
Client - Driven Dynamic Database Updates

by

Preetika Tyagi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved September 2011 by the
Graduate Supervisory Committee:

Rida Bazzi, Chair
K. Selçuk Candan

Hasan Davulcu

ARIZONA STATE UNIVERSITY

December 2011

ABSTRACT

This thesis addresses the problem of online schema updates where the goal

is to be able to update relational database schemas without reducing the database

system’s availability. Unlike some other work in this area, this thesis presents an ap-

proach which is completely client-driven and does not require specialized database

management systems (DBMS). Also, unlike other client-driven work, this approach

provides support for a richer set of schema updates including vertical split (nor-

malization), horizontal split, vertical and horizontal merge (union), difference and

intersection. The update process automatically generates a runtime update client

from a mapping between the old the new schemas. The solution has been validated

by testing it on a relatively small database of around 300,000 records per table and

less than 1 Gb, but with limited memory buffer size of 24 Mb. This thesis presents

the study of the overhead of the update process as a function of the transaction rates

and the batch size used to copy data from the old to the new schema. It shows

that the overhead introduced is minimal for medium size applications and that the

update can be achieved with no more than one minute of downtime.

i

DEDICATION

To My Family & Friends...

ii

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Dr. Rida Bazzi for his continued guidance and

support during my association with him as a Master’s student. I learned many

valuable lessons during this time that will be helpful to me in my professional

pursuits in the future. I am grateful to Dr. Candan for his valuable suggestions that

helped me grasp a good insight of the concepts during my thesis. I would like to

thank Dr. Davulcu for being my committee member and guidance. I am also

thankful to all my friends Archana, Sushovan, Amrit, Kanika, Ina, Shruti, Raj,

Jyothi Swaroop, Anu and Vidhi for their constant help and encouragement. I am

grateful to the faculty members and administrative staff for their support

throughout the duration of my master’s degree, here at Arizona State University.

Last but not least, I owe gratitude to my parents, who always believed in me and

provided invariable support. This work was supported in part by National Science

Foundation grant CSR - 0849980. The findings do not necessarily reflect the

opinion of NSF.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

2 RELATED RESEARCH . 4

3 CLIENT-DRIVEN DYNAMIC DATABASE UPDATE FRAMEWORK . 10

3.1 Update Setup . 13

3.2 Initial Transfer of Partial Data . 14

3.3 Synchronization . 16

3.4 Creating the Update Client . 20

3.5 Handling Failures . 20

4 SCHEMA TRANSFORMATIONS . 21

4.1 Horizontal Merge . 22

4.2 Vertical Merge . 26

4.3 Horizontal Split . 31

4.4 Vertical Split . 32

4.5 Difference and Intersection . 36

5 RESULTS . 43

5.1 Old and New Tables for Schema Transformations 43

5.2 Experimentation Setup . 44

5.3 Query Generation . 45

5.4 Empirical Validation . 46

5.5 Performance Parameters . 46

5.6 Interpretation of Results . 47

6 CONCLUSION . 58

iv

Chapter Page
6.1 Limitations and Future Work . 58

REFERENCES . 60

APPENDIX . 63

A OLD AND NEW SCHEMA DETAILS 64

A.1 HMND: Horizontal Merge with No Duplicates 64

A.2 HSEQ: Horizontal Split on EQuality 64

A.3 VMLR: Vertical Merge of Left and Right tables 64

A.4 VSOP: Vertical Split on Primary key 65

A.5 VSNP: Vertical Split on Non Primary key 65

A.6 DIND: Difference and Intersection with No Duplicates 66

A.7 DIWD: Difference and Intersection With Duplicates 66

B SAMPLE TRANSACTION SETS . 74

B.1 Simple Transaction Set INSERT 74

B.2 Simple Transaction Set UPDATE 74

B.3 Simple Transaction Set DELETE 74

B.4 Complex Transaction Set A . 74

B.5 Complex Transaction Set B . 74

v

LIST OF TABLES

Table Page

2.1 Features provided by various systems for relational schema evolution . . 9

vi

LIST OF FIGURES

Figure Page

3.1 Client-Driven Dynamic Database Update Workflow 19

4.1 HMND: Horizontal Merge with No Duplicates 23

4.2 HMWD: Horizontal Merge With Duplicates 25

4.3 VMLR: Vertical Merge Left Right . 27

4.4 HSEQ: Horizontal Split on EQuality 32

4.5 VSOP: Vertical Split On Primary key 33

4.6 VSNP: Vertical Split on Non Primary key 35

4.7 DIND: Difference and Intersection with No Duplicates 37

4.8 DIWD:Difference and Intersection With Duplicates 40

5.1 Overhead for Update: Vary batch size 48

5.2 Execution Time for Update: Vary batch size 49

5.3 Response Time for Update: Vary batch size 49

5.4 Overhead for Update: Vary time interval 50

5.5 Execution Time for Update: Vary time interval 50

5.6 Response Time for Update: Vary time interval 51

5.7 Overhead for Delete: Vary batch size 51

5.8 Execution Time for Delete: Vary batch size 52

5.9 Response Time for Delete: Vary batch size 52

5.10 Overhead for Delete: Vary time interval 53

5.11 Execution Time for Delete: Vary time interval 53

5.12 Response Time for Delete: Vary time interval 54

5.13 Overhead for Insert: Vary batch size 54

5.14 Execution Time for Insert: Vary batch size 55

5.15 Response Time for Insert: Vary batch size 55

5.16 Overhead for Insert: Vary time interval 56

vii

Figure Page
5.17 Execution Time for Insert: Vary time interval 56

5.18 Response Time for Insert: Vary time interval 57

A.1 Old Schema Table for HMND . 64

A.2 Another Old Schema Table for HMND 64

A.3 New Schema Table for HMND . 65

A.4 Old Schema Table for HSEQ . 65

A.5 New Schema Table for HSEQ . 65

A.6 Another New Schema Table for HSEQ 66

A.7 Old Schema Table for VMLR . 66

A.8 Another Old Schema table for VMLR 66

A.9 New Schema Table for VMLR . 67

A.10 Old Schema Table for VSOP . 67

A.11 New Schema Table for VSOP . 67

A.12 Another New Schema Table for VSOP 68

A.13 Old Schema Table for VSNP . 68

A.14 New Schema Table for VSNP . 69

A.15 Another New Schema table for VSNP 69

A.16 Old Schema Table for DIND . 69

A.17 Another Old Schema Table for DIND 70

A.18 New Schema Table for DIND . 70

A.19 Another New Schema Table for DIND 70

A.20 Old Schema Table for DIWD . 71

A.21 Another Old Schema Table for DIWD 71

A.22 New Schema Table for DIWD . 71

A.23 Another New Schema table for DIWD 72

viii

Chapter 1

INTRODUCTION

The relational data model is the most widely used model for database systems [8].

In the relational model [26], the database schema defines the structure of the data

stored in the database and affects how queries are written to access the database. In

addition to database schemas, databases have integrity constraints to ensure data

accuracy and consistency. Database schemas and their associated constraints are

not static entities; they can be modified (upgraded) to adapt to changed business

needs, eliminating data redundancy through normalization, or improving system

performance through data reorganization [30].

Traditionally, and except for some trivial changes [24], upgrading the

database schema requires making the database unavailable while the data is ported

from the old to the new schema. When the data is completely copied and

formatted according to the new schema, the new database is started and the (new)

application can resume accessing the database system. This process can cause

downtime of a few hours for medium-size databases. Such upgrades are costly.

According to a study of the estimated financial impact of outage on several

industries, such as retail brokerage, credit card sales authorization, catalog sales

centers, airline reservation centers, and ATM services fees, the cost of downtime

varies from $14,500 an hour for the ATM service fee industry to $6.5 million an

hour for the retail brokerage industry [23].

To mitigate the effects of system unavailability, system upgrade is typically

done at a time when the system is least busy (2 am on a Saturday for example).

Unfortunately, for some applications, there is no good time for upgrades. For

example, in the healthcare field, a hospital needs to have its database system

always available. This need is especially pronounced for emergency rooms; in

1

order to admit patients and avoid negative drugs interactions, for example,

physicians need to have continuous access both to lookup patient information and

to update patient records (read/write access). Also, for systems that are accessed

by worldwide clients, 2 am on a Saturday, does not exist (due to time zone

differences)! For such applications, there is a need to minimize or completely

eliminate, if possible, the time needed to apply an upgrade. It is schema upgrades

for such applications that this thesis is addressing.

To minimize system downtime, clients1 should have access to the database

while the upgrade process is ongoing. This means that while the upgrade process

is ongoing, clients should still be able to modify existing records and insert new

records in the database, while at the same time be able to access records for

reading without violating the database consistency. In this thesis, we consider

updates that are atomic. This means that, as far as the client can tell, there is a

period of time in which the database behaves like the old database and at a given

point in time the database behaves like the new database. Atomic database updates

require atomic client updates. In addition to switching between the old and the

new database, the clients themselves should change from old version to a new

version that knows how to interact with the new database. We assume that clients

are written in such a way that they can switch to executing new client code when

they detect that a new version of the database is available. The focus of this thesis

is on developing the mechanisms needed to support online schema upgrades

without the need to modify the database management system. Unlike other works,

we adopt a client-driven approach. Given a mapping between the old and the new

schemas, a specialized update client is automatically generated to: (1) prepare the

database for update; (2) create a database according to the new schema; (3) copy

data from the old to the new database; (4) deactivate the old database; and (5)
1We use the term clients to refer to the software processes that interact with the database system.

2

activate the new database. We use techniques developed by Løland [21, 20] to

effect the dynamic database update. Unlike [20], our approach is client driven,

whereas the approach of [20] requires the modification of the DBMS system,

which makes it less flexible and non-portable.

We have shown that our approach is viable by implementing a prototype

system that supports schema transformations including horizontal merge (with and

without duplication), vertical merge (full outer join), intersection and difference,

and horizontal and vertical splits. Our system automatically creates an update

client using a description of the schema changes provided by the user and then

runs the update client to dynamically apply the database update. We tested our

system for a variety of update types and our performance results show that a

client-driven approach is a viable approach for dynamic database updates. In

Chapter 5, we demonstrate the results for a database of about 3.3 million records

and 11 tables with an average of 5 columns and achieve the update with the

downtime of less than one minute.

To summarize, the contributions of this thesis are the following:

• The first design and implementation of a DBMS-independent client-driven

dynamic database update system.

• A thorough evaluation that shows the viability of the approach for dynamic

database updates.

The rest of the thesis is organized as follows. Chapter 2 describes related

work and compares it to our work. Chapter 3 illustrates the mechanism of

client-driven dynamic database update framework. Chapter 4 covers the schema

transformations supported by the framework. Chapter 5 gives an evaluation of the

approach and presents the results. Chapter 6 concludes our work with a possible

future direction of the work.
3

Chapter 2

RELATED RESEARCH

This chapter describes the relevant work in the area of relational schema changes

with the main focus on the live database updates. Our method extends some of the

ideas discussed here and we point that out in following chapters. We also

summarize the features provided by various systems for relational schema

evolution in table 2.1.

The most closely related work in its aims is that of Løland [20]. He

designed and implemented a database management system prototype capable of

performing non-blocking schema transformations. He supports six complex

schema transformations including horizontal merge, vertical merge, horizontal

split, vertical split, difference and intersection. The proposed technique has three

phases: initial population, log propagation and synchronization. This is the same

approach we followed, but in our approach, we achieve all these phases without

any modification to database management system (DBMS). We believe that the

difference is very significant as it allows the implementation of dynamic database

updates on any DBMS that supports standard SQL functionality. Unlike our work,

Løland supports mixed use schemas in which old and new schemas can coexist for

some time.

Another work that attempts to provide non-blocking schema

transformations is that of Ronström [27]. He presented a general framework based

on triggers, but did not provide an implementation or an evaluation. His use of

triggers differ from ours in that in his approach triggers are used to keep both

schemas synchronized and are not used for maintaining a log table. His use of

triggers is very expensive. While he did not present performance numbers,

Løland [20] presented an analytical study of the overhead which indicates that his

4

approach will result in overhead that is at least two or three times higher in terms

of operations and the use of locks. Our approach can be thought of as a

combination of the two approaches: we use triggers to provide a client-driven

framework that provides the advantages and smaller overhead of [20] while

providing the flexibility of the approach proposed in [27].

More recently, Mark Callaghan at Facebook [4] open sourced a tool for

Online Schema Change (OSC) in the MySQL database system. It has four phases -

Copy: The source table is copied to the output table. Build: The output table is

modified to satisfy the new schema requirements. Reply: The source table

changes, which occurred during the previous steps, are propagated to the new

table. Cut over: The old and new tables are synchronized and clients are given

access to the new table. This procedure supports the schema change of adding a

column to a table with a default value and uses external (PHP) script for the

implementation. This approach is limited because it does not use stored procedures

like we do. In our approach, a Java client connects to the database to install the

stored procedures required for the update process. The advantage of using stored

procedure is that they run within the database engine. Therefore, it reduces the

network related overhead which allows us to provide an efficient framework for

implementing dynamic database updates for complex schema transformations.

Curino et al. [10] presents a workbench to predict and evaluate the effect of

schema changes and also to perform schema evolution. It is useful for database

administrators to gain the insight of a specified schema evolution process in terms

of cost. As the result, the necessary changes can be made in the database to

minimize the cost of schema evolution in databases. This framework also supports

the query rewriting of the old queries to the new queries that can access the new

schema [9].

5

A few commercial DBMSs have been working on providing the support for

online and/or offline schema changes. Oracle [31] provides a feature redefinition

to support online schema evolution capability, such as, add/drop/rename a columns

and create/rebuid index. Redefinition process makes it possible to perform changes

in a table while the users are allowed to access the table. The table is made offline

only when the table is switched to the new updated table. IBM DB2 [19] provides

a tool Optim Data Studio Administrator that allows the administrator to make

changes in the schema using an interface. It also includes the functionality of

verifying the impact of any changes in the schema and if it detects error due to

intended schema changes, the user is notified before committing any changes.

DB2 also provides the feature for performing online schema changes [11], such as,

rename column and change column data type, by using the routine

ADMIN MOVE TABLE. SQL Server [29] provides a tool SQL Server Management

Studio (SSMS) by using which the user can perform schema changes. It includes

GUI where the user can edit the diagram to define the required schema changes,

such as, adding constraints and dropping columns. SSMS tracks all the changes

made to the diagram and generates a script to propagate these changes to the

database schema. The framework presented in this thesis includes complex schema

transformations, for example, horizontal/vertical merging and splitting of tables.

Hartung and Terwilliger [15] describe the recent work in the relational and

XML schema evolution along with the ontology evolution. It outlines general

desiderata for schema evolution support, such as, rich set of schema

transformation and minimizing the degradation of user transactions. Some

researchers focused on the area of schema evolution in database systems along

with the associated dependencies. Sometimes, the system imposes the restriction

on the schema evolution in the presence of dependencies. Papastefanatos [25]

6

developed an open-source tool HECATAEUS for enabling impact predictions and

regulations of relational database schema evolutions. HECATAEUS includes an

approach to propagate the schema changes to the dependent objects as well. The

complete system is represented as a graph. The nodes of the graph represent the

database objects and the associated interacting units (views, queries) and the

schema evolution is simulated on the graph to study the impact of any changes on

the other parts of the graph. The user can define the behavior of the changes –

propagate or block the changes to the dependent objects, or prompt the user to ask

for each change.

Hick and Hainut [16] present an approach to evolve the relational schema

by using a conceptual model. DB-MAIN [28], a modeling framework, is used to

draw the conceptual model for a relational schema and then the conceptual model

is edited to perform the schema changes. These changes are traced down to

propagate to the relational schema. Domı́nguez [12] presents another similar tool

MeDEA to represent the relational database schemas as the conceptual models

where edits can be performed and propogated to the relational schema. Cleve [7]

worked towards providing a conceptual view of relational database along with a set

of data manipulation APIs for data-intensive applications. These data manipulation

APIs provides a mapping between the conceptual view and the relational schema.

Whenever relational schema changes, there is an automatic generation of these

APIs so that application programs are protected against schema changes.

Terwilliger and Bernstein [32] present an Object-Relational Mapping (ORM)

System MoDEF, an extension to Visual Studio that allows a developer to build a

client model and map it to an existing store. MoDEF captures all the changes made

to the client model and updates the mapping and the store model without additonal

user input. Bounif [2] proposed an approach for smooth schema evolution by

7

predicting possible future requirements. The problem of online scaling in

databases has been studied by Bratsberg [3]. It targets declustering evolution in

databases due to changes in data volume, processing power and access patterns.

A few researchers also addressed the problem of schema evolution in other

data models, such as, object oriented, XML and RDF. Claypool [6] proposed SERF

framework to perform complex schema transformations in object oriented database

(OODB) systems. Monk [22] proposed a class versioning approach for schema

evolution in OODBs. Oracle [1] provides the support for XML schema evolution.

Chirkova [5] studied the problem of schema evolution for RDF data models.

Table 2.1 outlines certain features provided by various systems for

relational schema changes including our client-driven framework. The description

of these features is as follows.

1. DBMS modification: To support live schema changes, DBMS may need to

be modified. It might be complicated to modify DBMS for such

requirement. Alternatively, an application level mechanism can be

developed on the top of DBMS. It doesn’t require to deal with internals of a

DBMS. It signifies the easiness with which a schema change feature can be

integrated with DBMS to support schema evolution. However, there may be

a scope of more efficient solution in case the DBMS is modified to support

schema evolution mechanism.

2. Richness: it refers to the set of schema transformations supported by a

schema evolution system. We categorize it into simple and complex schema

transformations. Simple Simple schema changes include adding attributes,

renaming attributes and dropping attributes whereas complex schema

changes include merging and splitting of tables.

8

Richness
DBMS modi-
fication

Simple Complex Online Versioning

Client-driven
framework

– –
√ √

–

Løland
√

–
√ √ √

Ronström – –
√ √ √

OSC –
√

–
√

–
Oracle

√ √
–

√ √

SQL Server
√ √

– – –
IBM DB2

√ √ √ √
–

PRISM –
√ √

–
√

HECATAEUS –
√

– – –
DB-
MAIN/MeDEA

–
√

– – –

Table 2.1: Features provided by various systems for relational schema evolution

3. Online: it refers to the capability of a system to perform schema evolution

while the database is still accessible to the users. There may be a short span

of time during which the database is temporarily made unavailable to users.

This short duration may be acceptable as compared to couple of hours that

may cause a large impact on several industries. As we mentioned in previous

chapter, this is important for highly available systems which have high cost

of downtime.

4. Versioning: when a database schema evolutes to a new schema, we can

either remove or maintain the old version of schema. If the old version of

schema is removed, only new client applications can access the database. In

case both versions of schema are maintained, both old and new client

applications can access the database by using the corresponding version of

schema. However, it imposes the requirement of maintaining the consistency

of the database which is modified by both versions of client applications.

9

Chapter 3

CLIENT-DRIVEN DYNAMIC DATABASE UPDATE FRAMEWORK

In a database system, the database schema specifies the logical organization of the

data as seen by the user. The same data can be organized according to different

schemas, however, the schema design influences the business requirements and the

database performance. Therefore, schemas do change to capture new business

requirements and improve the database performance. In this thesis, we deal with

relational database only. Relational schema consists of tables, columns, indices,

procedures, functions, triggers and relationships (for example, foreign keys). The

goal of dynamic database update is to achieve schema update with little or no

down time. We define two models for achieving dynamic schema update. In one

update model, we might allow queries that work with the old schema and queries

that work with the new schema to access the database. We call this update model

the mixed update model. The mixed model requires that two copies of the database

be maintained one according to the old schema and one according to the new

schema with extra synchronization (that might include internal tables not visible to

the user) between the two copies to ensure access consistency. In another update

model, we do not allow the mixing of queries. Before the update, the database is

accessed by old queries and, after the update, the database is accessed by new

queries. We call this update model the pure update model. The pure update model

has the advantage of being simpler to reason about. It avoids the intricacies of

preserving the consistency of both the old and new databases due to interaction of

old and new queries.

In this thesis, we present a dynamic database update framework based on

the pure model. Before the update, applications access the database of the old

schema and after the update applications access the database of the new schema.

10

Since queries (to access data) depend upon the logical organization (schema) of

data, the same set of queries may not work for a changed (new) schema and need

to be modified along with the schema change. However, we restrict our attention

to the dynamic schema updates only. The update is dynamic such that the update

process does not block ongoing transactions on the database of the old schema

while the update process is ongoing. Only when the system is ready to switch from

the old schema to the new schema is the database system made unavailable for a

short duration of time. Mullins [23] present the details on the acceptable downtime

for the highly available systems (five nines) and defines the five minutes as the

acceptable downtime per year. The goal of this thesis is to present a generic

portable framework for dynamic database updates in relational databases along

with minimizing this downtime.

The framework we propose is built upon and shares many similarities with

the work of Løland [20]. Løland’s approach asynchronously copies data from the

old database tables to the new database tables while at the same time keeping track

of all transactions on the old database. When the copying is complete, the log of

the transactions that were executed during the copy phase is applied to the new

database to synchronize both the databases. This process can repeat because the

log can keep on growing during the synchronization process. Only when the log is

small enough, the old database is made unavailable and a final fast synchronization

is done, at which time the new database is up to date and can be made available to

clients. This thesis presents the results with a downtime of less than one minute.

Unlike Løland’s work, our approach does not require the modification of

the database management system (DBMS) and is supported fully at the application

level through a specialized update client (client-driven update). We call our

framework the client-driven framework for dynamic schema updates. The

11

client-driven framework has the advantage of being fully portable and more

flexible than a DBMS-bound implementation. Given that we do not have access to

the DBMS internals, we need to drive all the phases using the update client. At a

high level, this is done as follows:

1. Creating the log table: since we do not have access to internal log tables, we

need to create and maintain customized log tables at the application level.

Maintenance of the log table is achieved using triggers (stored procedures)

that are also inserted at the application level on the old database tables by the

update client. The additional advantage of creating the user defined log table

is that it has the scope of being modified to support any enhancements or

modifications in the framework if required. Note that we apply the triggers

on those old database tables which are involved in the schema

transformation (database update) process.

2. Creating the new schema table(s): this step simply creates new tables that

will be the target for copying information from the old database to the new

database. When the copying is complete (in a sense to be explained later),

the old tables are made inaccessible and the new tables are made accessible

to the user application.

3. Creating auxiliary tables: these tables are required during the database

update process while mapping the data from the old database to the new

database and as well as during the synchronization phase(s).

4. Activating triggers on the old schema table(s): the row - level triggers that

are activated keep track of every transaction (query) on every record of the

old database. The record of these transactions is maintained in the created

12

log tables. Note that it will impose a small overhead on the user transactions

that access the old database tables.

5. Asynchronous copying of data: this step is driven by the update client using

stored procedures in which the data from the old database tables is

transferred (copied) to the new database tables through a mapping process

depending on the defined schema transformation.

6. Synchronizing copied tables: this step is also driven by the update client

(using stored procedures) and reconciles the log table to reflect the changes

in the new database tables. The details of this phase are described later in

this chapter.

The phases of the dynamic update can be divided into three main phases:

(1) setup, (2) initial transfer of partial data, and (3) synchronization. We explain

each of these phases in details in what follows. Then we explain how the update

client is created.

3.1 Update Setup

The setup phase prepares the database for being dynamically updateable. One field

myid is added to all the old database tables (involved in schema transformation

process) as part of the setup phase. This field is a unique identifier for each record

in a table and records have their myid fields updated so that they are initially

unique. Subsequently, the myid field is created for every new record by

incrementing the highest value of myid previously created. The log table is also

created as part of the update setup. This is a global table that reflects all

transactions to the database that happen during the copying phase. We also create

the log maintenance triggers that will update the log table (see below) whenever a

13

record is modified in the database due to user transactions. These triggers are

initially inactive.

Another part of the setup includes creating tables for the new schema as

well as auxiliary tables to be used in the copying and synchronization phases. The

update client executes several stored procedures during the update process which

are generated and compiled during the setup phase. These stored procedures

define the mapping mechanisms of the data from the old schema to the new

schema. The information of the old and new schemas can be fed into the

configuration files. Then the framework uses these configuration files to

automatically generate the stored procedures required for the update process. The

update client must be an administrative user in order to perform the updates in the

database. This is necessary to avoid any permission issues while performing

several activities involved in update process, such as, apply triggers, data transfer

among the tables, compile stored procedures and manage access rights of the users

on the databases. The information of all the current users is also provided to the

framework by using configuration files to control their access to the database while

switching the database from old schema to the new schema. The users may access

the database of old schema before switching to the new schema. The update client

does not provide access to the database of new schema unless the update process is

completed and the system is ready to switch to the new schema. The final part of

the setup includes activating the log maintenance triggers.

3.2 Initial Transfer of Partial Data

This phase comprises transferring the data from the database of old schema to the

database of new schema while the old database is available to users. Since log

maintenance triggers are activated before this phase, any insert, update, or delete

of old database records by user transactions will be captured in the log table. In

14

this phase, two copies of the database co-exist: the data according to the old

schema which is continuously consistent during this phase and the data according

to the new schema but this data is not consistent during this phase [17]. Only the

data of according to the old schema are visible to and accessed by user

transactions during this phase.

As a first step, the number of records that need to be copied should be

determined. This is achieved by querying the database for the largest value of the

myid field in a given table. Once the number of records that need to be copied is

determined, the manner of copying needs to be established. That manner can

drastically affect system performance. Records can be copied individually or in

batches of records. We introduce two parameters that allow us to control the

overhead of the update process: (1) the batch size used in copying from old tables

to new tables, and (2) the time interval that separates copying two batches.

The transfer process reads the records in batches and holds read-lock on a

single batch at a time. The smaller the batch size, the less interference there is

between the copying process and ongoing user transactions. But the smaller batch

size results in a longer time for the whole copying process and more time for the

synchronization phase (see below).

The inter-batch time interval is the time gap between the processing of

each batch. The upgrade process halts during the time interval and does not

interfere with the concurrent user transactions. Thus larger values of time interval

reduce interference with the concurrent user transactions, but increase total update

time.

Note that since log maintenance triggers are activated before the copying

starts, there is no risk of losing any records. The worst that can happen is that

some records that are copied will also show up in the log table.

15

3.3 Synchronization

This phase applies the log entries to the copied tables to synchronize the data of

the old and the new schemas. During the synchronization phase, user transactions

are not automatically blocked. They are only blocked if it is estimated that the

time it takes to process all log entries is smaller than a configurable threshold. If

that time is estimated to be larger than the chosen threshold, user transactions are

allowed to proceed which means that the log table would continue on growing

while the logs are processed. So the log table is processed in multiple iterations.

The size of the iteration is determined by the number of transactions that occurred

while processing the old iteration. So, we assume that the transaction rate is such

that the synchronization process will catch up with the growth of the log table so

that each iteration is smaller than the previous one.

To estimate the time it takes for one iteration, we determine the number of

records that need to be processed and compare it to the number of records of the

previous iterations, with the assumption that the processing time is proportional to

the number of record. The processing time of the last iteration is therefore used to

estimate the time for the next iteration. In the last iteration, user transactions are

blocked and at the end of the processing of the last synchronization iteration, the

old and new databases are completely in sync and the system is ready to be

switched to the new database. The users are given access to the new database.

In our experiments, we maintained the database of the old schema to

compare it with the database of the new schema immediately after switching to the

new schema. we distinguish between user data fields that capture data of interest to

the user and database data that is not of interest to the user but that is used to link

various tables, such as referential constraints and functions. We do not consider

applying the constraints or functions on the new schema, dropping the old

16

database tables or the additional columns appended to the new database tables (for

the update process) while measuring switching time. In our implementation, we

chose the batch size and inter-batch time interval so that the downtime was less

than one minute.

Note that the myid field is crucial to synchronizing the logs table.

Løland [20] used record identifiers (RID) and log sequence number (LSN) to

propagate the log entries to the new database tables. RID uniquely identifies a

record in the old database and is used to handle the insertion or deletion of the

records in the new database. Moreover, if a record is updated in the old database,

RID doesn’t change and then LSN is used to identify if that particular record has

already been updated in the new database. Our framework achieves the same goal

by using a different strategy. The combination of myid and old database table

name uniquely identifies a record in the old database whereas the content (field

values) of the record itself (in log table) is used to identify if the record has already

been updated in the new database. Entries in the log table contain the following

information: (i) The old database table name, (ii) the entry type

(insert/delete/update), (iii) the data record, (iv) the old data record if the entry type

is update,(v) the value of the myid column in the old database table, and (vi) the

schema transformation in which the old database table is involved (for example,

vertical split). The framework attempts to apply an update type entry to the new

database only if it finds a record that matches with the old data record in the log

entry. If it doesn’t find such record in the new database, it implies the fact that the

current log table entry has already been applied to the new database. Here myid

solves two purposes – (i) it is used in Initial Transfer of Partial Data to control the

overhead of the system as mentioned earlier, and (ii) it is used in mapping

mechanism of the schema transformations.

17

Although the new database tables may have myid as additional fields as the

result of the previous update process, however, it can’t be used for further database

updates next time. When we append myid column to the old database table during

the setup phase, it automatically increments its value and assigns an unique value

for each new record. However, it doesn’t hold the same property in the new

database table. Therefore, it will impose an overhead on the user transaction

coming to the new database since each new record will need to calculate the new

myid column value that doesn’t conflict with an existing value. In addition, these

myid field values may not fit into the mapping mechanisms of some schema

transformations. Similar to Løland’s [20] use of LSN, we also have an option to

maintain application-level LSN to handle the update type log entries by using

triggers, however, it will impose an overhead on the user transactions to maintain

the latest LSN value for each updated record in old database. The next chapter

illustrates the schema transformations and provides an overview of how myid and

log table entries are used to apply the changes to the database of the new schema.

Figure 3.1 presents an overview of the schema transformation framework

and illustrates the steps involved in the dynamic database updates process.

• Step A: This represents the initial state of database server before the

database update process begins. Database is being accessed by several

concurrent user transactions.

• Step B: A special client (update client) connects to the database and initiates

the process of database updates while database is still being accessed by

ongoing user transactions. It maintains the hybrid state of the database i.e.

databases according to both the old and the new schemas are maintained

internally. This step involves all the tasks illustrated in the phases,

18

Figure 3.1: Client-Driven Dynamic Database Update Workflow

Update Setup, Transfer of Partial Data and Synchronization, before blocking

the user transactions.

• Step C: The update client blocks ongoing user transactions since old and

new databases are required to be synchronized.

• Step D: This step performs the last iteration of the Synchronization phase

after blocking the user transactions. Old and new copies of databases are

synchronized by applying the last chunk of the log table entries.

• Step E: Blocked users are given access to the new database. Here the

assumption is that the client applications have been modified to access the

new database.

19

• Step F: Update client is removed and modified user transactions resume on

the database.

To validate our client-driven dynamic database update framework, we

implemented it with support for a number of schema transformations. We

implemented the following schema transformations: Horizontal Merge, Vertical

Merge, Horizontal Split, Vertical Split, Difference and Intersection [20]. The

description for each schema transformation is provided in next chapter.

3.4 Creating the Update Client

The update client is created using the description of a schema transformation. The

description is a simple text file that specifies the tables involved in a particular

transformation, the necessary fields (as appropriate) and the type of transformation.

In our current implementation, we give the user a rudimentary interface to specify

the information and the text file is generated from the provided information. The

update client is then generated from the text file. The client is simply a generic

implementation that is parametrized with the table and fields names.

3.5 Handling Failures

The current version of the framework doesn’t support the automated detection of

the failure cases and rollback of the update process. Here the failure case stands

for any interruption occurred during the update process. If any failure case

happens, all the tables and functions (included in the update process and the new

schema) can be removed manually or by writing a simple SQL script. Then the

update process can be restarted without creating any inconsistency in the database

of the old schema.

20

Chapter 4

SCHEMA TRANSFORMATIONS

The framework introduced in Chapter 3 expects the user to provide for a given

schema change stored procedures for (1) initial copying from the old database to

the new database and (2) applying log table entries to reconcile the copied tables

with the log. As we explained in Chapter 3, these stored procedures are generated

by the system using input provided by the user. In this chapter, we give the details

of what these procedures look like for a number of schema transformations that we

support in our system. These schema transformations are – Horizontal Merge,

Vertical Merge, Horizontal Split, Vertical Split, Difference and Intersection. Each

schema transformation process has two phases of data mapping from the old to the

new schema tables. Phase I includes transferring the data from the old schema

table to the new schema table whereas phase II includes propagating the data from

the log table to the new schema table. This chapter illustrates both phases of

mapping for all the schema transformations.

This thesis includes all the schema transformations that are presented

in [20] along with an additional schema transformation. However, we have a

different set of assumptions for some of the schema transformations. For example,

we assume a primary key column in old schema tables for horizontal merge.

Hence we compare the primary key column values to determine if two records are

duplicate whereas Løland [20] compares all field values to determine duplicity.

The mapping mechanisms are different from [20] for all schema transformations

mainly due to our client-driven approach, but the handling of the transformations

is essentially that of Løland [20].

In general, the initial copying phase is a straightforward and, with the

exception of vertical merge, horizontal merge with no duplicates, difference and

21

intersection, only requires knowing how columns in the old schema map to

columns in the new schema. Horizontal merge (without duplicates), vertical

merge, difference and intersection requires creating an auxiliary table to support

initial copying. The log reconciliation phase is more complicated though. It

requires auxiliary tables to support reconciliation for horizontal merge (without

duplicates), difference and intersection. For some transformations, new columns

are created in the target tables to support initial copying and the log reconciliation

phases. These columns are dropped before the new database is made available to

the user. Also, for some transformations we make the assumption that the old

schema tables have primary keys. In what follows we present how each

transformation is handled. As we mentioned for all but one case is identical to the

work of Løland [20], but we include it for completeness.

4.1 Horizontal Merge

Horizontal Merge is equivalent to the union operator in the relational databases. It

combines records of two tables having similar structure. There are two ways of

merging records. One is to maintain all duplicate records in the new schema table

whereas another excludes duplicate records from the new schema table. We

implemented horizontal merge with and without duplicates. We assume that the

old schema table has a primary key column and, hence, there are no duplicate

records in each of the tables being merged. However, the two tables being merged

might have records that are identical.

Horizontal Merge with No Duplicates (HMND): HMND excludes

duplicate records from the new schema table. An auxiliary table is created

consisting of the following columns – the primary key column as in the old

schema table and the old schema table name column. HMND inserts and searches

for the records in the auxiliary table during the merging process. The two records

22

in the new schema table are considered duplicates if they have the same value for

the primary key column. This assumption is different from Løland [20] where two

records are considered duplicate when all the column values are identical for both

the records. Figure 4.1 demonstrates an example of HMND. There are two old

schema table – payment 2010 and payment 2011. The new schema table consists

of all records from both old schema tables and excludes duplicate records with

primary key column (payment id) value as P010123 and P011090. Below is the

description of mapping records in both phases.

Figure 4.1: HMND: Horizontal Merge with No Duplicates

Phase I: We scan all records of both old schema tables. For each old

schema table record, search for the record r1 in auxiliary table by using the

primary key value and old schema table name. If the record r1 does not exist in the

auxiliary table, then we search for another record r2 in the auxiliary table by using

the same primary key value and another old schema table name. If the record r2

23

exists, we only insert the r1 record in the auxiliary table. However, if the record r2

does not exist, we also insert the record into the new schema table. Note that we

do not insert any duplicate record in the new schema table and track the duplicity

of records by using the auxiliary table.

Phase II: Insert- Search for the record in auxiliary table by using the

primary key value and old schema table name. We ignore the log entry if the

record already exists in the auxiliary table. Otherwise we insert the record in the

new schema table as we do in phase I. Delete- Search for the record r1 in the

auxiliary table by using the primary key value and old schema table name. We

ignore the log entry if no record is found. However, if the record r1 exists, then

search for the record r2 in the auxiliary table by using the same primary key value

and another old schema table name. If the record r2 exists, we delete the record r1

from the auxiliary table only; otherwise we also delete the record from the new

schema table by using the primary key value. Note that we do not delete a record

from the new schema table if it still exists in another old schema table. Update-

Search for the record r1 in auxiliary table by using the primary key value and old

schema table name. If the record r1 exists, then we search for the record in the

new schema table by using the primary key column value and old record data from

log entry. If such record exists in the new schema table, we update this record with

the new record data from the log entry.

Horizontal Merge With Duplicates (HMWD): HMWD maintains all

duplicate records in the new schema table while merging the records of both old

schema tables. The new schema table consists of two additional columns – myid

column as in the old schema table and old schema table name column. The

combination of these two columns uniquely identify a record in the old schema

table. Figure 4.2 demonstrates an example of HMWD. There are two old schema

24

tables – payment 2010 and payment 2011. The new schema table consists of all

records from both old tables and maintains duplicate records with primary key

column (payment id) value as P010123 and P011090 in the new schema table.

Below is the description of mapping records in both phases.

Figure 4.2: HMWD: Horizontal Merge With Duplicates

Phase I: We scan all records of both old schema tables and insert each

record into the new schema table along with corresponding myid and old schema

table name column values.

Phase II: Insert- Search for the record in the new schema table by using

myid and old schema table name column values. If such record exists, we ignore

the log entry; otherwise we insert the record into the new schema table as we do in

phase I. Delete- Search for the record in the new schema table by using myid and

old schema table name column values. If no such record exists, we ignore the log

entry; otherwise we delete this record. Update- Search for the record in the new

25

schema table by using myid, old schema table name column values and old record

data from the log entry. If such record exists in the new schema table, we update

the record with the new record data from the log entry.

4.2 Vertical Merge

Vertical Merge is equivalent to the join operator in relational database which

merges related records from two tables into single record [13]. The most common

join involves join conditions with equality comparisons. There are four types of

join – Left outer join, Right outer join, Full outer join, and Inner join. Left outer

join returns all combination of records in left and right table that are equal on their

common attributes along with all the records in the left table for which there are no

related records in the right table. Right outer join is similar to left outer join but

the role of left and right tables are switched. Full outer join returns all combination

of records in the left and right table that are equal on their common attributes

along with the all records in the left table for which there are no related records in

the right table and all records in the right table for which there are no related

records in the left table. Inner join returns all combination of records in the left

and right table that are equal on their common attributes. We implement full outer

join since it is a lossless join. Left outer join, right outer join, and inner join can be

derived from full outer join.

Vertical Merge Left Right (VMLR): VMLR merges two old schema tables,

Left and Right, based on the value of a common attribute value. We refer to this

common attribute as the merging column. Two records from the Left and Right

tables are merged if the value of the common attribute is equal. VMLR mapping

process requires an auxiliary table and four additional columns in the new schema

table – leftmyid (value of myid in Left table), left table name, rightmyid (value of

myid in Right table), and right table name. Figure 4.3 illustrates an example of

26

VMLR. We include all the records of City and Country tables in the new schema

table CityCountry. Below is the description of mapping records in both phases.

Figure 4.3: VMLR: Vertical Merge Left Right

Phase I: This phase starts with copying of the Right table to the auxiliary

table. Then we scan the Left table and insert the merged record into the new

schema table. This is done as follows. For each Left table record, search for the

Right table record in the auxiliary table which have the same merging column

value as that of Left table record. If there is no such Right table record, we insert

the Left table record into the new schema table and leave the remaining columns

blank as they belong to the Right table. However, if the corresponding Right table

record exists, insert the merged record into the new schema table. When all the

Left table records have been processed, scan auxiliary table for the Right table

records which have not been copied to the new schema table. We insert all these

remaining Right table records and leave the remaining columns blank as they

27

belong to the Left table. Note that we maintain the lossless behavior of the vertical

merge by keeping all the records of the old schema tables in the new schema table.

Phase II: There are two different mechanisms for mapping the records

from Left and Right tables. Left table insert- Search the new schema table to

determine if the record with the same lmyid and left table name column values

already exists. We ignore the log entry if the record already exists in the new

schema table. However, if no such record exists then we need to figure out the

corresponding Right table record and then insert the merged record into the new

schema table. To do so, we search for the record with same merging column value

as that of the given Left table record and non blank right table name column value

in the new schema table. If we find such Right table record, insert the merged

record into the new schema table. However, if there is no corresponding Right

table record, we insert the Left table record into the new schema table and leave the

remaining columns blank as they belong to the Right table. Note that if the

corresponding Right table record exists with blank left table name column value,

we need to update this record itself to provide Left table column values instead of

inserting a new merged record.

Left table delete- Search for the record in the new schema table by using

given lmyid column value. We ignore the log entry if no such record exists.

Otherwise, we need to delete this record. We need to handle two cases here. The

record may or may not have the blank right table name column value. If the right

table name column value is blank, then we just delete the record from the new

schema table that has the given lmyid value. However, if the right table name

column value is not blank, then we delete this records and also make sure that we

do not loose any Right table record r in the new schema table. In order to do so, we

search the Right table record r in the new schema table which has different value

28

of lmyid column from that of the given lmyid value. If we find such Right table

record, then we just delete the record from the new schema table that has the given

lmyid value. Otherwise, we update this record in the new schema table that has the

given lmyid value and make the Left table column values blank.

Left table update- It involves handling of two cases. If the merging column

value is not changed, then we search for the record in the new schema table by

using given lmyid column value which is also identical to the old record data of the

log entry. Note that we only compare the Left table column values in the new

schema table with the old record data to determine if they are identical. If we find

such record, we just update the record in the new schema table by using the new

record data from the log entry. However, if the merging column value is changed,

then insert the new merged record in the new schema table in the similar way as

we do in the Left table insert (described above). Also, we will need to delete the

record from the new schema table which is identical to the old record data. This is

done in the similar way as we do in the Left table delete (described above).

Right table insert- Search the new schema table to determine if the record

with the same rmyid and right table name column values already exists. We ignore

the log entry if the record already exists in the new schema table. However, if no

such record exists then we need to figure out the corresponding Left table record

and then insert the merged record into the new schema table. To do so, we search

for the record with same merging column value as that of the given Right table

record and non blank left table name column value in the new schema table. If we

find such Left table record, insert the merged record into the new schema table.

However, if there is no corresponding Left table record, we insert the Right table

record into the new schema table and leave the remaining columns blank as they

belong to the Left table. Note that if the corresponding Left table record exists with

29

blank right table name column value, we need to update this record itself to

provide Right table column values instead of inserting a new merged record.

Right table delete- Search for the record in the new schema table by using

given rmyid column value. We ignore the log entry if no such record exists.

Otherwise, we need to delete this record. We need to handle two cases here. The

record may or may not have the blank left table name column value. If the left

table name column value is blank, then we just delete the record from the new

schema table that has the given rmyid value. However, if the left table name

column value is not blank, then we delete this records and also make sure that we

do not loose any Left table record r in the new schema table. In order to do so, we

search the Left table record r in the new schema table which has different value of

rmyid column from that of the given rmyid value. If we find such Left table record,

then we just delete the record from the new schema table that has the given rmyid

value. Otherwise, we update this record in the new schema table that has the given

rmyid value and make the Right table column values blank.

Right table update- It involves handling of two cases. If the merging

column value is not changed, then we search for the record in the new schema table

by using given rmyid column value which is also identical to the old record data of

the log entry. Note that we only compare the Right table column values in the new

schema table with the old record data to determine if they are identical. If we find

such record, we just update the record in the new schema table by using the new

record data from the log entry. However, if the merging column value is changed,

then insert the new merged record in the new schema table in the similar way as

we do in the Right table insert (described above). Also, we will need to delete the

record from the new schema table which is identical to the old record data. This is

done in the similar way as we do in the Right table delete (described above).

30

4.3 Horizontal Split

Horizontal split distributes the records of an old schema table into two new schema

tables depending on the value of a specific column which is called as horizontal

split column. We assume that the two new schema tables are disjoint and their

union is equal to the old schema table. This assumption is slightly different from

that of Løland [20] where the resulting tables may have overlapping records. This

thesis includes the horizontal split based on the equality condition (=) only,

however, the schema transformations supporting other conditions (for example,

less than <) can easily be integrated with the framework.

Horizontal Split on EQuality (HSEQ): HSEQ scans each record of the old

schema table and inserts it into one of the new schema tables, table1 or table2, by

checking the horizontal column value. Figure 4.4 illustrates an example of HSEQ.

We scan each record of the old schema table Category and inserts it into either

Category1 or Category2 table according to the horizontal split column value. Each

new schema table has an additional myid column along with the indexing on it for

the faster search during the mapping process. Below is the description of mapping

records in both phases.

Phase I: We scan all the records of the old schema table. For each record,

insert it into table1 or table2 according to the horizontal column value.

Phase II: Insert- Search for the record by using myid column value in one

of the new schema tables depending on the horizontal split column value. The

record is inserted if it doesn’t exist already. Delete- Search for the record by using

myid column value in one of the new schema tables depending on the horizontal

split column value. The record is deleted if it exists already. Update- The update

record case can be divided into two parts. If the horizontal split column value is

not changed, then search for the record by using myid column value in one of the

31

Figure 4.4: HSEQ: Horizontal Split on EQuality

new schema tables depending on the horizontal split column value. If such record

exists and is also identical to the old record data of the log entry, we update this

record. However, if the horizontal split column value is changed, then search for

the old record data in table1 (or table2) and move the record to another new

schema table with the new data record values of the log entry.

4.4 Vertical Split

Vertical Split divides a table vertically and produces two new schema tables. Each

new schema table consists of a different subset of columns from the old schema

table except one column (split column) which is shared by the two new schema

tables. We describe two cases of vertical split. One divides the table based on a

primary key, whereas another divides the table based on a non primary key which

is often used in normalization (functional dependency) [13].

32

Vertical Split On Primary key (VSOP): This schema transformation

involves vertical splitting of a table on the primary key column and this primary

column is shared by both new schema tables, split1 and split2. Figure 4.5

demonstrates an example of VSOP. The table Staff is divided into two new schema

tables, Staff A and Staff B, and primary key column exists in both new schema

tables. Below is the description of mapping records in both phases.

Figure 4.5: VSOP: Vertical Split On Primary key

Phase I: The columns in each new schema table represents the subset of

the columns of the old schema table. Therefore, the combination of the records rs1

and rs2 represents the record r of the old schema table, where rs1 represents the

split1 table record and rs2 represents the split2 table record. In this phase, we scan

all the records of the old schema table. For each record, insert the records rs1 and

rs2 into the new schema tables by using the record r of the old schema table.

33

Phase II: Insert- Search for the records rs1 and rs2 in new schema tables

by using the primary column value. If records don’t exist, we insert the records in

the new schema tables as we do in phase I. Delete- Search for the records rs1 and

rs2 in new schema tables by using the primary column value. The records are

deleted if they exist already. Update- Search for the records rs1 and rs2 in new

schema tables by using the primary column value and old record data from the log

entry. If the search is a success, we update the records.

Vertical Split on Non Primary key (VSNP):

For the old schema table, we produce two new schema tables – split1 and

split2. The old schema table has primary key constraint on one of its columns.

Each new schema table contains subset of the old schema table columns. In

addition, split1 table includes the primary key column as in the old schema along

with other columns whereas the split2 table makes the split column as the primary

key column. Figure 4.6 illustrates the example of VSNP. Here Staff A table is

split1 and Staff B table is split2. Staff has the primary key column Staff id, Staff A

has the primary key column Staff id and Staff B has the primary key column Zip.

Below is the description of mapping records in both phases.

Phase I: The columns in each new schema table represents the subset of

the columns of the old schema table. Therefore, the combination of the records rs1

and rs2 represents the record r of the old schema table, where rs1 represents the

split1 table record and rs2 represents the split2 table record. In this phase, we scan

all the records of the old schema table. For each record, insert the records rs1 and

rs2 into the new schema tables by using the record r of the old schema table.

However, we insert the record rs2 into the split2 table only if it does not violate the

primary key constraint on the split column.

34

Figure 4.6: VSNP: Vertical Split on Non Primary key

Phase II: Insert- Search for the record rs1 in the split1 table by using the

primary key column value (or myid can be be used if no primary or unique column

is provided). If the record is not found, insert the record in new schema tables in

similar way as we do in phase I; otherwise, we ignore the log entry. Delete- Search

for the record rs1 in the split1 table by using the primary key column value. If the

record rs1 exists, we delete it from the split1 table. Then we search for the record

rs2 in split2 table by using the split column value. We delete this record from

split2 table only if no other record in split1 table has the same split column value.

Update- We need to handle two cases here. If the split column value is not

changed, then search for the record rs1 in split1 table by using the primary key

column value and search for the record rs2 in split2 table by using the split column

value. If the combination of records rs1 and rs2 is identical to the old record data

of the log entry, we just update the records rs1 and rs2 in new schema tables with

35

the new record data of the log entry. However, if the split column value is changed,

then search for the record rs1 in split1 table by using the primary key column

value and search for the record rs2 in split2 table by using the old split column

value. If the combination of records rs1 and rs2 is identical to the old record data

of the log entry, we only update the record rs1 in split1 table with the new record

data of the log entry. Then we search for the record in split2 table by using the new

split column value. If it exists, we update the record with the new record data of

the log entry. Otherwise, we insert a new record in split2 table by using the new

record data of the log entry. Also, we search for the record in split1 table by using

the old split column value. If no record is found, then delete the record from split2

table by using the old split column value.

4.5 Difference and Intersection

The difference and intersection operators apply to tables that have the same

structure. The difference of two tables Left and Right is a new table that contains

records in Left that are not in Right. The intersection of Left and Right is a new

table that contains records that are in both Left and Right. As in [20], we

implemented both schema transformations together. A part of the process, we

create an auxiliary table as a part into which Right table is copied. It prevents

conflicts with live transactions on the Right table while looking up for the records

in the Right table during the update process. Below is the description of mapping

records in both phases.

Difference and Intersection with No Duplicates (DIND): This operator

produces two new schema tables, Difference and Intersection. Difference table

consists of all records of Left table that do not exist in Right table. Intersection

table consists of all records that exist both in Left and Right tables. DIND does not

allow duplicate records in both old schema tables. Two records are considered

36

duplicates if their field values are identical. Figure 4.7 illustrates an example of

DIND. In the old schema table Payment 2011, the records with Payment id

column value as PID6746280 and PID7689345 do not exist in Payment 2010.

Therefore, these records are inserted to the new schema intersection table

Payment I, where as other records are inserted to the new schema difference table

Payment D. Below is the description of mapping records in both phases.

Figure 4.7: DIND: Difference and Intersection with No Duplicates

Phase I: This phase begins with copying the Right table to the auxiliary

table. For each Left table record, if an identical record exists in the auxiliary table

then insert the Left table record into the Intersection table. Otherwise, insert the

Left table record into the Difference table.

Phase II: Similar to VMLR, DIND also has two different mechanisms for

mapping records from both, Left and Right, old schema tables.

37

Left table insert- Search for the record in Difference and/or Intersection

table by using the record data of the log entry. If such record already exists in one

of the new schema tables, we ignore the log entry. Otherwise, insert the record into

the new schema table in the similar way as we do in phase I. Left table delete-

Search for the record in Difference and/or Intersection table by using the record

data of the log entry. We delete the record if it exists in any of these two new

schema tables. Left table update- Search for the record r in Difference and/or

Intersection tables which is identical to the old record data of the log entry. If the

record r exists in the Difference table, update the record r with the new record data

of the log entry (say rnew). Then search for the record in the auxiliary table which

is identical to the record rnew. If such record exists, move the rnew record from the

Difference table to the Intersection table. However, if the record r exists in the

Intersection table, update the record r with the new record data of the log entry

(say rnew). Then search for the record in the auxiliary table which is identical to

the record rnew. If such record does not exist, move the rnew record from the

Intersection table to the Difference table.

Right table insert- Search for the record in the auxiliary table by using the

record data of the log entry. We ignore the log entry if it exists already. Otherwise,

we insert the record into the auxiliary table. Then search for an identical record in

the Difference table. If such record exists, then we move it to the Intersection

table. Right table delete- Search for the record in the auxiliary table by using the

record data of the log entry. We ignore the log entry if it does not exist already.

Otherwise, we delete the record from the auxiliary table. Then search for an

identical record in the Intersection table. If such record exists, we move it to the

Difference table. Right table update- Search for the record r in the auxiliary table

which is identical to the old record data of the log entry. If the record r exists,

38

update the record r with the new record data of the log entry (say rnew). Then

search for the record in the Difference table which is identical to the record rnew. If

such record exists, move it to the Intersection table. Also, search for the record in

the Intersection table which is identical to the record r. If such record exists, move

it to the Difference table.

Difference and Intersection With Duplicates (DIWD): DIWD is an

additional schema transformation that is not covered in [20]. Unlike DIND, DIWD

allows for duplicate records in the Difference and Intersection tables and,

therefore, is somewhat more complex. The Difference table has an additional

column lmyid that represents the myid column of the Left table. The Intersection

table consists of two additional columns – lmyid that represents myid column of

the Left table and the other is rmyid that represents the myid column of the Right

table. We also create an auxiliary table into which Right table is copied during the

process and it has rmyid column that represents the myid column of the Right table

as an additional column.

Figure 4.8 illustrates an example of DIWD. We consider each duplicate

record as a different record. In the old schema table Payment 2011, the records

with Payment id column value exist three times whereas the same record exists

only twice in another old schema table Payment 2010. Therefore, this record is

inserted into the new schema intersection table only twice. The remaining third

record is inserted into the new schema difference table Payment D. Below is the

description of mapping records in both phases.

Phase I: This phase begins with copying of Right table to an auxiliary

table. Then we scan all records of the Left table. For each Left table record, we

search for an identical record r in the auxiliary table such that the record with same

rmyid column value does not exist in Intersection table. If such record r exists, we

39

Figure 4.8: DIWD:Difference and Intersection With Duplicates

insert the Left table record into the Intersection table. Otherwise, insert this record

into the Difference table.

Phase II: Left table insert- Search for the record in Difference and/or

Intersection table by using the lmyid column value. If such record exists in any of

these two new schema tables, we ignore the log entry. Otherwise insert the record

either into the Difference or Intersection table in the similar way as we do in phase

I.

Left table delete- Search for the record in Difference and/or Intersection

table by using the lmyid column value. If such record exists in any of these new

schema tables, we delete the record.

Left table update- Search for the record (say r) in the Difference and/or

Intersection table by using the lmyid value and the old record data of the log entry.

40

If the record r exists in the Difference table, we update this record (say rnew) and

then search for an identical record in the auxiliary table such that the record with

same rmyid column value does not exists in Intersection table. If such record exists

in the auxiliary table, we move the record rnew to the Intersection table. Moreover,

if the record r exists in the Intersection table, we update this record (say rnew) and

then search for an identical record in the auxiliary table such that the record with

same rmyid column value does not exists in Intersection table. If such record

exists in the auxiliary table, we update the rmyid column value of record rnew in

the Intersection table. Otherwise, we move the record rnew to the Difference table.

Right table insert- Search for the record in the auxiliary table by using the

rmyid column value. If the record already exists, we ignore the log entry.

Otherwise, insert the record into the auxiliary table and search for an identical

record in the Difference table. If we find the identical record in the Difference

table, we move it to the Intersection table.

Right table delete- Search for the record in the auxiliary table by using the

rmyid column value. If the record does not exist, we ignore the log entry.

However, if the record exists, we delete the record from auxiliary table. Then we

search for an identical record (say r) in the Intersection table by using the rmyid

column value. If the record r exists in the Intersection table, then we search for

another identical record in the auxiliary table such that the record with the same

rmyid column value does not exists in the Intersection table. If such record exists,

we update the rmyid column value of the record r in the Intersection table.

Otherwise, we move the record r to the Difference table.

Right table update- Search for the record in the auxiliary table by using the

rmyid value and the old record data of the log entry. If the record exists in the

auxiliary table, we update this record and then search for an identical record in the

41

Intersection table by using the rmyid value and the old record data of the log entry.

If such record (say r) exists in the Intersection table, we update the record (say

rnew) and then search for an identical record in the auxiliary table such that the

record with same rmyid column value does not exists in Intersection table. If such

record exists in the auxiliary table, we update the rmyid column value of the record

rnew in the Intersection table. Otherwise, we move the record rnew to the Difference

table. Also, we search for another identical record for the old record data of the log

entry (r) in the auxiliary table. If we find the record in the auxiliary table, the

record r is inserted into the Intersection table. Otherwise, insert it into the

Difference table.

42

Chapter 5

RESULTS

This chapter describes the test environment and experiments performed in order to

evaluate the update framework. We show the impact of varying certain parameters

on the overhead caused by the update process. It also shows the feasibility of the

database updates with less overhead.

We performed dynamic database updates on the sample schema obtained

from PgFoundry [14] including the following schema transformations: Horizontal

Merge with No Duplicates, Horizontal Split, Vertical Merge, Vertical Split with

Primary Key column, Vertical Split with No Primary Key column, Difference and

Intersection with No Duplicates, Difference and Intersection With Duplicates. Any

index mentioned in this thesis, which exists in the old schema or created as a part

of the update process, represents a b-tree based index.

5.1 Old and New Tables for Schema Transformations

Here we describe the old and new scheme tables involved in each schema

transformation.The complete details of old and new schemas are provided in the

Appendix A for all schema transformations.

1. HMND: Old schema tables are payment p2007 04 and payment p2007 05.

New schema table is tabledn.

2. VMLR: Old schema tables are City and Country. New schema table is

tabledvm.

3. VSOP: Old schema table is customer and new schema tables are tabledp1

and tabledp2.

4. VSNP: Old schema table is staff and new schema tables are tabledn1 and

tabledn2.
43

5. HSEQ: Old schema table is category and new schema tables are tablhs1 and

tablehs2.

6. DIND: Old schema tables are payment and payment p2007 01. New schema

tables are tabledifference and tableintersection.

7. DIWD: Old schema tables are payment p2007 02 and payment p2007 03.

New schema tables are tabledifferenceall and tableintersectionall.

5.2 Experimentation Setup

We used two computers to simulate client-server architecture for the database

management system. Both computers are connected through a coaxial cable to

eliminate noise due to network latency fluctuation. One computer acts as the client

and executes transactions on the database server running on the other computer.

The client machine is a 1.8 GHz x86 CPU with 512 Mb of main memory running

Debian GNU/Linux 4.0 and Java Development Kit (JDK) version: 1.6. The client

machine uses a Java program to execute transactions on the database server

continuously. The DBMS used is PostgreSQL 8.4 with 24 Mb of shared buffer

size executing on a dual core 3.33 GHz x86 machine with 8 Gb main memory and

128 Mb effective cache size running Ubuntu 9.10. The shared buffer size is less

than 10% of the size of the database and while the available memory is very large,

the buffer size limits all in-memory database operations to 24 Mb to avoid a

situation in which the database queries are running from main memory (and only

writes to the log go to disk). We opted for the smaller size database and buffer size

to be able to test our implementation within a reasonable amount of time while

attempting to achieve system parameters that are a scaled down version of what

one would find in larger databases. The database on which we tested the

transformation consists of 11 tables with an average of around 5 columns per table.

44

The tables were populated with synthetic data of 300,000 records for a total of 300

Mbyte (approximately) of space (average of around 100 bytes per record).

5.3 Query Generation

In general, transactions can be complex in which case all the transactions might

have multiple queries of the same or different basic types (update, delete, insert,

select) or simple in which case a transaction has only one query. In the evaluation,

we mainly considered simple queries. Simple client queries were generated

randomly according to uniform distributions both across tables and across records.

However, insert type of queries only insert new records in a table. As we

mentioned earlier that there are 11 old schema tables, we generate the queries

which randomly choose a table from old schema tables and then pick a random

record from the chosen table. Each table has at least one integer column which is

used as the condition to pick a record by a query. All records have values for this

integer column in a pre-defined range. This range of numbers is used to generate

the random client queries by using the random function provided by Java. Client

queries are grouped according to the type of the transaction. Therefore, we have

four set of transactions. These are – Update, Delete, Insert and Select. Each

transaction set consists of one type of simple queries that

inserts/update/deletes/selects a record from a table based on a given condition. For

example, Update Transaction Set consists of all the update queries on the old

schema tables. The samples of these transactions sets are provided in Appendix

(B.1, B.2, B.3). This has the advantage of comparing how the performance

parameters are affected by query types. It has the obvious disadvantage of limiting

the scope of the evaluation as the real-world scenario may consist of transactions

that include a group of mixed queries on multiple tables. For each basic

transaction type, we generated a transaction set for the old schema and applied it

45

against the database. In addition, we also generated two transaction sets of

complex client transactions in which each transaction consists of multiple queries

(update and delete) including multiple old schema tables. The samples of these

complex transactions are provided in Appendix (B.4, B.5).

5.4 Empirical Validation

The dynamic database update process was executed on the database while client

queries were executing on the old schema. For testing the correctness of the

implementation, the content of the old database and new database is compared

when the system is ready to switch from the old to the new database. We ran a

validation procedure to ensure that the data in the new database matches the data

in the old database for some experiments. We also performed this process

manually for some experiments. The empirical validation is mainly done during

the development phase and partially during the the performance analysis phase.

During the dynamic database update process, synchronization of the log

file was achieved in as little as 2 and as high as 28 iterations over the log files. We

describe the performance parameters and interpretation of the obtained results

next.

5.5 Performance Parameters

We measure three performance parameters: (1) percentage overhead in the average

response time per transaction; (2) execution time taken by the update process (time

during which the response time overhead is incurred); and (3) upper response time

which is the smallest time larger than the response time of 95% of all completed

transactions [18]. While the first parameters are straightforward to understand, the

last parameter attempts to capture the worst-case scenario for response time. The

overhead is calculated as:

overhead =
ARTWU −ARTWOU

ARTWOU
×100 (5.1)

46

where ARTWU is the average response time of user transactions with the update

process and ARTWOU is the average response time of user transactions without the

update process.

As mentioned in Chapter 3, the performance is measured as a function of

two optimization parameters: (1) the batch size used in copying the old database to

the new database; and (2) the inter-batch time interval. The effect of these

parameters were evaluated by varying the parameters individually, while keeping

the other constant.

The concurrent user transactions have continuous access patterns in which

new queries are issued as soon as responses to the previous queries are received.

For our system, the continuous access pattern of user transactions corresponds to a

query frequency of approximately 60 transactions per second which is the highest

feasible for the client and we have opted not to try to increase that rate by

multi-threading the client.

5.6 Interpretation of Results

We provide performance analysis for all four types of transaction sets – update,

delete, insert and select.

UPDATE: As we mentioned in the previous chapter, there are two

optimization parameters: batch size and inter-batch time interval. The smaller

value of batch size results in a read-lock on a smaller number of records in the old

schema table during the update process. This implies that there will be less

overhead of the update process on the user transactions for the smaller values of

batch size. However, smaller values of the batch size result in longer execution

time of the update process due to large number of batches. The inter-batch time

interval is the time during which the update process is halted between the

processing of each batch. The larger value of time interval provides more scope for

47

the user transactions to execute and results in less overhead, but results in a larger

total execution time of the update process.

We draw the performance graphs for percentage overhead, execution time

of the update process and upper response time. Figures 5.1, 5.2 and 5.3 show the

results for different time intervals when batch size is varied. The overhead tends to

decrease with smaller value of batch size (Figure 5.1) whereas the execution time

increases (Figure 5.2). Due to the smaller overhead, the upper response time also

decreases for small value of batch size (Figure 5.3).

Figures 5.4, 5.5 and 5.6 present the results for different batch sizes when

time interval is varied. The overhead tends to decreases with larger value of time

interval (Figure 5.4) whereas the execution time decreases (Figure 5.5). Due to the

smaller overhead, the upper response time also decreases for large value of time

interval (Figure 5.6).

Figure 5.1: Overhead for Update: Vary batch size

DELETE and INSERT: Performance graphs for Delete and Insert

transaction show patterns that are similar to those of the Update transactions. The

performance graphs for Delete with different batch sizes are given in
48

Figure 5.2: Execution Time for Update: Vary batch size

Figure 5.3: Response Time for Update: Vary batch size

Figures 5.7, 5.8, 5.9. The performance graphs for Delete with different inter-batch

time intervals are given in Figures 5.10, 5.11, 5.12.

The performance graphs for Insert with different batch sizes are given in

Figures 5.13, 5.14, 5.15. The performance graphs for Insert with different

inter-batch time intervals are given in Figures 5.16, 5.17, 5.18.

49

Figure 5.4: Overhead for Update: Vary time interval

Figure 5.5: Execution Time for Update: Vary time interval

SELECT: The database update process holds read-lock on the old schema

table and hence, does not interfere with the Select transactions. There will be an

overhead due to sharing of common resources though.

We also perform a set of experiments using complex transaction sets and

measure the overhead. We generate two complex transaction sets A and B

50

Figure 5.6: Response Time for Update: Vary time interval

Figure 5.7: Overhead for Delete: Vary batch size

(Appendix B.4 and B.5) and study the overhead by varying batch size. In these

complex transactions, each transaction involves more than one table to perform

any changes in the database.

51

Figure 5.8: Execution Time for Delete: Vary batch size

Figure 5.9: Response Time for Delete: Vary batch size

Complex Transaction Set A: For batch size = 5000 and inter-batch time

interval = 1 second, the percentage overhead is 77.19. And, for batch size = 1000

and inter-batch time interval = 1 second, the percentage overhead is 35.6.

52

Figure 5.10: Overhead for Delete: Vary time interval

Figure 5.11: Execution Time for Delete: Vary time interval

Complex Transaction Set B: For batch size = 5000 and inter-batch time

interval = 1 second, the percentage overhead is 40.76. And, for batch size = 1000

and inter-batch time interval = 1 second, the percentage overhead is 30.

Similar to the case of simple queries, the overhead tends to reduce with the

smaller batch size for the complex transactions as well.

53

Figure 5.12: Response Time for Delete: Vary time interval

Figure 5.13: Overhead for Insert: Vary batch size

54

Figure 5.14: Execution Time for Insert: Vary batch size

Figure 5.15: Response Time for Insert: Vary batch size

55

Figure 5.16: Overhead for Insert: Vary time interval

Figure 5.17: Execution Time for Insert: Vary time interval

56

Figure 5.18: Response Time for Insert: Vary time interval

57

Chapter 6

CONCLUSION

We have presented a client-driven framework for dynamic database updates and

have shown that it is a viable approach for implementing complex dynamic

database updates. The client-driven mechanism of the framework provides the

flexibility of its integration with already existing DBMSs. The update framework

supports the schema transformations presented in the Løland [20] along with an

additional schema transformation. The framework reads the specifications of old

and new schemas using configuration files and generates the required mappings for

these schema transformations. However, any other schema transformation can be

integrated with the framework. To integrate a schema transformation, user needs to

define certain mapping mechanisms required at various stages of the update

process. User can also integrate the functionality of automatic generation of new

schema transformations. Most of the implementation is done in structured query

language which is a declarative language used by a wide range of relational

databases. Therefore, it becomes easier for a developer to integrate the support for

other schema transformations in the framework.

We test our framework with a number of user transactions (simple and

complex) and study the impact of the performance parameters defined in the

framework on the concurrent user transactions during the update process. We

show how we can reduce the overhead of an update process by varying these

performance parameters. The performance results, while not extensive, show the

viability of the work.

6.1 Limitations and Future Work

There are a number of directions for further study:

58

1. The current implementation of the framework does not allow the coexistence

of the old and new schemas. The framework can be extended to provide this

functionality with the help of triggers and more complex implementation.

However, this approach may cause a significant overhead.

2. This thesis focuses on the updates in relational schema only. However, the

database updates may lead to the changes in the client applications. The

dynamic updates of client applications along with the database updates is

subject for future research.

3. There is a scope of optimization for better log processing. The current

implementation scans the log sequentially to process each log entry. The log

reconciliation becomes costly if each log entry fetches a new disk page to

apply the changes to the new database table. Therefore, we need an efficient

method for processing the log. One approach for efficient log processing is

to rearrange the log such that it reduces the number of page faults and hence

requires fewer disk accesses.

4. The performance results that we presented show the viability of our

approach, but a more thorough evaluation is still needed with more realistic

queries and database.

59

REFERENCES
[1] D. Adams. Oracle xml db developer’s guide, 11g release 1 (11.1) b28369-01.

[2] H. Bounif. Predictive approach for database schema evolution. Intelligent
databases: technologies and applications, page 286, 2007.

[3] S.E. Bratsberg and R. Humborstad. Online scaling in a highly available
database. In VLDB, pages 451–460, 2001.

[4] M. Callaghan. Online schema change for mysql. Web., 2010.
<http://www.facebook.com/notes/mysql-at-facebook/online-schema-change-
for-mysql/430801045932>.

[5] R. Chirkova and G.H.L. Fletcher. Towards well-behaved schema evolution.
Citeseer, 2009.

[6] K.T. Claypool, J. Jin, and E.A. Rundensteiner. Serf: schema evolution
through an extensible, re-usable and flexible framework. In Proceedings of
the seventh international conference on Information and knowledge
management, pages 314–321. ACM, 1998.

[7] A. Cleve, A.F. Brogneaux, and J.L. Hainaut. A conceptual approach to
database applications evolution. Conceptual Modeling–ER 2010, pages
132–145, 2010.

[8] E.F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[9] C. Curino, H.J. Moon, and C. Zaniolo. Automating database schema
evolution in information system upgrades. In Proceedings of the 2nd
International Workshop on Hot Topics in Software Upgrades, page 5. ACM,
2009.

[10] C.A. Curino, H.J. Moon, and C. Zaniolo. Graceful database schema
evolution: the prism workbench. Proceedings of the VLDB Endowment,
1(1):761–772, 2008.

[11] IBM developerWorks. Db2: Online schema change. Web., 2009.
<http://www.ibm.com/developerworks/data/library/techarticle/dm-
0907db2outages/>.

60

[12] E. Domı́nguez, J. Lloret, Á.L. Rubio, and M.A. Zapata. Medea: A database
evolution architecture with traceability. Data & Knowledge Engineering,
65(3):419–441, 2008.

[13] R. Elmasri and S. Navathe. Fundamentals of database systems, volume 2.
Pearson Education India, 2008.

[14] PostgreSQL Development Group. pgfoundry. n.d. <http://pgfoundry.org/>.

[15] M. Hartung, J. Terwilliger, and E. Rahm. Recent advances in schema and
ontology evolution. Schema Matching and Mapping, pages 149–190, 2011.

[16] J.M. Hick and J.L. Hainaut. Database application evolution: a
transformational approach. Data & Knowledge Engineering, 59(3):534–558,
2006.

[17] S.O. Hvasshovd, T. Sæter, Ø. Torbjørnsen, P. Moe, and O. Risnes. A
continously available and highly scalable transaction server: Design
experience from the hypra project. In IN PROCEEDINGS OF THE 4TH
INTERNATIONAL WORKSHOP ON HIGH PERFORMANCE
TRANSACTION SYSTEMS. Citeseer, 1991.

[18] S.O. Hvasshovd, Ø. Torbjørnsen, S.E. Bratsberg, and P. Holager. The clustra
telecom database: High availability, high throughput, and real-time response.
In Proceedings of the 21th International Conference on Very Large Data
Bases, pages 469–477. Morgan Kaufmann Publishers Inc., 1995.

[19] IBM. Optim database administrator for db2. Web., n.d. <http://www-
01.ibm.com/software/data/optim/database-administrator/features.html>.

[20] J. Løland. Materialized view creation and transformation of schemas in
highly available database systems. PhD thesis, Norwegian University of
Science and Technology (NTNU), Norway, 2007.

[21] J. Løland and S.O. Hvasshovd. Online, non-blocking relational schema
changes. Advances in Database Technology-EDBT 2006, pages 405–422,
2006.

[22] S. Monk and I. Sommerville. Schema evolution in oodbs using class
versioning. ACM SIGMOD Record, 22(3):16–22, 1993.

61

[23] Craig Mullins. Database administration: the complete guide to practices and
procedures. Addison-Wesley, 2002.

[24] MySQL. Alter table syntax. Web., n.d.
<http://dev.mysql.com/doc/refman/5.1/en/alter-table.html>.

[25] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou. Hecataeus:
Regulating schema evolution. In Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, pages 1181–1184. IEEE, 2010.

[26] Jan Paredaens, Paul De Bra, Marc Gyssens, and Dirk Van Gucht. The
structure of the relational database model. Springer-Verlag New York, Inc.,
New York, NY, USA, 1989.

[27] M. Ronström. On-line schema update for a telecom database. In Data
Engineering, 2000. Proceedings. 16th International Conference on, pages
329–338. IEEE, 2000.

[28] Rever S.A. Db-main: The modelling framework. Web., n.d.
<http://www.db-main.eu/?q=en/content/db-main-data-architecture tool/>.

[29] SQL Server. Using sql server management studio. Web., n.d.
<http://msdn.microsoft.com/en-us/library/ms174173.aspx>.

[30] G.H. Sockut and B.R. Iyer. Online reorganization of databases. ACM
Computing Surveys (CSUR), 41(3):1–136, 2009.

[31] M. Subramaniam and J. Loaiza. Online reorganization and redefinition of
relational database tables, November 15 2005. US Patent 6,965,899.

[32] J.F. Terwilliger, P.A. Bernstein, and A. Unnithan. Worry-free database
upgrades: automated model-driven evolution of schemas and complex
mappings. In Proceedings of the 2010 international conference on
Management of data, pages 1191–1194. ACM, 2010.

62

APPENDIX A

OLD AND NEW SCHEMA DETAILS

63

We describe the structure of old and new tables that demonstrate the
schema changes applied to old schema tables involved in each schema
transformation.

A.1 HMND: Horizontal Merge with No Duplicates
Figures A.1, A.2 and A.3 describe the schema of old and new tables involved in
HMND.

Figure A.1: Old Schema Table for HMND

Figure A.2: Another Old Schema Table for HMND

A.2 HSEQ: Horizontal Split on EQuality
Figures A.4, A.5 and A.6 describe the schema of old and new tables involved in
HSEQ.

A.3 VMLR: Vertical Merge of Left and Right tables
Figures A.7, A.8 and A.9 describe the schema of old and new tables involved in
VMLR.

64

Figure A.3: New Schema Table for HMND

Figure A.4: Old Schema Table for HSEQ

Figure A.5: New Schema Table for HSEQ

A.4 VSOP: Vertical Split on Primary key
Figures A.10, A.11 and A.12 describe the schema of old and new tables involved
in VSOP.

A.5 VSNP: Vertical Split on Non Primary key
Figures A.13, A.14 and A.15 describe the schema of old and new tables involved
in VSNP.

65

Figure A.6: Another New Schema Table for HSEQ

Figure A.7: Old Schema Table for VMLR

Figure A.8: Another Old Schema table for VMLR

A.6 DIND: Difference and Intersection with No Duplicates
Figures A.16, A.17, A.18 and A.19 describe the schema of old and new tables
involved in DIND.

A.7 DIWD: Difference and Intersection With Duplicates
Figures A.20, A.21, A.22 and A.23 describe the schema of old and new tables
involved in DIWD.

66

Figure A.9: New Schema Table for VMLR

Figure A.10: Old Schema Table for VSOP

Figure A.11: New Schema Table for VSOP

67

Figure A.12: Another New Schema Table for VSOP

Figure A.13: Old Schema Table for VSNP

68

Figure A.14: New Schema Table for VSNP

Figure A.15: Another New Schema table for VSNP

Figure A.16: Old Schema Table for DIND

69

Figure A.17: Another Old Schema Table for DIND

Figure A.18: New Schema Table for DIND

Figure A.19: Another New Schema Table for DIND

70

Figure A.20: Old Schema Table for DIWD

Figure A.21: Another Old Schema Table for DIWD

Figure A.22: New Schema Table for DIWD

71

Figure A.23: Another New Schema table for DIWD

72

APPENDIX B

SAMPLE TRANSACTION SETS

73

We provide the sampels of transaction sets that are generated during the
query generation phase in chapter 5.

B.1 Simple Transaction Set INSERT
INSERT INTO
customer(customer id,store id,first name,last name,email,address id,active) VAL-
UES(1348968,5577,’FName45360’,’LName45360’,’EMAIL45360’,5577,45360);
INSERT INTO pay-
ment p2007 04(payment id,customer id,staff id,rental id,amount,payment date)
VALUES(5564709,1604,1604,28624,500,’2011-07-25 14:40:49’); INSERT INTO
pay-
ment p2007 05(payment id,customer id,staff id,rental id,amount,payment date)
VALUES(3636381,3642,3642,4925,500,’2011-07-25 14:40:49’); INSERT INTO
category(name) VALUES(’Action’);

B.2 Simple Transaction Set UPDATE
UPDATE payment p2007 05 SET rental id=’5555555’ WHERE
payment id=296777; UPDATE customer SET last name=’NEW SURNAME’
WHERE customer id=282204; UPDATE payment p2007 03 SET
rental id=’5555555’ WHERE payment id=113084; UPDATE country SET
country=’NEWCOUNTRY’ WHERE country id=180526;

B.3 Simple Transaction Set DELETE
DELETE FROM payment p2007 05 WHERE payment id=64483; DELETE
FROM payment WHERE payment id=167610; DELETE FROM city WHERE
city id=154521; DELETE FROM payment p2007 01 WHERE
payment id=144724;

B.4 Complex Transaction Set A
BEGIN; DELETE FROM staff WHERE staff id IN (SELECT customer id FROM
customer WHERE customer id = 144980); UPDATE payment p2007 04 SET
amount=200 WHERE payment id IN (SELECT category id FROM category
WHERE category id = 201807); COMMIT;

BEGIN; DELETE FROM payment WHERE payment id IN (SELECT
payment id FROM payment p2007 01 WHERE payment id = 251465); UPDATE
payment p2007 05 SET amount=200 WHERE payment id IN (SELECT
category id FROM category WHERE category id = 224215); COMMIT;

B.5 Complex Transaction Set B
BEGIN; DELETE FROM city WHERE country id IN (SELECT country id
FROM country WHERE country id=125085); UPDATE customer SET
email=’NEWEMAIL’ WHERE customer id IN (SELECT staff id FROM staff
WHERE staff id = 266504); DELETE FROM payment p2007 03 WHERE
payment id IN (SELECT payment id FROM payment p2007 02 WHERE
payment id = 161026); UPDATE staff SET email=’NEWEMAIL’ WHERE
staff id IN (SELECT customer id FROM customer WHERE customer id =
283726); COMMIT;

74

BEGIN; DELETE FROM payment p2007 04 WHERE payment id IN
(SELECT category id FROM category WHERE category id = 291665); UPDATE
payment p2007 05 SET amount=200 WHERE payment id IN (SELECT
category id FROM category WHERE category id = 7771); DELETE FROM
payment WHERE payment id IN (SELECT payment id FROM
payment p2007 01 WHERE payment id = 82235); UPDATE staff SET
email=’NEWEMAIL’ WHERE staff id IN (SELECT customer id FROM
customer WHERE customer id = 264603); COMMIT;

75

