          6 

                        

Moreover, because of the symmetries in Eq.(2.3), we can identify 7 with 

4, 8 with 5, and 9 with 6, so that Eq. (2.2) can be written in matrix 

form as    

                            

11 12 13 14 15 1611 11

12 22 23 24 25 2622 22

13 23 33 34 35 3633 33

14 24 34 44 45 4623 23

15 25 35 45 55 5613 13

16 26 36 46 65 6612 12

2

2

2

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

 

 

 

 

 

 

    
   
   
   

    
   
   
   

   
    

.










                 (2.7) 

This 6x6 symmetric matrix has 21 independent constants. Hence in 

matrix notation, we can rewrite Hooke‘s law as     

   i ij j

j

c     , 1,2......6 ,i j                      (2.8) 

where i  and i  are the reduced form of stress and strain in the 6 6  

matrix.  

 Additional reductions in the number of independent constants 

can be obtained from crystal symmetry considerations. The coordinate 
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transformation equation for the stress and strain components is 

expressed as   

                                       
mn im jn ij

ij

l l                                                (2.9) 

       and   

                                        
' ,mn im jn ij

ij

l l                                                (2.10) 

where 'ijl s , are the direction cosines between the  1 2 3
, ,x x x

unprimed   and  ' ' '

1 2 3
, ,x x x primed   coordinate system If the 

inverse transformation equation of Eq.(2.9) is substituted into Eq.(2.2), 

we obtain  

      ' .im jn mn ijkl kl

mn kl

l l c                  (2.11) 

Therefore from Eq. (2.9), Eq. (2.10)  and  Eq.(2.11), we get 

                             ' 0.mnqr im jn kq lr ijkl kl

lk mn qr

c l l l l c 
 

  
 

                      (2.12) 

Since this must be valid for arbitrary values of the kl  , we obtain the 

transformation rule for the elastic constants as  

                                  .ijkl mnqr im jn kq lr

mn qr

c c l l l l                        (2.13) 

This confirms that the elastic constants ijklc  are the components of a 

fourth rank tensor. The 21 independent elastic constants can be 

simplified by considering the symmetry conditions found in a cubic 

structure. Rotations of 180° and 90° about the cubic x, y, and z axes are 
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cubic symmetry elements, and by applying Eq. (2.13) to these 

rotations, we obtain 
11 22 33

c c c  ,
12 21 23 32 13 31

c c c c c c                  

and 
44 55 66

c c c  . All the other components become zero i.e.

16 15 26 24 35 34 14 56 25 46 36 45
0c c c c c c c c c c c c            . Thus the 

cubic structure has three independent elastic constants:      

         

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0
.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ij

c c c

c c c

c c c

c

c

c

c

 
 
 
 
 
 
 
  
 

                          (2.14) 

 If the solid is isotropic, the elastic constant tensor looks the 

same from any Cartesian coordinate symmetry. Therefore, considering 

for example a 45° rotation about the z axis (which is not a cubic 

symmetry element), we obtain 

                                                11 12
44

,
2

c c
c


                                                (2.15) 

so that the number of independent constants is reduced to two. We now 

define anisotropy ratio, A as  

                                               44

11 12

2
.

c
A

c c



                               (2.16)

The deviation of A from unity measures the anisotropy of the cubic 

structure. The two independent elastic constants of an isotropic  
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medium can be rewritten in different ways. The Lame constant,   and 

the shear modulus,     are defined as       

    
11

2 C  
    

 (2.17) 

         and      

  11 12
44

.
2

c c
C


      (2.18) 

 Hence the matrix in Eq.(2.14) can be rewritten as     

                      

2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0           0            0 0 0

0 0 0 0 0

   

   

   







 
 

 
 
 
 
 
  
  ,

                           (2.19) 

 and Eq.(2.7) reduces to    

                        

 

 

 

11 11 22 33

22 11 22 33

33 11 22 33

23 23

13 13

12 12

2

2

2

2

2

2

     

     

     

 

 

 

   

   

   







.                           (2.20) 

 In addition, the Young's modulus, E  and Poisson‘s ratio,   can be 

written in terms of the Lame constant and the shear modulus as51   

                                            
 3 2

E
  

 





                                       (2.21)  

                                                                  and  
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.
2




 



                                          (2.22) 

In terms of the constants E and  , Eq. (2.20) can be written as   

  

  
 

  
 

  
 

 

 

 

11 11 22 33 11

22 22 11 33 22

33 33 11 33 33

23 23

13 13

12 12

1 1 2

1 1 2

1 1 2

1

1

1

E

E

E

E

E

E

     
 

     
 

     
 


 


 


 

      

      

      










.             (2.23) 

These stress equations (Eq.(2.23)) will be used in the section [2.2] to 

discuss the stress-strain effect in the core-shell nanowires.   

 We will also need the equations of equilibrium.52 The equations 

of equilibrium in Cartesian coordinates for an element with no 

external body forces are given by 

    

0

0

0

yxxx zx

xy yy zy

yzxz zz

x y z

x y z

x y z

 

  

 

 
  

  

  
  

  

 
  

  

.   (2.24) 
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Consequently, the equations of equilibrium52  in cylindrical coordinates 

are given by 

          

1
0

2 1
0

1
0

rr rrr zr

r r z

zrz rz zz

r r r z

r r r z

r r r z

 

   



   



   



  



  
   

  

  
   

  

 
   

  

 .  (2.25) 

 

2.3 The Ge-Si core-shell nanowire        

For the study of strain effects in in core-shell nanowires we consider a 

cylindrical geometry, in which c is the radius of the core region and a 

the outer radius of the shell. For concreteness and because this is our 

experimental case, we will assume that the core material is Ge and the 

shell material is Si, but the results derived here are also valid for the 

reverse situation. The nanowire to be consider is schematically 

illustrated in Fig. 2.1 below   

                      

  

                                                           
 

   
 Fig(2.1):The cylindrical geometry of the core-shell nanowire. The internal radius is 

given by c and the external  radius by a.  

 

c

a

Ge
Si
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 We start with the assumption that the elastic constants of Si 

and Ge are same.  As mentioned above, this is not a very good 

approximation, but it is done to reproduce the result in Liang et al.40 

We choose the z axis along the nanowire axis and the origin at the 

center of the core. Because of the cylindrical symmetry of the nanowire 

and the fact that the atomic planes are aligned, we can write                                     

            

   

 

   

, ,

, , 0

, ,

r r

z z

u r z u r

u r z

u r z u z















,                                     (2.26)

where ru ,u
 and zu  are the displacements in r ,   andz  direction. 

This implies that the normal and shear strains can be written as  

   
; ; ;

0; 0; 0.

r r z
rr zz

r zr z

u u u

r r z


 

  

  

 
  

 

  

   (2.27) 

 For an isotropic material the stress and strain equations in 

Eq.(2.23) are valid for any coordinate system. Hence the stress and 



18 

strain in cylindrical coordinates are related by following equations53 : 

  

  
   

  
   

  
   

 

 

 

1
1 1 2

1
1 1 2

1
1 1 2

1

1

1
.

rr rr zz

rr zz

zz zz rr

z z

rz rz

r r

E

E

E

E

E

E



 



 

 

     
 

     
 

     
 


 


 


 

      

      

      










   (2.28) 

Using Eq.(2.27) in Eq. (2.28), we can write, 0rz r z       

Therefore  the equilibrium equations in Eq.(2.25) can be written as 

                                        

0

1
0

0.

rrrr

zz

r r

r

z





 








 













                                   (2.29) 

Now substituting Eq.(2.28) and Eq.(2.27) into Eq.(2.29), the differential 

equation satisfied by the displacements is     

                                  
2

2 2

1
0r r rd u du u

dr r dr r
   .                             (2.30) 

To solve Eq.(2.30) we let     ( )g r ru r , hence Eq.(2.30) can be written 

as  

                                  
1

( ) 0
d

g r
dr r

 
  

 
.                                     (2.31) 
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Thus   '( ) / 0g r r   is a constant and then      

                 2 2
1 1 2

      r rr

C C
u C r C

r r
     .             (2.32)

Similarly,        
  

 
    

  

  
     

    ru C
C

r r
2

1 2
.        (2.33)

Combining Eq.(2.32) and Eq.(2.33) we have 
1

2 .rr C constant   

Hence using this in Eq. (2.26) for zz , we obtain      

    z zzu z  ,         (2.34) 

 with zz   as constant.                       

 There are six integration constants to be determined are 

1 2
, ,i i i

zzC C   and 
1 2

, ,o o o

zzC C  , where superscripts i and o refers to inner 

(Ge) and outer (Si) cylinder respectively. The constant 
2

oC  must be 

zero, because the strain cannot diverge for 0r  . Hence we are reduced 

to 5 constants, and the required five boundary conditions40 are                                        

    

   

 

 
   

   

2 2 2

0

0

i o

rr rr

o

rr

o i

zz zz

i o

r r misfit

i o

z z misfit

c c

a

a c c

u c u c c

u l u l l

 



 









  

 

 

,                          (2.35) 

where ( ) /misfit Si Ge Gea a a   , in which Gea and Sia  are the lattice 

constant of Ge and Si respectively  and l  is the half-length of the 
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cylinder. In Eq.(2.35) the first condition makes the pressure continuous 

across the interface. The second condition stipulates that the external 

pressure is zero. The third condition insures that the net force in the z 

direction is zero at any plane perpendicular to the z axis. The fourth 

condition is identical to those in "shrink-fit" problems discussed in 

elasticity textbooks, and forces the displacement to accommodate the 

length mismatch between the two materials. The same is valid for the 

last condition. Since the first three conditions are expressed in terms of 

the stresses and not on the displacements, we need to find the 

corresponding expression for the stresses. Hence substituting Eq.(2.32) 

and Eq.(2.33) into Eq.(2.28)  we have,  

                        

 

  1 1

1

1 ( )
(1 )(1 2 )

1 ( )
(1 )(1 2 )

(1 )(1 2 )

i i i i

rr rr zz

i i i

zz

i i

zz

E

E
C C

E
C

P

     
 

  
 


 

      

      

    

 

.     (2.36)       

We notice that rr is constant, so that it must be equal to its value at 

the boundary r c , which is denoted as –P , where P  is the misfit 

strain-induced pressure. Similarly, for i


  we get,    

                  
 1 ( )

(1 )(1 2 )

.   

i i i i

rr zz

E

P

      
 

      

 

              (2.37) 
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Therefore inside the cylinder 


 is also constant. Finally we have,  

                

 

 

i i i i

zz zz rr

i i

zz

E

E
C

1

1 ( )  
(1 )(1 2 )

    1 2 .
(1 )(1 2 )

     
 

  
 

      

     

             (2.38) 

Now using the first two boundary conditions, the stress for the outer 

shell becomes  

    

 

 

o o o o

rr rr zz

o

zz

E
a

CE
C

a

0
0 2

1 2

( ) 1 ( )
(1 )(1 2 )

1 2
(1 )(1 2 )

0,

     
 

 
 

      

 
    

   



            (2.39) 

       

 
  

   

 

o o o o

rr rr zz

o

zz

E
c

CE
C

c

P

0
0 2

1 2

  1   
1 1 2

    1 2
(1 )(1 2 )

,

     
 

 
 

    
  

 
    

   

                       (2.40) 

     and    

                     

 

 

o o o o

zz zz rr

o

zz

E

E
C 0

1

1 ( )   
(1 )(1 2 )

1 2  .
(1 )(1 2 )

     
 

  
 

      

                            (2.41)

 

Combining Eq. (2.39) and Eq. (2.40) we obtain,  

    
2

0

2 2 2

(1 )

/ 1

Pa
C

E a c





 

                                                and                                             (2.42) 

   
 0

1 2 2

(1 ) 1 2

/ 1

o

zz

P
C

E a c

 


 
 


. 
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Rearranging  Eq.(2.36) we have  

                                
  

1

1 1 2
i i

zzC P
E

 


 
                        (2.43) 

Using Eq.(2.34) and the fourth condition in  Eq.(2.35) , we get 

    i o

zz zz misfit    .    (2.44) 

Also with simple algebra, when applied to the third condition of Eq. 

(2.35) to Eq.(2.38)  and Eq. (2.41) we get  

        
     o i i

zz zza c c C a c C c2 2 2 0 2 2 2

1 1
1 2 0.            

   
 (2.45) 

From Eq. (2.42) and Eq. (2.43) we find   

           i o i

zz zzC a c C c a c c0 2 2 2 2 2 2

1 1
.           (2.46) 

On substituting Eq.(2.46) into Eq.(2.45) we obtain  

           2 2 2 0o i

zz zza c c    .   (2.47)

Combining with Eq.(2.44) we get,  

    
2

2

o

zz misfit

c

a
    

              and     (2.48)  

    i

zz misfit

c

a

2

2
1   . 
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Hence the constants 0

2
C  , 0

1
 C   and 

1

iC   in Eq.(2.42) and Eq.(2.43) can be 

written as           

    
2

0

2 2 2

(1 )
   

/ 1

Pa
C

E a c





,    

   
  2

0

1 2 2 2

(1 ) 1 2
  

/ 1
misfit

P c
C

E a c a

  


 
 


   

                 and     (2.49) 

   
   2

1 2

1 1 2
   1i

misfit

c
C P

E a

 
 

   
    

 
. 

In the final step we have to find P in terms of misfit . For this we use the 

fourth condition of Eq.(2.35). Substituting Eq.(2.47) and Eq.(2.48) into 

Eq.(2.32), we get   

     
2

1 2
1 1 2 1i i

r misfit

P c
u c C c c

E a
   

  
        

  
 

    and      (2.50)  

 
  2 2

2
1 2 2 2 2 2

(1 ) 1 2 (1 ) 1

/ 1 / 1

o
o o

r misfit

C P c Pa
u c C c c

c E a c a E a c c

   


    
       

   
. 

Therefore, using the fourth condition of Eq.(2.35)     .i o

r r misfitu c u c c 
 

We obtainP as,         

   
 

2

2
1

.
2 1

misfit

c
E

a
P





 
 

  


    (2.51) 

 Substituting P from Eq. (2.51)into Eq. (2.49) we obtain the C 0

2
 , C 0

1
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and iC
1

 coefficients and hence the corresponding values of the strain 

for the core and shell as  

                
 

2

1 2

1 3
1

2 1

i i

rr misfit

c
C

a


 



  
   

 
,                               (2.52) 

                 
 

2

1 2

1 3
1

2 1

i i

misfit

c
C

a



 



  
   

 
,                              (2.53) 

       
2

2
1i

zz misfit

c

a
 

 
  
 

               (2.54) 

     and       

         
 

   
2 2

2
1 2 2 2

3 1 1
2 1

o
o o misfit
rr

C c a
C

r a r


  



   
        

    
,                    (2.55) 

            
 

   
2 2

1
1 2 2 2

3 1 1
2 1

o
o o misfitC c a

C
r a r




  



   
        

    
,                    (2.56) 

    
2

2

o

zz misfit

c

a
   .               (2.57) 

 Comparing with equations (8) and (9) in Liang‘s paper, we notice 

that we agree on everything except the expressions in Eq.(2.56) and 

Eq.(2.55). The two equations in Liang‘s40 paper are incorrect, probably 

due to a typo, as can be seen from the fact that they do not satisfy the 

radial and axial lattice mismatch conditions in Eq.(2.35). 
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2.4 A Realistic Solution to Ge-core and Si-shell Nanowire 

To obtain a more realistic solution, we eliminate the restriction that 

the Young modulus be the same for the two materials, but keep 

Poisson‘s ratio the same. This is a good approximation for Si and Ge. 

Since ratios of elastic constants are nearly the same for these 

materials, their corresponding Poisson ratios are very similar for any 

crystallographic orientation. We also allow for the possibility, 

discussed in the literature, that some extra atomic planes in the Si 

shell might relax the strain. We thus need to redefine the boundary 

conditions.            

 Let us consider a Ge core and a Si shell, initially unstrained. 

The length of the Ge core is NaGe, where aGe is the Ge lattice constant 

and N the number of atomic planes. When the nanowire is formed, the 

N lattice planes in Ge will have to compress and the N lattice planes in 

Si will have to expand until they acquire the same length. To allow for 

strain relaxation, however, let us assume that there are some N  

extra atomic planes in the Si shell. Then the boundary condition at the 

end of the nanowire is given as  

                                 Ge z Ge Si z SiNa u l N N a u l    ,             (2.58) 

where Ge Gel Na  and  Si Sil N N a   are the unstrained positions of 

the end of the core and shell, respectively. Now if the lattice mismatch 
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is entirely accommodated by adding extra atomic planes, then the 'u s

are zero, and we get   

   max Ge Si
misfit

Si

N a a

N a





   ,   (2.59) 

where we have defined an misfit
 
that is slightly different from the one 

used earlier, as now we have  Sia   in the denominator. The value in 

Eq.(2.59) is the maximum possible value of N , we can then define a 

relaxation parameter   such that       

                           0 1misfit

N

N


     . (2.60) 

Thus 0   corresponds to no relaxation and 1  corresponds to full 

relaxation.  Eq. (2.58) can be rewritten as            

                      i o

Ge Ge zz Si Si zzNa l N N a l      .                      (2.61) 

Eq. (2.61) can be rearranged and rewritten as   

                       1 1i oGe Ge
zz zz

Si Si

a aN N

a N N a

 
 

   
       
   

.                  (2.62) 

But from Eq. (2.59)  /   1Ge Si misfita a   . Hence from Eq.(2.62), we get  

                   1 1 (1 )i o

misfit zz misfit zz misfit                             (2.63) 

For 1  this gives i o

zz zz  , as expected. For 0  we obtain the 

expression                     

                1 i o

misfit zz zz misfit      .                (2.64) 
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This is almost the same as Eq.(2.44) but not identical. The difference is 

very small and probably negligible given the approximations involved 

with the continuum model. So if we consider 
misfit misfit

1 1 1e e    , 

we finally have  

                                     (1 )i o

zz zz misfit      .                          (2.65) 

 Within this approximation, we note that misfit  can be written as 

either   /misfit Si Ge Gea a a    or   /misfit Si Ge Sia a a   . With these new 

boundary conditions we recalculate the strain distribution for the core-

shell nanowires. 

 

 2.5 New Strain components in Core-Shell nanowire  

The strain expressions in section [2.1] are recomputed using the more 

realistic assumptions discussed in section [2.2] .We thus obtain  

                                 

2

2 0 2 2

(1 )

/ 1

o Pa
C

E a c




                                          (2.66)
 

   
 

1 0 2 2

(1 ) 1 2

/ 1

o o

zz

P
C

E a c

 


 
 


,    (2.67) 

     and 

                            
  

1

1 1 2
i i

zz i
C P

E

 


 
   ,                             (2.68) 

where 0E  and iE  are the young‘s modulus of shell Si and core Ge 

respectively. Combining these two equations and rearranging we get  
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               0 2 2 0 2 2

1 1
/  1 /  1    o i i o i i

zz zzC E a c C E E a c E       .             (2.69) 

The equivalent of Eq.(2.45), gives the expression  

      o i i o i i

zz zzE a c E c C E a c C E c0 2 2 2 0 2 2 2

1 1
1 2 0.            

   
 

          (2.70)

Now combining and solving Eq.(2.69) and Eq. (2.70) , we get   

                         0 2 2 2 0o i i

zz zzE a c E c    .                        (2.71) 

Combining the above Eq.(2.70) with Eq.(2.65)  
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         and                (2.72)  
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Hence the coefficients in Eq. (2.66) , Eq.(2.67) and Eq.(2.68)  can be 

written as  

    
2

2 0 2 2

(1 )

/ 1

o Pa
C

E a c
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1 0 2 2 0 2 2 2

(1 ) 1 2 (1 )
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,   

                    and    (2.73) 
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The final step is to express misfit stain-induced pressure P in terms of 

misfit . Hence we again use the fourth equation in Eq.(2.35). 

Substituting Eq. (2.73) into Eq.(2.70) we have  

 

 

  
 

 
 

1

0 2 2

0 2 2 2

1 1 2
1

i i

r
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u c C c

E a c
P c

E E a c E c

 
  



   
     
     

 

               and     (2.74) 

 

 

 

 

o
o o

r

i

misfit

i

C
u c C c

c

E cP Pa
c

E a c E a c cE a c E c

1
1

2 2

0 2 2 0 2 20 2 2 2

(1 ) 1 2 (1 ) (1 ) 1
   .

/ 1 / 1

    


 

     
     

      

 

Therefore using Eq.(2.35) and rearranging the term, we get the 

following expression  

   
     2 2

0 2 2

1 2 1 2 1 11

1
misfiti

c a
P

E E a c

   




          
       

        

.           

(2.75) 

Let us now define the quantity,  

             
0

iE

E
  .                         (2.76)

On substituting Eq.(2.76) in Eq.(2.75),  the solution for   becomes  

 
    

    

2 2

2 2

1 1 / 1

1 1 2 1 2

i

misfit E a c
P

c a

   

   

       


    
.                           (2.77) 
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The new coefficients 
1

oC , 
2

oC  and 
1

iC  can finally be obtained by using 

Eq.(2.77) in Eq.(2.75) and hence the final strain components are 

written by using the  coefficients 
1

oC , 
2

oC  and 
1

iC  in Eq.(2.32) and 

Eq.(2.33). 

The final strain expressions for the core are:   
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                  (2.78)

The final expressions for the shell strain are:  
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    (2.79)

As expected, in the limit 1  and 0   we obtain the strain 

components calculated earlier assuming the same Young‘s modulus 

and no relaxation of core and shell. The expression in Eq. (2.78) and 

Eq.(2.79) will be used later to discuss the Raman spectra of core and 

shell. 
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CHAPTER 3  

 VIBRATIONAL AND RAMAN THEORY OF SEMICONDUCTORS  

3.1 Introduction 

 In solids, the small oscillations56,62 of atoms about the crystalline 

equilibrium positions can be described as a collection of independent 

normal modes. Applying the usual quantization conditions to these 

normal modes gives rise to ―phonons‖. Lattice vibrations modulate the 

dielectric response of the crystal, giving rise to inelastic scattering of 

light, commonly known as Raman scattering. The kinematic selection 

rules for Raman scattering limit this process to phonons of vanishing 

wavevector, and since acoustic phonons have vanishing frequencies in 

this limit, Raman scattering is practically limited to optic vibrations 

with finite frequencies in the long-wavelength limit.   Here we present 

a brief review of lattice vibrations followed by a discussion of first-

order Raman scattering from a classical, semi-classical and quantum 

perspective.  Later sections describe the Raman selection rules, optical 

phonons under strain and experimental set-up.  

 

3.2   A review of lattice vibrations 

The optical phonons that are detected with Raman spectroscopy 

appear in lattices with a base. In particular, the diamond lattice has a 

face-centered cubic structure54 with two identical atoms at its two–
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point basis, located at  0 and   ˆ/ 4 ˆ ˆa x y z  , where   is the lattice 

constant of the cubic unit cell. If the perfect lattice cell is described by 

vectors
1 2 3
, ,a a a , in x, y and z directions respectively then the 

equilibrium position vector of an atom in the basis of the primitive cell 

is given by  

                                     1 1 2 2 3 3
 R l l a l a l a   ,                                          (3.1) 

where 
1 2 3
, ,l l l  are integers.      

 Let us assume that there are N unit cells which have n  atoms 

per unit cell with masses ( 1,2, .. )km k n  . Also if ( )R k  is the 

position vector of the thk  atom in the basis of thl  primitive cell then 

the position of atom in equilibrium is defined as  

                                      , ( )R l k R l R k  ,                                            (3.2) 

where  R l  is defined in Eq.(3.1). The Cartesian components of 

( , )R l k  are identified as   ,   1,2,3x l k   .Now we consider the 

displacement55,56 of the thk  atom in the  thl   cell from its equilibrium,

 0 ,x l k  by ( )u lk . The kinetic energy of the lattice is given by    

                                    21
  ( )

2
k

nk

T m u nk


                                  (3.3) 

 Within the adiabatic approximation, the total potential energy   

of the lattice is electronic ground-state energy at a frozen position 

away from equilibrium. The first derivatives vanish, 
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0

/ ( , ) 0V x l k  
‘ 
at equilibrium, since the forces acting are zero. 

The second order term of the potential, which is the only contribution 

included within the harmonic approximation, is given by  

                      
1

; ( )
2 nk n k

V lk l k u lk u lk




 

   ,                     (3.4) 

where   
2

0

;
( ) ( )

V
lk lk

x lk x l k


 

 
 

 
 


   

.                          (3.5) 

The Hamiltonian, H  for the crystal lattice can be written as 

            21 1
( ) ; ( )

2 2
k

nk nk n k

H m u nk lk l k u lk u lk

 

 
 

     .  (3.6)  

We can write the equation of motion of the 
thk  atom with mass, km  as     

                    
' '

' ' ' '( ; ) 0k

n k

m lk lk l k u ku l  



  .                         (3.7) 

 Since   has the periodicity of the lattice, a plane wave solution 

suitable for Eq.(3.7)  is given by   

                                  .
(0, )

i q R lk i t
u lk U k e


 ,                            (3.8) 

where ( )R lk  denotes the position vector  of the thk  atom in the thl  

primitive cell,q   is the wave vector of the reciprocal lattice, and   is 

the frequency of the normal  mode. Applying the plane wave solution to 

Eq.(3.7), we get      

              

´

. ( )2 ( ; ) ( )
iq R lk R l k

k

n k

m u k lk l k u l k e 



  
 



        .         (3.9) 
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 Normal coordinates are now introduced to simplify the above 

equation of motion. The normal coordinate‘s transformation provides a 

simplified form of Raman scattering theory by reducing the lattice 

vibrational problem to a set of independent harmonic oscillators. In the 

harmonic approximation, the Hamiltonian defined in Eq.(3.6) provides 

the solution to the vibrational problem. Thus the vibrational 

Hamiltonian can be written as  

                                   
1 1

2 2
 H  u uM  u u ,                           (3.10) 

where = u(lk)u  is a 3 1N   vector for the atomic displacements from 

the equilibrium positions;  ;lk l k    is the 3 3N N  force 

constant matrix, and  k ll kkm    M is 3 3N N  mass matrix. 

Henceforth we now define a 3 3N N  matrix eigenvalue equation for 

harmonically interacting system consisting of N atoms as   

       2  0f f  M
,  

(3.11) 

where f  is the normal mode frequency ,    |f lk f    is the 

eigenvector related to the lattice motion  and 1,2, ..3f N   labels  

the normal modes. As the Hamiltonian H is Hermitian, the 

eigenvectors satisfy the orthonormality,    
3

1

 
N

f

f f I  



 M  and 
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completeness,     fff M f   

    relations. We now introduce the 

normal coordinate, fd by  

                            ( | ) ( )f k

nk

f lk f md u lk


    Mu .        (3.12) 

The completeness relation gives the atomic displacements,u  in terms 

of the normal coordinates as        

                                      f

f

f d .u                           (3.13) 

Hence the potential and kinetic energy in terms of normal coordinates 

is given by   

                                              2 21

2
f f

f

V d                                             (3.14) 

              and      

                         2

     

1

2
f

f

T d                                    (3.15) 

We thus have the Hamiltonian of 3N independent harmonic oscillators 

as                                            

     2 2 21

2
f f f

f

H d d  .                               (3.16) 

Hence the equation of motion in normal co-ordinates is given by   

                                         2 0f f fdd   .                                   (3.17)

The vibrational problem is solved using quantum mechanics. We 
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define fd  and fd as operators obeying the commutation relations given 

as  

                                         f f ffd d i, . 
    ħ                                 (3.18) 

For further treatment of quantum mechanics, creation, fa and 

annihilation  
fa  operators are given as  1 / 2f f f f fa d i d  ħ and

 1 / 2f f f f fa d i d   ħ   respectively. The operators also satisfy the 

commutation relation given as 2 21 / 2f f f f f fa a d d       ħ ħ .From the 

above definition of operators, the normal coordinates is written as  

                                        
2

f f fd i a a
m

 
ħ

.                                    (3.19) 

We can write the Hamiltonian in Eq.(3.16)      

                             
1

2
f f f

f

H a a  
  

 
ħ .                                  (3.20) 

The energy eigenvalues are given by     

                                            
 

1
   

2f fn
f

E n
 

  
 

ħ ,                                      (3.21) 

where 0,1,2,......fn   is the number of phonons in mode f .  

The normal mode solution for the lattice vibrations can be obtained by 

inserting the Bloch‘s waves,      .
| ( | )   

iq R lk

klk qj e k qj Nm e    to 

Eq.(3.11) .  
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We can write the Eq.(3.11) as       

 
   

     
iq R lk R l k

l k k k

lk l k
e e k qj qj e k qj

m m

´

. ( )
2

;
| | ,






  

 
  

  

 
 

 
    (3.22) 

 where  e qj e k qj( | )  is the polarization vector satisfying the 

orthonormality and completeness relations,     jje qj e qj 

  where 

1,2,3......3j n  labels the  polarization  branches.          

We introduce a Dynamical Matrix,  D q  given by     

                 
   iq R lk R l k

l k k

lk l k
D kk q e

m m

´

. ( )

.
;

  |





 

  


 



 
                        (3.23) 

The secular equation for the normal mode frequencies is written as  

                       kk

l

D kk q qj e k qj2  | | 0. 



   



   
        (3.24) 

Also         

                                     D q qj e qj2 0.                                    (3.25) 

The necessary and sufficient condition  to have a non-trivial solution is   

                                     D q qj2 0,                                   (3.26) 

 where I is the unit matrix of 3 3s s  order57. For a particular wave-

vector,q Eq.(3.26) gives 3s  eigenvalues of  2 qj .The acoustics 

branches  correspond to the three roots that tend to zero as 0q  . The 

remaining 3 3s   are the optical branches which tend to a finite limit 

as, 0q  , denoted as the   point of the Brillouin zone. These modes 
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are the only ones which can appear in first-order Raman spectra. The 

Fig.(3.1) below shows  the phonon dispersion curve of Ge to show the 

triple degeneracy at   point. 

  

Fig(3.1): Phonon Dispersion58 curve of  Ge and Si. Copyright (1991) American 

Physical Society.  

 

3.3   Classical theory of Raman Scattering   

 The classical theory of Raman Scattering59 considers the appearance 

of an electric dipole moment induced by the electromagnetic field of the 

light incident on the system. This incident electric field is given by 

                                            Li t

LE E e 
 .                                 (3.27) 

The induced dipole moment is expressed as      

                          Li t

LM t P E P u E e 

    

 


   ,               (3.28) 

where P
 is the polarizabilty of the medium  and L  is the frequency 

of incident light. Typically, the frequency of the incident radiation is 

much higher than that of the lattice vibrations but comparable to that 

of electronic transitions. Thus P
 that appears in Eq.(3.28) is 

essentially the electronic polarizabilty tensor of the system. The atoms 
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vibrate about their equilibrium position 0u  . This results in a 

variation of the polarizabilty, P
 which can be expressed by expanding 

( )P u
 about 0u  as 

    
 

 
0

  0
k

P
P u P u k

u k



 






 
     

    (3.29) 

where ( )u k is the displacement of thk  atom in th  direction.   

 If the system vibrates such that thf  mode is excited, the atomic 

displacements can be written as   

                                           | | fu k f k f cos t    .                               (3.30) 

 where  |k f  defines the amplitude.         

The induced polarization becomes       

      
0

1
       0 | .  

2 ( )
f fi t i t

k

P
P u P k f e e

u k

  

 



 



 

    
 

  

                                                                                                               (3.31) 

The induced electronic dipole moment by the incident electric field can 

be written by substituting Eq.(3.31) into Eq.(3.28) as  

   

   ( ) ( )

0

  0

1
| .......

2 ( )

L

L f L f

i t

L

i t i t

L

k

M t P E e

P
k f E e e

u k



  



    



 

 




  



 
  

 





 

          (3.32) 
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Eq.(3.32) shows the scattered radiation at three distinct frequencies, 

namely L , L f   and L f  . The first scattered frequency 

corresponds to elastic scattering (Rayleigh scattering), while the latter 

two frequencies, shifted to lower or higher frequencies correspond to 

inelastic scattering. The inelastic scattering is the first order Raman 

scattering, involving one phonon. The term L f   gives the so-called 

Stokes scattering and  L f   corresponds to anti-Stokes scattering. 

The higher order terms in Eq.(3.32) correspond to second or higher 

order Raman scattering processes.   

 The vibrating classical dipole moment,  M t radiates 

electromagnetic waves. The rate of energy flow is given by Poynting 

vector, S as            

     
4

2 3
ˆ ˆ

4
L

s sS n n M t M t
R c

   






  .   (3.33) 

We obtain     M t M t 
 from Eq.(3.28) as     

                         L LM t M t P P P P E E* * .
1

4
       



         (3.34) 

Hence the Poynting vector in Eq.(3.33) can be written as  

            L
s s L LS ń ń P P P P E E

R c

4
* *

2 3
,

16
       






             (3.35)

where sn  defines the polarization vector for scattered radiation at 
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position, R  and c is the speed of light . The average power, ( )I u  

radiated per unit solid angle per unit volume is given by    

    L
s s L LI u ń ń P u P u E E

c

4
*

 .  3
( ) ( )

2
     






    (3.36)

The Eq.(3.36) would be used in the next section to discuss semi-

classical theory of Raman scattering.       

 

3.4 Semi-classical theory of Raman scattering  

The semi-classical theory of Raman scattering60 treats the lattice 

vibrations quantum mechanically while electromagnetic field is still a 

classical wave. As the atoms are free to vibrate, we consider the 

thermal average of the scattered intensity in Eq.(3.36) to be expressed 

as  

               L
s s L LI u ń ń P u P u E E

c

4
*

3
( ) ( )

2
.     






                       (3.37) 

where,   

 vE

vvvib

P u P u e v P u v v P u v
Z

* *1
( ) ( ) | ( ) ( )  ,



   



          (3.38)

where vibZ is the partition function,   is the initial and    is the  final  

vibrational state respectively. We now introduce a fourth rank 

Raman61 tensor,
,

( )i    given as        

   vE

vv

vvvib

i e v P u v v P u v
Z

*

,

1
   | ( ) ( ) ( ).



       





         (3.39) 
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The delta function in Eq.(3.39) is given by    

                             vvi t

vv e dt
1

 .
2

 
  





 



                           (3.40) 

Substituting Eq.(3.40) into Eq.(3.39), we obtain  

  v vvE i ti t

vvvib

i dte e v P u e v v P u v
Z

*

,

1 1
    | ( ) ( ) ,

2

 

   








 

    

          (3.41) 

where 
   is the frequency difference between the initial and final 

vibrational states.  The eigenvalue equation for Hamiltonian, H  for 

any vibrational state is given by  

                           
viE tiHt

vH E e e     ħ ħ .                      (3.42) 

Using Eq.(3.42) in Eq. (3.41), we have        

   *

,

1 1
    | ( ) ( )

2
v

iHt iHt
Ei t

vvvib

i dte e v e P u e v v P u v
Z



   


 


 





  ħ ħ  

                                                                                                             (3.43) 

Using completeness relation and the Heisenberg representation: 

                                            
´

1
v

v 


                                     (3.44) 

        and       

                                     
* *( , ) ( )

iHt iHt

P u t e P u e 



 ħ ħ

,
                                (3.45) 

the fourth rank Raman tensor in Eq.(3.43) is simplified to  
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    *

,

1
   ( , ) ( )

2

i ti dte P u t P u

   








  .   (3.46) 

In the harmonic approximation, ( )P u
about the atomic equilibrium 

configuration 0u   is given as  

                              0 .  
k

P u P P k u k  



        (3.47) 

where  
 

0
( )

u

P u
P k

u k









 
  

  
                   

In normal co-ordinates,  
3

 

1

N

f

f

f d


u  Eq.(3.47) is written as   

                                  
3

,

1

0 ..
N

f f

f

P u P P d  



                              (3.48) 

 where      ,

0

|f

k f

P
P P f P k k f

d



  



   
 

    
 

 ,is the electronic 

polarizabilty per unit displacement in the normal mode f .  Finally we 

obtain the fourth rank Raman tensor as 

  

   

   

   

*

*

,

, *

,

*

, ,

0 0

0 01
  

2 0 0 ( )

( )

f fi t

f f f

f f f f

ff

P P

P P d
i dte

P P d t

P P d t d

 

 

 

 

 


















 
 
 

   
    

   
 

 
 





. (3.49) 

The first term in Eq. (3.49) corresponds to Rayleigh scattering. The 

Second and third term would vanish since 0 ( )f fd d t  . Thus the 
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only term which contributes to Raman scattering is the last term. The 

fourth rank Raman tensor corresponding to this scattering reduces to  

                         *

, ,

1
( )

2

i t

f f f f

ff

I dte P P d t d

 








 

  .           (3.50) 

In the harmonic approximation, the normal coordinates are given by

 2 f fi t i t

f f fd a emi a e   ħ , where fa and 
fa  are creation and 

annihilation operators. Therefore, if we now consider the thermal 

averaging of ( )f fd t d  , we find as:             

   ( ) 12 f fi t i t

f f ff f fd t d n e n em   

    ħ , where fn  is the 

conventional Bose-Einstein occupation function. Moreover if we apply 

the delta function properties given by   ( )1

2
fi t

f e    




 



    and 

  ( )1

2
fi t

f e    








    to Eq.(3.50), the final expression for the fourth 

rank Raman tensor is given by  

        f f

f f f f

f f

P P
i n n

*

, ,

,
1  .

2

 

        


      ħ  

          (3.51) 

The term proportional to  f    corresponds to the Stokes 

scattering component and that proportional to  f    corresponds 

to anti-Stokes component of Raman Scattering. The frequency of the 
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electromagnetic radiation emitted by the system is s L f    . The 

Stokes and anti-Stokes components correspond to emission, 

 s L f     and absorption,  s L f     of a phonon, respectively. 

The expression for the intensity of the scattered radiation can be 

written as      

 
   

 
   

f fS
s s f f L L

f f f f

n
I u ń ń P u P u E E

c n

4
*

, ,  3

1
   ,

2 2
     



  

    

  
 
   

 
ħ

           (3.52) 

where Sn is the scattered polarization vector .        

The corresponding differential scattering cross section can be written 

as  

     S
f f f f S f L

fS f

d
n n n P n

d d c

2
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,4
1

2
,  




     

 
      

 
ħ

 

                                                                                                                   (3.53) 

where Ln  is the incident polarization vector. The differential scattering 

cross-section expression will be used to describe the depolarization 

ratio and the selection rules of Raman scattering. 

 

3.5 Quantum theory of Raman Scattering      

The quantum theory of Raman scattering62,63 considers the 

quantization of lattice vibrations and the quantization of the 
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electromagnetic field. The Hamiltonian of solids in an interacting with 

an electromagnetic field is written as   

              e i ei p ip epH H H H H H H      ,                          (3.54) 

where eH , iH and pH  are the Hamiltonian of the electrons , ions and 

photons respectively. eiH ,
ipH  and 

epH  corresponds to electron-ion, ion-

photon and electron-photon interactions. The ion-photon interaction is 

negligible if the excitation frequency is large. e p eiiH H H H   are 

treated exactly within harmonic approximation, representing the 

unperturbed Hamiltonian,  2

0
  2H p m V r  where p  is the 

momentum of electron and ( )V r is the crystalline potential 

experienced by the electron. The photon Hamiltonian, pH   is given by   

                             
1

    
2

p k k k
k

H a a  
  

 
ħ .                              (3.55) 

 We now consider the coulomb gauge64  . 0A  , where A is the 

vector potential. The electric and magnetic field of the electromagnetic 

wave are given by Maxwell‘s equations as   1E c A t     and 

B A   respectively.  Hence the expression for the wave equation of 

the vector potential is   2 2 2 2  1 0A c A t     and its solution is 

given as   

                   ( . ) ( . )*1
ˆ,

2
k k

i k r t i k r t

kk k
k

A r t A e A e e
     

  .          (3.56) 
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where ˆ
ke  is a unit polarization vector .                 

The electric field is then        

  
  k k

i k r t i k r tk
kk k

k

i
E r t A e A e e

c

( . ) ( . )*1
ˆ, .

2

      
   (3.57) 

Accordingly, the quantization rules for the radiation field leads to the 

following expressions for the vector potential and electric field 

operators:  

            ( . ) ( . )1
ˆ,

2
k k

i k r t i k r t

kk k k
k

A r t A a e a e e
 


    

              (3.58) 

 and 

                ( . ) ( . )*1
ˆ,

2
k k

i k r t i k r tk
kk k

k

i
E r t A e A e e

c

      
                   (3.59) 

respectively.  

Here  

1

2 22
k

k

c
A

V






 
   
 

ħ
 and  

1

22
k

k
E i

V

 


 
  

 

ħ
. 

The amplitude of the quantized electric and vector potential fields is 

given by ( ) ( )
k k

A E k  . In the presence of electromagnetic field 

the momentum operator transforms as /p p eA c  . The total 

Hamiltonian would then be given by  

                                             
0 intH H H  ,                                           (3.60) 

where .int i

i

e
H A p

mc
 . 
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Within the dipole approximation the phase factor is taken . 1ik re  , a 

plane wave solution. Hence we can write Eq.(3.59) as

   
1 2

( , ) 2 ˆ k k k

k

E r t i V a a e    ħ . Also the term .A p  is similar to 

the perturbation term .M E  where j j

j

M q r , is the electric dipole 

moment. Hence switching from an .A p   to .M E  formulation would 

give the same inelastic scattering cross section. The total Hamiltonian 

becomes   

                                   
0

.H H M E  ,                                      (3.61) 

      or 

                         k
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ħ
             (3.62) 

The first order Raman scattering involves creation and destruction of 

two photons in ground, n  and excited, m  electronic state along with 

a phonon. Fermi‘s golden rule, also known as transition rate formula65, 

gives  

                    int int

2

2
c a

b a b

c H b b H a
E E

E E


  


ħ

,                    (3.63) 

where the transition states a , b  and c  are the initial,  

intermediate and  final  states respectively. Let us assume the initial 

photon state to be kn  and the final photon state to be kn  . The initial 
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state can be written as 0k ka n n n    with energy

a n k kE E n   ħ . Similarly the final state is  1 1k kc m n n        

with energy  1c m k k kE E n      ħ ħ . The first and second matrix 

element gives two possibilities of the intermediate state. These two 

possibilities for the intermediate states are 1 0k kl n n   and

1k kl n n    with energy ( 1)b l k kE E n  ħ  and

b l k k kE E sn    ħ ħ
 
respectively. Let us denote  L  and S  as the 

incident photon and scattered frequency, the transition rate can then 

be written as   
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                                                                                                                    (3.64) 

The summation over Sk  is converted into an integral of the form                

   3 2 3 2  (2 ) (2 )  
S

S S S S

k

k dk d cV d dV                                    (3.65) 

The scattering rate66 is best given as a scattering cross-section. The 

scattering rate is given by  

                                          S

S k k

V

c n cn

V






 
 
 
 
 

ħ

ħ
.   (3.66) 
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Hence the Raman  cross-section can be written as   
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          (3.67) 

Using ln l nE E  ħ  and    
1

m n L S mn L SE E                 ħ
ħ

in Eq.(3.67) , we get   
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                                                                                                             (3.68) 

Eq.(3.68) is the Kramers-Heisenberg67 formula for differential 

scattering cross-section. A thermal averaging ( )nAv  is included over 

all the initial states, and then the Raman cross section is given by 

  ln LL S

n mn L S

m lS ee

ln S

m M e ll M e n

d
Av

d d c m M e ll M e n'

2
'

3

'

ˆ

2

ˆ

2

4

| . | | . |
   

( )  
| .

ˆ ˆ

| |ˆ ˆ| .
.

  
   



 


   






 
 

   
    

 
 


ħ

                                                                                                             

          (3.69) 

The first term is known as resonant term68 and the second as anti-

resonant term. ˆ.M e and .M e is the electric dipole interaction for the 
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incident and scattered polarizations respectively. If 
ln

,L 
 

we 

observe an occurrence of resonance in Raman cross-section.  

 

3.6 Raman Selection Rules 

The Raman intensity depends on the polarizations of the incident and 

scattered light. From Eq.(3.53),  

                                       S f LI n P n

2

,
  . . ,



                                            (3.70) 

where 
,fP

 is the polarizabilty derivative of the molecule; and Ln and 

sn  are the incident and scattered polarization vector respectively.  The 

polarizabilty is directly proportional to electronic susceptibility,   of 

the molecule asP E . The volume-independent Raman tensor, R  is 

introduced such that the susceptibility derivative,   is written in terms 

of R 69 as 

                                                
1 1

c

R
v N




                                       (3.71) 

where cv ,   is the volume and reduced mass of primitive cell 

respectively. The Raman strength can now be expressed as   

                                       
2

. .s LI n R n .                                     (3.72) 

 In diamond-structure semiconductors, the optical modes at the 

 point ( k = 0) the Brillouin zone are triply degenerate, and a basis 
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can be chosen with modes polarized along x , y  and z directions. The 

Raman tensor70 for these modes is given by  

                                                  

0 0 0

0 0

0 0

R x d

d

 
 

  
 
 

,                                     (3.73) 

                                                

0 0

0 0 0

0 0

d

R y

d

 
 

  
 
 

                                     (3.74) 

and  

                                              

0 0

0 0

0 0 0

d

R z d

 
 

  
 
 

.                                     (3.75) 

 Using Porto convention71,  ( ,ˆ ˆ )L L S Sk n n k  for the scattering 

geometry where   Lk and Sk  indicates the propagation directions of 

incident and scattered light. ˆ
Ln  and ˆ

Sn gives the polarization 

directions of incident and scattered light respectively. Consider a 

parallel configuration,  ,z x x z
 

and perpendicular configuration, 

 ,z x y z  geometries for diamond type (Si, Ge) structures.  The 

Raman intensity for perpendicular geometry is given by  

                           
   

2

2

,

0 0 0

1 0 0 0 0 1

0 0 0 0

z x y z

d

I d d


  
  

   
  
  

.                    (3.76) 
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And the Raman intensity for parallel geometry is given by  

                      
   

2

,

0 0 1

1 0 0 0 0 0 0

0 0 0 0

z x x z

d

I d


  
  

   
  
  

.                           (3.77) 

 

3.7 Strain effects on Optical Phonon 

In diamond type crystals, we observe that first order Stokes Raman 

spectra exhibits a single peak a   point. The three degenerate optical 

phonon at 0k   are found at a frequency
0

  , so that
0 L s    , 

where L  is the frequency of incident radiation and s , is the 

frequency of scattered radiation. The application of uniaxial stress 

would cause shift and splitting of the degenerate optical modes. The 

coupled dynamical equations describing the optical modes in strain72 is 

given 

                              2

0i ik iklm lm k

klm

mu m K u                        (3.78) 

where  m  is the reduced mass of the system,  iu  is the relative 

displacement of the thi component, ik is the Kronecker delta, lm  is the 

applied strain and iklmK  are the components of  the fourth rank 

deformation potential tensor. iklmK
 

has exactly same symmetry 

properties as the iklmc . In suppressed index notation, iklmK  matrix in  
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Cartesian coordinates for cubic crystals are given by  

                                        

11 22 33

12 23 13

66 44 55

K K K p

K K K q

K K K r

  

  

  

.                         (3.79) 

In suppressed notation we can rewrite Eq.(3.78) as  

                                    2

0i ik ik k

k

K uu    .                          (3.80) 

Assuming the solutions of Eq.(3.80)  of the form i t

i iu A e  . We obtain  

                                       2 2

0
0ik ik k

k

K A     
  .                              (3.81) 

The non-trivial solution, if the determinant of the matrix in brackets 

vanishes, is given by the well-known secular equation 73  
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We define 2 2

0
    , then Eq.(3.82) is given by  
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In Cartesian coordinates the elements of the determinant in Eq. (3.83)

are given by           
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22 22 11 33

33 33 11 22

12 21 12 

23 32 23 
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.   (3.84) 

We will further relate the Cartesian crystal cubic coordinates of the 

above analysis with the cylindrical coordinates that was used in 

Chapter 2 to compute the strain in the nanowires in Chapter 4 and 

Chapter 5.    

 

3.8 Raman Experimental  Setup    

        

Fig.(3.2): Raman experiment set-up in the back-scattering process. 

The micro-Raman experimental setup is shown in Fig (3.2). The 

apparatus has four important components: (1)Laser,  (2) Spectrometer,  

(3) Objective and (4) Charged –coupled device (CCD). It is operated in 
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the back-scattering configuration. The photon excitation source is a 

single line mode of either an Argon or Krypton ion laser with 

wavelengths in the visible region. The incident laser excitation travels 

through the beam splitter, is focused on the sample by a microscope 

objective. The objective is a 100 X with 0.8NA and yields a spot size 

less than 1micron. The objective collects the scattered light where a 

half wave plate selects which polarization passes to the spectrometer 

and a Raman edge filters reject the Rayleigh scattered light. The 

spectrometer used is a single stage Acton 500mm Spectrometer. It has 

600, 1200 and 2400 grooves/mm gratings. The collected scattered light  

is energy dispersed by the spectrometer and its intensity versus energy 

spectra is measured  with a liquid nitrogen cooled Si CCD detector. 

The spectrum is collected with the computer using the Winspec32 

74software. 
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CHAPTER 4   

 ANALYTICAL MODELLING OF STRAIN-INDUCED RAMAN  

SHIFTS IN CORE-SHELL NANOWIRE 

4.1 Introduction  

An analytical model40 is now introduced to compute the Raman 

spectrum of Si-Ge core shell nanowires. For the calculation of the 

strain, the materials are assumed to be elastically isotropic. In this 

chapter we combine the strain calculations of Chapter 2 with the 

theory of strain effects on Raman frequencies from Chapter 3 to obtain 

simple predictions of the phonon frequencies in core-shell nanowires 

with axes along the <011> and <111> crystallographic directions. We 

start the discussion with the strain model of core-shell nanowire 

followed by the optical phonon discussions in core-shell nanowire with 

axes along the <011> and <111> directions. Later sections describe the 

numerical simulations and their results with discussions. 

 

4.2 The Strain model 

In chapter 2 we derived the strain equations of the core-shell 

nanowire47 with different elastic properties and introduced a 

relaxation term of core and shell. We considered different Young‘s 

moduli for the core and shell. Also since ratios of elastic constants are 

nearly the same for Si and Ge, their corresponding Poisson ratios are 
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very similar for any fixed crystallographic orientation.75 Hence we kept 

the Poisson‘s ratio to be same for the core and shell. The expressions of 

core and shell strains with no relaxation term i.e. 0   can be 

obtained from Eq.(2.78) and Eq.(2.79), are given by     
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                (4.6) 

The Fig. 1 shows the non-zero strain components for a Ge-Si core shell 

nanowire with c /a =0.6.  
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Fig.(4.1): Strain tensor components in cylindrical coordinates for a fully strained Ge-

Si core shell nanowire with c/a = 0.6, where c is the core radius and a  the outer shell 

radius. 

 

Since the strain components are independent of  , we plot them as a 

function of the radial coordinate r. In the core region, the strain tensor 

is independent of r. This perfectly uniform strain splits the triple-

degenerate   point optical phonon mode of the diamond structure into 

three unique modes, which therefore become an ideal probe of the 

strain state of the core via Raman spectroscopy. By contrast, the off-

axis shell strain components are functions r, so that the observed shell 

Raman spectrum is an average over the shell. In addition, shells in 

real nanowires tend to be quite thin, so that confinement effects on 

their phonon frequencies must be fully included. Because of these 

complications, the shell Raman spectrum is less appropriate for strain 

characterization. Thus we will concentrate on Raman spectra from the 
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core regions. The elastic constants and structural parameters were 

taken from Table 4.1 given below:  

Table 4.1 : Structural and elastic parameters used for the computation of the 

strain in Si-Ge and Ge-Si core-shell nanowires. 

 Lattice constant (Å)  (Voigt average) E011 (GPa) E111 (GPa) 

Si 5.4308676 0.21877 169.278 187.978 

Ge 5.656876 0.20077 137.078 154.578 

 

4.3 Optical Phonons in <011> and <111> Nanowire core   

We consider nanowires grown in <011> and <111> directions. To 

transform the deformation potential tensor to cylindrical coordinates, 

we define an intermediate Cartesian system with the z –axis along the 

nanowire growth axis. Also the unperturbed ( 0)iklmK  phonon 

eigenvectors are considered to be along  
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3

1,0,0

0,1,0

0,0,1

e

e

e







,                                           (4.7) 

where 
2 2
 , e e  and 

3
e  are unit vectors for the Cartesian coordinate 

system relative to the cubic x, y and z axes.     

  We use the definition of transformation matrix,
( )

.ij i r z
l e e


 , 

where 
( )r z

e


 are the unit vectors in cylindrical system  and    is 

analogous to Eq.(4.7) to find the transformation matrix, ijl . We start 

first by taking the growth axis of the nanowire along the (011) 
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crystalline direction. We define an auxiliary coordinate system with 

unit vectors given as   
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.                                     (4.8) 

The unit vector for the cylindrical system is written in terms of these 

auxiliary vectors as                                                
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We thus obtain the transformation matrix as 
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Using Eq.(2.10) of chapter 2, and Eq.(4.10) , we have  
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In the core region of the nanowire, core core

rr    thus we have from 

Eq.(4.15) 
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is independent of the angle  . Therefore, Eq.(3.83) from Section[3.7] 

becomes 
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This has the following eigenvalues and eigenvectors 
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Let‘s now consider the nanowire grown in <111> cubic directions. The 

our auxiliary unit vectors are given by                                          
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We can still use Eq. (4.9) for the cylindrical coordinate unit vectors and 

find the transformation matrix as   
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We can proceed in the similar way and obtain the strain matrix as
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 (4.17) 

which is also independent of the angular coordinate.        
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The eigenvalues and eigenvectors are obtained as    
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          (4.18) 

 Also, for the comparison of three modes in Eq.(4.14) and (4.18) 

with the experimental Raman spectra, the Raman intensity has to be 

computed. To compute Raman intensity we need to find the Raman 

tensor in cylindrical co–ordinates. If the displacements are chosen in 

the Cartesian direction, the Raman tensors are given in Section[3.6]  

as 

 

d d

R x d R y R y d

d d

0 0 0 0 0 0 0

( ) 0 0 , ( ) 0 0 0 , ( ) 0 0 .
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      (4.19)

 

Raman tensors corresponding to eigenvectors in cylindrical co–

ordinates are given by  

                                           ( ) ji j
j

R i L R  ,                                              (4.20) 

where ji j iL  u u  , a transformation matrix.  
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The Raman tensors in cylindrical co-ordinates for nanowires in <011> 

can be written as          
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  (4.21) 

 And the Raman tensors in cylindrical co-ordinates for nanowires in 

<011> can be written as   
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                                        (4.22) 

The zeroth–order approximation to the Raman tensors is considered, 

as it ignores the terms proportional to the strain approximation such 

that the Raman tensors computed in Eq.(4.21) and Eq. (4.22) 

represents the Raman tensors for the three different modes in the 

presence of the strain perturbation. In addition since in  the small 

diameter semiconductor nanowires79,80,81, Raman scattering is 

enhanced for scattering configurations in which the light's electric field 

is along  the structure's axis,  the Raman modes are then classified 

according to the orientation of the electric field vectors relative to the 

nanowire axis. The Raman intensity is given by    

              
2

inc scatt

i TI i  E R E ,   (4.23) 

where T

incE  and scattE  are the incident and scattered electric field 

orientations.  

 

 4.4 Numerical Simulations of the core  

We have computed the optical phonon frequencies and Raman tensors 

for core-shell nanowires with axes along 011 and 111  in section 4.3. 
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We now consider structures with Ge cores and Si shells and also 

structures with Si cores and Ge shells. We use the structural and 

elastic parameters given in Table (1). The phonon parameters are 

given below in Table (2.1) as   

 

Table 4.2: Phonon parameters for Si and Ge used for the computation of 

strain shifts in core-shell nanowires. 
0

  is the bulk, unperturbed Raman 

phonon frequency, and p,q,r are the phonon deformation potentials. 

 
0

  (cm-1) 2

0
p   

2

0
q   

2

0
r   

Si 52176 -1.8372 -2.3372 -0.7172 

Ge 30176 -1.4772  -1.9372 -1.1172 

 

The value of parameter   (refer Eq. (2.76) is slightly different for the 

<011> and <111> directions. For accuracy we use <011> values for 

<011> nanowires and <111> values for <111> nanowires, although we 

obtain essentially the same frequencies with either set. Similarly, we 

use the Voigt average of the Si Poisson ratio for Si-core nanowires, and 

we use the corresponding Ge average for Ge–cores. Figs. (4.2) – (4.5) 

show the results of the numerical simulations. Critical discussions on 

Poisson‘s ratio are given in chapter 5. We begin by computing the core 

strain tensor components as a function of the c/a ratio using Eqs. (4.1) 

– (4.3), and then we calculate the phonon frequencies using Eqs. (4.14) 

or (4.18). We compute the Raman intensities using the Raman tensors 

obtained in Eqs. (4.21) or (4.22). Raman modes are computed for both 

light polarizations parallel to the nanowire axis, with one polarization 
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parallel to the nanowire axis, and another with no polarization parallel 

to the nanowire axis. The polarizations are indicated in Figs. 4.2 – 4.5, 

where the thicker line corresponds to the frequency shift observed for 

both polarizations parallel to the nanowire axis, which presumably 

corresponds to the dominant Raman mode in small diameter 

nanowires. The figures are given below: 

 

        

Fig. 4.2 Computed core Raman phonon frequency shifts in a fully-strained Ge-Si core-

shell nanowire with axis along the <011> crystallographic direction. The figure can 

also be used to obtain the shifts in a Ge-Si1-xGex core-shell structure by simply 

computing  from Eq.(4.3). The labels in the lines correspond to the incident and 

scattered light polarization directions for which the corresponding modes are 

observed. L = <011>, T1 =  <100>, T2 == 011  .     
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Fig. 4.3 Computed core Raman phonon frequency shifts in a fully-strained Si-Ge core-

shell nanowire with axis along the <011> crystallographic direction. The figure can 

also be used to obtain the shifts in a Si-Si1-xGex core-shell structure by computing 
core

zz from Eq.(4.3). The labels in the lines correspond to the incident and scattered 

light polarization directions for which the corresponding modes are observed. L = 

<011>, T1 =  <100>, T2 = 011  . 

 

     

Fig. 4.4 Computed core Raman phonon frequency shifts in a fully-strained Ge-Si core-

shell nanowire with axis along the <111> crystallographic direction. The figure can 

also be used to obtain the shifts in a Ge-Si1-xGex core-shell structure by simply re-

computing 
core

zz from Eq.(4.3). The labels in the lines correspond to the incident and 

scattered light polarization directions for which the corresponding modes are 

observed. L = <111>, T1 =  110  , T2 = 112  . 
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Fig. 4.5 Computed core Raman phonon frequency shifts in a fully-strained Si-Ge core-

shell nanowire with axis along the <111> crystallographic direction. The figure can 

also be used to obtain the shifts in a Si-Si1-xGex core-shell structure by simply 

computing 
core

zz from Eq.(4.3). The labels in the lines correspond to the incident and 

scattered light polarization directions for which the corresponding modes are 

observed. L = <111>, T1 =  110  , T2 = 112  . 

 

The results in Figs. 4.2 – 4.5 are presented as a function of core

zz . This 

approach makes it simple to use the calculations for Si–Ge or Ge–Si 

core–shell nanowires to obtain the phonon frequencies in systems in 

which the shell consists of a Si1-xGex alloy. Now we only need to 

compute the appropriate value of core

zz  using Eq.(4.3), and find the core 

frequencies from Figs 4.2–4.5.  Also, since the strain tensor is exactly 

proportional to core

zz  in Eqs. (2.52)– (2.57), it justifies the approach, but 

this does not apply to the more accurate expressions in Eqs. (4.1)–(4.3), 

in which the difference between core and shell Young moduli is taken 

into account. However, numerical simulations show that the core 

frequencies obtained for the case of alloy shells using the full procedure 
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from Eqs. (4.1)–(4.3), through Eqs. (4.14) or (4.18), differ from the 

simple approach just described by less than 0.1 cm-1. This difference 

can be neglected as this error is considerably smaller than other 

sources of error. The data in Figs 4.2–4.5 can be implemented to fit the 

strain dependence of the mode which is Raman–active for both 

polarizations parallel to nanowire axis with a linear function.  The 

results are (in cm-1): 

                     

core

LL

core

LL

core

LL

core

431 011  nanowire, Ge core

824 011  nanowire, Si core

565 111  nanowire, Ge core

999 111  nanowire, Si core

zz

zz

zz

LL zz

 

 

 

 

  

  

  

  

.                   (4.24) 

Hence we have computed the strain–induced Raman frequency shifts 

in core–shell nanowires based on the Si/Ge system. Errors in the 

predicted shifts arise mainly from the use of isotropic averages for the 

Poisson ratios of Si and Ge. These errors are not likely to exceed 20% of 

the total shifts. A more detailed and complete numerical analysis is 

shown in the Chapter 5.        
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CHAPTER 5 

VALIDATION OF THE ANALYTICAL  STRAIN MODEL  FOR CORE-

SHELL NANOWIRE 

5.1 Introduction 

The approximations required to obtain analytical solutions for the 

strain in core-shell nanowires raise doubts about the accuracy of the 

Raman shift predictions based on this model. Even though we have 

incorporated an important improvement relative to the original work 

of Liang in chapter 4 (and corrected an error in their calculation in 

chapter 2) by accounting for the different Young moduli of Si and Ge, 

the fact remains that the cylindrical geometry is a very crude 

representation of the experimental nanowire geometries, and that we 

are neglecting the very large anisotropy of the Poisson ratio in Si and 

Ge by using Voigt averages. However, these simplifications will not 

affect all strain components equally.  Let us start with the axial 

components of the strain. According to Eq. (2.48) the misfit strain misfit 

is distributed between the core and the shell in such a way that the 

magnitudes of the zz components are inversely proportional to the 

corresponding cross-sectional areas. This originates from the boundary 

condition that the net force on any core cross-section must be equal 

and opposite to the net force on the corresponding shell cross section, 

so that the overall net force on any nanowire cross section vanishes 
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under equilibrium conditions, as discussed in Chapter 2. The forces on 

the core and shell cross sections are proportional to the corresponding 

strain, cross-sectional area, and Young modulus. Since Young moduli 

are taken to be the same for the core and shell in Eqs.(2.52)- (2.57), the 

final result is that the core and shell strains are simply inversely 

proportional to their corresponding cross-sectional areas. When the 

difference between Young moduli is accounted for, as in Eq. (4.3) and 

(4.6), the final values for the strain are inversely proportional to the 

areas multiplied by their respective Young moduli. This zero-force 

boundary condition would still be valid in the case of anisotropic 

materials, and the core and shell strains would still be proportional to 

the corresponding areas. Therefore, we expect Eqs. (4.3) and (4.6) to be 

reasonably accurate even for anisotropic core-shell nanowires of 

arbitrary shapes, as long as the radii a  and c are chosen in such a way 

that core/shell area ratio in the cylindrical model is the same as the 

core/shell area ratio in the real nanowire. Moreover, since Eqs.(4.3) 

and (4.6) depend on the ratio  of Young moduli, the result should be 

largely independent of the nanowire growth direction. We thus expect 

the zz components of the strain computed with our analytical model to 

be a faithful representation of the zz strain components in real core-

shell nanowires. On the other hand, the in-plane strain components rr 

and depend explicitly on the Poisson ratio, and therefore they are 
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less reliable because of the anisotropy of this parameter.  However, we 

notice from Eqs.(2.52) and (2.53) that core

rr and core

  are proportional to 

   1
2

1 3 1   , which vanishes for  = 1/3.47 Since the actual value of 

the Poisson ratio is not too far from this value, this means that core

rr

and core

 will be considerably smaller than core

zz . For example, using the 

above Voigt averages for , the in-plane strain components are about 

four times smaller than core

zz . This means that the larger expected error 

in the in-plane strain components, arising from Poisson ratio 

averaging, will be mitigated by their smaller magnitude relative to the 

more accurate axial component. However, in view of these 

approximations we can question not only the accuracy of the predicted 

Raman peak shifts, but also the main qualitative features of the 

calculated strain distributions, including the prediction of uniform 

strain in the core section of the nanowire, which plays an important 

role for strain characterization. To address these critical issues we 

present in this chapter a comparative numerical-analytical analysis of 

the Raman frequencies in Ge-Si core-shell nanowires with axis parallel 

to the <011> directions, as obtained for growth on (001) surfaces. First, 

the strain distribution in the nanowires is obtained using a finite-

element code that uses realistic nanowire geometry and a cubic, 

anisotropic elasticity model for Si and Ge. This is done using the 
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commercial package ABAQUS. Then the Raman spectrum is calculated 

at each point using the local strain tensor, and the final spectrum is 

obtained by integrating over the volume of the nanowire.  We compare 

the strain predicted by this numerical method with the strain obtained 

from our analytical model, and we compute the Raman spectrum 

corresponding to the numerical strain model by averaging over the 

nanowire cross section. 

 

 5.2 Numerical Simulations of Strain  

The numerical calculations of strain were conducted using the 

commercial package ABAQUS. Using this program it is possible to 

reproduce the exact nanowire geometry corresponding to the 

experimental situation. The samples that we studied experimentally 

are nanowires with their axis along the, <011> direction, with a cross 

section as shown in Fig 5.1. We considered the case of a Ge core and Si 

Shell, as studied experimentally.        
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(a)  (b) 

 

Fig(5.1): Schematic representation of the Ge-Si core-shell nanowires cross-section 

used for the (a) numerical and (b) analytical calculations of strain and Raman 

spectra. 

 

We define Dcore (Dshell) as the distance between opposite (100) faces in 

Fig. 5.1(a), and dcore (dshell) the length of these (011) faces measured 

along the <01-1> direction. The geometry of the nanowires is chosen so 

that dcore/Dcore = dshell/Dshell = 0.612. This gives a fairly good 

approximation of the observed nanowire geometries. 

 

5.2.1 Analysis of anisotropic analytical model   

For a comparison of the analytical and numerical results we need to 

find the best choice for the c and a radii in Fig. (5.1b). As suggested by 

the introductory discussion, the core radius should be selected in such 

a way that the core cross-sectional area in the cylindrical nanowire is 

equal to the core area in the realistic nanowire. Similarly, the shell 
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outer radius in the cylindrical geometry is chosen so that the ratio of 

shell/core areas is the same as in the realistic nanowire. From Fig. 

(5.1), it is trivial to show that the core area is given by 

    A D d D 21
core core core core2

tan 2 ,     

where α = 125.25º, so that a circle with the same area would have a 

ratio of 

   21 1
core core core core core2 2

core

tan 2 tan 2
.

D d D d D
c D

   

 

   
   

          (5.1) 

Similarly, for the shell area we obtain 

   21
shell shell shell shell2

tan 2A D d D     . 

so that the equivalent circular shell should have a ratio given by 

 
   21 1

shell shell shell shell shell2 2

shell

tan 2 tan 2
.

D d D d D
a D

   

 

   
   

             (5.2) 

Since the ratio  dcore/Dcore was taken to be the same as dshell/Dshell in the 

ABAQUS simulations, the geometry is fully determined by giving the 

two diameters Dcore and Dshell or Dcore and the shell thickness tshell = 

Dshell -Dcore.  

 The analytical solutions for the strain were obtained in chapter 

447 in Eqs. (4.1) – (4.6) by assuming a cylindrical core-shell structure 

and isotropic elastic constants characterized by Young moduli Ecore, 
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Eshell, and a common Poisson ratio νcore = νshell = ν. Also all off-diagonal 

components of the core and shell strain tensors are zero from Eq.(2.27). 

For the Poisson ratio we use the Voigt average77,82 

                                 11 12 44

11 12 44

4 2

4 6 2

c c c

c c c


 


 
,                                  (5.3) 

where the cij‘s are the elastic constants in the standard contracted 

index notation. Since this expression is a ratio of such constants, its 

value is almost identical in Si and Ge, justifying the use of a common 

Poisson ratio for both materials, which greatly simplifies the math. 

Instead of averaging the two very similar values we simply use Eq. 

(5.3) with elastic constants from Ge for core calculations, and with Si 

elastic constants for shell calculations. For the Young moduli we don‘t 

use Voigt averages but the value of the modulus for the crystalline 

direction corresponding to the nanowire main axis. For the case of 

nanowires with a <011> axes, as discussed here, the Young modulus is 

easily obtained from the stress-strain relations as77,82  

                          
 2 2

11 11 12 12 44

110 2 2

11 44 11 11 12 12

4 2

2 2

c c c c c
E

c c c c c c

 


  
                         (5.4) 

In the same spirit, it is possible to compute a better effective Poisson 

ratio for specific nanowires by averaging over rotations around the 

nanowire axis rather than over all possible rotations in three-

dimensions, as done for the Voigt average. However, the improvement 
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is expected to be minor because the core-shell nanowire strain does not 

depend strongly on the Poisson ratio.47 Table 5.1 shows the values of 

the elastic constants used for the strain calculations in this paper as 

well as all other parameters used to compute the Raman spectra.  

 

Table 5.1: Structural, elastic, and phonon anharmonic parameters used for 

the computation of the strain in Ge-Si core-shell nanowires. 

 Lattice 

constant(Å) 

c11 

(GPa) 

c12 

(GPa) 

c44 

(GPa) 

ω0 

(cm-1) 

2

0
p   2

0
q   2

0
r   

Si 5.4308683 16684 63.984 79.584 52176 1.71685 -2.13685 -0.6685 

Ge 5.656883 12484 41.384 68.384 30176 1.61885 2.07585 -0.9185 

 

The strain graphs were plotted and analyzed using IGOR Pro 6.1 

software.  

 

 5.2.2  Numerical  Simulations   of ABAQUS  model   

 The numerical calculations of strain were conducted using the 

commercial package ABAQUS, which applies a finite-element method 

to the continuum elasticity problem. The geometry of the simulated 

core-shell nanowires was chosen to be similar to the experimentally 

observed geometries for <011> oriented nanowires grown on Si (111) 

surfaces.87,88,86 The nanowires have a hexagonal cross-section 

consisting of {100} and {111} facets (Fig. 1). These are lower-energy 

surfaces than the (112} facets present in <111>-oriented nanowires, 

minimizing surface roughening effects.86 Thus <011>-oriented 
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nanowires are ideal for strain studies. We take dcore/Dcore = dshell/Dshell = 

0.612, which gives a fairly good approximation of the observed 

nanowire geometries.To simulate the lattice mismatch strain, the Si 

shell material is assigned an artificially large thermal expansion 

coefficient, so that a temperature change of -1C leads to the 

experimental mismatch between Si and Ge at room temperature. The 

relevant information is taken from the central cross-section of the wire, 

for which end effects can be neglected. Since cylindrical coordinates are 

the obvious choice for cylindrical nanowires, and our analytical 

solutions in Eqs.(4.1)–(4.6) are expressed in cylindrical coordinates, we 

also expressed the numerical results obtained with the ABAQUS code 

in cylindrical coordinates, using the transformation matrix given in 

Eq.(4.16). This should facilitate the comparison between numerical and 

analytical strain calculations.  The calculated strains are graphed 

using IGOR Pro 6.1 software.   

 

5.2.3 Comparison of numerical and analytical Strains  

We have performed calculations for 9 core-shell nanowires with 

dimensions similar to those observed experimentally.87,88 The samples 

studied for numerical and analytical simulations are given in 

Table(5.2) below:  

Table 5.2 Samples used for numerical and analytical simulations to study the 

strain distributions and Raman frequencies.  



81 

Sample ID Dcore 

(nm) 

tshell  

(nm)) 

hscs28_090319 11 3.4 

hscs27_090318 11 5 

hscs26_090217 11 9 

hscs29_090319 9 6.5 

hscs45_090618 32 4.9 

hscs40_090615 41 6.1 

hscs47_090622 44 3.7 

hscs46_090619 45 9.1 

hscs43_090617 53 7.2 

 

In  fig. (5.2) we  show a comparison of the diagonal components of the 

strain obtained from the analytical and numerical approaches for a 

nanowire with a Ge core with diameter Dcore = 11 nm and a Si shell 

with thickness tshell = 5 nm. We only show strain and Raman results 

for this nanowire, but all quoted numerical deviations between the 

analytical and numerical models of the strain correspond to averages 

for all nanowires.  The numerical deviations and the diagonal and off-

diagonal components of strain components of nine nanowires are 

shown in APPENDIX I and APPENDIX II respectively. 
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Figure  5.2   Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 11 nm and tshell = 5 nm obtained with the 

analytical expressions in Eq. (4.1)-(4.6) (left) and the numerical finite-element 

package ABAQUS (right). 
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Figure 5.3   Off-diagonal components of the strain tensor for a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5 nm obtained with the numerical finite-

element package ABAQUS (right). The corresponding components in the analytical 

model of Eqs. (4.1)-(4.6) are exactly zero. 
 

We observe a nearly perfect agreement between the εzz components 

calculated with the two methods. The uniformity (independence of r 

and θ ) predicted by the analytical model in Eq. (4.3) is corroborated by 

the numerical study, and the strain values are very similar: for the 

analytical model we find core

zz = -0.0306 and shell

zz =0.0094, whereas the 

numerical results are core

zz = -0.0314 and shell

zz = 0.0091. This confirms 

the argument in chapter 447 that the analytical model should yield very 

accurate values of the zz  component provided that the cylindrical 

cross-sectional areas are selected to match the cross-sectional areas of 

the real nanowire. The analytical model also implies uniform values of 

core

rr  and core

 , and this result is clearly not perfectly reproduced in the 

numerical calculation. However, the largest discrepancies are limited 

to the corners of the hexagonal cross-section. At the center of the 

nanowire the agreement is very reasonable: whereas the numerical 

model gives core

rr = -0.011 and core

  = -0.008, the analytical calculations 



84 

yields core

rr = core

 = -0.010. These values are clearly smaller than those 

for core

zz  component, and therefore they are expected to have a smaller 

impact on the Raman frequencies. Finally, the off-diagonal core strain 

components, shown in Fig. (5.3), are close to zero, as in the analytical 

model, when averaged over the entire nanowire cross section. 

 One might expect the shell to show the largest deviations 

between the numerical and analytical calculations, because realistic 

shells are quite thin and therefore the cylindrical geometry of the 

analytical model may be a crude approximation. Nevertheless, all 

qualitative features of the analytical results are reproduced in the 

numerical calculation, including the ring of negative values of shell

rr

near the core interface and the corresponding ring of positive shell

  

values. The quantitative agreement, as expected, is not excellent. For 

example, right at the interface shell

  = 0.03 in the analytical 

calculation, but the numerical results are closer to shell

  = 0.02. 

 

5.3 Raman Calculations and Discussions 

Raman spectrum of the core and shell part of a core-shell nanowire 

was computed for core-shell nanowires with axes along 011  direction 

using the strain computed with the finite element code, ABAQUS and 

analytical model.  Ge cores and Si shells systems were considered.  
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5.3.1 Numerical Simulations of  Raman Spectra  

The Raman spectrum corresponding to the strained nanowires is 

obtained as discussed in chapter 447. We start with the triply-

degenerate zone-center optical phonons in bulk diamond-structure 

semiconductors, with frequency ω0 and eigenvectors that can be chosen 

as  1
1,0,0u ,  2

0,1,0u , and  3
0,0,1u  in Cartesian coordinates. 

The effect of strain on these modes is computed using degenerate 

perturbation theory by solving the secular problem72,47 
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2 2

2 2 0

2 2
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,       

                                                                                                                    (5.5) 

where the strain is in cartesian coordinates and we have defined 

2 2

0
    . Here 

1111
p K , 

1122
q K , and 

2323
r K are the non-zero 

components of the phonon deformation potential tensor.72 This K
 

tensor has the exactly the same symmetry as the elastic constants 

tensor cαβγδ but is even more anisotropic, creating a serious dilemma. If 

one combines in the same calculation the full cubic K
 deformation 

potential tensor with the strains from Eqs.(4.1)-(4.6), based on 

isotropic elastic constants, there is a risk of obtaining unphysical 

results due to the inconsistent treatment of the elastic and phonon 
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tensors. On the other hand, if one averages the K
 tensor to obtain 

an effective isotropic phonon deformation potential tensor, there is a 

risk of losing accuracy. In chapter 447 we choose the first option more 

or less arbitrarily, but here we can explore its validity by comparing 

Raman calculations with and without averaging of the deformation 

potential and elastic constants. For this we define average phonon 

deformation potentials p ,q and r using exactly the same approach 

that gives average elastic constants. Starting from the Voigt averaging 

procedure,77,82 it is straightforward to show that the average and cubic 

deformation potential tensor components are related by 

                                            

 

 

 

1
5

1
5

1
5

3 2 4

4 2

3 ,

p p q r

q p q r

r p q r

  

  

  

                                    (5.6) 

which satisfies the isotropic condition  2 1r p q  . Since, as 

mentioned above, the phonon deformation potential tensor is very 

anisotropic, the average p , q , and r  are very different from the cubic 

p, q, and r. However, the Voigt average preserves the Grüneisen 

parameter    2 211
0 06 6

2 2h p q p q         that gives the phonon 

frequency shifts under hydrostatic strain. 

 The phonon problem in Eq. (5.5) is solved at each point of the 

nanowire, using the local values of the strain. The Raman tensors47 R
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(i) corresponding to each of the i =1,2,3 modes obtained from Eq. (5.6) 

are written as 

                                        ji
j

i L j R R ,                                 (5.7) 

where the unprimed Raman tensors correspond to the unperturbed 

Raman tensors in bulk diamond-structure materials, and
ji j iL  u u , 

where the { i
u } are the eigenvectors from Eq. (5.5). For the modes with 

the iu unperturbed eigenvectors given above, the symmetry of the 

diamond structure dictates      1 1 1i iR i d         , where 

,   = 1,2,3 correspond to the x,y,z cartesian coordinates and d is a 

constant. Using the Raman tensors in Eq. (5.7), the Raman intensities 

are given by 

                              
2

inc,scatt inc scatt

i TI i  E R E ,                           (5.8) 

where the E's are the electric field vectors of the incident and scattered 

light. These intensities are computed at each nanowire point and then 

integrated (added) over the entire nanowire and over the three modes. 

We will consider light polarized parallel or perpendicular to the 

nanowire axis, using the notation L = [011], T1 = [100], and T2 = [011]. 

It is important to emphasize that the electric fields appearing in Eq. 

(5.8) are local fields at the nanowire, which are not necessarily related 

to the external electric field of the incident electromagnetic field by a 
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single multiplicative constant, as is the case with macroscopic 

samples.89 There is in fact substantial experimental evidence that 

electromagnetic waves polarized parallel to the nanowire axis set up 

much larger local fields than waves with transverse polarization 

relative to the nanowire.79,90,91 This implies that the Raman spectrum 

should be dominated by the LL scattering configuration, regardless of 

nanowire orientation. Therefore, we pay particular attention to Raman 

scattering in this configuration. 

 

5.3.2 Core Raman Spectra   

The Raman spectra of the core of nanowire with Dcore = 11 nm and 

tshell = 5.0 nm obtained from ABAQUS and analytical in parallel 

configuration is shown in Fig. (5.4). Raman spectra of core in LL 

configuration for all the nine samples studied are shown in 

APPENDIX III.         
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Figure 5.4  Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5.0 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq.(5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 

 

Fig.(5.4) shows the calculated Raman intensity ILL for LL polarization. 

The peaks have been broadened using the experimentally determined 

Lorentzian width in bulk Ge.92 In the case of the analytical strain 

model, corresponding to the top panel in Fig.(5.4), the strain tensor is 

perfectly uniform within the core and only one of the three optical 

modes is Raman-allowed for this polarization configuration, so that the 

peak lineshape is identical to that of bulk Ge. The only difference with 

the Raman spectrum of bulk Ge is that the compressive strain in the 
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Ge core upshifts the mode frequency. The Raman peak in the lower 

panel, corresponding to the numerical calculation, also has a very 

similar lineshape, indicating that a single phonon mode is dominant, 

even though the strain is no longer exactly uniform over the core. The 

most significant qualitative difference between the analytical and 

numerical modes is the appearance of a weak shoulder at the bottom of 

the peaks in  Figs.(5.4).The Fig. (5.5)  shows the origin of the shoulder 

near 310 cm-1  for the core region for a <011> Ge-Si core-shell nanowire 

with Dcore = 11 nm and tshell = 5.0 nm below. 

 

               

Figure 5.5  Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5.0 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The curve correspond to the 

numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. The vertical scale is the same in both panels. The inset diagrams in the 

bottom panel indicate the core regions from which the different spectral components 

originate. 

 

 In Fig.(5.5) the insets show the spatial localization of the modes. As 

might be expected, the shoulder originates from regions near the core-
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shell interface where the details of the geometry are obviously not 

captured by the cylindrical approximation. To see more clearly the 

effect of strain on the Raman-active modes, we recalculate Fig.(5.5) 

with an unrealistically small Lorentzian width, as shown in Fig(5.6). 

We see a small high energy contribution in the numerical model, which 

was not apparent in Fig. 5.5. We speculate that this contribution arises 

from the small pockets of higher compressive strain seen in Fig. 5.2. 

     

 

Figure 5.6  Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5.0 nm with minimal Lorentzian broadening. 

Incident and scattered light polarizations are parallel to the nanowire axis. The top 

curves correspond to the analytical strain model with cylindrical geometry. The 

bottom curves correspond to the numerical strain calculation with realistic geometry. 

Solid lines were calculated using cubic symmetry p,q, r phonon deformation potential 

tensor components from Table 5.1. Dotted lines were calculated using the Voigt 

averaged tensor components from Eq.(5.6). All spectra are normalized to the same 

area. The vertical scale is the same in both panels.  
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 Fig.(5.7) shows the predicted Raman spectrum for the other three 

polarizations that give non-zero scattering intensities. The Raman 

spectra of all the samples with LT1, T1T2 and T2T2 polarizations are 

shown in APPENDIX IV.  

 
Figure 5.7   Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  . The top curves correspond to the analytical strain 

model with cylindrical geometry. The bottom curves correspond to the numerical 

strain calculation with realistic geometry. Solid lines were calculated using cubic 

symmetry p,q, r phonon deformation potential tensor components from Table 5.1. 

Dotted lines were calculated using the Voigt averaged tensor components from Eq. 

(5.6). All spectra are normalized to the same area. The vertical scale is the same in 

all panels.  

 

The calculation of Raman spectra with two different sets of phonon 

deformation potentials makes it possible to separately evaluate the 

impact of the anisotropy of the elastic constants and phonon 

deformation potential tensors. Using the isotropic averages p , q , and 

r , the average discrepancy between the shifts calculated from the 

numerical strain and the shifts calculated from the analytical strain is 

7% for a combination of nine nanowires with different dimensions. If 
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the comparison is limited to the Raman spectrum predicted for the LL 

scattering configuration, the discrepancy is 10%. These discrepancies 

must be ascribed to differences in the underlying strain calculations, 

since the average phonon deformation potentials are isotropic, and 

therefore no additional error is introduced in the Raman calculation. 

On the other hand, if we use the full cubic p,q,r set with the numerical 

strain tensors, which yields the most realistic Raman calculation, and 

the average p , q , and r with the analytical strain model, for 

maximum internal consistency, the error increases to 24% (16% for the 

LL configuration). The error is reduced to 9% (7% for the LL 

configuration) if the cubic p,q,r set is used in conjunction with the 

analytical strain model. These results demonstrate that the use of 

average phonon deformation potentials, while logically consistent with 

the use of average elastic constants, will significantly worsen the 

predictive capability of the analytical strain models. For maximum 

accuracy with an analytical strain model, the full cubic p,q,r set should 

be used, even though the resulting hybrid approach is not entirely 

consistent. 

 

5.3.3 Shell Raman Spectra 

Fig. (5.8) shows calculated Raman spectra from the shell region of the 

nanowire with Dcore = 53 nm and tshell = 7.2 nm, using average, 
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isotropic p , q , and r  phonon deformation potentials for Si. The 

Raman spectra are downshifted relative to the bulk Si Raman 

spectrum, as expected given the overall tensile nature of the shell 

strain. However, they are more complex than those from the core, 

reflecting the non-uniformity of the strain over the shell. For incident 

and scattered light polarizations parallel to the nanowire axis, two 

broad peaks dominate the spectra. Each of these peaks corresponds 

mainly to a single vibrational mode whose frequency varies radially 

due to the radial dependence of the strain in the shell. The insets show 

this radial dependence. The large strain components at the interface 

with the core induce a sizable mode frequency splitting, which is 

apparent if one notes that the highest and lowest frequencies are 

located near the interface. 
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Figure  5.8   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curve corresponds to the 

analytical strain model with cylindrical geometry. The bottom curve corresponds to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using the Si Voigt-averaged tensor components from Eq. (5.6). All spectra are 

normalized to the same area. The vertical scale is the same in all panels. The vertical 

dotted line is the position of the Raman peak from bulk Si. The insets show frequency 

maps for the Raman-active modes.       
  

 

Calculations using the same phonon deformation potentials combined 

with the numerical strains, shown in the bottom panel of Fig. 5.8, are 

remarkably similar to those carried out with the analytical strain 

model, indicating that the analytical shell strains are a good 

approximation of the realistic numerical strains. 
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Figure 5.9   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. (5.4) and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si.  

 

In Fig. (5.9) we repeat the calculation using the full cubic p,q, r set for 

Si, and we notice that, unlike the core case, the spectra are 

significantly distorted with respect to those calculated with isotropic 

phonon deformation potentials. Further splittings are observed, and 

there is an intensity loss of the high-frequency components. 

Interestingly, these features are reproduced in the calculation 

combining the analytical strains with the cubic p,q,r  which, as in the 
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core calculations, is in principle inconsistent. For completeness Raman 

spectra with artificially low broadening were calculated for the shell 

region and the spectra obtained are shown in Fig.(5.9). 

  

Figure 5.10 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5 nm, for incident and scattered light 

polarizations parallel to the nanowire axis with minimal Lorentzian broadening. The 

top curves correspond to the analytical strain model with cylindrical geometry. The 

bottom curves correspond to the numerical strain calculation with realistic geometry. 

The spectra were calculated using either the full cubic p,q, r for Si from Table 5.1 

(solid lines) or the Si Voigt-averaged tensor components from Eq. (5.6) (dotted lines). 

The latter are the same as in Fig. (5.4) and are shown here for easier comparison. All 

spectra are normalized to the same area. The vertical scale is the same in all panels. 

The vertical dotted line is the position of the Raman peak from bulk Si.  

 

Calculations for the other polarization configurations are shown in Fig. 

5.10. 
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Figure 5.11   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  . The top curves correspond to the analytical strain 

model with cylindrical geometry. The bottom curves correspond to the numerical 

strain calculation with realistic geometry. All spectra were calculated using cubic 

symmetry Si p,q, r phonon deformation potential tensor components from Table 5.I.  

All spectra are normalized to the same area. The vertical scale is the same in all 

panels. The vertical dotted line is the position of the Raman peak in bulk Si. 

 

APPENDIX V shows the Raman spectra of shell in LL, LT1, T1T2, and 

T2T2 polarizations. 

 

5.4 Conclusions 

In this chapter we have used the numerical strain model combined 

with the cubic-symmetry p,q,r set as the benchmark reference to test 

the accuracy of the analytical strain model. Atomistic models 42,93,94,95 

offer in principle even higher accuracy. These models incorporate 

phonon confinement effects, make it possible to treat the core-shell 

interface in a much more realistic way, including intermixing, and do 

not rely on the implicit continuum approximation made here, according 

to which each point in the sample has a different set of phonons with 

its own contribution to the Raman spectrum. By contrast, atomistic 
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calculations naturally incorporate the spatial extent of each of the 

vibrational modes. Unfortunately, accurate atomistic calculations 

normally require the use of ab initio methods that are computationally 

prohibitive for all but the smallest nanowires. Simpler models that use 

empirical interatomic potentials, such as the Valence Force Field 

approach,42 are usually unable to reproduce the elastic and phonon 

properties of bulk materials with sufficient accuracy. For example, 

VFF models have been used to compute strain in III-V nanowires, but 

these models predict the material‘s elastic constants with errors of at 

least 10%, casting doubts that VFF strain predictions will be superior 

to predictions from numerical continuum models that use the 

experimental elastic constants. We believe this consideration is 

particularly valid for the core of our nanowires, where the uniform 

strain lends itself to continuum modeling, and the interface details 

play a minor role, as seen by the good agreement between our 

analytical and numerical calculations. Rücker and Methfessel have 

discussed the necessary generalizations of VFF-like models to be able 

to obtain quantitative agreement with the elastic and anharmonic 

properties needed to predict strain-induced Raman shifts in 

nanowires.96 Their ―anharmonic Keating model‖ is probably the best 

empirical potential to study the Raman spectra of core-shell nanowires,  
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but even with this model it is not clear that the phonon deformation 

potential r can be reproduced.  
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CHAPTER 6 

RAMAN SCATTERING CHARACTERIZATION OF STRAIN IN Ge-Si 

NANOWIRES 

6.1 Introduction 

We studied the strain relaxation in Ge-Si core-shell nanowires by 

Raman spectroscopy. Raman spectroscopy studies were conducted on 

four Ge-Si core-shell nanowires and pure Ge nanowire. The 

experimental results were finally compared with analytical results 

with the introduction of the strain relaxation term which was 

introduced in the section (2.5). 

 This chapter starts with the experimental details of the core-

shell nanowire. Section 6.3 discusses broadening of the Raman peak of 

a pure Ge nanowire and the Raman frequency shifts in the Ge-Si core-

shell nanowires. Section 6.4 consists of an analysis of the strain 

relaxation in the Ge-Si nanowire. In section 6.5 we present the 

conclusions of our experiments on Ge-Si core-shell nanowires. 

 

6.2 Experimental analysis of the core of the core-shell nanowire 

6.2.1 Experimental details 

Raman experiments were performed at room temperature in the back-

scattering geometry using a micro-Raman system equipped with a 

100× objective. Several laser lines, including 632 nm, 532 nm, and 480 
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nm were used to excite the spectra. The scattered light was analyzed 

with a single-stage 0.5 m spectrometer with 1800 lines/mm gratings 

and detected with a LN2-cooled charge-coupled device detector. The 

incident laser power was kept below 1 mW. 

 The Ge-Si core-shell nanowires97 were grown using ―seedless‖ 

VLS mechanism. The Ge-core and consequently Si-shell were formed 

by growing Ge nanowires from planar 1/2ML of Au at temperature, T= 

3000C and pressure, P = 10mtorr of germane in the <011> 

crystallographic direction.  Si shells were formed by adding disilane at 

pressure, P=3mtorr at temperature, T=5400C. Different Si thicknesses 

were obtained by varying the shell deposition time from 100s to 400s. 

Fig.(6.1) shows 11nm Ge-core with a 9 nm Si-shell nanowire. 

    

                       (a) 

 

                       (b) 

Figure 6.1  (a) 11nm Ge-core with a 9.0 nm Si-shell nanowire. Courtesy of 

Prof. Jeff Drucker and Dr. Eric Dailey. (b) Possible <011> nanowires 

orientations on the Si Substrate in <111> along  112   projection. 
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For our studies we mainly focused on four Ge-Si samples with Ge core 

diameters well above and well below the calculated value of 20 nm for 

a transition from core-limited to shell-limited coherency.98 These 

calculations were performed for Si cores and Ge shells. We assume that 

transition diameters will not be very different if the core and shell 

materials are exchanged because the elastic energies are quadratic in 

the strains and the elastic properties of Ge and Si are not too different. 

 

6.2.2 Experimental results   

Fig.(6.2) shows the Raman spectrum of a pure Ge nanowire with a 

diameter D = 10 nm compared with the Raman spectrum from a bulk 

Ge sample. We notice that the peak corresponding to the nanowire 

sample is broader and downshifted by ~ 1.1 cm-1 with respect to the 

bulk. We find similar shifts and lineshapes for other pure Ge 

nanowires. The peaks are fit with Voigt profiles in which the Gaussian 

component has a fixed width that matches the width of the elastically 

scattered laser line, whereas the Lorentzian component has an 

adjustable width. We obtain for pure Ge a Lorentzian full width at half 

maximum (FWHM) of 2.35 cm-1, in excellent agreement with published 

data.18 On the other hand, the nanowire samples have much larger 

Lorentzian widths of about 4.5 cm-1. Laser heating can be discarded as 

the source of the difference between nanowires and bulk Ge, not only 
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because the laser powers used are very modest, but also because the 

broadening and the peak shift are inconsistent if we try to explain 

them in terms of a different effective temperature.  A Lorentzian width 

of 4.5 cm-1 implies a sample temperature of about 600 K, but the 

corresponding shift relative to room temperature would be about   

3 cm-1, much larger than the observed shift of ~1 cm-1.  

 

Figure 6.2:  Solid line: Raman spectrum from a <011> Ge nanowire with a diameter 

D = 10 nm. Dotted line: Raman spectrum from a bulk Ge sample. 

 

 Possible alternative reasons for the downshift will be discussed 

below, but since we are interested in strain-induced Raman shifts in 

core-shell nanowires, it seems natural to use pure Ge nanowires as a 

reference, assuming that only the differences between pure-element 

and core-shell nanowires are attributable to strain. Accordingly, we  
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show in Fig. (6.3) the Raman spectra for core-shell nanowires as a 

function of the relative shift with respect to the pure Ge nanowires. 

     

Figure 6.3  Room temperature Raman spectra of different Ge/Si core/shell nanowires 

in the spectral region around the Ge Raman peak frequency. The core diameter Dcore  

and shell thickness tshell are indicated on each panel. The solid lines are the 

experimental spectra. The dotted lines show the results of a fit with two spectral 

components. The dashed line is the theoretical prediction for fully strained core-shell 

nanowires, shown here with the same peak height as the high-frequency component 

of the two-peak fit. The Raman shifts are shown relative to the Raman frequency of 

bulk Ge, in the theoretical case, and relative to the Raman frequency of the pure Ge 

nanowire in Fig. 6.2 , in the case of the experimental data.  
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It is apparent from Fig. (6.3) that the Raman spectra from core-shell 

nanowires in the region corresponding to Ge-like vibrations are much 

broader that their pure Ge nanowire counterparts, and also quite 

asymmetric. A first possible interpretation of these spectra is that they 

correspond to the three strain-split phonons in the Ge core. These 

phonons are Raman active under different polarization selection 

rules,47  and these selection rules could be used to verify the validity of 

this interpretation. Unfortunately, we see no difference in Raman 

spectra obtained under different polarization conditions, presumably 

due to the fact that the polarization is completely scrambled in the 

nanowire sample. On the other hand, the Raman spectra are expected 

to be dominated by the scattering corresponding to incident and 

scattered polarizations parallel to the nanowire axis (LL polarization), 

since the local electric field is enhanced under this polarization,79,99,100 

for which only one phonon is Raman-active. We also note that the 

spectra in Fig. (6.3) show substantial Raman activity at frequencies 

below that of unstrained Ge. It is not possible to explain this 

observation in terms of the strain-split core phonons, since all of these 

phonons are upshifted with respect to bulk Ge due to the overall 

compressive nature of the strain in the Ge core.47 Therefore, we 

propose an alternative interpretation for the spectra in Fig. (6.3). We 

assume that the peaks have two components. The high-frequency 
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component is assigned to Raman scattering from the core in the LL 

polarization, and the low-frequency component is interpreted as 

Raman scattering from the Ge-Ge mode in a SiGe alloy located at the 

core-shell interface. We have fit the Raman spectra with Voigt profiles, 

and the two-components are shown as dotted lines in Fig. (6.3). The 

high-frequency component is narrower, with FWHM values between 4 

cm-1 and 5 cm-1, in good agreement with the widths observed in pure 

Ge nanowires (Fig.(6.2)), whereas the FWHM of the low-frequency 

component is much larger (~ 10-12 cm-1) as expected for an alloy mode. 

These fit values support our interpretation of the spectra.  

 Also shown in Fig.(6.3) are the predicted Raman spectra for fully 

strained core-shell nanowires, calculated following the method 

described in Ref. 49 using the parameters listed in Table 4.1. It is 

apparent that the observed experimental upshifts in the core spectra 

are significantly below the theoretical predictions, strongly suggesting 

that our nanowires are not fully strained. 
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Figure 6.4  Room temperature Raman spectra of different Ge/Si core/shell nanowires 

in the spectral region around the Si Raman peak frequency. The core diameter Dcore  

and shell thickness tshell are indicated on each panel. The solid lines are the 

experimental spectra. The sharp peaks at zero shift correspond to the Raman signal 

from the Si substrates, which is not observable in the top two panels. The dotted 

lines show the results of fits to spectral features assigned to shell Raman peaks. The 

broad feature at ~-40 cm-1 is assigned to the Si-Si peak in the SiGe interfacial alloy. 

The dashed lines are the theoretical predicted shell spectra for fully strained core-

shell nanowires. The dash-dotted line in the bottom panel is the predicted shell 

spectrum for a partially relaxed nanowire. The Raman shifts are shown relative to 

the Raman frequency of bulk Si, in the theoretical case, and relative to the Raman 

frequency of the Si substrate, in the case of the experimental data.  

 

Fig (6.4) shows the Raman spectra from the shell region in the 

nanowires. Since isolated Si shells are not experimentally available, 
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the shifts are simply taken relative to the Si substrate. This may 

introduce errors on the order of ~1 cm-1, but since the shell spectra are 

much broader, such errors are not significant. The sharp peaks 

observed in the two lower panels correspond to the Si substrate. 

Raman scattering from the substrate is not observed in the top two 

panels due to increased absorption by the thicker Ge cores. In all cases 

there is a broad feature centered at around -40 cm-1
 that is assigned to 

Si-Si vibrations from the interfacial alloy invoked to explain the Ge 

core spectra. Evidence for shell Raman spectra are only seen for the 

45/9 and 11/5 nanowires. The Raman spectra from the other two 

nanowires, with thinner shells, do not show any obvious evidence of a 

shell Raman spectrum. The dashed lines in Fig (6.4) show the 

predicted shell spectra for fully-strained core-shell nanowires. As 

explained in Refs. 49 and 102(chapter 5)101 these spectra are broad and 

complex due to the radial dependence of the strain in the nanowire 

shell. We see that only in the case of the 11/5 nanowire there is good 

agreement between theory and experiment. 

 

6.3 Analysis of Raman frequency shifts in pure Ge nanowires 

For a quantitative analysis of Raman shifts in core-shell nanowires we 

have used as a reference the Raman spectra from pure Ge nanowires, 

rather than the Raman spectrum from bulk Ge. From Fig.(6.1) we 
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noticed that the Ge nanowire Raman spectrum is downshifted by about 

1.1 cm-1 relative to bulk Ge, which represents a substantial fraction of 

the observed strain shifts. Thus this correction is important for a full 

characterization of the strain and deserves careful scrutiny. An 

explanation in terms of laser heating was discarded above. The second 

possibility is confinement effects. It is well known from studies on 

Ge/Si superlattices102 that the Ge optical modes are well confined in Ge 

layers, even though they overlap in frequency with the Si longitudinal 

acoustic modes. This should also be the case in Ge/Si core-shell 

nanowires. This means that the confinement shifts should be very 

similar to those of pure Ge nanowires with a thickness equal to the 

core diameter of the core-shell structure. Confinement effects have 

been treated in the experimental literature using the Richter-Fauchet-

Campbell (RFC) model.103,104,105,106 The Raman spectrum is assumed to 

be given by 
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where I0 is a constant, D the nanowire diameter, and  a constant that 

is sometimes taken as adjustable parameter104 or as 8  (Ref. 103). 
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It is customary to make the approximation that the phonon dispersion 

relation is isotropic. In that case it is appropriate to define a spherical 

Brillouin zone such that 
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where a0 is the cubic lattice constant. We now define the dimensionless 

wave vector x = qa, the dimensionless frequency
0

y   , where 0 is 

the bulk Raman frequency, the dimensionless width
0

s   , and the 

dimensionless diameter z = D/a0, In terms of these quantities, Eq. (6.1) 

becomes 
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The parameter s is the same for Si and Ge at very low temperatures. 

This is not the case at room temperature, but s has a negligible effect 

on the maximum of I(y), which is what we are interested in. Since the 

y(x/a0) curve is virtually identical for Si and Ge, we obtain a universal 

expression for the lineshape of both materials for a given value of z. 

Using the dispersion proposed in Ref.104, and α = 6.3 (Ref.104)  we 

calculate Raman lineshapes from Eq. 6.4 and obtain the peak 

frequency xmax as a function of z. The results are very well fit with an 

expression of the form 
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  ,                                      (6.5) 

from which we obtain A = 0.023 and β = 1.04. This expression provides 

a universal formula for confinement shifts in Si and Ge nanowires. The 

results are shown in Fig. (6.5), where we also compare with ab initio 

calculations of phonon frequencies in Si-Ge core-shell nanowires. The 

first-principles calculations were performed by Yang93 for <011>-

oriented Si nanowires with H-passivated surfaces, and fit with an 

expression formally identical to Eq.(6.5). However, the fit was limited 

to diameters less than 2.4 nm, so that extrapolation to larger 

diameters may involve large errors. Nevertheless, it is apparent that 

the RFC model significantly underestimates the confinement shifts, 

and that mode frequency splitting induced by confinement is not 

negligible. We have recomputed the shifts from the RFC model using 

more realistic phonon dispersion curves than those from Ref.104, but 

such improvements do not remove the discrepancy with the ab initio 

calculations. Unfortunately, there are no corresponding ab initio 

results for Ge nanowires, so that in Fig. 6.4(b) we have rescaled the Si 

nanowire results according to   Ge Si 0,Ge 0,Si 0,Si 0,Ge
a a


      . For a 

diameter of 11 nm, as in our smallest cores, the predicted confinement 

shift is 1-2 cm-1, in good agreement with the experimental 

observations, whereas the RFC model predicts much smaller shifts of 
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~0.3 cm-1 The confinement shifts become very large for nanowire 

diameters less than 10 nm, increasing the discrepancy between the 

RFC and ab initio models. Therefore, future Raman studies of such 

nanowires will have to incorporate a realistic model of phonon 

confinement in order to make quantitative strain determinations. 

 

Figure 6.5 Predicted confinement frequency downshifts in pure Si and pure Ge 

nanowires. Solid lines are predictions from the RFC model. Dotted, dashed, and 

dash-dotted lines are extrapolations from ab initio calculations by 27 for <011> 

oriented Si nanowires. The triply-degenerate zone center Raman phonon in the cubic 

parent material is split by the lower symmetry of the nanowire. The three split 

modes are denoted as T1, T2, and L. For the case of Ge nanowires, shown in panel 

(b), the ab initio results for Si nanowires were scaled as discussed in the text. 

 

6.4 Analysis of Strain Relaxation 

A fundamental result from the strain simulations in Chapter 4 and 

Chapter 5 (see also Eqs. (2.78)-(2.79) in chapter 2) is that the strain 

tensor is uniform within the core, so that Raman scattering from the 

cores is ideal for strain characterization. By contrast, the non-uniform 

nature of the shell strain leads to broad Raman spectra that are much 
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more difficult to analyze. The core Raman data from all core-shell 

nanowires studied here show that the strain-induced shifts are much 

less than theoretically predicted. As indicated above, however, these 

deviations cannot be directly associated with strain relaxation via 

defects, since changes in the core and shell dimensions will also affect 

the strain balance. The strain partition between core and shell will 

also be affected by the presence of an alloy layer at the core-shell 

interface. Moreover, in the presence of strain relaxation associated 

with defects, the radial and axial components of the strain may relax 

differently, affecting the Raman shifts in unique ways depending on 

the precise relaxation mechanism.        

 The theoretical work by Trammel98 and coworkers predicts that 

for small-diameter nanowires the core limits the strain coherency and 

the epitaxial failure occurs in the axial z-direction. Experimental work 

on <111> core-shell nanowires shows a preferential relaxation of the 

axial strain but little relaxation of the radial strain,86 in agreement 

with the theoretical predictions. This is easy to understand, since the 

core axial strain is much larger than the components in the cross-

sectional plane. Since these conditions also prevail in <011>-oriented 

nanowires, we have calculated the strain distribution and associated 

Raman spectra, introducing an axial strain relaxation parameter   

discussed in Eqs. (2.78) and (2.79) for core and shell regions 
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respectively, such that   = 0 corresponds to fully strained core-shell 

nanowires and   = 1 corresponds to core-shell nanowires that are fully 

relaxed in the axial direction. The relaxation parameter,    was taken 

as an adjustable parameter, and we approximated the presence of an 

interface SiGe layer by subtracting an equal amount from the core 

radius and shell thickness. We find that we can simultaneously fit the 

core Raman spectra for the 11/5 and 11/3.4 nanowires by assuming a 

total SiGe thickness of 5.8 nm and a relaxation ρ = 0.7. Alternatively, 

one could argue that oxidation and surface roughness prevents the 

shell from exerting the theoretically predicted compressive stress on 

the core, so that a better way to simulate the results would be to 

assume that only the shell thickness is reduced relative to its nominal 

value. Proceeding this way, we find that we can fit the core spectra 

from the 11/5 and 11/3.4 nanowires by assuming a shell thickness 

―loss‖ of 2.8 nm and a relaxation ρ = 0.5. It is interesting to point out 

that these shell ―losses‖, either via oxidation or roughness or due to 

intermixing, are consistent with our failure to observe any shell 

Raman signal in Fig (6.3) for nanowires with nominal shell thicknesses 

below 4 nm. In the case of the 11/5 nanowire, a clear shell Raman 

signal is observed, and its frequency and width are in good agreement 

with a theoretical calculation assuming a fully strained nanowire. This 

result, however, is not in contradiction with the core Raman spectra, 
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which, as just indicated, suggest a significant degree of relaxation. In 

fact, a recalculation of the shell spectra for the partially relaxed 

nanowires with reduced shell thicknesses (dash-dotted line in the 

bottom panel of Fig (6.3)) shows that shell Raman spectrum does not 

shift very much. This is in part due to the fact that a strain relaxation 

reduces the strain in the shell, but a shell thickness reduction 

increases its value.  

 The core Raman spectra for the 44/3.7 and 45/9 nanowires 

indicate a very large degree of relaxation. Whereas the theoretical 

upshifts for fully strained nanowires are 5.6 cm-1 and 10.1 cm-1, 

respectively, the experimental shifts are 2.2 and 1.8 cm-1. For these 

core diameters the relaxation study of Trammell et al. 8 suggests that 

the strain is mainly relaxed in the θ-direction, and indeed we find that 

even assuming full relaxation of the axial strain (ρ = 1), the calculated 

shift is larger than the observed one, indicating a breakdown of the 

model in Eqs. (2.78)-(2.79). Similarly, the predicted shell spectrum 

appears at much lower energies than observed experimentally. These 

results suggest a different mechanism for strain relaxation in these 

nanowires with thicker cores, as predicted theoretically. 
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6.5 CONCLUSIONS 

 Our Raman results indicate that none of the nanowires studied here 

are fully strained. This appears to be consistent with theoretical 

calculations of Goldthorpe et al.86 based on the model developed by 

Liang et al.40, who predict that core diameters less than 5 nm are 

required to accommodate a mismatch strain of misfit  = 0.04, but 

quantitatively in disagreement with the calculations by Trammell et 

al.98, according to which our nanowires with core diameters of 11 nm 

should be able to accommodate core strains as high as core

zz = 0.035, 

well above the maximum predicted core strains in those nanowires. As 

we have pointed out, however, the calculations by Trammell et al.98 

correspond to structures with Si cores and Ge shells, a mirror version 

of our experimental Ge core/ Si shell structures. Moreover, our results 

appear to be in qualitative agreement with the argument by Trammel 

et al.98 that for core diameters less than 20 nm epitaxial failure occurs 

in the axial z-direction, whereas for core diameters exceeding this 

value the epitaxial failure is more likely in the θ-direction.   
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CHAPTER 7 

CONCLUSIONS  

7.1 Introduction  

In this dissertation we have used Raman spectroscopy to study the 

vibrational properties of Ge-Si core-shell nanowires. Raman 

spectroscopy was used to study the strain distribution in these 

nanowires. An elastic continuum model of strain was developed which 

was later compared with realistic computer simulations via the 

ABAQUS code to analyze the strain effects in core-shell nanowire. A 

detailed analysis to determine the Raman spectra of the nanowires 

using the numerical and analytical models is presented. Both 

theoretical calculations predict that the strain is essentially uniform 

within the core section of the nanowire, suggesting that core Raman 

spectra are ideal for strain characterization. We estimated that the 

error in the Raman determination of the strain does not exceed 10%.  

We also introduced a strain relaxation term for the determination of 

strain relaxation in core-shell nanowire and found that all Ge-Si core-

shell nanowires studied here, with core diameters of 11 nm or higher, 

have partially relaxed strains. This also agrees with some theoretical 

predictions of critical thicknesses in these structures. Our Raman data 

also show strong evidence for Ge-Si intermixing at the core-shell 

interface. 
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7.2 Analytical and Numerical Model Results   

We have computed Raman scattering spectra from Ge-Si core-shell 

nanowires using two alternative strain models: a simple analytical 

approach that assumes cylindrical symmetry and isotropic elastic 

constants, and a more realistic method that incorporates the exact 

nanowire geometry and the cubic-symmetry elastic constants of Si and 

Ge. The second approach solves the elastic problem numerically using 

a realistic geometry and the full cubic, non-isotropic elastic constant 

tensors for both materials. From the point of view of strain 

characterization, the most significant prediction of the analytical 

model is the uniformity of the strain within the core region of the 

nanowires. This prediction is largely confirmed by the numerical 

calculation, and the strains computed via the two methods are in very 

good quantitative agreement. The predicted Raman strain shifts from 

the two models differ on average by no more than 10%, and therefore 

this is roughly the error incurred if the strain is extracted from the 

Raman data. The accuracies on the order of 10% are obtained by using 

a hybrid approach in which strain is computed by assuming isotropic 

elastic properties but the phonon strain shifts are calculated using the 

full cubic, anisotropic set of parameters p,q,r. A more consistent 

approach in which the phonon deformation potential tensor is Voigt-
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averaged over all directions leads to larger errors, which we associate 

with the very strong anisotropy of the phonon deformation potentials. 

 The shell Raman spectra obtained from the analytical and 

numerical strain models are in good agreement. This is gratifying from 

the point of view of the validity of the analytical strain model, but of 

limited value for strain characterization given the broadening of the 

peaks caused by the non-uniform shell strains. 

 For the strain levels involved in core-shell nanowires, we predict 

substantial differences between Raman spectra obtained for different 

scattering configurations. Thus the characterization of strain in 

nanowires seems to require a precisely controlled geometry in which 

all nanowires in the scattering sample are oriented identically. On the 

other hand, if the local electric fields are preferentially enhanced for 

polarization parallel to the nanowire axis, the Raman spectrum should 

be dominated by the LL scattering configuration, regardless of 

nanowire orientation.    

 

 7.3 Core-shell nanowire Experiment Results 

We have analyzed the strain relaxation in Ge-Si core-shell nanowires 

by means of Raman spectroscopy. We also introduced a strain 

relaxation term in our analytical model to analyze the strain 

relaxation in our Raman experiments of core-shell nanowires.  Our 
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Raman results for Ge-Si core-shell nanowires with core diameters of 11 

nm or higher indicates that none of the nanowires studied here are 

fully strained, which also agrees with some theoretical predictions of 

critical thicknesses in these structures. Our Raman data also shows 

strong evidence for Ge-Si intermixing at the core-shell interface. In 

summary, this study demonstrates that Raman scattering can be a 

powerful tool for characterizing core-shell nanowires.  
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APPENDIX I 

STRAIN GRAPHS  OF  THE CORE SHELL NANOWIRE 
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Figure  A1a Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 11 nm and tshell = 3.4 nm obtained with the 

analytical expressions in Eqs. (5.1)-(5.6)  (left) and the numerical finite-element 

package ABAQUS (right). 

 

        

Figure A1b   Off-diagonal components of the strain tensor for a <011> Ge-Si core-

shell nanowire with Dcore = 11 nm and tshell = 3.4 nm obtained with the numerical 

finite-element package ABAQUS (right). The corresponding components in the 

analytical model of Eqs. (5.1)-(5.6)  are exactly zero   
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Figure  A2a Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 11 nm and tshell = 5 nm obtained with the 

analytical expressions in Eqs. (5.1)-(5.6) (left) and the numerical finite-element 

package ABAQUS (right). 

 

 

 

 

 

         
Figure A2b   Off-diagonal components of the strain tensor for a <011> Ge-Si core-

shell nanowire with Dcore = 11 nm and tshell = 5 nm obtained with the numerical finite-

element package ABAQUS (right). The corresponding components in the analytical 

model of Eqs. (5.1)-(5.6)  are exactly zero. 
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Figure  A3a Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 11 nm and tshell = 6.5 nm obtained with the 

analytical expressions in Eqs. (5.1)-(5.6) (left) and the numerical finite-element 

package ABAQUS (right). 

 

 

                                                                

  
Figure A3b   Off-diagonal components of the strain tensor for a <011> Ge-Si core-

shell nanowire with Dcore = 11 nm and tshell = 6.5 nm obtained with the numerical 

finite-element package ABAQUS (right). The corresponding components in the 

analytical model of Eqs. (5.1)-(5.6)  are exactly zero. 
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Figure  A4a Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 11 nm and tshell = 9 nm obtained with the 

analytical expressions in Eqs. (5.1)-(5.6) (left) and the numerical finite-element 

package ABAQUS (right). 

 

 

                                   

 
Figure A4b   Off-diagonal components of the strain tensor for a <011> Ge-Si core-

shell nanowire with Dcore = 11 nm and tshell = 9 nm obtained with the numerical finite-

element package ABAQUS (right). The corresponding components in the analytical 

model of Eqs. (5.1)-(5.6)  are exactly zero. 
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Figure  A5a Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 32 nm and tshell = 4.9 nm obtained with the 

analytical expressions in Eqs. (5.1)-(5.6) (left) and the numerical finite-element 

package ABAQUS (right). 

 

 

                       

 
Figure A5b   Off-diagonal components of the strain tensor for a <011> Ge-Si core-

shell nanowire with Dcore = 32 nm and tshell = 4.9 nm obtained with the numerical 

finite-element package ABAQUS (right). The corresponding components in the 

analytical model of Eqs. (5.1)-(5.6)  are exactly zero. 
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Figure A6a Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 41 nm and tshell = 6.1 nm obtained with the 

analytical expressions in Eqs. (5.1)-(5.6) (left) and the numerical finite-element 

package ABAQUS (right). 

                                                    

 

 

 
Figure A6b   Off-diagonal components of the strain tensor for a <011> Ge-Si core-

shell nanowire with Dcore = 41 nm and tshell = 6.1 nm obtained with the numerical 

finite-element package ABAQUS (right). The corresponding components in the 

analytical model of Eqs. (5.1)-(5.6)  are exactly zero. 
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Figure  A7a Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 44 nm and tshell = 3.7 nm obtained with the 

analytical expressions in Eqs. (5.1)-(5.6) (left) and the numerical finite-element 

package ABAQUS (right). 

                   

 

 

 

 
Figure A7b   Off-diagonal components of the strain tensor for a <011> Ge-Si core-

shell nanowire with Dcore = 44 nm and tshell = 3.7 nm obtained with the numerical 

finite-element package ABAQUS (right). The corresponding components in the 

analytical model of Eqs. (5.1)-(5.6)  are exactly zero. 
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Figure  A8a Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 45 nm and tshell = 9.1 nm obtained with the 

analytical expressions in Eqs. (5.1)-(5.6) (left) and the numerical finite-element 

package ABAQUS (right). 

 

 

 

                   

 
 
Figure A8b   Off-diagonal components of the strain tensor for a <011> Ge-Si core-

shell nanowire with Dcore = 44 nm and tshell = 3.7 nm obtained with the numerical 

finite-element package ABAQUS (right). The corresponding components in the 

analytical model of Eqs. (5.1)-(5.6)  are exactly zero. 
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Figure  A9a Comparison of the diagonal components of the strain tensor for a <011> 

Ge-Si core-shell nanowire with Dcore = 53 nm and tshell = 7.2 nm obtained with the 

analytical expressions in Eqs. (5.1)-(5.6) (left) and the numerical finite-element 

package ABAQUS (right). 

 

 

 

                     

 
Figure A9b   Off-diagonal components of the strain tensor for a <011> Ge-Si core-

shell nanowire with Dcore = 53 nm and tshell = 7.2 nm obtained with the numerical 

finite-element package ABAQUS (right). The corresponding components in the 

analytical model of Eqs. (5.1)-(5.6)  are exactly zero. 
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APPENDIX II 

TABLE FOR COMPARISION OF STRAIN COMPONENTS OF 

ANALYTICAL AND NUMERICAL MODEL 
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Table AII.1 : Table to compare the diagonal strain components, core

zz , shell

zz
 ,

core

rr  and core

  computed from analytical and numerical model 
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11 3.4 -0.027 -0.028 0.013 0.013 -0.008 -0.01 -0.008 -0.013 

11 5 -0.031 -0.031 0.009 0.009 -0.01 -0.011 -0.01 -0.008 

11 6.5 -0.033 -0.034 0.007 0.007 -0.010 -0.012 -0.010 -0.014 

11 9 -0.035 -0.036 0.005 0.005 -0.011 -0.013 -0.011 -0.015 

32 4.9 -0.019 -0.019 0.021 0.021 -0.005 -0.007 -0.005 -0.001 

41 6.1 -0.018 -0.019 0.022 0.021 -0.006 -0.006 -0.006 -0.004 

44 3.7 -0.012 -0.013 0.028 0.027 -0.004 -0.007 -0.004 -0.006 

45 9.1 -0.022 -0.023 0.018 0.017 -0.007 -0.002 -0.007 -0.010 

53 7.2 -0.017 -0.018 0.023 0.022 -0.005 -0.002 -0.005 -0.008 
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APPENDIX III 

GRAPHS OF CORE RAMAN SPECTRA IN LL  POLARIZATION 
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Figure  A10   Calculated Raman spectra of the core region for a <011> Ge-Si core-

shell nanowire with Dcore = 11 nm and tshell = 3.4 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq.(5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 
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Figure A11  Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5.0 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq.(5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 
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Figure  A12  Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5.0 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq.(5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 
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Figure A13   Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 9.0 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq. (5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 
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Figure A14 Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 32 nm and tshell = 4.9 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq. (5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 
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Figure A15 Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 41 nm and tshell = 6.1 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq. (5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 
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Figure A16  Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 44 nm and tshell = 3.7 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq. (5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 
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Figure A17  Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 45 nm and tshell = 9.1 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq. (5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 
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Figure A18  Calculated Raman spectra of the core region for a <011> Ge-Si core-shell 

nanowire with Dcore = 53nm and tshell = 7.2 nm. Incident and scattered light 

polarizations are parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. Solid lines were calculated 

using cubic symmetry p,q, r phonon deformation potential tensor components from 

Table 5.1. Dotted lines were calculated using the Voigt averaged tensor components 

from Eq. (5.6). All spectra are normalized to the same area. The vertical scale is the 

same in both panels. Darker regions give stronger contributions. 
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    APPENDIX IV 

GRAPHS FOR CORE RAMAN SPECTRA IN 

LT1,T1T2,ANDT2T2 POLARIZATIONS 
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Graphs of the Raman spectra of the core region of a <011> Ge-Si core-

shell nanowires are shown in Appendix IV. Incident and scattered light 

polarizations are indicated in the three different panels. The 

convention is L = <011>, T1 = <100>, and  T2 = 011  . The top curves 

correspond to the analytical strain model with cylindrical geometry. 

The bottom curves correspond to the numerical strain calculation with 

realistic geometry. Solid lines were calculated using cubic symmetry 

p,q, r phonon deformation potential tensor components from Table 5.1. 

Dotted lines were calculated using the Voigt averaged tensor 

components from Eq. (5.6). All spectra are normalized to the same 

area. The vertical scale is the same in all panels. The above 

instructions follow for all the graphs in Appendix IV.  

 

 

Figure A19   Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 3.4 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  .  
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Figure A20 Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  .   

           

 

 

 

 

Figure A21 Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 6.5 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  .  
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Figure A22 Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 9 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  . 

 

 

 

 

 
  Figure A23 Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 32 nm and tshell = 4.9 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  .  
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Figure A24 Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 41 nm and tshell = 6.1 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  .  

 

 

 

 

             

 

 

 

Figure A25 Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 44 nm and tshell = 3.7 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  .  
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Figure A26 Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 45 nm and tshell = 9.1 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  .  

 

 

 

 

 

 

Figure A27 Calculated Raman spectra of the core region of a <011> Ge-Si core-shell 

nanowire with Dcore = 53 nm and tshell = 7.2 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and  T2 = 011  .  
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    APPENDIX V      

GRAPHS FOR SHELL RAMAN SPECTRA IN ‗LL‘  POLARIZATION 
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Figure A28   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 3.4 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. 5.4 and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si.  
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Figure A29   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5.0 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. 5.4 and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si.  
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Figure A30   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 6.5 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. 5.4 and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si.  
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Figure A31   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 9.0 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. 5.4 and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si.  
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Figure A32   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 32 nm and tshell = 4.9 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. 5.4 and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si.  
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Figure A33   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 41 nm and tshell = 6.1 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. 5.4 and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si.  
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Figure A34   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 44 nm and tshell = 3.7 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. 5.4 and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si.  
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Figure A35   Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 45 nm and tshell = 9.1 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. 5.4 and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si.  
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Figure A36 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 45 nm and tshell = 9.1 nm, for incident and scattered light 

polarizations parallel to the nanowire axis. The top curves correspond to the 

analytical strain model with cylindrical geometry. The bottom curves correspond to 

the numerical strain calculation with realistic geometry. The spectra were calculated 

using either the full cubic p,q, r for Si from Table 5.1 (solid lines) or the Si Voigt-

averaged tensor components from Eq. (5.6) (dotted lines). The latter are the same as 

in Fig. 5.4 and are shown here for easier comparison. All spectra are normalized to 

the same area. The vertical scale is the same in all panels. The vertical dotted line is 

the position of the Raman peak from bulk Si. 
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APPENDIX VI 

GRAPHS FOR SHELL RAMAN SPECTRA IN 

LT1, T1T2, AND T2T2 POLARIZATIONS 
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Graphs of the Raman spectra of the shell region of a <011> Ge-Si core-

shell nanowires are shown in Appendix VI. Incident and scattered light 

polarizations are indicated in the three different panels. The 

convention is L = <011>, T1 =  <100>, and T2 = 011  . The top curves 

correspond to the analytical strain model with cylindrical geometry. 

The bottom curves correspond to the numerical strain calculation with 

realistic geometry. All spectra were calculated using cubic symmetry Si 

p,q, r phonon deformation potential tensor components from Table 5.I.  

All spectra are normalized to the same area. The vertical scale is the 

same in all panels. The vertical dotted line is the position of the Raman 

peak in bulk Si. The above instructions follow for all the graphs shown 

in Appendix VI. 

 

Figure A37 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 3.4 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  .  
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Figure A38 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 5.0 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  .  

 

 

 

 

 

          

 
Figure A39 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 6.5 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  .  
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Figure A40 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 11 nm and tshell = 9 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  .  

 

 

 

  

 

Figure A41 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 32 nm and tshell = 4.9 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  .   
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Figure A42 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 41 nm and tshell = 6.1 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  .  

              

 

 

         

      
 

Figure A43 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 44 nm and tshell = 3.7 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  .  
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Figure A44 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 45 nm and tshell = 9.1 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  .  

 

 

 

                 

 
 

Figure A45 Calculated Raman spectra of the shell region of a <011> Ge-Si core-shell 

nanowire with Dcore = 53 nm and tshell = 7.2 nm. Incident and scattered light 

polarizations are indicated in the three different panels. The convention is L = <011>, 

T1 =  <100>, and T2 = 011  .  

 

 

 


