
A Study of Boosting based Transfer Learning for

Activity and Gesture Recognition

by

Ashok Venkatesan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved May 2011 by the
Graduate Supervisory Committee:

Sethuraman Panchanathan, Chair

Baoxin Li
Jieping Ye

ARIZONA STATE UNIVERSITY

August 2011

i

ABSTRACT

Real-world environments are characterized by non-stationary and

continuously evolving data. Learning a classification model on this data would

require a framework that is able to adapt itself to newer circumstances. Under

such circumstances, transfer learning has come to be a dependable methodology

for improving classification performance with reduced training costs and without

the need for explicit relearning from scratch. In this thesis, a novel instance

transfer technique that adapts a “Cost-sensitive” variation of AdaBoost is

presented. The method capitalizes on the theoretical and functional properties of

AdaBoost to selectively reuse outdated training instances obtained from a

“source” domain to effectively classify unseen instances occurring in a different,

but related “target” domain. The algorithm is evaluated on real-world

classification problems namely accelerometer based 3D gesture recognition, smart

home activity recognition and text categorization. The performance on these

datasets is analyzed and evaluated against popular boosting-based instance

transfer techniques. In addition, supporting empirical studies, that investigate

some of the less explored bottlenecks of boosting based instance transfer methods,

are presented, to understand the suitability and effectiveness of this form of

knowledge transfer.

ii

ACKNOWLEDGEMENTS

Working on this thesis has allowed me to learn and understand some of

the most complex and interesting problems in Computer Science. Over the time

that I spent on this study, I have had the honor and opportunity to interact with

some of the most knowledgeable and highly accomplished people in this field. I

take this opportunity to thank each and every one from the bottom of my heart.

First and foremost, I would like to express my deepest gratitude to my

committee chair, advisor and guide, Dr. Sethuraman Panchanathan for inculcating

in me the desire to deliver a high quality research study as part of this thesis. In

particular, I would like to thank him for his excellent support and patience in

allowing me to choose and work on a study that interests me the most, a kind of

freedom rarely given to Master of Science students.

I would also like to convey my sincere thanks to both my committee

members and professors, Dr. Jieping Ye and Dr. Baoxin Li, under whom I had

taken “CSE 591 - Machine Learning” and “CSE 598 - Multimedia Information

Systems” respectively, for their invaluable guidance on both my coursework and

research.

This work would not have been possible without the unflinching support I

received from my mentor, guide and dear friend, Dr. Narayanan C. Krishnan

(CK). From the inception of this research to its finish, he has seen it through its

thick and thin, providing me with timely directions and the confidence to keep

moving.

iii

I would like to express my special thanks to Rita, Shayok, Dr. Gaurav, Dr.

Vineeth and Prasanth for their invaluable advice and insights that helped me

shape this work. I also thank all the members of the Center for Cognitive

Ubiquitous Computing (CUbiC) at Arizona State University for having made me

a part of it and for having created such a congenial environment for research in

the lab.

Lastly, I would like to acknowledge the role of my friends and family for

their help and understanding. Most importantly, I would like to offer my heartfelt

thanks to Appa, Amma and Nandu for everything that I have today and hope to

continue their belief in me by working in my chosen area of interest and making a

valuable contribution to the society.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER

1 INTRODUCTION AND MOTIVATION .. 1

1.1. Dataset Shift in Real-World Conditions 1

1.1.1. Types of Dataset Shift .. 2

1.2. Transfer Learning .. 4

1.3. Motivation .. 6

1.3.1. Recognition of Cooking Activities: A Motivational

Case Study .. 6

1.3.2. Problem Statement ... 10

1.4. Summary .. 10

2 BACKGROUND AND RELATED WORK .. 11

2.1. Definitions and Vocabulary... 11

2.2. Categorizing Transfer Learning Algorithms 13

2.3. Relatedness and Negative Transfer ... 16

2.4. Instance-based Transfer ... 20

2.5. Feature-based Transfer .. 22

2.6. Model-based Transfer .. 25

2.7. Relation-based Transfer ... 26

3 BOOSTING AND TRANSFER LEARNING 29

v

CHAPTER Page

3.1. AdaBoost: An Overview ... 30

3.2. Instance-based Transfer: TrAdaBoost and TransferBoost 32

3.3. Feature-based Transfer: Joint Boosting 35

3.4. Model-based Transfer: TaskTrAdaBoost 36

4 COST-SENSITIVE BOOSTING .. 37

4.1. Notation .. 37

4.2. Cost-Sensitive Boosting Framework for Transfer Learning 38

4.3. Cost Estimation .. 42

4.4. Dynamic Cost Update.. 45

4.5. Comparing with other boosting based transfer-learning

approaches .. 46

4.6. Datasets .. 48

4.6.1. Activity Gesture Dataset (act-ges) 48

4.6.2. WSU Smart Home Dataset (act-rec) 52

4.6.3. 20Newsgroups .. 54

5 RESULTS AND DISCUSSION .. 57

5.1. Properties of Data .. 57

5.2. Performance Evaluation .. 60

5.2.1. Comparison of Classification Accuracies 60

5.2.2. Advantage of AdaC2 over AdaC1 and AdaC3 63

5.2.3. Correlation Between the Performances of SVMT��,

SVMT� and AdaC2 ... 64

vi

CHAPTER Page

5.2.4. Classification Accuracy vs. Size of Target Training

Data .. 68

5.3. Effect of Cost ... 71

5.4. Dynamic Cost Update..

5.5. Comparison with Multi-Source Transfer 77

6 CONCLUSION AND FUTURE WORK ... 80

 6.1. Summary of Work .. 80

6.2. Future Directions ... 82

REFERENCES .. 84

vii

LIST OF TABLES

Table Page

1. Source and Target Differences illustrated in the case of Document

Classification... 13

2. TrAdaBoost algorithm from [38] .. 32

3. Weight update equations for the different Boosting schemes [42] 41

4. Description of the Activity Gestures... 50

5. Comparison of Performance at 1% of the Target Training Data 60

6. Comparison between AdaC2 and DAdaC2 ... 75

7. Comparison of performance between AdaC2 and TransferBoost 76

8. Comparison between cost based ranking and error on SVM�� 77

viii

LIST OF FIGURES

Figure Page

1. Dataset shift in Gesture Recognition dataset shown to occur in the 2D

space of its first two principle components. Circle represents mock-data

and triangle represents real-world data. .. 8

2. The AdaBoost algorithm as described by Freund et al [37] 30

3. TransferBoost Algorithm from [15].. 33

4. An illustration of the problem statement .. 38

5. Generalized Cost-Sensitive Boosting Algorithm 39

6. Capturing activity gesture datastreams ... 51

7. Sensor layout for the seven CASAS smart environment testbeds [49] 53

8. Source and target distribution of act-gest dataset 57

9. Source and Target data distribution of act_rec dataset 59

10. Comparison of the weight update factors of AdaC1, AdaC2 and AdaC3 63

11. Comparison of Cost-sensitive boosting results on (a) act_gest (b) act_rec

(c) 20Newsgroups1 datasets, having trained on 1% of the target training

data. AdaC2 can be observed to give better results among the three. 65

ix

Figure Page

12. Plots illustrating the correlation between the increase in performance of

AdaC2 over SVM��� and SVM��. ... 67

13. Plots illustrating the variation in classification accuracies over act_rec

dataset against 1%, 5% and 10% of Target Training Data 69

14. Plots illustrating the variation in classification accuracies over

20Newsgroups1 dataset against percentage of Target Training Data 70

15. Comparison of the classification accuracies of AdaC2 using different cost

estimation techniques. ... 72

1

CHAPTER 1

INTRODUCTION AND MOTIVATION

Statistical machine learning frameworks aid approximating unknown functions

based on data examples. Their utility in recognizing patterns in data makes them a

core component in intelligent systems. Among the various challenges faced in

building such systems, of particular interest is that of developing robust learning

frameworks that function in real-world environments, characterized by non-

stationary and continuously evolving data. Today when an enormous amount of

data is being generated and collected every second, there is an ever increasing

need for these systems and their learning frameworks to possess the ability to

handle evolving data by adapting to newer circumstances and reliably recognize

newer patterns. This chapter lays the groundwork for this thesis by giving an

overview of the challenges real-world data pose with respect to learning a

classification model and some of the known learning strategies used for tackling

the problem. The foundation is used to broach upon the idea of transfer learning,

delved in detail over the rest of the document.

1.1. Dataset Shift in Real-World Conditions

Deducing the output of unseen future data is impossible without making

assumptions concerning the nature of the data. These assumptions, termed as bias,

define the hypothesis space and enable algorithms to favor one particular

generalization over others [1]. A classic assumption, many learning frameworks

are known to make is to consider training and test data to be identically

distributed (ID). This assumption, however, fails to hold in real-world conditions,

2

where data gets outdated frequently over time leading to poor performances of the

trained classifier models. This problem need not be restricted to temporal

sequences alone, but can be generalized to all forms of sequential data [2].

Examples of application domains where this phenomenon can be observed

include signal processing, speech recognition, computer vision, system

monitoring, financial forecasting, natural language processing and web mining.

2.1.1. Types of Dataset Shift

The objective of a statistical learning framework can be generalized to the idea of

learning a model that makes predictions, ��	|�� for targets 	 given data examples

�. Given this formulation, the problem of dataset shift can be understood and

differentiated based on the model to be learnt and the cause for the change

between the training and test datasets. A brief explanation of the different

qualitative categories of dataset shift, as mentioned in [3], is given below:

a. Simple Covariate Shift: Given a data distribution that can be modeled as

��	|�� ����, the change in data is termed as covariate shift, when there is a

change in ���� as a causal effect of the change in the covariate distribution. A

covariate can be defined as an explanatory or a control variable that may be

used along with other variables of primary interest for predictive purposes.

The covariate is not hidden and is a known component. The change in

covariate distribution will not have any effect on the prediction ��	|��.
b. Prior probability shift: If the data distribution is modeled in a target-

conditioned fashion i.e. ���|	���	� and the prediction ��	|�� is inferred

using the Bayes rule, a change in data distribution between training and test

3

scenarios can be caused due to the change in the prior distribution ��	�, while

���|	� remains unchanged. This problem is termed as prior probability shift.

c. Sample selection bias: Sample selection bias occurs when the training data

points ���� do not accurately represent the distribution over test scenario due

to a selection process for each item �. Similar to covariate shift, the selection

process can be modeled to depend on a selection variable �. However, unlike

covariate shift, in this problem, the selection variable � has an influence over

the label distribution ��	�.
d. Imbalanced data: The problem of imbalanced data arises when in a

multiclass dataset one or more classes occur rarely, compared to the others. To

avoid redundant training examples of one class, a class-balanced dataset is

typically obtained by discarding samples belonging to the frequently

occurring class samples or synthetically adding instances of minority class

examples. This, leads to a difference in data distribution, between the training

and test scenarios, and is termed as a shift by design. Given the change, the

problem can be perceived as the case of a prior probability shift with a known

��	� value.

e. Domain Shift: Domain shift refers to the shift in the value of data points ����
as a function of a latent variable �� specific to a domain. A common way of

looking at it is a change in the measurement system of ��.
f. Source component shift: When data is made up of a number of different

sources, each with its own characteristics, the proportions of the sources can

vary between training and test scenarios. This change in data is referred to as

4

source component shift. Three further cases of this shift namely mixture

component shift, factor component shift and mixing component shift are

detailed in [3]. The difference between this problem and sample selection bias

is explained on the basis of quality of the shift. While the shift here has more

to do with the change in the underlying causes we may not have any control

over, the change in sample selection bias has more to do with the way the data

points have been sampled from a specific population – a factor that can be

controlled.

A closely related dataset shift that often gets mentioned in the context of on-

line incremental learning over data streams is the problem of concept drift.

Concept drift refers to the change in the underlying classification function, which

might be the result of a change in ��	�, ���|	� or ��	|��. The core assumption

with the notion of concept drift is the uncertainty with respect to the future

samples (test instances), unlike the problems described above, where we are well

aware of the presence of a shift [4].

1.2. Transfer Learning

In the presence of such data shifts, a straightforward approach to adapting to the

changes would be to re-train a separate classifier model from scratch over the new

training instances. The process, however, is expensive and can be cumbersome

owing to the costs associated with collecting and labeling new training datasets.

Still, in some scenarios, it may be possible to obtain very few labeled target

instances, but insufficient for training a reliable classifier. In such circumstances,

a viable alternative that has the potential to minimize the overall cost of building a

5

classifier for the newer instances is to transfer appropriate knowledge from the

outdated data for use with the new data. The suggested approach is analogous to

how humans generalize when learning a new task from extremely few examples.

This learning technique is broadly termed as Transfer Learning.

The idea of transfer is a central component of learning in humans. As

humans, we face a continuous stream of tasks to be learnt over our lifetime and h-

andle it with our ability to build on existing knowledge or experience, acquired

from tasks learnt in the past [1]. The transfer of knowledge in humans is

instinctive, occurring without any conscious thought process, and involves

distinguishing relevant and irrelevant knowledge across multiple tasks. This

process allows us to generalize well and learn new tasks fast and better. For

example, when faced with learning a skill as complex as driving a car, years of

learning experience with basic motor skills, typical traffic patterns,

communication, logical reasoning, language, etc., play a role in helping us learn.

Learning relies so heavily on transfer that without it; the level of human

intelligence would be substantially lower [5].

In the last couple of decades, significant research has been made in

formulating methodologies for tackling the different kinds of shifts discussed

above. A detailed discussion of all these methods would lie beyond the scope of

this thesis. Nevertheless, a brief survey of some of the connected literature has

been presented in Chapters 2 and 3 to provide the reader with sufficient

background and understanding. A majority of the approaches are essentially

modifications of established traditional machine learning techniques such as

6

neural networks, relational learning, on-line incremental learning and ensemble

learning that incorporate the idea of knowledge transfer in them.

1.3. Motivation

The work presented in this thesis derives its motivation from two specific

computational challenges that were faced in realizing automated activity

recognition [6]. The challenges and an illustration of dataset shift in a real-world

setting are discussed as part of the following case study.

2.1.2. Recognition of Cooking Activities: A Motivational Case Study

In recent times, an increased interest in the fields of human computer interaction

and pervasive computing has given rise to many challenging problems based on

pattern classification. Among these, activity recognition has been an important

problem that has found use in applications as diverse as gaming, surveillance,

location recognition, social interaction and assistive and rehabilitative devices.

The basic idea behind activity recognition is to recognize actions of one or a

group of users by extracting and interpreting data captured using sensing devices

(cameras, accelerometers, microphones, etc.,) that are carried by the user or

present in the operating environment. For these systems to be robust and easily

deployable, it is necessary they overcome challenges such as change in operating

environments, addition of new sensing technologies and variations in activity

traits across individuals [7].

 In this case study, an activity recognition problem namely “Recognition of

Cooking Activities” is reviewed. The task is a research problem that focuses on

establishing a framework that can be used to support patients, suffering from

7

memory impairment, in their instrumental activities of daily living (IADL)1.

Developing an activity recognition system that can be used for identifying the

different stages of a cooking activity requires pattern classification of fine-grained

tasks unlike the classification of ambulatory movements. With the objective of

training a classifier in a supervised manner, motion data of 5 participants

performing the activity of “making a drink and drinking it” were recorded in

video and with accelerometers. In order to obtain sufficient training data, the data

capture session had been designed to have users enact actions 20 times using

mock objects (dummy objects). Relevant features were extracted and the points

annotated with one of the 5 common hand gestures namely pour, scoop,

screw/unscrew cap, stir and lift to mouth. 5-fold cross validations were run with

SVM and AdaBoost such that in each fold, data points corresponding to 4 subjects

were used to train the classifier and the data instances of the left-out subject were

used for testing, to obtain high mean accuracies of 92% and 90% respectively.

The classifier models obtained were then tested for their ability to

generalize over data points captured in a real-world setting. In this setting, no

mock objects were used and the activities were actually performed instead of

being enacted out like in training. The new data points captured activities of 4

participants who “made a glass of Tang and drank it”. Each participant was asked

to repeat the entire process 4 times, in order to obtain sufficient data points for

testing. This time however, the average accuracies obtained from SVM and

1 The Lawton Instrumental Activities of Daily Living (IADL) established in 1969
counts food preparation as one of the eight IADLs used for assessing independent
living skills among old adults [19]

AdaBoost over 5 folds were 79.4% and 68.4% respectively, significantly lower

than the earlier results. In this process of learning a classifier that classifi

points from a real-world setting with good accuracies, two computational

challenges can be observed.

The first observation is the failure of the ID assumption to hold on the data

considered. The PCA plot (Figure 1) shows signs of a dataset shift between the

points of the two domains

in the classification accuracies correlates with this observation, indicating the

occurrence of spatio-temporal variations in the movement patterns between

different system contexts (e.g. operat

the model was trained on a dataset that consisted only of instances captured from

the mock data space, the problem here is a case of

be further affirmed by observing that the sys

Figure 1: Dataset shift in Gesture Recognition dataset shown to occur in the 2D space of its
first two principle components. Circle represents mock
world data.

8

AdaBoost over 5 folds were 79.4% and 68.4% respectively, significantly lower

than the earlier results. In this process of learning a classifier that classifi

world setting with good accuracies, two computational

challenges can be observed.

The first observation is the failure of the ID assumption to hold on the data

considered. The PCA plot (Figure 1) shows signs of a dataset shift between the

domains – mock data space and real-world space. The decrease

in the classification accuracies correlates with this observation, indicating the

temporal variations in the movement patterns between

different system contexts (e.g. operating environments, user traits, etc.,). Since

the model was trained on a dataset that consisted only of instances captured from

the mock data space, the problem here is a case of sample selection bias. This can

be further affirmed by observing that the system context affects the label

Dataset shift in Gesture Recognition dataset shown to occur in the 2D space of its
components. Circle represents mock-data and triangle represents real

AdaBoost over 5 folds were 79.4% and 68.4% respectively, significantly lower

than the earlier results. In this process of learning a classifier that classifies data

world setting with good accuracies, two computational

The first observation is the failure of the ID assumption to hold on the data

considered. The PCA plot (Figure 1) shows signs of a dataset shift between the

world space. The decrease

in the classification accuracies correlates with this observation, indicating the

temporal variations in the movement patterns between

ing environments, user traits, etc.,). Since

the model was trained on a dataset that consisted only of instances captured from

. This can

tem context affects the label

Dataset shift in Gesture Recognition dataset shown to occur in the 2D space of its
data and triangle represents real-

9

distribution ��	� as well.

The second observation is the difficulty in collecting real-world training

data. The difficulty is primarily because of the cumbersome process of collecting,

cleaning and annotating real-world data. Besides the effort in preparation of the

data, the process of getting participants involved in a real-life activity reduces the

data point throughput during data capture sessions, for the same time and effort

spent. Owing to this the costs associated with such processes tend to make it

inefficient and preventive.

These challenges together with the application setting, offers ample scope

for studying how “knowledge” from the labeled training dataset, captured in

sufficient amounts from the mock data space, and the few labeled instances that

were captured from the real-world space, can be exploited to build a classifier that

shows an improved performance on the real-world data.

2.1.3. Problem Statement

This thesis explores the idea of knowledge transfer between non-identical training

(source) and test environments (target), by weighting instances based on their

relevance in the test environment. The central problem addressed can be stated as

“given a significant amount of source data, whose distribution is known to be

different from that of the target data, and a small sample of labeled target data, is

it possible to design a method that combines these different datasets to reliably

classify new unseen data points from the target domain”.

To solve this problem, a boosting based transfer learning framework is

designed and evaluated. In the process, the following issues are discussed:

10

1. How can the relevance of instances in a source domain be measured with

respect to that of a target domain?

2. How can the boosting algorithm be modified to incorporate the usefulness

of source instances and develop a robust transfer learning technique?

1.4. Summary

The rest of this thesis is divided into the following chapters: Chapter 2 gives a

brief background of transfer learning methodologies and reviews some of the

prominent works published in the area. Chapter 3 discusses on using boosting for

transfer learning by showcasing some of the known literature present. The

properties of each technique are highlighted and their limitations mentioned.

Chapter 4 describes the proposed methodology – cost sensitive boosting for

transfer learning – and elaborates on the different boosting schemes, the cost

estimation processes investigated as part of the thesis. In addition, a thorough

description of the different real-world datasets, the algorithms were tested on,

namely, gesture recognition, activity recognition and text categorization datasets

is also included. Chapter 5 presents the results obtained from the different

experiments conducted over the datasets and proceeds to analyze and interpret

them. Chapter 6 summarizes the work presented in this thesis and concludes by

highlighting the potential future directions of this research.

11

CHAPTER 2

BACKGROUND AND RELATED WORK

Even though “transfer” has been an actively studied phenomenon in cognitive

literature, transfer learning as a research direction in computer science attained

prominence only in the last decade. Literature published since then has given rise

to a variety of transfer learning algorithms, referred using different titles such as:

lifelong learning, multi-task learning, inductive transfer, domain adaptation,

cross-domain transfer, context-sensitive learning, meta-learning and incremental

learning [8]. In this chapter, an introductory account of transfer learning is given

supported by a brief literature review done by the author as part of this thesis. The

literature review is by no means exhaustive and is rather intended to provide the

reader with a well organized overview on the subject. For further reading it is

recommended to go through the following survey papers [9; 8; 10], conference

proceedings [1] and books [3].

2.1. Definitions and Vocabulary

The NIPS Inductive Transfer Workshop 2005 defines transfer learning as “a

transfer of knowledge across domains, tasks and distributions that are similar but

not the same”. In general, the training and test datasets involved in transfer

learning can be described in terms of the domains they have been sampled from

and the learning tasks they represent. A domain � is the marginal distribution

���� observed over an instance set � in a specific feature space � (typically ��).

Given an input space � and a label space � (��1, 1� for binary classification

12

problems), a task � is equivalent to the unobserved classification function

�: � ! � to be learnt, which can be stochastically modeled as ���� " ��	|��,

where 	 # � is the corresponding label of an instance � # �. The term source is

used to refer to the data from which knowledge is extracted, while the term target

is used to refer to the data, over which a classifier model is to be learnt, under the

support of the transferred knowledge. A formal definition of transfer learning, as

stated by [8], is given below. The definition takes only one source domain and

one target domain into account. It can, however, be generalized to apply to cases

dealing with multiple sources and multiple targets.

Definition: Given a source domain �$ and a learning task �$, a target

domain �% and a learning task �% transfer learning aims to help improve the

learning of a target predictive function �%�. � in �% using the knowledge in �$ and

�$, where �$ & �%, or �$ & �%,
In the above definition, the conditions �$ & �% and �$ & �% denote the

differences between the source and target domains and tasks respectively. The

difference between the domains can be explained as either a disparity in the

feature spaces �$ & �%, or a shift in the marginal distribution over the instances

���$� & ���%�. On the other hand, the differences between the tasks can be

interpreted as either a change in the label space �$ & �%, or that of the predictive

function �$�. � & �%�. �. As seen in Section 1.1.1, covariate shift, sample selection

bias, domain shifts or source component shifts are typical causes behind marginal

distribution shifts, while imbalanced data or concept drift create label space

differences. Table 1 gives examples illustrating these differences based on the

13

document classification problem. While these differences may allow justifying the

use of transfer learning, a vital aspect that should not be overlooked is the related-

ness between the source and target datasets. Similarity is central to transfer and is

a fundamental rationale behind a successful transfer.

Table 1 Source and Target Differences illustrated in the case of Document Classification.

Difference Document Classification Example

�$ & �%
Documents in source domains may be

in English, while documents in target

domains are in Chinese.

���$� & ���%�

Term frequencies for the documents are

distributed differently in the two

domains.

�$ & �%
Training domain has binary document

classes and test domain has multiple

document classes.

�$�. � & �%�. �
When the document classes are

balanced in training environment and

imbalanced in the test environment.

2.2. Categorizing Transfer Learning Algorithms

It is useful to categorize transfer learning algorithms in order to be able to

separate out the concerns and capabilities of systems incorporating these. Like in

14

humans, transfer learning algorithms facilitate in improving the target task

performance, learning speed or, sometimes, both. Which one can be achieved

depends on the availability of adequate training data to learn [9]. For example,

the objective of the transfer technique used in a speech recognition system that

can adapt to new speakers would be different for a dictation system from that of

an interactive voice response system. For a dictation system, it might be

acceptable to expect a new speaker to train a system for 30 to 40 minutes, as the

speaker may eventually go on to use the system for years. On the other hand, a

recognition framework that is used as part of an interactive voice response system

can only count on a few seconds of unsupervised speech [10] and should learn

fast.

A set of distinctions in transfer [9], can be made based on whether the

algorithms retain the source task accuracy, after learning the target task or focus

exclusively on learning the target task alone. Algorithms that belong to the former

group are termed as sequential transfer and those that go by the latter approach

are termed as non-sequential transfer. Further distinctions can be made in the case

of sequential transfer algorithms based on whether the source and target tasks are

learnt simultaneously or separate in time. Algorithms that adopt the first approach

are generically termed as functional transfer, while other algorithms that learn the

tasks one at a time by carrying an explicit representation from one task to the

other are known as representational transfer. Multi-task learning [11] is a

commonly cited technique that falls under the category of functional learners.

15

 Transfer learning settings can be characterized by the availability of

labeled data and the variation in the domain or task distributions across the source

and target domains. Founded on these learning settings and similar to the

categorization of traditional machine learning algorithms, transfer settings can be

conveniently categorized [8] as:

• Inductive transfer: In this setting, the target task is different from the source

task and has very less labeled data to obtain the required classification

performance. Similar to inductive learning, the labeled data can be used to

obtain a weak target inductive bias. The bias can then be corrected based on

the knowledge derived from the source tasks. Here, the source data may or

may not be labeled.

• Transductive transfer: The objective of transduction is to label the unlabeled

data seen during training. Following this, in a transductive transfer setting, the

target data is unlabeled and available, while the source data is labeled and

available in abundance. The difference in the data, between the target and the

source tasks, is generally modeled as a difference in their feature space or

domains.

• Unsupervised transfer: Here, the target tasks are different from, but related

to, the source tasks. However, just as in unsupervised learning, both the source

and target data are unlabeled. Common unsupervised techniques such as

clustering, dimensionality reduction and density estimation are typically used

to make sense of the target data.

16

It is important that the knowledge to be transferred is well represented.

The knowledge may be specific only to certain source domains or may be

common across many domains. A good representation makes this information

easily identifiable. The knowledge can be modeled as a set of instances, a group

of features, model parameters or a relational map. Based on this, transfer

algorithms can be classified into the following categories [8]:

• Instance-based transfer: reuses training instances from the source domain to

augment the training instances observed in the target domain typically by re-

weighting or re-sampling.

• Feature-based transfer: aims at finding an alternate feature space for the

target domain. Common approaches include feature selection and vector space

transformations.

• Model-based transfer: uses components such as model parameters, of

previously learnt source models to influence learning the target task.

Approaches vary from plain superimposing of model shape constraints to

partitioning of the parameter-space.

• Relation-based transfer: works with the idea of spotting and capitalizing on

the structural or relational similarity between the source data and the target

data. Suitable statistical relational learning techniques are generally applied

for the purpose.

The literature review presented from Section 2.4 onwards is organized based on

the above categorization.

17

2.3. Relatedness and Negative Transfer

The effectiveness of transfer depends on the source task and how related it is to

the target task [12]. When the source and target tasks are strongly related, it would

be worthwhile for a transfer algorithm to take advantage of it, to improve the

performance on the target tasks significantly. Here, the transfer is termed to be

positive. However, when the source tasks are not sufficiently similar or if the

algorithm itself fails to exploit the existing knowledge in the source tasks, the

performance over the target tasks may not only fail to improve, but may actually

decrease. This phenomenon is called negative transfer. The problem of avoiding

negative transfer is an open research issue and can be viewed as the problem of

“when to transfer”.

 Proper selection of the source knowledge can be the difference between

positive and negative transfer [5]. Many of the current algorithms assume that the

given source tasks are relevant to the target task. These algorithms separate out

the process of selection from the transfer framework and assume that the source

tasks have been manually selected, for transfer, by human experts using heuristics

or domain knowledge. On the contrary, it would be more suited for use in real-

world applications, if the selection is automatic and embedded into the transfer

framework. Automatic selection would entail the computation of an “a priori”

measure of task relatedness before training, instead of evaluating the performance

of the classifier retrospectively. The problem of automatic selection is difficult to

solve owing to the missing target domain information. Often, the limitation is

partially overcome by structuring the abundant source data into a hierarchy of

18

similar source tasks. Selective transfer helps improving the results in cases where

only few support tasks are relevant. Known literature explain this notion of

relatedness based on two ideologies (1) Task based similarity and (2) Domain

based similarity. Task based similarities are generally computed and applied in an

inductive transfer setting. The latter finds more application in transductive

transfer settings such as domain adaptation and assumes the predictive functions

to be constant across the two domains.

Task based similarity refers to a measure that quantifies the difference

between a source task ���$, �$� and a target task ���%, �%�. Ben-David and

Schuller [13] define relatedness in the case of a data generation model. They term

tasks as '-related, where ' is a set of transformations �: � ! �, if for some

fixed probability distribution over � (�, the data in each of these tasks is

generated by applying some � # ' to this fixed distribution.

 Showcasing a more practical approach, Thrun and O’Sullivan’s [14]

propose a Task Clustering algorithm that groups learning tasks into classes of

mutually related tasks, by using a globally weighted Euclidean distance metric to

measure the proximity between data points. The distance metric is learnt by

minimizing the average inter-cluster similarity and maximizing the intra-cluster

similarity. Similarity between tasks is then computed using cross-validated

predictive accuracies of k-nearest-neighbor classifiers, learning one task using the

distance metric of another. Under test conditions, the target tasks observed are

matched with source task clusters and the appropriate distance metrics are

transferred for classification.

19

Eaton [5] defines the concept of transferability as the transfer relationship

between two tasks as the change in performance between learning with and

without transfer. The measure’s viability is demonstrated as part of a boosting

based instance transfer [15] and a relational transfer framework [16]. The instance

transfer algorithm titled TransferBoost is discussed in the next chapter in more

detail. The relational transfer framework is modeled on the same lines as the task

clustering algorithm mentioned above with the transferability measure used

instead of the Euclidean distance metric.

Domain based similarity refers to a measure that quantifies the difference

between the source domain ���$� and the target domain ���%�. Kifer et al.,

introduce the concept of)-distance in [17]. For a given domain � and a

collection) of subsets of � and probability distributions � and �* over �, such

that every set in) is measurable with respect to both distributions, the)-

distance between the distributions is theoretically defined as

�)��, �+� " 2 sup0#) | Pr� 345 � Pr�+ 345�|
)-distance is closely related to learning a classifier that discriminates between

points sampled from different domains. It can be implemented [18] easily by

associating a positive label with the source data and a negative label with the

target data, thereby modeling this into a binary classification problem. For two

dataset samples 6$ and 6%, each of size 7, the error of a classifier 8,)-distance is

theoretical proven to be,

�)�6$, 6%� " 2�1 � 2 min<#= >??�8��

20

 Though, some of the above methods can be helpful in detecting change in

data and task distributions, in practice, the goals of avoiding negative transfer and

facilitating a positive transfer is difficult to realize. Often, algorithms that have

safeguards to avoid negative transfer have a reduced effect from positive transfer

due to the extra caution [12]. On the other hand, approaches that transfer

aggressively might transfer better, but may lack protection from negative transfer.

In addition, one cannot discount the inevitable bias actual applications would face

when predicting negative transfer with very less information in hand.

2.4. Instance-based Transfer

In instance-based transfer, individual data instances are selected from the source

domains to help train a classifier for the target domain. When the source and

target tasks can be represented in the same instance space, an instance-based

transfer may be sufficient for generalizing over the target domain. The training

objective for an instance-based transfer is to minimize an error function over

target instances and the selected source instances. Instance reweighting and

importance sampling are two popular methodologies applied to realize instance-

based transfer.

Jiang and Zhai [17] linearly combine several adaptation heuristics using

instance-level and global coefficients, into a unified objective function. They

tackle domain adaptation using a three step strategy over a probabilistic model of

the data, which includes, (1) removing “misleading” training instances in the

source domain, (2) assigning more weights to labeled target instances than labeled

21

source instances and finally (3) augmenting training instances using target

instances with predicted labels.

Wu and Dietterich [18] use source domain instances, referred to as

“auxiliary data”, to improve the classification accuracy of support vector

machines (SVM) and identify support vectors that are applicable to a target task.

Liao et al.[19] propose an active learning method to select the unlabeled data in a

target domain to be labeled with the help of source domain data. They realize this

with the help of auxiliary variables and a Fisher information matrix.

A popular framework that finds use as an instance weighting solution for

domain adaptation [22] is that of empirical risk minimization. The objective of

this method is to learn an optimal model @A # Θ in a model family, such that

expected risk, expressed in terms of a loss functionC��, 	, @�, is minimized. The

objective function can be written as,

@A " arg minF#G H�I,J� # �(�3C��, 	, @�5
For the setting of domain adaptation, the idea is to obtain an optimal model for the

target domain and minimize the expected loss over the target distribution. This

can be expressed as,

@%A " arg minF#G K ���%�. C��, 	, @��I,J�#L�MN�

The problem then is reduced to approximating ���%� utilizing the labeled

instances picked from the source domain O$. The above problem can be then

rewritten as

22

@%A " arg minF#G K ���%����$� . C��, 	, @��I,J�#L��P�

Q arg minF#G K R. C��$S�TP
�UV

where R " LWINS ,JNSXLWIPS ,JPSX. Since it is assumed that the predictive functions are constant,

R can be estimated as
LWINSXLWIPSX. This process of estimating the properties of the target

distribution with samples generated from source distribution, different from the

target distribution, is termed as importance sampling.

Huang et al., [23] propose a kernel mean matching algorithm to learn R by

matching the means between the source and target domain data in a reproducing

kernel Hilbert space (RKHS). An advantage of using KMM is that it avoids

performing density estimation of either ���$S� or � ��%S�, which is difficult when

the size of the dataset is small.

Sugiyama et al., [24] propose an algorithm named Kullback-Leibler

Importance Estimation Procedure (KLIEP) to estimate
LWIPSXLWINSX directly, based on

the minimization of the Kullback-Leibler divergence measure. KLIEP can be

integrated with cross validation to perform model selection automatically in two

steps: (1) estimating the weights of the source domain data; (2) training models on

the reweighted data.

23

2.5. Feature-based Transfer

Argyriou et al., [25] propose a method for learning a low-dimensional feature

representation which is shared across a set of multiple related tasks. Building

upon the 1-norm regularization problem, they use a new �2,1�-norm regularizer to

come up with a non-convex optimization problem, which attempts to

simultaneously select a low dimensional feature representation and learn them.

They proceed on to formulate an equivalent convex optimization problem and use

an iterative algorithm to solve the problem. The algorithm alternately performs a

supervised and unsupervised step, where the first step independently learns the

parameters of the tasks’ regression or classification functions and the latter step

converges towards a low-dimensional representation for these task parameters in

an unsupervised manner. The optimization problem can be written in this context

of TL as given below:

arg min0,Y K K Z[%, \]%, ^_�%S `a b cd|4|de,VeTN
�UV%#�_,f�

In this equation, S and T denote the tasks in the source domain and target domain,

respectively. 4 " 3]$,]_5 # g�(e is a matrix of parameters. ̂ is a � (�

orthogonal matrix for mapping the original high-dimensional data to low

dimensional representations(^_�% and ̂ _�$). The �2,1� norm of A is defined

as d|4|dh,i j W∑ ld]�dlh
i��UV Xmn

.

Blitzer et al., [26] focus on using unlabeled data from both the source and

target domains to learn a common feature representation that is meaningful across

24

both the domains. The authors term this method as Structural Correspondence

Learning (SCL). The first step of SCL is to define a set of pivot features on the

unlabeled data from both domains. These are features that behave in the same way

for discriminative learning across both domains. After having selected the pivot

features, these are removed from the data and treated as a new label vector. Thus,

7 binary classification problems can be constructed, where 7 is the number of

pivot features. These classification problems are then trained from the unlabeled

data and solved using a linear classifier, �o�I� " ��pq�ro_ . ��, C " 1, . . . , 7 to

learn a parameter matrix s " 3rVre. . . rt5. After obtaining s, singular value

decomposition (SVD) is applied on it. Let s " ^Ou_, then @ " 3̂V:<,:5_ , where 8

is the number of shared features, is the matrix whose rows are the top left singular

vectors of s. In the final step, standard discriminative algorithms can be applied

to the augmented feature vector to build models. The augmented feature vector

contains all the original feature �� appended with the new shared features @��.
Though it has been shown experimentally, that SCL can reduce the difference

betwen domains, selecting the pivot features is difficult and domain-dependent. In

this paper, Blitzer et al. have used a heuristic method to select pivot features for

natural language processing (NLP) problems, such as POS tagging.

Pan et al., [27] exploit a dimensionality reduction method named,

Maximum Mean Discrepancy Embedding (MMDE) to learn a shared low

dimensional latent feature space, such that the distributions between the source

and target domain data are the same or close to each other. The theory of

Maximum Mean Discrepancy states that the distance between distributions of two

25

samples is equivalent to the distance between the means of the two samples

mapped into a Reproducible Kernel Hilbert Space (RKHS). By capitalizing on

this theory, MMDE converts the problem of minimizing a distance function in

feature space into a semidefinite program in RKHS to identify a lantent set of

features. Post this, supervised and semi-supervised learning approaches are used

to train a model for a mapping between the tasks and data across both the

domains. The method, however, is computationally inefficient.

2.6. Model-based Transfer

Most model-based transfer techniques can be categorized into: (1) approaches that

partition the parameter space of a conventional learning algorithm into task-

specific parameters and general (cross-task) parameters and (2) approaches that

learn shape constraints, which are superimposed when learning a new function.

Evgeniou and Pontil [28] propose an SVM based parameter transfer

approach, where the parameters of SVMs for the source and target domain, r$

and r% share a common parameter, rv. Thus, r$ " rv b �$ and r% " rv b �%.
An optimization framework is then formulated for determining the parameters,

rv , �% , �$.

Raina et al., [29] present an algorithm for constructing the covariance

matrix, Σ # ��(� for an informative Gaussian prior, x�y, Σ�, to learn and

classify documents observed in a specific target domain, when the available

training data from the target domain is scarce �q \\ ��. The algorithm uses

26

other "similar" learning problems to learn a good underlying mapping from word

pair features to word parameter covariances.

Lawrence and Platt [30] propose an efficient algorithm known as MT-

IVM (Multi-task, Informative vector machine), which is based on Gaussian

Processes (GP), to handle the multi-task learning case. MT-IVM tries to learn

parameters of a Gaussian Process over multiple tasks by sharing the same GP

prior.

Gao et al., [31] observe that several classification models may be available

in a training domain, either sourced from a set of relevant tasks or learnt using

different classifiers. No single model may help in summarizing the target task as

such. Thus, they propose a locally weighted ensemble in order to additively

combine the predictions of multiple source models. The weights for the models

are computed by clustering the different tasks into graphs and estimating the

similarity of the neighborhood of test instances in these graphs.

2.7. Relation-based Transfer

Different from the other three contexts, the relational knowledge transfer

approach deals with transfer learning problems in relational domains, where the

data are non-id and can be represented by multiple relations, such as networked

data and social network data. This approach does not assume that the data drawn

from each domain be independent and identically distributed as traditionally

assumed. It tries to transfer the relationship among data from a source domain to

target domain.

27

Mihalkova and Mooney [32] perform transfer between Markov Logic

Networks (MLN). An MLN consists of a set of first-order logic formulae, each

with a weight attached, and provides a model for the joint distribution of a set of

variables. Given a learned MLN for a source task an MLN is learnt for a related

target task by starting with the source-task one and diagnosing each formula,

adjusting ones that are too general or too specific in the target domain. The

hypothesis space for the target task is therefore defined in relation to the source

task MLN by the operators that generalize or specify formulas.

Dai et al., [33] present a general transfer learning framework called

EigenTransfer. Their idea is to construct a task graph to represent the transfer

learning tasks and model the relations between the target data and the auxiliary

data. Instances, features and labels are represented as nodes in the task graph,

while the edges are set based on the relations between the end nodes, connecting

the target and auxiliary data in a unified graph structure. By computing the

eigenvectors of the graphs, the tasks can be represented in a spectral feature

space, reflecting the intrinsic structure of the target data, auxiliary data and the

relations between them. Knowledge transfer from the auxiliary data is then done

in this new feature space, to help learning the target data.

Dai et al., [34] investigate the concept of translated learning, where

knowledge transfer is performed between two entirely different feature spaces, in

this case, text and images. Their algorithm combines feature translation and the

nearest neighbor into a unified model by making use of a language model, which

is represented using Markov Chains. They adopt the Risk Minimization

28

framework and formulate a problem that minimizes the risk g�z, �%� of

misclassifying �% to the category z. Assuming no prior difference among all the

classes, the risk is simplified to represent the distance between the feature and

task space, measured using Kullback-Leibler divergence measure. They make the

actual transfer with the help of a translator function {�	%, 	$� | }�	%|	$�.

In the domain of activity recognition, Kasteren et al., [35] present a

framework that allows to transfer knowledge of activity recognition from one

context to the next. They use wireless binary sensing nodes that can be used to

capture activities anywhere in a household, such as measuring a door being

opened, a toilet being flushed or the temperature of a stove rising. In this work,

they describe a method which uses unlabeled data captured from house A together

with labeled data from house B, to learn the parameters of model for activity

recognition in house A. The difference in the domains appears in the form of the

difference in the layout of the houses and thereby difference in the location of the

sensors and the properties they measure. To solve this problem, the authors use a

set of manual mapping operations namely Intersect, Duplicate and Union to get

the final feature set over which a semi-supervised learning algorithm is used.

Rashidi and Cook [36] propose an unsupervised approach for mapping the

sensor and layouts of different living spaces for transferring the activity

information from a set of source living spaces to a target living space.

29

CHAPTER 3

BOOSTING AND TRANSFER LEARNING

The central challenge in transfer learning lies in formulating an approach that

makes most of the available auxiliary data. In instance transfer algorithms; this

problem gets manifested into that of identifying the relevant instance points that

would be useful in helping learn a tuned classifier that classifies target domain

data points correctly. AdaBoost, short for "Adaptive Boosting", is a well-

established algorithm that boosts a weak learning algorithm into a strong one by

calling it repeatedly so that the cumulative error of the strong classifier is reduced.

It is essentially a greedy algorithm that incrementally alters the distribution of the

training data points, used for training the weak-learning algorithm at each

iteration. This process allows identifying important examples in the training

dataset. However, similar to other traditional learning algorithms, it assumes that

the training and test data are sampled from the same instance space. Recent

research efforts have looked to extend the boosting principle to work with

auxiliary data. Typical challenges faced in modifying AdaBoost for the purpose of

transfer learning include:

• Formulation of a similarity measure between cross-domain samples

• Design of weight update factors and obtaining the corresponding optimal

value of the parameter ~ that minimizes the training error bound in the target

domain.

• Definition of an appropriate loss function.

30

• Linear combination of the weak classifiers to obtain a strong classifier that

generalizes well over the target domain.

This chapter gives a brief background of the boosting theory and continues to

provide a small survey of novel boosting based algorithms that have been adapted

for transferring knowledge from source instances to a target domain.

3.1. AdaBoost: An Overview

The basic idea of boosting is to learn a "strong" classifier by combining simple

classifiers known as "weak learners", which would do at least slightly better than

Figure 2: The AdaBoost algorithm as described by Freund et al [37]

31

chance. AdaBoost [37], as proposed in the seminal work of Freund et al., is

probably the most popular boosting algorithm. It maintains a distribution or a set

of weights over the training set and presents the weak learner with the important

examples from the set to obtain a "weak hypothesis". The goodness of a weak

hypothesis, as measured by the error over the distributionO, is used to update the

weights of the training points. In a boosting iteration, the weights of the correctly

classified instances are reduced, while the incorrectly classified points are

increased. As a result, the weak learner for the subsequent iteration focuses on

learning a model that correctly classifies the incorrectly classified instances of the

previous iteration. The objective of the algorithm is to find a strong hypothesis, by

linearly combining the set of weak hypotheses, with a low cumulative error

relative to a given distribution. The pseudo-code for the algorithm is given in

Figure 2. In the context of transfer learning, AdaBoost implicitly focuses on the

small amount of target domain training data if they are incorrectly classified at

any given iteration. It uses the rest of the source data to learn a model that

classifies this set of target domain data.

3.2. Instance-based Transfer: TrAdaBoost and TransferBoost

The foremost boosting based algorithm that was proposed for the purpose of

transfer learning is Dai et al.’s TrAdaBoost [38]. TrAdaBoost considers the target

and source data separately by applying different weight update schemes on them.

The weights of misclassified target data points are increased, as in AdaBoost,

using the weight update factor ~% computed from the error �% over the target data.

The weights of source data points are, however, decreased, similar to the weight-

32

Table 2 : TrAdaBoost algorithm from [38]

Algorithm TrAdaBoost
Input: the two labeled datasets �� and �$, the unlabelled dataset �, a base learning algorithm Weak Learner, the maximum number
of iterations, C, a vector consisting of cost factors associated with
every sample in ��.

Initialize: the initial weight vector rV=�rVV, reV, � , rT�tV �.

For � " 1, … , �

1. Set }% " r% ∑ r%���t�T�UV�
2. Call the weak learner, providing it with }% and the

combined training set of �� and �$ along with the cost
factors for �� C. Get back the hypothesis 8% � � ! �; � #��1, 1�.

3. Calculate the weighted error of 8% on �$
�% " K r%��� · |8%���� � 	�|∑ r%���t�T�Ut�V

t�T
�Ut�V

4. Set R% " �NV��N and R " 1/�1 b �2 log q/ ��. Note that �%has to be less than 1/2
5. Update the new weight vector

r%�V��� " � r�%Rd<N�IS�� JSd, 1 � � � qr�%R%�d<N�IS�� JSd, q b 1 � � � 7 b q�

Output: The final hypothesis

8���� " �1, � R%�<N�I� � �
%U�/e � R%�V/e �

%U�/e0, Otherwise �

ed majority algorithm, using a constant factor ~ that has been set according to

Littlestone and Warmuth [39]. The concept of similarity for transfer is implicit

and assumes misclassified source instances to be the most dissimilar to the target

instances. The weights of the misclassified source instances are decreased to

weaken their impact on the weak learner at a given iteration. Thus, source domain

33

instances that are similar to the target domain instances will have large training

weights, while the source domain instances that are not so similar will have lower

weights. Dai et al. provide a theoretical analysis of the algorithm and derive the

training and generalization error bounds and show that the average weighted

training loss on the source data converges to zero from the ¢_e£%<
to the �%<

iteration. Hence, only the weak hypotheses between the ¢_e£%<
and the �%<iterations

are linearly combined to obtain the strong hypothesis.

Figure 3: TransferBoost Algorithm from [15]

34

TransferBoost [15] uses a hierarchical weight updating scheme which

boosts both individual instances and a set of instances corresponding to a source

task. Sufficient information is assumed to be available from a collection of source

tasks, �V, … , �¤, each characterized by different � ! � mappings. On boosting

iteration �, each source task �� is assigned a weight ~%� based on a notion of

transferability from the source task to the target task. These weights denote the

contribution made by each source tasks to learn a target tasks based their

relatedness. Transferability, as previously mentioned, is essentially a greedy

measure, defined as the change in classification performance on the target task

between learning with and without transfer. To compute transferability, a

classifier 8%¥ is first trained on the target data � with distribution
¦�_�d|¦�_�|dm. Another

classifier 8%§̈ is then trained on �� © � with distribution
¦�fS©_�d|¦�fS©_�|dm. Based on the

individual performance of these classifiers, transferability is given by ~%� " �%ª �
�%§̈, where � is the weighted error of classifier 8 on �. The weighting scheme for

individual instances follows from AdaBoost, increasing the weights of

misclassified instances disregarding whether they belong to the source or the

target domain. The algorithm is given in Figure 3.

3.3. Feature-based Transfer: Joint Boosting

Torralba et al., [40] present a multi-class boosting procedure, used for object

recognition in images, which learns an array of strong classifiers ��, z� , that can

classify different object classes z # « by finding a shared feature space for the

35

classes, instead of separately training binary classifiers. At each boosting round,

various subsets � ¬ « of classes are examined and a weak classifier is learnt to

distinguish the subset from the background. The subset learner that maximally

reduces the weighted error on the training set for all the classes is added to the

strong learner for that class. Instead of iterating through an exhaustive list of

(2|«| � 1) subsets, the authors use forward selection of the best features for

recognizing a class. By using a decision stump for a weak learner, which can be

viewed as a feature selection process, the algorithm, in a way, becomes equivalent

to functioning within a manifold. The transfer here is probably not so obvious as

the other algorithms, and can be readily seen as related to multitask learning when

each object class is considered as a task.

3.4. Model-based Transfer: TaskTrAdaBoost

Yao and Doretto [41] extend the boosting algorithm to transfer knowledge from

multiple source tasks to learn a specific target task. With the assumption that

closely related tasks are likely to share some parameters, the framework works on

transferring suitable parameters from multiple source tasks to a target task in two

phases. In the first phase, standard AdaBoost is used to learn the each source task

and obtain a collection of candidate weak classifiers =. A regularizing threshold

c is utilized to constraint the coefficient ~ to selecting the best of weak classifiers

to be included in the set. In the second phase, another boosting algorithm is run to

select the best of the weak classifiers in the set =, with respect to the target data.

At each round of the boosting iterations, a weak classifier 8 # = is chosen such

36

that it gives the lowest weighted error on the target training data, ensuring the

harder examples are learnt. Intuitively, the strong classifier can be seen as a linear

combination of selected source task classifiers. In some ways, this method is

remarkably similar to the Locally Weighted Ensemble algorithm [31] mentioned

in the previous chapter.

37

CHAPTER 4

COST-SENSITIVE BOOSTING

This chapter presents different schemes for employing a cost-sensitive framework

for transfer learning, by extending the original AdaBoost [37] framework

proposed by Freund and Schapire. In the proposed extension, the boosting

framework is applied separately to source and target domain data. The boosting

updates for the source domain data is modified to take into account the cost

factors that represent the relevance of the source domain samples with respect to

target domain data. This ensures that weights of instances in source domain data

that are not relevant to target domain data are slowly decreased to reduce its

impact on learning, while maintaining the weights of the relevant samples.

4.1. Notation

Formally, the labeled source and target training data samples are referred to as

diff-distribution and same-distribution training data, following the notation in

[38], while underlining the difference in them. Thus, let �� " [��� , 	��a®�UVT

represent diff-distribution samples, �$ " ����$, 	�$���UVt represent the same-

distribution training samples and � refer to the set of unlabeled test data taken

from the target domain. The objective of the algorithm is to learn a target

classifier (Figure 4) that classifies the test data � with minimum error, by training

on the same-distribution dataset �$ supplemented by the relevant instances picked

out from the diff-distribution source dataset ��. The approach for solving the

problem is centered around two main heuristics namely (1) attaching weights or

cost items to based on the estimated relevance with

separate boosting schemes on

Figure 4 An illustration of the problem statement

4.2. Cost-Sensitive Boosting Framework for Transfer

The Cost-Sensitive Boosting framework is a result of an empirical exploration of

building a fast instance-

learning a task observed in a target domain with the aid o

target training instances

. The algorithm design is based on three straightforward

• to compute source relevance, right at the instance

level) and to keep it independent from the boosting algorithm (against

encapsulating it with the boosting algorithm),

38

based on the estimated relevance with and (2) applying

separate boosting schemes on and .

An illustration of the problem statement

Sensitive Boosting Framework for Transfer Learning

Sensitive Boosting framework is a result of an empirical exploration of

-based transfer algorithm on top of AdaBoost

learning a task observed in a target domain with the aid of a small set of labeled

 and sufficient set of labeled source training instances

. The algorithm design is based on three straightforward principles:

to compute source relevance, right at the instance-level (rather than a task

level) and to keep it independent from the boosting algorithm (against

encapsulating it with the boosting algorithm),

and (2) applying

Learning

Sensitive Boosting framework is a result of an empirical exploration of

 [37], for

f a small set of labeled

and sufficient set of labeled source training instances

level (rather than a task-

level) and to keep it independent from the boosting algorithm (against

39

• to keep the interests of the boosting schemes applied over same-distribution

data and the diff-distribution data separate (instead of having a unified

boosting scheme) and

• to train a common weak learner, on each boosting iteration, from a sample set

of the most relevant and hard to learn instances for that iteration (target

instances are relevant by default).

The algorithm attaches a relevance indicating cost factor on to every instance in

��, determining how useful learning from that instance would be. This is

motivated by an intuition that, given the cost of misclassifying a source domain

instance that holds a good probability of occurring as part of a target task, an

existing robust target classifier model would be expected to perform with a

minimal classification error over the target domain data, and at the same time

manage to classify the source domain data with a reduced net cost of

misclassification. Framing such a dual objective helps reducing the chances of

Figure 5 Generalized Cost-Sensitive Boosting Algorithm

40

learning a classifier that may over fit over �$, considering that it is made up of far

few target samples than required for generalization.

A formal description of the framework is presented in Algorithm

described in Figure 5 . As seen in the algorithm, regular AdaBoost is directly used

for minimizing the training error over �$. The boosting coefficients ~%$ allow the

weak learners to focus on the hard target domain examples. On the other hand, the

samples in �� are weighted based on the influence they have in predicting

instances in the target domain. This boosting scheme combines a prior cost factor

with the classification error based weight update factor, to give a different

boosting coefficient ~%� for every chosen instance in the source domain. Thus, for

a given iteration, if an instance that is considered to be irrelevant is misclassified,

the factor by which the instance weights are increased is significantly low when

compared to that of a more relevant misclassified instance. Similarly, the weight

of a correctly classified source domain sample with low relevance is made lower

than a correctly classified source domain sample with a higher cost. Thus, the

weight update curves are more gradual and hence, natural based on the relevance

of a source domain instance.

The boosting schemes for samples in �� are responsible for the actual

knowledge transfer and have been adapted from the cost-sensitive boosting

framework proposed by Sun et al. for dealing with imbalanced classes [42]. The

proposed approach in this thesis, in contrast to the boosting framework described

in [42], applies cost-sensitivity selectively to samples in �� alone. The weight

update coefficient ~%� is derived using one of the three algorithm schemes namely

41

AdaC1, AdaC2 and AdaC3 summarized in Table 33. A brief analysis on the

impact of these different weight update equations is given below:

• AdaC1: the weights of the �� samples that are incorrectly classified are

reduced by a factor of >�}�¯�. Among these, samples that have higher

relevance as indicated by the cost, tend to be reduced by a smaller amount

compared to samples with lower cost. However, the difference is expressed in

exponential terms.

• AdaC2: the weight updates are impacted directly by the cost factor. Thus the

weight change is directly related to the relevance of the sample. Even though

the weights of the samples in �� decrease over iterations, the change in the

weight is conservative for samples that are more relevant in comparison to

samples that are less relevant. This is the weight update model described in

the algorithm.

• AdaC3: the sample weights are updated by the combinational results of

AdaC1 and AdaC2. Due to the complicated situation of training error and cost

setups, it is difficult to decide how AdaC3 changes the weights for samples in

�� according to the cost factors.

Table 3: Weight update equations for the different Boosting schemes [42]

42

The next subsection elaborates on the approaches adopted in this work for

estimating costs.

4.3. Cost Estimation

The role of the cost items is primarily to associate the relevance of source domain

samples �� with respect to the target domain samples �$. This can be computed in

a supervised or unsupervised manner. We select techniques from both of these

approaches to study their impact on the end result. Following are the different

approaches employed in this work:

• Instance Pruning based cost estimate (IP): This is a supervised approach

and follows the technique proposed by Jiang et al., [19] for pruning

misleading different domain instances. Their approach involves learning a

classifier model using the few labeled target domain sample set �$ and using

this model to select instances from the source domain that are correctly

classified. Instead of eliminating all the instances that are incorrectly

classified, we use the probability of correct classification associated with each

sample as the cost factor. Thus in the process, samples in �� with high

probability of correct classification have higher cost items compared to the

samples in �� with low probability of correct classification. Since the

estimated values are probabilities, the cost thus computed is already

normalized between 30, 15. Since we have primarily used SVM as our base

classifier, we have adopted the probability estimation as proposed by [19] for

determining the costs of samples in ��. For a binary class problem, a simple

43

Platt’s scaling through logistic sigmoid function is used. The parameters of

this function are learnt from the classification margins of the training sample.

For the multi-class scenario, we use a one vs one multi-class SVM that learns

the decision boundaries between all pairs of classes. The margins from each of

these classifiers are converted to probability values using Platt’s scaling. In

the second step, an optimization procedure is employed to learn the true

classification probabilities from these pair wise probabilities. This technique is

implemented in the popularly used LIBSVM package [43].

• Relevance Measure based on a distance metric(ED): This too is a

supervised technique and consists of two steps. In the first step, the pair-wise

distance between all the samples (source and target domain) are computed. In

the second step, a ratio between the sums of the distances of the i°± instance in

T� from all the samples in T� that belong to different and same class

respectively.

z� " ����[��� , ��$a�������� , ��$�
This measure can be considered as a relevance measure. It measures how

similar a sample from a particular class is with respect to a target set.

Different distance metrics can be employed depending on the dataset. For the

experiments conducted in this work, we used a Euclidean distance on datasets

of low dimension and the cosine distance for datasets with high dimensions.

• KLIEP based cost estimate: Kullback-Liebler Importance Estimation

Procedure [24] is a technique that is used for transductive instance transfer

44

learning that involves estimation of weights for source domain samples

through the minimization of the KL-divergence measure between the

probability densities of the source and target domain data. The basic idea

behind the technique is to compute an importance estimate (that is considered

as the cost factor by our algorithm) such that the KL-divergence from the true

test input density to its estimate is minimized. The algorithm carries out this

minimization without explicitly modeling the training and test data densities.

The optimization problem for KLIEP is convex, so the true global solution

can be obtained. A cross validation approach is typically used for model

selection process of the minimization procedure in KLIEP. A Gaussian kernel

is used during the minimization procedure.

• Concept Feature Vector Distance(CFVD): Concept feature vector is a

term that is used in the context of detecting concept drift in a data stream. The

sequential data is divided into batches. Concept feature vectors describing the

data in each batch are then determined. The distance between concept feature

vectors of consecutive “batches” of data is calculated. Concept drift is

detected if this distance is greater than a certain threshold. In the current

context of determining the similarity between the source and target domain,

we define the batches to be the source and target domain data itself. Concept

feature vectors are determined for samples belonging to a particular class of

the source and target domain respectively. The distance between these concept

feature vectors of the source and target domain is treated as the cost of the

source domain samples. Formally, let �$� and �%� be the source and target

45

samples belonging to class �. Then the concept feature vector for source set is

defined as

$̄� " 1d�$�d K �$¤�²PS

¤UV

The concept feature vector for class of the target domain %̄� also follows

similarly. The concept feature vector distance is the distance between ̄ $� and ̄ %�.
These distances are calculated for each of the classes separately, which is then

normalized. The cost factors associated with every sample belonging to a

particular class is then determined as difference between 1 and the normalized

concept feature vector distance associated with that class. Note that the cost

factors of all the samples belonging to a particular class will be identical.

z� " 1 � ����� $̄� � %̄��∑ ����� $̄� � %̄���

Thus the cost of samples belonging to “very different” source and target domain

class will be lower than the samples belonging to “similar” source and target

domain classes. We use Euclidean distance metric to compute the distance

between the concept feature vectors for datasets with low feature dimension and

use cosine distance metric for datasets with very large feature dimension.

4.4. Dynamic Cost Update

The cost factors associated with �� can be static, in the sense remain the same

across boosting iterations. However during the course of the boosting process, the

weights to samples �$ change. Thus, at certain iteration it is possible to observe a

46

higher weight to a subset of samples in �$. This essentially means that the

algorithm is finding it difficult to learn this particular subset of �$. Thus, the

distribution of samples in �$ changes, reflecting their ability to be learned. To take

into account the changes in the weights of �$ samples, we ensure that the �� cost

factors are also updated. Thus, relevance to �� samples is determined based on

harder �$ samples.

A new SVM model is learned, at every iteration; from the target domain

labeled samples drawn according to the distribution of these samples for that

particular iteration. Samples in �$ that have higher weights influence the decision

boundary of this model. This SVM model is then used to classify all the source

domain samples. The hypothesis is that the newly computed cost factors of the ��

samples reflects the importance of these samples with respect to the new

distribution of the �$ samples.

4.5. Comparing with other boosting based transfer-learning approaches

While this is not the first boosting approach for transfer learning, a discussion

centered on the similarity between the proposed approach presented in this work

and other boosting based transfer-learning approaches. The most commonly cited

boosting based transfer learning approach is the TrAdaBoost algorithm of Dai et

al., [38]. Both, Cost-sensitive boosting and TrAdaBoost, employ the original

boosting based approach for updating the weights of labeled target domain

samples. The main difference between the two algorithms is in the manner in

which the source domain samples are handled. TrAdaBoost uses the weighted

47

majority algorithm to adjust the weights, repeatedly decreasing the weight of

incorrectly predicted source domain sample by a constant factor

R " 1/ �³1 b ´2 ln T� �µ where, ~ " � log �WV¶ �X. It also notes that since the error on

the labeled target domain samples converges to 0 only after half of the total

number of iterations, the TrAdaBoost algorithm considers only the weak

hypothesis learned in the second half of the boosting iterations to arrive at the

final strong classifier. Intuitively the weak hypothesis learned during the initial

rounds of boosting fit a majority of data, with the focus on the harder examples

during the later rounds. If the harder examples represent outliers in the �$ data,

then TrAdaBoost has a tendency to over fit the same-distribution training data.

Another important difference between TrAdaBoost and Cost-sensitive

boosting is the manner in which weight updates are performed on the source

domain training data. In TrAdaBoost, the weights of �� samples either decrease or

remain constant between successive iterations. There is no way in which the

weight of a relevant sample can be increased, once decreased during the previous

rounds of boosting. When the weights of these relevant samples become very low,

their influence on learning a good weak hypothesis becomes negligible. In

contrast, the Cost-sensitive boosting algorithm allows for increase in weights for

the target domain samples. However it ensures that weight increase is

proportional to the relevance of the sample with respect to the majority of the

labeled target domain samples. Thus during the later rounds of boosting, Cost-

48

sensitive boosting has a higher potential to retain relevant source domain samples

for learning the weak hypothesis compared to TrAdaBoost.

The set based boosting for instance level transfer (TransferBoost)

proposed by Eaton et al., [15] is another algorithm that uses boosting for transfer

learning. Transferboost uses a set based weight-updating scheme. It breaks the

source domain instances into task-based sets. Instead of updating the weights of

individual instances, it updates the weights of instances in a set in a similar

manner. The scheme adopted for updating the weights of the labeled target

domain data is similar to the Cost-sensitive boosting algorithm. Furthermore, it

can be noted that the weight update in TransferBoost for the source domain

instances is a special case of the Cost-sensitive boosting algorithm. When the

parameter ~% , in the TransferBoost algorithm that represents the transferability of

set is made a constant at the individual instance level, then TransferBoost boils

down to Cost-sensitive boosting.

4.6. Datasets

The proposed methodology was experimented on various real-world and synthetic

datasets. Each of the chosen datasets have unique characteristics and can be

described by properties such as number of instances, number of attributes, number

of class labels and class imbalance. A brief description of each of the dataset is

given below.

5.6.1. Activity Gesture Dataset (act-ges)

The activity gesture dataset is a multiclass real-world dataset of motion data

collected for learning to recognize the different gestures used in the activity of

49

“making a drink and drinking it”. Each instance can be associated with one of the

5 class labels namely pour, scoop, screw/unscrew cap, stir and lift to mouth. The

data was collected from two domains, over which, data and task distribution were

observed to vary.

The first domain refers to data motion data collected from 5 users enacting

out the different activity gestures with the help of dummy objects. The motion

data was captured using three tri-axial accelerometers placed in the user’s

dominant wrist, elbow and non-dominant wrist respectively. Out of these only the

data captured from the dominant wrist and elbow were retained for their

discriminative properties. The activity gestures were enacted 20 times to be

sufficient for training. The participants were given explicit instructions on how to

perform the activity gesture. The data obtained was then manually segmented and

annotated with the help of a synchronized video of the activities performed. The

second domain corresponds to data captured similarly as described above, but in a

more realistic setting. In this setting, 4 users were asked to make a glass of

Gatorade and drink it, instead of enacting the different gestures using dummy

objects. The entire activity was repeated 4 times by each user. The mock and

realistic scenarios are taken as the source and target domain respectively in our

experiments. A brief description for both the mock and realistic scenarios is

presented in Table 4. The objective is to recognize gestures performed in a

realistic scenario, using the data from the mock scenario with a small number of

labeled samples from the realistic scenario.

50

Table 4 Description of the Activity Gestures

Activity Gesture Mock Scenario Realistic Scenario

Pour Take the glass that is full

and pour its contents into

the empty glass. Pour a

small quantity every

time.

Pour the water from the

glass.

Scoop Use a spoon to scoop

contents from the glass

that is full into the empty

glass

Use two scoops of

powder for making the

drink.

Unscrew Cap Unscrew the lid of the

water bottle. Pause for a

couple of seconds. Screw

on the lid on the bottle

Open the powder drink

jar, and close it after you

finish using it

Stir Take the spoon and stir

the contents of the glass

for 30 seconds

Ensure the powdered

drink has dissolved by

stirring the mixture

Lift to Mouth Take an empty glass and

pretend that you are

drinking water from the

glass by taking several

short sips.

Drink the glass of

beverage that was

prepared.

51

A distinct pattern can be spotted for each of the activity gestures in the

data stream sample captured using the accelerometer placed on the wrist in Figure

6. Intuitively, the individual characteristics of each of the gestures can be tracked

in the patterns seen. For example, the gesture unscrew cap can be defined by a

number of rapid repetitive movements of the unscrew action with the initial effort

to loosen the cap, while stir can be represented by a more relaxed and relatively

slower set of mechanical movement. A dip in the z-axis acceleration appears for

the gestures, scoop and lift to mouth, but the y-axis values increase for scoop and

falls for lift to mouth. On the basis of these observations discriminative features

that either aggregated over the temporal and frequency characteristics of each of

Figure 6: Capturing activity gesture datastreams

52

the axes or combined data across multiple axes as done by correlation

coefficients, were extracted to obtain instance points in a 44-dimensional space.

5.6.2. WSU Smart Home Dataset2 (act-rec)

The WSU Smart Home dataset is a multi-class dataset that evaluates learning

general models of activities by abstracting over different environments and

residents. The dataset is being used in an on-going research project in the Center

for Advanced Studies in Adaptive Systems (CASAS), Washington State

University and has been collected from 7 smart environment testbeds, each

consisting of a variety of sensors that include motion, door, temperature, light,

item, etc., embedded on The dataset contains sensor events related to a set of

eleven ADL activities namely - Cooking, Eating, Sleeping, Relaxing, Working,

Bed-to-toilet, Enter Home, Leave Home, Taking Medicine, Personal Hygiene and

Bathing. Pre-segmented sequences of sensor events corresponding to an activity

were used to form a feature vector that represents the start and end time, duration,

frequencies of different sensor firings within this duration and the preceding

activity. All the sensor IDs were mapped onto labels corresponding to the room in

which the sensor resided including: Kitchen, Kitchen Cabinet, Medicine Cabinet,

Front Door, Lounge Chair Bedroom, Living Room, Dining Room, Bathroom,

Hallway, Bathtub, etc., Each of the apartments had different layouts and the

number of people and pets who resided in them also varied. The layouts of the

different apartments and the different sensors present in them are shown in Figure

7. For the experiments conducted, the activity samples corresponding to one

2 Most of the dataset is available at http://ailab.wsu.edu/casas/datasets.html

53

apartment was taken to be the target data while the samples from all the other

Figure 7: Sensor layout for the seven CASAS smart environment testbeds [49]

54

apartments were considered to be the source domain. Since data for all the

activities was not present in every apartment, only those source domain activity

samples whose labels were present in the target domain were used.

5.6.3. 20Newsgroups

The 20 Newsgroups dataset is a collection of approximately 20,000 newsgroup

documents, partitioned across 20 different newsgroups. It primarily consists of 7

top-level categories, with each category consisting of multiple sub-categories

totaling to 20. Its hierarchical structure facilitates in modeling text categorization

datasets into resembling transfer learning scenarios such as sample selection bias

and has de facto become a dataset used prominently for comparative studies of

transfer learning algorithms. For the experiments, two different sets of transfer

learning datasets were extracted from the 20Newsgroups corpus (1) Newsgroups1

- one modeled for transfer from single source task to a single target task, and (2)

Newsgroups2 - modeled for transfer from multiple source tasks to a single target

task. Apart from this, experiments were also run on a readily available dataset

extracted from the 20Newsgroups corpus, named Usenet1 that simulated class

imbalance. Though the original corpus is a real-world dataset, the datasets worked

with have all been simulated and can thus be considered to be synthetic,

nevertheless applicable to a real-world scenario. All of the learning problems

formulated on these datasets are binary classification problems. Some more

information on the sub-category distributions and pre-processing steps are

explained below.

55

• Newsgroups1: the task to be learnt is that of categorizing documents into two

parent categories. The original feature space of the unprocessed dataset was

reduced to that of 45000 by removing the common list of 526 stop words and

having a document frequency threshold value of 2. The feature space was also

converted into a binary space such that Data points in the source domain and

target domain are drawn from different subcategories that belong to the parent

category, thus inflicting a change in the space in which data is distributed. The

division of the subcategories for the source and target domain is described. Six

different binary class datasets were generated for the experiments based on these

divisions. Due to computational constraints, we randomly pick 1000 samples for

the source and target domain dataset.

• Newsgroups2: this dataset was created to evaluate the performance of the

proposed approach in multi-source domain scenarios. The dataset is adapted from

the work done by Eaton et al., For each domain, a set of binary task was generated

to distinguish one class from a set of negative classes, ensuring that each task had

unique negative examples and equal class priors. The first newsgroup in each

major category was used as negative examples for the tasks given by the 13

remaining newsgroups. These negative examples are drawn from the following

newsgroups: alt.atheism, comp.graphics, misc.forsale, rec.autos, sci,crypt. For

each dataset, there was one target task and the other tasks from the same domain

serve as the source tasks. The original 20newsgroup dataset was represented as a

binary vector of the 100 most discriminating words determined by Weka’s string

56

to work vector filter. Only 5% of the original dataset is used for the experiments,

since the originals are very large.

Usenet1: This dataset [44] is based on the newsgroup collection. Simulated

streams of messages from different newsgroups are sequentially presented to a

user, who then labels them as interesting or junk according to his/her personal

interests. The messages are presented to the user in batches. The user switches

between his/her choices of junk for every batch. As a result, there is a complete

reversal in the class labels as we move across each batch. The challenge here is to

classify the user choices for a particular batch, using the training samples

available from the previous batch and a few samples from the current batch. The

description of the dataset in terms of its size and feature space is presented. We

consider this to be hardest dataset, due to the reversal of labels across batches,

which also leads to a class imbalance problem.

57

CHAPTER 5

RESULTS AND DISCUSSION

Various experiments were conducted on the datasets mentioned in the previous

chapter to understand the properties of the data, evaluate the performance of the

proposed approach under static and dynamic configurations, spot the effect of cost

computation in knowledge transfer, empirically note the effect of multiple source

transfer and make comparative studies with related algorithms. This chapter

presents the results of these experiments and analyzes the various aspects

observed during the study.

5.1. Properties of Data

Principle component analysis was used for visualizing and understanding the data

and task distributions over the training and test domain of the act-gest and act-rec

Figure 8: Source and target distribution of act-gest dataset

58

datasets. This exercise was done in order to establish an empirical basis for the

appropriateness of applying transfer learning to a real-world problem and

therefore does not distinguish between training and test data points. Data points

belonging to both source and target domains were projected onto the space

defined by the first three principle component vectors. Figures 8 and 9 plot the

data points of act-gest and act-rec datasets respectively in their corresponding

PCA vector space. Figure 8 uses all source and target instances in the act-gest

dataset. The changes in task distributions between source and target domains were

earlier illustrated in Figure 1 over two basis vectors. Here, the visualization

presented indicates signs of the data suffering from domain shift, defined

essentially as a change in the measurement system of the new data points ��. A

pretty much uniform and uni-directed translation of patterns is noticed between

the source and target domain, plotted by a path connecting the centers of the

cluster of points associated with the different activity labels pour, scoop, unscrew

cap, stir and lift-to-mouth, in the source and target domains respectively. Among

the five activity labels, the one that has a rather skewed displacement (not very

noticeable in the Figure) is pour, which may be a result of latent and

uncontrollable factors such as user traits, weight and shape of the container being

held, etc.,

Figure 9 plots the data points of Apartment_B dataset, split into 8 different

plots showing the shift in task distributions across the source and target domains.

Act_rec_B was chosen as it contains data points associated with all 11 activities.

Here only 8 of the 11 are chosen for illustration purposes. The plots capture

59

interesting patterns connected with the characteristics of the activities performed

by different residents in smart home test-beds under different sensor settings and

home layouts. Despite these differences, activities such as eating, enter home and

leave home show little variations owing to the basic nature of these tasks. These

activities cannot be performed very differently either by different residents or

under different settings. Dataset shift cannot be always visualized in this manner

particularly over datasets with high dimensionality. Sometimes, the change in the

distribution may be perceivable only in higher dimensions (> 3). This is

expectedly the case with the 20Newsgroups datasets, which possess high

dimensions and are sparse, as they showed no reliable difference between the

source and the target instances despite having synthetically made to have a change

in the dataset distribution.

Figure 9: Source and Target data distribution of act_rec dataset

60

5.2. Performance Evaluation

All experiments were conducted using SVM as the base classifier. The toolbox by

Chang and Lin [43] – LibSVM was used for conducting experiments with SVM.

This toolbox supports multi-class SVMs through pairwise coupling. It constructs

·�· � 1�/2 number of binary classifiers for a ·-class problem and combines the

probability of classification obtained from each classifier through Platt’s scaling

to obtain the final probability of a sample belonging to a particular class. SVM

was run using a linear kernel. The penalty factor C for act-gest and 20Newsgroups

datasets it was set to 1 and for act_rec it was set to 100. The parameters were

selected based on the best classification accuracy obtained from running a 5-fold

cross validation over the source data. The maximum number of boosting

iterations was set to 100 for all the boosting variants including AdaBoost,

TrAdaBoost and the Cost-sensitive boosting framework. At every boosting round,

the training dataset was sampled, such that all class labels were represented and

uniformly distributed. Comparison of performance over the various experiments

were done using an average generalized accuracy obtained over 5-fold cross

validations. The various approaches were implemented using well integrated

programs in MATLAB and will be shortly made available for public use.

5.6.4. Comparison of Classification Accuracies

Table 5 : Comparison of Performance at 1% of the Target Training Data

Dataset Svm�$ Svm�� Svm��$ Ada Trada Adac1 Adac2 Adac3

User 1 0.77 0.56 0.79 0.85 0.82 0.85 0.88 0.85

User 2 0.84 0.64 0.98 0.93 0.98 0.97 0.98 0.98

User 3 0.54 0.33 0.71 0.67 0.65 0.70 0.75 0.74

61

Dataset Svm�$ Svm�� Svm��$ Ada Trada Adac1 Adac2 Adac3

User 4 0.44 0.61 0.77 0.73 0.75 0.76 0.79 0.80

Apartment-A 0.71 0.67 0.71 0.78 0.63 0.80 0.82 0.75

Apartment-B 0.67 0.62 0.68 0.72 0.57 0.79 0.80 0.76

Apartment-C 0.79 0.37 0.81 0.76 0.49 0.79 0.83 0.78

Apartment-D 0.76 0.34 0.77 0.82 0.52 0.83 0.81 0.81

Apartment-E 0.29 0.04 0.45 0.46 0.70 0.46 0.48 0.49

Apartment-F 0.58 0.20 0.60 0.62 0.40 0.67 0.68 0.67

Apartment-G 0.52 0.44 0.55 0.53 0.46 0.59 0.59 0.58

Rec vs Talk 0.68 0.72 0.75 0.72 0.73 0.71 0.83 0.72

Rec vs Sci 0.63 0.70 0.69 0.69 0.69 0.70 0.77 0.69

Sci vs Talk 0.60 0.64 0.67 0.64 0.70 0.67 0.74 0.68

Comp vs Rec 0.80 0.73 0.85 0.83 0.72 0.82 0.86 0.84

Comp vs Sci 0.62 0.64 0.67 0.68 0.58 0.69 0.76 0.69

Comp Vs Talk 0.86 0.68 0.87 0.87 0.73 0.88 0.89 0.88

Table 5 compares the classification accuracy given by algorithms when trained on

1% of the target training data and supplementary source data. In most cases, one

of the three cost-sensitive boosting procedures is seen to perform better than the

other algorithms, with AdaC2 performing the best among the three and

consistently better than TrAdaBoost. Some of the individual trends that arise

owing to the properties of each dataset is further discussed below:

Act_gest: The difference in the performance of the three cost-sensitive boosting

approaches looks marginal. Retrospectively, having assessed the results of all the

datasets, a possible reason that can be associated with this trend is the relatively

low number of test samples available for each of the user. It is interesting to note

that, while Svm�$ and Svm�� separately yield poor performances, just combining

the source and target domain data results in an increased performance over the

target domain. This can be attributed to two particular properties of this dataset.

62

The first one being that the data points belonging to each class label are well

separable in their common feature space and respective domains. This has been

pointed out previously in [6]. Secondly, since it is suspected that the dataset

suffers from domain shift , the separability of data points facilitate knowledge

transfer by either extrapolating or translating the source model in the feature

space. Thus, an addition of labeled target data, as few as 1 instance per class, to

the source data might improve the performance by a good deal. Nevertheless, the

cost-sensitive boosting schemes, AdaC2 and AdaC3 further improve the

performance over SVM��$.

Act_rec: Once again, the results obtained from these datasets also show just a

marginal difference between the accuracies of AdaC1, AdaC2 and AdaC3, with

AdaC2 giving the best performance most of the time. Though the cost-sensitive

boosting algorithms have an upper hand in the performance in almost all the

cases, the dataset pertaining to Apartment-E has TrAdaBoost giving an

improvement of over 20 percentage points from the next best performing

technique. It was noticed that the number of target domain training examples

available for Apartment-E was very low (equivalent to having one instance per

class) in contrast to the other apartments. This low sample size of �$ could have

resulted in incorrect cost estimation, learding to a poor performance of the cost-

sensitive schemes. Unlike the act_gest dataset, no straightforward correlation is

found to exist between the performance of SVM��$, SVM�$ and SVM��.

Furthermore, the performance of AdaBoost is noticed to be greater than that of

SVM��$ indicating that the expected correlations may be captured by using a

63

boosting framework that focuses on a specific subset of samples during each

iteration.

20Newsgroups1: Among the three datasets, it is only in this dataset that AdaC2

shows a significantly better performance among the three cost-sensitive boosting

algorithms. In contrast to the observation made in act_rec datasets, it can be seen

that adding a small amount of labeled target domain data to the source domain

helps in improving the performance of the model that is trained only on the source

data as inferred from the classification performances of SVM�� and SVM��$,

indicating the complementary nature of the source data in learning the target

tasks.

5.6.5. Advantage of AdaC2 over AdaC1 and AdaC3

Figure 10 : Comparison of the weight update factors of AdaC1, AdaC2 and AdaC3

64

AdaC1, AdaC2 and AdaC3 all boost more weights on relevant samples that are

misclassified than irrelevant samples that are misclassified. Similarly, they

decrease weights more on relevant samples that are classified correctly than less

relevant samples classified correctly. However, there is a marked difference in the

way these weighting equations have an effect over a specific instance based on its

relevance. Figure 10 pictorially shows the effect of AdaC2 weighing each sample

by its associated cost directly against AdaC1 which attaches the cost factor in the

exponential term thereby having a diminished role. The result is AdaC1 ends up

conserving the weights of less relevant samples and very reactive towards highly

relevant samples. On the other hand AdaC2 reacts to relevance in a smoother

fashion thereby resulting in its tending towards conserving weights of relevant

instances. Though effectively, AdaC3 is a combinatorial result of AdaC2 and

AdaC1, the result of attaching the cost in the exponential component of the

equation makes it act similar to AdaC1 when the variable K in the graph is high

and like AdaC2 when K is low. More noticeably it acts closer to AdaC1 when

handling samples on the basis of its misclassifications. Figure 11 presents the

plots obtained of the experimental results of the three algorithms on all the

datasets. It is very evident that AdaC2 has a much more effective influence on

utilizing a cost measure for reliable knowledge transfer. From here, all further

analyses would use only AdaC2 for their study.

5.6.6. Correlation Between the Performances of SVM��, SVM��$ and AdaC2

An interesting pattern that establishes the idea of relatedness emerges from the

results obtained in Table 5 is of a subtle correlation between the classification

65

Figure 11 : Comparison of Cost-sensitive boosting results on (a) act_gest (b) act_rec (c) 20Newsgroups1
datasets, having trained on 1% of the target training data. AdaC2 can be observed to give better results among
the three.

66

accuracies of baseline SVMT� and the improvement in performance shown by

AdaC2 over SVMT��. The relationship noticed is that of an increase in the

classification accuracies over SVM��$ when the source training data alone is able

to classify target domain samples to a reasonable extent. For the purpose of

illustrating this idea, plots were generated from the obtained results of SVM��,

SVM�$, SVM��$ and AdaC2 by sorting the datasets in the increasing order of

accuracies of SVM�� on the target dataset. This is shown in Figure 12. It can be

observed that the highest difference between AdaC2 and SVM��$ is obtained in

the middle of this sequence. For the act_gest datasets, User 4 and User 2 show

little to no improvement, while User 3 and User 1 show significant changes, while

act_rec datasets, apartments F, B and A show improvement close to 10% points in

accuracies while the other apartments seem to step up by around 4-5% points

alone. Similarly, in the case of 20Newsgroups1, datasets Comp vs Rec and Comp

vs Talk seem to give the best results over SVM��$.

The difference in the accuracies seem to follow a bell curve of sorts, with

no or very low improvements for very similar and dissimilar task distributions, as

inferable from the target domain accuracies of SVM��. This once again takes us

back to the idea of “different, but related” datasets. If the target domain dataset

was very similar or identical to the source domain, no transfer is needed and an

improvement may not be expected out of transfer. On the other hand, if the target

domain is vastly different from the source domain, then a transfer may not be

possible and instead learning may need to be done from scratch. It should be

noted here that though this pattern may be a useful indicator in deciding whether

67

Figure 12 : Plots illustrating the correlation between the increase in performance of AdaC2 over SVM��$
and SVM��.

68

“to transfer or not”, the measure is still done only retrospectively and across

different datsets, over a scale of relative similarity and dissimilarity

5.6.7. Classification Accuracy vs. Size of Target Training Data

Figures 13(i) – 13(vi) illustrate the change in the accuracies across SVM�$,

SVM��$, AdaBoost, TrAdaBoost and AdaC2 when 1%, 5% and 10% of the target

training data is used for training on the act_rec datasets along with the auxiliary

source domain data. When 5% of the target training examples are used, applying

cost-sensitive boosting for transfer learning continues to be fruitful. However, the

difference in the performance of AdaC2 and SVM�� or AdaC2 and SVM�$

reduces with the increase in target training data, indicating that the target data is

moving towards becoming sufficient for learning a reliable classifier without the

need for auxiliary data.

It had been earlier mentioned, how 1% of the target training data proved to

be far too insufficient for computing the cost of source instances in the case of

Apartment-E, leading to a drop in the performance of AdaC2, while TrAdaBoost

gave a good performance. On increasing the percentage of the available target

training data to 5%, the performance of AdaC2 is seen to improve. However, on a

closer observation, the performance of AdaC2 seems to correlate with that of

SVM�$. Comparatively, the increase in target training data does not seem to

evoke an equally significant response from SVM��$. Given this, and the fact that

SVM�� gives low accuracies for this apartment, the target domain clearly seems

to be so much more different from the source domain. In this case TrAdaBoost

69

Figure 13 : Plots illustrating the variation in classification accuracies over act_rec dataset against 1%, 5% and 10% of Target Training Data. The datasets
shown here include (i) Apt-A, (ii) Apt-B, (iii) Apt-C, (iv) Apt-D, (v) Apt-E and (vi) Apt-F.

70

Figure 14 : Plots illustrating the variation in classification accuracies over 20Newsgroups1 dataset against 1%, 5% and 10% of Target Training Data. The
datasets shown here include (i) Rec vs Talk, (ii) Rec vs Sci, (iii) Sci vs Talk, (iv) Comp vs Rec, (v) Comp vs Sci and (vi) Comp vs Talk.

seems to have a clear sign of advantage over AdaC2. The reason is not very clear

due to the correlation between SVM�$ and AdaC2, which does away with the

possibility of 1% target training data representing the target domain data

sufficiently.

Similar trends can be observed on the 20Newsgroup1 dataset as well as

illustrated by Figures 14(i) to 14(vi). It can be noticed that the performance of

SVM�$ increases significantly as we progress from 1% to 5%. However, it

remains marginally lower than AdaC2 transfer learning approach. The

performance of the other techniques at 5% is lower than that of SVM�$ or AdaC2.

At 10%, SVMTs alone is sufficient to reliably classify the target domain

unlabeled data. The change over AdaC2 becomes very marginal. However it is

still worthwhile to note that while the performance of AdaC2 and SVM�$ is

comparable, it still is significantly better than TrAdaBoost and AdaBoost.

5.3. Effect of Cost

The four different similarity measures mentioned in Chapter 4 were used for

computing the cost factors and the performance of AdaC2 was evaluated in each

case to check how the classification accuracies varied with the different cost

estimation techniques. To understand if the weighting instances using such

measures had any effect at all in the first place, the algorithm’s performance was

measured over the base of a uniform cost. Running AdaC2 with uniform costs is

equivalent to running AdaBoost but with separate weight updates for samples in

 Figure 15 : Comparison of the classification accuracies of AdaC2 using different cost estimation techniques.

�� and �$. Figure 15 illustrates the varied performances obtained and the

prevalence of instance pruning is briefly explained below.

There is a no clear trend that is noticeable from the results obtained from

act_gest dataset, though there are changes in the accuracy values across the

different users. It can be seen that Euclidean distance based relevance measure

(ED) performs at par with the other techniques, when the similarity between the

source and target domain is the highest, in this case that being data of user 2. In

fact, for user 2, all the cost estimating procedures result in very similar

performance. ED based cost performs poorer than the other approaches for the

other users. The performance of the algorithm takes a marginal dip, when we

assign uniform cost to all the samples in the source domain data. IP based cost

procedure performs almost at par of sometimes even better with respect to all the

other techniques. The CFVD based cost performs significantly poorer than IP

based method for two of the 4 users and is at par with IP for the remaining 2

users. Overall, no straightforward conclusions can be made from the performance

of the different cost estimation procedures on this dataset.

The act_rec dataset presents more clear trends in terms of the performance

of the different cost estimation procedures. The first thing to be noticed is the

sharp increase in the performance of the ED based cost for Apartment E. The

performance increase is nearly 30%. It is interesting to note this result in the

context that the target domain data for apartment E is most dissimilar to its source

data. This probably implies that ED cost is able to clearly differentiate between

very different datasets. In contrast, the performance of ED drops significantly,

when the source and target activities are similar as illustrated by its performance

on Apartments C and D. The second thing to be noticed here is that invariably all

cost estimation approaches perform yield a better performance over uniform cost,

except for Apartments C and D. Even in this case, IP based cost performs

marginally better than uniform cost. The similarity between the source and target

domain samples is highest for these two datasets. Hence the results of IP and

uniform cost appear to be similar. This implies that there is merit in considering

cost estimation process to determine the relevance of source domain samples with

respect to target domain. IP based cost appears to be yielding better results on this

dataset. It can also be noted that the performance of KLIEP is at par with that of

uniform cost. This could be attributed to the low number of target domain samples

available for the importance estimation procedure. Incorporating the label

information of the small amount of target domain training data does help to

estimate better costs.

The most significant change in the plot pertaining to 20Newsgroups

dataset is the absence of KLIEP and ER based cost estimation processes. We

observed that the KLIEP process does not converge on this dataset. The primary

reason for this is the significantly large dimension of this dataset (of the order

40,000). Furthermore the sparse nature of this dataset could also contribute to the

lack of convergence of the KLIEP procedure. Euclidean distance based cost

estimation on such a high dimensional dataset is also not worthwhile to consider,

as the output of such a process will be very similar to a uniform cost. IP based

cost appears to be performing better than the other two approaches, even though

the difference is only marginal. Similar to the observation made on the activity

recognition dataset, uniform cost performs at par with the other two approaches

when the similarity between the source and target domain is relatively higher, as

illustrated by the performance on Comp vs Rec and Comp vs Talk datasets.

Overall the results from this set of experiments seem to indicate that the

merit of IP based cost process over the other approaches. Furthermore,

considering that the performance of this approach does not vary significantly over

a uniform cost suggests that the division of the boosting approach with separate

weight update equations for the source and target domain also helps in improving

the performance. The performance of the cost based methods is nominal

considering that the number of labeled target domain training samples is very less.

5.4. Dynamic Cost Update

Table 6 : Comparison between AdaC2 and DAdaC2

Dataset AdaC2 DAdaC2

User1 0.88 0.87

User2 0.98 0.98

User3 0.75 0.71

User4 0.79 0.80

Apt - A 0.82 0.82

Apt - B 0.80 0.74

Apt - C 0.83 0.80

Apt - D 0.81 0.77

Apt - E 0.48 0.48

Apt - F 0.68 0.69

Apt - G 0.59 0.60

Rec vs Talk 0.83 0.84

Dataset AdaC2 DAdaC2

Rec vs Sci 0.77 0.77

Sci vs Talk 0.74 0.74

Rec vs Comp 0.86 0.89

Comp vs Sci 0.76 0.75

Comp vs Talk 0.89 0.90

Table 6 compares the results obtained from Dynamic Cost-sensitive Boosting

(DAdaC2) and the AdaC2 scheme of Cost-sensitive Boosting algorithm over the

three datasets, act_gest, act_rec and 20Newsgroups1, to verify if a dynamic cost

update has any advantage over a static cost factor or not. The idea of DAdaC2 is

to adapt to the changes in the weights of �$ samples by keeping the cost factor

constantly updated. However, as the results indicate, there does not seem to be

much of difference between the two results save for the few marginal points up

and down. This is once again caused due to the small size of the available target

training data (1% in this case). Due to the size of �$ the cost computer over every

iteration in DAdaC2 is pretty much the same as the initial cost computed. If the

size of �$ was bigger, then there might be a better a chance for the distribution of

hard examples to vary over every iteration and perhaps even oscillate. In such

scenarios DAdaC2 may be more useful.

5.5. Comparison with Multi-Source Transfer

Table 7 : Comparison of performance between AdaC2 and TransferBoost

Dataset TrAda AdaC2 Transfer Boost

Apt-A 0.63 0.82 0.71

Apt-B 0.57 0.80 0.69

Apt-C 0.49 0.83 0.79

Apt-D 0.52 0.81 0.78

Dataset TrAda AdaC2 Transfer Boost

Apt-E 0.70 0.48 0.37

Apt-F 0.40 0.68 0.61

Apt-G 0.46 0.59 0.56

baseball 0.46 0.78 0.54

electronics 0.65 0.64 0.54

med 0.52 0.67 0.51

mideast 0.39 0.54 0.48

misc 0.47 0.51 0.53

pchardware 0.63 0.69 0.53

windowsx 0.64 0.66 0.57

Table 8 : Comparison between cost based ranking and error on SVM��

Source Cost Rank Err SVM��

Apt-A

Apt-F 0.529517 0.431791

Apt-C 0.923077 0.452148

Apt-B 1 0.490467

Apt-G 0.488372 0.530998

Apt-D 0.423971 0.656869

Apt-E 0.547406 0.892347

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware 0.913907 0.268817

comp.windows.x 0.900662 0.283871

sci.electronics 0.84106 0.32043

windows.misc 0.900662 0.337634

sci.med 0.84106 0.427957

rec.sport.hockey 0.834437 0.477419

rec.sport.baseball 0.960265 0.483871

rec.motorcycles 1 0.494624

talk.politics.mideast 0.662252 0.56129

talk.politics.misc 0.304636 0.582796

talk.religion.misc 0 0.589247

sci.space 0.940397 0.619355

Tables 7 shows the performance of AdaC2 on multisource datasets act_rec and

20Newsgroups2, with the training done on 1% target training data and the multi-

source auxiliary datasets. The results are compared with that of TrAdaBoost and

TransferBoost. The better performance of AdaC2 in a multisource dataset can be

explained based on the advantage a lower level measure of similarity might gain

over a higher-level measure of similarity. In this case the lower level similarity is

measured using instance pruning between each source instance and the target

instances while the higher-level similarity is measured using transferability

between a source task and a target task. Computing similarity at the lowest level

allows choosing similar instances that might be spread in a disparate fashion

across the different source dataset. Another factor by which the cost computation

in AdaC2 might be superior to that of TransferBoost is its indirect relation to

source–target macro-level similarity which can be checked by computing a score

for each source dataset by normalizing the total sum of cost computed over a

particular source. This score is presented in Table 8 along with the error of a

model trained on �� over the entire target domain dataset �. It is to be noted that

the cost computed has only �$ available from the target domain and would in

variably suffer from bias at one point or the other. Nevertheless, the similarities in

the patterns are pretty striking. Referring to the actual dataset properties, it can

easily be seen that Apartment – A shares a similar layout and same number of

residents with Apartment – B and C, while documents related to “pc hardware”

would typically be similar to “comp.sys.mac.hardware” and ”comp.windows.x”.

Thus, the failure of TransferBoost can thus be attributed to the failure of a top-

down cost estimate for the datasets considered here. Of course it cannot be

guaranteed that a bottom-top approach would always work. A best solution would

be to incorporate both top-bottom and bottom-top knowledge for computing

similarity.

CHAPTER 6

CONCULSION AND FUTURE WORK

This thesis explores the idea of knowledge transfer between non-identical training

and test environments, devising an instance-based transfer technique that

integrates a measure of relatedness onto a boosting framework. The motivation

for this work stemmed from drawing a parallel between lifelong learning in

humans and intelligent systems that function in real-world environments, with

particular focus on the research on building a robust and adaptable accelerometer

based gesture recognition system that can automatically scale up to handling

varying user traits and environmental factors affecting the input signal given to

the system. A system that incorporates a transfer learning framework as suggested

would be able to successfully transfer knowledge between stock training data and

the new target domain to classify gestures reliably. The proposed method

conforms to the boosting theory that supports the convergence of AdaBoost and is

shown to provide empirical success over different real-world datasets -

Accelerometer based 3D Gesture Recognition and Smart Home Activity

Recognition, and synthetic datasets generated from the 20Newsgroups document

corpus. Despite a successful showcase, much future work remains to be done to

understand and perfect such a technique of knowledge transfer along with a set of

open questions about transfer learning.

6.1. Summary of the Work

A summary of the different contributions made in this thesis is listed below:

1. Three different variants for cost-sensitive boosting were investigated for

improving the generalized performance of activity and gesture recognition.

The algorithms were compared with that of baseline results and TrAdaBoost,

a well cited boosting based instance-transfer algorithm. Among the variants,

AdaC2 was seen to work the best, with useful theoretical properties and

promising empirical results.

2. The effect of using four different relatedness measures (cost factors) were

studied and compared against each other. There is certainly a merit in

determining cost as it always performs better than a uniform measure.

Invariably instance pruning was found to give the best results. The correlation

of these measures along with the actual posteriori measures were analyzed and

spotted.

3. The Cost-sensitive boosting algorithm was modified to include an adaptive

cost estimated based on the changing distribution of the target training data.

This, however, did not result in a significant change in performance and at

times lead to overfitting.

4. The equivalence of computing cost over multiple source domains bundled

together against training seperately over the most related source domains was

analyzed using two multisource datasets and it was found that instance level

similarity can very well propogate into task based similarity. The performance

of AdaC2 was further compared with the performance of a recently proposed

boosting based multi-source transfer algorithm named TransferBoost with

positive results.

6.2. Future Work

Some of the future directions founded on the limitations of this work, its

application and some open research questions in the field of transfer learning are

discussed below:

• Estimating Relatedness: An often-discussed issue in this thesis has been the

idea of measuring relatedness to decide whether to transfer or not. Can

relatedness be measured at all with only very few target training instances? Is

it correct to call two tasks related just because they help each other when

trained together? Sometimes injecting noise improves generalization. This

does not mean that noise task is related to the target task [11]. Measuring the

relatedness a priori helps automating knowledge transfer in intelligent

systems. On a different note, the different cost factors estimated in this thesis

is not exhaustive. There always lies the scope of modeling relatedness as an

optimization problem similar to structural risk minimization.

• Target Domain Instance Selection: Besides faced with the problem of

insufficient quantity of target training data, a parallel issue relates with the

quality of the data. Given, that the approach suggested here is an instance-

based transfer technique, it is all the more important that the target domain

training data that is available reflects the unseen target domain data points or

target tasks. It might be possible in some applications where an Active

learning methodology of collaborating with an expert might help select target

data of good quality.

• Discovering Structure: Many-a-times, an instance-based transfer approach

that uses just the low level similarities between data may not be very helpful

for learning. Or even if it is, more success might be obtained by making use of

an underlying structure in the dataset. In such cases, the cost factors can be

computed probably using a linear combination of the various structural

properties of the data and the tasks. This would facilitate better learning.

• System Integration: An important challenge that gets overlooked in such

research is that of building a system based on the algorithms. To successfully

deploy transfer-based systems, many factors must be taken into account such

as how relevant source tasks and target tasks can be captured under reduced

costs, how much of the source task information requires to be stored into an

efficient database and how well the framework interact with other required

learning frameworks already present in the system.

REFERENCES

[1] Thrun, S., "Lifelong learning algorithms." s.l. : Kluwer Academic Publishers,
1998. Learning to learn. pp. 181-209.

[2] Bishop, Christopher M., Pattern Recognition and Machine Learning. s.l. :
Springer, 2006.

[3] Quionero-Candela, J., et al., Dataset shift in Machine Learning. s.l. : The MIT
Press, 2009.

[4] Zliobaite, I., "Learning under concept drift: an overview." s.l. : Tech. rep.,
Vilnius University, Faculty of Mathematics and Informatics, 2009.

[5] Eaton, E.R., "Selective knowledge transfer for machine learning." s.l. :
UNIVERSITY OF MARYLAND, BALTIMORE COUNTY, 2009.

[6] Krishnan, N.C., "A Computational Framework for Wearable Accelerometer-
Based Activity and Gesture Recognition." s.l. : Arizona State University,
December 2010.

[7] Krishnan, N.C., Scalable Activity Recognition. s.l. : NSF Panel Workshop -
Pervasive Computing at Scale, 2011.

[8] Pan, S.J. and Yang, Q., "A Survey on Transfer Learning." IEEE Transactions
on Knowledge and Data Engineering, s.l. : Published by the IEEE Computer
Society, 2009.

[9] Pratt, L. and Jennings, B., "A Survey of Connectionist Network Reuse
Through Transfer." Learning to learn, s.l. : Kluwer Academic Pub, 1998, p. 19.

[10] Kuhn, R., et al., "Rapid speaker adaptation in eigenvoice space." Speech and
Audio Processing, IEEE Transactions on, s.l. : IEEE, 2000, Issue 6, Vol. 8, pp.
695-707.

[11] Caruana, R., "Multitask learning." Machine Learning, s.l. : Springer, 1997,
Issue 1, Vol. 28, pp. 41-75.

[12] Torrey, L. and Shavlik, J., "Transfer Learning." Handbook of Research on
Machine Learning Applications.IGI Global, s.l. : Citeseer, 2009, Vol. 3, pp. 17-
35.

[13] Ben-David, S. and Schuller, R., "Exploiting task relatedness for multiple task
learning." Lecture notes in computer science, 2003, pp. 567-580.

[14] Thrun, S. and O'Sullivan, J., "Discovering structure in multiple learning
tasks: The TC algorithm." 1996. Proceedings of the Thirteenth International
Conference on Machine Learning. pp. 489-497.

[15] Eaton, E. and Desjardins., "Set-Based Boosting for Instance-level Transfer."
s.l. : IEEE, 2009. 2009 IEEE International Conference on Data Mining
Workshops.

[16] Eaton, E., Desjardins, M. and Lane, T., "Modeling transfer relationships
between learning tasks for improved inductive transfer." Machine Learning and
Knowledge Discovery in Databases, s.l. : Springer, 2008, pp. 317-332.

[17] Kifer, D., Ben-David, S. and Gehrke, J., "Detecting change in data streams."
s.l. : VLDB Endowment, 2004. Proceedings of the Thirtieth international
conference on Very large data bases. pp. 180-191.

[18] Ben-David, S., et al., "Analysis of representations for domain adaptation."
s.l. : The MIT Press, 2007. Advances in Neural Information Processing Systems
19. p. 137.

[19] Jiang, J. and Zhai, C.X., "Instance weighting for domain adaptation in NLP."
2007. Annual Meeting-Association For Computational Linguistics. Vol. 45, p.
264.

[20] Wu, P. and Dietterich, T.G., "Improving SVM accuracy by training on
auxiliary data sources." 2004. Proceedings of the twenty-first international
conference on Machine learning. p. 110.

[21] Liao, X., Xue, Y. and Carin, L., "Logistic regression with an auxiliary data
source." 2005. Proceedings of the 22nd international conference on Machine
learning. pp. 505-512.

[22] Jiang, J., "A literature survey on domain adaptation of statistical classifiers."
2008.

[23] Huang, J., et al., "Correcting sample selection bias by unlabeled data."
Advances in neural information processing systems, 2007, Vol. 19, p. 601.

[24] Sugiyama, M., et al., "Direct importance estimation with model selection and
its application to covariate shift adaptation." Advances in Neural Information
Processing Systems, 2008, Vol. 20, pp. 1433–1440.

[25] Argyriou, A., Evgeniou, T. and Pontil, M., "Multi-task feature learning."
Advances in neural information processing systems, 2007, Vol. 19, p. 41.

[26] Blitzer, J., McDonald, R. and Pereira, F., "Domain adaptation with structural
correspondence learning." s.l. : Association for Computational Linguistics, 2006.
Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing. pp. 120-128.

[27] Pan, S.J., Kwok, J.T. and Yang, Q., "Transfer Learning via Dimensionality
Reduction." 2008. Proceedings of the 23rd national conference on Artificial
intelligence. pp. 677-682.

[28] Evgeniou, T. and Pontil, M., "Regularized multi--task learning." 109-117 :
ACM, 2004. Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 109-117.

[29] Raina, R., Ng, A.Y. and Koller, D., "Constructing informative priors using
transfer learning." s.l. : ACM, 2006. Proceedings of the 23rd international
conference on Machine learning. pp. 713-720.

[30] Lawrence, N.D. and Platt, J.C., "Learning to learn with the informative
vector machine." s.l. : ACM, 2004. Proceedings of the twenty-first international
conference on Machine learning. p. 65.

[31] Gao, J., et al., "Knowledge transfer via multiple model local structure
mapping." s.l. : ACM, 2008. Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 283-291.

[32] Mihalkova, L. and Mooney, R.J., "Transfer learning with Markov logic
networks." 2006. Proceedings of the ICML-06 Workshop on Structural
Knowledge Transfer for Machine Learning.

[33] Dai, W., et al., "Eigentransfer: a unified framework for transfer learning."
s.l. : ACM, 2009. Proceedings of the 26th Annual International Conference on
Machine Learning. pp. 193-200.

[34] Dai, W., et al., "Translated learning: Transfer learning across different
feature spaces." 2008. NIPS. pp. 353-360.

[35] van Kasteren, T., Englebienne, G. and Kröse, B., "Recognizing activities in
multiple contexts using transfer learning." 2008. AAAI AI in Eldercare
Symposium.

[36] Rashidi, P. and Cook, D.J., "Multi home transfer learning for resident
activity discovery and recognition." 2009. Proceedings of the 4th International
workshop on Knowledge Discovery from Sensor Data.

[37] Freund, Y., Schapire, R. and Abe, N., "A short introduction to boosting."
JournalL-Japanese Society for Artificial Intelligence, 1999, pp. 771-780.

[38] Dai, W., et al., "Boosting for transfer learning." Proceedings of the 24th
International Conference on Machine learning, 2007, pp. 193-200.

[39] Littlestone, N. and Warmuth, M.K., "The weighted majority algorithm." s.l. :
IEEE Computer Society Press, 1989.

[40] Torralba, A., Murphy, K.P. and Freeman, W.T., "Sharing features: efficient
boosting procedures for multiclass object detection." s.l. : IEEE Computer Society
Press, 2004.

[41] Yao, Y. and Doretto, G., "Boosting for transfer learning with multiple
sources." s.l. : IEEE, 2010.

[42] Sun, Y. and Kamel, M.S. and Wong, A.K.C. and Wang, Y., "Cost-sensitive
boosting for classification of imbalanced data." 2007, pp. 3358-3378.

[43] Chang, C.C. and Lin, C.J., "LIBSVM: a library for support vector machines."
2001.

[44] Katakis, I. and Tsoumakas, G. and Vlahavas, I., "An ensemble of classifiers
for coping with recurring contexts in data streams." 2008. Proceeding of the 2008
conference on ECAI. pp. 763-764.

[45] Lawton, M. P. and Brody, E. M., "Assessment of older people: self-
maintaining and instrumental activities of daily living." The Gerontologist, 1969,
Vol. 9, p. 179.

[46] Evgeniou, Theodoros and Pontil, Massimiliano., "Regularized multi--task
learning." s.l. : ACM, 2004. pp. 109-117.

[47] Lawrence, Neil D. and Platt, John C., "Learning to learn with the informative
vector machine." 2004. p. 65.

[48] Kasteren, Tim van, Englebienne, Gwenn and Kr\"{o}se, Ben., "Recognizing
Activities in Multiple Contexts using Transfer Learning." 2008.

[49] Ben-David, S., et al., "Analysis of representations for domain adaptation."
s.l. : The MIT Press, 2007. Advances in Neural Information Processing Systems
19. p. 137.

[50] Cook, D., "Learning Setting-Generalized Activity Models for Smart Spaces."
IEEE Intelligent Systems. 2010.

