
Design of an Automated Validation Environment For

A Radiation Hardened MIPS Microprocessor

by

Abhishek Sharma

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved June 2011 by the

Graduate Supervisory Committee:

Lawrence Clark, Chair

Aviral Shrivastava

Keith Holbert

ARIZONA STATE UNIVERSITY

December 2011

 i

ABSTRACT

Ever reducing time to market, along with short product lifetimes, has

created a need to shorten the microprocessor design time. Verification of the

design and its analysis are two major components of this design cycle. Design

validation techniques can be broadly classified into two major categories:

simulation based approaches and formal techniques. Simulation based

microprocessor validation involves running millions of cycles using random or

pseudo random tests and allows verification of the register transfer level (RTL)

model against an architectural model, i.e., that the processor executes instructions

as required. The validation effort involves model checking to a high level

description or simulation of the design against the RTL implementation. Formal

techniques exhaustively analyze parts of the design but, do not verify RTL against

the architecture specification.

The focus of this work is to implement a fully automated validation

environment for a MIPS based radiation hardened microprocessor using

simulation based approaches. The basic framework uses the classical validation

approach in which the design to be validated is described in a Hardware

Definition Language (HDL) such as VHDL or Verilog. To implement a

simulation based approach a number of random or pseudo random tests are

generated. The output of the HDL based design is compared against the one

obtained from a "perfect" model implementing similar functionality, a mismatch

in the results would thus indicate a bug in the HDL based design. Effort is made

to design the environment in such a manner that it can support validation during

 ii

different stages of the design cycle. The validation environment includes

appropriate changes so as to support architecture changes which are introduced

because of radiation hardening. The manner in which the validation environment

is build is highly dependent on the specifications of the perfect model used for

comparisons. This work implements the validation environment for two MIPS

simulators as the reference model. Two bugs have been discovered in the RTL

model, using simulation based approaches through the validation environment.

 iii

ACKNOWLEDGMENTS

First of all, I would like to thank my parents and family for the support

they have given throughout my studies. They have stood by me through the ups

and downs of my graduate life and I am really grateful for that.

I would like to thank my advisor Dr. Lawrence Clark, for the guidance and

support that he has given me throughout my masters. I also thank Dan Patterson

for his guidance on the subject matter. I also take this opportunity to thank Dr.

Keith Holbert and Dr. Aviral Shrivastava for being on my committee.

I would also like to thank Brian Gaeke, OVPsim administrators for

answering all my questions on VMIPS and OVPsim respectively, and my

colleagues Shravan Lakshman, Anubhav Gupta and Satendra Maurya for their

technical and non-technical ideas without which the successful completion of the

work would not have been possible.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION ... 1

 1.1 Functional Verification Using Random Test Generation 2

 1.1.1 Basic Framework ... 2

 1.1.2 Testing Strategy ... 5

 1.1.3 Correctness Checking .. 8

 1.1.4 Coverage Analysis ... 10

 1.2 Performance Validation ... 11

 1.3 Organization.. 12

2 MIPS ARCHITECTURE AND EMULATORS 14

 2.1 MIPS Architecture ... 14

 2.1.1 Execution Pipeline ... 15

 2.1.2 Addressing .. 17

 2.1.3 Modes of Operation and Segments 18

 2.1.4 Registers ... 20

 2.1.5 Instruction Set ... 21

 2.1.6 Exceptions ... 22

 2.1.7 Translation Lookaside Buffers (TLB) 24

 2.2 MIPS Emulators .. 27

 v

CHAPTER ` Page

 2.2.1 VMIPS .. 27

 2.2.2 OVPsim .. 29

3 VALIDATION ENVIRONMENT DESIGN 34

 3.1 Random Instruction Generator ... 37

 3.1.1 Generating Biased Instructions 37

 3.1.2 Initial Setup ... 40

 3.1.3 Region of Operation .. 47

 3.1.4 Configuring Various Instructions 51

 3.1.5 Instruction Hazards .. 60

 3.1.6 Testing the Memory Management Unit (MMU) 61

 3.2 Testbench Input Generation for RTL Model 63

 3.3 Design of the Execution Comparator 66

 3.3.1 Types of Errors .. 66

 3.3.2 Methodology ... 67

 3.3.3 Special Conditions ... 69

 3.4 Test Automation .. 70

 4 RESULTS AND CONCLUSIONS .. 72

 4.1 Statistics from the Random Instruction Generator.................... 72

 4.1.1 Statistics from the First Test 73

 4.1.2 Statistics from the Second Test............................... 74

 4.1.3 Statistics from the Third Test 78

 vi

CHAPT ER Page

 4.2 Configuring Tests for Processor Validation 79

 4.3 Conclusions... 81

REFERENCES .. 83

APPENDIX

A Copyright Permission from MIPS Technologies 85

 vii

LIST OF TABLES

Table Page

1. General Exception Vector Addresses .. 22

2. Statistics from the First Test .. 74

3. Statistics from the Second Test .. 76

4. Statistics from the Third Test ... 79

 viii

LIST OF FIGURES

Figure Page

1.1 Static Random Instruction Generation (SRIG) Work Flow. 3

1.2 Methodology to Generate Test Vector for Corner Cases 7

1.3 Performance Validation Methodology Overview 12

2.1 Processor Core Block Diagram for MIPS-4kc Core 14

2.2 Virtual to Physical Memory Mapping in MIPS. 19

2.3 JTLB Entry (Tag and Data) ... 25

3.1 Flow for Random Tests .. 35

3.2 Weight File to Test Logical and Branch Instructions...................... 39

3.3 Perl Code to Generate Biased Random Instructions. 40

3.4 Reset Handler for Uncacheable Accesses 42

3.5 Exception Handler for Testing with VMIPS 45

3.6 Exception Handler for Testing with OVPsim 46

3.7 Random Test Setup for Testing in Kseg1 48

3.8 Random Test Setup for Testing in Kseg0 50

3.9 Assembly code for Copying Data .. 50

3.10 Incorrectly Configured Jump Instruction. 54

3.11 Correctly Configured Jump Instruction. ... 56

3.12 Convergence Issues in Branch and Jump Instructions 57

3.13 Directed Tests to test MMU. .. 61

3.14 TLB Miss Handler. .. 63

3.15 Output Trace Obtained from OVPsim. ... 65

 ix

Figure Page

4.1 Frequency Comparison for First Test. .. 75

4.2 Frequency Comparison for Second Test. 77

4.3 Frequency Comparison for Third Test. .. 78

 1

Chapter 1

INTRODUCTION

The complexity of modern processors has made functional verification a

huge bottleneck for large scale designs, which consequently affects the time to

market [Poe, 2002]. A general agreement among many observers is that

verification consumes at least 70 percent of the design effort [Zhongshu, 2003].

Today‟s methodology for designing microprocessors involves modeling at various

levels of abstraction [Bose, 1999]. These abstractions range from initial

performance only models used in the pre-synthesis phase, to final stage, detailed

register transfer level (RTL) models. The RTL model, which is coded in a

hardware description language such as VHDL or Verilog, captures the intended

functionality and cycle to cycle timing of the entire design. This model is

subjected to validation using simulation based approaches to ensure the RTL

executes the Instruction Set Architecture (ISA) as specified. The validated RTL

model then serves as a reference model for the circuit level description of the

processor [Bose, 1999]. At this stage, standard formal verification tools may be

used. This thesis focuses on the RTL vs. architectural model comparison stage.

In the late 1990 the emphasis was primarily on performance modeling. At

this high level of abstraction, the primary target of the designer was to define the

microarchitecture, which implements a given instruction set architecture with

lowest CPI (cycles per instruction). However, with designs which use millions of

transistors and run at gigahertz clock frequencies, there is a need to include lower

level design constraints into early-stage, high-level modeling and analysis.

 2

Generally the top level of abstraction is the ISA level functional model.

The performance-only simulation model models the microarchitectural

implementation of ISA, but is limited to capturing correct timing behavior. The

bottom level of abstraction is the RTL model, which captures both the

functionality and timing associated with design. This said pre-silicon validation

encompasses two primary tasks, first is verifying functional correctness at the

architectural level, which involves verifying that the implemented design properly

captures the functional semantics of the source ISA. Second is the performance

verification, which makes sure that clock cycle time meets estimated projections.

1.1 Functional Verification Using Random Test Generation

1.1.1. Basic Framework

 Random test generation is a common technique used for processor

functional verification. It has the ability to reduce the functional verification

efforts and the time to market [Zhongshu, 2003]. Static random instruction

generation (SRIG) is a widely used methodology. Figure 1.1 shows the basic flow

in SRIG. The SRIG tool generates an assembly code based on predefined

configuration options. The cross-compiler and linker convert this assembly code

into object code, this object code serves as the input to the emulator and RTL. An

emulator serves as a reference model and is expected to mimic the design

functionality perfectly. This emulator is generally written in a high level language

such as C/C++ and the highest possible performance is desirable. After the

 3

Figure 1.2.Static Random Instruction Generation (SRIG) Work Flow

simulation of two models, results are compared through a checker and any

mismatches are reported. In SRIG workflow the assembly level random test is

generated prior to simulation. This can result in some potential disadvantages. For

example, branch instructions might be difficult to support in this scheme since it

is difficult to make sure that there is some code resident at the branch target, and

even if there is, branch to a previous code, i.e. one that occurs higher in the

instruction flow, might result in an infinite loop. Another issue is to control

indirect accesses to memory. In most processors memory is divided into pre

defined regions meant for special tasks such as read only portion, I/O cached

portion. Since the register value is random in nature, it requires a lot of extra

effort to control memory accesses. Some other issues that plague SRIG are its

Figure 1.1. Static Random Instruction Generation (SRIG) work flow. After

[Zhongshu, 2003]

 4

inefficiency in finding bugs in earlier stages of the simulation cycle as desired,

and its dependence on the disk storage capacity which limits test size.

 To alleviate these problems a Dynamic Random Instruction Generation

(DRIG) methodology can be adopted as suggested in [Zhongshu, 2003]. In a

DRIG type generator, instructions and random data in machine code are generated

according to a seed variable. During the simulation, when the Device Under Test

(DUT) requires instruction or data, modules in Programming Language Interface

(PLI) are called to fetch the required instruction or data. The collected data is then

issued to the RTL and the emulator. When the instruction completes, the

processor state is determined, and is compared with the results from the reference

model.

 A DRIG based verification methodology offers several advantages over a

SRIG based methodology. Since the instruction is generated in machine code

format, it does not need to run the assembler and linker. The simulation can be

stopped automatically at a test point when two designs do not match. This saves

considerable time when the design is big, particularly for debug.

 A functional verification effort in which pseudorandom testing was used

with some hand generated tests to produce first pass working parts of the Alpha

21164 CPU chips is described in [Kantrowitz, 1995]. The strategies used in the

verification of Alpha 21164 serve as basic guidelines for any validation scheme in

today‟s microprocessor design and are summarized here. The validation effort

should make sure that every block of logic and every function in the chip has been

exercised completely, i.e. in all modes to ensure that no serious functional bugs

 5

remain in the design. In the Alpha 21164 CPU chip the RTL model was

implemented in the C language. The verification team employed several

techniques to ensure full functional verification of the chip. The primary

technique was use of pseudorandom tests. Pseudorandom tests were generated,

and executed on both the Alpha 21164 model and a reference model, and the

results compared. The second important technique was use of focused, hand

written tests to cover specific areas of logic [Kantrowitz, 1995].

The validation effort was implemented in three parts. In the first phase,

during the early stages of the project, the main goal was to exercise as much

design functionality as possible. This ensured that as the design is stabilized, most

major bugs were uncovered. This approach has an additional advantage for the

design team, which could begin physical design as major revisions will not be

required. Once the design is stabilized the verification team needed to create a test

plan. The test plan should capture all the features of the design that need to be

tested, including any special features that might be application specific. The final

verification step is to decide what mechanism is best suited for a particular block

in the design, pseudorandom testing or handwritten focused testing.

1.1.2. Testing Strategy

The test stimulus includes both focused tests and pseudorandom tests.

Pseudorandom testing helps in generation of test cases that might be tedious to

hand generate and are of multiple simultaneous events that would be extremely

difficult to foresee. The pseudorandom testing can be divided into several parts.

One can be a general purpose exerciser that provides coverage of the entire

 6

architecture. Others target specific blocks in the architecture. The following areas

are critical to correct functionality of any chip and should be targeted explicitly:

 Branches and jumps,

 Data pattern dependent transactions,

 Floating point unit,

 Exceptions,

 Cache and memory transactions, and

 Virtual to physical address translation mechanism

Fundamentally, each part works the same way. Each exerciser creates

pseudorandom assembly language code, runs the code on the model under test

and a reference model, collects results from each and compares the results from

both the model runs. The only difference in the exercisers is the difference in the

number of certain events or instructions in the generated pseudorandom code. For

example an exercise that focuses on testing the memory transactions will have a

higher number of loads and stores in the generated code. The instructions that are

in majority in the generated code are controlled by variables that are user inputs to

the generator.

It is quite possible that both pseudorandom testing and hand written tests

may not exercise a bug. This might be possible when the bug is the result of the

interaction of corner cases in several different parts of a complex design. A

typical example is one that actually occurred in the MIPS R4000PC/SC rev 2.2

processor. This bug occurs when a data cache miss is caused by a load instruction,

 7

and is followed by a jump instruction with its delay slot on an unmapped page.

The bug was that instead of page miss exception vector, processor control was

transferred to jump address [Ho, 1995]. Hand written tests are not effective in

finding such errors because every possible interaction cannot be guaranteed.

Random testing might find such corner cases, but since each condition is highly

improbable the number of random tests required can be prohibitively high. Data

published in [MIPS 94] shows that most of the errors that escape present day

verification methodologies occur due to interactions of various parts of design in

these corner case situations.

To tackle the problem of testing a microprocessor design in all the corner

cases a methodology adopted in [Ho, 1995] can be used. Figure 1.2 gives the

overview of the process. Test patterns are generated in such a manner so that all

possible interactions of different sub-units can be tested.

Figure 1.2. Methodology to Generate Test Vector for Corner Cases. After [Ho,

1995]

 8

When the hardware description of the machine is complete, it is likely to contain

information about the improbable states a machine can transition to. This

information can then be extracted to generate test vectors. The method of

extracting this information can be broken down into three parts. The first step is to

convert the HDL based design to a Finite State Machine (FSM) representation.

Second step in the process is to find all the states of machine that can be reached

from reset. The result of this exercise is a state graph, which contains all the states

and transition edges that the hardware model can attain. The last step is to take the

state graph and generate test vectors that will cause all the possible transitions.

1.1.3. Correctness Checking

 A number of mechanisms can be used for checking whether the model

under test responded with the correct output. Hand generated tests often have

comparisons built into them to verify that they generated the expected result.

These are known as self checking tests. However, this type of self checking

mechanism can be extremely difficult to implement for pseudorandom testing.

Consequently, checking mechanisms that work well for both hand generated tests

and pseudorandom tests need to be developed. Some of the mechanisms can be:

checks performed during simulation, checks done automatically every time a

model completes executing, or test specific post simulation checks [Kantrowitz,

1995]. It is imperative that the checking mechanisms are properly adjusted to

eliminate false errors, in order to keep the debug time low.

 9

 The RTL model can provide checking through assertion checkers.

Assertion checkers make sure that various rules of behavior are not violated at

any time during the execution. Assertion checkers can range from simple to

complex. For example, a simple assertion checker can check for an illegal

transition on a state machine and a complex assertion checker can make sure that

none of the bus protocols are violated. When a test is completed, several checks

need to be done. One simple check is to verify that the test reached its normal

completion and did not end abruptly; this makes sure the validation environment

itself is operating correctly. A variety of other checks can be used, for example a

check can compare the results of running a test on the model and on the emulator.

Information about the state of the model is saved while the test is executing and

then compared with its equivalent from the emulator. State that is compared in

this way can include a trace of the program counter (PC), a trace of updates made

to each architectural register, and the final memory image upon the completion of

test [Kantrowitz, 1995]. There are certain issues that are associated with this

technique. The emulator provides architecturally correct results but lacks support

for timing, pipelining or caching. Hence several features can be difficult to verify

with the emulator.

 In the Alpha 21164 architecture, arithmetic traps are imprecise, which

means that they might not be reported with the exact program counter value that

caused them. Even for architectures supporting precise exceptions, since the

perfect model lacks any concept of pipeline depth or timing, it can report traps,

some interrupts and exceptions at a different time than the real design. Arithmetic

 10

traps also presented a problem in the Alpha 21164 validation effort because the

destination register can be unpredictable after a trap [Kantrowitz, 1995]. These

effects can make comparison of the real design with the reference model difficult.

Restricting the pseudorandom tests to avoid these instruction sequence or, use of

certain register values limits the benefits of pseudorandom testing. Hence to

maximize benefits from pseudorandom testing, no restrictions should be placed

on the instruction sequence. The mismatches should be filtered by tracking which

registers could be unpredictable at a given time. Commercial tools such as

Synopsys Formality can also be used for equivalence checking [Mishra, 2005].

The tool reads the DUT and the reference model. Both the designs are then

partitioned into sections which can be compared separately. Any mismatches are

then reported.

1.1.4. Coverage Analysis

 One of the primary difficulties associated with functional verification is

that it is difficult to determine when the validation effort is complete. Completing

a given number of tests only indicates that the tests are complete, not that the

design has been completely tested. Bug rate might provide some useful insights

but a lower bug rate might also indicate that the testing is not properly exercising

the problem areas [Kantrowitz, 1995]. This entails exhaustive coverage analysis

of focused and pseudorandom tests. This coverage checking can be determined

with information gathered while a model was executing, or information gathered

by post processing signal traces. While the model executes, information can be

stored about the occurrence of simple events. At the end of every run, this

 11

information can be written to a database to collect statistics that span over

multiple runs.

 Automatic coverage-checking methods can also be used. The most

common is a state machine coverage analyzer [Kantrowitz, 1995]. For state

machines it is imperative to exercise all the possible states in the machine. Trace

files can be post processed to gather information about covered and uncovered

states. To extend this concept to other parts of the machine which are not

implemented as FSM, design can be represented as a single state machine. This

state machine can then act as a reference model and can be processed with

coverage tools.

1.2. Performance Validation

 Although the primary focus of validation effort in any microprocessor

design is ensuring proper functionality, pre- silicon performance validation is also

an important aspect of the verification effort. Performance validation ensures

elimination of bugs caused by latent functional defects before the final tape-out

[Bose, 2000]. Architecture performance is usually measured in terms of cycles per

instruction (CPI). The methodology used in performance validation is to first

derive performance bounds associated with a given instruction sequence. This

instruction sequence is then used to generate tests cases for which performance

can be predicted before simulation. The two primary aspects of processor

performance that need to be addressed are: (a) clock frequency target and (b)

cycles-per-instruction target [Bose, 2000]. Figure 1.3 provides an overview of the

methodology used for performance validation.

 12

 A reference tool generates performance bounds for each test case. The test

cases range from tests that check simple pipeline latencies to test cases that assess

the various bandwidth parameters. Single test cases such as load or store

instructions can be used to check basic pipeline latencies while loop test cases can

be used to test fundamental bandwidth and dependence latency parameters. For

each test case performance parameters obtained from the reference tool are

compared against those obtained from the RTL model.

1.3. Organization

 This thesis is structured as follows.

Chapter 1 has described the need for validation in today‟s microprocessor

design and contemporary strategies used in various validation schemes.

 Chapter 2 describes MIPS processor and emulators. Two MIPS emulators

are described: (a) VMIPS, which emulates MIPS R-3000, was used in the initial

phase of the validation effort and (b) OVPsim, which accurately emulates MIPS-

4kc

Fi

Figure 1.3. Performance Validation Methodology Overview. After [Bose, 2000]

 13

based processors and offers several advantages over VMIPS was used in the later

part of the validation effort.

Chapter 3 describes the design of the proposed validation environment for

functional verification of MIPS based radiation hardened processor using

simulation based approaches. At the outset the framework was developed to

support validation using VMIPS. In the later stages the environment was modified

to support OVPsim which allowed testing of all the instructions supported by the

MIPS-4kc architecture except for cache instructions.

Chapter 4 tabulates the statistics associated with the random instruction

generator. This is followed by a description of how random tests were configured

to exercise various components of the design and a summary of bugs found. This

chapter concludes this thesis with directions for future work.

 14

CHAPTER 2

MIPS ARCHITECTURE AND EMULATORS

An overview of MIPS architecture and emulators is presented here.

Differences in architectural implementations of MIPS-R3000 and MIPS-4kc

based processors are noted.

2.1 MIPS Architecture

MIPS is one of the most effective Reduced Instruction Set Computer

(RISC) architectures, as is evident from strong MIPS influence on later

architectures like Digital Equipment Corporation Alpha and Hewlett-Packard

Precision [Sweetman, 2002]. Figure 2.1 shows the processor core block diagram

for MIPS-4kc core [MIPS, 2002].

Figure 2.1. Processor Core Block Diagram for MIPS-4kc Core. After [MIPS,

2002]

 15

Figure 2.1 includes two types of blocks, required and optional. To remain MIPS-

compliant the processor core should implement the required blocks. The required

blocks are

 Execution Unit

 Multiply-Divide Unit

 System Control Coprocessor (CP0)

 Memory Management Unit (MMU)

 Cache Controller

 Bus Interface Unit (BIU)

 Power management

Optional blocks are implementation dependent and can be added as the need

arises. Optional blocks are

 Instruction Cache

 Data Cache

 Enhanced JTAG (EJTAG) Controller

2.1.1. Execution Pipeline

Reduced Instruction Set Computer (RISC) is a design philosophy that

advocates use of simpler and smaller instructions which take roughly the same

amount of time to execute over complex multi cycle instructions. The original

MIPS SPARC and Motorola 88000 CPUs were classic scalar RISC pipelines. Later,

Hennessey and Patterson invented yet another classic RISC, the DLX, for use in their

textbook [Hennessy, 2006]. Each of these designs fetch and attempt to execute one

 16

instruction per cycle. During operation each pipe stage works on a single instruction

at a time. Each stage takes a fixed amount of time. Each of these stages consists of

an initial set of flip flops, and combinatorial logic which operates on the output of

these flip flops. The five pipeline stages are

1. Instruction Fetch - During the instruction fetch state, a 32 bit instruction is

fetched from the memory. At the same time the instruction is fetched, the

machine computes the address of the next instruction by incrementing the

address of the instruction just fetched by 4 (since each instruction is 4

bytes). The Address of the current instruction is stored in a special register

called the Program Counter (PC). If the next instruction is a taken branch,

jump or exception, the computation will have to be updated accordingly.

2. Instruction Decode /Register Fetch Cycle - All MIPS instructions have at

most two register inputs. During the decode stage, an instruction is

decoded and the registers corresponding to register source specifiers are

read from the register file. Equality test on registers is done as they are

read, for a possible branch. If the need arises, the offset field of the

instruction is also sign extended in this stage. Possible branch target

address is computed by adding the sign extended offset to the incremented

PC. Instruction decoding is done in parallel with reading registers, which

is possible because the register sepcifiers are at a fixed position in RISC

architecture [Hennessy, 2006].

 17

3. Execution/Effective Address Cycle - The Arithmetic Logic Unit (ALU)

operates on the operands prepared in the prior cycle, performing one of the

three functions depending on the instruction type. If the instruction is

memory reference, the ALU adds the base register and the offset to form

the effective address. If the instruction is a register-register instruction, the

ALU performs the operation specified by the ALU opcode on the values

read from the register file. If the instruction is a register-immediate

instruction, the ALU performs the operations specified by the ALU

opcode on the first value read from the register file and the sign extended

immediate field.

4. Memory Access - If the instruction is a load, memory does a read using

the effective address computed in the previous cycle. If it is a store, then

the memory writes the data from the second register read from the register

file using the effective address.

5. Write-Back Cycle - In this cycle the result is written into the register file,

whether it comes from the memory system (for a load) or from the ALU

(for an ALU instruction).

2.1.2. Addressing

The MIPS architecture is divided into two address spaces: a virtual

address space, this consists of all the addresses that can be used in the programs,

and a physical address space, consisting of all the addresses that can be sent on

the address bus [Aggarwal, 2004]. The virtual address space of 4 Gbytes is

 18

divided into four segments: kuseg, kseg0, kseg1, and kseg2. The virtual address

consists of segment number and an offset within the segment. In translation of

virtual address to the physical address, the 12 least significant bits of the virtual

address are kept unchanged. In an implementation which uses a memory

management unit and a translational lookaside buffer (TLB), segments can be

further divided into pages of sizes ranging from 4 Kbytes to 16 Mbyte. Figure 2.2

shows various segments in MIPS virtual address space.

2.1.3. Modes of Operation and Segments

MIPS-4kc processor cores support three modes of operation [MIPS, 2002]

 User Mode

 Kernel Mode

 Debug Mode

User mode is primarily used for application programs. Kernel mode is used for

handling exceptions and privileged operating system functions, including

coprocessor zero register management and I/O device accesses. Debug mode is

used for software debugging and occurs within a software development tool. The

address translation performed by the MMU depends on the mode in which the

processor is operating. The core enters kernel mode both at reset and when an

exception is recognized. In kernel mode, software has access to the entire address

space, as well as all CP0 registers. User mode accesses are limited to a subset of

the virtual address space (0x0000_0000 to 0x7fff_ffff) and can be restricted from

 19

accessing CP0 functions. In User mode, virtual addresses 0x8000_0000 to

0xfff_fff are invalid and cause an exception if accessed. An unmapped segment

does not use the TLB to translate from virtual to physical address. After reset it is

important to have unmapped memory segments, because the TLB is not yet

programmed to perform the translation. Unmapped segments have a fixed simple

translation from virtual to physical address. Except for kseg0, unmapped

segments are always uncached. The cacheability of kseg0 is set in the K0 field of

the CP0 Config register. A mapped segment uses the TLB to translate from virtual

Figure 2.2.Virtual to Physical Memory Mapping in MIPS

 20

to physical address. The translation of mapped segments is handled on a per-page

basis. This translation has information defining whether the page is cacheable,

and the protection attributes that are associated with the page [MIPS, 2002]. The

cacheability of the segment is defined in the CP0 register Config, fields K23 and

KU.

2.1.4. Registers

There are 32 general-purpose registers and 3 special registers on the MIPS

processor. There are also up to 32 registers each on up to four coprocessors. The

processor for which the validation environment is designed, there is only one

coprocessor, coprocessor 0, which is the "system coprocessor"; it takes care of

exceptions and virtual memory issues. Also, since the targeted processor does not

implement the debug mode, coprocessor 0 registers, which are used for debug

purposes, are omitted from the design. In the MIPS architecture register zero is

not writeable and reads always return a zero. However to implement the radiation

hardening aspects, the targeted processor allows writes to register zero. In normal

mode of operation the reads to register zero always return a zero. Processor

returns the actual value that was last written to register zero when processor is in a

new operating mode that is used to correct the processor state after a radiation

error. Any of the 32 general-purpose registers can be used in any instruction that

takes register operands. Register 31 is the "link register". Most of the instructions

for calling subroutines are hardwired to store the return address into this register.

The coprocessor registers can be accessed by using special coprocessor

instructions to move their values to general registers and back.

 21

2.1.5. Instruction Set

MIPS instructions can be divided into four groups based on their coding

format [MIPS Ins].

 R Type - This group contains instructions that do not use an immediate

field, target offset, or memory address to specify an operand. This includes

arithmetic and logic instructions in which both operands are registers, shift

instructions, and register direct jump instructions (JALR and JR). All R-

type instructions use opcode 000000.

 I Type - This group includes instructions with an immediate operand,

branch, load and store instructions. Coprocessor load and store

instructions are also included in this group. All opcodes except 000000,

00001x, and 0100xx are used for I-type instructions.

 J Type - This group consists of the two direct jump instructions (J and

JAL). These instructions require a memory address to specify their

operand. J type instructions use opcodes 00001x.

 Coprocessor Instructions - This group includes floating point processor

and system coprocessor instructions. All coprocessor instructions use

opcodes 0100xx.

MIPS-4kc based processors have several instructions such as Traps,

ERET, BLTZALL, BNEL etc which are not supported by MIPS-R3000 based

processor. There is also a considerable difference in bit encodings of various CP0

registers when compared to R-3000 based processors. Therefore VMIPS which

 22

mimics R-3000 based processors provides only limited testing for MIPS-4kc

processor. CP0 register comparison is also not possible using VMIPS, which is

important especially during exceptions and memory management.

2.1.6. Exceptions

Exceptions are conditions which change the normal sequence of

instructions causing the processor to transfer control to a predefined location in

memory which is the exception vector [Aggarwal, 2004]. In MIPS there is a

single exception vector, the general exception vector, whose virtual address

depends on the setting of the Status Register's Bootstrap Exception Vector (BEV)

bit, as shown in Table 1.

Table 1.General Exception Vector Addresses

The MIPS architecture recognizes several exceptions, they can be external

interrupts (hardware interrupts or software interrupts), or program exception.

When an exception occurs, the following events take place:

 The current instruction is aborted, as well as any instructions in the

pipeline that have already begun executing

 BEV=1 BEV=0

Virtual Address 0xbfc0_0380(kseg1) 0x8000_0180(kseg0)

Physical Address 0x1fc0_0380 0x0000_0180

 23

 In the Status register, the previous kernel/user mode and previous Interrupt

Enable (IE) bits are copied into the old mode and old IE bits respectively,

and the current mode and current IE bits are copied into the previous mode

and previous IE bits.

 The current IE bit is cleared, which disables all interrupts.

 The current kernel/user mode bit is cleared, which places the processor in

kernel mode.

 If the instruction executing when the exception occurred is in the delay

slot of a branch, the Branch Delay (BD) bit in the Cause register is set.

 The Exception Program Counter (EPC) register is written with the address

at which the program can be correctly restarted. If the instruction that

caused the exception is in the delay slot of a branch (BD=1), the EPC is

written with the address of the preceding branch or jump instruction.

Otherwise, it is written with the address of the instruction that caused the

exception, or in the case of an interrupt, with the address of the next

instruction to be executed.

 The Exception Code (ExcCode) field of the Cause register is written with

a number that describes the type of exception.

 If the exception is a coprocessor unusable exception, the Cause register's

Coprocessor Error (CE) field is written with the referenced coprocessor

unit number.

 If the exception is an address error, the address associated with the

erroneous access is written to the BadVAddr register.

 24

 The processor then jumps to the general exception vector, whose address

depends on the setting of the BEV bit: When BEV = 1, the general

exception vector lies in noncacheable kseg1 address; when BEV = 0, it is

lies in cacheable kseg0 address

 When the exception routine completes, it uses the address in the EPC

register as the return address, and executes an Exception Return (ERET)

instruction. The ERET instruction restores the current, previous mode and IE bits

to their contents prior to the interrupt, leaving the old bits unchanged. The

processor then jumps to the address specified in EPC. In MIPS-R3000 based

processors the address in the EPC register is used as the return address in a jump,

and then a Restore from Exception (RFE) instruction is executed in the jump's

delay slot. This has similar effect as ERET.

2.1.7. Translation Lookaside Buffers (TLB)

 The TLB consists of one joint and two micro address translation buffers

[MIPS 2002]:

 16 dual-entry fully associative Joint TLB (JTLB)

 3-entry fully associative Instruction micro TLB (ITLB)

 3-entry fully associative Data micro TLB (DTLB)

 The 4Kc core implements a 16 dual-entry, fully associative Joint TLB that maps

32 virtual pages to their corresponding physical addresses. The JTLB is organized

as 16 pairs of even and odd entries containing pages that range in size from 4-

KBytes to 16-MByte into the 4-GByte virtual address space. The purpose of the

 25

TLB is to translate virtual addresses and their corresponding Address Space

Identifier (ASID) into a physical memory address. The translation is performed by

comparing the upper bits of the virtual address (along with the ASID bits) against

each of the entries in the tag portion of the JTLB structure. Because this structure

is used to translate both instruction and data virtual addresses, it is referred to as a

“joint” TLB. The JTLB is organized in page pairs to minimize its overall size.

Each virtual tag entry corresponds to two physical data entries, an even page entry

and an odd page entry. Figure 2.3 shows the various JTLB fields in MIPS-4kc

core processor [MIPS 2002].

Following are the TLB tag entry fields

 Page Mask [24:13] - is the page mask value. The page mask defines the

page size by masking the appropriate VPN2 bits from being involved in a

comparison. It is also used to determine which address bit is used to make

the even-odd page (PFN0-PFN1) determination. Page mask is set in the

CP0 PageMask register

Figure 2.3. JTLB Entry (Tag and Data). After [MIPS 2002]

 26

 VPN2 [31:13] - is Virtual page number (VPN) divided by 2. This field

contains the upper bits of the virtual page number. Because it represents a

pair of TLB comparison pages, it is divided by 2. Bits 31:25 are always

included in the TLB lookup. Bits 24:13 are included depending on the

page size, defined by CP0 PageMask register. VPN2 is set in CP0 EntryHi

register.

 G - is Global (G) bit. When set, it indicates that this entry is global to all

processes and/or threads and thus disables inclusion of the ASID in the

comparison.

 ASID [7:0] - is Address Space Identifier (ASID) which identifies which

process or threads this TLB entry is associated with.

 C0 [2:0], C1 [2:0] - bits contain an encoded value of the cacheability

attributes and determines whether the page should be placed in the cache

or not. These bits are set in CP0 EntrlyLo registers.

 PFN0 [31:12], PFN1 [31:12] – bits define Physical Frame Number (PFN).

They are the upper bits of the physical address. For page sizes larger than

4 KBytes, only a subset of these bits is actually used. PFN bits are set in

EntryLo registers.

 V0, V1 - are Valid (V) bits. When set they indicate that the TLB entry

and, thus, the virtual page mappings are valid. If this bit is set, accesses to

the page are permitted. If the bit is cleared, accesses to the page cause a

TLB Invalid exception. Valid bits are in CP0 EntryLo registers.

 27

2.2. MIPS EMULATORS

Processor emulators are used to mimic actual processors. The output

obtained from the emulator is what one would expect if the same input was given

to the processor. Some simulators modeling MIPS processors are:

 SPIM: SPIM is simulator that runs MIPS32 assembly language programs.

SPIM provides a simple debugger and minimal set of operating system

services. SPIM does not execute binary (compiled) programs and cannot

run programs compiled for recent SGI processors. MIPS compilers also

generate a number of assembler directives that SPIM cannot process

[SPIM].

 VMIPS: VMIPS mimics MIPS-R300. Full cross compiler tool chain is

used with VMIPS and is written in C++.VMIPS was used in the initial

phase of testing and provided only limited testing capability due to

architecture differences in MIPS-4kc and MIPS-R3000 based processors.

 OVP-OVP provides MIPS verified models for different versions of MIPS

based processor and provides full support for processor validation and was

extensively used for our validation effort

2.2.1. VMIPS

2.2.1.1. Overview

 VMIPS is a virtual machine simulator based around a MIPS R3000 RISC

CPU core [VMIPS]. It is an open-source project written in C++, which is

distributed under the General Public License (GNU). VMIPS, a virtual machine

 28

simulator, does not require any special hardware. It has been tested under Intel-

based PCs running FreeBSD and Linux, and a patch has been developed for

compatibility with CompaQ Tru64 Unix on 64-bit Alpha hardware. VMIPS is

based on RISC architecture, its primitive machine-language commands are all

simple to understand. VMIPS can be easily extended to include more virtual

devices, such as frame buffers, disk drives, etc. VMIPS is written in C++ and uses

a simple class structure. VMIPS is intended to be a virtual machine, which its

users can modify easily. It maintains a close correspondence between its

structures and structures which actually appear in modern physical computer

hardware. VMIPS is also designed with debugging and testing in mind, offering

an interface to the GNU debugger GDB by which programs can be debugged

while they run on the simulator. It is intended to be a practical simulator target for

compilers and assembly language/hardware-software interface courses [VMIPS].

2.2.1.2. Running Programs with VMIPS

 The first step is to compile the program which requires a MIPS cross-

compiler. VMIPS supports the GNU C compiler; most installations of

VMIPS also have an installation of the GNU C compiler targeting the

MIPS architecture. The easiest interface to the C compiler is through the

`vmipstool' program; to run the MIPS compiler that VMIPS was installed

with, the `vmipstool --compile' command is used.

 29

 The second step is linking the program with support code. VMIPS comes

with an inbuilt support code and a linker script for simple standalone

programs, which can be run using the command `vmipstool --link'.

 The third step is building a ROM image. Like most real machines VMIPS

does not read in executables, it has an embedded program in the flash

ROM that reads the executable and runs it. To build a ROM image,

VMIPS provides a script which is invoked by running `vmipstool --make-

rom'.

 The fourth step is starting the simulator using `vmips ROMFILE', where

`ROMFILE' is the name of the ROM image. If the program is linked with

setup code that comes with VMIPS, the simulator halts when it hits the

first break instruction.

2.2.2. OVPsim

2.2.2.1. Overview

 OVPsim is developed by Imperas technologies. Imperas simulation

technology is based on just-in-time (JIT) compiler technology and enables high

performance simulation, debug and analysis of platforms containing multiple

processors and peripheral models [OVP1]. OVPsim is a collection of dynamic

linked libraries (.so suffix on Linux, .dll suffix on Windows XP) implementing

Imperas simulation technology. The shared objects contain implementations of

the entire Innovative CpuManager Interface (ICM) interface [OVP2]. These ICM

functions enable instantiation, interconnection and simulation of complex

 30

multiprocessor platforms containing arbitrary shared memory topologies. A

program using ICM can be linked with the ICM RuntimeLoader to perform

loading of OVPsim dynamic linked libraries, to produce a stand-alone executable.

The technology is designed to be extensible: one can create new models of

processors and other platform components using interfaces and libraries supplied

by Imperas. Imperas OVPsim allows processor models created using OVP

modeling technology to be used in platform files to create executables that

execute binaries compiled for those processor models. It can also simulate

behavioral components to help validate processor models under construction, or

to create custom simulation environments.

2.2.2.2. Processor Models

The core simulation components in OVPsim are processor models

[OVP1]. In order to implement a processor model, OVPsim implements the

following major components in C using the Imperas Virtual Machine Interface

(VMI) API:

 An instruction decoder, capable of decoding a single instruction.

 An instruction disassembler, capable of generating a text representation of

an instruction.

 An instruction morpher, capable of describing the behavior of a single

instruction.

 A debugger interface, which provides functions, required for the model to

be debugged using GDB or the Imperas multiprocessor debugger.

 31

 If a processor implements virtual memory, then the hardware structures

that support that virtual memory (MMU and TLB, for example) also form

part of the processor models.

Imperas processor models are compiled into a shared object (.so or .dll)

which is then dynamically loaded by Imperas tools.

2.2.2.3. Semihosting

 Semihosting allows behavior that would normally occur on a simulated

system to be implemented using features of the host system instead [OVP1]. As a

simple example, a real platform might contain a UART peripheral to receive

output. When simulating this system, it is generally more convenient not to

simulate the UART but to intercept the write calls that a processor makes and

redirect the output to the simulator log instead. Such behavior is specified in a

semihosting library for a processor.

2.2.2.4. Cache and Memory Subsystem Models

 Imperas technology allows memory subsystem models such as caches to

be modeled as loadable shared objects (or dynamic linked libraries on Windows)

and separately instantiated [OVP1]. Memory subsystem models can be either full

or transparent. A full model implements memory contents: for example a full

cache model would implement both cache tags and the cache line contents. A

transparent model implements some state but not the memory contents: for

example, a transparent cache model would implement the cache tags but not the

line contents, which is useful for performance analysis models that simply count

hits and misses.

 32

2.2.2.5. Running Programs with OVPsim

 Programs on OVPsim are executed by calling various ICM functions

[OVP2]. A simple program can be made that runs a single-processor platform

using following five calls from the ICM API.

 icmInit- icmInit initializes the simulation environment prior to a

simulation run: it is always the first ICM routine called in any application.

It specifies attributes to control various aspects of the simulation to be

performed, and also specifies how a debugger should be connected to the

application if required.

 icmNewProcessor- icmNewProcessor is used to create a new processor

instance. The ISA that the user wants to mimic is specified here.

 icmLoadProcessorMemory-Once a processor has been instantiated by

icmNewProcessor, this routine is used to load an object file into the

processor memory. Accepted formats are ELF and TI-COFF. Makefiles

that come with the Imperas setup can be used to create these file formats

from assembly or C programs. Entry point address for simulations can

also be specified in the makefiles.

 icmSimulatePlatform- icmSimulatePlatform is used to run simulation of

the processor and program, for a specified duration.

 icmTerminate- At the end of simulation, icmTerminate is called to

perform cleanup and delete all allocated simulation data structures.

 33

This chapter has described various architecture features of MIPS based

processors which should be kept in mind while designing the validation

environment for MIPS processors. This chapter also provides an overview of

MIPS emulators which form an important part of any validation environment.

 Chapter 3 provides details on the design of the validation environment and

a description of how various instructions are configured to test different parts of

the design.

 34

CHAPTER 3

VALIDATION ENVIRONMENT DESIGN

This chapter describes the design of the proposed validation environment

for a radiation hardened MIPS processor. The environment can be configured to

run a variable number of tests in a single run, each test in turn can be configured

to run a given number of instructions. Any instruction that is not supported by the

implementation can be eliminated from the random tests. Similarly, a particular

test run may be configured to test only certain types of instructions, for example

arithmetic instructions. Figure 3.1 shows flow for random tests. Design of the

entire validation environment can be divided into five major parts:

1. The first step is to generate a sequence of random instructions. The

instruction generator requires the capability to generate the desired

instruction mix. Although generated randomly, the instruction sequence

should not result in unpredictable processor behavior.

2. The second step is to convert this sequence of assembly level instructions

into a binary format which can be executed by the simulator. This can be

done with a set of appropriate make files. While OVPsim recognizes ELF

format, VMIPS requires that the random tests be converted to a ROM

image. An embedded bootstrap program in the flash ROM reads the

executable and then executes it. The ELF or ROM files that are generated

contain needed information e.g., entry point address for executing the

program. Once the desired file format is generated, these files can be

 35

Figure 3.1. Flow for Random Tests

 36

executed with the simulator to obtain the expected register file and

Program Counter (PC) values after each instruction executed.

3. The third step is to generate inputs for the Device under Test (DUT),

which is the RTL model. The RTL model requires that each instruction in

random test is converted to a 64 bit field. This 64 bit field comprises of 32

bit physical address which can be placed on the address bus, and 32 bit

binary machine code corresponding to the instruction which is located at

the specified physical address. The validation environment converts

random test into this format. The RTL model is then executed to obtain the

outputs corresponding to the applied stimulus.

4. The fourth step is the comparison of the results obtained from steps three

and four. PC and register file values are compared to ensure that the DUT

is functioning as expected. Any discrepancies found are reported, as they

represent a divergence in the architectural states of the respective machine.

5. The fifth step is to combine all these independent processes into a single

process which can be configured for the desired number of runs. This step

should ensure that all the files needed to run a given test are properly

archived. If any design changes are introduced later, this makes sure that a

test which executed without any discrepancies can be executed again to

ensure that bugs are not introduced during the design change.

 37

The following subsections describe the detailed design of each part. The Perl

language is used throughout this work to generate random tests, inputs for the

RTL model, compare results, and to automate the environment for the desired

number of runs.

3.1. Random Instruction Generator

The random instruction generator generates a sequence of pseudorandom

instructions under a given set of constraints. These constraints are given as

command line arguments and through an input file which describes the desired

frequency of each instruction in the random test.

3.1.1. Generating Biased Instructions

 The random instruction generator requires the capability to generate

instructions in a biased manner. This implies that if the user assigns a

comparatively higher weight to a particular instruction, that instruction should be

generated more frequently than others in the random test. The frequency of the

instructions is calculated by the weight assigned to each instruction which can be

described in a text file and provided as an input to the random instruction

generator. The ability to generate instructions according to their weights has

several advantages.

 During the design phase there might be several instructions which are yet

not supported. With the weight file, simply assigning a zero weight to all these

instructions eliminates them from the random tests. This does not require any

changes in the validation environment. For example, a design which does not

 38

implement a multiply/divide unit can have all the multiply/divide instructions

assigned a zero weight for testing purposes. In later stages of the design if a

multiply/divide unit is implemented and needs to be tested, simply assigning

proper weights to the multiply/divide instructions accomplishes this.

 A biased random generator also allows us to more rigorously exercise a

particular unit in the design. This is known as “directed” random testing. For

example, if the overflow condition in add instructions needs to be tested, the add

instructions can be assigned a higher weight than the other instructions. Similarly

memory accesses can be tested by assigning higher weights to loads and stores.

 The weights for various instructions are specified in a weight file, which

the random instruction generator takes as an input. The weight file contains all the

instructions that are supported by the instruction set architecture. As an example a

test which is required to generate a few logical instructions with branch

instructions will have the weight file set up as shown in Figure 3.2 All the other

instructions will be assigned a zero weight.

 The first step in post processing the weight file is to generate a hash with

the instruction as the key and weight of the instruction as the value associated

with it. A hash is a data structure that uses a hash function to map identifying

values, known as keys, to their associated values [Wiki1]. This hash is then

converted to another hash which has the instruction as the key but this time the

probability associated with each instruction as the value associated with the key.

This is done by adding the weights associated with all the instruction to get their

 39

sum. The weight of an instruction is divided by this sum to return the probability

of occurrence associated with each instruction. Once this hash is obtained, the

code show in Figure 3.3 taken from the Perl Cookbook [Perl1], is used to generate

instructions pseudo randomly with their weighted bias taken into account.

Weighted_Rand is the subroutine which is called when the instructions need to be

ADD-20

ADDI-20

ADDIU-20

ADDU-20

AND-10

ANDI-10

BEQ-2

BEQL-2

BGEZ-2

BGEZAL-2

BGEZALL-2

BGEZL-2

BGTZ-2

BGTZL-2

BLEZ-2

BLEZL-2

BLTZ-2

BLTZAL-2

BLTZALL-2

BLTZ-2

BLTZL-2

BNE-2

BNEL-2

BREAK-0

CLO-0

CLZ-0

DIV-0

DIVU-0

J-0

Figure 3.2. Weight File to Test Logical and Branch Instructions

 40

generated with their bias taken into account. %dist is the hash which contains

instructions and their associated probabilities.

3.1.2. Initial Setup

 To properly configure a random test we need to do a few things for

housekeeping.

3.1.2.1. Initializing Register File

 First is initializing all the registers to known values before the start of the

actual random test. The VMIPS setup file initializes all the registers to a value

zero. Initializing all the registers to zero will produce zero as the result of most of

the operations; this does not create any operands which might result in corner

cases for the validation purposes. Also, at the RTL level the register file is

modeled as a variable in VHDL, which has an unknown value at the start of

simulation. To address these problems the register file is initialized using the LI

macro and the Perl random function. A random number in a given range is

generated using the rand function in Perl. This random number is then moved to a

given register using LI macro. For example if the random number generated is

Sub Weighted_Rand {my %dist = @_; my ($key,

$weight);

while (1) { # to avoid floating point

inaccuracies

my $rand=rand;

while (($key, $weight) = each %dist) {return

$key if ($rand -= $weight) < 0;} } }

Figure 3.3. Perl Code to Generate Biased Random Instructions

 41

0x8000_0300 the LI macro is LI $1, 0x8000_0300. This macro is

implemented as a sequence of LUI and ORI instructions. Register zero cannot be

initialized since it is hardwired to zero. Register 1 (at) is reserved for use by the

assembler ('at' stands for "assembler temporary"). It is used to hold intermediate

values when performing macro expansions. We can prevent the assembler from

using this register with the directive ".set noat". A .set directive should therefore

be used before the register R1 is loaded to avoid any assembler warnings. Before

we start executing the actual sequence of randomly generated instructions, the

proper reset and exception handlers must also be in place to ensure proper

execution

3.1.2.2 Reset Handler

 Reset refers to the condition when the system starts from power up on a

hard reset. In the MIPS architecture the CPU responds to reset by starting to fetch

instructions from the virtual address 0xbfc0_0000. This is physical address

0x1fc0_0000 in the kseg1 region. The reset vector is configured in kseg1 because

it is the uncached, unmapped address space. This is important since at the time of

reset neither the caches nor the TLB are initialized. It is imperative that

substantial testing is carried out in kseg0 which comprises of addresses

0x8000_0000 to 0x9FFF_FFFF. Operation in kseg0 allows us to do three things.

Firstly, it allows us to remain in kernel mode, which in turn allows us to execute

all instructions, including privileged ones. Secondly, it allows us to remain in

unmapped memory so we do not have to worry (initially) about creating page

tables and a TLB miss exception handler. Thirdly, since the accesses can

 42

configured to be cacheable, operation in kseg0 allows us to test the cache

accesses.

 When coming out of the reset handler kseg0 can be configured as

cacheable or uncacheable. The choice to configure kseg0 as cacheable or

uncacheable is an option available to the user and is a command line input to the

validation environment. At the end of the reset handler the processor should jump

to the address where the random test is located. To configure kseg0 as

uncacheable, the assembly language code in Figure 3.4 is used as the reset handler

Following is the line by line description of the code:

 (1, 2) Load R2 with the value 0x0000_ff01.

 (3) Move the value in R2 (0x0000_ff01) to CP0 Status register. This sets

the IE and IM bits which are the Interrupt Mask and Interrupt Enable bits

and have an unknown value after the reset. This instruction also clears the

BEV bit in the Status register. Clearing the BEV bit makes the general

exception vector location in kseg0 at the address 0x8000_0180. When the

BEV bit is set the general exception vector is located in kseg1 at the

Reset_Handler_Uncacheable:

lui $2, 0x0000 #(1)

ori $2, $2, 0xff01 #(2)

mtc0 $2, CP0_ Status #(3)

lui $2, 0x0000 #(4)

mtc0 $2, CP0_ Cause #(5)

li $2, 0xrandom_test_location #(6)

jr $2 #(7)

nop #(8)

Figure 3.4. Reset Handler for Uncacheable Accesses

 43

address 0xbfc0_0380. The benefit of executing the exception routine in

kseg0 is that it can be made to be cacheable there.

(4) Load R2 with the value 0x0000_0000.

(5) Move the value in R2 (0x0000_0000) to CP0 Cause register. This

clears all the bits including the IV bit. When the IV bit is cleared the

interrupt exceptions use the general exception vector.

(6) Load R2 with the address of the first instruction in the random test.

(7) Jump to the first instruction in the random test.

(8) Fill the branch delay slot with a NOP instruction.

 To configure kseg0 as cacheable the same reset handler is used with an

additional instruction that loads the value 0x0000_ff01 into CP0 Config register.

This clears the K0 bit of the Config register, configuring all the accesses to kseg0

as cacheable. The RTL model requires a few other instructions in the reset handler

for cacheable access. These instructions are implementation dependent and are

used to invalidate the instruction and data caches at reset (rather than a software

loop as is usual for a MIPS processor).

3.1.2.3. Exception Handler

 In the MIPS architecture exceptions are precise. In a precise exception

CPU, exception points to the instruction that is the exception victim. All

instructions preceding the exception victim in execution sequence are complete;

any work done on the victim and on any ensuing instructions have no effect.

 44

When a MIPS CPU takes an exception the processor control is transferred to a

fixed address which is the exception vector. The location of the exception vector

depends on the BEV bit of CP0 Status register. If the BEV bit is cleared, the

exceptions are cached and the exception vector is located in kseg0 at the address

0x8000_0180. If the BEV bit is set, then the exceptions are uncached and the

exception vector is located in kseg1 at the address 0xbfc0_0380. For good

performance on exceptions it is desirable to have the interrupt entry point in

cached memory [Sweetman, 2002]. Most of the testing in the validation effort is

done with the BEV bit cleared.

 The initial phase of testing was done using VMIPS which mimics R-3000

based MIPS processors. These processors use the RFE (Restore from Exception)

instruction, it restores the status register to make it ready to go back to the state

the processor was in before the exception happened. Since the RTL model does

not implement the RFE instruction, a simple scheme to manually restore the

processor state after the exception is used. The CP0 EPC register stores the

address at which processing resumes after the exception routine has been

completed. Before returning from the exception routine this address should be

incremented by 4 to point it to the instruction following the one which caused the

exception (since each instruction is of 4 bytes), otherwise we will have a flow

where control keeps switching between the exception routine and the instruction

which caused the exception. The assembly code in Figure 3.5 was used when

testing with VMIPS.

 45

Following is the line by line description of the code:

(1) Move the address of instruction which caused the exception from CP0

Exception Program Counter (EPC) register to R1.

(2) Increment R1 to point to the instruction following the one which caused

the exception.

(3, 4) Load R2 with the value 0xffff_fffd.

(5) Move content of CP0 register Status to R3.

(6, 7) Move the value in R3 to CP0 Status register. This clears the EXL bit

which implies the processor is in normal mode. When the EXL bit is set the

processor runs in kernel mode and all the interrupts are disabled.

(8) Jump to instruction following the one that caused exception, as specified

by R1

(9) Fill the branch delay slot with NOP instruction.

Exception_Handler_VMIPS:

mfc0 $1, CP0_ EPC #(1)

addiu $1, $1, 0x00000004 #(2)

lui $2, 0xffff #(3)

ori $2, $2, 0xfffd #(4)

mfc0 $3, CP0_Status #(5)

and $3, $3, $2 #(6)

mtc0 $3, CP0_Status #(7)

jr $1 #(8)

nop #(9)

Figure 3.5. Exception Handler for Testing with VMIPS

 46

MIPS-4kc based processors use ERET instruction, it clears the EXL bit in the

status register and returns control to address stored in the EPC. When testing with

OVPsim, the assembly code shown in Figure 3.6 is used as the exception handler.

Following is the line by line description of the code:

(1) Move the address of instruction which caused exception from CP0

Exception Program Counter (EPC) register to R2.

(2) Increment R2 to point to the instruction following the one that caused an

exception.

(3) Move the incremented value to EPC register.

(4) Return from an exception using ERET instruction, this clears the EXL bit

and the processor returns to the address specified by EPC.

The reset and exception handlers can be directed to the random test using the Perl

print command.

Exception_Handler_OVPsim:

mfc0 $1, CP0_ EPC #(1)

addiu $1, $1, 0x00000004 #(2)

mtc0 $1, CP0_EPC #(3)

eret #(4)

Figure 3.6. Exception Handler for Testing with OVPSim

 47

3.1.3. Region of Operation

 Another important issue as previously discussed is deciding in what region

to operate the random tests. From a validation perspective we would want to

operate in all three regions of the MIPS virtual address space. Kuseg which

comprises of addresses ranging from 0x0000_0000 to 0x7fff_fff is mapped

memory space, allows us to test the Memory Management Unit (MMU) which

translates virtual addresses to physical addresses. Kseg0 comprising of addresses

from 0x8000_0000 to 0x9fff_ffff allows us to test all the instructions in kernel

mode with both cached and uncached access, hence allowing us to test caches.

Kseg1 comprising of addresses from 0xa000_0000 to 0xc000_000 allows us to

test uncached and unmapped addresses. Methodology to operate in kseg0 and

kseg1 is described in the following subsections. Operation in kuseg is discussed

separately, since it requires a TLB miss handler for virtual to physical address

translation.

3.1.3.1. Kseg1 Operation

 From an implementation perspective, kseg1 is the simplest region. In

MIPS architecture the entry point after the reset is in kseg1 at the address

0xbfc0_0000. This is also the default entry point or start address for VMIPS.

Hence the reset handler would be at this address. With the BEV bit set, the

exception vector is at the location 0xbfc0_0380. In assembly language .org

directive can be used to specify offsets from a start address (only forward offsets

are allowed with .org meaning the address should increment). Since the start

 48

address in this case is 0xbfc0_0000, the exception vector is at an offset of 0x380.

Once the initial set up is done, the random test can be conveniently specified at a

desired address with the offset specified by .org directive. If the user prefers to

load the random test at the address 0xbfc0_0500 then the entire test setup of the

random test is shown in Figure 3.7. Following is the line by line description:

(1) Start defines the entry point address, 0xbfc0_0000 in this case.

(2) Assembly code for reset handler as shown in Figure 3.4.

(3) Jump to first instruction in the random test which is at the location

0xbfc0_0500.

(4) This defines an offset of 0x380 from entry point address for the exception

handler.

(5) This is the assembly code for exception handler as show in Figure 3.6

(6) This defines an offset of 0x500 from entry point address for the first

instruction in random test.

(7) Start of the random test.

.globl start__ # (1)

Assembly Code for Reset Handler # (2)

Jump to 0xbfc0_0500 # (3)

.org 0x380 # (4)

Assembly code for Exception Handler # (5)

.org 0x500 # (6)

Random Test # (7)

Figure 3.7. Random Test Setup for Testing in Kseg1.

 49

If all the instructions are configured correctly the test should finish at the last

instruction. To ensure the test halts, a break instruction is used as the last

instruction of the test with VMIPS. With OVPsim either a Wait instruction can be

used or global symbol exit can be defined, the simulator halts when it encounters

this symbol.

3.1.3.2. Kseg0 Operation

 When operating in kseg0 there are some problems that need to be

addressed. With VMIPS since the entry point is fixed at 0xbfc0_0000 there must

be some way to load the random test at the desired address in kseg0. If the BEV

bit in Status register is cleared the exception vector is located at 0x8000_0180 and

the exception handler should also be loaded at this address. The .org directive

cannot be used to specify the offsets for kseg0 operation since the entry point

address in kseg1 is greater than kseg0 addresses and negative offsets are not

allowed.

 To resolve this issue a simple approach is to first configure the test as

operating in kseg1. This datum is then copied from kseg1 addresses to the desired

address location in kseg0. After the data are copied to the address location in

kseg0, the processor jumps to this address location and the random test is then

executed in kseg0. For this we need to have three addresses. First is the start

address from where data are to be copied. Second is the end address up to which

data are to be copied. Third is the destination address to which data needs to be

copied. The start and end addresses for copying can be easily obtained by

 50

declaring global symbols at the start and end of the data to be copied. The

destination address is specified

by the user and has to be fixed before configuring the test. For example the global

symbols are declared in Figure 3.8. Following is the line by line description:

 (1, 2) Global symbol Random_Test_Start corresponds to the first

instruction in random test.

 (3, 4, 5) Global symbol Random_Test_End corresponds to the last

instruction in random test.

Once these symbols are defined, the assembly code shown in Figure 3.9 is used to

copy data to the destination address.

.globl Random_Test_Start # (1)

Random_Test_Start: # (2)

Code for Random Test # (3)

.globl Random_Test_end # (4)

Random_Test_End: # (5)

Figure 3.8. Random Test Setup for Testing in Kseg0

la $1, random_test_start # (1)

la $2, random_test_end # (2)

addiu $2, $2, 4 # (3)

la $3, 0xdestination_address# (4)

a0:

lw $4, 0($1) # (5)

sw $4, 0($3) # (6)

addiu $1, $1, 4 # (7)

addiu $3, $3, 4 # (8)

bne $1, $2, a0 # (9)

nop # (10)

Figure 3.9. Assembly Code for Copying Data.

 51

Following is the line by line description of the code:

(1) Load the address of first instruction in the random test in R1.

(2) Load the address of last instruction in the random test in R2.

(3) Increment the address in R2 to one word past the end address.

(4) Load R3 with the destination address. This address is defined by the user.

For kseg0 operation, the address 0x8000_0300 is used in the validation

environment.

(5) Load the data from the source address into R4.

(6) Store the data in R4 to the destination address.

(7) Increment source address, so that it points to next word to be copied.

(8) Increment destination address.

(9) Loop until all the data are copied.

(10) Fill the branch delay slot with NOP instruction.

 Although the problem of loading data in a kseg0 is solved by this

methodology, it complicates the way branches and jumps are handled. This is

discussed further in the section on handling various instructions. The problem of

copying data from kseg1 to kseg0 for operation in kseg0 is eliminated when

executing with OVPsim. OVPsim lets the user define the entry point. When

executing in kseg0 this entry point can be conveniently defined as 0x8000_0100

and, an approach similar to that used for operation in kseg1 can be used.

 52

3.1.4. Configuring Various Instructions

 Once an instruction is generated with the weight bias taken into account,

we need to configure the instruction with the proper operands. For the purpose of

designing a random instruction generator, MIPS instructions can be divided into

the following groups.

3.1.4.1. Register-Register and Register Immediate Instructions

 These instructions use either two registers as their inputs or a register and

an immediate field as the input. The output of the instruction is written back to

another register. To randomly choose a register for these instructions, the Perl

rand function can be used to randomly generate an integer between 1 and 31.

Register zero is not chosen, since in the RTL model register zero is writeable

while in simulator register zero is hardwired to zero. Writes to register zero,

implement special radiation hardening features in the RTL. Hence, choosing

register zero would result in unnecessary mismatches when checking the tests.

The immediate field can be generated by randomly choosing an integer between 0

and the maximum range, allowed for a particular instruction. For example if we

consider an ADD instruction which has the format ADD Rx, Ry, Rz where Ry

and Rz are the input registers and Rx stores the result.

$Rx=int rand 32; #Choose a random number between 1 and 31

$Ry=int rand 32; #Choose a random number between 1 and 31

$Rz=int rand 32; #Choose a random number between 1 and 31

This instruction can then be directed to the random test using print command in

the following manner

Print “ADD\s \$$Rx,\$Ry,\$Rz \n”;

 53

If $Rx, $Ry and $Rz had values 22, 14, 12 assigned to them respectively then the

ADD instruction will be printed as ADD $22, $14, $12. For an ADDI instruction,

register Rz is replaced by an immediate field.

3.1.4.2. Branches and Jumps

 Branches and jumps are the most difficult instructions to be configured in

the random tests. Branches and jumps need to have target addresses. If the branch

condition evaluates to true, the processor fetches the next instruction from the

target address. In case of a jump the control is unconditionally transferred to the

target address. To ensure that we do not cause exceptions in the delay slot all

branches and jumps are followed by a NOP instruction. The following issues need

to be addressed for branches and jumps to ensure a reliable flow.

3.1.4.2.1. Target Addresses

 Targets for branches and jumps are placed after every 30 instructions. The

first instruction in the random test begins with the symbol a0, after every 30

instructions this symbol is incremented and printed. For example:

a0:

30 Assembly Instructions

a30:

30 Assembly Instructions

a60:

30 Assembly Instructions

Ideally, all the branches and jumps that appear in the random test can have a0 or

a30 as their target address. However, this might result in an infinite loop. For

example if a jump instruction appears after a60 and the target address is a30, the

control will keep switching back and forth resulting in an infinite loop. One way

 54

to ensure that no such infinite loops occur is to use branch and jump targets that

always take the flow in forward direction. This is ensured by a counter which

counts the number of random instructions that have already been generated. For a

forward branch or jump the number associated with the target address (30 for a30)

should be greater than the total number of instructions generated. If a branch is

generated as 70
th

 instruction a0, a30, a60 would all fail this condition ensuring no

infinite loops are formed.

 Another interesting aspect of dealing with jumps and branches is the case

when the target of a jump or a taken branch is another jump or branch. In most of

the cases this should be fine, but when the target instructions are JR or JALR this

can be a problem. JR and JALR instructions use a register as an input. This

register must first be loaded with the appropriate destination address before the

actual instruction is executed. To load the appropriate address into the register, the

la macro is used. For example consider the sequence of instructions shown in

Figure 3.10. The assembler calculates the address associated with a30 by adding

appropriate offset to the entry point. The LA macro then loads this address into

register R3. Once the JR instruction after a0 is executed the control is transferred

a0:

la $3, a30

jr/jalr $3

add $4, $4, $5

la $5, a60

a30:

jr $5

Figure 3.10. Incorrectly Configured Jump Instruction

 55

to a30, at a30 there is another JR instruction, the LA macro that precedes the jump

instruction at a30 never gets executed and the processor behavior is unexpected. It

is important to note here that the only problematic case is when the JR or JALR

instruction is chosen as the 29
th

 instruction. Since, in this case LA macro will be

the 29
th

 instruction and the jump instruction will be the 30
th

, this sequence of

instruction can result in infinite loop. To avoid this problem the following

methodology is used.

 Since the targets are chosen randomly, all the taken targets are stored in an

array (for example if an instruction like BEQ $1, $1, a120 is generated,

a120 will be a taken target). Let the variable count denote the sequence of

instruction that will be generated. (If count is 29, we will be generating the 29
th

instruction). If count+1 matches any of the taken destinations in the array, then

the current instruction cannot be a JR or JALR. Referring to the previous

sequence we will have 30 stored in the array since it is a taken destination. Now at

the 29
th
 instruction the condition mentioned above will evaluate to true and no JR

or JALR instructions will be generated. When count is 30, condition will evaluate

to false, if JR or JALR is the generated instruction the sequence of instruction

will be as shown in Figure 3.11. This sequence of instruction will work correctly;

once the control is transferred to a30, LA macro will load the correct address in

R2 before the Jump. To make the implementation simpler, another approach

 56

could be to avoid JR/JALR instruction every time (count+1) is divisible by 30.

(Since all the possible jump or branch destinations are multiples of 30).

3.1.4.2.2. Use of Labels and La Macro

 As mentioned in the previous sections, for operation in kseg0 with VMIPS

the approach is to copy data from kseg1 to kseg0 and then jump to the appropriate

address in kseg0. The problem with this approach is for jumps, la macro and

labels cannot be used. This is due to the fact that when the program is compiled,

all the labels a0, a30 correspond to kseg1 address. For example when operating in

kseg0 if we had a jump instruction J a150, the processor would jump to address

corresponding to a150 in kseg1. Similarly for JR and JALR instructions the la

macro loads the kseg1 addresses into the registers. After the jump instruction, all

execution takes place in kseg1. To address this issue when copying data from one

region to other, actual instruction addresses are used instead of labels. For

example, if a branch target is a60, this will be at an offset of 240 bytes from the

entry point address (since each instruction is of 4 bytes and a60 would imply 60

instructions after the entry point). Once a target is randomly chosen, it is

converted to the equivalent hex address and then used in jumps and branches.

a0:

la $3, a30

jr/jalr $3

add $4, $4, $5

a30:

la $2, a60

jr $2

Figure 3.11. Correctly Configured Jump Instruction

 57

3.1.4.2.3. Convergence Issues

When generating tests which contain branches and jumps, if not

configured correctly, the random instruction generator might fail. Consider the

random test containing 1000 random instructions as shown in Figure 3.12. The

label a990 is printed once 990 instructions are generated. After a990 there is not

any possible branch or jump target which will take the flow in the forward

direction. Similarly after a960 the only possible branch or jump target is a990. If

the random test allowed branches and jumps to be generated after a990, the test

generation will never complete because the condition to generate forward target

will be never met.

 Random_Test_Start:

 a0:

 30 random instructions

 a30:

 30 random instructions

 a960:

 30 random instructions

 a990:

 10 random instructions

 Random_Test_End:

Figure 3.12. Convergence Issues in Branch and Jump Instructions

Only One Forward

Target Available

No Forward Targets

Available

 58

 When configuring tests with a large number of instructions, before the last

label only one label will pass the condition for forward targets out of a large set of

possible values. This might take some time to converge to the right value. To

avoid this problem tests are configured in such a manner that the last 60

instructions are never branches or jumps. This way we always have more than one

target available in the forward direction.

 3.1.4.3. Loads and Stores

 Loads and stores are another class of instructions that need to be

configured properly to ensure a correct flow. All the testing that involved loads

and stores is done using OVPsim. Tests are configured in such a manner that

loads from uninitialized memory locations always return zero both in the RTL

model and the simulator. The first step in handling loads and stores is to define

regions for memory accesses. For example when executing in unmapped space

without the TLB miss handler, two separate regions for memory accesses can be

defined one in kseg1 and another in kseg0. The address range can be either fixed

or can be standard inputs from user.

 In the MIPS architecture, before a load or store the destination address

needs to be loaded in a base register. The base register can be randomly chosen,

however care must be taken that the base register is not R0, since R0 is hardwired

to zero. A load or store instruction is always preceded by the LI macro which

loads the base register with appropriate address. Depending on the number of

regions to be accessed a random number could be used to decide what region to

access. For example if user specified kseg0 and kseg1, and the random number

 59

generated is 0, kseg0 will be used for memory accesses and vice versa. Once a

region is chosen, address within that region can be chosen randomly to be loaded

into the base register. Unaligned memory accesses result in address exceptions

and the control is transferred to the general exception vector. In the validation

environment the user can choose to generate unaligned memory accesses. This is

provided as a command line input option. The tests are configured in such a

manner that even when requested, unaligned exceptions are only a fixed percent

of total accesses. To generate 20 percent unaligned accesses a random integer can

be chosen between 0 and 4, every time it is equal to 4 an unaligned access is

generated. Similarly when another random number is found to be equal to 0 when

the possible values are from 0 to 4, a store to a memory location is followed by a

load from the same memory location.

 Similar to branches and jumps if a load or store instruction is the target of

taken branch or jump then the instruction which loads the base register with

appropriate address might not get executed and we will have an unexpected

processor behavior. The methodology discussed previously for JR and JALR

instructions can be adopted here. Every time the variable count+1 is divisible by

30, the current instruction cannot be a load or store.

3.1.4.4. Trap Instructions

 When testing with OVPsim, trap instructions are handled as a register-

register or register-immediate instruction. In the MIPS R-3000 the instruction set

did not yet have any of the trap instructions. When executing with VMIPS, each

time the simulator encounters a trap instruction an exception is taken, and the

 60

control is transferred to the general exception vector. To provide some limited

testing of trap instructions using VMIPS, the trap instructions were configured in

such a manner so that the condition for the exception always evaluated to be true.

This way both VMIPS and the RTL model took an exception and the PC trace

was identical for both of them. As an example, if we consider the trap instruction

TEQI, $2,0xfff. The processor will take an exception if the value in R2 is

equal to 0xfff. In the random test this instruction configured as

li $2,0xfff

teqi $2,0xfff

This ensures that the condition for the trap always evaluates to true. Again, this

has similar issues as discussed in branches, jumps, loads and stores. In this case

the random instruction generator must make sure that the trap instruction is never

executed without the LI instruction being executed first; otherwise the PC trace

from simulator will not match the trace from the RTL model.

3.1.5. Instruction Hazards

 In general, the MIPS architecture ensures that the processor implements a

fully sequential programming model. Each instruction in the program should see

the results of all the previous instructions. To implement this model, in multicycle

instructions like multiply and divide, a scheme called hardware interlocking is

used. Hardware interlocking ensures that newer instructions are held until older

instructions drain out of the pipeline and write back their results. There can be

some exceptions to this model; these exceptions are referred as instruction

hazards. In the random generator instruction hazards can be avoided by storing

 61

the random instruction that was previously generated. If the current random

instruction and the previous instruction form an instruction hazard appropriate

number of NOP instructions are added before the current instruction in the

generated assembly code.

3.1.6. Testing the Memory Management Unit (MMU)

 To test the MMU directed tests are used in combination with random tests.

For the directed tests several mappings are defined: Entrylo0, Entrylo1 and

EntryHi are set up accordingly. Once these registers are set up a TLB entry is

written using the instructions tlbwr/tlbwi. This is followed by consecutive stores

and loads to the virtual address, the virtual address is chosen such that it would

need the TLB entry created for the virtual to physical address translation. Figure

3.13 shows the assembly code to test MMU using directed tests.

#define entryhi_00 0x00002000 # (1)

#define entrylo0_00 0x00000014 # (2)

#define entrylo1_00 0x00000054 # (3)

li $2, entryhi_00 # (4)

mtc0 $2, $10 # (5)

li $2, entrylo0_00 # (6)

mtc0 $2, $2 # (7)

li $2, entrylo1_00 # (8)

mtc0 $2, $3 # (9)

li $2, 0x00000000 # (10)

mtc0 $2, $5 # (11)

tlbwr # (12)

li $4, 0x0000_2000 # (13)

li $2, 0x0fff_0f0f # (14)

sw $2, 0($4) # (15)

lw $3, 0($4) # (16)

Figure 3.13. Directed Test to Test MMU

 62

All the pages are marked as Global, Valid and Dirty meaning pages are valid,

writeable and no address space ID comparisons are done to obtain the virtual to

physical mapping. Following is the line by line description of the code:

(1, 2, 3) This defines the mapping which is used in the directed test. These

values are moved to CP0 registers EntryHi, EntryLo0, EntryL01 before

writing the TLB entry.

(4) Load the value entrhi_00 into R2.

(5) Move the value in R2 to CP0 EntryHi register.

(6) Load the value entrylo0_00 into R2

(7) Move the value in R2 to CP0 EntryLo0 register.

(8) Load the value entrylo1_00 into R2.

(9) Move the value in R2 to CP0 EntryLo1 register.

(10) Write 0 to R2

(11) Move the value in R2 to CP0 register PageMask. This means we are

doing 4 kbyte pages.

(12) Write a Random TLB entry.

(13) Load R4 with the value 0x0000_2000.

(14) Load R2 with the value 0x0fff_0f0f.

(15) Store the value 0x0ffff_0f0f to virtual address 0x0000_2000.

(16) Load the value stored at virtual address 0x0000_2000 in R3.

Random tests require a TLB miss handler. The reset handler is modified to store

the page mappings at an unmapped address. At the end of reset handler the

processor jumps to an address in kuseg, which is in mapped memory. On the first

 63

access, this causes an address exception and the processor jumps to TLB miss

handler which is located at 0x8000_0000 when the EXL bit is clear. The TLB

miss handler then creates the appropriate entry in the TLB for virtual to physical

mapping. The processor then returns to the address in kuseg and the random test

is executed. Figure 3.14 shows the assembly code used as the TLB miss handler.

Following is line by line description of the code:

(1) Load R4 with the address where page tables are located.

(2, 3) Load the mappings to R2 and R3.

(4) Move the value in R2 to CP0 EntryLo0 register.

(5) Move the value in R3 to CP0 EntryLo1 register.

(6) Write the TLB entry, EntryHi is already set up.

(7) Return from exception.

3.2. Testbench Input Generation for RTL model

 Once a random sequence of instructions is generated, the assembly code is

compiled and converted into ELF format or a ROM file so that it can be executed

with the simulator. The simulator is then invoked to execute the assembly code

and if the test is configured correctly the simulator halts after the test execution.

li $4,0xpage_table_location # (1)

lw $2, 0($4) # (2)

lw $3, 8($4) # (3)

mtc0 $2, CP0_Entrylo0 # (4)

mtc0 $3, CP0_Entrylo1 # (5)

tlbwr # (6)

eret # (7)

Figure 3.14. TLB Miss Handler

 64

The output obtained from the simulator contains the PC trace and the values of all

the registers after each instruction. The output also contains the 32 bit binary code

for each instruction. Figure 3.15 shows the output obtained from OVPsim. The

Instruction Disassemble field shows the PC value and the instruction. The

Memory Dump field is the machine code of the instruction. Register Dump shows

the value of all the general purpose and CP0 register after the instruction is

executed. To generate inputs for RTL from this trace, a Perl program is used to

extract the PC value and the instruction machine code. The program counter value

is then converted to its corresponding physical address. When executing in

mapped space, this requires simple bit manipulation. However, when the address

lies in the mapped space the corresponding virtual to physical address translation

must be known to generate the correct physical address. Once both physical

address and the machine code are known, they are converted to their binary

formats to form a 64 bit field (32 bits each for machine code and physical

address). This 64 bit field is generated for all the instructions in the output trace to

form a text file. This text file is then fed to the RTL model using VHDL File I/O

method, which reads in the text file and stores all the values in array. Since the

array size cannot be dynamic, the size of the text file needs to be fixed. If the

actual number of instructions executed is less than the fixed number (this will be

the case in for tests which include branch and jump instructions) the rest of the

space can be filled by NOP instructions. The last instruction of the text file is

always a WAIT instruction which causes the RTL model execution to be

 65

suspended. Additionally, VHDL assertions are used to issue a message indicating

the test was completed successfully.

** Instruction Disassemble

0x80000000 : lui v0,0x0

** Memory Dump

Address 0x80000000 data 0x0000023c

** Instruction Execution

** Register Dump

zero at v0 v1 a0 a1 a2 a3

R0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 t0 t1 t2 t3 t4 t5 t6 t7

R8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 s0 s1 s2 s3 s4 s5 s6 s7

R16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 t8 t9 k0 k1 gp sp s8 ra

R24 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 sr lo hi bad cause pc

00400004 00000000 00000000 00000000 00000000 80000004

 fsr fir

00000000 00000000

sr=0x00400004

bad=0x00000000

cause=0x00000000

index=0x00000000

random=0x00000000

entrylo0=0x00000000

status=0x0000ff01

itaglo=0x00000000

idatalo=0x00000000

errorepc=0x00000000

Figure 3.15. Output Trace Obtained from OVPsim

 66

3.3. Design of the Execution Comparator

 Once the random test is executed on both the RTL model and the

simulator and the output traces are available from both the models, a scheme

needs to be designed to compare the outputs from both the models. This is the part

where any errors in the design are uncovered. The comparison scheme should be

designed in such a manner that any mismatches which result due to

implementation differences are not reported to reduce the verification time.

3.3.1. Types of Errors

 The comparator used in the validation environment is designed to report

the following mismatches to the user. First, the comparator should make sure that

the Program Counter trace in both the emulator and the RTL model is identical.

For example if we consider an add instruction, if an overflow condition occurs,

the processor would take an exception and the control would be transferred to the

general exception vector. If this condition is not modeled correctly in the RTL

model, an exception will not occur. In such a case PC trace will be different in the

RTL model and the simulator and a mismatch will be reported to the user.

 Secondly, the comparator reports any change in the general or CP0 register

values without change in the PC value. A constant PC value would indicate that

no new instructions are fetched. Therefore, no change in any of the general

purpose or CP0 registers should take place. Third, for a given PC value,

mismatches in any of the general purpose or the CP0 registers are reported.

 67

3.3.2 Methodology

 The comparator reads the output traces from the RTL model and the

simulator and reports any error found. The input to the comparator is the PC value

from which the user wants to start comparisons. This is important because the

initial set up is different in the two models. When configuring kseg0 for cacheable

accesses the RTL model uses special instructions to invalidate the data cache and

instruction cache which are implementation dependent and are not present in the

MIPS-4kc core. If comparisons are done for PC values when these instructions

are executing, the comparator will report unnecessary mismatches. Usually the

starting address for comparisons is the instruction from which the general purpose

registers are initialized. The output trace is read by the comparator sequentially

and the PC value is extracted. This is compared against the PC value obtained

from the user. If the value matches, a check flag is set, else the comparator

increments to find the next value of PC. Other fields which are required for

comparisons, such as general purpose register values, are not extracted till the

check flag is set, this saves some execution time.

The data structure primarily used for comparisons is the Perl hash. Each

value in hash has a unique key, implying two hash keys can have identical values.

At the start several hashes are declared to hold different values from the output

files. For example to store PC values two hashes are declared, PC_S and PC_R,

the letter S and R denoting that these values come from the simulator and the

RTL, respectively. Similarly R00_S, R00_R are used to store R00 values from the

two models, R01_S, R01_R to store R01 values and so on. Once the check flag is

 68

set, a count value is initialized which acts as key for all the hashes. This entails

two counters which can act as keys for the hashes obtained from the two models,

in the comparator the counters are declared as key_rtl and key_simulator. PC

value cannot be used as key because a given PC might have several occurrences

in the test. For example a test which is configured to test trap instructions will

have several occurrences of the general exception vector. For every Program

Counter value encountered after the check flag is set, the counter is incremented

by one. At the end of the extraction process, we will have different hashes with all

the values required for comparison.

 The RTL model might have two consequent occurrences of a PC value.

For example let‟s say the in the RTL output, the PC value 0x8000_0500 occurred

thrice in a row. Whether this constitutes an error is implementation dependent. In

the current comparator scheme this is flagged as an error only if any of the

register values change. The comparator checks if the current PC value matches

the previous PC value, if yes and any changes are found, an error is issued,

following which all the hashes are updated with the most recent value of the

registers.

 Once we have all the hashes, the comparisons between the values obtained

from the two models are made. First the hashes containing PC values are

compared. If for a given key the PC value from both the emulator and RTL

match, comparisons on all the register values are done for this key. If the value

does not match, an error is issued since this would mean that PC sequence differs

in the RTL model and the simulator. The simulator key is then incremented to

 69

find the next matching PC value. In this manner, more than one error can be

found per test.

 As an example, assume the key values used to iterate the hashes are

initially 0 for both simulator and RTL. Also, assume that in PC_R the hash values

associated with the keys 0 and 10 are 0x8000_0300 and 0x8000_0180

respectively. Similarly in the PC_S hash, values associated with the keys 0 and 10

are 0x8000_0300 and 0x8000_0340, respectively. Two counters rtl_check and

simulator_check are initialized to zero. The values from the hashes PC_R and

PC_S are read and compared, since they match for key number 0, comparisons on

all the other registers are done. If any mismatch is found error is issued, once all

the comparisons are done both the counters are incremented by one. When both

rtl_check and rtl_simulator equal to 10, a mismatch in PC values is found, this is

reported to the user and the rtl_simulator counter is incremented in the hope of

finding a matching PC value.

3.3.3 Special Conditions

 The comparator must make sure that mismatches that occur due to

architecture differences are not reported to the user. In the current implementation

checking is disabled for following cases. If a register value obtained from the

RTL model is either „X‟ or, „U‟ checks are disabled on that register, since this

would imply that the particular register has not been initialized in the RTL model.

In the MIPS architecture an instruction is said to be committed if it is guaranteed

to complete [Hennessy, 2006]. The trace obtained from the RTL model contains

PC values only for the instructions which are committed. An instruction which

 70

will cause an exception will never commit and hence will not be seen in the RTL

output trace. However, these instructions appear in the trace from the simulator. If

an instruction at PC 0x8000_0500 caused an exception, the comparator would

complain that PC value 0x8000_0500 is not found in the RTL output trace. To

avoid these errors, the comparator checks if the next PC value in the sequence

matches the general exception vector value, if yes the checks are disabled. When

coming out of the exception handler, the RTL value always has two occurrences

of the instruction following the one which caused an exception. On the first

occurrence the processor control is returned to the following instruction, and on

the second occurrence the instruction is executed. This results in register value

change without change in the PC value. To avoid such errors the comparator

checks if the previous instruction executed is the last instruction of the exception

handler, if the condition is found to be true, checking is disabled for that

occurrence. Since both VMIPS and OVPsim ignore cache instructions, checking

of CP0 registers taglo and datalo is disabled. Finally, if tests are generated to test

unaligned memory accesses, the CE field of Cause register has an unknown value

on an address exception, consequently this check is disabled for tests which

include unaligned memory accesses.

3.4. Test Automation

 Once a framework to run a single random test is complete, the whole

process can be configured to run multiple tests at time. This is achieved by using a

shell script which invokes all the individual processes described above

sequentially. The number of tests that are to be executed is provided as command

 71

line input by the user along with other options such as whether to configure kseg0

as cacheable, an option to generate unaligned memory accesses. The output of the

exercise is the comparison results for all the tests in the run.

This chapter has described the design of the validation environment for two

MIPS emulators OVPsim and VMIPS. Chapter 4 tabulates statistics obtained

from the biased random instruction generator along with a summary of bugs

found in the design. This chapter concludes this thesis with directions for future

work.

 72

CHAPTER-4

RESULTS AND CONCLUSIONS

This chapter is divided into three parts. First part (sub-section) presents the

statistics obtained from the random instruction generator for different instruction

mix. The second part presents an overview of how tests were configured to

exercise various components of the design and an overview of bugs found in the

design. The third part concludes this thesis with directions for future work.

4.1. Statistics from the Random Instruction Generator

This section presents statistics obtained from the random instruction

generator. Three random tests were generated with different mix of instructions.

The weight file was used to assign different weights to the instructions. The first

two were configured to run 100,001 random instruction, the third for 10,001

random instruction (this test included branch instructions, the branch offset is a 16

bit field which might not support all the possible targets when executing 100,001

instructions). The random test results obtained were post processed to obtain the

probability with which each instruction appeared in the random test. The random

test was then converted to ELF format and was executed with OVPsim. The

output trace obtained from OVPsim was post processed to obtain the total number

of instructions executed and the probability of execution associated with each

instruction. This included instructions which were executed during exceptions but

not during the reset handler and initialization of the register file. Following is the

description and results obtained from each test.

 73

4.1.1. Statistics from the First Test

 First test contained 10 different instructions, each instruction with a

weight of either 10 or 20 with a total of 100,001 random instructions. The output

trace obtained from OVPsim showed that a total of 102,178 instructions were

executed. The overflow condition in add instruction caused 544 exceptions. This

is evident from the fact that output trace from OVPsim contains 544 occurrences

of ERET and ADDIU instructions, both of which are used in the exception

handler. The probability of execution obtained from test execution is different

from probability obtained from random test on account of higher number of

instruction executed due to generated exceptions. Table 2 shows the statistics

associated with this test. The „Weight‟ column shows weight assigned to each

instruction in the weight file along with the probability associated with it (this is

the probability with which an instruction was to be generated in the random test),

the „Frequency (G)‟ column shows number of times that particular instruction

appeared in the random test along with the probability with which it was

generated. „Frequency (E)‟ column shows number of times that particular

instruction was executed with the probability with which it was executed. It

should be noted here that the sum of the column Frequency (E) column is not

102,178 in this case since all the instructions used in the exception handler are not

listed.

 74

Figure 4.1 compares the frequency with which different instructions were

requested, generated and executed in the first test.

4.1.1. Statistics from the Second Test

 The second test consisted of loads and stores along with other instructions.

The test was configured in such a manner, that a store to a memory location was

always followed by a load from the same memory location.

Table 2. Statisitcs from the First Test

Instruction

Weight Frequency (G) Frequency (E)

ADD 10 (0.0625) 6343 (0.06342) 6343 (0.0621)

ADDI 20 (0.125) 12350 (.1235) 12350 (.1209)

ADDU 10 (0.0625) 6103 (0.06103) 6103 (0.05972)

AND 10 (0.0625) 6279 (0.06279) 6279 (0.06145)

ANDI 10 (0.0625) 6245 (0.06245) 6245 (0.0611)

NOR 20 (0.125) 12417 (0.12417) 12417 (0.1215)

OR 20 (0.125) 12551 (0.12551) 12551 (0.1228)

ORI 20 (0.125) 12543 (0.12543) 12543 (0.1227)

SUBU 20 (0.125) 12569 (0.12569) 12569 (0.123)

XOR 20 (0.125) 12601 (0.12601) 12601 (0.1233)

ADDIU 0 (0) 0 (0) 544 (0.0053)

ERET 0 (0) 0 (0) 544 (0.0053)

 75

Figure 4.1. Frequency Comparison for First Test

All the memory accesses were aligned at the word boundary. Table 3 shows the

statistics associated with this test. The total number of instructions generated was

100,001. This included the LI macro which was used to load the base register

with the address of the memory location to be accessed. The load instruction

which immediately followed the store instruction did not use the LI macro

because in that case the base register was already set up. Subtracting the number

of SW instructions (3487) from the LW instructions (6970) will give us the number

of LW instructions which were not preceded by a SW instruction.

0

2000

4000

6000

8000

10000

12000

14000

Requested

Generated

Executed

F
re

q
u

en
cy

 76

Subtracting the number of SW instructions (3487) from the LW instructions (6970)

gives us the number of LW instructions which were not preceded by a SW

instruction. This turns out to be 3483 (6970-3487). The number of LI macros we

would expect will be the sum of standalone LW and SW instructions. The sum is

6970 (3483+3487) which is the total number of LI instructions generated in the

Table 3. Statisitcs from the Second Test

Instruction Weight Frequency (G) Frequency (E)

AND 20 (0.167) 14962 (0.1496) 14962 (0.1398)

ANDI 20 (0.167) 14859 (0.1485) 14859 (0.1389)

CLO 20 (0.167) 15137 (0.1513) 15137 (0.1415)

CLZ 20 (0.167) 14925 (0.1492) 14925 (0.1395)

LW 5 (0.041) 6970 (0.0697) 6970 (0.0651)

SW 5 (0.041) 3487 (0.03487) 3487 (0.0325)

NOR 10 (0.083) 7572 (0.0757) 7572 (0.0707)

OR 10 (0.083) 7482 (.07482) 7482 (0.0699)

SUBU 10 (0.083) 7637 (0.07637) 7637 (0.07139)

LI 0 (0) 6970 (0.0697) 0 (0)

LUI 0 (0) 0 (0) 6970 (0.06516)

ORI 0 (0) 0 (0) 6966 (0.06512)

 77

random test. The LI instruction is executed as a combination of LUI and ORI

instructions, so the LI instruction does not appear in the output trace obtained

from OVPsim. The difference in number of ORI and LI instructions can be

attributed to the fact that depending on the immediate value, the LI instruction

can be executed only as LUI instruction. The total number of instructions

executed was 106,967 which is the total of the column „Frequency (E)‟. Figure

4.2 compares the frequency with which different instructions were requested,

generated and executed in the second test.

Figure 4.2. Frequency Comparison for Second Test

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Requested

Generated

Executed

F
re

q
u

en
cy

 78

4.1.3. Statistics from the Third Test

Third test consisted of two branch instructions BEQ and BNE along with other

instructions. The test was configured to generate 10,001 random instructions. In

order to avoid exceptions in the branch delay slot, all branch instructions had a

NOP instruction in the delay slot. Figure 4.3 compares the frequency with which

different instructions were requested, generated and executed in the third test. The

total number of instructions executed was only 172. This can be attributed to the

fact that a taken branch will take the flow in forward direction and tests are not

executed sequentially. Table 4 shows statistics from third test.

Figure 4.3. Frequency Comparison for Third Test

0

200

400

600

800

1000

1200

1400

1600

1800

Requested

Generated

Executed

F
re

q
u

e
n

cy

 79

4.2. Configuring Tests for Processor Validation

 The tests were configured in such a manner so that different components

of the design get exercised. As a part of general testing a few tests included all the

instructions, this exercised most of the design. Tests were then configured to test

specific parts in the design. For example to test memory accesses load and store

Table 4. Statistics from the Third Test

Instruction Weight Frequency (G) Frequency (E)

ADD 20 (0.154) 1423 (0.1423) 29 (0.1686)

ADDI 20 (0.154) 1484 (0.1484) 25 (0.1453)

ADDIU 20 (0.154) 1513 (0.1513) 21 (0.1221)

ADDU 10 (0.077) 715 (0.0715) 10 (0.0581)

AND 10 (0.077) 698 (0.0698) 19 (0.1104)

ANDI 10 (0.077) 691 (0.0691) 16 (0.093)

BEQ 5 (0.038) 347 (0.0347) 1 (0.0058)

BNE 5 (0.038) 344 (.0344) 4 (0.0232)

NOR 10 (0.077) 726(0.0726) 13 (0.0755)

OR 10 (0.077) 703 (0.0703) 17 (0.0988)

SUBU 10 (0.077) 666 (0.0666) 15 (0.0872)

NOP 0 (0) 691(0.0691) 2 (0.011)

 80

instructions were assigned higher weights. Different tests focused on testing the

following parts of the design (instructions corresponding to each part were

assigned higher weight to accomplish this)

 Arithmetic and logical instructions

 Memory accesses

 Branches and jumps

 Trap instructions

 Execution in mapped memory space to test the TLB instructions

 Cache accesses by configuring kseg0 as cacheable

Two bugs have been found till now

 This bug affects both SLT and SLTI, both of which treat their operands as

signed two's complement integers. The bug was that the logic failed to

account for the overflow case for these instructions. The RTL model

handled the instruction in the following manner where the bug was found

(the instruction was SLT $9, $12, $5):

 temp <- R12 - R5

R9 <- "0000000000000000000000000000000" & temp (31)

The sign bit of the result of the subtraction was used to set or clear the

LSB of the destination register. In this case, the operation was

0x0000000000A0 - 0x80000000. In decimal, this is 160 - (-2^31) = 2^31

+ 160. If registers were wider than 32 bits, this could have been

represented as a positive number (in which case the sign bit would be 0).

 81

Instead, it results in a negative number, and thus an overflow case. SLTU

and SLTIU were being handled correctly which are the unsigned versions.

 This bug affects the TGE, TGEI, TLT, and TLTI trap instructions. The

test uncovered the bug in two places, with the following instructions:

TLT t1, v0 (t1= 0x65ff_f552, v0=0x8000_0a02)

TLT t1, a0 (t1=0x00e0_003d, a0=0x8000_039c)

In both cases, the RTL took an exception when it should not have. The

TGE, TGEI, TLT, and TLTI instructions should treat their operands as

signed integers. The RTL model was incorrectly treating them as unsigned

integers.

4.3. Conclusions

 This thesis has presented a methodology to design a robust automated

validation environment for MIPS-4kc based processors. The validation

environment has the capability to generate assembly level random tests with

appropriate bias for different instructions, convert these instructions into a format

which can be executed with the RTL model and the simulator, and as a final step

compare the results obtained from the RTL and the emulator. This environment

can be used to validate any MIPS-4kc based processor. A few changes might be

required in the way inputs are provided to the design under test since this is

implementation dependent.

 The simulators used in this implementation ignore cache instructions;

therefore none of the cache instructions and CP0 registers used for caches could

be tested. A capability to test cache instructions would go a long way in designing

 82

a foolproof validation environment. Another missing piece in the implementation

is the coverage analysis. Due to lack of appropriate coverage analysis tools, there

was no data on coverage. Running a certain number of instructions gives us no

idea on how much of the design has been exercised and what portions of the

design need to be tested to achieve requisite coverage. Therefore, an ability to test

cache instructions along with the coverage data would make this validation

environment complete.

 83

REFERENCES

[Poe, 2002] E. A. Poe, “Introduction to Random Test Generation for

Processor Verification” Technical Report, Obsidian

Software, 2002.

[Zhonsghu, 2003] L. Zhongshu, Y. Xiaolang, W. Jiebing and X. Zhihan, “A

Dynamic Random Instruction and Stimulus Generation for

Functional Verification of Embedded Processor,”

Proceedings of the 5th International Conference on ASIC,

October 2003.

[Bose, 1999] P. Bose, T. Conte, and T.Austin, “Challenges in Processor

Modeling and Validation.” IEEE Micro, pages 2–7, June

1999.

[Kantrowitz, 1995] M. Kantrowitz, L. Noack, “Functional Verification of a

Multiple-issue Pipelined, Superscalar Alpha Processor-the

Alpha 21164 CPU Chip.” In Digital Technical Journal,

Vol.7 No.1 Fall 1995.

[Ho, 1995] R. Ho, C. Yang, M. Horowitz and D. Dill, “Architecture

Validation for Processors”, ISCA 95: International

Conference on Computer Architecture, June 1995.

[MIPS 94] MIPS 94, MIPS Technologies Inc., “R4000PC/SC,

Processor Revision 2.2 and 3.0 Errata”

[Mishra, 2005] P. Mishra, “Processor validation: a top-down approach.”

IEEE Potentials, pages 29-33 March 2005.

[Bose, 2000] P. Bose, “Ensuring Dependable Processor Performance: an

Experience Report on Pre-Silicon Performance Validation.”

in Intl Conference on Dependable Systems and Networks,

July 2000.

[MIPS 2002] MIPS32® 4K™ Processor Core Family Software User‟s

Manual

[Sweetman, 2002] D.Sweetman. See MIPS Run. Academic Press, 2002

 84

[Aggarwal, 2004] V.Aggarwal, S.Aguirre. “Software Solutions for Single

Instruction Issue, in Order Processors”, Technical Report

Ecublens , 2004.

[Hennessy, 2006] J. Hennessy and D. Patterson, “Computer Architecture: A

Quantitative Approach”, Morgan Kaufmann Publishers, 4th

edition, Sept. 2006.

 [MIPS INS] MIPS Instruction Coding

 http://www.d.umn.edu/~gshute/spimsal/talref.html

[SPIM] SPIM Simulator: http://www.cs.wisc.edu/~larus/spim.html

[VMIPS] VMIPS Simulator http://www.dgate.org/vmips

[OVP1] OVP Processor Modeling Guide, (c) 2011 Imperas

Software Ltd., Thame, United Kingdom.

[OVP2] OVPsim and CpuManager User Guide., (c) 2011 Imperas

Software Ltd., Thame, United Kingdom.

[OVP3] Imperas Installation and Getting Started Guide, (c) 2011

Imperas Software Ltd., Thame, United Kingdom.

[Wiki1] http://en.wikipedia.org/wiki/Hash_table

[Perl1] Generating Biased Random Numbers

 http://docstore.mik.ua/orelly/perl/cookbook/ch02_11.htm

 85

APPENDIX A

COPYRIGHT PERMISSION FROM MIPS TECHNOLOGIES

 86

Excerpts from the MIPS32® 4K™ Processor Core Family Software User’s

Manual are included with the permission of MIPS Technologies, Inc. © 2002-

2008 MIPS Technologies, Inc. All rights reserved.

MIPS, MIPS32, and 4K are trademarks or registered trademarks of MIPS

Technologies, Inc. in the United States and other countries.

viii

