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ABSTRACT  
   

An accurate sense of upper limb position is crucial to reaching 

movements where sensory information about upper limb position and target 

location is combined to specify critical features of the movement plan. This 

dissertation was dedicated to studying the mechanisms of how the brain 

estimates the limb position in space and the consequences of misestimation of 

limb position on movements.  Two independent but related studies were 

performed. The first involved characterizing the neural mechanisms of limb 

position estimation in the non-human primate brain. Single unit recordings were 

obtained in area 5 of the posterior parietal cortex in order to examine the role of 

this area in estimating limb position based on visual and somatic signals 

(proprioceptive, efference copy). When examined individually, many area 5 

neurons were tuned to the position of the limb in the workspace but very few 

neurons were modulated by visual feedback. At the population level however 

decoding of limb position was somewhat more accurate when visual feedback 

was provided. These findings support a role for area 5 in limb position estimation 

but also suggest that visual signals regarding limb position are only weakly 

represented in this area, and only at the population level.  

The second part of this dissertation focused on the consequences of 

misestimation of limb position for movement production. It is well known that limb 

movements are inherently variable. This variability could be the result of noise 

arising at one or more stages of movement production. Here we used 

biomechanical modeling and simulation techniques to characterize movement 

variability resulting from noise in estimating limb position ('sensing noise') and in 

planning required movement vectors ('planning noise'), and compared that to the 



   ii 

variability expected due to noise in movement execution. We found that the 

effects of sensing and planning related noise on movement variability were 

dependent upon both the planned movement direction and the initial 

configuration of the arm and were different in many respects from the effects of 

execution noise.  
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Chapter 1 

INTRODUCTION 

1.1. Overview and Significance 

Movement production by a biological system is far more complex than we 

can currently understand.  Often we perform activities of daily living with such 

ease that most of us are not consciously aware of the exquisite movement 

control that is required to achieve these goals.  However, when we observe 

toddlers who make such a big effort when learning to walk, we may realize that it 

is not as simple as it looks on adults.  In fact, from the simple movement of 

blinking the eyes to a more deliberate one such as putting a thread through a 

needle, a collaboration of sensory and motor systems in the body is required.  In 

a process called sensorimotor transformation, sensory representations of the 

environment are transformed into muscle-control signals.  For goal directed 

movements, movement production could be considered as involving three 

functional stages: sensing, planning and execution.  However, due to the 

complexity of the process of movement production, we should keep in mind that 

it is very hard to physically differentiate these stages.  For example, during 

movement production, there is often continuous information flow between stages 

and a neural structure involved in one stage could also contribute to another 

stage.  Nevertheless, to aid our understanding, it is advantageous to examine 

these stages one by one in the beginning, while keeping in mind the influences 

from other stages.    

This dissertation is focused on the sensing stage of movement production.  

More specifically, we are interested in the mechanisms of sensing limb positions 

for making visually guided reaching movements.  An accurate sense of the upper 
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limb position is crucial to performance of reaching movements.  In the beginning 

of a visually guided reaching movement, sensory information about target 

location and the position of the upper limb is processed to specify critical features 

of the upcoming limb movement.  For example, the parameters for a reaching 

movement, notably its direction and extent, depend on the location of the target 

relative to the hand.  All these critical features are considered when generating a 

proper initial movement plan.  During the movement, the information about the 

spatial arrangement of upper limb is continuously monitored and updated in the 

brain where the information is processed to make necessary adjustments to the 

movement plan.  This on-line control mechanism ensures reaching accuracy in 

this noisy internal/external environment.  We would be unable to guide precise 

reaching movements without knowing the exact positions of the limb.   

Both peripheral and central mechanisms contribute to the sensing 

processes of limb position.  Compared with more easily accessed peripheral 

structures, it is relatively difficult to probe the mechanisms of limb position 

estimation in the brain.  Moreover, estimates of where the limb is in space can be 

achieved by combining information from multiple sources which could be 

multisensory or both sensory and motor based.  The presence of various sources 

regarding limb position makes the problem more complex.   

While a great deal is known about the nature and corresponding neural 

substrate for each source, little is known about how those sources are combined 

in the brain to provide a single estimate of limb position.  Although we probably 

can gain some insight by referring to concepts and theories proposed from 

studies of various other cue integration problems, there may be a difference 

between the cue integration problem for limb position estimation and the other 
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cue integration problems.  The difference concerns the nature of the cues, which 

could be both sensory and motor based for limb position estimation.  In visually 

guided reaching movements, estimation of limb position involves the integration 

of vision, proprioception and efference copy of previous motor command.  Vision 

and proprioception are commonly regarded as sensory cues.  Efference copy is 

regarded as a motor cue.  Because of the aforementioned reasons, the 

mechanisms of how the brain integrates sensory and motor signals across space 

and time to form a coherent representation of the state of the limb during visually 

guided movement are still poorly understood, although the representation of the 

positions of body parts in the brain for perception and action has long been an 

object of research interest for many neuroscientists.   

In this dissertation, we tried to probe this problem via both 

neurophysiological studies and simulation methods.  In neurophysiological 

studies, we used somatic cues to represent a combination of proprioception and 

efference copy since vision can be relatively easily isolated from these other 

cues.  The ultimate goal of this study is to characterize the mechanisms of 

integration of somatic and visual cues for limb position estimation in the 

brain and the consequences of misestimation of limb position on 

movement production.   

1.2. Specific Aims and Hypotheses 

This section presents the specific aims, hypotheses, a brief description of 

method and the contributions of each specific aim.  

1.2.1 Specific Aim 1 

Specific Aim 1: To characterize the mechanisms of integration of somatic 

and visually-based limb position signals in area 5 of the posterior parietal cortex.  
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Hypothesis: Neurons in area 5 of the posterior parietal cortex are involved 

in integrating somatic and visual signals for limb position estimation and this 

integration strategy may manifest in individual neurons or population of neurons. 

Rationale: Several brain areas are likely to be suited for probing the 

neural mechanisms of limb position estimation.    Among these areas, area 5 

appears to be a particularly good candidate.  Anatomical evidence shows that 

area 5 receives both visual and somatic inputs from other brain areas.  Lesion 

studies support a role of area 5 in integrating sensory and motor information for 

limb position estimation (Wolpert, Goodbody, and Husain 1998).  

Neurophysiological studies of non-human primates also suggest a role for area 5 

in the integration of somatic and visual limb position cues (Graziano, Cooke, and 

Taylor 2000).  However, there are also limitations to these studies in that visual 

and somatic signals may not have been perceptually equivalent during the 

studied tasks. In addition, in the study by Graziano and colleagues (2000), it is 

uncertain if cells were modulated by visually sensed arm positions or just 

responded to arm-like visual stimulus.  As a result we sought to examine the 

integration of visual and somatic signals in area 5 under conditions where visual 

information should be more critical to task performance, i.e. during the 

maintenance of static limb positions in free (3D) space.  

Method: The hypothesis was tested by mapping the positional discharge 

of area 5 neurons in the presence and absence of concurrent visual input and 

comparing the results on a single cell basis, as well as with a population 

decoding of arm position under the two visual conditions.   

An experimental setup was constructed to build a 3D virtual reality (VR) 

working environment. In this environment, the real arm position was viewed as a 
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spherical cursor and the target was presented as a 3D virtual target ball. This 

design is ideal for complete control over the degree and timing of visual feedback 

and provided no tactile or force feedback of the target. The VR working 

environment is similar to the one employed by Schwartz and colleagues (Taylor, 

et al., 2002). The VR environment was built using custom C++ code and 

displayed via a 3D monitor. The image from the 3D monitor was then provided to 

the subject by the reflection of a mirror. Arm movements were monitored using 

an active LED based motion tracking system. Eye movements were monitored 

using a remote optical eye tracking system.  

Two rhesus monkeys (Macaca mulatta) were trained to do center-out 

reach movements to one of the eight virtual targets in a vertical plane. Upon the 

completion of each reaching movement, the animal had to stabilize his arm 

position on the target while maintaining the gaze at the center of the display. This 

hold state could last from 800 ms to 1200 ms. During the hold period, the visual 

feedback of hand position was alternately allowed (‘vision’ condition) or 

disallowed (‘no-vision’ condition) for different trials on a pseudorandom basis. 

Under the ‘no-vision’ condition, the information of arm position was solely based 

on somatic input. Under the ‘vision’ condition, the arm position was estimated 

from both somatic and visual input.  

While the animals were performing these tasks, cell responses were 

recorded from the brain of the head-fixed animals.  Single cell activity in dorsal 

area 5 of superior parietal lobule (SPL) of PPC was recorded extracellularly using 

standard neurophysiological techniques.  Tungsten or Platinum-iridium 

microelectrodes were inserted into the brain to record neural signals. 

Unconditioned signals were amplified and filtered (600-6000 Hz) first and then 
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sampled at 2.5 kHz. Single action potentials (spikes) were isolated from the 

signal via a time-amplitude window discriminator. Approximately 200 neurons 

were recorded from animal X and 120 from animal B. 

Data analysis focused on the neural activity during the hold period on the 

target. The positional response fields of each area 5 neuron were mapped with or 

without concurrent visual input (‘vision’ or ‘no-vision’ condition). The mean firing 

rate of each neuron during the hold period was analyzed for positional 

dependence and visual modulation using a 2-way ANOVA (factors: position in 

the workspace, visual condition). Cells showing significant main effects for both 

factors or a significant effect for interaction between these two factors were 

considered to be involved in the integration of somatic and visual cues and were 

subjected to further analyses. Neuronal population responses under the two 

visual conditions were analyzed as well to examine whether the integration of 

visual and somatic signals was encoded by the population of neurons and to 

identify potential integration strategies adopted by the neuronal population.  

Innovation: We designed an ‘active’ experimental paradigm for 

investigating the involvement of area 5 neurons involved in static limb position 

estimation. In a previous study (Graziano, Cooke, and Taylor 2000), each 

monkey’s arm was passively varied between two positions. There was no visual 

input about the real arm. Instead, a fake monkey arm that was either congruent 

or incongruent with the position of the real monkey arm was presented in view. 

The cells responding to both the position of the fake arm and the position of the 

real arm were considered possibly involved in integrating somatic cues with 

visual cues of arm position. However, it is unclear if the fake arm was perceived 

by the animals as a visual input regarding the real arm position since the animals 
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were not required to make a perceptual judgment nor were they required to 

actively control the position of their limbs to perform a particular motor task.  

In our experimental paradigm, the animals were required to make an 

active reach movement before maintaining the arm position on the target. During 

the static hold period, the arm either could be seen under the ‘vision’ condition or 

could not be seen under the ‘no-vision’ condition. The static arm position could 

be estimated either from somatic information under the ‘no-vision’ condition or 

from both somatic and visual information under the ‘vision’ condition. By making 

concurrent neurophysiological recordings, we could determine if the cell was 

involved in integrating somatic and visual signals by testing whether cell 

responses were modulated by positional and visual input during the hold period.  

The other innovation lies in the application of a virtual reality environment. 

This design is ideal for complete control over the degree and timing of visual 

feedback. And since a 3D virtual target ball was presented instead of a real 

tangible target, no tactile or force feedback was experienced during the hold 

period. The dependence of vision for position estimation was enhanced to some 

extent as well.  

1.2.2 Specific Aim 2 

Specific Aim 2: To characterize, via biomechanical modeling and 

simulation techniques, movement variability resulting from various noise sources.  

Hypothesis: Movement variability is the result of noise arising from 

different stages of movement production and manifests differently for different 

noise sources.  

Rationale: Limb movements are inherently variable and become even 

more variable in disorders affecting the nervous system. This variability is the 
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result of noise arising from one or more neural processes. For example, noise 

arising during the process of limb/target localization is called "sensing noise"; 

noise arising during the process of movement planning is called "planning noise"; 

noise arising during the process of movement execution is called "execution 

noise". The relative contributions of these noise sources to movement variability 

are not well understood. Naturally noise at each level of neural processes has an 

effect on movement variability. It is possible that for some experimental 

conditions, particular noise sources can be minimized. However, no noise source 

can be fully eliminated or isolated from other noise sources. As a preliminary 

study of the contributions of various noise sources to movement variability, 

simulation methods can provide a relatively convenient and effective way to 

characterize the corresponding effects of various noise sources on movement 

variability.   

Method: Two joint (shoulder and elbow) arm movements in the horizontal 

plane were simulated using custom Matlab® code (The Mathworks Inc., Natick, 

MA).  Simulations were entirely feedforward and employed a combination of 

inverse and forward kinematics and dynamics.  We first produced an idealized 

trajectory in Cartesian endpoint coordinates, under the standard assumptions 

that handpaths are rectilinear and tangential velocity profiles are bell-shaped 

(Morasso 1981; Soechting and Lacquaniti 1981).  Hand positions along the 

planned trajectory were then converted to time-varying angular positions at the 

shoulder and elbow using standard trigonometric equations.  After numerical 

differentiation of the angular positions, shoulder and elbow torques were 

calculated using inverse dynamics equations (Hollerbach and Flash 1982) and 

motor commands were calculated from the joint torques using a simple inverse 
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muscle model (van Beers, Haggard, and Wolpert 2004). To simulate movements 

in different directions, the procedure described above was inverted (forward 

model).  Motor commands were used to calculate joint torques via the forward 

muscle model and joint torques were used to derive movements in joint 

coordinates by simultaneously solving for the shoulder and elbow angular 

positions and velocities using a fourth order Runge-Kutta method.  Finally, 

trajectories in endpoint coordinates were obtained by transforming the angular 

motions into hand paths.   

Movements were simulated in 24 directions with respect to the endpoint 

of the arm.  In addition, movements were simulated using four different initial arm 

configurations. Effects of noise were evaluated for three different stages of arm 

movement production. Simulation I (SI) evaluated the effects of sensing noise 

alone, Simulation II (SII) evaluated the joint effects of sensing noise and planning 

noise, and Simulation III (SIII) evaluated the effects of execution noise. Sensing 

noise refers to the situation where the sensing of initial arm position is imprecise.  

It was simulated by introducing random perturbations into the initial hand 

position/arm configuration and assuming that the motor system was unaware of 

these perturbations and thus failed to compensate for them.  For these 

simulations, movement directions were defined with respect to the initial hand 

position only and were not directed to particular locations in the workspace, thus 

this simulation evaluated the motor system’s response to errors in sensing the 

initial conditions only.  In contrast, when movements are planned to a fixed 

spatial location rather than simply along a particular direction, errors in sensing 

initial conditions are compounded by errors in planning the required movement 

vector.  These joint effects were evaluated in SII.  Execution noise occurs during 



   10 

the movement execution stage and was simulated by introducing noise directly 

into the motor commands (SIII).  For SIII, the overall noise level was determined 

from parameters derived in previous studies involving neurologically-intact 

human subjects (van Beers, Haggard, and Wolpert 2004).  For all three 

simulations, the effect of noise was assessed by analyzing the variability of 

directional errors during the initial phase of the movement (1/3rd of total 

movement time).  Directional errors were quantified as the deviation of the actual 

trajectory from the idealized, straight-line trajectory connecting the starting 

position to the target.  The variability of these directional errors was quantified by 

calculating the circular standard deviation (CSD) (Fisher 1993). 

Innovation: The innovation of Specific Aim #2 lies first in emphasizing the 

effect of imprecise sensing of hand position (sensing noise) on movement 

variability. Most of studies have focused on the effects of noise in planning or 

execution while few studies have specifically examined the effects of sensing 

noise. Although the effects of sensing noise on movement may not be noticed in 

normal subjects, the larger sensing noise exhibited by patients with neurological 

deficiencies could affect the movement dramatically. Meanwhile, in some 

circumstances where movements are planned to a fixed spatial location, the 

misestimation of hand positions (sensing errors) are compounded by errors in 

planning the appropriate movement vectors (planning errors). The joint effects of 

sensing errors and planning errors may affect movements even more than the 

effects of sensing errors only.  

Secondly, various initial arm configurations were examined respectively 

for all simulations. Rather than using one initial arm configuration, we used four 
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initial arm configurations across the workspace to assess the generality of the 

results for different arm configurations.  

1.3. Organization of Work 

This dissertation has been organized into six chapters.  Chapter 1 

provides an introduction to the work, including overview, significance, ultimate 

goal, and brief description of two proposed specific aims. Under each specific 

aim, the corresponding hypothesis, rationale, method and innovation are 

presented in a concise manner.  Chapter 2 provides some important concepts 

and theories about some aspects of neural and peripheral mechanisms of 

movement production.  Having those concepts and theories in mind would 

greatly help to understand other chapters.  This chapter is recommended to go 

through for those who are new to this research area or who want to refresh the 

memory.  However, it is also beneficial to refer to this chapter from time to time 

while reading other chapters.  Chapter 3 presents general methods for fulfilling 

the two specific aims.  For Specific Aim 1 which is related to the 

neurophysiological studies, about half of this chapter describes in detail a novel 

experimental setup developed for conducting the neurophysiological and 

behavioral experiments.  For Specific Aim 2 which is about modeling and 

simulation studies, the other half of the chapter details the biomechanical arm 

model employed and presents all equations and parameters necessary for the 

simulations.  Each of Chapter 4 and 5 focuses on one specific aim.  Details of the 

work for Specific Aim 1 can be found in Chapter 4 and those for Specific Aim 2 

can be found in Chapter 5.  In an equivalent manner, Chapter 4 and 5 both 

provide a separate abstract, introduction, methods, results and discussion.  The 

introduction part of each chapter provides background information of the specific 
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aim including a review of similar studies and their limitations.  The methods part 

of Chapter 4 contains details about behavioral experimental design, surgical 

procedure and data analysis.  In the methods part of Chapter 5, methods are 

detailed regarding simulating arm movements affected by three types of noise.  

Chapter 6 concludes the dissertation by summarizing findings in previous 

chapters and providing insight on possible improvements and future directions of 

the work.  
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Chapter 2 

BACKGROUND 

2.1. Motor System for Reaching 

Before we discuss the problem of how limb position is estimated in the 

brain in order to reach to a target, let us first take a look at the motor system 

underlying reaching movements.  It is known that original vertebrate motor 

system evolved to produce swimming and eating.  Later, it adapted into the one 

that is capable of producing reaching movements.  This study focuses on the 

more advanced and complex motor system in primates which can reach and 

point with a two-joint arm.  In the terminology of robotics, the motor system could 

be thought of mainly including four components: actuators (muscles), multi-joint 

levers (bones), communication lines (nerves) and a central controller (CNS).  The 

CNS (central nervous system) generates patterns of muscle activation (motor 

commands) which travel down the nerves (axons) to the corresponding muscles.  

The muscles contract and cause forces to act on the bones in the arm.  Sensory 

system also plays an important role in movement production.  In order to 

generate desired motor commands which move the hand swiftly and accurately 

to a target, the CNS needs to estimate hand location and target location at the 

beginning and throughout the movement.  If the target location is fixed, the hand 

location is continuously updated by the CNS.  This estimation is essentially a 

computation process in which sensory feedback is required.   

In many ways of reaching movement, the upper limb can be compared to 

a robotic arm.  However, there are a couple of essential differences (Shadmehr 

and Wise 2005).  First, unlike rigid actuators used in robots, muscles are springy 

and generate force slowly where force varies as a function of muscle length and 
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depending upon recent usage, growth and other factors.  Second, the two-joint 

skeletal architecture for reaching provides limited five degrees of freedom (two at 

the elbow and three at the shoulder) while a commercial robotic arm can be 

easily made to achieve full six degrees of freedom.  Nonetheless, five is more 

than enough since we only need four degrees of freedom to navigate the limb 

through three-dimensional space.  The redundancy in degrees of freedom allows 

more flexibility in achieving the goals of a movement.  The disadvantage is that it 

creates additional computational burdens for the controlling system.  Third, 

neural transmission is sluggish.  In contrast to metal wires in robots, nerves 

(axons) are really slow communication lines along which information travels at 

approximately the speed of sound rather than at the speed of light.  The CNS 

must analyze inputs from sensory transducers that provide feedback after a 

relatively long delay and send neural signals to the actuators with equally slow 

conduction.   

The physiology puts the biological arm at a disadvantage in regard to 

robotic arm.  CNS must overcome these fundamental physical and physiological 

limitations.  As the central controller, CNS has the advantage in terms of 

computation.  CNS has evolved neural structures that learn to predict the 

relationship between state changes in the limb and motor commands to the 

muscles.  The computations underlying those estimates are called internal 

models (Shadmehr and Wise 2005).  A kind of internal model that reflects the 

causal nature of the relationship is called forward model.  For example, forward 

dynamics involves predicting the limb states (the change of limb’s configuration 

and the rate at which the configuration changes, etc.) that will result from a given 

set of forces produced by the limb’s muscles.  Forward kinematics computes 
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hand location from corresponding limb configuration or joint angles.  The reverse 

computation to forward model is called inverse model.  Inverse model allows the 

motor system to transform the desired movement into a pattern of muscle 

activation that produces the required forces.  Either forward model or inverse 

model involves a surprising amount of computations.  However, CNS has 

acquired the ability to learn internal models.  The internal models could be 

envisioned as a sort of memory of what has worked in a particular situation.  For 

example, when controlling hand movements, the CNS needs to estimate hand 

location at the beginning and throughout the movement.  In order to deal with 

much slower sensory feedback pathways, CNS learns to estimate what sensory 

feedback might result from a copy of the planned motor command.  The copy of 

the planned motor command is called efference copy (Shadmehr and Wise 2005).  

During hand movements, CNS predicts hand location in the near future based on 

lagging sensory feedback (proprioception and vision) and prediction from current 

efference copy using a forward model.  By knowing the hand location, CNS can 

make adjustments to ongoing movements if they go off track.  Another situation 

where internal model is necessary is during movement planning.  In planning a 

reaching movement, CNS relies on an inverse model that predicts the 

forces/motor commands needed to reach the target.  This inverse model maps 

the desired limb states to forces/motor commands.  Although biological 

limitations put us at a disadvantage in regard to robots, the great computational 

power possessed by the CNS allows something a robot can not do: we can 

effortlessly adapt movements to rapidly changing and partially predictable 

surroundings of the environment.   
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2.2. Production of Reaching Movement 

To probe the problem of integration of somatic and visual cues for hand 

position estimation, it would be helpful to first look into the overall scheme of 

visually guided reaching and how hand position estimation fits into this scheme.  

The biological process of producing a reaching movement is far more complex 

than what we have currently known.  But as an initial attempt to understand the 

general mechanism, for simplicity we could regard the reaching movement as 

consisted of three stages (Figure 1): sensing, planning and execution.  In the 

sensing stage, the positions of the target and the hand are estimated by a state 

estimator in the CNS based on information coming from sensory and motor cues.  

In the planning stage, the output of the sensing stage, or the estimated positions 

of the target and the hand, is used by a planner in the CNS which gives out the 

correct motor commands that can control the movement of hand to the target.  In 

the stage of movement execution, the planned motor commands are sent to the 

corresponding muscles which contract and produce torques to initiate or facilitate 

the movement of associated appendages.  Note that there is no clear boundary 

between different stages.  Part of stages could be overlapped.  For example, 

muscles not only generate force needed for movement during the execution 

stage but also give rise to the proprioceptive feedback signals that convey 

information about the state of the arm and its movement to the sensing stage.  

For movements requiring reaching accuracy, sensing, planning and execution 

could be carried out throughout the movement where the hand position is 

continuously updated to prevent it from going off track.  This type of movement 

control mechanism is called feedback control.  In feedback movement control, 

the position of the hand is continuously monitored and fed back into the control 
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system. If there is a difference between the monitored and the desired reference 

hand positions, the system is able to make adjustments to the movement plan so 

that a new set of motor commands can be formed to create a movement of the 

hand to the reference location.  The other type of movement control mechanism 

is called feedforward control.  In feedforward control mechanism, only initial 

positions of the hand and the target are fed into the control system as the input 

and positional errors cannot be corrected on line.  A fast, uncorrected movement 

is often thought to be mainly under feedforward control since feedback control 

requires relatively long loop delays (Zucker, Iverson, and Hummel 1990; Gordon, 

Ghilardi, and Ghez 1994).  This type of movement is often investigated under 

experimental conditions for scientific purposes.   

 

Figure 1.  Schematic representation of visually-guided reaching. 

2.2.1 Planning to Reach 

Sensing of hand location and target location is closely related to planning 

of reaching movements.  Before we start to discuss the mechanism by which 
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hand locations are estimated, it would be helpful if we have some knowledge of 

the planning processes.  In planning a reaching movement, the CNS first needs 

to compute the difference between current hand location and desired hand 

location (the target location).  This difference can be quantified as a vector, called 

difference vector, which has particular amplitude and direction.  In order to 

compute the difference vector, the CNS needs to transform the location of hand 

and target into a common coordinate frame (Flanders, Helms-Tillery, and 

Soechting 1992).  Early ideas focused on body/shoulder centered coordinates.  

More recent research in neurophysiology, suggests that in parts of PPC, neural 

networks transform hand location in joint-centered coordinates into a fixation 

centered coordinates (Buneo et al. 2002).  These data accord with 

psychophysical findings, which indicate that the CNS plans reaching movements 

in an extrinsic, vision-based coordinate frame (Vindras and Viviani 1998; Bock 

1986).  Thus, it seems that at least in the presence of vision, this common 

coordinate would likely be vision based coordinates, though in other contexts a 

body-centered frame could be used (McIntyre, Stratta, and Lacquaniti 1997, 

1998).  If both target and hand locations are represented as vectors in the same 

coordinate frame, the CNS can compute the difference vector by subtracting the 

vector that represents current hand location from the vector that represents 

target location.   

The difference vector represents a high level movement plan for reaching 

the target.  After the difference vector is computed, next thing the CNS needs to 

do is to transform this desired difference vector into a trajectory that specifies the 

speed of the movement and its path.  Although the CNS can select any one of an 

infinite number of paths from hand’s starting location to a target, under most 
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unconstrained circumstances, the CNS plans the movement so that the hand 

moves along an approximately straight trajectory with a smooth, unimodal 

velocity profile (or bell-shaped profile).  The trajectory may have a gentle 

curvature for some movement directions.  Very likely the CNS tries to generate a 

trajectory that is perceived as straight in visual coordinates but may not be 

actually straight in Cartesian coordinates (Wolpert, Ghahramani, and Jordan 

1995).  Nevertheless, the smoothness of trajectory has been studied for many 

years.  Various schemes have been proposed trying to account for this 

movement property.  These schemes regarded trajectory planning as solving an 

optimization problem.  Different cost functions were employed, including 

minimization of jerk (Hogan and Flash 1987), minimization of torque-change 

(Uno, Kawato, and Suzuki 1989), and minimization of energy (Soechting et al. 

1995).  These theories propose that movement trajectories are planned in terms 

of optimizing features of motion (Flanagan and Rao 1995).  More recently it has 

been proposed that many known characteristics of reaching movements can be 

explained by an optimization process that seeks to minimize the variance in 

movement end points (Harris and Wolpert 1998). In this context, movement 

trajectory planning is influenced more by perceptual factors and the state 

estimator works to provide information of hand and target locations to minimize 

hand positional variability in the end of the movement.  

The final step in the planning process is to decide the forces and motor 

commands needed to transform this trajectory from a plan into action.  In 

planning forces and motor commands, the CNS does not have to perform a lot of 

calculations to specify how much to contract each muscle in order to move the 

hand at the desired states.  Instead, the CNS has learned to establish an inverse 
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model that maps the desired limb states to forces and motor commands.  In 

computing this map, the CNS has to represent limb states in intrinsic coordinates 

such as joint angles or muscle lengths.  

2.2.2 Estimating Hand location 

According to the previous section, in order to make motor plans, the CNS 

needs to compute a difference vector based on the current location of hand and 

target encoded in fixation-centered coordinates.  Potentially two problems are 

involved in calculating this difference vector: determining target location and 

determining hand location.  According to the model presented in Shadmehr’s 

book (Shadmehr and Wise 2005), the CNS employs a series of neural networks 

to compute the difference vector based on inputs from various information 

sources about hand and target location.  One neural network estimates hand 

locations in fixation-centered coordinates given inputs about hand location.  A 

second neural network estimates target locations in fixation-centered coordinates 

given inputs about target location. A third neural network computes the difference 

vector by subtracting the vector representing hand location from the vector 

representing target location.  Estimation of either target or hand location could be 

regarded as solving a cue integration problem.  Information about target location 

typically is provided by vision alone although other sensory cues may also be 

involved if the target is attached to part of the body or auditory cue of the target 

location is provided, as in estimating the location of a buzzing fly.  Estimation of 

hand location differs from estimation of target location in that it involves the 

integration of sensory cues with motor cues. The sensory cues primarily refer to 

vision and proprioception (via tactile and muscle spindle afferents).  The motor 



   21 

cues refer to the motor prediction of hand location from the efference copy of 

previous motor command.   

As mentioned in previous section, in the presence of vision, the hand 

location is most likely to be represented as a vector in fixation-centered 

coordinates.  However, hand locations are initially encoded in the brain in the 

natural reference frames of the sensors.  For example, proprioception encodes 

hand location as joint angles and muscle lengths in intrinsic frame of reference.  

Vision encodes hand location in fixation-centered coordinates.  Efference copy 

doesn’t explicitly indicate where the hand is in space but provide some 

information about future hand location via current motor commands.  The CNS 

has to align/match the mappings of hand location in different coordinates to 

visual coordinates.  For hand locations estimated from proprioceptive inputs, the 

CNS needs to solve the problem of forward kinematics which maps the estimated 

hand location in proprioceptive coordinates to visual coordinates.  The 

mathematical solution to the forward kinematics problem involves doing a series 

of coordinate transformations.  First, limb configuration in joint coordinates 

(intrinsic frame of reference) is transformed into hand location in extrinsic 

Cartesian coordinates centered on the shoulder.  Second, the origin of the 

Cartesian coordinates is moved to the head.  Third, head centered Cartesian 

coordinates is moved to fixation centered Cartesian coordinates.  Regarding 

efference copy, knowledge of motor commands alone cannot specify the future 

hand location since you also have to know the arm’s configuration before the 

motor commands are generated.  A forward model could be employed to predict 

hand location at some future time using sensory feedback and efference copy.  

There are good reasons to believe that efference copy works in closer concert 
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with proprioception.  First, motor commands acting on muscles cause muscles to 

contract and change their lengths which are directly sensed by proprioception.  

Second, occasionally, vision is not available as in the darkness or when image of 

hand falls outside field of view.  But you could still reach by predicting both target 

location, based on memory, and the current hand location, based on inputs from 

proprioception and efference copy.  In this dissertation, we use somatic 

cues/inputs to represent information from both proprioception and efference copy. 

Experiments suggest that you do not have independent measures of 

hand location, as estimated from different inputs; but instead,  the CNS aligns 

information available from various cues to produce a single estimate of hand 

location (Shadmehr and Wise 2005).  This alignment reflects contribution from 

each of these input signals.  The estimate changes when any of these inputs 

indicates a change in hand location.  A neural network might be used to find the 

best alignment between various information sources.  Such network can 

computes whichever estimate is lacking given some initial estimate of hand 

location using either somatic or visual inputs.  It seems that CNS relies on 

somatic inputs, at least in large part, to estimate the current location of the hand.  

Under normal conditions, even if you can see your hand, when you reach to a 

target, you usually look at the target, not the hand.  The image of your hand 

usually falls outside fovea, but falls on a part of retina where lower-resolution 

distance receptors locate, and sometimes outside the visual field entirely.  In that 

case, high-quality somatic information is weighted more than low-quality visual 

information.  Visual information, however, is still very important to reaching.  

Prism adaptation experiments confirm that reaching movements should adapt 

more rapidly if the hand can be seen (Sekiyama, Miyauchi, and Imaruoka 2000; 
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Norris et al. 2001).  Since hand location is estimated in fixation-centered 

coordinates, it would make sense that the actual sight of the hand has influence 

on reaching.  In fact, visual information might be used to calibrate the mapping of 

hand location from proprioceptive to fixation-centered coordinates (Shadmehr 

and Wise 2005).   

The integration of various cues for hand location estimation must address 

either implicitly or explicitly the reference frame problem.  Should hand locations 

encoded in different coordinates be transformed into the same reference frame 

before cue integration takes place?  Recent modeling and neurophysiological 

studies have demonstrated that explicit coordinate transformations are not 

necessary for optimal cue integration to occur (Gu, Angelaki, and DeAngelis 

2008; Pouget, Deneve, and Duhamel 2002), though such computations might still 

be beneficial in certain contexts. Thus, it is unclear whether the “state estimator” 

shown in Figure 1 is involved in both coordinate transformations and cue 

integration and, if so, whether these computations involve the same or different 

neural structures/networks. 

2.3. Cue integration in Hand Location Estimation 

2.3.1 Optimal Cue Integration Theory 

The CNS computes an estimate of hand location through an alignment of 

information from various cues, including vision, proprioception and efference 

copy.  Proprioception and efference copy together can be regarded as somatic 

cues.  How are various cues integrated to provide a single estimate of hand 

location?  The mechanism of cue integration for limb state estimation has been 

studied in humans using a variety of motor tasks.  These studies give us a 

picture generally showing that the relative weighting of visual and somatic cues 
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to the final estimate is highly context dependent, varying as a function of 

movement time, sensorimotor context, stage of motor planning, and also on 

whether the hand is static or moving (Wolpert, Ghahramani, and Jordan 1995; 

Vetter and Wolpert 2000; Sober and Sabes 2003; Kording and Wolpert 2004; 

Scheidt et al. 2005).  Several recent studies suggest this weighting is not 

arbitrary decided but appears to reflect an integration strategy that is statistically 

optimal (van Beers et al., 1998, 1999; Ernst and Banks, 2002; van Beers et al., 

2002).  In other words, the weighting relates to the relative precision of individual 

input and is selected in order to reduce uncertainty in the estimate of limb 

position and velocity.  For example, if noise in one input exceeds that in the other 

inputs, the CNS tends to weight the noisy input less than the others and the 

estimate of hand location should depend more on the more reliable input.   

What’s the relative precision of hand location sense decided by somatic 

cues or visual cues?  For arm movements, the precision of somatic and visual 

information about hand location varies as a function of arm configuration.  For 

example, localization on the basis of somatic signals alone is more precise when 

the hand is closer to the body and is more precise in depth (radial direction with 

respect to the shoulder) than in azimuth (van Beers, Baraduc, and Wolpert 2002; 

van Beers, Sittig, and van der Gon 1998).  In contrast, vision is more precise in 

azimuth than in depth.  These findings are summarized in Figure 2 which shows 

precision ellipses associated with somatic and visual sense. Differences in 

precision as a function of arm configuration can be gleaned from the relative 

sizes of the ‘near’ and ‘far’ somatic ellipses; direction dependence can be 

appreciated from the elongated shapes of the ‘far’ somatic and visual ellipses.  

According to the optimal cue integration theory, cues are weighted according to 
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their relative precision.  The differences in precision ellipse between visual and 

somatic sense lead to a weighting of somatic and visual signals during the 

estimation of hand location that is both position and direction dependent.  This 

finding also suggests the joint probability distribution describing the static position 

of the hand in the horizontal plane can appear to be more isotropic or anisotropic 

depending on the arm configuration in the workspace (‘near’ or ‘far’) and is 

generally smaller for the ‘near’ positions (van Beers, Sittig, and van der Gon 

1998; van Beers, Wolpert, and Haggard 2002).  

‘Far’
Somatic

‘Near’
Somatic

Visual

‘Far’
Somatic

‘Near’
Somatic

Visual

 

Figure 2.  Direction and position-dependent precision of somatic and visual 

sense of arm endpoint localization. Adapted from van Beers et al. (van Beers, 

Wolpert, and Haggard 2002). 

2.3.2 Neural Correlates of Cue Integration 

It seems that the CNS combines visual and somatic information optimally 

to produce an estimate of hand location.  This means the computation that 

produces this estimate takes into account the relative precision of different inputs.  

However, the neural mechanisms/correlates for this computation remain an open 

question.  Before probing this problem in any more detail, it would be helpful to 

know a little about the organization of the vertebrate CNS.  It is known that the 
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CNS of vertebrates is composed of the spinal cord and the brain.  The brain has 

three major components: brain stem, diencephalon and telencephalon.  Brain 

stem includes medulla, pons, midbrain and cerebellum.   Diencephalon includes 

thalamus and hypothalamus.  Telencephalon includes cerebral cortex and basal 

ganglia.  All components of the CNS are not working on the same level.  The 

brain stem and spinal cord are in the lowest level of the hierarchy.  Generally 

speaking, all levels of the CNS participate in motor control.  No parts of the CNS 

works in isolation.  But higher level components of the CNS are more likely to 

play a role in solving computation problems for reaching.   

Cerebral cortex which makes up most of the CNS in advanced mammals 

is on the highest level in the system.  In humans and non-human primates, two 

large parts of cerebral cortex, frontal cortex and parietal cortex make important 

contributions to reaching movements.  Everything rostral/anterior to the central 

sulcus (CS) is frontal cortex.  From caudal to rostral, the frontal cortex has 

primary motor cortex (M1) and premotor cortex and prefrontal cortex.  M1 lies in 

the rostral bank of CS.  It contains the arm and hand representations and has 

direct projections to the spinal cord which are responsible for execution of 

movements.  In non-human primates, premotor cortex lies in the caudal bank of 

the arcuate sulcus (AS) and is rostral to M1.  It mainly comprises dorsal premotor 

cortex (PMd), ventral premotor cortex (PMv) and the supplementary motor area 

(SMA).  All these premotor areas play a role in reaching movements and have 

direct projections to the spinal cord.  The prefrontal cortex (PFC) is the anterior 

part of the frontal cortex, lying in front of M1 and premotor areas.  This cortical 

area has been implicated in planning complex cognitive behaviors, decision 

making and moderating correct social behavior.  Instead of being involved in 
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actual movement production, this region seems to focus on solving the problem 

of whether or not the movement should be made.  Everything caudal/posterior to 

the CS and rostral/anterior to the occipital cortex is parietal cortex.  The parietal 

cortex can be further divided into primary somatosensory cortex (S1) and 

posterior parietal cortex (PPC).  S1 lies in the caudal bank of CS and comprises 

Brodmann areas 3, 1 and 2.  It receives and processes sensory inputs 

transmitted from the body via thalamus.  PPC lies caudal / posterior to S1.  In 

non-human primates, it is separated into superior posterior lobule (SPL) and 

inferior posterior lobule (IPL) by the intraparietal sulcus (IPS).  The surface of 

SPL contains Brodmann area 5.  The surface of IPL contains Brodmann area 7.  

Some other SPL or IPL areas folded inside the IPS include medial intraparietal 

area (MIP), ventral intraparietal area (VIP), lateral intraparietal area (LIP) and 

anterior intraparietal area (AIP).  Generally, PPC is regarded as an association 

area which receives multimodal sensory inputs and motor inputs from various 

cortices.  Based on various inputs received, it plays roles in the localization of the 

body and external objects in space.   

It is been suggested that areas in PPC, working in close concert with 

premotor areas, participate in computing the difference vector between hand’s 

location and target’s location in fixation centered coordinates.  Premotor cortex 

and M1 cortex may convert this difference vector into a joint-rotation vector; and 

M1, the cerebellum, and maybe SMA further transform this information into a 

force vector, which manifests as spike trains sent through various routes to the 

spinal cord (Shadmehr and Wise 2005).  But before the difference vector could 

be computed, the location of hand need to be determined in fixation centered 
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coordinates.  Solid evidences are still lacking in regard to whether PPC or 

premotor cortex play the most direct role in computing this hand location.   

Which arm movement related cortical areas in PPC or premotor cortex 

are best suited for probing the neural mechanisms of limb position estimation?  

Since limb position can be estimated based on the integration of visual 

information and somatic information, it is reasonable to focus on areas 

presenting neurons that respond to both visual and somatic signals of limb 

position.  In non-human primates, several areas have been implicated in the 

integration of somatic information with visual information of limb position. These 

areas include ventral/dorsal premotor cortex (PMv/d), and the following parietal 

areas: 5, 7, the medial intraparietal area (MIP) and the ventral intraparietal area 

(VIP) (Duhamel, Colby, and Goldberg 1998; Graziano, Cooke, and Taylor 2000; 

Graziano and Gross 1993; Graziano, Cooke, et al. 2004; Graziano, Gross, et al. 

2004; Graziano, Yap, and Gross 1994).  Figure 3 illustrates the relative locations 

of some of these cortical areas in non-human primates.  Of these areas, PMv 

and PMd are located in the premotor cortex.  But most of the areas are located in 

the PPC.   
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Figure 3.  Lateral view of the rhesus monkey brain illustrating cortical areas 

potentially involved in limb position estimation.  Parts of the frontal and parietal 

lobes are highlighted and expanded. Shaded regions indicate the banks of sulci. 

AS: arcuate sulcus. CS: central sulcus. IPS: intraparietal sulcus. SPL: superior 

parietal lobule. IPL: inferior parietal lobule.  

What types of responses would one expect of neurons modulated by both 

visual and somatic signals of limb position?  We could be hinted by the 

responses of cells that are involved in integrating some other multimodal inputs.  

For example, early work evaluating the responses of cat SC neurons to visual, 

somatosensory, and auditory stimuli indicated an effect of “superadditivity” in 

regard to responses of multimodal cell (Stein and Stanford 2008).  This effect 

states that multimodal responses are generally greater than corresponding 

unimodal responses.  However, some researchers found, as stimulus strength 

moved to threshold levels and beyond, multimodal responses were no longer 

superadditive but were more consistent with a linear summation of unimodal 
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responses (Stanford, Quessy, and Stein 2005).  Another study in non-human 

primates examined responses of neurons in the dorsal medial superior temporal 

area (MSTd) in a heading detection task (Gu, Angelaki, and DeAngelis 2008).  

The researchers found neurons with congruent, or nearly congruent, preferred 

directions for vestibular and visual heading in general demonstrated a 

subadditive combination of unimodal responses as opposed to summation or 

superadditive combination of unimodal activity levels.  All these observations, 

along with other recent evidence from single-unit studies suggests that 

superadditivity may not be the sole mechanism underlying cue integration 

(Stanford and Stein 2007).  Recently, more and more interests are aroused in the 

prediction of optimal cue integration theory.  According to this theory, multimodal 

population/single unit activity would approximate a weighted sum of the 

population / single unit response to unimodal inputs (Ma and Pouget 2008).  This 

theory could easily explain varying degrees of additivity demonstrated by the 

firing rates of multimodal cells.  In addition to the observations of subadditivity 

made by Gu et al., a similar study of bimodal MSTd neurons in which coherence 

of visual feedback was varied further strengthened the prediction of the theory 

(Morgan, DeAngelis, and Angelaki 2008).  Observations of optimal integration 

also appear to extend beyond the combination of one more unimodal signals to 

the integration of single modalities over time. For example, it has recently been 

shown that during information accumulation, neurons in LIP encode probability 

distributions that can accurately predict an animal’s behavior (Beck et al. 2008).  

The neural correlates of cue integration for limb position estimation may also 

employ this Bayesian optimal integration strategy.  Though manifestations at the 

single unit level may be different from cell to cell and depending on which brain 
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area is examined.  This is because somatic and visual information about arm 

position could be encoded in the same or different reference frame for different 

brain areas. 
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Chapter 3 

METHODOLOGY 

3.1. Introduction 

In this chapter we present general methods for fulfilling the two specific 

aims proposed in Chapter 1: 1) to characterize the mechanisms of integration of 

somatic and visually-based limb position signals in area 5 of posterior parietal 

cortex; 2.) to characterize, via biomechanical modeling and simulation techniques, 

movement variability resulting from misestimation of limb position.  Specific Aim 

#1 required being able to record brain activity with under controlled behavioral 

conditions.  For fulfilling this aim, we developed a neurophysiological recording 

system together with behavior training and a motion tracking apparatus which 

enabled correlation of brain activity with behavioral events.  Specific Aim #2 

required programming an arm model and movement simulations with which 

biomechanical and movement parameters could be easily adjusted and 

manipulated.  For Specific Aim #2, we used custom Matlab® code (The 

Mathworks Inc., Natick, MA) to build a two joint (shoulder and elbow) arm model 

and a combination of inverse and forward kinematics and dynamics to simulate 

arm movements in the horizontal plane.  The detailed descriptions of the 

methods associated with these two specific aims are organized into two separate 

sections below.  

3.2. Experimental Methods for Neurophysiological Studies 

3.2.1 Overview of General Methods 

Two head-fixed rhesus monkeys (Macaca mulatta) have been trained to 

make arm movements within a computer-generated, 3D virtual reality (VR) 

environment, similar to the one employed by Schwartz and colleagues (Taylor, 
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Tillery, and Schwartz 2002)).  This paradigm is ideal for studying the responses 

of neurons in the presence and absence of visual input, as it allows complete 

control over the degree and timing of visual feedback.  As illustrated in Figure 4, 

in the virtual reality setup, the monkey’s arm movements were monitored using 

an active LED based motion tracking system.  Vision of the animal’s arm was 

blocked by a mirror, but the position of the endpoint of the arm (the wrist) was 

viewed by the animal as a spherical cursor displayed on a 3D monitor and 

projected onto the mirror.  Eye movements were monitored using a remote 

optical eye tracking system (not shown).  

 

Figure 4.  Monkey working in VR environment.  Courtesy of Stephen Helms-

TIllery. 

While animals were making arm movements in the VR environment, 

neurophysiological recordings were made in dorsal area 5 of the superior parietal 

lobule (SPL).  Single cell recordings were obtained from both animals using 

standard neurophysiological techniques.  Activity was recorded extracellularly 

with varnish-coated tungsten microelectrodes (~1-2MΩ impedance at 1 kHz).  
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Single action potentials (spikes) were isolated from the amplified and filtered 

(600-6000 Hz) signal via a time-amplitude window discriminator (Plexon Inc.).  

Spike times were sampled at 2.5 kHz. 

3.2.2 Experimental Apparatus 

The experimental apparatus for neurophysiological studies consisted of a 

dark room with a mechanical construct for primate behavioral training, a motion 

capture system for tracking eye and arm movements, a 3D visualization system 

for creating and displaying the virtual reality environment, a reward system for 

allowing a specified amount of water/juice for each successful trial, and a 

neurophysiological recording system for acquiring and recording neural activity.  

A simple schematic of lab architecture integrating all the sub-systems is shown in 

Figure 5.  A real-time computer (PXI-6259, National Instruments Corporation) 

was used to run the master control program (MCP).  Three standard personal 

computers were employed to further distribute the computational load: a 

behavioral PC for acquiring eye and arm position signals, a data PC for 

behavioral data and neural data storage, and a display PC for creating and 

displaying the virtual reality environment.  The behavioral PC also served as a 

control PC which communicated with the real-time computer.  The MCP was 

developed and stored on the control PC (host).  At run time, the MCP code was 

uploaded to the real-time computer (target) on which it was compiled and 

executed.   
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Figure 5.  A simple schematic of lab architecture.   

The master control program (MCP) was the heart and soul of this 

complicated system.  It integrated the various subsystems into a coordinated 

whole by monitoring and guiding data flow of various forms among these 

subsystems.  The MCP was developed and implemented in the LabVIEW® 

graphical programming environment.  It ran a continuous loop that read eye and 

arm position data from the behavioral PC during each cycle.  The arm position 

data were transmitted to the display PC as visual feedback.  The eye position 

data were used to control eye movement.  According to the specified behavioral 

task, target positions were generated by MCP and transmitted to the display PC 

as well. MCP did all the essential calculations and determined performance of 

successful trials.  Upon each successful trial, MCP sent out a reward signal 

specifying the length of reward duration to the reward controller box.  The MCP 
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also generated digital events in response to behavioral events which were then 

temporally aligned with the neural data and saved in the same file in the data PC.   

3.2.2.1 Precision Positioning System 

The precision positioning system was employed for accommodating 

animals comfortably and stably in the working environment.  It mainly involved a 

table construct (Thomas RECORDING GmbH, Germany) and a custom made 

monkey chair.  As shown in Figure 6, the table construct consisted of a table with 

a steel table board, an aluminum frame assembly mounted on the table, a flat 

guide mounted on the frame and a monkey head holder mounted on the flat 

guide.  The table was cut out on one side to hold and fit the monkey chair. The 

frame assembly could be moved a little forward and backward depending on the 

location of screw holes on the table. The flat guide could be moved easily 

upwards and downwards before being locked into place. Similarly, the head 

holder used to fix the head could move along the flat guide before being fastened.  

The frame and the flat guide usually were used for the installation of the head 

holder.  Additional instruments could also be installed and positioned on the 

frame or on the flat guide. The monkey chair was designed in a way that could 

accommodate different sizes of monkeys.  When the chair was mounted on the 

table with the animal sitting in it, the body part below the chest of the animal is 

underneath the table, but the animal was free to move both arms on the table. 
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Figure 6.  Precision positioning system: table construct with monkey chair in the 

construct.  The illustration of table construct is used with the friendly allowance of 

Thomas RECORDING GmbH (Winchester Strasse 8, D-35394 

Giessen, Germany) 
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3.2.2.2 VR Working Environment 

The VR working environment provided all visual cues to the animals 

during the behavioral task. It incorporated both hardware and software to build a 

comfortable working platform. 

3.2.2.2.1 Hardware 

The mechanical setup of VR environment was based on establishment of 

a monitor-mirror assembly.  A monitor with large screen 2D/3D switchable 

display (Dimension Technologies Inc., NY) was used to generate the 3D image.  

During the experiment, the monitor was working under “Side-by-Side” stereo 

mode which is compatible with a 3D source associated with left and right eye 

images.  No glasses or visors were required for seeing the 3D image.  As 

illustrated in Figure 7, the monitor was mounted horizontally on a frame assembly.  

A mirror was placed at a 45° angle against the monitor screen.  The 3D image 

generated by the horizontal monitor was displayed through the mirror vertically 

and in an opposite direction.  The height of the monitor and mirror could be 

adjusted independently so that the vertical image could be viewed closer to or 

farther away from the eyes. In addition, a position of the mirror could be found, 

with which only the head of the animal was above the mirror, allowing the animal 

to use the arms freely in the workspace without viewing anything else except 

from the image from the monitor.  To start behavioral training, the whole 

assembly needed to be pushed against the table construct of the precision 

positioning system.  The integration of these mechanical systems is illustrated in 

Figure 11.  
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Figure 7.  Mechanical setup for displaying virtual reality working environment. 

3.2.2.2.2 Software 

The VR environment was programmed in the display PC.  The software 

implementation either used C++ programming or a software toolkit (Vizard, 

WorldViz LLC, Santa Barbara, CA, USA) based on the Python programming 
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language (Python Software Foundation Corporation, DE, USA).  The VR 

displaying program generated 3D graphic objects including colored balls 

representing the non-tangible virtual target or the actual wrist position and a 

surrounding cube frame used to give additional depth cues (Figure 8).  UDP 

network connections were established from the real-time computer to the display 

PC which received the 3D position data of the wrist and target.  To produce a 

realistic representation of hand movement, the VR program continuously updated 

the position of the wrist ball based on the readout from the real wrist position.  

Meanwhile, the wrist ball and the target ball could be programmed as either 

visible or invisible in order to control the visual feedback of the wrist position.  

Target Ball

Hand Ball

 

Figure 8.  Front view of VR working environment. 

3.2.2.3 Motion Capture System 

Our experiments required both arm movements and eye movements to 

be monitored. The 3D position of wrist was captured at all times to provide the 

visual stimulus of the wrist ball in the VR environment.  In addition, the position 

data of the wrist were correlated with simultaneously recorded neural activity and 

monitored to examine the behavioral performance of the animal. The 2D position 

of the point of gaze of the left eye was monitored to control eye movement.  



   41 

3.2.2.3.1 Arm Tracker 

We employed a Visualeyez Motion sensing system (Visualeyze VZ3000, 

Phoenix Technologies Inc.) for tracking arm movements in 3D free space. The 

system consisted of a few essential parts: a tracking unit with tripod, target 

control module (TCM), light emitting diode (LED) markers/targets, and a 

graphical user interface (VZSoftTM).  The tracking unit detects the lights from a 

LED marker, calculates its 3D position, and then transmits the computed position 

coordinates to the behavioral PC.  The function of TCM is to turn on the 

connected LED markers according to the sampling rate pre-programmed in the 

VZSoftTM user interface.  In our setup, the tracking unit was mounted horizontally 

on the tripod and was faced the side of the table construct.  We attached four 

LED markers to the wrist of the monkey by placing them on a circular adhesive 

wrist band.  The wrist position was determined based on the average of the four 

LED positions.  The LED markers were about 1.2 m away from the tracking unit.  

Our motion tracking system had a sampling rate of 250 Hz with spatial resolution 

of 0.015mm at 1.2m distance. 

3.2.2.3.2 Eye Tracker 

During the experiments, eye movements were tracked using a remote 

optical eye tracking system (ASL Inc., sampling rate: 120 Hz, spatial resolution: 

0.25 degrees of visual angle).  Figure 9 shows the system configuration which 

includes an Eye-Trac 6000 Control Unit, an eye camera, two video monitors (one 

for the eye image and one for the scene image), a scan converter, a behavioral 

PC, and a display PC with subject display monitor.  No head tracker was involved 

since the animal’s head was fixed at all times.  The eye camera illuminated the 
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eye with the beam from integrated near infrared LEDs and focused a telephoto 

image of the eye onto a solid state video sensor through a lens system in the 

optics.  The Eye-Trac 6000 Control Unit received video from the eye camera and 

sent the eye images to the eye monitor for video display. Meanwhile, the 

processing board dwelling in the unit box recognized features in the video eye 

image and computed the point of gaze which was displayed on the behavioral 

PC and also exported as a real time serial data stream to the real-time machine.  

The behavioral PC served as the user interface device which ran the ASL 

supplied Eye-Trac Interface program.  The Eye-Trac 6000 Control Unit also 

received video signals from a scan converter which converted the VGA computer 

screen image to a composite video signal.  The VGA image was generated by 

the display PC and was the same as the image viewed by the subject (scene 

image).  The scene video was then transmitted from the control unit to a scene 

monitor and was watched by the investigator.    

Eye-Trac Control Unit 

Display PCDisplay PC

Behavioral PCBehavioral PC

Scan Converter 

Subject Display 
Monitor 

Subject Display 
Monitor 

Eye Camera Eye Camera 

Eye Monitor

Scene Monitor

 

Figure 9.  Schematic showing the configuration of remote eye tracking system.  

The black arrows represent data flow of eye image related information.  The grey 

arrows represent data flow of scene related information. 
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Integrating eye tracking into the VR working environment is particularly 

difficult. It is mainly because the monitor-mirror assembly for the VR setup leaves 

minimum space for the camera while the recommended camera to eye distance 

is 20-25 inches.  To solve this problem, we introduced a hot mirror which could 

reflect eye image back to the camera while still allowing visible light to pass.  The 

camera was mounted on the frame (which was also used to hold the monitor) 

and could be moved along and tilted around all three axes if needed.  The hot 

mirror was attached to the flat guide of PPS and fit into the optics system at an 

incidence angle of 45°.  The hot mirror could be adjusted vertically and could 

rotate to adjust the incidence angle.  The positions of the camera and hot mirror 

are illustrated in Figure 10.  By integrating all mechanical parts of PPS, the VR 

display assembly, the eye tracking system and reward system, we eventually 

built up a mechanical ensemble system as illustrated in Figure 11. 
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Figure 10.  Relative positions of the eye camera and hot mirror. Inset illustrates 

the light path. 
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Figure 11.  Mechanical ensemble of PPS, VR display assembly, eye tracking 

system, and reward system. 
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3.2.2.4 Neurophysiological Recording System 

We investigated the activity of the brain by extracellularly recording the 

firing patterns of single neurons.  Neural recordings were accomplished using a 

neurophysiological recording system which incorporated a microdrive and a 

multichannel data acquisition system.   

3.2.2.4.1 Microdrive  

The microdrive (NaN Instruments LTD.) worked as multiple 

microelectrode positioning system which was assembled of mechanical 

components and a DSP based controller.  The mechanical components included 

a base and 4 towers which were assembled to position and hold the electrodes.  

The controller was used for running miniature motors coupled to the towers.  A 

PC (the data PC) was also incorporated in the microdrive system to run user 

friendly software and communicate with the controller via RS232.  The microdrive 

system could independently position multiple microelectrodes within a desired 

target structure.  Each electrode could be independently manipulated in the Z 

direction (the vertical direction) with variable speed from 0.001 mm/sec to 0.2 

mm/sec and a step resolution of 0.001 mm.  The system also allowed 

independent adjustment of each electrode in the XY planes with a positioning 

precision of 0.1mm.  In our experiments, we employed varnish-coated tungsten 

microelectrodes with ~1-2MΩ impedance at 1 kHz Neural.   

3.2.2.4.2 Data Acquisition System 

After the electrodes were positioned in the brain, a 16-channel data 

acquisition system (MAP System, Plexon Inc., 59 Dallas, TX, USA) was 

employed for amplification, filtering and recording raw neural signals captured by 
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the electrodes.  The MAP system (Multichannel Acquisition Processor System) 

incorporated both advanced hardware and software and was capable of 

programmable amplification (1000-32000), filtering (600-6000 Hz) and real-time 

spike sorting of multi-electrode signals.  Besides spikes, the MAP system could 

record other continuous analog signals, such as field potentials, eye position, or 

other behavioral signals using a National Instruments™ Data Acquisition (NI 

DAQ) device.   

The hardware architecture of the MAP system consisted of a headstage, 

preamplifier, MAP main box, host PC, oscilloscope and loudspeaker. The 

headstage acquired neuronal signals from high impedance microelectrodes and 

sent signals to the preamplifiers. The MAP main box received neural signals from 

the preamplifier and communicated with the host PC (the data PC) after initial 

processing (including amplification, filtering and A/D conversion). It also received 

8 digital inputs or 8-bit strobed word data encoding behavioral events from a 68-

pin terminal block (SCC-68, National Instruments Corporation) for external 

synchronization. The digital-event data together with the spike and other analog 

signals were saved within a single data file in the host PC.  Recorded signals 

from the MAP main box were also displayed on an oscilloscope and made 

audible via a loudspeaker, which helped the experimenter in providing additional 

feedback cues on spike occurrence.  

The MAP system also provided a suite of software tools that works with 

the MAP hardware. This combination of software and hardware enables users to 

view waveforms, acquire action potential waveforms around a voltage-threshold 

crossing, sort them in real time according to their shape, record continuous 
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analog signals, and capture external digital-event data.  All programs were run on 

the host PC under the Microsoft Windows™ operating system.  

3.3. General Simulation Methods for Probing Consequences of Noises on 

Movement  

We used a biomechanical modeling and simulation approach to probe the 

effects of noise at different stages of movement production.  Two joint (shoulder 

and elbow) arm movements in the horizontal plane were simulated using custom 

Matlab® code (The Mathworks Inc., Natick, MA).  As illustrated in Figure 12, 

simulations employed a combination of inverse and forward models and were 

entirely feedforward; feedback control was not simulated.  An inverse model was 

used to determine joint angles (inverse kinematics), joint torques (inverse 

dynamics) and motor commands (inverse muscle model) based on the 

endpoint/hand trajectory. The procedure was then inverted and a forward model 

was used to determine the joint torques (forward muscle model), joint angles 

(forward dynamics) and the endpoint/hand trajectory (forward kinematics) based 

on the motor commands. The general approach taken was to introduce noise into 

different stages of these transformations and to quantify the resulting movement 

errors.   Noise was introduced either into the sensing of initial hand position 

(Noise Simulation I and Noise Simulation II) or into the motor commands (Noise 

Simulation III).  All equations and parameters used in the simulations are 

provided below. The specific details of each noise simulation are discussed in 

Chapter 5.  
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Figure 12.  Schematic representation of inverse and forward models used to 

simulate movements.   

3.3.1 Inverse and Forward Transformations 

3.3.1.1 Trajectory Determination 

We first produced an idealized trajectory in Cartesian endpoint 

coordinates, under the assumptions that handpaths are rectilinear and tangential 

velocity profiles are bell-shaped (Morasso 1981; Soechting and Lacquaniti 1981).  

Thus, the distance d(t) along the hand path as a function of time t was given by : 

)
2π

t)sin(2π

T

t
(fdd(t)


        [ 1 ] 

where df denotes movement amplitude and T is the movement duration.  This 

function analytically approximates a bell-shaped tangential velocity profile (Buneo 

et al. 1995). 
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Movement direction (α) was defined as increasing in the counterclockwise 

direction, with movements to the 3 o’clock position being defined as movements 

at 0°.  For a movement directed at an angle α, the hand location Ty(t))(x(t),(t)P 


 

in Cartesian coordinates with an origin at the shoulder was given by: 









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cosα
d(t)P(t)P 0


       [ 2 ] 

where T)y,(xP 000 


 denotes the location of the hand at the start of the 

movement. Accordingly, the hand velocity was given by: 
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         [ 3 ]                           

3.3.1.2 Inverse Kinematics  

Hand positions along the planned trajectory were then converted to time-

varying angular positions at the shoulder and elbow using standard trigonometric 

equations.  The angular position T
es )θ,(θθ 


 at the shoulder (s) and the elbow (e) 

was determined from the hand position Ty)(x,P 


via inverse kinematics 

(Hollerbach and Flash 1982): 
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     [ 4 ]                                         

where ls = the length of the upper arm, and le = the length of the forearm.   
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3.3.1.3 Inverse Dynamics 

After numerical differentiation of the angular positions ( θ,θ,θ 
), shoulder 

and elbow torques T
es )τ,(ττ 


 were calculated using inverse dynamics 

equations (Yamaguchi 2005):  

)θ,θA(θBθ)θM(τ 
         [ 5 ]      
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the torques with quadratic angular velocity terms )θ,θA( 
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the angular velocity PJθ 1-          [ 8 ]                            

and the angular acceleration )θJP(Jθ 1-         [ 9 ]        

Here, mi, ri, Ii and B represent the mass of arm segment i (= s, e), the 

distance from the joint to the center of mass of that segment, the inertia moment 

around the center of mass, and joint viscosity matrix respectively.  J represents 

the Jacobian matrix: 
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where the Jacobian matrix can be calculated based on equation  
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3.3.1.4 Inverse Muscle Model 

Motor commands were calculated from the joint torques using a simple 

inverse muscle model (van Beers, Haggard, and Wolpert 2004).  In this model, 

the rotation around each joint was controlled by one second-order linear muscle 

which could both push and pull and therefore function as a pair of antagonistic 

muscles.  The motor commands T
es )u,(uu 


of two second-order linear muscles 

acting independently on the shoulder and elbow joint were estimated via the 

following equation: 

ττ)t(tτttu aeae


          [ 12 ]                     

where te and ta denote time constants of excitation and activation. In the 

simulations, te was set to 30 ms and ta was set to 40 ms.  

3.3.1.5 Forward Muscle Model 

We calculated joint torques from the motor commands by inverting 

equation A13, (forward muscle model):  

)τ)t(tτu(
tt

1
τ ae

ae

        [ 13 ]   

The joint torques and their derivatives ( τ,τ,τ  ) were solved for 

simultaneously using a fourth order Runge-Kutta method. 

3.3.1.6 Forward Dynamics 

By rearranging equation A7, we calculated joint angles from the joint 

torques (forward dynamics):  

))θ,θA(θBτ()θM(θ 1-         [ 14 ]               
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θ,θ,θ 
 in joint coordinates were then solved for simultaneously using a 

fourth order Runge-Kutta method.  

3.3.1.7 Forward Kinematics 

Finally, trajectories in endpoint Cartesian coordinates were obtained by 

transforming the angular motions into hand paths.  The hand position )y(x,P 


 

was calculated from the angular position T
es )θ,(θθ 


 of the shoulder joint and 

elbow joint via forward kinematics: 
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3.3.2 Parameter Specification 

Simulated arm movements were 0.08 m in amplitude and 350 msec in 

duration, consistent with quick, uncorrected movements.  Movements were 

simulated in 24 directions with respect to the endpoint of the arm.  In addition, to 

assess the generality of the results across the workspace of the reaching arm, 

movements were simulated using four different initial arm configurations (Table 

2).   

Representative limb segment lengths, limb masses, moments of inertia 

and centers of mass were taken from Scheidt et al. (2005) (Table 1). Since joint 

viscosity may vary with joint angular position, we used joint viscosity matrices 

that corresponded closely to the different initial arm postures used in this study 

(Tsuji et al. 1995) (Table 2).  For each initial arm posture, we assumed that the 

joint viscosity matrices remained approximately the same during movement.  

Although this is not likely the case, the effects of noise in this study were 
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quantified by analyzing errors in initial movement direction, rather than errors at 

peak velocity or at the movement endpoint.  Since arm postures in the initial 

portion of the movement did not differ greatly from those at the initial position, we 

do not believe that violations of this assumption are likely to have strongly 

affected the results. 

 

 

Table 1.  Anthropometric and mechanical property values.  Values are taken from 

Scheidt et al. (2005).  COM = center of mass. 

  Upper arm (i=s) Forearm (i=e) 

Length (li) [m] 0.33 0.34 

COM (ri) [m] 0.165 0.19 

Mass (mi) [kg] 1.93 1.52 

Inertia (Ii) [kg·m2] 0.0141 0.0188 

 

Table 2.  Joint viscosity matrices corresponding to the four initial arm postures. 

We used mean values of joint viscosity matrix estimated from subject A in Tsuji 

et al. (1995). 

Initial arm 
posture 

Joint angle (deg) Joint viscosity matrix B 
(Nms/rad) θs θe

1 62.708 77.260 
0.651 0.239 
0.236 0.407 

2 41.870 62.578 
0.723 0.313 
0.335 0.507 

3 102.185 59.420 
0.708 0.304 
0.209 0.454 

4 37.301 126.831 
0.421 0.129 
0.126 0.468 
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3.3.3 Movement Error Quantification 

In this study, noise was introduced into different stages of movement 

production. The effects of noise were assessed by analyzing errors in initial 

movement direction (directional errors), rather than errors at peak velocity or at 

the movement endpoint.  Initial movement direction was specified as the direction 

of the actual trajectory during the initial phase of the movement (1/3rd of total 

movement time). Directional errors were quantified as the deviation of the initial 

movement direction from the idealized, straight-line trajectory connecting the 

starting position to the target ( in Fig. 3).  For all these simulations, the 

variability of directional errors (over all simulation trials) was quantified using the 

circular standard deviation (CSD) which could be calculated using the following 

equation (Fisher, 1993): 

2

22

n

)cos(DirErr)sin(DirErr

CSD





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


















   [ 16 ] 

where n denotes the number of repeated trials for a single movement direction. 
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Chapter 4 

NEURAL MECHANISMS OF LIMB POSITION ESTIMATION 

4.1. Abstract 

Understanding the neural mechanisms of limb position estimation is 

important both for comprehending the neural control of goal directed arm 

movements and for developing neuroprosthetic systems designed to replace lost 

limb function.  Here we examined the role of area 5 of the posterior parietal 

cortex in estimating limb position based on visual and somatic (proprioceptive, 

efference copy) signals. Single unit recordings were obtained as monkeys 

reached to visual targets presented in a semi-immersive virtual reality 

environment.   On half of the trials animals were required to maintain their limb 

position at these targets while receiving both visual and non-visual feedback of 

their arm position, while on the other trials visual feedback was withheld.  When 

examined individually, many area 5 neurons were tuned to the position of the 

limb in the workspace but very few neurons modulated their firing rates based on 

the presence/absence of visual feedback.  At the population level however 

decoding of limb position was somewhat more accurate when visual feedback 

was provided.   These findings support a role for area 5 in limb position 

estimation but also suggest that visual signals regarding limb position are only 

weakly represented in this area, and only at the population level. 

4.2. Introduction 

Visually-guided reaching movements require the integration of visual and 

somatic feedback in order to estimate limb position before, during, and after 

movement.  However the mechanisms underlying this integration process, as 

well as limb position estimation in general, remain poorly understood.  In the 
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sensory domain, integrating information across modalities can reduce uncertainty 

in estimated position.  This is achieved by weighting each modality according to 

its relative reliability, a process referred to as ‘optimal cue integration’. Although a 

large amount of theoretical and psychophysical work exists in support of optimal 

cue integration, neurophysiological support is relatively lacking.  This is due to 

the fact that testing the predictions of this theory neurophysiologically can be 

challenging, particularly in the arm movement system.  For example, although 

visual and auditory cues associated with extrinsic objects do on occasion occur 

in isolation, visual cues about arm position never occur naturally without 

concomitant somatic input. This limits the ways in which optimal cue integration 

can be probed in the arm movement system and also limits the ways in which 

data obtained from studies of multisensory integration for the arm can be 

interpreted. As a result of these and other difficulties, studies of the neural 

mechanisms of multisensory integration for arm movements have not to date 

explicitly examined whether limb position activity in arm movement related areas 

is consistent with optimal cue integration.  

Although a direct neurophysiological investigation of optimal cue 

integration for the arm is problematic, it is still possible in this system to assess 

the role of unimodal and multimodal signals in limb position estimation.  This 

could be accomplished in a number of ways.  For example, one could artificially 

alter the relative reliability of individual unimodal cues and examine the resulting 

effects on neural responses, as Angelaki and colleagues have done in their 

studies of self-motion perception in macaque visual cortex (Morgan, DeAngelis, 

and Angelaki 2008).   Alternatively, one could simply examine the responses of 

neurons to two or more cues presented together or in isolation.  Additional 
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insights into mechanisms of cue integration could be achieved with this approach 

by also taking advantage of ‘natural’ variations in the reliability of different 

unimodal cues.  For example, the relative reliability of somatic and visual signals 

in estimating arm position has been shown to vary as a function of arm 

configuration (van Beers, Sittig, and van der Gon 1998; van Beers, Wolpert, and 

Haggard 2002).  Thus, by varying limb configurations across the workspace while 

simultaneously varying the number of available sensory signals, one could obtain 

substantial insight into the role of these signals in limb position estimation.   

Which arm movement related brain areas are best suited for probing the 

neural mechanisms of limb position estimation?  Ideally these areas would 

contain neurons that respond to both visual and somatic signals.  In non-human 

primates several areas have been implicated in the integration of somatic 

information with visual information of limb position near the body. These areas 

include the putamen, ventral/dorsal premotor cortex (PMv/d), and the following 

parietal areas: 5, 7, the medial intraparietal area (MIP) and the ventral 

intraparietal area (VIP) (Duhamel et al. 1997; Graziano, Cooke, and Taylor 2000; 

Graziano and Gross 1993; Graziano, Gross, et al. 2004; Graziano, Yap, and 

Gross 1994).  Any of all of these areas could serve as a target of investigation of 

the neural correlates of limb position estimation. 

Previous studies suggest that area 5, located in the superior parietal 

lobule (SPL) of the posterior parietal cortex (PPC), would be a particularly good 

candidate for probing the neural correlates of limb position estimation.  For 

example, in humans, injury to the SPL has been shown to result in profound 

difficulty in maintaining limb position and grip force in the absence of vision, 

supporting a role for this structure in integrating sensory and motor information 
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for the purposes of estimating limb ‘state’ (Wolpert, Goodbody, and Husain 1998). 

In addition, in non-human primates, the SPL has been shown to receive both 

visual and somatosensory inputs (Cavada and Goldman-Rakic 1989; Andersen 

et al. 1990; Caminiti, Ferraina, and Johnson 1996) as well as an efference copy 

of ongoing arm movement commands (Rushworth, Nixon, and Passingham 

1997).  This latter finding is supported by anatomical studies indicating direct 

projections from PMd and motor cortex to area 5 (Caminiti, Ferraina, and 

Johnson 1996). 

Neurophysiological studies of non-human primates also suggest a role for 

area 5 in the integration of somatic and visual limb position cues.  In an 

experimental paradigm where a monkey’s unseen arm was passively varied 

between positions that were either congruent or incongruent with the position of a 

visible, fake monkey arm, Graziano and colleagues (Graziano, Cooke, and 

Taylor 2000) found that area 5 neurons encoded the position of the unseen arm 

as well as the position of the seen, fake arm. Variations in discharge due to 

manipulations of the unseen or ‘felt’ arm were attributed to somatic signals, while 

variations due to the fake ‘seen’ arm were interpreted as being related to visual 

information about limb position. These findings were interpreted as evidence that 

area 5 is involved in integrating visual and somatic signals about limb position.  

However, in this study animals were not required to make a perceptual judgment 

nor were they required to actively control the position of their limbs. Thus, it is 

unclear the extent to which the animals perceived the fake arm as being part of 

their own bodies.   

The integration of visual and somatic limb position signals in area 5 has 

been studied more recently in a task that required animals to maintain their limb 
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position while actuating pushbuttons on a vertically oriented target array (C. A. 

Buneo & R. A. Andersen, unpublished observations). These experiments showed 

that most area 5 neurons encoded the position of the arm in eye-centered rather 

than body-centered coordinates, even in the absence of visual signals about the 

arm. This suggests that somatic and visual information about arm position are 

encoded in the same eye-centered reference frame in area 5, which could arise 

as the result of somatic signals being transformed from body to eye-centered 

coordinates.  In addition, as in the study by Graziano and colleagues (2000), a 

subset of neurons was modulated by visual signals about the arm. However, the 

relatively small percentage of neurons (~15-20%) is not what one would expect 

of an area that plays a critical role in estimating limb position based on both 

visual and somatic signals.  This could be a consequence of the experimental 

paradigm, where the combination of tactile, proprioceptive and force feedback 

experienced by the animals during the button presses likely provided a very 

reliable estimate of limb position, reducing the importance of visually-based limb 

position signals.  As a result we sought to examine the integration of visual and 

somatic signals in area 5 under conditions where visual information should be 

more critical to task performance, i.e. during the maintenance of static limb 

positions in free (3D) space.  

4.3. Methods 

4.3.1 Behavioral Paradigms: General Information  

Our aim was to explore the role of area 5 of the posterior parietal cortex in 

estimating limb position based on visual and somatic signals.  Cells relevant to 

this study could encode limb position using both somatic information and visual 

information.  Thus, our behavioral paradigms involved holding the arm at different 
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positions with or without the aid of vision.  Also, an active arm reach paradigm 

was used instead of the paradigm where arm positions were passively varied by 

external force sources since the former paradigm reinforced the demand for a 

more precise estimation of arm position.  To minimize postural variation when the 

hand was held at the same target location for different trials, it would be 

appropriate that the animal always started reaching from the same position.  As a 

result, a center-out reach paradigm was used.  Another important consideration 

was that animal’s eye movements had to be controlled as well since many 

previous studies research have shown that neurons in area 5 of the posterior 

parietal cortex encode information of eye position.  In order to prevent visual 

input of target location from confounding neural activities, reach targets were 

extinguished shortly after target was acquired.   

Taking all the above criteria into account, we employed two behavioral 

paradigms in our study.  For both paradigms, the animal was required to start out 

from the center of a single vertical plane and reach to a virtual target ball 

presented at one of eight target locations in the periphery.  Either of two visual 

conditions was assigned for each trial: visual input of the endpoint of the arm was 

either allowed all the time for visual trials or disallowed during a specified period 

for somatic trials.  Each combination of target position and visual condition in a 

single trial was repeated 5 times for a total number of 80 trials for each recorded 

cell.  Each of the 80 trials was run in pseudo-random order.  Based on when 

vision information of the endpoint was disallowed for somatic trials, two 

behavioral paradigms could be differentiated.  In Paradigm 1 (P1), visual input of 

the endpoint of the arm was disallowed shortly after target acquire (at the same 

time when target extinguished). In Paradigm 2 (P2), visual input was disallowed 
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after the onset of movement toward the peripheral target.  The detailed 

description of experimental paradigms was presented in the following sections.  

The experimental protocol was approved and monitored by the Arizona State 

University Institutional Animal Care and Use Committee and conformed to the 

“Guiding Principles in the Care and Use of Animals” publication of the American 

Physiological Society. 

4.3.1.1 Paradigm 1 

A schematic of Paradigm 1 is illustrated in Figure 13.  For both visual and 

somatic trials, at the start of each trial, a green target sphere was presented in 

the center of the virtual workspace.  The animal was required to match this 

position with a green spherical cursor representing the endpoint of the arm and 

maintain this position for a set amount of time (500 msec for Monkey X, 300 

msec for Monkey B).  Once this center position was acquired and maintained, the 

first target was extinguished and a second green target sphere was presented at 

one of 8 positions in a vertical plane.  The presentation of the second target 

sphere instructed the animal where to place its arm and also served as a ‘go’ 

signal, cueing the animal to move its arm to the target.  The animal had no more 

than 1400 msec to acquire the second target.  If for any reason, the animal could 

not acquire the target within 1400 msec, the whole trial would abort and a new 

trial would start all over again.  Once the second target position was acquired, 

this target remained illuminated for a very short period of time (300 msec for 

Monkey X and 400 msec for Monkey B) which helped the animal stabilize the 

arm.  Then the target sphere was extinguished and at approximately the same 

time a yellow target sphere for eye fixation was presented in the center of the 

vertical plane.  The animal had to continue to hold the arm at the target position 
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for another 800 ~ 1200 msec while simultaneously maintaining visual fixation at 

the yellow target sphere.  A juice reward was delivered at the end of each 

successful trial and no juice reward was delivered for failed trials.   

During the static arm holding period under gaze control, visual input of the 

endpoint of the arm based on peripheral vision continued to be allowed on visual 

trials but was disallowed on somatic trials by blanking the arm cursor.  The 

location of the potential targets with respect to the animal is shown in Figure 13.  

All potential target locations were arranged in an array.  For Monkey X, the 

distance between rows of the array was 4 cm and the distance between columns 

was 5 cm.  For Monkey B, both row distance and column distance were 5 cm.  

The window radius for determining target acquire was no larger than half of the 

distance between adjacent targets.  This setting allowed no overlap between 

target positions.  For center target acquires, the window radius was 1.6 cm for 

Monkey X and 2.4 cm for Monkey B.  For peripheral target acquires, the window 

radius was 2 cm for Monkey X and 2.4 cm for Monkey B.  The window radius for 

fixation was 2.8 cm (about 8° of visual angle)) for both monkeys. 
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Figure 13.  Schematic of behavioral paradigm P1.  Sequence of events and 

timing are illustrated for visual trial and somatic trial.  Animal and target display 

are viewed from behind; targets (circles) are located in a vertical plane 

surrounding the central starting and fixation position.  

4.3.1.2 Paradigm 2 

A schematic of Paradigm 2 is illustrated in Figure 14.  On visual trials, the 

sequence of behavioral events with associated timing was the same as that in 

Paradigm 1.  The spherical arm cursor was visible all the time from the beginning 

toward the end of the trial.  On somatic trials, the arm cursor was blanked at 

movement onset and continued to be blanked till the end of the trial.  Compared 

to Paradigm 1 where on somatic trials the arm cursor was blanked shortly after 

the acquisition of the second target, Paradigm 2 provided less visual information 
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in regard to the position of the arm at target location on somatic trials since the 

arm cursor was blanked before target acquires. Thus, it was more difficult to train 

animals to do trials in Paradigm 2 than in Paradigm 1.  Monkey X was trained 

and recorded in both Paradigm 1 and Paradigm 2.  Monkey B was trained and 

recorded only in Paradigm 1. 
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Figure 14.  Schematic of behavioral paradigm P2.  Sequence of events and 

timing are illustrated for visual trial and somatic trial.  Animal and target display 

are viewed from behind; targets (circles) are located in a vertical plane 

surrounding the central starting and fixation position. 

4.3.2 Surgical Procedure 

The surgical procedures of this study followed federal guidelines and 

were approved by the Arizona State University Institutional Animal Care and Use 
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Committee.  During the early period of the behavioral training process, three 

head posts with titanium pedestals were surgically fixed to the skull. The head 

posts served as anchoring points for holding the head stable when attached to a 

head holder and a halo.  After the animal was well trained, a second surgery was 

scheduled for implanting a recording chamber over the designated brain area 

(posterior parietal cortex of the left hemisphere, which was contralateral to the 

working hand).  The animal was initially anesthetized and intubated with 

administration of an isofluorane-air mixture.  Under sterile conditions, a minimum 

piece of scalp was removed and a craniotomy was performed to expose the dura 

mater underneath the skull.  The exposed dura was surrounded by a circular 

recording chamber (Crist Instrument Co., Inc.) placed over the remaining skull.  

Multiple titanium supporting screws were threaded into tapped holes in the skull 

around the chamber and buried within a dental acrylic head cap which was used 

to hold and secure the recording chamber.  The inner cross-section of the 

chamber was slightly larger than the exposed dura area and had an inner 

diameter of about 20 mm.  The outside diameter of the chamber was fit for 

mounting a NaN microdrive (NaN Instruments LTD.) on the chamber.  Two male 

rhesus monkeys (Macaca mulatta) underwent surgery in this study (animals X 

and B).  In monkeys the stereotaxic location of the chamber center was 

approximately at interaural zero and 10 mm lateral to the midline.   

4.3.3 Data Analysis 

While animals were performing the tasks of either Paradigm 1 or 

Paradigm 2, neurophysiological recordings were made in dorsal area 5 of the 

superior parietal lobule (SPL).  Single action potentials (spikes) were recorded 

extracellularly from a neuron which was isolated from background noise and 
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other cells by real-time sorting.  Arm position and eye position signals were 

recorded simultaneously with the neural data. Both neural data and behavioral 

data were stored in the same file for subsequent off-line analysis. 

4.3.3.1 Behavior Analysis: Endpoints 

We first examined movement endpoint positions on visual and somatic 

trials for each target location.  The endpoint of each movement was determined 

by averaging the animal’s limb position recorded during the time when the animal 

was holding its arm at a certain target and fixating at the center at the same time.  

For each target location, we compared the distribution of endpoints between 

visual trials and somatic trials.  For both trial types, we plotted different views of 

the endpoint distributions and examined differences in endpoint distributions by 

visual inspection.  In order to quantitatively determine if there was a difference in 

the distributions between the two trial types, a Kruskal-Wallis test was to 

performed, which is a non-parametric balanced one-way ANOVA for comparing 

the means of two groups of data.  The test statistic was based on calculating the 

distance between each 3D endpoint position ),,( zyx  and the mean position 

),,( zyx .  It performed simultaneously for each x, y, z coordinate and returned the 

p-value for the null hypothesis that the mean positions of the two groups are 

equal.   In this analysis, one group of data was endpoint position data associated 

with somatic trials.  The other group was endpoint position data associated with 

visual trials.  The significance level for the p-value was 0.05.  

4.3.3.2 Neural Responses 

The effects of limb position and the visual conditions (vision of the hand 

(‘vision’) vs. no hand vision (‘no-vision’)) on neural responses were assessed 
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both at the single cell level and at the population level.  We focused on cell 

activities during the time period when the animal was holding the arm on the 

specified position while maintaining gaze at the center.   

4.3.3.2.1 Single Cell Analysis 

The first step in neural data analysis involved detailed characterization of 

the physiological properties of the individual neurons. In this first stage, peri-

stimulus time histograms (PSTH) were used to investigate the firing patterns of 

individual neurons.  PSTH measures the average rate of neuronal firing across 

user-defined time bins.  To generate PSTHs in our study, we first calculated 

average neuronal firing rate in each time bin of 20 ms and then smoothed the 

data to get instantaneous firing rate via convolution with a Gaussian kernel.  The 

average neuronal firing rate in each time bin was obtained by grouping spike 

trains of repetitive trials together and counting the spikes in each time bin and 

dividing the number of spikes by the number of repetitive trials and the bin size.  

By visually examining individual PSTHs, we could recognize the variation of 

neuronal firing rate over the time course of the trials.  When two PSTHs of 

different conditions were compared, the effects of different conditions on firing 

patterns of the recorded neuron could be visually checked.   

To quantitatively identify the effects of limb position and visual condition 

on single cell responses, we ran a 2-factor analysis of variance (ANOVA) of the 

mean firing rate during the static holding period with gaze control.  For neural 

data recorded from Monkey X, the period examined was specified by a time 

window of 800 msec which started at 400 msec after target acquire and ended at 

1200 msec after target acquire.  For Monkey B, this period was defined from 500 

msec till 1200 msec after target acquire.  We chose this time window to find a 
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stable period during which the cell activity appeared to be stabilized.  The 

statistical analysis of the average activity during this epoch involved examination 

of two factors: limb position (P) and visual condition (V).  There were 8 levels of 

factor P (8 limb positions) and 2 levels of factor V (vision of the hand (‘vision’) vs. 

no hand vision (‘no-vision’)).  All 16 treatment combinations were repeated for 5 

times.  A total of 80 trials were run in pseudo-random order for each recorded cell.  

The ANOVA analysis provided a statistical test of the significance of the main 

effect of factor P, main effect of factor V and the interaction effect between factor 

P and factor V.  We calculated p-values associated with each effect.  The 

significance level (α) was 0.05. If the p-value was less than 0.05, the effect was 

considered to be significant.   

4.3.3.2.2 Population Analysis 

At the population level, cells were classified into sub-populations based 

on ANOVA’s performed on a single cell level.  The effects of limb position and 

visual conditions on single cell activities were statistically tested by the ANOVA 

analysis.  Cells showing a significant main effect of limb position (P), main effect 

of visual conditions (V), and/or a significant interaction effect (I) between the two 

main factors were considered task related.  For all the task related cells, cells 

with the same pattern of position and vision dependence were grouped together.  

To study the proportion of different cell groups in area 5, we counted the number 

of cells for each group and created statistical pie charts to compare proportions 

of cells between groups.  

We have recently begun using Bayesian decoding techniques to probe 

the roles of visual and somatic signals in representing limb position in area 5.  

The location of the limb on a given trial was predicted from activity of different 
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population of cells recorded independently.  The decoding accuracy of a cell 

population determines how well the activity of cells in this population encodes the 

limb position.  In addition, by comparing decoding accuracy on somatic trials and 

visual trials, we could see how vision of the endpoint of the limb affects 

population activity.  If visual signals were helping cells encode limb position, we 

would expect to see an enhanced decoding accuracy for visual trials.  In contrast, 

it would be hard to see any difference in decoding accuracy between visual trials 

and somatic trials if visual signals did not affect cell population activities.     

The Bayesian decoding approach used was similar to that described by 

Scherberger,and colleagues (Scherberger, Jarvis, and Andersen 2005).  We 

assumed Poisson spike statistics for the spiking activity and statistical 

independence between different cells.  The sequentially recorded cells were 

treated as if simultaneously recorded.  To estimate the limb position on a given 

trial, we first introduced the vector  N1 a,...,aa   which represents the neural 

activity of the ensemble of all recorded cells.  N equals the number of recorded 

cells, and each ia represents the spike count of the thi  cell during the static 

holding period.  We also defined the scalar x  1,...,8  to denote the limb 

position.  The estimated limb position x̂  on a given trial was chosen to be the 

one that maximized the posterior probability a)|P(x  of the limb position x  given 

population activity a :  

a))|(P(xargmaxx
x

ˆ        [ 17 ]   

According to Bayes’ rule, the posterior probability a)|P(x  was given by: 

P(a)

P(x)x)|P(a
a)|P(x


        [ 18 ]     
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where x)|P(a  is the conditional probability of population activity a  given limb 

position  (or the likelihood of limb position x ), P(x)  is the prior probability which 

is uniform by design, P(a)  is the marginal probability which serves as 

normalizing denominator so that the sum of a)|P(x  for all eight limb positions 

becomes unity.  

Since statistical independence was assumed between different cells, 

x)|P(a  could be calculated using the following equation: 

x)|P(ax)|P(a i
N

1i        [ 19 ] 

where )x|P(ai  is the conditional probability of single cell activity ia  given x .   

On a given trial, )x|P(ai  followed a Poisson distribution: 

λa

i
i eλ

!a
1x)|P(a i         [ 20 ] 

  

where  N1,...,i , λ was estimated from the mean activity of the thi  cell during 

the period when the limb was held at position x .   

Based on the law of total probability, P(a)  could be represented as  

P(x)x)|P(aP(a) 8

1x
 

      [ 21 ] 

Decoding accuracy of the estimation process was examined separately 

for visual trials and somatic trials. For each visual condition, leave-one-out cross 

validation was used to assess the decoding performance.  One trial was selected 

from 5 repetitive trials at each limb position and set aside as test data.  The 

parameter λ of the Poisson distribution for calculating )x|P(ai  was estimated 

from the mean firing activity in the remaining 4 trials for each cell ( N1,...,i  ).  We 

used bootstrapping techniques to estimate the mean activity since the number of 
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training trials was limited. a)|P(x  was then determined for each limb position x 

using the test data. The limb position that maximized a)|P(x  was selected as the 

predicted limb position of the test trial. This process was repeated by treating 

each of the remaining trials as test data.  The probability of decoded limb position 

given population activity a)|P(x  was averaged over all test trials.  The mean 

probability was calculated for each actual limb position and for each decoded 

limb position.  The results were graphically represented as confusion matrices.   

4.4. Results 

4.4.1 Behavioral Analysis: Endpoints 

In order to properly investigate the influence of visual and somatic signals 

on limb position activity in this experiment it was critical that animals exhibited 

identical endpoint positions on visual trials (with vision) and somatic trials 

(without vision) for each target location.  That is, any difference on the two trial 

types must reflect the manner in which vision and somatic information are 

processed in the PPC and cannot be due to the fact that the animal held its arm 

at slightly different positions in space on the two trial types, a distinct possibility in 

this type of experiment.  To guard against this possibility we examined movement 

endpoint positions averaged across the time when the animal was holding its arm 

at a certain target and fixating at the center at the same time.  The distribution of 

endpoints was compared between the two trial types for each of the eight target 

locations.  In the subsequent dissertation sections, the results of behavioral 

analysis were presented for both single experimental session and a summary of 

all sessions.  Behavioral data presented were collected from Monkey X.  

(However, Monkey B exhibited similar behavioral pattern.) 



   73 

4.4.1.1 Single Session 

4.4.1.1.1 Paradigm 1 

We first examined endpoint position data from a single session of 80 trials.  

Figure 15 shows endpoint positions obtained from a single session in Paradigm 1.  

The top three plots and bottom left plot in Figure 15 give the different views (side, 

front, top and 3D view) of endpoint positions associated with the two visual 

conditions for each of the eight target locations.  At each of the eight target 

locations, the endpoints of visual trials were blended with those of somatic trials.  

No apparent difference in the two distributions of endpoints could be recognized 

by visual inspection.  Statistical tests confirmed the results of visual inspection: 

none of the p-values presented in the bottom right table was less than 0.05.  This 

suggested that at each target location the effect of visual condition on distribution 

of endpoint positions was not significant.  In other words, for this single session, 

the animal exhibited the same behavior (endpoint positions) on visual and 

somatic trials.  
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Figure 15.  Behavioral data of movement endpoints during a single session in 

Paradigm 1.  Top three plots give the side, front and top view of endpoint 

distributions for eight positions.  Bottom left plot gives the 3D view of endpoint 

distributions.  Endpoints associated with visual or somatic trials are indicated by 

red (‘vision’) or green (‘no-vision’) dots.  Blue circle represents the window radius 

for determining target acquire at each target location.  Bottom right table presents 

p-values for testing endpoint differences between visual trials and somatic trials 

at each of the eight target locations.  

4.4.1.1.2 Paradigm 2 

In this section, endpoint position data are presented for a single 

experimental session in Paradigm 2.  Compared to Paradigm 1, where visual 

input of the endpoint of the arm was disallowed shortly after target acquire for 

somatic trials, in Paradigm 2 visual input was disallowed after the onset of 
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movement towards the peripheral target for somatic trials.  Just by visual 

inspection of different views of the endpoint distributions in Figure 16, the 

endpoints associated with Paradigm 2 appeared to be more scattered for each 

target location than those associated with Paradigm 1.  In this particular 

experimental session, for some target locations, the green dots representing 

endpoints of somatic trials appeared to be segregated from the red dots 

representing endpoints of visual trials.  The results of the Kruskal-Wallis test 

(one-way ANOVA) indicated there was a difference in the endpoint distributions 

for visual trials and somatic trials for three target locations.  That is, p-values 

presented in the bottom right table of Figure 16 were all greater than 0.05 except 

those associated with upper left, upper right and middle right target locations.  

This suggested that for these three target locations, the animal tended to hold its 

arm at slightly different positions in space on the two trial types.  However, for 

other target locations, the animal did not appear to behave differently on the two 

trial types.   
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Figure 16.  Behavioral data of movement endpoints during a single session in 

Paradigm 2.  Figure conventions are the same as in Figure 15. 

4.4.1.2 All Sessions 

4.4.1.2.1 Paradigm 1 

Here we present the results of statistical analysis of behavioral data over 

all 191 sessions in Paradigm 1.  We tested statistically the difference in endpoint 

distribution between visual trials and somatic trials at each of the eight target 

locations for each single session.  For each target location, we counted the 

number of sessions which had a significant difference in endpoint positions for 

the two trial types at that particular target location and calculated the 

corresponding percentage.  Figure 17 gives a pie chart showing the proportion of 

sessions having a significant difference in endpoint distribution between visual 

trials and somatic trials for each of the eight target locations.  For each target 
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location, approximately 10% or less of sessions showed a significant difference 

in endpoint positions between visual trials and somatic trials.  That means, for the 

vast majority of 191 sessions, the endpoint positions for visual trials were not 

significantly different from those for somatic trials at each target location.  From 

session to session, no consistent differences in the two distributions of endpoints 

were observed for each target location.  In summary, the endpoint positions at 

each target location were similar when visual information regarding the arm 

position was provided or not provided.  In other words, the animals exhibited the 

same behavior on vision and no-vision trials.   

11/1918/19118/191

20/19123/191

16/1919/19115/191

11/1918/19118/191

20/19123/191

16/1919/19115/191

6%4%9%

10%12%

8%5%8%

6%4%9%

10%12%

8%5%8%

sessions having a significant 
difference in endpoint position

sessions that don’t have a significant 
difference in endpoint position  

Figure 17.  Behavioral data of movement endpoints for all sessions in Paradigm 

1.  Each pie chart gives the proportion of sessions having a significant difference 

in endpoint distribution between visual trials and somatic trials for a certain target 

location.  Marked above and to the right of each pie chart are the number and 

percentage of sessions respectively that were significantly different.  The pie 

charts are placed corresponding to target locations. 
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4.4.1.2.2 Paradigm 2 

Here we present the results of statistical analysis of behavioral data over 

all 113 sessions in Paradigm 2.  Figure 18 shows the proportion of sessions 

having a significant difference in endpoint distributions between visual trials and 

somatic trials for each of the eight target locations.  We found that in Paradigm 2, 

for some target locations, more than 50% of sessions showed a significant 

difference in endpoint positions between visual trials and somatic trials.  For 

other target locations, the percentage of sessions showing a significant 

difference in endpoint distributions was smaller than 50% but larger than ~20%.  

However, at any target location, we did not observe a significant difference in 

endpoint positions between visual trials and somatic trials for all sessions.  This 

means that although differences in movement endpoints were often observed for 

some target locations these differences were not generally consistent from 

session to session.  When comparing Paradigm 2 with Paradigm 1, we found that 

for each target location the percentage of sessions in Paradigm 2 was much 

larger than the corresponding percentage of sessions in Paradigm 1.  That 

suggests more sessions in Paradigm 2 showed the differences in movement 

endpoints between visual trials and somatic trials. 
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Figure 18.  Behavioral data of movement endpoints for all sessions in Paradigm 

2.  Figure conventions are the same as in Figure 17. 

4.4.2 Neurophysiology 

When the animal was doing behavioral tasks in Paradigm 1/Paradigm 2, 

neurophysiological recordings were made in dorsal area 5 of SPL.  We examined 

the effect of limb position and the visual conditions (vision of the hand (‘vision’) vs. 

no hand vision (‘no-vision’)) on neural responses both at the single cell level and 

at the population level.  Neural data presented were collected from Monkey X.  

(However, Monkey B exhibited similar pattern of neural activities.) 

4.4.2.1 Single Cell Responses 

4.4.2.1.1 Paradigm 1 

Single cell activities associated with Paradigm 1 were analyzed for each 

neuron recorded in area 5.  Figure 19 shows neurophysiological data from two 

representative cells among all recorded task-related cells.  For each cell, peri-
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stimulus time histograms (PSTH) of the average firing rate were generated for 

eight limb positions and for two visual conditions.  On top of PSTH is the 

corresponding raster plot of 5 individual spike trains recorded on 5 repeated trials.  

Each dot in the raster plot marks the time of occurrence of a single spike.  Each 

panel in Figure 19a and 7b corresponds to a single limb position in the vertical 

plane.  Neural activities during visual trials and somatic trials (or no-vision trials) 

are indicated by red and green, respectively.  Data are aligned to the time of 

acquisition of the target. 

By visual inspection of Figure 19a, several points could be made 

regarding the responses of Cell A.  First of all, this cell exhibited tuned 

perimovement activity (as evidenced by the burst occurring slightly before time 0) 

as well as tuned static positional discharge.  For both types of visual feedback 

conditions, discharge was greatest when the animal held its hand at the target 

located in the lower right position of the display (315).  Second, the activity of 

this neuron was very similar on vision and no-vision trials.  That is, even after the 

visual stimulus corresponding to the endpoint position was extinguished on no-

vision trials (T=0.4 s), the neuron continued to fire in roughly the same manner as 

on visual trials.  ANOVA analysis on the mean firing rate during the static holding 

period with gaze control indicated a significant main effect of position (p<0.05) 

but no significant main effect of the visual conditions (p = 0.1) and no significant 

position/visual conditions interaction (p = 0.5).  Thus, this neuron either encoded 

static limb position using only somatically derived information, or if it did receive 

visual input it weighted this information minimally in the context of this task.  

Figure 19b shows single cell responses from a different cell (Cell B). 

Again by visual inspection, a couple of points could be made in regard to 
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activities of Cell B.  First, as with Cell A, Cell B also exhibited tuned 

perimovement activity as well as tuned static positional discharge.  However, for 

both types of visual feedback conditions, discharge of Cell B was greatest when 

the animal held its hand at the target located in the lower left position of the 

display (225), which was different from Cell A.  In addition, Cell B fired more 

frequently for different endpoint positions. For example, the mean firing rate of 

Cell B during the static holding period for the position to which it was tuned was 

around 40 Hz while the corresponding firing rate of Cell A was around 20 Hz.  

Second, unlike the apparent difference of neural activity between endpoint 

positions, the activity of this neuron appeared to be very similar on vision and no-

vision trials.  ANOVA analysis on the mean firing rate during the static holding 

period with gaze control, however, indicated a significant main effect of the visual 

conditions as well as a significant main effect of position (p < 0.05).  No 

significant effect of interaction between those two factors was indicated (p = 0.24).  

Note the p-value associated with the effect of the visual conditions (p = 0.03) was 

close to the significance level (α = 0.05) while the p-value associated with the 

effect of the position was much less (p<0.00001).   
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(b)  Cell B
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Figure 19.  Responses of two area 5 neurons with different tuning properties ((a) 

and (b)).  Neural activities were recorded during a single session of 80 trials in 

Paradigm 1.  Activities for visual trials are marked by red color and those for 

somatic trials are marked by green color.  Each panel in a) and b) corresponds to 

a single limb/target location in the vertical plane.  The arrows in the center point 

to 8 different movement directions associated with each panel.  All data are 

aligned to target acquire at time 0.   
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4.4.2.1.2 Paradigm 2 

Figure 20 illustrates single cell activities from two task related cells (Cell C 

and Cell D) which were recorded when the animal was doing tasks in Paradigm 2.  

By visual inspection, we didn’t observe apparent perimovement activity for each 

cell.  Both cells however exhibited static positional discharge.  The activity of Cell 

C was much lower (< 20Hz) and more variable across time.  For Cell C, there 

might be a slight difference in the static positional discharge for different endpoint 

positions.  But it was difficult to identify the endpoint position at which the 

discharge was greatest since the visual conditions might have had an effect on 

the activity of this cell.  For example, cell activity appeared to be the highest for 

the upper left endpoint position on vision trials while on no-vision trials cell 

activity appeared to be the highest for the lower left position.  An ANOVA on the 

mean firing rate during the static holding period with gaze control indicated a 

significant main effect of position (p = 0.04 < 0.05) and a significant 

position/visual conditions interaction (p = 0.02 < 0.05).  No significant main effect 

of the visual conditions (p = 0.18) was indicated.  This cell might be involved in 

estimating static limb position using both somatically and visually derived 

information.  For the cell shown in Figure 20b (Cell D), the effect of endpoint 

position on cell activity was much more easily appreciated than for Cell C in 

Figure 20a.  For both vision trials and no-vision trials, the discharge of Cell D was 

greatest when the animal held its hand at the target located in the upper left 

position of the display (135).  And overall the activity of this neuron was very 

similar for the two trial types.  An ANOVA of activity of Cell D indicated a 

significant main effect of position (p<0.05) but no significant main effect of the 

visual conditions (p = 0.6) and no significant position/visual conditions interaction 
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(p = 0.7).  The activities of the two single cells illustrated in Figure 20 were 

different from cell activities illustrated in Figure 19: both cells in Figure 20 did not 

appear to feature a burst of perimovement activity slightly before time 0.  Note 

this difference in cell activity is not related to the different experimental 

paradigms.  For example, in Paradigm 2, we have recorded cells with similar 

firing patterns as those illustrated in Figure 19.   Similarly, cells with similar firing 

patterns shown in Figure 20 were found in Paradigm 1.  
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Figure 20.  Responses of two area 5 neurons with different tuning properties ((a) 

and (b)).  Neural activities were recorded during a sing session of 80 trials in 

Paradigm 2.  Other figure conventions are the same as in Figure 19.   

4.4.2.2 Population Responses 

4.4.2.2.1 Paradigm 1 
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A total of 219 neurons were recorded when the animal was doing tasks in 

Paradigm 1.  For each individual neuron in this population, we tested the effects 

of endpoint position and visual conditions on neural activity using the two-factor 

ANOVA described previously.  Cells showing the same effects of endpoint 

position and visual conditions were grouped together as follows.  Cells showing 

at least one significant main effect or a significant interaction effect could be 

classified into seven non-overlapping sub-populations: P (main effect of position), 

V (main effect of visual conditions), I (interaction of position and vision), P&V, P&I, 

V&I, P&V&I.  The proportion and relative size of each sub-population are 

illustrated in the bar chart shown in Figure 21.   

We found, first of all, that about 34% of the cells showed only a significant 

main effect of endpoint position (P).  Those cells either encoded static limb 

position using only somatically derived information, or if they did receive visual 

input they weighted this information minimally in the context of this task.  If we 

also included cells having a significant interaction effect  (I)  and cells having 

various combinations of different effects (P&V, P&I, V&I, P&V&I), about 42% of 

the cells could be considered having some effects of endpoint position.  This 

proportion is comparable to what have been reported previously.  In our study, 

the proportion might be slightly less, which may be due to the different manner in 

which cells were recorded:  we recorded almost every cell we found at least early 

in the experiment while other researchers may not record every cell they found 

unless that cell appears to be position tuned.   

We found that few cells (5%) showed only a significant main effect of the 

visual conditions (V).  Those cells may encode the vision of the endpoint of the 

arm in space, but may not use this visual information to estimate limb position. 
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We also noticed only ~8% of the cells showed either a significant effect of 

position/visual conditions interaction (I) or had various combinations of different 

effects (P&V, P&I, V&I, P&V&I).  Those cells are most likely involved in 

integrating both visual signals and somatic signals for limb position estimation.  

However, the proportion of those cells potentially involved in this integration 

mechanism was relatively low.  
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Figure 21.  Results of ANOVA for the population of 219 cells studied in P1. P: 

Cells showing a significant main effect of position.  V: Cells showing a significant 

main effect of visual feedback conditions.  I: Cells showing a significant effect of 

interaction between position and visual feedback conditions.   

4.4.2.2.2 Paradigm 2 

A total of 114 neurons were recorded when the animal was doing tasks in 

Paradigm 2.  As in Paradigm 1, cells were classified into seven non-overlapping 

sub-populations: P, V, I, P&V, P&I, V&I, P&V&I (Figure 22).  We found that ~39% 

of the cells showed only a significant main effect of endpoint position (P), ~50% 

of cells showed some effects of endpoint position (P, P&V, P&I, V&I, P&V&I), 
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~3% of cells showed only a significant main effect of visual conditions (V), and 

~11% of the cells either showed only a significant effect of position/visual 

conditions interaction (I) or had various combinations of different effects (P&V, 

P&I, V&I, P&V&I).  Despite the behavioral differences described earlier, neural 

responses were relatively consistent between Paradigm 2 and Paradigm 1, in 

terms of sensitivity to position and visual feedback condition.  For both paradigms, 

neurons with positional activity were quite common (42% of the population for 

Paradigm 1; 50% for Paradigm 2).  In contrast relatively few cells showed some 

effects of visual feedback condition (13% for Paradigm 1; 14% for Paradigm 2).  

Fewer cells showing some effects of both endpoint position and visual feedback 

condition (8% for Paradigm 1; 11% for Paradigm 2). 

Total number of cells: 114

39%

3% 3% 4%
1% 0%

3%

0%

10%

20%

30%

40%

50%

P V I P&V P&I V&I P&V&I

%
o

f 
ce

lls

39%

3% 3% 4%
1% 0%

3%

0%

10%

20%

30%

40%

50%

P V I P&V P&I V&I P&V&I

%
o

f 
ce

lls

 

Figure 22.  Results of ANOVA for the population of 114 cells studied in P2.  

Figure conventions are the same as in Figure 21.   

4.4.2.3 Bayesian Decoding on Population Responses 

4.4.2.3.1 Paradigm 1 
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In the previous section, based on ANOVA’s of single cell activity, cells 

were classified into seven non-overlapping groups: P, V, I, P&V, P&I, V&I, P&V&I.  

For simplicity, we used the term “P cells” to refer to cells that showed only a 

significant main effect of endpoint position (P), used “V cells” to refer to cells that 

showed only a significant main effect of visual conditions (V), and used “PV cells” 

to refer to cells that were in the rest of the seven groups (I, P&V, P&I, V&I, 

P&V&I).  PV cells were considered as cells that showed some effect of both 

endpoint position and vision.   

In this section, we present the results of Bayesian population decoding 

analyses in Paradigm 1.  Predictions in regard to the location of the limb were 

computed for different populations of cells and for different visual conditions.  

Note the total number of cells used for decoding analyses (147) was different 

from what is reported in the ANOVA (219).  This is because in decoding analyses 

we excluded the cells with an incomplete experimental session while ANOVA test 

could accept cells when few trials were missing.  Figure 23 shows confusion 

matrices associated with each cell population under either of the two visual 

conditions.  Each single element of a confusion matrix gives the probability of 

predicted position given the population activity associated with the actual limb 

position.  We used confusion matrices to provide a sense of how accurately the 

decoding algorithm could predict the limb position based on cell population 

activity.  Confusion matrices with Perfect decoding accuracy would result in 

confusion matrices with probabilities of 1 along the diagonal and 0 for the off 

diagonal matrices.   

First we compared confusion matrices under different visual conditions for 

each population of cells.  The most interesting finding was regarding the P cells 
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which demonstrated effects of position but no effect of the visual feedback 

conditions according to the ANOVA.  Despite the fact that the ANOVAs for this 

population did not generally show an effect of the visual feedback conditions, 

decode performance was noticeably different depending on the presence or 

absence of visual feedback.  That is, performance was reasonably accurate in 

the absence of hand vision but improved when vision of the hand was 

simultaneously available.  This result suggests that the ANOVA lacks the 

sensitivity required to fully assess the effects of vision in this task.  Moreover, this 

result suggests that visual signals may in fact play a role in representing limb 

position in this area, though not to the same extent as somatic signals.  Not 

surprisingly, decode performance was slightly improved with vision of the hand 

for PV cells which were tuned to both position and the visual feedback conditions.  

Lastly, there was no distinct difference of decode performance between the two 

visual conditions for V cells which only showed an effect of vision by the ANOVA.  

In fact, decode performance of V cells was poor for both visual conditions.   

We also compared confusion matrices across cell populations.  Note we 

must be careful in comparing confusion matrices across cell populations since 

decode performance could largely be affected by the population size.  That is, 

the more cells showing some effects of position that are included in the 

population, the better the decode performance should be.  We found decode 

performance was improved by grouping P cells with PV cells.  However, grouping 

V cells with P cells and PV cells undermined decode performance, though these 

detrimental effects were not dramatic since very few V cells were used in this 

study.  When we also included all the rest of the cells to predict limb position, we 

found that decode performance was not improved and if fact appeared to 
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decrease slightly with respect to performance using only P and PV cells.  This 

meant, unlike P cells and PV cells, which may provide a hint of where the limb 

was in space, V cells and other cells in the population do not help to improve the 

accuracy of position decoding and hence may not involved in encoding the limb 

position in space.    

 

Figure 23.  Results of Bayesian population decoding analysis in Paradigm 1.  

Confusion matrices are shown to give decoding accuracy of limb positions under 

two visual conditions and for different cell populations.  Color code indicates the 
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probability of decoded position (x coordinate) given population activity associated 

with actual limb position (y coordinate). 

4.4.2.3.2 Paradigm 2 

As described in the previous section, we computed confusion matrices 

based on population activity on visual trials and somatic trials in Paradigm 2.  

Figure 24 shows the results of this Bayesian population decoding analysis.  In 

general, the results obtained from Paradigm 2 were similar to those from 

Paradigm 1.  Decode performance was slightly better under the “vision” condition 

than that under the “no-vision” condition for P cells and PV cells but not for V 

cells.  V cells and the rest of the cells did not appear to provide information about 

the limb position in space.  However, compared with Paradigm 1, overall decode 

performance in Paradigm 2 was poorer and the difference in decode 

performance between visual conditions was less distinct.  The poorer decode 

performance might be explained by the fact the fewer cells were recorded in 

Paradigm 2.  It is currently unclear why we did not see a much worse decode 

performance under the “no-vision” conditions in Paradigm 2, where visual 

information of the hand was disallowed before target acquire under the “no-

vision” condition.  This might also be related to the relative fewer cells (especially 

P cells and PV cells) recorded in Paradigm 2.   
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Figure 24.  Results of Bayesian population decoding analysis in Paradigm 2.  

Figure conventions are the same as in Figure 23. 

4.4.3 Effects of Window Radius 

Based on ANOVA analysis of single cell activity in Paradigms 1 and 2, 

very few cells were shown to be modulated by the vision of the endpoint of the 

limb.  One possible explanation was that visual signals regarding limb position 

were not weighted strongly under both the “vision” and “no-vision” condition.  

This could often be seen in a well practiced task where task performance was not 

highly contingent on presence of vision.  To test this possibility, we varied the 3D 
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behavioral window associated with the acquisition of each target (“window 

radius”) and examined the effect of this window radius on the animal’s behavior 

as well as on single cell responses.   The experiments were done in Paradigm 1 

on Monkey X.  

4.4.3.1 Behavior 

Behavioral performance of the animal was quantified by counting the 

number of target misses for each single session of trials.  A target miss was 

considered whenever the animal attempted but missed the peripheral target or 

failed to hold the endpoint of the limb within the peripheral target window for a 

specified amount of time.  For each of the two visual conditions (“vision” VS. “no 

vision”) in a single session, we counted the number of misses until the animal 

completed 80 successful trials.  The mean value and standard deviation of the 

number of misses were computed across sessions with the same window radius.  

For this study, we examined 33 behavioral sessions window radius of 0.8 cm, 46 

with that of 1.2 cm, 23 with that of 1.6 cm and 26 with that of 2.0 cm.  Also note in 

previous result sections, window radius was 1.6 cm for neurophysiological 

recordings.  Figure 13 shows the effect of window radius on the animal’s 

behavior.  We found the number of misses decreased monotonically with 

increasing window radius.  Behavioral performance was more variable for smaller 

window radius as indicated by the error bar of standard deviation.  For all window 

radii examined, behavioral performance appeared to be better (indicated by the 

lower mean) and more stable (indicated by the smaller standard deviation) in the 

presence of vision.  In fact, p values presented in  

Table 3 indicates there was a significant behavioral difference between 

the vision and no vision conditions for window radii smaller than 2.0 cm (p<0.05).  
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Figure 25.  Number of misses in a session of 80 trials under the “vision” and “no-

vision” condition for various window radii (0.8, 1.2, 1.6, 2.0 cm).  Mean values 

present the mean across all single sessions.  Error bars denote standard 

deviation of the number of misses.  

Table 3.  Values of mean and standard deviation of number of misses under the 

“vision” or “no-vision” condition for various window radii (0.8, 1.2, 1.6, 2.0 cm).  

Also given in the far left column of the table are p-values for testing the 

equivalence of the mean of number of misses under the two visual conditions.  

 Vision No Vision  

Win R 

(cm) 

Mean 

(#) 

Standard 

deviation(#)

Mean 

(#) 

Standard 

deviation(#) 

p-Value 

0.8 11.6000 6.7158 23.3200 11.1729 0.0000 

1.2 3.5000 3.9862 11.3077 13.2462 0.0000 

1.6 1.7188 3.0505 6.1250 11.2558 0.0112 

2.0 1.2727 2.5823 2.9545 5.6361 0.0709 
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4.4.3.2 Neurophysiology 

Although the results presented in the previous section indicated that there 

was a significant behavioral performance difference between the two visual 

conditions for smaller window radii, analyses of single cell responses did not 

show corresponding difference in cell activity.  Figure 26 illustrates the PSTHs 

generated from a sample cell for two different window radii.  As with Cell A 

shown in Figure 19, this cell also exhibited tuned perimovement activity as well 

as tuned static positional discharge.  For both window radii (2 cm and 1.2 cm), 

there was no apparent difference in the activity of the cell between vision and no-

vision trials.  In fact, shrinking the window radius did not appear to affect the 

responses of this cell:  Figure 14a appears quite similar to Figure 14b.  We also 

performed an ANOVA on the mean firing rates of cell responses associated with 

each window radius.  The results of these ANOVAs further corroborated this 

finding.  For both window radii, there was a significant main effect of position (p≈

0 <0.05) but no significant main effect of the visual conditions (p = 0.5, p = 0.3) 

and no significant position/visual conditions interaction (p = 0.6, p = 0.5).  

Examination of other cells also did not show a significant difference in cell 

responses for different window radii.  
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Figure 26.  Responses of one area 5 neuron when window radius was 2.0 cm (a) 

or 1.2 cm (b).  Neural activities were recorded during a sing session of 80 trials in 

Paradigm 1.  Other figure conventions are the same as in Figure 19.   
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4.5. Discussion 

In this chapter, we described work aimed at trying to understand how the 

brain integrates somatic and visual information for limb position estimation.  We 

assessed the activity of neurons in the area 5 of the PPC as the arm was held at 

various positions with respect to the body. In this experiment, activity was 

mapped at each position under conditions where visual and somatic input were 

concurrently available (“somatic + visual”) as well as in the absence of visual 

input (“somatic”), controlled via a virtual-reality system.  We did single cell 

analysis which focused on changes in peak response magnitude induced by 

viewing the arm.  The results showed that, while about half the cells in this region 

appeared to be modulated by static limb position, only about 10% of the neurons 

appeared to differentiate between somatic and somatic + visual conditions.  Even 

more surprisingly, very few of these latter cells were also tuned to position and 

very few cells overall showed a significant interaction between position and 

sensory conditions.  These results indicate that relatively few individual area 5 

neurons appear to be modulated by the sight of the limb during static holding.  

When we enhanced the relevance of vision in this task by shrinking the window 

radius within which the endpoint of the limb needed to be maintained, cells in this 

area still did not demonstrate strong effects of the visual conditions.  The results 

also remained largely the same when we used an experimental paradigm 

(Paradigm 2) where visual information and somatic information about limb 

position were supposed to be weighted even more unevenly between trial 

conditions.  Thus, analyses of single cell activities suggested very few cells in 

area 5 appeared to integrate visual information about limb position with 

somatically-derived signals.  However, a decoding analysis at the population 
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level showed that vision does appear to play a role in representing limb position 

in this area.  The results of these analyses showed that, for the population of 

neurons that demonstrated effects of position but no effect of the visual feedback 

conditions (according to ANOVA), the decoding performance in predicting the 

actual limb position was slightly better when visual input was present.  However, 

the results also suggest that the presence of purely visually modulated cells 

appears to interfere with the coding of limb position even in populations of purely 

position-tuned cells.  Thus, visual signals may in fact play a role in representing 

limb position in this area.  However, the relatively modest changes that were 

observed suggest that area 5 may not be the primary site where cue integration 

of somatically and visually based limb position signals takes place.  

4.5.1 Other Possible Neural Substrates of Integration 

Given the observations in this chapter, could other arm-movement-related 

areas be the primary sites of integration for somatically and visually based limb 

position signals?  In exploring other candidate areas, one consideration should 

be the relative strength with which unimodal inputs are represented within a 

given area. That is, the densities of anatomical connections from unimodal areas 

to a given multimodal area are often variable and relatively unequal, which may 

place limitations on the extent to which these unimodal inputs can be weighted in 

a given task (Apker, Shi, and Buneo 2009).  Dorsal area 5, while reportedly 

multimodal, appears to be dominated by somatic input while the adjacent MIP 

appears to represent visual and somatic signals more equally (Caminiti, Ferraina, 

and Johnson 1996; Colby and Duhamel 1991).  The relatively strong visual 

responsiveness of neurons in this MIP and its reported involvement in eye-

centered coding of spatial information suggests MIP would likely be a good site 
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to find cells with activities showing strong effects of limb vision.  More 

experiments are needed in this area since most of the recordings performed in 

the superior parietal lobule of PPC have focused on surface cortex (area 5) with 

smaller numbers of neurons being recorded in MIP. 

Other possibilities include areas thought to be functionally downstream of 

the PPC.  Premotor areas receive inputs from PPC and appear to interact with 

the PPC in the computation of motor plans requiring information about the 

current location of limb.  In addition it has been reported that premotor areas 

integrate somatic input with visual input near the body (Graziano, Hu, and Gross 

1997; Graziano, Yap, and Gross 1994; Graziano 1999).  Thus premotor areas 

could possibly play an important role in the integration of somatic and visual 

signals for limb position estimation.  Regarding the different premotor areas, PMv 

certainly appears to be more visually driven than PMd or area 5, but the results 

of Hoshi and Tanji suggest that PMv neurons do not strongly encode information 

on the particular arm (left or right) that will be used to make a given movement 

(Hoshi and Tanji 2002) but instead reflect the visual motion of the hand in a limb-

independent manner (Ochiai, Mushiake, and Tanji 2005).  Thus, although PMv 

neurons may represent both visual and somatic information about the hand to be 

moved, this information may not be integrated in this area.  Clearly more 

experiments are needed.  On the other hand, cells in PMd exhibit responses that 

could point to a role in visuosomatic integration for the limb position estimation.  

PMd neurons encode information about both the static position and configuration 

of the limb (Pesaran, Nelson, and Andersen 2006; Scott, Sergio, and Kalaska 

1997) and the area is known to receive visual input via the parietal lobe (Caminiti, 

Ferraina, and Johnson 1996).  In addition, and in contrast to PMv, PMd strongly 
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encodes information on the arm that will be used to make a given movement 

(Hoshi and Tanji 2000).  Given aforementioned reasons, all these other areas 

could be involved in integrating visual and somatic signals for limb position 

estimation. However, we also have to point it out that it does not necessarily 

mean that stronger visual input about limb position could be found in these areas 

as well.  That is, cue integration for limb position estimation could be a 

collaborative result of two or more brain areas and it still is not entirely clear now 

whether vision is strongly required for the task in this study.  The details of 

explanations are presented below and in the last part of the discussion section.  

Note that cue integration for limb position estimation could arise from the 

operations of the distributed network containing two or more areas.  The 

previously described predictions presume that cue integration will manifest 

neurally as changes in the mean firing rates of neurons in a given area.  The 

results are consistent with the idea that multisensory cue integration is achieved 

via the convergence of input from largely unimodal areas onto higher order 

multisensory areas, which may subsequently be fed back to lower level 

unisensory areas (Bauer 2008).  However, neural correlates of cue integration 

could also manifest as a synchronous activation of two or more areas that are 

largely devoted to either visual or somatic processing.  It has been suggested 

that some aspects of cue integration could also be achieved via lateral 

interactions between unimodal areas (Bauer 2008).  A recent study has provided 

evidence for such a mechanism by showing increased interareal synchrony 

between sites in the auditory cortex and the STS when auditory and visual 

looming signals (i.e., signals indicating the rapid approach of potentially harmful 

objects) are presented together (Maier, Chandrasekaran, and Ghazanfar 2008).  
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Presentation of combined auditory and visual looming signals was also 

previously shown to result in enhanced perception of looming signals (Maier et al. 

2004).  Taken together, these results suggest that interareal synchronization 

might prove to be a useful probe for some aspects of cue integration, particularly 

if such synchrony can be shown to covary with behavioral measures of 

integration (Bauer 2008). 

4.5.2 Role of Visual Input in Area 5 

Thus far, studies of area 5 suggest that visual information about arm 

position is not strongly represented in this area.  In the study by Graziano and 

colleagues (Graziano, Cooke, and Taylor 2000), only a small percentage of 

neurons (~15-20%) were modulated by visual signals about the passively placed 

static arm.  In a more “active” paradigm where arm movement was required 

(Buneo et al. 2003), only 10% of the neurons were modulated by visual 

information about the hand at the starting position.  The present results also 

suggest that visual information regarding arm position is not strongly represented 

in area 5.  This is true even under conditions where visual input is expected to 

have a strong effect, that is, during the maintenance of static positions in free 3D 

space.  Note that the finding that a code for hand position in eye-centered 

coordinates exists in area 5 is not incongruent with this idea.  That is, such a 

coding scheme is still possible via coordinate transformations of somatic signals. 

Note also that the aforementioned findings do not mean that cells in this area are 

not visually responsive.  An anatomical basis exists for visual information to flow 

into both the superior and inferior parietal lobules (Caminiti et al., 1996) and 

moderate to strong responses to visual stimuli have been well documented in 

these areas (Andersen & Buneo, 2002, 2003; Buneo & Andersen, 2006).  The 
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relatively weak evidence for multisensory integration of visual and somatic arm-

position information is therefore surprising, given the history of recordings in the 

PPC (Andersen, Snyder, Bradley, & Xing, 1997).  Visual input to area 5 may 

have more to do with specifying the locations of extrinsic objects, rather than the 

positions of parts of the body.   

4.5.3 How Much is Visual Input Weighted In this Task?   

It is much easier to probe the neural mechanisms of cue integration if 

visual and somatic signals are perceptually equivalent during the task.  However, 

if visual signals are relatively unreliable and consequently not weighted very 

strongly in the task, only small differences would be found between the “vision” 

and “no vision” conditions.  In previous studies, animals were passively varying 

arm positions (Graziano, Cooke, and Taylor 2000) or under conditions where the 

animals were receiving strong haptic input on visual trials (Buneo and Andersen 

2003).  Thus visual information may be weighted minimally in the context of 

these tasks.  The present study employed an experimental paradigm where 

visual input would be expected to have stronger influence, i.e. under conditions 

where the arm was held statically in free space.  However, few area 5 cells were 

found modulated by visual cues about arm position.  Although the experimental 

paradigm in the present task is expected to have a stronger effect of vision 

compared with other aforementioned tasks, it is still possible that CNS does not 

weight visual information strongly if it doesn’t require a lot of visual information in 

order to hold arm stable in space. 

How is it possible that visual input about limb position could be minimally 

required when holding the arm statically in free space?  First, let us consider this 

question: What maintains limb stability?  Shadmehr has proposed that generally 
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there are three mechanisms helping to maintain the hand at a reach target 

(Shadmehr and Wise 2005).  One mechanism concerns the antagonist 

architecture and intrinsic muscle properties.  We know that pairs of muscles that 

act against each other create antagonist architecture.  The antagonist 

architecture produces a balance of forces or an equilibrium point which helps 

stabilize the limb.  The passive, springlike properties of muscle create intrinsic 

muscle stiffness which also promotes limb stability.  This mechanism responds 

with almost no delay and provides the first line of defense against perturbations.  

The second mechanism concerns involuntary short-loop spinal reflexes such as 

stretch reflexes.  This mechanism takes longer and also contributes to limb 

stability.  The third mechanism concerns the long-loop feedback pathways 

mediated by the brain.  These feedback pathways provide a mechanism by 

which the limb position can be cognitively monitored and controlled.  However, it 

takes even longer since the sensory signals have to reach the brain where they 

are transformed into motor signals which are transferred back to the periphery.  

All these mechanisms could help to maintain limb stability in free space.  Thus, 

visual information about limb position may not be that necessary in holding arm 

statically in free space.   

Another reason vision might not have been important in maintaining limb 

stability in the present tasks could be related with motor learning.  In the initial 

stages of learning to reach to a target, reaching movements could be much more 

variable since motor plans selected and the corresponding motor commands 

generated have not been optimized.  At this time, vision may play a more 

important role in successfully reaching a target.  However, after a certain amount 

of practice, an optimal sequence of motor commands that accomplishes the goal 
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can be formed and consolidated.  At this point, visual information may be less 

required.  In our study, it is possible that animals (especially Monkey X) are over 

trained and visual information about hand position may not be weighted strongly 

in the movements.  Although there may be some reasons why visual information 

about limb position may not be weighted strongly in the task of this study, it is still 

possible that visual information about limb position will be more evident when it is 

needed for online control of limb movements rather than simply during the 

maintenance of static arm position. 
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Chapter 5 

MOVEMENT VARIABILITY RESULTING FROM VARIOUS NOISE SOURCES 

5.1. Abstract 

Limb movements are highly variable due in part to noise occurring at 

different stages of movement production, from sensing the position of the limb to 

the issuing of motor commands.  The independent contributions of noise at each 

stage to overall movement variability are difficult to determine experimentally and 

are therefore not well understood.  Here we used a simulation approach to 

predict the effects of noise associated with 1) sensing the position of the limb 

(‘position sensing noise’) and 2) planning an appropriate movement vector 

(‘trajectory planning noise’), as well as the combined effects of these factors, on 

arm movement variability across the workspace.  Results were compared to 

those predicted by a previous model of the noise associated with movement 

execution (‘execution noise’).   We found that the effects of sensing and planning 

related noise on movement variability were dependent upon both the planned 

movement direction and the initial configuration of the arm and were different in 

many respects from the effects of execution noise.  The effects of trajectory 

planning noise alone were substantially greater than those due to position 

sensing noise and the interaction between sensing noise and planning noise was 

highly complex across movement directions.  Variability due to execution noise 

was also shown to be arm configuration dependent and was more direction-

dependent than that due to position sensing noise, trajectory planning noise or 

their combined effects.  These results provide important insights into the relative 

roles of sensing, planning and execution noise in movement variability that 
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should prove to be useful for neurophysiological investigations seeking to relate 

variability at the neural level to variability at the behavioral level.   

5.2. Introduction 

The term ‘noise’ refers to random fluctuations in a signal.  Noise is 

present not only in signals carried by electronic components but also in signals 

carried by the nervous system and has been shown to have both negative and 

positive effects on information processing (Faisal, Selen, and Wolpert 2008).  In 

general, however, neurally-derived noise is thought to be problematic for the 

brain.  For example, noise associated with sensing the position of the limbs as 

well as noise occurring during the planning and execution of motor acts results in 

movement variability, a hallmark of human motor performance.  In many 

neurological diseases this variability can be magnified (Contreras-Vidal and Buch 

2003; Hermsdorfer and Goldenberg 2002; Longstaff and Heath 2006; Thies et al. 

2009), which can affect the performance of even simple motor acts.  Thus, 

understanding the consequences of noise occurring at different stages of 

movement production can lead not only to a better understanding of neural 

processing but may also lead to better treatment approaches for some 

neurological disorders.  

In the arm movement system, noise in the sensory systems responsible 

for estimating limb and/or target position (i.e. proprioception and vision) has been 

shown to contribute to arm movement variability (Buneo et al. 1995; McIntyre, 

Stratta, and Lacquaniti 1998; Apker, Darling, and Buneo 2010; Rossetti, 

Desmurget, and Prablanc 1995; Sober and Sabes 2003).  The effects of this 

noise manifests somewhat differently in the visual and somatosensory systems, 

due to the unique properties of their corresponding sensors.  For example, 
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localization of the hand by proprioception is more precise when the hand is 

closer to the body and is more precise in depth than in azimuth, which appears to 

be due in part to posture-dependent changes in the arrangement of the 

proprioceptors in the arm (van Beers, Sittig, and van der Gon 1998).  Vision is 

also more precise for positions closer to the eyes/body but is more precise in 

azimuth than in depth, which is likely due to the limitations of visual depth 

perception (van Beers, Wolpert, and Haggard 2002).  These differences in 

precision across the workspace mean that the joint probability distribution 

describing the static position of the hand in the horizontal plane can appear to be 

isotropic or anisotropic in shape, depending on which sensors are used and 

where the hand is positioned in the workspace (van Beers, Sittig, and van der 

Gon 1998, 1999).  The consequences of this sensing noise on movement 

production are not well understood however.   

Noise can also arise during the movement planning process.  For 

example, it has been argued that the spatial distributions of movement endpoints 

following arm movements performed in the horizontal plane result from noise 

associated with the independent planning of the direction and amplitude of 

required reach vectors (Gordon, Ghilardi, and Ghez 1994).  For movements in 

3D space, patterns of movement variability are even more complex and appear 

to be dominated by noise associated with planning movements in depth (Apker, 

Darling, and Buneo 2010; McIntyre, Stratta, and Lacquaniti 1997).  These 

complex patterns of movement variability may also be related to distortions 

associated with transforming reach-related variables from visual to motor 

coordinates (McIntyre et al. 2000). Such distortions affect patterns of endpoint 

variability as errors are passed from one coordinate frame to the next.   
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Noise generated during movement execution can also profoundly affect 

movements.  Buneo et al. (1995) examined the effects of random fluctuations in 

the magnitude of joint torques at the shoulder and elbow and found that the 

resulting movement variability was direction dependent and fundamentally 

different in nature than the direction-dependent variability that results from sensor 

noise introduced at the elbow joint.  More recently, van Beers and colleagues 

(2004) explored the effects of noise introduced directly into the motor commands 

(rather than to the torques that result from these commands).  These 

investigators also found that simulated endpoint variability was direction 

dependent and, moreover, was very similar to the patterns of movement 

variability that were produced by neurologically intact human subjects when 

sensing and planning noise were minimized.  In other words, when other sources 

of noise were reduced in magnitude, patterns of arm movement variability 

appeared to be largely determined by execution-related noise.  

Overall, the relative contributions of sensing, planning, and execution-

related noise on movement production across the workspace are not well known.  

In addition, while these noise sources have traditionally been evaluated 

independently, they naturally interact during the production of movement and the 

consequences of this interaction are only beginning to be investigated.  For 

example, Wolpert and colleagues (2009) have argued that planning and 

execution-related noise combine near-optimally in the temporal domain (Faisal 

and Wolpert 2009).  In addition, patterns of arm endpoint variability in 3D space 

have recently been shown to arise from differences in the relative levels and 

spatial distributions of planning and execution-related noise (Apker, Darling, and 

Buneo 2010).  However, despite recent progress in this area, the manner in 



   110 

which noise occurring at different levels interacts to influence movement 

variability remains poorly understood.  Here we used a simulation approach to 

characterize the effects of position sensing noise and trajectory planning noise, 

as well as their combined effects, on arm movement variability across the 

workspace and compared the resulting movement variability to that predicted by 

execution noise.   The results provide important insights into the consequences 

of noise occurring at different stages of movement production.  In addition, the 

results may ultimately prove useful for developing strategies to reduce the 

exaggerated movement variability that arises in patient populations and for the 

interpretation of neurophysiological investigations designed to relate variability at 

the neural level to variability at the behavioral level. 

5.3. Methods 

5.3.1 Noise Simulation I: Errors in Sensing Initial Conditions 

Simulation I (SI) evaluated the effects of noise in the sensing of initial 

conditions on errors in movement direction.  This was simulated by introducing 

random perturbations into the initial hand position/arm configuration and 

assuming that the motor system was unaware of these perturbations and thus 

failed to compensate for them.  Two random perturbation distributions were 

independently assessed (Figure 27).  The isotropic (circular) perturbation 

distribution was chosen as a general approximation of the joint visual-somatic 

probability distribution describing hand position estimation in the horizontal plane 

(van Beers, Sittig, and van der Gon 1999).  Perturbations were drawn from a 

Gaussian distribution and had a standard deviation of 0.02828 m along any given 

axis.  The anisotropic (elliptical) distribution had a standard deviation of 0.02 m 

along its minor axis and 0.04 m along its major axis and was thus equal in area 
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to the isotropic distribution.  For the anisotropic distribution, the minor axis was 

collinear with a vector pointing from the shoulder to the hand, an approximation 

to the anisotropy in somatically based hand localization reported by van Beers 

and colleagues (van Beers, Sittig, and van der Gon 1998).  Note that the level of 

position sensing noise (i.e. the size of the ellipses illustrated in Figure 27) was 

arbitrarily determined as the focus of these simulations was not on the overall 

magnitude of movement variability but on its direction dependence (distribution in 

space) and arm configuration dependence.   

                

Figure 27.  Illustration of the arm endpoint perturbations used in SI and SII for 

one arm posture.  Two random error distributions were used (isotropic and 

anisotropic). The isotropic error distribution was chosen as an approximation to 

the joint visual-somatic probability distribution describing hand position estimation 

in the horizontal plane (van Beers, Sittig, and van der Gon 1999).  The 

anisotropic distribution was chosen as an approximation to the anisotropy in 

somatically based hand localization (van Beers, Sittig, and van der Gon 1998).  S: 

shoulder.  E: elbow.  s: shoulder angle. e: elbow angle.    
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Figure 28a illustrates the effect of a single perturbation trial in SI.  In this 

simulation, movement directions were defined with respect to the initial hand 

position only and were not directed to particular locations in the workspace.  As a 

result, planned movement vectors under perturbed conditions were simply 

translated versions of vectors that would have been planned under unperturbed 

conditions. Despite this fact, errors in movement direction were generated in the 

perturbed condition as a result of a failure to compensate for differing initial 

conditions.  That is, perturbations introduced a discrepancy between the ‘sensed’ 

and ‘actual’ initial conditions.  Since the joint torques associated with a given 

movement direction depend on the initial conditions, failure to recognize this 

discrepancy resulted in the wrong torques being ‘selected’ for the required 

movement. This resulted in deviations of the actual trajectory from the required 

trajectory through the conducting chain of forward transformations. 
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Figure 28.  (a) Schematic illustration of the movement errors (Dir Err) generated 

on single perturbation trials in Noise Simulation I (SI):  Errors in sensing initial 

conditions.  Filled (gray) arm shows the arm configuration under unperturbed 

conditions while the unfilled (white) arm represents the perturbed conditions.  

Solid black vector: movement planned under unperturbed conditions.  Dotted 

vector: Movement planned under perturbed conditions.  In this simulation, 
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movements were not planned to a fixed spatial location, thus perturbation of the 

arm simply caused a translation of the planned movement vector.  As a result, 

the movement error (dashed vector) resulted solely from a misestimation of initial 

arm configuration.  (b) Schematic of the motor commands at the shoulder (us) 

and elbow (ue) under unperturbed and perturbed conditions in SI.   

5.3.2 Noise Simulation II: Errors in Sensing Initial Conditions + Errors in 

Trajectory Planning 

Simulation II also involved the introduction of random perturbations 

(isotropic and anisotropic) into the initial hand position/arm configuration and 

quantification of the resulting movement errors.  In contrast to SI however, 

planned movement directions in SII were defined by vectors connecting the 

perturbed initial hand positions to fixed spatial targets (Figure 29a), which is more 

like what a human subject might encounter in real life.  In this situation, 

movement vectors planned from the perturbed hand locations were not the same 

as those that would be planned under unperturbed conditions but differed from 

these in both direction and extent. As a result, directional errors in this simulation 

can be attributed to two sources: 1) a failure to compensate for changing initial 

conditions (as in SI) and 2) errors in trajectory planning.   
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Figure 29.  (a) Schematic illustration of the movement errors (Dir Err) generated 

on single perturbation trials in Noise Simulation II (SII): Errors in sensing initial 

conditions + errors in trajectory planning.  Since movements were planned to a 

fixed spatial location (filled circle), perturbation of the arm resulted in a translation 

and rotation of the planned movement vector.  The movement error resulted from 

a misestimation of the initial conditions and a misestimation of required 

movement vectors. (b) Schematic of the motor commands under unperturbed 

and perturbed conditions in SII.  Other figure conventions are the same as in 

Figure 28. 

5.3.3 Noise Simulation III: Errors in Movement Execution 

In this simulation, rather than introducing noise into the estimated position 

of the limb we instead introduced noise into the elbow and shoulder motor 

commands responsible for generating the simulated movements (Figure 30).  

The noise in motor commands arises during the execution stage of movement 

production. In our simulation, this ‘execution noise’ was generated using a model 

proposed by Van Beers and colleagues (2004).  Based on this model, execution 

noise was composed of three components: signal-dependent noise (SDN), 

signal-independent noise or constant noise (CN), and temporal noise (TN).  SDN 



   115 

was first proposed by Harris and Wolpert (1998) as noise whose variance 

increases with the size of the neural control signal.  SDN was modeled as 

Gaussian white noise in the magnitude of the signal with zero mean and a 

standard deviation (σSDN) proportional to the absolute value of the motor 

command.  Stated mathematically, σSDN was defined as σSDN = kSDN·u, where u is 

the motor command and kSDN defines the level of the noise.  CN was proposed 

by Van Beers and colleagues to result from the background activity of neurons 

and was modeled as a constant level of noise that was independent of the neural 

control signal.  CN was modeled in a similar way as SDN, but with a standard 

deviation (σCN) that was independent of the motor command: σCN = kCN.  CN and 

SDN were assumed to be independent, with the total amount of noise having a 

standard deviation of 2
CN

2
SDN σσ  .  Lastly, TN accounts for variability in 

movement duration and as a result was added to the motor commands after the 

inverse transformations.  The level of TN was defined by the coefficient of 

variation kTN.  For a single simulated movement, the duration of the motor 

commands was scaled by a factor c that was randomly sampled from a normal 

distribution with mean of one and standard deviation of kTN.  Since movements 

with a longer duration tend to have a lower peak velocity, the magnitude of the 

motor command was scaled by a factor of 1/c2 when movement time was scaled 

by a factor of c (van Beers, Haggard, and Wolpert 2004). 

The values of the parameters kSDN, kCN, kTN were previously estimated by 

van Beers and colleagues (2004) by fitting the noise model to experimental data 

so as to optimize the log likelihood of observed movement endpoints. The best 

fitting parameters were kSDN = 0.103, kCN = 0.185, and kTN = 0.083.  Noise levels 

were assumed to be the same for both the shoulder and elbow motor commands 
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and were added to the two joint motor commands simultaneously and 

independently. Figure 30b illustrates the shoulder and elbow motor commands 

determined for rightward (0˚) movements under normal (uncorrupted) conditions 

(upper plot), as well as when these commands are corrupted by noise (lower 

plot).  
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Figure 30.  (a) Schematic illustration of the movement errors (Dir Err) generated 

on single perturbation trials in Noise Simulation III (SIII): Errors in movement 

execution.  No perturbations of the initial arm configuration were introduced. 

Movement error results from noise introduced into the motor commands. (b) 

Schematic of the motor commands in SIII.  Figure conventions are the same as 

in Figure 28 and Figure 29. 

5.4. Results 

5.4.1 Noise Simulation I: Errors in Sensing Initial Conditions  

5.4.1.1 Simulation Results for One Initial Arm Posture 

In this simulation, random perturbations were introduced into the initial 

hand position to simulate imprecise limb position estimation and the resulting 

effects on movement variability were quantified. Results are shown in Figure 31 

for one initial arm posture (initial arm posture 1 in Table 2) and both perturbation 
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conditions (isotropic and anisotropic).  Figure 31a shows simulated hand paths 

associated with 4 movement directions. For both perturbation distributions, the 

average handpath generally aligned with the planned movement direction: mean 

directional error was generally between ±1° for any single simulated movement 

direction.  The handpaths generated for any given planned direction were 

variable however, with the extent of this variability differing somewhat for different 

movement directions.  This can be best appreciated in Figure 31b which plots the 

circular standard deviation (CSD) of the directional errors resulting from 

isotropically and anisotropically distributed sensing noise. For both perturbation 

distributions, these plots were elliptical in shape, indicating that the variability 

introduced by sensing errors was direction dependent.  In addition, for both 

perturbation distributions, variability was largest along an axis that was aligned 

approximately with the forearm (i.e. the 135/315 axis in Figure 31b).  The 

variability associated with the two perturbation distributions did differ in some 

respects however.  For example, variability associated with isotropic 

perturbations was generally smaller and more elongated or more direction-

dependent than the variability associated with anisotropic perturbations, even 

though the two perturbation distributions were equal in area.   

In summary, in SI, the distribution used to simulate imprecise limb 

position sense in the workspace appeared to have consequences for both the 

magnitude and direction-dependence of resulting patterns of movement 

variability but did not appear to influence the movement direction associated with 

maximal variability.   
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Figure 31.  Results obtained from SI for one arm posture.  (a) Simulated hand 

paths for four movement directions in the presence of isotropically and 

anisotropically distributed endpoint noise. (b) Polar plots of the circular standard 

deviation (CSD) of the directional errors associated with 24 movement directions.   

5.4.1.2 Simulation Results for Multiple Initial Arm Postures 

To examine the relationship between movement variability and initial arm 

configuration, we repeated the analysis shown in Figure 31 for three additional 

arm configurations (Figure 32). The shoulder and elbow angles corresponding to 
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these postures can be found in Table 2.  For simplicity of presentation, only 

results associated with isotropic position sensing noise are shown in Figure 32.  

This figure shows that for the more extended arm positions, direction-dependent 

aspects of movement variability were not fixed in space, but rotated as the arm 

posture changed, maintaining a roughly constant spatial relationship with respect 

to the forearm.  In fact, for all three of these arm positions, the axes of maximum 

variability were aligned with the long axis of the forearm.  The magnitude of 

variability however did not change appreciably with arm posture for these more 

extended positions, which can be appreciated from the relative the sizes of the 

CSD plots.  However when arm posture changed such that the endpoint was 

positioned closer to the body, movement variability became noticeably larger and 

also less direction-dependent.  This increased variability can be attributed to the 

larger changes in joint angles that accompany displacements of the endpoint at 

this position.  This larger change in joint angles results in larger difference in the 

torques required to move in a given direction (compared to more extended arm 

postures), thus the effect of a given perturbation is larger at this position.   
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Figure 32.  Results from SI for four arm postures.  Polar plots of the CSD of the 

directional errors associated with 24 movement directions are shown for each 

arm posture.  S: shoulder.  E: elbow. 

5.4.1.3 Sensitivity Analysis of Sensing Noise 

Since SI employed random perturbations of the arm endpoint that varied 

therefore in both magnitude and direction it was difficult to independently assess 

the effects of the direction and amplitude of these perturbations on observed 

patterns of movement variability.  As a result we also separately characterized 

the effects of perturbation amplitude () and perturbation direction () on errors in 

initial movement direction.   

5.4.1.3.1 Sensitivity Analysis: Amplitude  

For the sensitivity analysis of perturbation amplitude, three different 

amplitudes were used (0.005, 0.01, 0.02m) and for each amplitude simulations 
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were conducted for 24 perturbation directions spaced 15 apart.  Figure 33 

shows the results of these analyses for one initial arm posture (similar results 

were obtained for the other initial arm postures).  Figure 33a shows simulated 

handpaths associated with three movement directions (0°, 120° and 240°) when 

perturbations of amplitudes 0.005, 0.01, and 0.02m were applied in each of 24 

directions. Variability of the handpaths increased slightly with the progressively 

larger perturbation amplitudes.  This can be appreciated more clearly in Figure 

33b where movement direction errors associated with three movement directions 

(indicated by the different line styles) are plotted as a function of perturbation 

direction (abscissa) and perturbation amplitude (indicated by line color).  Figure 

33b shows that for a given planned movement direction, progressively larger 

amplitude perturbations in a given perturbation direction produced larger errors.  

In fact, directional error appeared to be roughly proportional to perturbation 

amplitude.  This approximately linear relationship is illustrated in the inset of 

Figure 33b using one movement direction (0°) and one perturbation direction 

(50°). The inset plotted the linear polynomial fitting curve based on three data 

points. The associative R2 (coefficient of determination) is very close to one and 

SSE (residual sum of squares) is very close to zero, which indicates the linear 

regression line almost perfectly fits the data. The linear relationship between 

directional error () and perturbation amplitude () can be summarized 

mathematically as: 

ρkα          [ 22 ]                                       

where k is a scalar denoting the slope.   
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Figure 33.  Sensitivity analysis of perturbation amplitude () for one initial arm 

posture in SI.  (a) Simulated handpaths for 3 movement directions (0°, 120° and 

240°) under equal perturbation amplitude of 0.005m (left), 0.01m (middle) or 

0.02m (right). Grey circles on top of the three plots illustrate the relative sizes of 

three equal amplitude perturbations applied in 24 directions. Also shown is the 

two link system representing the upper and lower arm in each of the three plots.  

(b) Directional error plotted as a function of perturbation direction for each of 

three movement directions (0°, 120° and 240°) and three perturbation amplitudes 

(0.005 (red), 0.01 (green), and 0.02m (blue).  The inset shows the linear 

polynomial fitting curve for three data points (Directional error () Vs. 

Perturbation Amplitude ()) when perturbation direction was fixed at 50° and 

movement direction was 0°.  
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5.4.1.3.2 Sensitivity Analysis: Direction  

For the sensitivity analysis of direction, perturbation amplitude was fixed 

at 0.01m and directional errors were evaluated for each of 24 perturbation 

directions spaced 15apart.  The effects of perturbation direction were found to 

be more complex than those due to perturbation amplitude.  The complex 

relation between directional error and perturbation direction is illustrated in Figure 

34.  Here variations in directional error as a function of perturbation direction are 

shown for all 24 movement directions, given one perturbation amplitude (0.01 m).  

For each planned movement direction, errors varied roughly sinusoidally with 

perturbation direction, with a period of about 2π.  In addition, these sinusoidal 

‘waveforms’ were not identical but varied in amplitude and phase for different 

movement directions.  As a result, for a given perturbation (with fixed amplitude 

and direction), directional errors varied across movement directions. This 

variation in errors could be quite large for some perturbation directions (e.g. ~75° 

and ~255), while for some other perturbation directions (i.e. ~15 and ~195), 

the variation could be rather small and errors were nearly identical for different 

movement directions.    

The sensitivity to perturbations applied in a single direction is shown in a 

different format in the lower panel of Figure 34.  Here the directional errors 

associated with each of four perturbation directions (45°, 135°, 225°, 315°) are 

plotted in polar form.  Clockwise directional errors are plotted using solid lines, 

while counterclockwise errors are plotted using dashed lines.  Each of the plots 

represents a ‘slice’ through the sinuosoidal curves shown in the upper panel.  

The variation in directional errors across movement directions can be better 

appreciated from these plots.  These plots show that even fixed amplitude 
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perturbations applied in a single perturbation direction are expected to result in 

direction-dependent patterns of errors, though the extent of this anisotropy 

clearly differed between perturbation directions (e.g. 45 and 135).  These plots 

also show that for oppositely directed perturbation directions (e.g. 45 and 225), 

directional errors are expected to be approximately equal in magnitude but 

opposite in sign.  
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Figure 34.  Sensitivity analysis of perturbation direction () for one initial arm 

posture in SI.  Data associated with one perturbation amplitude (0.01m) are 

shown. Upper panel: Directional error as a function of perturbation direction for 

24 movement directions (colors). Lower panel: Polar form of directional errors for 

four perturbation directions (45°, 135°, 225°, 315°).  In the polar plots, the 

orientation of each vector corresponds to a particular movement direction and the 

magnitude of each vector corresponds to the magnitude of the directional error 
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(solid lines = clockwise (positive) errors; dotted lines = counterclockwise 

(negative) errors). 

5.4.1.3.3 Discussion and Conclusion  

Sensitivity analysis of perturbation amplitude appeared to suggest a 

simple linear relationship between directional error () and perturbation 

amplitude ().  However, sensitivity analysis of perturbation direction indicated 

that the relation between directional error () and perturbation direction (β) was 

more complex.  Directional errors appeared to vary sinusoidally with perturbation 

direction.  These sinusoidal ‘waveforms’ were not identical but varied in 

amplitude and phase for different movement directions (Figure 34).  These 

variations, even for constant amplitude perturbations, likely explain why even the 

relatively simple isotropic perturbation distribution used in SI resulted in a 

complex pattern of errors across movement directions.  Meanwhile, the 

combined effect of seemingly linear relationship between  and  and sinusoidal 

relationship between  and β may explain why anisotropic perturbations resulted 

in directional error variability which was less direction-dependent than the 

variability associated with isotropic perturbations.  That is, those perturbations 

with large/small amplitude were probably associated with a direction resulting in 

smaller/larger directional error according to the sinusoidal relationship between 

directional error and perturbation direction. Thus the effect of perturbation 

amplitude was probably cancelled by the effect of perturbation direction, which 

resulted in relatively isotropic or less direction-dependent directional error 

variability.  On the hand, if the anisotropic perturbations were oriented in a way 

that the effect of perturbation amplitude was not cancelled but added to the effect 
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of perturbation direction, the resulted directional error variability would be much 

more anisotropic or direction-dependent.  Thus, the orientation of anisotropic 

perturbation distribution may have an effect on pattern of directional errors 

across movement directions as well. 

Directional errors varied across movement directions even for the same 

perturbation amplitude and direction.  The pattern of directional errors across 

movement directions was quite complex and varied for different perturbation 

directions (lower panel of Figure 34). To further examine the relation between 

directional error and movement direction, directional error was plotted as a 

function of movement direction in Figure 35.  Each trace gives directional error as 

a function of movement direction for one perturbation direction.  Directional error 

appeared to be a sinusoidal function of movement direction with a period of π.  

Since variation of perturbation direction () could move the sinusoidal trace up or 

down and change its peak to peak amplitude, it appeared that this sinusoidal 

function was also dependent on perturbation directions ().  For a pair of 

oppositely directed perturbation directions (with a difference of 180°), directional 

error traces were symmetrical with respect to horizontal 0 axis,  which is 

consistent to what was suggested by lower panel of Figure 34.  
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Figure 35.  Directional error as a function of movement direction for 48 

perturbation directions and one perturbation amplitude (=0.01m). Thick grey 

lines represent directional error as a function of movement direction when 

perturbation directions () were 135° (solid) and 315° (dashed). Thick black lines 

are associated with perturbation directions of 45° (solid) and 225° (dashed).  

Given what was shown in Figure 33-Figure 35, directional error appeared 

to be a function of perturbation amplitude, perturbation direction and movement 

direction. Further examination showed that directional errors could be best 

approximated by the following mathematical function: 

           )δsin(βkδβδ2rsinδβδ2γsinkρα 3221211   

          [ 23 ]                          
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where α denotes directional error, ρ and β represent perturbation amplitude and 

direction, γ denotes movement direction, and δ1, δ2, δ3, k1, and k2 are some 

constants.  However, according to this function, variation of k1 and k2 could affect 

the magnitude of directional error (); variation of δ1, δ2 and δ3 could have an 

effect on the phase shift of the directional error waveforms shown in Figure 34.  

Since previous analyses associated with multiple initial arm postures suggested 

directional errors were also posture dependent, δ1, δ2, δ3, k1, k2 may vary with 

initial arm posture. 

In summary, the sensitivity analyses suggested that perturbation 

amplitude and perturbation direction did not contribute in the same manner to the 

direction-dependent and posture-dependent patterns of movement variability 

observed in Simulation I.  For a given arm posture, perturbation direction 

appeared to be the largest contributor to the direction-dependent aspects of 

movement variability.  In contrast, perturbation amplitude appeared to simply 

magnify the effects of perturbations applied along a given direction.    

5.4.2 Noise Simulation II: Errors in Sensing Initial Conditions + Errors in 

Trajectory Planning 

5.4.2.1 Simulation Results for One Initial Arm Posture 

In this simulation (SII), random perturbations were again introduced into 

the initial hand position to simulate imprecise limb position estimation.  The 

results of SII are summarized in Figure 36 for one initial arm posture (initial arm 

posture 1 in Table 2) and both perturbation distributions (isotropic and 

anisotropic).    Figure 36a shows simulated hand paths associated with 4 

movement directions. For both perturbation distributions, the average handpath 
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generally aligned with the planned movement direction.  The handpaths 

generated for any given planned direction were quite variable however and the 

directional variability of handpaths was somewhat different for different 

movement directions. For example, the directional error variability appeared to be 

larger for the 135° movement direction rather than for the 315° movement 

direction.  We also found that the extent of this variability also differed for 

different perturbation conditions: the directional error variability was slightly 

smaller for the isotropic perturbation distribution than for the anisotropic 

perturbation distribution.  This can be best appreciated in Figure 36b which plots 

the circular standard deviation (CSD) of the directional errors resulting from 

isotropically and anisotropically distributed sensing noise. For all 24 movement 

directions, the CSD resulting from isotropic perturbations was smaller than that 

resulting from anisotropic perturbations.  For both perturbation distributions, 

variability in directional error was direction dependent. This dependence on 

movement direction could be indicated by the asymmetry of the variability about 

the center of the CSD plots illustrated in Figure 36b.  The variability pattern 

resulting from anisotropically distributed sensing noise appeared to be shifted 

from center along approximately the 120 movement direction while the variability 

pattern resulting from isotropically distributed sensing noise appeared to be 

shifted along approximately the135 movement direction. As a result, for both 

perturbation distributions, the largest variability was found along one movement 

direction and the smallest along the opposite movement direction. For errors 

resulting from anisotropically distributed sensing noise, the largest/smallest 

variability was approximately along the 120/300 axis, while it was along the 

135/315 axis for largest/smallest variability resulting from isotropically 
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distributed sensing noise.  Lastly, the CSD plots also show that variability 

associated with isotropic perturbations was generally smaller than the variability 

associated with anisotropic perturbations.   

In summary, SII showed that the movement variability arising from both 

arm position sensing and trajectory planning noise was movement direction-

dependent and generally much larger than the variability due to sensing noise 

alone.  As in SI, variability also depended on the particular distribution used to 

simulate the estimation of limb position, with more anisotropic perturbation 

distributions generally resulting in greater movement variability.   
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Figure 36.  Results obtained from SII for one arm posture.  (a) Simulated hand 

paths for four movement directions in the presence of isotropically and 

anisotropically distributed endpoint noise. (b) Polar plots of the circular standard 

deviation (CSD) of the directional errors associated with 24 movement directions.   

5.4.2.2 Simulation Results for Multiple Initial Arm Postures 

As for SI we also examined the relationship between movement variability 

and initial arm configuration in SII by repeating the analysis for three additional 
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arm configurations (Table 2).  Figure 37 shows polar plots of the movement 

variability resulting from combined sensing and trajectory planning noise for four 

arm postures.  For simplicity of presentation, only results for the isotropic position 

sensing noise distribution are shown.  In general, the shapes and sizes of these 

CSD plots were very similar for the four arm postures.  The magnitude of 

variability did not change appreciably with arm posture. On the other hand, 

direction-dependent aspects of movement variability were not fixed in space, but 

rotated as the arm posture changed, maintaining a roughly constant spatial 

relationship with respect to the forearm.   
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Figure 37.  Results from SII for four arm postures.  Polar plots of the CSD of the 

directional errors associated with 24 movement directions are shown for each 

arm posture.  S: shoulder.  E: elbow. 
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5.4.2.3 Interaction Analysis Between Sensing noise and Planning noise  

Directional errors in SII can be attributed to two sources: 1) a failure to 

compensate for changing initial conditions (as in SI) and 2) errors in trajectory 

planning.  To examine how these two sources combined to contribute to errors in 

movement direction, we studied the effects of planning and sensing noise 

separately and compared the resulting movement variability to that arising from 

their combined effects.  Since the directional errors resulting from errors in 

sensing initial conditions were already analyzed in SI, we calculated the 

directional errors that would be expected to result from trajectory planning errors 

alone.  This was done by translating the planned movement vectors following 

perturbation to the unperturbed arm endpoint and conducting the simulations as 

in unperturbed conditions.  In this way we removed errors in sensing the initial 

conditions from the simulations.  

Figure 38 shows polar plots of the directional error variability associated 

with position sensing noise, trajectory planning noise as well as a combination of 

both noise sources.  The figure illustrates that the variability resulting from 

trajectory planning noise alone was movement direction dependent when this 

noise was due to anisotropic (elliptical) perturbations. The corresponding CSD 

plot was elliptical with the major axis (i.e. the axis associated with maximal 

variability) being orthogonal to the major axis of the anisotropic perturbations. In 

contrast, the CSD plot resulting from trajectory planning noise alone was circular 

for isotropic (circular) perturbations, suggesting directional error variability does 

not depend on movement direction.  All of these findings suggested that 

direction-dependent errors resulting from trajectory planning noise alone were 

closely related to the pattern of sensing error distributions.  This is because 
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actual movement direction in part reflects planned direction which is determined 

by sensed positions of the hand and the target.  In our simulations, sensed target 

positions were always the same and noise in planned direction directly resulted 

from noise in sensing hand location.   

Figure 38 also illustrates that the asymmetric pattern of variability in the 

presence of both position sensing noise and trajectory planning sources arises 

from a complex interaction between these two noise sources for movements in 

different directions.  Variability associated with trajectory planning noise alone 

was generally symmetric about the center of the CSD plot and accounted for 

most of the variability observed when both noise sources were present.  However, 

the manner in which this variability interacted with variability due to position 

sensing noise was highly direction-dependent.  For a range of movement 

directions, e.g. 30-210, the directional errors induced by each noise source 

tended to be equal in sign.  As a result, for these movement directions the effects 

of position sensing noise and trajectory planning summed together and were 

therefore greater than the noise due to either source alone.  For other movement 

directions the effects of each noise source were opposite in sign leading to a 

partial cancellation of their effects.  That is, for these directions the movement 

errors induced by position sensing noise appeared to subtract from those due to 

trajectory planning noise.  Thus, CSD plots were not symmetric about the center 

but shifted along the direction which appeared associated with the direction of 

maximum variability due to sensing noise alone.  This was true for both the 

isotropic and anisotropic perturbation distributions.  The complex interaction 

between sensing noise and trajectory planning noise across movement directions 



   135 

resulted in the asymmetric pattern of variability shown here and in Figure 36 as 

well. 
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Figure 38.  Polar plots of the circular standard deviation (CSD) of the directional 

errors associated with position sensing noise, trajectory planning noise, and a 

combination of sensing and trajectory planning noise. Left plot gives CSD 

associated with isotropically distributed sensing noise. Right plot gives CSD 

associated with anisotropically distributed sensing noise. 

5.4.3 Noise Simulation III: Errors in Movement Execution 

5.4.3.1 Simulation Results for One Initial Arm Posture 

In this simulation, we examined the effects of noise in execution on 

movement variability.  Figure 39 shows the results of these simulations for one 

initial arm posture (initial arm posture 1 in Table 2).  As in Figure 31 and Figure 
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36, hand paths for 4 movement directions are illustrated in panel (a) while the 

CSD of the directional errors associated with 24 movement directions are plotted 

in panel (b).  In our simulations, the average handpath generally aligned with the 

planned movement direction.  The variability of errors due to execution noise was 

fairly small (< 3°).  For different movement directions, variability due to execution 

noise was highly anisotropic however.  For example, Figure 39b shows that 

variability along the 75˚/225˚ axis was predicted to be only about 1/3rd of that 

along the orthogonal 165˚/315˚ axis. 
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Figure 39.  Results obtained from SIII for one arm posture.  (a) Simulated hand 

paths for four movement directions in the presence of execution noise. (b) Polar 

plots of the circular standard deviation (CSD) of the directional errors associated 

with 24 movement directions.   

5.4.3.2 Simulation Results for Multiple Initial Arm Postures 

In SIII, we also examined the relationship between movement variability 

and initial arm configuration by repeating the analysis for three additional arm 

configurations (Table 2) as in SI and SII.  Figure 40 shows polar plots of the 

movement variability resulting from execution noise for four arm postures.  We 
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found execution noise resulted not only in direction-dependent patterns of 

movement variability but posture dependent ones as well.  In general, the pattern 

of variability across directions was not fixed in space but remained roughly 

aligned with the long axis of the forearm as arm posture changed.  On the other 

hand, the magnitude of execution-related variability was predicted to be quite 

similar across arm postures.  The shapes and sizes of these CSD plots did not 

change appreciably with arm posture.  
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Figure 40.  Results from SIII for four arm postures.  Polar plots of the CSD of the 

directional errors associated with 24 movement directions are shown for each 

arm posture.  S: shoulder.  E: elbow. 

5.4.3.3 Simulation Method Verification 

Here we tried to verify the execution noise model proposed by van Beers 

and colleagues (2004) could be applied in SIII.  Note the parameters associated 

with the noise model (kSDN, kCN, and kTN) were taken from previously estimated 
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values based on experimental data (van Beers, Haggard, and Wolpert 2004).  In 

particular, these parameters were derived in an investigation using a single arm 

posture which also had different movement specifications and anthropometric 

physical parameter values from our simulations. Thus, in order to verify the same 

noise model could be applied in our simulations, we compared the variability 

resulting from our simulation method with the observed and predicted variability 

from the experiment and model simulation of van Beers and colleagues (2004).  

This was done by adapting the movement conditions in SIII to those used in this 

previous investigation and calculated the resulting variability. The anthropometric 

and mechanical property values for the verification simulation are listed in Table 

4. The viscosity coefficient of both joints was set to 0.8 kg m2/s (Nakano et al. 

1999).  Movement amplitude was 0.096 m and movement duration was a 

constant of 0.35s.  Although the initial arm posture could differ across subjects in 

previous investigation, we chose the closest initial arm posture ((θs, θe) =(69°, 

77°)) to verify our simulation method in SIII.  

 

Table 4.  Anthropometric and mechanical property values.  Values are taken from 

Kawato (1995) and are similar to those used by Van Beer et al. (2004).  COM = 

center of mass. 

  Upper arm (i=s) Forearm (i=e) 

Length (li) [m] 0.25 0.35 

COM (ri) [m] 0.12 0.15 

Mass (mi) [kg] 0.9 1.1 

Inertia (Ii) [kg·m2] 0.0071 0.0206 
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The results of this comparison are illustrated in Figure 41.  Since in the 

previous investigation, variability was quantified as the reciprocal of the circular 

standard deviation (1/CSD) rather than simply the CSD, we compared 1/CSD of 

current verification simulation with that of previous experimental observation and 

model prediction.  Figure 41 shows the polar plots of 1/CSD from the previous 

investigation (Figure 41a) and the current investigation (Figure 41b).  We found 

that movement variability in the current verification simulation was quite similar to 

that reported by van Beers and colleagues (2004). Note in the latter investigation 

variability was highly anisotropic (Figure 41a).  Variability due to execution noise 

in the current investigation was also highly anisotropic (Figure 41b).  Moreover, 

the shape and orientation of this anisotropy were also quite similar, resembling a 

spindle with the axis associated with the minimum variability (or maximum 1/CSD) 

aligned approximately with the 68/242 axis. 

It is also shown in Figure 41 that the magnitude of 1/CSD in the current 

investigation was bigger, meaning the variability was smaller. This difference 

could be due to the differences in the simulation method. Although we modified 

the movement specifications and parameter values to closely approximate the 

movement conditions in previous research, there were some limitations we could 

not overcome. First of all, in the study by van Beers and colleagues (2004), 

motor commands were estimated from mean trajectories. As a result, in contrast 

to the straight idealized trajectories used in the present study, the mean 

trajectories could be curved.   In the previous study, movement amplitude and 

duration were not fixed across movement directions. Although the target distance 

was 0.096 m, subjects tended to overshoot or undershoot for particular directions. 

Thus, the motor commands calculated from the trajectories were likely different 
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from our investigation.  In addition, the results of simulations can be sensitive to 

the choice of the anthropometric and physical parameters. The values of 

parameters in van Beers (2004) were not exactly like those from Kawato (1995): 

the arm lengths were measured from each subject and other parameters were 

scaled accordingly based on Kawato’s data.  Lastly, the previous investigation 

did not specify the number of time-steps used in the simulations. Since signal 

dependent noise and constant noise were added to the motor command at each 

time-step in the simulations, the movement variability was predicted to be smaller 

if more time steps were involved. It is likely we applied more time steps in our 

simulations.  

Overall, it is appropriate to apply the previously proposed execution noise 

model in our simulations.  Although the magnitude of variability in the verification 

simulations was different from previous experimental data, the direction 

dependent pattern of variability due to execution noise generated by the model 

was quite similar.  This is important as the focus of these simulations was not on 

the overall magnitude of movement variability but on its direction dependence 

and arm configuration dependence which we compared cross different 

simulations (SI, SII, and SIII).  On the other hand, it should be also noted that the 

model parameters could vary for different arm postures in SIII. The execution 

noise model therefore may need to be refined if applied to a range of arm 

postures.  
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Figure 41.  Polar plots of the reciprocal of circular standard deviation (1/CSD) 

associated with 24 movement directions.  (a) Experimental results and model 

prediction by Van Beers et al (2004). The black curve shows the mean of all 

subjects in the experiment and the grey area around it represents intersubject 

variability.  The thick black line represents the model prediction.  (b) Model 

prediction using the simulation method in SIII. 

5.4.4 Comparison Across Three Simulation Conditions 

In this section, we compared the effects of noise on movement variability 

across three simulation conditions: errors in sensing initial conditions (SI), errors 

in sensing initial conditions + errors in trajectory planning (SII), and errors in 

movement execution (SIII). We examined the differences and similarities in 

variability across the three simulations, focusing on three aspects: overall 

magnitude of variability, direction dependent pattern of variability and posture 

dependent pattern of variability. 

5.4.4.1 Overall Magnitude of Variability    

For all three simulation conditions, the average handpath generally 

aligned with the planned movement direction.  The overall magnitude of 
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variability in the initial direction of handpaths, however, was different for different 

simulation conditions. Compared to SI, the most striking observation in SII was 

the very large increase in variability of initial movement direction for both the 

isotropic and anisotropic distributions.  This larger degree of variability can be 

explained by the additional directional errors that were introduced in the early 

stages of movement planning, as illustrated schematically in Figure 29.  In 

contrast to SI, planned movement directions in SII were defined by vectors 

connecting the initial hand position with fixed spatial targets (see Figure 29).  

Thus, in this situation, misestimation of the initial conditions (position sensing 

errors) was compounded by errors in planning the appropriate movement vectors 

(trajectory planning errors).  That is, in SII not only was the initial starting position 

altered but the planned movement trajectory as well and these effects combined 

to generally produce larger movement errors.  In SIII, note that variability due to 

execution noise in our simulations was fairly small; this is due to the fact that the 

noise parameters kSDN, kCN, and kTN used in SIII were derived from movements 

performed by neurologically-intact human subjects (van Beers et al., 2004).  The 

noise level in SI and SII, however, was arbitrarily determined as the focus of 

these simulations was not on the overall magnitude of movement variability but 

on its direction dependence (distribution in space) and arm configuration 

dependence.  Thus, the relatively small variability in SIII is not critical for the 

current investigation.  

We also found that, for both SI and SII, directional error variability was 

slightly smaller for the isotropic perturbation distribution than for the anisotropic 

distribution.  The smaller variability for the isotropic perturbation distribution in SII 

is likely a consequence of position sensing errors since variability resulting from 
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trajectory planning errors alone was not always smaller for the isotropic 

perturbation distribution as suggested by interaction analysis between position 

sensing errors and trajectory planning errors.   

5.4.4.2 Direction Dependence of Variability  

We found, for all three simulation conditions, variability in directional error 

varied across movement directions.  This direction dependent pattern of 

movement variability manifested differently however for different simulation 

conditions.  First of all, variability in directional error was asymmetrical with 

respect to the center in SII but was symmetrical in SI and SIII.  The asymmetric 

pattern of variability in SII was likely a consequence of the complex interaction 

between sensing noise and trajectory planning noise across movement directions.  

On the other hand, variability due to execution noise in SIII was highly anisotropic, 

much more so than the variability due to position sensing noise (SI), trajectory 

planning noise (SII), or their combined effects (SII). For example, the maximum 

variability was predicted to be about three times of the minimum variability.  In 

contrast, the maximum and the minimum variability were generally much closer 

in SI and SII.  Interestingly, the direction along which execution-related variability 

was greatest was similar to that due to position sensing noise.   

5.4.4.3 Posture Dependence of Variability 

We also focused on comparing the pattern of movement variability across 

three simulation conditions when the initial arm posture was changed. We found, 

for all three simulation conditions, the pattern of movement variability was not 

only direction dependent but also posture dependent as well.  Generally, the 

pattern of variability across directions was not fixed in space but rotated with the 
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long axis of the forearm as arm posture changed.  In SI, although the direction-

dependent pattern of variability remained roughly aligned with the forearm as arm 

posture changed, the variability for more flexed arm postures was noticeably 

larger and less direction-dependent than for the more extended posture.  This 

differs somewhat from the results in SII and SIII, where the shapes and sizes of 

polar plots of movement variability were generally very similar for the four arm 

postures (Figure 37 and Figure 40).  This difference between SI and SII is very 

likely due to the fact that variability in SII was dominated by trajectory planning 

noise; thus differences in variability across arm postures due to sensing noise 

alone was simply not as apparent in this simulation.  Likewise, although direction-

dependent aspects of movement variability also appeared to rotate somewhat 

with changes in arm posture in SII, these changes were also not as noticeable as 

in SI, likely for the same reasons as mentioned above.  

5.5. Discussion 

In the present study we examined the effects of misestimating the 

position of the arm on movement variability across the workspace and compared 

this to the effects of noise associated with movement execution.  We reasoned 

that incorrectly estimating limb position would present at least two distinct 

problems for the motor system.  First, even for the same planned movement 

vector, misestimating limb position would lead to a difference in the sensed vs. 

actual initial conditions (position sensing noise), resulting in the wrong motor 

commands and/or torques being selected for the required movement.  Second, 

for movements directed to particular locations in space, misestimating limb 

position would be expected to result in additional noise in movement planning 

(trajectory planning noise), specifically the planning of required movement 
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vectors.  We found that position sensing noise and trajectory planning noise are 

predicted to result in distinct direction-dependent and posture-dependent 

patterns of movement variability that differed in many respects from the patterns 

of movement variability expected to result from noise in execution.   

5.5.1 Model Parameters 

In this investigation, we used previously published anthropomorphic and 

mechanical parameters for our biomechanical model (Scheidt et al. 2005).  

Although the results of our simulations can clearly be sensitive to the choice of 

these parameters, we used the same biomechanical model for SI, SII and SIII 

and simply introduced noise into different stages of this model.  That is, our focus 

was on the observed differences across the different simulations.  One long term 

goal of this effort is the prediction of patterns of movement variability that result 

from neuromotor disorders.  Such an effort will ultimately require an in-depth 

sensitivity analysis of the various biomechanical model parameters used in this 

study.  This effort will also certainly require a refinement of the very simple 

muscle model used in the execution noise simulations, as well as the noise 

parameters used in this simulation.  In particular, we used the same model 

parameters for signal dependent noise, constant noise and temporal noise for all 

arm postures.  However, these parameters were derived for a single arm posture 

in the investigation by van Beers and colleagues (2004) and may therefore need 

to be refined if applied to a range of arm postures.   

5.5.2 Direction and Posture Dependence 

A consistent finding across the different simulations was the direction-

dependent variability arising from both sensing and execution noise.  It is not 
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immediately clear whether the nervous system needs to accounts for such 

effects during movement production and if so how this is accomplished.  

Although the degree of direction-dependence varied in SI, SII and SIII, the 

directions along which variability is predicted to be greatest appeared to be very 

similar across the different simulations.  That is, the direction of maximum 

variability generally rotated to in a counterclockwise fashion as hand position was 

varied from right to left in the workspace.  This suggests that the effects of noise 

on movement variability are at least partially fixed to the arm, and are greatest 

along directions requiring the highest degree of control, i.e. those directions 

requiring substantial movement of both the shoulder and elbow (vs. primarily the 

elbow).  Interestingly, the impedance properties of the limb (specifically stiffness) 

exhibit a similar pattern of posture dependence.  Patterns of endpoint stiffness 

have been shown to rotate in a counterclockwise fashion as hand position is 

varied from right to left in the workspace (Mussa-Ivaldi, Hogan, and Bizzi 1985) 

with the direction of maximum stiffness appearing to be roughly aligned with the 

direction of maximum variability as demonstrated here.  This may act to reduce 

the effects of noise along the same directions, which could in principle simplify 

any neural based mechanisms that exist to compensate for direction-dependent 

variations in movement variability.  

In some ways the finding that patterns of movement variability rotated 

with changes in arm configuration was not surprising.  That is, the equations of 

motion of a two-link arm do not contain terms for shoulder position.  Thus, when 

the elbow angle is kept constant, joint torques can be thought of as being defined 

in an arm-fixed rather than spatial frame of reference.  Direction dependent 

patterns of movement variability therefore would also be expected to be arm-
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fixed as well, rotating in space with changes in shoulder angle.  However, in the 

present simulations we varied the position of the endpoint of the limb in the 

workspace in such a way that both shoulder and elbow angle were varying, the 

effects of which could not be predicted a priori.  We found that, at least for the 

range of arm postures examined in this study, direction-dependent patterns of 

movement variability were still best described as being largely fixed to the limb, 

rather than being fixed in space.  Thus, for the motor system, mechanisms for 

predicting and compensating for the consequences of noise on movements in 

space must rely strongly on information related to arm configuration.  This 

information could be provided by proprioception, vision and/or efference copy. 

5.5.3 Dependence on Hand Position Estimation 

The results of SI and SII suggest that the precision of hand position sense 

has important implications for the neural systems involved in movement 

production.  Even small errors in estimating hand position (~2 cm) resulted in 

large directional errors, particularly along certain movement directions.  Thus, 

maintaining an accurate and precise estimate of the position of the hand in space 

would appear to be of paramount importance to the motor system.  Our 

simulation showed that the particular form of the distribution describing position 

sense (istotropic or anisotropic) has some implications for movement production.  

Generally speaking, an isotropic distribution led to more anisotropic errors and 

vice-versa.  Although these differences were small relative to the differences 

across simulations, they still suggest that the form of these distributions, which 

arise from properties of the various sensors and their interactions across the 

workspace, is a factor that the brain must take into account during movement 

production.  In that vein it is interesting to note the relatively larger directional 
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errors that were generated for positions closer to the body in SI.  The enhanced 

precision of endpoint estimation observed in human subjects for hand positions 

close to the body (van Beers, Sittig, and van der Gon 1998) may partially 

compensate for the relatively larger effects of perturbations at these positions.   

5.5.4 Relevance to Motor Learning 

Several studies have demonstrated that training cannot only improve the 

accuracy of movements but decrease their variability as well (Cohen and Sternad 

2009; Deutsch and Newell 2004; Gribble et al. 2003; Mosier et al. 2005; 

Ranganathan and Newell 2010).  It is unclear however if training can specifically 

address variability arising from different noise sources, e.g. sensing noise vs. 

execution noise.  Characterizing the relative contributions of sensing noise and 

execution noise to overall movement variability, as was performed here, is an 

important first step toward answering this question.  Interestingly, it has recently 

been demonstrated that reduction of movement variability can be optimized by 

strategically reweighting sensory inputs to take advantage of differences in their 

relative reliabilities (Guo and Raymond 2010).  This begs the question as to 

whether sensory inputs can also be optimized to compensate, at least in part, for 

noise arising during movement execution.  Answering this question will require in 

depth knowledge from behavioral studies regarding the manner in which sensory 

and motor noise interact in both the temporal and spatial domains (Faisal and 

Wolpert 2009; Apker, Darling, and Buneo 2010).  Extending the present 

simulations to study the interaction of sensory and motor noise under more 

realistic conditions, including during simulated movements performed in three 

dimensions, will also contribute substantially to this effort..   
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5.5.5 Neural Correlates of Movement Variability 

Understanding the consequences of noise at different stages of 

movement production could aid in understanding the roles of different brain areas 

in movement production and movement variability.  There is a growing interest in 

understanding the role of noise in neural processing and movement production, 

in particular how variability in neural firing patterns might manifest in behavioral 

variability.  For example, Shenoy and colleagues examined the role of variability 

in activity in the premotor cortex and its relation to motor behavior (Churchland, 

Afshar, and Shenoy 2006).  These investigators found that variability in neural 

activity in the premotor cortex before movement onset can account for nearly one 

half of the variability in movement speed.  This was a landmark study in the 

sense of being the first to demonstrate a link between neural variability and 

behavioral variability.  It is currently unclear whether the remaining variability can 

be accounted for by variability in the firing at subsequent stages, e.g. in motor 

cortex.  In addition, the study by Churchland et al. (2006) examined the relation 

between neural variability and movement speed.  It would be of interest to know 

whether variability in neural firing in this or any area can account for variability in 

spatial aspects of variability, such as movement direction and amplitude.  The 

results of the present study, which characterized some of these effects across a 

large portion of the workspace of the reaching arm, could prove to be particularly 

useful in this regard.   
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Chapter 6 

CONCLUSION 

6.1. Summary 

The ultimate goal of this dissertation was to characterize the neural 

mechanisms of integration of somatic and visually-based limb position signals 

and the consequences of misestimating limb position on movement production.  

While information about limb position is crucial to performing accurate reaching, 

little is known about how the brain combines various sources of information to 

provide a single estimate of limb position.  Little is also known about how errors 

in sensing limb position can influence overall movement variability.  Thus, in this 

dissertation we presented two specific aims, each one focused on solving one 

specific problem.  Specific Aim 1 was to characterize the mechanisms of 

integration of somatic and visually-based limb position signals in area 5 of 

posterior parietal cortex.  Among other brain areas, area 5 has been considered 

as a very good candidate for probing the neural mechanisms of limb position 

estimation.  Anatomical and lesion studies all seem to support a role for area 5 in 

integrating sensory and motor information for limb position estimation.  In 

Chapter 4 which is dedicated to Specific Aim1, we provided a novel experimental 

design for the neurophysiological studies.  While overcoming limitations of other 

studies, this design also took into account the theory of optimal cue integration.  

This theory is supported by a large amount of theoretical and psychophysical 

works and should therefore have a neural correlate somewhere in the brain.  The 

study for Specific Aim 1 in the dissertation was trying to seek neurophysiological 

support for this theory while confirming the role of area 5 at the same time.  The 

other specific aim, Specific Aim 2, addressed the other half of the goal by 
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characterizing, via biomechanical modeling and simulation techniques, 

movement variability resulting from various noise sources.  Limb movements are 

highly variable due in part to noise occurring at different stages of movement 

production such as sensing, planning or execution.  The relative contributions of 

noise at each stage to overall movement variability are difficult to determine 

experimentally and are therefore not well understood.  The study for Specific Aim 

2, which was detailed in Chapter 5, provided a simulation approach to predict the 

effects of various noise sources on movement production. We not only assessed 

the independent contributions from individual noise sources but also studied the 

effect of natural interaction between some of the noise sources.  

6.2. Specific Aim 1 

6.2.1 Conclusion 

Previous results have suggested that neurons in area 5 respond to both 

visual and somatic signals (Cavada and Goldman-Rakic 1989; Andersen et al. 

1990; Caminiti, Ferraina, and Johnson 1996).  However, although many area 5 

neurons were modulated by somatically-derived signals in these studies, visual 

information regarding arm position was not strongly represented.  Note that these 

results were obtained in tasks where animals were either not reaching to objects 

in their environment or under conditions where the animals were receiving strong 

haptic input on both visual and non-visual trials, which could have influenced the 

weighting of visual input in this area.  The present results extended these 

investigations to conditions where visual input would be expected to have the 

greatest influence, i.e. under conditions where the arm is held statically in free 

space.  Thus far we have found that even under these conditions relatively few 

individual area 5 neurons appear to be modulated by the sight of the limb during 
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static holding.  The result remained approximately the same when we tried to 

either extend the hold time of the limb and when we reduced the window radius 

within which the endpoint of the limb was held (in order to enhance the relevance 

of vision in this task).  In an experimental paradigm (Paradigm 2) where the 

relative weighting of individual inputs is expected to differ much more between 

visual and non-visual trials, we still did not find more cells tuned to visual 

conditions.  All these results appear to imply that area 5 does not receive strong 

input from areas devoted to the visual processing of body parts and is therefore 

not likely to be the primary site of integrating visual information about limb 

position with somatically-derived signals.  However, a decoding analysis showed 

that vision does appear to play a role in representing limb position in this area at 

the population level.  These relatively modest effects suggest that the primary 

site of integration of visual and somatic limb position information is likely 

downstream of area 5, presumably PMd or MIP.  In addition, the present results 

suggest that role of visual input in area 5 may have more to do with specifying 

the locations of extrinsic objects, rather than the positions of parts of the body.   

6.2.2 Future Studies 

Given the relatively weak evidence for area 5 involvement in integrating 

visual signals about limb position with somatically-derived signals, future studies 

could target neural responses in other cortical areas.  The adjacent MIP area 

would likely be a good candidate due to the relatively stronger visual 

responsiveness of neurons in this area and its reported involvement in eye-

centered coding of spatial information (Caminiti, Ferraina, and Johnson 1996; 

Colby and Duhamel 1991).  Another consideration could be PMd in premotor 

cortex.  Previous studies suggest PMd neurons encode information about both 
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the static position and configuration of the limb (Pesaran, Nelson, and Andersen 

2006; Scott, Sergio, and Kalaska 1997).  PMd is also known to receive visual 

input via the parietal lobe (Caminiti, Ferraina, and Johnson 1996).  Thus, it is 

very likely that cells encoding visual information about limb position will be found 

in PMd.   

Future studies could also address other aspects of neural coding.  The 

present neurophysiological study focused on neural correlates of cue integration 

for limb position estimation, with an emphasis on changes in mean firing rates 

under the “vision” versus “no vision” condition.  In addition to mean firing rate of 

spiking activity, analysis of local field potentials (LFPs) may prove to be useful for 

studying cue integration for limb position estimation in the brain.  In contrast to 

action potentials, which are thought to arise largely from the soma or axon hillock 

of pyramidal or stellate cells (Humphrey and Schmidt 1990) and reflect the output 

of a cortical column (Mitzdorf 1985), LFPs are a summation signal of excitatory 

and inhibitory potentials generated near the dendrites and may reflect the input 

and local processing in a cortical column (Chandrasekaran and Ghazanfar 2009; 

Gray et al. 1989; Lakatos et al. 2005; Liu and Newsome 2006).  LFPs can be 

relatively easily recorded and it has been proposed that LFPs provide a critical 

link between spikes and behavior (Buzsaki and Draguhn 2004).  Some recent 

literature supported modulation of LFPs during visual-auditory cue integration in 

the auditory cortex and STS (Ghazanfar et al. 2005; Maier, Chandrasekaran, and 

Ghazanfar 2008; Lakatos et al. 2007).  Analysis of LFPs may provide insights 

into the neural mechanisms of cue integration that are not attainable through 

analysis of mean firing rates alone.  This approach will likely be useful not only 
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for studying higher order sensory areas but also for the study of areas involved in 

transforming such sensory information into plans for movement. 

By manipulating the availability of visual information about limb position, 

this study was a first attempt at seeking neurophysiological support for the theory 

of optimal cue integration.  It could be a precursor to an experiment which tests 

some other predictions of optimal cue integration in arm-movement-related areas 

of the brain.  The work of van Beers and colleagues suggested the precision of 

somatic and visual sense of limb position varies as a function of arm 

configuration, with the somatic sense being more precise for hand locations 

closer to the body (van Beers, Sittig, and van der Gon 1998; van Beers, Wolpert, 

and Haggard 2002).  Since cells in most arm-movement-related areas of the 

brain exhibit static positional discharge that is spatially tuned in two or three 

dimensions (Georgopoulos, Caminiti, and Kalaska 1984; Kettner, Schwartz, and 

Georgopoulos 1988), according to van Beer’s work cells with preferred limb 

positions located farther from the body should be modulated more by concurrent 

visual input of the limb than cells with preferred positions located closer to the 

body, reflecting the decreased precision of somatic information at more extended 

arm positions.  A further study of cell responses to changes in limb position in 

depth will help to test this prediction of optimal cue integration.   

6.3. Specific Aim 2 

6.3.1 Conclusion 

For this specific aim, a simulation approach was employed to predict the 

effects of noise associated with 1) sensing the position of the limb (‘position 

sensing noise’) and 2) planning an appropriate movement vector (‘trajectory 

planning noise’).  Results were also compared to those predicted by a previous 
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model of the noise associated with movement execution (‘execution noise’).  We 

found that the effects of limb position sensing noise on movement variability were 

dependent upon both the planned movement direction and the initial 

configuration of the arm.  The effects on movement variability also depended on 

the particular pattern of sensing noise used to simulate the estimation of limb 

position, with more anisotropic sensing noise leading to less direction-dependent 

(more isotropic) patterns of movement variability.   

In our simulations, the effects of trajectory planning noise were closely 

related to patterns of sensing noise.  Since trajectory planning was dependent on 

defining a vector which connects the hand position with target position, sensing 

noise would be expected to result in additional trajectory planning noise for 

movements directed to particular locations in space.  In this situation, movement 

directional errors could be attributed to both sensing errors and errors in 

trajectory planning.  Movement directional error variability due to trajectory 

planning noise alone would reflect some nature of sensing noise.   

The combined effect of sensing noise and trajectory planning noise 

resulted in much larger movement variability than that from sensing noise alone 

and the variability in large part was dominated by the effects of trajectory 

planning noise.  The asymmetric pattern of movement variability resulting from 

both noise sources also suggested that the interaction between sensing noise 

and planning noise was highly complex across movement directions.   

In this study, variability due to execution noise was also shown to be arm 

configuration dependent and was more direction-dependent than that due to 

position sensing noise, trajectory planning noise or their combined effects.  

Overall, these results provide important insights into the relative roles of sensing, 
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planning and execution noise in movement variability that should prove to be 

useful for neurophysiological investigations seeking to relate variability at the 

neural level to variability at the behavioral level.   

6.3.2 Future Studies 

Future studies could involve refinement of the two-link biomechanical arm 

model.  First, the various biomechanical model parameters used in this study 

may need to be reconsidered more carefully.  In this investigation, we used a 

biomechanical model with same parameters for SI, SII and SIII since our focus 

was on the observed differences across the different simulations.  However, the 

results of individual simulations can clearly be sensitive to the choice of these 

parameters.  As a result, in-depth sensitivity analyses of the various 

biomechanical model parameters may be ultimately required.  Second, the 

refinement will require an improvement of the very simple muscle model used for 

the execution noise simulations.  The muscle model in the study simply used two 

second-order linear muscles each of which controlled the rotation around one 

joint (shoulder or elbow).  The motor commands of two muscles also acted 

independently on the shoulder and elbow joint.  However, real muscles can 

produce forces only by contraction and at least a pair of antagonistic muscles is 

needed for controlling rotation around one joint.  In reality, even more muscles 

could be involved due to the existence of muscles that cross more than one joint.  

In addition, synergism found in muscle activation also indicates motor commands 

of two muscles could be correlated (Torres-Oviedo, Macpherson, and Ting 2006).  

Third, the biomechanical arm model could be improved to simulate movements in 

three-dimensional space.  In this study, the arm model was only developed to 

simulate movements in the horizontal plane.  However, under more realistic 
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conditions, arm movements are often executed in 3D space.  For this more 

complicated situation, an arm model with 2 degrees of freedom in this study is 

not suitable.   

Lastly, a model of execution noise will need to be validated across the 

workspace of the arm.  In this investigation, we used the same model parameters 

for execution noise for all arm postures.  These parameters were derived for a 

single arm posture in the investigation by van Beers and colleagues (van Beers, 

Haggard, and Wolpert 2004) and may not apply to other arm postures.  

Therefore, behavioral experiments may be necessary to validate the predictions 

of execution noise model.  We will compare patterns of movement variability 

observed in normal human subjects with those derived from execution noise 

simulations.  Optimization techniques will be used to find the best values for 

model parameters associated with different arm postures across the workspace 

based on behavioral experiments. 

Behavioral experiments will also be required if we want to have in depth 

knowledge regarding interactions between sensing noise and execution noise.  In 

the present study, effects of sensing noise and execution noise on movement 

variability were independently assessed via simulation methods.  However, in 

reality, they may interact in a complex manner, which could affect the observed 

movement variability.  Previous behavioral studies also suggested sensory and 

motor noise interact in both the temporal and spatial domains (Faisal and 

Wolpert 2009; Apker, Darling, and Buneo 2010).  It has recently been 

demonstrated that reduction of movement variability can be optimized by 

strategically reweighting sensory inputs to take advantage of differences in their 

relative reliabilities (Guo and Raymond 2010).  Thus it would be interesting to 
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know whether sensory noise can interact with execution noise in an optimal 

manner in order to reduced movement variability.  Extending the present 

simulations to study the interaction of sensory and motor noise under more 

realistic conditions, including during simulated movements performed in three 

dimensions, will contribute substantially to our understanding of this issue.     
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