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ABSTRACT  
   

Real-world environments are characterized by non-stationary and 

continuously evolving data. Learning a classification model on this data would 

require a framework that is able to adapt itself to newer circumstances. Under 

such circumstances, transfer learning has come to be a dependable methodology 

for improving classification performance with reduced training costs and without 

the need for explicit relearning from scratch. In this thesis, a novel instance 

transfer technique that adapts a “Cost-sensitive” variation of AdaBoost is 

presented. The method capitalizes on the theoretical and functional properties of 

AdaBoost to selectively reuse outdated training instances obtained from a 

“source” domain to effectively classify unseen instances occurring in a different, 

but related “target” domain. The algorithm is evaluated on real-world 

classification problems namely accelerometer based 3D gesture recognition, smart 

home activity recognition and text categorization. The performance on these 

datasets is analyzed and evaluated against popular boosting-based instance 

transfer techniques. In addition, supporting empirical studies, that investigate 

some of the less explored bottlenecks of boosting based instance transfer methods, 

are presented, to understand the suitability and effectiveness of this form of 

knowledge transfer. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

Statistical machine learning frameworks aid approximating unknown functions 

based on data examples. Their utility in recognizing patterns in data makes them a 

core component in intelligent systems. Among the various challenges faced in 

building such systems, of particular interest is that of developing robust learning 

frameworks that function in real-world environments, characterized by non-

stationary and continuously evolving data. Today when an enormous amount of 

data is being generated and collected every second, there is an ever increasing 

need for these systems and their learning frameworks to possess the ability to 

handle evolving data by adapting to newer circumstances and reliably recognize 

newer patterns. This chapter lays the groundwork for this thesis by giving an 

overview of the challenges real-world data pose with respect to learning a 

classification model and some of the known learning strategies used for tackling 

the problem. The foundation is used to broach upon the idea of transfer learning, 

delved in detail over the rest of the document. 

1.1. Dataset Shift in Real-World Conditions 

Deducing the output of unseen future data is impossible without making 

assumptions concerning the nature of the data. These assumptions, termed as bias, 

define the hypothesis space and enable algorithms to favor one particular 

generalization over others [1]. A classic assumption, many learning frameworks 

are known to make is to consider training and test data to be identically 

distributed (ID). This assumption, however, fails to hold in real-world conditions, 
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where data gets outdated frequently over time leading to poor performances of the 

trained classifier models. This problem need not be restricted to temporal 

sequences alone, but can be generalized to all forms of sequential data [2]. 

Examples of application domains where this phenomenon can be observed 

include signal processing, speech recognition, computer vision, system 

monitoring, financial forecasting, natural language processing and web mining.  

2.1.1. Types of Dataset Shift 

The objective of a statistical learning framework can be generalized to the idea of 

learning a model that makes predictions, ��	|�� for targets 	 given data examples 

�. Given this formulation, the problem of dataset shift can be understood and 

differentiated based on the model to be learnt and the cause for the change 

between the training and test datasets. A brief explanation of the different 

qualitative categories of dataset shift, as mentioned in [3], is given below: 

a. Simple Covariate Shift: Given a data distribution that can be modeled as 

��	|�� ����, the change in data is termed as covariate shift, when there is a 

change in ���� as a causal effect of the change in the covariate distribution. A 

covariate can be defined as an explanatory or a control variable that may be 

used along with other variables of primary interest for predictive purposes. 

The covariate is not hidden and is a known component. The change in 

covariate distribution will not have any effect on the prediction ��	|��. 
b. Prior probability shift: If the data distribution is modeled in a target-

conditioned fashion i.e. ���|	���	� and the prediction ��	|�� is inferred 

using the Bayes rule, a change in data distribution between training and test 
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scenarios can be caused due to the change in the prior distribution ��	�, while 

���|	� remains unchanged. This problem is termed as prior probability shift. 

c. Sample selection bias: Sample selection bias occurs when the training data 

points ���� do not accurately represent the distribution over test scenario due 

to a selection process for each item �.  Similar to covariate shift, the selection 

process can be modeled to depend on a selection variable �. However, unlike 

covariate shift, in this problem, the selection variable � has an influence over 

the label distribution ��	�. 
d. Imbalanced data: The problem of imbalanced data arises when in a 

multiclass dataset one or more classes occur rarely, compared to the others. To 

avoid redundant training examples of one class, a class-balanced dataset is 

typically obtained by discarding samples belonging to the frequently 

occurring class samples or synthetically adding instances of minority class 

examples. This, leads to a difference in data distribution, between the training 

and test scenarios, and is termed as a shift by design.  Given the change, the 

problem can be perceived as the case of a prior probability shift with a known 

��	� value. 

e. Domain Shift: Domain shift refers to the shift in the value of data points ���� 
as a function of a latent variable �� specific to a domain. A common way of 

looking at it is a change in the measurement system of ��.  
f. Source component shift: When data is made up of a number of different 

sources, each with its own characteristics, the proportions of the sources can 

vary between training and test scenarios. This change in data is referred to as 
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source component shift.  Three further cases of this shift namely mixture 

component shift, factor component shift and mixing component shift are 

detailed in [3]. The difference between this problem and sample selection bias 

is explained on the basis of quality of the shift. While the shift here has more 

to do with the change in the underlying causes we may not have any control 

over, the change in sample selection bias has more to do with the way the data 

points have been sampled from a specific population – a factor that can be 

controlled. 

A closely related dataset shift that often gets mentioned in the context of on-

line incremental learning over data streams is the problem of concept drift. 

Concept drift refers to the change in the underlying classification function, which 

might be the result of a change in ��	�, ���|	� or ��	|��. The core assumption 

with the notion of concept drift is the uncertainty with respect to the future 

samples (test instances), unlike the problems described above, where we are well 

aware of the presence of a shift [4]. 

1.2. Transfer Learning 

In the presence of such data shifts, a straightforward approach to adapting to the 

changes would be to re-train a separate classifier model from scratch over the new 

training instances. The process, however, is expensive and can be cumbersome 

owing to the costs associated with collecting and labeling new training datasets. 

Still, in some scenarios, it may be possible to obtain very few labeled target 

instances, but insufficient for training a reliable classifier. In such circumstances, 

a viable alternative that has the potential to minimize the overall cost of building a 
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classifier for the newer instances is to transfer appropriate knowledge from the 

outdated data for use with the new data. The suggested approach is analogous to 

how humans generalize when learning a new task from extremely few examples. 

This learning technique is broadly termed as Transfer Learning. 

The idea of transfer is a central component of learning in humans. As 

humans, we face a continuous stream of tasks to be learnt over our lifetime and h-

andle it with our ability to build on existing knowledge or experience, acquired 

from tasks learnt in the past [1]. The transfer of knowledge in humans is 

instinctive, occurring without any conscious thought process, and involves 

distinguishing relevant and irrelevant knowledge across multiple tasks. This 

process allows us to generalize well and learn new tasks fast and better. For 

example, when faced with learning a skill as complex as driving a car, years of 

learning experience with basic motor skills, typical traffic patterns, 

communication, logical reasoning, language, etc., play a role in helping us learn. 

Learning relies so heavily on transfer that without it; the level of human 

intelligence would be substantially lower [5].  

In the last couple of decades, significant research has been made in 

formulating methodologies for tackling the different kinds of shifts discussed 

above. A detailed discussion of all these methods would lie beyond the scope of 

this thesis. Nevertheless, a brief survey of some of the connected literature has 

been presented in Chapters 2 and 3 to provide the reader with sufficient 

background and understanding. A majority of the approaches are essentially 

modifications of established traditional machine learning techniques such as 
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neural networks, relational learning, on-line incremental learning and ensemble 

learning that incorporate the idea of knowledge transfer in them.  

1.3. Motivation 

The work presented in this thesis derives its motivation from two specific 

computational challenges that were faced in realizing automated activity 

recognition [6]. The challenges and an illustration of dataset shift in a real-world 

setting are discussed as part of the following case study. 

2.1.2. Recognition of Cooking Activities: A Motivational Case Study 

In recent times, an increased interest in the fields of human computer interaction 

and pervasive computing has given rise to many challenging problems based on 

pattern classification. Among these, activity recognition has been an important 

problem that has found use in applications as diverse as gaming, surveillance, 

location recognition, social interaction and assistive and rehabilitative devices.  

The basic idea behind activity recognition is to recognize actions of one or a 

group of users by extracting and interpreting data captured using sensing devices 

(cameras, accelerometers, microphones, etc.,) that are carried by the user or 

present in the operating environment. For these systems to be robust and easily 

deployable, it is necessary they overcome challenges such as change in operating 

environments, addition of new sensing technologies and variations in activity 

traits across individuals [7].  

 In this case study, an activity recognition problem namely “Recognition of 

Cooking Activities” is reviewed. The task is a research problem that focuses on 

establishing a framework that can be used to support patients, suffering from 
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memory impairment, in their instrumental activities of daily living (IADL)1. 

Developing an activity recognition system that can be used for identifying the 

different stages of a cooking activity requires pattern classification of fine-grained 

tasks unlike the classification of ambulatory movements. With the objective of 

training a classifier in a supervised manner, motion data of 5 participants 

performing the activity of “making a drink and drinking it” were recorded in 

video and with accelerometers. In order to obtain sufficient training data, the data 

capture session had been designed to have users enact actions 20 times using 

mock objects (dummy objects). Relevant features were extracted and the points 

annotated with one of the 5 common hand gestures namely pour, scoop, 

screw/unscrew cap, stir and lift to mouth. 5-fold cross validations were run with 

SVM and AdaBoost such that in each fold, data points corresponding to 4 subjects 

were used to train the classifier and the data instances of the left-out subject were 

used for testing, to obtain high mean accuracies of 92% and 90% respectively. 

The classifier models obtained were then tested for their ability to 

generalize over data points captured in a real-world setting. In this setting, no 

mock objects were used and the activities were actually performed instead of 

being enacted out like in training. The new data points captured activities of 4 

participants who “made a glass of Tang and drank it”. Each participant was asked 

to repeat the entire process 4 times, in order to obtain sufficient data points for 

testing. This time however, the average accuracies obtained from SVM and 

                                                 
1 The Lawton Instrumental Activities of Daily Living (IADL) established in 1969 
counts food preparation as one of the eight IADLs used for assessing independent 
living skills among old adults [19] 
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distribution ��	� as well.  

The second observation is the difficulty in collecting real-world training 

data. The difficulty is primarily because of the cumbersome process of collecting, 

cleaning and annotating real-world data. Besides the effort in preparation of the 

data, the process of getting participants involved in a real-life activity reduces the 

data point throughput during data capture sessions, for the same time and effort 

spent. Owing to this the costs associated with such processes tend to make it 

inefficient and preventive.  

These challenges together with the application setting, offers ample scope 

for studying how “knowledge” from the labeled training dataset, captured in 

sufficient amounts from the mock data space, and the few labeled instances that 

were captured from the real-world space, can be exploited to build a classifier that 

shows an improved performance on the real-world data. 

2.1.3. Problem Statement 

This thesis explores the idea of knowledge transfer between non-identical training 

(source) and test environments (target), by weighting instances based on their 

relevance in the test environment.  The central problem addressed can be stated as 

“given a significant amount of source data, whose distribution is known to be 

different from that of the target data, and a small sample of labeled target data, is 

it possible to design a method that combines these different datasets to reliably 

classify new unseen data points from the target domain”. 

To solve this problem, a boosting based transfer learning framework is 

designed and evaluated. In the process, the following issues are discussed: 
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1. How can the relevance of instances in a source domain be measured with 

respect to that of a target domain? 

2. How can the boosting algorithm be modified to incorporate the usefulness 

of source instances and develop a robust transfer learning technique?    

1.4. Summary 

The rest of this thesis is divided into the following chapters: Chapter 2 gives a 

brief background of transfer learning methodologies and reviews some of the 

prominent works published in the area. Chapter 3 discusses on using boosting for 

transfer learning by showcasing some of the known literature present. The 

properties of each technique are highlighted and their limitations mentioned. 

Chapter 4 describes the proposed methodology – cost sensitive boosting for 

transfer learning – and elaborates on the different boosting schemes, the cost 

estimation processes investigated as part of the thesis. In addition, a thorough 

description of the different real-world datasets, the algorithms were tested on, 

namely, gesture recognition, activity recognition and text categorization datasets 

is also included. Chapter 5 presents the results obtained from the different 

experiments conducted over the datasets and proceeds to analyze and interpret 

them. Chapter 6 summarizes the work presented in this thesis and concludes by 

highlighting the potential future directions of this research. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

Even though “transfer” has been an actively studied phenomenon in cognitive 

literature, transfer learning as a research direction in computer science attained 

prominence only in the last decade. Literature published since then has given rise 

to a variety of transfer learning algorithms, referred using different titles such as: 

lifelong learning, multi-task learning, inductive transfer, domain adaptation, 

cross-domain transfer, context-sensitive learning, meta-learning and incremental 

learning [8]. In this chapter, an introductory account of transfer learning is given 

supported by a brief literature review done by the author as part of this thesis. The 

literature review is by no means exhaustive and is rather intended to provide the 

reader with a well organized overview on the subject. For further reading it is 

recommended to go through the following survey papers [9; 8; 10], conference 

proceedings [1] and books [3].  

2.1. Definitions and Vocabulary 

The NIPS Inductive Transfer Workshop 2005 defines transfer learning as “a 

transfer of knowledge across domains, tasks and distributions that are similar but 

not the same”. In general, the training and test datasets involved in transfer 

learning can be described in terms of the domains they have been sampled from 

and the learning tasks they represent. A domain � is the marginal distribution 

���� observed over an instance set � in a specific feature space � (typically ��). 

Given an input space � and a label space � (��1, 1� for binary classification 
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problems), a task � is equivalent to the unobserved classification function 

�: � ! � to be learnt, which can be stochastically modeled as ���� "  ��	|��, 

where 	 # � is the corresponding label of  an instance � # �. The term source is 

used to refer to the data from which knowledge is extracted, while the term target 

is used to refer to the data, over which a classifier model is to be learnt, under the 

support of the transferred knowledge. A formal definition of transfer learning, as 

stated by [8], is given below. The definition takes only one source domain and 

one target domain into account. It can, however, be generalized to apply to cases 

dealing with multiple sources and multiple targets. 

Definition: Given a source domain �$ and a learning task �$, a target 

domain �% and a learning task �% transfer learning aims to help improve the 

learning of a target predictive function �%�. � in �% using the knowledge in �$ and 

�$, where �$ & �%, or �$ & �%, 
In the above definition, the conditions �$ & �% and �$ & �% denote the 

differences between the source and target domains and tasks respectively.  The 

difference between the domains can be explained as either a disparity in the 

feature spaces �$ & �%, or a shift in the marginal distribution over the instances 

���$� & ���%�. On the other hand, the differences between the tasks can be 

interpreted as either a change in the label space �$ & �%, or that of the predictive 

function �$�. � & �%�. �. As seen in Section 1.1.1, covariate shift, sample selection 

bias, domain shifts or source component shifts are typical causes behind marginal 

distribution shifts, while imbalanced data or concept drift create label space 

differences. Table 1 gives examples illustrating these differences based on the 
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document classification problem. While these differences may allow justifying the 

use of transfer learning, a vital aspect that should not be overlooked is the related-

ness between the source and target datasets. Similarity is central to transfer and is 

a fundamental rationale behind a successful transfer. 

Table 1 Source and Target Differences illustrated in the case of Document Classification. 

Difference Document Classification Example 

�$ & �% 
Documents in source domains may be 

in English, while documents in target 

domains are in Chinese. 

���$� & ���%� 

Term frequencies for the documents are 

distributed differently in the two 

domains. 

�$ & �% 
Training domain has binary document 

classes and test domain has multiple 

document classes. 

�$�. � & �%�. � 
When the document classes are 

balanced in training environment and 

imbalanced in the test environment. 

 

2.2. Categorizing Transfer Learning Algorithms 

It is useful to categorize transfer learning algorithms in order to be able to 

separate out the concerns and capabilities of systems incorporating these. Like in 
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humans, transfer learning algorithms facilitate in improving the target task 

performance, learning speed or, sometimes, both. Which one can be achieved 

depends on the availability of adequate training data to learn [9].  For example, 

the objective of the transfer technique used in a speech recognition system that 

can adapt to new speakers would be different for a dictation system from that of 

an interactive voice response system. For a dictation system, it might be 

acceptable to expect a new speaker to train a system for 30 to 40 minutes, as the 

speaker may eventually go on to use the system for years. On the other hand, a 

recognition framework that is used as part of an interactive voice response system 

can only count on a few seconds of unsupervised speech [10] and should learn 

fast.  

A set of distinctions in transfer [9], can be made based on whether the 

algorithms retain the source task accuracy, after learning the target task or focus 

exclusively on learning the target task alone. Algorithms that belong to the former 

group are termed as sequential transfer and those that go by the latter approach 

are termed as non-sequential transfer. Further distinctions can be made in the case 

of sequential transfer algorithms based on whether the source and target tasks are 

learnt simultaneously or separate in time. Algorithms that adopt the first approach 

are generically termed as functional transfer, while other algorithms that learn the 

tasks one at a time by carrying an explicit representation from one task to the 

other are known as representational transfer. Multi-task learning [11] is a 

commonly cited technique that falls under the category of functional learners. 
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 Transfer learning settings can be characterized by the availability of 

labeled data and the variation in the domain or task distributions across the source 

and target domains. Founded on these learning settings and similar to the 

categorization of traditional machine learning algorithms, transfer settings can be 

conveniently categorized [8] as:  

• Inductive transfer:  In this setting, the target task is different from the source 

task and has very less labeled data to obtain the required classification 

performance. Similar to inductive learning, the labeled data can be used to 

obtain a weak target inductive bias. The bias can then be corrected based on 

the knowledge derived from the source tasks. Here, the source data may or 

may not be labeled.  

• Transductive transfer: The objective of transduction is to label the unlabeled 

data seen during training. Following this, in a transductive transfer setting, the 

target data is unlabeled and available, while the source data is labeled and 

available in abundance. The difference in the data, between the target and the 

source tasks, is generally modeled as a difference in their feature space or 

domains. 

• Unsupervised transfer: Here, the target tasks are different from, but related 

to, the source tasks. However, just as in unsupervised learning, both the source 

and target data are unlabeled. Common unsupervised techniques such as 

clustering, dimensionality reduction and density estimation are typically used 

to make sense of the target data. 
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It is important that the knowledge to be transferred is well represented. 

The knowledge may be specific only to certain source domains or may be 

common across many domains. A good representation makes this information 

easily identifiable. The knowledge can be modeled as a set of instances, a group 

of features, model parameters or a relational map. Based on this, transfer 

algorithms can be classified into the following categories [8]: 

• Instance-based transfer: reuses training instances from the source domain to 

augment the training instances observed in the target domain typically by re-

weighting or re-sampling. 

• Feature-based transfer: aims at finding an alternate feature space for the 

target domain. Common approaches include feature selection and vector space 

transformations. 

• Model-based transfer: uses components such as model parameters, of 

previously learnt source models to influence learning the target task. 

Approaches vary from plain superimposing of model shape constraints to 

partitioning of the parameter-space. 

• Relation-based transfer: works with the idea of spotting and capitalizing on 

the structural or relational similarity between the source data and the target 

data. Suitable statistical relational learning techniques are generally applied 

for the purpose. 

The literature review presented from Section 2.4 onwards is organized based on 

the above categorization. 
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2.3. Relatedness and Negative Transfer 

The effectiveness of transfer depends on the source task and how related it is to 

the target task [12]. When the source and target tasks are strongly related, it would 

be worthwhile for a transfer algorithm to take advantage of it, to improve the 

performance on the target tasks significantly. Here, the transfer is termed to be 

positive. However, when the source tasks are not sufficiently similar or if the 

algorithm itself fails to exploit the existing knowledge in the source tasks, the 

performance over the target tasks may not only fail to improve, but may actually 

decrease. This phenomenon is called negative transfer. The problem of avoiding 

negative transfer is an open research issue and can be viewed as the problem of 

“when to transfer”. 

 Proper selection of the source knowledge can be the difference between 

positive and negative transfer [5].  Many of the current algorithms assume that the 

given source tasks are relevant to the target task. These algorithms separate out 

the process of selection from the transfer framework and assume that the source 

tasks have been manually selected, for transfer, by human experts using heuristics 

or domain knowledge. On the contrary, it would be more suited for use in real-

world applications, if the selection is automatic and embedded into the transfer 

framework. Automatic selection would entail the computation of an “a priori”  

measure of task relatedness before training, instead of evaluating the performance 

of the classifier retrospectively. The problem of automatic selection is difficult to 

solve owing to the missing target domain information. Often, the limitation is 

partially overcome by structuring the abundant source data into a hierarchy of 
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similar source tasks. Selective transfer helps improving the results in cases where 

only few support tasks are relevant. Known literature explain this notion of 

relatedness based on two ideologies (1) Task based similarity and (2) Domain 

based similarity. Task based similarities are generally computed and applied in an 

inductive transfer setting. The latter finds more application in transductive 

transfer settings such as domain adaptation and assumes the predictive functions 

to be constant across the two domains. 

Task based similarity refers to a measure that quantifies the difference 

between a source task ���$, �$� and a target task ���%, �%�. Ben-David and 

Schuller [13] define relatedness in the case of a data generation model. They term 

tasks as '-related, where ' is a set of transformations �: � ! �, if for some 

fixed probability distribution over � ( �, the data in each of these tasks is 

generated by applying some � # ' to this fixed distribution. 

 Showcasing a more practical approach, Thrun and O’Sullivan’s [14] 

propose a Task Clustering algorithm that groups learning tasks into classes of 

mutually related tasks, by using a globally weighted Euclidean distance metric to 

measure the proximity between data points. The distance metric is learnt by 

minimizing the average inter-cluster similarity and maximizing the intra-cluster 

similarity. Similarity between tasks is then computed using cross-validated 

predictive accuracies of k-nearest-neighbor classifiers, learning one task using the 

distance metric of another. Under test conditions, the target tasks observed are 

matched with source task clusters and the appropriate distance metrics are 

transferred for classification.  
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Eaton [5] defines the concept of transferability as the transfer relationship 

between two tasks as the change in performance between learning with and 

without transfer. The measure’s viability is demonstrated as part of a boosting 

based instance transfer [15] and a relational transfer framework [16]. The instance 

transfer algorithm titled TransferBoost is discussed in the next chapter in more 

detail. The relational transfer framework is modeled on the same lines as the task 

clustering algorithm mentioned above with the transferability measure used 

instead of the Euclidean distance metric.  

Domain based similarity refers to a measure that quantifies the difference 

between the source domain ���$� and the target domain ���%�. Kifer et al., 

introduce the concept of )-distance in [17]. For a given domain � and a 

collection ) of subsets of � and probability distributions � and �* over �, such 

that every set in ) is measurable with respect to both distributions, the )-

distance between the distributions is theoretically defined as 

�)��, �+� " 2 sup0#) | Pr� 345 � Pr�+ 345�| 
)-distance is closely related to learning a classifier that discriminates between 

points sampled from different domains. It can be implemented [18] easily by 

associating a positive label with the source data and a negative label with the 

target data, thereby modeling this into a binary classification problem. For two 

dataset samples 6$ and 6%, each of size 7, the error of a classifier 8, )-distance is 

theoretical proven to be, 

�)�6$, 6%� " 2�1 � 2 min<#= >??�8�� 
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 Though, some of the above methods can be helpful in detecting change in 

data and task distributions, in practice, the goals of avoiding negative transfer and 

facilitating a positive transfer is difficult to realize. Often, algorithms that have 

safeguards to avoid negative transfer have a reduced effect from positive transfer 

due to the extra caution [12]. On the other hand, approaches that transfer 

aggressively might transfer better, but may lack protection from negative transfer. 

In addition, one cannot discount the inevitable bias actual applications would face 

when predicting negative transfer with very less information in hand. 

2.4. Instance-based Transfer 

In instance-based transfer, individual data instances are selected from the source 

domains to help train a classifier for the target domain. When the source and 

target tasks can be represented in the same instance space, an instance-based 

transfer may be sufficient for generalizing over the target domain. The training 

objective for an instance-based transfer is to minimize an error function over 

target instances and the selected source instances. Instance reweighting and 

importance sampling are two popular methodologies applied to realize instance-

based transfer. 

Jiang and Zhai [17] linearly combine several adaptation heuristics using 

instance-level and global coefficients, into a unified objective function. They 

tackle domain adaptation using a three step strategy over a probabilistic model of 

the data, which includes, (1) removing “misleading” training instances in the 

source domain, (2) assigning more weights to labeled target instances than labeled 
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source instances and finally (3) augmenting training instances using target 

instances with predicted labels.  

Wu and Dietterich [18] use source domain instances, referred to as 

“auxiliary data”, to improve the classification accuracy of support vector 

machines (SVM) and identify support vectors that are applicable to a target task. 

Liao et al.[19] propose an active learning method to select the unlabeled data in a 

target domain to be labeled with the help of source domain data. They realize this 

with the help of auxiliary variables and a Fisher information matrix. 

A popular framework that finds use as an instance weighting solution for 

domain adaptation [22] is that of empirical risk minimization. The objective of 

this method is to learn an optimal model @A # Θ in a model family, such that 

expected risk, expressed in terms of a loss functionC��, 	, @�, is minimized. The 

objective function can be written as, 

@A " arg minF#G H�I,J� # �(�3C��, 	, @�5 
For the setting of domain adaptation, the idea is to obtain an optimal model for the 

target domain and minimize the expected loss over the target distribution. This 

can be expressed as, 

@%A " arg minF#G K ���%�. C��, 	, @��I,J�#L�MN�  

The problem then is reduced to approximating ���%� utilizing the labeled 

instances picked from the source domain O$. The above problem can be then 

rewritten as  
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@%A " arg minF#G K ���%����$� . C��, 	, @��I,J�#L��P�  

Q arg minF#G K R. C��$S�TP
�UV  

where R " LWINS ,JNSXLWIPS ,JPSX. Since it is assumed that the predictive functions are constant, 

R can be estimated as 
LWINSXLWIPSX. This process of estimating the properties of the target 

distribution with samples generated from source distribution, different from the 

target distribution, is termed as importance sampling. 

Huang et al., [23] propose a kernel mean matching algorithm to learn R by 

matching the means between the source and target domain data in a reproducing 

kernel Hilbert space (RKHS). An advantage of using KMM is that it avoids 

performing density estimation of either ���$S� or � ��%S�, which is difficult when 

the size of the dataset is small. 

Sugiyama et al., [24] propose an algorithm named Kullback-Leibler 

Importance Estimation Procedure (KLIEP) to estimate 
LWIPSXLWINSX directly, based on 

the minimization of the Kullback-Leibler divergence measure. KLIEP can be 

integrated with cross validation to perform model selection automatically in two 

steps: (1) estimating the weights of the source domain data; (2) training models on 

the reweighted data. 
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2.5. Feature-based Transfer 

Argyriou et al., [25] propose a method for learning a low-dimensional feature 

representation which is shared across a set of multiple related tasks. Building 

upon the 1-norm regularization problem, they use a new �2,1�-norm regularizer to 

come up with a non-convex optimization problem, which attempts to 

simultaneously select a low dimensional feature representation and learn them. 

They proceed on to formulate an equivalent convex optimization problem and use 

an iterative algorithm to solve the problem. The algorithm alternately performs a 

supervised and unsupervised step, where the first step independently learns the 

parameters of the tasks’ regression or classification functions and the latter step 

converges towards a low-dimensional representation for these task parameters in 

an unsupervised manner. The optimization problem can be written in this context 

of TL as given below: 

arg min0,Y K K Z[	%, \ ]%, ^_�%S `a b cd|4|de,VeTN
�UV%#�_,f�  

In this equation, S and T denote the tasks in the source domain and target domain, 

respectively. 4 "  3]$, ]_5 # g�(e is a matrix of parameters. ̂ is a � ( � 

orthogonal matrix for mapping the original high-dimensional data  to low 

dimensional representations(^_�% and ̂ _�$). The �2,1� norm of A is defined 

as d|4|dh,i j W∑ ld]�dlh
i��UV Xmn

. 

Blitzer et al., [26] focus on using unlabeled data from both the source and 

target domains to learn a common feature representation that is meaningful across 
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both the domains. The authors term this method as Structural Correspondence 

Learning (SCL). The first step of SCL is to define a set of pivot features on the 

unlabeled data from both domains. These are features that behave in the same way 

for discriminative learning across both domains. After having selected the pivot 

features, these are removed from the data and treated as a new label vector. Thus, 

7 binary classification problems can be constructed, where 7 is the number of 

pivot features. These classification problems are then trained from the unlabeled 

data and solved using a linear classifier, �o�I� " ��pq�ro_ . ��, C " 1, . . . , 7 to 

learn a parameter matrix s "  3rVre. . . rt5. After obtaining s, singular value 

decomposition (SVD) is applied on it. Let s " ^Ou_, then  @ " 3̂V:<,:5_ , where 8 

is the number of shared features, is the matrix whose rows are the top left singular 

vectors of s. In the final step, standard discriminative algorithms can be applied 

to the augmented feature vector to build models. The augmented feature vector 

contains all the original feature �� appended with the new shared features @��. 
Though it has been shown experimentally, that SCL can reduce the difference 

betwen domains, selecting the pivot features is difficult and domain-dependent. In 

this paper, Blitzer et al. have used a heuristic method to select pivot features for 

natural language processing (NLP) problems, such as POS tagging. 

Pan et al., [27] exploit a dimensionality reduction method named, 

Maximum Mean Discrepancy Embedding (MMDE) to learn a shared low 

dimensional latent feature space, such that the distributions between the source 

and target domain data are the same or close to each other. The theory of 

Maximum Mean Discrepancy states that the distance between distributions of two 
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samples is equivalent to the distance between the means of the two samples 

mapped into a Reproducible Kernel Hilbert Space (RKHS). By capitalizing on 

this theory, MMDE converts the problem of minimizing a distance function in 

feature space into a semidefinite program in RKHS to identify a lantent set of 

features. Post this, supervised and semi-supervised learning approaches are used 

to train a model for a mapping between the tasks and data across both the 

domains. The method, however, is computationally inefficient. 

2.6. Model-based Transfer 

Most model-based transfer techniques can be categorized into: (1) approaches that 

partition the parameter space of a conventional learning algorithm into task-

specific parameters and general (cross-task) parameters and (2) approaches that 

learn shape constraints, which are superimposed when learning a new function.  

Evgeniou and Pontil [28] propose an SVM based parameter transfer 

approach, where the parameters of SVMs for the source and target domain, r$ 

and r% share a common parameter, rv. Thus, r$ " rv b  �$ and r% " rv b  �%. 
An optimization framework is then formulated for determining the parameters, 

rv , �% , �$. 

Raina et al., [29] present an algorithm for constructing the covariance 

matrix, Σ #  ��(� for an informative Gaussian prior, x�y, Σ�, to learn and 

classify documents observed in a specific target domain, when the available 

training data from the target domain is scarce �q \\  ��. The algorithm uses 
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other "similar" learning problems to learn a good underlying mapping from word 

pair features to word parameter covariances.  

Lawrence and Platt [30] propose an efficient algorithm known as MT-

IVM (Multi-task, Informative vector machine), which is based on Gaussian 

Processes (GP), to handle the multi-task learning case. MT-IVM tries to learn 

parameters of a Gaussian Process over multiple tasks by sharing the same GP 

prior.  

Gao et al., [31] observe that several classification models may be available 

in a training domain, either sourced from a set of relevant tasks or learnt using 

different classifiers. No single model may help in summarizing the target task as 

such. Thus, they propose a locally weighted ensemble in order to additively 

combine the predictions of multiple source models. The weights for the models 

are computed by clustering the different tasks into graphs and estimating the 

similarity of the neighborhood of test instances in these graphs. 

2.7. Relation-based Transfer 

Different from the other three contexts, the relational knowledge transfer 

approach deals with transfer learning problems in relational domains, where the 

data are non-id and can be represented by multiple relations, such as networked 

data and social network data. This approach does not assume that the data drawn 

from each domain be independent and identically distributed as traditionally 

assumed. It tries to transfer the relationship among data from a source domain to 

target domain. 
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Mihalkova and Mooney [32] perform transfer between Markov Logic 

Networks (MLN). An MLN consists of a set of first-order logic formulae, each 

with a weight attached, and provides a model for the joint distribution of a set of 

variables. Given a learned MLN for a source task an MLN is learnt for a related 

target task by starting with the source-task one and diagnosing each formula, 

adjusting ones that are too general or too specific in the target domain. The 

hypothesis space for the target task is therefore defined in relation to the source 

task MLN by the operators that generalize or specify formulas. 

Dai et al., [33] present a general transfer learning framework called 

EigenTransfer. Their idea is to construct a task graph to represent the transfer 

learning tasks and model the relations between the target data and the auxiliary 

data. Instances, features and labels are represented as nodes in the task graph, 

while the edges are set based on the relations between the end nodes, connecting 

the target and auxiliary data in a unified graph structure. By computing the 

eigenvectors of the graphs, the tasks can be represented in a spectral feature 

space, reflecting the intrinsic structure of the target data, auxiliary data and the 

relations between them. Knowledge transfer from the auxiliary data is then done 

in this new feature space, to help learning the target data.  

Dai et al., [34] investigate the concept of translated learning, where 

knowledge transfer is performed between two entirely different feature spaces, in 

this case, text and images. Their algorithm combines feature translation and the 

nearest neighbor into a unified model by making use of a language model, which 

is represented using Markov Chains. They adopt the Risk Minimization 
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framework and formulate a problem that minimizes the risk g�z, �%� of 

misclassifying �% to the category z. Assuming no prior difference among all the 

classes, the risk is simplified to represent the distance between the feature and 

task space, measured using Kullback-Leibler divergence measure. They make the 

actual transfer with the help of a translator function {�	%, 	$� |  }�	%|	$�. 

In the domain of activity recognition, Kasteren et al., [35] present a 

framework that allows to transfer knowledge of activity recognition from one 

context to the next.  They use wireless binary sensing nodes that can be used to 

capture activities anywhere in a household, such as measuring a door being 

opened, a toilet being flushed or the temperature of a stove rising. In this work, 

they describe a method which uses unlabeled data captured from house A together 

with labeled data from house B, to learn the parameters of model for activity 

recognition in house A. The difference in the domains appears in the form of the 

difference in the layout of the houses and thereby difference in the location of the 

sensors and the properties they measure. To solve this problem, the authors use a 

set of manual mapping operations namely Intersect, Duplicate and Union to get 

the final feature set over which a semi-supervised learning algorithm is used. 

Rashidi and Cook [36] propose an unsupervised approach for mapping the 

sensor and layouts of different living spaces for transferring the activity 

information from a set of source living spaces to a target living space. 
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CHAPTER 3 

BOOSTING AND TRANSFER LEARNING 

The central challenge in transfer learning lies in formulating an approach that 

makes most of the available auxiliary data. In instance transfer algorithms; this 

problem gets manifested into that of identifying the relevant instance points that 

would be useful in helping learn a tuned classifier that classifies target domain 

data points correctly. AdaBoost, short for "Adaptive Boosting", is a well-

established algorithm that boosts a weak learning algorithm into a strong one by 

calling it repeatedly so that the cumulative error of the strong classifier is reduced. 

It is essentially a greedy algorithm that incrementally alters the distribution of the 

training data points, used for training the weak-learning algorithm at each 

iteration. This process allows identifying important examples in the training 

dataset. However, similar to other traditional learning algorithms, it assumes that 

the training and test data are sampled from the same instance space. Recent 

research efforts have looked to extend the boosting principle to work with 

auxiliary data. Typical challenges faced in modifying AdaBoost for the purpose of 

transfer learning include: 

• Formulation of a similarity measure between cross-domain samples 

• Design of weight update factors and obtaining the corresponding optimal 

value of the parameter ~ that minimizes the training error bound in the target 

domain. 

• Definition of an appropriate loss function. 
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• Linear combination of the weak classifiers to obtain a strong classifier that 

generalizes well over the target domain. 

This chapter gives a brief background of the boosting theory and continues to 

provide a small survey of novel boosting based algorithms that have been adapted 

for transferring knowledge from source instances to a target domain. 

3.1. AdaBoost: An Overview 

The basic idea of boosting is to learn a "strong" classifier by combining simple 

classifiers known as "weak learners", which would do at least slightly better than 

Figure 2: The AdaBoost algorithm as described by Freund et al [37] 
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chance. AdaBoost [37], as proposed in the seminal work of Freund et al., is 

probably the most popular boosting algorithm. It maintains a distribution or a set 

of weights over the training set and presents the weak learner with the important 

examples from the set to obtain a "weak hypothesis".  The goodness of a weak 

hypothesis, as measured by the error over the distributionO, is used to update the 

weights of the training points. In a boosting iteration, the weights of the correctly 

classified instances are reduced, while the incorrectly classified points are 

increased. As a result, the weak learner for the subsequent iteration focuses on 

learning a model that correctly classifies the incorrectly classified instances of the 

previous iteration. The objective of the algorithm is to find a strong hypothesis, by 

linearly combining the set of weak hypotheses, with a low cumulative error 

relative to a given distribution. The pseudo-code for the algorithm is given in 

Figure 2. In the context of transfer learning, AdaBoost implicitly focuses on the 

small amount of target domain training data if they are incorrectly classified at 

any given iteration. It uses the rest of the source data to learn a model that 

classifies this set of target domain data. 

3.2. Instance-based Transfer: TrAdaBoost and TransferBoost 

The foremost boosting based algorithm that was proposed for the purpose of 

transfer learning is Dai et al.’s TrAdaBoost [38]. TrAdaBoost considers the target 

and source data separately by applying different weight update schemes on them. 

The weights of misclassified target data points are increased, as in AdaBoost, 

using the weight update factor ~% computed from the error �% over the target data. 

The weights of source data points are, however, decreased, similar to the weight-  
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Table 2 : TrAdaBoost algorithm from [38] 

Algorithm TrAdaBoost 
Input: the two labeled datasets �� and �$, the unlabelled dataset �, a base learning algorithm Weak Learner, the maximum number 
of iterations, C, a vector consisting of cost factors associated with 
every sample in ��. 
 
Initialize: the initial weight vector rV=�rVV, reV, � , rT�tV �. 
 
For � "  1, … , � 

1. Set }% "  r% ∑ r%���t�T�UV�   
2. Call the weak learner, providing it with }% and the 

combined training set of �� and �$ along with the cost 
factors for �� C. Get back the hypothesis 8% � � ! �; � #��1, 1�. 

3. Calculate the weighted error of 8% on �$  
�% "  K r%��� ·  |8%���� � 	�|∑ r%���t�T�Ut�V

t�T
�Ut�V  

 
4. Set R% " �NV��N and R " 1/�1 b  �2 log q/ ��. Note that �%has to be less than 1/2  
5. Update the new weight vector 

r%�V��� "  � r�%Rd<N�IS�� JSd,                  1 � � � qr�%R%�d<N�IS�� JSd, q b 1 � � � 7 b q� 
 
Output: The final hypothesis 

8���� " �1,   � R%�<N�I�  � �
%U�/e � R%�V/e  �

%U�/e0, Otherwise                                     �  
 

ed majority algorithm, using a constant factor ~ that has been set according to 

Littlestone and Warmuth [39]. The concept of similarity for transfer is implicit 

and assumes misclassified source instances to be the most dissimilar to the target 

instances. The weights of the misclassified source instances are decreased to 

weaken their impact on the weak learner at a given iteration. Thus, source domain 
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instances that are similar to the target domain instances will have large training 

weights, while the source domain instances that are not so similar will have lower 

weights. Dai et al. provide a theoretical analysis of the algorithm and derive the 

training and generalization error bounds and show that the average weighted 

training loss on the source data converges to zero from the ¢_e£%<
to the �%<  

iteration. Hence, only the weak hypotheses between the ¢_e£%<
and the �%<iterations  

are linearly combined to obtain the strong hypothesis. 

Figure 3: TransferBoost Algorithm from [15] 
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TransferBoost [15] uses a hierarchical weight updating scheme which 

boosts both individual instances and a set of instances corresponding to a source 

task. Sufficient information is assumed to be available from a collection of source 

tasks, �V, … , �¤, each characterized by different � ! � mappings. On boosting 

iteration �, each source task �� is assigned a weight ~%� based on a notion of 

transferability from the source task to the target task. These weights denote the 

contribution made by each source tasks to learn a target tasks based their 

relatedness. Transferability, as previously mentioned, is essentially a greedy 

measure, defined as the change in classification performance on the target task 

between learning with and without transfer. To compute transferability, a 

classifier 8%¥ is first trained on the target data � with distribution 
¦�_�d|¦�_�|dm. Another 

classifier 8%§̈  is then trained on �� ©  � with distribution 
¦�fS©_�d|¦�fS©_�|dm. Based on the 

individual performance of these classifiers, transferability is given by ~%� " �%ª �
�%§̈, where � is the weighted error of classifier 8 on �. The weighting scheme for 

individual instances follows from AdaBoost, increasing the weights of 

misclassified instances disregarding whether they belong to the source or the 

target domain. The algorithm is given in Figure 3. 

3.3. Feature-based Transfer: Joint Boosting 

Torralba et al., [40] present a multi-class boosting procedure, used for object 

recognition in images, which learns an array of strong classifiers ��, z� , that can 

classify different object classes z # « by finding a shared feature space for the 
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classes, instead of separately training binary classifiers. At each boosting round, 

various subsets � ¬ « of classes are examined and a weak classifier is learnt to 

distinguish the subset from the background. The subset learner that maximally 

reduces the weighted error on the training set for all the classes is added to the 

strong learner for that class. Instead of iterating through an exhaustive list of 

(2|«| � 1) subsets, the authors use forward selection of the best features for 

recognizing a class. By using a decision stump for a weak learner, which can be 

viewed as a feature selection process, the algorithm, in a way, becomes equivalent 

to functioning within a manifold. The transfer here is probably not so obvious as 

the other algorithms, and can be readily seen as related to multitask learning when 

each object class is considered as a task. 

3.4. Model-based Transfer: TaskTrAdaBoost 

Yao and Doretto [41] extend the boosting algorithm to transfer knowledge from 

multiple source tasks to learn a specific target task. With the assumption that 

closely related tasks are likely to share some parameters, the framework works on 

transferring suitable parameters from multiple source tasks to a target task in two 

phases. In the first phase, standard AdaBoost is used to learn the each source task 

and obtain a collection of candidate weak classifiers =. A regularizing threshold 

c is utilized to constraint the coefficient ~ to selecting the best of weak classifiers 

to be included in the set. In the second phase, another boosting algorithm is run to 

select the best of the weak classifiers in the set =, with respect to the target data. 

At each round of the boosting iterations, a weak classifier 8 # = is chosen such 
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that it gives the lowest weighted error on the target training data, ensuring the 

harder examples are learnt. Intuitively, the strong classifier can be seen as a linear 

combination of selected source task classifiers. In some ways, this method is 

remarkably similar to the Locally Weighted Ensemble algorithm [31] mentioned 

in the previous chapter. 
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CHAPTER 4 

COST-SENSITIVE BOOSTING 

This chapter presents different schemes for employing a cost-sensitive framework 

for transfer learning, by extending the original AdaBoost [37] framework 

proposed by Freund and Schapire. In the proposed extension, the boosting 

framework is applied separately to source and target domain data. The boosting 

updates for the source domain data is modified to take into account the cost 

factors that represent the relevance of the source domain samples with respect to 

target domain data. This ensures that weights of instances in source domain data 

that are not relevant to target domain data are slowly decreased to reduce its 

impact on learning, while maintaining the weights of the relevant samples. 

4.1. Notation 

Formally, the labeled source and target training data samples are referred to as 

diff-distribution and same-distribution training data, following the notation in 

[38], while underlining the difference in them. Thus, let �� "  [��� , 	��a®�UVT
 

represent diff-distribution samples, �$ "  ����$, 	�$���UVt represent the same-

distribution training samples and � refer to the set of unlabeled test data taken 

from the target domain. The objective of the algorithm is to learn a target 

classifier (Figure 4) that classifies the test data � with minimum error, by training 

on the same-distribution dataset �$ supplemented by the relevant instances picked 

out from the diff-distribution source dataset ��. The approach for solving the 

problem is centered around two main heuristics namely (1) attaching weights or 



cost items  to  based on the estimated relevance with 

separate boosting schemes on 

Figure 4 An illustration of the problem statement

4.2. Cost-Sensitive Boosting Framework for Transfer 

The Cost-Sensitive Boosting framework is a result of an empirical exploration of 

building a fast instance-
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based on the estimated relevance with  and (2) applying 

separate boosting schemes on  and . 

An illustration of the problem statement 

Sensitive Boosting Framework for Transfer Learning

Sensitive Boosting framework is a result of an empirical exploration of 

-based transfer algorithm on top of AdaBoost 

learning a task observed in a target domain with the aid of a small set of labeled 

 and sufficient set of labeled source training instances 

. The algorithm design is based on three straightforward principles:  

to compute source relevance, right at the instance-level (rather than a task

level) and to keep it independent from the boosting algorithm (against 

encapsulating it with the boosting algorithm),  

and (2) applying 
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f a small set of labeled 

and sufficient set of labeled source training instances 

level (rather than a task-

level) and to keep it independent from the boosting algorithm (against 
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• to keep the interests of the boosting schemes applied over same-distribution 

data and the diff-distribution data separate (instead of having a unified 

boosting scheme) and  

• to train a common weak learner, on each boosting iteration, from a sample set 

of the most relevant and hard to learn instances for that iteration (target 

instances are relevant by default). 

The algorithm attaches a relevance indicating cost factor on to every instance in 

��, determining how useful learning from that instance would be. This is 

motivated by an intuition that, given the cost of misclassifying a source domain 

instance that holds a good probability of occurring as part of a target task, an 

existing robust target classifier model would be expected to perform with a 

minimal classification error over the target domain data, and at the same time 

manage to classify the source domain data with a reduced net cost of 

misclassification. Framing such a dual objective helps reducing the chances of 

Figure 5 Generalized Cost-Sensitive Boosting Algorithm 
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learning a classifier that may over fit over �$, considering that it is made up of far 

few target samples than required for generalization.  

A formal description of the framework is presented in Algorithm 

described in Figure 5 . As seen in the algorithm, regular AdaBoost is directly used 

for minimizing the training error over �$. The boosting coefficients ~%$ allow the 

weak learners to focus on the hard target domain examples. On the other hand, the 

samples in �� are weighted based on the influence they have in predicting 

instances in the target domain. This boosting scheme combines a prior cost factor 

with the classification error based weight update factor, to give a different 

boosting coefficient ~%� for every chosen instance in the source domain. Thus, for 

a given iteration, if an instance that is considered to be irrelevant is misclassified, 

the factor by which the instance weights are increased is significantly low when 

compared to that of a more relevant misclassified instance. Similarly, the weight 

of a correctly classified source domain sample with low relevance is made lower 

than a correctly classified source domain sample with a higher cost. Thus, the 

weight update curves are more gradual and hence, natural based on the relevance 

of a source domain instance.  

The boosting schemes for samples in �� are responsible for the actual 

knowledge transfer and have been adapted from the cost-sensitive boosting 

framework proposed by Sun et al. for dealing with imbalanced classes [42]. The 

proposed approach in this thesis, in contrast to the boosting framework described 

in [42], applies cost-sensitivity selectively to samples in �� alone. The weight 

update coefficient ~%� is derived using one of the three algorithm schemes namely 
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AdaC1, AdaC2 and AdaC3 summarized in Table 33. A brief analysis on the 

impact of these different weight update equations is given below:  

• AdaC1: the weights of the �� samples that are incorrectly classified are 

reduced by a factor of >�}�¯�. Among these, samples that have higher 

relevance as indicated by the cost, tend to be reduced by a smaller amount 

compared to samples with lower cost. However, the difference is expressed in 

exponential terms. 

• AdaC2: the weight updates are impacted directly by the cost factor. Thus the 

weight change is directly related to the relevance of the sample. Even though 

the weights of the samples in �� decrease over iterations, the change in the 

weight is conservative for samples that are more relevant in comparison to 

samples that are less relevant. This is the weight update model described in 

the algorithm. 

• AdaC3: the sample weights are updated by the combinational results of 

AdaC1 and AdaC2. Due to the complicated situation of training error and cost 

setups, it is difficult to decide how AdaC3 changes the weights for samples in 

�� according to the cost factors. 

Table 3: Weight update equations for the different Boosting schemes [42] 
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The next subsection elaborates on the approaches adopted in this work for 

estimating costs. 

4.3. Cost Estimation 

The role of the cost items is primarily to associate the relevance of source domain 

samples �� with respect to the target domain samples �$. This can be computed in 

a supervised or unsupervised manner. We select techniques from both of these 

approaches to study their impact on the end result. Following are the different 

approaches employed in this work: 

• Instance Pruning based cost estimate (IP): This is a supervised approach 

and follows the technique proposed by Jiang et al., [19] for pruning 

misleading different domain instances. Their approach involves learning a 

classifier model using the few labeled target domain sample set �$ and using 

this model to select instances from the source domain that are correctly 

classified. Instead of eliminating all the instances that are incorrectly 

classified, we use the probability of correct classification associated with each 

sample as the cost factor. Thus in the process, samples in �� with high 

probability of correct classification have higher cost items compared to the 

samples in �� with low probability of correct classification. Since the 

estimated values are probabilities, the cost thus computed is already 

normalized between 30, 15. Since we have primarily used SVM as our base 

classifier, we have adopted the probability estimation as proposed by [19] for 

determining the costs of samples in ��. For a binary class problem, a simple 
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Platt’s scaling through logistic sigmoid function is used. The parameters of 

this function are learnt from the classification margins of the training sample. 

For the multi-class scenario, we use a one vs one multi-class SVM that learns 

the decision boundaries between all pairs of classes. The margins from each of 

these classifiers are converted to probability values using Platt’s scaling. In 

the second step, an optimization procedure is employed to learn the true 

classification probabilities from these pair wise probabilities. This technique is 

implemented in the popularly used LIBSVM package [43]. 

• Relevance Measure based on a distance metric(ED): This too is a 

supervised technique and consists of two steps. In the first step, the pair-wise 

distance between all the samples (source and target domain) are computed. In 

the second step, a ratio between the sums of the distances of the i°± instance in 

T� from all the samples in T� that belong to different and same class 

respectively.  

z�  " ����[��� , ��$a�������� , ��$� 
This measure can be considered as a relevance measure. It measures how 

similar a sample from a particular class is with respect to a target set. 

Different distance metrics can be employed depending on the dataset. For the 

experiments conducted in this work, we used a Euclidean distance on datasets 

of low dimension and the cosine distance for datasets with high dimensions.  

• KLIEP based cost estimate: Kullback-Liebler Importance Estimation 

Procedure [24] is a technique that is used for transductive instance transfer 
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learning that involves estimation of weights for source domain samples 

through the minimization of the KL-divergence measure between the 

probability densities of the source and target domain data. The basic idea 

behind the technique is to compute an importance estimate (that is considered 

as the cost factor by our algorithm) such that the KL-divergence from the true 

test input density to its estimate is minimized. The algorithm carries out this 

minimization without explicitly modeling the training and test data densities. 

The optimization problem for KLIEP is convex, so the true global solution 

can be obtained. A cross validation approach is typically used for model 

selection process of the minimization procedure in KLIEP. A Gaussian kernel 

is used during the minimization procedure. 

• Concept Feature Vector Distance(CFVD): Concept feature vector is a 

term that is used in the context of detecting concept drift in a data stream. The 

sequential data is divided into batches. Concept feature vectors describing the 

data in each batch are then determined. The distance between concept feature 

vectors of consecutive “batches” of data is calculated. Concept drift is 

detected if this distance is greater than a certain threshold. In the current 

context of determining the similarity between the source and target domain, 

we define the batches to be the source and target domain data itself. Concept 

feature vectors are determined for samples belonging to a particular class of 

the source and target domain respectively. The distance between these concept 

feature vectors of the source and target domain is treated as the cost of the 

source domain samples. Formally, let �$� and �%� be the source and target 
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samples belonging to class �. Then the concept feature vector for source set is 

defined as  

$̄� "  1d�$�d K �$¤�²PS

¤UV  

The concept feature vector for class of the target domain %̄� also follows 

similarly. The concept feature vector distance is the distance between ̄ $�  and ̄ %�. 
These distances are calculated for each of the classes separately, which is then 

normalized. The cost factors associated with every sample belonging to a 

particular class is then determined as difference between 1 and the normalized 

concept feature vector distance associated with that class. Note that the cost 

factors of all the samples belonging to a particular class will be identical.  

z� " 1 � ����� $̄� � %̄��∑ ����� $̄� � %̄���  

Thus the cost of samples belonging to “very different” source and target domain 

class will be lower than the samples belonging to “similar” source and target 

domain classes.  We use Euclidean distance metric to compute the distance 

between the concept feature vectors for datasets with low feature dimension and 

use cosine distance metric for datasets with very large feature dimension. 

4.4. Dynamic Cost Update 

The cost factors associated with �� can be static, in the sense remain the same 

across boosting iterations. However during the course of the boosting process, the 

weights to samples �$ change. Thus, at certain iteration it is possible to observe a 
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higher weight to a subset of samples in �$. This essentially means that the 

algorithm is finding it difficult to learn this particular subset of �$. Thus, the 

distribution of samples in �$ changes, reflecting their ability to be learned. To take 

into account the changes in the weights of �$ samples, we ensure that the �� cost 

factors are also updated. Thus, relevance to �� samples is determined based on 

harder �$ samples. 

A new SVM model is learned, at every iteration; from the target domain 

labeled samples drawn according to the distribution of these samples for that 

particular iteration. Samples in �$ that have higher weights influence the decision 

boundary of this model. This SVM model is then used to classify all the source 

domain samples. The hypothesis is that the newly computed cost factors of the �� 

samples reflects the importance of these samples with respect to the new 

distribution of the �$ samples.  

4.5. Comparing with other boosting based transfer-learning approaches 

While this is not the first boosting approach for transfer learning, a discussion 

centered on the similarity between the proposed approach presented in this work 

and other boosting based transfer-learning approaches. The most commonly cited 

boosting based transfer learning approach is the TrAdaBoost algorithm of Dai et 

al., [38]. Both, Cost-sensitive boosting and TrAdaBoost, employ the original 

boosting based approach for updating the weights of labeled target domain 

samples. The main difference between the two algorithms is in the manner in 

which the source domain samples are handled. TrAdaBoost uses the weighted 
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majority algorithm to adjust the weights, repeatedly decreasing the weight of 

incorrectly predicted source domain sample by a constant factor  

R "  1/ �³1 b ´2 ln T� �µ where, ~ " � log �WV¶ �X. It also notes that since the error on 

the labeled target domain samples converges to 0 only after half of the total 

number of iterations, the TrAdaBoost algorithm considers only the weak 

hypothesis learned in the second half of the boosting iterations to arrive at the 

final strong classifier. Intuitively the weak hypothesis learned during the initial 

rounds of boosting fit a majority of data, with the focus on the harder examples 

during the later rounds. If the harder examples represent outliers in the �$ data, 

then TrAdaBoost has a tendency to over fit the same-distribution training data. 

Another important difference between TrAdaBoost and Cost-sensitive 

boosting is the manner in which weight updates are performed on the source 

domain training data. In TrAdaBoost, the weights of �� samples either decrease or 

remain constant between successive iterations. There is no way in which the 

weight of a relevant sample can be increased, once decreased during the previous 

rounds of boosting. When the weights of these relevant samples become very low, 

their influence on learning a good weak hypothesis becomes negligible. In 

contrast, the Cost-sensitive boosting algorithm allows for increase in weights for 

the target domain samples. However it ensures that weight increase is 

proportional to the relevance of the sample with respect to the majority of the 

labeled target domain samples. Thus during the later rounds of boosting, Cost-
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sensitive boosting has a higher potential to retain relevant source domain samples 

for learning the weak hypothesis compared to TrAdaBoost. 

The set based boosting for instance level transfer (TransferBoost) 

proposed by Eaton et al., [15] is another algorithm that uses boosting for transfer 

learning. Transferboost uses a set based weight-updating scheme. It breaks the 

source domain instances into task-based sets. Instead of updating the weights of 

individual instances, it updates the weights of instances in a set in a similar 

manner. The scheme adopted for updating the weights of the labeled target 

domain data is similar to the Cost-sensitive boosting algorithm. Furthermore, it 

can be noted that the weight update in TransferBoost for the source domain 

instances is a special case of the Cost-sensitive boosting algorithm. When the 

parameter ~% , in the TransferBoost algorithm that represents the transferability of 

set is made a constant at the individual instance level, then TransferBoost boils 

down to Cost-sensitive boosting.  

4.6. Datasets 

The proposed methodology was experimented on various real-world and synthetic 

datasets. Each of the chosen datasets have unique characteristics and can be 

described by properties such as number of instances, number of attributes, number 

of class labels and class imbalance. A brief description of each of the dataset is 

given below. 

5.6.1. Activity Gesture Dataset (act-ges) 

The activity gesture dataset is a multiclass real-world dataset of motion data 

collected for learning to recognize the different gestures used in the activity of  
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“making a drink and drinking it”. Each instance can be associated with one of the 

5 class labels namely pour, scoop, screw/unscrew cap, stir and lift to mouth. The 

data was collected from two domains, over which, data and task distribution were 

observed to vary.  

The first domain refers to data motion data collected from 5 users enacting 

out the different activity gestures with the help of dummy objects. The motion 

data was captured using three tri-axial accelerometers placed in the user’s 

dominant wrist, elbow and non-dominant wrist respectively. Out of these only the 

data captured from the dominant wrist and elbow were retained for their 

discriminative properties. The activity gestures were enacted 20 times to be 

sufficient for training. The participants were given explicit instructions on how to 

perform the activity gesture. The data obtained was then manually segmented and 

annotated with the help of a synchronized video of the activities performed. The 

second domain corresponds to data captured similarly as described above, but in a 

more realistic setting. In this setting, 4 users were asked to make a glass of 

Gatorade and drink it, instead of enacting the different gestures using dummy 

objects. The entire activity was repeated 4 times by each user. The mock and 

realistic scenarios are taken as the source and target domain respectively in our 

experiments. A brief description for both the mock and realistic scenarios is 

presented in Table 4. The objective is to recognize gestures performed in a 

realistic scenario, using the data from the mock scenario with a small number of 

labeled samples from the realistic scenario. 
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Table 4 Description of the Activity Gestures 

 

Activity Gesture Mock Scenario Realistic Scenario 

Pour Take the glass that is full 

and pour its contents into 

the empty glass. Pour a 

small quantity every 

time. 

Pour the water from the 

glass. 

Scoop Use a spoon to scoop 

contents from the glass 

that is full into the empty 

glass 

Use two scoops of 

powder for making the 

drink. 

Unscrew Cap Unscrew the lid of the 

water bottle. Pause for a 

couple of seconds. Screw 

on the lid on the bottle 

Open the powder drink 

jar, and close it after you 

finish using it 

Stir Take the spoon and stir 

the contents of the glass 

for 30 seconds 

Ensure the powdered 

drink has dissolved by 

stirring the mixture 

Lift to Mouth Take an empty glass and 

pretend that you are 

drinking water from the 

glass by taking several 

short sips. 

Drink the glass of 

beverage that was 

prepared. 
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A distinct pattern can be spotted for each of the activity gestures in the 

data stream sample captured using the accelerometer placed on the wrist in Figure 

6. Intuitively, the individual characteristics of each of the gestures can be tracked 

in the patterns seen. For example, the gesture unscrew cap can be defined by a 

number of rapid repetitive movements of the unscrew action with the initial effort 

to loosen the cap, while stir can be represented by a more relaxed and relatively 

slower set of mechanical movement. A dip in the z-axis acceleration appears for 

the gestures, scoop and lift to mouth, but the y-axis values increase for scoop and 

falls for lift to mouth. On the basis of these observations discriminative features 

that either aggregated over the temporal and frequency characteristics of each of 

Figure 6: Capturing activity gesture datastreams 
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the axes or combined data across multiple axes as done by correlation 

coefficients, were extracted to obtain instance points in a 44-dimensional space.  

5.6.2. WSU Smart Home Dataset2 (act-rec) 

The WSU Smart Home dataset is a multi-class dataset that evaluates learning 

general models of activities by abstracting over different environments and 

residents.  The dataset is being used in an on-going research project in the Center 

for Advanced Studies in Adaptive Systems (CASAS), Washington State 

University and has been collected from 7 smart environment testbeds, each 

consisting of a variety of sensors that include motion, door, temperature, light, 

item, etc., embedded on The dataset contains sensor events related to a set of 

eleven ADL activities namely - Cooking, Eating, Sleeping, Relaxing, Working, 

Bed-to-toilet, Enter Home, Leave Home, Taking Medicine, Personal Hygiene and 

Bathing. Pre-segmented sequences of sensor events corresponding to an activity 

were used to form a feature vector that represents the start and end time, duration, 

frequencies of different sensor firings within this duration and the preceding 

activity. All the sensor IDs were mapped onto labels corresponding to the room in 

which the sensor resided including: Kitchen, Kitchen Cabinet, Medicine Cabinet, 

Front Door, Lounge Chair Bedroom, Living Room, Dining Room, Bathroom, 

Hallway, Bathtub, etc., Each of the apartments had different layouts and the 

number of people and pets who resided in them also varied. The layouts of the 

different apartments and the different sensors present in them are shown in Figure 

7. For the experiments conducted, the activity samples corresponding to one  

                                                 
2 Most of the dataset is available at http://ailab.wsu.edu/casas/datasets.html 
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apartment was taken to be the target data while the samples from all the other 

Figure 7: Sensor layout for the seven CASAS smart environment testbeds [49] 
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apartments were considered to be the source domain. Since data for all the 

activities was not present in every apartment, only those source domain activity 

samples whose labels were present in the target domain were used.  

5.6.3. 20Newsgroups 

The 20 Newsgroups dataset is a collection of approximately 20,000 newsgroup 

documents, partitioned across 20 different newsgroups. It primarily consists of 7 

top-level categories, with each category consisting of multiple sub-categories 

totaling to 20. Its hierarchical structure facilitates in modeling text categorization 

datasets into resembling transfer learning scenarios such as sample selection bias 

and has de facto become a dataset used prominently for comparative studies of 

transfer learning algorithms. For the experiments, two different sets of transfer 

learning datasets were extracted from the 20Newsgroups corpus (1) Newsgroups1 

- one modeled for transfer from single source task to a single target task, and (2) 

Newsgroups2 - modeled for transfer from multiple source tasks to a single target 

task.  Apart from this, experiments were also run on a readily available dataset 

extracted from the 20Newsgroups corpus, named Usenet1 that simulated class 

imbalance. Though the original corpus is a real-world dataset, the datasets worked 

with have all been simulated and can thus be considered to be synthetic, 

nevertheless applicable to a real-world scenario. All of the learning problems 

formulated on these datasets are binary classification problems. Some more 

information on the sub-category distributions and pre-processing steps are 

explained below. 
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• Newsgroups1: the task to be learnt is that of categorizing documents into two 

parent categories. The original feature space of the unprocessed dataset was 

reduced to that of 45000 by removing the common list of 526 stop words and 

having a document frequency threshold value of 2. The feature space was also 

converted into a binary space such that Data points in the source domain and 

target domain are drawn from different subcategories that belong to the parent 

category, thus inflicting a change in the space in which data is distributed. The 

division of the subcategories for the source and target domain is described.  Six 

different binary class datasets were generated for the experiments based on these 

divisions. Due to computational constraints, we randomly pick 1000 samples for 

the source and target domain dataset. 

• Newsgroups2: this dataset was created to evaluate the performance of the 

proposed approach in multi-source domain scenarios. The dataset is adapted from 

the work done by Eaton et al., For each domain, a set of binary task was generated 

to distinguish one class from a set of negative classes, ensuring that each task had 

unique negative examples and equal class priors. The first newsgroup in each 

major category was used as negative examples for the tasks given by the 13 

remaining newsgroups. These negative examples are drawn from the following 

newsgroups: alt.atheism, comp.graphics, misc.forsale, rec.autos, sci,crypt. For 

each dataset, there was one target task and the other tasks from the same domain 

serve as the source tasks. The original 20newsgroup dataset was represented as a 

binary vector of the 100 most discriminating words determined by Weka’s string 
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to work vector filter. Only 5% of the original dataset is used for the experiments, 

since the originals are very large.  

Usenet1: This dataset [44] is based on the newsgroup collection. Simulated 

streams of messages from different newsgroups are sequentially presented to a 

user, who then labels them as interesting or junk according to his/her personal 

interests. The messages are presented to the user in batches. The user switches 

between his/her choices of junk for every batch. As a result, there is a complete 

reversal in the class labels as we move across each batch. The challenge here is to 

classify the user choices for a particular batch, using the training samples 

available from the previous batch and a few samples from the current batch. The 

description of the dataset in terms of its size and feature space is presented. We 

consider this to be hardest dataset, due to the reversal of labels across batches, 

which also leads to a class imbalance problem. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

Various experiments were conducted on the datasets mentioned in the previous 

chapter to understand the properties of the data, evaluate the performance of the 

proposed approach under static and dynamic configurations, spot the effect of cost 

computation in knowledge transfer, empirically note the effect of multiple source 

transfer and make comparative studies with related algorithms. This chapter 

presents the results of these experiments and analyzes the various aspects 

observed during the study.  

5.1. Properties of Data 

Principle component analysis was used for visualizing and understanding the data 

and task distributions over the training and test domain of the act-gest and act-rec 

Figure 8: Source and target distribution of act-gest dataset 
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datasets. This exercise was done in order to establish an empirical basis for the 

appropriateness of applying transfer learning to a real-world problem and 

therefore does not distinguish between training and test data points. Data points 

belonging to both source and target domains were projected onto the space 

defined by the first three principle component vectors. Figures 8 and 9 plot the 

data points of act-gest and act-rec datasets respectively in their corresponding 

PCA vector space. Figure 8 uses all source and target instances in the act-gest 

dataset. The changes in task distributions between source and target domains were 

earlier illustrated in Figure 1 over two basis vectors. Here, the visualization 

presented indicates signs of the data suffering from domain shift, defined 

essentially as a change in the measurement system of the new data points ��. A 

pretty much uniform and uni-directed translation of patterns is noticed between 

the source and target domain, plotted by a path connecting the centers of the 

cluster of points associated with the different activity labels pour, scoop, unscrew 

cap, stir and lift-to-mouth, in the source and target domains respectively.  Among 

the five activity labels, the one that has a rather skewed displacement (not very 

noticeable in the Figure) is pour, which may be a result of latent and 

uncontrollable factors such as user traits, weight and shape of the container being 

held, etc., 

Figure 9 plots the data points of Apartment_B dataset, split into 8 different 

plots showing the shift in task distributions across the source and target domains. 

Act_rec_B was chosen as it contains data points associated with all 11 activities. 

Here only 8 of the 11 are chosen for illustration purposes. The plots capture 
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interesting patterns connected with the characteristics of the activities performed 

by different residents in smart home test-beds under different sensor settings and 

home layouts. Despite these differences, activities such as eating, enter home and 

leave home show little variations owing to the basic nature of these tasks. These 

activities cannot be performed very differently either by different residents or 

under different settings. Dataset shift cannot be always visualized in this manner 

particularly over datasets with high dimensionality. Sometimes, the change in the 

distribution may be perceivable only in higher dimensions (> 3). This is 

expectedly the case with the 20Newsgroups datasets, which possess high 

dimensions and are sparse, as they showed no reliable difference between the 

source and the target instances despite having synthetically made to have a change 

in the dataset distribution.  

Figure 9: Source and Target data distribution of act_rec dataset 
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5.2. Performance Evaluation 

All experiments were conducted using SVM as the base classifier. The toolbox by 

Chang and Lin [43] – LibSVM was used for conducting experiments with SVM. 

This toolbox supports multi-class SVMs through pairwise coupling. It constructs 

·�· � 1�/2 number of binary classifiers for a ·-class problem and combines the 

probability of classification obtained from each classifier through Platt’s scaling 

to obtain the final probability of a sample belonging to a particular class. SVM 

was run using a linear kernel. The penalty factor C for act-gest and 20Newsgroups 

datasets it was set to 1 and for act_rec it was set to 100. The parameters were 

selected based on the best classification accuracy obtained from running a 5-fold 

cross validation  over the source data. The maximum number of boosting 

iterations was set to 100 for all the boosting variants including AdaBoost, 

TrAdaBoost and the Cost-sensitive boosting framework. At every boosting round, 

the training dataset was sampled, such that all class labels were represented and 

uniformly distributed. Comparison of performance over the various experiments 

were done using an average generalized accuracy obtained over 5-fold cross 

validations. The various approaches were implemented using well integrated 

programs in MATLAB and will be shortly made available for public use. 

5.6.4. Comparison of Classification Accuracies  

Table 5 : Comparison of Performance at 1% of the Target Training Data 

Dataset Svm�$ Svm�� Svm��$ Ada Trada Adac1 Adac2 Adac3 

User 1 0.77 0.56 0.79 0.85 0.82 0.85 0.88 0.85 

User 2 0.84 0.64 0.98 0.93 0.98 0.97 0.98 0.98 

User 3 0.54 0.33 0.71 0.67 0.65 0.70 0.75 0.74 
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Dataset Svm�$ Svm�� Svm��$ Ada Trada Adac1 Adac2 Adac3 

User 4 0.44 0.61 0.77 0.73 0.75 0.76 0.79 0.80 

Apartment-A 0.71 0.67 0.71 0.78 0.63 0.80 0.82 0.75 

Apartment-B 0.67 0.62 0.68 0.72 0.57 0.79 0.80 0.76 

Apartment-C 0.79 0.37 0.81 0.76 0.49 0.79 0.83 0.78 

Apartment-D 0.76 0.34 0.77 0.82 0.52 0.83 0.81 0.81 

Apartment-E 0.29 0.04 0.45 0.46 0.70 0.46 0.48 0.49 

Apartment-F 0.58 0.20 0.60 0.62 0.40 0.67 0.68 0.67 

Apartment-G 0.52 0.44 0.55 0.53 0.46 0.59 0.59 0.58 

Rec vs Talk 0.68 0.72 0.75 0.72 0.73 0.71 0.83 0.72 

Rec vs Sci 0.63 0.70 0.69 0.69 0.69 0.70 0.77 0.69 

Sci vs Talk 0.60 0.64 0.67 0.64 0.70 0.67 0.74 0.68 

Comp vs Rec 0.80 0.73 0.85 0.83 0.72 0.82 0.86 0.84 

Comp vs Sci 0.62 0.64 0.67 0.68 0.58 0.69 0.76 0.69 

Comp Vs Talk 0.86 0.68 0.87 0.87 0.73 0.88 0.89 0.88 

 

Table 5 compares the classification accuracy given by algorithms when trained on 

1% of the target training data and supplementary source data. In most cases, one 

of the three cost-sensitive boosting procedures is seen to perform better than the 

other algorithms, with AdaC2 performing the best among the three and 

consistently better than TrAdaBoost. Some of the individual trends that arise 

owing to the properties of each dataset is further discussed below:  

Act_gest: The difference in the performance of the three cost-sensitive boosting 

approaches looks marginal. Retrospectively, having assessed the results of all the 

datasets, a possible reason that can be associated with this trend is the relatively 

low number of test samples available for each of the user. It is interesting to note 

that, while Svm�$ and Svm�� separately yield poor performances, just combining 

the source and target domain data results in an increased performance over the 

target domain. This can be attributed to two particular properties of this dataset. 
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The first one being that the data points belonging to each class label are well 

separable in their common feature space and respective domains. This has been 

pointed out previously in [6]. Secondly, since it is suspected that the dataset 

suffers from domain shift , the separability of data points facilitate knowledge 

transfer by either extrapolating or translating the source model in the feature 

space. Thus, an addition of labeled target data, as few as 1 instance per class, to 

the source data might improve the performance by a good deal. Nevertheless, the 

cost-sensitive boosting schemes, AdaC2 and AdaC3 further improve the 

performance over SVM��$. 

Act_rec: Once again, the results obtained from these datasets also show just a 

marginal difference between the accuracies of AdaC1, AdaC2 and AdaC3, with 

AdaC2 giving the best performance most of the time. Though the cost-sensitive 

boosting algorithms have an upper hand in the performance in almost all the 

cases, the dataset pertaining to Apartment-E has TrAdaBoost giving an 

improvement of over 20 percentage points from the next best performing 

technique. It was noticed that the number of target domain training examples 

available for Apartment-E was very low (equivalent to having one instance per 

class) in contrast to the other apartments. This low sample size of �$ could have 

resulted in incorrect cost estimation, learding to a poor performance of the cost-

sensitive schemes. Unlike the act_gest dataset, no straightforward correlation is 

found to exist between the performance of SVM��$, SVM�$ and SVM��. 

Furthermore, the performance of AdaBoost is noticed to be greater than that of 

SVM��$ indicating that the expected correlations may be captured by using a 
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boosting framework that focuses on a specific subset of samples during each 

iteration. 

20Newsgroups1: Among the three datasets, it is only in this dataset that AdaC2 

shows a significantly better performance among the three cost-sensitive boosting 

algorithms. In contrast to the observation made in act_rec datasets, it can be seen 

that adding a small amount of labeled target domain data to the source domain 

helps in improving the performance of the model that is trained only on the source 

data as inferred from the classification performances of SVM�� and SVM��$, 

indicating the complementary nature of the source data in learning the target 

tasks. 

5.6.5. Advantage of AdaC2 over AdaC1 and AdaC3 

Figure 10 : Comparison of the weight update factors of AdaC1, AdaC2 and AdaC3 
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AdaC1, AdaC2 and AdaC3 all boost more weights on relevant samples that are 

misclassified than irrelevant samples that are misclassified. Similarly, they 

decrease weights more on relevant samples that are classified correctly than less 

relevant samples classified correctly. However, there is a marked difference in the 

way these weighting equations have an effect over a specific instance based on its 

relevance. Figure 10 pictorially shows the effect of AdaC2 weighing each sample 

by its associated cost directly against AdaC1 which attaches the cost factor in the 

exponential term thereby having a diminished role. The result is AdaC1 ends up 

conserving the weights of less relevant samples and very reactive towards highly 

relevant samples. On the other hand AdaC2 reacts to relevance in a smoother 

fashion thereby resulting in its tending towards conserving weights of relevant 

instances. Though effectively, AdaC3 is a combinatorial result of AdaC2 and 

AdaC1, the result of attaching the cost in the exponential component of the 

equation makes it act similar to AdaC1 when the variable K in the graph is high 

and like AdaC2 when K is low. More noticeably it acts closer to AdaC1 when 

handling samples on the basis of its misclassifications. Figure 11 presents the 

plots obtained of the experimental results of the three algorithms on all the 

datasets.  It is very evident that AdaC2 has a much more effective influence on 

utilizing a cost measure for reliable knowledge transfer. From here, all further 

analyses would use only AdaC2 for their study. 

5.6.6. Correlation Between the Performances of SVM��, SVM��$ and AdaC2 

An interesting pattern that establishes the idea of relatedness emerges from the 

results obtained in Table 5 is of  a subtle correlation between the classification  
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Figure 11 : Comparison of Cost-sensitive boosting results on (a) act_gest (b) act_rec (c) 20Newsgroups1 
datasets, having trained on 1% of the target training data. AdaC2 can be observed to give better results among 
the three. 
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accuracies of baseline SVMT� and the improvement in performance shown by 

AdaC2 over SVMT��. The relationship noticed is that of an increase in the 

classification accuracies over SVM��$ when the source training data alone is able 

to classify target domain samples to a reasonable extent. For the purpose of 

illustrating this idea, plots were generated from the obtained results of SVM��, 

SVM�$, SVM��$ and AdaC2 by sorting the datasets in the increasing order of 

accuracies of SVM��  on the target dataset. This is shown in Figure 12. It can be 

observed that the highest difference between AdaC2 and SVM��$ is obtained in 

the middle of this sequence. For the act_gest datasets, User 4 and User 2 show 

little to no improvement, while User 3 and User 1 show significant changes, while 

act_rec datasets, apartments F, B and A show improvement close to 10% points in 

accuracies while the other apartments seem to step up by around 4-5% points 

alone. Similarly, in the case of 20Newsgroups1, datasets Comp vs Rec and Comp 

vs Talk seem to give the best results over SVM��$.  

The difference in the accuracies seem to follow a bell curve of sorts, with 

no or very low improvements for very similar and dissimilar task distributions, as 

inferable from the target domain accuracies of SVM��. This once again takes us 

back to the idea of “different, but related” datasets. If the target domain dataset 

was very similar or identical to the source domain, no transfer is needed and an 

improvement may not be expected out of transfer. On the other hand, if the target 

domain is vastly different from the source domain, then a transfer may not be 

possible and instead learning may need to be done from scratch. It should be 

noted here that though this pattern may be a useful indicator in deciding whether 
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Figure 12 : Plots illustrating the correlation between the increase in performance of AdaC2 over SVM��$
and SVM��. 
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“to transfer or not”, the measure is still done only retrospectively and across 

different datsets, over a scale of relative similarity and dissimilarity 

5.6.7. Classification Accuracy vs. Size of Target Training Data 

Figures 13(i) – 13(vi) illustrate the change in the accuracies across SVM�$, 

SVM��$, AdaBoost, TrAdaBoost and AdaC2 when 1%, 5% and 10% of the target 

training data is used for training on the act_rec datasets along with the auxiliary 

source domain data. When 5% of the target training examples are used, applying 

cost-sensitive boosting for transfer learning continues to be fruitful. However, the 

difference in the performance of AdaC2 and SVM�� or AdaC2 and SVM�$ 

reduces with the increase in target training data, indicating that the target data is 

moving towards becoming sufficient for learning a reliable classifier without the 

need for auxiliary data.  

It had been earlier mentioned, how 1% of the target training data proved to 

be far too insufficient for computing the cost of source instances in the case of 

Apartment-E, leading to a drop in the performance of AdaC2, while TrAdaBoost 

gave a good performance. On increasing the percentage of the available target 

training data to 5%, the performance of AdaC2 is seen to improve. However, on a 

closer observation, the performance of AdaC2 seems to correlate with that of 

SVM�$. Comparatively, the increase in target training data does not seem to 

evoke an equally significant response from SVM��$. Given this, and the fact that 

SVM�� gives low accuracies for this apartment, the target domain clearly seems 

to be so much more different from the source domain. In this case TrAdaBoost
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Figure 13 : Plots illustrating the variation in classification accuracies over act_rec dataset against 1%, 5% and 10% of Target Training Data. The datasets 
shown here include (i)  Apt-A, (ii) Apt-B, (iii)  Apt-C, (iv) Apt-D, (v)  Apt-E and (vi) Apt-F.  
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Figure 14 : Plots illustrating the variation in classification accuracies over 20Newsgroups1 dataset against 1%, 5% and 10% of Target Training Data. The 
datasets shown here include (i)  Rec vs Talk, (ii) Rec vs Sci, (iii) Sci vs Talk, (iv) Comp vs Rec, (v) Comp vs Sci and (vi) Comp vs Talk. 



 

 

seems to have a clear sign of advantage over AdaC2. The reason is not very clear 

due to the correlation between SVM�$ and AdaC2, which does away with the 

possibility of 1% target training data representing the target domain data 

sufficiently.  

Similar trends can be observed on the 20Newsgroup1 dataset as well as 

illustrated by Figures 14(i) to 14(vi). It can be noticed that the performance of 

SVM�$ increases significantly as we progress from 1% to 5%. However, it 

remains marginally lower than AdaC2 transfer learning approach. The 

performance of the other techniques at 5% is lower than that of SVM�$ or AdaC2. 

At 10%, SVMTs alone is sufficient to reliably classify the target domain 

unlabeled data. The change over AdaC2 becomes very marginal. However it is 

still worthwhile to note that while the performance of AdaC2 and SVM�$ is 

comparable, it still is significantly better than TrAdaBoost and AdaBoost. 

5.3. Effect of Cost 

The four different similarity measures mentioned in Chapter 4 were used for 

computing the cost factors and the performance of AdaC2 was evaluated in each 

case to check how the classification accuracies varied with the different cost 

estimation techniques. To understand if the weighting instances using such 

measures had any effect at all in the first place, the algorithm’s performance was 

measured over the base of a uniform cost. Running AdaC2 with uniform costs is 

equivalent to running AdaBoost but with separate weight updates for samples in  



 

 

 Figure 15 : Comparison of the classification accuracies of AdaC2 using different cost estimation techniques. 



 

 

�� and �$. Figure 15 illustrates the varied performances obtained and the 

prevalence of instance pruning is briefly explained below. 

There is a no clear trend that is noticeable from the results obtained from 

act_gest dataset, though there are changes in the accuracy values across the 

different users. It can be seen that Euclidean distance based relevance measure 

(ED) performs at par with the other techniques, when the similarity between the 

source and target domain is the highest, in this case that being data of user 2. In 

fact, for user 2, all the cost estimating procedures result in very similar 

performance. ED based cost performs poorer than the other approaches for the 

other users. The performance of the algorithm takes a marginal dip, when we 

assign uniform cost to all the samples in the source domain data. IP based cost 

procedure performs almost at par of sometimes even better with respect to all the 

other techniques. The CFVD based cost performs significantly poorer than IP 

based method for two of the 4 users and is at par with IP for the remaining 2 

users. Overall, no straightforward conclusions can be made from the performance 

of the different cost estimation procedures on this dataset. 

The act_rec dataset presents more clear trends in terms of the performance 

of the different cost estimation procedures. The first thing to be noticed is the 

sharp increase in the performance of the ED based cost for Apartment E. The 

performance increase is nearly 30%. It is interesting to note this result in the 

context that the target domain data for apartment E is most dissimilar to its source 

data. This probably implies that ED cost is able to clearly differentiate between 



 

 

very different datasets. In contrast, the performance of ED drops significantly, 

when the source and target activities are similar as illustrated by its performance 

on Apartments C and D. The second thing to be noticed here is that invariably all 

cost estimation approaches perform yield a better performance over uniform cost, 

except for Apartments C and D. Even in this case, IP based cost performs 

marginally better than uniform cost. The similarity between the source and target 

domain samples is highest for these two datasets. Hence the results of IP and 

uniform cost appear to be similar. This implies that there is merit in considering 

cost estimation process to determine the relevance of source domain samples with 

respect to target domain. IP based cost appears to be yielding better results on this 

dataset. It can also be noted that the performance of KLIEP is at par with that of 

uniform cost. This could be attributed to the low number of target domain samples 

available for the importance estimation procedure. Incorporating the label 

information of the small amount of target domain training data does help to 

estimate better costs. 

The most significant change in the plot pertaining to 20Newsgroups 

dataset is the absence of KLIEP and ER based cost estimation processes. We 

observed that the KLIEP process does not converge on this dataset. The primary 

reason for this is the significantly large dimension of this dataset (of the order 

40,000). Furthermore the sparse nature of this dataset could also contribute to the 

lack of convergence of the KLIEP procedure. Euclidean distance based cost 

estimation on such a high dimensional dataset is also not worthwhile to consider, 



 

 

as the output of such a process will be very similar to a uniform cost. IP based 

cost appears to be performing better than the other two approaches, even though 

the difference is only marginal. Similar to the observation made on the activity 

recognition dataset, uniform cost performs at par with the other two approaches 

when the similarity between the source and target domain is relatively higher, as 

illustrated by the performance on Comp vs Rec and Comp vs Talk datasets. 

Overall the results from this set of experiments seem to indicate that the 

merit of IP based cost process over the other approaches. Furthermore, 

considering that the performance of this approach does not vary significantly over 

a uniform cost suggests that the division of the boosting approach with separate 

weight update equations for the source and target domain also helps in improving 

the performance. The performance of the cost based methods is nominal 

considering that the number of labeled target domain training samples is very less. 

5.4. Dynamic Cost Update 

Table 6 : Comparison between AdaC2 and DAdaC2 

Dataset AdaC2 DAdaC2 

User1 0.88 0.87 

User2 0.98 0.98 

User3 0.75 0.71 

User4 0.79 0.80 

Apt - A 0.82 0.82 

Apt - B 0.80 0.74 

Apt - C 0.83 0.80 

Apt - D 0.81 0.77 

Apt - E 0.48 0.48 

Apt - F 0.68 0.69 

Apt - G 0.59 0.60 

Rec vs Talk 0.83 0.84 



 

 

Dataset AdaC2 DAdaC2 

Rec vs Sci 0.77 0.77 

Sci vs Talk 0.74 0.74 

Rec vs Comp 0.86 0.89 

Comp vs Sci 0.76 0.75 

Comp vs Talk 0.89 0.90 
 

Table 6 compares the results obtained from Dynamic Cost-sensitive Boosting 

(DAdaC2) and the AdaC2 scheme of Cost-sensitive Boosting algorithm over the 

three datasets, act_gest, act_rec and 20Newsgroups1, to verify if a dynamic cost 

update has any advantage over a static cost factor or not. The idea of DAdaC2 is 

to adapt to the changes in the weights of �$ samples by keeping the cost factor 

constantly updated. However, as the results indicate, there does not seem to be 

much of difference between the two results save for the few marginal points up 

and down. This is once again caused due to the small size of the available target 

training data (1% in this case). Due to the size of �$ the cost computer over every 

iteration in DAdaC2 is pretty much the same as the initial cost computed. If the 

size of �$ was bigger, then there might be a better a chance for the distribution of 

hard examples to vary over every iteration and perhaps even oscillate. In such 

scenarios DAdaC2 may be more useful. 

5.5. Comparison with Multi-Source Transfer 

Table 7 : Comparison of performance between AdaC2 and TransferBoost 

Dataset TrAda AdaC2 Transfer Boost 

Apt-A 0.63 0.82 0.71 

Apt-B 0.57 0.80 0.69 

Apt-C 0.49 0.83 0.79 

Apt-D 0.52 0.81 0.78 



 

 

Dataset TrAda AdaC2 Transfer Boost 

Apt-E 0.70 0.48 0.37 

Apt-F 0.40 0.68 0.61 

Apt-G 0.46 0.59 0.56 

baseball 0.46 0.78 0.54 

electronics 0.65 0.64 0.54 

med 0.52 0.67 0.51 

mideast 0.39 0.54 0.48 

misc 0.47 0.51 0.53 

pchardware 0.63 0.69 0.53 

windowsx 0.64 0.66 0.57 
 

Table 8 : Comparison between cost based ranking and error on SVM�� 

Source Cost Rank Err SVM�� 

Apt-A 

Apt-F 0.529517 0.431791 

Apt-C 0.923077 0.452148 

Apt-B 1 0.490467 

Apt-G 0.488372 0.530998 

Apt-D 0.423971 0.656869 

Apt-E 0.547406 0.892347 

comp.sys.ibm.pc.hardware 

comp.sys.mac.hardware 0.913907 0.268817 

comp.windows.x 0.900662 0.283871 

sci.electronics 0.84106 0.32043 

windows.misc 0.900662 0.337634 

sci.med 0.84106 0.427957 

rec.sport.hockey 0.834437 0.477419 

rec.sport.baseball 0.960265 0.483871 

rec.motorcycles 1 0.494624 

talk.politics.mideast 0.662252 0.56129 

talk.politics.misc 0.304636 0.582796 

talk.religion.misc 0 0.589247 

sci.space 0.940397 0.619355 
 

Tables 7 shows the performance of AdaC2 on multisource datasets act_rec and 

20Newsgroups2, with the training done on 1% target training data and the multi-



 

 

source auxiliary datasets. The results are compared with that of TrAdaBoost and 

TransferBoost. The better performance of AdaC2 in a multisource dataset can be 

explained based on the advantage a lower level measure of similarity might gain 

over a higher-level measure of similarity. In this case the lower level similarity is 

measured using instance pruning between each source instance and the target 

instances while the higher-level similarity is measured using transferability 

between a source task and a target task. Computing similarity at the lowest level 

allows choosing similar instances that might be spread in a disparate fashion 

across the different source dataset. Another factor by which the cost computation 

in AdaC2 might be superior to that of TransferBoost is its indirect relation to 

source–target macro-level similarity which can be checked by computing a score 

for each source dataset by normalizing the total sum of cost computed over a 

particular source. This score is presented in Table 8 along with the error of a 

model trained on �� over the entire target domain dataset �. It is to be noted that 

the cost computed has only �$ available from the target domain and would in 

variably suffer from bias at one point or the other. Nevertheless, the similarities in 

the patterns are pretty striking. Referring to the actual dataset properties, it can 

easily be seen that Apartment – A shares a similar layout and same number of 

residents with Apartment – B and C, while documents related to “pc hardware” 

would typically be similar to “comp.sys.mac.hardware” and ”comp.windows.x”. 

Thus, the failure of TransferBoost can thus be attributed to the failure of a top-

down cost estimate for the datasets considered here. Of course it cannot be 



 

 

guaranteed that a bottom-top approach would always work. A best solution would 

be to incorporate both top-bottom and bottom-top knowledge for computing 

similarity. 



 

 

CHAPTER 6 

CONCULSION AND FUTURE WORK 

This thesis explores the idea of knowledge transfer between non-identical training 

and test environments, devising an instance-based transfer technique that 

integrates a measure of relatedness onto a boosting framework. The motivation 

for this work stemmed from drawing a parallel between lifelong learning in 

humans and intelligent systems that function in real-world environments, with 

particular focus on the research on building a robust and adaptable accelerometer 

based gesture recognition system that can automatically scale up to handling 

varying user traits and environmental factors affecting the input signal given to 

the system. A system that incorporates a transfer learning framework as suggested 

would be able to successfully transfer knowledge between stock training data and 

the new target domain to classify gestures reliably. The proposed method 

conforms to the boosting theory that supports the convergence of AdaBoost and is 

shown to provide empirical success over different real-world datasets - 

Accelerometer based 3D Gesture Recognition and Smart Home Activity 

Recognition, and synthetic datasets generated from the 20Newsgroups document 

corpus. Despite a successful showcase, much future work remains to be done to 

understand and perfect such a technique of knowledge transfer along with a set of 

open questions about transfer learning. 

6.1. Summary of the Work 

A summary of the different contributions made in this thesis is listed below: 



 

 

1. Three different variants for cost-sensitive boosting were investigated for 

improving the generalized performance of activity and gesture recognition. 

The algorithms were compared with that of baseline results and TrAdaBoost, 

a well cited boosting based instance-transfer algorithm. Among the variants, 

AdaC2 was seen to work the best, with useful theoretical properties and 

promising empirical results.  

2. The effect of using four different relatedness measures (cost factors) were 

studied and compared against each other. There is certainly a merit in 

determining cost as it always performs better than a uniform measure. 

Invariably instance pruning was found to give the best results. The correlation 

of these measures along with the actual posteriori measures were analyzed and 

spotted.  

3. The Cost-sensitive boosting algorithm was modified to include an adaptive 

cost estimated based on the changing distribution of the target training data. 

This, however, did not result in a significant change in performance and at 

times lead to overfitting. 

4. The equivalence of computing cost over multiple source domains bundled 

together against training seperately over the most related source domains was 

analyzed using two multisource datasets and it was found that instance level 

similarity can very well propogate into task based similarity. The performance 

of AdaC2 was further compared with the performance of a recently proposed 



 

 

boosting based multi-source transfer algorithm named TransferBoost with 

positive results. 

6.2. Future Work 

Some of the future directions founded on the limitations of this work, its 

application and some open research questions in the field of transfer learning are 

discussed below: 

• Estimating Relatedness: An often-discussed issue in this thesis has been the 

idea of measuring relatedness to decide whether to transfer or not. Can 

relatedness be measured at all with only very few target training instances? Is 

it correct to call two tasks related just because they help each other when 

trained together? Sometimes injecting noise improves generalization. This 

does not mean that noise task is related to the target task [11]. Measuring the 

relatedness a priori helps automating knowledge transfer in intelligent 

systems. On a different note, the different cost factors estimated in this thesis 

is not exhaustive. There always lies the scope of modeling relatedness as an 

optimization problem similar to structural risk minimization. 

• Target Domain Instance Selection: Besides faced with the problem of 

insufficient quantity of target training data, a parallel issue relates with the 

quality of the data. Given, that the approach suggested here is an instance-

based transfer technique, it is all the more important that the target domain 

training data that is available reflects the unseen target domain data points or 

target tasks. It might be possible in some applications where an Active 



 

 

learning methodology of collaborating with an expert might help select target 

data of good quality. 

• Discovering Structure: Many-a-times, an instance-based transfer approach 

that uses just the low level similarities between data may not be very helpful 

for learning. Or even if it is, more success might be obtained by making use of 

an underlying structure in the dataset. In such cases, the cost factors can be 

computed probably using a linear combination of the various structural 

properties of the data and the tasks. This would facilitate better learning. 

• System Integration: An important challenge that gets overlooked in such 

research is that of building a system based on the algorithms. To successfully 

deploy transfer-based systems, many factors must be taken into account such 

as how relevant source tasks and target tasks can be captured under reduced 

costs, how much of the source task information requires to be stored into an 

efficient database and how well the framework interact with other required 

learning frameworks already present in the system. 
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