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ABSTRACT  
   

The repression of reproductive competition and the enforcement of 

altruism are key components to the success of animal societies. Eusocial 

insects are defined by having a reproductive division of labor, in which 

reproduction is relegated to one or few individuals while the rest of the 

group members maintain the colony and help raise offspring. However, 

workers have retained the ability to reproduce  in most insect societies. In 

the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized 

male destined eggs without mating. Potential conflict between workers 

and queens can arise over male production, and policing behaviors 

performed by nestmate workers and queens are a means of repressing 

worker reproduction. 

This work describes the means and results of the regulation of 

worker reproduction in the ant species Aphaenogaster cockerelli. Through 

manipulative laboratory studies on mature colonies, the lack of egg 

policing and the presence of physical policing by both workers and queens 

of this species are described. Through chemical analysis and artificial 

chemical treatments, the role of cuticular hydrocarbons as indicators of 

fertility status and the informational basis of policing in this species is 

demonstrated. An additional queen-specific chemical signal in the 

Dufour’s gland is discovered to be used to direct nestmate aggression 

towards reproductive competitors. Finally, the level of actual worker-

derived males in field colonies is measured. Together, these studies 
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demonstrate the effectiveness of policing behaviors on the suppression of 

worker reproduction in a social insect species, and provide an example of 

how punishment and the threat of punishment is a powerful force in 

maintaining cooperative societies. 
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Chapter 1 

INTRODUCTION 

 

In the evolution of cooperation and the formation of societies, 

repressing intra-group competition stands beside such factors as kin 

selection and reciprocal altruism as a key component of successful 

societies. Individuals that cheat group members of resources for personal 

gain, at costs for the group, threaten all social groups. Punishment of 

cheaters promotes cooperation in human societies (Fehr and Gachter 

2002; Hauert et al. 2007), and models of the effect of punishment on 

group cohesion can be extended throughout other animal societies (Frank 

1995, 2003). Key factors determining the competitive success of a group 

are the presence of a means by which within-group cheaters can be 

suppressed and the level at which those cheaters are kept (Brandvain and 

Wade 2007; Van Dyken, Linksvayer, and Wade 2011). While the role of 

cheater suppression in promoting group cohesion has been established, 

understanding the methods and mechanisms of suppression utilized 

within a society would provide fundamental insights into how cooperation 

is sustained. 

Cheaters occur in a diverse array of group living organisms, from 

quorum-sensing pathogenic bacteria (Sandoz, Mitzimberg, and Schuster 

2007) and cellular slime moulds (Strassmann, Zhu, and Queller 2000), to 

the eusocial insects (Ratnieks, Foster, and Wenseleers 2006). In the 
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eusocial insects, cheating takes the form of non-established reproductive 

individuals exploiting group resources to gain personal reproductive 

benefits at a cost to the group. Even though eusocial insects are defined by 

having a reproductive division of labor, in most genera, subordinate 

workers retain functional ovaries and the ability to, at least, lay 

unfertilized male-destined eggs (Bourke 1988; Choe 1988; Wilson 1971). 

Haplodiploidy and colony kin structure favor worker reproduction when a 

colony has a single, singly mated queen, as workers are more related to 

their sons (r = 0.5) and to males from sister-workers (r = 0.375) than 

males produced by their mother (r = 0.25). However, restraint of worker 

reproduction is favored when worker reproduction has negative effects on 

colony efficiency and sex allocation (Cole 1986; Ratnieks 1988; Ratnieks, 

Foster, and Wenseleers 2006). Under queenright conditions, reproductive 

restraint is a result of workers either behaviorally inhibiting (policing) the 

reproductive efforts of other workers or individual workers exhibiting 

reproductive self-restraint (Ratnieks 1988; Wenseleers et al. 2004).  

 

Policing and Fertility Signals in Insect Societies 

The two forms of policing behaviors found in insect societies are 

physical policing of potential egg layers and egg policing (Monnin and 

Ratnieks 2001; Ratnieks, Foster, and Wenseleers 2006). The reproductive 

efforts of individuals that are physically policed are inhibited when 

nestmates attack the policed individual. Egg policing occurs when newly 
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worker-laid eggs are destroyed by nestmates. Queens of many species are 

also known to police the reproductive efforts of their offspring through 

both physical and egg policing (Ratnieks, Foster, and Wenseleers 2006).  

In order for either one of these policing behaviors to be carried out 

effectively, the policing individuals must have reliable information 

indicating which workers should be policed and which eggs should be 

destroyed. Hydrocarbon blends present on the cuticle of workers and 

queens, and on the surface of eggs are thought to contain these signals 

(Liebig 2010; Peeters and Liebig 2009). Evidence from the eusocial 

hymenopteran groups (ants, bees, and wasps) links changes in 

hydrocarbon patterns to changes in reproductive status (reviewed in 

Liebig 2010). However, direct casual evidence is missing, linking 

hydrocarbon differences to indicators of fertility and policing behaviors. 

Hydrocarbons present on the cuticle and the surface of eggs provide 

desiccation resistance (Lockey 1988). Oenocytes within the fat body 

synthesize hydrocarbons that are transported through the hemolymph to 

target tissues, including the cuticle and the ovaries (Schal et al. 1998). In 

ants, a diverse blend of hydrocarbons, varying in chain-length, bond 

number and location, and branching patterns, are present both on the 

cuticle and the surface of the egg (Peeters and Liebig 2009; Smith et al. 

2008 [Appendix II]), making them prime candidates for facilitating 

chemical communication. Indeed, cuticular hydrocarbons serve as the 

basis of nestmate recognition in ants (Howard and Blomquist 2005).  
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Hormonal changes associated with changes in reproductive ability 

have been correlated to changes in cuticular hydrocarbon profiles in a 

queenless ant species, Streblognathus peetersi (Brent et al. 2006; 

Cuvillier-Hot et al. 2004). In many non-social insect species, hormonal 

changes linked with changes in reproductive development result in 

changes in sex-specific cuticular hydrocarbon signals: German cockroach 

Blattella germanica (Schal et al. 1991; Schal et al. 1994), housefly Musca 

domestica (Adams, Dillwith, and Blomquist 1984; Dillwith, Adams, and 

Blomquist 1983), the fly Calliphoria vomitoria (Trabalon et al. 1994), and 

a burying beetle Nicrophorus vespilloides (Steiger et al. 2007). Hormonal 

linkages that connect changes in reproductive status with changes in 

hydrocarbon profile have received comparatively little attention in ants, 

although hydrocarbon profile differences that correlate with reproductive 

differences have been described in 21 different species of ants (Liebig 

2010). 

For queens, conveying reliable information about personal 

reproductive status and ability is thought to be crucial in maintaining 

colony organization (Keller and Nonacs 1993). Rather than emitting 

queen-pheromones aimed at controlling or directly suppressing worker 

reproduction, queen-produced fertility signals (in the form of surface 

hydrocarbons) are thought to accurately reflect physiological changes 

correlated with reproductive ability. Indeed, in a number of ant species, 

cuticular hydrocarbon profiles of egg-layers (queens or mated workers) 
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change according to changes in egg-laying rate and ability (Cuvillier-Hot et 

al. 2001; Endler, Liebig, and Hölldobler 2006; Hannonen et al. 2002). 

Because cuticular and egg-surface hydrocarbons are thought to accurately 

signal the presence and status of an established egg layer, and to reveal 

ovarian activation in potential reproductive cheaters, they are thought to 

serve as the informational basis of both worker reproductive self-restraint 

and nestmate policing. 

 
The Ant Aphaenogaster cockerelli 

The research herein focuses on fertility signaling and the policing of 

worker reproduction in the ant Aphaenogaster cockerelli (formerly 

Novomessor cockerelli) (Formicidae: Myrmicinae). A. cockerelli occurs 

throughout the southwestern region of North America, inhabiting open 

intermountain plains throughout most of its range and rocky hillsides in 

the westernmost area of its distribution (Johnson 2000). This species is 

active above-ground during the evening, night, and early morning, and co-

occur with the army ant Neivamyrmex nigrescens from which they 

regularly experience predatory raids (Mirenda et al. 1980). In response to 

these raids A. cockerelli rapidly evacuate their nests carrying out their 

brood and queen. This nest-evacuation response to army ant invasions was 

used to develop a methodology for easily extracting mature colonies of A. 

cockerelli from their nests (Smith and Haight 2008 [Appendix I]). This 

collection method allowed us to study the regulation of worker 
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reproduction in mature colonies of A. cockerelli; colonies that had 

developed to the point sexual-alate production. 

Mature colonies of A. cockerelli can exceed a worker population of 

8,000, while being spread across multiple (2-5) nesting sites, one of which 

contains a single queen (Chapter 3). Nest workers do not regurgitate and 

share liquid food via trophalaxis between colony members, instead nest 

workers produce non-viable trophic eggs that are feed to brood or eaten by 

fellow nestmates (Hölldobler and Carlin 1989).  

 

Policing and Fertility Signals in Aphaenogaster cockerelli 

An earlier study on the regulation of worker reproduction in A. 

cockerelli described the occurrence of worker policing in this species 

(Hölldobler and Carlin 1989). When workers were isolated from their 

queen, for periods as short as two weeks, they began to produce viable 

male-destined eggs. Reuniting this separated group of workers with the 

queenright portion of their nest resulted in a few of the isolated workers 

being physically attacked by their nestmates. The ovarian status of those 

attacked workers compared to non-attacked nestmates revealed that only 

reproductive workers were attacked, indicating that physical policing is 

used as a means of regulating worker reproduction (Hölldobler and Carlin 

1989). 

 To build on this original study, other means of regulating worker 

reproduction that might be used by A. cockerelli were investigated. Egg 
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policing, or the selective destruction of viable worker-produced eggs, is 

studied in Smith, Hölldobler, and Liebig (2008 [Appendix II]). Queen 

policing, or aggression from the queen towards reproductive workers, is 

described in Smith, Hölldobler, and Liebig (2011 [Appendix IV]). The 

information basis of aggression towards reproductive workers is also 

studied in Smith, Hölldobler, and Liebig (2008, 2009, 2011 [Appendices II, 

III, IV]). Causal evidence for hydrocarbons being fertility signals that are 

the basis for policing behaviors is also, for the first time, given in these 

studies (Smith, Hölldobler, and Liebig 2009, 2011 [Appendices III, IV]). 

 Upon discovering that queens will physically police the 

reproductive efforts of their daughter workers, an additional queen-

specific signal that is used for directing worker aggression towards 

reproductive workers was discovered (Chapter 2). The source and the 

function of the signal which, although it is queen-specific, is not used as a 

fertility signal, is described. 

 Finally in Chapter 3 the actual level of successful worker 

reproduction in field colonies of A. cockerelli is measured. Samples from 

mature colonies that spread across multiple nesting sites were taken to see 

if nesting outside of the presence of the queen effects worker reproduction.
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Chapter 2 

QUEEN SPECIFIC SIGNALS, WORKER PUNISHMENT, AND THE 

MULTIPLE RECEIVER HYPOTHESIS IN THE ANT APHAENOGASTER 

COCKERELLI 

 

Abstract 

Chemical communication between reproductives and subordinates 

within social insects is fundamental to maintaining colony organization. 

Cuticular hydrocarbons are thought to be the dominant source of fertility 

signals among ants, however differences found within the Dufour’s glands 

could also serve as fertility signals. The multiple receiver hypothesis, 

generated to explain multiple male ornaments in birds, presents a means 

for explaining the function of these seemingly similar signals: they have 

distinctly different receivers. 

The function of the queen Dufour’s gland in Aphaenogaster 

cockerelli, an ant species in which cuticular hydrocarbon profiles serve as 

fertility signals, is investigated. The queen’s Dufour’s gland contents 

distinguish her from all other members of the colony. When she 

encounters a competing reproductive worker she uses her gland to mark 

the worker, inducing punishment from nestmates. It is shown that only 

the queen’s Dufour’s gland can induce the observed amount of aggression. 

The Dufour’s gland and the cuticular hydrocarbon profile of A. 

cockerelli queens are prime examples of signal functions explained by the 
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multiple receiver hypothesis. This study also points out striking 

similarities in the use of the gland that span several subfamilies and forms 

of colony organization in ants, leading to a task separation of queen 

specific signals. 

 

Introduction 

In most insect societies, chemical communication plays a central 

role in colony organization. Chemical signals involved in communication 

can originate from many glands, are typically composed of multiple 

components, and may be used for very specific purposes (Hölldobler and 

Wilson 2009). Determining the purpose or function of a specific signal 

that has similar properties to other potential signals, such as a queen that 

produces two queen-specific chemical blends, presents a major challenge 

to our understanding of chemical communication in these societies. 

The problem of distinguishing the functions of multiple signals that 

convey seemingly similar information is found in other, non-insect and 

non-chemically based studies of animal communication (Andersson 1994; 

Møller and Pomiankowski 1993). In birds, multiple male signals of quality 

may convey multiple or complementary messages to a single receiver 

(Andersson 1994; Candolin 2003; Møller and Pomiankowski 1993). 

However, theoretical predictions indicate that mate choice based on 

multiple costly signals is evolutionarily unstable (Iwasa and Pomiankowski 

1994; Johnstone 1996; Schluter and Price 1993).  
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An alternative approach to considering multiple male traits 

indicating quality is using the multiple receiver hypothesis, which suggests 

that males may display multiple ornaments because they are messages 

intended for different receivers (Andersson et al. 2002). In the red 

collared widowbird the carotenoid colored collar is a result of selection 

through male competition over territories (Pryke, Lawes, and Andersson 

2001), while the elongated tail feathers are a result of selection for female 

choice preference (Pryke and Andersson 2005). Male competition and 

female preference is also thought to have led to multiple male plumage 

traits in peacocks (Loyau, Jalme, and Sorci 2005), red-backed fairy-wren 

(Karubian et al. 2009), and the yellow-browed leaf warbler (Marchetti 

1998). 

In social insect colonies, chemical signals are used to distinguish 

queens and established reproductive individuals from non-reproductive 

nestmates (Liebig 2010; Peeters and Liebig 2009). These signals are 

generated by the reproductive individuals and act as indicators of 

reproductive ability (D'Ettorre and Moore 2008; Keller and Nonacs 1993). 

Subordinate individuals respond to queen produced fertility signals in two 

ways: refraining from personal reproduction or self-policing, and 

restraining (policing) the reproductive efforts of their fellow nestmates 

(Ratnieks 1988). Fertility signals therefore have multiple receivers: 

workers deciding whether or not to reproduce and workers punishing 

reproductive subordinates. Although there is some evidence that the 
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workers responsible for restraining the reproductive efforts of their 

nestmates are the same workers that are potential reproductives 

(Stroeymeyt, Brunner, and Heinze 2007), there is also evidence against 

this being the case in other species (van Zweden et al. 2007). 

Substantial data indicate that cuticular hydrocarbons are the source 

of fertility signals in ants, bees, and wasps (Liebig 2010). However, 

potentially any chemical signal that accurately distinguishes reproductive 

individuals or queens from the non-reproductive members of the colony 

could serve as a fertility signal. For instance in honeybees, worker 

reproduction does not occur in the presence of queen mandibular 

pheromone, which, in colonies with a reproductive queen, is a substance 

produced only by the queen and may act as fertility signal (Hoover et al. 

2003; Kocher et al. 2009). However, egg-laying honeybee queens also 

possess unique chemical blends in their Dufour’s gland (Katzav-Gozansky 

et al. 1997). Workers who become reproductive when outside of the 

presence of the queen also develop both queen-like mandibular gland 

substances and queen-like esters in their Dufour’s gland (Katzav-Gozansky 

et al. 2004, 2006; Malka, Katzav-Gozansky, and Hefetz 2009; Malka et al. 

2008). Work attempting to disentangle the effects of the honeybee 

Dufour’s gland from that of the queen mandibular pheromone suggests 

that Dufour’s gland acts as a true fertility signal while the mandibular 

gland substance acts as a signal of reproductive dominance (Dor, Katzav-

Gozansky, and Hefetz 2005; Malka et al. 2008). 
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 In ants, cuticular hydrocarbons convey information about 

reproductive ability however, like honeybees, there is also evidence that 

the Dufour’s gland contains reproductive-specific compounds. This has 

been well documented in one species, the queenless ant Dinoponera 

quadriceps. Reproductive alpha-individuals are mainly distinguished from 

their nestmates through the relative amount of 9-hentriacontene present 

on their cuticle (Monnin, Malosse, and Peeters 1998; Peeters, Monnin, and 

Malosse 1999). Changes of the relative proportion of this component of 

their cuticular hydrocarbon profile correlate with changes in reproductive 

status (Peeters, Monnin, and Malosse 1999). Reproductive alphas can also 

be distinguished from subordinate individuals through the contents of 

their Dufour’s gland (Monnin et al. 2002). The Dufour’s gland is one of 

two exocrine glands that empty at the base of the sting apparatus 

(Hölldobler and Wilson 1990). However, alphas only dispel the contents of 

their gland when challenged by a beta worker, sting-smearing the beta 

with the contents of the Dufour’s gland. The attacked and sting-smeared 

beta is then immediately immobilized and punished by other nestmate 

workers (Monnin et al. 2002). Although the alpha worker is 

distinguishable from her nestmates through both her cuticular 

hydrocarbon profile and the contents of her Dufour’s gland, it is clear that 

these chemical signals differ in their intended receivers. 

 The multiple receiver hypothesis is thus useful when explaining the 

function of multiple queen-specific substances in ants. In this study 
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organism, the ant Aphaenogaster cockerelli, cuticular hydrocarbons 

correlate with reproductive ability in both the queen and worker caste and 

are used by policing workers for assessing the reproductive activity of their 

nestmate workers (Smith, Hölldobler, and Liebig 2011; Smith, Hölldobler, 

and Liebig 2008; Smith, Hölldobler, and Liebig 2009). This study reports 

that the Dufour’s gland is being used during intracolony conflict over 

reproduction between queens and workers. It has been previously shown 

that queens respond aggressively towards reproductive daughter workers, 

biting them on the dorsal portion of their thorax or petiole (first 

abdominal segment), while thrusting the tip of their gaster towards the 

attacked individual (Smith, Hölldobler, and Liebig 2011). This report is 

furthered through time-lapse observations revealing that nestmate 

workers respond aggressively towards both the queen and the queen-

aggressed worker. Evidence is provided that queens discharge the contents 

of their Dufour’s gland while attacking nestmate workers and that the 

contents of the queen’s Dufour’s gland are distinct from the contents 

found in the Dufour’s glands of all other females in the nest. It is 

demonstrated that placing contents of the queen Dufour’s gland on the 

cuticle of workers triggers nestmate aggression towards treated workers on 

a level equal to that seen in unmanipulated observations of queen 

aggression.  Finally, by compiling the reports of the Dufour’s gland being 

used in intra-colony conflict in ants, it is suggested that directing 

intracolony conflict is a previously unrecognized major function of the 
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gland. Differences in Dufour’s gland contents between reproductive and 

non-reproductive individuals are not used as fertility signal like the 

cuticular hydrocarbons, but are addressed to individuals who actively 

police potential contenders of the established queen or reproductive alpha 

workers. 

 

Methods 

Study Species 

Mature colonies of A. cockerelli were collected from the 

Chihuahuan desert between Portal, Arizona and Rodeo, New Mexico. 

Colonies were collected using army ants to trigger nest evacuation (Smith 

and Haight 2008). Mature colonies are polydomous, therefore only the 

colony section which contained the queen was used. Previous work has 

shown that queens are singly mated based on 31 colonies and 487 workers 

genotyped for two microsatellite loci (Mösl & Gadau, unpublished data). 

 In the laboratory, the ants were housed in a dental-plaster nest with 

molded chambers darkened by red acetate over glass. The nests were 

attached to a foraging arena in which they received a constant supply of 

water, sugar-water, and pieces of cricket (Acheta domestica) and beetle 

larvae (Zophobas morio). For this study, temperature was maintained at 

26ºC and the foraging arenas were kept in constant light.  
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Worker Response to Queen Aggression 

Five groups of 50 workers were separated from their queenright 

colony and allowed to reproduce. Once eggs were present in the isolated 

worker group, the mother-queen was introduced into the group of workers. 

The colonies were recorded using time lapse video software (Studio 

Surveillance v. 8.1) set at maximum frame rate capture (4 - 5 frames per 

second) for 20 hours. The data collected from the resulting video included 

nestmate-worker aggressive responses (holding of queen and holding of 

queen-aggressed worker), number of queen aggressive acts (biting, biting 

and holding or pulling), and any resulting mortality. 

 

Dufour’s Gland Contents 

In order to verify that queens were discharging compounds from 

their Dufour’s glands during instances of aggression towards reproductive 

nestmate workers, the compounds present on the tip of the gaster of two 

queens were sampled, directly before and after aggression. The sampling 

was performed via Solid Phase Microextraction (Arthur and Pawliszyn 

1990). A fiber (SUPELCO, coated with a 30µm polydimethylsiloxane film) 

was directly rubbed on the surface of the gaster for 5 min. The fiber was 

directly inserted into the injection port of a GC/MS, as mentioned below. 

Dufour’s glands of reproductively active queens (n = 9), 

reproductive workers (n = 10), virgin alate females (n = 9), workers with 

trophic egg producing ovaries (referred to below as nest workers; n = 9), 
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and workers with minimal ovary development (referred to below as 

foragers; n = 9) were dissected from the ants for content analysis. To 

determine which workers were reproductive, queen aggressive behavior 

was used. From a previous study it is known that queens are only 

aggressive towards reproductively active workers (Smith, Hölldobler, and 

Liebig 2011). Therefore, a queen was introduced to a group of workers and 

as soon as any rapid antennation or biting occurred, the queen was 

separated and collected the rapidly-antennated or bitten reproductive 

worker.  

Each dissected gland was placed directly into a 250µl glass vial. The 

gland was then broken open and extracted in 80µl of hexane solvent. The 

solvent and the extract were then evaporated and suspended in 10µl of 

hexane from which 1µl was injected into the injection port of an Agilent 

6980N series gas chromatograph (GC), equipped with DB-1MS (J&W 

Scientific) nonpolar capillary column (30m X 0.25mm X 0.25µm), 

connected to an Agilent 5975 series mass selective detector. The GC 

injection port was set to 250 ºC and the transfer line to 300 ºC . The 

column temperature was held isothermal at 60ºC for 2 min before rising 

to 320ºC at 7ºC min-1. Helium was used as a carrier gas at 1 ml min-1, and 

samples were injected in the splitless mode with a splitless time of 2 min. 

Electron impact mass spectra were measured at 70 eV, with a source 

temperature of 230ºC. 
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 Resulting peak areas were used to determine the number of 

compounds present in the glands. Verification of compound 

identifications was done by comparison of Kovats retention indices to 

published references. Only compounds that appeared in at least 70% of the 

glands sampled in at least one of the female types were used to compare 

gland contents. Statistical comparisons of gland contents were performed 

using STATISTICA 7.0 Software (StatSoft, Inc, Tulsa, OK, USA).  

  

Dufour’s Gland Treatments 

 To test for the effect of Dufour’s gland on worker aggressive 

responses, non-reproductive workers were treated with the contents of 

various nestmate glands. Three treatment groups were used, consisting of 

nestmate Dufour’s glands from queens, reproductive (queen-aggressed) 

workers, and foragers. From previously dissected and extracted glands 

(see above), 45% of the gland contents suspended in hexane solvent were 

added to the cuticle of queenright workers. 10µl of Dufour’s gland in 

hexane solvent was dropped into a 5ml beaker filled with de-ionized water 

which leads to a compound film on the water surface after solvent 

evaporation. After evaporation of the hexane a worker was dipped and 

lightly swirled on the surface of the water in the beaker, a technique 

similar to other water-based hydrocarbon application methods (Roux et al. 

2009). Each treated worker was then allowed to air-dry, and was marked 
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with a single dot of white Testors® enamel paint on the thorax, gaster, or 

head before being reintroduced to nestmate workers. 

 Test groups of 30 nestmate workers from a queenright colony were 

placed in an isolated nest for 24 hours before the treated workers were 

introduced to them. The treated workers, 30 isolated workers, and the 

Dufour’s glands used for the treatment all originated from the same nest. 

30 minutes after treatment and marking, the three treated workers were 

simultaneously introduced to the nest of 30 workers and video recorded 

for 20 hours (see above). The first two hours, wherein all observed 

aggression occurred, were analyzed, blindly, for the number and effect of 

any aggressive acts towards the treated workers.  

 

Results 

Worker Response to Queen Aggression 

All transferred queens (N = 5) were accepted into the nest of their 

daughter workers as reported in Smith, Hölldobler, and Liebig (2011). 

Upon introduction into the foraging arena of the worker nests, queens 

either found their way into the interior of the nest or were carried by 

outside workers into the nest. Queens always initiated aggression towards 

reproductive workers. Aggression included rapid antennation following 

immediately by biting. Queens then held the workers while they flexed 

their gaster under their bodies, pointing towards the worker. In all cases, 

the aggressed worker and the queen were separated by nestmate workers 
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who bit, held onto, and pulled at both the queen and the aggressed worker. 

Subsequently, the aggressed worker (in all cases) and the queen (in 4 of 5 

cases) were held by other nestmate workers (queens were held for median: 

68 min, range: 0 – 1,098 min; aggressed workers were held for median: 6 

min, range: 4 – 347 min). As a result of this aggression, in the five 

recorded trials, one queen and two workers were killed by their nestmate 

workers who pulled off the gaster, head, or other appendages. Three out of 

five of the queens committed multiple acts of aggression (10, 13 and 24 

acts were recorded for the respective queens). In the 20 hours of video 

observation for each of the five colonies used, queens spent a substantial 

percentage of their time in aggressive conflicts with workers (median 

percent of time spent in aggressive interactions: 6.75%, range: 1.9 - 72.7%). 

  

Dufour’s Gland Contents 

 After observing the aggression that both queens and queen-

aggressed workers received from nestmates, a hypothesis was made that 

nestmate aggression was being elicited through a chemical signal. Due to 

the aggressive queen’s behavior of flexing her gaster towards the worker 

she is aggressing, the queen was hypothesized to be the generative source 

of the chemical. All of the additional compounds that appeared on the tip 

of the queen’s gaster after aggression could be accounted for in the 

contents of the queen Dufour’s gland (Fig. 1). 
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 The contents of the queen’s Dufour’s gland differed significantly 

from all other females (Fig. 1 – 2, Table 1). Queens have more compounds 

in their glands, compared to other workers and gynes (Fig. 1 - 2). 

Qualitative differences are evident in that all the queen Dufour’s glands 

appear filled with a yellow and oily substance, while the gland contents of 

all other females appear clear. 

 The majority of the compounds found in the Dufour’s gland were 

long-chained hydrocarbons ranging from 13 to 33 carbons long. The 

compounds were identified, when possible, according to the class of 

compound. Queens have a higher proportion of methyl-branched 

hydrocarbons and a lower proportion of alkenes in their glands compared 

to all other females (Table 1).  

 

Dufour’s Gland Treatments 

Workers treated with the Dufour’s gland of their queen received 

significantly higher levels of aggression from their fellow nestmates than 

workers treated with reproductive nestmate-worker Dufour’s glands and 

non-reproductive nestmate-worker Dufour’s glands (Fig. 3). One of the 

workers treated with a queen Dufour’s gland was killed (dismembered as 

described above) by her nestmates. No workers were killed in the other 

treatment groups. Workers treated with worker Dufour’s glands only 

received brief instances of biting from their nestmates, while workers 
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treated with queen Dufour’s glands were bitten, held, and pulled by their 

nestmates. 

 

Discussion 

A. cockerelli queens use the contents of their Dufour’s gland to 

direct aggression towards reproductive workers. The contents of the 

queen’s Dufour’s gland distinguish her from all other members of the 

colony. In addition, the cuticular hydrocarbon profiles of queens also 

distinguish them from the non-reproductive workers and are used as 

signals of fertility status (Smith, Hölldobler, and Liebig 2011; Smith, 

Hölldobler, and Liebig 2008; Smith, Hölldobler, and Liebig 2009). Thus, 

two different signals are unique to queens, but these signals have different 

functions and are addressed to multiple receivers: workers responding to 

the presence of a fertile queen by practicing reproductive self-restraint, 

and workers who are restraining the reproductive efforts of others. 

The use of the Dufour’s gland by an established reproductive to 

direct aggression towards a nestmate has unique features in A. cockerelli, 

but is also very similar to the case of the queenless ant species Dinoponera 

quadriceps (Monnin et al. 2002). Both A. cockerelli queens and D. 

quadriceps reproductives can be distinguished from nestmates through 

their cuticular hydrocarbon profiles as well as the contents of their 

Dufour’s gland (Fig. 1-2) (Monnin et al. 2002; Peeters, Monnin, and 

Malosse 1999; Smith, Hölldobler, and Liebig 2011). Both A. cockerelli 
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queens and D. quadriceps reproductives use their Dufour’s gland to direct 

aggression towards reproductive nestmates while their cuticular 

hydrocarbon profiles are used to signal reproductive ability (Fig. 3) 

(Monnin et al. 2002; Peeters, Monnin, and Malosse 1999; Smith, 

Hölldobler, and Liebig 2011; Smith, Hölldobler, and Liebig 2008; Smith, 

Hölldobler, and Liebig 2009). However, the colony characteristics and the 

reproductive potential of colony members differ strongly between the two 

species. D. quadriceps has small colonies (mean size of 81 individuals), 

and there is no reproductive dimorphism among all colony members, A. 

cockerelli differs from D. quadriceps in having both large colonies (mature 

colonies contain 2,000 – 9,000 workers spread across multiple nest sites) 

and a high degree of worker-queen reproductive dimorphism (workers 

average five ovarioles while queens average 33 and are the only individuals 

that can fertilize eggs with sperm stored in their spermatheca) (Hölldobler 

and Carlin 1989). These characteristics make queen aggression in A. 

cockerelli an exceptional case because direct queen to worker physical 

conflict is not predicted to occur in these types of colonies (Beekman and 

Ratnieks 2003; Bourke 1999; Hölldobler and Wilson 2009; Keller and 

Nonacs 1993).  

A. cockerelli is a clear exception to this prediction as queens not 

only display a stereotypical aggressive behavior towards reproductive 

workers (Smith, Hölldobler, and Liebig 2011), they also have a chemical 

marker that is used during reproductive conflict to punish reproductive 
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workers. One explanation for why this behavior and chemical marker are 

used in A. cockerelli is because reproductive workers have the ability to 

produce cuticular hydrocarbon profiles qualitatively similar to those of a 

reproductive queen (Smith, Hölldobler, and Liebig 2011; Smith, 

Hölldobler, and Liebig 2008). It is possible that when a reproductive 

queen is introduced into a group with reproductive workers some of those 

reproductive workers are indistinguishable from a queen. Therefore, this 

chemical similarity would necessitate queens to have a queen-specific 

marker that enables workers to distinguish who the reproductive cheater is. 

This suggests that the primary cause for the evolution of such a 

punishment system is not the lack of reproductive dimorphism as in the 

case of D. quadriceps but rather the high reproductive potential of workers 

and the associated signaling system. 

 A surprising observation in this study was of a queen being killed by 

her nestmates after attacking a reproductive nestmate worker. Although 

both worker and queen Dufour’s gland secretions elicit nestmate 

aggression, only the contents of the queen’s gland elicit a sometimes lethal 

amount of aggression equal to that observed in the unmanipulated 

instances (Fig. 3). A hypothesis as to why queens receive aggression from 

nestmates is that queens have difficulty avoiding self-contamination when 

they attempt to expel their Dufour’s gland on reproductive workers. The 

Dufour’s gland empties through the sting and in A. cockerelli the sting is 

greatly reduced and is nonfunctional as a weapon (Hölldobler, Stanton, 
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and Markl 1978). Indeed, in this study Dufour’s gland compounds were 

retrieved from the tip of a queen’s gaster directly after she had been 

aggressive towards a reproductive worker (Fig. 1), indicating that queens 

do not entirely avoid self-contamination. If the observed death of a queen 

that was recorded in the study was due to self-contamination it is strong 

supporting evidence that queen-produced Dufour’s gland compounds do 

not serve as a fertility signal. 

 While it may be possible that the self-contamination observed in 

this study is an experimental artifact caused by the artificial nest 

conditions in which this study was done, this queen behavior seems to 

have high potential costs and raises the question of why queens might risk 

damage to themselves. One hypothesis is that this behavior is not only 

used in queen/worker conflict but potentially also in all-or-none situations 

where queens must compete for securing the position of a reproductive. 

This may occur if queens invade other colonies with established 

reproductive queens. A. cockerelli colonies are victim to army ant raids 

during witch the entire colony including the queen evacuate their nests 

(Smith and Haight 2008). During these incidents it may be possible that 

colonies merge and queens encounter one another. Queens treat 

reproductive workers as reproductive competitors and in laboratory 

observations when two queens encounter one another they are aggressive 

in a similar way (personal observation). Therefore it is possible that this 
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behavior may be used during queen to queen conflict, however this 

potential aspect of A. cockerelli’s biology has yet to be explored. 

More evidence for the use of Dufour’s gland content in intracolonial 

conflicts comes from two other ant species, Leptothorax gredleri and 

Streblognathus peetersi (Table 2). S. peetersi is a queenless ant where 

sting smearing between competing alpha workers has indicated that they 

may be dispelling the contents of the Dufour’s gland while being 

aggressive towards one another. The involvement of the Dufour’s gland, 

however, has not been directly shown in this case. Similarly, competing L. 

gredleri queens sting smear each other and induce nestmate aggression 

towards marked individuals.  

Besides their use in intracolonial conflict, Dufour’s gland contents 

are also used by several social parasites to modify aggression (Table 2). In 

two of these cases (Harpagoxenus sublaevis and Protomognathus 

americanus), if parasitic queens (H. sublaevis) or workers (P. americanus) 

directly apply their Dufour’s gland contents to the cuticle of workers from 

the parasitized colony, then the affected workers may receive deadly 

amounts of aggression from their nestmates. In the remaining reports of 

the usage of the Dufour’s gland in parasitic species the effects are either 

enhancing alarm (Formica subintegra) or minimizing aggression towards 

the parasite (Rossomyrmex minuchae, Polyergus samurai, Polyergus 

rufescens). In all cases, modifying the host workers aggressive responses is 

the reported function of the Dufour’s gland. In total, these reports from 
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both dulotic and non-dulotic span several subfamilies of ants that have 

vastly different social structures, suggesting that a major function of the 

Dufour’s gland is eliciting nestmate aggression during intra-colony conflict 

or social parasitism. 

With distinct differences in the Dufour’s gland contents and the 

cuticular hydrocarbon profile between queens and workers of A. cockerelli 

and at least one other documented ant (D. quadriceps), two potential 

sources of fertility signals are present in ants. However, as this study 

shows, the presence of signal differences that correlate with reproductive 

ability does not always indicate that the signal functions as an indicator of 

fertility. The multiple receiver hypothesis presents an alternative view of 

the function of multiple signals of quality (Andersson et al. 2002). The 

application of this hypothesis to social insect research could reformulate 

how signals of quality are interpreted. 

Several examples of multiple signals of quality in regards to queen-

worker differences are present in social insects. The Dufour’s gland also 

contains a queen-specific chemical blend in bees (Amsalem et al. 2009; 

Katzav-Gozansky et al. 1997) and wasps (Bhadra et al. 2010; Mitra and 

Gadagkar 2011). The function of this unique chemical blend is often 

initially assumed to be a fertility signal, informing self-policing or whether 

or not workers decide to become reproductive. However, tests of the effect 

of the Dufour’s gland alone on worker behavior and physiology both in 

honeybees and wasps does not account for all of the effects expected if 
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workers were self-policing (Bhadra et al. 2010; Katzav-Gozansky et al. 

2004). Considering alternative functions for the gland contents could 

prove to be beneficial to our understanding of chemical communication in 

insects. 

 

Conclusion 

Up to now the multiple receiver hypothesis has mostly been 

attributed to explaining the existing of multiple male ornaments and visual 

signals in birds. Chemical signaling, rather than visual signaling, is the 

main mode of communication used by social insects. This study shows that 

approaching investigations into the function of queen-specific chemical 

signals in ants through the framework of the multiple receiver hypothesis 

can provide a great service in understanding the complexities of 

communication within insect societies.  

The Dufours’s gland and the cuticular hydrocarbon profile of 

queens in at least two species of ants (A. cockerelli and D. quadriceps) are 

prime examples of how the multiple receiver hypothesis can explain the 

existence of seemingly similar signals. While both signals distinguish 

reproductives from non-reproductives the Dufour’s gland functions as a 

chemical marker used to punish reproductive subordinates rather than 

signaling fertility to nestmates. From compiling the published accounts of 

the Dufour’s gland being used during conflict in ants, directing the 
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aggressive responses of nestmates seems to be a common major function 

of this gland across ants. 
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Figure 2.1. Representative chromatograms showing the Dufour’s glands 

contents of queens and workers. The top three chromatograms are from 

the same individual queen. The first was generated from sampling the tip 

of the queen’s gaster, the following is sampling the same area immediately 

after the queen had aggressed a reproductive worker. The reproductive 

worker Dufour’s gland is from a worker that received aggression from a 

queen.
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Figure 2.2. Number of compounds found in the Dufour’s gland. N = 9 for 

all groups, except Reproductive worker N = 10. Number of compounds 

presented in means, +/- standard deviation, maximums and minimums. 

Reproductive workers are workers that have elicited aggressive responses 

from queens. Levene’s test: P  = 0.066. ANOVA: F1,4 = 42.05, P < 0.001. 

Post hoc analysis, Tukey HSD: Queen vs. all other groups P < 0.001, all 

other comparisons not significant. 
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Table 2.1. Median Relative Proportions of Classes of Compounds Found in 

the Dufour’s Gland of A. cockerelli Females.  

Compound 
Type Queens 

Reproductive 
Workers 

Female 
Alates 

Nest 
Workers Foragers 

Alkanes 0.14 0.19 0.33 0.15 0.17 
Methyl-
alkanes 0.36* 0.14* 0.19 0.05* 0* 
Dimethyl-
alkanes 0.19 0.11 0.08 0.17 0.16 
Diene-
aldehydes 0.03 0.01 0.03 0.05 0.06 
Alkenes 0.16* 0.25 0.21 0.21 0.31* 
Unidentified 0.11 0.21 0.13 0.3 0.33 

*Indicates significant differences between queens and workers (Kruskal-

Wallis ANOVA: P < 0.01, non-parametric multiple comparison 2 tailed P < 

0.05). All other differences are not statistically significant. Comparisons 

between relative proportions of unidentified compounds were not made. N 

= 9 all groups except reproductive workers were sample size is 10. 
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Figure 2.3. Effect of Dufour’s gland treatment. N = 5 all groups, medians, 

25 – 75%, maximums and minimums. One of the workers represented 

here in the Queen Dufour’s gland treatment was killed by her nestmates. 

No workers were killed in either of the other treatment groups. Friedman’s 

ANOVA: P = 0.009. Wilcoxon matched pair test: Queen vs. Reproductive 

worker and Forager Z = 2.02, P = 0.043; Reproductive worker vs. Forager 

Z = 1.60, P = 0.108. 
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Table 2.2. Reported Usages of the Dufour’s Gland in Conflict Among Ants. 

Species Response to Dufour's gland Reference 

Dinoponera 

quadriceps 

Induces directed nestmate 

aggression towards queen-

marked individual 

(Monnin et al. 2002) 

Leptothorax 
gredleri 

Competing queens are 
marked and receive 
aggression from nestmate 
workers 

(Heinze, Lipski, and 
Holldobler 1992; Heinze 
et al. 1998) 

Streblognathus 

peetersi 

Competing alphas are sting-

smeared and immobilized by 

nestmates 

(Cuvillier-Hot, Renault, 

and Peeters 2005) 

Dulotic species     

Harpagoxenus 
sublaevis 

Induces deadly fights among 
marked nestmate workers of 
the parasitized colony 

(Allies, Bourke, and 
Franks 1986; 
Buschinger 1974; 
Foitzik, Fischer, and 
Heinze 2003) 

Protomognathus 
americanus 

Induces strong aggressive 
responses among nestmates 
towards contaminated 
workers of the raided colony 

(Brandt et al. 2006) 

Formica 
subintegra 

Induces panic and dispersion 
among workers of 
parasitized colony 

(Regnier and Wilson 
1971) 

Polyergus 
rufescens 

Lowers aggression towards 
the social parasite either 
through appeasement or 
repulsion 

(D'Ettorre et al. 2000; 
Mori, Grasso et al. 
2000; Mori, Visicchio et 
al. 2000; Topoff et al. 
1988) 

Polyergus 
samurai 

Repels host workers from the 
invading social parasite 
queen 

(Tsuneoka and Akino 
2009) 

Rossomyrmex 
minuchae  

Repels host workers from the 
invading social parasite 
queen 

(Ruano et al. 2005) 
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Chapter 3 

THE REGULATION OF WORKER REPRODUCTION IN THE 

POLYDOMOUS ANT SPECIES APHAENOGASTER COCKERELLI 

 

Abstract 

A hallmark of eusociality is a reproductive division of labor between 

subordinates and established reproductives. In most groups, however, 

workers retain some reproductive capabilities. Measures of successful 

worker reproduction within the presence of a queen across insect societies, 

with few exceptions, indicate that worker reproduction, if it occurs at all, is 

kept at very low levels. Certain colony-level characteristics such as queen 

number, queen mating frequency, and physical presence of a queen in 

species with multiple nesting sites may influence the degree to which 

worker-queen reproductive conflict is swayed to promote worker 

reproduction. 

 In this study, the level of worker reproduction in field colonies of 

the ant species Aphaenogaster cockerelli is measured. A. cockerelli is a 

monogynous and polydomous species, so worker reproduction across 

nesting sites is investigated. None of the 297 males sampled provided any 

evidence of worker reproduction. Worker reproduction was detectable at 

and above a level of 1.5% of the total male population. An effective mating 

frequency for queens of this species was found to be 1.03. Although A. 

cockerelli colonies have many colony-level factors potentially promoting 
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worker reproduction (workers with trophic egg-laying active ovaries, a 

single singly-mated queen, workers who are physically separated from the 

queen) it is evident that worker reproduction is highly regulated. 

Synthesizing the extensive amounts of policing and fertility signaling data 

previously reported on this species, A. cockerelli is presented as case study 

for how worker reproduction is repressed and cooperation is maintained 

in insect societies. 

 

Introduction 

In most social insect species, workers have retained functional 

ovaries, capable of producing unfertilized male-destined eggs (Bourke 

1988). Worker reproduction in the presence of the queen has been 

documented within several social insect genera (Barron, Oldroyd, and 

Ratnieks 2001; Bourke 1988; Brunner et al. 2005; Choe 1988; Hammond 

and Keller 2004; Tsuchida et al. 2003). Relatedness alone predicts that 

worker reproduction in the presence of a queen is promoted when the 

colony contains a single queen who has mated only once, as workers are 

more related to their son’s and nephews rather than their brothers, and 

general patterns seem to support this prediction (Wenseleers and Ratnieks 

2006). Relatedness asymmetries are, however, just a portion of the factors 

that might promote or discourage worker reproduction. Conflict over sex 

allocation and losses in colony performance or efficiency might lead to the 

restraint of worker reproduction (Ratnieks 1988; Ratnieks, Foster, and 
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Wenseleers 2006). Indeed, among the ants, worker reproductive restraint 

has been found is several species wherein a lack of genetic conflict would 

predict worker reproduction (Endler, Liebig, and Hölldobler 2006; 

Hartmann et al. 2003; Helanterä and Sundström 2007b; Iwanishi, 

Hasegawa, and Ohkawara 2003; Kikuta and Tsuji 1999). The question of 

whether or not workers are reproducing in their colony and why they 

might be prevented from doing so remains a central motivator behind the 

study of social insects. 

The restraint of worker reproduction takes the form of workers 

either behaviorally inhibiting (policing) the reproductive efforts of other 

workers or individual workers exhibiting reproductive self-restraint 

(Ratnieks 1988; Wenseleers et al. 2004). Two dominant modes of policing 

behaviors in ant societies are physical policing of potential egg layers and 

egg policing (Ratnieks, Foster, and Wenseleers 2006). The reproductive 

efforts of individuals that are physically policed are inhibited when 

nestmates attack the policed individual (Dietemann et al. 2003; Gobin, 

Billen, and Peeters 1999; Hartmann et al. 2003; Hölldobler and Carlin 

1989; Iwanishi, Hasegawa, and Ohkawara 2003; Liebig, Peeters, and 

Holldobler 1999; Monnin and Peeters 1999; van Zweden et al. 2007). Egg 

policing occurs when newly worker-laid eggs are destroyed by nestmates 

(D'Ettorre, Heinze, and Ratnieks 2004; Endler et al. 2004; Helanterä and 

Sundström 2005; Kikuta and Tsuji 1999). 
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In order for either one of these policing behaviors to be carried out 

effectively, the policing individuals must have reliable information 

indicating which workers should be policed and which eggs should be 

destroyed. Hydrocarbon blends present on the cuticle of workers and 

queens, and on the surface of eggs are thought to contain these signals 

(reviewed in: Liebig 2010; Peeters and Liebig 2009). Reproductive 

workers can be policed when they are differentiated from non-

reproductive workers and queens by their cuticular profile; while worker-

produced eggs can be selectively destroyed when they are distinguishable 

from the established egg profile produced by the queen.  

The queen-produced egg surface hydrocarbon profile is also an 

important means of advertising queen presence and fertility status to 

workers who otherwise might not exhibit reproductive self-restraint 

(Endler et al. 2004). In the ant Camponotus floridanus, workers isolated 

from their queen but in the presence of queen produced eggs refrain from 

personal reproduction (Endler et al. 2004). It has been hypothesized that 

in monogynous ant species that nest across multiple non-connected sites 

(polydomous species), eggs are transported across nesting sites to 

advertise the presence of a fertile queen and promote worker reproductive 

restraint. 

The effects of polydomy in monogynous ant species on worker-

queen reproductive conflict have only received attention in a handful of 

species. In four monogynous and polydomous species workers seem to 
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bias the worker-sexual brood ratio in their favor by sexualizing diploid 

brood in queenless satellite nests (Banschbach and Herbers 1996; Cerda, 

Dahbi, and Retana 2002; Denis, Pezon, and Fresneau 2007; Ito, Higashi, 

and Maeta 1988; Snyder and Herbers 1991). This is modeled to be a result 

of queen-worker conflict over investment in colony growth vs. 

reproduction (Herbers, DeHeer, and Foitzik 2001; Pamilo 1991).  

In colonies with singly mated queens, solely based on relatedness, 

there is also potential queen-worker conflict over male production. In one 

of the species reported to bias sex-ratios in queenless nests, Myrmica 

punctiventris, worker male production has been reported, however a 

correlation between queen location and successful worker reproduction 

was not made (Herbers and Mouser 1998). In another monogynous and 

polydomous species, Pachycondyla goeldii, workers in queenless satellite 

nests have an intermediate level of ovarian development compared to 

workers in orphaned and queenright nests, and distinctly shaped worker-

produced eggs were found in queenless satellite nests (Denis, Pezon, and 

Fresneau 2007). However, in the former study, the presence of realized 

worker-derived males in field colonies was not determined. 

In this study, genetic data is used to search for the presence of 

worker-derived males in the monogynous and polydomous desert ant 

species Aphaenogaster cockerelli. To determine the effective mating 

frequency of queens, two microsatellite loci are used. The question of 

whether or not any of the males present in the queenright or queenless 
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nesting sites are worker-derived is also answered. Basic colony 

demographic data is provided, such as worker and male distribution 

across nesting sites. Finally, the lack of evidence of any worker 

reproduction is explained by reviewing what is known about how worker 

reproduction is regulated in A. cockerelli colonies.  

 

Methods 

Sample Collections 

Mature colonies of A. cockerelli were collected and sampled in the 

Chihuahuan desert between Portal, Arizona and Rodeo, New Mexico, in 

early June of 2009 and 2010 before the monsoonal rain-triggered mating 

flights of this species occurred. Mature colonies consist of a queenright 

nest and 1 – 4 non-connected satellite nests containing workers and brood 

(Hölldobler and Carlin 1989), therefore worker and male samples were 

taken from each nest present. For the seven colonies used in this study, 

entire colonies were collected by triggering nest evacuations using the 

army ant Neivamyrmex nigrescens (Smith and Haight 2008). The 

number of males (adults and pupae) and workers (adults) captured from 

each nest of five of these colonies were hand counted to make measures of 

mature colony sizes (Table 1). (Undoubtedly some workers escaped 

collection and foragers were not accounted for, so the measures of colony 

size are conservative.) The remaining two colonies were not counted. For 
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this study, the nest identified as queenright was the nest from which the 

queen exited during nest evacuation. 

 

Worker Reproduction 

After collection, samples from each colony were stored in 100% 

ethanol at -80ºC. DNA was extracted by first drying the sample and 

removing the gaster. Then the sample was crushed in 200μl of 10% Chelex 

100 and 1μl Proteinase K. This mixture was then incubated at 57ºC for 1 

hour, which was followed by heating to 95ºC for 5 minutes. Finally, the 

mixture was centrifuged at 14,000 rpm for 10 minutes and the supernate, 

containing the DNA, was extracted. 

 Males and workers were genotyped using two microsatellite loci, 

E19 (J. Gadau unpublished data) and LxAGT-1 (Bourke, Green, and 

Bruford 1997). A subset of the total workers and males from seven colonies 

collected were genotyped (Table 1). The queen genotype and mating 

frequency were inferred by the worker genotypes using Matesoft 

(Moilanen, Sundstrom, and Pedersen 2004). 

 Polymerase chain reaction (PCR) amplifications were performed in 

12μl reaction volumes at heating rates of 5 °C/s. The reaction mix 

contained 1 μl of a 1:20 dilution of extracted supernate (DNA), 2.5μl 5X 

Colorless GoTaq® Reaction Buffer (Promega), 6.35 μl of de-ionized water, 

0.5 μl of dNTP and MgCl2, 0.125 μl Taq DNA polymerase (5 U/μL, MBI 

Fermentas), and 0.5 μl of each primer. All loci were amplified using the 
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following parameters: 37 cycles of 30 s at 94 °C, 30  at the annealing 

temperature (E19: 51.3 ºC; LxAGT-1: 57 ºC), and 30 s at 72 °C; an initial 

denaturation step of 5 min at 94 °C and a final elongation step of 5 min at 

72 °C was added. 

 

Power to Detect Worker Reproduction 

Independent assortment of the two loci used for this study is tested 

for following the protocol of Smith et al. (2007). Both haploid males and 

diploid workers were used to test for linkage disequilibrium in colonies 

where the queen genotype was heterozygous at both loci (four of the seven 

colonies). The observed frequencies of allele combinations for both loci 

were tested for independence using a chi-square goodness of fit test. The 

null hypothesis was that the alleles assort independently, and the test was 

performed separately for each colony. 

 Worker-derived males were able to be detected only if the queen 

genotype and her mates had different alleles and the males had inherited 

the paternal allele of the worker (informative alleles). The following 

equation taken from Foster, Ratnieks, and Raybould (2000) was used to 

calculate the total number of assignable males (Na) in this study.  
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Where lj denotes the number of loci and Nj the number of males analyzed 

for the jth of n nests and pij is the proportion of informative worker 

genotypes at the ith loci of the jth nest. This equation was used instead of 

the more widely used and generalized equation presented in Foster and 

Ratnieks (2001), because workers with more than one locus containing 

both informative and non-informative alleles were not encountered. 

 Male non-sampling error was also calculated by following Foster, 

Ratnieks, and Raybould (2000) by using the equation (1-x)Na that 

calculates the probability of not sampling any worker-derived males, if 

workers are producing a proportion x of the total males. 

 

Results 

Mating Frequency and Colony Demographics 

All of the mature colonies collected for this study contained only a 

single queen. A total of 135 workers, 18 – 20 per colony were successfully 

genotyped (Table 1). Any worker genotypes that introduced a new allele 

that was not seen in any other workers or males sampled from its colony 

were excluded from the data; there was one worker that fit this description 

and was excluded. It was excluded from the analysis becuase it was 

impossible to determine if that individual genotype was due to a sampling 

or a collection error. Genetic evidence verified the presence of only one 

reproducing queen per colony, a single queen genotype was deducible in 

all cases. The effective mating frequency as calculated by Matesoft from 
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the worker genotypes was 1.03. Only genotypes from two workers from 

one of the seven sampled colonies indicated the presence of more than one 

male genotype. 

 Mature colony sizes were previously estimated to range between 

1,000 – 3,000 workers (Johnson 2000). These data reveal that colony 

sizes are much greater (Table 1; average total worker number/colony: 

6,294; min, max: 4,961, 8,375). Number of workers per nest was not a 

reliable indication of queen location, as queenless satellite nests contained 

more workers in 3/5 cases (worker number in queenright vs. mean worker 

number in queenless-satellite nest; Wilcoxon Matched Pairs Test: Z = 0.94, 

P =0.35). The nests of all colonies, with the exception of one, also 

contained female alates. All nests contained larvae. Eggs were found in 

exactly half of queenless satellite nests of the colonies that were fully 

counted. This report of brood in queenless nests verifies earlier 

observations of above ground brood transfer happening between nests in 

this species (Hölldobler and Carlin 1989).  

 

Worker Reproduction and Detection Power 

A total of 297 males from the seven colonies were genotyped, 20 – 

60 males per colony were sampled for this study (Table 1). Neither the 

sampled males nor workers from any colony indicated that the two loci 

used did not independently assort (for all tests: χ2 < 1.8, P > 0.6). 
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Therefore, both loci could be used to calculate worker reproduction 

detection power. 

 All male haplotypes from all colonies and nests were consistent with 

being queens’ sons; no evidence of worker reproduction was found. The 

number of assignable males, Na, was estimated to be 206.5. The calculated 

detection power is 0.95 for worker reproduction greater than 1.5% (Fig. 1). 

 

Discussion 

No indication of worker reproduction in either queenright or 

queenless satellite nests of A. cockerelli was found. These data, along with 

unpublished data gathered from 31 colonies and 487 workers genotyped 

for two microsatellites (Mösl and Gadau), suggest that A. cockerelli queens 

are singly mated (effective mating frequency of 1.03). Relatedness alone 

would predict that workers should favor raising their own son’s and 

nephews over brothers. However, this study along with previous reports, 

finds that this prediction does not hold (Hammond and Keller 2004). 

Several other factors besides within nest relatedness led towards predict 

finding some degree of worker reproduction in A. cockerelli. 

 Nest workers have active ovaries that are used to produce trophic 

eggs for distributing nutrients inside the nest, as this species does not 

perform liquid food sharing through trophalaxis (Hölldobler and Carlin 

1989). Workers are known to switch to laying viable male eggs when, in 

the lab, they are separated from their queen for as short of a time as two 
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weeks (Hölldobler and Carlin 1989; Smith, Hölldobler, and Liebig 2008). 

In the field, mature colonies have been reported to consist of up to five 

independent nests, not physically connected by any excavated chambers or 

tunnels (Hölldobler and Carlin 1989; Smith, Hölldobler, and Liebig 2008). 

This physical separation from the queen has been correlated in other 

species with increasing worker influence over colony reproduction and 

even increasing the degree of worker reproductive activity (Banschbach 

and Herbers 1996; Cerda, Dahbi, and Retana 2002; Denis, Pezon, and 

Fresneau 2007; Ito, Higashi, and Maeta 1988; Snyder and Herbers 1991). 

It is therefore somewhat surprising that with these potential factors 

influencing worker reproduction, no evidence of it in this study population 

was found. 

 A proximate mechanism for preventing workers who are physically 

separated from the queen from reproducing might be nestmate policing. 

In the presence of a reproducing queen, workers are under selection 

(whether from relatedness, colony efficiency, or sex ratio pressures) to 

police the reproductive efforts of their nestmates (Ratnieks 1988; Ratnieks, 

Foster, and Wenseleers 2006). In fact, the presence of an effective policing 

system is thought to promote worker reproductive self-restraint (Ratnieks 

and Reeve 1992; Wenseleers et al. 2004). One mechanism through which 

queens advertise their presence and reproductive activity is through their 

eggs (Endler et al. 2004). In this study eggs were found in queenless 

satellite nests, and in a previous study above ground brood transport 
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between nests had been documented (Hölldobler and Carlin 1989). It is 

therefore likely that workers in satellite nests act as if they are in the 

presence of a reproductive queen and police the reproductive efforts of 

their nestmates. 

 Policing in A. cockerelli has been well documented. Workers do not 

police (destroy) the viable eggs produced by their nestmates (Smith, 

Hölldobler, and Liebig 2008). They do, however, physically police (aggress) 

nestmates who become reproductively active (Hölldobler and Carlin 1989; 

Smith, Hölldobler, and Liebig 2008; Smith, Hölldobler, and Liebig 2009). 

Additionally, if workers allow their nestmates to develop into egg laying 

workers (i.e. in prolonged episodes of isolation from the queen), queens 

will physically police those reproductive workers themselves (Smith, 

Hölldobler, and Liebig 2011) (Fig. 2). 

 Causal evidence that suggests A. cockerelli workers judge nestmate 

fertility and police their nestmates according to fertility associated changes 

in the cuticular hydrocarbon profiles (Smith, Hölldobler, and Liebig 2009). 

Further correlative evidence linking policing behaviors and hydrocarbon 

signals also supports the fertility signaling role of surface hydrocarbons: 1) 

A. cockerelli workers do not police eggs and worker-produced viable eggs 

have a surface hydrocarbon profile qualitatively indistinguishable from 

that of queen eggs (Smith, Hölldobler, and Liebig 2008), 2) workers who 

are allowed to establish themselves as reproductive individuals are capable 

of developing a queen-like hydrocarbon profile, and when their queen 
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encounters them she physically polices them as she would a reproductive 

competitor (Smith, Hölldobler, and Liebig 2011). Synthesizing our 

knowledge of the policing behaviors found in this species and the 

reproductive signals involved in informing the behavior, reveals that 

worker reproduction in this species is highly regulated (Fig. 2).  

As workers activate their ovaries for viable egg production this is 

accompanied by a shift in their hydrocarbon profile, placing them between 

the profile of a non-reproductive worker and a queen. If they escape 

worker policing and further develop their viable egg laying activity the 

presence of fertility-associated hydrocarbons on their cuticle increases, 

making them more queenlike in appearance and more likely to be policed 

by the queen herself. This gradual development of a cuticular hydrocarbon 

fertility signal has been documented in other ant species (Cuvillier-Hot et 

al. 2001; Endler, Liebig, and Hölldobler 2006; Hannonen et al. 2002), and 

this linkage of reproductive development with the development of fertility 

signal ensures that A. cockerelli workers will face policing from two 

different parties if they attempt to successfully reproduce (Fig. 2). 

Although worker reproduction was not detected at any level, 

detection power was very low for finding low levels (<1.5%) of worker-

derived males (Fig. 1). Worker reproduction at frequencies lower than 

1.5% has been documented in honey bees (Page and Erickson 1988; 

Ratnieks 1993; Visscher 1989). In honey bees, workers actively police 

worker laid eggs and greatly reduce the proportion of worker-laid eggs that 
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survive to maturity (Ratnieks 1993).  Modeling the effects of an effective 

policing system on the level of reproductive cheaters within a colony 

predicts that cheaters will be rare even in colonies where relatedness 

favors a relatively higher level of worker-reproduction (Wenseleers et al. 

2004). Furthermore, competition between groups or colonies is thought to 

favor colonies that effectively police reproductive cheaters and maintain a 

low level of reproductive cheaters over evolutionary time (Brandvain and 

Wade 2007; Van Dyken, Linksvayer, and Wade 2011).  

Evidence of effective policing systems is found in many studies of 

policing behaviors in social insects, as is the case with A. cockerelli. 

However, genetic data describing the pattern of male parentage across 

colony and nesting sites are needed to reveal the actual degree to which 

worker reproduction regulated. These results verify that policing behaviors 

are an effective means through which worker reproduction can be 

regulated, even in social insect systems where within-colony relatedness 

and colony structure might promote worker reproduction. 
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Table 3.1. Colony Sizes and Sample Sizes, Per Colony and Per Nest, of 

Individuals Successfully Genotyped for at least one of the Microsatellite 

Loci. 

   Colony       

    Fh2 Fh3 Dw8 Dw9 Dw10 901 97 

Q
u

ee
n

 n
es

t  # workers; 
# genotyped  

4612; 
10 

3121; 
10 

1824; 
9 

1605; 
5 

3047; 
7 

x; 7 
x; 
7 

# males; # 
genotyped 

119; 15 
413; 
10 

227; 
18 

50; 
18 

103; 
18 

x; 
18 

x; 
18 

S
a

te
ll

it
e 

n
es

t 
1 

 # workers; 
# genotyped  

766; 8 
1840; 

10 
5244; 

9 
2157; 

5 
3127; 

7 
x; 
6 

x; 
7 

# males; # 
genotyped 

19; 18 
210; 
10 

143; 
18 

85; 
18 

223; 
18 

x; 
18 

x; 
18 

S
a

te
ll

it
e 

n
es

t 
2

 

 # workers; 
# genotyped  

    
1271; 

5 
2201; 

6 
x; 
6 

x; 
6 

# males; # 
genotyped 

    
36; 
18 

10; 
10 

x; 
18 

x; 
12 

S
a

te
ll

it
e 

n
es

t 
3

 

 # workers; 
# genotyped  

    
658; 

5 
   

# males; # 
genotyped 

    6; 6    

 

*x denotes samples that were not counted 
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Figure 3.1. Power of detection a worker-derived male at various levels of 

worker reproduction within colonies. From the 206.5 assignable male 

genotypes, Na, worker reproduction, if at all present, accounts for fewer 

than 1.5% of the total males present in a colony.  



51 

 

Figure 3.2. The means of restraining worker reproduction in A. cockerelli. 

The known policing behaviors (left y-axis) and the chemical signals (right 

y-axis) that are used to inform are seen in relation to the level of worker 

reproductive activity (x axis). They are synthesized here from previously 

published accounts (Hölldobler and Carlin 1989; Smith, Hölldobler, and 

Liebig 2011; Smith, Hölldobler, and Liebig 2008; Smith, Hölldobler, and 

Liebig 2009). 
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Chapter 4 

CONCLUSION 

 

Synthesis and Impact of Research 

 Collectively, this work describes the means by which worker 

reproduction is regulated in A. cockerelli. This work could be performed 

after developing a means for collecting entire mature colonies of A. 

cockerelli from the field (Smith and Haight 2008 [Appendix I]). Herein, 

the repertoire of policing behaviors performed by this species of ant is 

described (Chapter 2; Smith, Hölldobler, and Liebig 2008, 2011 

[Appendices II, IV]). The chemical signals that are the informational basis 

for policing worker reproduction are described (Chapter 2; Smith, 

Hölldobler, and Liebig 2008, 2009, 2011 [Appendices II, III, IV]). The first 

case of causal evidence demonstrating the role of cuticular hydrocarbon 

fertility signals in policing is provided, filling a long-standing gap in the 

understanding of fertility signals in social insects (Smith, Hölldobler, and 

Liebig 2009 [Appendix III]). Genetic data that determines the degree to 

which worker reproduction is suppressed in field colonies of A. cockerelli 

is presented (Chapter 3). The discussion section of chapter three is a 

summary of how the modes of policing and the fertility signals used in A. 

cockerelli work in concert in the process of regulating worker reproduction. 

 Within the field of social insect research, this body of work is 

significant in that it describes the system of reproductive regulation in an 
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ant species with derived colony characteristics rather than one with more 

primitive traits (i.e. small colony size and low level of reproductive 

dimorphism). The majority of studies on policing behaviors in ants have 

focused on species with primitive colony characteristics (Monnin and 

Ratnieks 2001); however, there are a few exceptions (e.g. Endler, 

Holldobler, and Liebig 2007; Helanterä and Sundström 2007a; Moore and 

Liebig 2010). Physical policing, especially from the queen, is predicted to 

occur only in social insect colonies with low levels of queen-worker 

reproductive dimorphism and small colony sizes (Bourke 1999; Hölldobler 

and Wilson 2009), however these behaviors are found in A. cockerelli. One 

possibility as to why A. cockerelli relies on physical policing to maintain 

worker reproductive restraint is that nest workers have constantly active 

ovaries for producing trophic eggs that can switch to producing viable eggs 

in a short period of time and workers have the ability to produce fertility 

signals equivalent to that of queens (Smith, Hölldobler, and Liebig 2011 

[Appendix IV]). The ability of A. cockerelli workers to produce cuticular 

hydrocarbon profiles and egg profiles equivalent to those produced by the 

queen makes them an interesting system for further studies of fertility 

signaling and its effects on reproductive restraint in ants. If worker-

produced eggs have an effect on worker reproduction similar to any self-

restraint effect caused by queen eggs, this would be evidence of queen-

produced hydrocarbons not serving a queen signal but rather a generalized 

fertility signal. Since workers can produce cuticular hydrocarbon profiles 
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that are equivalent to that of a queen, this attribute combined with the 

high degree of anatomical dimorphism between queens and workers, 

makes A. cockerelli an ideal system to test if fertility signals are solely 

responsible for making a fertile queen seem like a queen to her nestmates. 

In other words, can a queen hydrocarbon-mimicking worker evoke similar 

nestmate responses to those evoked by a queen. This experiment again 

would highlight any potential differences between the concept of queen 

signals and general fertility signals. 

 This body of work is a case study in how cooperation is maintained 

in a social organism. The importance of policing and punishment has been 

theoretically demonstrated in many social species and is thought to be a 

key attribute of successful societies (Frank 2003). Although no evidence of 

successful reproductive cheaters was found, and no evidence suggesting 

that workers are attempting to cheat in natural colonies was found, what 

was found was an extensive repertoire of behaviors and adaptations for 

suppressing potential reproductive cheaters. It is predicted that the 

presence of an effective policing system alone will sufficiently lower the 

benefits of reproductive cheating so that reproductive self-restraint is 

favored (Ratnieks and Reeve 1992; Wenseleers et al. 2004). Policing 

behaviors are thought to occur more commonly in societies where within 

colony relatedness is low due to multiple mating of the queen, rather than 

in societies where the queen is singly mated and workers are highly related 

to one another (Foster and Ratnieks 2000; Wenseleers and Ratnieks 
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2006). This body of works demonstrates that A. cockerelli uses multiple 

forms of policing behaviors even though workers are highly related due to 

a singly mated queen (Chapter 3). This suggests that relatedness is, alone, 

an insufficient predictor of both the degree of worker reproduction and the 

presence of presence of policing behaviors within insect societies. Instead, 

other aspects of a species’ biology such as degree of worker ovarian 

development, and polydomy might necessitate the need of a well 

developed system for regulating reproduction (Chapter 3). 

This work demonstrates the degree to which and the various means 

through which reproductive regulation is relied upon in maintaining 

successful insect societies. It is hoped that this work moves the field 

forward towards the discovery of other unknown mechanisms promoting 

social cohesion and cooperation.
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