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ABSTRACT

Internet sites that support user-generated content, so-called Web 2.0, have be-

come part of the fabric of everyday life in technologically advanced nations. Users

collectively spend billions of hours consuming and creating content on social net-

working sites, weblogs (blogs), and various other types of sites in the United States

and around the world. Given the fundamentally emotional nature of humans and the

amount of emotional content that appears in Web 2.0 content, it is important to un-

derstand how such websites can affect the emotions of users. This work attempts to

determine whether emotion spreads through an online social network (OSN). To this

end, a method is devised that employs a model based on a general threshold diffusion

model as a classifier to predict the propagation of emotion between users and their

friends in an OSN by way of mood-labeled blog entries. The model generalizes ex-

isting information diffusion models in that the state machine representation of a node

is generalized from being binary to having n-states in order to support n class labels

necessary to model emotional contagion. In the absence of ground truth, the prediction

accuracy of the model is benchmarked with a baseline method that predicts the major-

ity label of a user’s emotion label distribution. The model significantly outperforms

the baseline method in terms of prediction accuracy. The experimental results make a

strong case for the existence of emotional contagion in OSNs in spite of possible alter-

native arguments such confounding influence and homophily, since these alternatives

are likely to have negligible effect in a large dataset or simply do not apply to the do-

main of human emotions. A hybrid manual/automated method to map mood-labeled

blog entries to a set of emotion labels is also presented, which enables the application

of the model to a large set (approximately 900K) of blog entries from LiveJournal.
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Chapter 1

INTRODUCTION

The Worldwide Web—or simply “the Web”—is a real part of modern society as demon-

strated by the widespread availability of the internet, the amount of time people spend

online, the highly interactive nature of “Web 2.0” sites, and the effects such sites can

have on our everyday lives. Currently 240 million people in the United States (77% of

population) have access the internet via fixed sources (cable, DSL, dial-up) [39], spend-

ing an average 32 hours online per month. It is reasonable to suggest that these figures

would be less consequential if the dominant mode of use of the internet were passive

and the content were static, as in the previous era now known as “Web 1.0”. Presently,

user-generated content and interactive websites such as social network sites, real-time

(video) chats, and now-venerable weblogs (blogs)—so-called Web 2.0—the online ex-

perience can be as interactive as experiences in the real world. The shift from static to

dynamic content on the Web has caused a shift in human communication akin to that

of the adoption of the telephone in the early 20th century, and the degree of participa-

tion in this new mode of social interaction underscores this point. There are more than

750 million active users on Facebook, sharing more than one billion pieces of content

every day [17]. The effects of participation in Web 2.0 permeate our lives. Social net-

works help us establish and maintain friendships and social ties not only by supporting

person-to-person communication, but also by providing a personal publisher/subscriber

model that enables users to easily make content available to interested parties en masse.

Other Web 2.0-era sites have wide-ranging effects on our lives. User-submitted reviews

guide our product purchases and use of services. Blogs alter our political opinions and

potentially our voting behavior. The nascent use of mobile internet-enabled devices

promises to further accelerate growth of the number of participants and the degree of

participation in interactive Web use. For example, those who utilize Facebook’s mobile

applications are twice as active as those who use strictly non-mobile platforms[17].
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In spite of the pervasiveness of the Web 2.0 in our lives and the potential impli-

cations for the emotional state of users, there is little scientific knowledge about how it

affects our emotions, directly or indirectly. The proliferation of personal blogs in the

first years of Web 2.0 demonstrated a widespread desire for personal expression by way

of this new medium, from exposition of the mundanities of one’s daily life to outpour-

ings of happiness, sadness, excitement, disappointment, love, and hate. In its many

forms, emotional content clearly played a role in the ascent of the Web as an exten-

sion of society. Given that humans are fundamentally emotional beings, experiencing

all things with and through emotion, it is not hard to imagine that the consumption of

emotional content through online sources could have an impact on the emotions of the

comsumer. Yet to my knowledge, no significant research has been conducted to verify

or refute such a claim.

1.1 Problem Statement

The very real significance of Web 2.0 in our lives, the probable emotional implica-

tions thereof, and the lack of empirical research in examining the resulting emotional

effects on users motivates this work. Due to the popularity of online social networks

such as Facebook, MySpace, and LiveJournal, and the plentiful data provided by these

websites, I restrict the focus of this work to them and attempt to answer the following

question. Do emotions expressed in online social networks have a direct and measur-

able effect on users emotions? In other words, are emotions are measurably contagious

in the context of online social networks?

1.2 Challenges

To determine if emotions are contagious in online social networks, a variety of chal-

lenges must be overcome. A subset of these challenges pertain to research in context

of the Web.
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• Scale. Scale is a challenge for research in a Web context since extremely large

data sets are the norm, and computational costs can be substantial even for effi-

cient algorithms. For example, Facebook currently has over 750 million active

users, MySpace has 125 million users, and Twitter has approximately 106 mil-

lion users. With such enormous user bases come even larger sets of content that

must be reckoned with for a representative study.

• Noise. Web data is rife with noise, which takes two main forms. First is noise

in the form of functional code such as HTML and JavaScript. The second per-

tains to content, specifically in the form of spam and marketing content, or con-

tent that otherwise has no emotional bent. Such content will obscure emotional

contagion.[27].

• Data sources. Data must be acquired from a source that not only manifests emo-

tional contagion, but that is also reasonably convenient to obtain. Data acquisi-

tion may involve difficult tasks such web-crawling and page scraping. Further-

more, some sites such as Facebook limit the extent to which automated crawling

of pages is possible, further complicating the task.

This work in particular involves some additional challenges. To my knowledge

the topic of emotional contagion in online social networks is relatively novel, having

been addressed in only a few studies [46]. Thus solutions must be devised to the fol-

lowing issues.

• Analysis of emotional content in textual data. Direct, consistent, and standard in-

dicators of emotion are generally unavailable in online social networks. Features

of the data that might provide this information must be identified and suitable

techniques to extract it must be applied. Analysis of natural language text is

inherently difficult, and simple solutions are rare. Sentiment analysis techniques
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presented in the literature may be useful, but are generally ineffective for domain-

independent emotional content that is of interest in this work.

• Influence detection. Given a way to detect emotion, how can it be determined that

a user’s emotions are subject to social influence? The topic of social influence

has a fairly rich history in the literature, but it is unclear if existing methods are

applicable to emotional content. If the literature is used as a starting point, the dif-

ficulties posed by homophily and confounding influences must still be overcome.

Homophily is the tendency for similar users to associate with one another—the

“birds of a feather” effect. For instance, it is possible that generally happy users

are naturally drawn to other happy users, making it difficult to discern if one has

affected another’s emotions. Confounding influence is a source of influence as-

sociated with an environment shared by some users in a given network, such as

local or national events, weather, etc [2].

• Lack of ground truth. Given solutions to the challenges listed above, it is impos-

sible to know the true extent to which emotion is contagious, thus limiting the

ability to assess the validity of any methods applied to the task.

1.3 Contributions of This Work

This work makes the following contributions.

• A model is devised to predict emotional influence among users and their friends

in a large online social network using a novel variant of a general threshold model

based on existing work in information diffusion.

• The model is demonstrated by experiment to outperform a baseline model on a

large data set from LiveJournal, demonstrating a likelihood that emotion does

propagate through online social networks.
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• A large set of blog mood labels is mapped to a small set of emotion labels fa-

cilitating sentiment classification of any an arbitrary set of mood-labeled blog

posts.

The next chapter introduces some background and provides a literature review

on information diffusion and sentiment analysis. The following chapter presents the

details and challenges of the problem to be solved and a solution thereto. Finally,

experiments are described in which the performance of the solution is compared with a

baseline method with respect to a set of blog posts from LiveJournal. Critical analysis

and conclusions on the results of the experiments is provided, and possible avenues for

future work on the problem are discussed.
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Chapter 2

BACKGROUND AND RELATED WORK

This work builds on existing work in two areas of research: information diffusion and

sentiment analysis. Information diffusion literature provides some basic models which

can be adapted for the purpose of analyzing how emotion spreads through a network.

Work in sentiment analysis provides methods to classify textual data in terms of emo-

tion. In this chapter I discuss some background and significant publications in these

two areas.

2.1 Information Diffusion and Influence Propagation

As the title suggests, a major portion of this thesis is founded on work in information

diffusion. Information diffusion is a variant of an area of study in the social sciences

called diffusion of innovations, which “seeks to explain how, why, and at what rate

new ideas and technology spread through cultures” [44] and has been applied in the

study of such diverse topics as the practice of boiling to disinfect water by villagers

in Peru and the dominance of QWERTY keyboard layout over the Dvorak layout [36].

Research in diffusion of innovations has spawned various theoretical models, providing

the basis for work in information diffusion, which examines the spread of information

in networks. A sub-area of information diffusion, influence propagation, has come to

prominence more recently and is commonly applied to the marketing domain to study

the process by which new products are adopted in a social network. Marketers use

information diffusion models to maximize the implementation of marketing to increase

the likelihood that commercial products will be widely adopted. Influence propagation

supplies the intuition with which a solution to the problem of emotional contagion can

be developed. The spread of emotions can be thought of as a special case of influence

propagation, thus influence propagation models can be adapted to determine whether or

not emotions propagate in social networks. The literature offers four main approaches

to modeling influence propagation: epidemic model, threshold model, cascade model,
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and game theoretic approach. I discuss the first three models in the following pages.

I forego discussion of the game theoretic approach because a fundamental property

of game theory is motivation of actors to optimize outcomes [18], in contrast to the

subject of this work. An assumption of this work is that the phenomenon of emotional

contagion is not the result of intentional behavior of actors; it is the result of a natural

process of influence.

2.2 Epidemic Model

The approach to influence propagation I discuss first is the epidemic model, which is

based on the cycle of infectious disease in a host. Nodes in a network follow a cycle of

being susceptible (S), infected (I), or recovered (R) (in that order) depending on contact

with infected nodes and the temporal properties of the respective disease. Disease

propagates from from infected to susceptible nodes with a given probability; recovery

(or removal from the network, modeling death) follows infection after a given period of

time elapses[20]. Recovery may be followed by another susceptibility state, depending

on the disease. Use of the term contagious with respect to emotion suggests a natural

similarity between the subject of the hypothesis and general epidemiology. However,

it is questionable whether the S-I-R(-S) pattern applies to emotions to the same extent

that it does to infectious disease, since human emotion does not necessarily follow a

rigid cycle like that of an infectious disease.

2.3 Linear Threshold and Independent Cascade Models

The linear threshold model (LTM) employs a network in the form of a weighted graph

where each node v chooses a threshold θv. Starting with an initial set of active nodes,

the activation function fa (see Definition 2.3.1) is evaluated at discrete time steps. If

fa exceeds θv, v becomes active. With strictly positive real edge weights, fa increases

monotonically, modeling the intuition that as more of v’s friends become active, the

greater the probability that v will become active.
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DEFINITION 2.3.1 Activation Function for LTM. Given node v, v’s active neighbors,

Av, and an edge weight ωw,v mapped to each edge (w,v), the activation function, fa, is

the sum of edge weights between node v and Av.

fa() = ∑
w∈Av

ωw,v

Like LTM, the independent cascade model (ICM), models propagation in dis-

crete time steps using a weighted graph. At a given timestamp an active node v attempts

to influence his inactive neighbor w to become active. w becomes active with a prob-

ability equal to the weight of the link from v to w (without regard to the state of any

other neighbors). If w does not activate, v can make no more attempts to influence w.

2.4 General Threshold Model

A general threshold model (GTM) that generalizes both LTM and ICM is presented

by Kempe et al[21]. To generalize LTM, the activation function is permitted to be

an arbitrary monotone function of the edge weights between v and his neighbors, as

opposed to being strictly linear. To generalize ICM, the authors describe it as a special

case of GTM where the activation function of node v is a constant probability specified

as part of the system.

2.5 Information Diffusion Literature Review

The advent of online social networks, along with the need to understand various pro-

cesses they manifest, has presented scientists with many problems suitable for informa-

tion diffusion techniques. One such problem that has received a lot of attention in recent

years is influence maximization (IM) of word-of-mouth (or viral) marketing. Consider

a network of customers to whom a firm intends to market some product. It is desirable

to maximize the effectiveness of marketing expenditures by targeting the most influen-

tial nodes in the network. Domingos and Richardson introduced the idea of enhancing

marketing strategies with a word-of-mouth approach using probabilistic models of in-

teraction [15, 35]. Kempe et al applied diffusion of innovations theory to the marketing
8



IM problem. They devised a greedy hill-climbing algorithm to a generalization of the

linear threshold model to achieve the first provable performance guarantees of influence

maximization [21]. The literature has been enriched by various attempts to improve on

early work in IM and to address subproblems thereof. Kimura et al devise a method to

rank influential nodes using diffusion data learned from an instance of the independent

cascade model [22]. Chen et al present methods to enhance the speed and efficacy of

the method presented by Kempe et al [21] using a random process and node-degree

heuristics [9]. Other work exploits network modularity, i.e., the presence of communi-

ties within a network, to improve the performance of the greedy hill-climbing approach

[8, 42]. Some research in IM has focused on models of influence not based on ICM

or LTM. Lim et al propose a method to find influential nodes in blog networks based

on the influence of the documents they create as shown by activity elicited from other

nodes[26]. Agarwal et al also tackle the problem of identifying influential nodes by cal-

culating an influence score based on attributes of a node’s blog posts such as novelty,

quantity of in-links, and post length [1].

Some existing work focuses on information diffusion in certain special cases.

Sadikov et al use a k-tree model to estimate properties of a cascade of information, such

as size and depth, where the complete cascade is not observable [37]. Another study

presents a model for diffusion in a dynamic network based on the classic epidemic

model of diffusion [3]. Some networks may contain signed links to depict negative and

positive relationships between nodes. Cai et al use bipartite graphs to model the spread

of influence in a signed network and demonstrate that link sign has a measurable effect

on the nature of influence in a network [7]. Lastly, Kwon et al propose a model of

information diffusion based on implicit as well as explicit links in an online social net-

work [24]. They claim that over 85% of information diffusion in online social networks

actually occurs without explicit links, necessitating models that address this fact.

Information diffusion models have been used to study network epidemics such
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as viruses and rumors. Tripathy et al use the information cascade model as a basis to

examine some methods to combat rumors in social networks [40]. Another study pro-

poses methods to vaccinate networks against epidemics in the context of linear thresh-

old model [25].

As pointed out by Goyal et al [19], most information diffusion models assume

that influence actually exists in social networks; node-to-node influence probabilities

are often modeled as uniform distributions or taken as input parameters rather than be-

ing based on properties of the network under examination. The authors present methods

to calculate influence probabilities based on a log of actions performed by users in the

network. Other work has addressed the problem of determining influence probabilities

by using expectation maximization in the context of the IC model[38].

2.6 Sentiment Analysis

Sentiment analysis—also known as opinion mining—describes the extraction of sub-

jective content from text. User-generated content on the web has fueled much research

in this area as businesses seek to find out what users think of their (or their competi-

tors’) products, political organizations look for ideological trends in the population,

and investors try to gauge trends in the stock market. A prominent thread in opinion

mining research addresses the sentiment classification problem, where machine learn-

ing techniques are used to classify text sentiment as either positive or negative, usually

with respect to a particular domain [27]. This general approach points us in the right

direction for classifying emotional content in OSNs, but does not give us outright the

necessary solution. A significant hurdle to overcome is that the corpus to be classified

is domain-independent. Existing techniques have been used to classify sentiment with

respect to movies and products [33, 28], for example, but have been unsuccessful at

general-domain sentiment classification.

With the rise of applying machine learning techniques to text analysis, as well

as with the availability of large corpi of [labeled] subjective texts from online review
10



sites such as Amazon, Epinions, and IMDB, sentiment analysis and the related areas,

opinion mining and subjectivity analysis, have become very active areas of research

[32]. Pang et al present an early attempt to apply machine learning techniques to the

task of extracting opinions from text. They apply Naive Bayes, entropy maximiza-

tion, and support vector machine to the now-infamous IMDB movie review data set

and assess the relative performance of each method in classifying reviews of movies

as positive or negative. Their work highlights the increased difficulty involved in iden-

tifying sentiment over identifying topics, most likely due to the subtlety with which

sentiment may be expressed in text [33]. Other work in the early 2000’s attempts to ex-

tract sentiment from stock message boards [12], classify product reviews from websites

such as Amazon and Epinions [13, 41], glean product reputations from the web at-large

[29], and identify and classify opinions of news items [43, 45]. A primary challenge

in the literature concerns which features of a text are best suited for classification pur-

poses. Representing documents as merely a collection of its component words, i.e., the

bag-of-words approach, is common due to conceptual and computational simplicity;

it requires minimal preliminary analysis beyond parsing documents into words. Some

research attempts to improve on this method by utilizing parts of speech and phrase-,

sentence-, and document-level level features with varying degrees of success.

An important lesson demonstrated in the existing research in sentiment analysis

is the importance of corpus domain, more specifically, that a classifier trained on one

domain is largely useless for classification of documents in a different domain [32].

Some studies have investigated this problem in detail and have expanded knowledge

and enhanced techniques to overcome it, but a reliable solution remains elusive [4, 34,

23, 6].

Current research in sentiment analysis continues to improve on the basic tech-

niques put forth by early studies, as well as find new applications for them. Paltoglou

and Thelwall report improvements in classification accuracy using variants of TF-IDF
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term weighting along with machine learning techniques [31]. A method to improve

sentiment classification via detection of negation in sentences using conditional ran-

dom field is proposed by Councill et al with favorable performance results [11]. The

popularity of the microblogging site Twitter (www.twitter.com) has elicited numerous

attempts to classify sentiments of “tweets” [30, 14, 5].

Sentiment analysis as a service is a nascent business paradigm. Numerous firms

including as Sysomos (www.sysomos.com), Autonomy (www.autonomy.com), SAS

(www.sas.com), and Corpora (www.corpora.com) now market sentiment analysis fea-

tures in software and services.
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Chapter 3

A DIFFUSION MODEL SOLUTION

The objective of this thesis is to determine whether emotion propagates in online social

networks, but devising a solution to this problem requires overcoming various chal-

lenges. These challenges include the large scale and noise of data from the Web, ex-

traction of emotional content from text, as well as detection of influence propagation

in the presence of other sources of influence such as homophily and confounding in-

fluence. I address these challenges in this chapter. First I discuss how to use diffusion

models to form general framework in which I model emotional propagation contagion.

I then describe...

3.1 Influence Propagation and Emotional Contagion

Existing work in influence propagation provides a natural starting point to tackle the

problem of emotional contagion in online social networks. Specifically, diffusion mod-

els used in the literature provide a framework with which the propagation process in a

large social network can be modeled. I conjecture that the phenomenon of emotional

contagion follows similar rules of social influence as those governing the propagation

of actions such as joining a group or buying a product, albeit with different psychologi-

cal underpinnings. Whereas the latter may be the result of herd mentality, peer pressure,

or pragmatism, the former is likely to be the result of the empathy or sympathy. This

assumption permits leveraging diffusion models for the purpose of modeling emotional

contagion.

3.2 Diffusion Models as Classifiers

In the preceding section, I suggested that diffusion models are generally applicable to

human emotions. Recall that the problem under consideration is whether emotional

contagion exists in online social networks. However, diffusion models are generally

used to examine the nature of propagation in networks given the existence of propaga-
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tion. To overcome this issue, it can be useful to employ a diffusion model as a classifier.

This is done is as follows. First, train the model on a network of bloggers and emotion-

labeled blog entries, i.e., learn the influence probabilities of the network. Second, use

the model to run a diffusion simulation that predicts the emotions of a test set of blog

entries. It should be possible to draw conclusions about the existence of propagation in

the network based on the accuracy of the model’s predictions given that they are based

on a propagation model. That is, if the model has a high rate of accuracy, it follows

that it accurately describes an underlying process of propagation in the network, con-

firming the hypothesis. However, this is where the absence of ground truth becomes

a problem. It is unreasonable to expect that the emotions of all bloggers are subject

to external influence, or that all of any single blogger’s posts are subject to external

influence. Therefore maximizing absolute predictive accuracy is not a valid objective

for the model. In fact, it is unknown what level of accuracy would prove (or refute) the

hypothesis. Therefore I use a baseline prediction method for comparison that permits

drawing stronger conclusions from the results of the diffusion model’s predictions. I

describe the baseline method and the conclusions it supports in detail later in this work.

3.3 Predicting Emotion with a Diffusion Classifier

Having established that there may be a way to employ a diffusion model to test the

hypothesis, I now present some details on the proposed method. Given an online social

network defined as a graph G = (V,E), where V is the set of users and E is the set of

links between the users, there is a set of actions C performed by users in the network.

For sake of example, let C be a set of blog entries. Let S be the set of emotions that

may be expressed in C. Each entry in C maps to exactly one emotion S. T is the

chronologically ordered set of times at which users performed actions. Entries in C are

referenced by a tuple (v, t,s) where v is the user, t ∈ T is the time stamp of the entry, and

s ∈ S is its emotion. A user who has posted a blog entry with emotion s is referred to as

“active” or that she has “activated” with respect to s. Given a blog entry created by user
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v, a diffusion model trained on a set of past blog entries made by v’s friends is be used

to predict the emotion of the current entry. The precise details of the prediction method

is discussed later in this chapter. The key aspect of this method that differentiates it

from most other work in influence propagation is that the objective is to predict a class

label, i.e., an emotion, given an action, not to predict the occurrence of the action itself.

For instance, diffusion models have been used to predict whether some individual will

adopt use of a cellular phone and when that might occur. It is not an assumption of this

work that emotional influence is great enough to spur someone to, say, post a blog entry

in the absence of an existing impetus to do so, although clearly that is a possibility. It

is the opinion of the author that the human desire to express emotion is too complex

for any network-oriented model to predict precisely when such expression might occur.

However, for the purposes of this work I believe it is reasonable to attempt to predict

emotion given an instance of expression and inputs from the network.

To formalize the notion of emotional contagion, the following definition is pro-

vided for Propagation of Emotion.

DEFINITION 3.3.1 Propagation of Emotion. We say that emotion si ∈ S is propagated

from user u to user v iff (i) (v,u) ∈ E; (ii) ∃(u, t,si),(v, t ′,si) ∈C where t < t ′; and (iii)

¬∃(u, t ′′,s j) ∈C where t < t ′′ < t ′.

For emotion to propagate from user u to user v, three conditions must be met.

Condition (i) requires that there must be a link from v to u. I acknowledge the pos-

sibility of emotion propagating between users where no explicit link exists, however

such cases are ignored in this work for simplicity. Condition (ii) says that user u must

perform an action prior to another action with the same emotion performed by user v.

It might also be useful to require that links exist prior to t from condition (ii), if link

timestamp information is available. For many online networks, link timestamps are not

available, so I ignore the possibility that actions kin C occur prior to the creation of
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links in E. Condition (iii) states that propagation can only occur between user u’s most

recent action prior to user v’s action. It is plausible that a action can be influential as

long as it is available for consumption by others. Condition (iii) limits the set of actions

that must be considered to those which are most likely to have influence, i.e., those that

are temporally closest to a future action.

3.4 Selecting a Diffusion Model

Having established why and how diffusion models can be used to examine my hypoth-

esis, I need to discuss which model(s) is (are) most suitable for the task. Four diffusion

models were covereed in Chapter 2: epidemic, linear threshold (LTM), independent

cascade (ICM), and General Threshold (GTM). In this section I review the attributes

and behavior of these models and analyze whether they are applicable and useful to

assess emotional contagion.

3.4.1 Epidemic Model

A fundamental aspect of the epidemic model is the disease infection cycle that it is

intended to simulate. An individual is initially susceptible to the disease, and becomes

infected with a certain probability if she comes into contact with an infected individ-

ual. After the infection period elapses, the individual becomes recovered and perhaps

immune, depending on the disease. If emotional contagion is modeled in this way, it

follows that an emotion is only contagious if an individual is susceptible to it. For in-

stance, when a person is happy, they are not susceptible to the influence of another’s

sadness. While this might be true in some cases, I feel it is too restrictive for an ini-

tial study on the topic of emotional propagation, and leave exploration of the epidemic

model for future work.

3.4.2 General Threshold, Independent Cascade, and Linear Threshold Models

As discussed in Chapter 2, general threshold model (GTM) generalizes both linear

threshold and independent cascade models (LTM and ICM, respectively), so I discuss
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GTM first since its attributes also define the other two models. Part of the intuition

behind GTM is that in a network, a node’s actions are subject to the influence of neigh-

bors given two parameters. The first parameter is edge weight, which models the degree

of influence a neighbor has on a node. One might think of neighbors with high edge

weights as being close friends or relatives, whose influence is stronger than neighbors

with low weights, representing less significant roles in an individual’s social network.

Edge weight is a suitable parameter for this work to the extent that it models a basic

property of human social networks and is likely to be applicable to the emotion domain.

The second parameter is the activation threshold θ that is associated with each node to

model the minimum intensity of influence (from any or all neighbors) required to cause

the node to become active. One might think of this as the amount of peer pressure,

either in terms of the number of friends or the amount of direct pressure, an individual

can sustain before participating in some activity, such as joining a group that her friends

have become members of. Use of edge weights as described above implies use of an

appropriate threshold as a basis for gauging the significance of the influence exerted on

a node by its neighbors.

The other significant element of GTM is the activation function fa which de-

fines key behavior of the the model and differentiates its major subclasses of GTM,

namely LTM and ICM. I examine the properties of variants of the activation function

to determine a suitable implementation for this work.

In all subclasses of GTM, fa is evaluated at discrete time steps and decides

if active neighbors influence a node to become active at a given time stamp. For the

purposes of this work, a node is said to become active when it has expressed some emo-

tion, e.g., by way of a blog entry. Given a node v, fa decides whether v will express the

emotion of active neighbors when she posts her next blog entry. Evaluation at discrete

time steps is suitable for this work since it is only necessary to calculate influence at

the instant a node posts an entry, that is, when emotion needs to be predicted; the value
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of the function at continuous intervals between posts is of no concern.

Another property of fa that must be examined is how it changes with respect

to the set of active neighbors. ICM offers a distinct approach with respect to these

properties. As described in Chapter 2, when a node v becomes active at time t in ICM,

it has one chance to influence its inactive neighbors, that is, to cause them to become

active. If any neighbor w does not become active at time t, v cannot influence w at a

later time. As the name of the model indicates, ICM permits influence to cascade from

a node v to a neighbor w independent of influence from other neighbors of w. This is

useful to model strong ties, where a node can be influenced by a single strongly-tied

neighbor. In contrast to ICM, LTM says that fa decides if v becomes active by summing

the weights of edges to v’s active neighbors. If fa exceeds the threshold, θv, v becomes

active. Defining fa in such a way means that influence is assumed to be collective over

all neighbors of v without specific regard to strong ties. To cover the broadest range

of possible real-world situations without overgeneralizing, I employ a method that not

only considers the collective influence of a node’s neighbors but also emulates strong

ties. If edge weights are learned based on the historical influence of neighbors, it can be

assumed that edges between neighbors with very strong ties, i.e., are highly influential,

will have high weights, while those with weak ties will have low weights. With a

suitable activation function, strong ties will exert appropriate influence regardless of

the activation status of weak ties. However, weak ties may still collectively exer

3.5 Class Labels for Emotional Prediction

If a diffusion model is to be used as a classifier to predict emotion, it is necessary to have

a suitable set of class labels. The domain that is the subject of this work may manifest

the spectrum of human emotion: happiness, sadness, anger, anticipation, disappoint-

ment, etc. However, as demonstrated by work in sentiment analysis, basic subjectivity

is difficult to detect in natural language text, let alone the specific nuances of the myriad

emotional states being expressed. Given this fundamental difficulty it is reasonable to
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use a limited set of labels to represent the emotions expressed in the texts we seek to

analyze. Drawing from the sentiment analysis literature, I reduce the set of emotions

to two categories: negative and positive. Sentiment analysis generally deals with clas-

sification of text regarding a subject or object, such as movies, products, or political

figures, so using negative and positive as class labels is natural and intuitive. I believe

the class labels used in sentiment analysis can be applied to emotion in general based

on a theory from psychology that classifies emotions based on two dimensions: pleas-

ant/unpleasant and calm/excited []. I equate positive with “pleasant” and negative with

“unpleasant” and disregard the the calm/excited dimension for simplicity. This clas-

sification scheme is adequate given the novelty of the problem. If it is demonstrable

that emotion propagates when taken as values on a one-dimensional scale, it is easy to

conduct further study using more emotional dimensions to make a more fine-grained

assessment about emotional contagion.

In addition to the class labels mentioned above, I utilize a third class label,

neutral (to be construed as the midpoint between postive and negative), to classify

text that expresses no discernible emotion or ambiguous or ambivalent emotion. Such

texts constitute noise in the attempt to detect the emotional contagion, but it can be

considered a valid class label as a control variable for my method. If results show that

expressions labeled neutral are as predictable as non-neutral-labeled expressions, it

might indicate that my method is not viable for its intended purpose in this work. t

sufficient influence to cause activation when fa exceeds θv, in a sense modeling the

effect of peer pressure. Due to the nature of the domain of this work, I ignore the

property of ICM that states neighbors have only one chance to influence a node. Instead

I consider the actions of neighbors to have influence within some window of time. This

is reasonable since the subject of this study entails emotional actions such as blog posts

that persist over time and may exert influence for an arbitrary length of time after the

time stamp of the action. For instance, a user may encounter a friend’s blog entry one
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or more days after it was actually written, at which time the influence of the post is still

viable.

3.6 Adapting Diffusion Model for Emotions

Thus far I have discussed various aspects of how a diffusion model can be used to

examine the phenomenon of emotional contagion. However, diffusion models such as

GTM are not useful for this work without some modification. In the following pages I

describe some issues with GTM and solutions thereto.

3.6.1 Nodes as finite state machines

The basic definition of GTM describes node state as binary with respect to a given

action: a node is either active or inactive. Also, in most applications of threshold

models, node activation is progressive, i.e., once a node has become active, it may not

become inactive again. Node state in GTM can be defined as a finite state machine as

shown in Definition 3.6.1 below.

DEFINITION 3.6.1 GTM Node State Machine (with respect to node v)

Σ = {σ(·)}=
{

1 if fa > θv

}
Q = {inactive,active}

q0 = inactive

δ (inactive,1)→ active

F = {active}

The machine has two states as prescribed: inactive, the initial state, and active,

the final state. Node v transitions from inactive to active when fa exceeds the activation

threshold, θv.

The main problem with GTM as can be seen in the model in Definition 3.6.1

is that node state is binary. Recall that in this work, the activation state of a node,

i.e., a user’s emotional state, is expressed with respect to some emotion in the set of
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emotion labels S. For purposes of modeling diffusion of different emotions, binary

activation is clearly insufficient unless |S| = 1. Thus where |S| = n, a node must have

n possible active states to model each possible user emotional state, plus an inactive

state. Relatedly, there must be a transition between each pair of states to model the

fact that emotional contagion is a perpetual process in which emotions are temporary,

and users may experience an arbitrary sequence of emotions over time. This contrasts

cases of social influence where the action under consideration represents a (more or

less) terminal state, such as joining a group. To model emotional contagion with these

requirements, we define a state machine with n active states to generalize the machine

in Definition 3.6.1.

DEFINITION 3.6.2 n-active-state Node State Machine

Σ = {σ(·),τ} where σ(·) =
{

σs if fa(As
v)> θv and argmax

s
( fa(As

v)) = s ∈ S

}
Q = {inactive,qs}, ∀s ∈ S

q0 = inactive

δ (q,σs)→ qs, δ (q,τ)→ inactive, ∀q ∈ Q

F = Q

As in Definition 3.6.1, the n-active state machine defines the alphabet Σ in terms

of a function σ(·) which is in turn defined in terms of the activation function fa. To

model the influence of neighbors with respect to each possible emotion, the activation

function now takes a parameter As
v, the set of a node v’s neighbors that are active with

respect to emotion s. The new function is called the emotion activation function, and

uses the influence probability πv,w mapped to each edge (v,w). The calculation of πv,w

is discussed in detail later in this chapter. The emotion activation function is monotonic

over non-negative values of πv,w, returns a value between 0 and 1, and can be updated

incrementally. Goyal et al provides proofs of these properties [19].
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DEFINITION 3.6.3 Emotion Activation Function.

fa(As
v) = 1− ∏

w∈As
v

1−πv,w

The machine for node v reads a symbol σs whenever emotion s is the dominant

emotion.

DEFINITION 3.6.4 Dominant Emotion. When emotion s ∈ S is dominant for node v,

it means that the activation function fa(As
v) exceeds v’s activation threshold θv and is

greater than fa(As′
v ) for all s′ ∈ {S− s}.

In other words, the intensity of influence of a dominant emotion expressed by

a subset of a v’s active neighbors A′ ⊆ Av is greater than the intensity of any emotion

expressed by any other subset of v’s active neighbors, A′′ ⊆ {Av−A′}. The alphabet

also includes τ , which represents a time window that is the amount of time an active

neighbor is influential.

Each active state qs ∈ Q in Defintion 3.6.2 has a corresponding element in Σ.

qs represents a condition whereby the influence of emotion s was dominant in a previ-

ous time step. A transition is made to qs when σs is read, regardless of current state.

This transition function models the fact that whenever the influence of emotion s is

dominant, the model predicts the user will post a blog entry expressing s, regardless of

any previous entries or absence thereof. When the n-state machine reads τ , a transition

occurs to inactive from any other state. The implications of a transition to inactive is

discussed in more depth later in this chapter.

For direct application in this work, an emotion-oriented state machine is pre-

sented. The emotion-oriented state machine is an instance of the n-active-state machine

with three active states—one for each emotion label we observe: negative (-), positive

(+), and neutral (0).
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DEFINITION 3.6.5 Emotion-Oriented Node State Machine

Σ = {σ(·),τ} where σ(·) =


− if fa(A−v )> θv and argmax

s
( fa(As

v)) =−

+ if fa(A+
v )> θv and argmax

s
( fa(As

v)) = +

0 if fa(A0
v)> θv and argmax

s
( fa(As

v)) = 0


Q = {inactive,q−,q+,q0}

q0 = inactive

δ (q,σ s)→ qs,δ (q,τ)→ inactive, ∀q ∈ Q and ∀σ s ∈ {σ(·)}

F = Q

3.6.2 Modeling Influence Decay

To more accurately reflect real-world user behavior, it is desirable to model influence

decay. Influence decay supports the notion that the influence of an action such as a

blog entry should diminish with time. In online social networks, influence decay may

occur as a result of displacement with more recent content (as in news “feeds”), loss of

relevance, or by time-oriented displays. For instance, consider a blog entry c made by

user w that appears in user v’s blog feed. After some amount of time, it is likely that c

will be displaced in the feed by other blog entries made by w or other friends of v. In

this way c will eventually lose the ability to influence v.

Two possible approaches for modeling influence decay are continuous time and

discrete time. The continuous time approach calculates influence decay as a continuous

function of time, e.g., as exponential decay. That is, the influence probability of an

action decreases continuously with time. The discrete time approach says that influence

probability of an event remains constant for a window of time, τ . Once the time window

has expired, the influence probability becomes zero. Compared to continuous time

model, discrete time approach has some limitations in terms of predictive power for

some variables, but has the advantage of being significantly cheaper to calculate [19].

The disadvantages are irrelevant to our work, so we opt to use discrete time approach.

Discrete-time influence decay is modeled in the node state machine by includ-
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ing τ in the alphabet and a transition to inactive from any other state when τ is read

by the machine. The machine reads τ when the specified time window elapses after

node activation. Recall the example given in the previous paragraph where blog entry

c is made by user w at time t expressing emotion s. Per discrete-time influence decay,

at time t ′ = t + τ , w is no longer active and is removed from As
v. Thus the degree of

influence of s on v decreases, lessening the chance that v will post an entry expressing

s.

3.6.3 Influence Probability as Emotional Agreement

GTM assigns weights edges to model the probability that a node will be influenced to

perform an action by a neighbor. In this work, edge weight πv,w indicates the proba-

bility that a node v will be influenced by a neighbor w in terms of emotion by way of

blog entries. Most existing work on influence propagation assumes edge weights are

given and for experimental purposes, assigns them randomly [19]. Since the objec-

tive of this work is to study a real-world phenomenon, πv,w must reflect the underlying

relationship between a pair of users in the network. It is reasonable to assume that

a pattern of historical influence between a pair of users can be a predictor of future

influence. Therefore πv,w is computed in the following way. Consider a chronologi-

cal sequence of blog entries made by user v and neighbor w. For consecutive entries

where the first is made by w and the second is made by v, record a success if and only

if emotion(v, t ′) = emotion(w, t) where t ′ ≤ t + τ for a nonzero value of τ; record a

failure otherwise. That is, if a blog entry by user v expresses the same emotion as a

previous entry by v’s neighbor w and the two entries are within a given nonzero time

window, it indicates that v has emotional agreement with w. After all entries have been

read, π(v,w) is calculated as the ratio of successful trials to the total number of trials

with respect to each pair of neighbors. Thus π(v,w) expresses the degree to which v

is influenced by w. To avoid overstating influence in cases where multiple entries by v

fall within the influence window of a single act by w, each act by w is permitted to be
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included in exactly one trial.

It should be noted that the method used to compute π(v,w) above is a coarse

heuristic that is not guaranteed to provide a perfect metric of the degree of influence one

user has on another. Any attempt to find such a metric must at minimum conquer with

the age-old scientific problem of distinguishing causation (influence) from correlation.

One way in which the given method may fail is as follows. Consider the sequence of

blog entries in Table 3.1.

t0 v positive
t1 w positive
t2 v positive

Table 3.1: Sequence of blog entries

Assume all entries are posted within the time window τ . The method given

for computing π(v,w) records a success at both time t1 and t2. However, the fact that

user v expressed a positive emotion at t0 suggests that v was already feeling positive

before or at time t1, and w’s emotion had no influence on v at time t2. A stronger case

for the existence of influence might be made if only cases where a user’s emotion is

altered by a neighbor’s emotion are considered. However, it is also feasible that w’s

emotion at time t1 reinforced or enhanced v’s emotion at time t2, influencing her to

express positive emotion. There are innumerable possible cases we can consider that

may either support or contradict any relatively simple computation devised to assess

influence between users. Since the objective of this method is to establish influence

probability but not to directly predict influence, it is reasonable to assume that given a

large enough sample, the various cases average out to a reasonable approximation of

the desired metric.

Assuming that a node may influence another’s emotion, it is interesting to con-

sider whether the strength of influence depends on the actual emotion under consid-
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eration, that is, if node w has more influence on node v, e.g., with respect to negative

emotion than to positive emotion (or vice versa), and specifically what the respective

influence probabilities are. To attempt to answer this question, influence probability is

computed by recording not only whether v agrees with w for a given pair of entries, but

also the emotion of the entries. This is done by counting instances of each possible se-

quential combination (emotion(v, t ′),emotion(w, t)) in a three-by-three confusion-style

matrix called the agreement matrix (see Figure 3.1), where the axes are labeled with the

set of emotion values, the x- and y-axes correspond to emotion(v, t ′) and emotion(w, t),

respectively, and a cell is incremented when the corresponding sequence of sentiments

is encountered.

neg neut pos
neg 0 0 0

neut 0 0 0
pos 0 0 0

Figure 3.1: Agreement Matrix, Mv,w

For example, consider a sequence of entries made by user v and a friend w at

times t ′ and t, respectively. If emotion(w, t) = neutral and emotion(v, t ′) = positive,

the trial is recorded by incrementing Mv,w[2,1]. Successful trials are tallied in the main

diagonal of Mv,w; unsuccessful trials are tallied in all other cells. Influence probabil-

ity with respect to emotion of the influencing action s = emotion(w, t), is defined as

follows.

DEFINITION 3.6.6 Emotion Influence Probability

π
s
v,w =

Mv,w[s,s]

∑
i∈S

Mv,w[i,s]
, where s ∈ S = {negative,neutral, positive}

Definition 3.6.6 divides the number successful trials for a given emotion (on

main diagonal) by the total number of trials where emotion(w, t) = s (columnar sum).
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We can calculate the overall influence probability, i.e, without respect to a particular

emotion, by dividing the sum of all values in the main diagonal by the sum of all values

in the matrix. Many other calculations are possible and may be useful for analyzing

node attributes such as influentiality and influenceability. Investigation of such calcu-

lations is left for future work.

3.7 Baseline Prediction Method

It was previously mentioned that the absence of ground truth regarding the existence

and extent of emotional propagation in online social networks requires a suitable base-

line method to benchmark the predictive accuracy of the proposed method. Since the

problem this work attempts to solve is relatively novel, there are few reliable baselines.

Zafarani et al use a method of computing the “average” sentiment over a sliding time

window to predict propagation with reasonable results [46]. Machine learning tech-

niques such as Naive Bayes Classifiers, Support Vector Machines, and K* are other

possibilities. For ease of computation, a fairly simple baseline method, majority class

prediction, is used in this work as follows. First, compute the distribution of emotion

labels mapped to blog entries by user v. Then, where a prediction is to be made for

user v, predict the majority label from v’s emotion label distribution. This method has

the benefit of controlling for the emotional bias that any particular user may have. For

instance, if user v’s blog entries are all labeled negative, the baseline method predicts

negative and will achieve 100% accuracy. Thus the accuracy of the diffusion clas-

sification method proposed in this work cannot be overstated due to user bias when

compared with the baseline. In the opposite case where user v’s distribution is evenly

divided among the possible emotion labels, the baseline method performs the same as

random prediction, a reasonable lower accuracy bound.

3.8 Algorithms

As with any machine classification method, the solution presented in this work is exe-

cuted in two stages: a training stage and a testing stage. In the training stage influence
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Algorithm 1: Learn Influence Probabilities
input : Blog entry corpus C, user network G = (V,E)
output: a set of agreement matrices M

1 for c ∈C do
2 u← user(c);
3 for v ∈ neighbors (u) do
4 l← lastEntry(v);
5 if timeStamp(l)<timeStamp(c)+τ and checked(l) = FALSE then
6 updateAgreementMatrix(u,v);
7 checked (l)← T RUE;

8 return M

probabilities in the form of agreement matrices are computed for all active pairs of

neighbors. In the testing stage the emotion-oriented diffusion model is applied using

the probabilities from the training stage to make predictions on the emotion labels of

blog entries for users whom the model dictates should be influenced by neighbors. The

algorithms presented address the challenge presented by web scale data by requiring

only pass over the corpus of blog entries each.

3.8.1 Training State: Learning Influence Probabilities

The algorithm used to perform the training stage is shown in Algorithm 1. Using a

training subset of the corpus, the outer loop iterates through blog entries sorted by

ascending time stamp. For each blog entry c made by user v, the algorithm checks all

neighbors of v. If the last blog entry l (if any exists) made by neighbor w has a time

stamp within the time window τ of c, the agreement matrix Mv,w is incremented as

described in Section3.6.3. The algorithm flags l as it is checked to ensure that it is not

used more than once to in the computation of the agreement matrix. Output is a set of

agreement matrices for each pair of neighbors in the network. The training algorithm

is quite efficient for web scale data sets as it requires only a single pass over the corpus

of blog entries. Given a corpus of size n, the time complexity of the training stage is

bounded by the size of the corpus and the maximum node degree of the network d, i.e.,

O(nd).
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3.8.2 Testing Stage: Predicting Emotions

As in the training phase, the outermost loop of testing algorithm iterates over a chrono-

logically sorted set of blog entries from a test subset of the corpus. For each blog entry

c made by user v, the algorithm checks all neighbors of v. If the last blog entry l (if

any exists) made by neighbor w has a time stamp within the time window τ of c, w is

added to As
v, where s is the emotion label of l. The algorithm flags l as it is checked to

ensure that it is not used more than once to in the computation of propagation. After all

neighbors are checked a prediction of the emotion label of c is made in the following

way. First calculate fa(As
v) for all s ∈ S per the definition in Section 3.6.1. Predict

emotion(c) = s if and only if the following are true.

1. fa(As
v)> θv

2. fa(As
v)> fa(As′

v ), ∀s′ ∈ {S− s}

Otherwise, no prediction is made and the trial is discarded. Predictions are

compared with the emotion labels assigned as described in Section 3.9 to assess the

performance of the model. The time complexity of the testing stage is the same as the

training stage, O(nd).

3.9 Mood Labeled Corpus

The method presented thus far assumes there is a corpus of documents such as blog en-

tries where each document is correctly labeled with an emotion label. To the knowledge

of the author, no such corpus exists with the labels proposed for this thesis: positive,

negative, and neutral. Documents in some online social networks consist of completely

unlabeled free-form text (Facebook, Twitter) while those in other networks may be la-

beled with “moods” (LiveJournal, MySpace). Mood labels vary from site to site, but

usually consist of mood-oriented words or short phrases a user selects from a list, os-

tensibly to express her mood, i.e., emotional state, when the document was created. In
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Algorithm 2: Predict Emotion Labels
input : Blog entry corpus C, user network G = (V,E), a set of agreement matrices M
output: a set of emotion predictions, P

1 P← /0;
2 for c ∈C do
3 u← user(c);
4 for v ∈ neighbors (u) do
5 l← lastEntry(v);
6 if timeStamp(l)<timeStamp(c)+τ and checked(l) = FALSE then
7 switch emotion(l) do
8 case negative
9 add w to A−v ;

10 case positive
11 add w to A+

v ;

12 case neutral
13 add w to A0

v ;

14 checked (l)← T RUE;

15 add predict(c) to P;

16 return P

some cases mood labels consist of arbitrary text input by the user. Whether or not mood

labels are available, natural language processing and machine learning techniques may

be used to analyze complete documents and assign emotion labels. However, as men-

tioned in Chapter 2, current research suggests that existing methods are inadequate for

classifying the emotion of domain-independent text. Unless this study is limited to

documents relevant to a specific domain, for example movies, music, or particular con-

sumer products, it is unclear that existing methods will classify the document emotion

with reasonable accuracy. On the other hand, if it is assumed that a set of mood labels

are mapped to the documents in the corpus, the emotion labeling task becomes simpler

and potentially more accurate. With the additional assumption that a mood label reflects

the sentiment of its respective document, mood labels can be used as a stepping stone

between document content and sentiment labels. Since most mood labels belong to a

relatively small set of words and short phrases, our sentiment labeling task is reduced

in scale from the cardinality of the set of documents in the corpus to the cardinality
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of the set of mood labels mapped to the set of documents, which could be a reduction

of a few orders of magnitude. Even more significant is the reduction in computational

complexity. Instead of analyzing the text of an entire document of arbitrary length to

extract sentiment-oriented content, at most a single sentence and at least a single word

or emoticon must be analyzed. Given these benefits, I assume that documents in the

corpus are mapped to mood labels. Note that this assumption does not limit the ability

to map sentiment labels to a non-mood-labeled corpus. It would simply be necessary

to perform an additional step to extract implicit mood labels for each document, then

proceed with the labeling methods we present in this work.

Assuming that documents in the corpus are labeled with moods is very conve-

nient for the emotion labeling task, but there is another reason to restrict this work to

such a corpus. A corpus that is limited to documents with mood labels should, to some

extent, be filtered for noise, where noise consists of documents that have little or no

emotional content. Clearly having a mood label does not guarantee that a document

contains emotional content, nor does the absence of a mood label guarantee that it does

not. However, it is reasonable to assume that the presence of a mood label increases

the likelihood that a document will have an emotional bent, and constitutes a viable

heuristic for corpus noise reduction.

3.10 Methods for Mapping Moods Labels to Emotion Labels

There are various methods that can be employed to map mood labels to the set of emo-

tion labels used in this work, including applications of Normalized Google Distance

or SentiWordNet, as well as manual assignment. In the following pages I discuss how

these methods could be applied and qualitatively assess which is the most suitable for

this work.
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3.10.1 Normalized Google Distance

Normalized Google Distance (NGD) is a method to quantify the similarity between two

terms by using results from queries to the Google search engine[10]. Some research

suggests that a sentiment polarity label can be assigned to any term in the following

way. First, select a pair of terms that reflect polar opposite sentiments to define the

negative and positive poles. These terms are called the “anchors”. For instance, we

might pick “good” and “bad” for the positive and negative poles, respectively. Next,

calculate NGD between a term w and each of the anchors. Third, map w to the po-

larity of the anchor term with which w has the smaller NGD value. For instance, if

NGD is smaller between w and “good” than w and “bad”, we say that e is “good”.

However, in preliminary experiments we found NGD metrics used in this way to be

unpredictable and inconsistent for sentiment polarity classification. For instance, using

“happy” and “sad” as anchors, this method yielded counterintuitive results by mapping

“mellow”, “amused”, “hopeful”, “cheerful”, and “optimistic” to the negative pole and

“intimidated”, “stressed”, “sore”, “anxious”, and “disappointed” to the positive pole.

3.10.2 SentiWordNet

A second method for emotion labeling is to use a term sentiment database like Senti-

Wordnet [16]. The database must simply be queried using a mood label as the search

term, and the database returns a pair of numeric values indicating the degree of negative

and positive sentiment the queried term represents. SentiWordnet is easy to use and has

the potential be a useful tool for providing sentiment labels, it is not without drawbacks.

The SentiWordnet lexicon is based on the WordNet lexicon, which is a subset of entries

from a dictionary. As such, it should be possible to acquire sentiment labels for a sig-

nificant subset of mood labels in the corpus. But clearly SentiWordnet is not suitable

for labeling terms that are not normally found in a dictionary, such as multi-word ex-

pressions, misspelled words, nonsensical text, and emoticons, or terms that are simply
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omitted from the WordNet lexicon. Any term not listed in the database would have to

be labeled by some other method. Also, SentiWordnet is not a deterministic classifica-

tion tool, and terms for which SentiWordnet yields ambiguous polarity values require

additional processing. Furthermore, like a dictionary, SentiWordNet contains multiple

entries for many words to support different word senses. In order to acquire polarity

labels for words with more than one entry, either word-sense disambiguation must be

used—a nontrivial task—or somehow the classifications of multiple entries must be

aggregated, e.g., by taking the arithmetic mean. The former strategy is undesirable due

to complexity, the latter due to the arbitrariness of applying mathematical calculations

to the imprecise metric that SentiWordnet provides.

3.10.3 Manual Labeling

The last method considered for emotion labeling is a manual process, which has both

advantages and disadvantages. The disadvantages are that manual labeling can be too

subjective if not performed by a sufficient number of judges, is limited by the expertise

of the judges, and can be time-consuming. A significant advantage is that almost any

mood label can be interpreted in terms of emotions reasonably well (preferably by a na-

tive speaker of the respective language) if it has any clear meaning at all. Furthermore,

it is possible to map a large portion of a typical corpus to a relatively small number of

mood labels. For example, from a sample of 942K LiveJournal blog entries, there are

43K unique mood labels after some preprocessing. The top 200 most common mood

labels map to over 90% of the blog posts. It is reasonable in terms of time and effort to

label 200 mood labels by hand in order to yield around 850K entries for experimenta-

tion, so this is the option I choose. Manual labeling is complemented by comparing the

manually assigned labels with labels from SentiWordNet, where possible, and resolv-

ing contradictions through manual analysis.
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Chapter 4

EXPERIMENTS

To test the hypothesis of emotional contagion using the solution described in the pre-

vious chapter, experiments are carried out using a data set from LiveJournal. In this

chapter, the data set, preprocessing method, and experimental set up are discussed.

4.1 Data Set: LiveJournal

LiveJournal 1 provides a set of data that is well-suited for this work. It is a web site

for personal blogging that incorporates features of social networking by supporting

“friendship” between users. A large sample of blog entries serves as the corpus for

this work and the friendship links between posting users are used to create the network

graph. LiveJournal supports labeling blog entries with a “mood”, which are used to

assign emotion labels to entries, enabling execution of the solution described in the

previous chapter to ascertain whether emotional contagion occurs.

4.2 Preprocessing

The raw data set used for this work comprises 5 million LiveJournal blog entries from

the Spinner3r weblog data set used for ICWSM 2009 2. This data set contains URLs

and the textual body of blog entries among other data, but lacks two key data points for

this study: mood labels (henceforth, simply “moods”) and posting date. The HTML of

each entry was “scraped” to acquire the missing data points. Entries for which moods

or posting date was either absent or unobtainable were removed from the corpus. This

step eliminated about 75% of the original data set, primarily due to the absence of

moods. Entries made by users with no active friends, i.e., friends whose entries were

unavailable in the Spinn3r data set, were also removed. Lastly all entries dated prior to

1/1/2008 and after 9/30/2008 were removed.

The initial set of 50K unique moods in the data set was filtered and processed
1www.livejournal.com
2http://www.icwsm.org/2009
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to homogenize the corpus and maximize labeling coverage. First extraneous punctu-

ation was removed, such as quotation marks and parentheses, as well as leading and

trailing spaces, taking care not to destroy emoticon strings composed partially or en-

tirely of punctuation characters. Since users employ nearly infinite variation when

creating moods, this step required several iterations to identify the numerous ways in

which meaningful words were obscured. Next all examples were removed that con-

tained moods consisting primarily of characters in non-Latin character sets (Cyrillic

was quite common) by inspecting character value ranges. 43K unique moods remained

after these processing steps.

Emotion labels were manually assigned to approximately 1200 moods that ap-

peared ten or more times in the filtered set, which covered 94% of entries in the corpus.

From the remaining unlabeled moods, about 60 common words were identified that

appeared as initial words of multi-word moods that did not alter the overall emotion of

the mood. Examples include emphasis words such as “absolutely” and “much”, stop-

words such as “the” and “from”, and other modifiers such as “generally”, “kind of”,

and “still”. These words were removed, enabling assignment of emotion labels to many

more instances where the remaining text matched moods that were mapped to emotion

labels in the manual labeling step. Negation with “not” was examined as a possible

means of expanding the set of labeled moods, but surprisingly such constructions were

not prevalent in the corpus.

Last, polarity conjunction was used to process unlabeled moods consisting of

conjunctions, that is, those that consisted of two sub-expressions joined with “and”,

“&”, or “but”. enabling assignment of existing labels to previously unlabeled moods.

DEFINITION 4.2.1 Polarity Conjunction. The polarity of an expression in the form

mi+w+m j, where mi and m j are emotion-labeled sub-expressions with respective po-

larities si,s j ∈{negative,neutral, positive}, and w is a conjunction word in {and,&,but},
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is evaluated according to the following rules:

(i) si + s j = s j + si Commutativity

(ii) si + si = si Identity

(iii) si + s j = si, where p j = neutral Neutral Conjunction

(iv) si + s j = NEUTRAL, where si 6= s j and si,s j 6= NEUTRAL Cancellation

Polarity conjunction permitted labeling of a reasonable amount of additional

moods without overly subtle or complicated linguistic analysis. After applying polarity

conjunction analysis to unlabeled moods, 97% coverage of the corpus of blog entries

was achieved. The top 25 mood labels for each emotion label by frequency in the

corpus are shown in Table4.1. The distribution of mood labels in the corpus is the

following: negative, 39%; positive, 48%; neutral, 13%.

negative aggravated, angry, annoyed, anxious, blah, blank, bored, confused,
cranky, crappy, crushed, cry, depressed, disappointed, drained, ex-
hausted, frustrated, nervous, nostalgic, pissed off, sad, sleepy, stressed,
tired, worried

positive accomplished, amused, artistic, awake, bouncy, calm, cheerful, chip-
per, contemplative, content, crazy, creative, curious, determined, ec-
static, excited, good, happy, hopeful, okay, optimistic, pleased, relaxed,
thoughtful, Very good

neutral busy, cold, devious, ditzy, dorky, drunk, flirty, full, geeky, high, horny,
hot, hungry, indescribable, mischievous, More emotions, naughty, nau-
seated, nerdy, Normal, sick, sore, thirsty, weird, working

Table 4.1: Top Mood Labels by Emotion

4.3 Experimental Parameters

The model takes two parameters: τ , the time window for influence propagation (also for

node deactivation), and θ , the node activation threshold. To obtain a suitably broad set

of results from my experiments, a reasonably wide range of values for each parameter
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was selected, and iterated trials over each combination of values. The minimum interval

between blog entry dates in the corpus is one day. I use a two-day increment for τ over

a range of 1 to 27 days. Since θ is a probability threshold, its valid range is [0-1].

A range of [0-0.9] in increments of 0.1 is used since no activation probability can be

greater than 1.

4.4 Cross Validation

To provide reliable results, it is useful to use k-fold cross-validation when conducting

experiments that employ training and testing a model. 10-fold cross validation was

run on the model in this work. Typically, the initial step of cross validation involves

dividing the set of experimental data randomly into k sets of equal size. Since the

data is a chronologically ordered set and must remain ordered for the model to work

properly, a slightly different approach must be taken to divide the data into sets. Instead

of randomly partitioning the data, the ordered set is simply divided into k subsets of

chronologically ordered instances where no subset overlaps another in terms of time

stamp. The model is trained on each possible set of nine subsets (in order) and tested

on the respective remaining subset. This process is applied over the 140 parameter

combinations for a total of 1400 iterations of the model.

4.5 Output

The output of the experiments consists of a record of a trial for each blog entry in the

“test” subset of the corpus. The actual emotion label for the entry and the values of f s
a

calculated as of the time stamp associated with the entry are stored. This data is pre-

liminary as it respects the time window parameter but not the threshold parameter. The

emotion label for the entry is predicted by applying the threshold parameter in a second

step. The performance metric of the model is prediction accuracy, accM
v , represented

as the ratio of correct predictions to the total number of predictions with respect to user

v. The accuracy of the model’s predictions is benchmarked with a baseline prediction

method. The baseline method computes the label assigned to a majority of entries made
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by user v, and always predicts that label for v’s entries. If all labels occur with the same

frequency in v’s entries, baseline accuracy for v, accH0
v , is set at chance, i.e., 1/3.
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Chapter 5

EXPERIMENTAL RESULTS

In this chapter, experimental results are discussed. First an overview of the results is

presented, followed by a discussion of some trends in the data, and finally a critical

analysis of the results.

5.1 Overview

To analyze the performance of the model with respect to baseline, marginal accuracy

∆v is a primary metric.

DEFINITION 5.1.1 Marginal Accuracy, ∆v.

∆v = accM
v −accH0

v , v ∈V

The marginal accuracy is simply the difference between the predictive accuracy

of the model and the baseline with respect to given user. Table 5.1 displays a summary

of selected results. For each set of parameters, the metrics are split into two sets: one

for users where ∆v is positive, i.e., the model outperforms the baseline, and another

where ∆v is negative, i.e., the baseline does better. Each set contains the percentage of

users and average ∆v for the respective category. A count of the users where ∆v = 0

is also included. The results reveal that the model’s predictions are significantly better

than baseline, as shown by the improvement margin.

DEFINITION 5.1.2 Improvement Margin. The improvement margin is the difference

between the fraction of total users where ∆v > 0 and the fraction of users where ∆v < 0

for a given set of experimental parameters.

The improvement margin is 9% in the worst case (where θ = 0.0 and τ = 1) and

40% (where θ = 0.9 and τ = 3) in the best. Furthermore, in all cases the magnitude
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Parameters Users ∆v > 0 ∆v < 0
θ τ All ∆v 6= 0 % ∆v % ∆v

0.0 1 10827 5696 31 0.52402 22 -0.42687
0.0 3 14181 7902 37 0.38236 19 -0.28899
0.0 5 14730 8276 37 0.35799 19 -0.25062
0.0 7 14918 8416 37 0.34282 19 -0.23217
0.0 15 15108 8361 35 0.33012 20 -0.20449
0.0 21 15142 8286 34 0.33166 21 -0.20015
0.0 27 15160 8231 33 0.33287 21 -0.19923
0.3 1 10447 5017 33 0.51980 15 -0.45265
0.3 3 13952 7275 38 0.38504 14 -0.29641
0.3 5 14535 7688 39 0.36071 14 -0.25039
0.3 7 14735 7842 38 0.34504 15 -0.22850
0.3 15 14938 7826 36 0.33138 16 -0.19671
0.3 21 14974 7742 35 0.33372 17 -0.19221
0.3 27 14992 7701 34 0.33472 17 -0.19147
0.6 1 7592 2794 33 0.59850 4 -0.48867
0.6 3 11269 5028 41 0.45528 4 -0.25856
0.6 5 12060 5517 41 0.42633 5 -0.21327
0.6 7 12362 5685 40 0.41320 6 -0.18580
0.6 15 12743 5806 38 0.39349 8 -0.16674
0.6 21 12812 5756 37 0.39158 8 -0.16476
0.6 27 12849 5726 36 0.39092 9 -0.16470
0.9 1 5260 1856 35 0.74070 0 -0.43862
0.9 3 9155 3826 41 0.58332 1 -0.21223
0.9 5 10109 4335 41 0.54692 2 -0.18339
0.9 7 10486 4522 40 0.52574 3 -0.17459
0.9 15 10995 4684 38 0.49525 4 -0.18006
0.9 21 11093 4641 37 0.49585 5 -0.18468
0.9 27 11135 4637 36 0.49466 5 -0.18352

Table 5.1: Marginal Accuracy, Model vs. Baseline

of ∆v is greater where ∆v > 0 than where ∆v < 0 by a margin ranging from 0.06715

(where θ = 0.3 and τ = 1) to 0.37109 (where θ = 0.9 and τ = 3).

5.2 Trends

Some trends are observable in the results with regard to the effect of the experimental

parameters on model performance. As Figure 5.1 shows, the improvement margin

generally increases as τ decreases. This trend supports one of the premises of the

model, that of influence decay. Recall that τ is the time window in which user v’s
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entry must follow an entry by her friend u in order to be considered to have been

influenced by u. If influence decays with time, it is expected that u’s newer entries,

i.e., those within a smaller time window of a subsequent entry by v, will yield better

predictive accuracy and u’s older entries, i.e, those within a longer time window, will

yield worse accuracy. This intuition is supported by the results. However, where θ <

0.7, improvement margin decreases from τ = 3 to τ = 1. It is reasonable to attribute

this to the need for a minimum amount of time to pass (perhaps one to two days) before

influence is propagated from one u to v, if for no other reason than that it takes v some

time to actually browse her friends’ entries, for instance.

Another trend is the effect of propagation threshold, θ , on the improvement

margin. Specifically, the model’s accuracy improves when θ increases, particularly

where θ ranges from 0.3 to 0.5. This relationship is a desirable result of thresholding

in influence propagation models, and demonstrates the suitability of such models for

the purpose of this work. If the model’s performance did not respond (or responded

unpredictably) to changes in θ , it would indicate that either the function that describes

the behavior of user v is not monotonic with respect to link weights as determined by

past agreement between v and her friends, or that v is generally unpredictable. Neither

of these undesirable cases seem to apply in this work.

5.3 Analysis

While the model clearly outperforms the baseline prediction method, whether or not

this outcome supports my hypothesis that emotional contagion exists in online social

networks must be considered. First, consider what baseline performance means. As de-

scribed in Chapter 3, baseline performs with chance-level accuracy at worst and 100%

accuracy at best. Since overall, the model always outperforms baseline, clearly it is

at least more accurate than random prediction. With optimal parameter values, the

model gives a 40% improvement margin over baseline predictions. Considering that

the baseline uses a static probability distribution to predict v’s emotion, specifically the
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Figure 5.1: Improvement Margin over all parameter values

distribution of emotions actually expressed by v, the strength of the model becomes

clearer. The model uses static weights that respect each emotion label and are based on

historical agreement between v and each of her friends. These weights are only brought

to bear for prediction if the respective friend has expressed some emotion within a slid-

ing time window of a new entry made by v. The fact a model which predicts a user’s

emotion based essentially on prior activity of her friends outperforms a model which

makes predictions based on that user’s own activity makes a fairly persuasive case in

support of the hypothesis.

Even though the model performs significantly better than baseline, there exist

other arguments that may be used to contradict the claim that emotions propagate in

online social networks. One such argument is that of confounding influences. Con-

founding influence refers to an external context that may influence parties who share

that context. For instance, people in a particular geographic region may simultaneously

experience depression during a long, dreary winter. In theory, such an influence could
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affect the results of a study like this one by causing temporal colocation of emotions

among friends. Intuitively, it seems likely that confounding factors occasionally exert

influence in this way. However, on a large scale, such as among the set of thousands

of users and blog entries this work considers, it is highly improbable that confounding

influence has a significant effect on the model’s ability to predict emotion.

Another argument against the existence influence propagation is homophily.

That is, the predictability of user v’s emotions using the emotions of her friends can

be explained as a result of existing similarities between v and her friends, instead of

as a result of actual influence of v’s friend’s emotions on her. A fair amount of re-

search addresses the topic of homophily and influence, providing various methods to

differentiate the two phenomena and making differing claims about the extent to which

influence actually exists in online social networks with respect to various behaviors.

Instead of relying on complex methods to support or refute the existence of emotional

contagion, an intuitive argument is offered here. Excluding the minority of clinically

depressed and chronically cheerful individuals, the nature of human emotional states

is fluid and changeable. It is reasonable to assert that the average person experiences

a range of emotions and moods over a sufficiently long period of time. By virtue of

the general variability of human emotions, I suggest that homophily is, on the whole,

irrelevant to the hypothesis of this work.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Motivated by the pervasiveness and, moreover, the importance of social networking

sites in our lives in the Web 2.0 era, this work attempted to determine whether emotion

spreads through an online social network in order to ascertain whether use of Web 2.0

sites has a real effect on the emotional lives of users. A method was presented which

employed as a classifier a novel variant of a diffusion model to predict the emotions of

a large set of blog entries based on the emotions expressed in a user’s friends’ blog en-

tries. The model presented generalizes existing information diffusion models in that the

state machine representation of a node is generalized from being binary to having n ac-

tivation states in order to support an arbitrary set of labels to model emotion diffusion.

The model’s predictions were compared with a baseline method that always predicts

the majority label in a given user’s emotion label distribution. The model significantly

outperformed the baseline method in terms of prediction accuracy. The experimental

results presented make a strong case for the existence of emotional contagion in online

social networks in spite of possible alternative arguments such confounding influence

and homophily, since these alternatives are likely to have negligible effect in a large

dataset or simply do not apply to the domain of human emotion. Also presented was

a hybrid manual/automated method to classify mood-labeled blog entries as positive,

negative, neutral which enables the application of the model to a large set (approxi-

mately 900K) of blog entries from LiveJournal.

Devising a solution to the problem of detecting emotional contagion required

overcoming certain challenges. The domain of Web data introduced issues of large

scale, noise, and data set selection and availability. The challenge of Web-scale data

was overcome by efficient algorithms which required only two passes over the corpus

of blog entries. By using an available set of mood-labeled blog entries from LiveJour-

nal, the issues of noise and data set selection were both minimized. By comparing the
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predictions of a diffusion model using a good baseline method, it was possible to make

reasonable claims about the existence of emotional contagion in the face of other pos-

sible explanations such as homophily and confounding influence. The mood-labeled

blog corpus also greatly simplified the emotion classification problem by reducing the

set and size of texts to be analyzed.

This thesis makes several contributions to the the field. First, the use of an infor-

mation diffusion model in the emotion domain is novel and may open up new avenues

of research in social network analysis. Second, a novel variant of a threshold diffu-

sion model generalizes node state to support n-class node activation labels (as opposed

to existing models with binary nodes). Third, emotion labels (negative, positive, or

neutral) were mapped to a large set of mood-oriented words and phrases that could be

used in future research in emotion analysis. Last, a strong likelihood that emotional

contagion actually occurs in online social networks was empirically demonstrated.

The work presented in this thesis paves the way for further work in several

directions. First, it would be interesting to apply the presented method to other sets of

data, for instance from other social networks, to ascertain if the results of this work were

anomalous or reflect a general trend of emotion diffusion in social networks. Second,

it is useful to study the attributes of users in the LiveJournal network or other networks

to examine the roles that dominance of influential users and subordinance of easily-

influenced users play in the diffusion of emotions. Another possible line of research

concerns the trends in the improvement margin, as mentioned in the previous chapter.

In particular, it would be interesting to find out why the model’s improvement over

baseline inflects at certain parameter values.
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