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ABSTRACT

Genomic and proteomic sequences, which are in the form of deoxyribonu-

cleic acid (DNA) and amino acids respectively, play a vital role in the structure,

function and diversity of every living cell. As a result, various genomic and pro-

teomic sequence processing methods have been proposed from diverse disciplines,

including biology, chemistry, physics, computer science and electrical engineering.

In particular, signal processing techniques were applied to the problems of se-

quence querying and alignment, that compare and classify regions of similarity in

the sequences based on their composition. However, although current approaches

obtain results that can be attributed to key biological properties, they require

pre-processing and lack robustness to sequence repetitions. In addition, these ap-

proaches do not provide much support for efficiently querying sub-sequences, a

process that is essential for tracking localized database matches.

In this work, a query-based alignment method for biological sequences

that maps sequences to time-domain waveforms before processing the waveforms

for alignment in the time-frequency plane is first proposed. The mapping uses

waveforms, such as time-domain Gaussian functions, with unique sequence repre-

sentations in the time-frequency plane. The proposed alignment method employs

a robust querying algorithm that utilizes a time-frequency signal expansion whose

basis function is matched to the basic waveform in the mapped sequences. The

resulting WAVEQuery approach is demonstrated for both DNA and protein se-

quences using the matching pursuit decomposition as the signal basis expansion.

The alignment localization of WAVEQuery is specifically evaluated over repetitive

database segments, and operable in real-time without pre-processing. It is demon-

strated that WAVEQuery significantly outperforms the biological sequence align-

ment method BLAST for queries with repetitive segments for DNA sequences. A

generalized version of the WAVEQuery approach with the metaplectic transform
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is also described for protein sequence structure prediction.

For protein alignment, it is often necessary to not only compare the one-

dimensional (1-D) primary sequence structure but also the secondary and tertiary

three-dimensional (3-D) space structures. This is done after considering the con-

formations in the 3-D space due to the degrees of freedom of these structures. As

a result, a novel directionality based 3-D waveform mapping for the 3-D protein

structures is also proposed and it is used to compare protein structures using a

matched filter approach. By incorporating a 3-D time axis, a highly-localized

Gaussian-windowed chirp waveform is defined, and the amino acid information is

mapped to the chirp parameters that are then directly used to obtain directionality

in the 3-D space. This mapping is unique in that additional characteristic protein

information such as hydrophobicity, that relates the sequence with the structure,

can be added as another representation parameter. The additional parameter

helps tracking similarities over local segments of the structure, this enabling clas-

sification of distantly related proteins which have partial structural similarities.

This approach is successfully tested for pairwise alignments over full length struc-

tures, alignments over multiple structures to form a phylogenetic trees, and also

alignments over local segments. Also, basic classification over protein structural

classes using directional descriptors for the protein structure is performed.
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Chapter 1

INTRODUCTION

1.1 Genomics, Proteomics and Bioinformatics

Deoxyribosenucleic acids (DNA) are nucleic acids that are in the form of double

helical strands that contain the genetic instructions specifying the biological de-

velopment of all cellular forms of life. A single strand of DNA is a bio-molecule

consisting of many linked, smaller components called nucleotides. Each nucleotide

is formed by the nucleobases adenine, thymine, cytosine, and guanine that are

represented by the letters A, T, C and G, respectively; each DNA single strand is

represented by a character string of these four letters [2].

Proteins are bio-molecules that consist of many linked, smaller components

called amino acids. There are twenty types of amino acids in proteins that are

linked by strong peptide bonds to form polypeptide chains. The protein functions

are actually determined by the DNA character string, since the information in the

DNA sequences determines the amino acid sequences.

Genomic engineering is an interdisciplinary field that combines critical

biological genome information and knowledge from areas such as bio-science,

medicine, computer informatics, and engineering [3]. In particular, genomics deals

with the study of large genetic information in order to understand the collective

gene function [4]. Genomic information is discrete and represented in sequences of

unique elements frame from finite element dictionaries [5]. For example, a DNA

sequence consists of the precise ordering of four possible nucleobases (A, T, C, G)

from which the DNA is composed; each ordering corresponds to a pattern that

influences the formation and development of an organism. Similarly, a protein

sequence consists of the precise ordering of twenty amino acids represented by

twenty unique letters of the alphabet.
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Two technologies, sequence analysis and micro-array analysis, have played

significant roles in the extraction and interpretation of genomic information [6,

7]. Sequence analysis helps in the study and understanding of structure-related

information. It can be used to reveal some hidden structure, distinguish between

coding and non-coding regions, and explore structural similarities between DNA

and protein sequences [3]. DNA micro-arrays (also called gene arrays or DNA

chips) are useful in simultaneously observing interactions between thousands of

genes, in order to determine expression levels of genes, discover genes and drugs,

and diagnose diseases.

Proteomics is the study of protein structures and functions, and it in-

cludes the prediction of new protein structures, identification of different struc-

tural classes and classification of protein structures based on different similarity

measures [8]. Bioinformatics, on the other hand, is the application of computer

science and information technology methodologies to biology, such as genomics

and proteomics. It includes the development of databases and computation and

statistic techniques to manage and analyse biological data. These techniques can

be applied to gene sequences to search for embedded information in biological

systems [9] and they include methods from areas such as data mining, statistics,

pattern recognition and visualization. The three main goals in bioinformatics

are data organization, analysis and interpretation. Specifically, organization is

important as data needs to be stored for easy access in public databases. The

development of querying or sequencing tools using computational theory will help

analyze the data and gain valuable knowledge. Note, however, that the knowl-

edge will not be meaningful unless the analysis is interpreted in a biologically

meaningful manner.

The primary research topics in bioinformatics [9–11] include: sequencing

and comparison of genomes of different species; studying relationships between
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structures and functions; predicting three-dimensional (3-D) molecular protein

structures of amino acid sequences; modeling genetic regulatory network; tracing

evolutionary relationships between species and constructing phylogenetic trees;

and discovering of associations between gene mutations and diseases.

1.2 Genomic Signal Processing

The traditional bioinformatics methods of pattern matching and statistical anal-

ysis for processing DNA and protein sequences in their element representation

can be very time-consuming as a huge volume of genomic data is currently avail-

able [3, 4, 12–14]. One way to apply more efficient processing methodologies to

genomic sequences is by converting them into discrete-time signals [4–9, 12–14].

The corresponding recently evolving area of developing approaches to analyze and

process genomic signals is called genomic signal processing. Its aim is to integrate

the theory and methods of signal processing with the global understanding of ge-

nomics, placing special emphasis on genomic regulation [6]. Due to the discrete

nature of the DNA and protein data, signal processing techniques to can be used

to analyze and understand the characteristics of DNA and proteins as well as their

interaction [11].

Signal processing techniques based on the Fourier transform (FT) have

been used for gene identification [15, 16]. Statistical analysis methods such as

techniques based on the correlation function of DNA sequences have been used

to study their inherent functionality and structure as well as their statistical de-

pendencies [17–19]. Time-frequency analysis techniques have also been applied to

protein data in [20,21]. Some additional information on the use of signal process-

ing methodologies to process and analyze biological data is provided next.
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Fourier Analysis and Spectrogram One of the primary reasons for using

FT analysis techniques with DNA data is to detect periodicities in different DNA

sequences. The effect of periodicity in DNA coding sequences on gene evolution

is discussed in [15]. Periodicities that are relevant to the DNA structure are those

related to telomere region, protein coding in DNA, DNA helical folding, DNA nu-

cleosome binding, and DNA nucleosome superstructure. Patterns of quilts, shafts

and bars are significant in describing the structure of the cell surface proteins [22].

The FT has been used to measure periodicity for segments of DNA data

with differing in base content [23]. A detailed discussion on the application of FT

analysis to DNA sequences is presented in [24–26]. In [16], the FTs of the DNA

sequences were computed using a sliding window to identify coding regions present

in the sequences. An important property that characterizes and determines the

coding regions is the three-base periodicity that is related to the value of the FT

at frequency f = N/3, where N is the length of the window. The three-base peri-

odicity is also called the N/3 periodicity or 2π/3 periodicity. This coding measure

is obtained by first mapping the DNA sequence to discrete-time sequences, com-

puting the discrete FT (DFT) of the sequences as in [27], and then looking at the

relative strength of the periodicity at f = N/3; this should appear as a peak in

the average DFT. Note that the origin of the periodicity can be attributed to the

codon bias, which is the unequal usage of codons in the coding regions, and the

triplet bias, which is the bias in the usage of nucleotide triplets (see Figure 2.6).

The advantages of this technique are that it is robust to sequencing errors and its

computational complexity is very low. A mathematical explanation for the peak

at N/3 in a coding region is provided in [28–30], together with a discussion on the

use of other windows such as the Bartlett window for the DFT computation and

a DFT based splicing algorithm. The use of the warped DFT is presented in [31],

where a more pronounced peak is observed at N/3.
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An extension of the FT approach was proposed in [5, 32, 33], using DNA

spectrograms (squared magnitude of the short-time FT) to differentiate between

coding and non-coding regions. In order to compute the spectrogram, the DNA se-

quences are first converted to numbers, and thus discrete time-domain sequences,

using binary or complex mapping. Note that weights on the discrete time-domain

sequences are optimized such that the observed peaks at f = N/3 can be distin-

guished from the non-coding regions. A color coding scheme to obtain the color

maps is also described in [5].

The efficiency and advantages of using digital signal processing based tech-

niques for DNA sequence analysis are presented in [5]. In [22, 34], the DNA

spectrogram was used in the study of periodicities from 0 to 300. These periodic-

ities were related to small periodic patterns called tandem repeats (minisatellites,

quilts and shafts). The prospect of sequence classification using the relative base

content was also discussed. The short-time Fourier transform was used to find

latent periodicities in [35] and to study the structure of the exon in [36].

Filtering Techniques The use of discrete infinite-impulse response (IIR) filters

to identify coding regions in DNA sequences was presented in [37–39]. As the N/3

periodicity is exhibited by the coding region in a DNA sequence spectrum, an anti-

notch filter to identify these coding regions was proposed in [38]. The design of

the anti-notch filter is based on the fact that there is a sharp peak at 2π/3 in the

spectrum. Thus, after observing the mapped DNA sequences through the filter

and the output signal spectrum, if there is a pronounced peak at 2π/3, then the

sequence is from the coding region of the DNA. A detailed analysis on the design

of the anti-notch IIR filter and the trade-offs in the design is also provided in [40].
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Time-Frequency Analysis Wavelet transform analysis has been used to char-

acterize the long range correlations in DNA sequences [41–43] and thus to study

the structure of the nucleosome. They have also been used to identify the origin

and terminating sites for DNA replication and the irregularities in the DNA data.

Time-frequency techniques have also been used to analyze protein data [20].

Specifically, the Wigner-Ville distribution, a quadratic time-frequency represen-

tation, was used to observe characteristic patterns in protein sequences, to obtain

spatial information about the secondary structure of proteins, and determine bi-

ologically active sites in the protein molecule. A novel real number mapping rule

was proposed in this case based on the hydrophobicity value of the amino acid

and the codons corresponding to it.

Feature-based Analysis Autoregressive (AR) models have been used with

DNA sequences to perform linear prediction analysis in [19]. The AR model

parameters were used as features of the DNA segments, and it was found that

the AR model was very specific to the fitting coding sequence and the specificity

increased with the order of the AR model. These feature-based analysis were used

to perform DNA string searches and study the characteristics of coding versus

non-coding regions.

1.3 Genomic Alignment

Two important problems in the analysis of genomic and proteomic data are the

problems of sequence alignment and structural alignment. Alignments of se-

quences and structures are useful for studying evolutionary relationships between

organisms and for determining DNA or protein functionality [2].
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Sequence Alignment The sequencing and comparison of genomic and pro-

teomic data is referred to as sequence alignment. The goal of sequence alignment

is to determine if there are any sequences in the public databases that are similar

to a query sequence [44]. If two sequences are similar, then the sequences have

related structures or functions. Specifically, a sequence structure relates to the

3-D protein structure and its function refers to the gene function. As information

about the sequence structure and function is known for most sequences, it can be

shared between the similar sequences. In addition, similar sequences may have

a common ancestor sequence. If two sequences are similar up to a few elements,

it is likely that both sequences evolved from a common ancestor, and an evolu-

tionary relationship may exist between the source of each sequence. If the query

sequence is a partial sequence (portion of a larger sequence), it may be possible to

gain information about the sequence’s position and about the role of the original

sequence.

A simple approach towards aligning two sequences would be to search for

an exact match within the two sequences. However, there are a few problems

with using exact matches to align two sequences. Most of the sequences studied

are derived from cloned copies. During cloning, mutations may occur and errors

may be introduced while sequencing. As a result, the alignment method must

be tolerant of these mutations and errors. The DNA strand may contain many

nucleobases that do not create amino acids. Hence, it is desirable not to discard

alignments with those nucleobases. Sequences within species and between species

have variations. If the similarity is greater between the DNA strands, then it can

be concluded that the species are closely related. During evolution, a sequence

might have dropped a few properties or gained a few properties. In sequence

alignment, this is seen as insertions and deletions in the sequences. The alignment

tool must insert gaps in the sequences, if required.
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Structural Alignment In sequence alignment, the primary DNA and protein

sequences are arranged based on the similarity in their composition. In proteins,

this sequence composition of amino acids is also called the primary 1-D structure.

In addition to this primary structure, there also exist secondary, tertiary and qua-

ternary structures which contain crucial information about the protein function.

These structures are related to the primary structure based on the composition

of the protein. However, the structures take different shapes due to the hydrogen

bonds, ionic bonds, and Van der Waals attractions between the molecules that

make up the amino acids. The aim of structural genomics is to determine the

protein structure and classify them based on their functions.

There is a lot of structural information generated for proteins and stored

in reference databases, especially after the sequencing of the human genome [45].

Some known protein reference databases, that contain information about proteins

and their structures include Protein DataBank (PDB) [46], International Protein

Sequence Database Collaboration, Swiss-Prot, TrEMBL, Protein Information Re-

source Protein Sequence Database (PIR-PSD). The Protein Structural Initiative

(PSI) [47] is a federal research funding effort for universities and industry for

cost-effective protein structure determination. Note, however, that the reference

databases lack complete protein structural annotation, i.e., identification of gene

elements such as coding regions, gene structure, or regulatory motifs. This hap-

pens even though the protein’s 3-D folds, such as α helices and β sheets, are

known. This is important because a similarity in the 3-D folds structure of two

proteins, characterized by the secondary and tertiary structures, implies similar-

ity in the function of the two proteins that possess this structure. In particular,

if two proteins have similarities, then in their structure, they have similarities in

their function.

The genome sequencing project that started in 1990, aimed at relating
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a protein sequence to its structure. Two sequences with a different amino acid

composition could result in a similar structure, i.e., structural similarity need not

imply sequence similarity [48]. There was a large difference between sequence

similarity and structural similarity in distantly related proteins. This is because

protein structures have a much higher degree of property conservation compared

to sequences; the proteins share common structures, even though the sequence

composition may be different. Hence, a need for aligning two proteins beyond

aligning their sequences became necessary. This resulted in the use of secondary

and tertiary protein structures to determine the similarities in their functions.

This resulted in the birth of a new field called structural genomics in the late

1990s, which aimed at assigning one structure per functional class [47].

Protein structure comparison or structural alignment is important in clas-

sifying the proteins into different structural classes, and in comparing the theoret-

ically predicted structures with the experimentally determined structures. Also

the conserved regions are local in distantly related proteins, i.e., the similarity

need not occur over the entire structure. Hence, there is a need to find the struc-

tural similarity locally.

The protein secondary and tertiary structures are in the form of 3-D struc-

tures or 3-D shapes. The structural comparison and detection of similarities in

these 3-D structures requires optimal comparison or alignment of structures in the

3-D plane. This is also known as protein structural superposition, and it allows

for classification of structures and identification of relationships among the struc-

tures. This is very helpful in establishing hierarchical relationships among protein

structures and provides a evolutionary view of known structures. Once a newly

obtained protein structure is classified, its function can be better understood.
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1.4 Motivation for Waveform Mapping and Processing Alignment

1-D Waveform Mapping and Sequence Alignment Most state-of-the-art

approaches for sequence query-based alignment have difficulties when sequences

have repetitive segments. As more promising results were shown by the signal

processing approaches with sequences mapped to numerical values, we propose a

new querying scheme that addresses the repeats problem by mapping sequences

to actual time-domain waveforms. Although these waveforms can be correlated

in the time-domain to obtain a measure of similarity for sequence alignment, the

correlation process can quickly become computationally intensive for localized

searches over query sub-sequences.

Our proposed query-based alignment approach, called WAVEQuery, is

based instead on effectively processing the waveforms in the time-frequency plane

using signal basis expansion techniques whose basis function is the basic wave-

form used in the sequence mapping. An example of a signal basis expansion is

the matching pursuit decomposition (MPD) algorithm whose basis function is the

Gaussian waveform [49]. Using the MPD algorithm with a Gaussian dictionary,

we assign the MPD frequency-shift parameter to the type of DNA element in a se-

quence and the time shift parameter to the position of the element in the sequence.

Thus, when a query sequence is represented using the WAVEQuery approach, the

MPD decomposes the corresponding waveform into a sum of Gaussian functions

and as a result, each element of the query sequence has a unique time-frequency

shift associated with it. Thus, highly-correlated regions in the database and query

sequences are considered to be aligned. The steps involved in the WAVEQuery

alignment algorithm are depicted in Figure 1.1.

The WAVEQuery approach can also be used for protein sequence align-

ment, with partial rewards assigned to amino acids that are similar in composition.
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Figure 1.1: Proposed globalized and localized query-based alignment scheme for
biological sequences.

Specifically, amino acids that do not correspond to the same letter may still have

a similarity due to the DNA transcription process. This similarity is taken into

account by assigning the scale change parameter of the Gaussian waveform, so

that there is considerable overlap in the Gaussian waveform to denote the partial

match in the sequence composition.

3-D Waveform Mapping and Structural Alignment One of the key com-

ponents in the success of 3-D protein structural alignment methods for identifying

folds in structures is directionality. However, current state-of-the-art methods do

not consider this important aspect. Methods using waveforms to represent pro-

tein structures [50, 51], mostly do not consider all available degrees of freedom
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in structure, which can to undergo multiple global and local conformations. As

proteins structures have six degrees of freedom, models representing the structure

must be translated and rotated in the 3-D plane. As a result, there is a need for a

parametric waveform representation that provides a unique shape in the 3-D space

and whose parameters can be used to identify changes in 3-D conformations. An

important motivation for a 3-D basis representation of to protein structures is the

fact that distantly related proteins need not have similarity over the entire struc-

ture. Similarities can be localized, and if the representation is linearly separable,

it can be used to analyze similar segments over shorter lengths of the structures.

Our proposed chirp-based alignment for protein structures (CAPS) ap-

proach is based on a representation that consists of a linear combination of 3-D

Gaussian-windowed linear frequency-modulated (LFM) chirp waveforms. These

chirp waveforms embed critical information about the structure including the 3-D

coordinates ad structure directionality. The use of Gaussian windows makes the

representation highly concentration in the time-frequency plane, and by defini-

tion, the representation is also linearly separable. By introducing a hydrophobic-

ity parameter in the representation, we also relate the sequence information to

the structure information. This is important in predicting and classifying pro-

tein structural classes. Unlike other waveform-based representations that require

pre-processing of the structural data to achieve rotational invariance, this repre-

sentation does not require involve any pre-processing.

For the proposed CAPS algorithm, following the representation of the pro-

tein structure, we first map the structure to a 3-D time-domain chirp waveform

and then perform matching to examine similarity over segments of the structure

(locally) and over the entire length of the structure (globally) using 3-D inner

product based correlation metric between two or more structures. Furthermore,

using the directionality metrics, we can also perform classification of protein struc-
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tures among various protein structural classes.

1.5 Organization

This dissertation is organized as follows. In Chapter 2, we provide a brief outline

of the biology of DNA and proteins. In Chapter 3, we describe the numerical

mapping techniques for DNA and protein sequences and present the proposed

sinusoid, LFM chirp and Gaussian waveform mapping techniques for DNA and

protein sequences. In Chapter 4, we first discuss current methods of sequence

alignment and their drawbacks. We then propose the use of the matching pursuit

decomposition algorithm for DNA and protein sequence alignment problems and

provide comparative results to demonstrate its performance. We also extend the

proposed algorithm to protein sequence alignment by generalizing the waveform

basis representation. In Chapter 5 , we propose the 3-D waveform representation

and protein structural alignment algorithm, also we provide notable results for

structural alignment and classification.
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1.6 List of symbols/variables used in the report

Symbols/Variable Description

A, T, C, G DNA nucleotide bases

f Frequency

N Length of sequence/Window size

uk, (k = A, C, G, T ) Indicator sequence

bk[n](k = A, C, G, T ) Binary indicator sequence

Td Duration of the sine/chirp waveform

fs Sampling frequency

sl(t) Sinusoid signal

hl(t) LFM chirp signal

cl FM rate for LFM chirp signal

g(t) Elementary Gaussian signal

gn,k,l(t) Gaussian waveform function, with time shift m,

frequency shift k and time scale l

O(.) Order of computational complexity

d[n] Data sequence

q[n] Query sequence

d(t) Time-domain mapped data signal

q(t) Time-domain mapped query signal

τs Time distance between consecutive nucleotide bases

di(t) ith data sub-signal

qi(t) ith query sub-signal

Q Number of characters in query sequence

γ Threshold for alignment

oi(t) Time-domain signal corresponding
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to gaps at the ith position

D Dictionary for matching pursuit decomposition

αi Expansion coefficient of the MPD for the ith iteration

ri(t) Residue function after the ith iteration of the MPD

c FM rate of 3-D chirp waveform

hc(t) Non-windowed version of 3-D chirp waveform for

CARPS

τ Center of Gaussian window for CARPS

Σ Variance of Gaussian window for CARPS

g(t; τ ,Σ) Gaussian window for CARPS

hg(t; c, τ ,Σ) CARPS representation

θx, θy, θz Angle of the Gaussian window w.r.t. (x, y, z) axes

Rx(θx), Ry(θy), Rz(θz) Orientation/Rotation matrices w.r.t. (x, y, z) axes

ρi Hydrophobicity value of the ith amino acid

15



Chapter 2

DNA AND PROTEIN BIOLOGY

2.1 DNA Biology

Deoxyribonucleic acids (DNA) are nucleic acids that are usually in the form of

double helical strands as shown in Figure 2.1. They are very important as they

contain the genetic instructions specifying the biological development of all cellular

forms of life, as well as most viruses [2]. A single strand of DNA is a bio-molecule

Figure 2.1: Double helical strand of DNA [1].

consisting of many linked, smaller components called nucleotides. The formation

of a nucleotide is depicted in Figure 2.2. The DNA polymer is formed by the strong

bonding of the sugar molecule of one nucleotide with the phosphate molecule of

the next nucleotide, thus creating a sugar phosphate backbone. Each molecule of

the DNA consists of two strands around each other to form a double helix, and

each rung of the helix consists of a pair of chemical groups called nucleobases or

bases. Each nucleotide consists of four bases that are represented by the letters

A, T, C and G. The sugars in the DNA are joined together by phosphate groups

that form bonds between the third and the fifth carbon atoms of the adjacent

sugar rings. Because of these asymmetric bonds, the DNA has an associated

direction. In particular, the bases combine in such a way that the sequence on

one strand of the double helix is complementary to that on the other. Also, the
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nucleotide’s direction in one strand is opposite to their direction in the other

strand, which means that the strands are antiparallel. The DNA strand ends are

thus symmetric and are called five prime (5′) and three prime (3′)

Figure 2.2: Formation of building block of DNA [2].

The (5′) end of a nucleotide is linked to the (3′) end of another nucleotide by

a strong chemical bond which forms a long one-dimensional chain with a specific

direction. Thus, each DNA single strand is represented by a character string

which specifies the (5′) to (3′) direction when read from left to right. This is

demonstrated in Figure 2.3.

Figure 2.3: Single DNA strand.

Single DNA strands form double helices with other strands in a comple-

mentary fashion: A and T are linked together, and C and G are linked together.

Even though each single bond is weak, all the bonds together form a stable, dou-

ble helical structure. The two strands are linked by weak hydrogen bonds, and a

simplified straightened out depiction of the linked strands is shown in Figure 2.4.

Thus, the three-dimensional (3-D) structure of the DNA, also called the double
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helix comes from the chemical and structural features of the two poly-nucleotide

chains of the DNA sequences.

Figure 2.4: Double stranded DNA. [2]

The discrete information that constitutes the genetic blueprint of an or-

ganism is stored in the DNA. This information was created and stored during

the years of evolution, and a few vital regions of the DNA sequences have been

preserved. Note that upon observation, scientists have concluded that the related

DNA sections of whales and humans share some common information.

Hence, the genetic information is contained in the sequence of the nu-

cleotide bases of the DNA. The genetic information stored in the organism’s

DNA contains the instructions for all the proteins the organism will ever syn-

thesize. Specifically, DNA has information about protein coding regions, regions

that serve regulatory functions, and regions that serve unknown functions. Pro-

tein coding regions in DNA are separated into several isolated sub-regions called
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exons. The region between successive exons is called intron. This is shown in

Figure 2.5. These introns are eliminated before protein coding by a process called

splicing.

Figure 2.5: Example of an exon-intron structure. [2]

2.2 Protein Biology

2.2.1 Protein Sequence Composition

Proteins are a bio-molecules that consist of many linked, smaller components

called amino acids. There are twenty types of amino acids in proteins that are

connected by strong bonds as in the DNA case. The bonding process forms a long

1-D chain, known as a polypeptide, with a specific ordered amino acid sequence

that determines the protein function. Specifically, each gene or distinct DNA

segment contains instructions for making a specific protein. Firstly, a messen-

ger ribonucleic acid (mRNA) is synthesized from the DNA gene segment and the

gene information {A, C, G, T} is transferred into the alphabet {A, C, G, U} in the

mRNA; this is called the transcription process. Secondly, the mRNA carries the

code for the protein synthesis (translation process). Thus, the flow of genetic in-

formation is from DNA to RNA to proteins. The synthesis of proteins is governed

by the genetic code that maps all possible triplets (also called codons) of DNA

characters into one of twenty possible amino acids. The genetic code is shown in

Figure 2.6.
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Figure 2.6: Genetic code [2].

Proteins are composed of polypeptide chain molecules as amino acids are

linked by covalent peptide bonds. Note that covalent chemical bonds cause the

release of a water molecule and the resulting process is called dehydration synthesis

of condensation reaction. A general amino acid with a side-chain R is shown in

Figure 2.7 and the formation of the peptide bond is shown in Figure 2.8. This

repeating sequence along the core of the polypeptide chain is also known as the

polypeptide backbone. The sequence of chemically different side-chains of each of

the amino acids is what makes one protein different from another.

The folding of a protein chain is due to the difference in the side-chains for

each of the amino acids, and three types of weak interactions between molecules:

electrostatic attractions, Van der Waals forces and hydrogen bonding. These weak

interactions act in parallel to hold the two regions of a polypeptide chain tightly

together. Each protein type has a specific 3-D structure which is determined by

the order of the amino acids in its chain. It also depends on the hydrophobic

interactions based on the type of the side-chain [52].

Proteins have a variety of shapes and can be composed of 50 to 2000 amino
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Figure 2.7: A general amino acid with a side-chain R. [2]
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acids. Large proteins consist of a structural unit or protein domain that folds

independently of one another. This complex protein structure can be depicted in

many different ways, each of which emphasizes different features of the protein.

The two most common folding patterns are the α helices and the β sheets, and they

are obtained as a result of the hydrogen bonding between the nitrogen-hydrogen

(N-H) and the carbon-oxygen (C=O) groups in the polypeptide backbone. They

are particularly useful in the representation of the protein structure as a ribbon

model.

2.2.2 Protein Structures

There are types of protein structure: primary, secondary, tertiary and quater-

nary structures. The primary protein structure is based on the 1-D amino acid

composition of the protein sequence. It is the simplest structural type with the

residues linked together via peptide bonds. The secondary structure is composed

of polypeptide chain segments that form α helices and β sheets, which are highly

regular and structured. The amino acid residues are stabilized by hydrogen bonds

between the main-chain atoms of the C=O group and the N-H group of different

residues. The secondary structure is also defined as the local conformation of a

peptide chain. The tertiary structure consists of the complete 3-D structure of

all the amino acids in a single polypeptide chain. It is defined based on the pro-

tein’s atomic co-ordinates, which are determined using nuclear magnetic resonance

(NMR) or X-ray crystallography techniques. The quaternary structure refers to

the association of the several polypeptide chains into a protein complex and these

are maintained by non-covalent interactions. The individual polypeptide chains

are called monomers or subunits. A level of super-secondary structures exists

between the secondary and the tertiary structures and is defined as two or three

secondary structural elements forming a unique functional domain. It is observed
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as a recurring structural pattern, which is usually conserved in evolution.

2.3 Reference Databases

Nucleotide datasets are publicly accessible, and they are maintained in public

databases called genome databases. One important databases is GenBank (Ge-

netic Databank) that is maintained by the National Center of Biotechnology In-

formation (NCBI) at the National Library of Medicine of the National Institutes

of Health [53]. Two other public databases are EMBL (European Molecular Biol-

ogy Laboratory) [54] and DDBJ (DNA Data Bank of Japan) [55]; these databases

share the information with each other as well as with the GenBank. Entrez [56]

is a search and retrieval system of the GenBank database, wherein queries for

sequences can be placed. Secondary nucleotide sequence databases include Uni-

Gene, STACK, Ribosomal database project, HIV Sequence database, Eukaryotic

promoter database, and REBASE [57].

The protein datasets are also publicly accessible from many public databases.

An important protein database is the Protein DataBank (PDB), which is main-

tained by the Research Collaboratory for Structural Bioinformatics (RCSB). The

PDB [46] contains information about experimentally-determined structures of pro-

teins, nucleic acids, and complex assemblies. In addition to this data, the PDB

also contains tools for the visualization of the protein structures, and searches

based on the sequence annotation, structure and function. Other databases in-

clude, the International Protein Sequence Database Collaboration [58], SWISS-

PROT + TrEMBL (UniProt) [59], Protein Information Resource Protein Se-

quence Database (PIR-PSD) [60]. The secondary and specialized protein sequence

databases include Gene Ontology Annotation (GOA), MEROPS, GRCRDb, yeast

protein database (YPD), ENZYME, CATH (class, architecture, topology and ho-

mologous superfamily), PROSITE, PRINTs, InterPro etc. [57]. As with DNA
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sequences, Entrez is primarily used as a protein sequence information search and

retrieval system.

As an example of how information is provided in reference databases, we

consider the file format in the PDB database [46]. The available information

consists fo 3-D atomic co-ordinates corresponding to amino acids for different

types of structures. All the proteins that have been sequenced have a PDB file

associated with them. This is the most common type of file-format associated

with amino acid composition in proteins, and it is similar to the FASTA format

for the DNA nucleobase sequence composition.

The PDB file format specifications are provided in [46]. We describe in brief

the portions of the file that we will use in our study. The file consists of segments

that provide information about the primary structure, secondary structure, the

atomic co-ordinates, and connectivity. The primary structure section contains the

sequence of residues in each chain of the macromolecules. The secondary struc-

ture section describes helices, sheets, and turns found in protein and polypeptide

structures. The coordinate Section contains the collection of atomic coordinates

which describe the tertiary structure of the sequence. The connectivity section

provides information on the number of interactions.

A screenshot of a PDB file with tertiary structure information is shown

in Figure 2.9. In particular, the 3-D co-ordinates of the locations of the atoms

in an amino acid are provided; these locations will be used to superpose tertiary

structures.
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ATOM     32  N  AARG A  -3     11.281  86.699  94.383  0.50 35.88           N

ATOM     33  N  BARG A  -3     11.296  86.721  94.521 0.50 35.60           N

ATOM     34  CA AARG A  -3      12.353  85.696  94.456  0.50 36.67           C

ATOM     35  CA BARG A  -3      12.333  85.862  95.041  0.50 36.42           C

ATOM     36  C  AARG A  -3     13.559  86.257  95.222 0.50 37.37           C

ATOM     37  C  BARG A  -3     12.759  86.530  96.365 0.50 36.39           C

ATOM     38  O  AARG A  -3     13.753  87.471  95.270 0.50 37.74           O

ATOM     39  O  BARG A  -3     12.924  87.757  96.420 0.50 37.26           O

ATOM     40  CB AARG A  -3      12.774  85.306  93.039  0.50 37.25           C

ATOM     41  CB BARG A  -3      13.428  85.746  93.980  0.50 36.60           C

ATOM     42  CG AARG A  -3      11.754  84.432  92.321  0.50 38.44           C

ATOM     43  CG BARG A  -3      12.866  85.172  92.651  0.50 37.31           C

ATOM     44  CD AARG A  -3      11.698  84.678  90.815  0.50 38.51           C

ATOM     45  CD BARG A  -3      13.374  85.886  91.406  0.50 37.66           C

ATOM     46  NE AARG A  -3      12.984  84.447  90.163  0.50 39.94           N

ATOM     47  NE BARG A  -3      12.644  85.487  90.195  0.50 38.24           N

ATOM     48  CZ AARG A  -3      13.202  84.534  88.850  0.50 40.03           C

ATOM     49  CZ BARG A  -3      13.114  85.582  88.947  0.50 39.55           C

ATOM     50  NH1AARG A  -3     12.218  84.840  88.007 0.50 40.76           N

ATOM     51  NH1BARG A  -3     14.338  86.056  88.706 0.50 40.23           N

ATOM     52  NH2AARG A  -3     14.421  84.308  88.373 0.50 40.45           N

Type of 
atom

Position Atom in 
amino 

acid and 
amino 
acid
type

Location
of atom 
in 3-D
space

Figure 2.9: PDB file showing the co-ordinates corresponding to the tertiary struc-
ture position of an amino acid.
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Chapter 3

MAPPING SCHEMES FOR DNA AND PROTEIN SEQUENCES

DNA and protein data are in the form of discrete sequences. This is because DNA

data are composed of four nucleobases A, T, C and G whereas protein data are

composed of twenty possible amino acids. As discussed in Chapter 1, by mapping

nucleobases or amino acids to numerical sequences or discrete time-domain sig-

nals, the existing signal processing techniques can be used to successfully analyze

biological data without much modification.

3.1 Traditional Numerical Mapping Schemes

In literature, various nucleotide bases signal mapping schemes have been presented

that can be broadly classified into three categories, as we describe next.

3.1.1 Indicator sequence mapping

Numerical domain mapping for DNA sequences has been performed using indica-

tor vectors [61]. Specifically, the kth nucleobase, k = {A, T, C, G} is represented

by the 4 × 1 indicator vector uk, that is defined such that the value of the kth

vector position is set to the number one and all other vector values are set to

zero. In other words, the presence of a nucleobase is represented by the number

one and its absence by the number zero. The resulting four nucleobase vectors

are given by [61]. As a result the nucleotide bases are represented as:

uA =



















1

0

0

0



















,uC =



















0

1

0

0



















,uG =



















0

0

1

0



















,uT =



















0

0

0

1



















(3.1)

As indicator vectors cannot be used directly to perform any numerical operations,

weights wa, wc, wg and wt are assigned to the nucleobases. For example, the
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sequence {AGCAT} can be represented by the indicator vector

S =

[

wa wg wc wa wt

]

























1 0 0 0

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

























(3.2)

Binary indicator discrete time signals have been used to obtain Fourier

transform (FT) information for DNA sequences [5,16,27,38]. The kth indicator se-

quence (k = {A, C, G, T}) is the kth discrete-time sequence bk[n], n = 1, 2, . . . , N ,

whose value at time n is set to one of the corresponding DNA sequence has the ele-

ment k at discrete time n; otherwise, it takes the value zero. Specifically, bk[n] = 1,

if the nth element of the DNA sequence is k and bk[n] = 0, if the nth element of

the DNA sequence is not k. Here, N is the length of the DNA sequence. As an

example, we consider the N = 17 DNA sequence {ATTCAGGCTAGTCTAAC}.

For this sequence, the four binary indicator discrete time signals are given by:

bA[n] =











1, n = 1, 5, 10, 15, 16,

0, n = 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 17,

bT [n] =











1, n = 2, 3, 9, 12, 14,

0, n = 1, 4, 5, 6, 7, 8, 10, 11, 13, 15, 16, 17,

bC [n] =











1, n = 4, 8, 13, 17,

0, n = 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16

bG[n] =











1, n = 6, 7, 11,

0, n = 1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17

(3.3)

For example, bA[n] has one at positions n = 1, 5, 10, 15, 16 since the DNA

sequence has A in the corresponding positions.
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The discrete Fourier transform (FT) of each of the four binary indicator

sequences corresponding to each of the nucleobases is computed and summed up

to obtain the overall FT of the whole sequence [27]. Also, integer weights are used

to study spectral characteristics for gene evolution [15], whereas complex weights

were used to finding DNA complements [5].

The FT magnitude of an indicator discrete time-domain sequence for the

DNA coding region of Saccharomyces Cerevisae or S. Cerevisiae (a species of

budding yeast) is shown in Figure 3.1. Its corresponding power spectrum is shown

in Figure 3.2.
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Figure 3.1: Magnitude of the FT for the coding region of DNA from S.Cerevisae.
Note that the peak occurs at f = N/3 where N = 1871 in this example.

The spectrogram of the DNA sequence of S. Cerevisiae for a window size

of N = 60 is shown in Figure 3.3. The example taken demonstrates periodicity in

the spectrogram. The horizontal axis indicates the location in the DNA sequence

measured in base pairs from the origin, and the vertical axis indicates the discrete

frequency of the DFT measured in cycles per window size. Although traditional

spectrogams use pseudo-color to achieve greater contrast, the spectrograms in this
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Figure 3.2: Power spectrum related to the FT in Figure 3.1 for the coding stretch
of DNA from S.Cerevisae.
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Figure 3.3: Spectrogram for the coding stretch of DNA from S.Cerevisae.

Each DNA sequence is represented by four indicator discrete-time signals,

as in (3.3). In order to reduce the computational cost when using this representa-
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tion for DNA sequencing, the four signals can be reduced to three by using a tech-

nique that is symmetric to all the sequences [23]. This technique assigns a vertex of

a regular tetrahedron in 3-D space to each of the four DNA nucleobases. Specif-

ically, the three numerical sequences are first defined as x1 = {A1, T1, C1, G1},

x2 = {A2, T2, C2, G2}, x3 = {A3, T3, C3, G3}, by considering four 3-D vectors with

unit magnitude, pointing to the four directions from the center to the vertices of

the tetrahedron. In the example cited in [5, 23], the values chosen are:

(A1, A2, A3) = (0, 0, 1),

(T1, T2, T3) =

(

2
√

2

3
, 0,−1

3

)

,

(C1, C2, C3) =

(

−
√

2

3
,

√
6

3
,−1

3

)

,

(G1, G2, G3) =

(

−
√

2

3
,−

√
6

3
,−1

3

)

.

Using these values, we obtain the three new indicator discrete time signals as

x1[n] =

√
2

3
(2bT [n] − bC [n] − bG[n]),

x2[n] =

√
6

3
(bC [n] − bG[n]),

x3[n] =
1

3
(3bA[n] − bT [n] − bC [n] − bG[n])

where bA[n], bA[n], bA[n], and bA[n] are defined as earlier. This mapping is partic-

ularly useful in computing the spectrogram of the DNA data [5], since the three

colors in the spectrogram (red, green and blue) can be attributed to the three

indicator discrete-time signals.

3.1.2 Real number mapping

The real number mapping technique is an efficient technique for finding comple-

ments in DNA sequences [19]. Using the real number mapping, complementary

nucleobases are mapped using the same magnitude but opposite signs.

30



A → −1.5, T → −0.5, C → 0.5, and G → 1.5. (3.4)

In Equation (3.4), the notation A → −1.5 reads: the nucleobase A is

mapped to real number −1.5. The mapping is demonstrated in Figure 3.4. Al-

though this mapping is also suited for computing correlation values, it should not

be used to draw conclusions on the correlation structure of DNA sequences, as

the correlations are biased. This approach has been used for autoregressive (AR)

modeling and feature distribution analysis in [19]. Note that since only four real

numbers are used for DNA data, this approach can be considered as a special case

of a four signal pulse amplitude modulation (4-PAM) scheme.

-1.5 (A)                 -0.5 (G)                  0.5 (C)                  1.5 (T) 

Figure 3.4: Real number mapping.

Another method that is discussed in [61] assigns an increasing sequence

of positive integers to the alphabetically sorted nucleobases after obtaining the

indicator sequences. The assignment is performed as A → 1, C → 2, G → 3, and

T → 4.

3.1.3 Complex number mapping

The complex number mapping approach as presented in [5]. The complex numbers

nA, nT , nC , and nG are assigned to the characters A, T, C, and G respectively.

The complex conjugate pairs for the mapping are chosen as nT = n∗
A and nG =

n∗
C are chosen. The complementary DNA strand is represented by
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x̃[n] = x∗[−n + N − 1], for n = 0, 1, . . . , N − 1,

where N is the length of the DNA sequence. A specific complex number mapping

is given by (3.5).

A → nA = 1 + j

T → nT = 1 − j

C → nC = −1 − j

G → nG = −1 + j

(3.5)

The mapping is demonstrated in Figure 3.5 and can be considered as a special

case of quadrature phase shift keying (QPSK) [62].

Figure 3.5: Complex number mapping

Another example of complex number mapping that has been used in the

literature [63,64] is the assignment of roots of unity to the sequences, i.e., nA = 1,

nT = j, nC = −1, nG = j. This type of mapping has also been extended to the

case of protein sequences in [65] with the twenty roots of unity mapped to the

twenty amino acids.

3.2 Waveform Mapping Schemes

So far, although DNA and protein sequences were mapped to time-domain sig-

nals, the signals considered were only discrete-time sequences over small finite
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sets. For example, only four real numbers were for DNA sequences when real

number mapping was used. This type of mapping inherently puts a limit on

the type of signal processing algorithms that can be used to process the biologi-

cal data. We propose to use continuous time-domain waveform as our mapping

mechanism instead. In addition to using a waveform to represent, for example,

a DNA nucleotide base, we will also embed useful biological properties onto the

waveform parameters in order to increase the amount of distinct data features as

well as have more available signal process methodologies to use for processing.

We consider mapping DNA nucleotide base sequences to time-domain

waveforms. We choose the type of waveform used in the mapping based on the

waveform properties and on the signal processing method adopted for the se-

quence alignment algorithm. For a correlation-based matched filtering sequence

alignment approach, the waveform used for the mapping must be orthogonal in

order to achieve maximum correlation values [66]. For an alignment approach

based on an orthogonal signal basis expansion, the mapping waveform will again

need to be orthogonal. However, if the alignment approach uses a signal expan-

sion, then the mapping waveforms do not have to be orthogonal; they only need

to be functions with time-varying, highly-localized spectra in the time-frequency

plane.

We first consider two types of waveforms, sinusoids and linear frequency-

modulated (LFM) chirps, that can be made orthogonal by their choice of pa-

rameters. We then consider Gaussian waveforms that are highly localized in the

time-frequency plane.
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3.2.1 Sinusoid Waveform Mapping

When we use sinusoids to map DNA nucleobases, we consider L = 4 orthogonal

sinusoids given by

sl(t) = e
j2π ( l

Td
) t

, l = 1, . . . , L, 0 ≤ t < Td , (3.6)

where Td is the duration of the waveform. The frequency of the lth sinusoid is

fl = l/Td, corresponding to the frequency of the lth multiple of the harmonic

frequency 1/Td. The L harmonics ensure that the sinusoids are orthogonal so

that the inner product between any two sinusoids is given by

〈sk, sl〉
△
=

∫ Td

0

sk(t) s∗l (t) dt

=

∫ Td

0

e
j2π( k

Td
) t

e
−j2π( l

Td
) t

dt

=











Td, for k = l

0, for k 6= l
.

(3.7)

Here, the inner product is effectively the FT of windowed sinusoids, thus the

computation is fast and efficient. Note that the mapping of the nucleobases to

sinusoids is similar to the orthogonal frequency division multiplexing (OFDM)

scheme [67]. Also, the sinusoid mapping scheme can be shown to be a more general

case of the complex number mapping discussed in Section 3.1. This follows from

the fact that the roots of unity in the complex mapping scheme correspond to

specific fixed values of orthogonal sinusoids. As a result, the complex mapping

scheme uses four numbers whereas the sinusoid mapping uses four waveforms to

represent the four DNA nucleobases.

For implementation purposes, the continuous-time waveform is discretized

using a sampling frequency fs. For example, for the sinusoid waveform in (3.6),

the discrete-time waveform, sl[n]=sl(n/fs), is used instead of the continuous-

time signal sl(t). An example of four normalized sinusoids, corresponding to the
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four DNA nucleobases, are shown in Figure 3.6. For this example, the waveform

duration was chosen as Td = 0.1 second in Equation (3.6) and the sampling

frequency was fs = 1000 Hz.
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Figure 3.6: Sinusoid signals representing the four nucleobases.The duration of the
signal is 0.1 seconds, and the sampling frequency is 1000 Hz.

3.2.2 LFM Chirp Waveform Mapping

The LFM chirp is time-varying since its spectrum varies linearly with time. It is

defined as [68]

hl(t) =
√

2 t ej2πcl t2 , 0 < t < Td (3.8)

where cl in (Hz)2 is the frequency-modulation (FM) rate and Td is the waveform

duration in seconds. The instantaneous frequency (IF) of the LFM chirp, given

by 2 cl t, represents the linear frequency variation of the waveform with respect to

time. Ideally, the time-frequency representation of this waveform is a line, going

through the origin of the time-frequency plane, with slope 2 cl. Note that the

amplitude modulation
√

2 t in (3.8) ensures that the LFM chirp is an orthogo-

nal signal. This can be shown by taking the inner product between two LFM
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chirp signals with different FM rates and infinite duration. With finite duration,

and using L = 4 LFM chirps to map the four DNA nucleobases, we can show

orthogonality by computing the inner product

〈hk, hl〉 △
=

∫ Td

0

hk(t) h∗

l (t) dt

=

∫ Td

0

2 t ej2πck t2 e−j2πcl t2 dt

=
1

T 2
d

∫ T 2

d

0

ej2πck τ e−j2πcl τ dτ

(3.9)

If we compare equations (3.9) and (3.7) and let the difference between the

FM rates be given by ∆c = ck − cl = K/T 2
d , for some integer number K, then

〈hk, hl〉 ==











1, for k = l

0, for k 6= l
. (3.10)

As the minimum possible value for K is 1, the minimum FM rate difference is

given by ∆cmin=1/T 2
d , and the FM rate can be chosen as cl = l/T 2

d , l = 1, . . . , 4.

As a result, the LFM chirp that we can use for the mapping is given by

hl(t) =
√

2 t e
j2π t2

T2

d , 0 < t < Td.

Using these FM rates, an example of the corresponding IFs of four LFM

chirps that can be used to represent the four nucleobases is demonstrated in Figure

3.7. The chirp signals corresponding to the four nucleobases are shown in Figure

3.8. Note that the FM rate can be made negative to represent complementary

strands or complementary nucleotides; this is also possible in the sinusoid mapping

by using the negative of the chosen frequencies. The LFM scheme, however, is

preferred over the sinusoid scheme when bandwidth requirements are limited since

it is possible to place many orthogonal LFM chirps in a given bandwidth.
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Figure 3.7: Instantaneous frequency of LFM chirp waveforms, representing the
four nucleobases. The duration of the signal is 0.1 seconds, and the sampling
frequency is 1000 Hz. The frequency axis is shown normalized by the sampling
frequency
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Figure 3.8: LFM chirp waveforms representing the four nucleobases. When dis-
cretizing the chirps, the highest FM rate was chosen to satisfy c4 ≤≤ fs

4Td
in order

to avoid aliasing. Here fs is the aliasing frequency and Td is the duration of the
signal. For this example Td is 0.1 seconds, and fs is 1000 Hz. The instantaneous
frequencies of these waveforms are provided in Figure 3.7.
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3.2.3 Gaussian Waveform Mapping Scheme

Gaussian waveforms can be shown to be the most localized waveforms in both

time and frequency as they satisfy the uncertainty principle [69]. This high time-

frequency localization property of the Gaussian waveforms makes them good can-

didates for representing DNA sequences in the time-frequency plane. Specifically,

we map the kth nucleotide base using the frequency shift kF , k=1, . . . , 4, of a ba-

sic Gaussian waveform g(t)=e−πt2. This mapping is such that the k=1 frequency

shift represents character A, k=2 represents C, k= 3 represents G, and k=4 rep-

resents T . We use an additional frequency shift with k=5 to represent the gap for

insertions and deletions. By also time-shifting the Gaussian waveform,

gm,k(t) = g(t − mτs) ej2πkF t = e−π(t−mτs)2 ej2πkF t , (3.11)

we provide the time-shift parameter mτs that can be used to represent the position

of a nucleotide base in a sequence. For example, if a DNA sequence has 16 ele-

ments, and we are considering the 9th element in the sequence, then the Gaussian

waveform will be at mτs=9τs. In summary, by sampling the time-frequency plane,

the discrete point (m, k), which is the center location of the Gaussian waveform

gm,k(t) provides the following information: nucleotide base k is in position m of

the DNA sequence. The time-frequency sampling is demonstrated in Figure 3.9,

and an example is demonstrated in Figure 3.10, where the sequence {ATCA} is

represented in terms of the Gaussian waveforms g1,1(t), g2,4(t), g3,2(t), and g4,1(t).

The waveform representation for the protein sequence is discussed in Section 4.7.
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Figure 3.9: Gaussian waveforms representing DNA nucleotide bases in the time-
frequency plane based on their position in a sequence.

Figure 3.10: Example of four Gaussian waveforms representing the DNA sequence
{ATCA}.
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Chapter 4

QUERY-BASED DNA SEQUENCE ALIGNMENT

In general, sequence alignment is an arrangement of primary sequences of the

DNA, RNA (ribonucleic acid) or proteins, in order to identify regions of similari-

ties among them. This identification of similarity can be attributed to functional

relationships between the sequences. By studying the sequence similarity between

a new gene sequence and sequences of known structure or function, we can infer

the functionality of the newly sequenced gene [70].

A sequence alignment tool must take into account the mutations due to

cloning, sequencing errors, and the variations in the nucleotides, when comparing

a given sequence with the sequences in the database. A variety of alignment tools

have been developed using dynamic-programming techniques in bioinformatics

[71–73]. A few alignment tools have also been developed using signal processing

techniques [63–65,74–78].

4.1 Types of Sequence Alignment

There are three main types of sequence alignment: global, local and multiple

alignments.

Global sequence alignment refers to aligning each and every residue (char-

acter) in every sequence, i.e., alignment over the whole length. It occurs when the

two sequences are roughly of the same size. Global alignment may fail to find the

best local region of similarity, and will return only the best matching segment for

a given pair of sequences. The Needleman-Wunsch algorithm [71] is an efficient

dynamic algorithm for global sequence alignment.
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Local sequence alignment refers to finding regions of similarity between a

large sequence and a query sequence. This does not have to occur over the entire

length of the sequence. The regions in the large sequence with a high degree

of similarity are found; there can be multiple such regions for a given pair of

sequences. The Smith-Waterman algorithm provides a dynamic programming

algorithm for local sequence alignment [72].

Multiple sequence alignment refers to finding regions of similarity between

a larger set of sequences. It is an extension of the above two pairwise alignments,

and aims at the alignment of more than two sequences simultaneously. Multiple

sequence alignment tools try to align all the sequences of a given query set. This

is particularly helpful in identifying conserved sequence regions across of a group

of sequences that are related evolutionally.

4.2 Sequence Alignment Tools

A plethora of alignment tools are available for local, global and multiple sequence

alignment algorithms. There have been many computational approaches devel-

oped that are best suited to identify select alignments that are of interest to the

developer. Hence, an alignment tool may be suitable for capturing a few align-

ments and fail to capture other alignments. A comprehensive list of available

alignment tools can be found at http://pbil.univ-lyon1.fr/alignment.html.

We discuss two of the most popular alignment tools below.

4.2.1 Computational Methods

The basic local alignment search tool (BLAST) [73] is a powerful local alignment

tool which can be accessed through the Internet at http://www.ncbi.nlm.nih.

gov/BLAST/. The input to the BLAST tool is a query sequence and a database of

sequences, and the output is a pair of sequences with maximum similarity. This
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has been a benchmark tool in the area of local sequence alignment. There are a

variety of searches in BLAST that are broadly classified into basic searches and

specialized searches. Each of these alignments are processed using various different

programs such as blastn, blastp, blastx, tblastn, tblastx for nucleotide and protein

sequence alignments [73]. The database sequences can be protein or nucleotide

databases depending on the type of alignment performed, i.e., protein sequence

alignment or DNA sequence alignment. Although this is a widely used tool, its

major drawback is accuracy. At the cost of efficiency in terms of time, there

is a compromise on the accuracy of the alignment. Especially for queries with

repetitive segments, BLAST does not provide satisfactory results. In addition,

the sequences in the database of BLAST are pre-processed and indexed for faster

retrieval during the query process. Thus, if newer sequences need to be queried,

the indexing process must be performed before the query, thus delaying the query

process.

Another powerful alignment tool that was used before BLAST was FASTA

(http://www.ebi.ac.uk/fasta/). This tool was derived from the logic of the dot

plot. It was the first widely used program for database similarity searching. The

program is better suited for nucleotide alignments than proteins. However, after

BLAST came into use, FASTA became more popular as a format for the nucleotide

and protein sequences than as an alignment tool. In terms of performance, the

following is stated in [79] “FASTA is slower compared to the BLAST, however the

results produced are equivalent for highly similar sequences. BLAST is faster than

FASTA without significant loss of ability to find the similar database sequences.

FASTA may be better for less similar sequences.”

Other computational approaches include BLAT [80], OASIS [81], BWT-

SW [82], and SST [83]. There have also been many q-gram based querying ap-

proaches such as QUASAR [84] and VGRAM [85]. These methods were shown

42



to be efficient for shorter query lengths. As in the case with BLAST, a few of

these methods also perform indexing on the database before the querying takes

place. As a result, there is an underline need for a tool that performs efficient

query processing over larger databases in real-time.

There are a few drawbacks in using dynamic programming for sequence

alignment. In particular, the data to be queried must be indexed and pre-

processed prior to the query process. Also, the method is insensitive to alignments

over repetitive or periodic data segments, and the method is not always capable

of handling large query lengths.

4.2.2 Signal Processing-based Approaches

While there have been many dynamic computational-based approaches to solve

the sequence alignment problem, a few algorithms based on signal processing

have also been developed. These algorithms consider sequence alignment as a

sequence-matching problem. The common premise of the algorithms is to use

cross-correlation of the sequences as a measure of similarity. Often, the cross-

correlation is obtained using the fast Fourier transform (FFT) that can reduce

the computational complexity from O(N2) to O(log2N), where N is the length of

the sequences to be aligned.

In [74] , an FFT approach was considered for a very general case of se-

quence matching. Specifically, the DNA sequence is first mapped to four binary

indicator sequences and then the overall number of matches at a shift is found

using convolution; this can be computed as the product of FFTs of the two se-

quences in the frequency domain. This method, however, is very limited in terms

of computations and number of insertions and deletions. This basic algorithm

was improved in [64], where complex number mapping was used instead of binary

indicator sequence mapping. The peaks observed in the correlation domain de-
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termined that the sequences compared were similar. Note that the binary and

complex indicator sequence mapping do not clearly distinguish between global

and local alignment.

After nearly more than a decade, an efficient algorithm using the FFT

was proposed in [63] to capture local similarities, i.e., to perform local alignment.

This algorithm forms sub-sequences from the original query and tries to find

the best match for the sub-sequence; the best match is then extended until the

threshold is reached. This technique has provided insight into the benefits of

the FFT approach for the sequence alignment problem. A performance metric

for this method, called position specific match score, was presented in [75]. This

scheme used a variant of the complex coding scheme, which used two indicator

sequences instead of one. Another version of the FFT-based correlation method

was described in [76], which used complex mapping for the sequence. The method

obtained the similarity scores by plotting the time shift with respect to cross-

correlation values. However, the algorithm was developed for a very general case

of global alignment, and the position of the similarities was not clearly described.

A base by base comparison had to be performed on the best similarity scores to

find the exact alignment, and that was an overload on the algorithm.

In an algorithm called MAFFT [77], multiple sequence alignment was per-

formed for protein sequences using the FFT. The correlations between two amino

acid sequences were first computed, and based on the correlation values obtained,

the homologous regions in the sequences were found. The optimal arrangement of

the homologous segments results in an alignment. The above process was repeated

with other sequences, on a group-to-group basis, to perform multiple alignment.

However, this algorithm failed to provide information about the exact position

of the match and only provided information about the relative shifts in position

between sequences. The technique proposed by [65], called sequence-wide investi-
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gation using Fourier transform (SWIFT), describes a pattern search algorithm for

protein sequences. This method used an FFT-based cross-correlation approach

with complex mapping for the amino acids.

A wavelet transform based cross-correlation method was used in [86] for

protein sequence alignment based on spatial resolution. Wavelet transform analy-

sis was also used to characterize long range correlations in DNA sequences [41–43]

and thus to study the structure of the nucleosome and infer similarities in the se-

quences.

The performance of the signal processing methods is comparable to the

performance of the dynamic programming based approaches, and at times better

in identifying alignment. However, the regular cross-correlation approach has not

been shown to provide good alignment reports with respect to the position or for

sequences with repetitive patterns. Also the problem of local alignment has not

been handled very well. The cross-correlation approach does not consider partial

sequence mismatches that occur due to mutations or errors during data entry and

it may also provide incorrect alignments when applied to periodic sequences [78].

The symmetric phase-only matched filter approach proposed in [78,87] performed

better than the regular cross-correlation approach for sequences with repetitive

patterns.

In protein sequence alignment, the similarity in amino acid sequence com-

position is dependent not only on complete amino acid matches, but also on partial

matches (due to the mRNA transcription from the DNA sequence). The partial

matches have not been well represented by other signal processing approaches

because the mapping schemes either provide a complete match or declare a mis-

match.
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4.3 Sequence Alignment Scenarios

The essence of sequence alignment is to find regions of similarity between two or

more sequences. If the similarity is captured over the entire length of the two

sequences, it is called global alignment. If the similarity is to be captured over

smaller portions of the two sequences locally, it is called local alignment. In other

words, we wish to find the regions (sub-sequences) in the pair of sequences that are

considered, that will provide a good alignment in terms of various performance

parameters. The aligned regions may occur anywhere in the sequences. Also,

there can be more than one region of alignment for a given query sub-sequence.

In the alignment problem, a short sequence is to be aligned with a long

sequence. That is, we must find the position in the long sequence, where the short

sequence appears. The short sequence (usually in the order of a few hundreds

or thousands of characters) is called the query sequence and the long sequence

(usually in the order of hundreds of thousands of characters) is a sequence in

the database; we will refer to the long sequence as the database or simply data

sequence. An illustration of this is shown in Figure 4.1.

Figure 4.1: Query and database sequences that need to be aligned.

Consider the data sequence d[n] and the query sequence q[n]. These se-

quences are first mapped to the time-domain using one of the mapping techniques

described in Section 3.2. The time-domain signals are referred to as d(t) and q(t),
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respectively. The signals that map each character are chosen to be orthogonal.

The proposed algorithm considers four different cases of alignment between the

two sequences, and they are described next.

Case 1: Complete alignment Complete alignment occurs when the query

sequence is similar in its entirety or up to a small number of mismatches to

within a portion of the long database sequence. The aligned region can occur

anywhere in the data sequence. This is illustrated in Figure 4.2, where the query

sequence has a complete match in the database sequence with one nucleotide base

mismatch.

Figure 4.2: Complete alignment. The lines (|) represent a match and the asterisk
(*) represents a mismatch.

Let the database sequence be composed of p sub-sequences, i.e. d(t) =

{d1(t), .....dp(t)}. Each of these sub-sequences are different by one character, that

is the subsequences have overlapping regions. Also, let each subsequence be com-

posed of Q characters and let the time between the consecutive characters be

τs. This is demonstrated for Q=4 in Figure 4.3; Figure 4.4 depicts d1(t) using

sinusoid mapping with Q=4 and τs=1 s. The time distance between consecutive

nucleotide bases is τs. The duration of di(t) is Qτs.

Then, the best match for q(t) from the sub-sequence di(t), where i = 1, . . . ,

p needs to be found. The similarity statistic normally used is the inner product
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or cross-correlation between each di(t) and q(t), which is 〈di, q〉.

〈di, q〉 =

∫ (Q+i−1)τs

(i−i)τs)

di(t)q
∗(t)dt, (4.1)

where Q is the number of characters in the sub-sequence.

If this correlation is greater than a threshold γ, then we can say that the

sequences are similar. Note that this correlation value corresponds to the number

of matches between the two sequences. This is obtained by mapping the sequences

to orthogonal chirps or sinusoids. As a result of that, when two characters are

matched, the correlation is one and it is zero for a mismatch.

If 〈di, q〉 > γ ⇒ possible complete alignment. (4.2)

The position in the database sequence can be identified using the index i

of di(t) in d(t). A plot of the correlation value versus the shift value provides with

the measure of similarity and the corresponding position of the ith sub-sequence in

the data sequence. The maximum correlation value is the best fit. The mismatch

count in the alignment can also be obtained by subtracting the correlation value

from the length of the aligned sequences.

Case 2: Un-gapped local alignment In the local alignment case, portions of

the query sequence are aligned with portions of the database sequence as shown

in Figure 4.5.

The query sequence in the example in the figure is {TGCTAACTCACA}.

A best match is not found for the entire sequence, however portions of the sequence

have matches in the database sequence at different positions. The subsequences

{TGCT}, {AACT}, {CACA} found exact matches in different positions in the

database sequence.

49



However, if the sub-sequences are of small length, a large number of align-

ments will occur. Thus, there is a need for a parameter which defines the minimum

length of acceptable alignment and this is defined by a threshold γ. The sequences

to be aligned might not be completely similar and may have a few mismatches oc-

curring in between alignments. For example, if two sub-sequences have 30 matches

followed by a mismatch, followed by 70 consecutive matches, this is not considered

as two cases of alignment. This is just one case of alignment with a mismatch

occurring. The algorithm should allow for a small number of mismatches, if the

best local alignments are to be obtained.

Figure 4.5: Un-gapped local alignment.

Consider sub-sequences for both the data sequence d(t) and the query

sequences q(t):

d(t) = {d1(t), . . . , dp(t)}

q(t) = {q1(t), . . . , qr(t)}, r ≤ p

The test 〈di, qj〉 > γ, i = 1, ...., p and j = 1, ...., r, is considered. If the test

holds, then di(t) and qj(t) are considered as possible local alignment pairs. All

combinations of di(t) and qj(t) that satisfy the threshold are considered as cases

of local alignment. The permissible mismatch count is absorbed within the value

of the threshold γ itself.

The possible cases of alignment are categorized based on the similarity
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measure, and more importantly, the length of each alignment. For example, an

alignment of length 40 with 2 mismatches is considered as important as or even

more important than an alignment of length 20 with zero mismatches. The simi-

larity measures are obtained from the correlation value, and we can determine the

length of the alignment. The goodness of the alignment is well-defined by these

two metrics, however on a large scale, it is important to have a single performance

metric. This will be addressed in the proposed work.

This case has been implemented using the chirp mapping and the sinusoid

mapping, however the performance was not satisfactory. Even though the algo-

rithm is fairly simple, the computational intensity and the number of variables

used make the direct cross-correlation method an unsuitable candidate for this

alignment case.

Case 3: Gapped local alignment In certain cases, in order to obtain the best

alignment, it may be necessary to insert gaps in the query sequence or in the data

sequence. These are referred to as insertions and deletions. These gaps may be

attributed to the fact that, during evolution, the nucleotide sequence may have

lost or gained a few properties. Thus, it is important to identify the alignment,

even with gaps incorporated within the aligned sequence, since this might lead

to a better aligned sequence when compared to other alignments. The case of

the gapped alignment is shown in Figure 4.6. In the example given in the figure,

the query sub-sequence AATG does not have an exact match in the database

sequence. There is a possible alignment with the data sequence AACTG, if a gap

is inserted in the query sub-sequence, as AA−TG. Similarly, query sub-sequence

CCCA does not have an exact match with the database sequence, however it

aligns with CCA with the insertion of a gap in the data sequence or deletion of

C in the query sequence. Most correlation-based approaches do not handle the
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Figure 4.6: Gapped local alignment.

problem of the gapped alignment well.

Consider sub-sequences of the data sequence d(t) and the query sequences

q(t):

d(t) = {d1(t), . . . , dp(t)}

q(t) = {q1(t), . . . , qr(t)}, r ≤ p

The test 〈di + oi′, qj + oj′〉 > γ, i = 1, ...., p and j = 1, ...., r is considered.

If the test holds, then di(t) and qj(t) are considered as possible local align-

ment pairs, where oi′(t) and oj′(t) are the signals corresponding to the gaps in-

serted in the data sequence and the query sequence respectively. Here, i′ and

j′ provide the position of the gaps that are inserted in the data and the query

sequence, respectively.

As described in Case 2, all combinations of di(t) and qj(t) that satisfy the

threshold are considered as cases of local alignment.

Case 4: Global alignment Global alignment refers to the alignment of two

sequences over the entire length of the sequences. This is similar to the alignment

presented in Case 1. However, the alignment in Case 1 compared the sequence over

the entire length of the query, and failed to identify the region of local similarity.

Global alignment is the case when a portion of the query sequence (query sub-

sequence) has high similarity to the database sequence at a particular position;
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the rest of the sub-sequences do not align well with the database sequence at the

same position, but still have acceptable measures of similarity. Thus, the local

similarities are well captured for the sub-sequences, as opposed to Case 1. This is

illustrated in Figure 4.7. This case of global alignment occurs when the sequences

are not of comparable length, and it can be viewed as a case of combining different

local alignments.

Figure 4.7: Global alignment. The solid portion of the line indicates the query
sub-sequence higher measure of similarity, whereas the dotted lines represent the
acceptable measures of similarity.

A more general case of global alignment has the alignment performed over

the entire length of the two sequences, if they are of comparable length. It is

a fairly simple and straightforward case, provided we allow insertions, deletions,

and mismatches. For example, consider the two sequences:

Sequence 1 : AATCGTCGATGCATGTCACATGCGTA,

Sequence 2 : AATCTCGAGGCCATGGTCACTGCGA.

The two sequences can be globally aligned as shown below:

AATCGTCGATGC–ATG–TCACATGCGTA

AATC–TCGAGGCCATGGTCAC–TGCG–A

(4.3)
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4.4 Querying using Cross-correlation based matched filtering

We illustrate an example of global querying with sequences from S. Cerevisiae

using a simple query with Q = 36 nucleotide bases. The database sequence

and the query sequence were mapped to LFM chirp waveforms, and correlations

between the database and query sequences were computed for every position in

the database sequence. A plot of correlation values (or similarity measure) versus

the position in the database sequence, where an exact match with the query was

obtained, is shown in Figure 4.8.
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Figure 4.8: Correlation value (similarity measure) versus position for sequences
obtained from S. Cerevisae. The maximum correlation value (of 36) occurs at
position 51 in the database sequence.

The maximum correlation value occurs at position 51 in the database se-

quence with 36 nucleotide bases captured in the alignment. As the length of

the query sequence is 36, the best match for the query signal is at position 51.

Therefore, the query is found in the database sequence between positions 51 and

86. By defining the threshold γ, other possible alignments can also be obtained

by comparing the correlation value with the threshold. The sinusoid mapping
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scheme gave an identical performance but it was much faster as the use of the

FFT reduced the number of computations. The complexity of the LFM chirp

mapping scheme is in the order of O(Q2) whereas the complexity of the sinusoid

mapping scheme is in the order of O(Q logQ).

The cross-correlation based matched filter approach was used for localized

querying. However, the length of the alignment as well as the start and stop

positions of the alignments are not known. The algorithm needs to adaptively

find the local alignments by beginning with a small alignment length and extend

the length of the database sequence and the query sequence until the threshold

condition is not satisfied. This results in a large number of alignments, and,

more importantly, in a large number of variables in order to store the position,

length, start and stop points of every alignment. The result of every alignment is

compiled and arranged at the end of the analysis, and the best alignment results

are obtained. Even though it is fairly simple, the matched filtering query-based

alignment algorithm is highly computationally intense and has a large memory

requirement.

4.5 Matching Pursuit Decomposition based Querying Algorithm

The use of signal correlations with orthogonal waveform mapping for localized

querying is not efficient due to the intensity of the computations and the number

of variables used in storing the positions of the alignments. Thus, we propose

an algorithm that performs querying and alignment based on the matching pur-

suit decomposition (MPD) algorithm. The new WAVEQuery algorithm provides

an additional mapping parameter to control the position of an element in the

sequence. The details of the MPD algorithm are outlined next, followed by its ap-

plication to DNA globalized and localized querying. For the globalized querying

case, we expect the algorithm to perform equally well as the chirp and sinusoid
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mapping alignment using correlations. We expect a better performance for the

local alignment case.

4.5.1 Matching Pursuit Decomposition Algorithm

The MPD algorithm expands a time-domain signal x(t) into a linear combination

of basis functions called atoms, which are selected form a dictionary D. The atoms

in the dictionary are defined as:

gn,k,l(t) = g

(

t − τn

al

)

e−j2πfkt, (4.4)

where τn is the nth time shift, fk is the kth frequency shift and al is the lth scale

change on the basic Gaussian atom g(t) = e−πt2 . The range of values of n, k, and

l depend on how finely we sample the time-frequency plane. The advantage of

using Gaussian atoms is that they are the most concentrated signals in both time

and frequency [49]. Note that the MPD does not require orthogonal waveforms

in its dictionary.

The decomposed signal is given by

x(t) =
M−1
∑

i=0

αigi(t) + rM(t) (4.5)

where M is the number of iterations, αi are the expansion coefficients,

αi =

∫

τs

ri(t)g
∗

i (t)dt, i = 0, . . . , M − 1 (4.6)

and ri(t) denotes the residue function after the ith iteration, with the initial

residue taken as the signal itself. At the ith iteration, the selected atom gi(t)

is chosen as the atom that resulted in the maximum correlation between any

dictionary atom and the ith residue signal,

gi(t) = arg max
n,k,l

∫

τs

ri(t)g
∗

n,k,l(t) dt. (4.7)
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The MPD is an iterative process that yields a sparse decomposition; if the

waveform to be decomposed matches the basis functions, the MPD requires only

the first few atoms to obtain a good approximation of the waveform [49]. The

procedure steps are summarized as follows:

1. Initialize the residue vector: r0(t) = x(t)

2. a) For iterations i = 0, . . . , N−1, compute the correlation (inner product)

between ri(t) and every atom gn,k,l(t) in the dictionary D:

∀g ∈ D : Λn,k,l = |〈ri, gn,k,l〉|

where 〈ri, gn,k,l〉 =
∫

τs
ri(t)g

∗
n,k,l(t)dt

b) Search for the atom that resulted in the highest correlation value:

gi(t) = arg max
g(t)∈D

Λn,k,l

c) Subtract the weighted atom from the residue:

ri+1(t) = ri(t) − αigi(t)

where αi is computed as in (4.6).

3. The iterations are terminated when the desired level of accuracy is reached

in terms of the extracted number of atoms or in terms of the energy ratio

between the original signal and the current residue ri(t).

4.5.2 MPD WAVEQuery Alignment of DNA Sequences

Our proposed WAVEQuery method first maps DNA sequences onto Gaussian

waveforms using a mapping that is matched to the MPD dictionary, and then

it uses the MPD algorithm to perform querying and alignment. Specifically, we

choose a basic Gaussian waveform g(t)=e−πt2 and only two of the three MPD
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transformation parameters in (4.4). We use the time shift parameter τm=mτs and

the frequency shift parameter fk=kF , where τs and F are the sampling periods in

time and frequency, respectively. Thus, we form a dictionary of Gaussian atoms,

gm,k(t), with k=1, 2, 3, 4 representing the 4 nucleotide bases and m=1, . . . , Q,

representing the position of the nucleotide base in a DNA sequence of length

Q [88].

It is important to note that our WAVEQuery approach makes use of the

MPD algorithm in a unique and efficient way. Specifically, we pre-determine

the time-frequency grid spacing of the dictionary atoms since we generate the

waveforms using the mapping scheme, thus ensuring that the decomposed atoms

are guaranteed to either be present or not be presented on this fixed grid. By

choosing Gaussian waveforms, we ensure high localization in the time-frequency

plane. We also need to run as many MPD iterations as the number of elements

in the data sequences; this implies that we do not have to worry about stopping

criteria for the iterative MPD algorithm. Since we perform the mapping, the

query and data mapped waveforms are not noisy, and thus correlations between

residues and dictionary atoms result in either very high or very low values. As

a result, the resulting querying algorithms do not suffer from accumulated errors

due to the iterative nature of the MPD algorithm.

4.5.2.1 WAVEQuery for Globalized Querying

For complete alignment in DNA sequences, we consider the database waveform

d(t)={d1(t), . . . , dPd
(t)}, Pd ∈ N, and the query waveform q(t)=

∑Q−1
m=1 gm,k(t).

The query waveform consists of Q Gaussian waveforms, gm,k(t), from the MPD

dictionary D. The WAVEQuery algorithm for globalized querying is outlined in

Algorithm 1.

In Algorithm 1, the outer loop is iterated Pd times, where Pd is the number

58



Algorithm 1 Globalized Querying - global-align(d(t), q(t))

for p = 1 to Pd do

let r1(t) = dp(t) {Initialize residue}
ξp
1 = 0 {Initialize variable to store correlation value}

for i = 1 to Q do

Λm,k = |〈ri, gm,k〉|
= |

∫

τs
ri(t) g∗

m,k(t) dt| {Compute correlation between residue and all
dictionary elements}
g(i)(t) = arg max

gm,k(t)∈D
Λm,k {Search for atom that corresponds to the maxi-

mum correlation value}
ri+1(t) = ri(t) − αi g

(i)(t) {Subtract weighted atom from residue}
ξp
i = ξp

i + αi {Update correlation value}
end for

end for

d̂(t) = arg max
p=1,...,Pd

ξp
Q {Sub-sequence in d(t) that resulted in the best fit with the

query sequence}

of sub-sequences in the database sequence; the inner loop is iterated Q times,

where Q is the length of the query sequence. Note that d̂(t) is the sub-sequence

in d(t) that resulted in the best fit for q(t) [88, 89].

4.5.2.2 WAVEQuery for Localized Querying

The globalized query algorithm is modified for localized querying as follows (and

as also outlined in Algorithm 2).

1. We consider the database waveform d(t) consisting of sub-sequences dp(t),

i=1, . . . , Pd, Pd ∈ N, and the query waveform q(t). We consider the sub-

sequence qj(t) (whose minimum length Qj is specified by the user), j=1, . . . , Pq,

of the query sequence and the MPD decomposition of the sub-sequence

qj(t)=
∑Qj−1

mj=1 gmj ,kj
(t). The dictionary D is formed by all Gaussian atoms

needed to map all sub-sequences of q(t).

2. The dictionary length increases as the length of the query sub-sequence in-

creases. Based on the required accuracy, the user can define the increment
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Algorithm 2 Localized Querying - local-align(d(t), q(t))

Qj = Qu {Initialize user-defined minimum length Qu for query sub-sequence
qj(t)}
while ξp

Qj
≥ threshold do

ξp
Qj

= global-align(dp(t), qj(t)) {Perform alignment and obtain the maxi-

mum correlation value}
Qj = Qj+increment {Extend dictionary elements based on user-defined in-
crement in query length}

end while

d̂j(t) = arg max
p

ξp
Qj

{Best possible alignment of qj(t)}
qj+1(t) is the unaligned portion of the query, from Qj to Q

value, taking into account that the increment can also increase the compu-

tational expense of the algorithm. This is continued until the best possible

alignment is obtained and the minimum threshold condition is satisfied.

3. The unaligned portion of the query then becomes the new query.

The alignment steps are repeated until the end of the query sequence. Once

the entire query is aligned with the database waveform, the aligned sequences are

stored in the order of their similarity scores, together with information about the

position of the aligned portions in the query and database sequences.

4.5.2.3 WAVEQuery for Localized Querying with Gap Insertions and Deletions

By inserting gaps in the database or query sequences, we may be able to obtain

better and longer alignments. This is one feature that is not provided by most

signal processing approaches. A gap is represented by a fifth frequency shift in

the time-frequency plane. The algorithm adaptively inserts gaps in the query and

database sequences to find better alignment results. The details of the algorithm

are outlined in Algorithm 3.

From the localized querying algorithm in Section 4.5.2.2, we obtain align-

ments of minimum length, as specified by the user. The choice of the position
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Algorithm 3 Gapped localized Querying - glocal-align(d(t), q(t))

Qj = Qu {Initialize user-defined minimum length Qu for query sub-sequence
qj(t)}
while ξp

Qj
≥ threshold do

ξp
Qj

= global-align(dp(t), qj(t)) {Perform alignment and obtain the maxi-

mum correlation value}
if mismatch-count > ξp

Qj
then

global-align(dp(t) + om(t), qj(t)) {Perform alignment with gap om(t) at
position m in database}
global-align(dp(t), qj(t) + om(t)) {Perform alignment with gap om(t) at
position m in query}

end if

Qj = Qj+increment {Extend dictionary elements based on user-defined in-
crement in query length}

end while

d̂j(t) = arg max
p

ξp
Qj

{Best possible alignment of qj(t)}
qj+1(t) is the unaligned portion of the query, from Qj to Q

of the gap depends on this minimum length of alignment. If a mismatch is en-

countered at a position, instead of stopping the alignment at that position, the

algorithm inserts a gap in the query or the data sequence and continues with the

alignment. This is done using frequency element k=5 in the dictionary. If the

insertion of one gap does not provide better alignments, additional gaps, up to

a user-defined limit, may be inserted. However, greater penalty is incurred while

scoring. A limit on the length of the gaps is also specified by the user (usually

atmost 5 gaps at a stretch), and the gaps are added if a mismatch is encountered,

as long as the threshold condition is satisfied.

An example of a gapped alignment is illustrated in Figure 4.9. The simi-

larity measure when no gaps are inserted is shown in Figure 4.9(a), where after

iteration 36, the similarity measure is reduced and thus the algorithm assumes

that there is a mismatch. When a gap is inserted at iteration 36, the similarity

measure is high until iteration 86, as shown in Figure 4.9(b). Note that the in-

sertion of gaps at iterations 36 and 86-88 (when the similarity measure decreases)

61



leads to an increased length of alignment, as shown in Figure 4.9(c). Also note

that, without the insertion of these gaps, the alignment would have been shorter,

and this single alignment could have been considered as three different alignments.

4.6 Simulation Results

We simulated different globalized and localized querying algorithms for compar-

ison using Matlab on a 2-core system with a 3 GHz processor, 2 GB RAM Intel

Pentium D computer. We tested various alignment scenarios using sequences

from the NCBI database, and in particular sequences from the Escherichia coli

(E. Coli) genome, the chromosome 9 of homo sapiens genome, and the Saccha-

romyces cerevisiae (yeast) genome. The length of the database sequences ranged

from 500–20,000 base pairs (bp) and the length of the outliers ranged from 200–

362,040 bp, as summarized in Table 4.1.

Data set Number of Minimum Maximum Average
Sequences Length Length Length

DB50 50 389 11,640 3,671
DB100 100 404 362,040 50,670
DB500 500 387 22,549 3,974
DB1000 1,000 387 25,674 1,847
DB5000 5,000 404 362,040 22,789

Table 4.1: Information on the data sets used for testing the proposed alignment
algorithms.

The length of the query sequences varied from 200–20,000 bp. Our pro-

posed methods supported queries on a large database sequence and performed

pairwise alignment with every database sequence. Note that if we had combined

the entire database into a single sequence (instance), the algorithms would have

still returned the same alignments for a given query.

We first simulated the matched filtering algorithm (MFA) presented in Sec-

tion 4.4. We implemented globalized querying using the MFA with LFM chirp and

also sinusoid waveform mapping, using a 10 kHz sampling frequency. To illustrate
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Figure 4.9: Gapped alignment example using the WAVEQuery approach. (a)
No gaps inserted; (b) one gap inserted at iteration 36; and (c) two gaps inserted
at iterations 36 and 86-88. Note that the gaps are inserted when the similarity
measure reduces.
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the MFA, we considered five query scenarios and run it using the database set

DB100. The MFA returned completely aligned portions in the database sets in the

order of their similarity measure. For comparison, we used the BLAST algorithm

on a user-defined database. The performance of the MFA using the LFM chirp

mapping was identical to that of the BLAST in all query cases. The algorithm

validation was based on the quality of the alignments in terms of the E-value and

raw scores of identical alignments from BLAST [90]. The MFA parameters, such

as the threshold γ, were found to be the same as the default values in the BLAST

algorithm. A comparison of the two algorithms in terms of alignment length and

start points is provided in Table 4.2 for the query cases.

Query case Matched filtering algorithm and BLAST
(genome) Length of alignment Start point of alignment

MSH6 279 661
PARP1 433 1,293
MUTYH 318 1,221
MUTYH 262 429
MUTYH 558 804

Table 4.2: Sample globalized alignment using matched filtering with LFM signals
and BLAST; both methods obtained identical results

We observed that the BLAST and the MFA have captured identical align-

ments. In the MFA, the alignment length is the correlation value, and the align-

ment start point is the index at which the maximum correlation value is achieved.

The MFA using Gaussian waveform mapping was also simulated for the globalized

querying case and identical results were obtained. Note that the time taken by

the MFA was in the order of a few seconds. This included the time taken for

the sequence mapping to time-domain waveforms, which was less than 20% of the

total execution time. This run-time can be reduced by performing the database

sequence mapping assignment and storing the resulting waveforms prior to the

querying process.
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We also simulated the MPD WAVEQuery algorithm for localized sub-

sequence querying using the database set DB100 for different query sequences.

The simulation results were compared to those of the BLAST algorithm bl2seq

using the BLAST performance metrics raw score, bit score, and expect or E-

value [90]. We used a query set of 100 sequences of length 1,000–10,000 bp. We

observed that the localized query matches obtained using the WAVEQuery ap-

proach were identical to the query matches obtained using BLAST in 90% of the

cases. We incorporated penalties for gap insertions and extensions in the compu-

tation of the raw score in the same way that the BLAST algorithm does. The

quality of the alignments was identical in terms of the raw score and E-value met-

rics. Therefore, the performance of the WAVEQuery was identical to that of the

BLAST in these query cases. For ten query cases, however, the WAVEQuery al-

gorithm performed better than the BLAST in terms of the number of alignments

captured or the length of the alignments captured in the localized query. The

details of the performance improvement for these ten cases are provided in Table

4.3.

Considering query Q4 in Table 4.3, we can see that the WAVEQuery ap-

proach detected two more alignments than the BLAST approach for the query sub-

sequence in the Saccharomyces cerevisiae database set (chromosome I right arm

sequence). These alignments were significant ones, with E-value scores 4 × 10−13

and 2× 10−34. Note that we want the E-value score to be as low as possible since

that indicates that the query alignment provides a good match in the database.

For query Q8, the WAVEQuery approach provided a longer alignment, in addi-

tion to the two other alignments also detected by the BLAST approach in the E.

Coli database set (Homo sapiens mutY homolog (E. coli) (MUTYH), transcript

variant beta3, mRNA). Upon inspecting the database sets, we observed that these

additional alignments or longer alignments of the WAVEQuery over the BLAST
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Query (Length) Number of Alignments WAVEQuery Localized Querying Performance Improvements Over BLAST
BLAST WAVEQuery

Q1 (214) 3 5 Two more alignments with E-values: 10−20, 7 × 10−18

Q2 (177) 3 4 One more alignment with E-value: 5 × 10−24

Q3 (306) 2 4 Two more alignments with E-values: 3 × 10−15, 2 × 10−31

Q4 (333) 2 4 Two more alignments with E-values: 4 × 10−13, 2 × 10−34

Q5 (758) 2 4 Two more alignments with E-values: 3 × 10−13, 2 × 10−11

Q6 (338) 2 4 Two more alignments with E-values: 8 × 10−18, 6 × 10−15

Q7 (1,104) 3 3 One longer alignment with E-value 3 × 10−39 (4 × 10−37 in BLAST)
Q8 (740) 3 3 One longer alignment with E-value 3 × 10−69 (3 × 10−54 in BLAST)
Q9 (622) 3 3 One longer alignment with E-value 3 × 10−72 ( 3 × 10−65 in BLAST)

Q10 (1,136) 3 4 One more alignment with E-value: 8 × 10−16

Table 4.3: Comparison of BLAST and WAVEQuery performance for localized querying on dataset DB100
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were captured over the repetitive regions in the sequence in each of the queries.

Thus, the WAVEQuery approach is not affected by repeats in the sequences when

compared to BLAST. Mainly, this is based on our use of Fourier-based techniques

(used for fast computation of the correlations in the MPD algorithm) that are well-

matched to periodic segments and also because BLAST considers these repetitive

regions as low complexity regions.

We designed the WAVEQuery approach to provide an alignment report

with the metrics used by BLAST together with the positions of the alignments in

the database and the query sequences (similar to that of the BLAST). A sample

alignment report with one of the additional alignments detected by the WAVE-

Query approach (but not by BLAST) is shown in Figure 4.10. It is important to

note the repeats in the nucleotide composition in the sequence.

Figure 4.10: Alignment report for the localized sub-sequence querying cases with
BLAST metrics (score and E-value). Note that we used the name notation as the
one used in BLAST for ease of comparison; as a result we use 1.779385 e−31 to
represent 1.779385× 10−31.

The computational complexity of the MFA globalized querying scheme

with LFM waveform mapping is in the order of O(Q log Q), where Q is the length

of the database sequence. Using the sinusoid mapping scheme, the complexity
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O(Q log Q) too. The globalized querying in the MPD WAVEQuery approach is of

the order of O(Q log Q), since the correlation between the signal and the Gaussian

atoms in the dictionary is computed using the fast Fourier transform. For the

localized sub-sequence querying case, the complexity varies based on the number

of sub-sequences used in the query process. If q sub-sequence based alignments are

captured using the algorithm, the complexity is in the order O(q Q log(qQ)). The

execution time (time to perform alignments over the entire database set) for the

implementation of the WAVEQuery localized sub-sequence querying algorithm on

a database set of 100 sequences (DB100) is approximately 20 s. The processing

can be performed in real-time, and no indexing or pre-processing are needed on

the database sequence. This was also tested for the database sets DB50, DB500,

DB1000 and DB5000, and the corresponding times taken to perform the querying

are shown in Table 4.4. This result demonstrates that the algorithm is scalable

in terms of the length of the database sets without affecting the quality of the

captured alignments.

Dataset Execution time in seconds

DB50 10.87
DB100 18.66
DB500 45.20
DB1000 115.93
DB5000 495.20

Table 4.4: Execution time of WAVEQuery localized sub-sequence querying for
different database sets

As in the case of the MFA, the mapping accounts for less than 20% of the

execution time in the algorithm. The mapping can be performed in real-time, and

it can be improved by mapping the database sequences ahead of time and storing

them for future querying.

The computational complexity of the matched-filter based globalized query-
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ing scheme with LFM mapping is of the order O(Q2), where Q is the length of the

data sequence. Using the sinusoid mapping scheme, this complexity is reduced to

O(Q log Q). The globalized querying in the WAVEQuery scheme is of the same

order, since the inner product between the signal and the atoms in the dictio-

nary is computed using the FFT. For the localized sub-sequence querying case,

the complexity varies based on the number of sub-sequences used in the query

process. If q sub-sequence based alignments are captured using the algorithm, the

complexity is of the order O(qQ log qQ).

4.7 MPD WAVEQuery Alignment of Protein Sequences

The primary structure of the protein is formed by a sequence of twenty amino

acids. The amino acids are derived as a result of the DNA transcription pro-

cess. In particular, the synthesis of proteins is governed by the genetic code that

maps all possible triplets or codons of DNA characters into one of twenty possible

amino acids. In a similar method as with the DNA sequence where we mapped

four characters, we can now use the Gaussian atom mapping with the amino acid

sequence but map twenty characters. This will require the use of additional fre-

quency shift parameters to represent the additional characters for the different

amino acids, and the time shift parameter of the MPD decomposition can still be

used, as before, to control the position of the amino acid in the sequence.

In the DNA sequence alignment, the mismatch between the nucleotide

bases results in a very small correlation value between the different Gaussian

atoms. This is essential because the correlation values represent the measure of

similarity between two sequences, i.e.,

〈gm,l, gm,k〉 =

∫

τs

gm,l(t) g∗

m,l(t) dt

{

= 1, l = k

≈ 0, l 6= k
. (4.8)

Equation (4.8) corresponds to the inner product between any pair of nucleotide

bases at position m, and it defines the correlation matrix between each of the
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four nucleotide bases as the identity matrix. Note that a negative penalty may be

applied to mismatches to obtain the alignment score. The correlation matrix for

proteins is called the substitution matrix, and it is not an identity matrix. It is

a matrix that contains match rewards, partial mismatch penalties, and complete

mismatch penalties. This is because two amino acids that are not identical also

have some similarity measure or non-zero correlation value. If we use the MPD

decomposition as for the DNA sequence mapping, the Gaussian atoms will have

an almost zero correlation for different frequency shifts. As a result, we need to

modify the MPD mapping in order to take into consideration the BLOSUM-62

substitution matrix information [91, 92].

For the protein sequence mapping, we use all three MPD transformation

parameters, time-shift, frequency-shift and scale change, of the Gaussian atom in

(4.4). The time-shift and frequency-shift parameters again map the position and

type of amino acid. The scale change parameter is used to assign a specific non-

zero correlation value from the BLOSUM-62 substitution matrix between two non-

identical Gaussian atoms (corresponding to two different amino acids). A look-

up table based approach was adopted with the scale parameter pairs to realize a

unique inner product corresponding to the penalties or rewards in the substitution

matrix. The Gaussian signal for the kth amino acid that is mapped to frequency

kF is defined in (4.4) as gm,k,k(t)=g((t − mτs)/ak) e−j2πkF t, where the time shift

mτs maps the mth position of the amino acid in the sequence. The scale change

parameter ak may be sampled dyatically for fast implementation. It is given the

same subscript as the frequency shift parameter to ensure its uniqueness to the

kth amino acid type; it is a parameter that is used to ensure that the correlation

value between two non-identical Gaussian atoms is not zero. Specifically,

〈gm,l,l, gm,k,k〉 =











1, l = k

ηl,k , l 6= k
. (4.9)
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The value ηl,k in (4.9) is the (l, k)th element of the subsitution matrix that is

directly related to the two scale parameters, al and ak. Thus, the number of scale

parameters that are assigned in the mapping is related to the number of different

values in the substitution matrix that correspond to correlation values.

The WAVEQuery protein sequence alignment algorithm is very similar to

the WAVEQuery DNA sequence alignment algorithm. The main differences are:

(a) the atoms chosen from the dictionary also have a scale parameter in addition

to the time-shift and frequency shift parameters; and (b) the threshold value,

that the correlation values are compared to, is different as it has to take into

consideration the elements of the substitution matrix.

For the protein sequence alignment case, the WAVEQuery algorithm was

compared with the BLASTP algorithm [90] and the alignment results were iden-

tical for the two algorithms. Note that the sequences used in this testing did

not have inherent repeats to check for better performance, as in the case of the

BLAST. This can be attributed to the fact that, during the transcription process,

these repetitive regions in the DNA were not transcribed to from amino acids.

A sample alignment for the WAVEQuery algorithm compared with the BLASTP

alignment is shown in Figure 4.11. Note that the raw scores of the two algorithms

are close in value, indicating that the quality of the WAVEQuery alignment is

comparable to that of the BLAST.

4.8 WAVEQuery Using the Metaplectic Transform

The Gaussian mapping provided three waveform transformation parameters that

we exploited in the WAVEQuery mapping for use in the DNA and protein sequence

alignment. The DNA sequence mapping used only two parameters whereas the
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Figure 4.11: Alignment report for the WAVEQuery algorithm for protein align-
ment compared with BLAST raw score. Note the amino acid mismatches with
positive value in the substitution matrix are represented by a ‘+’ and the other
mismatches are represented by a ‘.’.

protein sequence mapping required all three parameters in order to achieve high

alignment performance. If more parameters are necessary for use in the WAVE-

Query mapping, then a different generalized waveform transform needs to be

exploited.

The metaplectic representation is an example of such a waveform represen-

tation [93,94]. It is a five-dimensional (5-D) waveform expansion into five different

discrete transformations of an orthonormal basis function in the time-frequency

plane. The metaplectic transform of a signal x(t), using a generalized wavelet

function w(t), is defined as [93]

Γx(τ, ν, a, p, q; w) = 〈x, (Fν Tτ Aa Qq Pp w)〉 (4.10)

where,

(Fνw)(t) = w(t) ej2πνt causes a frequency shift ν,

(Tτw)(t) = w(t − τ) causes a time shift τ ,

(Aaw)(t) = |a|−1/2w(t/a) results in a time scale change a,
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(Qqw)(t) = w(t) ejπqt2 causes a shearing along the IF qt (multiplication in the

time-domain by an LFM chirp),

and (Ppw)(t) = (−jp)−1/2w(t) ∗ ejπ(1/p)t2 causes a shearing along the group-delay

pf (multiplication with an LFM chirp in the frequency domain), where ∗ denotes

convolution.

When the metaplectic transform in (4.10) is used for WAVEQuery map-

ping, the time-shift and frequency-shift parameters can be used to represent the

position of the character and the type of character in a sequence, just as before.

The time scale parameter can be used in the protein sequence alignment problem

to represent the non-zero correlation values between non-identical amino acids.

The new time-shearing parameter q, which is essentially the modulation rate of

an LFM chirp in the time domain, can be used to represent the prediction value

of a character being in the next position in a DNA or protein sequence. This pre-

diction values are based on a probability matrix which describes the probability

of the character (nucleobase or amino acid) occurring in the next position. The

probability matrix can be either a matrix with equi-probable values (probability

value of 1/4 in the case of nucleotides or probability value of 1/20 in the case of

amino acids), or it can have probability values derived using the composition of

a given set of sequences in a database. The fifth parameter, frequency shearing

parameter p, of the metaplectic transform can be used to represent gaps, instead

of using an additional frequency, as in the case of the Gaussian mapping. The

frequency shearing parameter represents a modulation along a line, and it can be

extended to the next position in a sequence to represent the gaps. The choice

of the wavelet function w(t) is crucial in this scenario, and most of the current

wavelet basis functions, while efficient in time localization, are not simultaneously

very efficient in frequency localization.

73



Chapter 5

STRUCTURAL WAVEFORM MAPPING FOR PROTEIN ALIGNMENT

5.1 Structural Similarities in Proteins

As proteins that are similar in structure with unrelated sequences have been dis-

covered, sequence alignment techniques as discussed in Chapter 4, are not suffi-

cient for finding similarities in those proteins. It becomes necessary to search for

similarities and establish homology between proteins based on their shape and

three-dimensional (3-D) conformation. The secondary structure of a protein is in

the form of α helices and β sheets, which are collectively called secondary struc-

ture elements and are connected by loops. The tertiary structure is based on the

3-D representation of the proteins as defined by their atomic co-ordinates [95].

Protein structural superposition deals with the alignment of two or more protein

secondary and tertiary structures in this 3-D co-ordinate space. In particular,

structural alignment finds and compares multiple protein structural conforma-

tions based on either global similarity measures or local features [96]. The metric

commonly used in finding the similarity is the root-mean-square distance (RMSD)

metric. Similarity measures based on local features may include packing size or

interaction patterns.

There are two main methods for comparing protein structures: the inter-

molecular method and intramolecular method. The intermolecular method com-

pares and superposes two or more protein structures in order to achieve maximum

overlap in the 3-D space. This is achieved by geometric fitting of the two struc-

tures on a residue-residue pair basis. The intramolecular method compares protein

structures based on the structural internal statistics by providing a quantitative

similarity between the corresponding residue pairs. It is achieved by reducing the

3-D information into 2-D information.
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A hybrid scheme using both the intermolecular and intramolecular methods

is also used. In our work, we consider an intermolecular structural alignment in

the 3-D space.

5.2 Current Structural Alignment Techniques

5.2.1 Computational-based Structural Alignment

Various techniques exist in literature for protein structural alignment. When

using the intermolecular method, the basic principle behind superposing two pro-

tein structures is to minimize the RMSD between the two structures. This can be

achieved by obtaining a residue-residue correspondence: fixing one of the struc-

tures and moving the other structure laterally and vertically towards the other

structure. This process is called translation, and it results in the two structures

having the same coordinate frame. The structures are also rotated relative to

each other along the 3-D coordinate axis system, and the RMSD is measured at

each orientation. The orientation that yields the lowest RMSD measure results

in the best fit for the alignment of the two structures. Note that the amino acid

atoms have six degrees of freedom in the 3-D coordinate space: translations in

the x, y and z axes, and rotations along the (x, y), (y, z) and (z, x) planes. The

3-D coordinates of the atoms that constitute an amino acid, and thus a particular

protein in the structure, can be found at the Protein Data Bank (PDB) as dis-

cussed in Chapter 2. An in-depth review on RMSD measures and the comparison

algorithms is provided in [3, 97–100].

There are a few structure alignment software tools available on the World

Wide Web, and we discuss some of them next. DALI [101] is a structure compar-

ison method that is hosted at [102]. This is an intramolecular distance measure

based approach, which maximizes the similarity between two distance graphs. For

each of the proteins, the distance between all α-carbon Cα atoms of each indi-
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vidual protein is calculated and the matrices are compared to identify the regions

with the highest similarity. These become the algorithm seeds which are later

clustered together using an average score measure derived from the probability

distribution in the database. This algorithm, first introduced in 1993, has seen

improvements in performance and the latest version of the algorithm is presented

in [103].

VAST [104] performs structural alignment using both intermolecular and

intramolecular approaches [105]. This superposition is based on the directionality

of the secondary structural elements, which are represented as vectors. Depending

on the number of vector matches, the similarity level between two structures is

determined, and the optimal alignment is obtained.

The combinatorial extension (CE) is a method for calculating pairwise

structure alignments [106, 107]. It is an intramolecular distance approach that

considers eight (or octemeric) residues as one single residue and the distance

matrices are constructed at that level. Using combinatorial extensions, the aligned

fragment pairs that result in continuous alignment pairs are extended and the

optimal alignment is obtained. Since this method considers eight residues at

once, the computational time is reduced. This is, however, at the cost of the

alignment accuracy.

Other computational tools include the Rapid Alignment of Protein In

Terms of DOmains (RAPIDO) [108] that is based on genetic algorithm , MAtching

Molecular Models Obtained from THeory (MAMMOTH) [109], and the Sequen-

tial Structural Alignment Program (SSAP) [110] that uses double dynamic pro-

gramming that are in use for the protein structure alignment. The 3D-COFFEE

approach [111] uses both protein sequences and structures and combines them to

obtain multiple alignments.

76



The structural alignment problem has found solutions in many areas,

including computational techniques, data mining, signal processing and media

engineering. Some techniques that have been developed include dynamic pro-

gramming algorithms [72], [71], [112], [113], hashing techniques for the RMSD

measure in [114, 115], reduced dimensionality representations [116], genetic al-

gorithms [117, 118], n-gram based language modeling techniques [119], spectral

kernel methods [120], hidden Markov models [121], vector representation based

methods [98, 122], and regression analysis methods [123].

5.2.2 Signal Processing Based Structural Alignment

Some of the alignment methods proposed in the literature are based on the use of

signal processing approaches and waveform basis functions. We will discuss some

of these approaches next.

Gaussian Based Alignment The Gaussian-based alignment for protein struc-

tures (GAPS) algorithm 1 was first used for the superposition of small molecules

[124], and then extended to the superposition of protein structures [51, 125]. In

the GAPS algorithm, the kth atom of Aith amino acid is represented by the

spherically symmetric Gaussian waveform

gAi

k (r) = ck exp(−dk|r− Rk|2) (5.1)

that is defined using the 3-D atomic co-ordinate axis r = (x, y, z). In (5.1), Rk

is the nuclear coordinate position of the kth atom, and the coefficient ck and

exponent parameter dk determine the value of its maximum height at the origin

and its decay, respectively.

1We would like to acknowledge our discussion on the signal processing interpretation of
protein superposition with one of the authors of [51, 124].
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The Aith amino acid residue is expressed as a linear combination of the

Gaussians placed at each of the atoms in the amino acid.

GAi
(r) =

∑

k∈Ai

gAi

k (r) (5.2)

The Gaussians are either placed along the main chain atoms or along the

α-carbon atoms. It is to be noted that placing the atoms along the α-carbon atom

approximates the performance obtained by placing the Gaussians along the main

chain atoms.

Finally, protein A is represented as a linear combination of the amino acid

representations as:

GA(r) =
∑

Ai∈A

GAi
(r) (5.3)

Using this representation for proteins, the similarity between two proteins

A and B is given by the following similarity measure, which provides a measure

of the structural overlap:

ΩAB =

∫

GA(r) GB(r).dr (5.4)

The normalized measure, also called a similarity index, is provided by:

Sim(A, B) =
ΩAB√

ΩBB

√
ΩBB

(5.5)

and this value is bound between 0 and 1.

The similarity measure is maximized by rotating and translating one struc-

ture with respect to the other until the superposition of the two structures is

optimized. The rotations and the translations in the optimization procedure are

carried out directions that span the 3-D coordinate system axis. The transforma-

tions are performed in 45 degree increments and the similarity is evaluated at a

fixed number of points. Based on a rank order list of the similarities, the positions
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that correspond to the best fit are used in a standard gradient-descent technique.

Finally. there is a post-alignment analysis step that performs a structure-based

sequence matching; this step enables the alignment of two structurally aligned

sequences.

The GAPS algorithm was used for pairwise and multiple structure align-

ment, where the structures were classified based on their pairwise sequence and

structural similarities. The main drawback of this method is its computational

intensity when used with a large number of amino acids, since it is applied at

the small molecule level. Also, this method cannot perform local alignment, i.e.

alignment over smaller segments of the structure.

Fourier Transform Based Alignment In [126], the fast Fourier transform

(FFT) was used to compute correlations for determining the geometric fit be-

tween two protein structures. This algorithm assigned the protein location by

representing them using discrete binary functions.

A crystallographic Fourier transform approach was presented in [127] for

molecule superposition, based on optimizing the overlap of electron density as a

function of molecule translation. RigFit, a rigid body molecular ligand super-

imposition algorithm was presented in [128]. This algorithm also used Gaussian

assignments to molecules as in [124], but it performed the translation and rotation

in the Fourier space based on convolution properties. A similar algorithm using a

Laplacian filter was presented in [129], and an algorithm with FFT based convo-

lution and Gaussians was presented in [130]. By reducing the degrees of freedom

from six to five in [131], where there were five angular degrees of freedom and just

one linear degree of freedom, the structural alignment algorithm was made faster

using the matching algorithm in [132].

Spherical polar Fourier correlations were used for protein superposition
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in [133]. This algorithm was capable of fitting protein structures in the 3-D space

taking into consideration all six degrees of freedom, and it was further improved

and extended in [134]. In [50,135], the polar FFT and Radon bases were used for

shape matching and the algorithm was extended for protein structures using the

spherical trace transform [135,136]. The algorithm uses the 3-D Radon transform

to examine descriptors and then applies a set of functionals to the transform

coefficients. Similarity measures are created for the descriptors and introduced

into a 3-D model matching algorithm. Note,however, that since Radon bases

are not translation and rotation invariant, a pre-processing step is necessary to

achieve rotational invariance. This is performed using the center of masses and

principal component analysis.

5.2.3 Other Signal Processing Based Alignment Methods

A Gaussian weighted RMSD measure algorithm for protein superposition of pro-

teins was presented in [137]. An algorithm based on the use of cepstral feature

components of the primary amino acid sequence that was mapped to the electron

ion interaction potential (EIIP) was presented in [138,139]. In [140], an approach

using curve moment invariants and iterative closest points, similar to the DALI

algorithm were discussed. A survey on local shape similarity alignment methods

for protein structures is provided in [141], where curved surfaces are represented

by circular curvature patches and pairwise overlays over the entire structure are

evaluated. In [142], 3-D shape based signatures were used in the retrieval of pro-

tein structures from databases. A maximum likelihood estimation algorithm was

also proposed in [143, 144].

5.3 Need for New Structural Alignment Techniques

The current state-of-art signal processing based approaches for structural align-

ment use representation for protein structures that are largely based on the posi-
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tion of the atomic coordinates in 3-D space. As a result they are not successful

in modeling the shape of a protein structure , information of which is either pre-

dicted from analysis or measured fro experiments. These representations do not

provide good models for important features such as protein folds in the α helices

and β sheets, and they do not preserve directionality information, especially for

multiple folds in compact spaces.

5.4 Modeling the Protein Superposition Problem

Given two protein structures, the protein superposition problem matches the

structures by having them undergo transformations such as translations and ro-

tations, in order to find their best possible structural overlap. Protein structures

have six degrees of freedom: translations along the x, y and z axes, and rotations

along the (x, y), (y, z) and (z, x) planes. Hence, there is a need for a 3-D struc-

tural representation model whose information content remains unchanged when

translated or rotated in the 3-D space. The representation model needs to be

linearly separable so that it can be able to store information on the structures’

3-D atomic co-ordinates as wells as on the order of the individual amino acids

in the protein sequence. Also, we must be able to detect localized similarity (or

motifs) in the structure in addition to the similarity over the entire structure.

In order to further illustrate the need for a linearly separable representa-

tion, we consider two proteins, PA and PB, whose structures need to be aligned.

The two proteins are separable into small substructures, and alignments in the

substructures are to be detected. The substructure representations are given by

PA =

M
∑

m=1

PAm
, PB =

N
∑

n=1

PBn
(5.6)

where M and N denote the number of small substructures. A sub-structure is

defined as a segment of a structure with a minimum of three amino acids so it

can contribute to the shape of the structure. Note that, in practice, the length
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of a sub-structure is dependent on the similarity measure between two aligned

segments.

If the substructures PAm
, m = 1, . . . , M and PBn

, n = 1, . . . , N have similar

structures, they can be found using local structural alignment. If the similarity

occurs over the entire structure length, then the proteins are said to be globally

structurally similar. Note that PAm
can be a small substructure or a cluster of

amino acid,s depending on the desired level of alignment performance.

If the structures of PA and PB are similar over their entire lengths, i.e.,

PA ≡ PB, then

M
∑

m=1

PAm
TAm

(x, y, z) ≡
N
∑

n=1

PBn
TBn

(x, y, z) (5.7)

where TAm
(x, y, z) and TBn

(x, y, z) are the transformations on the structures along

the 3-D coordinate space that can result in the similarity of the structures of PAm

and PBn
.

5.5 Chirp wAveform Representation for Protein Structures (CARPS)

5.5.1 Waveform Representation Model

We propose a waveform-based representation for depicting the secondary and ter-

tiary structures in proteins. Our aim is to use this representation for protein

structural alignment. This Chirp wAveform Representation for Protein Struc-

tures (CARPS) used linear frequency-modulated (LFM) chirp waveforms that

are defined as multi-time domain higher order functions. We first describe the

CARPS for a one-dimensional (1-D) case and then extend it to the 3-D case to

represent protein structures. As we will demonstrate, the CARPS is capable of

depicting protein folds and by embedding a unique parameter for directionality,

sufficient computational time is saved in analyzing of protein structures.

As discussed in Chapter 3, an LFM chirp signal is a time-varying waveform
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defined as:

hl(t) =
√

2 t ej2πcl t2 , 0 < t < Td (5.8)

where cl in (Hz)2 is the frequency-modulation (FM) rate and Td is the waveform

duration in seconds. The instantaneous frequency (IF) of the LFM chirp, given

by 2 cl t, represents the linear frequency variation of the waveform with respect to

time. Ideally, the time-frequency representation of this waveform is a line with

slope 2 cl. The amplitude modulation in (5.8) ensures that an infinite-duration

LFM chirp is orthogonal. This can be shown by taking the inner product between

two LFM chirp signals with different FM rates and infinite duration. For finite

duration signals, we can show orthogonality by fixing the difference between the

FM rates as ∆c = K/T 2
d , for some integer number K [145].

For a highly localized waveform representation, the chirp is windowed with

a Gaussian signal. This is because Gaussian signals are the most concentrated

signals in both time and frequency due to Heisenberg’s uncertainty principle

A 1-D time-frequency shifted and scale transformed Gaussian signal is

given by

g(τ, ν, a) = g

(

t − τ

a

)

e−j2πνt (5.9)

where g(t) is a basic Gaussian waveform given by g(t) = e−πt2 , τ is the time shift,

a is the time scale, and ν is the frequency shift.

In order to represent the shape of a protein structure, we consider an ex-

tension of the windowed chirp signal in a 3-D time-domain, (tx, ty, tz). Time-shift

(or translation) parameters along each of the time axes and rotations character-

ized by the 3-D FM rate parameters will be used to provide key information about

the spatial co-ordinates, folds, and directionality of the protein structure.

The non-windowed version of the 3-D chirp waveform is given by:

hc(t) = 2
√

2txtytz ej2πt(diag(c))tT

. (5.10)
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where the 1 × 3 row vector t = [tx ty tz] represents the three coordinate axis

(x, y, z), c = [cx cy cz] provides the FM rates along each axes, and T denotes the

vector transpose. The amplitude modulation is needed for orthogonality, similar

to the 1-D chirp waveform case. The 3 × 3 matrix diag(c) is a diagonal matric

whose off diagonal elements are given by the row vector c.

The Gaussian window can be represented in the form of a multivariate

Gaussian waveform as

g(t; τ ,Σ) =
1

2(π)
n
2 |Σ| 12

exp

(

−1

2
(t− τ )Σ−1(t − τ )T

)

(5.11)

that is centered at τ = [τx τy τz] ∈ R
3, and has covariance matrix Σ ∈ S3

++.

The term 1/2(π)
n
2 |Σ| 12 which provides the normalization factor is independent

of t. While the Gaussian window can also be represented as the product of three

independent Gaussian signals using Equation (5.9), the representation in Equation

(5.11) is preferred since the cross terms in the covariance matrix Σ provide some

measure of control over the spread of the Gaussian in the three planes.

Using the 3-D chirp signal from (5.10) and the Gaussian window from

(5.11), we represent the windowed chirp signal as

hg(t; c, τ ,Σ) = hc(t − τ ) g(t; τ ,Σ) (5.12)

Equation (5.12) provides the CARPS with time shift vector parameter τ ,

FM rate vector parameter c and covariance matrix parameter Σ; each of these

parameters can be appropriately chosen to represent a unique property of the

protein structure.

Note that the CARPS satisfies the properties that were desired in a repre-

sentation for protein structures. Specifically, the Gaussian chirp is sampled com-

pactly such that the correlation between two CARPS with different parameters is

almost zero. Due to the use of the Gaussian window that is highly concentrated in
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both time and frequency, the CARPS can provide a good model the density of the

protein atoms very well. The rotation transformation is inherent to the CARPS

model since changing the FM rate vector causes changes in directionality. By

using the most concentrated window and a linear representation, we ensure that

translations do not result in overlaps. Furthermore, the linear separability of the

CARPS enables local similarity searches.

5.5.2 Chirp-based Protein Structure Representation

We consider the 3-D protein structure whose co-ordinates are specified in the PDB

file from [46]. Let Ai = (xi, yi, zi) and Ai+1 = (xi+1, yi+1, zi+1) be two consecutive

points in a protein structure. The points correspond to the coordinates of two

neighbor amino acids. We want to use CARPS in (5.12) such that these points

appear as two outer-most points in the mapped [tx, ty, tz] plane. In order to

achieve this, we first place the Gaussian window at the center of the two points.

The covariance matrix Σ of the Gaussian window plays an important role in

its 3-D orientation. Note that the eigen decomposition of the covariance matrix

provides the eigen vector matrix, which is the orientation or rotation matrix of

the Gaussian signal in 3-D space. The design of the rotation matrix is based on

the pair-wise angle between the two points and it can be obtained from geometry.

The angles with respect to each of the axes are given by (θx, θy, θz), and they are

calculated for each segment of the structure using the co-ordinates that connect

the segment. For the points Ai and Ai+1, the angles are given by,

θx = arccos

(

(xi+1 − xi)
√

(xi+1 − xi)2 + (yi+1 − yi)2

)

θy = arccos

(

(yi+1 − yi)
√

(xi+1 − xi)2 + (yi+1 − yi)2

)

θz = arccos

(

√

(xi+1 − xi)2 + (yi+1 − yi)2

√

(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

)

(5.13)
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Using these angle values, the rotation matrices are obtained using:

Rx(θx) =













1 0 0

0 cos θx − sin θx

0 sin θx cos θx













Ry(θy) =













cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy













Rz(θz) =













cos θz − sin θz 0

sin θz cos θz 0

0 0 0













(5.14)

The covariance matrix is then calculated by considering the orientation along

a particular plane. The rotation matrix can also be obtained using a Gram-

Schmidt procedure to find the orthonormal plane for a given set of vectors. The

two methods provide identical results. The value of the variances for each of the

three axes of the Gaussian window are set such that the window has the widest

region of support in the plane that links the two points Ai and Ai+1 and is very

narrow in the other planes.

Following the design of the Gaussian window, we modulate the 3-D chirp

signal using this window. This process of modulating the 3-D chirp signal with

the Gaussian signal significantly reduces the number of cross terms in the time-

frequency (TF) plane when multiple segments of the structure are being consid-

ered. Also, since the ideal TF representation of a chirp signal is as a line whose

slope is related to the FM rate c, information about the directionality within the

structure (angles) is embedded in the higher dimensions as well.

Hence, the covariance matrix Σ and the chirp rate c of the Gaussian win-

dow and the chirp signal, respectively, have the information on the orientation

and the directionality of the protein structure embedded in them.
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Thus for a protein structure A with N + 1 coordinates connected by N

segments, the CARPS is given by

HA =

N
∑

i=1

hg(t; cAi
, τAi

,ΣAi
) (5.15)

where cAi
, τAi

, and ΣAi
are the windowed chirp parameters for the ith segment

in the structure A.

We mapped the protein 3-D structure using the CARPS, and an example

is shown in Figure 5.1 for the NMR structure of the lung surfactant peptide SP-B

(PDB ID: 1KMR) is shown in . Note that the windowed chirp signal replicates

the 3-D shape of the structure exactly.
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Figure 5.1: Example of the CARPS for the NMR structure of lung surfactant
peptide SP-B (PDB ID: 1KMR). The axes measurements are all in Angstrom
units (10−10 m). Note the α-helix in the structure connected by 3-D chirps with
a Gaussian window.

5.5.3 Waveform Parameters relating Sequence to Structure

While the shape and folds of the protein structure obtained from NMR or X-Ray

crystallography experiments convey important information, it is also possible to
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derive or predict the protein structural information based on the primary amino

acid sequence. The structure, as mentioned earlier, has six degrees of freedom,

and the bond between the amino acids is stable due to various factors including

hydrogen bonds, hydrophobic interactions and the conformational entropy. While

the hydrogen bonds are known to have an effect on the shape of the structure,

hydrophobic moments of the entire molecule and that of the segments of the

secondary structure can help analyze the structure of a protein [52]. The sequence

of amino acids determines the 3-D shape of the protein, and this is due to the free

energy resulting from the hydrophobic effect [146]. As a result, hydrophobicity

is an important parameter that can be used to control the stability of a protein

structure.

For every amino acid in a protein sequence, there is a value of hydrophobic-

ity that can be assigned, and this is a representation of how stable the structure

is. The parameter can be viewed in a signal representation scenario as the energy

or the amplitude of the signal. For the CARPS system, we will introduce an am-

plitude parameter ρi for an amino acid Ai, where ρi is the hydrophobicity value of

the amino acid Ai. By embedding this parameter in the structural representation

of a protein, we not only represent the folds and shape of the protein structure,

but also the stability of the structure and the ability of the structure to undergo

conformations based on the stability value. Note that we are also indirectly em-

bedding the amino acid composition of the protein in the structural representation

in the form of a numerical map. This is particularly helpful in the problem of

protein structure prediction, when the amino acid composition is known and the

structural information is unknown or needs to be verified.

The resulting overall CARPS is now given by

H(t) =
N
∑

i=1

ρi hg(t; ci, τ i,Σi) (5.16)
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where N is the number of segments connecting a pair of amino acids in the struc-

ture, and ρi is the hydrophobicity value of the ith amino acid in the structure, with

the windowed chirp parameters for the ith segment in the structure as described

in Equation (5.15).

5.6 Chirp-based Alignment for Protein Structures (CAPS) Approach

The new chirp-based alignment for protein structures (CAPS) approach is based

on the use of the CARPS proposed in Section 5.5.2 and a correlation measure

based matched filter approach. Note that the use of the hydrophobicity parameter

of the protein structure presented in Section 5.5.3 is optional in this case, because

the alignment is based on the directional descriptors of the representation, i.e., IF

of the LFM chirps and the covariance matrix of the Gaussian window.

5.6.1 Pairwise Alignment of Protein Structures

We consider two protein structures that are to be aligned in after applying the

CARPS in Equation (5.15). For protein structures A and B with M and N

segments, respectively, the representation is given by:

HA(t) =

M
∑

i=1

hg(t; cAi
, τAi

,ΣAi
)

HB(t) =

N
∑

j=1

hg(t; cBj
, τBj

,ΣBj
)

This can be perceived as a signal expansion representation, with protein

structure features embedded in the parameters such as the LFM chirp rate and

the mean and covariance of the Gaussian window. If the signals HA(t) and HB(t)

have similar signal parameters over the entire length, the structures are said to

be completely aligned. If the signal parameters are similar over a portion of the
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length of the structure, the structures are said to be partially aligned. This partial

structural alignment is not considered by most state-of-art techniques.

The proposed CARPS algorithm first performs transformations to one of

the structures based on the orientation of the other structure, in order to be

able to align the first few segments of the two structures. This transformation

is usually a shift (translation) in the center of the Gaussian or a change in the

structural orientation (rotation) in order to align the first segments. The rotation

is performed by using the angles from (5.13) such that the first segments align.

In order to obtain the similarity measure between the two structures, we consider

the inner product between the signals representing the structures. The cross-

correlation provides a similarity measure between the two structures. The inner

product αpq between the segments HAp
(t) and HBq

(t) is given by:

αpq =

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

HAp
(tx, ty, tz) HBq

(tx, ty, tz) dtx dty dtz (5.17)

Due to the orthogonally designed chirps and the nature of the Gaussian

window, this similarity measure is maximized when the windowed chirp parame-

ters of the two signals are almost identical. Due to the highly concentrated nature

of the windowed chirp signal in the TF plane, the inner product is a very sensitive

measure, and tracks the similarity in every parameter of the signal. Due to this,

the key parameter of directionality of the structure is preserved in the 3-D plane.

Note that we have normalized the amplitudes of the LFM chirp signal and the

Gaussian window during the process of modulation, hence eliminating the need

for normalization of the similarity measure at this stage.

Global Structural Alignment In an ideal scenario of global alignment with

two protein structures of identical lengths, and almost similar shapes, the cross-
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correlation over the entire length of the two protein structures will provide a

maximal inner-product measure. However, in practice, the similarity measure

will not be maximum, since the structure undergoes multiple conformations due

to the degrees of the freedom in the structure. Hence, in order to account for

the conformations, we consider a threshold measure ξ for the inner product to

consider the similarity between the two structures. Note that this threshold is

applied to the inner products between each of the segments in the two structures.

This ensures that the structures are compared on a piecewise basis rather than

over the entire length of the structure. For M ≃ N , if αpq ≥ ξ, ∀ p ∈ M, q ∈ N ,

the two structures HA and HB are said to be aligned over the entire length.

Local Structural Alignment For the local alignment of protein structures,

two structures with different lengths and similarity over local segments of the

structure (sub-structure) are considered, and this local structural similarity is

attributed to distantly related proteins. Since the length of the similarity and the

start and stop positions of the sub-structures are usually not known, we adopt a

similarity search method that searches for the similarity of a given segment over

the entire length of the other structure. This is accomplished using the inner

product between two segments as shown in Equation (5.17). This is obtained for

all segments in one of the structures with segments in the other structure, and a

correlation matrix representation for the two structures is obtained. This matrix

is of the form,

Ξ(A, B) =



















ξ11 . . . ξ1N

ξ21 . . . ξ2N

...
. . .

...

ξM1 . . . ξMN



















(5.18)

With this similarity measure for all segments of the two structures, similarity

over two sub-structures is found by observing the correlation values diagonally.

91



Similarity over the entire structure would be represented by the primary diago-

nal elements having values greater than the threshold ξ. However, since we are

identifying locally aligned sub-structures, we look for correlations in the entire

matrix, diagonally observing segments with similarity measures greater than the

threshold. In order to simplify the identification of similar regions, we apply a

thresholding on the matrix to represent values below the threshold and above the

threshold. Note that multi-level thresholding (three or four levels) will provide

better results in the case of local alignments, since just one segment of the sub-

structure may end up undergoing more conformations when compared to the rest

of the segments. Hence, by observing the similarity measures diagonally, we are

able to identify locally aligned sub-structures. Note that, a minimum length of

the segments maybe incorporated in order to be able to classify two sub-structures

as similar. An illustration for the similarity matrix of locally aligned segments in

two structures is shown in Figure 5.2.

In structural alignment, it maybe possible that two structures maybe com-

pletely aligned except for a portion of the structure, as shown in Figure 5.3. Even

though this alignment occurs over the entire length of one sequence, it is consid-

ered to be local structural alignment.

Note that the number of inner product computations in this case may

cause an overload on the algorithm. In order to improve on the computational

efficiency, the inner products can be computed using fast Fourier transforms.

5.6.2 Extension to Alignment of Multiple Protein Structures

Multiple protein structure alignment is an extension of the pairwise structural

alignment as multiple protein structures can be simultaneously aligned. The aim

of multiple structure alignment is to build a phylogenetic tree depicting evolu-

tionary relationships among species. Firstly, all the structures are iteratively
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Unaligned Segment 

Figure 5.2: Two threshold level similarity matrix plot for the local structural
alignment case. The structures of two proteins are aligned locally in the regions
specified by the regions of similarity diagonally. The case of 5 and 8 aligned
segments is considered as a structural match, while the 2 aligned segments are
not considered to be a structural match.
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Figure 5.3: Local structural alignment case where two protein are structures
aligned over the entire length of the structure except over a portion.
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compared in a pairwise manner. Following this, the two structures with the

largest similarity measure are re-aligned. The similarity measure between these

re-aligned structures is used as the basis for comparison to perform pairwise align-

ment for the other structures. This is performed such that the similarity measure

between all structures is maximized, hence forming the phylogenetic tree.

5.6.3 Classification among Structural Classes based on Directional Descriptors

We will consider classification based on α-helices and β-sheets structural classes

using the directionality feature in the CARPS representation and the CAPS al-

gorithm described in Sections 5.5 and 5.6.1.

Structural classes are first defined based on a generalized representation

of the α-helices, β-sheets and their shape descriptors. In order to achieve this,

we take the tested structures of these classes and use them as a reference for

classification. We next consider a new structure that is to be classified. We first

determine the shape descriptors (c,v) of the structure by mapping them to win-

dowed LFM chirps, where c = [cx, cy, cz] represent the chirp rates of the windowed

chirp signal and v = [vp, vq, vr] represent the eigen vectors of the covariance ma-

trix Σ described in Equation (5.11). The shape descriptors of the structure to be

classified are then compared with the shape descriptors of the reference classes.

Usually, the comparison is performed as a binary operation matching process over

a short segment of the structure. This is specifically done in order to stop the

process of classification if an α-helix is compared with a β-sheet or vice-versa,

before proceeding to check classification along the entire length of the structure.

Following this, we look into further classification by performing a pairwise align-

ment with the reference structures in the class. Note that while performing this

pairwise alignment, the hydrophobicity value of the amino acid is also consid-

ered, since the hydrophobicity plays an important role in determining the folds in
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the protein structure. The class of the reference structure providing the highest

similarity measure is the structural class of the new structure.

5.7 Experimental Setup And Results

We simulated the global and local alignment for protein structures for both pair-

wise and multiple alignment scenarios. This was done using Matlab on a 2-core

system with a 2.4 GHz processor, 4 GB RAM Intel Core 2 Duo computer. We

tested various alignment scenarios using structures from the PDB [46] and the

number of residues in the structures ranged from 10 to 200. In a few cases the

model of the structures were used, since the actual structure was not available.

Note that the model usually gives a close approximation of the structure. The

results from DALI [102] were used as the ground truth in the analysis, and the

metric used to determine the closeness to structure was the root mean-squared

distance (RMSD) metric. Note that we represent the protein structure using

the α-carbon coordinates from the PDB file, and this is also referred to as the

backbone structure.

5.7.1 Global Alignment

In the pairwise global alignment, we consider structures that have identical or

almost identical lengths, since we wish to find alignment over the entire length

of the structure. We obtain different structures for the same protein including

different models in a few cases. These structures undergo multiple conformations

along the entire length, and we want to find matches between them. In our

experimental setup, we have the proteins with the PDB ID as mentioned in Table

5.1 and perform pairwise alignment using the algorithm outlined in Section 5.6.1.

We tabulate the number of aligned residues and compare it with the total number

of residues, and we also obtain the mean RMSD measure between the alignment
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structures. Our results are compared with the structural alignment obtained using

DALI.

PDB ID number Number of Aligned Residues Mean RMSD in angstroms (Å)
(Number of Residues

aligned by DALI)

2L24 13 (13) 0.1079
2KIB 56 (56) 0.7557

2KWY 41 (43) 2.097
2LAT 35 (37) 0.7462
2L07 15 (18) 1.7017
2L10 33 (37) 4.7716

2KXK 54 (54) 1.4181
2KYK 38 (39) 1.5504
2KY8 68 (70) 0.8580
2LAM 29 (29) 0.1340

2L2L (Coil complex) 75 (79) 2.1904
2KXW 98 (100) 1.0979
7ZNF 26 (30) 1.4550
1AMC 28 (28) 0.6884
1KTX 36 (37) 0.4326

Table 5.1: Pairwise Global Structural Alignment Results.

The total number of aligned residues is provided and compared with the

total residues in the protein structure in parenthesis. In the case of pairwise

global alignment, we noticed that for each of the structure pairs to be aligned,

more than 90% of the residues were aligned. In other words, the majority of

the segments which underwent conformations were superposed efficiently. This

was validated using the DALI tool, and also the RMSD distance measure was

obtained. Note that the RMSD measure does not exceed 5Å in any of these cases,

thus ensuring that the two structures are efficiently aligned. A sample alignment

for the structure cyclotide Cter M (2LAM) is shown in Figure 5.4. Note that all

29 residues in the two structures are superposed efficiently.

We next studied the performance of the algorithm by extending it to the
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Figure 5.4: Pairwise global structural alignment for cyclotide Cter M (2LAM) is
shown. Note the superposition of the 29 residues and connecting the segments.

global alignment of multiple structures. We used DALI as the tool to verify our

results and it was observed that the alignment over multiple structures was simi-

lar to that of the global alignment over pairwise structures. A sample structural

alignment result for 10 multiple structures of 2L24 with different initial confor-

mations is shown in Figure 5.5. Note that the segments and the residues of all

the 10 structures seem aligned as in the case of the pairwise alignment. It is also

observed that the RMSD measure between each of the structures is minimal as

in the case of the pairwise alignment. However, the last segment is misaligned.

This is due to the lack of binding forces at that end of the structure, which gives

it more freedom to undergo conformations.

5.7.2 Special Case of Locally Aligned Segments

In order to simulate the case of distantly related proteins with similarities over

local segments, we considered similar protein structures and added multiple con-
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Figure 5.5: Multiple global structural alignment for (2L24) is shown. We consid-
ered over 10 structures with different initial conformations and superposed all of
the structures together. Note the superposition of the 13 residues over each of the
10 structures and the segment connections.

formations over substructures in the protein while ensuring that there were locally

similar segments in the protein. This case was simulated because in practice, there

are not too many known instances of distantly related proteins which possess sim-

ilar substructures for us to test our algorithm on. We present in Figures 5.7.2 and

5.7.2, five cases of local structural alignment including the cases of structures with

an α-helix and an all-beta sheet.

5.7.3 Classification of Protein Structures

To perform classification we built a database with 50 structures that belonged to

five different classes: two types of α helices (which we will refer to as α1 and α2

helices), π helix (an evolutionary variant of an α helix), β bridges and β strands.

There were 10 structures in each of these classes. The ground truth for this clas-

sification is established while building the database by extracting structures from
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Figure 5.6: Local structural alignment example case of α-helix in 2L8K. Note the
alignment of a helix of length 19 along the structure. The locally aligned structure
is connected by blue dots and appears shifted for better view.

Figure 5.7: Local structural alignment example case of an all β-sheet structure
with two sub-structures of lengths 22 and 19 aligned. The locally aligned structure
is connected by blue dots and appears shifted for better view.
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Figure 5.8: Local structural alignment case of local alignment in the β-Hairpin
Peptidomimetic Inhibitor at the hairpin segment. The locally aligned structure is
connected by blue dots and appears shifted for better view.
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Figure 5.9: Local structural alignment example with a short misaligned segment
in 1J4M. The locally aligned structure is connected by blue dots and appears
shifted for better view.
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Figure 5.10: Local structural alignment example with a short misaligned segment
in 1KWE. The locally aligned structure is connected by blue dots and appears
shifted for better view.

the PDB. We first extracted the directional descriptors for the reference structures

and stored them for comparison with the directional descriptors of the unclassi-

fied structures. We then considered each structure for classification, and extracted

the descriptors and compared them with those of the reference structures. This

was performed over all five different classes. Following the classification of the

structure into α class or β class, further classification was performed using the

pairwise alignment algorithm. The distance measure used in the classification

included both the directional descriptors at the first stage, and then the RMSD

metric for pairwise alignment. Based on the classification results and the ground

truth, a confusion matrix was constructed and is shown in Table 5.2.

Upon observing the classification performance, we noticed that the classi-

fication among the helices and the β classes is accurate and there is no misclassi-

fication between the two of them. For the helix subclasses, we observed that the
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Classification Result
α1 helix α2 helix π helix β bridge β strand

α1 helix 0.9 0.2 0.1 0 0
α2 helix 0.2 0.95 0.1 0 0
π helix 0.1 0.1 0.9 0 0
β bridge 0 0 0 0.8 0.2
β strand 0 0 0 0.1 0.8

Table 5.2: Confusion Matrix for Protein Structure Classification

classification achieved is greater than 80% for each of the three classes. For the

β classes, we observed that there is greater than 80% classification achieved for

both bridges and sheets. However there is misclassification amongst the helices

and the β classes. For instance, we noticed that 20% of the structures from α1

were misclassified in α2 and 10% in π class. This can be attributed to the fact that

there is a certain amount of similarity in helix subclasses and the β subclasses.

Also, increasing the size of the training set will help enhance the classification

performance and reduce the number of misclassifications in other classes. Note

that there has been very few cases of misclassification in the actual class (ground

truth), i.e., the structures have been classified under their respective classes with

an accuracy of 80%.

Note that the CARPS process is performed in real-time and the compu-

tational speed of cross-correlations between two signals was increased by using

FFTs.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

In this dissertation, we proposed two major types of algorithms, sequence align-

ments and structural alignment, based on the use of time-varying parametric

waveforms to uniquely represent biological molecules and their properties [66,88,

89, 145, 147]. Sequence alignment corresponds to querying primary biological se-

quences to find regions of similarity.Looking beyond the sequence based similarity

for protein sequences, structural alignment tries to find similarities between two

or more atoms based on the shape and three-dimensional (3-D) conformation of

their secondary and tertiary structures.

The proposed sequence alignment technique for DNA is based on map-

ping DNA nucleobases to unique Gaussian waveforms, and then using the match-

ing pursuit decomposition (MPD) algorithm to perform the query based on the

mapped waveform’s parameters in the time-frequency plane [88, 89]. For protein

sequence alignment, we modified the representation to include a scale parameter.

When sequence alignment does not yield good results but sequences still share

common properties, we proposed to improve waveform-query based DNA and

protein sequence alignment using the metaplectic transform; the five parameters

of this transform allow additional sequence properties to be mapped and this to

be used to increase alignment performance.

In particular, we proposed a robust WAVEQuery sequence alignment algo-

rithm that is based on waveform mapping and on exploiting waveform transform

parameters that propagate the waveform throughout the time-frequency plane.

We investigated the matching pursuit decomposition that transforms the highly-

localized Gaussian atoms in the time-frequency plane using time shifts, frequency
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shifts and scale changes. These three transformation parameters are used to rep-

resent properties of the biological sequences, such as character type, position in

the sequence, and correlation between two different characters. The robustness

of the WAVEQuery algorithm can be increased by mapping more biological se-

quence properties; this will require transforms with higher dimensionality, such as

the metaplectic transform that uses five transformation parameters to uniquely

propagate a basic atom in the time-frequency plane.

We considered two important cases of querying: globalized querying and

localized querying for DNA sequences. For localized sub-sequence querying, the

WAVEQuery algorithm significantly outperformed the well-known BLAST algo-

rithm when the queries had unknown lengths and repetitive database segments.

The WAVEQuery algorithm also outperformed matched filtering type methods

that also use waveform mapping, for these querying cases. The WAVEQuery

query processing can be performed in real-time and no sequence indexing or pre-

processing is required beforehand.

We also simulated the WAVEQuery algorithm for protein sequences by

extending the MPD to include the scale change parameter. Note that the amino

acid sequence constitutes the primary structure of the protein sequence, and sim-

ilarity in this primary structure implies that the two protein structures have the

same functional properties. However, the proteins also have secondary, tertiary

and quaternary structures, which are not directly related to the primary struc-

ture. The secondary and tertiary structures are represented by 3-D shapes, and

similarity in these shapes will imply that the two proteins have similar functions.

Hence, it is important to measure the similarity in two proteins by obtaining the

extent of functional similarity between the two proteins using their secondary

structures. If two proteins are dissimilar in their primary structures, they may

still be similar in their secondary and tertiary structures.
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We first formulated the protein superposition as a shape matching problem,

where the structures to be matched have six degrees of freedom. We then proposed

a protein structural representation in 3-D space based on a 3-D time-domain

Gaussian windowed chirp waveform. Our proposed chirp-based representation for

protein structures (CARPS) uses Gaussian and chirp parameters to map structure

translations and directional rotations, and we demonstrated that the α-Carbon

based backbone of the protein structure is well depicted in the 3-D plane. As the

CARPS is a linearly separable representation, it has the option of finding locally

similar segments in two structures.

For the structural alignment approach, the CARPS was used to form the

chirp-based algorithm for protein structures (CAPS). The new algorithm uses a

cross-correlation based matched filter approach to identify similarities in two or

more protein structures both globally and locally. The matched filter approach

takes into account all structural conformations due to the six degrees of freedom

in the structure, so that the CAPS bases its matching only on the structural shape

and directionality. We first applied the CAPS to pairwise global structure align-

ments and compared its performance with the results obtained using the DALI

pairwise alignment algorithm. Our results showed that the CAPS was capable

of aligning structures with a great precision (with higher than 90% of residues

being aligned) and the root mean-squared distance (RMSD) distance measure be-

tween the structures was less than 5Å in all the cases. We extended the CAPS

to perform multiple protein structure alignment in order to construct a phyloge-

netic tree between the protein structures, and we demonstrated an example where

multiple structures were aligned. We also extended the CAPS algorithm to local

structural alignment, an important case most existing techniques do not consider.

We applied our new technique to another important problem, the identification

of structural classes, and showed that by using the directional descriptors for the
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different structural classes and the pairwise alignment algorithm, we can success-

fully perform structural classification. We also mapped hydrophobicity, a physical

atomic property, into the structural representation and showed that it can be used

to improve protein structural classification.

6.2 Future Work

6.2.1 Sequence Alignment Algorithm

The alignment results from the WAVEQuery algorithm are currently represented

and ranked in terms of the BLAST performance metrics such as Raw-Score, Bit-

Score and E-value. However, the quality of the alignment can be studied using

a cross-correlation based measure or a measure based on the number of residues

obtained from the MPD alignment algorithm. Hence, it would be beneficial to

have a metric for performance accuracy that better matches the alignment method

in a particular database.

This algorithm can be modified as a querying algorithm and used beyond

the sequence alignment application. Specifically, a possible representation from

which we maybe able to extract sequence features is desired, and is based on the

given sequence annotation.

6.2.2 Structural Alignment Algorithm

In the current structural alignment algorithm, we consider windowed chirp rep-

resentations to map protein structures to waveforms. In the CARPS, we used

a Gaussian window as it is highly concentrated in both time and frequency. A

possible future modification is to investigate the use of other windows that have

additional parameters to represent properties of protein structures.

We consider the parameter of hydrophobicity in order to be able to clas-

sify structures. This parameter can possibly be used when aligning sequences
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and structures simultaneously; this implies an integration of the sequence and

structural alignments. If we were to expand the classification set to all protein

structural classes (> 250), then other properties could be incorporated and our

algorithm could be used for classifying a much larger set of structural classes.

The computational complexity of the CAPS structural alignment technique

is high as it involves 3-D correlation computations and a search for correlated

residues all over the sequence. An optimized local-search technique will be best

suited to reduce the number of computations involved in detecting locally aligned

structures.
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