
An Investigation of the Cost and Accuracy Tradeoffs of Supplanting AFDs with Bayes Network

in Query Processing in the Presence of Incompleteness in Autonomous Databases

by

Rohit Raghunathan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved August 2011 by the
Graduate Supervisory Committee:

Subbarao Kambhampati, Chair
Joohyung Lee

Huan Liu

ARIZONA STATE UNIVERSITY

December 2011

ABSTRACT

As the information available to lay users through autonomous data sources continues

to increase, mediators become important to ensure that the wealth of information available

is tapped effectively. A key challenge that these information mediators need to handle is the

varying levels of incompleteness in the underlying databases in terms of missing attribute val-

ues. Existing approaches such as Query Processing over Incomplete Autonomous Databases

(QPIAD) aim to mine and use Approximate Functional Dependencies (AFDs) to predict and re-

trieve relevant incomplete tuples. These approaches make independence assumptions about

missing values—which critically hobbles their performance when there are tuples containing

missing values for multiple correlated attributes. In this thesis, I present a principled probabilis-

tic alternative that views an incomplete tuple as defining a distribution over the complete tuples

that it stands for. I learn this distribution in terms of Bayes networks. My approach involves min-

ing/”learning” Bayes networks from a sample of the database, and using it do both imputation

(predict a missing value) and query rewriting (retrieve relevant results with incompleteness on

the query-constrained attributes, when the data sources are autonomous). I present empirical

studies to demonstrate that (i) at higher levels of incompleteness, when multiple attribute values

are missing, Bayes networks do provide a significantly higher classification accuracy and (ii) the

relevant possible answers retrieved by the queries reformulated using Bayes networks provide

higher precision and recall than AFDs while keeping query processing costs manageable.

i

To Amma and Appa

ii

ACKNOWLEDGMENTS

Dr. Subbarao Kambhampati is the strongest reason behind my successful graduate

experience. I am extremely grateful to him for showing immense patience and believing in my

abilities during the phase of research problem identification. His wisdom, constructive criticism

and honest feedback have been invaluable and will remain as an example and inspiration for

the rest of my life.

My association with Dr. Liu dates back to my first semester here at ASU. He was

instrumental in my acclimatization to the new environment and also has been a great source of

inspiration throughout my graduate study.

Dr. Joohyung Lee’s valuable inputs during the discussion session held regarding my

thesis proposal and it’s subsequent defense were very helpful.

I would like to thank Mike and all the staff memebers at Hispanic Research Center for

their support over the past two years.

I would like to extend my gratitude to members of the Yochan Research Lab- Sushovan,

Yuheng, Raju, Manish, J., Will, Kartik, Tuan and friends- Dananjayan, Siva, Rajagopalan,

Ganesh, Girish, Bipin, Hari, Harish, Siddharth.

My special thanks goes out to my brother, Rohan and sister-in-law, Ileana who have

constantly supported me over the last two years.

One of Victor Hugo’s well known quote reads as ”Change your opinions, keep to your

principles; change your leaves, keep intact your roots.” I am fortunate to have as my backbone,

my entire family. I will always be indebted to my parents, grandparents and the rest of the family

for their support throughout my life, past, present and beyond.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Background on Incompleteness in Autonomous Databases 1

1.1.1 Overview of QPIAD . 2

1.1.2 Shortcomings of AFD-based Imputation and Query Rewriting 3

1.1.3 Bayes Networks . 4

1.2 Overview of the Thesis . 5

1.3 Outline . 6

2 LEARNING BAYES NETWORK MODELS AND IMPUTATION 7

2.1 Learning Bayes Network Models for Autonomous Databases 7

2.1.1 Structure and Parameter Learning . 8

2.1.2 Inference in Bayes networks . 9

2.2 Dealing with Incompleteness in Autonomous Databases using Imputation 9

2.2.1 Imputing Single Missing Values . 10

2.2.2 Imputing Multiple Missing Values . 10

2.2.3 Prediction Accuracy with Increase in Incompleteness in Test Data 11

2.2.4 Time Taken for Imputation . 12

2.3 Summary . 15

3 HANDLING INCOMPLETENESS IN AUTONOMOUS DATABASES USING QUERY

REWRITING . 16

3.1 Generating Rewritten Queries using Bayes Networks 17

3.1.1 Generating Rewritten Queries using BN-Beam 19

3.1.2 Handling Multi-attribute Queries . 21

3.2 Empirical Evaluation of Query Rewriting . 22

3.2.1 Comparison of Rewritten Queries Generated by AFDs and BN-All-MB . . 23

3.2.2 Comparison of Rewritten Queries Generated by BN-All-MB and BN-Beam 23

3.2.3 Comparison of Multi-attribute Queries . 24

3.3 Summary . 30

4 CONCLUSION & FUTURE WORK . 33

iv

Chapter Page

4.1 Conclusion . 33

4.2 Future Work . 33

4.2.1 Generating Rewritten Queries in the Presence of Limited Query Patterns 33

4.2.2 Reducing CPU Time in Generating Rewritten Queries using BN-Beam . . 34

4.2.3 Redundancy Metrics to Improve Recall 34

REFERENCES . 35

v

LIST OF TABLES

Table Page

1.1 A Fragment of a car database. 4

2.1 Domain size of attributes in Car database . 7

2.2 Domain size of attributes in Adult database . 7

2.3 Time taken for Imputation by AFDs, BN-Gibbs and BN-Exact 15

3.1 A Fragment of a car database . 16

4.1 A Fragment of a car database . 34

vi

LIST OF FIGURES

Figure Page

2.1 A Bayesian network learnt from a sample of data extracted from Cars.com 8

2.2 A Bayesian network learnt for Adult database . 8

2.3 Single Attribute Prediction Accuracy (Cars) . 10

2.4 Multiple Attribute Prediction Accuracy (Cars) . 12

2.5 Prediction Accuracy of Model with increase in percentage of incompleteness in test

data . 13

2.6 Prediction Accuracy of Year-Body with increase in percentage of incompleteness in

test data . 13

2.7 Prediction Accuracy of Education with increase in percentage of incompleteness in

test data . 14

2.8 Prediction Accuracy of Race-Occupation with increase in percentage of incomplete-

ness in test data . 14

3.1 Precision-Recall curve for query σMake . 24

3.2 Precision-recall curve for query σBody averaged over 3 queries 25

3.3 Precision-Recall curve for query σRelationship=Not-in-family 25

3.4 Change in recall for different values of α in F-measure metric for top-10 rewritten

queries for σYear = 2002 . 26

3.5 Change in precision for different values of α in F-measure metric for top-10 rewritten

queries for σYear = 2002 . 26

3.6 Precision-recall curve for the results returned by top-10 rewritten queries for the

query σMake=bmw∧Mileage=15000 . 28

3.7 Change in recall as the number of queries sent to the autonomous database in-

creases for the query σMake=bmw∧Mileage=15000 . 28

3.8 Precision-recall curve for the results returned by top-10 rewritten queries for the

query σEducation=HS-grad∧Relationship=Husband . 29

3.9 Change in recall as the number of queries sent to the autonomous database in-

creases for the query σEducation=HS-grad∧Relationship=Husband 29

3.10 Precision-recall curve for the results returned by top-10 rewritten queries for the

query σMake=kia∧Year=2004 . 30

3.11 Change in recall as the number of queries sent to the autonomous database in-

creases for the query σMake=kia∧Year=2004 . 30

vii

Figure Page

3.12 Precision-recall curve for the results returned by top-10 rewritten queries for the

query σWorkClass=private∧Relationship=own-child . 31

3.13 Change in recall as the number of queries sent to the autonomous database in-

creases for the query σWorkClass=private∧Relationship=own-child 31

viii

Chapter 1

INTRODUCTION

As the popularity of the World Wide Web continues to increase, lay users have access to

more and more information in autonomous databases. Incompleteness in these autonomous

sources is extremely commonplace. Such incompleteness mainly arises due to the way in

which these databases are populated- through (inaccurate) automatic extraction or by lay

users. Dealing with incompleteness in the databases requires tools for dealing with uncer-

tainty. Previous attempts at dealing with this uncertainty by systems like QPIAD [15] have

mainly focused on using rule-based approaches, popularly known in the database community

as Approximate Functional Dependencies (AFDs). The appeal of AFDs is due to the ease

of specifying the dependencies, learning and reasoning with uncertainty. However, uncertain

reasoning using AFDs adopts the certainty factors model, which assumes that the principles

of locality and detachment [13] hold. But, these principles do not hold for uncertain reason-

ing and can lead to erroneous reasoning. As the levels of incompleteness in the information

sources increases, the need for more scalable and accurate reasoning becomes paramount.

Full probabilistic reasoning avoids the traps of AFDs. Graphical models are an efficient way

of doing full probabilistic reasoning. Bayesian network (Bayes net) is such a model, where

direct dependencies between the variables in a problem are modeled as a directed acyclic

graph, and the indirect dependencies can be inferred. As desired, Bayes nets can model both

causal and diagnostic dependencies. Using Bayes nets for uncertain reasoning has largely

replaced rule-based approaches in Artificial Intelligence. However, learning and inference on

Bayes nets can be computationally expensive which might inhibit their applications to handling

incompleteness in autonomous data sources. In this thesis, we consider if these costs can be

handled without compromising on the improved accuracy offered by Bayes nets, in the context

of incompleteness in the autonomous databases.

1.1 Background on Incompleteness in Autonomous Databases

Increasingly many of the autonomous web databases are being populated by auto-

mated techniques or by lay users, with very little curation. For example, databases like auto-

trader.com are populated using automated extraction techniques by crawling the text classifieds

and by car owners entering data through forms. Scientific databases such as CbioC [3], also

use similar techniques for populating the database. However, Gupta and Sarawagi [5] have

shown that these techniques are error prone and lead to incompleteness in the database in

1

the sense that many of the attributes have missing values. Wolf et al [15] report that 99% of

the 35,000 tuples extracted from Cars Direct were incomplete. When the mediator has privi-

leges to modify the data sources, the missing values in these data sources can be completed

using ”imputation”, which attempts to fill in the missing values with the most likely value. As

the levels of incompleteness in these data sources increases, it is not uncommon to come

across tuples with multiple missing values. Effectively finding the most likely completions for

these multiple missing values would require capturing the dependencies between them. A sec-

ond challenge arises when the underlying data sources are autonomous, i.e., access to these

databases are through forms, the mediator cannot complete the missing values with the most

likely values. Therefore, mediators need to generate and issue a set of reformulated queries,

in order to retrieve the relevant answers with missing values. Efficiency considerations dictate

that the number of reformulations be kept low. In such scenarios, it becomes very important for

mediators to send queries that not only retrieve results with a large fraction of relevant results

(precision), but also a large number of relevant results (recall).

1.1.1 Overview of QPIAD

The QPIAD system [15] addresses the challenges in retrieving relevant incomplete answers

by learning the correlations between the attributes in the database as AFDs and the value

distributions as Naive Bayesian Classifiers.

Given a Relation R, a subset X of its attributes, and a single attribute A of R, an

approximate functional dependency (AFD) holds on a Relation R, between X and A, denoted

by, X A, if the corresponding functional dependency X → A holds on all but a small fraction

of tuples of R.

To illustrate how QPIAD works consider the the query Q : Body=SUV issued to Ta-

ble 1.1. Traditional query processors will only retrieve tuples t7 and t9 . However, the entities

represented by tuples t8 and t10 are also likely to be relevant. The QPIAD system’s aim is to

retrieve tuples t8 and t10 , in addition to t7 and t9 . In order to retrieve tuples t8 and t10 it uses

AFDs mined from a sample of the database. For example, an AFD Model Body may be

mined for the fragment of the cars database shown in Table 1.1. This indicates that the value of

a car’s Model attribute often (but not always) determines the value of its Body attribute. These

rules are used to retrieve relevant incomplete answers.

When the mediators have access privileges to modify the database, AFDs are used

2

along with Naive Bayes Classifiers to fill in the missing values as a simple classification task and

then traditional query processing will suffice to retrieve relevant answers with missing values.

However, in more realistic scenarios, when such privileges are not provided, mediators gener-

ate a set of rewritten queries and send to the database, in addition to the original user query.

According to the AFD mentioned above and tuple t7 retrieved by traditional query processors,

a rewritten query Q’1 : σModel=Santa may be generated to retrieve t8 . Similarly Q’2 : σModel=MDX

may be generated which will retrieve t10 .

Multiple rules can be mined for each attribute, for example, the mileage and year of

a car might determine the body style of the car. So a rule {Year, Mileage} {Body} could

be mined. Each rule has a confidence associated with it, which specifies how accurate the

determining set of an attribute’s AFD is in predicting it. The current QPIAD system uses only

the highest confidence AFD1 of each attribute for imputation and query rewriting. In addition,

it only aims to retrieve relevant incomplete answers with atmost one missing value on query-

constrained attributes.

1.1.2 Shortcomings of AFD-based Imputation and Query Rewriting

AFDs are rule-based methods for dealing with uncertainty. AFDs adopt the certainty factors

model which makes two strong assumptions:

1. Principle of Locality: Whenever there is a rule A → B, given evidence of A, we can

conclude B, regardless of the other rules and evidences.

2. Principle of Detachment: Whenever a proposition B is found to be true, the truth of B can

be used regardless of how it was found to be true.

However, these two assumptions do not hold in the presence of uncertainty. When propagating

beliefs, not only is it important to consider all the evidences but also their sources. Therefore,

using AFDs for reasoning with uncertainty can lead to cyclic reasoning and fail to capture the

correlations between multiple missing values. In addition to these shortcomings, the beliefs are

represented using a Naive-Bayesian Classifier, which makes strong conditional independence

assumptions, often leading to inaccurate values.

To illustrate the shortcomings of AFDs, consider a query Q : σModel=A8∧Year=2005 issued

to the fragment of the car database shown in Table 1.1. When the mediator has modification

privileges, the missing values for attributes Model and Year can be completed with the most

1The actual implementation of QPIAD uses a variant to the highest confidence AFD for some of the attributes. For
details we refer the reader to [15]

3

ID Make Model Year Body Mileage
1 Audi null null Sedan 20000
2 Audi A8 null Sedan 15000
3 BMW 745 2002 Sedan 40000
4 Audi null 2005 Sedan 20000
5 Audi A8 2005 Sedan 20000
6 BMW 645 1999 Convt null
7 Hyundai Santa 1990 SUV 45000
8 Hyundai Santa 1993 null 40000
9 Acura MDX 1990 SUV 30000
10 Acura MDX 1990 null 12000

Table 1.1: A Fragment of a car database.

likely values, before returning the answer set. Using AFDs to predict the missing values in

tuple t1, ignores the correlation between the Model and Year ; predicting them independently.

Substituting the value for missing attribute Year in tuple t2 using just the highest confidence

rule as is done in QPIAD [15], often leads to inaccurate propagation of beliefs as the other

rules are ignored. When the mediator does not have privileges to modify the database, a set of

rewritten queries are generated and issued to the database to retrieve the relevant uncertain

answers. Issuing Q to the database fragment in Table 1.1 retrieves t5 . The rewritten queries

generated by methods discussed in QPIAD [15] retrieve tuples t2 and t4. However, it does not

retrieve tuple t1, but it is highly possible that the entity represented by it is relevant to the user’s

query.

1.1.3 Bayes Networks

A Bayes network [8] is a graphical representation of the probabilistic dependencies between the

variables in a domain. The generative model of a relational database can be represented using

a Bayes network, where each node in the network represents an attribute in the database. The

edges between the nodes represent direct probabilistic dependencies between the attributes.

The strength of these probabilistic dependencies are modeled by associating a conditional

probability distribution (CPD) with each node, which represents the conditional probability of

a variable, given as evidence each combination of values of its immediate parents. A Bayes

network is a compact representation of the full joint probability distribution of the nodes in the

network. The full joint distribution can be constructed from the CPDs in the Bayes network.

Given the full joint distribution, any probabilistic query can be answered. In particular, the

probability of any set of hypotheses can be computed, given any set of observations, by condi-

tioning and marginalizing over the joint distribution. Since the semantics of Bayes networks are

4

in terms of the full joint probability distribution, inference using them considers the influence of

all variables in the network. Therefore, Bayes nets, unlike AFDs, do not make the Locality and

Detachment assumptions.

1.2 Overview of the Thesis

Given the advantages of Bayes networks over AFDs, we investigate if replacing AFDs

with a Bayes network in QPIAD system [15], provides higher accuracy and while keeping the

costs manageable. Learning and inference with Bayes networks are computationally harder

than AFDs. Therefore, the challenges involved in replacing AFDs with Bayes networks include

learning and using them to do both imputation and query rewriting by keeping costs manage-

able. We use BANJO software package [1] to learn the topology of the Bayes network and

use BNT [4] and INFER.NET [10] software packages to do inference on them. Even though

learning the topology for the Bayes net from a sample of the database involves searching over

the possible topologies, we found that high fidelity Bayes networks could be learnt from a small

fraction of the database by keeping costs manageable (in terms of time spent in searching).

Inference in Bayes networks is intractable if the network is multiply connected, i.e., there is

more than undirected path between any two nodes in the network. We handle this challenge

by using approximate inference techniques. Approximate inference techniques are able to re-

tain the accuracy of exact inference techniques and keep the cost of inference manageable.

We compare the cost and accuracy of using AFDs and Bayes networks for imputing single and

multiple missing values at different levels of incompleteness in test data.

We also develop new techniques for generating rewritten queries using Bayes net-

works. To illustrate the challenges involved in generating rewritten queries consider the same

query Q:σModel=A8∧Year=2005 issued to the database fragment in Table 1.1. our aim is to retrieve

tuple t1 in addition to tuples t2 , t4 and t5 . The challenges that are involved in generating rewrit-

ten queries are:

1. Selecting the attributes on which the new queries will be formulated. Selecting these at-

tributes by searching over all the attributes becomes too expensive as the number of attributes

in the database increases.

2. Determining the values to which the attributes in the rewritten query will be constrained to.

The size of the domains of attributes in most autonomous databases is often large. Searching

over each and every value can be expensive.

3. Most autonomous data sources have a limit on the number of queries to which it will answer.

5

The rewritten queries that we generate should be able to carefully tradeoff precision with the

throughput of the results returned.

We propose techniques to handle these challenges and evaluate them with AFD-based ap-

proaches in terms of precision and recall of the results returned.

1.3 Outline

The rest of the thesis is organized as follows– in Chapter 2, we discuss how Bayes

network models of autonomous databases can be learnt by keeping costs manageable and

compare the prediction accuracy and cost of using Bayes network and AFDs for imputing miss-

ing values. Next, in Chapter 3, we discuss how rewritten queries are generated using Bayes

networks and compare them with AFD-approaches for single and multi-attribute queries. Fi-

nally, we conclude in Chapter 4 by discussing directions for future work.

6

Chapter 2

LEARNING BAYES NETWORK MODELS AND IMPUTATION

In this chapter we discuss how we learn the topology and parameters of the Bayes network

by keeping costs manageable in (Section 2.1). We then compare the prediction accuracy

of the learned Bayes network model and AFDs in imputation of single (Section 2.2.1) and

multiple (Section 2.2.2) attributes. Next we compare their prediction accuracies at different

levels of incompleteness in test data (Section 2.2.3). Finally we report the prediction costs in

terms of time taken by the various techniques in (Section 2.2.4).

2.1 Learning Bayes Network Models for Autonomous Databases

In this section we discuss how we learn the topology and parameters of the Bayes

network. We learn the generative model of two databases- A fragment of 8000 tuples ex-

tracted from Cars.com [2] and Adult database consisting of 15000 tuples obtained from UCI

data repository [12]. Table 2.1 and 2.2 describe the schema and the domain sizes of the at-

tributes in the two databases. The attributes with continuous values are discretized and used

as categorical attributes. Price and Mileage attributes in the cars database are discretized by

rounding off to the nearest five thousand. In the adult database attributes Age and Hours Per

Week are discretized to the nearest multiple of five.

Database Year Model Make Price Mileage Body
Cars-8000-
20(Mediator)

9 38 6 19 17 5

Cars-8000-
100(Complete)

12 41 6 30 20 7

Table 2.1: Domain size of attributes in Car database.

Database Age Work
Class

Educat-
ion

Marital
Status

Occup-
ation

Relatio-
nship

Race Sex Hours
Per
Week

Native
Coun-
try

Adult-
15000-
20(Mediator)

8 7 16 7 14 6 5 2 10 37

Adult-
15000-
100(Complete)

8 7 16 7 14 6 5 2 10 40

Table 2.2: Domain size of attributes in Adult database.

7

YEAR

MODEL
PRICE

BODY MAKE

MILEAGE

Figure 2.1: A Bayesian network learnt from a sample of data extracted from Cars.com

Relationship

Age

Work

Race

Hours Per

Week

Sex
Education

Occupation

Native

Country
Marital

Status

Figure 2.2: A Bayesian network learnt for Adult database

2.1.1 Structure and Parameter Learning

The structure of the Bayes network is learned from a complete sample of the autonomous

database. We use the BANJO package [1] as a black box for learning the structure of the

Bayes network. To keep the learning costs manageable we constrain nodes to have at most two

parents. In cases where there are more than two attributes directly correlated to an attribute,

these attributes can be modeled as children. There is no limit on the number of children a node

can have. Figure 2.1.1 shows the structure of a Bayes network learned for the Cars database

and Figure 2.1.1 for the Adult database. We used samples of sizes varying from 5-20% of the

database and found that the structure of the highest scoring network remained the same. We

also experimented with different time limits for the search, ranging from 5-30 minutes. We did

not see any change in the structure of the highest confidence network.

8

2.1.2 Inference in Bayes networks

Bayes network inference is used in both imputation and query rewriting tasks. Imputation in-

volves substituting the missing values with the most likely values, which involves inference.

Exact inference in Bayes networks is NP-hard [13] if the network is multiply connected. There-

fore, to keep query processing costs manageable we use approximate inference techniques.

In our experiments described in section 2.2, we found that using approximate inference tech-

niques retains the accuracy edge of exact inference techniques, while keeping the prediction

costs manageable. We use the BNT package [4] for doing inference on the Bayes Network for

the imputation task. We experimented with various exact inference engines that BNT offers and

found the junction-tree engine to be the fastest. While querying multiple variables, junction tree

inference engine can be used only when all the variables being queried form a clique. When

this is not the case, we use the variable elimination inference engine.

2.2 Dealing with Incompleteness in Autonomous Databases using Imputation

In this section we compare the prediction accuracy and cost of Bayes networks versus

AFDs for imputing single and multiple missing values when there is incompleteness in test data.

When the mediator has privileges to modify the underlying Autonomous database, the missing

values can be substituted with the most probable value. Imputation using Bayesian networks

first computes the posterior of the attribute that is to be predicted given the values present in

the tuple and completes the missing value with the most likely value given the evidence. When

predicting multiple missing values, the joint posterior distribution over the missing attributes

are computed and the values with the highest probability are used for substituting the missing

values. Computing the joint probability over multiple missing values captures the correlations

between the missing values, which gives Bayes networks a clear edge over AFDs. In contrast,

imputation using AFDs uses the AFD with the highest confidence for each attribute for pre-

diction. If an attribute in the determining set of an AFD is missing, then that attribute is first

predicted using other AFDs (chaining), before the original attribute can be predicted. The most

likely value for each attribute is used for completing the missing value. When multiple missing

values need to predicted, each value is predicted independently.

We use the Cars and Adult databases described in the previous section. We compare

AFD approach used in QPIAD which uses Naive Bayesian Classifiers to represent value dis-

tributions with exact and approximate inference in Bayes networks. We call exact inference in

9

0

0.2

0.4

0.6

0.8

1

Make Model Year Price Mileage Body

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

BN-Exact BN-Gibbs AFDs

Figure 2.3: Single Attribute Prediction Accuracy (Cars)

Bayes network as BN-Exact. We use Gibbs sampling as the approximate inference technique,

which we call BN-Gibbs. For BN-Gibbs, the probabilities are computed using 250 samples.

2.2.1 Imputing Single Missing Values

Our experiments show that prediction accuracy using Bayes nets is higher than AFDs for at-

tributes which have multiple high confidence rules. Approaches for combining multiple rules for

classification have been shown to be ineffective by Khatri [7]. Since there is no straightforward

way for propagating beliefs using multiple AFDs, only the AFD with the highest confidence is

used for propagating beliefs. This method, however, fails to take advantage of additional infor-

mation that the other rules provide. Bayes networks, on the other hand, systematically combine

evidences from multiple sources. Figure 2.3 shows the prediction accuracy in the presence of

a single missing value for each attribute in the Cars database. We notice that there is a signifi-

cant difference in prediction accuracies of attributes Model and Year. There are multiple rules

that are mined for these two attributes but using just the rule with highest confidence, ignores

the influence of the other available evidence, which affects the prediction accuracy.

2.2.2 Imputing Multiple Missing Values

In most real-world scenarios, however, the number of missing values per tuple is likely to be

more than one. The advantage of using a more general model like Bayes networks becomes

even more apparent in these cases. Firstly, AFDs cannot be used to impute all combinations

of missing values, this is because when the determining set of an AFD contains a missing

attribute, then the value needs to be first predicted using a different AFD by chaining. While

10

chaining, if we come across an AFD containing the original attribute to be predicted in its

determining set, then predicting the missing value becomes impossible. When the missing

values are highly correlated, AFDs often get into such cyclic dependencies. In Figure 2.4

we can see that the attribute pairs Year-Mileage, Body-Model and Make-Model cannot be

predicted by AFDs. As the number of missing values increases, the number of combinations

of missing values that can be predicted reduces. In our experiments with the Cars database,

when predicting three missing values, only 9 out of the 20 possible combinations of missing

values could be predicted.

On the other hand, Bayes networks can predict the missing values regardless of the

number and combination of values missing in a tuple. Bayes networks also predict missing

values in extreme cases where every value in a tuple is missing. Secondly, while predicting the

missing values, Bayes nets compute the joint probability distribution over the missing attributes

which allows them to capture the correlations between the attributes. In contrast, for whereas

prediction using AFDs, which use a Naı̈ve Bayes Classifier to represent the value distributions,

predict each of the missing attributes independently, ignoring the interactions between them.

The attribute pair Year-Model in Figure 2.4 shows that the prediction accuracy is significantly

higher when correlations between the missing attributes are captured. We also observe that in

some cases, when the missing values are D-separated [14] given the values for other attributes

in the tuple, the performance of AFDs and Bayes networks is comparable. In Figure 2.4, we can

see that the prediction accuracy for Mileage-Make and Mileage-Body are comparable for all the

techniques since attributes are D-separated given the other evidence in the tuple. However, the

number of attributes that are D-separated is likely to decrease with increase in incompleteness

in the databases.

2.2.3 Prediction Accuracy with Increase in Incompleteness in Test Data

As the incompleteness in the database increases, not only does the number of values that need

to be predicted increase, but also the evidence for predicting these missing values reduces.

Therefore, it is important for the classifier to be robust with the increase in incompleteness in the

underlying autonomous databases. We compared the performance of Bayes nets and AFDs

as the incompleteness in the autonomous databases increase. We see that the prediction

accuracy of AFDs drops faster with increase in incompleteness. As mentioned earlier, This is

because when the determining set of an AFD contains an attribute whose value is missing in

the current tuple, then that value needs to be first predicted using a different AFD (chaining),

11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Year,

Mileage

Body,

Model

Make,

Model

Year,

Model

Year,

Make

Mileage,

Make

Mileage,

Model

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

AFD

BN-Gibbs

BN-Exact

Figure 2.4: Multiple Attribute Prediction Accuracy (Cars)

before the original missing attribute can be predicted. In general, when an attribute has multiple

AFDs (rules), propagating beliefs using just one rule and ignoring the others, often violates the

principles of detachment and locality [6]. As the levels of incompleteness of the database

increases, so does the number of times chaining is done, which affects the prediction accuracy.

Another problem that arises while propagating beliefs through chaining is that we often come

across an AFD containing the original attribute to be predicted in its determining set, causing a

cyclic dependency which renders prediction impossible. Therefore, as the number of missing

values increases, so does the possibility that the AFD might get into a cyclic dependency. On

the other hand, Bayesian networks, being a generative model, can infer the values of any set

of attributes given the evidence of any other set. Therefore, as the incompleteness of the

database increases, the prediction accuracy of Bayes Networks will be significantly higher than

that of AFDs. Our empirical results show in Figure 2.5 and 2.7 show the prediction accuracy

of AFDs and Bayes nets when a single attribute needs to be predicted in the Cars and Adult

databases respectively. Figures 2.6 and 2.8 show the prediction accuracy for predicting missing

values on two attributes on the Cars and Adult databases respectively. We see that both Bayes

net approaches have a higher prediction accuracy than AFDs at all levels of incompleteness.

2.2.4 Time Taken for Imputation

We now compare the time taken for imputing the missing values using AFDs, Exact Inference

(Junction tree) and Gibbs Sampling (250 samples) are compared as the number of missing val-

ues in the autonomous database increases. Table 2.3 reports the time taken to impute a Cars

database with 5479 tuples. We note that while imputation is most accurate when using Exact

Inference, the preferred method for most applications is Gibbs sampling, as it’s accuracy is not

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.3 0.5 0.7 0.9

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Percentage of Incompleteness

Model

AFD

BN-Gibbs

BN-Exact

Figure 2.5: Prediction Accuracy of Model with increase in percentage of incompleteness in test
data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.3 0.5 0.7 0.9

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Percentage of Incompleteness

Year-Body

AFD

BN-Gibbs

BN-Exact

Figure 2.6: Prediction Accuracy of Year-Body with increase in percentage of incompleteness
in test data

13

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.3 0.5 0.7 0.9

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Percentage of Incompleteness

Education

AFD

BN-Gibbs

BN-Exact

Figure 2.7: Prediction Accuracy of Education with increase in percentage of incompleteness in
test data

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.3 0.5 0.7 0.9

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Percentage of Incompleteness

Race-Occupation

AFD

BN-Gibbs

BN-Exact

Figure 2.8: Prediction Accuracy of Race-Occupation with increase in percentage of incom-
pleteness in test data

14

Percentage
of Incom-
pleteness

Time
Taken for
AFD(Sec.)

Time
Taken by
BN-Gibbs
(Sec.)

Time
Taken by
BN-Exact
(Sec.)

0% 0.271 44.46 16.23
10% 0.267 47.15 44.88
20% 0.205 52.02 82.52
30% 0.232 54.86 128.26
40% 0.231 56.19 182.33
50% 0.234 58.12 248.75
60% 0.232 60.09 323.78
70% 0.235 61.52 402.13
80% 0.262 63.69 490.31
90% 0.219 66.19 609.65

Table 2.3: Time taken for predicting 5479 tuples by AFDs, BN-Gibbs (250 Samples) and BN-
Exact in seconds.

very far off from exact inference (see Figures 2.5 – 2.8), while keeping the cost of inference

more manageable.

2.3 Summary

In this chapter we discussed how a Bayes network model of an autonomous database

can be learnt from a sample of the database by keeping costs manageable. In particular,

learning and using Bayes network models for imputation can be divided into 2 parts– (i) Topol-

ogy and Parameter learning: High-fidelity topologies can be learnt from a small fraction of the

database and with manageable cost by bounding the number of parents per node and (iii)

Inference: Inference in Bayes networks is intractable. But approximate inference techniques

retain the accuracy edge of exact methods while keeping costs manageable.

We then showed that Bayes networks have a higher prediction accuracy than AFDs

because they systematically combine evidences from multiple sources whereas AFDs fail to do

so; winding up using only the highest confidence AFD. This shortcoming becomes apparent

as the levels of incompleteness in test data increases, and when the missing values are highly

correlated.

15

Chapter 3

HANDLING INCOMPLETENESS IN AUTONOMOUS DATABASES USING QUERY

REWRITING

In this chapter we describe BN-All-MB, a technique for retrieving relevant incomplete results

from autonomous databases using Bayes networks, when the query processors are allowed

read-only access. We compare BN-All-MB and AFD approach for handling single-attribute

queries in Section 3.2.1. We then discuss the need for techniques that can reformulate queries

when the autonomous data sources have limits on the number of queries that they respond

to. Next, in Section 3.1.1 we propose BN-Beam, our technique for handling this challenge and

evaluate it in Section 3.2.2. Finally in Section 3.2.3 we compare BN-Beam and AFD-based

approaches for handling multi-attribute queries when there are limits on the number of queries

that can be issued to the autonomous database.

In information integration scenarios when the underlying data sources are autonomous

(i.e., the query processor is allowed read-only access without the capability to write or modify

the underlying database), missing values cannot be completed using a classification task such

as the imputation method discussed in the previous chapter. Our goal is to retrieve all relevant

answers to the user’s query, including tuples which are relevant, but have missing values on

the attributes constrained in the user’s query. Since query processors are allowed read-only

access to these databases, the only way to retrieve the relevant answers with missing values

on query-constrained attributes is by generating and sending a set of reformulated queries that

constrain other relevant attributes.

ID Make Model Year Body Mileage
1 Audi A8 2005 Sedan 20000
2 Audi A8 2005 null 15000
3 Acura tl 2003 Sedan null
4 BMW 745 2002 Sedan 40000
5 null 745 2002 Sedan null
6 null 645 1999 Convt null
7 null 645 1999 Coupe null
8 null 645 1999 Convt null
9 BMW 645 1999 Coupe 40000
10 BMW 645 1999 Convt 40000

Table 3.1: A Fragment of a car database

16

3.1 Generating Rewritten Queries using Bayes Networks

We will use a fragment of the Car database shown in Table 3.1 to explain our approach.

Notice that tuples t2 , t3 have one missing (null) value and tuples t5 , t6 , t7 , t8 have two missing

values. To illustrate query rewriting when a single attribute is constrained in the query, consider

a query(Q) σBody=Sedan. First, the query Q is issued to the autonomous database and all the

certain answers which correspond to tuples t1, t3 , t4 and t5 in the Table 3.1 are retrieved. This

set of certain answers forms the base result set. However, tuple t2 , which has a missing value

for Body (possibly due to incomplete extraction or entry error), is likely to be relevant since the

value for Body should have been Sedan had it not been missing. In order to determine the

attributes and their values on which the rewritten queries need to be generated, we use the

Bayesian network learnt from the sample of the autonomous database.

Using the same example, we now illustrate how rewritten queries are generated. First,

the set of certain answers which form the base result set are retrieved and returned to the user.

The attributes on which the new queries are reformulated consist of all attributes in the markov

blanket of the original query-constrained attribute. The markov blanket of a node in a Bayesian

network consists of its parent nodes, children nodes and children’s other parent nodes. We

consider all attributes in the markov blanket while reformulating queries because given the

values of these attributes, the original query-constrained attribute is dependent on no other

attribute in the Bayesian network. From the learnt Bayesian network shown in Figure 2.1.1,

the markov blanket of the attribute Body consists of attributes {Year, Model}. The value that

each of the attributes in the rewritten query can be constrained to is limited to the distinct value

combinations for each attribute in the base result set. This is because, the values that the other

attributes take are highly likely to be present in relevant incomplete tuples. This tremendously

reduces the search effort required in generating rewritten queries, without affecting the recall

too much. However, at higher levels of incompleteness, this might have a notable impact on

recall, in which case, we would search over the values in the entire domain of each attribute.

Continuing our example, when the query Q is sent to the database fragment shown in Table

3.1, tuples t1, t3 , t4 and t5 are retrieved. The values over which the search is performed for

Model is {A8, tl, 745} and for Year is {2002, 2003, 2005}.

Some of the rewritten queries that can be generated by this process are

Q’1 : σModel=A8∧Year=2005 , Q’2 : σModel=tl∧Year=2003 and Q’3 : σModel=745∧Year=2002 . Each of these

17

queries differ in the number of results that they retrieve and the fraction of retrieved results that

are relevant. An important issue here is to decide which of these queries should be issued to

the autonomous database and in which order. If we are allowed to send as many queries as we

want, ordering the queries in terms of their expected precision would obviate the need for rank-

ing the relevant possible results once they are retrieved. This is because the probability that the

missing value in a tuple is exactly the values the user is looking for is the same as the expected

precision of the query that retrieves the tuple. However, limits are often imposed on the number

of queries that can be issued to the autonomous database. These limits could be due to net-

work or processing resources of the autonomous data sources. Given such limits, the precision

of the answers need to be carefully traded off with selectivity (the number of results returned)

of the queries. One way to address this challenge is to pick the top-K queries based on the

F-measure metric [9], as pointed out by Wolf et al [15]. F-measure is defined as the weighted

harmonic mean of precision (P) and recall (R) measures : (1+α)∗P∗R
α∗P+R . For each rewritten query,

the F-measure metric is evaluated in terms of its expected precision and expected recall. The

latter which can be computed from the expected selectivity. Expected precision is computed

from the Bayesian network and expected selectivity is computed the same way as computed by

the QPIAD system [15], by issuing the query to the sample of the autonomous database. For

our example, the expected precision of the rewritten query σModel=A8∧Year=2005 can be computed

as the P(Body=Sedan | Model=A8 ∧Year=2005) which is evaluated by inference on the learned

Bayesian network. Expected selectivity is computed as SmplSel(Q)*SmplRatio(R), where Sm-

plSel(Q) is the sample selectivity of the query Q and SmplRatio(R) is the ratio of the original

database size over the size of the sample. We send queries to the original database and its

sample offline and use the cardinalities of the result sets to estimate the ratio.

We now describe the query rewriting algorithm which we call BN-All-MB in detail.

We refer to this technique for generating rewritten queries by constraining all attributes

in the markov blanket as BN-All-MB. In section 3.2.1 we show that BN-All-MB retrieves un-

certain relevant tuples with higher precision than the AFD-approach. However, the issue with

constraining all attributes in the markov blanket is that its size could be arbitrarily large. As

its size increases, the number of attributes that are constrained in the rewritten queries also

increase. This will reduce the throughput of the queries significantly. As we mentioned earlier,

in cases where the autonomous database has a limit on the number of queries to which it will

respond, we need to carefully trade off precision of the rewritten queries with their throughput.

BN-All-MB and AFD approaches decide upfront the attributes to be constrained and search
18

Let R(A1,A2 , ..,An) be a database relation. Suppose MB(Ap) is the set of attributes in
the markov blanket of attribute Ap. A query Q: σAp=vp is processed as follows

1. Send Q to the database to retrieve the base result set RS(Q). Show RS(Q), the
set of certain answers, to the user.

2. Generate a set of new queries Q’ , order them, and send the most relevant ones
to the database to retrieve the extended result set R̂S(Q) as relevant possible
answers of Q. This step contains the following tasks.

(a) Generate Rewritten Queries. Let π(MB(Ap))(RS(Q)) be the projection of RS(Q)
onto MB(Ap). For each distinct tuple t i in π(MB(Ap))(RS(Q)), create a selection
query Q’ i in the following way. For each attribute Ax in MB(Ap), create a
selection predicate Ax=t i .vx . The selection predicates of Q’ i consist of the
conjunction of all these predicates

(b) Select the Rewritten Queries. For each rewritten query Q’ i , compute the es-
timated precision and estimated recall using the Bayes network as explained
earlier. Then order all Q’ is in order of their F-Measure scores and choose the
top-K to issue to the database.

(c) Order the Rewritten Queries. The top-K Q’ is are issued to the database in
the decreasing order of expected precision.

(d) Retrieve extended result set. Given the ordered top-K queries
{Q’1,Q’2 , ...,Q’K} issue them to the database and retrieve their result sets.
The union of result sets RS(Q’1),RS(Q’2), ...,RS(Q’K) is the extended result
set R̂S(Q).

Algorithm 1: Algorithm for BN-All-MB

only over the values to which the attributes will be constrained. Both these techniques try to

address this issue by using the F-measure metric to pick the top-K queries for issuing to the

database– all of which have the same number of attributes constrained. A more effective way

to trade off precision with the throughput of the rewritten queries is by making an ”online” deci-

sion on the number of attributes to be constrained. We propose a technique, BN-Beam which

searches over the markov blanket of the original query-constrained attribute, and picks the best

subset of the attributes with high precision and throughput.

3.1.1 Generating Rewritten Queries using BN-Beam

We now describe BN-Beam, our technique for generating rewritten queries which finds a subset

of the attributes in the markov blanket of the query-constrained attribute with high precision

and throughput. To illustrate how rewritten queries are generated using BN-Beam, consider

the same query(Q) σBody=Sedan. First, Q is sent to the database to retrieve the base result set.

We consider the attributes in the markov blanket of the query-constrained attribute to be the

potential attributes on which the new queries will be formulated. We call this set the candidate

attribute set.
19

For query Q, the candidate attribute set consists of attributes in the markov blanket

of attribute Body which consists of attributes {Model, Year} for the Bayes Network in Figure

2.1.1. Once the candidate attribute set is determined, a beam search with a beam width, K

and depth, L, is performed over the distinct value combinations in the base result set of the

attributes in the candidate attribute set. For example, when the query Q is sent to the database

fragment shown in Table 3.1, tuples t1, t3 , t4 and t5 are retrieved. The values over which the

search is performed for Model is {A8, tl, 745} and for Year is {2002, 2003, 2005}. Starting from

an empty rewritten query, the beam search is performed over multiple levels, looking to expand

the partial query at the previous level by adding an attribute-value to it. For example, at the first

level of the search five partial rewritten queries: σModel=745 , σModel=A8 , σModel=tl , σYear=2002 and

σYear=2003 may be generated. An important issue here is to decide which of the queries should

be carried over to the next level of search. Since there is a limit on the number of queries that

can be issued to the autonomous database and we want to generate rewritten queries with

high precision and throughput while keeping query processing costs low, we pick the top-K

queries based on the F-measure metric, as described earlier. The advantage of performing

a search over both attributes and values for generating rewritten queries is that there is much

more control over the throughput of the rewritten queries as we can decide how many attributes

will be constrained.

The top-K queries at each level are carried over to the next level for further expansion. For

example, consider query σModel=745 which was generated at level one. At level two, we try to

create a conjunctive query of size two by constraining the other attributes in the candidate

attribute set. Say we try to add attribute Year, we search over the distinct values of Year in

the base set with attribute model taking the value 745. At each level i, we will have the top-K

queries with highest F-measure values with i or fewer attributes constrained. The top-K queries

generated at the Level L are sorted based on expected precision and sent to the autonomous

database in that order to retrieve the relevant possible answers.

We now describe the BN-Beam algorithm for generating rewritten queries for single-attribute

queries.

In step 2(d), it is important to remove duplicates from R̂S(Q). Since rewritten queries

may constrain different attributes, the same tuple might be retrieved by different rewritten

queries. For example, consider two rewritten queries- Q’1:σModel=A8 and Q’2 :σYear=2005 , that

can be generated at level one for the same user query Q, that aims to retrieve all Sedan cars.

All A8 cars manufactured in 2005 will be returned in the answer sets of both queries. Therefore,
20

Let R(A1,A2 , ..,An) be a database relation. Suppose MB(Ap) is the set of attributes in
the markov blanket of attribute Ap. All the steps in processing a query Q: σAp=vp is the
same as described for BN-All-MB except step 2(a) and 2(d).

2(a) Generate Rewritten Queries. A beam search is performed over the attributes in
MB(Ap) and the value for each attribute is limited to the distinct values for each
attribute in RS(Q). Starting from an empty rewritten query, a partial rewritten
query (PRQ) is expanded, at each level, to add an attribute-value pair from the
set of attributes present in MB(Ap) but not added to the partial rewritten query
already. The queries with top-K values for F-measure scores, computed from the
estimated precision and estimated recall computed from the sample, are carried
over to the next level of the search. The search is repeated over L levels.

2(d) Post-filtering. Remove the duplicates in R̂S(Q).

Algorithm 2: Algorithm for BN-Beam

we need to remove all duplicate tuples.

3.1.2 Handling Multi-attribute Queries

BN-All-MB: The method described to handle single-attribute queries using BN-All-MB can be

easily generalized to handle multi-attribute queries. The rewritten queries generated will con-

strain every attribute in the union of the markov blanket of the constrained attributes.

BN-Beam: Similarly, using BN-Beam to handle multi-attribute queries is simple extension of the

method described for single-attribute queries. Recall that when the original query constrains

a single attribute, the candidate attribute set, over which the search is performed consists of

the attributes in the markov blanket of the constrained attribute. When there are multiple con-

strained attributes in the original query, the union of the attributes in the markov blanket of all the

constrained attributes form the candidate attribute set. It is important to note that some of the

attributes constrained in the original query may be contained in the markov blanket of the other

constrained attributes. To retrieve relevant tuples with missing values on query-constrained

attributes, those attributes should not be constrained in any of the rewritten queries. Therefore,

when a query-constrained attribute is part of the markov blanket of another query-constrained

attribute, it should be removed from the candidate attribute set. Retrieving relevant uncertain

answers for multi-attribute queries has been only superficially addressed in the QPIAD system.

It attempts to retrieve only uncertain answers with missing values on any one of the multiple

query-constrained attributes. It does not retrieve tuples with missing values on multiple query-

constrained attributes.

To illustrate how new queries are reformulated to retrieve possibly relevant answers

with multiple missing values on query-constrained attributes, consider an example query
21

σMake = BMW∧Mileage = 40000 sent to database fragment in Table 3.1. First, this query retrieves

the base result set which consists of tuples t4, t9 , t10 . The set of candidate attributes on which

the new queries will be formulated is obtained by the union of attributes in the markov blanket of

the query-constrained attributes. For the learned Bayesian network shown in Figure 2.1.1, this

set consists of {Model, Year}. Once the candidate attribute set is determined, a beam search

with a beam width, K, is performed similar to the case when a single attribute is constrained.

At the first level of the search some of the partial rewritten queries that can be generated are

σModel=745 , σModel=645 and σYear=1999 . The top-K queries with highest F-measure values are car-

ried over to the next level of the search. The top-K queries generated at the Level L are sent

to the autonomous database to retrieve the relevant possible answers.

3.2 Empirical Evaluation of Query Rewriting

The aim of the experiments reported in this section is to compare the precision and re-

call of the relevant uncertain results returned by rewritten queries generated by AFDs and

Bayes networks for single and multi-attribute queries. To evaluate the quality of rewritten

queries generated for single-attribute queries, we compare BN-All-MB and AFDs. As we will

discuss in Section 3.2.1 we find that the performance of BN-All-MB and AFDs is about the

same. We then compare BN-All-MB and BN-Beam when the there is a limit on the number of

queries that can be issued to the autonomous database. We discuss in Section 3.2.2 that BN-

Beam does a better job of trading precision with throughput compared to BN-All-MB. Finally,

we compare BN-Beam and AFD-based approaches for multi-attribute queries when there is a

limit on the number of queries that can be issued.

As mentioned before, we use a car database extracted from Cars.com [2] with a

schema Cars(Model, Year, Body, Make, Price, Mileage) consisting of 55,000 tuples. The sec-

ond database used is Adult(WorkClass, Occupation, Education, Sex, HoursPerWeek, Race,

Relationship, NativeCountry, MaritalStatus, Age) consisting of 15,000 tuples obtained from

UCI [12] data repository. These datasets are partitioned into test and training sets. In most

information integration scenarios having access to sufficient training data is often very expen-

sive as it involves sampling the autonomous data sources, which is costly. Therefore, only 15%

of the tuples are used as the training set. The training set is used for learning the topology and

parameters of the Bayes network and AFDs. It is also used for estimating the expected se-

lectivity of the rewritten queries. We use the Expectation Propagation inference algorithm [11]

(with 10 samples) available in INFER.NET software package [10] for carrying inference on the

22

Bayes network.

In order to evaluate the relevance of the answers returned, we create a copy of the test

dataset which serves as the ground truth dataset. We further partition the test data into two

halves. One half is used for returning the certain answers, and in the other half all the values for

the constrained attribute(s) are set to null. Note that this is an aggressive setup for evaluating

our system. This is because typical databases may have less than 50% incompleteness and

even the incompleteness may not be on the query-constrained attribute(s). The tuples retrieved

by the rewritten queries from the test dataset are compared with the ground truth dataset to

compute precision and recall. Since the answers returned by the certain result set will be the

same for all techniques, we consider only uncertain answers while computing precision and

recall.

3.2.1 Comparison of Rewritten Queries Generated by AFDs and BN-All-MB

Figure 3.1 shows the precision-recall curve for queries on attribute Make in the Car database.

The size of the markov blanket and the determining set is one for attribute Make. We note that

there is no difference in the quality of the results returned by AFDs and BN-All-MB in this case

(See Figure 3.1). Next, we compare the quality of the results returned by AFDs and BN-All-MB

when the size of the markov blanket and determining set of the AFD of the constrained attribute

is greater than one. Figure 3.2 shows the precision and recall curves for a queries issued to

car database, and Figure 3.3 shows the curves for a query on Adult database. For the query

on the Adult database, we found that the order in which the rewritten queries were ranked were

exactly the same. Therefore, we find that the precision-recall curves of both the approaches

lie one on top of the other. For the queries issued to the car database, we find that there are

differences in the order in which the rewritten queries are issued to the database. However, we

note that there is no clear winner. The curves lie very close to each other, alternating as the

number of results returned increases. Therefore the performance of AFDs and BN-All-MB is

comparable for single-attribute queries.

3.2.2 Comparison of Rewritten Queries Generated by BN-All-MB and BN-Beam

As we mentioned earlier, the issue with constraining every attribute in the markov blanket is that

the size of these sets could get arbitrarily large. When that happens, the number of queries that

need to be sent to the database increases significantly. To alleviate this problem, we proposed a

technique, BN-Beam, which performs a search over both attributes and their values. Figure 3.4

shows the increase in recall of the results for three different values of α in the F-measure metric
23

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

P
re
c
is
io
n

Recall

AFD BN-All-MB

Figure 3.1: Precision-Recall curve for query σMake

when ten queries can be issued to the database. We refer to results for different values for α for

BN-Beam as BN-Beam-α (substitute α with its value) and BN-All-MB-α for BN-All-MB. For BN-

Beam, the level of search, L, is set to two. We note that there is no change in recall for all the

three cases for BN-All-MB. This is because there are no rewritten queries with high throughput,

therefore just increasing the α value does not increase recall. For BN-Beam, we see that the

recall increases with increase in the value of α. Figure 3.5 shows the change in precision for

different values of α as the number of queries sent to the database increases. As expected,

the precision of BN-Beam-0.30 is higher than BN-Beam-0.35 and BN-Beam-0.40. In particular,

we point out that the precision of BN-Beam-0.30 remains competitive with BN-All-MB-0.30 in

all the cases while providing significantly higher precision. BN-Beam is able to retrieve relevant

incomplete answers with high recall without any catastrophic decrease in precision.

3.2.3 Comparison of Multi-attribute Queries

In this section we compare Bayes network and AFD approaches for retrieving relevant un-

certain answers with multiple missing values when multi-attribute queries are issued by the

user. We note that the current QPIAD system retrieves only uncertain answers with atmost one

missing value on query-constrained attributes. We compare BN-Beam with two baseline AFD

approaches.

1. AFD-All-Attributes: The first approach that we call AFD-All-Attributes creates a conjunc-

tive query by combining the best rewritten queries for each of the constrained attributes. The

best rewritten queries for each attribute constrained in the original query are computed inde-

24

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

P
re
c
is
io
n

Recall

AFD BN-All-MB

Figure 3.2: Precision-recall curve for query σBody averaged over 3 queries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

P
re
c
is
io
n

Recall

AFD

BN-All-MB

Figure 3.3: Precision-Recall curve for query σRelationship=Not-in-family

25

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

R
e

ca
ll

of queries

BN-Beam-0.3

BN-Beam-0.35

BN-Beam-0.4

BN-All-MB-0.3

BN-All-MB-0.35

BN-All-MB-0.4

Figure 3.4: Change in recall for different values of α in F-measure metric for top-10 rewritten
queries for σYear = 2002

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

of queries

BN-Beam-0.3

BN-Beam-0.35

BN-Beam-0.4

BN-All-MB-0.3

BN-All-MB-0.35

BN-All-MB-0.4

Figure 3.5: Change in precision for different values of α in F-measure metric for top-10 rewritten
queries for σYear = 2002

26

pendently and new rewritten queries are generated by combining a rewritten query for each of

the constrained attributes. The new queries are sent to the autonomous database in the de-

creasing order of the product of the expected precision of the individual rewritten queries that

were combined to form the query. AFD-All-Attributes technique is only used for multi-attribute

queries where the determining set of each of the attributes are disjoint.

2. AFD-Highest-Confidence: The second approach the we call, AFD-Highest-Confidence

uses only the AFD of the query-constrained attribute with the highest confidence for generating

rewritten queries, ignoring the other attributes.

We evaluate these methods for selection queries with two constrained attributes. For BN-Beam,

the level of search is set to 2 and the value for α in the F-measure metric is set to zero.

3.2.3.1 Comparison of AFD-All-Attributes and BN-Beam

Figure 3.6 shows the precision-recall curve for the results returned by top ten rewritten

queries by AFD-All-Attributes and BN-Beam for the query σMake=bmw∧Mileage=15000 issued to the

Cars database. Figure 3.8 shows a similar curve for the query

σEducation=HS-grad∧Relationship=Husband issued to the Adult database. We note that the recall of the

results returned by AFD-All-Attributes is significantly lower than BN-Beam in both cases (see

figures 3.7 and 3.9). This is because the new queries generated by conjoining the rewritten

queries of each constrained attribute do not capture the joint distribution of the multi-attribute

query. Therefore, the throughput of these queries are often very low, in the extreme case they

even generate empty queries. The precision of the results returned by AFD-All-Attributes is

only slightly higher than BN-Beam (See Figures 3.6 and 3.8). By retrieving answers with a little

lesser precision and much higher recall than AFD-All-Attributes, BN-Beam technique becomes

very effective in scenarios where the autonomous database has limits on the number of queries

that it will respond to.

3.2.3.2 Comparison of AFD-Highest-Confidence and BN-Beam

Figure 3.10 and 3.12 show the precision-recall curves for the results returned by the

top ten queries for multi-attribute queries issued to the Cars and Adult databases respectively.

Figures 3.11 and 3.12 show the change in recall with each of the top 10 rewritten query issued

to the autonomous database. We note that the recall of the results returned by AFD-Highest-

Confidence is much higher than BN-Beam. However, this increase in recall is accompanied by

a drastic fall in precision. This is because AFD-Highest-Confidence approach is oblivious to

27

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

AFD-All-Attributes BN-Beam

Figure 3.6: Precision-recall curve for the results returned by top-10 rewritten queries for the
query σMake=bmw∧Mileage=15000

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

R
e

ca
ll

of queries

AFD-All-Attributes BN-Beam

Figure 3.7: Change in recall as the number of queries sent to the autonomous database in-
creases for the query σMake=bmw∧Mileage=15000

28

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

AFD-All-Attributes BN-Beam

Figure 3.8: Precision-recall curve for the results returned by top-10 rewritten queries for the
query σEducation=HS-grad∧Relationship=Husband

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

R
e

ca
ll

of queries

AFD-All-Attributes BN-Beam

Figure 3.9: Change in recall as the number of queries sent to the autonomous database in-
creases for the query σEducation=HS-grad∧Relationship=Husband

29

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

AFD-Highest-Confidence BN-Beam

Figure 3.10: Precision-recall curve for the results returned by top-10 rewritten queries for the
query σMake=kia∧Year=2004

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

R
e

ca
ll

of queries

AFD-Highest-Confidence BN-Beam

Figure 3.11: Change in recall as the number of queries sent to the autonomous database
increases for the query σMake=kia∧Year=2004

the values of the other constrained attributes. Thus, this approach too, is not very effective for

retrieving relevant possible answers with multiple missing values for multi-attribute queries.

3.3 Summary

In this chapter, we described BN-All-MB, a technique for generating rewritten queries

using a learned Bayes network model. We showed that for single-attribute queries, BN-All-MB

and AFDs retrieve relevant uncertain answers with about the same precision and recall. Next,

we motivated the need for novel techniques and proposed BN-Beam for reformulating queries

30

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

AFD-Highest-Confidence BN-Beam

Figure 3.12: Precision-recall curve for the results returned by top-10 rewritten queries for the
query σWorkClass=private∧Relationship=own-child

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

R
e

ca
ll

of queries

AFD-Highest-Confidence BN-Beam

Figure 3.13: Change in recall as the number of queries sent to the autonomous database
increases for the query σWorkClass=private∧Relationship=own-child

31

that can carefully trade off precision with throughput when there are limits on the number of

queries that can be issued to the autonomous database. We compared BN-Beam and BN-

All-MB and showed that BN-Beam is adept at increasing recall without sacrificing too much on

precision. We also described how BN-Beam can be extended to retrieve relevant uncertain

answers with multiple missing values. Finally, we showed that BN-Beam trumps AFD-based

approaches for retrieving uncertain tuples with multiple missing values when the autonomous

database imposes limits on the number of queries it will answer.

32

Chapter 4

CONCLUSION & FUTURE WORK

4.1 Conclusion

In this thesis, we presented a comparison of cost and accuracy trade-offs of using

Bayes network models and Approximate Functional Dependencies (AFDs) for handling incom-

pleteness in autonomous databases. We showed how a generative model of an autonomous

database can be learnt and used by query processors while keeping costs manageable.

We compared Bayesian networks and AFDs for imputing single and multiple missing

values. We showed that Bayes networks have a significant edge over AFDs in dealing with

missing values on multiple correlated attributes and at high levels of incompleteness in test

data.

Further, we presented a technique, BN-All-MB, for generating rewritten queries using

Bayes networks. We then proposed a technique, BN-Beam, to generate rewritten queries

that retrieve relevant uncertain results with high precision and throughput, which becomes

very important when there are limits on the number of queries that autonomous databases

respond to. We showed that BN-Beam trumps AFD-based approaches for handling multi-

attribute queries. BN-Beam contributes to the QPIAD system by retrieving relevant uncertain

answers with multiple missing values on query-constrained attributes with high precision and

recall.

4.2 Future Work

4.2.1 Generating Rewritten Queries in the Presence of Limited Query Patterns

When the access to autonomous databases is through forms, the query patterns that are sup-

ported are often limited. Not all attributes present in the database are constrainable. Therefore

the rewritten queries can only constrain a subset of the attributes in the database. For exam-

ple, an autonomous database which stores data about used cars might not allow queries to

specify the Body of the car. Therefore, no rewritten query issued to the autonomous database

can constrain the attribute Body. The BN-Beam technique can be easily extended to generate

rewritten queries under these scenarios. Instead of initializing the candidate attribute set to the

attributes in the markov blanket (or union of the markov blanket for multi-attribute queries), we

can initialize it to the set of all constrainable attributes. If this set has many attributes, we can

consider only the constrainable attributes that are part of the markov blanket of the constrained

attribute(s).
33

ID Make Model Year Body
1 Audi A8 2005 Sedan
2 Audi A8 2005 null
3 BMW 745 2002 Sedan
4 BMW 745 1999 null
5 null A8 2005 null

Table 4.1: A Fragment of a car database

4.2.2 Reducing CPU Time in Generating Rewritten Queries using BN-Beam

As the size of the candidate attribute set and their domains over which we search increases,

the CPU time taken to generate the rewritten queries can increase considerably. One way

to reduce the time spent in generating the rewritten queries is to choose the correct beam

width(K) and the level(L) to which we search. Increasing the number of levels of the search

increases the precision of the results returned and reduces the throughput of each query. On

the other hand, increasing the width of the beam increases the number of queries that are

generated, which increases the number of results returned. At level L, all the queries in the

beam will have at most L attributes constrained. Setting the beam width to 1 and increasing the

number of levels will generate a single rewritten query with high precision. On the other hand,

setting the level of the search to 1 and increasing the beam width will produce single-attribute

rewritten queries, which will have high throughput.

4.2.3 Redundancy Metrics to Improve Recall

In BN-Beam, while picking the top-K queries that are carried over to the next level of search,

picking queries only based on relevance to the original user query does not consider whether

a tuple has been retrieved already by previously issued rewritten queries. Using a redundancy

metric in addition to the relevance metric will further improve the recall of the results returned

by BN-Beam. To illustrate this point, consider a query Q : σBody=Sedan issued to the database

fragment shown in Table 4.1. Tuples t1, t3 are returned as the set of certain answers. Issu-

ing a rewritten query Q’1 : σModel=A8 will retrieve uncertain tuples t2 , t5 . Now issuing a query

σYear=2005 , will only retrieve relevant uncertain tuples previously retrieved by Q’1. Instead, is-

suing a rewritten query, σMake=BMW , will retrieve a tuple t4, which was not returned previously.

Therefore, using redundancy metrics will further improve the recall of the results returned by

BN-Beam.

34

REFERENCES

[1] BANJO. http://www.cs.duke.edu/ amink/software/banjo/.

[2] Cars.com. http://www.cars.com.

[3] CBioC. http://www.cbioc.org.

[4] Bayes Net Toolbox for Matlab. http://code.google.com/p/bnt/.

[5] Rahul Gupta and Sunita Sarawagi. Creating probabilistic databases from information ex-
traction models. In VLDB, pages 965–976, 2006.

[6] David Heckerman. The certainty-factor model. Encyclopedia of Artificial Intelligence,
Second Edition, 1992.

[7] Hemal Khatri. QUERY PROCESSING OVER INCOMPLETE AUTONOMOUS WEB
DATABASES. Master’s thesis, Arizona State University, Tempe, USA, 2006.

[8] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and Tech-
niques. MIT Press, 2009.

[9] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to infor-
mation retrieval. Cambridge University Press, 2008.

[10] T. Minka, J.M. Winn, J.P. Guiver, and D.A. Knowles. Infer.NET 2.4, 2010. Microsoft Re-
search Cambridge. http://research.microsoft.com/infernet.

[11] Thomas P. Minka. Expectation propagation for approximate bayesian inference. In UAI,
pages 362–369, 2001.

[12] UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets.html.

[13] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3. internat.
ed.). Pearson Education, 2010.

[14] Ross D. Shachter. Bayes-ball: The rational pastime (for determining irrelevance and req-
uisite information in belief networks and influence diagrams). In UAI, pages 480–487,
1998.

[15] Garrett Wolf, Aravind Kalavagattu, Hemal Khatri, Raju Balakrishnan, Bhaumik Chokshi,
Jianchun Fan, Yi Chen, and Subbarao Kambhampati. Query processing over incom-
plete autonomous databases: query rewriting using learned data dependencies. VLDB J.,
18(5):1167–1190, 2009.

35

