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ABSTRACT 

Programmable metallization cell (PMC) technology is based on an 

electrochemical phenomenon in which a metallic electrodeposit can be grown or 

dissolved between two electrodes depending on the voltage applied between 

them. Devices based on this phenomenon exhibit a unique, self-healing property, 

as a broken metallic structure can be healed by applying an appropriate voltage 

between the two broken ends. This work explores methods of fabricating 

interconnects and switches based on PMC technology on flexible substrates. The 

objective was the evaluation of the feasibility of using this technology in flexible 

electronics applications in which reliability is a primary concern.  

The re-healable property of the interconnect is characterized for the silver 

doped germanium selenide (Ag-Ge-Se) solid electrolyte system. This property 

was evaluated by measuring the resistances of the healed interconnect structures 

and comparing these to the resistances of the unbroken structures. The reliability 

of the interconnects in both unbroken and healed states is studied by investigating 

the resistances of the structures to DC voltages, AC voltages and different 

temperatures as a function of time. This work also explores replacing silver with 

copper for these interconnects to enhance their reliability. A model for PMC-

based switches on flexible substrates is proposed and compared to the observed 

device behavior with the objective of developing a formal design methodology for 

these devices. The switches were subjected to voltage sweeps and their resistance 

was investigated as a function of sweep voltage. The resistance of the switches as 

a function of voltage pulse magnitude when placed in series with a resistance was 
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also investigated. A model was then developed to explain the behavior of these 

devices. All observations were based on statistical measurements to account for 

random errors. 

The results of this work demonstrate that solid electrolyte based 

interconnects display self-healing capability, which depends on the applied 

healing voltage and the current limit. However, they fail at lower current densities 

than metal interconnects due to an ion-drift induced failure mechanism. The 

results on the PMC based switches demonstrate that a model comprising a 

Schottky diode in parallel with a variable resistor predicts the behavior of the 

device. 
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INTRODUCTION 

Programmable Metallization Cell (PMC) technology is based on an 

electrochemical phenomenon in which the application of a voltage between two 

electrodes fabricated on a solid electrolyte results in either the growth or 

dissolution of a metal filament between the two electrodes [1]. This technology 

has been used to fabricate memories [1-5], capacitive elements [6], and memory 

elements on flexible substrates [7]. The myriad applications that this versatile 

technology has been applied to, prove its robustness. Another potential area of 

research for PMC technology is its use in mechanically demanding applications. 

Such applications arise when the associated electronic circuits are subjected to 

extreme physical conditions like bending and torsion during routine operation in 

wearable electronics and flexible displays, or in cameras, laptops and other 

portable equipment where the bending of these circuits occurs during manufacture 

in order to improve packing density. The fabrication of PMC circuit elements that 

are capable of withstanding these conditions is feasible because the thin films that 

comprise the device, namely, the solid electrolyte films which are generally 

chalcogenide glasses and the metal films, are very flexible [8]. 

Interconnects are metal lines that are used to connect different circuit 

elements or sub-modules of the integrated circuit (IC) together. These lines carry 

currents from one point of the circuit to the other. As applications for ICs get 

more diverse and demanding, the specifications for the interconnects become 

more challenging to meet. The earliest issues encountered were directly related to 

the scaling of IC process technology. As semiconductor device technology was 
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scaled, interconnects needed to carry correspondingly greater current densities. 

The most direct consequence of scaling was, therefore, power dissipation in the 

interconnect due to joule heating and subsequent failure of the interconnect due to 

accelerated electromigration [9-11]. Electromigration is a phenomenon in which 

the electrons comprising the current would transfer their momentum to the atoms 

comprising the interconnect, resulting in their movement and causing the 

interconnect to eventually fail. Both of these problems were resolved primarily by 

replacing the material that was used to fabricate the interconnect [12]. The current 

area of focus in the electronics industry is the development of ubiquitous 

computing devices and networks. These applications include wearable computers 

[13, 14] and devices [15], body area networks, flexible devices [16, 17] and 

portable devices [18, 19]. The ability of such electronics to withstand mechanical 

stress, while being able to reconfigure itself for optimum performance 

simultaneously, is an implicit specification. This work focuses on demonstrating 

that PMC technology is capable of fabricating robust interconnects that can 

withstand a very high degree of mechanical stress, and switches that perform well 

in flexible electronics applications. Furthermore, in the case of fracture of such an 

interconnect, this work demonstrates that the interconnect can be healed by 

simply applying an appropriate voltage for a small amount of time, thus restoring 

the circuit to normal operating conditions. This work also proposes a circuit 

model for a PMC based switch on a flexible substrate and demonstrates that it 

predicts actual device behavior accurately. 
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BACKGROUND AND REVIEW 

This section provides a developmental perspective of interconnect 

technology. Some novel interconnect fabrication principles, specifically designed 

for flexible substrates, are discussed. A review of properties for materials that 

would make them good substrates for flexible electronics applications is also 

presented. The evolution of PMC technology is also discussed, along with the 

electrochemical and fabrication principles which form the basis of this 

technology. The mechanical properties of some of the solid electrolyte systems 

are presented to justify their use in flexible electronics applications. A discussion 

on the property of memristance is presented to develop a background for the 

analysis of the PMC switch as a memristive system. 

A. The evolution of interconnect technology 

Interconnects are metal lines which are used to connect different devices 

and sub-modules on an IC in a pre-determined path in order to ensure that the 

circuit performs a specific function. From a manufacturing perspective, the IC 

interconnect is fabricated by first lithographically patterning the required 

interconnect layout and then selectively depositing thin films of the chosen metal. 

In the early days of IC manufacturing, this was arguably one of the simplest 

processes in IC manufacture, as metal deposition and lithography were far in 

advance of transistor design and processing. However, with advances in transistor 

technology in order to keep up with IC scaling, interconnect performance in 

beginning to define the performance of the IC. The issues which interconnects 

face include compatibility with the new materials that are going into IC 
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manufacture and reliability of the interconnects when subjected to increasingly 

high current densities during scaling. The higher current densities result in 

increased heat dissipation within the IC and also a higher probability of the onset 

of electromigration [20, 21]. These reliability issues were ameliorated by 

changing the interconnect material in the sub-100 nm nodes from aluminum (Al) 

[20-22] to copper (Cu) [23, 24]. The change in interconnect material improved the 

interconnect reliability and performance drastically. However, Cu is incompatible 

with silicon dioxide (SiO2) and silicon (Si), since its diffusivity in both materials 

 

Fig. 1. (a) One of the possible optimized horseshoe-shaped interconnects that can 

withstand longitudinal strain on the substrate. (b) Mechanical behavior of the Cu-

based horseshoe shaped interconnect when subjected 20 % out-of-plane 

longitudinal strain [39] 
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is high [25, 26]. The presence of copper in silicon devices increases leakage 

current [25] and reduces the quality of dielectric films [26], reducing the lifetime 

of the circuit. In order to ensure that the entire IC is reliable, a material needed to 

be found which would act as a diffusion barrier between the Cu interconnect and 

the underlying Si or SiO2 layer. Additionally, this layer needed to have excellent 

adhesion to the underlying layer and also capable of being deposited in the form 

of thin films. Many materials may be used for this purpose like titanium nitride 

(TiN) [27], tungsten nitride [28] and and tantalum nitride (TaN) [29]. The 

resulting process is known as the dual-damascene process [30]. Another reliability 

issue with interconnects has been delay through the line. A combination of the 

interconnect metal line and the inter-layer dielectric (ILD) produces a 

transmission line with distributed resistances and capacitances, which results in a 

delay through the line. With scaling, the values of the resistances and the 

capacitances have increased, resulting in the delay of the interconnect line now 

being comparable to the delay through the transistor itself. This results in the 

speed of the IC being limited more by the interconnect delays than by the delays 

associated with the transistors [31, 32]. In order to reduce delay, Cu interconnects 

with a low-k dielectric for the ILD have been used. However, the dual-damascene 

process is not compatible with the proposed ILDs and numerous integration 

challenges are presented when moving to the new ILD which include the 

mechanical and electrical instability of the material [33]. At present, no single, 

standard process exists for integrating the dual-damascene process with the low-k 

dielectric [32, 33]. Scaling trends continue to place demands on the material used 
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for the interconnect. Research has trended toward using Ag as a material for 

fabricating interconnects [34], as it has the highest electrical conductivity at room 

temperature, can be electroplated and produces films with low residual stress [34]. 

However, significant challenges remain with integrating Ag as an interconnect 

material. The most important factors are its very high rate of corrosion [34, 35] 

and its poor adhesion to most materials used in IC manufacturing processes [35]. 

The recent trend of the electronics industry to manufacture portable 

devices has produced significant challenges in the field of IC manufacture and 

reliability. The requirements of portability include small size, light weight, low 

power consumption and ability to resist and recover from mechanical stress. This 

translates to increased packing density for electronic components, low power IC 

design and novel materials with the required mechanical and electrical 

characteristics. The demand for increased packing density has led equipment 

manufacturers to focus on fabricating interconnects on flexible substrates [36]. 

These substrates can then be deformed in order to reduce their footprint [37]. 

However, these efforts have led to reliability issues as the Young’s modulus and 

the yield strength of the metal which is used to fabricate the interconnect is 

different from that of the substrate, resulting in strain-induced fractures of the 

interconnects, at the strains values as low as 5% [38]. Improving the reliability of 

interconnects on flexible interconnects is being addressed by current research. A 

number of different approaches have been suggested in order to overcome this 

problem. Some of these are listed in the sections below. 
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1. Structural solutions for stretchable and flexible electronics 

One of the solutions is to optimize the shape of the interconnect, or the 

interconnect layout, in order to be able to withstand a certain strain on the 

substrate. Optimization of the shape of the interconnect is done by detailed FEM 

analysis of different possible shapes and judicious selection of the right shape 

 

Fig. 2. Method for fabrication 3D vertical stacks of interconnects. The figure also 

shows the testing of these interconnects when mechanical stress is applied to it 

[40]. 
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based on the kind of application the circuit is likely to be used [39]. An optimized 

interconnect shape for withstanding longitudinal strain is shown in Fig. 1. The 

advantages of this solution is that it is the simplest to implement and can offer 

considerable flexibility with little modification to the fabrication process. The 

greatest disadvantage is that the solution is not universal. If the circuit is deformed 

in ways that the designers did not foresee, then the advantage of the optimized 

design is lost and the device is just as prone to mechanical failure as a normal 

 

Fig. 3. Interconnect fabrication after pre-stressing in order to ensure connectivity 

at maximum tolerances [41]. 
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interconnect. Secondly, almost every such interconnect would require more 

material than a normal interconnect line and the layout would have to be much 

more complicated in order to take into account shapes that are not normally 

encountered in semiconductor manufacturing. Finally, since the selection of the 

shape is based on a subjective selection based on FEM analysis, quality control of 

the devices becomes an issue as small changes in the shape of individual 

interconnects could greatly impact the reliability of the overall circuit. 

3-D stacking of the circuit is a second structural approach that has been 

examined in research. In this approach, most of the critical interconnects are 

designed to run vertically downwards into the circuit. The metal lines are then 

supported by enclosing them in other materials like carbon nanotubes [40]. Fig. 2 

shows how this can be implemented. This approach is considerably more complex 

in terms of fabrication than the previous methods. The reliability of this type of 

device is dependent on the kind of mechanical strain applied. It is best at 

withstanding longitudinal strain, rather than vertical strain. 

A third structural approach to produce interconnects for flexible 

electronics would be to fabricate a set of sub-circuits on silicon islands deposited 

on a deformable substrate [41]. After fabricating the individual sub-circuits on the 

silicon islands, these islands are interconnected using metallization. However, 

although the interconnects are patterned before deforming the substrate, the 

deposition is done after deformation to maximum tolerances [41]. Fig. 3 

demonstrates a fabrication process which implements this. This ensures that the 

islands remain interconnected even at high strains. The advantage of this approach 
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is that maximum tolerances are met and the interconnects remain stable under 

strain. However, this fabrication method does not address the issues of directional 

strain. The designer must still understand how the circuit will be strained before it 

is applied in order to optimize the design of the interconnect. It is also unlikely 

that this optimization can be carried out if the circuit is deformed in multiple 

directions. 

 

 

 
Fig. 4. (a) shows the decrease in sheet resistance with increasing nanotube 

thickness. (b) shows the increase in sheet resistance with increase in transmittance 

[47]. 
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2. Material solutions for stretchable and flexible electronics 

While the section above illustrates solutions that modify the structure and 

shape of the interconnect while still using materials found in the current IC 

fabrication processes, this section presents solutions that are based on novel 

materials that can be used for interconnects on flexible substrates. All these 

 

Fig. 5. (a) Fabrication of strained SiGe nanomembranes (b) Comparison of TFTs 

on nanomembranes with and without strain [49] 
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materials possess some properties that allow them to deform easily, without a 

marked change in resistance through them.  

The most popular choice for interconnects in flexible electronics is gold. It 

has been used as an interconnect in a diverse range of applications in flexible 

electronics paper-based organic electronics [42], active-matrix displays based on 

organic transistors [43], carbon nanotube based semiconductor applications [44] 

and printed electronics [13]. Gold is useful because of its low Young’s modulus 

[45] and very low resistance [46]. However, its disadvantages are that it is 

extremely expensive and that it is a deep-level impurity in CMOS processes, 

making it unviable in such manufacturing lines. A third problem with gold is that 

it sputters in molten form, thus increasing the chance of contamination within the 

deposition system. 

Another material that can be used for interconnecting circuit elements on 

flexible substrates is a network of carbon nanotubes. Single-walled nanotubes 

(SWNTs) can be used as good conductors since they naturally take on the shape 

of a thin-walled tube when fabricated [47]. This material is especially useful 

because its optical properties are also tunable to make it transparent in the visible 

light range. This would produce a material that could compete with Indium-Tin-

Oxide (ITO) in flexible display applications [47]. The disadvantage of this 

material is that the thickness of the carbon nanotubes determines both the sheet 

resistance of the film as well as the optical properties. In general, a trade-off needs 

to be made between the resistance and the optical properties [47]. Another 

disadvantage is the fabrication method of the carbon nanotube, which calls for 
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new materials and processes to be added to a conventional fabrication facility, 

which can be expensive. 

A few other options include other metal interconnects like chromium, 

silver, aluminum and copper, which are good conductors, but are much more 

brittle than gold. Some semi-conductor materials like gallium nitride (GaN) and 

gallium arsenide (GaAs) can also be doped to behave like conductors. The 

advantage is that these materials can be fabricated to form ribbons, wires and 

nanotube structures [40]. However, these have process integration issues without 

the very high conductivity of metallic materials. 

A third option is to use nanomembranes of various semiconductor 

materials and engineer them for the required conductivities [48, 49]. The 

conductivity can be modified in various ways like controlling the doping in the 

material, controlling grain size [50] or by introducing strain [48] in the material. 

Fig. 5 shows the fabrication of SiGe nanomembranes and the change in field-

effect mobility for TFTs fabricated on it, when strain is applied to the 

nanomembrane. The advantage of this approach is the high degree of control that 

can be achieved in terms of the sheet resistance of the device. The small size of 

the device, in the thickness of a few hundred nanometers, also means that the 

packing density of the circuits can be increased significantly, compared to other 

techniques, without significantly trading off sheet resistance. The disadvantage of 

this method is that the fabrication process differs significantly from conventional 

fabrication processes, which makes integration difficult in the short term. The fact 

that sheet resistance changes significantly in the nanometer regime [49] also 
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places significant restrictions on the precision of the deposition and design 

processes. 

B. Processing techniques for flexible and stretchable electronics 

The processing techniques that can be used on substrates which are used 

for flexible electronics applications are limited primarily by their low glass 

 

Fig. 6. Schematic of Organic vapor deposition, a variant of thermal vapor 

deposition, that improves film uniformity by making the deposition phase 

diffusion-limited. The nitrogen is heated as it is used to transport the source 

(EDT) to the sample [54]. 
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transition temperatures and their tendency to flex and bow during the fabrication 

process. A new set of patterning and deposition techniques were designed 

specifically to deal with flexible substrates for the reasons stated above. Some of 

these techniques are discussed subsequently. 

1. Solution deposition of organic thin films  

Most polymers are deposited using a solution deposition technique. The 

polymer is first dissolved in a compatible solvent and the solution is then sprayed 

on or spun on the substrate. The solvent is then evaporated off the substrate, 

leaving behind the required polymer film [51, 52]. This process produces very 

uniform films of thicknesses as low as 100 nm. The advantages are the very high 

deposition rates achieved and the relative ease with which the process can be 

modified in order to accommodate very large area films [51]. The disadvantages 

are the interference between the solvent and the previously deposited layers and 

the inability to locally pattern complex circuit elements [51]. The interference 

phenomenon can be ameliorated by functionalizing the solvent in order to deposit 

multiple films at the same time, or perform multiple processing steps at the same 

time. But the results are generally a compromise on the performance of the circuit 

[51]. An interesting advance in the solution processing technique is the ink-jet 

printing technique [50, 51]. This allows considerable flexibility in the local 

patterning of circuit elements. Recent advances in the inkjet printing of organic 

compounds have produced circuit elements that can be patterned with sub-

femtoliter accuracy [53]. This process places greater demands on polymer inks 
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including better uniformity and formulations that satisfy all the electrical and 

optical properties of the application, down to the micron level [51].  

2. Vapor-phase deposition of materials 

Vapor-phase deposition of thin layers is the most common form of 

processing for flexible electronics.  It has been directly adapted from the 

semiconductor deposition technique called vacuum thermal deposition. The 

process involves the placing of the source in a boat and heating it in vacuum so 

that it sublimates. The substrate is placed in the path of the resulting gas flow and 

a thin layer of the source is deposited on the substrate [51]. The primary 

advantage of this method is that it is already a mature process in the 

semiconductor industry. The other advantage is that a potentially unlimited 

number of thin films can be grown as a stack using this method. The 

disadvantages are that there is a lot of wasted source material as the source not 

only coats the substrate, but also the entire chamber and the inherent film non-

uniformity. The evaporation rate in different directions is non-uniform, resulting 

in a thinner film at the edges and a thicker film at the center. This can be a 

problem, particularly for large-area displays, where the substrate size is very large 

[51]. This problem is reduced considerably by using a variant of the thermal 

deposition technique called organic vapor-phase deposition (OVPD), where the 

film uniformity is controlled using a transport medium such as an inert gas or 

nitrogen [51, 54]. However, this is limited by the temperature required to vaporize 

the source and is typically used only for organic compounds. A third disadvantage 

relates to thermal deposition of compounds. As different elements within the 
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compounds have different partial pressures at a particular temperature, the rate of 

evaporation of each of these elements, and therefore, the deposition rates will be 

different. This results in a stoichiometric difference between the deposited film 

and the original source material [55]. Fig. 6 shows a schematic for a vapor-phase 

deposition system. 

3. Thermal transfer of materials 

This technique works only with heat sensitive materials at significantly 

lower temperatures than the glass transition temperature of the substrate. 

Therefore, it is used mostly for patterning organic materials. These materials are 

pre-deposited, without patterning, on a ―donor‖ sheet. The donor sheet is then 

placed over the substrate and a localized heat source (like a laser) is run over the 

 

Fig. 7. Schematic of the thermal transfer principle. The laser decomposes the 

sacrificial triazene layer, resulting in the deposition of the remaining portion of 

the film on the receiving ITO layer. The UV laser is run in a pre-determined 

manner in order to transfer the required pattern onto the ITO film [56]. 
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donor in a pre-determined pattern. The result is the transfer of the required 

material from the donor sheet to the substrate [51, 56]. 

4. Direct patterning of electronic devices 

Direct patterning of thin films is the process of transferring patterns onto 

the substrate using processes that are analogous to printing. Such methods include 

 

Fig. 8. (a) Schematic of cold welding. The figure demonstrates how a stamp can 

be used for selectively cold-welding patterns into the metal. (b) Schematic of 

roll-to-roll printing using equipment similar to a printing press, which makes the 

process very low cost [51]. 
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imprinting a thin film of the functional material using a rubber or polymer stamp, 

cold welding, lithographically induced self-assembly or microcutting of the 

cathode metal after deposition of the underlying functional materials [50, 51, 57].  

Cold welding is the binding of two clean surfaces of the same metal on 

contact or on the application of moderate pressure. By selectively applying the 

pressure, only certain parts of the second metallic film are allowed to stick, while 

the remaining portion may be removed easily. The stamp is made of a soft 

material, typically poly-dimethylsiloxane (PDMS), with a desired pattern 

embossed on it. An additional adhesion-prevention coating is placed on it to 

prevent the metal from sticking on the stamp [51].  

Roll-to-roll printing is a very attractive form of processing flexible 

electronics. This process is very mature because the same equipment has been 

used in the printing industry for a long time. This processing technique can be 

easily adapted to flexible electronics because the substrate on which the electronic 

components need to be fabricated is flexible, making it similar to paper.  

C. Review of properties of flexible substrates 

Recent research has resulted in a number of materials that show promise 

as substrates for flexible electronics applications. However, there is no universal 

solution to the choice of a flexible substrate as different materials offer unique 

desirable properties for a particular application. As we make a choice of which 

substrate to use in order to fabricate flexible memory, we need to evaluate the 

criteria discussed below.  
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A fundamental property of the chosen flexible substrate is mechanical and 

thermal stability [58]. Mechanical stability ensures that the substrate does not 

crack as it is bent. Ideally, the substrate should be capable of flexing repeatedly 

without any significant degradation. This property also extends to the fact that the 

material does not show fatigue i.e. the material remains stable dimensionally and 

does not change in its size as it is stressed over time. Thermal stability ensures 

that the material does not deform drastically when subjected to temperature 

changes. This is especially important during device fabrication, during which 

temperature changes are fairly common. The change in dimensions due to 

changes in temperature is measured as the Coefficient of Thermal Expansion 

(CTE).  

A low CTE substrate ensures that the flexible circuit can be fabricated 

with relatively little change to the original silicon process and also is capable of 

operating over a wide range of temperature. One of the main points of failure for 

flexible circuits is at the interface of the substrate, which is usually organic, and 

the device layers, which are almost always inorganic. A large CTE for the 

substrate results in stresses developing in the inorganic thin film layers in contact 

with the substrate. The result is usually either cracking or poor adhesion of the 

device layers to the underlying substrate. 

Surface properties of the substrate are also extremely important. For 

example, planar surfaces are a prerequisite for the fabrication of almost all 

devices on flexible substrates. This is because most devices are deposited as thin 

films, which tend to have very poor step coverage. A non-planar surface would 
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result in parts of the substrate being exposed to the upper metallization layers. 

Another important surface property in the case of PMC devices is surface 

conductivity. The surface of the substrate on which the devices are fabricated 

should be conductive so that this can be the bottom electrode or cathode. A non-

conductive surface, therefore, would have to be processed in order to make it 

conductive. 

The final property that needs to be scrutinized is cost. This cost is not 

limited to the cost of the substrate, but also the cost of adapting the fabrication 

process to the substrate.  One of the advantages of flexible substrates is cost 

savings. This is realized in most cases by migrating from the traditional wafer-by-

wafer fabrication approach to the roll-to-roll fabrication process. The feasibility of 

this approach depends on the robustness of the substrate and the ease with which 

the substrate can be aligned during fabrication. 

Many substrates show potential for flexible electronics applications. The 

ultimate choice depends primarily on a compromise between mechanical and 

thermal stability and cost of the substrate and the materials involved in the 

fabrication of the electronic devices. 

1. Stainless steel foil 

Stainless steel foil is a very attractive option as a flexible substrate. Metal 

foils generally have very high moduli of elasticity and are unlikely to deform 

during roll-to-roll processing. Stainless steel foils have a fairly high CTE, about 

15-20 ppm higher than silicon. This may present problems when processing at 

elevated temperatures. The surface of metal films is usually extremely rough. 
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Planarization of metal films is usually a fairly involved process. The costs 

involved with procuring SS foils are usually low, but planarization usually 

elevates these costs [58]. Finally, the costs involved with processing SS foils are 

not much lower than processing other types of flexible substrates in preparation 

for device fabrication. 

2. Glass 

Thin glass substrates are extremely stable, both mechanically and 

thermally. The CTE of glass is extremely close to that of silicon, which makes the 

fabrication process very predictable and little change is required from the 

traditional silicon process in order to adapt it to the glass substrate. The 

engineering of the glass transition temperature for glass substrates is a very well 

understood process. The surface properties of glass are excellent as with polishing 

a very smooth surface can be obtained. Unfortunately, glass displays a reasonable 

degree only at thicknesses below 200 µm, which can be achieved using the float 

glass process. For flexible electronics, the required flexibility is reached only at 

thickness of about 30 µm [59]. These thicknesses can be achieved using Down 

Draw (DD) process [59]. However, producing glass at these thicknesses is 

extremely expensive and the surface becomes very rough. Additionally, flexible 

glass substrates are delicate and are not suitable for roll-to-roll processing. Glass 

substrates were not considered the ideal choice for substrates for flexible memory 

for all the reasons mentioned above. 
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3. Polymers 

Polymers are the most versatile and inexpensive circuit elements used in 

flexible electronics. They can be synthesized to have a wide variety of properties 

like high melting temperature, high flexibility, high strength, different CTEs and 

other properties [58]. In addition, their adhesion to metal thin films is usually 

good. They are also amenable to roll-to-roll processing because of their high 

flexibility, robustness and light weight. The low cost is because the polymer 

manufacturing process is a high volume process. The disadvantages of using 

polymers are that the glass transition temperature of most of these materials is 

quite low and the CTE of these materials is also quite high. Substantial changes 

have to be made to the traditional manufacturing process by replacing most unit 

processes with alternative low temperature unit processes. In spite of these 

disadvantages, these substrates showed the highest potential for use as substrates 

in flexible memory. 

Polyimide is a polymer that has been used in the electronics 

manufacturing industry for a long time. It is extremely stable at high 

temperatures, allowing for processing temperatures as high as 350
o
C and strong 

enough to withstand the rigors of roll-to-roll processing. It does have a CTE of 

about 20 ppm, which is much higher than that of silicon. The fabrication process 

needs to be a low temperature process to prevent the substrate from deforming too 

much as the circuitry is manufactured over it. This polymer was used as a 

substrate for fabricating PMC flexible memory. 
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Polytetrafluoroethylene (PTFE) is another polymer that has traditionally 

been used in the electronics industry. It is also a higher temperature plastic and 

allows for processing temperatures up to 250
o
C. Unfortunately, it is not a very 

good dielectric. Also, it is not thermally stable because of a high CTE. While it 

shows flexibility, a few other polymers have already demonstrated a greater 

degree of flexibility. This substrate was not considered for manufacturing PMC 

memory. 

Polyethylenes are a family of polymers that show significant promise as 

flexible substrates. Two of these in particular – polyethylene terephthalate (PET) 

and polyethylene naphthalate (PEN) are very flexible and have a reasonably low 

CTE. The disadvantage of these polymers is that the fabrication process have to 

be very low-temperature. These polymers have glass transition temperatures in 

the range of 100
o
C-200

o
C. These substrates have yet to be considered as 

substrates for flexible memory. 

Polyimide is generally the most popular choice for a flexible substrate as it 

allows for more options when developing a manufacturing process. PET and PEN 

are the other two choices. However, they are only considered if transparency is a 

prerequisite. 

D. Review of solid electrolyte material systems and their compatibility with 

flexible substrates 

A number of metal-glass combinations have been studied as solid 

electrolyte systems for some time now. A few of these electrolytes have shown 

great promise for use in memories, with the result that PMC devices with different 
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material combinations can be fabricated on conventional rigid substrates. The 

choice of a solid electrolyte for flexible circuit applications is, however, 

significantly restricted by fabrication process considerations. Specifically, the 

solid electrolyte should conform to the following specifications: 

1. The fabrication process of the material combination should be lower 

than the glass transition temperature of the substrate. 

2. The material combination should adhere well to any underlying metal 

layer. 

3. The modulus of elasticity of the solid electrolyte material should be 

comparable to the modulus of elasticity of the substrate to prevent 

cracking and de-adherence on flexing 

4. The material combination must continue to retain its solid electrolyte 

properties even on flexing, so that the memory properties are 

reasonably stable even when the device is subjected to mechanical 

stress. 

Some material combinations that are good candidates for the solid 

electrolyte are given below.  

1. The silver-germanium selenide electrolyte 

The Silver-Germanium Selenide (Ag-Ge-Se) electrolyte is extremely 

simple to fabricate. It is made by depositing a Germanium Selenide base glass 

(GexSe1-x, x < 0.33) layer on the bottom electrode by physical vapor deposition. A 

layer of silver, approximately 1/3rd the thickness of the glass layer, is then 

deposited over the glass. This material combination is then exposed to ultra-violet 
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(UV) light of wavelength 405 nm, at a power density of about 4 mW/cm
2
 for 

about 20 minutes in order to dissolve the silver into the base glass to give the solid 

electrolyte [1]. In order to complete the device, the bottom electrode is made of an 

/  

 
Fig. 9. (a) Current-voltage characteristic of a PMC device with a programming 

current compliance of 1µA (b) Resistance-voltage characteristic of the device. 

The ratio of the off to on state resistance is about 4 orders of magnitude [1]. 
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electrochemically indifferent metal like nickel (Ni), while the top electrode is 

made of an easily oxidizable metal like silver (Ag). 

The advantage of using the Ag-Ge-Se electrolyte stems primarily from the 

flexibility of the Ge-Se base glass, whose elastic modulus is very high and the low 

processing temperatures. The fabrication temperature of this electrolyte is almost 

room temperature, with the highest temperature being reached during physical 

vapor deposition of the glass and silver layers. No other high temperature 

processing step is required during fabrication as the electrolyte formation depends 

solely on the exposure to UV light. Another advantage of using this electrolyte is 

its low turn-on voltage of about 0.2 V for devices with a nickel (Ni) cathode [1]. 

2. The silver-germanium sulfide electrolyte 

The silver-germanium sulfide (Ag-Ge-S) electrolyte system produces 

much more stable resistance states than the Ag-Ge-Se system. The on-off 

resistance ratio is also about 50 times higher [2]. The turn-on (about 450 mV) and 

turn-off (about -250 mV) thresholds are also much higher [2], making this system 

a little more energy intensive than the Ag-Ge-Se system. The primary advantage 

of this system is that it is capable of withstanding the high back-end-of-line 

(BEOL) processing temperatures found in conventional silicon processing lines. 

However, the electrolyte needs an anneal at 430
o
C for about 15 minutes during 

fabrication [2], which makes it incompatible with most flexible substrates, 

especially those that are polymer-based. The higher processing temperatures and 

the higher energy requirements make this electrolyte system a less than ideal 

choice for the purpose of fabricating PMC memories on flexible substrates. 
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3. The copper-germanium sulfide electrolyte 

The Copper Germanium Sulfide (Cu-Ge-S) system exhibits lower 

programming resistance states than the Ag-Ge-S system, with the on-state 

resistance being about 15 kΩ and the off-state resistance being about 1 GΩ with a 

10µA compliance current [2]. The write threshold (about 300 mV) and the erase 

threshold (less than 100mV) are also much lower than the Ag-Ge-S system [2], 

which makes it a low-power system. However, this system is very temperature 

sensitive, making the device characteristics very unpredictable as the temperature 

of operation is varied [2]. 

This is probably because copper is much more reactive electrochemically 

than silver, resulting electrochemical processes being much more dominant within 

the device than the externally applied programming currents and voltages. This 

system shows potential for use in the flexible substrate process. A greater 

understanding of the system is necessary before it can be used, however, since it 

is not known whether the electrochemical processes are accelerated when the 

system is subjected to mechanical stress. 

4. The copper-silicon dioxide electrolyte 

The most important attribute that works in favor of the copper-silicon 

dioxide (Cu/SiO2) system is that the diffusion of copper through SiO2 is very 

well-understood [26]. Another reason that this system is being investigated for 

applications as a solid electrolyte is that both materials are already available in 

conventional silicon manufacturing processes. However, this system is not 

suitable at all for flexible electronics applications. One reason for its 
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incompatibility is that the copper cannot diffuse into the SiO2 matrix by 

photodiffusion as in the case of previous systems. This system requires a thermal 

diffusion step at 610
o
C for at least 15 minutes in order to form the solid 

electrolyte [60]. Another major disadvantage of this system is that the SiO2 matrix 

is brittle and tends to crack rather than bend when subjected to mechanical stress. 

The on-off resistance ration is comparable to that of the Ag-Ge-S system with the 

write threshold (about 1.3 V) and the erase threshold (about -0.5 V) being slightly 

higher than those of the Ag-Ge-S system [60]. Thus, this electrolyte cannot be 

considered for flexible electronics applications, even though its switching 

behavior is comparable to the other electrolyte systems on conventional rigid 

substrates. 

5. The copper-transition metal oxide electrolyte 

Thus far, the copper-tungsten oxide (Cu/WO3) system has been studied for 

applications as a solid electrolyte. This system shows great potential for use in 

flexible circuit applications. The primary reason for this conclusion is that the 

formation of this electrolyte is a room-temperature process, with the Cu diffusion 

into the WO3 being governed only by exposure to UV light [3]. The off-state and 

on-state resistances differ by about 7 orders of magnitude and the programming 

currents are extremely low (about 1µA), resulting in very low power consumption 

[3]. The device exhibits a write threshold at around 400 mV and an erase 

threshold at around -200mV [3]. Preliminary retention testing shows that the 

devices based on this electrolyte show excellent performance, even at elevated 
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temperatures. We are currently investigating the effects of mechanical stress on 

this system. 

E. Mechanical properties of germanium selenide (Ge-Se) glass 

Chalcogenide glasses are much less brittle than silicate glasses. This 

section discusses the mechanical properties of Ge-Se glasses as a specific 

example of the properties of chalcogenide glasses. The goal of this section is to 

emphasize that chalcogenide glasses, and more specifically Ge-Se glasses, 

possess the necessary mechanical characteristics to be used in flexible electronics. 

 Ge-Se glasses are characterized by relatively low hardness values (0.39 

GPa to 2.35 GPa) and fracture toughness values (0.1 MPa.m
1/2

 and 0.28 

MPa.m
1/2

) [61]. As a comparison, silicon dioxide (SiO2) films have hardness 

values between 7.9 GPa and 14.5 GPa [62] and fracture toughness values between 

0.1 MPa.m
1/2

 and 0.28 MPa.m
1/2

 in air [63]. The low hardness values of Ge-Se 

films result in the brittleness factor being lower than that of silicate glasses. The 

brittleness factor is defined as shown below: 

 

Table 1. Density, Elastic Modulus, Indentation Hardness and Toughness of Ge-

Se glasses [61]. 
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 rittleness  actor 
Hardness

 racture Toughness
                

being lower than that of silicate glasses. Hardness and Young’s Modulus of Ge-Se 

glasses increase with increasing germanium (Ge) content, but fracture toughness 

exhibits a maximum for Ge20Se80 [61]. The Young’s Modulus of Ge-Se glasses 

(between 10.25 GPa and 123.5 GPa) are also much lower than silicate glasses 

(between 73.1 GPa and 145 GPa) [61], which means that chalcogenide films 

demonstrate more elastic deformation for the same amount of stress than silicate 

glasses. The preceding discussion shows that chalcogenide glasses, and more 

specifically Ge-Se glasses, can be used in engineering applications that require 

that demand mechanical flexibility. Mechanical characteristics for different 

compositions of Ge-Se glass are given in Table 1. 

F. The memristance property 

The concept of the memristor was first introduced by Leon Chua in 1971 

[64]. The original paper described the device as a two terminal device which 

relates the flux linkage with the charge. Two types of memristors were discussed 

in [64]. The flux-controlled memristor, which is of interest, is described by the set 

of equations given below: 

i(t) W( (t)) ν(t)                

W( )  
dq( )

d 
                     

Here i(t) is the time-dependent current, v(t) is the voltage,  (t) is the flux linkage 

and q(t) is the charge, which is dependent on the flux linkage. This was 
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considered the fourth circuit element, along with the inductor, the capacitor and 

the resistor. Although an electromagnetic field interpretation was developed and 

active memristor circuits were demonstrated, no passive circuits, i.e. one without 

an internal power supply, were demonstrated by the original paper, and were 

unknown at the time. A later paper, by Chua and Kang [65], generalized the 

concept of the memristive system to a much broader class of systems which are 

described by a set of equations given below: 

dx

dt
 f(x,ν,t)              

i G(x,ν,t) ν(t)         

where i(t) and ν(t) are the time-dependent current and voltage respectively and x 

is a state variable, which does not necessarily have any correlation with any 

physical quantity within the system. This set of equations describes a voltage-

controlled memristance system.  

Interest in the memristance system was renewed when a team from HP 

published research demonstrating proof on concept for such a device [66]. The 

device comprised a thin film of titanium dioxide (TiO2) with platinum (Pt) 

electrodes. The memristive behavior was attributed to the movement of oxygen 

vacancies within the device in response to an applied voltage. The formation of 

conductive filament bridges because of the arrangement of oxygen vacancies was 

said to be responsible for the observed changes in resistance of the device [67]. 

Many other candidates for passive memristors have emerged since this 

time. These include the oxide-based memristor integrated with CMOS logic [68], 



 

 

 

33 

 

spin-torque based memristors [69], the flexible solution-processed memristor [70] 

and the gadolinium oxide (Gd2O3) based memristor [71]. Each of these 

memristors can be optimized based on the requirements of the individual 

electronic application. The model that is proposed for PMC based switches in the 

subsequent sections demonstrates that these devices also show memristive 

behavior. 
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SILVER BASED SOLID ELECTROLYTE INTERCONNECTS 

The previous section discussed the mechanical properties of chalcogenide 

glasses. It shows that the germanium selenide glass is the best candidate for a 

glass which is capable of withstanding mechanical stress as it is the most elastic. 

The silver doped germanium selenide system has been studied extensively as a 

solid electrolyte which can be used as a resistance change element. The ability of 

controlling device resistance based on the application of a voltage is a useful 

property for interconnects in flexible electronics applications. This property 

ensures that if a metal layer overlying a solid electrolyte layer fractures, then the 

signal voltages will promote the growth of a metallic electrodeposit between the 

edges of the fracture. Ideally, this would restore the resistance of the interconnect 

to its original value, thus greatly improving the reliability of the interconnect. This 

section discusses efforts in using this system to demonstrate self-healing 

interconnects. It discusses the fabrication, characterization and the reliability of 

these interconnect structures.. 

A. Fabrication 

The interconnect test structures were fabricated directly on a R/Flex 1000 

flexible substrate from Rogers Corp. which consists of a 25 µm thick polyimide 

layer on a 500 µm (approximate thickness) copper sheet. The polyimide has a 

glass transition temperature of approximately 250
o
C, which limits the processing 

temperatures used during subsequent processing. The fabrication process is based 

on the process outlined in [55]. However, the process has been adapted to be 

suitable for flexible substrates, based on previous work in this area [7, 72]. The 
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flexible material was first mounted on a rigid silicon substrate using double-sided 

carbon tape. This tape, typically utilized in electron microscope sample mounting 

applications, can withstand the moderate temperatures used in test structure 

fabrication while maintaining adhesion and minimizing any distortion in the 

flexible element due to temperature stresses. The multi-layer substrate was rinsed 

 

Fig. 10. (a) Schematic of the self-healing interconnect structure on polyimide, 

consisting of a 70 nm thick Ag layer on Ag-Ge-Se solid electrolyte. (b) Optical 

microscope image showing the top view of the structure. The test pattern is 10 

μm wide and 775µm long, terminating in probe pads at either end. 
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using acetone, ethanol and methanol in a pre-fabrication cleaning step. As part of 

the lift-off patterning process, AZ 4330 photoresist was spun onto the surface of 

the polyimide at 3500 rpm for 30 sec. The sample was then soft-baked at 80
o
C for 

17 min. in a convection oven in order to evaporate the resist solvent. This oven 

was used instead of a conventional hotplate because the thermal conductivities of 

the polyimide and mounting tape are low and hence hotplate soft-baking, as used 

for silicon substrates alone, would not be as effective. The photolithography step 

involved exposure of the resist to ultra-violet light at an intensity of 5 mW/cm
2
 for 

45 seconds through a dark field mask containing the interconnect pattern.  

Immersion in AZ 300 MIF developer for 90 sec was used to develop the pattern in 

the resist. The layers that make up the test structures were then deposited by 

thermal evaporation. 

The thin films used to create the solid electrolyte comprised a 60 nm thick 

germanium selenide (Ge33Se67) glass layer and a 30 nm thick silver (Ag) layer.  

The Ag layer was photo-dissolved into the Ge33Se67 layer using a blanket UV 

exposure in the exposure system for 20 minutes to create the Ag-Ge-Se solid 

electrolyte [73].  The top Ag layer which forms the 70 nm thick interconnect lines 

was then deposited on the electrolyte.   

A lift-off step was then carried out in acetone to pattern the electrolyte and 

interconnect layers. The flexible substrate was then de-bonded from the rigid 

substrate for stressing and characterization. The final device structure is shown in 

Fig. 10(a). A second set of control samples, with 70 nm thick Ag lines directly on 

the polyimide and no solid electrolyte layer, was also fabricated using the same 
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mask.  The average resistances of both types of interconnect (including contact 

resistance), as measured using tungsten probes on micromanipulators connected 

to an Agilent   55C, were approximately 75 Ω. Note that the sub-100 nm 

thickness of the metal combined with the inherent elasticity of the Ag-Ge-Se 

electrolyte allows these structures to be highly flexible [61] but it is still possible 

to induce failure using high tensile stress via small radius bending.  

B. Characterization 

This section outlines the various characterization methods used to 

investigate the behavior of the device. The first few tests were used to validate the 

self-healing property of the Ag/Ag-Ge-Se bilayer interconnect. The second series 

of tests were used to characterize the reliability of such an interconnect. 

Preliminary results on the reliability of the interconnect to both DC and AC 

voltages were investigated.  

1. Failure resistance and self-healing response of the solid electrolyte 

interconnect 

In order to test the self-healing response of the Ag/Ag-Ge-Se bilayer, a 

sample with these interconnects on polyimide was subjected  to tensile stress by 

bending it around a mandrel of radius 5 mm for 5 minutes. The process was 

repeated 5 times to assure that a significant number of the interconnects had failed 

due to cracking. This process was repeated on a sample of Ag interconnects on 

polyimide. The stressed substrates were then flattened out for electrical 

characterization.  
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Fig. 11 shows examples of failed line resistance for both sample types.  

The resistance was measured using a 10 mV signal to minimize voltage-induced 

changes through electrochemical transport in the material. The measurement was 

made over a 100 second time period to ensure that the break resistances were 

stable. The results show that the failed interconnect lines formed on the solid 

 

Fig. 11. Resistance of two failed Ag lines on Ag-Ge-Se solid electrolyte (red) 

and Ag directly on polyimide (blue). 

 

Fig. 12. Healed interconnect resistance plotted against the reciprocal of the 

current limit (2V DC healing bias). 
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electrolyte have significantly lower resistances (between 10
6
 and 10

7
 Ω  than 

those deposited directly on polyimide (>10
8
 Ω .  These results suggest that the 

solid electrolyte itself does not fracture during mechanical stressing due to its 

pliability and maintains at least partial continuity. 

Fig. 12 shows the resistance of healed interconnect lines following the 

application of a 2V DC bias as a function of the reciprocal of the compliance 

current limit 1/Ilim. The goal was to validate the fact that the electrochemical 

behavior of the device was consistent with the Ag-Ge-Se electrolyte system. As 

expected, the results reveal that the resistance of the healed interconnects 

decreases as the current limit increases. As described previously, this is a 

characteristic of devices based on PMC technology.  The slope of the plot in Fig. 

12 yields a Vth of 122 mV for these interconnect samples, which is close to the 

electrodeposition voltage seen in Ag-Ge-Se memory devices [1]. 

2. Analysis of the self-healing process 

In the next set of experiments, three resistance states were examined in 

order to further characterize the self-healing process; (1) the resistance of the 

unbroken interconnect, (2) the resistance of the broken interconnect, and (3) the 

resistance of the interconnect after the healing voltage is applied.  The samples 

were mechanically stressed as before and a 2V bias with a compliance current of 

10 mA was used as the healing stimulus in all cases to ensure a low electrodeposit 

resistance. The resistance distribution shown in Fig. 13 is the result of testing 10 

devices.  The 3 phases of testing are shown: the as-fabricated resistance case, the 

resistances after the devices have been fractured and the resistances after the 
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devices have been healed. The fabricated 70 nm thick Ag interconnect has a 

length of 775 µm and a width of 10 µm which gives a theoretical resistance of 

approximately  5 Ω, based on the thin film resistivity value of   7 µΩ.cm given 

in [74]. The average resistance measured before fracture is  0 Ω higher than this, 

which we believe is due to thickness variations in the film following deposition 

and the series resistance of the probe contacts and test system connections. We 

see that the resistances of the broken and healed states differ by about 3 orders of 

magnitude, however, the difference in resistance between the healed and 

unbroken interconnects is only a few tens of ohms on average for this compliance 

current.  This validates the healing process, in which the goal is to restore the 

resistance of the interconnect close to its original value. 

The elevated resistance after fracture given in Fig. 13 represents the 

resistance through the unbroken flexible solid electrolyte because of the lack of 

 

Fig. 13. Interconnect resistance distributions before fracture, after fracture and 

after healing. Each box represents the result of 10 samples. 
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continuity in the overlying Ag layer.  This resistance can be used to estimate the 

size of the gap, assuming the crack spans the full width of the interconnect and the 

electrolyte maintains its original thickness and continuity after stressing.  Since 

the resistivity of the solid electrolyte is in the order of  00 Ω.cm [4] and the 

resistance of the fracture   . 5 MΩ) may be calculated as shown below: 

 
Ge  e

 L

W t
  off             

The estimated length L for a 60 nm thick,  0 μm wide  W) electrolyte in the gap is 

750 nm.  Note that such a small gap is difficult to image with an optical 

microscope and exposure to electrons in a scanning electron microscope 

stimulates electrodeposit growth which masks the gap features.  Hence, we can 

only infer the break dimensions from the above calculations. The difference 

between the original and the healed resistance states (ΔR) is  7 Ω and this is the 

effective resistance of the electrodeposit itself. The bridging electrodeposit is 

likely to grow in a short dendritic pattern on the surface of the electrolyte between 

the fractured edges of the interconnect [75] but we can simplify this by assuming 

that the deposited connection can be approximated by a bar with an equilateral 

triangular cross-section which spans the length of the crack.  Such geometry is 

typical in thick surface electrodeposits, in which the base of the feature is 

continually widened as the top is pushed upwards by the electrodeposition process 

[76]. For this geometry, we use the following set of equations to determine the 

dimensions of the electrodeposit: 
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electrodeposit

 L

A
                 

A  a 
√ 

 
                            

Here a is the length of the side and A is the area of the equilateral triangle 

respectively. 

Using a value of   7 µΩ.cm for the resistivity of the Ag electrodeposit 

[74], the side of the equilateral triangle was calculated as 243 nm. The volume of 

the silver electrodeposit (V) is calculated to be 19.3x10
-3

 µm
3
 using 

V A L, where A is the area of cross-section of the electrodeposit and L is the 

crack length as before. The number of silver atoms that need to be reduced in 

order to produce this volume is then calculated using the following equation: 

NAg  
 ensity

Ag
 VolumeAg NA

At. Wt.Ag
              

The density of Ag is 10.49 g/cm
3
, the atomic weight of Ag is 108, and the 

Avogadro number (NA) is 6.023x10
23

 atoms/mol. This gives us a value of 

1.13x10
9
 atoms in the electrodeposit.  

The electrodeposition current during the healing process is assumed to be 

limited by the initial fracture resistance   . 5 MΩ  and the healing voltage   V , 

i.e., 1.6 µA. Note that the much higher compliance current is used to maintain 

sufficient voltage across the electrodeposit in order to continue the 

electrodeposition process and reach the lowest resistance.  Most of this current 

flows through the metallic electrodeposit but the current responsible for continued 

deposition will still be flowing in the electrolyte and hence will remain in the µA 



 

 

 

43 

 

range during the entire growth time.  The number of Ag ions to be reduced is 

equivalent to the number of atoms in the electrodeposit. These ions are reduced 

according to 

Ag   Ag
 
  e-            5  

 

requiring one electron per Ag
+
 ion for reduction. The time required for the break 

to heal is calculated using the equation given below: 

theal 
NAg  .6  0

  9 C

Imin

            6  

The numerator represents the total charge required to create the electrodeposit. 

Using this, the calculated value for healing time is 113 µs. 

 

Fig. 14. Analysis of measured resistance values of interconnects with and 

without an underlying solid electrolyte layer. A constant current of 100 uA is 

applied to the interconnects for 3 hours. 
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C. Reliability testing of the interconnects 

DC current stress behavior of a healed interconnect structure, repaired at 2 

V with 10 mA current limit, was compared to that of a silver interconnect without 

solid electrolyte. The current in all structures was maintained at 100 µA, leading 

to a current density of approximately 0.14 MA/cm
2
, which is around one tenth the 

critical current density required to cause electromigration in Ag [26]. The testing 

was performed on 10 individual structures, with and without underlying solid 

electrolyte, and the measured values averaged as before. The average resistance of 

the structures is in the order of 100 Ω, which, for the stress current used, results in 

a potential difference of 10 mV along the conductors. Note that this voltage drop 

is too small to induce significant electrochemical effects during testing as the 

threshold for such reactions in this material system is 122 mV, as noted 

previously. The results for 3 hours of current stressing are shown in Fig. 14. The 

plot demonstrates that the resistance of both test structures (with or without solid 

electrolyte) does not change appreciably over the test period at these current 

magnitudes. The slight increase of resistance in both structures near the end of the 

test period is thought to be due to the degradation of the contact between the 

probes and the interconnect pads over time due to environmental factors. The 

difference in resistance between the two sample types is due to different average 

thicknesses of the Ag film on the two samples. These results suggest that at low 

current densities, the healed interconnect structure performs as well as the 

metallization without the solid electrolyte layer in terms of stability. The effect of 

constant voltage stressing at higher DC current density on Ag metallization on a 
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solid electrolyte layer was also assessed.  Fig.15(a) shows the resistance vs. time 

plot for a constant voltage stress of 500 mV.  Note that unlike the previous case, 

this voltage is sufficient to promote electrochemical effects. The current density in 

this case is 0.71 MA/cm
2
, which is higher than before but still not above the 

critical current for electromigration. The interconnect maintains its initial 

 

Fig. 15. (a) Constant voltage stressing of fabricated interconnect with a DC 

stressing voltage of 500 mV. The plot shows the variation of resistance of the 

metallization as a function of time. (b) Micrograph of the site of failure of the 

interconnect (circled). 
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resistance of approximately 100 Ω for around 2000 sec, at which point resistance 

fluctuations become evident.  Continuity is disrupted around 6200 sec, which is 

very much lower than the expected time for electromigration-induced failure at 

the current density used [77]. An optical micrograph of part of the interconnect 

structure after failure is shown in Fig. 15(b). This section of the metallization 

shown in the figure was made positive with respect to the other end during 

stressing. The removal of silver from the area where the metal pattern narrows is 

clearly visible in the image (circled). These results suggest that, with sufficient 

potential difference, the underlying solid electrolyte layer promotes silver 

transport away from the ―anode‖ or positive end  opposite to the direction of 

material movement expected in the case of electromigration) and this leads to the 

Fig. 16. Statistical analysis of the resistances of 5 interconnect devices after 

healing when subjected to AC voltage stressing. The plot shows the median of 

each resistance state (solid line) and the error bars show the 1st quartile and the 

3rd quartile resistances associated with the corresponding number of cycles. 
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early failure observed for these electrical stressing conditions. The behavior of the 

healed solid electrolyte interconnect under AC voltage stress was also 

investigated. The samples were subjected to mechanical stress as before to induce 

failure in the interconnect and a 10 mA compliance current at 2 V was used in the 

healing process. The healed interconnects were then electrically stressed using a 

periodic square wave of 1.5 V amplitude and a frequency of 5 kHz. A series 

resistance of   kΩ was placed in series with the test structure to limit the test 

current. The AC current density in this test was around 0.1 MA/cm
2
. Fig. 16 

shows the results of the analysis of the resistance changes in 5 of the interconnect 

structures. The variations in the resistances over time are less than an order of 

magnitude, indicating that the healed interconnect is stable under AC bias. An 

increase in resistance towards the end of the test period is evident and this is again 

attributed to a probe contact issue, where the probes gradually drift across the 

contact pads over time due to slight vibrations in the test apparatus, and the 

effects of joule heating at the contacts due to current crowding and subsequent 

transport of material away from the points of contact.  

The performance of the healed solid electrolyte interconnect structure was 

compared to that of the unbroken interconnect at low AC voltages. Fig. 17 shows 

the performance of both the fabricated and the healed interconnect samples. The 

resistance of the interconnects increases by a factor of about 1.4 after the healing 

process. The plot shows that the difference between the fabricated and the healed 

types of interconnects are statistically insignificant, demonstrating that the 
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electro-deposit largely preserves the properties of the originally fabricated 

interconnect when AC voltages are applied. 

D. D.C. failure model for the interconnects 

The plot in Fig. 15 shows the failure of the solid electrolyte interconnect 

when subjected to D.C. voltages of above a few hundreds of mV. This failure was 

Fig. 17. AC testing of fabricated and healed interconnects. The stressing current 

density was 0.2 MA/cm
2
. Healing conditions were 2 V and 10 mA compliance 

current. 

 
Fig. 18. Plot of resistance as a function of time for a stressing voltage of 500mV 

showing the saddle point (1) and final failure (2). 
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analyzed further so that a model could be developed to explain device failure 

based on the material characteristics of the device. Fig. 18 shows the same plot in 

Fig. 15 with two important points in the resistance evolution of the interconnect 

which are characteristic of this failure. The first is a saddle point, during which 

phase the resistance of the interconnect quickly increases before beginning to 

decrease again. The second point is usually a more gradual increase in resistance 

with a sudden catastrophic failure of the resistance at the very end. This time-to-

failure is a function of both voltage and temperature. The model involved finding 

the dependence of the time-to-failure on the temperature and the applied stressing 

voltage and then relating them to the physical mechanisms which may have led to 

the failure. The two sections below show the development of the model. 

1. Behavior of the time-to-failure as a function of applied voltage 

This section shows the behavior of the time-to-failure as a function of 

voltage and temperature. Fig. 19(a) shows the variation of the time-to-failure as a 

function of stressing voltage. The time-to-failure was defined as the time taken by 

the interconnect to reach 10 times the initial resistance. Each data point is the 

result of testing at least 10 interconnects with the same voltage and temperature 

conditions. The stressing voltage was varied between 0.9 V and 2.5 V. The 

current through the interconnect was limited by the resistance of the interconnect 

itself. We see that the time-to-failure varies as the reciprocal of the stressing 

voltage. This implies that the failure is primarily a drift-driven process. The 

resulting electric field causes the ions at the interface of the metal and the solid 

electrolyte to drift towards the lower potential. The loss of these ions induces 
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some of the metal to ionize and move into the electrolyte at the interface. This 

process is self-sustaining and results in a gradual increase in the interconnect 

resistance over time and eventually results in interconnect failure. Fig. 19(b) 

shows an interference microscopy image of the interconnect which shows 

thickness variations near the anode end of the interconnect. We clearly see the 

gradual change in the metal thickness along the length of the interconnect.  

 

Fig. 19. (a) Time-to-failure as a function 1/V shows a linear relationship. (b) 

Image using differential interference microscopy shows the site of failure of the 

interconnect to be at the end where the higher voltage is applied. The site shows a 

change in thickness in the circled region. 
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The development of a model for this failure was done based on this 

mechanism. The model assumes that the thickness of the interconnect is uniform 

along its entire length. The resistance of the interconnect is then calculated as 

shown below: 

 (t) 
L

 eW (t)
              

Here R(t) is the time-dependent resistance of the interconnect, L is the length, 

which is 775 µm, W  is the width of the interconnect, which is about  0 µm,  e is 

the electron conductivity in very rough silver films, which is about 2x10
4
 S/cm 

[74] and   t  is the time-dependent thickness of the overlying metal portion on the 

interconnect. Differentiating the above relation and solving for the thickness 

variation as a function of time we get the following relation: 

  

 t
   

L

 eW  

  

 t
               

The following equation gives the rate of change of volume (ν) with respect to 

time: 

 ν

 t
 WL

  

 t
                       

Using eq. (2) in this relation, we get the following: 

 ν

 t
   

L 

 e 
 

  

 t
                  

The rate at which volume changes can be related to the rate at which the 

atoms in the interconnect are being lost to the electrolyte from the metal by the 

following equation: 
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 n

 t
 
 AgNA

MAg

 ν

 t
            5  

The density of Ag is DAg = 10.49 g/cm
3
, the Avogadro number NA = 6.023x10

23
 

and the molecular weight of Ag is MAg = 108.  

Using eq. (4) in eq. (5), the rate at which atoms are lost to the electrolyte is related 

to the resistance by the relation shown below: 

 n

 t
   

 AgNAL
 

MAg e 
 

  

 t
          6  

The ion current density can then be calculated from the above relation by 

multiplying with the Ag
+
 ion charge q = 1.6x10

-19
 C and dividing it by the cross-

sectional area of the Ag
+
 ion current A = W. (t) and substituting for  (t) using eq. 

(1): 

J    
 AgNALq

MAg 

  

 t
           7  

We now use the relation J =  AgEelec [78] where  Ag represents the conductivity of 

Ag in the Ag-Ge-Se electrolyte and is about 1.1x10
-5

 S/cm [4, 79], Eelec is the 

electric field in the electrolyte. The electric field is given by Eelec = - λVA/L where 

VA is the applied stress voltage and λ is the ratio of mobilities of Ag in the 

electrolyte and electrons in the overlying metal layer. This correction is necessary 

because the derivation so far assumes that the entire current which is observed is 

due to ions. However, this is not true since the current through the overlying metal 

layer is predominantly carried by electrons. The observed current density is the 

sum of the electron current density and the ion current density. Modifying eq. (7) 



 

 

 

53 

 

with these relations, we get the expression the rate of change of resistance as 

shown below: 

 

 

  

 t
  
MAg AgλVA

 AgNAL
 q

           8  

Integrating and solving for R(t), we get the result shown below: 

 (t)   0e
 VAt                      (9) 

where 

   
MAg Agλ

 AgNAL
 q

                     0  

Eq. (9) shows that the resistance of the interconnect increases 

exponentially with time and the applied stress voltage. The time-to-failure (tf) 

may be calculated by assuming that the resistance at tf is 10 times the initial 

resistance R0. This gives us the result: 

tf 
 

 VA

ln( 0)            (  ) 

Fig. 20. Plot of resistance as a function of time comparing fitted and observed 

response. 
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Eq. (11) shows that the time-to-failure is inversely dependent on the 

applied voltage. Using the slope from Fig. 19(a), we calculate the value of λ to be 

6.1x10
-5

, which matches the ratio of the electron to ion mobility in Ag-Ge-Se 

system published previously [79]. An illustrative plot of resistance as a function 

of time is shown in Fig. 20. The observed response is compared with the 

resistance calculated based on eq. (5). We see that the calculated values fit the 

observed values except during the initial portion of the stressing. It is assumed 

that this is the saddle point which is observed during the initial stressing phase. 

This shows that the failure is primarily driven by electrochemical drift of the ions. 

However, other mechanisms seem to accelerate the failure during the initial 

phase. 

2. Behavior of the time-to-failure as a function of temperature 

The applied voltage was kept constant at 1.6 V during temperature 

stressing. The temperature was varied between 90
o
C and 120

o
C. The resistance 

 

Fig. 21. Failure time as a function of 1000/T. The extracted activation energy for 

the interconnects is shown. 
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evolution was observed as a function of time for 10 devices at each temperature 

point and an Arrhenius plot of the time-to-failure was made. Fig. 21 shows this 

plot. The activation energy (Ea) of the failure was extracted, which is shown to be 

0.31 eV. This activation energy corresponds to the conductivity of Ag
+
 ions in the 

Ge-Se matrix. This further shows that the failure of the interconnect is because of 

the drift of Ag
+
 ions through the Ge-Se matrix. 

3. Behavior of the saddle point as a function of applied voltage and temperature 

The time at which the saddle point is reached was observed as a function 

of applied voltage. The voltage was varied between 0.8 V and 1.2 V. The 

temperature at which this point was measured was at 90
o
C. Ten devices were 

tested at each voltage point to get a median time at which the saddle point is 

reached. A plot of this time as a function of applied voltage was plotted. Fig. 22 

shows this plot. The plot shows an exponential dependence of the time at which 

Fig. 22. Plot of time to reach saddle point as a function of stressing voltage 

shows exponential dependence. 
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the saddle point is reached to the applied voltage. One of the mechanisms we 

propose is that the appearance of this point shows the duration for which the 

transport mechanism is charge-transfer limited. In such a case, the Butler-Volmer 

equation [80] would dictate the appearance of the saddle point, which would 

explain the exponential behavior. However, further characterization of this point 

is required before a conclusion for the mechanism is reached. 

This scenario is further supported by the Arrhenius plot of the time to 

reach saddle point shown in Fig. 23. The temperature was varied between 70
o
C 

and 120
o
C and interconnects were stressed using a voltage of 1 V. Each data point 

was again the result of measuring ten devices. The activation energy from the plot 

is about 0.35 eV, which again corresponds to the activation energy of the 

conductivity of Ag
+
 ions in the Ge-Se electrolyte. 

The characterization results discussed above show that the d.c. response of 

the solid electrolyte interconnect arises from two mechanisms. The first 

 

Fig. 23. Arrhenius plot of time to reach saddle point as a function of temperature. 
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mechanism is an electrochemical drift of ions and the resulting reduction of atoms 

from the overlying metal line, which causes an increase in resistance. The other 

mechanism which is observed is the electrochemical drift of the ions already in 

the electrolyte. At the beginning of the stressing, when the electrolyte is saturated 

with ions, the second mechanism dominates, with the saddle point being reached 

and the reaction being limited by the Butler-Volmer equation. Towards the latter 

half of the failure, the resistance change is determined more by the conversion of 

atoms to ions from the overlying metal line. These two mechanisms both cause a 

rise in resistance and eventual failure of the metal line. 
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COPPER BASED SOLID ELECTROLYTE INTERCONNECTS 

The preceding section demonstrated that the silver based solid electrolyte 

showed self-healing properties. Further, the fact that the healed interconnects 

displayed similar behavior as the unbroken interconnects was also shown for both 

low d.c. and a.c. voltages. However, at d.c. voltages of the order of a few hundred 

mV, the interconnects demonstrated an electrochemical mode of failure. The 

silver overlying layer was replaced by copper to investigate if this would result in 

an improvement in the d.c. voltage that could be tolerated. This section presents 

the results of the fabrication and characterization efforts that were undertaken in 

this direction. 

A. Fabrication 

The copper based interconnects were fabricated in a manner similar to the 

silver interconnects. The flexible substrate, which was polyimide as mentioned in 

the previous section, was first bonded onto the rigid Si substrate using double-

sided carbon tape. The substrate was then cleaned using a combination of acetone, 

iso-propanol and methanol before being rinsed in DI water. HMDS, followed by 

AZ-4330 photoresist, was spun on the substrate at a rate of 3500 rpm for about 30 

sec. The sample was then soft-baked for about 17 min. in an oven at about 80
o
C. 

The next step involved exposing the sample through the interconnect pattern mask 

for about 45 sec. The incident power was about 5 mW/cm
2
 and the wavelength of 

U.V. light was 436 nm. The pattern was then developed in the AZ-300 MIF 

developer for 90 sec. The germanium selenide layer was then deposited thermally. 

The base pressure was 3x10
-6

 Torr at a current of about 46 A. The source was 
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evaporated through a tungsten boat which was covered by a platinum wire mesh 

to simulate a semi-Knudsen cell. The deposition rate was about 1 Å/s and the final 

thickness was 60 nm. The copper was deposited by electron beam evaporation at a 

base pressure of 3x10
-6

 Torr. The thickness of this film, which would be photo-

dissolved, was about 30 nm and was deposited at a rate of about 1 Å/s. The e-

beam voltage was 10 kV, with the current being 70 A. The copper was then 

dissolved into the germanium selenide layer by exposing the sample to U.V. light 

with an intensity of about 8 mW/cm
2
 and a wavelength of 436 nm for 20 min. The 

overlying metal interconnect layer was then deposited using the same electron 

beam evaporation conditions. The thickness of this layer was 60 nm. A lift-off 

step in acetone, which lasted about 4 hours, completed the process. The final 

structure of the device is shown in Fig. 24.  

B. Characterization 

The copper based interconnects were characterized for their healing 

potential. Fractures were induced in the interconnects by bending the across a 

 

Fig. 24. Cross-section of the copper based germanium selenide solid electrolyte 

interconnect. 
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radius of 5 mm for 5 min., as was done for the silver based interconnects. This 

process was repeated multiple times to ensure that a large fraction of the 

interconnects underwent mechanical failure. The devices were then tested for the 

healing property. The tendency of the interconnect to undergo electrochemical 

failure was also evaluated. Preliminary results of these tests are presented. 

 

Fig. 25. (a) Resistance-voltage sweep to induce healing in the interconnect. The 

compliance current was 100 µA. (b) Plot of on-state conductance as a function 

of limiting current shows a linear dependence. 
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1. The self-healing property 

A sample of copper based solid electrolyte interconnects was subjected to 

mechanical stress. This induced a fraction of the interconnects to fracture. These 

were then healed based on different compliance currents. A voltage sweep from 0 

to 2 V was used to heal the interconnects. The resistance was read in the ohmic 

region on the reverse region of the sweep. Fig. 25(a) shows the variation of 

resistance as a function of applied voltage. The fracture resistance is about 10 

MΩ, as observed. The interconnect heals at around 0.7 V and the measured 

resistance at this stage is dictated by the limiting current. During the reverse 

sweep, we see the ohmic region, which is observed as the constant resistance 

region. The resistance does not vary at this stage as the voltage is too low to 

sustain electrodeposition. Fig. 25(b) shows the on-state conductance, which is the 

resistance in the ohmic region, as a function of limiting or compliance current. 

Each point for the observed values is the result of measuring ten devices at the 

same compliance current. This plot shows a linear relationship as expected for 

PMC devices. The reciprocal of the slope gives the secondary threshold voltage, 

which in this case is about 1.47 V. A higher threshold voltage is disadvantageous 

for healing, since it shows that a higher voltage is required to induce the healing 

process but could be advantageous in terms of reliability because of less voltage-

induced drift during normal operation of the interconnect, according to the 

electrochemical failure  theory presented in the previous section. Some 

preliminary results for the observed failure during D.C. stressing are presented in 

the next section to support this hypothesis. 
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2. D.C. voltage stressing 

The interconnects were stressed with D.C. voltages of the order of a few 

volts, with no limit on the current flowing through them. Unlike the silver based 

interconnects, the copper based interconnects do not fail due to electrochemical 

ion drift at room temperature. At voltages above 4 V, the copper interconnects 

fail, probably due to joule heating. A darkening of the surface of the interconnect 

is observed, probably due to oxidation, which is accelerated by temperature [81]. 

Unpassivated Cu films undergo temperature-accelerated oxidation at much lower 

temperatures than the melting point of Cu. The electrochemical failure is better 

observed at higher temperatures and voltages. Fig. 26(a) shows the behavior of 

the interconnect to D.C. voltages above 2 V at 80
o
C. We see that the interconnect 

does not fail in under 3 hours until the voltage reaches about 2.5 V. At this 

voltage, we clearly see a failure in 2 stages, as seen for the silver based 

interconnects. The fact that the interconnect does not fail at high voltages and 

currents, coupled with the requirement for high temperature, makes the copper 

based self-healing interconnects a very promising candidate for a reliable 

interconnect technology for flexible electronics in the future. However, a much 

more detailed study of the reliability of these interconnects needs to be executed 

before the feasibility of using them in applications can be evaluated. Fig. 26(b) 

shows that, unlike the silver based solid electrolyte interconnect in which the 

failure happens in the bulk of the material, the Cu based interconnect loses 

material along the edges. Further research is required to investigate why the 
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mechanism of transport favors material transport along the edges in the case of 

copper.  

C. Reliability testing of the interconnects 

The goal of the reliability testing of the interconnects was to investigate if 

the Cu-based interconnects could operate at higher current densities than the Ag 

based interconnects over 3 hours. The testing was done for 3 different phases of 

 

Fig. 26. (a) shows the failure of the interconnect at different voltages. (b) shows 

the movement of the metal along the edges of the interconnect. The interconnect 

failure due to electrochemical action is not dominant until the temperature 

reaches about 80
o
C and the interconnect does not fail under 3 hours at lower 

temperatures. 
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interconnect operation. Ten devices were tested in each phase to ensure 

statistically reliable results. In the first phase, Cu interconnects without an 

underlying solid electrolyte layer were subjected to a current density of about 1 

MA/cm
2
 for about 3 hours by applying a constant voltage of 1 V across them. The 

results of these tests were considered the control sample as they represent the 

behavior of the standard Cu based interconnect. The results of the subsequent 

tests were compared with the control sample. The second phase involved 

subjecting Cu interconnects with an underlying Cu-Ge-Se solid electrolyte layer 

to similar current densities in the manner outlined above. This represents the 

behavior of the solid-electrolyte interconnect during normal operation, without 

any fractures induced in it. The third phase of testing involved inducing fracture 

in the solid electrolyte based interconnects by bending the sample around a 

mandrel of diameter 5 mm repeatedly. The resulting fractured interconnects were 

then healed by applying a voltage of 3 V with a limiting current of about 10 mA. 

These healed interconnects were then subjected to the current densities and 

voltages mentioned for the previous two phases. The results of this testing would 

reveal if introducing an underlying Cu-Ge-Se solid electrolyte results in a 

reduction in reliability at these current densities, and if healed interconnects 

perform as reliably as unbroken interconnects at these current densities. 

Fig. 27 shows a plot of resistance as a function of time for all three phases. 

We see that the control sample shows almost no change in resistance at a current 

density of 1 MA/cm
2
. This is expected as Cu interconnects are much more reliable 

than Ag interconnects as they are more resistant to electromigration. The slight 
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increase in resistance could be attributed to Joule heating at the probes and 

possibly due to some oxidation at the surface of the unpassivated film. The Cu 

interconnect with an underlying solid electrolyte, labeled ―Unbroken 

interconnect‖, shows a behavior very similar to the control sample. This leads to 

the conclusion that the introduction of the underlying solid electrolyte film in the 

interconnect does not impact the reliability of the interconnect at these current 

densities. The behavior of the resistance of healed solid electrolyte interconnect 

shows a slight reduction of the resistance over time. This plot demonstrates that 

the healed interconnect performs as reliably as the unbroken solid electrolyte 

based interconnect, and the control sample at the current densities used in the 

testing of these devices. Another observation from the plot is that the healing 

process reliably causes the resistance of the healed interconnects to be within an 

Fig. 27. Resistance as a function of time for Cu based interconnects. The current 

density is 1 MA/cm
2
. 
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order of magnitude of the unbroken interconnects and produces a healed 

resistance, which is stable over time. 

This analysis shows that the Cu based interconnects are much more stable 

than Ag based interconnects. The unbroken and healed states of the Cu base 

interconnects remain stable at about 1.5 times the current density at which the Ag 

based interconnects are observed to fail. The Cu based interconnects can also 

operate at higher voltages. This means that Cu based interconnects can operate at 

higher power levels than Ag based interconnects. The calculated critical power 

density for Ag based interconnects from Fig. 15 is about 0.35 MW/cm
2
. The Ag 

interconnect cannot be used beyond this power level, as it will fail in less than 3 

hours. The Cu based interconnect remains stable at power densities of 1 MW/cm
2
, 

as seen from Fig. 27. Thus, Cu based interconnects can handle power which is at 

least 3 times as high as the power which can be handled by Ag based 

interconnects. 
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SILVER DOPED GERMANIUM SELENIDE BASED SWITCHES FOR 

FLEXIBLE SUBSTRATES  

The previous chapters have dealt with interconnect reliability, by ensuring 

the integrity of interconnects, even after being subjected to fractures. Another 

important aspect of reliability is reconfigurability of circuits. This ensures that 

many alternative paths exist for re-routing, should some parts of the circuit suffer 

catastrophic failure, thus minimizing loss of function. This chapter presents 

research done to adapt PMC devices as reconfigurable switches. Silver doped 

germanium selenide based switching devices have been demonstrated as memory 

devices for both rigid [1, 2, 5, 82] and flexible substrates [7, 72]. The ability of 

these switches to function when subjected to mechanical strain has also been 

qualitatively demonstrated [7, 72]. Although these devices have been extensively 

studied empirically [76, 83, 84], along with the materials that comprise the device 

[73, 79, 85-87], no satisfactory compact model exists which predicts the behavior 

of the device. This section provides the details of fabrication of a PMC device on 

a flexible substrate and proposes a compact model for this device. It also presents 

characterization results for this device which support the model. The model also 

shows that memristance is an emergent property of the device [64], which would 

make it useful as an element in computational logic circuits. 

A. Fabrication 

 The fabrication process is an extension of the process described in [7]. The 

flexible polyimide substrate is bonded to a silicon substrate to prevent its 

deformation during the fabrication process using double-sided carbon tape. The 
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bottom cathode layer is an inert metal layer, which in this case in nickel (Ni). The 

insulating layer is deposited silicon dioxide (SiO2). Both these layers are 

deposited successively in an e-beam system without breaking vacuum. The 

deposition rates did not exceed 1.5 Å/s to ensure good uniformity. The base 

pressure was 3x10
-6

 Torr. The Ni layer is about 150 nm thick while the SiO2 layer 

 

Fig. 28. (a) shows the different device layers with layer thicknesses. (b) shows 

the top view of the device, in which an individual device consists of a via 

between 2 µm to 10 µm in diameter and terminates in a square pad with an edge 

of 100 µm. The Ni cathode (not shown in fig.) is common to each die. 
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is 80 nm thick. The cathode is common to each die and is patterned, along with 

the vias, using the AZ-4330 photoresist. HMDS is spun on to the wafer at 3500 

rpm for 30 sec. Photoresist is then spun on the resist at 3500 rpm for 30 sec. The 

sample is soft-baked in an oven at 80
o
C for 10 min. to drive off the solvent from 

the resist. The sample is then exposed to UV light about 400 mJ/cm
2
 with a 

wavelength of 436 nm.  The pattern is then developed using the AZ-300 MIF 

photoresist for 90 sec. The sample is now placed in a 20:1 BOE etch solution for 

about 2 min. to etch the oxide at the cathode and via locations to expose the Ni 

metal. The resist is then stripped in acetone and a new layer or resist is spun on. 

The anode is then defined using the resist patterning technique mentioned above. 

A germanium selenide layer (Ge20Se80) is deposited up to a thickness of 60 nm 

followed by about 30 nm of silver (Ag) without breaking vacuum by evaporation. 

The evaporation rate was about 1 Å/s at a base pressure of 3x10
-6

 Torr. Photo-

dissolution of the Ag layer in the Ge-Se layer is done by exposing the sample to 

UV light of wavelength 436 nm at a power of 4 mW/cm
2
 for about 20 min. 

Another Ag layer, which is 35 nm thick, was deposited as the top electrode, at a 

deposition rate of 1 Å/s and a base pressure of 3x10
-6

 Torr. A final lift-off step 

was carried out in acetone to produce the patterned switches. The resulting 

devices had vias with diameters that ranged from 2 µm to 10 µm. Fig. 28(a) 

shows the final structure of the device. Fig. 28(b) shows the top view of the 

fabricated device. 
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B. Programming model 

When a positive voltage is applied to the anode with respect to the 

cathode, the device is said to be in the programming state. The device resistance is 

eventually determined by the limiting current. The proposed model for the device 

consists of a Schottky diode in parallel with a variable resistor as shown in Fig. 

29. The Schottky diode current represents the Faradaic current, while the variable 

resistor is the metallic wire between the two electrodes, which carries the electron 

current. The conductance of the variable resistor is a function of the integral of the 

diode current as the ions are reduced and collect on the metallic wire. A latent 

filamentary pathway [88, 89] is considered to exist between the electrodes at all 

times, including the off-state. Only the resistance of this filament varies as a 

function of applied voltage and time. The change in resistance is brought about by 

the reduction of Ag
+
 ions on the electro-deposit. Such a model takes into account 

the behavior of the device to the current and the applied voltage. However, it does 

not take into account the initial formation of the Ag electrodeposit, and so cannot 

 

Fig. 29. Proposed programming model for the device. 
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be applied to analyze the initial few cycles of device behavior. It is important to 

note here that the Schottky diode does not represent the actual interface 

characteristic for the interface between the Ag electrode and Ag-Ge-Se solid 

electrolyte. The interface barrier is, in reality, a product of the formation of the 

Helmholtz Double Layer (DL) in the solid electrolyte, with the current 

characteristics being exactly described by the Butler-Volmer equation [90]. The 

theory of the Schottky diode, however, closely resembles the current-voltage 

relationship predicted by the Butler-Volmer equation. This is why the Schottky 

diode is used as an equivalent device in this model.  

The derivation of the evolution of the resistance of the electro-deposit is 

based on the proposed model. If we assume that all the ionic current goes into the 

formation of the Ag electro-deposit, the rate at which the number of atoms being 

reduced is equal to the diode current. In such a case, if we assume a cylindrical 

cross-section of the electro-deposit initially and a uniform rate of reduction across 

the length of the electro-deposit, then the rate at which the electro-deposit area 

increases is given by the following relation: 

dA

dt
 

M.I (t)

 .NA.h.e
            ( ) 

Here M is the molecular weight of Ag, ID(t) is the diode current at time t, D is the 

density of Ag in the Ge-Se glass matrix, NA is Avogadro’s number, e is the charge 

on an Ag
+ 

ion and h is the height of the electro-deposit, which is also the thickness 

of  the Ge-Se layer. 
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We know that the relationship between resistance and area of the resistor 

is as follows: 

 (t)  
 
elec

.h

A(t)
             ( ) 

In this case, R(t) is the resistance of the electrodeposit, A(t) is the area of its cross-

section and  elec is the resistivity of the Ag electro-deposit in the Ge-Se matrix. 

This equation can be modified to the following relation: 

dA

dt
   

 
elec

.h

 (t) 
.
d 

dt
            ( ) 

Equating eqs. (1) and (3), we get, 

 

  t 
 

d 

dt
   

M I (t)

 
elec

 h
 
 e   NA

             ( ) 

where ID(t) is the standard Schottky diode current used in the above expression 

and is expressed by the following equation: 

I (t) A A
 
T e

  
  
k T (e

V(t)
n k T  )              5  

 The evolution of the resistance of the electrodeposit is derived for some 

special cases shown below. 

1. Constant voltage case: V(t) = VA 

The Schottky diode current is written as shown below: 

I (t) IL exp (
VA

n k T
)                6  

This is then substituted in eq. (4). We also use the boundary condition, R(0) = R0 

and solve eq. (4). The result is shown below: 
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 (t) 
 0

  kp IL  0
 t  exp (

VA

n k T)    
           7  

The rate constant kp represents the rate of change of electrodeposit conductance 

with time and can be calculated using the following relation: 

kp  
M

 
elec
 h  e   NA

                                    8  

Eq. (7) shows that the time-dependent resistance depends exponentially on 

the applied voltage and inversely on time of applied voltage. The dependence of 

the resistance on the applied current and the time for which it is applied 

demonstrates the property of memristance. 

2. Voltage sweep: V(t) = kv.t where kv is a constant 

The Schottky diode current equation is re-written as follows: 

I (t) IL [exp (
kv t

n k T
)    ]                                                         9  

This is then substituted in eq. (4). We again use the boundary condition R(0) = R0 

and solve to get the result shown below: 

 (t) 
 0

  kp IL  0 [
n k T
kv

{exp (
kv t
n k T)    }   t]

                      0  

The value of kp is this equation is the same as that given in eq. (8).  

The voltage sweep also provides an opportunity to characterize the device 

behavior using current-voltage characteristics. An expression which relates the 

observed current to the applied voltage is derived below. Eq. (4) may be modified 

to relate resistance as a function of applied voltage as follows: 
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 (t) 
d 

dV
 
dV

dt
   kpI  t                                                                (  ) 

For a linear voltage sweep, dV/dt = kv. Using this in eq. (8) and solving using the 

boundary conditions R = R0 for V = 0, the solution is as follows: 

 (V) 
 0

  
kp IL  0

kv
*n k T ,exp (

V
n k T)   -  V+

                               

Eq. (12) can then be used to provide the current-voltage characteristic shown on 

the next page: 

I(V)   
V

 0

 [  
kp IL  0

kv
[n k T {exp (

V

n k T
)   }  V]]                    

 Eq. (13) assumes that the current through the electro-deposit is much 

larger than the Faradaic current through the diode. 

3. Programming using a voltage pulse V = VA and a current-limiting series 

resistor Rs 

This scenario represents a practical situation where the PMC device is 

programmed using a voltage pulse, while limiting the current through the 

programming circuit. This limit is imposed by the series resistance Rs. This 

quantity of interest here is the programming time, since this could impose a limit 

on the speed of operation of the circuit. The substitution Y(t) = 1/R(t), results in a 

simplified form of eq. (11) given below: 

dY

dt
 kp IL [exp {

VA

(n k T).(   s Y)
}     ]                          (  ) 
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This equation assumes that the diode current is much smaller than the 

current through the electro-deposit, which results in the voltage across the device 

being defined entirely by the resistance of the electro-deposit. Eq. (11) does not 

have a direct analytical solution and approximations need to be made to solve it. 

The solution to the important case of VA > n.  B + k.T) is presented here to 

illustrate device behavior. 

Two assumptions are made in order to solve this equation: 

1. The exponential portion of the equation dominates.  

2. The inequality Rs.Y < 1 holds for the duration of the programming cycle, thus 

simplifying the eq. (14) to the one shown below: 

dY

dt
 kp IL [exp {

VA (   s Y)

n k T
}]                           5  

Eq. (15) is solved with the boundary conditions Y = 1/R0 for t = 0 and Y = 

1/Ron for t = tp. The expression for the programming time is as follows: 

tp 
n k T

kp IL  s VA U
[U

 s
 on U

 s
 0]                             ( 6) 

Here U = exp(VA/n.k.T). 

Eq. (16) shows that for large values of applied voltage, the programming 

time depends exponentially on applied voltage. As the applied voltage is reduced, 

the programming time begins to depend inversely on applied voltage. 

C. Device characterization 

The device was characterized for its programming behavior. The observed 

current-voltage behavior was compared to the behavior predicted by the model. 
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The barrier height   B) and the ideality factor (n) for the Schottky diode are 

extracted to verify the model for Ag doped Ge-Se devices. The case for pulse 

programming is also investigated. The programming time is investigated as a 

function of applied voltage to see if the pulse programming model accurately 

represents the behavior of the device. 

The value for the rate constant kp was calculated using standard values for 

the quantities in eq. (8), which are given here. The thickness of the Ge-Se layer is 

60 nm. The standard values of the constants used are 6.023x10
23

 atoms/mol for 

NA, 1.6x10
-19

 C for e and 108 g/mole for M. The resistivity of the electrodeposit 

ρelec is about a factor of 100 more than that of the resistivity of Ag thin films, 

which is about  0 µΩ-cm [74]  and the density of Ag (D) is scaled accordingly as 

well. The standard density of Ag is 10.49 g/cm
3
. Substituting these values in eq. 

(8), we get the value shown on the next page, 

 

Fig. 30. Exponential fit for the programming model of the electrodeposit. The 

compliance current is 100 µA. The fit is for the region between 0 V to 1 V. 
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kp 7.  9x 0
 0
 V   s  .                                        7  

1. Voltage sweep behavior 

We see from eq. (13) that for voltages larger than n.k.T, the exponential 

term dominates and the current through the electrodeposit may be modeled as an 

exponential function. Fig. 30 shows an example plot for one such fit. In this case, 

the fit is the approximated version of the conductance of the device using eq. (13) 

and is given as follows: 

Y(V)   
kp IL n k T

kv
.exp (

V

n k T
)                           8  

Using the exponential fits, we can calculate IL and n as all other quantities 

are known. Arrhenius plots of the coefficient of the exponential function further 

improve our estimates of the ideality factor of n. The Arrhenius plot of IL allows 

us to calculate the barrier height ( B) of the Schottky diode. For this example, the 

linear coefficient is about 2.2 µS. Equating this to the appropriate portion of eq. 

(18) and using a sweep rate value (kv) of 0.5 V/s, we get IL to be about 9.66x10
-17

 

A, or a reduction of 610 Ag
+
 ions on the electrodeposit every sec. The off-state 

resistance calculated using eq. (18) is about 44 kΩ, which is very close to the off-

state resistance of 63 kΩ measured actually. It is important to note that this off-

state resistance does not refer to the off-resistance of the virgin device. Instead, 

the devices being measured have already been subjected to a few sweeps to 

condition them prior to these measurements. The result of these conditioning 

sweeps is to ensure the presence of conductive filamentary pathways, even in the 
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off-state. This is likely to be the case during the normal operation of the device in 

electronic applications. 

Another important plot is the on-state resistance as a function of the 

reciprocal current. The experimental observation in this plot has been that there is 

a linear dependence between these two quantities, with the slope being that of the 

secondary deposition threshold voltage. Fig. 31(a) shows the predicted and 

observed programming resistance characteristic curves during a positive voltage 

sweep. The sweep is between 0 V to 2 V. The compliance current is 100 µA. The 

general character of the behavior predicted by the model is very similar to the 

characteristic observed from the device behavior. The observed programmed 

resistance is very close to the predicted programmed resistance to within a few 

hundreds of ohms. However, we see an abrupt change in the resistance of the 

observed characteristic. This is not predicted by the model. This results in the 

model predicting a higher turn-on voltage, or primary threshold voltage, than the 

observed primary threshold voltage. The reason for this abrupt switching may be 

because of a stronger tunneling current as the thickness of the electrolyte between 

the two ends of the electrodeposit in the observed case becomes progressively 

smaller. A second reason may be because of a change of regime of the current, 

where the current goes from being diffusion-controlled by a Schottky-like barrier, 

to be charge-transfer controlled at the electrodes while the Ag
+
 ions exhibit drift 

behavior in the electrolyte itself. 
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Fig. 31(b) shows the plot of programmed resistance as a function of the 

reciprocal of compliance current. The observed values, shown by dots 

representing the median of the measured values flanked by error bars, are 

compared to the predicted values, which are represented by the dotted line. Each 

point in the observed values represents the result of measuring ten randomly 

chosen devices. Each device was swept between -1 V and 1.5 V. The limiting 

Fig. 31. (a) Comparison of the predicted and actual resistance-voltage 

characteristics for a compliance current of 100 µA. (b) Comparison of the 

predicted and actual programmed resistances as a function of the reciprocal of 

compliance current. 
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current range was between 50 µA and 5 mA. The on-state resistance was 

measured in each case. Multiple sweeps were necessary in each case to ensure 

stable switching. The model predicts the on-state resistance quite well. It seems to 

under-estimate the resistance slightly for the lower compliance currents and over-

estimate it for higher compliance currents. This discrepancy may be because of 

the approximations made during the derivation of the model and also because of 

not accounting for mechanisms other than the diffusion-controlled current. 

The characterization of the Schottky diode was done next to further 

improve the model. The Schottky diode is characterized by its ideality factor (n) 

and the barrier height ( B). Both these quantities can be calculated from 

temperature plots. The temperature was varied between 23
o
C and 120

o
C. Ten 

randomly chosen devices were swept between -1 V and 2 V. The compliance 

current in each case was 100 µA. The on-state resistance was measured and the 

diode saturation current (IL) was extracted in each case using eq. (18). The 

Schottky current equation predicts that a plot of the IL/T
2
 should be an exponential 

function of 1/T. Fig. 32(a) shows that this is the case. The slope of this plot should 

yield the barrier height ( B). This plot yields 

   0.   eV.                               9  

This barrier height indicates the reason for the dominance of the ohmic 

characteristic below 120 mV during the reverse sweep. Below 120 mV, the 

Schottky diode turns off, resulting the current being entirely due to the electron 
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current flowing through the electro-deposit. The resistance of the electro-deposit 

itself does not vary as there is no ionic current in this region of the characteristic.  

Figure 32(b) shows the reciprocal of the slope of the exponential term as a 

function of the thermal energy k.T. The slope of this plot helps us extract the 

ideality factor (n). In our case, this yields an n = 5. This shows that the barrier has 

a very high density of interface states and hence is a very poor Schottky diode. It 

 

Fig. 32. (a) I/T
2
 as a function of 1/T to characterize the barrier height of the 

Schottky diode. (b) Diode thermal voltage plotted as a function of thermal energy 

(kT) to characterize ideality factor (n) 
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is likely that such a high density of interface states causes the barrier to be 

governed more by the Bardeen limit than the Schottky limit. Therefore, the barrier 

is less likely to be controlled by the work-function differences than by the 

interface state density. This is a reasonable scenario since the interface consists of 

amorphous materials, which gives rise to randomly distributed localized energy 

states, resulting in a very high intermediate state density in the forbidden energy 

gap of the solid electrolyte. Further investigation is necessary in order to study the 

properties of the barrier. 

A modified version of eq. (12), which gives the relation between the 

programmed resistance and sweep rate, is shown below.  

 

 on

   
 

 0

 [  
kp IL  0

kv
[n k T {e

V 
n k T  }  V ]]                0  

The programmed conductance is inversely proportional to the sweep rate. This 

shows that the programmed resistance can be controlled by using both the 

 

Fig. 33. On-state conductance as a function of the reciprocal of sweep rate (kv) 

showing linear dependence. Each data point is the result of measuring 10 devices. 

The compliance current is 100 µA. 
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compliance current and the sweep rate. Further, the extraction of the voltage V1 

would provide us further insight into other factors that may be used in controlling 

the programmed resistance. The design of this experiment consisted of sweeping 

devices between -1 V and 2 V in both directions with a compliance current of 100 

µA. The sweep rates were varied between 0.5 V/s and 5 V/s. This was done by 

varying the step size in sweep mode of the 4155 between 10 mV and 100 mV. A 

plot of 1/Ron as a function of 1/kv was made. Fig. 33 shows such a plot. Each data 

point was the result of 10 randomly chosen devices. The plot clearly brings out 

the linear relationship between the quantities. The linear fit gives us a slope of 51 

s / V.Ω. Since the experiment was done at room temperature, we can use the 

values of kp and IL calculated previously to extract V1, which is found to be 2.13 

V. This shows that, within the range of experimental error, the slope depends 

strongly on the maximum voltage used to program the device. The dependence of 

programmed conductance of the device on sweep rates is also seen in PMC 

devices on rigid substrates. 

2. Pulse programming behavior 

The behavior of the PMC device when subjected to voltage sweeps 

provides very good insight into the current-voltage characteristic of the device 

and the behavior of the device to current limiting. However, in practical switching 

or memory circuits, these devices would be subjected to voltage pulses and 

current limiting circuitry for routine programming and erase operations. The 

investigation of device behavior when subjected to such pulses, therefore, 

assumes great importance. The setup used for testing in our case was a waveform 
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generator, which generated the voltage pulses, in series with the PMC device, 

with a series resistor, which limited the current through the device. An 

oscilloscope was used to determine the voltage variation through the device as a 

function of time. Since the off-state resistance of the device is high enough to be 

comparable to the impedance of the oscilloscope, it is not valid to measure the 

resistance of the device through the entire cycle. Instead, the voltage was 

measured across the limiting resistance, while ensuring that the series resistance 

chosen had a value at least an order of magnitude lower than the input impedance 

 

Fig. 34. Pulse programming using a waveform generator and an oscilloscope. 
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of the oscilloscope. Fig. 34 shows the setup to test the pulse programming 

behavior of the device. 

Fig. 35(a) shows a pulse measurement with the setup outlined above. A 

voltage pulse of 2 V is applied to the setup for a duration of 50 ms. The device 

resistance evolves over time. Initially, its evolution is constrained by the limiting 

current flowing through it because of the series resistor. Later, the constraint is 

because of the progressively smaller voltage that is being applied across it. The 

device resistance eventually saturates around the value of the series resistor. Fig. 

35(b) shows the device resistance estimated using the voltage measured across the 

series resistance. This is done by noting that the device and series resistance form 

a voltage divider network and the applied voltage divides across the two based on 

the standard voltage divider equation. The voltage divider equation is modified to 

calculate the resistance of the device under test as shown below: 

  UT(t)    [
VA

V UT(t)
  ]                      0  

The programming time was considered to be the point at which the device 

resistance reached about 1.6 times that of the series resistance. This was chosen to 

ensure that eq. (15) remains valid during the calculation of the programming time.  

The programmed resistance needs to be larger than the series resistance for the 

equation to remain valid, according to the assumptions made in the derivation of 

this equation. 
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The next experiment was designed to investigate the dependence of 

programming time on the magnitude of the applied voltage pulse. The magnitude 

of the voltage pulse was varied between 1.5 V and 4 V. Ten devices were chosen 

randomly for each voltage point. A limiting series resistor of 5 kΩ was used in all 

cases. The programming time for each trial was calculated. Fig. 36 shows the 

variation of programming time as a function of applied voltage. The dashed line 

 

Fig. 35(a) Input and output voltage pulse measurements. (b) Resistance evolution 

of the PMC device in response to a voltage pulse. The series resistance is 5kΩ. 
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shows the predicted variation according to eq. (16). The medians in the measured 

data are represented by the dots, while the error bars represent the 25
th

 and 75
th

 

percentiles. We see that the model predicts the programming time very accurately, 

with the measured values being approximately the same as the predicted values 

and both plots showing a similar trend, suggesting that this model can be used to 

estimate programming times for PMC devices during the pulse programming 

process. 

 

 

 

Fig. 36. Programming time as a function of magnitude of the applied voltage 

pulse. The series resistance is 5kΩ. 
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SIMULATION OF P.M.C. BASED SWITCHES 

The model outlined in the previous section used simulation extensively to 

show the validity of the proposed model. Analytical solutions to the equations are 

not possible for all but the simplest conditions. Hence, the need to develop 

powerful numerical simulation tools for these scenarios. All models were 

developed using MATLAB
®
 Simulink

®
. The development of these models was 

 

Fig. 37. (a) Voltage sweep model for device until current reaches compliance 

limit. (b) Voltage sweep model of the device beyond the current compliance 

limit. 
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executed in two phases for the voltage sweep case and the pulse programming 

case. These two cases are explained below. 

A. Voltage sweep model 

The voltage sweep consisted of sweeping the voltage and measuring the 

current to determine the resistance of the device. However, the current was not 

allowed to increase without limit. Instead, a compliance current limit was 

imposed on the device, beyond which the current was not allowed to increase 

during the remaining part of the sweep. We know that we can control either the 

voltage across the device or the current through the device, but not both 

simultaneously. Therefore, the voltage sweep model which was developed started 

off by applying the input voltage entirely across the device until the current 

through the device reached the compliance current limit. Beyond this voltage, the 

circuit was visualized as the device in series with a constant current source, with 

the input voltage being applied across both these. Fig. 37 shows the equivalent 

circuits for each of these scenarios. 

The mathematical models for the voltage sweep case were derived based 

on Fig. 37. The system implements a modified form of the eq. (4) from the 

previous section and solves the equation given below: 

Y(t) Y0 kp ∫ I (t) dt                  

The initial conductance Y0 is the off-state conductance of the device. In 

order to speed the simulation of the device, the sweep rate was increased by a 

factor of 1000. This was compensated by introducing a correction multiplier of 
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1000 in the IL. The resistance as a function of time was calculated as the 

reciprocal of Y(t) during the plotting of the resistance-voltage characteristic. The 

model consists of 4 components as shown in Fig. 38(a): 

1. The ramp generator which generates the input voltage sweep 

2. The ionic diode which is used to modulate the conductance of the Ag 

electrodeposit 

3. The compliance circuit which enforces the compliance current requirement 

and modulates the voltage across the ionic diode accordingly 

4. The conductance integrator which integrates the Faradaic current as calculated 

by the compliance circuit model and provides the change in conductance. 

 

Fig. 38. (a) Mathematical model of the voltage sweep model showing all 

components. (b) Ionic diode model showing the implementation of the Schottky 

diode equation. 
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Fig. 38(b) shows the model of the ionic diode. This model implements the 

Schottky diode equation given as follows: 

I (V) IL [exp (
V

n k T
)   ]                     

The compliance current circuit is used to determine whether the voltage-

limited model in Fig. 37(a) or the current-limited model in Fig. 37(b) will be used. 

It also produces the ionic current which should be generated, depending on the 

model used. This unit takes in 4 inputs: 

1. The input sweep voltage 

2. The device conductance 

3. The diode current that would have been generated based solely on 

sweep voltage with no compliance limit 

4. The actual current compliance limit 

A decision on which model is used is made by using these 4 inputs by comparing 

the total current generated without the compliance limit against the compliance 

limit. This is done using the following equation: 

V(t) Y(t) I (t)>Icompliance               

 

Fig. 39. Compliance current decision model. 
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If the result is true, then the current-limited model is used, otherwise the voltage-

limited model is used.  

In the case of the current-limited model, the voltage across the diode is 

determined by the equation given below: 

IL *exp (
V

n k T
) - + V Y(t) Icompliance                       

 

Fig. 40. (a) Input voltage as a function of time. (b) Device conductance as a 

function of time. (c) Total current through the device as a function of time. 
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This is a transcendental equation which can only be solved numerically. In order 

to simplify the simulation, the entire compliance current is assumed to flow 

through the electrodeposit and the diode current is considered to make a 

negligible contribution to the overall current. This gives us a device voltage given 

as follows: 

V 
Icompliance

Y(t)
                          5  

in the current-limited regime. The mathematical model implementing this is 

shown in Fig. 39 and is the compliance current unit shown in Fig. 38(a). 

The evolution of the conductance as seen in the scope at the end of the 

model is shown in Fig. 40(b) and the total current as a function of time as seen in 

the scope is shown in Fig. 40(c). The scaling of the sweep rate with respect to 

real-time is clearly seen here. We also note that the scaling of the Schottky 

saturation current to compensate for this high sweep rate is also valid, with the 

current reaching compliance at approximately the same voltage as in real-time. 

After establishing the validity of the model with respect to the corrections 

in sweep rate and saturation current, we proceed to plot the current-voltage and 

the resistance-voltage sweeps to see if these are comparable to the measured 

values. Fig. 40 shows the results of these investigations. We see a sample plot of 

the current-voltage characteristic in Fig. 41(a), showing device behavior at a 

compliance current of 100 µA. Fig. 41(b) shows the resistance behavior at 

different compliance currents. These figures show that the predicted device 
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behavior very closely matches the programming behavior of the PMC device in 

the sweep case. 

 

 

B. Pulse programming model 

When used as a switch or a memory device, the PMC device would 

generally be subjected to voltage pulses. This makes it important to be able to 

 

Fig. 41. (a) Simulated current-voltage sweep for a compliance current of 100 µA. 

(b) Simulated resistance-voltage sweeps for different compliance currents. 
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simulate the device under pulsed conditions. The current through the circuit 

would also be limited using a series resistance. The simulated circuit in this case 

would be given by Fig. 34.  

The mathematical model for this scenario is an implementation of the 

equation given below: 

dY

dt
 kp IL [exp {

VA

(n k T) (   s Y)
}   ]              6  

The voltage across the diode is given by the voltage divider method between the 

electrodeposit and the series resistor. The diode current is assumed to be 

negligible throughout the programming process. Fig. 42 shows the 

implementation of this equation. A voltage pulse is generated using the pulse 

generator, which defines both the amplitude and the duration of the pulse. The 

pulse is then passed through the voltage divider network, which consists of the 

 

Fig. 42. Voltage pulse programming model. 
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divide block and the adder block. The adder block adds a constant 1 and the 

product of the series resistance and the time-dependent device conductance term, 

which is the output of the integrator. This voltage from the voltage divider is then 

passed into the Ionic Diode block, which produces the ionic current required in 

the PMC device. This is then passed through the rate constant and integrator 

 

Fig. 43. (a) Voltage behavior as a function of time. (b) Conductivity variation as a 

function of time. The voltage pulse has a magnitude of 3 V and the series 

resistance is 5kΩ. 
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blocks to give the conductance of the electrodeposit. This model should provide 

an accurate description of the observed device behavior. 

Fig. 43 shows the simulated device behavior as a function of time. A 

voltage pulse of 3 V is applied to the model. The series resistance is 5 kΩ. Fig. 

43(a) shows the input voltage pulse and the voltage variation across the series 

resistance as the electrodeposit forms. Fig. 43(b) shows the evolution of the 

conductance of the electrodeposit as a function of time. The conductance 

increases drastically at the very beginning, as expected, when most of the applied 

voltage appears across the device, and then gradually levels off later as the 

resistance of the electrodeposit approaches that of the series resistance. 

The simulated conductance can be used to extract the resistance of the 

device as a function of time. This allows us to calculate the programming time 

required by the device. This is the time required by the device to reach a particular 

resistance based on the applied voltage pulse of a given magnitude and the given 

series resistance. The variation of programming time as a function of applied 

voltage has been explored in the previous section, for both the simulated and the 

observed cases and it has been shown that the model accurately predicts 

programming time. 

The following discussion explores the behavior of the programming time 

as a function of series resistance for a voltage pulse of the same magnitude. While 

a relation is presented in the simulated case, no measurements have been made to 

verify that the relation holds true for actual devices. This is because of the 

limitations of the measurement equipment, which does not allow us to measure 
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fine changes in device resistance with respect to time very accurately. Better low-

noise measurements are required to enable further testing for this scenario. As 

defined in the previous section, the device is considered to be programmed when 

the device resistance is equal to 1.6 times the series resistance. Fig. 44(a) shows 

the evolution of resistance as a function of time for different series resistances. 

The voltage pulse magnitude in all cases was 3 V. Fig. 44(b) shows the 

 

Fig. 44. (a) Resistance as a function of time for different series limiting 

resistances. (b) Programming time as a function of 1/Rs showing a linear 

relationship. The voltage pulse magnitude in all cases is 3 V. 
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programming times, extracted from Fig. 43(a), as a function of the reciprocal of 

series resistance. This gives us a linear fit, which verifies eq. (13) given in the 

programming model. 

The device simulations discussed above demonstrate that the model 

accurately predicts PMC device behavior. The observed measurements closely 

match the simulated results. A suggested improvement would be to incorporate 

the tunneling current seen in Schottky diodes into this model to make it complete. 

Other charge transport regimes may also need to be investigated to improve the 

model. 
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CONCLUSION 

A flexible interconnect structure using silver metallization on thin solid 

electrolyte films which has promising self-healing properties has been fabricated. 

Silver/electrolyte (Ag-Ge-Se) bilayers were fabricated on polyimide substrates. 

These were subsequently damaged by small radius bending. The damaged 

interconnects could be repaired by applying a small bias to stimulate Ag 

electrodeposition in the stress-induced cracks. The resistance of the electrodeposit 

is inversely proportional to the current limit used in the healing process with a 

constant of proportionality of 122 mV.  A current limit of 10 mA is therefore 

capable of returning the resistance of a failed interconnect to within a few tens of 

ohms of its original value.  The repaired interconnect behaves much like an 

unbroken structure under small signal conditions (moderate direct current density 

and low potential difference, e.g., 10 mV).  Unfortunately, a DC voltage drop in 

the order of several hundred mV promotes ion transport away from the positive 

terminal in the underlying electrolyte and this ultimately causes erosion and 

failure of the metallization in a time that is considerably less than that expected 

for electromigration induced failure.  The ion transport and erosion effect is 

mitigated by the use of AC signals which will result in reduced net ion movement.  

This was demonstrated by applying a symmetric ±1.5 V signal on healed 

structures, which resulted in a similar performance to interconnect without the 

underlying solid electrolyte, even at this high potential difference.  The D.C. 

reliability of these self-healing structures was investigated further and it was 

found that the failure is explained with an ion drift limited model, in which the 
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ions drift based on the local electric field, which accelerates the dissolution of 

metal into the electrolyte. This was done by investigating the failure time of the 

interconnects as a function of stressing voltage and as a function of temperature. 

The combination of these two tests revealed that the failure is not due to 

electromigration, based on  lack’s equation [20] but on the Butler-Volmer 

equation [91], resulting in an exponential increase in resistance of the line.  

Copper (Cu) is now the standard interconnect material used in fabrication 

processes, after its introduction for the sub-100 nm range of technologies [27, 30]. 

Previous research has focused on using Cu as a mobile ion for memories based on 

PMC technology. Cu-based PMC memory cells have been demonstrated using 

germanium sulfide (Ge-S) [2] and SiO2 [92, 93] as the solid electrolyte. The 

behavior of the solid electrolyte bilayer interconnect using Cu as the interconnect 

material was investigated. The solid electrolyte layer was germanium selenide 

(Ge-Se). A comparison of the self-healing properties of the two metals, Cu and 

Ag, was made. The results showed that much higher voltages were required by 

the Cu based interconnects to produce the healing effect. The healing 

characteristic produced a secondary deposition threshold of 1.47 V, which is 

much larger than the 122 mV threshold observed for the Ag based interconnects. 

The Cu based interconnects were also much more susceptible to mechanical 

fracture. This was observed qualitatively, when a larger fraction of the 

interconnects fractured at lower mechanical stresses. The advantages of the Cu 

based interconnect, however, are that they can withstand larger D.C. voltages and 

do not show ion migration related failure until voltages of about 3 V are reached 
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and also require elevated temperatures. This ensures that the Cu based 

interconnects can work at elevated power levels compared to Ag based 

interconnects. More research needs to be conducted on Cu-based solid electrolyte 

interconnects to further characterize their behavior in flexible electronics 

environments. 

The next section dealt with a programming model for Ag doped 

germanium selenide based PMC switches. A unique model, which consisted of a 

Schottky diode in parallel with a variable resistor, was proposed, with the 

resistance of the variable resistor depending on the integral of the diode current. 

The predicted behavior of this model was compared to the observed behavior of 

the fabricated devices. A detailed comparison of the voltage sweep case and the 

pulsed programming cases showed that the model predicts the actual device well. 

The predicted programmed resistances were predicted to within a few hundreds of 

ohms. The pulsed programming case also demonstrated that the programming 

time could be predicted to within less than an order of magnitude. A related 

section showing the numerical simulation of the model explains the limitations of 

the model and accounts for the limitations of the electrical measurement setup 

used. These two sections demonstrate the validity of the model and could provide 

a foundation for a formal design methodology for the design of PMC switches. 
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