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ABSTRACT  
   

The first part describes Metal Semiconductor Field Effect Transistor 

(MESFET) based fundamental analog building blocks designed and 

fabricated in a single poly, 3-layer metal digital CMOS technology utilizing 

fully depletion mode MESFET devices. DC characteristics were measured 

by varying the power supply from 2.5V to 5.5V. The measured DC transfer 

curves of amplifiers show good agreement with the simulated ones with 

extracted models from the same process. The accuracy of the current 

mirror showing inverse operation is within ±15% for the current from 0 to 

1.5mA with the power supply from 2.5 to 5.5V.  

The second part presents a low-power image recognition system 

with a novel MESFET device fabricated on a CMOS substrate. An analog 

image recognition system with power consumption of 2.4mW/cell and a 

response time of 6µs is designed, fabricated and characterized. The 

experimental results verified the accuracy of the extracted SPICE model of 

SOS MESFETs. The response times of 4µs and 6µs for one by four and 

one by eight arrays, respectively, are achieved with the line recognition. 

Each core cell for both arrays consumes only 2.4mW.  

The last part presents a CMOS low-power transceiver in MICS 

band is presented. The LNA core has an integrated mixer in a folded 

configuration. The baseband strip consists of a pseudo differential MOS-C 

band-pass filter achieving demodulation of 150kHz-offset BFSK signals. 

The SRO is used in a wakeup RX for the wake-up signal reception. The all 
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digital frequency-locked loop drives a class AB power amplifier in a 

transmitter. The sensitivity of -85dBm in the wakeup RX is achieved with 

the power consumption of 320µW and 400µW at the data rates of 100kb/s 

and 200kb/s from 1.8V, respectively. The sensitivities of -70dBm and -

98dBm in the data-link RX are achieved with NF of 40dB and 11dB at the 

data rate of 100kb/s while consuming only 600µW and 1.5mW at 1.2V and 

1.8V, respectively. 
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PART I 

SOS MESFET ANALOG BUILDING BLOCKS 
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CHAPTER 1 

INTRODUCTION 

Complementary Metal Oxide Semiconductor (CMOS) continues to 

scale down to meet the growing demand for low voltage and low power 

systems. The required power supply voltage will be as low as 1V for Radio 

Frequency (RF) and Analog Mixed-signal circuit designers in 2010 

according to the International Technology Roadmap for Semiconductors 

(ITRS). Scaling of size and reduction in power supply voltages lead more 

integration and lower power consumption while they cause unavoidable 

performance problems such as limited output voltage swing due to 

reduced headroom and back compatibility problems. Furthermore, as 

CMOS scales down, the breakdown voltage reduces as well. The 

reduction in the breakdown voltage causes CMOS devices to fail their 

functionality in analog or RF and power management systems due to 

inductive loads such as voltage controlled oscillators (VCO), RF power 

amplifiers, and switch-mode DC-DC converters in which the transistors 

experience 2 to 4 times larger voltage than power supply [1]. For high 

breakdown voltage, lateral-diffused MOSFETs (LD-MOSFETs) have been 

used. However, LD-MOSFETs are not fully compatible with current CMOS 

process flows since they require process modifications to achieve high 

breakdown voltage. To overcome these limitations silicon-on-insulator 

Metal Semiconductor Field Effect Transistors (SOI MESFETs) have been 

fabricated and demonstrated in partially depleted (PD) process with no 
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changes to the standard CMOS process flow. Although the breakdown 

voltage depends on a channel access length (La, the distance from a gate 

to a source or drain), the maximum breakdown voltage exceeds 50V [1]. 

High voltage compliant MESFETs provide an elegant solution to the 

voltage scaling of advanced CMOS technologies. However, for SOI and 

silicon-on-sapphire (SOS) MESFETs to be used in the design of analog 

and RF systems, the accurate DC and RF behavioral models must be 

developed. The MESFETs which are typically operated in depletion mode 

can be modeled using the TOM3 model. The TOM3 model was originally 

developed for modeling the DC and RF characteristics of Gallium 

Arsenide (GaAs) MESFETs, but is suitable for fully depleted SOS 

MESFETs [2] since they are unaffected by a bias on the substrate. The 3-

terminal TOM3 model can also be used for SOI MESFETs provided the 

source and substrate are at the same potential. An accurate TOM3 large 

signal Spice model for SOI MESFETs was successfully extracted and 

demonstrated as described in [3]. Fully CMOS compatible SOS MESFET 

based fundamental analog building blocks such as single ended and 

differential amplifiers and a high impedance current mirror have been 

fabricated using a SOS CMOS foundry with no changes to the standard 

CMOS process flow. The DC characteristics have been measured using 

supply voltages in the range 2.5 to 5.5V and show good agreement with 

the simulated results using a calibrated TOM3 model. 
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CHAPTER 2 

CMOS COMPATIBLE FULLY DEPLETED MESFETS [2] 

The MESFETs used for the analog building blocks were fabricated 

using a 3-layer metal digital SOS CMOS technology. Detailed fabrication 

process for partially depleted SOI (PD-SOI) MESFETs has been 

described in [1]. A similar approach has been used here for the FD-SOI 

MESFETs with the islands of Schottky gate material defined using a 

silicide block mask [2]. 

  

 
 

Fig. 1. a) 3D rendering of the FD-SOI MESFET showing two conducting 

channels confined between islands of silicide. Electrical contact to each 

silicide island is provided by vias to the first layer of metal interconnect 

(not shown). b) A cross section in the y-z plane through the center of the 

device showing the conducting channels formed underneath regions of 

silicide block [2]. 



  5 

Fig. 1 presents a 3D rendering of the device. The access regions 

were formed either from a silicide block layer, which is also used to define 

resistors in active regions or from a polysilicon layer used to define the 

MOS gate. The minimum feature sizes of the FD-SOI MESFETs are 

limited by the design rules of the technology used. For the 0.25µm SOS 

CMOS process the design rules allowed channel lengths, Lg, as small as 

1.8µm with channel widths, Lcw, down to 0.25µm. The SOS MESFETs 

were designed to have multiple fingers, each finger having a number of 

nominally identical channels. The threshold voltage (Vth) of the SOS 

MESFETs used for the analog building blocks was -0.8V. The main 

feature of the SOI and SOS MESFET is their high voltage breakdown. 

Breakdowns in excess of 50V have been shown on a 3.3V PD-SOI 

process [1]. For the SOS MESFETs used here the breakdown voltage 

exceeds 7.5V [2]. Other features include being able to adjust the threshold 

voltages without changing any process steps, wide temperature operation 

and high linearity. Any standard SOI/SOS CMOS process can harness the 

advantage of both these devices to create the most efficient circuit for the 

specific application. 
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CHAPTER 3 

DC CHARACTERIZATION [2] 

  The turn-on characteristics of n-MESFETs are shown in Fig. 2. The 

channel length Lg was 1.8µm with a total of 150 channels. The channel 

width LCW was varied from 0.25 to 1µm. The device operates in depletion 

mode. The inset of Fig. 2 show the IG-VGS data for VD=VS=0V. The dashed 

line in the small additional window in Fig. 2 is the fit to the exponential 

function [4] 

Idiode~AA’T2e-ΦB/UTeVG/nUT 

where UT=kT/e.  

  From curve fits to experimental data, an ideality factor n=1.24 was 

extracted for n-MESFETs. The Schottky barrier ΦB can be extracted from 

the fit, but this is complicated by the uncertainty in the conducting area A 

of the MESFET gate. If the gate current at VDS=0V flows predominantly 

out of the four vertical edges of the silicide gate islands, then the total 

conductiong gate area is given approximately by 4NLgTSi, where N is the 

number of channels and Tsi is the thickness of the silicon channel. For the 

SOS devices, TSi ≈100nm [5] and the total gate area is ~ 1.1 x 10-6 cm2 for 

the devices with N = 150 channels. Assuming effective Richardson 

constants A* of 110 and 32 A · cm-2 · K-2 [4], we derive barrier heights of 

0.48 for the n-MESFETs. The measured barrier height for the n-MESFETs 

is lower than the ~0.6eV quoted for CoSi2 [7] to n-Si but is still reasonable 

given the uncertainty in the gate area.  
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Fig. 2. The turn-on characteristics, ID-VGS for the n-MESFETS (VDS = 2V) 

for different channel widths, LCW. The insets show the magnitude of the 

gate current for LCW = 0.25µm [2]. 

 

The magnitude of the threshold voltage increases as LCW increases 

because of the greater lateral distance required to deplete the channel. 

The threshold voltage is plotted as a function of channel width in Fig. 3. It 

is clear that the threshold voltage of the FD-SOS MESFETs can be 

controlled by varying the physical dimension LCW. This is an advantage 

compared to the PD-SOI MESFETs for which the threshold voltage is 

dictated by the SOI channel thickness and well doping and cannot be 

adjusted without making changes to the CMOS process flow. The dashed 

line in Fig. 3 is the linear fits to the data.  
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Fig. 3.  Threshold voltage of the SOS MESFETs as a function of the 

channel width defined by the spacing between silicide islands, Lcw. The 

dashed lines are linear fits to the data [2]. 

 

Fig. 4 shows the Id-Vds family of curves for the n-channel device. 

Good output current saturation is observed for drain votages that greatly 

exceed the 3.5-V breakdown voltage of the CMOS transistors. The high-

voltage capability of the FD-SOS MESFETs is in part due to the drift 

region between the ends of the channel and the drain contact that is a 

natural outcome of the nonself-aligned MESFET geometry [1].  
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Fig. 4.  The family of curves for the n-MESFET for gate voltages in the 

range –0.5 to +0.5 V in 0.1 V steps. Lg = 1.8µm and LCW = 0.25µm [2]. 
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CHAPTER 4 

ANALOG BUILDING BLOCKS 

4.1  Cross Coupled Current Mirror 

GaAs MESFETs have been widely employed for the design of high 

speed communication circuits such as operational amplifiers and switched 

capacitor filters since they benefit from the high mobility transport 

properties compared to CMOS. However, the main drawback of GaAs 

MESFETs is the absence of a p-type MESFET [7-8] and also they do not 

integrate well with MOSFETs. Therefore analog circuits using GaAs 

MESFETs usually have been designed with only n-type MESFETs. 

Similarly, due to the lack of a p-type MESFET at the time of production in 

our process flow, an n-type only design was used for analog building 

blocks. In order to address this limition, an inverting current mirror formed 

with cross coupled gate source nodes is used. An inverting current mirror 

can be analyzed through the following small signal analysis as shown in 

Fig. 5.  

121 ssmref VgI =          (1)                                     

212 ssmcopy VgI =         (2) 

Rewriting           

12
2

21 ss
m

copy
ss V

g
I

V −==
        

(3) 

By substituting (3) into (1),  
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copy
m

m

m

copy
mref I

g
g

g
I

gI
2

1

2
1 )( −=−=

      
(4) 

Rewriting (4) gives us the final expression of the copied current.    

ref
m

m
copy I

g
gI

1

2−=
        

(5) 

where gm1 and gm2 are transconductance of M1 and M2, respectively. It is 

worth noting that the copied current is inversely proportional to the 

reference by the ratio of transconductance of devices M1 and M2.  

	    
Fig. 5. Transistor level implementation of the cross coupled gate source 

inverting current mirror. 

 

4.2 Amplifiers 

The proposed amplifiers presented in Fig. 6 (a) and (b) consist of a 

SOS MESFET input pair and an inverting current mirror shown in Fig. 5 

which replaces an active load. The main drawback of an SOS MESFET 

inverting current mirror is the lower output resistance at the output nodes 

compared to its CMOS conterpart. It is because the resistance at the 
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source of the devices M7 and M8 is 1/gm7,8 and they are in parallel with 

those of M5 and M6. As a result, the output resistance at the output nodes 

of the amplifiers (the drain nodes of M5 and M6 for the differential) is 

inversely proportional to the transconductance of devices M7 and M8 (for 

the differential). This inherent low output resistance causes the MESFET 

based amplifiers to have lower DC gain compared to a CMOS counterpart. 

To improve the output resistance and the DC gain, the high impedance 

current mirror which will be introduced in the next section is often 

employed in the design of high gain amplifiers. However, in this paper, 

since our goal is to validate the large signal Spice model to reproduce the 

measured results, the basic inverting current mirror depicted in Fig. 5 is 

used for an active load for simplicity at the expense of DC gain.  All 

MESFETs operate in depletion mode. The channel length is set at 1.8 µm 

due to the design rule restrictions, Lcw = 0.25 µm, and there are 300 

channels. 

4.3 High Impedance Cascoded Current Mirror 

For the high impedance cascoded current mirror design, the focus 

was on the fabrication and measurement of a fully CMOS compatible SOS 

MESFET inverting current mirror since lack of p-type MESFET makes the 

design of p-type current mirror impossible in contrast to CMOS 

counterpart. As explained earlier, the low output resistance of the basic 

current mirror shown in Fig. 5 limits its application. In order to increase the 
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output impedance, the configuration shown in Fig. 7 has been choosen for 

the current mirror. 

 
Fig. 6. (a) Single ended amplifier employing an inverting current mirror 

replacing an active load 

(b) Differential amplifier employing an inverting current mirror replacing an 

active load 
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Fig. 7. High impedance cascoded current mirror 
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CHAPTER 5 

MEASUREMENT RESULTS 

Fig. 8 shows the measured and simulated results of the single 

ended amplifier with input swept from -1 to 1V with various power 

supplies. For the differential amplifier, the plot of the measured results is 

shown in Fig. 9 along with the simulated ones for the purpose of 

comparison. The gain of a single ended amplifier is designed to be around 

5 V/V. However, for a differential amplifier, the gain is less than unity. Due 

to low output impedance as explained above, this amplifier is suitable for 

buffer applications. Because the input devices M5 and M6 require large 

drain source voltage to flow the bias current, this also keeps the gain and 

output impedance low. If a high gain, low drive amplifier is desired, a high 

impedance current mirror can be used to increase the gain of the 

differential amplifier. In our case, the main motivation of the differential 

amplifier is to apply it to low power Cellular Neural Networks (CNNs) for its 

nonlinear (sigmoidal) DC characteristic [9]. The DC characteristics fit well 

in terms of its compressive characteristics. Fig. 10 shows the measured 

and simulated outputs of the high impedance current mirror. As the 

reference current varies from 0 to 1.5 mA (for VDD of 5.5V), the output 

current is copied from 1.5 mA to -100 µA showing the inverse operation as 

expected.  Fig. 11 is the chip microphotograph of a single ended amplifier 

and high impedance current mirror. The tail current source for the 



  16 

differential amplifier in Fig. 3 (b) was introduced externally on a testing 

board.  

 

 
Fig. 8. Simulated and measured transfer curves for single ended amplifier. 
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Fig. 9. Simulated and measured transfer curves for differential amplifier.  
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Fig. 10. Simulated and measured transfer curves for high impedance 

cascoded current mirror. In (b), intended current (1mA) is added for 

reproduction of (a) for clarity. 

 

 
                                         (a)                                  (b) 

Fig. 11. Die micrographs (a) single ended amplifier (b) high impedance 

current mirror. 
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CHAPTER 6 

CONCLUSION 

CMOS compatible MESFET based analog building blocks have 

been fabricated and measured. The single ended amplifier, differential and 

several current mirror topologies show good matching to extracted models 

over a wide range of the power supply. The measured results of the 

differential amplifier show good agreement with its simulated outputs. 

Measurement on the inverting high impedance current mirror exhibits 

close agreement with the simulated result over a wide range of the 

reference current from 0 to 1.5 mA for various power supply voltages. 

MESFET devices can be a viable alternative to high voltage compliant 

devices in deep submicron process. 
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PART II 

SOS MESFET CELLULAR NEURAL NETWORKS 
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CHAPTER 1 

INTRODUCTION 

Digital Signal Processors (DSP) dominates variety of areas of 

signal and image processing. Analog information is converted into digital 

and processed within a digital domain inside of signal/image processing 

chips even though all physical signals are analog. Conventional digital 

signal processing methods have run into a speed bottleneck due to their 

serial computation. As a method to overcome this serious speed problem, 

J. J. Hopfiled proposed neural networks for signal/image processing [1]. 

These networks have characteristics of continuous-time dynamics, parallel 

processing, and globally interconnected network elements. Many 

researchers have tried to implement these networks in a very large scale 

integration (VLSI) technology, but their high degree of connectivity 

impedes their integration in a VLSI technology. In 1988, a new neural 

network architecture called “Cellular Neural Networks (CNNs)” was 

proposed by Leon O. Chua and Lin Yang [2]. Similar to Hopfiled’s 

networks, CNNs are continuous and real time networks. They also have 

connected network elements called “cells.” They differ from Hopfiled’s 

architecture in locally connected cells that are arranged in a regular grid of 

dimension one or two and not globally connected as in Hopfiled’s 

networks. A virtue of their grid-like array of cells that typically interact only 

with their nearest neighboring cells makes the implementation of CNNs in 

a VLSI technology simpler than one of Hopfiled’s networks. Many 
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researchers have succeeded in the implementation of CNNs in a VLSI 

technology [3-7].  

Even though CNNs have several benefits in terms of their 

computational power, they have not been popular in a signal/image 

processing area. Current CNN chips that are comprised only of CMOS 

transistors suffer from their high power consumption and large chip size. 

In this paper, low power consumption as well as high speed was achieved 

by introducing SOS MESFETs for a CNN cell implementation. 

Furthermore, this novel device integrated in a CMOS process flow allows 

the CNN array to be interfaced with CMOS control processors and 

memory to create a “Universal Machine” or programmable image 

processing computer on a chip as shown in [8]. The main feature of SOS 

MESFETs is that it operates with equal or greater speed than MOSFETs 

because the gate capacitance of the SOS (SOI) MESFET is half that of 

the MOSFET for a wide range of drain currents [9]. It can be great 

advantage in a CNN design. As shown later in Fig. 25, a CNN standard 

uses parallel structures with at least 8 neighboring cells to a CNN cell. 

This means that input capacitance loading impacts overall power 

consumption of CNNs at higher operating speeds. MESFETs have at least 

2-3X less input capacitance compared to MOSFET counterparts, 

minimizing capacitive loading and increasing speed of CNN cells [8]. 

Other features are high breakdown voltage and no modifications or 

changes to a standard CMOS process. This work describes analog image 
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recognition arrays for horizontal line recognition based on CNNs using a 

state-of-the-art silicon-on-sapphire (SOS) CMOS process with no changes 

to the silicon processing steps. This IC also verifies full compatibility of the 

MESFET device to a state-of-the-art CMOS process and accuracy of 

extracted DC characteristics of MESFETs. The transient characteristics 

are measured using several grayscale images that settle to the final 

recognition level and show good agreement with the simulated results 

from a calibrated TOM3 model extracted from the SOS MESFETs. The 

rest of the paper is organized as follows: Section II presents details on 

SOS MESFET-based CNNs in both system and transistor levels. Section 

III presents main experimental results. Finally, conclusions are drawn in 

section IV. 
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CHAPTER 2 

CELLULAR NEURAL NETWORK 

2.1  Basic Concept 

2.1.1. Standard CNN [9] 

The M Χ N standard CNN is defined by the M Χ N rectangular array of 

cells C(i,j) located at site (i,j), i = 1,2,…,M, j = 1,2,…,N.  

 

1 2 3 i N

1

2

3

j

M

column

row

C(i,j)

 

Fig.1.  Standard CNN architecture 

 
2.1.2. CNN cell [9] 

Just as the word “pixel” is used to describe the smallest unit element of 

pictures displayed within a Liquid Crystal Display (LCD) on the common 

computer screen or television screen, the word “cell” is used to describe 
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the smallest unit element in CNN. In Fig. 1, a square represents a CNN 

cell and the circuit of each cell C(i,j) is shown below. 

 

 

Fig.2.  Basic CNN cell circuit 

 
In Fig. 2, the unit cell has three main nodes at Vuij, Vxij, and Vyij and several 

dependent current sources that are represented by OTAs. It also has a 

capacitor and state resistor, Rx. The expressions for the currents of the 

dependent current sources are shown below. 

uklxu VlkjiBlkjiI •= ),;,(),;,(                                                                      

yklxy VlkjiAlkjiI •= ),;,(),;,(                                                            

)11(
2
1

−−+= xijxij
y

xy VV
R

I                                                                      

Using the above current equations, the CNN cell is mathematically defined 

as follows: 

1. State equation 
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Fig.3.  Transfer curve of the output 

 
Fig. 3 shows the nonlinear transfer characteristics of the CNN cell. 

2.1.3. Sphere of influence of cell C(i,j) [9] 

  The sphere of influence, Sr(i,j), of the radius r of cell C(i,j) is defined 

to the set of all the neighborhood cells. CNNs cannot perform any 

functions within single cell. For CNNs to function properly, multiple cells 

must be grouped together. The smallest set of cells for any function of a 

CNN is called the sphere of influence Sr(i,j) or the operational building 

block. In Fig. 4, there are two different spheres of influence of cell, 

creating an operational building block.  
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Fig.4.  Sphere of influence of cell C(i,j) [12]  (a) r = 1 (3 Χ 3 neighborhood), 

(b) r = 2 (5 Χ 5 neighborhood) 

 
2.1.4. Template [9] 

In equations (2.1) and (2.2), there are two undefined operators, 

A(i,j;k,l) and B(i,j;k,l). After investigating these equations, it is easily known 

that the two operators act like current weighting factors. In the equation 

(2.1), the input current, Ixu is generated by weighting B(i,j;k,l) to the input 

voltage, Vukl. In other words, the input current of the cell located at (i,j) is 

driven by multiplying the weighting factor and the input voltage of the cell 

located at (k,l). The operator A(i,j;k,l) uses the same process for B(i,j;k,l). 

These operators are called templates. The general structure of a template 

is shown below. 
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Fig.5.  Template structure 

 
The B template is usually called a control template, and the A template is 

called a feedback template. 

2.2.  Operation and Communication  

2.2.1. Operation 

As explained in the above sections, the most important concepts 

are the unit cell, sphere of influence of cell (Sr) and the templates (A, B). 

The unit cell is the lowest level of CNN and the sphere of influence of cell 

(Sr) is a basic unit block where all operations are performed. Lastly, 

templates are sets of weighting factors for inputs (B template) and 

feedbacks (A template). In order to understand this better, it is required to 

understand the relationship between the sphere of influence of cell (Sr) 

and the templates. It is important to remember that the sizes of the two 

blocks must be the same. For example, if r = 1 for (Sr) then the sphere of 

influence of cell (Sr), which is called the operational building block, 

contains nine unit cells (3 Χ 3 matrix). In this case, two templates (A, B) 

should have the same sizes of matrices. Furthermore, if r = 2 then Sr has 

25 unit cells (5 Χ 5 matrix) and the templates are also a 5 Χ 5 matrix. 
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C(I,j-1) C(I,j) C(I,j+1)

C(I+1,j-1) C(I+1,j) C(I+1,j+1)

C(I-1,j-1) C(I-1,j) C(I-1,j+1)

C(i-1,j-1) C(i-1,j) C(i-1,j+1)

C(i,j-1) C(i,j) C(i,j+1)

C(i+1,j-1) C(i+1,j) C(i+1,j+1)

C(i-1,j-1) C(i-1,j) C(i-1,j+1)

C(i,j-1) C(i,j) C(i,j+1)

C(i+1,j-1) C(i+1,j) C(i+1,j+1)

(a)

(b)

 

Fig.6.  Example 1, r = 1 (a) sphere of influence of cell (b) template 

 

(a)

C(I-2,j-2) C(I-2,j-1) C(I-2,j)

C(I-1,j-2) C(I-1,j-1) C(I-1,j)

C(I,j-2) C(I,j-1) C(I,j)

C(I+1,j-2) C(I+1,j-1) C(I+1,j)

C(I+2,j-2) C(I+2,j-1) C(I+2,j)

C(I-2,j+1)

C(I-1,j+1)

C(I,j+1)

C(I+1,j+1)

C(I+2,j+1)

C(I-2,j+2)

C(I-1,j+2)

C(I,j+2)

C(I+1,j+2)

C(I+2,j+2)

C(i+2,j+2)C(i+2,j+1)C(i+2,j)C(i+2,j-1)C(i+2,j-2)
C(i+1,j+2)C(i+1,j+1)C(i+1,j)C(i+1,j-1)C(i+1,j-2)

C(i,j+2)C(i,j+1)C(i,j)C(i,j-1)C(i,j-2)
C(i-1,j+2)C(i-1,j+1)C(i-1,j)C(i-1,j-1)C(i-1,j-2)
C(i-2,j+2)C(i-2,j+1)C(i-2,j)C(i-2,j-1)C(i-2,j-2)

C(i+2,j+2)C(i+2,j+1)C(i+2,j)C(i+2,j-1)C(i+2,j-2)
C(i+1,j+2)C(i+1,j+1)C(i+1,j)C(i+1,j-1)C(i+1,j-2)

C(i,j+2)C(i,j+1)C(i,j)C(i,j-1)C(i,j-2)
C(i-1,j+2)C(i-1,j+1)C(i-1,j)C(i-1,j-1)C(i-1,j-2)
C(i-2,j+2)C(i-2,j+1)C(i-2,j)C(i-2,j-1)C(i-2,j-2)

(b)

 

Fig.7.  Example 2, r = 2 (a) sphere of influence of cell (b) template 

 
In general, most CNNs contain r = 1 that is, the sphere of influence 

of cell (Sr) contains nine unit cells and templates A and B are of a 3 Χ 3 

matrix. This means that the smallest size of CNN is 3 Χ 3. Unfortunately, 

no CNN with a 3 Χ 3 matrix can successfully perform the proper functions. 

The vertical and horizon line detection CNNs–the basic functions of 
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CNN—require at least a 4 Χ 4 CNN and will be discussed in the following 

chapters. 

B +

A

f(á)ºdt
U

Vuij

I

dt
dV xij

-

Y

Vxij
Vyij

 

Fig.8.  Operation of CNN unit cell [14] 

 
The above figure shows the operation of a CNN unit cell. The 

notation Vuij is an input voltage of a selected cell as a basis and U is 

voltages from the nearest eight neighboring cells. All of these voltages are 

weighted to desired values by the B template. The A template controls the 

feedback voltages in the same way as the B template. 

2.2.2. Communication 

 It is helpful to throw a template on a CNN matrix to understand how 

it communicates with neighboring cells. It is easy to be confused between 

a template and sphere of influence of cell (Sr) due to their same size of 

characteristic. Once again, it is important to remember that the sphere of 

influence of cell (Sr) is the smallest operational building block. In other 



  31 

words, the CNN can be extended to more than a 3 Χ 3 matrix by attaching 

more unit cells on each side of an operational building block. The figure 

below demonstrates the operation of CNN more clearly. 
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Fig.9. Projection of a template on CNN 
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As shown in Fig. 9, the template controls nine cells in a 5 Χ 5 CNN. If one 

unit cell is selected then the nearest eight neighboring cells are under the 

influence of a template. This is similar to applying a CNN with r = 2. 

The following two figures help demonstrate CNN communication. 

Fig. 10 represents how the unit cell in a CNN sends its signal to the other 

eight neighboring cells. Diamond-shaped figures are dependent current 

sources which are controlled by voltage of the unit cell centered at the 

figure and two templates A and B. The weighted currents through the 

templates A and B are sent to the neighboring cells. 

Cell C(i,j)

to cell c (i-1,j-1)

to cell c (i-1,j)

to cell c (i-1,j+1)

to cell c (i,j+1)

to cell c (i+1, j+1)

to cell c (i+1, j)

to cell c (i+1,j-1)

to cell c (i,j-1)

A(-1,0)y(i,j)

A(-1,1)y(I,j)

A(0,1)y(I,j)

A(1,1)y(I,j)

A(1,0)y(I,j)

A(1,-1)y(I, j)

A(0,-1)y(i,j)

A(-1,-1)y(i,j) B(-1,1)u(I,j)

B(-1,0)u(i,j)

B(-1,-1)u(i,j)

B(0,-1)u(i, j)

B(1,-1)u(I,j)
B(1,0)u(I, j)

B(1,1)u(I ,j)

B(0,1)u(I ,j)

 

Fig. 10.  Communication of CNN [14], sending signals to neighboring cells 
 

The receiving currents from the eight neighboring cells in the unit cell 

located at the center of Fig. 10 are similar to the aforementioned. The 
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weighted currents through the two templates A and B sent from the unit 

cell located at the center of Fig. 3 reach the node at X(i,j) in Fig. 11. 

There are three nodes, three different dependent current sources, 

two resistors and two capacitors in the unit cell circuit. The capacitor (Cu) 

at the node of U(i,j) is used to conserve the value of the input voltage and 

the capacitor (Cx) is the state capacitor and help conserve the value of the 

state node, X(i,j). The first dependent current source on the left side of Fig. 

11 is a self-controlled source. In other words, the output current is 

generated by the input voltage of the unit cell itself and the template B. 

The second source is similarly controlled by the template A and the 

feedback voltage of the unit cell itself. The resistor, Rx, is called a state 

resistor and determines the voltage at the node of X(i,j). The current 

source on the right side of the figure is controlled by the voltage at the 

node of X(i,j). With this current, the resistor, Ry, represents the final output 

of the unit cell. The same procedures are done in all unit cells of CNN.   
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from cell c (i+1,j-1)

from cell c (i+1,j)

from cell c (i+1,j+1)

from cell c (i-1,j-1) from cell c (i-1,j+1)

u(i,j) x(i,j) y(i,j)
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Fig.11.  Communication of CNN [14], receiving signals from neighboring 

cells 

 
The basic concepts, operation and communication of CNN have been 

explained in this section. The two architectures will be discussed in the 

following chapter.  

2.3.  CNN Architecture 

Since the theory of CNN was first proposed by L. O. Chua and L. 

Yang [9], a lot of researchers have focused their efforts on the 

implementation of CNN in VLSI technology. While some have had great 

success, their CNN chips were restricted in specific image processing. In 
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other words, these chips could do only one function intended by a 

researcher. 

A CNN with only one function is called a Fixed-Templated CNN. A 

Fixed-Templated CNN also has only one template set, which has fixed 

weighting factors for the two templates A and B. However, image 

processing is not simple and must perform functions to process an image. 

This means that templates A and B should set with any combinations of 

weighting factors, which can be accomplished using a Universal CNN.  

2.3.1. Fixed-Template CNN 

The Fixed-Template CNN has only one template set. Some 

templates were developed for special purposes such as connected 

component detectors [17], hole fillers [18] and shadow detectors [19]. 

Among these fixed templates, a connected component detector was 

implemented in VLSI and published by J. M. Cruz and L. O. Chua in 1991. 

[11] The simplest sets are a vertical and horizon line detection CNN and 

the below figures represent the combination of each function. This thesis 

will be written on the basis of vertical and horizon line detection CNN due 

to their ease of design, simulation, and explanation. Fig. 12 shows the 

combination of the CNN architecture and two templates A and B for the 

vertical line detection. 
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Fig.12.  Vertical line detection templates and CNN (a) A template (b) B 

template 

 
Under the control of two templates A and B, the CNN for the vertical line 

detection perform its function. 

Another simple example of a Fixed-Template CNN is the horizon 

line detection. The operation of this CNN is very similar to that of the 

vertical line detection. The combination of CNN and two templates A and 

B is shown below. 
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Fig.13.  Horizon line detection templates and CNN (a) A template (b) B 

template 

 

2.3.2. Universal CNN 

As demonstrated in the previous chapter, the weakest point of a 

Fixed-template CNN is in the limited operation. If the chip, having a Fixed-

template, was developed on a chip level then the CNN chip could perform 

only one function intended by a developer. The chip for each function 

must be designed for CNNs required to perform multiple functions. Many 

researchers have been devoted to the development of a single CNN chip 

capable of performing multiple functions. A Universal CNN, which can 
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manage several functions including vertical and horizon line detection, 

connected component detection, hole filer, and shadow detection, was 

proposed to help achieve this goal. But before the Universal CNN can be 

fully utilized, one more component is required--an analog multiplier. 
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CHAPTER 3 

ANALOG IMAGE RECOGNITION 

In this work, analog image recognition arrays performing horizontal 

line recognition were demonstrated based on Cellular Neural Networks 

(CNNs) introduced in [9].  

1 2 3 i N
column

ro
w

1

2

3

j

M

(a) 

Cx Rx RyEij

Vuij Vxij Vyij

I

Ixu(I,j;k,l) Ixy(I,j;k,l)

 

(b) 

Fig. 14. (a) Standard CNN architecture. (b) CNN core cell 

 

In Fig. 14(a), a square represents a CNN cell and the circuit of each cell C 

(i, j) is depicted in Fig. 14(b). The standard CNN cell includes several 

dependent current sources (Ixu(i,j;k,l) and Ixy(i,j;k,l)), capacitor (Cx), and 
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resistors (Rx and Ry) [9]. The circuit of CNN core cell is modified to clarify 

the role of each component in a cell in Fig. 15. The capacitor Cu at the 

node of U (i, j) is used to conserve the value of the input voltage and the 

capacitor Cx is a state capacitor conserving the value of the state node X 

(i, j). The first dependent current source on the left side of Fig. 15 is a self-

controlled source whose output current is generated by the input voltage 

of the unit cell itself and the weighting factor B. The second source is 

similarly controlled by the weighting factor A and the feedback voltage of 

the unit cell itself. The resistor Rx is a state resistor and determines the 

voltage at the node of X (i, j). The dependent current source at node Y (i, j) 

introduces an output current from a state voltage by the resistor Rx and is 

converted by the resistor Ry representing the final output of the unit cell. 
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Fig. 15. The modified CNN core cell (Reprinted from [14]) 

 

The expressions for the currents of the dependent current sources in Fig. 

14(b) are given as follow: 

!!" !, !; !, ! = ! !, !; !, ! ×!!"#      (1) 

!!" !, !; !, ! = !(!, !; !, !)×!!"#      (2) 

!!" =
!
!!!

( !!"# + 1 − !!"# − 1 )      (3) 

The dynamics of each cell are expressed by the state equation. 

C!
!"!"#(!)
!"

= − !
!!
!!"#(t) + ! !, !; !, !!,! ∈!! !,! ×!!"#(t) + ! !, !; !, !! !,! ∈!! !,! ×!!"#(t) + I      

          (4) 
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The output of each cell is defined by a piecewise-linear.   

!!"# =
!
!
( !!"# + 1 − !!"# − 1 )      (5) 

1

-1 1

-1

Xij

Yij

 

Fig. 16. The piecewise linear output transfer curve 

 

In Equations (1) and (2), two operators, A(i, j; k, l) and B(i, j; k, l) are 

undefined. After investigating these equations, it is easily known that the 

two operators act like current weighting factors. In Equation (1), the input 

current (Ixu) is generated by weighting B(i, j; k, l) to the input voltage (Vukl). 

More clearly, the input current of the cell located at (i, j) is driven by 

multiplying the weighting factor and the input voltage of the cell located at 

(k, l). The operator A(i, j; k, l) follows the same process for B(i, j; k, l). 

These operators are called templates. The B template is usually called a 

control template and the A template is a feedback template.    

The implementation of a CNN circuit in a VLSI technology in [9] 

employed discrete elements like resistors and operational amplifiers. 

However, this approach is not suitable for implementing analog image 
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recognition arrays in a reasonable size. Thus a transconductance based 

model as shown in [14] is used here. This transconductance based 

operation of the CNN cell can be implemented by an Operational 

Transconductance Amplifier (OTA). As mentioned earlier a standard CNN 

cell includes several dependent current sources to demonstrate 

communication between cells. Also, a cell needs discrete elements such 

as resistors and capacitors. For the size of a CNN cell to be minimized, 

resistors were also implemented using OTAs as shown in Fig. 17. [20]  

 

 

Fig. 17. The system level architecture of the proposed analog image 

processing 

 

The function of a multiplier in Fig. 17 is the realization of templates 

by performing the multiplication of differential outputs from OTA-based 
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current sources in a CNN cell. The outputs of OTA-based dependent 

current sources are differential and become the inputs of a four-quadrant 

multiplier. The weighted currents from a cell are sent to the neighboring 

cells for intra-cell communication. 

In this design, OTAs for dependent current sources are designed 

using MESFETs which are fully compatible to a current CMOS process. 

MOSFETs are employed in order to implement OTAs emulating discrete 

resistors. However, because a p-type MESFET was not available for this 

process flow, an n-type only design was used for the OTAs for dependent 

current sources. Schematics for both SOS MESFET-based OTAs and 

SOS-MOSFET based OTAs are depicted in Fig 18. The OTA for 

dependent current sources shown in Fig 18(a) includes an analog 

multiplier to adjust the transconductance of the OTA. 
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SOS MESFET SOS MOSFET

Multiplier

 

(a) 

 

(b) 

Fig. 18. (a) MESFET-based OTA with a multiplier for dependent current 
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sources. (b) MOSFET-based OTA for Rx.  

Adjusting the transconductance by an analog multiplier allows 

CNN-based analog image recognition systems to perform a variety of 

CNN templates [9]. An analog multiplier is inserted into the OTA for 

dependent current sources in order to compare and contrast the cell 

implemented by both MESFETs and MOSFETs on a silicon-on-sapphire 

process. Fig 18(b) shows the configuration of the OTA for the resistor RX. 

The resistor Ry is configured by the output resistance of the OTA for the 

resistor RX. Details of OTAs for dependent current sources and discrete 

resistors have been described in [14].      
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CHAPTER 4 

MEASUREMENT RESULTS 

Analog image recognition arrays are implemented in one by four 

and one by eight arrays for the horizontal line recognition to verify full 

compatibility to the state-of-the-art CMOS process and accuracy of 

extracted DC characteristics of MESFETs with low power consumption. 

CNN-based analog image recognition systems are able to perform 

hundreds of image processing by adjusting templates using an analog 

multiplier as explained earlier [21], but in this work, the simplest image 

processing function (template) was chosen for simplicity. Each array was 

tested with grayscale images. 

4.1.  One by Four Array 

The simplest CNN-based analog image recognition architecture is 

an array in one by four configuration as shown in Fig. 19. 

 

Fig. 19. Horizontal line detection in One by Four (a) input image (b) output 

image  
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One by four array was measured by applying several combinations of 

grayscale images at an image testing lab bench. Fig. 20 shows a 

micrograph of a one by four array for the horizontal line recognition. The 

CNN-based array for the horizontal line recognition has successfully been 

measured. Figures 21 and 22 shows the simulated and measured 

transient responses of the one by four array with grayscale input images. 

Each unit cell shows good agreement with the simulations using the 

extracted SOS MESFET model. The measured settling time is 4µs and 

2.4µs for two different inputs in Fig. 21 and Fig. 22, respectively. Each unit 

cell consumes only 2.4mW of power.  

 

 

Fig. 20 Micrograph of CNN-based analog image processing arrays 
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Fig. 21 (a) Input image (b) Output Image (c) Simulated output image (d) 

Measured output image (200mV/div, 2µs/div) 
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Fig. 22 (a) Input image (b) Output Image (c) Simulated output image (d) 

Measured output image (200mV/div, 2µs/div) 
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4.2.  One by Eight Array 

  The one by eight CNN-based analog image recognition array is 

depicted in Fig. 23.  

 

 

Fig. 23. Horizontal line detection in One by Eight (a) input image (b) output 

image 

 

  This array was measured with a grayscale input image as well. Fig 

24 shows the simulated and measured transient responses of the one by 

eight array with grayscale input image. Good matching to the simulation 

using the extracted SOS MESFET model is verified again with the one by 

eight array. The measured settling time is 6µs. Each unit cell consumes 

only 2.4mW of power. A microphotograph of a one by eight CNN-based 

array is shown in a red-colored rectangular of Fig. 20.  
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Fig. 24 (a) Input image (b) Output Image (c) Simulated output image (d) 

Measured output image (200mV/div, 2µs/div) 
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CHAPTER 5 

CONCLUSION 

Two CNN-based arrays are designed, fabricated and measured for 

high-speed, low-power image recognition systems. The arrays show good 

matching to extracted models for the grayscale images. The measured 

settling time is 4µs and 6µs for one by four and one by eight arrays with 

power consumption of 2.4mW for each cell. DC characteristics of n-

MESFET devices fabricated using deep submicron CMOS technologies 

are quite accurate. Thus SOS MESFETs can be applied to high speed, 

low-power systems, for example, analog image processing systems. 
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PART III 

CMOS LOW-POWER BFSK MICS TRANSCEIVER 
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CHAPTER 1 

INTRODUCTION 

For wireless connectivity providing the convenient and continuous 

health care to a patient within a limited range (~2m), Medical Implant 

Communication Service (MICS) and Body Channel Communication (BCC) 

have been arranged by FCC and widely adopted for implantable and 

wearable devices. Several implantable devices allowing for medical 

telemetry have recently been appeared in both commercial product lines 

[1] and research archives [2-5] with acceptable levels of reliability and 

performance. Implantable wireless health care systems, however, have 

faced a technical challenge associated with battery life. They must last 

over 5 years inside the human body without the possibility of recharging or 

replacing, which in turn requires the architectures of medical implants to 

be simplified as much as possible while being optimized to dissipate as 

little power as possible with reasonable performance. Various techniques 

have been proposed to deal with this challenge with life span of medical 

implants. A digitally controlled oscillator (DCO) using a sub-ranged, pre-

distorted capacitor array is incorporated into the loop antenna as its 

inductive element. This approach achieves a wide tuning range, linear 

digital-to-frequency conversion, and high frequency resolution [3]. The 

unified transceiver concurrently operating in both MICS and BCC bands is 

introduced in [4], in which the on-body controller positions on a patient’s 

skin allowing for the minimum detectable power of about -70dBm with sub-
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mW power dissipation. In [5], reconfigurable RF front end contributes to 

the simplification of the transceiver architecture with an all digital 

frequency-locked loop (ADFLL) and the great reduction in power 

consumption in MICS band.  In this paper, an energy efficient transceiver 

operating in MICS band (402 ~ 405MHz) with a binary frequency shift 

keying (BFSK) modulation for the data-link RX and on-off keying (OOK) 

for the wakeup RX is proposed. The folded LNA-Mixer is placed at the 

very front end of the data-link receiver to detect BFSK signals while 

realizing low power consumption. The MOS-C band-pass filter (BPF) 

filters out down-converted BFSK signals, followed by a continuous 

comparator generating a demodulated digital waveform. The SRO is used 

in a wakeup RX for the wake-up signal reception in order to remove the 

necessity of a local oscillator allowing for the reduction in a power 

dissipation. The all digital frequency-locked loop drives a class AB power 

amplifier in a transmitter and produce a non-linear BFSK output signals 

meeting the requirement of the FCC regulation.  

The rest of the paper is organized as the followings. Section II introduces 

the system level operation of the proposed transceiver and in Section III 

techniques to address the low-power and low-voltage operation of the 

transceiver in a CMOS transistor level. Section IV presents the measured 

results of the proposed transceiver. Finally, conclusions are presented in 

Section V.  
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CHAPTER 2 

TRANSCEIVER ARCHITECTURE 

Fig. 1 shows the transceiver architecture which consists of a 

wakeup receiver (WRX), data-link receiver (DRX), and transmitter (TX) 

with an all digital frequency-locked loop (ADFLL). The detailed 

architecture of a WRX is introduced in Fig. 2 with the post-layout 

simulations at important nodes, consisting of a super regenerative 

oscillator (SRO), envelope detector (ED), and limiter (LIM).  
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Fig. 1 shows the transceiver architecture which consists of a wakeup 

receiver (WRX), regular receiver (RX), and transmitter (TX) with an all 

digital frequency-locked loop (ADFLL).  

The advantage of using a SRO is that a local oscillator can be 

omitted for reduction in the power consumption. Once the quench signal 

turns a SRO on, the oscillation envelope starts growing by the injected RF 

signals at an antenna and the envelope decays after the turning-off of the 

quench signal. The faster starting time of an oscillation envelope can be 

achieved as the injected signals are stronger because perturbation is 

proportional to the strength of the injected signals [6]. An envelope 

detector is operated in the sub-threshold region to minimize the power 

consumption. ED detects the peak amplitude of super-regenerated signals 

and filters out high frequency components in signals as well. A limiter at 

the back-end continuously demodulates the signals processed by ED for 

the reconstruction of the OOK modulated RF signals. The demodulated 

signals are sent to an external FPGA or PC for the further signal 

processing. The WRX achieves a sensitivity of -85dBm and a power 

consumption of 320µW at 100kb/s and -70dBm and 400µW at 200kb/s at 

1MHz of the step controlled quench signal. 

The data-link receiver (DRX) is comprised of a folded low-noise 

amplifier (FLNA) and mixer, band-pass filter (BPF) and comparator. MICS 

transceiver usually adopts either on-off keying (OOK) [2] or binary 

frequency shift keying (BFSK) modulation [3-5] for an energy efficient 
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design. The proposed RX chain adopts direct conversion BFSK 

modulation with the 150kHz offset because it offers better performance 

against interference than OOK [5]. The LNA is merged with the mixer in a 

folded configuration reusing the bias current. A typical MICS transceiver 

employs a passive mixer requiring a buffer stage to drive a 

transimpedance amplifier at the expense of extra current consumption [5].  

The proposed LNA-Mixer configuration doesn’t require a buffer stage 

reducing overall front-end power. The amplified, down-converted BFSK 

signals are filtered out by a MOS-C based Gm-C BPF with the center 

frequency of 150kHz. BPF is used here to relax the requirements of the 

DC offset and flicker noise instead of a low-pass filter (LPF) usually 

adopted in MICS RX chains. OTA-based Gm-C filters are widely used in 

conventional MICS RX chains at the expense of extra current 

consumption due to the common-mode feedback network (CMFB) to 

handle the effect of common-mode perturbations. The MOS-C based Gm-

C BPF is pseudo differential so that the CMFB network is not necessary 

and it finally leads additional reduction in power consumption. 

The sensitivities of -70dBm and -98dBm in the data-link RX are 

achieved with NF of 40dB and 11dB at the data rate of 100kb/s while 

consuming only 600µW and 1.5mW at 1.2V and 1.8V, respectively. The 

BERs of the data-link RX are less than 10-3 at the input powers of -70dBm 

at 1.2V and -98dBm at 1.8V at the data rate of 100kb/s.  
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The transmitter consists of an ADFLL and class AB power amplifier. The 

ADFLL operates as a MICS direct modulator in a data-link mode and 

drives a class AB power amplifier to produce the non-linear BFSK signals 

in a TX mode. The transmitter meets the requirement of the output power 

by 0dBm for a power consumption of 1.8mW from a 1.8V power supply 

[6].  
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CHAPTER 3 

CMOS IMPLEMENTATION  

3.1 Wakeup Receiver  

The OOK modulated command signals, (A) in Fig. 2, are injected 

into gates of positively cross-coupled transistors M1 – M2 as shown in Fig. 

3 and cause perturbation to push an oscillation envelope to build up faster 

than one in a stand-alone SRO super-regenerated by self noises. During a 

super-regenerative mode, a quench signal, (B) in Fig. 2, controls the 

conductance of the positive feed-back transistor pair. The sensitivity of 

SRO strongly relies on the waveform of a quench signal [7]. The step-

controlled quench signal is externally generated and applied to the WRX 

in this design because of the great frequency selectivity. The cascoded 

two band-pass filters in Eq. 1 verifies the high selective frequency 

response of the step-controlled quench signal [7]. Following by the SRO, 

an envelope detector operating in the sub-threshold region extracts the 

envelope of regenerated signals by the SRO and a limiter generates 

demodulated digital waveforms. 
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In this equation, G+ is positive conductance of a LC resonator, G- 

negative conductance of an active device (M1 and M2). C is capacitance in 

a LC resonator.  



  63 

 

AA

CC

DD

EE

 

Fig. 2 The detailed schematic and waveforms at important nodes 
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Fig. 3 The schematic of a super regenerative oscillator with a step 

controlled quench signal. 

 

3.2. Folded LNA-Mixer  

Fig. 4 shows the detailed schematic of the proposed fully 

differential folded LNA and quadrature mixer. The mixer is merged into 

common-gate (CG) LNA to reuse the bias current and the amplified input 

signals are converted into voltage quantities through the resistive mixer 

loads. The folded configuration of the proposed LNA-Mixer allows for high 
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linearity in a wide range of power supply. And it also enables a low power 

operation of the proposed DRX at low power supply voltages (below 

1.2V). The performance of the DRX in various aspects are measured and 

presented in Section IV in more detail. The cross-coupled capacitors (C1 

and C2) are inserted between gates and sources of devices M1 and M2 to 

increase the effective transconductance (Geff) of GC-LNA with low DC bias 

currents [8]. The small signal resistance looking into M1-M3 and M2-M4 is 

much larger than that of a load of the LNA so that contribution of the load 

resistance to the input matching can be ignored. The small-signal half 

circuit model is drawn in Fig. 5 and the input matching is analyzed as the 

following.  
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At the resonant frequency, the imaginary part of the input impedance is 

cancelled and Eq. 2 becomes  

eff
IN G
R 1

≈
         

(3) 

2,12,1 ))/(1( mgsCCeff gCCCG ++=       (4) 

In equations above, LIN is the inductor and CIN the capacitor of the external 

matching network. LS is the source degenerated inductor and gm1,2 is the 

transconductance of the input pair. Lastly, CC is the cross-coupled 

apacitors for enhancement in the effective transconductance of the LNA 



  66 

and Cgs1,2 is the gate-source capacitance of the input transistors, M1 and 

M2.  
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Fig. 4  Proposed folded LNA and Mixer 
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Fig. 5 Small-signal half circuit model of the proposed LNA for input 

matching 

 

3.3. Channel-Selection Filter 

 In this design, pseudo differential all MOS-C based Gm-C BPFs are 

used to take both power efficiency and simple realization of ICs into 

account at the expense of mismatches in I and Q channels due to the 

absence of the CMFB network. The pseudo differential design allows for 

low supply voltage and low power consumption. The detailed schematic is 

depicted in Fig. 6. The Gm-C integrator is realized by a transconductor M1, 

capacitor C1, and a bias device M4 [9]. Source degenerated devices, M4 – 

M6, are placed to enhance immunity to non-linearity [10]. The filter is 
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designed for a center frequency of 150kHz for ±150kHz-offset BFSK and 

tuned by a capacitor bank. The frequency response of the BPF is shown 

in Fig. 7 and the tuning range of frequency is from 70kHz to 250kHz with a 

3dB gain. 
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Fig. 6 The pseudo differential BPF with degenerations. 

 

Fig. 7 Frequency response of the pseudo differential BPF. The tuned 

frequency ranges 70kHz to 250kHz with a 3dB gain.  
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The ADFLL operates as a MICS direct modulator and drives a class AB 

power amplifier for a nonlinear output amplifier. 

The LC-VCO is fully implemented for the better phase noise. The 

output power is about -16dBm satisfying the FCC regulation.  The phase 

noises of ADFLL are -70dBc, -95dBc, and -110dBc at 10kHz, 100kHz, and 

300kHz offsets at various control voltages as shown in Fig. 8. 

3.4. Transmitter with ADFLL 

The ADFLL consists of a type-I phase-locked loop (PLL) scheme as 

shown in Fig. 1. The features of the ADFLL are (i) all digital 

implementation, (ii) programmable loop bandwidth, and (iii) fast locking 

[11].  The ADFLL operates as a MICS direct modulator and drives a class 

AB power amplifier for a nonlinear output amplifier. The LC-VCO is fully 

implemented for the better phase noise. The output power is about -

16dBm satisfying the FCC regulation.  The phase noises of ADFLL are -

70dBc, -95dBc, and -110dBc at 10kHz, 100kHz, and 300kHz offsets at 

various control voltages as shown in Fig. 8. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

The MICS transceiver was fabricated in a 0.18µm 1-poly, 6-metal 

CMOS process and the active chip area is 9mm2. The microphoto of the 

chip is shown in Fig 9. The average active power consumption is about 

480µW and 600µW of the LNA+MIX and RX from a 1.2V power supply, 

respectively. The NF is less than 40dB at 1.2V achieving the minimum 

detectable signal level of -70dBm [4, 5]. This sensitivity is acceptable 

power level when the implanted devices communicate with an on-body 

controller within the limited communication range (~1m) [4]. The return 

loss of the folded LNA-Mixer at various power consumptions is measured 

and presented in Fig 10. The NF and voltage gain at various power 

consumptions are displayed in Fig 11. The achieved voltage gain of the 

folded LNA-Mixer and RX chain are 35dB and 51dB at the power supplies 

of 1.2V and 1.8V, respectively, while 11dB and 14.6dB for the folded LNA-

Mixer at the same power supplies. The average NF is about 40dB and 

11dB at 1.2V and 1.8V, respectively which means, in other words, the 

minimum detectable signal powers are -70dBm and -98dBm at 1.2V and 

1.8V, respectively. Fig 12 shows measured digital waveforms at I and Q 

with 150kHz-offset BFSK RF signals with the carrier frequency of 400MHz 

at the input power of -85dBm. I channel leads Q channel by 90○ when 

+150kHz-offset RF signal is detected at the front-end of the receiver chain 

and I lags Q by 90○ in -150kHz-offset.  
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Fig. 9 Microphoto of the MICS transceiver in 1-poly, 6-metal 0.18µm 

CMOS.  
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Fig.10 The input return ratio (S11) at various power supplies.  
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Fig. 11 Measured voltage gain and noise figure at various power 

supplies. 

 

The WRX was measured by injecting OOK modulated signals of 

400MHz at various data rates and quench frequencies and the measured 

demodulated waveforms are presented in Fig. 12. The sensitivities of -

85dBm and -70dBm are achieved at the data rates of 100kb/s and 

200kb/s with 1MHz of the step controlled quench signals, respectively. At 

the quench of 1.2MHz, the WRX achieves sensitivities of -68dBm and -

60dBm at data rates of 100kb/s and 200kb/s, respectively.  

Finally, the performance of the transceiver is summarized in Table 

I. In Table II, the performance of the proposed MICS transceiver is 

compared with the previous works at various aspects.   
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Fig. 12 Measured digital streams of the data-link receiver (i) I channel 

(top) and (ii) Q channel (bottom) at 400MHz BFSK.  
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Fig. 13 Measured digital streams of the wakeup receiver (i) 100kb/s (top) 

and (ii) 200kb/s (bottom) at 1MHz .  
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TABLE I 

SUMMARY OF THE TRANSCEIVER 

Technology 0.18µm 1-poly, 6-metal CMOS 

Operating Frequency 402MHz – 405MHz 

Modulation OOK for WRX 
BFSK for DRX 

Data Rate 100 kb/s  to 200 kb/s for WRX  
100 kb/s  for DRX 

 
 
Sensitivity @ 10-3 BER 
 

 
WRX*  
 

-85dBm @ 100kb/s 
-80dBm @ 150kb/s 
-70dBm @ 200kb/s 

 
DRX 

-70dBm @ 1.2V (NF = 40 dB) 
-89dBm @ 1.5V (NF = 20 dB) 
-98dBm @ 1.8V (NF = 11 dB) 

 
 
Supply Current 

 
WRX * 
 

180µA @ 100kb/s 
200µA @ 150kb/s 
225µA @ 200kb/s 

 
DRX# 

500µA @ 1.2V 
630µA @ 1.5V 
840µA @ 1.8V 

 
Voltage Gain, RF+BB 

35 dB @ 1.2V 
44 dB @ 1.5V 
51 dB @ 1.8V 

 
Voltage Gain, LNA+Mixer 

11 dB @ 1.2V 
14.3 dB @ 1.5V 
14.6 dB @ 1.8V 

*1.8V power supply and 1MHz;  #: excluding ADFLL 
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TABLE II 

SUMMARY OF THE PERFORMANCE COMPARISON 

 Parameter This work [3] [4] [5] 

 
 
 
R
X 

Modulation BFSK OOK BFSK BFSK 

Sensitivity -98dBm -93dBm 35µVrms -97dBm 

Data Rate 
(kb/s) 

100 120 50 75 

Power Consumption 
(mW) 

1.44* 
(1.2V) 
2.5* 
(1.8V) 

0.4 4.3 
(PLL+BB) 

2 

 
 
 
T
X 

Modulation BFSK MSK BFSK BFSK 

Data Rate  
(kb/s) 

100 120 200 100 

Power Consumption 
(mW) 

1.8 0.35 4.3 1.6 

Output Power 
(dBm) 

-16 N/A 0 -5 

*: including ADFLL 
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CHAPTER 5 

CONCLUSION 

A low-power CMOS transceiver for the MICS band has been 

fabricated and measured in a 1-poly, 6-metal 0.18µm CMOS process. The 

folded LNA-Mixer configuration and MOS-C based Gm-C BPF allow for a 

low-voltage and low-power operation under the limited power capacity. 

The DRX chain shows -98dBm sensitivity with a 100kb/s and consumes 

only 2.5mW from a 1.8V power supply while shows -70dBm sensitivity and 

1.44mW from a 1.2V power supply. 

The sensitivity of -85dBm in the wakeup RX is achieved with the 

power consumption of 200µW from 1.8V at the data rate of 100kb/s and 

220µW at 200kb/s with the 1MHz step controlled quench signals. This 

work demonstrates that implantable wireless devices such as Pacemakers 

consuming a sub-mA with reasonable performance can be designed. 
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