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ABSTRACT

The tracking of multiple targets becomes more challenging in complex envi-

ronments due to the additional degrees of nonlinearity in the measurement model. In

urban terrain, for example, there are multiple reflection path measurements that need to

be exploited since line-of-sight observations are not always available. Multiple target

tracking in urban terrain environments is traditionally implemented using sequential

Monte Carlo filtering algorithms and data association techniques. However, data asso-

ciation techniques can be computationally intensive and require very strict conditions

for efficient performance.

This thesis investigates the probability hypothesis density (PHD) method for

tracking multiple targets in urban environments. The PHD is based on the theory of

random finite sets and it is implemented using the particle filter. Unlike data association

methods, it can be used to estimate the number of targets as well as their correspond-

ing tracks. A modified maximum-likelihood version of the PHD (MPHD) is proposed

to automatically and adaptively estimate the measurement types available at each time

step. Specifically, the MPHD allows measurement-to-nonlinearity associations such

that the best matched measurement can be used at each time step, resulting in improved

radar coverage and scene visibility. Numerical simulations demonstrate the effective-

ness of the MPHD in improving tracking ability, both for tracking multiple targets and

targets in clutter.
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Chapter 1

Introduction

1.1 Research Motivation

Target tracking in radar involves monitoring the position and movement of a target at

every time step. As the tracking problem can be modeled using dynamic state and mea-

surement equations, stochastic filtering techniques can be used to estimate the unknown

target position and velocity states. When the model equations are linear and the model

error and noise processes are Gaussian, then the Kalman filter estimation technique can

be used [1–3]. When the model equations are nonlinear, the extended Kalman filter

can be used, that linearizes the model equations using approximation techniques such

as the Taylor series expansion [2]. Recently, sequential Monte Carlo techniques such

as particle filtering were proposed to estimate the unknown state when the dynamic

state model and measurement model are nonlinear and/or the random processes are

non-Gaussian [2]. The particle filter (PF) uses Monte Carlo simulations to implement

a recursive Bayesian filter. In particular, it estimates the posterior probability density

function using a fixed number of particles and corresponding weights. When there are

multiple targets, the tracking becomes more complicated. This is because, in every it-

eration, the tracker must first figure out the number of targets before applying the data

to the filter. In addition, data association techniques need to be used as it is not known

which measurement corresponds to which target [4].

In dense urban environments, most conventional radar tracking systems begin

to fail due to the absence of line-of-sight returns, and the presence of multipath inter-

ference, obscuration from buildings, and high clutter [5–7]. As a result, radar tracking

systems originally designed for operations in open environments need to be modified

and improved to adapt to the characteristics of dense urban environments.

There has been a lot of research work on target tracking in urban environments

during the past decade [5–11]. One of the main ideas proposed is to exploit multipath
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returns instead of treating them as interference and mitigating them [12]. In particular,

target information can be extracted from multipath returns when no line-of-sight (LOS)

returns are available or multipath returns can be combined with LOS returns to provide

diversity in extracting target information and thus enhance tracking performance [6–8].

This multipath exploitation radar (MER) approach utilizes prior knowledge about the

environment, such as locations of buildings and road maps [10].

Recently, waveform agile sensing has been integrated with multipath exploita-

tion to further improve tracking performance in urban terrain [11,13–15]. Specifically,

for a single target scenario, the agile sensing algorithm selects the parameters of the

waveform to be transmitted at the next time step by minimizing the predicted tracking

error covariance using a particle filter tracker with nonlinear measurements. The im-

proved tracking performance was demonstrated for perfect detection [11, 13] and for

high clutter scenarios [13, 15].

Another effective approach for tracking moving targets in urban terrain is by

using multiple-input and multiple-output (MIMO) radar systems. One of the main ad-

vantages of using MIMO radar systems is that each radar sensor can transmit a different

waveform [16]. Two different types of MIMO radar systems have been investigated:

MIMO radar systems with collocated antennas and with widely-separated antennas.

MIMO radar systems with collocated antennas use diverse beam patterns and have

been shown to increase radar performance in detection and parameter identification

applications [17–20], whereas MIMO radar systems with widely-separated antennas

have been shown to provide high diversity gain [16, 21, 22]. More details on MIMO

radar systems can be found in [23]. In urban environment applications, a method was

proposed in [15] that maximizes the target information using an optimal configuration

of MIMO widely-separated radar sensor while exploiting multipath returns from all

the sensors. The MIMO waveform parameters were also adaptively configured at each

time step in order to minimize the overall mean-squared tracking error.
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The presence of clutter in urban environment makes tracking an even more chal-

lenging problem due to possible observed multipath returns. Clutter can be separated

from true measurements using classical data association techniques that associate the

correct measurements to the urban tracks before applying Bayesian filtering approaches

to perform tracking. Multipath data association was used with over-the-horizon radar

(OTHR) in [24] to initiate and track nonmaneuvering targets with constant probability

of detection. It was also used in [25] to find the LOS measurement mitigating non-LOS

measurements.

Tracking multiple objects arises in various applications, such as robotics, sig-

nal processing and medicine [4, 26–30]. The problem of multiple target tracking is

to instantaneously estimate both the number of targets present as well as each tar-

get’s trajectory. The estimation problem needs to take into account the interference

from clutter and from measurements generated from other targets. Conventional multi-

ple target tracking filtering techniques first couple the correct measurement to existing

tracks through measurement-to-track associations, and then they estimate the target

states using techniques originally designed for tracking single targets [4, 26, 31–34].

The methods are similar to those discussed for clutter, since clutter can be considered a

special case of false alarm targets. In most cases for targets, only one measurement is

assumed from each target. If several returns are available from each target, then differ-

ent data association methods would need to be considered [35,36]. One of the simplest

and computational inexpensive data association methods is the nearest neighbor (NN),

which selects the measurement closest to the track if it falls within a specific gate, and

it fails as the clutter density increases and more than one measurement falls within one

gate. The most general data association method that overcomes this problem is the

multiple hypothesis tracking (MHT) approach [26, 27, 34]. The MHT first performs

data association on a sequence of measurements and then filters each data association

hypothesis. However, as the MHT is an exhaustive approach, it is very computation-
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ally expensive [37]. As an alternative, the joint probabilistic data association (JPDA)

method estimates the states by summing all the association hypothesis weighted by

the probabilities from the likelihood [38, 39]. Specifically, it considers associations

that survive after gating and combines those associations according to their likelihood.

The JPDA is computationally less intensive [4, 40], however it requires that the num-

ber of targets is fixed and its performance is poor when the targets are close to each

other [26, 27].

The problems of estimating the number of targets as they change with time and

distinguishing targets in close proximity are very critical in a multiple target track-

ing application. One approach toward solving these problem is the use of random

finite set (RFS) theory [29, 41–43]: treating multiple target states as set-valued enti-

ties, and propagating them using the Bayesian framework. Following the RFS theory,

the probability hypothesis density filter (PHDF) was proposed in [44] as a subopti-

mal but computationally tractable algorithm for multiple target tracking [42, 44–48].

Two closed-form solutions, the sequential Monte Carlo probability hypothesis den-

sity filter (SMC-PHDF) and the Gaussian-mixture probability hypothesis density filter

(GM-PHDF) were proposed in [49, 50] and shown to provide good performance for

multiple target tracking under different assumptions. The particle probability hypothe-

sis density filter (PPHDF) can reason and determine the number of targets at each time

step. Specifically, in [48, 50–54], the PPHDF was shown to perform well in multiple

target tracking problems. Using the Wasserstein distance as a multiple target track-

ing performance metric, the PPHDF outperformed the MHT filter in [55]. It was also

demonstrated to achieve a substantial reduction in computation and memory require-

ments when compared with data association based approaches [56].

1.2 Multiple Target Tracking in Urban Environment

One of the most difficult problems in multiple target tracking is the time-varying num-

ber of targets. Due to spontaneous target birth or target spawning, new targets may
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appear. Meanwhile a target can disappear in the surveillance region if the existing tar-

gets do not survive. For a multiple target tracking problem, the duration for which a

target lasts is unknown. Moreover, the received signal from a radar sensor may not

have measurements from all the targets, i.e., some measurements from targets could be

missing. In addition, the sensor signal can also contain measurements from clutter and

thus not generated by targets. It is also possible that measurements are indistinguish-

able from one another and hence there is no way of knowing which measurement is

generated by a target or clutter. In this case, the multiple target tracking problem in-

volves jointly estimating the number of targets as well as the states of the targets. This

problem is especially more difficult in urban environments, when the measurements

obtained are mostly multipath returns and often targets are in shadow regions.

The motivation of the research work in this thesis is to investigate the multiple

target tracking problem in urban environments by efficiently estimating target states

using particle probability hypothesis density filters (PPHDF). The proposed approach

aims to track multiple targets moving between dense buildings, where we characterize

the dynamic state model of the moving targets using interactive multiple models. This

is because the targets are assumed to either move in nearly constant velocity or using

coordinated turns. The measurement model is highly nonlinear as it is designed to take

into consideration any possible finite set of available measurements at any given time.

A possible measurement could include any combination of one, two or three of the

following signal returns: LOS return, one multipath return, two multipath returns. It

can also include the no measurement due to shadowing regions. The PHDF in [44] can

dynamically estimate the total number of targets as the integration of PHD in any region

of state space is the expected number of targets contained in that region. Also the urban

multiple state model can be solved by using the multi-model estimator method [1] to

achieve robustness and improved tracking performance when targets exhibit different

kinetic patterns at different times.
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In most urban tracking literature, the assumption was made that the type of re-

turn paths at each time step were known a priori. However, this assumption cannot be

made in real applications as it requires knowledge of the true target position and urban

scene geometry. Thus, in this thesis, we propose a modified PPHDF (MPPHDF) that

allows measurement-to-path data associations such that the best matched measurement

return path can be used at each time step. In particular, the new MPPHDF algorithm

models the relationship between the measurements and the various path returns as data

associations by utilizing prior knowledge about the target position relative to the trans-

mitting antenna in the urban environment and about the propagation and scattering of

the electromagnetic waves. Using the MPPHDF algorithm, we can automatically and

adaptively estimate the measurement multipath scenario at any given time. Specifically,

we compute the most likely measurement path return using the current measurement,

the predicted target state based on the measurements, and the prior geometry informa-

tion. Then, the target state is sequentially estimated at each time step based on the

measurements and predicted type of returns.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides the state-space model and the

formulation of target tracking in urban environments. Chapter 3 presents conventional

multiple target tracking techniques and PPHDF filtering algorithm. Chapter 4 inves-

tigates the use of the PPHDF for tracking multiple targets in urban environments and

proposes the MPPHDF as well as the simulation results of the aforementioned tech-

niques.
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Chapter 2

Target Tracking in Urban Environments

2.1 Target State Model for Urban Environments

Conventional target tracking algorithms have been originally designed for use in open,

unobscured areas. However, with warfare moving to rural obscured areas, tracking

formulation and algorithms need to be modified in order to adapt to the characteristics

of urban environments.

The dynamic state space formulation approach has been effectively used in tar-

get tracking [2,3] to describe the state and measurement equations [1]. In our study, the

target tracking is performed in three-dimensional (3-D) space. The state of a target is

characterized by the vector xk = [xk, ẋk,yk, ẏk,zk, żk]
T , that provides the target’s position

(xk,yk,zk) and velocity (ẋk, ẏk, żk) in Cartesian coordinates, where k is the time index

and T denotes vector transpose.

For target tracking in urban environments, the dynamic state model is assumed

to be linear, and the target state xk at time step k is given by

xk = Fxk−1 +nk, (2.1)

where nk is the modeling random process that is assumed to additive Gaussian and F

is a matrix that describes the target state evolution. In urban environments, one motion

model is not sufficient to describe the moving target state as, for example, the target may

be moving in a straight line at a constant velocity before taking a sharp turn. Taking this

into consideration, robust state equations are comprised of a combination of different

maneuvering models, including moving in a straight line, turning, accelerating, and

stopping. In this thesis, two target state models are considered [57]. The first model is

the nearly constant velocity (NCV) model, with state transfer matrix F in (2.1) given

7



by

F =



1 δ t 0 0

0 1 0 0

0 0 1 δ t

0 0 0 1


,

where δ t is the time interval between successive measurements.

The second state model is the coordinated turn (CT) model that assumes that

a target turns left or right with nearly constant velocity and nearly constant angular

turning rate. The state transfer matrix F in (2.1) for the CT model is given by

F =



1 sin(ωδ t)/ω 0 −(1− cos(ωδ t))/ω

0 cos(ωδ t) 0 −sin(ωδ t)

0 (1− cos(ωδ t))/ω 1 sin(ωδ t)/ω

0 sin(ωδ t) 0 cos(ωδ t)


,

where ω ̸= 0 is the angular turning rate, which is assumed known. The modeling

random process for both the NCV model and the CT model are assumed to have a

zero-mean Gaussian distribution with covariance matrix

Q = q



δ t3

3
δ t2

2 0 0

δ t2

2 δ t 0 0

0 0 δ t3

3
δ t2

2

0 0 δ t2

2 δ t


,

where q is a coefficient that determines the process intensity.

2.2 Measurement Model for Urban Environments

After detection using the received signals at the receiver, the matched filter output pro-

vides an observation vector zk which can obtain range and rang-rate measurements

that have originated from the true targets or from false alarms due to clutter [8]. In

urban environments, the received radar signal consists of line-of-sight (LOS) returns

as well as reflections off surrounding buildings. Traditionally, these multipath return
8



signals are considered to be interference, and methods are applied to mitigate them.

However, as LOS returns are not always available, techniques have been developed to

model multipath propagation and thus exploit multipath returns by extracting target in-

formation from them. Specifically, by making use of prior knowledge of road maps and

building geometry information, multipath signals can be utilized to enhance tracking

performance.

LOS returns are obtained when the transmitted signal reaches the target and is

reflected back directly to the radar receiver. An example urban scene of a target moving

Figure 2.1: 3-D geometry of an LOS path in an urban scene for a target moving between
two buildings

between two buildings with an LOS path is depicted in Fig. 2.1, the LOS path is de-

noted by r0,K and the street width is H. The radar receiver is located at (xR,yR,zR), and

the transmitter and receiver are assumed to be stationary and collocated. The location

and velocity of the target at time k are given by (xk,yk,zk) and (ẋk, ẏk, żk), respectively.
9



The measurement equation corresponding to the LOS return path depends on

the range and range-rate between the target and the radar. The range is thus given by

ro,k = ((xk − xR)
2 +(yk − yR)

2 +(zk − zR)
2)1/2, (2.2)

and, the range-rate can be computed by taking the derivative of the range with respect

to time to obtain

ṙo,k = (ẋk(xk − xR)+ ẏk(yk − yR)+ żk(zk − zR))/ro,k. (2.3)

Note that we often assume that the height of the target and radar, in urban terrain ap-

plications, are assumed to remain constant over all time; thus the target velocity in the

z-direction is often assumed to be zero.

The measurement model for multipath returns is more complicated to formulate

than for LOS returns. We first assume that the walls of the buildings are perfectly

smooth so that all reflections can be assumed to be specular reflections, i.e., for all the

reflection rays, angle of incidence equals the angle of reflection. We also assume that

every reflection on a building wall introduces about 20 dB loss in signal energy, this is

demonstrated in [9]. Following this assumption, multipath returns from more than two

bounces can be ignored as the reflected signal strength is too weak to be detected by

the radar. As a result, in this thesis, we only consider signal reflection paths of upto two

bounces. Note that when the multipath signal returns are observed, the radar system

interprets the time delay as range between the radar and a virtual target, as shown in

Fig. 2.2. Fig. 2.2 demonstrates the scenario of single-bounce multipath signal returns.

The measurement equation in terms of range and range-rate as a function of

multipath returns is given as follows. The range from the radar to the target after m

bounces off Building i is given by

rm,k,i = ((xk − xR)
2 +[(−1)m+1(2[

m
2
]iH − (−1)i+1yk)− yR]

2 +(zk − zR)
2)1/2, (2.4)

where H is the street width. It is assumed that the first bounce was off Building i,

i = 1,2, where [m
2 ]1 = ⌈m

2 ⌉ and [m
2 ]2 = ⌊m

2 ⌋ [11]. The corresponding range-rate is given
10



Figure 2.2: 3-D geometry of multipath returns in an urban scene for a target moving
between two buildings.

by the derivative of the range in (2.4) with respect to time,

ṙm,k,i = ẋk(xk − xR)/ri,k + ẏk(−1)m+i+1[(−1)m+1(2[
m
2
]iH − (−1)i+1yk)− yR]/ri,k

+ żk(zk − zR)/ri,k. (2.5)

When shadowing or obscuring occurs, no return can be observed by the radar

receiver. This situation occurs when the targets travel behind buildings and no LOS or

multipath returns form.

The number of range and range-rate measurements depends on both the geome-

try of the environment and the target location within the environment. Since the target’s

location is changing with time, we let Pk to be the number of available measurement at

time k. The measurement model is thus given by

zk = hk(xk)+wk, (2.6)
11



where wk is a zero-mean Gaussian noise process with covariance matrix Rk, and hk(xk)

is a matrix of range and range-rate measurements given by

hk(xk) =

 r0,k r1,k · · · rPk,k

ṙ0,k ṙ1,k · · · ṙPk,k

 , (2.7)

where rp,k and ṙp,k are the range and range-rate measurements of the pth path at time

step k, p = 1, · · · ,Pk, respectively, and Pk is the total number of paths at time step k. In

this case, the measurement zk is given by

zk =

 r0,k r1,k · · · rPk,k

ṙ0,k ṙ1,k · · · ṙPk,k

 , (2.8)

where rp,k and ṙp,k are the noisy version of range and range-rate measurements of the

pth path at time step k, p = 1, · · · ,Pk, respectively, and Pk is the total number of paths

at time step k.

2.3 Clutter Model

The received measurements are assumed to be either target returns (LOS or multipath)

or false alarms due to clutter. In order to model the probability density function of

the number of false alarms received, the parametric Poisson model is used with spatial

density ρ [8]. We consider a validation region of volume Vk at time k, which is a

region in the measurement space in which the true measurement will exist with some

high probability. Detections within the validation region are associated with the target

of interest and are considered valid whereas the remaining detections are discarded.

Inside the validation region, the clutter is assumed to be distributed uniformly. Then,

the probability that m false alarms are obtained at time k is given by We assume that

the number of false alarms follows a Poisson distribution with average ρV , where ρ is

the

Pr(mk = m) =
exp(−ρVk)(ρVk)

mk

mk!
. (2.9)

For urban environments, the probability of detection, PD, dynamically varies for

a given desirable probability of false alarm PFA since it depends on the signal-to-noise
12



ratio (SNRζ ) at the receiver at the region ζ of the predicted target position. Specifically,

the probability of detection is given by

PD = P
1

1+SNRζ
FA . (2.10)
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Chapter 3

Tracking Multiple Targets and Multiple Model Motion

3.1 Multiple Target Tracking Approaches

Conventional multiple target tracking is normally performed by first coupling the ob-

served measurements to the existing tracks using measurement-to-track associations

and then employing single target tracking algorithms to track each target separately.

An example of measurement-to-track association is the nearest neighbor (NN) method

[35, 36], which selects a measurement closest to a track if it falls within the track’s

specified gate. However, when more than one measurement falls within the gate of one

or more targets, then the NN algorithm only detects the track that was first considered.

The multiple hypothesis tracking (MHT) is a more general and widely used technique

that first performs data association on a sequence of measurements and then performs

filtering on each data association hypothesis. However, as it is an exhaustive approach,

its computational cost is very high [37]. The joint probabilistic data association (JPDA)

approach [37] is a computationally cheaper alternative to the MHT as it considers as-

sociations that survive after gating and combines those association according to their

likelihood. However, JPDA requires the number of targets to be known a priori [37].

3.2 Probability Hypothesis Density Filter

The probability hypothesis density filter (PHDF) is a computational tractable approxi-

mation to the optimal multiple-target Bayesian filters. It is based on the use of random

finite set (RFS) theory [44], which is frequently associated with multiple target track-

ing problems. The PHDF consists of two main steps, the prediction step and the update

step, that recursively propagate the first order moment or intensity function of the RFS

of the targets of interest [42, 44–48]. If more than one target appears at a given time,

the PHDF can iteratively estimate the number of targets while avoiding any explicit

measurement-to-track association. Note that the PHDF can be implemented using se-

quential Monte Carlo methods such as particle filtering (PF) [49]; the mixed-Gaussian

14



PHDF (GM-PHDF) assumes that the intensities are Gaussian mixtures [56].

3.2.1 Random Finite Sets

At a given time k, a target may randomly appear or disappear, resulting in target birth

or target death. A target birth can also be modeled by spawning or directly generated

from existing targets. As a result, due to spontaneous target birth, death or spawning,

the number of targets is continuously changing with time. For a realistic multiple tar-

get tracking problem, the duration for which a target is present is unknown, and the

received signal at the sensor may not have measurements from all the targets and/or it

may have clutter measurements. The PHDF does not require knowledge of the number

of targets a priori, and as a result, it can be used to determine the number of targets at

each time step.

The main idea in exploiting the RFS approach [29, 43, 44, 58] is to treat the

multiple targets as a set-valued state (multiple-target state) and the multiple measure-

ments as a set-valued observation (multiple target observation). The multiple tracking

uncertainties can then be characterized using RFS. An RFS is defined as a finite set-

valued random sequence that can be completely characterized by a discrete probability

distribution and a family of joint probability densities [59]. The number of elements

in the set, or cardinality, is characterized by this discrete distribution. For multiple tar-

get tracking, the cardinality of the multiple-target state RFS is the random number of

targets, and each RFS element indicates the unknown random state of each target.

3.2.2 Probability Hypothesis Density Filtering Algorithm

We assume that a target generates only one observation at each time step k, and that

each target generates measurements independently of each other. The state space rep-

resentation of the ith target, while present at time step k, can be described by the prior

density p(xk,i|xk−1,i) and the likelihood function p(zk,i|xk,i). Here, xk,i is the unknown

state of the ith target and zk,i is the corresponding measurement at time step k. Assum-
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ing Nk targets at time k, the multiple-target state RFS is given by

Xk = {xk,1 , . . .xk,Nk} . (3.1)

The multiple target measurement RFS at time k is

Zk = {zk,1 , . . .zk,Mk} , (3.2)

where Mk is the number of measurements at the receiver at time k. Note that there may

be more measurements than targets at any given time k since measurements may also

be obtained from clutter. The overall prior density and likelihood function, assuming

Nk targets and Mk measurements at time k, are given by p(Xk|Xk−1) and p(Zk|Xk),

respectively.

Given the multiple-target state RFS Xk−1 at time (k − 1), then at time k, the

multiple-target state RFS Xk is formed by combining the surviving and spawned tar-

get RFS Xsurv
k|k−1 and Xsp

k|k−1, respectively, from the previous time step (k− 1), and the

spontaneous target birth RFS Xbirth
k . Also, due to the presence of clutter, the received

multiple-target measurement RFS Zk is formed by the combination of two types of

measurement RFS: Ztarget
k generated by the existing targets and Zclutter

k generated by

false alarms or clutter at time k. It is assumed that the clutter RFS is independent of the

target measurement RFS and that the target measurement RFS are mutually indepen-

dent.

The PHDF uses the assumption that the predicted multiple-target posterior den-

sity p(Xk|Zk−1) can be completely characterized by the corresponding intensity func-

tion λ (xk|Zk−1). With this assumption, given the posterior intensity λ (xk−1|Zk−1) at

time step (k−1), the predicted intensity can be obtained as

λ (xk|Zk−1) =
∫ [

Psurv
k|k−1(xk−1) p(xk|xk−1)+λ sp(xk|Zk−1)

]
λ (xk−1|Zk−1)dxk−1

+ λ birth(xk|Zk) , (3.3)

where λ sp(xk|Zk−1) is the intensity of the targets spawned at the previous time step (k−

1), λ birth(xk|Zk) is the intensity of new target births, and Psurv
k|k−1(xk−1) is the probability
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that a target present at time step (k − 1) will survive to time step k. The posterior

intensity is given by

λ (xk|Zk) = (1−PD
k (xk))λ (xk|Zk−1)

+ ∑
zk∈Zk

PD
k (xk) p(zk|xk) λ (xk|Zk−1)

λ clutter(zk)+
∫

PD
k (x̃k) p(zk|x̃k)λ (x̃k|Zk−1)dx̃k

(3.4)

where λ clutter(zk) is the clutter intensity and PD
k (xk) is the probability that a target

present at time step k is detected at time k.

Note that, as a Poisson RFS is completely characterized by its intensity function,

the clutter RFS Zclutter
k , the target spawn RFS Xsp

k|k−1 and the target birth RFS Xbirth
k|k−1 are

often modeled as Poisson distributed. Specifically, an RFS is Poisson if its cardinality

distribution is also Poisson with mean N̂k and its finite-set elements are independent and

identically distributed with probability density p(Xk|Zk) = λ (Xk|Zk)/N̂k. As a result,

the expected number of Xk|Zk can provide an estimate for the number of targets N̂k at

time k directly from the posterior intensity as N̂k =
∫

λ (xk|Zk)dxk.

3.2.3 Particle Probability Hypothesis Density Filter

Although the PHDF recursion in Equations (3.3) and (3.4) are considerably simpler

than those of the multiple-target Bayesian filter, it still requires solving multi-dimensional

integrals. In [60, 61], a closed form solution was provided for the Gaussian-mixture

PHDF, but this particular filter has some very strict assumptions.

The particle PHDF (PPHDF) [48,53,62–64] implements the PHDF using a par-

ticle filter (PF), which allows for nonlinear and non-Gaussian target dynamic models.

At each time step, the PPHDF approximates the posterior intensity by a weighted set of

particles, and at the end of every recursion, the multiple target states can be estimated

using standard clustering techniques such as the k-means clustering algorithm. The

number of targets can be easily estimated by summing the particle weights.

The PPHDF has three main steps, similar to the PF. During the prediction step,

the predicted intensity function λ (xk|Zk−1) is obtained; then the posterior intensity
17



λ (xk|Zk) is computed during the update and resampling steps. The recursion requires

an assumed initial intensity function λ (x0) at time k = 0.

For the prediction step, the PPHDF assumes that the posterior intensity function

λ (xk−1|Zk−1) can be approximated using Lk−1 particles x(i)k−1 and associated normal-

ized weights w(i)
k−1, i = 1, . . . ,Lk−1 as

λ (xk−1|Zk−1)≈
Lk−1

∑
i=1

w(i)
k−1δ (xk−1 −x(i)k−1). (3.5)

Then, the predicted intensity function λ (xk|Zk−1) can be approximated as qk(·|x
(i)
k−1,Zk)

and pk(·|Zk)

λ (xk|Zk−1)≈
Lk−1+Jk

∑
i=1

w(i)
k|k−1δ (xk −x(i)k ), (3.6)

where the particles are obtained using two importance sampling densities

x(i)k ∼ qk(·|x
(i)
k−1,Zk), i = 1, · · · ,Lk−1, (3.7)

x(i)k ∼ pk(·|Zk), i = Lk−1 +1, · · · ,Lk−1 + Jk, (3.8)

and the weights are computed as

w(i)
k|k−1 =

ϕk|k−1(x
(i)
k ,x(i)k−1) w(i)

k−1

qk(x
(i)
k |x(i)k−1,Zk)

, i = 1, · · · ,Lk−1, (3.9)

w(i)
k|k−1 =

λ birth(x(i)k |Zk)

Jk pk(x
(i)
k |Zk)

, i = Lk−1 +1, · · · ,Lk−1 + Jk, (3.10)

with

ϕk|k−1(x
(i)
k ,x(i)k−1) = Psurv

k|k−1(x
(i)
k−1)p(x(i)k |x(i)k−1)+λ sp(x(i)k |Zk−1). (3.11)

and Jk is the total number of particles required to represent the new birth target RFS.

For the update step of the PPHDF, the posterior intensity function at time k is

approximated as

λ (xk|Zk)≈
Lk−1+Jk

∑
i=1

w(i)
k δ (xk −x(i)k ), (3.12)
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where the particle weight is updated as

w(i)
k = (1−PD

k (x
(i)
k ))w(i)

k|k−1 + ∑
zk∈Zk

PD
k (x

(i)
k ) p(zk|x

(i)
k ) w(i)

k|k−1

λ clutter(zk)+Ck(zk)
(3.13)

where

Ck(zk) =
Lk−1+Jk

∑
i=1

PD
k (x

(i)
k ) p(zk|x

(i)
k )w(i)

k|k−1. (3.14)

In order to avoid particle degeneracy [2], low weight particles are eliminated

and high weight particles are multiplied in order to focus on important regions of the

intensity function. This is done by resampling and normalizing Lk−1 + Jk particles to

redistribute the weight. The normalization factor is the estimated number of targets,

N̂k = ⌊∑Lk−1+Jk
i=1 w(i)

k ⌋, where ⌊q⌋ takes the integer smaller or equal to q. The new set of

particles and corresponding weights is given by (x(i)k ,w(i)
k /N̂k).

3.3 Multiple-Model Particle Filter

In maneuvering target tracking, the target may change its motion model at any time. As

conventional particle filters (PFs) are not robust for tracking maneuvering targets with

multiple state models, they were combined with the multiple model (MM) approach [1,

53,65–67]. At every time step, the MM-PF needs to estimate the state model as well as

the target state. It is assumed that the target model can switch according to a transitional

probability matrix Π= {πmn}. The model number ϖ (i)
k of the ith particle i= 1, . . . ,Lk at

time k, follows the transitional matrix, where Lk is the number of particles that still exist

at time k. Specifically, if at time k− 1 a particle has model index number m = ϖ (i)
k−1,

then at time index k, the model index transfers to model number n with probability πmn.

The model transition algorithm in Table. 3.1 is used for generating ϖ (i)
k from

ϖ (i)
k−1 according to the transitional matrix Π.

The integrated MM-PF algorithm is outlined in Table. 3.2, where {x(i)k ,ϖ (i)
k }Lk

i=1

is used to denote the ith particle state, w(i)
k is the ith particle weight at time k, and xk

and zk denotes the single target state vector and measurement vector, respectively. At

time k, Lk new model index particles ϖ (i)
k , i = 1, . . . ,Lk, are generated according to the
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Table 3.1: Target Model Transition Algorithm

(ϖ (i)
k , Lk) = Transition(ϖ (i)

k−1, Lk, Π)

For m = 1 : S (For all number of models S)
cm(0) = 0 (Set initial value to zero)
For n = 1 : S (Second loop to calculate cumulative density)

cm(n) = cm(n−1)+πmn
End For

End For
For i = 1 : Lk (For all number of particles Lk)

Draw u(i) ∼U [0,1] (Draw a random value from uniform distribution)
Set m = ϖ (i)

k−1 (Previous model number)
n = 1 (For current model number n)
While(cm(n)< u(i))

n = n+1
End For
Set ϖ (i)

k = n
End For

transition matrix, which includes all the possible target state models at time k. Then the

PF is applied according to the generated model index in each particle.

For the MM-PF, the optimal importance density q(x(i)k |x(i)k−1,ϖ
(i)
k ,zk) is given

by [1]

q(x(i)k |x(i)k−1,ϖ
(i)
k ,zk)opt = p(x(i)k |x(i)k−1,ϖ

(i)
k ,zk). (3.15)

As this optimal distribution is usually not known, a commonly used sub-optimal im-

portance distribution is the transitional prior [66],

q(x(i)k |x(i)k−1,ϖ
(i)
k ,zk) = p(x(i)k |x(i)k−1,ϖ

(i)
k ). (3.16)
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Table 3.2: Multiple Model Particle Filter

(x(i)k , ϖ (i)
k , w(i)

k , Lk) = MM-PF(x(i)k−1, ϖ (i)
k−1, w(i)

k−1, Lk, zk)

Model Transition 3.1
[{ϖ (i)

k }Lk
i=1] = Tran[{ϖ (i)

k−1}
Lk
i=1,Π]

For i = 1 : Lk (Lk is used to denote the total number of particles)
Draw x(i)k ∼ q(x(i)k |x(i)k−1,ϖ

(i)
k ,zk)

update the particle weight

w̃(i)
k = w(i)

k−1
p(zk|x

(i)
k ,ϖ (i)

k )p(x(i)k |x(i)k−1,ϖ
(i)
k )

q(x(i)k |x(i)k−1,ϖ
(i)
k ,zk)

End For
Wsum = ∑i w̃(i)

k (Calculate the total weight)
For i = 1 : Lk

w(i)
k = w̃(i)

k /Wsum
End For
Calculate the Ñe f f (Effective sample size Ñe f f )

Ñe f f =
1

∑
Lk
i=1(w

(i)
k )2

If Ñe f f < Nthreshold
Resampling

End If
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Chapter 4

Multiple Target Tracking in Urban Terrain

We propose to investigate the multiple-target tracking problem in urban environments

by efficiently estimating target states using the particle probability hypothesis density

filter (PPHDF) presented in Chapter 3. When tracking in urban terrain, as discussed in

Chapter 2, multipath returns need to be exploited due to the lack of line-of-sight (LOS)

returns as well as the presence of multipath interference and high clutter. When there

is also a need to simultaneously track multiple targets, the problem of extracting mul-

tiple target state information from an increased number of multipath returns becomes

even more difficult, and the dynamic tracking system model needs to be appropriately

modeled.

4.1 Dynamic System Formulation

The formulation of a dynamic Urban TErrain Multiple-Target Tracking (UTE-MTT)

system entails the integration of the multipath exploitation (ME) system formulation

in Chapter 2 with the multiple-target tracking (MTT) system formulation in Chapter 3.

For the ME system, the formulation of the dynamic state space formulation is given

by Equation (2.1), allowing for both constant velocity and coordinated turn motion

models, and Equations (2.2)-(2.8). In Equations (2.1)-(2.8), xk is the unknown state of

a single target and zk is the measurement corresponding to that target. For all general

purposes, we can let replace xk with xk,1 and zk with zk,1 in (2.1)-(2.8) to emphasize

that this ME-based formulation is for a single target.

Extending to multiple targets in the urban environment, the multiple-target state

RFS can be given as in (3.1) by Xk = {xk,1 , . . .xk,Nk}, where, at time k, xk,i is the

unknown state of the ith target and the number of targets being tracked is assumed to

be Nk. Note that xk,i follows the state model in (2.1), with the two possible motion

models.

The multiple-target measurement RFS with Mk measurements at time k is given

22



by Zk = {zk,1 , . . .zk,Mk}. However, unlike in Equation (3.2) where each measurement

corresponds to a single range and range rate pair, the ith measurement zk,i at time k

may be the result of Pk,i possible measurement paths, and thus Pk,i possible range and

range rate pairs, as in Equations (2.6)-(2.8). Note that in Chapter 3, we assumed that a

target generates only one observation at each time step k. For the multiple-target urban

tracking problem, we assume that the Pk,i paths for the ith target are arranged together

in one vector. Such an assumption requires prior knowledge about the data received at

the receiver. Note, however, that our proposed modified PPHDF, to be presented later

in this chapter, does not need to satisfy this assumption.

4.2 Development of PHDF with Multipath Exploitation

With the multiple-target state RFS and multiple-target measurement RFS appropriately

specified for multiple model state and multiple target measurements, the predicted

intensity function λ (xk|Zk−1) and posterior intensity function λ (xk|Zk) are given by

Equations (3.3) and (3.4), respectively. For the PF implementation, following similar

steps as with the PPHD for a single target in Chapter 3.2, we first obtain the posterior

intensity λ (xk−1|Zk−1) using particles and weights at time step (k−1) as in Equation

(3.5) with xk representing the states of all Nk targets. The particles are given by

x(i)k ,ρ(i)
k ∼ qk

(
·|x(i)k−1,Zk,ϖ

(i)
k

)
, i = 1, · · · ,Lk−1 (4.1)

x(i)k ,ρ(i)
k ∼ pk(·|Zk), i = Lk−1 +1, · · · ,Lk−1 + Jk (4.2)

and their corresponding weights can be computed using

w(i)
k|k−1 =

ϕk|k−1

(
x(i)k ,x(i)k−1

)
w(i)

k−1

qk

(
x(i)k |x(i)k−1,Zk,ϖ

(i)
k

) i = 1, · · · ,Lk−1 (4.3)

w(i)
k|k−1 =

λ birth
(

x(i)k |Zk

)
Jk pk

(
x(i)k |Zk

) , i = Lk−1 +1, · · · ,Lk−1 + Jk , (4.4)

where ϕk|k−1(x
(i)
k ,x(i)k−1) is defined in (3.11), ρ(i)

k is the ith region index particle, and ϖ (i)
k

is the ith model index particle at time k. In the modified PPHDF, the new parameter
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ρ(i)
k indicates at the step k which physical region on the road map where the ith particle

x(i)k is.

The update intensity can be approximated using (3.12), with the weights ob-

tained as

w(i)
k|k−1 =

[
1−PD

k (x
(i)
k )+ ∑

zk∈Zk

ψk,zk(x
(i)
k ,ρ(i)

k )

λ clutter(zk)+Ck(zk)

]
w(i)

k|k−1 (4.5)

where

Ck(zk) =
Lk−1+Jk

∑
j=1

ψk,zk

(
x( j)

k ,ρ( j)
k

)
w( j)

k|k−1 (4.6)

and ψk,zk(x
( j)
k ,ρ( j)

k ) = PD
k (x

( j)
k )gk(zk|x

( j)
k ,ρ( j)

k ).

The PPHDF algorithm is described in Table 4.1.

At the initialization step, particles are generated randomly according to a uni-

form distribution. The initial number of particles should be very large to ensure that

some of the particles survive after the update stage. As a result, the computational

intensity of the initialization step is high.

In the PPHDF algorithm, the predicted state particles are drawn according to

(3.7) and (3.8). As the state model changes depending on the target’s motion, another

set of particles, ϖ (i)
k , need to be included to indicate the model index at time k for the

ith state particle. The advantage of the multiple-model method is demonstrated using

a comparison between the multiple-model algorithm and the single-model algorithm.

In Figure 4.1, as we can see, the particles generated by the single-model lead to an

inaccurate estimate, especially when the target suddenly changes its motion. When

the multiple-model is used, the resulting particles are shown in Figure 4.2. Unlike the

single-model case, the resulting particles are distributed around the true state value.

As a result, the track performance is expected to be improved when a multiple-model

estimator is used.

Similar to particle filters, the degeneracy problem exists for the PPHDF. A mea-
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Table 4.1: Multiple-Model Multiple-Target PPHDF

Step 0.(Initialization at time index k = 0)
For i = 1 : L0 Sample the particles

x(i)k ∼ Uniform distribution
Set the particle weight
w(i)

k = 1/L0
set model index number
ϖ (i)

0 = 1
End For
Set k = 1

Step 1.(Prediction Stage, when k ≥ 1)
update the model index number
(ϖ (i)

k , Lk) = Transition(ϖ (i)
k−1, Lk, Π)

For i = 1 : Lk−1

x(i)k ∼ q(·|x(i)k−1,ϖ
(i)
k ,Zk)

w(i)
k|k−1 =

ϕk|k−1(x
(i)
k ,x(i)k−1)w

(i)
k−1

q(x(i)k |x(i)k−1,ϖ
(i)
k ,Zk)

End For
For i = Lk−1 +1 : Lk−1 + Jk

x(i)k ∼ p(·|Zk)

w(i)
k|k−1 =

1
Jk

λ birth(x(i)k |Zk)

p(x(i)k |Zk)

End For
The total number of particles Nparticle = Lk−1 + Jk

Step 2.(Update Stage, when k ≥ 1)
For zk ∈ Zk

< wk|k−1,ψk,zk >= ∑
Nparticle
i=1 ψk,zk(x

(i)
k )w(i)

k|k−1
End For
For i = 1 : Nparticle
Calculated updated weight

w(i)
k = [1−PD

k (x
(i)
k )+∑zk∈Zk

ψk,zk (x
(i)
k )

λ clutter(zk)+<wk|k−1,ψk,zk>
]w(i)

k|k−1

End For
Step 3.(Resampling, when k ≥ 1)

N̂k = ⌊(∑N
i=1 w(i)

k )⌋
Resample {w(i)

k ,x(i)k }Nparticle
i=1 to {w(i)

k ,x(i)k }Lk
i=1

Step 4.(Target Estimation, when k ≥ 1)
K-mean Clustering algorithm
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Figure 4.1: Particle (blue circles) distribu-
tion using a single-model algorithm. The
true target is shown as a black square.
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Figure 4.2: Particle (blue circles) distribu-
tion using a multiple-model algorithm. The
true target is shown as a black square.

sure of degeneracy is the effective sample size Ñeff [1] given by

Ñeff =
1

∑
Nparticle
i=1 (w(i)

k )2
, (4.7)

where w(i)
k is the normalized weight calculated in (4.12). We can see that 1 ≤ Ñeff ≤

Nparticle, and a small Ñeff indicates serious degeneracy. We perform resampling at the

end of each iteration to remove the particles with low weights and duplicate the particles

with high weights After resampling all the particles have equal weight.

From the particle representation of the posterior intensity after resampling, the

states of the individual targets are estimated using clustering, which can be performed

using the k-means algorithm [68]. The k-means clustering technique partitions the

given particle representation into the number of clusters, which is given by the integer

approximation of the expected number of targets. And the center of each cluster indi-

cates a local maximum of the intensity function and hence gives the state estimate of a

target.

4.3 Modified Particle Probability Hypothesis Density Filter

Although the PPHDF avoids conventional data association, it requires a prior knowl-

edge of any path-to-measurement associations. Specifically, at the receiver, when the

radar observes all the range-range rate pairs, it is assumed that it can successfully dis-
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tinguish which range-range rate pair corresponding to what path. In practice, however,

the matched filter may not receive information such as range and range rate, in any

particular order. Although, by having the road map information, the above assumption

can be achieved, it still involves a lot of quite pre-process work.

We propose a modified PPHDF (MPPHDF) that can perform the path or region

to measurement association and include it the algorithm steps. This is done by includ-

ing a region parameter for the ith particle at time k, ρ(i)
k . In this case, the new prediction

process can be updated as follow,

x(i)k ,ρ(i)
k ∼ qk(·|x

(i)
k−1,Zk,ϖ

(i)
k ), i = 1, · · · ,Lk−1 (4.8)

where Lk−1 is defined in (3.5). While for particles corresponding to the new born

targets,

x(i)k ,ρ(i)
k ∼ pk(·|Zk), i = Lk−1 +1, · · · ,Lk−1 + Jk (4.9)

In addition, from the road map given in Fig. 4.3, the surveillant area is divided

into 8 regions. In MPPHDF, each particle corresponds to a vector x(i)k = [x(i)k , ẋ(i)k ,y(i)k , ẏ(i)k ]T ,

the following table gives a criterion to calculate region index.

Table 4.2: Region index criterion

case 1 (x(i)k + y(i)k ≤ 0)
(30 ≤ x(i)k + y(i)k ≤ 60)∩ (x(i)k − y(i)k ≤−30)∩ (y(i)k ≤ 60)

(130 ≤ x(i)k + y(i)k ≤ 160)∩ (130 ≤ x(i)k − y(i)k )

case 2 (0 ≤ x(i)k + y(i)k ≤ 30)∩ (x(i)k ≤ 0)
case 3 (60 ≤ x(i)k + y(i)k ≤ 160)∩ (−30 ≤ x(i)k − y(i)k )∩ (30 ≤ y(i)k ≤ 60)
case 4 (160 ≤ x(i)k + y(i)k ≤ 190)∩ (x(i)k − y(i)k ≤ 130)∩ (x(i)k ≤ 160)∩ (y(i)k ≤ 60)
case 5 (160 ≤ x(i)k + y(i)k )∩ (130 ≤ x(i)k − y(i)k )∩ (x(i)k ≤ 160)
case 6 (0 ≤ x(i)k + y(i)k ≤ 130)∩ (−50 ≤ y(i)k ≤ 0)
case 7 (60 ≤ x(i)k + y(i)k )∩ (x(i)k − y(i)k ≤−30)∩ (y(i)k ≤ 60)
case 8 (x(i)k + y(i)k ≤ 60)∩ (−30 ≤ x(i)k − y(i)k )∩ (30 ≤ y(i)k )

(x(i)k + y(i)k ≤ 160)∩ (x(i)k − y(i)k ≤ 130)∩ (130 ≤ x(i)k )
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After the predicted particles are generated, the corresponding particle weight is

propagated based on following equations.

w(i)
k|k−1 =

ϕk|k−1(x
(i)
k ,x(i)k−1)w

(i)
k−1

qk(x
(i)
k |x(i)k−1,Zk)

, i = 1, · · · ,Lk−1, (4.10)

w(i)
k|k−1 =

λ birth(x(i)k |Zk)

Jk pk(x
(i)
k |Zk)

, i = Lk−1 +1, · · · ,Lk−1 + Jk, (4.11)

where ϕ is defined in (3.11).

When the radar observes all the range-range rate pairs, the proposed filter up-

dates the particle weights according to the following equations,

w(i)
k|k−1 = [1−PD

k (x
(i)
k )+ ∑

zk∈Zk

ψk,zk(x
(i)
k ,ρ(i)

k )

λ clutter(zk)+Ck(zk)
]w(i)

k|k−1 (4.12)

Ck(zk) =
Lk−1+Jk

∑
j=1

ψk,zk(x
( j)
k ,ρ( j)

k )w( j)
k|k−1 (4.13)

where ψk,zk(x
( j)
k ,ρ( j)

k ) = PD
k (x

( j)
k )gk(zk|x

( j)
k ,ρ( j)

k ).

The difference between conventional PPHDF technique and modified PPHDF

(MPPHDF) is the measurement in this case becomes unordered, then PHDF can not be

directly applied to get the updated particle weight as described in (??) and (??). The

proposed filtering algorithm first predict the measurement of each particle x(i)k by using

the parameter ρ(i)
k , and the table below shows the relationship between region index

and predicted measurements.

Table 4.3: Region index criterion

case 1 LOS
case 2 LOS + One-bounce
case 3 One-bounce
case 4 Two One-bounce
case 5 LOS + One-bounce
case 6 LOS + One-bounce
case 7 LOS + One-bounce
case 8 Shadowing
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Once a range-range rate pair is observed, the likelihood of ith range-range rate

pair, i.e., zk,i given jth particle, i.e., x( j)
k is calculated as follow,

First, the filter generates another prediction random finite set according to jth

particle x( j)
k and its region index parameter ρ( j)

k , denotes as R( j)
k , whose elements are

all the possible range-range rate pairs corresponding to the particle x( j)
k . For exam-

ple, if the particle with the region parameter indicates it is currently in the LOS plus

one-bounce region, the filter then checks the measurement equation for this particle,

and predicts all the possible observations, i.e., observation pair from LOS, observation

from one-bounce and observation from LOS-one-bounce. Then, the filter calculates

the likelihood of each element in the generated prediction random finite set given zk,i

individually and selects the largest one as the likelihood of ith range-range rate pair zk,i

given jth particle x j
k. Then, the filter updates particle weights using (4.12) and (4.13).

After the updated particle weight is obtained, the resampling process is applied

to handle the degeneracy problem, which is the same process as described in previous

chapter. From the particle representation of posterior intensity after resampling, the

states of the individual targets are estimated via clustering algorithm. In our proposed

filtering algorithm, the PHDF no longer provides ability to estimate number of targets,

because the measurement equation here is different from regular one (with the assump-

tion of knowing which rang-range rate pair corresponding to LOS or multipath). In

this case, the clustering algorithm should be modified to estimate both the number of

targets and target states. The new k-means clustering algorithm first sets up a threshold,

and starts the standard k-means clustering algorithm with cluster number to be 1. At

the end of clustering, the average error distance is calculated and compared with the

threshold, if the average distance is within the threshold, the new clustering algorithm

stops and claims the number of targets is equal to the number of clusters, the estimated

target states are the centroid of each cluster, or the cluster number is increase by 1 and

the standard k-means algorithm is applied again with the new cluster number.
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The proposed new MPPHDF algorithm is shown in Table 4.4

4.4 Numerical Simulation Setup

In order to demonstrate the performance of our proposed algorithm, we provide sim-

ulations for tracking multiple targets in urban terrain. We will demonstrate both the

PPHDF, that assumes knowledge of path-to-measurement association, as well as the

modified PPHDF that does not assume such prior knowledge. In both cases, the PPHDF

can recursively calculate the total number of targets at each time step.

Our numerical simulations are based on the three-dimensional test bench envi-

ronment depicted in Figure 4.3 The targets considered in the simulations are ground
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Figure 4.3: The road map of the test bench urban environment to be used for the PPHDF
and MMPHDF simulations.
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Table 4.4: Modified Multiple-Model Multiple-target Particle Probability Hypothesis
Density Filter

Step 0.(Initialization at time index k = 0)
For i = 1 : L0
Sample the particles
x(i)k ∼ Gaussian distribution

Set the particle weight
w(i)

k = 1/L0
set model index number
ϖ (i)

0 = 1
End For
Set k = 1

Step 1.(Prediction Stage, when k ≥ 1)
update the model index number
[{ϖ (i)

k }Lk−1
i=1 ] = Tran[{ϖ (i)

k−1}
Lk−1
i=1 ,Π]

For i = 1 : Lk−1

x(i)k ,ρ(i)
k ∼ q(·|x(i)k−1,ϖ

(i)
k ,Zk)

w(i)
k|k−1 =

ϕk(x
(i)
k ,x(i)k−1)w

(i)
k−1

q(x(i)k |x(i)k−1,Zk)

End For
For i = Lk−1 +1 : Lk−1 + Jk

x(i)k ,ρ(i)
k ∼ p(·|Zk)

w(i)
k|k−1 =

1
Jk

λ birth(xk)|Zk

pk(x
(i)
k |Zk)

End For
The total number of particles Nparticle = Lk−1 + Jk

Step 2.(Update Stage, when k ≥ 1)
For zk ∈ Zk

< wk|k−1,ψk,zk >= ∑Nparticle
i=1 ψk,zk(x

(i)
k ,ρ(i)

k )w(i)
k|k−1

End For
For i = 1 : Nparticle
Calculated updated weight

w(i)
k = [1−PD

k (x
(i)
k )+∑zk∈Zk

ψk,zk (x
(i)
k ,ρ(i)

k )

λ clutter(zk)+<wk|k−1,ψk,zk>
]w(i)

k|k−1

End For
Step 3.(Resampling, when k ≥ 1)

Resample {w(i)
k ,x(i)k }Nparticle

i=1 to {w(i)
k ,x(i)k }Lk

i=1
Step 4.(Target Estimation, when k ≥ 1)

Modified K-means Clustering algorithm
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vehicles, and thus move on a 2-D plane. In Figure 4.3, there are three buildings, and an

airborne radar is located approximately 8000 m southeast of the scene, which is about

1400 m in height. As a result, when either of the ground vehicles travels between the

buildings, the LOS signal returns are lost.

According to the locations of the three buildings and the radar, Figure 4.4 illus-

trates the measurement map of different regions such as LOS, multipath and shadow-

ing [11].
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Figure 4.4: Available measurement map for the simulated urban terrain [11].

As shown in Figure 4.4, the urban scene contains five different types of regions

including LOS regions, one-bounce regions, two one-bounce regions, and shadowing

regions. When the ground vehicle moves in to a specific region, the corresponding mea-
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surement pattern is used to generate radar measurements. Moreover, all the simulations

are performed based on this test bench.

4.4.1 Two Targets in Urban Terrain

We assume that there are two ground vehicles, whose loop trajectory and starting points

are marked in Figure 4.3. The target state is denoted by xk = [xk, ẋk,yk, ẏk]
T with its po-

sition (xk,yk) and velocity (ẋk, ẏk) in Cartesian coordinates. The measurements consist

of noisy range and range-rate observations.

Each target can switch between the following linear state model

xk = Fxk−1 +nk, (4.14)

where F can represent a constant velocity model and given by ith model index ϖ (i)
k = 1

F =



1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


.

Or F can represent a constant turning model and given by ith model index ϖ (i)
k =

2

F =



1 sin(ω)/ω 0 −(1− cos(ω))/ω

0 cos(ω) 0 −sin(ω)

0 (1− cos(ω))/ω 1 sin(ω)/ω

0 sin(ω) 0 cos(ω)


.

where ω = −2 is the angular turning rate, vk is assumed to be a zero-mean, white

Gaussian sequence with covariance matrix:

Q = q



1
3

1
2 0 0

1
2 1 0 0

0 0 1
3

1
2

0 0 1
2 1
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where q = 0.04 is a coefficient determining the process noise intensity. We assume that

the probability of target survial is 0.95. When implementing the PPHDF, we assign

each target 2000 particles.

In this example, we assume that there is no spawning and that no new targets

appear. The clutter RFS is considered to be Poisson, and the pdf of each clutter is

assumed to be uniformly distributed in the region [−50,150]× [−100,50]. Moreover,

the clutter density is assumed to be 3.33×10−4, which results in an average rate of 10

points per scan. At the end of each iteration, the target states are estimated using the

standard k-means clustering algorithm.

The simulation result is shown in Fig. 4.5.
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Figure 4.5: Tracking result of two targets moving in the same direction in the (x,y)
plane using the PPHDF.

The simulation results for (x,y) position and velocity coordinates are separately

shown in Figures 4.6 to 4.9.

The above simulation results in Figures 4.5 to 4.9 demonstrate that the multiple

model PPHDF provides reasonably accurate tracking results for the multiple targets

moving in urban terrain. Note that, as expected due to no signal returns, the target track

is lost when a target enters the shadowing region.
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Figure 4.6: PPHDF estimated x-coordinate
positions of two targets moving in the same
direction.
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Figure 4.7: PPHDF estimated y-coordinate
positions of two targets moving in the same
direction.
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Figure 4.8: PPHDF estimated x-coordinate
velocity of two targets moving in the same
direction.
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Figure 4.9: PPHDF estimated y-coordinate
velocity of two targets moving in the same
direction.

The mean-square error (MSE) performance based on 200 Monte Carlo simula-

tion is shown in Figure 4.10 to Figure 4.13.

We note that the MSE error is small when target a is in the LOS region or LOS

plus one-bounce region, and it becomes larger when a target is in the one-bounce or

two one-bounce regions. The error grows large when a target is in the shadow region.

The estimated number of targets with time is shown in Figure 4.14, which is the

average of 300 Monte Carlo simulations.
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Figure 4.10: MSE position error of tracking
result of two targets moving in the same di-
rection of target 1 using MM-PPHDF.
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Figure 4.11: MSE position error of tracking
result of two targets moving in the same di-
rection of target 2 using MM-PPHDF.

0 10 20 30 40 50 60 70 80
10

−2

10
−1

10
0

10
1

10
2

Time index

M
S

E
 v

el
oc

ity
 e

rr
or

 o
f t

ar
ge

t 1
 (

m
et

er
2 /s

2 )

Figure 4.12: MSE velocity error of tracking
result of two targets moving in the same di-
rection of target 1 using MM-PPHDF.
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Figure 4.13: MSE velocity error of tracking
result of two targets moving in the same di-
rection of target 2 using MM-PPHDF.

4.4.2 Time-varying Number of Targets in Urban Terrain

Previously, example 1 basically illustrates the multiple model PPHDF can solve fixed

targets moving in same direction. In order to further investigate the performance of

multiple model PPHDF, we consider the following case, when the number of targets

are time varying. Assuming initially (k = 1) there are two ground vehicles, which

are moving in the same direction. Then, at k = 5, a new target born and moves in the

opposite direction. Moreover, when at k= 12, one target dies, and k= 15, another target
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Figure 4.14: PPHDF estimated number of targets when 2 targets are moving in the
same direction

dies. The road map as well as the targets trajectory can be found in Fig. 4.15 The target

state is denoted by xk = [xk, ẋk,yk, ẏk]
T with its position (xk,yk) and velocity (ẋk, ẏk)

in Cartesian coordinates and the measurements are noisy version of rangeCrange-rate

measurements.

Each target can switch between the following linear state model

xk = Fkxk−1 +nk. (4.15)

When at time k, the ith model index ϖ (i)
k = 1, which indicates Fk is a NCV model given

by

Fk =



1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


.

When at time k, the ith model index ϖ (i)
k = 2, which indicates Fk is a CT model
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Figure 4.15: The road map of the test bench urban environment and trajectory of 3
targets using MM-PPHDF.

represented by

F2 =



1 sin(ω)/ω 0 −(1− cos(ω))/ω

0 cos(ω) 0 −sin(ω)

0 (1− cos(ω))/ω 1 sin(ω)/ω

0 sin(ω) 0 cos(ω)


.

where ω =−2 is the angular turning rate.

Moreover, a third model is needed for the opposite vehicle to make turning,
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which is represented by

Fk =



1 sin(ω)/ω 0 −(1− cos(ω))/ω

0 cos(ω) 0 −sin(ω)

0 (1− cos(ω))/ω 1 sin(ω)/ω

0 sin(ω) 0 cos(ω)


.

where ω = 2 is the angular turning rate, vk is assumed to be a zero-mean, white Gaus-

sian sequence with covariance matrix:

Q = q
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where q = 0.04 is a coefficient determining the process noise intensity. Especially, the

surviving probability is assumed to be 0.95. When implementing PPHDF, we assign

totally 4500 particles for tracking.

Beside, we assume that there are no spawning but new born target are assumed

to following a Gaussian distribution in the simulation. Besides the clutter random finite

set is considered to be Poisson random finite set, and uniformly distributed in the region

[−50,150]× [−100,50]. Moreover, the clutter density is assumed to be 3.33× 10−4,

which results in an average rate of 10 points per scan. At the end of each iteration, the

target state are estimated by using the standard k-means clustering algorithm.

The simulation result is shown in Fig. 4.16.

And the simulation results of x-coordinate positions and y-coordinate positions

separately are shown in Fig. 4.17 and Fig. 4.18.

Besides, the estimation results of x-coordinate velocity and y-coordinate veloc-

ity are shown in Fig. 4.19 and Fig. 4.20.

The above simulation results from Fig. 4.16 to Fig. 4.20 are given by the

multiple model PPHDF with the assumption of knowing which range-range pair corre-

sponding to LOS or multipath signal return. It shows that the multiple model PPHDF
39
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Figure 4.16: Tracking result of time varying targets moving in XY planes using MM-
PPHDF.
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Figure 4.17: Tracking result of time vary-
ing targets: x-coordinate position using
MM-PPHDF.
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Figure 4.18: Tracking result of time vary-
ing targets: y-coordinate position using
MM-PPHDF.
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Figure 4.19: Tracking result of time vary-
ing targets: x-coordinate velocity using
MM-PPHDF.
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Figure 4.20: Tracking result of time vary-
ing targets: y-coordinate velocity using
MM-PPHDF.

provides reasonably accurate estimation of urban multiple targets tracks with almost

free of false tracks. In addition, because in the shadowing region, there is no signal

return, so the target track is lost when target enters the shadowing region.

From all the above simulations, it is not hard to see, the multiple model PPHDF

can efficiently overcome the problem brought by time varying number of targets and

multiple model.

Moreover, the mean square error (MSE) performance of 100 Monte Carlo sim-

ulation is shown in Fig. 4.21 to Fig. 4.26.

The above Monte Carlo simulation results from Fig. 4.21 to Fig. 4.26 are given

by the multiple model PPHDF with the assumption of knowing which range-range pair

corresponding to LOS or multipath signal return. From which, it is shown the MSE

error is small when target is in the LOS region or LOS plus one-bounce region, and

becomes larger when target in one-bounce or two one-bounce area, in addition, the

error grows larger when target is in shadowing region. Furthermore, in Fig. 4.23 and

4.24, there is a jump of MSE error at time k = 12, and the reason is in this case, the

target 1 has entered the shadowing region, the particles in the shadowing region can

effect the clustering for target 3, which makes the MSE error grows larger in this case.

Besides, the MSE error decrease to normal at the next time step.
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Figure 4.21: MSE position error of tracking
result of time varying targets: target 1 using
MM-PPHDF.
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Figure 4.22: MSE velocity error of tracking
result of time varying targets: target 1 using
MM-PPHDF.
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Figure 4.23: MSE position error of tracking
result of time varying targets: target 2 using
MM-PPHDF.
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Figure 4.24: MSE velocity error of tracking
result of time varying targets: target 2 using
MM-PPHDF.
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Figure 4.25: MSE position error of tracking
result of time varying targets: target 3 using
MM-PPHDF.
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Figure 4.26: MSE velocity error of tracking
result of time varying targets: target 3 using
MM-PPHDF.

From Fig. 4.16 to Fig. 4.26, the simulation results demonstrate the multiple

model PPHDF can accurately handle the multiple target tracking problem in urban

terrain with the assumption of knowing which rang-range rate corresponding to LOS

or multipath signal return.

Moreover, the simulation results of targets number is shown in Fig. 4.27, which

is the average of 300 Monte Carlo simulations.

From Fig. 4.27, it is not hard to see, besides the shadowing region, in most case,

there is no miss tracking.

4.4.3 Two Targets in Urban Terrain With Path-to-Measurement Association

Assuming there are two ground vehicles, whose starting points are marked in Fig. 4.3.

Besides, they are moving in a loop trajectory, as marked in Fig. 4.3. The target state is

denoted by xk = [xk, ẋk,yk, ẏk]
T with its position (xk,yk) and velocity (ẋk, ẏk) in Carte-

sian coordinates and the measurements are noisy version of rangeCrange-rate measure-

ments.

Each target can switch between the following linear state model

xk = Fkxk−1 +nk. (4.16)
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Figure 4.27: Number of targets of time varying targets using MM-PPHDF.

When at time k, the ith model index ϖ (i)
k = 1, which indicates Fk is a NCV model given

by

Fk =



1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


.

When at time k, the ith model index ϖ (i)
k = 2, which indicates Fk is a CT model

represented by

Fk =



1 sin(ω)/ω 0 −(1− cos(ω))/ω

0 cos(ω) 0 −sin(ω)

0 (1− cos(ω))/ω 1 sin(ω)/ω

0 sin(ω) 0 cos(ω)


.

where ω = −2 is the angular turning rate, vk is assumed to be a zero-mean, white
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Gaussian sequence with covariance matrix:

Q = q
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where q = 0.04 is a coefficient determining the process noise intensity. Especially, the

surviving probability is assumed to be 0.95. When implementing MPPHDF, we assign

each target 2000 particles.

Beside, we assume that there are no spawning and no new born target in the

simulation. Besides the clutter random finite set is considered to be Poisson random

finite set, and uniformly distributed in the region [−50,150]× [−100,50]. Moreover,

the clutter density is assumed to be 3.33×10−4, which results in an average rate of 10

points per scan. At the end of each iteration, the target state are estimated by using the

standard k-means clustering algorithm.

The simulation result is shown in Fig. 4.28.
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Figure 4.28: Tracking result of two targets moving in the same direction in XY planes
using modified algorithm.

And the simulation results of x-coordinate positions and y-coordinate positions
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separately are shown in Fig. 4.29 and Fig. 4.30.
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Figure 4.29: Tracking result of two tar-
gets moving in the same direction of x-
coordinate position using modified algo-
rithm.
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Figure 4.30: Tracking result of two tar-
gets moving in the same direction of y-
coordinate position using modified algo-
rithm.

Besides, the estimation results of x-coordinate velocity and y-coordinate veloc-

ity are shown in Fig. 4.31 and Fig. 4.32.
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Figure 4.31: Tracking result of two tar-
gets moving in the same direction of x-
coordinate velocity using modified algo-
rithm.
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Figure 4.32: Tracking result of two tar-
gets moving in the same direction of y-
coordinate velocity using modified algo-
rithm.

The above simulation results from Fig. 4.28 to Fig. 4.32 are given by the

multiple model MPPHDF with the assumption of knowing which range-range pair cor-

responding to LOS or multipath signal return. It shows that the multiple model MP-
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PHDF provides reasonably accurate estimation of urban multiple targets tracks with

almost free of false tracks. In addition, because in the shadowing region, there is no

signal return, so the target track is lost when target enters the shadowing region.

Moreover, the mean square error (MSE) performance of 300 Monte Carlo sim-

ulation is shown in Fig. 4.33 to Fig. 4.36.
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Figure 4.33: MSE position error of track-
ing result of two targets moving in the same
direction of target 1 using modified algo-
rithm.
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Figure 4.34: MSE position error of track-
ing result of two targets moving in the same
direction of target 2 using modified algo-
rithm.
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Figure 4.35: MSE velocity error of track-
ing result of two targets moving in the same
direction of target 1 using modified algo-
rithm.
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Figure 4.36: MSE velocity error of track-
ing result of two targets moving in the same
direction of target 2 using modified algo-
rithm.

The above Monte Carlo simulation results from Fig. 4.33 to Fig. 4.36 are given
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by the MPPHDF with the assumption of knowing which range-range pair correspond-

ing to LOS or multipath signal return. From which, it is shown the MSE error is small

when target is in the LOS region or LOS plus one-bounce region, and becomes larger

when target in one-bounce or two one-bounce area, in addition, the error grows large

when target is in shadowing region.

From Fig. 4.28 to Fig. 4.36, the simulation results demonstrate the MPPHDF

can accurately handle the multiple target tracking problem in urban terrain with the as-

sumption of knowing which rang-range rate corresponding to LOS or multipath signal

return.

Moreover, the simulation results of targets number is shown in Fig. 4.37, which

is the average of 300 Monte Carlo simulations.
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Figure 4.37: Number of targets of two targets moving in the same direction using
modified algorithm.

From Fig. 4.37, it is not hard to see, besides the shadowing region, in most case,

there is no miss tracking.
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4.4.4 Time-varying Number of Targets in Urban Terrain With Path-to-Measurement

Association

Previously, example 1 basically illustrates the MPPHDF can solve fixed targets moving

in same direction. In order to further investigate the performance of MPPHDF, we

consider the following case, when the number of targets are time varying. Assuming

initially (k = 1) there are two ground vehicles, which are moving in the same direction.

Then, at k = 5, a new target born and moves in the opposite direction. Moreover, when

at k = 12, one target dies, and k = 15, another target dies. The road map as well as

the targets trajectory can be found in Fig. 4.38 The target state is denoted by xk =

Figure 4.38: The road map of the test bench urban environment and trajectory of 3
targets.
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[xk, ẋk,yk, ẏk]
T with its position (xk,yk) and velocity (ẋk, ẏk) in Cartesian coordinates

and the measurements are noisy version of rangeCrange-rate measurements.

Each target can swith between the following linear state model

xk = Fkxk−1 +nk. (4.17)

When at time k, the ith model index ϖ (i)
k = 1, which indicates Fk is a NCV model given

by

Fk =



1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


.

When at time k, the ith model index ϖ (i)
k = 2, which indicates Fk is a CT model

represented by

F2 =



1 sin(ω)/ω 0 −(1− cos(ω))/ω

0 cos(ω) 0 −sin(ω)

0 (1− cos(ω))/ω 1 sin(ω)/ω

0 sin(ω) 0 cos(ω)


.

where ω =−2 is the angular turning rate.

Moreover, a third model is needed for the opposite vehicle to make turning,

which is represented by

Fk =



1 sin(ω)/ω 0 −(1− cos(ω))/ω

0 cos(ω) 0 −sin(ω)

0 (1− cos(ω))/ω 1 sin(ω)/ω

0 sin(ω) 0 cos(ω)


.

where ω = 2 is the angular turning rate, vk is assumed to be a zero-mean, white Gaus-
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sian sequence with covariance matrix:

Q = q
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where q = 0.04 is a coefficient determining the process noise intensity. Especially, the

surviving probability is assumed to be 0.95. When implementing MPPHDF, we assign

totally 4500 particles for tracking.

Beside, we assume that there are no spawning but new born target are assumed

to following a Gaussian distribution in the simulation. Besides the clutter random finite

set is considered to be Poisson random finite set, and uniformly distributed in the region

[−50,150]× [−100,50]. Moreover, the clutter density is assumed to be 3.33× 10−4,

which results in an average rate of 10 points per scan. At the end of each iteration, the

target state are estimated by using the standard k-means clustering algorithm.

The simulation result is shown in Fig. 4.39.
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Figure 4.39: Tracking result of time varying targets moving in XY planes using modi-
fied algorithm.

And the simulation results of x-coordinate positions and y-coordinate positions
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separately are shown in Fig. 4.40 and Fig. 4.41.
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Figure 4.40: Tracking result of time vary-
ing targets: x-coordinate position using
modified algorithm.
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Figure 4.41: Tracking result of time vary-
ing targets: y-coordinate position using
modified algorithm.

Besides, the estimation results of x-coordinate velocity and y-coordinate veloc-

ity are shown in Fig. 4.42 and Fig. 4.43.
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Figure 4.42: Tracking result of time vary-
ing targets: x-coordinate velocity using
modified algorithm.
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Figure 4.43: Tracking result of time vary-
ing targets: y-coordinate velocity using
modified algorithm.

The above simulation results from Fig. 4.39 to Fig. 4.43 are given by the MP-

PHDF with the assumption of knowing which range-range pair corresponding to LOS

or multipath signal return. It shows that the MPPHDF provides reasonably accurate

estimation of urban multiple targets tracks with almost free of false tracks. In addition,
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because in the shadowing region, there is no signal return, so the target track is lost

when target enters the shadowing region.

From all the above simulations, it is not hard to see, the MPPHDF can efficiently

overcome the problem brought by time varying number of targets and multiple model.

Moreover, the mean square error (MSE) performance of 100 Monte Carlo sim-

ulation is shown in Fig. 4.44 to Fig. 4.49.

2 3 4 5 6 7 8 9 10 11 12
10

−1

10
0

10
1

10
2

10
3

Time index

M
S

E
 p

os
iti

on
 e

rr
or

 o
f t

ar
ge

t 1
 (

m
et

er
2 )

Figure 4.44: MSE position error of tracking
result of time varying targets: target 1 using
modified algorithm.
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Figure 4.45: MSE velocity error of tracking
result of time varying targets: target 1 using
modified algorithm.
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Figure 4.46: MSE position error of tracking
result of time varying targets: target 2 using
modified algorithm.

7 8 9 10 11 12 13 14 15

10
−0.8

10
−0.7

10
−0.6

Time index

M
S

E
 v

el
oc

ity
 e

rr
or

 o
f t

ar
ge

t 2
 (

m
et

er
2 /s

2 )

Figure 4.47: MSE velocity error of tracking
result of time varying targets: target 2 using
modified algorithm.
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Figure 4.48: MSE position error of tracking
result of time varying targets: target 3 using
modified algorithm.
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Figure 4.49: MSE velocity error of tracking
result of time varying targets: target 3 using
modified algorithm.

The above Monte Carlo simulation results from Fig. 4.44 to Fig. 4.49 are given

by the MPPHDF with the assumption of knowing which range-range pair correspond-

ing to LOS or multipath signal return. From which, it is shown the MSE error is small

when target is in the LOS region or LOS plus one-bounce region, and becomes larger

when target in one-bounce or two one-bounce area, in addition, the error grows larger

when target is in shadowing region. Furthermore, in Fig. 4.46 and 4.47, there is a jump

of MSE error at time k = 12, and the reason is in this case, the target 1 has entered

the shadowing region, the particles in the shadowing region can effect the clustering

for target 3, which makes the MSE error grows larger in this case. Besides, the MSE

error decrease to normal at the next time step. In addition, from Fig. 4.48 and 4.49, the

MSE error grows larger from time k = 10 to k = 14, the reason is that for MPPHDF,

the information of which noisy range-range rate pair corresponding to LOS or multi-

path is lost, moreover, the target is in the one-bounce region, i.e., LOS is not available,

and, measurements from other targets which has the close value can effect the tracking

result, and the MSE decrease to normal when all the other targets die at k = 15.

From Fig. 4.39 to Fig. 4.49, the simulation results demonstrate the MPPHDF

can accurately handle the multiple target tracking problem in urban terrain with the as-
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sumption of knowing which rang-range rate corresponding to LOS or multipath signal

return.

Moreover, the simulation results of targets number is shown in Fig. 4.50, which

is the average of 300 Monte Carlo simulations.
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Figure 4.50: Number of targets of time varying targets using modified algorithm.

From Fig. 4.50, it is not hard to see, besides the shadowing region, in most case,

there is no miss tracking.

55



Chapter 5

Conclusions and Future Work

The tracking performance of conventional tracking systems begins to deteriorate or fail

when they are used for target tracking in the urban environments. As many warfare sce-

narios happen in urban environments, radar tracking systems need to be modified and

improved to maintain their performance in such environment. During the past decade,

lots of research work has been accomplished in the area of target tracking in urban

environments, however, due to computationally intensive brought by conventional data

association techniques as well as the requirement of very strict conditions for efficient

performance, multiple target tracking (MTT) problem in urban environment was not

extensively discussed.

The state-space model for target tracking in urban environment is introduced in

Chapter 2. In urban environments, single state model is not sufficient for describing a

maneuvering target, the more robust state equations are comprised of different maneu-

vering models, i.e., multiple dynamic state models. Based on, a 3-D urban environment

multi-path geometry, we derive the corresponding multiple measurement equations for

different scenarios such as LOS, multi-path, shadowing, and also the clutter model in

urban terrain scenario is presented.

Chapter 3 describe the probability hypothesis density filter (PHDF), which is

based on the theory of random finite sets. Moreover, unlike data association methods, it

can thus be used to estimate the number of targets as well as their corresponding tracks,

when combined with clustering algorithm. The particle filter is used to implement the

PHD due to the additional degrees of nonlinearity in the multipath.

Furthermore, in Chapter 4, the multiple-model estimator is combined with the

PPHDF algorithm to overcome the problems resulted from multiple target state models.

Besides, a modified multi-model multi-target PPHDF is shown to provide the capabil-

ity of automatically and adaptively estimating the measurement types available at each
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time step. Specifically, the new algorithm allows measurement-to-track nonlinearity

associations such that the best matched measurement can be used at each time step,

resulting in improved radar coverage and scene visibility. In addition, numerical sim-

ulations including both two targets moving in the same trajectory and time varying

number of targets moving in same or opposite directions are used to demonstrate the

effectiveness of the multi-model multi-target PPHDF as well as the modified algorithm

in improving tracking performance, both for tracking multiple targets and targets in

clutter.

As we can see from the simulation results, the estimated trajectories of the both

multi-model multi-target PPHDF and modified algorithm are closely match with true

target states. When the target moves from a LOS region to a multipath region or a

shadowing region, the estimated error increases, and the MSE decreases as it travels

back to the LOS region.

In summary, an algorithm named multi-model multi-target PPHDF is proposed

and its performance is investigated. We modified the PPHDF techniques with multi-

ple model estimator, and design the urban measurement model to successfully achieve

multiple target tracking in urban environments.

Our study focus on the general PHDF for multiple target tracking in the urban

environments. The scope of further study on PHDF in multi-target tracking includes.

1. In this thesis, we do not considered the adaptive waveform design for MPPHDF.

In future, the waveform design can be added into the urban MTT problem.

2. In this thesis, the proposed MPPHDF uses the first moment information for es-

timating the target number. However another technique known as CPHD tech-

nique considers higher order information, which is expected to improve the per-

formance of estimating target number.
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