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ABSTRACT  

A method for evaluating the integrity of geosynthetic elements of a waste containment 

system subject to seismic loading is developed using a large strain finite difference 

numerical computer program. The method accounts for the effect of interaction between 

the geosynthetic elements and the overlying waste on seismic response and allows for 

explicit calculation of forces and strains in the geosynthetic elements.  Based upon 

comparison of numerical results to experimental data, an elastic-perfectly plastic 

interface model is demonstrated to adequately reproduce the cyclic behavior of typical 

geomembrane-geotextile and geomembrane-geomembrane interfaces provided the 

appropriate interface properties are used.  New constitutive models are developed for the 

in-plane cyclic shear behavior of textured geomembrane/geosynthetic clay liner 

(GMX/GCL) interfaces and GCLs. The GMX/GCL model is an empirical model and the 

GCL model is a kinematic hardening, isotropic softening multi yield surface plasticity 

model. Both new models allows for degradation in the cyclic shear resistance from a peak 

to a large displacement shear strength. 

 The ability of the finite difference model to predict forces and strains in a 

geosynthetic element modeled as a beam element with zero moment of inertia 

sandwiched between two interface elements is demonstrated using hypothetical models of 

a heap leach pad and two typical landfill configurations.  The numerical model is then 

used to conduct back analyses of the performance of two lined municipal solid waste 

(MSW) landfills subjected to strong ground motions in the Northridge earthquake.  The 

modulus reduction “backbone curve” employed with the Masing criterion and 2% 

Rayleigh damping to model the cyclic behavior of MSW was established by back-

analysis of the response of the Operating Industries Inc. landfill to five different 
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earthquakes, three small magnitude nearby events and two larger magnitude distant 

events.  The numerical back analysis was able to predict the tears observed in the 

Chiquita Canyon Landfill liner system after the earthquake if strain concentrations due to 

seams and scratches in the geomembrane are taken into account.  The apparent good 

performance of the Lopez Canyon landfill geomembrane and the observed tension in the 

overlying geotextile after the Northridge event was also successfully predicted using the 

numerical model.  
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CHAPTER 1  INTRODUCTION 

1.1 Introduction 

Landfills, sites for the disposal of waste materials by burial, are considered the oldest 

form of waste treatment. Landfilling has long been the most common method of waste 

disposal and remains so in most places around the world. In 1997, the United States has 

3,091 active landfills and over 10,000 old municipal landfills, according to the 

Environmental Protection Agency (EPA website: http://www.epa.gov/).  

Modern sanitary landfills are different from old unengineered, unlined dump sites. 

Landfills for solid wastes disposal nowadays are required to meet very stringent federal 

and state standards to protect public health and the environment. In the United States, 

these standards have been established under the Resource Conservation and Recovery 

Act (RCRA), initially promulgated in 1970. RCRA governs the location, design, 

construction, operation, and final closure of the landfills. RCRA sets minimum standards 

for landfills in the United States.  In addition to RCRA requirements, landfills must meet 

any additional state requirements. Solid waste landfills, regulated under Subtitle C of 

RCRA (for hazardous wastes) and Subtitle D of RCRA (for municipal solid wastes), must 

be lined, at a minimum, with single composite or double liners, depending on the type of 

waste, and a leachate collection and removal system above and between the liners.  

On October 9, 1993, the current version of the RCRA Subtitle D regulations (40 

CPR Part 258) went into effect. These regulations are applicable to new or lateral 

expansion of existing municipal solid waste (MSW) landfills, including the entire waste 

containment system, liners, leachate collection systems, and surface water control 

systems. Section 258.14 of the subtitle D regulations identifies areas where seismic 
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analysis and design is required; deemed seismic impact zones are based on earthquake 

probability maps prepared by the United States Geological Survey (USGS). Seismic 

impact zones are defined in subtitle D regulations as those regions having peak ground 

acceleration (PGA) in bedrock exceeding 0.1 g with a 90% probability of not being 

exceeded over a 250 year time period. Within seismic impact zones, the regulations 

require that the waste containment system for new MSW landfills and for lateral 

expansions of existing MSW landfills be designed to resist the maximum horizontal 

acceleration (MHA). The MHA is defined as the maximum expected horizontal 

acceleration either depicted on a seismic hazard map with a 90 percent probability of not 

being exceeded in 250 years (i.e. the USGS maps prepared under the National 

Earthquake Hazard Reduction Program) or based upon a site-specific seismic risk 

assessment. The 2008 seismic hazard map for the peak ground acceleration in bedrock 

with a 90 percent probability of not being exceeded in 250 years from the National 

Earthquake Hazard Reduction Program is presented in Figure 1-1. The seismic impact 

zones, areas on the map with a PGA of 0.1g and higher (darker colors); encompass nearly 

half of the continental United States.  
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Figure 1-1 Seismic hazard map with a 90 percent probability of not being exceeded in 250 years 

(source: www.USGS.org) 

1.2 Background and Motivation 

Except in areas of very low seismicity, seismic design of landfill liner systems is 

typically based on a Newmark-type seismic displacement analysis (Bray et al. 1998).  

While engineers may sometimes assume that a Newmark analysis provides a realistic 

assessment of cumulative permanent seismic deformation, among engineers with 

expertise in seismic design the displacement calculated in a Newmark analysis is 

generally recognized as merely an index of seismic performance (Augello et al. 1995; 

Matasovic et al. 1995). The calculated seismic displacement is used to evaluate the 

potential for damage to geosynthetic elements of landfill containment systems 

quantitatively based upon correlation with observed performance of landfills in 
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earthquakes (Anderson and Kavazanjian 1995; Kavazanjian et al. 1998). This type of 

analyses ignores the stresses and strains that may develop in the liner system.  

The effectiveness of geomembrane and geosynthetic clay liner (GCL) barriers in 

landfill liner systems can be threatened by the development of tensile stresses (or strains) 

beyond the tensile capacity of these geosynthetic elements. Current landfill design 

practice does not explicitly consider the development of tension in these containment 

system elements, despite analyses and field observations indicating that tensile stresses 

induced by seismic loading can exceed the tensile strength of these materials (Anderson 

and Kavazanjian 1995; Augello et al. 1995 and Dixon and Jones 2005). Threats to the 

integrity of geosynthetic elements of waste containment systems are exacerbated by the 

fact that damage to these elements may be hidden beneath the waste, with no surface 

expression to alert the engineer, operator, owner, or regulator to the problem. One 

mechanism of integrity failure of a geosynthetic liner system due to seismic loading is 

illustrated in Figure 1-2.  
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Figure 1-2 Mechanisms of local side slope integrity failure due to seismic loading 

Figure 1-3 is a picture of damage to the exposed portion of the liner system at the 

Chiquita Canyon landfill after 1994 Northridge earthquake. Several tears in the exposed 

liner at this facility started at or near anchor trenches. While there was no surface 

evidence tears in the liner beneath the waste, excavation many years later for lateral 

expansion of the liner system are reported to have revealed another tear in the 

geomembrane beneath the waste further down the slope (personnel communication, 

Edward Kavazanjian, Jr.). This case history illustrates the concern about stresses 

developed in the liner system due to seismic loading that can threaten the effectiveness of 

the liner system after an earthquake.  
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Figure 1-3 Tear in geomembrane liner system, Cell C, Chiquita Canyon Landfill after 1994 Northridge 

earthquake (photo courtesy of Calif. EPA, Integrated Waste Management Board) 

Due to the relatively low in-plane (internal and interface) shear strength of 

geosynthetic elements in landfill liner barrier systems, it is often impossible to establish 

unconditional seismic stability for landfills, i.e. to have a yield acceleration greater than 

the seismically-induced acceleration of the waste mass. To provide a practical means of 

assessing the seismic performance of the geosynthetic elements of landfill liners, a 

criterion based upon the permanent seismic displacement calculated using a Newmark 

type analysis of the waste mass is typically employed, as discussed above.  The typical 
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criterion employed in practice states that, based upon observations of the performance of 

landfills in earthquake, if the calculated seismic displacement in a Newmark-type 

analysis is less than between 150 to 300 mm, the design is considered adequate, i.e. that 

there is no threat to the integrity of the geosynthetic elements of the waste containment 

system (Seed and Bonaparte 1992).  

The design criterion of 150 to 300 mm of allowable calculated seismic displacement 

commonly used in seismic design of geosynthetic liner systems can be traced back to a 

1992 survey of consulting firms conducted by Seed and Bonaparte (1992).  However, 

these investigators simply reported that this range of values was typically used as the 

seismic design criterion for geomembrane liners in practice.  No firm basis was given for 

the choice of this range of values. Despite the absence of any firm proof of its adequacy, 

this criterion was recommended as the seismic performance criterion in the 1995 EPA 

guidance document RCRA Subtitle D (258) Seismic Design Guidance for Municipal 

Solid Waste Landfill Facilities (Richardson et al. 1995). This guidance document has 

never been updated and 150 to 300 mm of calculated seismic displacement is still the 

generally accepted performance criterion used for design of geosynthetic liner systems. 

 Using conventional methods to conduct back analyses of landfills that survived 

major earthquakes events without any visible damage, researchers have subsequently 

found that Newmark-type analyses can yield up to 300 mm of calculated seismic 

displacement (e.g., Anderson and Kavazanjian 1995 and Augello et al. 1995). These 

analyses lend some confidence to the Seed and Bonaparte performance criterion, despite 

the fact that these conventional analyses do not provide an assessment of actual 

seismically induced stresses and strains in the geosynthetic elements of a liner or final 

cover system. However, many engineers fail to realize that the 150 to 300 mm criterion is 



  8 

empirical and is valid only for conventional analysis methods due to the inherent 

conservatism in such methods. Furthermore, even though there is no visible damage, 

transient seismic loads and displacements in the liner system may have overstressed 

system components without any visible indications at the ground surface. 

1.3 Research Objectives 

The objective of the research is to develop guidelines for identifying the conditions under 

which seismic loading may threaten the integrity of geosynthetic elements of a waste 

containment barrier system. 

Seismically-induced stresses and strains can impair the integrity of geomembrane 

(GM) and geosynthetic clay liner (GCL) barrier layers and impact the effectiveness of 

other geosynthetic elements of the containment system (e.g. the leachate collection and 

removal system). For example, GM and GCL barrier layers can be torn due to excessive 

tensile strain and geotextile filters can also be torn by tensile loading, allowing fine 

particles to infiltrate and clog drainage or leachate collection systems. Current landfill 

design practices usually do not explicitly consider the tensile stresses induced in 

geosynthetic elements of the waste containment system, despite analyses and field 

observations which indicate that large settlement or seismic loading can induce stresses 

that exceed the strength of the geosynthetic materials (Kavazanjian et al. 2006). 

Furthermore, damage to the geosynthetic elements of the containment system may be 

hidden, with no surface expression to alert the engineer, operator, owner, or regulator to 

the integrity failure of these geosynthetic elements. 

The work described herein has three main tasks: 1) Development and calibration of a 

numerical model to predict the seismic performance a waste containment system subject 
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to seismic loading using data available in the literature; 2) Development and 

implementation, within the numerical model environment, of advanced constitutive 

relationships for the behavior of geosynthetics and geosynthetics interfaces based on the 

available test data for different geosynthetic materials; and 3) Numerical analysis of the 

behavior of geosynthetic liner systems subject to seismic loading using the calibrated 

numerical model and the advanced constitutive relationships. 

1.4 Organization 

This dissertation is organized as follows. In Chapter 2, a review of the literature on the 

seismic design methods for landfills is presented. This chapter will briefly review the 

methods that have been used historically to analyze landfills under dynamic loading.  

In Chapter 3, the engineering characteristics of the various components of a landfill 

(e.g. solid waste, geosynthetic lining material) are presented. This chapter will briefly 

review static and dynamic characteristics of the different components of landfills that will 

be used in the subsequent numerical modeling.  

In Chapter 4, the numerical schemes in the software used in this study are presented. 

FLAC6.0 (Itasca 2008) was used for the numerical analyses in this research. Some 

general concepts about this software package are presented in this chapter. The Cam Clay 

constitutive model used to model solid waste behavior is also discussed briefly.  

In Chapter 5, the development of a constitutive model for the in plane shear behavior 

of a GM and GCL composite barrier layer is presented. This model is based upon cyclic 

testing of GCL/GM system conducted at the University of California, San Diego by 

Professor Patrick Fox and his students. This constitutive model was developed to account 
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for degradation of the in plane shear strength of GCL/GM components. A subroutine is 

developed under FLAC6.0 environment for use of this constitutive model for 

geosynthetic in plane behavior (e.g. interfaces behavior in landfill).  

In Chapter 6, a constitutive model for the internal shear behavior of GCLs is 

developed. The model is a multi yield surface kinematic hardening plasticity model 

developed to simulate GCL cyclic behavior. The model also handles the strain softening 

behavior of the GCLs.  

In Chapter 7, the validation of the interface elements available in FLAC6.0 using 

laboratory testing data is presented. Several laboratory shaking table tests, conducted on 

rigid and flexible blocks, have been used to validate the numerical models.  

In Chapter 8, the seismic analysis of a heap leach pad, including the calculation of 

the strains and forces in the geomembrane component of the liner system is presented. A 

simple heap leach pad configuration is analyzed under seismic loading as a prelude to 

more complicated analysis of MSW landfill liner system. The analysis demonstrates 

calculations of the forces developed by the dynamic loading in the geosynthetic liner 

system element.  

In Chapter 9, seismic analyses of the liner system for two typical landfill geometries, 

including the calculation of the strains and forces in the geomembrane is presented.  

In Chapter 10, calibration of the material properties for solid waste subject to 

dynamic loading using the case history of the seismic response of an unlined landfill is 

presented. The case history employed in this chapter is for the Operating Industries, Inc. 

(OII) landfill in southern California, the only landfill to date instrumented with strong 

motion recording stations. The strong ground motion instruments recorded several 
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earthquakes between 1988 and 1994. This chapter describes back analysis of the seismic 

response of the OII landfill using five of these records.  

In Chapter 11, the results of back-analyses of the performance of two lined landfills 

during the Northridge earthquake are presented. Back analyses presented in this chapter 

include analyses of the Chiquita Canyon and Lopez Canyon landfills.  

In Chapter 12, the results of sensitivity analyses were conducted using the Chiquita 

Canyon landfill model to investigate the influence of interface parameters on the seismic 

response of the model.  

Chapter 13 contains the summary and conclusions draw from this study, including 

the implications for engineering practice and recommendations for future research and 

development.   
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CHAPTER 2  SEISMIC DESIGN OF LANDFILLS: REVIEW 

2.1 Current US Practice for Seismic Design of Landfills 

Current US practice for the seismic stability of landfills is based upon either pseudostatic 

limit equilibrium slope stability analyses or analyses of seismically induced permanent 

deformations. Pseudostatic slope stability analysis is generally performed using a seismic 

coefficient estimated from procedures developed for earth embankments.  

 Seed and Bonaparte (1992) conducted a survey of five leading landfill engineering 

firms to determine the methods they used to perform seismic analysis of landfills. A 

majority of these firms said (in 1991) that they "virtually never perform response 

analyses for the actual (or proposed) waste fill materials" because of the difficulties 

associated with estimating their properties. The firms said they generally perform one-

dimensional dynamic response analysis to evaluate local site effects. In most cases, the 

maximum horizontal acceleration (MHA) or acceleration time history calculated at the 

ground surface for the site soil profile, without the waste fill in place, was used to 

estimate the seismic loading. Either the MHA value was used as the seismic coefficient in 

pseudostatic slope stability analyses (sometimes with a reduction factor applied to it) or 

the calculated ground surface acceleration-time history was used in a seismically induced 

permanent deformation analysis. The design was judged to be acceptable in terms of 

seismic performance if the calculated pseudostatic factor of safety was at least 1.5 or if 

the calculated seismically induced permanent displacement was no more than 150 mm to 

300 mm. The basis for this displacement criterion was engineering judgment with regard 

to the tolerable amount of permanent displacement lined landfills could sustain without 
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major damage to the containment system. The methods commonly used to estimate the 

seismic permanent displacement in landfills are discussed in the next section. 

2.2 Rigid Block Analogy (Newmark Analysis) 

Newmark (1965) proposed using a block in a plane as an analog to an earthen 

embankment to estimate seismic permanent displacement. This method has been 

commonly extended to estimate the seismic displacement of landfills.  In a Newmark 

analysis of the seismic displacement of a landfill, the sliding block is analogous to the 

displacing waste mass, the plane on which the block sits is analogous to the slip surface 

from a limit equilibrium analysis, and the coefficient of friction between the sliding block 

and the underlying plane is analogous to the yield acceleration from a limit equilibrium 

analysis (i.e. to the seismic coefficient for a pseudo-static factor of safety of 1.0).  The 

acceleration time history of the underlying plane is assumed to be equal to the time 

history of the shear stress ratio, eq/v, at the base of the sliding mass, where eq is the 

earthquake induced shear stress and v is the total vertical stress.  Note that eq/v is equal 

to the average acceleration of the mass of a vertical column of soil above the base of the 

sliding mass.   

In a Newmark analysis, the block and the plane initially move together and the block 

is assumed to begin moving relative to the plane when the acceleration of the plane 

exceeds the yield acceleration of the block (i.e. when it exceeds the friction coefficient of 

the block-plane interface assuming to adhesion between the block and the plane).  The 

block begins to decelerate when the acceleration of the plane falls below the yield 

acceleration of the block and ceases movement after the subsequent deceleration of the 

block brings the velocity of the block relative to the plane back to zero (see Figure 2-1).  
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The relative displacement between the block and the plane is calculated by double 

integrating the acceleration of the block relative to the plane. 

 

Figure 2-1 Cumulative seismic permanent deformation of embankments (Anderson et al. 2009) 

Displacements in a Newmark analysis are typically calculated considering 

excursions above the yield acceleration on only one side of the acceleration time history 

to account for a preferred direction of sliding during slope instability.  However, in some 

cases the analysis may consider excursions above the yield acceleration on both sides of 

the acceleration time history, e.g. for analysis of frictional base isolation.  Cases where 

excursions above the yield acceleration on both sides of the case history are considered 

may include both cases where the yield acceleration is the same on both sides of the time 

history and cases where the yield acceleration in one direction is greater than the yield 

acceleration in the other direction.  The case where the yield acceleration is the same in 
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both directions (e.g. frictional seismic base isolation) is analogous to a block on a 

horizontal plane.  The case where the yield acceleration differs on either side of the time 

history may represent a slope or retaining wall and is analogous to a block on an inclined 

plane.  

In a conventional Newmark analysis the block is assumed rigid, i.e. the 

deformability of the sliding mass is ignored, which perhaps makes this type of analysis 

more suitable for analysis of short retaining wall, than for slope stability of landfill 

design, as many retaining wall systems with heights less than 6 m can reasonably be 

assumed to behave as a rigid block without sacrificing the accuracy of the results. Using 

Newmark-type of analysis to estimate the permanent deformation in cases of slope 

stability or landfill design is subject to inaccuracies introduced by the rigid block 

assumption, as discussed subsequently.  

Wartman et al. (2003) conducted shaking table tests of both rigid and deformable 

soil columns on an inclined plane. The shaking table tests on deformable soil columns 

were used to examine the validity of the Newmark (1965) sliding block procedure 

analysis with respect to non rigid block. In the Wartman et al. (2003) study, the soil 

columns were not intended to model an actual prototype slope, but rather simply to 

examine the effects of soil deformability on sliding displacements. By comparing the 

displacement from the rigid block experiments to the displacements from the soil column 

experiments, Wartman et al. (2003) concluded that the rigid sliding block procedure is 

unconservative when the predominant frequency of the input motion is between 80% less  

than to about 30% more than the natural frequency of the sliding mass (0.2 < tuning ratio 

< 1.3). Conversely, the sliding block procedure is generally conservative when the 

predominant frequency of the input motion is less than 20 percent of the natural 
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frequency of the mass (tuning ratio < 0.2) or more than 30% greater than the natural 

frequency of the mass (tuning ratio >1.3). These investigators found that, while sliding 

surfaces might limit transmission of energy in the case of a rigid block, high inertial 

forces could, nonetheless, develop in a sliding mass in the case of flexible soil column 

because of its dynamic response.  

2.3 Modified Newmark Analysis with Peak and Residual Shear Strength 

Matasovic et al. (1998) extended the Newmark-type analysis to include the effects of 

two-way sliding, degradation of the yield acceleration, and vertical accelerations.  

Matasovic et al. (1998) demonstrated that the conventional Newmark-type seismic 

deformation analysis in which the yield acceleration is based upon the residual or large 

deformation shear strength can be conservative when applied to composite liner and 

cover interfaces with a pronounced difference between peak and residual shear strengths.  

The degree of conservatism depends to a large extent upon the difference between the 

peak and residual strength and the value of the calculated seismic deformation compared 

to the threshold deformation at which the peak and residual strengths are mobilized.  

Figure 2-2 schematically compares the conventional Newmark analysis and modified 

Newmark analysis with degrading yield acceleration. 
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Figure 2-2 Comparison of the classical and modified (degrading yield acceleration) Newmark-type 

integration schemes (Matasovic et al. 1998) 

2.4 Decoupled Newmark Analysis 

Makdisi and Seed (1978) first proposed modifying the Newmark analysis to account for 

the deformability of earthen structures. As opposed to the original Newmark (1965) rigid 

sliding block model, which ignores the dynamic response of a deformable sliding mass, 

Makdisi and Seed (1978) introduced the concept of an equivalent acceleration time 

history to represent the seismic loading of a potential sliding mass. They proposed using 

the horizontal equivalent acceleration (HEA) time history of the potential failure mass 

instead of the original earthquake record. The HEA when applied to a rigid potential 

sliding mass produces the same dynamic shear stresses along the potential sliding surface 

that is produced when a dynamic analysis of the deformable waste structure is performed. 
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Makdisi and Seed (1978) employed a decoupled analysis to calculate the HEA time 

history.  The analysis was considered decoupled because the dynamic response analysis 

was performed assuming that no relative displacement occurs along the potential sliding 

failure plane to evaluate the HEA time history. While Makdisi and Seed (1978) used 

equivalent linear two-dimensional finite element analysis to calculate the HEA time 

history, one-dimensional equivalent linear site response analyses is often used in practice 

to calculate the HEA time history. In Makdisi and Seed (1978) approach, to estimate 

seismic displacement, a Newmark type analysis is conducted using the HEA time history 

as the input motion 

A simplified seismic displacement methodology was developed by Bray et al. 

(1998) to calculate the seismic displacement of landfill liner and cover systems.  The 

method of Bray et al. (1998) is similar to the Makdisi and Seed (1978) method, but the 

HEA time history in the Bray et al. (1998) method is based on the results of fully 

nonlinear decoupled one-dimensional seismic response analyses using the computer 

program D-MOD (Matasovic and Vucetic 1995) instead of an equivalent linear analysis 

as in the Makdisi and Seed (1978) method. A large number of scaled and unmodified 

recorded earthquake bedrock input motions with PGAs ranging from 0.2 g to 0.8 g were 

used by Bray et al. (1998) to develop a series of design charts for the seismic 

displacement of landfill liner and cover systems. The Bray et al. (1998) method was 

calibrated against several case histories of waste fill performance during the 1989 Loma 

Prieta and 1994 Northridge earthquakes. 

The Bray et al. (1998) procedure provides a more comprehensive assessment of the 

earthquake ground motions, seismic loading, and seismic displacement than the Makdisi 
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and Seed (1978) method but it also requires more effort than the Makdisi and Seed 

(1978) procedure.  

In the first step of the Bray et al. (1998) method, the ground motion is characterized 

by estimating the MHA or PGA in lithified rock for the design earthquake, the mean 

period of the design earthquake, Tm, and the significant duration of the design earthquake, 

D5–95, for an outcropping rock at the site based upon the design moment magnitude and 

site-to-source distance for the seismic sources considered in the analysis. Guidance is 

given on evaluating these parameters using empirical ground motion parameter 

relationships. The rock site condition used for the input parameters is consistent with the 

Site Class B weak sedimentary rock site condition used in the development of 

probabilistic National Earthquake Hazard Reduction Program national ground motion 

seismic hazard maps developed by the United States Geological Survey (USGS). For the 

base sliding (landfill liner) case, the initial fundamental period of the potential sliding 

mass, Ts, is estimated as: 

ss 4H/V  T   (1) 

where H is the height of the landfill, and Vs is the shear wave velocity of the MSW waste. 

With the ratio of Ts/Tm, the normalized maximum seismic loading (MHEA)/(MHA 

rock)(NRF),is calculated where MHEA is the maximum horizontal equivalent 

acceleration and NRF is a nonlinear response factor. The normalized maximum seismic 

loading can be found from a chart presented by Bray et al. (1998) or it can be estimated 

with the equation provided below when Ts/Tm > 0.5 

 )/ln(7831.0624.0))/(ln( mSrock TTNRFMHAMHEA  (2) 
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where is the standard deviation and is equal to 0.298. The seismic coefficient, kmax, can 

then be found as MHEA/g and the normalized seismic displacement can be estimated as a 

function of ky/kmax as:  

 
 )/(477.387.1))/((log max955max10 kkDkU y  (3) 

where = 0.35 and U is the seismic displacement (in cm). The normalized seismic 

loading and displacement values estimated using +  represent the values at the 16% 

probability of exceedance levels (assuming a log normal distribution for U). It is 

important to note that the Bray et al. (1998) method is also limited by the decoupled 

seismic response approximation employed in the Newark sliding blocks calculations. 

2.5 Coupled Analysis 

Lin and Whitman (1983) proposed using the single-degree-of freedom (SDOF), one-

dimensional lumped mass system shown in Figure 2-3 and linear elastic soil properties to 

calculate coupled seismic permanent displacements. The model employed by Lin and 

Whitman can be characterized as a shear beam type model with one degree-of-freedom 

(DOF) during the nonsliding phase of motion and two DOFs during the sliding phase 

(stick–slip model). Lin and Whitman (1983) calculated the permanent displacement for 

harmonic motions and synthetic earthquake motions using their proposed coupled 

formulation. Lin and Whitman (1983) compared the response predicted using the 

decoupled approximation to the response of the proposed coupled formulation for 

shallow, deep, and intermediate sliding surfaces. Lin and Whitman (1983) concluded that 

deep sliding is most affected by the decoupled assumption. A comparison of the 

decoupled and coupled displacements from their study is shown in Figure 2-3, where the 
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ratio of the displacement calculated using the decoupled model to the displacement 

calculated decoupled model (referred to as the exact solution in Figure 2-3) is presented 

as a function of the ratio of the ky to the kmax. At ky/kmax equal to 0.5 with a material 

damping ratio of 15%, the decoupled approximation overestimates the coupled 

permanent displacement of the shear beam system by an average of 20%. 

 

Figure 2-3 Results from Decoupled approximation (Lin and Whitman 1983)  

Gazetas and Uddin (1994) investigated the sliding response of failure masses in 

earth dams using a finite element model. Figure 2-4 shows the finite-element mesh 

employed by Gazetas and Uddin (1994).  The Gazetas and Uddin (1994) model employed 

a Coulomb friction law along a sliding tensionless interface to represent the sliding 

behavior of a failure mass. It was assumed that all irreversible shear distortion occurs 

along this sliding interface, the behavior of which is ideally rigid-plastic. These 

assumptions limit the amount of shear stress that can be transmitted into the sliding mass 

(as does a Newmark-type analysis).  
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Figure 2-4 Mesh used in the study by Gazetas and Uddin (1994): (a) ky =0.30 g (Interface 1); and (b) ky 

= 0.50 g (Interface 2) (Gazetas and Uddin 1994)   

Figure 2-5 show some details of typical results Gazetas and Uddin (1994) obtained 

from sinusoidal excitation using the mesh shown in Figure 2-4 at a frequency ratio f/f1 = 

0.75 , where f is the excitation frequency and f1 is the fundamental frequency of the dam, 

for a PGA at the toe of the embankment equal to 0.40 g. Figure 2-5 (a) shows the 

acceleration history of a point inside the sliding block and Figure 2-5 (b) shows the 

acceleration history of a point just outside the sliding block for the dam. The time history 

in Figure 2-5 (b) is rather similar to the time history for the intact dam without a sliding 

interface shown in Figure 2-5 (c). However, some high-frequency spikes are generated at 

point “b” during the half-cycles where the failure mass tends to move inward relative to 

the dam the sticking phase of the motion. Displacements calculated by this procedure and 

by the decoupled procedure developed by Makdisi and Seed (1978) were compared using 

a harmonic input motion. The decoupled approach overestimated sliding displacement 

with respect to the coupled procedure when the frequency of the input motion was close 
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to the first fundamental frequency of the dam. However, results also indicated that the 

decoupled procedure underpredicts displacements at a frequency ratio (f/f1) less than 0.5. 

Gazetas and Uddin (1994) concluded that the decoupled displacements are generally 

reasonable and conservative, but that underestimation of sliding displacement is possible. 

They also noted that the frequency is the important parameter when comparing the 

permanent deformation calculated from the decoupled analysis to the finite element 

(coupled analysis) results.  

 

Figure 2-5 dynamic response at the crest of the dam a) within sliding mass b) just outside the sliding 

mass c) crest acceleration of the intact dam (Gazetas and Uddin 1994) 
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Kramer and Smith (1997) developed a modified lumped mass model for the sliding 

behavior of a flexible (compliant) block on a plan. In the Kramer and Smith (1997) 

model, the discrete two mass system rests on an inclined plane. Frictional sliding occurs 

between the lower mass and the base plane, as illustrated in Figure 2-6. 

 

Figure 2-6 Schematic diagram of the model used: (a) Schematic Illustration; (b) Notation Used to 

Describe Displacements of Modified Newmark Model (Kramer and Smith 1997) 

Comparing the results from a coupled formulation accounting for the sliding at the 

base of the system illustrated in Figure 2-6 to a decoupled Newmark procedure, Kramer 

and Smith (1997) concluded that the decoupled procedure provides good to substantially 

overconservative estimates of permanent displacement for relatively thin or stiff failure 

masses. For thick or flexible failure masses however, these investigators showed that the 

decoupled procedure may underpredict permanent displacements. They found the factor 

by which displacements are underpredicted varies for different ground motions but 

appears to be on the order of 1.5-1.7 for many cases. Consequently, Kramer and Smith 

(1997) concluded that the decoupled procedure may produce unconservative estimates of 

permanent displacement for many landfills. 
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Rathje and Bray (2000) presented a nonlinear, coupled, stick-slip analytical 

formulation for sliding of a compliant mass that uses fully nonlinear soil properties to 

model the dynamic response of the potential sliding mass. This model may be considered 

to be a generalized SDOF system with the mass and stiffness distributed along the height 

of the system, as illustrated in Figure 2-7. To develop their model, Rathje and Bray 

(2000) implemented a coupled, stick-slip response into the nonlinear dynamic response 

program, DMOD (Matasovic 1993). D-MOD employs a lumped mass formulation for the 

one-dimensional column in which the soil stiffness is modeled by nonlinear shear 

springs. In D-MOD, the modified Kondner-Zelasko (MKZ) hyperbolic stress-strain 

relationship is used to represent the nonlinear hysteretic response of the soil (Matasovic 

1993; Matasovic and Vucetic 1995). The Rathje and Bray (2000) model was validated 

using results from the shaking table experiments of a sliding, deformable soil column 

conducted by Wartman (1999). In Wartman (1999) tests, the shaking-induced sliding 

displacement of a deformable soil column on a plane inclined at 11.37 degrees from the 

horizontal was measured. Theses shaking table tests were performed with sinusoidal 

input motions of varying frequencies and intensities. 
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Figure 2-7 Decoupled dynamic response/rigid sliding block analysis, fully non linear 2D analysis and 

fully coupled analysis 

A comparison between the recorded sliding displacement of the soil column in 

Wartman’s tests and the sliding displacement calculated using the coupled sliding model 

developed by Rathje and Bray (2000) is shown in Figure 2-8(a). The coupled analysis 

accurately predicts the initiation of sliding at 0.6 s and the final calculated displacement 

is within 1% of the experimental value. Figure 2-8(b) compares measured and calculated 

displacements for the same soil column subjected to input motions of varying frequency 

and with intensities ranging from 0.14g to 0.18g. The coupled analyses shown in Figure 

2-7(b) incorporated a sliding velocity-dependent interface friction angles varying from 

16.57o and 17.57 o. These friction angles were chosen based on a relationship between 

interface friction angle and sliding velocity developed by Wartman (1999). 
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Figure 2-8 Comparison of Experimental Results from Wartman (1999) and Numerical Results from 

Rathje and Bray (2000)  (a) Sliding Displacement Time Histories for 0.18g, 6.7-Hz Input Motion; (b) 

Experimental and Numerical Sliding Displacement versus Input Frequency (Rathje and Bray 2000)   

In Figure 2-9, measured acceleration time histories at the top of the soil column for 

the Wartman (1999) experiment displayed in Figure 2-8 (a) are compared to calculated 

values from Bray and Rathje (2000). The maximum accelerations from the coupled 

analysis and shaking table test compare favorably, with both sets of data revealing high 

frequency pulses during sliding.  The Rathje and Bray (2000) coupled formulation, 

however, did not accurately predict the high frequency response during sliding in the 

shaking table tests.  

The calculated acceleration-time history at the top of the deformable soil column 

shown in Figure 2-9 has similar amplitudes in the positive and negative directions, unlike 

the results of the shaking table results shown in the figure and results of similar shaking 

table tests using a rigid block on inclined plane performed by Elgamal et al. (1990). The 

observations from the Elgamal et al. (1990) shaking table tests using a rigid sliding block 

and other shaking table tests using sliding blocks on a horizontal plane (e.g. Kavazanjian 

et al. 1991; Yegian and Lahlaf 1992) show that the acceleration transmitted to the rigid 
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block is limited by the yield acceleration of the sliding interface. However, unlike a rigid 

sliding block, a deformable soil column vibrates during sliding. Therefore, accelerations 

greater than the yield acceleration may occur within the sliding mass of a deformable soil 

column. Also, unlike the rigid block dynamic response, the acceleration at the base of a 

deformable sliding soil column is not constant because the limiting force at the sliding 

interface is not directly related to the acceleration directly above the sliding interface but 

is related to the mass-weighted average of the entire non-uniform acceleration 

distribution within the soil column.  

 

Figure 2-9 Comparison of Surface Accelerations from Shaking Table Experiment from Wartman 

(1999) and Coupled Analysis (Rathje and Bray 2000) 

Figure 2-10 compares the acceleration response spectra at 5% damping calculated at 

the top of a landfill using the coupled formulation proposed by Rathje and Bray (2000) 

for a 30 m-high landfill subjected to the Loma Prieta Earthquake Corralitos input motion 

for sliding at a yield accelerations, ky, of 0.05 and 0.1 g to the response calculated with D-

Mod but with no sliding allowed. Bray and Rathje (2000) concluded that the response 

between periods of 0.3 and 1.0 s is generally reduced as a result of sliding, particularly 

for ky = 0.05. The reduction of spectral acceleration amplitudes at longer periods is a 

direct result of the change in response characteristics of the soil column that occurs 
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during sliding. These investigators note that the change in intensity and frequency content 

of the surface motion of a sliding system could possibly affect the assessment of cover 

stability for a solid-waste landfill. Rathje and Bray (2000) concluded that, although 

sliding can reduce the peak acceleration at the top of the landfill by as much as 30%, a 

substantial amount of sliding must take place before the surface response is significantly 

affected. When base sliding displacements are maintained below the generally accepted 

displacement limit used in engineering practice for synthetic liner systems of 150 mm (ky 

= 0.1 for this case studied by Bray and Rathje (2000)), the surface response is not 

significantly modified by the sliding episodes. Therefore, their conclusion was that the 

response of landfills will only be moderately affected by sliding at allowable levels of 

base displacement.  

 

Figure 2-10 Response Spectra of Surface Motions for Sliding and Nonsliding Model of 30-m-High 

Solid-Waste Landfill (Rathje and Bray 2000) 
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An important observation from the Bray and Rathje (2000) analysis and the 

deformable column shaking table experiments by Wartman (1999) is that the acceleration 

directly above the sliding plane is not limited to a value of ky, as is observed in rigid 

block tests as presented in Figure 2-11. In fact, it is the average acceleration of the entire 

column above the base that is limited by ky. Furthermore, it can be shown that this 

average acceleration is equal to the shear stress at the interface divided by the normal 

stress on the interface. 

 

Figure 2-11 Acceleration-Time Histories within: (a) Nonsliding; (b) Sliding (ky = 0.05) of 30 m high 

landfill (Rathje and Bray 2000) 
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Rathje and Bray (2000) studied the effect of the ratio Ts/Tm on the accuracy of 

displacement predictions for the coupled, decoupled and rigid block methods where Ts is 

the initial undamped natural period of the soil column and Tm is the mean period of the 

earthquake motion as defined by Rathje et al. (1998). Rathje and Bray (2000) used a soil 

column with a changing height while keeping the shear-wave velocity above the sliding 

interface equal to 240 m/s and assuming a modulus reduction and damping for a soil with 

a plasticity index, PI, equal to 30.  The Superstition Mountain strong motion record (135 

component) from the 1987 Superstition Hills earthquake Moment magnitude, Mw, 6.7 

was used as the input motion for the comparison study. An interface yield acceleration, 

ky, equal to 0.05 was used as input for these analyses. The trend of permanent 

displacement for both coupled and decoupled models for linear elastic and fully nonlinear 

seismic response analyses, along with the calculated displacement from a rigid sliding 

block analyses are presented in Figure 2-12.  

 

Figure 2-12 Coupled and Decoupled Sliding Displacements Calculated from Linear and Nonlinear 

Analysis (Rathje and Bray 2000) 
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Rathje and Bray (2000) distinguished between three different ranges in Figure 2-12 

for period ratios Ts/Tm on the trend of the seismic displacements predicted from different 

methods. 

 For Ts/Tm< 0.2 the results in Figure 2-12 shows that all of the numerical procedures 

(coupled, decoupled sliding displacements for linear elastic and fully nonlinear seismic 

response analyses) provide similar sliding displacements. This agreement attributed to the 

stiffness of the system (short soil columns) with respect to the input motion. 

 For 0.2 < Ts/Tm < 1.5, the results in Figure 2-12 shows that decoupled displacements 

predictions are larger than coupled displacements predictions, which means that the 

decoupled analysis overpredict the seismic displacements in this range. Rathje and Bray 

(2000) showed that in this period ratio range the rigid sliding block analysis is 

significantly unconservative and should not be used. 

 For Ts/Tm >1 .5 the results in Figure 2-12 shows that the rigid sliding block analysis 

overpredicts the seismic displacements compared to analyses for a compliant mass. For 

the nonlinear analyses, the decoupled analyses predict higher seismic displacement than 

coupled analyses in the range 1.5 < Ts/Tm< 2.2. For period ratios of Ts/Tm > 2.2 coupled 

non-linear analyses show a slightly higher seismic displacement than nonlinear decoupled 

analyses. For the linear elastic analyses, the decoupled analyses predict higher seismic 

displacement than coupled analyses in the range 1.5 < Ts/Tm < 4.0. For period ratios of 

Ts/Tm > 4.0, coupled elastic analyses shows a slightly higher seismic displacement than 

decoupled elastic analyses.  
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CHAPTER 3  LANDFILL COMPONENTS CHARACTERISTICS   

3.1 Introduction 

Landfills that accept MSW typically do not accept hazardous waste, except of incidental 

quantities mixed with MSW. This thesis will restrict its focus to the MSW landfills. In 

order to perform static or seismic analyses of landfills the cyclic and static properties of 

the various landfill components must be characterized. Modern landfills almost always 

contain several layers of geosynthetics. The potential for in-plane slip or relative 

displacement at the interfaces has a crucial rule in the assessment of the dynamic and 

static stability of landfills. These and other relevant characteristics of the behavior of 

these geosynthetics layers will be reviewed in this chapter, including internal and 

interface behavior of geosynthetics under shear stress.  

 Uncertainty in the value of MSW properties and the variability of these properties 

make it challenging to evaluate the static and the dynamic behavior of the waste. This 

chapter will review laboratory and field testing conducted to characterize static and 

dynamic material properties of MSW.  

3.2 Static Shear Strength of Geosynthetic Interfaces  

The stability of liner systems in landfills is often controlled by the interface and internal 

in-plane shear strength of the various components of the liner system. The importance of 

interface strengths was illustrated by the slope-stability failure in Phase IA of Landfill B-

19 at the Kettleman Hills facility in Kettleman City, California in 1988. The landfill was 

constructed in an oval-shaped bowl carved into an existing valley to a depth of 

approximately 30 m and covered an area of approximately 120,000 m2. A stability failure 



  34 

occurred during filling of Phase IA on 19 March 1988 that resulted in 11 m of lateral 

displacement of the waste fill and 4.3 m vertical settlement around the crest of the fill. 

Byrne et al. (1992) concluded that sliding primarily occurred along the 1.1 m thick 

secondary clay liner/secondary high-density polyethylene (HDPE) geomembrane 

interface in the double composite liner system. This led both landfill designers and 

researchers to pay more attention to the interface shear strength of the geosynthetic 

components of landfill liner systems and the potential for failure along those interfaces. 

List of typical interfaces in modern MSW landfill liner system are presented in Table 3-1. 

Table 3-1 Typical interfaces in MSW landfill liner and cover systems 

Interface Comments 
GM/clay Textured or smooth geomembrane / clay liner 

GM/geotextile Textured or smooth geomembrane / geotextile  

GM/GCL Textured or smooth geomembrane / geosynthetic Clay Liner 

GM/Drainage aggregate Textured or smooth geomembrane / sand or gravel aggregate 

GM/Geonet Textured or smooth geomembrane / drainage geonet 

Geotextile/Soil Woven or Non woven Geotextile /soil 

GCL/Soil Cover only 

Notes: Geomembrane may be smooth, textured, or smooth textured  
               Geotextiles may be woven or non woven 
       GCLs are typically needle-punched reinforced  
                Soil may be sand silt or clay   

3.2.1 Shear strength of GM HDPE/GCL liner interface 

A common interface in landfill liner systems is between a geomembrane (GM) and a 

(GCL).  Triplett and Fox (2001) conducted interface shear tests between smooth and 

textured high density polyethylene (HDPE) GMs and woven/nonwoven needle-punched 

GCL.  The interfaces tested in this program are summarized in Table 3-2. The tests were 

performed using a large direct shear machine capable of measuring peak shear strength 

and large displacement shear strength at 200 mm.  Table 3-3 lists the peak shear strength 
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parameters, large displacement shear strength parameters, and their applicable stress 

range for each interface tested by Triplett and Fox (2001). Peak shear strengths for the 

textured GM/nonwoven geotextile interfaces were consistently higher than those 

measured for the textured GM/woven geotextile interfaces.  

 Triplett and Fox (2001) also conducted testing to evaluate the effect of the shear rate 

on the shear strength parameters of the interfaces shown in Table 3-2. The effect of the 

horizontal displacement rate on the peak and large displacement shear strengths of the 

SM/W, LM/W, and CX/W interfaces ( n  = 72.2 kPa) is shown in Figure 3-1.  

Table 3-2 GM/GCL Interfaces Tested by Triplett and Fox (2001)  

GM/GCL 
interface 

Geomembrane GCL 

SM/W Smooth HDPE (40 mil) Woven geotextile of woven/ nonwoven NP GCL 
SM/NW Smooth HDPE (40 mil) Nonwoven geotextile of woven/ nonwoven NP 

GCL 
LM/W Laminated textured HDPE (40 mil) Woven geotextile of woven/ nonwoven NP GCL 
LM/NW Laminated textured HDPE (40 mil) Nonwoven geotextile of woven/ nonwoven NP 

GCL 
CX/W Coextruded textured HDPE (40 mil) Woven geotextile of woven/ nonwoven NP GCL 
CX/NW Coextruded textured HDPE (40 mil) Nonwoven geotextile of woven/ nonwoven NP 

GCL 

 

Table 3-3 Peak and Large Displacement Shear Strength Parameters (Triplett and Fox 2001) 

GM/GCL interface Normal stress range 
(kPa) 

Peak strength 
parameters 

Normal stress 
range 
(kPa) 

Large displacement 
strength parameters 

 
cp 

(kPa) 
Φp 

(degrees) 
cld 

(kPa) 
Φld 

(degrees) 
SM/W 6.9-486 0.3 9.8 6.9-127 

127-486 
0.3 
3.0 

8.1 
6.9 

LM/W 6.9-124 
124-486 

2.2 
22.0 

21.3 
13.3 

6.9-134 
134-486 

1.0 
15.7 

12.7 
6.6 

CX/W 6.9-279 0 23.7 6.9-72 
72-279 

0 
4.9 

15.0 
11.3 

SM/NW 6.9-486 0.4 9.9 6.9-127 
127-486 

06 
5.8 

9.2 
6.9 

LM/NW 6.9-279 7.4 31.7 6.9-70 
70-279 

2.3 
11.8 

18.5 
11.2 

CX/NW 6.9-279 7.2 28.3 6.9-135 
135-279 

3.4 
16.0 

14.4 
9.3 
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Figure 3-1 Effect of Horizontal Displacement Rate on Shear Strength of GM/GCL Interfaces (Triplett 

and Fox 2001) 

3.2.2 Shear strength of HDPE geomembrane/geotextile interface 

Another common interface in landfill liner systems is between the geomembrane and a 

geotextile. Stark et al. (1996) conducted torsional ring shear tests on high density 

polyethylene (HDPE) GM/Geotextile interfaces to determine the shear strength of the 

interface. In their testing they investigated the effect of geomembrane texturing on the 

interface shear strength. In addition, the effects of the geotextile fiber type and mass per 

unit area on the HDPE geomembrane interface strength were also investigated.   

 Figure 3-2 shows typical failure envelopes for a geomembrane/ nonwoven geotextile 

interface. It can be seen that the failure envelope is fairly linear. Figure 3-3 presents a 
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comparison of failure envelopes for smooth and textured geomembrane/nonwoven 

geotextile interfaces. It can be seen that the peak and residual shear strengths are 

increased by 200% to 300% by the use of textured geomembrane instead of smooth 

geomembrane.  

 

Figure 3-2 Typical failure envelope for textured geomembrane/ nonwoven geotextile interface (Stark et 

al. 1996) 
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Figure 3-3 Comparison of the failure envelopes for smooth and textures geomembranes/geotextile 

interfaces (Stark et al. 1996) 

 Stark et al. (1996) also investigated the effect of the displacement rate on the 

textured geomembrane/nonwoven geotextile interface. Figure 3-4 shows the peak and 

residual shear stresses for a textured GM/geotextile interface tested at 5 different strain 

rates at normal stress of 96 kPa. The figure shows that the shear strength of this interface 

did not change significantly as a result of changing the shear rate.  
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Figure 3-4 Effect of the shear displacement rate on textured Geomembrane/Nonwoven Geotextile 

interface (Stark et al. 1996) 

The inclined plane (tilt table) test is used when studying the stability of sloping 

geosynthetic liner systems under conditions of low normal stress. The inclined plane 

offers the dual advantage of enabling testing at low normal stresses at the interface and 

simplicity in the test setup.  

 Gourc et al. (2004) present the results of a large scale inclined plane test where the 

tensile forces and strains in the geomembrane liner and overlaying geotextile were 

measured as a function of increasing the length Lc, of the granular soil layer placed on top 

of the geomembrane (Figure 3-5). The geosynthetic lining system was supported by a 

clay base layer and consisted of an HDPE geomembrane overlain by a non-woven (NW) 

geotextile and a 0.30 m thick granular cover soil layer. The friction angles measured in 

laboratory shear box tests for the various interfaces were 9° for GM/clay interface, 12° 

for NW geotextile/GM interface, and 29° for the granular soil/NW geotextile interface.  

The forces acting on the geosynthetics at top of the slope were measured by force sensors 

positioned between the geotextile sheet clamps and the fastening posts used to anchor the 
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geosynthetic at the top of the slope. Gourc et al. (2004) measured the displacements of 

the geosynthetics and the cover granular layer by means of cable-type displacement 

sensors linked to the fastening posts and regularly spaced on the geosynthetic sheets and 

in the granular soil layer.  

 

Figure 3-5 Monitoring on a slope barrier of the Montreuil landfill (Gourc et al. 2004) 

 The experimental procedure used by Gourc et al. (2004) involved monitoring the 

forces and displacements in the various layers of the liner while loading the granular 

material layer meter by meter on the slope over a total loading length, Lc, of 6 m. Figure 

3-6 presents the increase in the tensile forces in the geotextile and geomembrane 

measured at the top of the slope with placement the soil cover (i.e. with increasing Lc). 

The plots of the strains in the GM and geotextile sheets with increasing Lc, in Figure 3-6 

show that both the geotextile and GM a subjected to positive tensile strains (elongation) 

at the top of the slope but  that the tension decreases with decreasing Lc. The plots in 

Figure 3-7 show that the geotextile develops compressive strains at the toe of the slope. 

The formation of wrinkles as a mechanism for accommodating these compressive strains 

was postulated by Gourc et al. (2004) as illustrated in Figure 3-8. As the slope length is 

Lc 
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constant, the elongation of the sheet at the top of the slope should be compensated by 

compression at the bottom of the slope. However, as non-woven geotextile is a very 

compressible material it is not clear that the compressive strains shown in Figure 3-7 are 

sufficient to generate wrinkles in the geotextile. Gourc et al. (2004) noted that this 

complex behavior is generally not taken in consideration in design and numerical 

calculations. 

 

Figure 3-6 Montreuil landfill slope: tensile forces in the geotextile and geomembrane (Gourc et al. 

2004) 
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Figure 3-7 Montreuil landfill slope: Distribution of strains in the geotextile (elongation positive) (Gourc 

et al. 2004) 

 

Figure 3-8 Mechanism inducing wrinkles at the base of the slope (Gourc et al. 2004) 
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3.3 Geosynthetics Internal Behavior  

3.3.1 Internal axial behavior of geotextiles 

In-soil tests are often conducted to assess the axial stress-strain behavior of geotextiles in 

tension, particularly nonwoven geotextiles. The results of this type of tests are influenced 

by the normal stress (i.e. confinement) on the geosynthetic element.  The influence of 

confinement on the mechanical behavior of mechanically bonded nonwoven geotextiles 

was studied by McGown et al. (1982). Figure 3-9 shows schematically the test device and 

some of the results from McGown et al. (1982) in tests on nonwoven geotextiles. 

Confinement increases interlocking and friction among geotextile fibers, yielding a stiffer 

response of the geotextile with increasing confinement. It is important to point out that in 

this type of test arrangement does not directly measure the in-plane tensile properties of 

the geotextile: friction between geotextile and confining soil takes place and influences 

the magnitude of the applied tensile load and measured tensile stiffness (Palmeira 2009). 

 

Figure 3-9 Effect confinement on geotextile stiffness (after Palmeira 2009) 
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 An improved version of the geosynthetic tensile loading test was developed by 

Palmeira (2009) to avoid the friction effect. In Palmeira (2009) test, illustrated in Figure 

3-10 (a) lubricant is applied to the sides of the geotextile to minimize friction between 

soil and the geotextile. The plot presented in Figure 3-10 (b) shows that the secant tensile 

stiffness obtained for this arrangement is significantly greater than that obtained with the 

geotextile in isolation (without confinement), but smaller than the value obtained when 

friction between the confining soil and geotextile specimen is allowed. 

Figure 3-10 (c) shows that the tensile load along the geotextile specimen length for the 

lubricated geotextile type of test arrangement is constant, in contrast to what is observed 

in the traditional apparatus, where the tensile load in the geotextile varies due to friction 

between the soil and the geotextile. 
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Figure 3-10 Results of in-soil tensile tests with and without friction between soil and geotextile  (a) 

Frictionless in-soil tensile test. (b) Comparison between test arrangements. (c) Variation of tensile load 

along the geotextile specimen length (after Palmeira 2009) 
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3.4 In Situ Strain Measurement of HDPE GM system in Northern California 

Yazdani et al. (1995) presented three years of in situ measurements from strain gauges 

installed on a 1.5 mm (60 mil) HDPE geomembrane used as a liner for a municipal solid 

waste landfill in Northern California. The instrumented MSW cell is located at the Yolo 

County Central landfill (YCCL), situated 5 kilometers northeast of Davis, California, 

USA.  

 The Yazdani et al. (1995) measurements were conducted on Module A, the first 8 

hectare HDPE composite lined landfill cell at the YCCL, constructed to meet US EPA 

Subtitle D standards.  The composite liner system consisted of 0.6 m of 1x10-7 cm/s 

compacted clay overlain sequentially by a 60 mil (1.5 mm) HDPE geomembrane, a 

geonet, a non-woven geotextile, and 0.3 m of a soil operations layer. Strain gauges and 

thermocouples were installed at seven locations along the north and east side slopes of 

Module A.  In total, 19 locations within the module were instrumented with a half-bridge 

Wheatstone strain gauge configuration. Figure 3-11 shows the YCCL site plan and the 

location of the seven strain gauge stations (A through G) within Module A. Figure 3-12 

shows a typical cross-section of Module A indicating the locations of the strain gauges 

and the thermocouples, examples of the measurements recorded at the site are shown in 

figures Figure 3-13 to Figure 3-15.  
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Figure 3-11 site plan and location of the seven strain gauge stations in Module A (Yazdani et al. 1995) 

 

Figure 3-12 Typical Cross-Section of the Instrumented Landfill liner (Yazdani et al. 1995) 

 Figure 3-13 presents plots of the strain response at two locations within Module A, 

both at the bottom of the landfill cell and located beneath 12.2 m of waste. Strain gauge 

A experienced an initial peak compressive strain of over 0.1% immediately after the 

placement of the operation soil layer and the first layer of waste. The GM at strain gauge 
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A relaxes to a residual compressive strain of 0.07% at the end of loading. The tension in 

strain gauge B increased to a value of approximately 0.09% tensile strain and then 

relaxed to approximately 0.06% tensile strain at the end of loading.   

 The strain responses of all four gauges at station C are presented in Figure 3-14. The 

initial peaks of strain at all four locations are attributed the placement of the first lift of 

waste. Two gauges of the top (S1C) and the middle (S2C); both showed a residual tensile 

strain in range of 0.12% to 0.19%. The gauge at the toe of the slope (S3C) was on tensile 

strain of 0.02%, while the gauge at the bottom of the cell (S4C) was in compression strain 

of about 0.08%.  

 The strain responses of three gauges installed at station G are presented Figure 3-15.  

The gauge at the top of the slope (S1G) was strained at about 0.27% tensile strain at the 

end of the monitoring period. After a year and half the tensile strain at station G jumped 

from 0.14% to 0.3%; this increase attributed to adding a second lift of waste above this 

station (G). The gauge at the toe of the slope (S3G) was in compression all the time and 

reached 0.13% compression strain at the end of the testing program.  

 

Figure 3-13 Strain response of the station A and B gauges (Yazdani et al. 1995) 
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Figure 3-14 Strain response of the station C gauges (Yazdani et al. 1995) 

 

Figure 3-15 shows strain response of the station G gauges (Yazdani et al. 1995) 

 

 



  50 

3.5 Internal axial behavior of HDPE geomembrane 

Merry and Bray (1996) performed a series of wide strip tension tests on HDPE 

geomembrane. This type of test provides test from which the tensile stress-strain response 

of the geomembrane may be calculated. In their calculations Merry and Bray (1996) 

accounted for the volumetric response of the geomembrane. The volumetric response was 

evaluated by measuring the lateral response of the geomembrane. 

 Figure 3-16 shows the test apparatus, used by Merry and Bray (1996), the HDPE 

specimen clamped into apparatus prior to the start of tension test.  Figure 3-16 shows the 

test specimen at different stages of the tension test (at 5%, 10%, 20% and 50% axial 

strain). Up to 10% strain the grid lines on the specimen still appear as straight lines, 

although a small amount of deformation can be detected along the vertical edges of the 

specimen, particularly near the top and bottom of the specimen. At higher strains, the 

thinning and deformation in the lateral direction is more distinct than at lower strains.  
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Figure 3-16 Clamps to clamp the test specimens, PVC specimen in wide strip tension at approximately: 

(a) 5% strain; (b) 10% strain; (c) 20%strain; (d) 50%strain (Merry and Bray 1996) 
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 Merry and Bray (1996) investigated the effects of the aspect ratio of the HDPE 

geomembrane specimens on their tensile stress-strain response. Figure 3-17 shows the 

stress-strain results from tests performed on specimens with aspect ratio from 5.5 (304.8 

mm wide × 55.8 mm long) to 0.10 (25.4 mm wide × 254.0 mm long). Merry and Bray 

(1996) concluded that there was no systematic variation in the stress-strain response due 

to changes in the specimen aspect ratio, indicating that all of the tests results yielded the 

true stress-strain response of the HDPE GM. It is worth noting that the initial tensile 

stiffness (Modulus) of the HDPE GM is 3-4 times greater the secant modulus at yield of 

the specimen as toted by Giroud (1994).  

 

Figure 3-17 Comparison of uniaxial tension test results with different aspect ratios for HDPE 

geomembrane specimens (Merry and Bray 1996) 
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 Giroud (1993) conducted more than 500 uniaxial tensile tests on HDPE 

geomembrane specimens from five US manufacturers at temperatures ranging from 20o C 

to 70o C.  The tests did not show large differences between the stress–strain curves for 

HDPE geomembranes from different manufacturers (Giroud 2005).  Figure 3-18 (a) 

presents the average uniaxial stress–strain curves obtained from the testing program 

conducted by Giroud (1993) for HDPE geomembranes at different testing temperatures 

(only the portion of the curve between the origin and the yield peaks are shown). Giroud 

(2005) indicated that the relationship between the geomembrane yield stress ( y ) and 

temperature is linear as shown graphically in Figure 3-18 (b). The relationship between 

the yield strain and the temperature is shown in Figure 3-18 (c). 
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Figure 3-18 Average tensile characteristics of HDPE geomembranes as a function of temperature: (a) 

uniaxial stress–strain curves from the origin to the yield peak; (b) yield stress as a function of 

temperature; (c) yield strain as a function of temperature (Giroud 2005) 

 Giroud (2005) showed that an N-order parabola, where N = 4, was a good 

approximation of a unique normalized stress–strain curve for all tested HDPE 

geomembranes regardless of temperature. This parabola is shown in Figure 3-19. The 

equation for the N-order parabola is given by Giroud (2005) as: 
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where y is the uniaxial stress at yield, y is the uniaxial strain at yield, and N is an 

exponent equal to 4 for HDPE. 

 Using this equation, only the stress and strain at the yield peak need be known for a 

given HDPE geomembrane at a given temperature to develop the uniaxial stress–strain 

curve of the geomembrane between the origin and the yield peak. 

 

Figure 3-19 HDPE geomembrane normalized uniaxial stress– strain curve, for all temperatures 

(Giroud 2005) 

From Eq. (4), Giroud (1994) derived the relationships between the tangent moduli, Etan, 

for any strain below the yield strain as: 
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The tangent modulus as a function of axial strain is presented in Figure 3-20. An 

important aspect of the Giroud (1994) N-order parabola is that the initial modulus of an 

HDPE geomembrane, Eo, is N times the secant modulus at yield as follows: 
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(6) 

 

Figure 3-20 geomembrane uniaxial secant and tangent moduli at any strain below the yield strain 

(Giroud 2005) 

 All the results presented above were obtained from uniaxial tests. In the field, 

geomembranes are generally subjected to biaxial or triaxial stress states. For the case of 

the axial strain in a plane strain biaxial stress states, Giroud (2005) conducted an analysis 

based on energy conservation that led to the following relationships between the uniaxial 



  57 

yield strain, y , and the plane strain biaxial yield strain, yps  in the geomembrane as a 

function of the Poisson’s ratio,  , as follows: 
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(7) 

 Assuming nearly incompressible properties for the geomembrane a Poisson’s ratio 

of 0.48 is a reasonable assumption. This means that based upon Eq. (7), the yield strain in 

the plain strain condition, yps , (representative of conditions in the field) would be 0.91

y . 

3.5.1 Geomembrane stress concentration 

Failure in a geomembrane may occur due to stress concentration even though the average 

stress on the geomembrane itself is not enough to cause failure.  Giroud (2005) divided 

the different causes for stress concentration in a geomembrane into two main categories: 

stress concentration due to scratches in geomembranes and stress concentration due to 

bending at the seams.  In both cases, the first cause of stress concentration is an abrupt 

change in geometry, i.e. an abrupt change in thickness due to the seam overlap or due to 

the penetration of the scratch into the geomembrane. Figure 3-21 and Figure 3-22 

illustrate these two sources of abrupt geometry change. 
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Figure 3-21 Geomembrane with scratch (Giroud 1993) 

 

 

Figure 3-22 Seam types, with the extrudate shown in black (Giroud 2005) 
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3.5.1.1 Strain concentration due to bending at seams 

Giroud (2005) shows that, seams rotate perpendicular to the loading direction when a 

geomembrane is loaded in tension. Giroud (2005) also indicates that the rotation of the 

seam is due to equilibrium of the tensile forces applied on the geomembrane, which 

requires a portion of the geomembrane on one side of the seam to be in the same plane 

with a portion of the geomembrane on the other side. As a result, bending axial strain 

builds in the geomembrane as it bends on each side of the seam, as illustrated in Figure 

3-23. 

 

Figure 3-23 Bending strain due to rotation in the seam (Giroud 2005) 

 Giroud et al. (1995) performed a detailed analysis of the additional strain in the 

geomembrane due to bending of the seam. The main finding of the Giroud et al. (1995) 

analysis was the determination of the maximum additional strain due to bending, b , 

referred to as the ‘additional strain due to bending’ in Figure 3-24. The analysis showed 

that the maximum additional strain due to bending occurs at the connection between the 

geomembrane and the seam a point A or B in Figure 3-23. As shown in Figure 3-26, at 

2% axial strain denoted as GM  in Figure 3-26), the additional bending strain, b , can 

range from 1.6% to 2.5% depending on the weld type and thickness. This means that the 

strain at the weld will be on the order of 2 to 2.25 times the axial strain developed in the 

geomembrane.  
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Figure 3-24 Additional strain due to geomembrane bending next to a seam, 
b , as a function of the 

tensile strain in the geomembrane away from the seam, 
GM  ( after Giroud 1993) (Notes: The value 

indicated in square brackets is the total seam thickness, which is the thickness of extrudate, if any, plus 

the thickness of the two geomembrane layers. 
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3.5.1.2 Strain concentration due to scratches 

The stress concentration around a scratch is proportional to the geomembrane thickness 

reduction due to the scratch. Giroud (1994) have shown that the ratio between the yield 

strain of a scratched HDPE geomembrane, ys , and the yield strain of an intact HDPE 

geomembrane, y , is given by the following equation:  
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where ds is the depth of scratch or any other type of thickness reduction, tGM is the 

geomembrane thickness (outside the zone of thickness reduction), and N = 4 for HDPE. 

This relationship is shown graphically in Figure 3-25. 

 

Figure 3-25 Ratio of the yield strains of an HDPE geomembrane with a scratch, or any other type of 

thickness reduction, and an intact HDPE geomembrane (Giroud 1993) 
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3.5.2 Internal shear strength of GCL 

The in-plane shear resistance of a GCL may be governed by either the interface shear 

strength or its internal shear strength. Figure 3-26 shows a typical relationship between 

shear stress ( ) and shear displacement ( ) for internal shear loading of a GCL at 

constant normal stress from Fox and Stark (2004). In the test shown in Figure 3-26 the 

shear stress increases rapidly to a peak shear strength ( p ) at the beginning of the test. 

The data presented by Fox and Stark (2004) indicates that the corresponding 

displacement at the peak ( p ) is usually less than 50 mm (but not always). As 

displacement continues, all GCLs and (most GCL interfaces) experience post-peak 

strength reduction in which the measured shear resistance decreases and ultimately 

reaches a residual shear strength ( r ), after which no further strength reduction occurs.  

The displacement at residual shear strength ( r ) may be 0.1 - 0.5 m, or more. In cases in 

which the test is not run to large enough strains that the shear resistance drops to a 

constant minimum value, a “large displacement” shear strength ( ld ) is often reported 

(Fox and Stark 2004).  GCLs are generally tested hydrated based upon the assumption 

that, due to the high affinity of bentonite for water, hydration is inevitable unless special 

measures are taken to prevent hydration (e.g. the GCL is encapsulated by a geomembrane 

on both sides). 
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Figure 3-26 Typical shear stress-displacement relationship for an internal shear test of a hydrated 

GCL (Fox and Stark 2004) 

 Unreinforced GCL:   For a hydrated unreinforced GCL, the internal shear strength 

should be equal to the strength of the bentonite used to manufacture the GCL (generally a 

sodium bentonite).  The drained shear strength of hydrated sodium bentonite is the lowest 

of any natural soil. Fox et al (1998) measured friction angles on the order of 

o
r

o
p and 7.4 2.10    for a hydrated unreinforced geotextile-supported GCL, as 

shown in Figure 3-27. 

 Reinforced GCL:  Geosynthetic reinforcement can greatly increase the peak shear 

strength of hydrated GCLs. The failure mode in reinforced GCLs generally makes a 

transition from an interface failure to an internal failure as normal stress increases. 

However, reinforced GCL in-plane strength envelopes of ten often do not distinguish 

between these two different failure modes. Figure 3-27 shows peak and residual failure 

envelopes for a GCL employing woven geotextiles on both sides (WW) and reinforced 
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by stitched bonding (SB) and a GCL employing a woven geotextile on one side, a non 

woven geotextile on the other side (W/NW), and reinforced by needle punching (NP). 

The shear strength parameters for the NP reinforced GCLs were developed for two 

different products.  One product, designated 85N (having peel strengths, Fp, of 85 N/10 

cm), had shear strength parameters of o
pp andkPac 6.32    2.98   .  The other 

product, designated 160N (Fp of 160 N/10 cm), were had shear strength parameters of

o
pp andkPac 9.41    3.42    (Fox and Stark 2004). The peak shear strength of the 

NP reinforced GCL increases sharply with increasing normal stress and shows good 

correlation with the peel strength of the carrier geotextile (the force required to peel off 

one of the carrier geotextiles). The residual failure envelope for all GCLs reported by Fox 

and Stark (2004), regardless of the type of reinforcement and the peel strength, was equal 

to that of hydrated bentonite (  0.1rc kPa and o
r 7.4  ), as shown in Figure 3-27.  

Thus the residual shear strength of hydrated GCLs can only be improved by increasing 

the residual shear strength of the hydrated bentonite. However, it is not clear that a NP 

reinforced GCL in a landfill liner or cover is likely to be subjected to enough internal 

deformation to mobilize the residual shear strength. 
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Figure 3-27 Peak and residual failure envelops for hydrated unreinforced, stitch bonded and needle-

punched GCLS (Fox et al. 1998) 

3.6 Cyclic Shear Properties of Geosynthetics 

3.6.1 Geosynthetics Liners as Base-Isolation   

The interface behavior of geosynthetic materials subject to cyclic loading was 

investigated by Kavazanjian et al. (1991), Yegian and Lahlaf (1992), Yegian et al. 

(1998), and Yegian and Kadakal (2004) for the use as frictional base isolation materials. 

In most cases, these investigators use rigid block on a horizontal plane shaking table tests 

to investigate the interface behavior of geosynthetic material subject to cyclic loading. 

Kavazanjian et al. (1991), Yegian et al. (1998), and Yegian and Kadakal (2004) 

conducted testing using a rigid block with a geosynthetic layer glued to one of its faces 



  66 

and with another geosynthetic layer fixed to the shaking table. The shaking table was 

excited with either sinusoidal or earthquake like motions. These groups of researchers 

monitored both the acceleration of the block and the slip of the block relative to the 

shaking table.  

Kavazanjian et al. (1991) conducted shaking table tests on four different 

geosynthetic interfaces under different sinusoidal wave frequencies and peak 

accelerations and with an earthquake like motion. They also conducted one centrifuge 

test with a similar block on plane setup, applying an earthquake like motion under a 5g 

centrifugal acceleration. Figure 3-28 shows a sample of the results from Kavazanjian et 

al. (1991) from a shaking table test with a sinusoidal input motion with a peak 

acceleration of 0.4 g. The figure shows the acceleration of the block is cut off at a 

relatively constant threshold of 0.16g. This threshold coincides with the dynamic friction 

coefficient of the interface used in this test. Figure 3-29 shows similar behavior for the 5 

g centrifuge test with an earthquake like input motion. Kavazanjian et al. (1991) reported 

a slight decrease in the coefficient of friction of the interface subject to dynamic loading 

(sinusoidal wave) compared to the static coefficient of friction (as measured in tilt table 

tests). They also reported a slight change in the coefficient of dynamic friction with 

changes in the frequency of the sinusoidal input motion. The results of the centrifuge test 

also suggested that the dynamic friction coefficient may depend on the normal stress 

under the block as well. They attributed the apparent trend of a decrease in the coefficient 

of dynamic friction with increasing frequency to an increase in velocity of sliding. 

Kavazanjian et al. (1991) concluded that the shaking table results and centrifuge shaking 

tests demonstrated the potential for a smooth geomembrane to provide effective frictional 

seismic base isolation.   
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Figure 3-28 Example of the displacement and acceleration time histories results from sinusoidal 

shaking table tests (Kavazanjian et al. 1991) 
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Figure 3-29 Example of the time histories results from earthquake like motion input centrifuge shaking 

tests (Kavazanjian et al. 1991) 

Yegian and Kadakal (2004) also conducted a series of shaking table tests of the 

sliding of a geosynthetically lined rigid block.  These investigators used both sinusoidal 

acceleration input and earthquake acceleration-like input in their testing program. A 

schematic of the rigid block testing setup they used is presented in Figure 3-30. In their 

testing program, Yegian and Kadakal (2004) used four different geosynthetic types. They 

concluded that only one of these interfaces (geotextile/ultrahigh molecular weight 

polyethylene liner (UHMWPE)) was suitable for base isolation because this geotextile/ 
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UHMWPE interface shows a constant coefficient of friction under varying frequency, 

normal stress, and velocity of sliding. 

 

  

Figure 3-30 Schematic of the rigid block test setup Complaint block response (Yegian and Kadakal 

2004) 

 Figure 3-31 presents plots showing the typical response of geosynthetically isolated 

block with a geotextile/UHMWPE to an earthquake-like excitation from Yegian and 

Kadakal (2004). As in all tests reported by these investigators, truncation of the 

transmitted acceleration to the block at an acceleration expressed as a fraction of gravity 

equal to the dynamic friction coefficient of the interface was clearly observed during the 

test. Because of the difference in the block and table accelerations, transient slip 

displacements of up to 5 cm were recorded in the test shown in Figure 3-31. In Figure 

3-32 the peak transmitted acceleration from three different earthquake records scaled to 

peak table input motions to 0.4 g are plotted versus of the peak table acceleration for the 

geotextile/UHMWPE interface. The results shown in Figure 3-32 suggest that the 

transmitted accelerations are independent of the frequency content of the earthquake as 

well as its peak acceleration of the input motion for the geotextile/UHMWPE interface. 
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Yegian and Kadakal (2004) also used a 1 story building model to demonstrate the ability 

of the geosynthetics to serve as a frictional seismic base isolator. Yegian and Kadakal 

(2004) concluded, based on their shaking table results, that a geotextile / smooth 

geosynthetic liner may provide effective frictional seismic base isolation.   

 

 

Figure 3-31 Measurements from rigid block tests on geotextile/ UHMWPE interface when subjected to 

the Capitola record scaled to 0.25g: (a) table acceleration, (b) block acceleration, (c) slip displacement, 

and (d) slip rate (Yegian and Kadakal 2004) 



  71 

 

Peak table acceleration (g) 

Figure 3-32 Variation of peak transmitted acceleration with peak table acceleration from rigid block 

tests with earthquake excitations, using geotextile/UHMWPE interface (Yegian and Kadakal 2004) 

3.6.2 Cyclic Shear Behavior of Geosynthetic / Geosynthetic Interfaces 

Yegian and Kadakal (2004) conducted tests to examine the effect of the number of cycles 

of loading, sliding velocity, normal stress, and geosynthetic surface condition on the 

interface friction coefficient for various geomembrane interfaces using shaking table 

tests. Table 3-4present a list of the interfaces tested by Yegian and Kadakal (2004) and 

the range of friction coefficient measured by these investigators in their cyclic testing. 
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Table 3-4 list of geotextiles interfaces tested (Yegian and Kadakal 2004) 

Interface Description Friction 
coefficient 

Geotextile/HDPE A high-strength nonwoven geotextile, “Typar 3601” against 
1.5 mm smooth HDPE (high density polyethylene) 

0.15–0.3 

PTFE/PTFE Two sheets of 1.5 mm thickness PTFE (polypropylene) 0.08– 0.15 
UHMWPE/UHMWPE Two layers of 6.4 mm thick UHMWPE (ultrahigh molecular 

weight polyethylene) “TIVAR 88-2 AntiStatic” 
0.09–0.25 

Geotextile/UHMWPE Typar 3601 geotextile against TIVAR 88-2, 6.4 mm thick 
UHMWPE 

0.06–0.08 

 

Figure 3-33 presents a summary plot showing the variation of the friction coefficient as a 

function of the number of cycles for a sliding velocity of ±2.5 cm/s at a frequency of 0.25 

Hz. The combination of this slip velocity and frequency induced a relative displacement 

of 5 cm per cycle. During the first 10 cycles, the friction coefficient varied by about 

±30% from its initial value, depending on the interface tested. However, in some cases 

the friction coefficient increased and in other cases it decreased.  Beyond 10 cycles, the 

variation in friction coefficient for a given interface was negligible. Figure 3-34 shows 

the friction coefficients reported by Yegian and Kadakal (2004) as a function of normal 

stress. Generally, the friction coefficient of the interfaces slightly decreased with 

increasing normal stress up to about 80 kPa, beyond which the friction coefficient 

remained constant. Figure 3-35 presents the results of testing done by Yegian and 

Kadakal (2004) to measure friction coefficients over the range of sliding velocity from 

0.01 and 10 cm/s. The geotextile/HDPE and PTFE/PTFE interfaces exhibited a 

significant increase in the friction coefficient with increase in sliding velocity. The 

friction coefficient for the UHMWPE/UHMWPE interface decreased significantly with 

sliding velocity. The friction coefficient of the geotextile/UHMWPE interface was 

independent of the sliding velocity.  
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Figure 3-33 Effect of number of cycles of application of interface shear on the friction coefficient of the 

tested interfaces (Yegian and Kadakal 2004) 

 

Figure 3-34 Effect of normal stress on the friction coefficient of the tested interfaces (f =0.25 Hz, sliding 

velocity=±2.5 cm/ s) (Yegian and Kadakal 2004) 
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Figure 3-35 Effect of number of cycles of application of interface shear on the friction coefficient of the 

tested interfaces (f =0.25 Hz, sliding velocity=±2.5 cm/ s) (Yegian and Kadakal 2004) 

Kim et al. (2005) conducted an experimental study of geosynthetic interface 

shear strength on a shaking table to investigate the dynamic friction resistance 

characteristics of geosynthetic materials. These investigators conducted their testing on 8 

different types of geosynthetic interfaces. Three different types of smooth high-density 

polyethylene (HDPE) geomembranes (designated hereafter as Geomembrane 1, 

Geomembrane 2, and Geomembrane 3, respectively) were tested. The first two 

geomembranes were 1.5mm (60 mil) thick and the third was 0.5mm (20 mil) thick. Two 

different types of polypropylene geotextiles made of continuous filament, non-woven 

needle punched fabrics (designated as Geotextile 1 and Geotextile 2, respectively) were 

employed in the testing. A medium-density polyethylene geonet of 5.1mm (200 mil) 

thickness (designated hereafter as Geonet 1) was also employed in the testing. The geonet 

had openings of 10mm by 5mm in a diamond shape. Finally, a GCL made of two needle-

punched nonwoven geotextiles (designated hereafter as GCL 1) was also employed in the 
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testing. Kim et al. (2005) concluded that interfaces involving geotextiles have unique 

shearing characteristics that are different from the interfaces involving only non-

geotextiles based on their testing.  

 The typical behavior of interfaces involve geotextiles are presented in Figure 3-36. 

The peak friction angle (and thus peak friction resistance) develops at a relatively small 

shear displacement amplitudes for this interface (typically less than 2 mm). At the 

displacement larger than the displacement at the peak strength, the shear resistance 

decreases continuously. Kim et al. (2005) concluded for such interfaces (involve 

geotextiles) that the friction angle at a displacement of 254 mm are typically 2–3o less 

than the peak friction angle (i.e., about 80–90% of the peak values). Kim et al. (2005) 

found that the large displacement friction angle fell between a low of 12.3◦ and a high of 

16.5◦ for a geomembrane/dry geotextile interface, depending on the displacement rate.  

 

Figure 3-36 Typical plots of friction angle versus shear displacement of four different displacement 

rates at a normal stress of 10.94 kPa for interfaces involve geotextiles (Kim et al. 2005) 
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 The typical behavior of interfaces including non geotextiles is presented in Figure 

3-37 as reported by Kim et al. (2005). The shear strength of these interfaces increases 

with cumulative shear displacement until it stabilizes at some relatively constant level. 

Kim et al. (2005) speculated that this phenomenon as specimen being roughen with 

cumulative shear displacement. They also speculated that the increase in roughness 

occurs because the tips of the geonet strands dig into and cut the surface of the 

geomembrane. 

 

Figure 3-37 Typical variation of peak frictional resistance (or shear resistance) during the pre-shearing 

cycles for non-geotextile-involved geosynthetic interfaces (Kim et al. 2005) 

3.6.3 GCL internal cyclic shear behavior  

Nye and Fox (2007) investigated the effects of displacement rate, displacement 

amplitude, number of cycles, frequency, and motion waveform on GCL internal response 

using cyclic displacement-controlled shear tests conducted at a normal stress of 141 kPa. 

Figure 3-38 presents the response of a hydrated W/NW NP reinforced GCL subjected to 
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50 cycles of sinusoidal displacement with amplitude of ±10 mm at a frequency equal 

to1.0 Hz. The figure shows degradation in the shear resistance of the GCL during cyclic 

loading. Nye and Fox (2007) speculated that the needle-punched fibers become 

increasingly engaged as displacement increased in the first quarter cycle of loading. 

During the second quarter of each cycle, shear resistance is essentially constant when the 

reinforcement is relaxed. The shear resistance increases sharply towards the peak 

resistance at the end of the third quarter cycle, and then remains relatively constant again 

in the fourth quarter. They suggest that the reinforcement experiences additional damage 

with every cycle of loading, leading to the progressive decrease of shear resistance 

observed in the testing. Nye and Fox (2007) concluded from a comparison between the 

initial GCL response during cyclic loading and the monotonic shear response of the GCL 

presented in Figure 3-39 that the load-displacement curves are similar for the first 

quarter-cycle of loading and that monotonic shear data may provide a reasonable 

approximation for the initial cyclic response of the GCL prior to displacement reversal. 

 

Figure 3-38 Shear stress versus displacement for ±10 mm cyclic shear test (Nye and Fox 2007) 
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Figure 3-39 Comparison of first cycles for six cyclic shear tests with varying displacement amplitude 

with the static shear response (Nye and Fox 2007) 

As shown by the hysteresis loops presented in Figure 3-40, in the Nye and Fox (2007) 

experiments the cyclic shear load-displacement response is generally symmetrical for 

displacement amplitudes of up to 15 mm.  However, the hysteresis loops in the ±20 and 

±25 mm displacement amplitude tests were not symmetrical. Nye and Fox (2007) 

concluded that lack of symmetry was due to reinforcement failure, which resulted in a 

marked decrease in shear strength during the second half-cycle of loading. After the 

reinforcement broke, the shear resistance of the GCL is essentially controlled by the 

hydrated bentonite.  So, for subsequent cycles of loading in the ±20 and ±25 mm 

displacement amplitude tests, the shear resistance remained nearly constant until the 

shear stress reversed. 
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Figure 3-40 Comparison of first cycles for six cyclic shear tests with varying displacement amplitude 

(Nye and Fox 2007) 

Nye and Fox (2007) investigated the effect of the number of cycles of loading (N) with 

respect to the degradation index of the GCL in-plane stiffness ( ).  Figure 3-41 

illustrates this degradation of stiffness with a plot of log  versus log N for various 

displacement amplitudes. This plot shows a linear relationship between log  and log N 

that passes through zero except for the 20 mm and 25 mm amplitudes. The deviation of 

the tests with the displacement amplitudes of 20 mm and 25 mm from this pattern of 

behavior is likely related to the damage to the fibers in the first cycle of these tests. Nye 

and Fox (2007) reported that the frequency of the cyclic load had an insignificant effect 

on cyclic shear behavior based on testing conducted with several different sinusoidal 

wave frequencies.  
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Figure 3-41 Degradation index for six cyclic shear tests (Nye and Fox 2007) 

 Sura (2009) tested the cyclic internal shear behavior of GCLs under high normal 

stresses. The hysteresis loops from the testing by Sura (2009) at 692 kPa normal stress 

are similar in shape to the GCL hysteresis loops reported by Nye and Fox (2007) for 

testing at 141 kPa.  Figure 3-42 shows the shear stress versus the shear displacement for a 

NP reinforced GCL at 692 kPa normal stress for a displacement amplitude of 5 mm. 

Figure 3-43 shows the shear stress versus the shear displacement a NP reinforced GCL 

692 kPa normal stress with a displacement amplitude of 25 mm. In Figure 3-42, the shear 

strength versus displacement curve for the NP reinforced GCL at a normal stress of 692 

kPa and displacement amplitude of 5 mm experience the same three stages behavior as 

observed by Nye and Fox (2007) discussed subsequently. 
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Figure 3-42 Cyclic shear test, Δa = 5 mm, σn = 692 kPa (Sura 2009) 

 

 

Figure 3-43 Cyclic shear test, Δa = 25 mm, σn = 692 kPa (Sura 2009) 
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3.6.4 Cyclic shear behavior of GM / NP GCL 

Stern (2009) conducted both monotonic and cyclic tests on GCL/HDPE GM interfaces 

under high normal stress. Figure 3-44 presents shear stress-displacement plots for the 

monotonic shear testing of a GCL/HDPE GM combination sheared at different shearing 

rates.  The shearing rate effect on the GCL/HDPE GM interface is similar to the shearing 

rate effect on the internal shear behavior of a NP reinforced GCL. In Figure 3-44 the 

largest peak strength is from internal shear test of needle punch reinforced GCL and the 

lowest residual strength is also from the internal shear test of needle punch reinforced 

GCL. 

 

Figure 3-44 Shear stress-displacement relationships for GCL/GM interface under σn=962 kPa (Stern 

2009). 

 Stern (2009) presented results of 7 cyclic tests on GM/GCL interfaces at a normal 

stress of 692 kPa. The displacement amplitudes for the 7 tests were 2, 10, 15, 20, 30, 60, 

and 120 mm. The cyclic testing was performed using a sinusoidal wave form with a 
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frequency of 1 Hz and carried out for 25 cycles of loading. Figure 3-45 presents a plot of 

shear stress versus displacement for all seven tests. In this figure it can be observed that 

the peak shear stress occurs during the first half of the first cycle, and then the peak shear 

stress decreases with each additional cycle of loading. The greatest decrease in shear 

stress generally occurs between the first and tenth cycle of loading. After the tenth cycle 

the stress reduction from each additional cycle of loading is very small. This suggests that 

after 10 cycles of loading the strength reduction during additional cyclic loading may be 

ignored.  This finding agrees with the findings of Nye and Fox (2007) for GCL internal 

loading. 

 

Figure 3-45 Shear stress versus displacement for seven cyclic shear tests (Stern 2009) 

 Stern (2009) plotted the results from the first quarter-cycle of each hysteresis loop in 

his tests against the monotonic stress-displacement curve from a test conducted at a shear 

rate of 1 mm/min.  This plot is presented in Figure 3-46. Stern (2009) attributed the 
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observed increase of peak shear strength for the first quarter cycle of the cyclic tests 

compared to the monotonic test to the fact that the 1 Hz cyclic frequency results in a 

loading rate much faster than the rate of 1 mm/min employed for the monotonic loading 

test.  

 

Figure 3-46 Shear stress versus displacement for first quarter cycle of seven cyclic tests (Stern 2009) 

3.7 Static Shear Strength of the Municipal Solid Waste (MSW) 

3.7.1 Introduction 

The heterogeneous nature of MSW makes the task of characterizing of its properties a 

challenge. The obstacles to evaluating the shear strength of the MSW include obtaining 

and testing representative samples, degradation of the waste over time, and the variability 

of the composition of waste from one landfill to another. These make characterizing 

MSW shear behavior more challenging than characterizing the shear behavior of soils. 

MSW also usually contains material that can sustain large tensile strains and act as 

reinforcement to the waste.  Therefore, due care must be taken in applying regular soil 
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mechanics rules and constitutive models to waste. Using the Mohr-Coulomb shear 

strength criterion to characterize waste shear strength is common. However, this does not 

necessarily mean that waste is a frictional material.  It may merely reflect an increase in 

waste strength with increasing confining pressure. To characterize the in-place shear 

strength of MSW, information like the age of the waste, leachate circulation in the 

landfill and temperature of the waste may be important pieces of information, as these 

factors may affect the constituents of the waste and the amount of degradation in the 

waste, which in turn affects the shear strength of the waste. Methods used to evaluate the 

static and dynamic shear strength of MSW are covered in this section, including 

laboratory testing and back calculation from field performance.  

3.7.2 Direct shear testing on MSW 

Dixon and Jones (2005) presented a comparison between the different testing techniques 

used to get information on the shear strength of the MSW. They concluded that the most 

appropriate laboratory technique is the direct shear test.  Figure 3-47 shows a summary of 

range of recommended values for the shear strength parameters of MSW from different 

research groups as presented by Dixon and Jones (2005). Dixon and Jones (2005) 

distinguished between three different normal stress ranges or “zones of normal stresses”, 

in their summary as follows: 

 Zone A, corresponding to very low normal stress (0 kPa to 20 kPa);  Dixon and 

Jones (2005) recommended MSW shear strength to be characterized as a 

cohesive material in this zone ( = 0), with c = 20 kPa in this zone. 
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 Zone B, corresponding to low to moderate normal stresses (20 kPa to 60 kPa); 

Dixon and Jones (2005) recommended MSW shear strength be characterized by c 

= 0 kPa and φ = 38o in this zone. 

 Zone C, corresponding to higher normal stresses (higher than 60 kPa); In this 

case, Dixon and Jones (2005) recommended MSW shear strength be 

characterized by c=20 kPa and φ = 30o in this zone. 

 

Figure 3-47 Suggested MSW shear strength envelopes for design (Dixon and Jones 2005) 

 Bray et al. (2009) present the results of a direct shear testing program on 

reconstituted MSW samples using waste recovered from the Tri-cities landfill in northern 

California.  To investigate the effects of waste composition on shear strength, direct shear 

tests on specimens with varying fractions of less than 20 mm (soil-like), and larger than 

20 mm (fibrous ) waste materials were conducted. Specimens were prepared with 100%, 

62–76%, and 8–25% of the material smaller than 20 mm, by weight. Bray et al. (2009) 
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prepared the specimens with the long axis of the fibrous particles generally oriented 

horizontally. Bray et al. (2009) concluded from the direct shear testing that waste that 

contained 100, 62, and 12% soil-like material revealed similar shear strength 

characteristics and that this may be attributed to the orientation of the fibrous material 

parallel to the shear plane in the test.  As shown in Figure 3-48 (a), the fibrous material 

did not appear to contribute significantly to the waste shearing resistance in this test 

series. Bray et al. (2009) also showed that the secant friction angle from direct shear tests 

decreases with increasing normal stress, as illustrated in Figure 3-48 (b). 

 

Figure 3-48 Direct shear strength of Tri-Cities landfill MSW: (a) curved strength envelope for samples 

with varying waste composition; (b) decrease in secant friction angle with increasing normal stress 

assuming c=5 kPa (Bray et al. 2009) 

Bray et al. (2009) concluded that the Direct Shear (DS) strength of the waste materials 

from this test series may be defined by the Mohr-Coulomb equation as: 

 )tan( dnc    (9) 
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where  =shear strength; n =total normal stress; c =cohesion intercept; and d = a 

normal stress dependent friction angle given by: 
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where o = friction angle measured at a normal stress of 1 atmosphere;   = the change 

of the friction angle over 1 log-cycle change of normal stress; and ap =atmospheric 

pressure (i.e., 101.3 kPa). 

 Bray et al. (2009) collected a database of available direct shear test data for MSW to 

evaluate o and .  Data from a total of 103 large-scale direct shear tests were collected 

from eight studies and combined with the large-scale direct shear tests conducted on 

MSW from the Tri-Cities landfill in the San Francisco Bay area by Bray et al. (2009) as 

part of the study.  Figure 3-49 shows the collected data on a Mohr-Coulomb plot with the 

best fit failure envelope to the data. Bray et al. (2009) concluded that the shear static 

shear strength of MSW tested in direct shear could be characterized by c =15 kPa, o

=36°, and  =5° based upon this data. 
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Figure 3-49 Recommended static shear strength of MSW based primarily on direct shear tests and 

field observations of static slope stability (Bray et al. 2009) 

3.7.3 Triaxial testing  

Bray et al. (2009) presented the results of a series of triaxial compression tests conducted 

on reconstituted specimens of MSW recovered from the Tri-Cities Landfill in the San 
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Francisco Bay area. Specimens were prepared with the same different percentages of 

fibrous waste particles used in the previously cited direct shear testing program 

conducted by these investigators. Representative results of the Bray et al. (2009) triaxial 

compression test are shown in Figure 3-50. The specimens for the tests reported on 

Figure 3-50 were prepared with the same compaction effort, subjected to an isotropic 

confining stress of 75 kPa, and sheared at an axial strain rate of 0.5%/min.  One 

specimen, containing 100% soil-like (<20 mm) material, reached a peak shear stress at an 

axial strain of about 22% and then exhibited a post-peak reduction in shear resistance. 

The other two specimens, which contained 38 and 86 percent of fibrous material (>20 

mm) by weight, exhibited initially a softer response than the specimen with no fibrous 

material but exhibited an increasing upward curvature at strains greater than 5% without 

reaching a peak shear stress, as shown in Figure 3-50. 

 Most of the samples tested in the triaxial compression by Bray et al. (2009) did not 

show a pronounced peak in the stress-strain response (in fact, only the one test shown in 

Figure 2-55 did), which coincides with results shown by Dixon and Jones (2005).  Due to 

the absence of a peak stress, determining the failure point from triaxial testing has to be 

based upon a strain criterion.  A shear strain of 10% is commonly used as the strain-based 

failure criteria for isotropic triaxial tests.  However, Bray et al. (2009) argued that the 

failure strain should be based upon the strain developed from an anisotropic Ko 

consolidation state.  Figure 3-51 shows shear strength envelopes and secant friction angle 

from triaxial compression test data for assumed Ko values of 0.3, 0.6, and 1.0 for 

incremental strain levels of 5 and 10%. As these results show, as the assumed value of Ko 

decreases, the mobilized shear strength increases for a specified incremental axial strain. 

Furthermore, as expected, the mobilized shear strength increases as the incremental axial 
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strain increases.  However, even for a Ko value of 1.0 and an incremental strain of 5%, a 

friction angle of 34o degrees seemed reasonable (with a value as high as 48o for Ko = 0.3 

and an incremental strain of 10%). 

 Based upon triaxial data from their own testing and from a variety of different 

investigations available in the literature, Bray et al. (2009) recommended that the shear 

strength of MSW in triaxial compression be described based upon a Ko value of 0.6 and 

an incremental strain of 5% by a secant friction angle of 35 degrees.  

 

Figure 3-50 Responses of MSW in monotonic triaxial compression testing for specimens with varying 

waste compositions (Bray et al.  2009) 
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Figure 3-51 Mobilized TX stress-based friction angles: (a) Ko=0.3 and 5% axial strain; (b) Ko=0.3 and 

10% axial strain ; (c) Ko=0.6 and 5% axial strain; and (d) Ko=1 and 5% axial strain; the sample group 

and percent of material smaller than 20 mm is provided in the legends (Bray et al.  2009) 

3.7.4 Simple shear testing 

Results of simple shear tests on MSW are limited. In interpreting this test, an assumption 

on the orientation of the failure surface or on the value of the horizontal normal stress is 

required. Assuming the failure plane to be horizontal and interpreting the simple shear 

test as a direct shear test results in the lowest possible shear strength estimate from a 

simple shear test. Assuming the normal stress on the vertical plane to be the Ko stress or 
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that the normal stress on the vertical plane is the mean normal stress results in a 

significantly higher strength estimate. Using Ko= 0.6, Kavazanjian et al. (1999) estimated 

a lower bound shear strength envelope of c=16 kPa and φ =33° and an upper bound 

envelope of c=30 kPa and φ =59° from simple shear tests on reconstituted MSW. Figure 

3-52 shows results from three monotonic loading SS tests conducted on reconstituted 

specimens of MSW from the Tri-Cities landfill: one using 100% smaller than 20 mm 

material compacted to a unit weight of 14.9 kNm3, the second using 62% less than 20 

mm compacted to a unit weight of 9.6 kNm3
 using the same compaction energy used to 

compact the first specimen, and the third using 62% less than 20 mm but compacted with 

less energy than the first two specimens to a unit weight of 8.2 kNm3. All three tests 

were sheared under a vertical normal stress of 75 kPa at a shear strain rate of 

approximately 0.6% per min (Bray et al. 2009). Using the direct shear interpretation 

method, the secant friction angle at a shear strain of 10% varied from 32° for the low unit 

weight specimen with 62% less than 20 mm to 42° for the specimen with 100% less than 

20 mm. 
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Figure 3-52 Results of simple shear tests on reconstituted Tri-Cities landfill MSW (Bray et al. 2009) 

3.7.5 Back analysis of the MSW static shear strength 

Field performance of failed and stable landfills provides a valuable source of information 

for back calculating MSW shear strength. Kavazanjian et al., (1995) evaluated available 

data on steep but stable landfill slopes to back calculate the shear strength of the MSW.  

Table 3-5 shows a list of the cases analyzed by these investigators to back calculate the 

shear strength parameters of the MSW (Kavazanjian et al., 1995).  These researchers 

conducted limit equilibrium analyses of the cases identified in Table 3-5 using the 

modified Bishop method of slices.  Table 3-5 shows the friction angle calculated 

assuming 5 kPa cohesion for factors of safety of 1.1, 1.2, and 1.3.  As all of the landfill 

slopes used in the back analysis had been stable for at least 15 years without any signs of 

static instability, and two of the landfills had survived seismic loading, the values for a 
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factor of safety of 1.2 were considered appropriate to characterize a lower bound for the 

shear strength of MSW.  

Table 3-5 Back Analysis of Exciting Landfill Slopes (Kavazanjian et al. 1995) 

Landfill 
Average Slope Maximum Slope Waste Strength 

Height 
(m) 

Slope 
(H:V) 

Height 
(m) 

Slope 
(H:V) 

FS=1.0 FS=1.1 FS=1.2 

Lopez Canyon, CA 120 2.5:1 35 1.7:1 25 27 29 
OII, CA 75 2:1 20 1.6:1 28 30 34 

Babylon, NY 30 1.9:1 10 1.25:1 30 34 38 
Private landfill, OH 40 2:1 10 1.2:1 30 34 37 

 

 In addition to the back analyzed data shown in Table 3-5, Kavazanjian et al. (1995) 

considered evidence drawn from field observations of vertical excavated trenches at 

landfills (i.e. that vertical trenches in waste remained stable up to a height of at least 6m) 

and from large diameter direct shear tests to draw conclusions regarding MSW shear 

strength.  This data led Kavazanjian et al. (1995) to recommend using a bilinear 

relationship to characterize MSW shear strength. A Mohr-Coulomb strength envelope 

with Φ=0.0o and c=24 kPa for normal stresses less than 32 kPa and Φ=33o and c=0.0 kPa 

for higher normal stresses was recommended by Kavazanjian et al. (1995) to characterize 

the shear strength of MSW, as shown in Figure 3-53.  
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Figure 3-53 Bilinear Mohr- coulomb shear stress envelop for MSW (Kavazanjian et al. 1995) 

3.8 Municipal solid waste unit weight  

Estimating MSW unit weight is often the first step in performing seismic analyses of 

landfill systems. In particular Zekkos et al. (2006) have shown that an appropriate MSW 

unit weight profile is important for performing reliable seismic analyses of landfill. 

Zekkos et al. (2006) developed a characteristic shape for the profile MSW unit weight 

versus depth by a hyperbolic equation based upon analysis of laboratory and field data. 

This characteristic profile was developed using field data and large-scale laboratory data. 

Zekkos et al. (2006) indicated that MSW unit weight is principally governed by waste 

composition and landfill operational practices (i.e., compaction effort, cover soil 
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placement, and liquids management) during waste placement.  Using their characteristic 

shape, Zekkos et al. (2006) developed a family of representative MSW unit weight 

profiles depending on the compaction effort used in constructing the landfill shown in 

Figure 3-54.  

 
 
 
Figure 3-54 Recommended unit weight profiles for conventional municipal solid-waste landfills 

(Zekkos et al. 2006) 

3.9 MSW Shear Wave Velocity 

Kavazanjian et al. (1996) investigated the performance of several landfills at the southern 

California area after 1994 Northridge earthquake. As part of this investigation, in situ 
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shear wave velocity was measured using the spectral analyses of surface waves (SASW) 

method at six MSW landfills.  

 Figure 3-55 presents a summary of the shear wave velocity profiles, presented by 

Kavazanjian et al. (1996) as derived from SASW testing at the six landfills. The plot in 

Figure 3-55 provides the mean, the mean plus standard deviation, and the mean minus 

standard deviation shear velocity versus depth for the entire data set. Based on these 

measurements, Kavazanjian et al. (1996) recommended the range for typical the shear 

wave velocity profile for southern California landfills shown in Figure 3-56. It should be 

noted that the recommended curve of Kavazanjian et al. (1995) shown in Figure 3-56 was 

developed using limited data compared to the data employed in the Kavazanjian et al. 

(1996) work.  
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Figure 3-55 Summary of all six landfills shear wave velocity profile (Kavazanjian et al. 1996) 
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Figure 3-56 recommended range for MSW shear wave velocity (Kavazanjian et al. 1996) 
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3.10 Shear Modulus and Material Damping of MSW 

The strain dependant modulus and damping properties of MSW are of great importance 

in seismic analysis. In order to accurately analyze the seismic performance of landfills, 

the shear modulus reduction and increase in damping due with the increase in shear strain 

must be accurately characterized. Several groups of researchers have conducted a back 

analysis of field data from the OII landfill in order to characterize strain dependent 

normalized shear modulus (G/Gmax) and damping ratio curves (Kavazanjian and 

Matasovic 1995; Idriss 1995; Matasovic and Kavazanjian 1998; Augello et al. 1998 and 

Zekkos et al. 2008). Laboratory testing on reconstructed specimens to develop MSW 

modulus reduction and damping curves has been reported by Zekkos et al. (2008) and 

Matasovic and Kavazanjian (1998). 

 Zekkos et al. (2008) conducted more than 90 cyclic shear tests on large diameter 

reconstructed MSW samples (300mm diameter specimens) using waste from the Tri-

cities landfill in northern California. Specimens were reconstructed with different waste 

composition ratios and different unit weights then subjected to cyclic loading. These 

investigators identified the waste composition as an important factor in characterizing the 

modulus and damping curves for MSW. They also concluded that the modulus reduction 

and damping curves are not significantly affected by the unit weight, time under 

confinement or loading frequency.  

 Figure 3-57 (a) compares the results from the testing program conducted by Zekkos 

et al. (2008) to several G/Gmax of the curves recommended in the literature. The Augello 

et al. (1998) curve falls between the G/Gmax curves from Zekkos et al. (2008) specimens 

with 100% and 62%-75% smaller than 20 mm material. The G/Gmax curve recommended 
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by Matasovic and Kavazanjian (1998) falls close to the G/Gmax from Zekkos et al. (2008) 

for specimens with 8%-25% smaller than 20 mm material. Augello et al. (1998) and 

Matasovic and Kavazanjian (1998) curves provide reasonable bounds to the laboratory 

data produced by Zekkos et al. (2008).  

 As shown in Figure 3-57 (b), the material damping curve recommended by Augello 

et al. (1998) captures the laboratory data from Zekkos et al. (2008) well at intermediate 

strains, but lies below the Zekkos et al. (2008) data at higher strains. Both the Matasovic 

and Kavazanjian (1998) and Idriss et al. (1995) damping curves capture the Zekkos et al. 

(2008) data at small strains, but fall above the Zekkos et al. (2008) data at larger strains.  
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Figure 3-57 Cyclic triaxial test results by Zekkos et al. (2008)  and comparison with the literature: (a) 

normalized shear modulus reduction curve, and (b) material damping curve as a function of shear 

strain (Zekkos et al. 2008) 
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 More recently, Yuan et al. (2011) performed 15 large-scale cyclic simple shear tests 

in the Arizona State University (ASU) laboratory on reconstituted specimens of MSW 

from the Tri-Cities landfill. These tests will be referred herein as the ASU curves.  The 

specimens were reconstituted using 100%, 65%, and 35% material that passed through a 

20 mm screen (i.e. 100%, 65%, and 35% < 20 mm material).  All tests were conducted at 

a normal stress of 75 kPa. Figure 3-58 compares the G/Gmax curves from Yuan et al. 

(2011) to results from Zekkos et al. (2008). Results of the tests presented by Yuan et al. 

(2011) are consistent with results of the large scale cyclic triaxial tests on reconstituted 

specimens of the same waste reported by Zekkos et al. (2008) except that the damping 

ratio from the Zekkos et al. (2008) cyclic simple shear tests appeared to be systematically 

lower than the damping ratio from the ASU tests  as presented in Figure 3-59.   

 

Figure 3-58 Comparison of ASU G/Gmax  curve with data from Zekkos et al. (2008) values for 

reconstituted Tri-Cities MSW (Yuan et al. 2011) 
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Figure 3-59 Comparison of ASU and Zekkos et al. (2008) strain-dependent damping ratio values for 

reconstituted Tri-Cities MSW (Yuan et al. 2011) 
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CHAPTER 4  COMPUTATIONAL TOOL AND NUMERICAL ISSUES 

4.1 Introduction 

The primary computational tool used in this dissertation is a commercial software 

program called FLAC 6.0 (Fast Lagrangian Analysis of Continua Version 6.0). This 

chapter describes briefly some of the features and numerical schemes used in FLAC 6.0 . 

The content of this chapter closely follows the FLAC 6.0 User’s Manual for FLAC 

Version 6.0 (Itasca 2008). 

4.2 Finite Difference Computer Software: FLAC 6.0 

FLAC 6.0 is a two-dimensional explicit finite difference program designed specifically to 

model the behavior of structures built of soil, rock or other materials that may undergo 

plastic flow when their yield limits are reached (Itasca 2008) in response to applied forces 

and boundary restraints. Materials are represented by elements, or zones, which form a 

grid that is adjusted by the user to fit the shape of the object to be modeled. Each element 

behaves according to a prescribed constitutive model. In addition to the constitutive 

models built in FLAC 6.0, user defined constitutive models can be employed.  The 

material within an element can yield and flow and the grid deforms (in large-strain mode) 

according to the movement of the material within it. An explicit Lagrangian calculation 

scheme and the mixed-discretization zoning technique is used in FLAC 6.0 to ensure that 

plastic collapse and flow are numerically stable and modeled accurately. 
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4.3 FLAC 6.0 Mechanics and Numerical Schemes 

FLAC 6.0 uses a dynamic relaxation method to find the solution to a static problem. An 

explicit time-marching scheme is used to solve the equation of motion. In the finite 

difference method, every derivative in the set of governing equations is replaced directly 

by an algebraic expression written in terms of the state variables (e.g., stress or 

displacement) at discrete points in space. These state variables are undefined within the 

elements. This scheme ensures that the numerical model stays stable when the physical 

system is unstable (i.e. in a failure state).  

 Figure 4-1 shows the general computational procedure embedded in FLAC 6.0. In 

the first step in solving for displacements due to an applied load, new velocities and 

displacements from the applied stresses and forces are generated after invoking the 

equation of motion. Then, strain rates are derived from the velocities. In the next step, the 

new stresses are generated from the strain rates generated from the previous step using 

the prescribed constitutive law(s).  In this manner, as illustrated in Figure 4-1, the state 

variables are calculated in every step from known values and these state variables remain 

fixed over the step. Since this scheme does not require forming a global stiffness matrix, 

it is possible to update coordinates at each time step in the large-strain mode. The 

incremental displacements from each step are added to the coordinates of the grid so that 

the grid moves and deforms. This process of updating the coordinates of the grid is 

referred to in the continuum mechanics as a “Lagrangian” formulation as it describes a 

process in which the material moves and deforms relative to a fixed grid. Although, the 

“Lagrangian” formulation is used to model large deformations in FLAC 6.0, the 

constitutive formulation at each step is a small-strain one. 
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Figure 4-1 Explicit computational cycle 

4.4 Material Models  

FLAC 6.0 has the following built-in constitutive material models: the isotropic and 

transversely isotropic elastic models, and nine plasticity models (Drucker-Prager, Mohr-

Coulomb, Ubiquitous-Joint, Strain-Hardening/Softening, Bilinear Strain-

Hardening/Softening Ubiquitous-Joint, Double-Yield, Modified Cam-Clay, Hoek-Brown, 

and Cap-Yield (Cysoil). The model that was used in this study to model waste settlement 

is the Modified Cam-Clay (MCC) model.  

4.5 Modified Cam-Clay (MCC) 

The Modified Cam-Clay model is an incremental elasto-plastic constitutive model 

developed to model soft compressible soils. The model’s features include a particular 

form of nonlinear elasticity and hardening behavior governed by volumetric plastic strain.  

Stress / Strain Relation
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 The Cam Clay model employs three state variables: the mean effective pressure, p , 

the deviator stress, q , and the specific volume (void ratio plus unit), v . In the FLAC 6.0 

implementation of this model, the principal stresses, 1 , 2  and 3  are used to define 

p and q and, by convention, traction and dilation are positive. The state variables p and q 

are defined as:  

 
     231

2
32

2
21

2
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(12) 

4.5.1 Virgin consolidation line and swelling lines 

In the Cam-clay model, isotropic or one dimensional compression test results are used to 

define the relationship between the normal stress and the specific volume. The results of 

a typical isotropic compression test are presented in the semi-logarithmic plot shown in 

Figure 4-2. The compression curve in Figure 4-2 can be characterized by two lines: the 

virgin consolidation line (or the Ko compression line and the swelling line) 

 The virgin consolidation line in Figure 4-2 is defined by the equation  

 
pln  - =    (13) 

The equation for a swelling line has the form  

 pln  - =    (14) 
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Figure 4-2 Isotropic compression curve used in Cam-Clay and the relationship with the 1-D Ko 

compression test constitutive model 

4.6 Yield Functions  

Under increasing shear loading, q , soils in the Modified Cam-Clay model behave 

elastically until the  yield value of q  is attained. The yield value of q is determined from 

the following equation:  

  cpppMqf  22

 (15) 

where M is a material constant and cp is the preconsolidation pressure (illustrated in 

Figure 3-2). The yield condition 0.0f is represented on a p-q plot by an ellipse 
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oriented with one axis along the horizontal (p) axis and with a peak located along a line 

through the origin with a slope of M, as illustrated in Figure 4-3.   

 

Figure 4-3 Cam-Clay and Modified Cam-Clay yield surfaces (in p-q) space. The parameter M is the 

slope of the CSL (Rockscience 2005) 

4.7 Hardening and Softening Behavior  

The line through the origin with a slope of M (the locus of the peak points of all yield 

ellipses) is referred to as the critical state line (CSL).  If yielding occurs to the right the 

CSL, hardening behavior accompanied by volumetric compression is exhibited. This side 

of the yield surface is known as the wet or subcritical side. 

 Figure 4-4 (a) illustrates soil behavior on the wet side for the case of direct simple 

shear loading. When a sample is loaded in direct simple shear, it behaves elastically until 

it hits the initial yield surface. From then on the yield surface begins to isotropically 
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expand and exhibits hardening behavior (yielding and plastic strain is accompanied by an 

increase in yield stress). Figure 4-4 (b) shows the stress-strain hardening deviatoric stress 

strain behavior that occurs for a sample loaded in simple shear on the wet side.  

 If yielding occurs to the left of the CSL line, the soil exhibits softening behavior 

accompanied by dilatancy (volume expansion), as shown in Figure 4-5 (a). In softening 

the yield surface contracts after the stress state point touches the initial yield surface. The 

deviatoric stress-strain curve for softening behavior is shown in Figure 4-5 (b).   
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Figure 4-4 Hardening stress behavior, (a) stress path; (b) stress strain behavior (Rockscience 2005) 
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Figure 4-5 Softening Stress behavior, (a) stress path; (b) stress strain behavior (Rockscience 2005) 
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4.7.1 Elastic material constants for Modified Cam-Clay  

For Modified Cam-Clay soils, the bulk modulus, K, is not a constant but instead depends 

on mean stress, p , the specific volume, v , and the swelling line slope, . The bulk 

modulus is calculated at any point in the soil as  

 
p

K 
  (16) 

 Modified Cam-Clay formulations require specification of either the shear modulus 

G  or Poisson’s ratio , but not both. When G  is supplied,   is no longer a constant but 

is calculated from K and G as:  

 KG

GK

62

23





 (17) 

When  is specified, G  is calculated from  and K using the relationship: 
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4.7.2 Summary of input parameters 

The parameter M can be related to the friction angle of the soil in triaxial testing,  from 

the Mohr-Coulomb criterion as measured in triaxial compression as:  

 


sin3

sin6


M

 
(19) 

 The slope of the virgin consolidation and swelling lines (λ and κ) can be derived 

from an isotropically consolidated triaxial test or from a one-dimensional compression 
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test. Note that the slope of the v vs pln line will be equal to the slope of the e versus

pln  line, where e is the void ratio and is related to  as: 

 1 ve  (20) 

The slope of the e vs. plog  virgin compression curve, sometimes called the 

compression index, cC  is related to   and the slope of the e vs. log p swelling curve Cs, 

sometimes called the recompression or swilling index, is related to  as: 

 )10ln(
cC


  

(21) 

 )10ln(
sC


 

(22) 

4.8 Fish Programming Language  

FLAC 6.0 contains a powerful built-in programming language called FISH (short for 

FLACish). With FISH, user defined constitutive models can be implemented in lieu of 

using one of the material models already available in FLAC 6.0. FISH was used to code 

the two new constitutive models (described subsequently) into FLC 6.0.  
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4.9 Interface and Beam Elements 

4.9.1 FLAC 6.0 interface elements  

FLAC 6.0 contains interface elements that join two separate grids or structural elements 

together. These interface elements have zero thickness. Large relative shear 

displacements, e.g. relative displacements of several meters that may occur between the 

waste mass and the lining system in a landfill, can be handled in FLAC 6.0 using 

interface elements. As the Lagrangian calculations are performed, the relative 

displacement across the interface is accommodated by movement of the modeling grid, 

and as such the points of reference for calculation are updated after each increment to 

account for the large movements (Fowmes 2007).  

4.9.2 FLAC 6.0 interface logic 

In FLAC 6.0, an interface element joins two faces (grid to grid or structural beam to grid) 

with two springs, one in the normal direction and one in the transverse direction, as 

illustrated in Figure 4-6. The interface shear stiffness controls the initial stress 

displacement response of an interface until a limiting shear stress value, controlled by the 

interface strength, is reached. The limiting shear stress of an interface, Fmax, is defined by 

the Mohr-Coulomb criterion as follows:  

 ns FcLF  tanmax 
 (23) 

where c  = cohesion (in stress units) along the interface, L  = effective contact length of 

the interface (illustrated in Figure 4-6), and  = friction angle of interface surface. If the 
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yield criterion is satisfied (i.e., if | sF | ≥ maxsF ), then sF  = maxsF , with the sign of shear 

preserved, where sF  is the shear force at the interface. 

 Choosing the interface shear and normal stiffness is not a trivial a task. Choosing too 

small a stiffness may result in instability due to unrealistically high relative displacement 

at the interface. However, choosing too large a stiffness will result in lengthening of the 

convergence time.   

 Interface interpenetration is one of the numerical issues that can occur when using 

interface elements in FLAC 6.0.  In this phenomenon, one side of the interface moves 

into the other side of the interface such that an overlap is created. Even small 

interpenetration may cause errors in interface displacement calculations. This process is 

controlled by the normal stiffness of the interface. For this reason, it is recommended that 

the normal stiffness of the interface to be assigned 10 times the stiffness of the adjacent 

material (Itasca 2008).  If there is a significant difference between the material stiffness 

across the interface, the material with the lower stiffness should be considered when 

assigning the interface normal stiffness. While slight interpenetration will occur even 

with very high normal stiffness, it is greatly reduced by selection of the correct normal 

stiffness (Fowmes 2007). 
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Figure 4-6 FLAC 6.0 interface logic: Sides A and B are connected by shear (
sk ) and normal ( nk ) 

stiffness springs (Itasca 2008) 

 Fowmes (2007) demonstrated the influence of the shear stiffness of the interface on 

the stress-strain response in case of a textured LLDPE geomembrane against a nonwoven 

geotextile tested at 10 kPa normal stress using the FLAC 6.0 interface model. Based on 

the measured data from direct shear tests presented in Fowmes (2007), the initial 

tangential modulus was found to be 10 MPa/m, while the secant modulus at 10mm 

displacement was found to be 1MPa/m (Figure 4-7). Fowmes (2007) varied the shear 

stiffness of the interface from (10MPa/m to 0.1MPa/m). Fowmes (2007) concluded that 

using initial tangential modulus or the secant modulus at 10 mm displacement as the 

interface shear stiffness did not make difference in predicting the behavior of the 

interface. However, using lower values for the interface shear stiffness (i.e. values lower 
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than the secant modulus at 10mm displacement) did not accurately predict the behavior 

of the interface.  

 

Figure 4-7 Influence of interface shear stiffness (Fowmes 2007) 

4.9.3 FLAC 6.0 beam element 

 Fowmes et al. (2005), Fowmes et al.(2006) and Fowmes (2007) used FLAC 6.0 

beam elements to represent geosynthetic materials in a landfill liner system, assuming a 

moment of inertia of zero to the beam element to represent a flexible sheet that cannot 

support any bending moment. This enabled the calculation of the in-plane forces and 

strains developed in geomembranes and geotextiles on a landfill side slope due to waste 

settlement. Beam elements are defined in FLAC 6.0 outside of the continuum and can 

interact with the continuum through interfaces.  

 In the Fowmes et al. (2006) analysis of the in-plane forces and strains developed in a 

lining system on a landfill side slope, a user defined code that allowed for displacement 

dependant friction was used to account for softening at the interfaces. In this analysis, the 
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lining system was consisted of three geosynthetic layers that interacted through 

interfaces. Fowmes et al. (2006) also developed a user defined code to allow varying the 

Young’s Modulus as a function of the axial strain in the beam element, as the FLAC 6.0 

beam element is linear elastic.  

 Fowmes et al. (2005) modeled the lining of a reinforced sand body on a benched 

hard rock quarry slope using FLAC 5.0. A 0.5m thick clay barrier layer was placed in 

direct contact with an incompressible stable rock subgrade and then an engineered 

reinforced sand body was placed against the clay to provide stability. In this analysis 

Fowmes et al. (2005) modeled a two geosynthetic layer lining system using two layers of 

beam elements with three interfaces defined between them. In these analyses, the 

geomembrane was placed on the top expanded polystyrene panels on the side slope. 

Overlying the geomembrane is a geotextile protection layer. The waste was then placed 

directly in contact with the geotextile protection layer for simplicity. 

 

Figure 4-8 Lining system model (Fowmes et al. 2005) 
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 Fowmes et al. (2005) investigated the influence of the waste modulus (stiffness) on 

the downdrag i.e. the stresses developed in the lining system due to the waste settlement. 

In these analyses, the waste was modeled as elastic linear material with variable modulus, 

the waste was placed in 10 m height and vertical normal stress was applied on the top of 

the layer to force this layer to settle. Figure 4-9 shows the influence of the reduced waste 

stiffness (downdrag) on the strain developed in the geosynthetic layers.  

 

Figure 4-9 Influence of waste stiffness properties on geotextile axial strain. (N.B. Tensile strain is 

positive) (Fowmes et al. 2005) 

Fowmes et al. (2005) also investigated the influence of increasing the 

(geomembrane/geotextile) interface friction on the maximum tensile stresses developed 

in the geomembrane. The max tensile strain developed on geomembrane increased from 

1.6% to 12.7% when the interface friction angle increased from (9 to 36 degrees). Also, 

softening of the GM/geotextile interface was modeled using a FISH subroutine developed 

by Fowmes et al. (2005) for the FLAC 5.0. The subroutine decreased the friction angle 

from peak friction angle of (20 degrees) to a residual friction angle of (15 degrees) 
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depending on the relative displacement. Maximum tensile strain of 4.5% was reported for 

this type of analysis.  
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CHAPTER 5  GM/GCL CONSTITUTIVE MODELING 

5.1 Introduction 

Comprehensive modeling of the cyclic shear behavior of landfill liner and cover systems 

used in waste containment facilities requires a suitable constitutive model for 

geosynthetic interfaces. Modeling of liner and cover system cyclic shear behavior can be 

important in the assessment of the long-term performance of waste containment facilities 

subjected to earthquakes or other dynamic loading. Although a significant body of 

research has been conducted on the static shear modeling of geosynthetic interfaces (e.g., 

Byrne 1994, Esterhuizen et al. 2001, Triplett and Fox 2001), only very limited work has 

been published on modeling the shear behavior of geosynthetic interfaces under cyclic 

loads (Desai and Fishman 1991, LoGrasso et al. 2002, Kim et al. 2005).  

This chapter presents a constitutive model for modeling the in-plane cyclic shear 

behavior of textured geomembrane/geosynthetic clay liner (GMX/GCL) interfaces. This 

model is based upon experimental data from uniform cyclic tests. Comparison between 

model predictions and experimental results is good, as the model captures the progressive 

degradation of the hysteresis loops deemed the most important facet of the observed 

behavior.  The model has been implemented in a finite-difference program for predicting 

the response of landfill liner and cover systems to earthquake loading. This constitutive 

model can be extended to predict other in plane behavior of other elements in landfills 

(e.g. GM/clay, GM/Geotextile, etc.). 

 A strain softening interface code (SSint.fis) was developed by Itasca (2002) 

(SSint.fis). However, this is code is unsuitable for dynamic loading purposes and also is 

not usable if the interfaces involve structure elements such as beams. Fowmes (2005) 
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adapted the original Itasca code to handle beam elements subject to static loading, if a 

beam element is involved; the code employs the nodal velocity, to calculate the relative 

shear displacement. In the code developed herein Fowmes (2005) work was extended it 

to consider cyclic loading. Initially, a simple grid to grid interface code labeled 

(SSint_eqn_com.fis), was developed to model GM/GCL interface behavior. This code is 

provided in Appendix A. The code implements the model presented in this chapter for 

(GM/GCL) interfaces.  

The code was then extended to include interfaces involve beam elements. The final code, 

labeled (SSint_eqn_beams_com.fis), is provided in Appendix A. 

5.2 Experimental Data from Cyclic Shear Testing of GM/GCL Interface 

The constitutive model presented herein was developed using the results of a series of 

cyclic direct shear tests on GMX/GCL specimens described by Ross (2009) and Ross et 

al. (2010). These tests were conducted using the cyclic direct shear device described by 

Fox et al. (2006). GMX/GCL specimens are sheared between the floor of the test device 

and a horizontal pullout plate. Both test device floor and the pullout plate are configured 

to prevent specimen slippage and related progressive failure effects (Fox and Kim 2008). 

Each GMX/GCL specimen was free to fail at the interface or internally (within the GCL). 

Ross et al. (2010) describe the experimental program employed to develop the 

constitutive model described herein. Testing was conducted in the geotechnical 

laboratory, as part of joint Arizona State University (ASU) / University of California at 

San Diego (UCSD) funded by the National science foundation (NSF), at UCSD using 

two geosynthetic products: a double non-woven (NW) needle-punched (NP) GCL with 

no thermal bonding and a 60 mil, HDPE GM with single-sided structured (Micro Spike®) 
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texturing. All specimens were 1320 x 305 mm in plan dimension. Each GCL specimen 

was hydrated under the shearing normal stress using the two-stage accelerated hydration 

procedure developed by Fox and Stark (2004). Ross (2009) conducted twenty-nine 

displacement-controlled cyclic shear tests on this GMX/GCL combination to determine 

the effects of the displacement amplitude, Δa, on material response. The loading 

consisted of 25 cycles of sinusoidal displacement with a frequency, f, equal to 1 Hz. Tests 

were conducted at five normal stress levels (13, 348, 692, 1382 and 2071 kPa) and seven 

displacement amplitudes (±2, 10, 15, 20, 30, 60, and 120 mm).  

After each test was completed, the pullout plate and GCL were carefully removed 

from the shear machine. The observed failure mode was recorded along with any 

indications of localized stress, tearing, or GMX slippage.   

5.2.1 Results 

Inspection of the cyclic shear stress-displacement curves indicated that that the 

displacement at which the peak shear resistance was mobilized was typically between 

±10 and ±15 mm. Therefore, cyclic testing done with displacement amplitudes of (±2, 10 

and 15 mm) were considered pre-peak tests and cyclic testing done with displacement 

amplitudes of (±20, 30, 60 and 120 mm) were considered post-peak tests (Ross 2009). 

The differences between pre- and post-peak response were not as clear at a normal stress, 

σn, equal to 13 kPa as they were at the larger normal stresses (e.g., 348, 692, and 1382 

kPa). Ross (2009) concluded that the 13 kPa normal stress was too small to create 

intimate contact at the GMX/GCL interface. 

In the cyclic interface shear strength tests conducted by Ross (2009), interface failures 

were consistently observed at the three smallest normal stresses (13, 348, and 692 kPa). 
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The only cyclic test in which a partial internal failure was observed was at σn = 1382 kPa 

for a displacement amplitude of ±10 mm. All tests at ±15 mm and greater caused 

interface failures.  

Figure 5-1 and Figure 5-2 show the pre-peak (±10 mm) and post-peak (±20 mm) 

response, respectively, of the GMX/GCL interface at σn = 1382 kPa.  In the post-peak 

case, presented in Figure 5-2, a continuous degradation in shear strength is observed over 

the 25 cycles of the test. However, most of the shear strength degradation occurs within 

the first five cycles of loading in the pre-peak tests.  

 

 
Figure 5-1 Pre-peak shear stress vs. displacement for ±10 mm cyclic shear test at σn = 1382 kPa (Ross 

2009) 
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Figure 5-2 Post-peak shear stress vs. displacement for ±20 mm cyclic shear test at σn = 1382 kPa (Ross 

2009) 

The post-peak test results from Ross (2009) for cyclic testing of the GMX/GCL 

combination at normal stresses of 1382 kPa and 2071 kPa are shown in Figure 5-3 and 

Figure 5-4, respectively, for four displacement amplitudes (±20, 30, 60, and 120 mm). 

For these post-peak cyclic tests, a peak in the shear stress may be observed in the third 

quadrant of the plot.  Both Figure 5-3 and Figure 5-4 show a continuous degradation in 

shear strength with cyclic loading until the cyclic strength reaches a stable minimum 

value near the end of the test (i.e. reaches a large displacement shear strength).   

 

 
 



  129 

 
 
Figure 5-3 Shear stress vs. displacement for  ±20, 30, 60, and 120 mm amplitudes cyclic shear tests at σn 

= 1382 kPa 

 
 

Figure 5-4 Shear stress vs. displacement for ±20, 30, 60, and 120 mm amplitudes cyclic shear tests at σn 

= 2071 kPa 
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5.3 Interpretation of Test Results 

The progressive degradation of the hysteresis loops in Figure 5-2 through Figure 5-4 was 

deemed the most important aspect of the observed interface behavior with respect to 

modeling the in plane shear behavior of the GMX/GCL combination. To illustrate the 

typical post peak degradation behavior of the GMX/GCL combination modeled in this 

paper, the shear stress time history over 25 cycles of loading with a constant 

displacement amplitude of ± 120 mm under σn = 692 kPa is presented in Figure 5-5. The 

first five cycles experience most of the degradation in mobilized shear strength and after 

10 cycles the mobilized shear strength is almost constant. Based upon the shear stress 

time history presented in Figure 5-5, it was hypothesized that the observed degradation in 

the mobilized shear strength may be related to the cumulative relative shear 

displacement.  

 
 

 
Figure 5-5 Shear stress vs. time for displacement amplitude ± 120 mm cyclic shear tests at σn = 692 

kPa. 

 A plot of the absolute value of the mobilized shear stress at the peak displacement 

versus the cumulative relative shear displacement for post-peak displacement amplitudes 
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of mobilized shear stress versus cumulative relative shear displacement may be observed 

in the figure. As the cumulative displacement increases, it appears that a stable minimum 

value of mobilized shear strength (i.e. a large displacement shear strength) is reached, 

after which further degradation is negligible. The relationship between mobilized shear 

strength and cumulative relative shear displacement illustrated in Figure 5-6 indicates 

that the reduction in GMX/GCL mobilized shear strength may reasonably be expressed as 

a function of cumulative relative shear displacement. Relating the reduction in mobilized 

interface shear strength to the relative shear displacement is not a new concept. 

Esterhuizen et al. (2001) developed a hyperbolic model for interface behavior under 

monotonic loading that relates the reduction in interface shear strength to relative shear 

displacement based on monotonic interface direct shear test results.  

 

 
Figure 5-6 Mobilized shear strength vs. cumulative relative shear displacement for ± 20, 30, 60 and 120 

mm amplitudes cyclic shear tests at σn = 692 kPa. 
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 The peak and large displacement shear-strength failure envelopes for the in-plane 

shear strength of the GMX/GCL combination modeled herein subject to cyclic loading 

are shown in Figure 5-7.  

 

 
Figure 5-7 Peak and large displacement failure envelopes for the in-plane strength of a GMX/GCL 

combination 

 Both the peak and large displacement shear strength envelopes can be represented 

by the Mohr-Coulomb model as follows: 
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Table 5-1 Peak and large displacement shear strength failure envelope parameters. 

Failure Envelope 

Mohr Coulomb Parameters 

c
 

   (kPa) 

     
  (degrees) 

Peak 28.20 16.5 

Large Displacement 24.70 1.5 

 
 
 The peak strengths in Figure 5-7 and Table 5-1 were mobilized at shear 

displacements of 10.0-15.0 mm. If the cohesion is assumed to be constant, the friction 

angle at any stage during degradation can be related to the mobilized shear strength,, at 

the peak displacement amplitude according to Eq. 24 as: 

 







 
 

n

c


 1tan  (25 ) 

 The friction angle evaluated using Eq. 25 and the large-displacement cohesion from 

Figure 5-8 is plotted versus the cumulative relative shear displacement for post-peak tests 

at four different normal stresses in Figure 5-8. The trends of the four curves are quite 

similar over the range of normal stresses from 348 kPa to 2071 kPa. At each normal 

stress, the peak friction angle (and thus peak shear resistance) develops at a relatively 

small cumulative shear displacement (i.e. 10.0-15.0 mm). Then, as cumulative shear 

displacement increases the friction angle reduces until it reaches a stable large 

displacement friction angle. The data in Figure 5-8 display a higher variability at lower 

normal stresses. The data in Figure 5-8 also show a distinctive trend between in-plane 

friction angle and cumulative relative displacement. This trend may change slightly with 

normal stress. However, the hypothesis of using cumulative relative displacement as the 

governing variable to estimate the reduction in in-plane shear strength that accompanies 

cyclic loading of a GMX/GCL combination is clearly supported by the data in Figure 5-8.  
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Figure 5-8 Friction angle versus cumulative relative shear displacement at normal stresses of 348, 692, 

1382 and 2069 kPa for post-peak tests only 

5.4 Displacement-Softening Relationship 

To model the in-plane behavior of a GMX/GCL specimen subject to cyclic shear loading, 

a nonlinear displacement-softening model was been developed.  The model assumes that 

a unique relationship exists between the in-plane friction angle and the cumulative 

relative shear displacement, as suggested by the data in Figure 5-8. The formulation 

presented herein results in hysteresis loops representative of those presented in Figure 

5-3. 

5.4.1 Constitutive relationship 

The generalized shear strength-displacement relationship for the in-plane mobilized 

friction angle, ׎, of a GMX/GCL combination is illustrated in Figure 5-9.  Key 
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displacement (ߜ௣), the peak friction angle (׎௣), the large displacement friction angle 

௣ߜ) the cumulative displacement at the peak friction angle ,(௥׎)
௘) and cumulative 

displacement at the large displacement friction angle (ߜ௥
௣). This formulation assumes 

elastic behaviour at relative shear displacements less than  ߜ௣
௘ and plastic behaviour after 

the shear displacement exceeds ߜ௣
௘. 

  

Figure 5-9 Generalized interface friction angle versus cumulative shear displacement relationship 

 The assumption that the mobilized friction angle decreases as the cumulative 

displacement increases once δp
 e is exceeded and continues to decrease until it reaches a 

stable residual value (the large displacement friction angle), as illustrated in Figure 5-9, is 

the basis for the displacement-softening model developed herein. This relationship can be 

represented mathematically as follows: 
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        (26) 

where a, b and k are model parameters and are assumed to be constant for a particular 

GMX/GCL combination. These parameters can be defined using the coordinates   

(δr
 p,׎௥), (δ௣

 e,׎௣), and (0, ׎௣) from the cumulative shear displacement relationship in 

Figure 5-9. The shear strength of the specimen is equal to ׎௣ until the cumulative 

deformation exceeds ߜ௣
௘. At this point, the mobilized friction angle starts to degrade until 

it reaches a value of ׎௥ at a displacement equal to δr
 p. The rate of decay of the mobilized 

friction angle is described by the exponent k.  The relationship between the mobilized 

friction angle and the cumulative plastic shear displacement ߜ௣ at displacements greater 

than ߜ௣
௘ can be written as: 
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where,  
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5.5 Cyclic Behavior 

The hysteretic behavior for post-peak cyclic loading predicted by Eq. 28 is illustrated in 

Figure 5-10. The model will initially behave elastically until the cumulative displacement 

exceeds the displacement at the peak friction angle (δp
 e ), at which point cumulative 

plastic shear displacements will start to accumulate. Once plastic shear displacements 

begin to accumulate, the mobilized friction angle (or shear strength) will follow Eq. 28 

until unloading begins. Plastic shear displacements begin to accumulate in the reverse 

direction when the shear stress exceeds the mobilized shear strength from any prior 

loading cycle. This model will generate shear hysteresis loops similar to the post-peak 

behavior presented in Figure 5-3 and Figure 5-4. The displacement-softening model 

assumes elastic behavior for pre-peak loading, so the model does not correctly predict the 

pre-peak hysteresis loops presented in Figure 5-1.   

 

Figure 5-10 Generalized shear stress versus cumulative shear displacement relationship 
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5.6 Implementation  

An elasto-plastic formulation of the new constitutive model was implemented in FLAC 

6.0 (Itasca, 2008), a finite difference software package for solving general stress-

deformation problems in geotechnical engineering.  Elastic behavior was assumed for 

stress conditions below failure.  Elastic behavior is governed by the unload-reload 

stiffness, Ks. For post-failure stress conditions, the new constitutive model described 

above was used to model softening and degradation of the in-plane shear strength of an 

interface element.  

A simple numerical model, illustrated in Figure 5-11, was used to test the performance 

of the new constitutive model. The single element rigid block in Figure 5-11 represents 

the upper pull out plate and the five element base in Figure 5-11 represents the base of 

the direct shear device employed by Fox et al. (2006). Values of bulk and shear modulus 

representative of structural steel were used to model both the rigid block and base. 

Interface elements were used between the rigid block and the base to represent the 

GMX/GCL combination. The constitutive model described above was used to model the 

shear behavior of the interface elements. Table 5-2 presents the parameters used for the 

constitutive model in the numerical analysis. The interface elements were assigned an 

elastic shear stiffness equal to 5x107 Pa/m (calculated from the test results shown in 

Figure 5-4 and Figure 5-5). The code (SSint_eqn_com.fis) was used to amend the friction 

angle of the interface according to the cumulative relative displacement. A velocity time 

history was applied to the base of the mesh to model the cyclic test input motion (25 

cycles of sinusoidal displacement with f = 1 Hz).    
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Figure 5-11 Finite difference model (macro elements shown) 

Table 5-2 Model parameters values for model verification 
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26 16.5 1.5 10.6 12.0 0.52 5x107 

 

 The results calculated using the numerical model are compared to the experimental 

results from Ross (2009) for a normal stress of 2071 kPa and a 120 mm displacement 

amplitude in Figure 5-12. While there is some discrepancy with respect to the initial 

stiffness and peak shear strength, the numerical model appears to accurately predict the 

degradation in shear stress.  
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Figure 5-12 Comparison of test data to prediction using new constitutive model for ± 120 mm 

displacement amplitude at σn = 2071 kPa 

 The numerical and experimental results under the same normal stress as in Figure 

5-12 (2071 kPa) but for a 60 mm displacement amplitude (instead of 120 mm) are 

compared in Figure 5-13. While the numerical model still seems a little off with respect 

to the initial stiffness, in this case it accurately predicts the peak shear stress upon initial 

loading and the shear strength at the point of stress reversal.  However, the numerical 

model does not capture the peak in the shear stress at the beginning of every cycle.  
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Figure 5-13 Comparison of test data to prediction using new constitutive model for ± 60 mm 

displacement amplitude at σn = 2071 kPa 

 In Figure 5-14, the shear stress time history calculated using the numerical model is 

compared to the results for the test with a displacement amplitude of 120 mm at a normal 

stress of 692 kPa (the test results presented in Figure 5-5). The general trend of the shear 

stress time history is captured well by the numerical model results presented in Figure 

5-14.  However, similar to the discrepancy between the numerical model and test results 

presented in Figure 5-13, the peak at the beginning of every stress cycle was not captured 

by the numerical model. The shear stress spikes observed in the test data at the begging 

of every cycle may be related to the internal shear behavior of the GCL, as opposed to the 

behavior of the GMX/GCL interface.  
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Figure 5-14 Shear stress vs. time calculated for (± 120 mm) displacement amplitudes cyclic shear tests 

at σn = 692 kPa 

 

 

 

 

 

 

 

 

 

 

 



  143 

5.7 Implementation with structural elements 

Using beam elements to model geomembrane in FLAC 6.0 was recommended by Itasca 

(2002). Fowmes (2005) used the same concept to test the effect of the down drag on 

geomembranes in landfills. In order to use softening interfaces to FLAC 6.0, Fowmes 

(2005) wrote a code to use softening with interfaces involve structural elements. The 

code written by Fowmes (2005) was implemented along with the new constitutive model 

developed in this thesis. The code (SSint_eqn_com_ Beams.fis), provided in Appendix 

A, was used to amend the friction angle of the interface according to the constitutive 

model shown earlier in case of beam elements are involved. To test the performance of 

the code, beam elements were introduced to the model in Figure 5-11. The beam 

elements as in Figure 5-15 attached to the grid elements through two interfaces, upper 

and lower. The upper interface was modified according to the code (SSint_eqn_com_ 

Beams.fis) while the lower interface was glued to the grid.  

 Similar to the model in Figure 5-11, the upper layer, in Figure 5-15, represents a 

rigid block and the lower layer represents a base, values of bulk and shear modulus 

representative of structural steel were used to model both the rigid block and base. Table 

5-2 presents the parameters used for the constitutive model in the numerical analysis. The 

beam elements were assigned elastic stiffness equal to 2x108Pa/m with a thickness of 

60mil and a zero moment of inertia to account for the geomembrane flexibility. A 

velocity time history was applied to the base of the mesh to model the cyclic test input 

motion (25 cycles of sinusoidal displacement with f = 1 Hz).    
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Figure 5-15 Finite difference model (macro elements shown) with beam elements representing 

geomembrane. 

 Normal stress in Figure 5-15 was assigned a value of 2071 kPa and 692 kPa for 120 

mm displacement amplitudes. Figure 5-16 shows the reduction in the shear stress 

developed at the interface with time. Unlike the model with no beam elements, the shear 

stress at the interface after the displacement reversal is higher than the shear stress before 

reversal. This increase in shear stress may be attributed to the response of the 

geomembrane and the second interface (lower interface) which simulates the real 

experiment setup. Figure 5-16 shows that constitutive model accurately predicts the 

behavior in the cyclic testing of GM/GCL in-plane shear stresses. The discrepancy in 

Figure 5-16 is attributed to the inaccuracy in the testing as the peak amplitude (120 mm) 

was not achieved in all the cycles. Figure 5-17 shows a similar comparison for the in plan 

shear stress versus time in case of 692 kPa.  
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 In conclusion, this model accurately predicts the degradation of the shear strength at 

the interface with accumulative relative shear displacement for high normal stresses.  

 

Figure 5-16 Shear stress vs. time calculated for (± 120 mm) displacement amplitudes cyclic shear tests 

at σn = 2071 kPa 

 

Figure 5-17 Shear stress vs. time calculated for (± 120 mm) displacement amplitudes cyclic shear tests 

at σn = 692  kPa 
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5.8 Non-uniform Loading 

Due to lack of experimental testing of geosynthetic interfaces with Non-uniform 

(earthquake like input motion), it is not possible to calibrate the model presented herein 

for non-uniform loading. As an attempt to show the performance of the new constitutive 

model, in case earthquake loading, the model shown in Figure 5-11was used with an 

earthquake like input motion instead of sinusoidal wave as in the first case. The El Centro 

Site Imperial Valley Irrigation District record from the 1940 M 7.1 Elcentro earthquake 

scaled to 0.8 g was used as input motion at the base of the model. The new constitutive 

model was used to modify the interface element between the rigid block and the base. 

The same parameters in Table 5-2 was used for the interface constitutive model. Figure 

5-18 shows a comparison between the base acceleration and the rigid block acceleration. 

The block transmitted acceleration in limited by the friction coefficient of the interface. 

Figure 5-18 shows a degradation in the block transmitted acceleration with time due to 

the increase in the cumulative relative displacement.  

 

Figure 5-18 Comparison between base input motion and block acceleration in case of using the new 

constitutive model 

 For the sack of comparison, the model in Figure 5-11was used with an earthquake 

like input motion with constant friction angle of 16.5 degrees. Comparison between the 
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base and the block acceleration in case of constant friction angle with relative 

displacement is shown in Figure 5-19. 

 

Figure 5-19 Comparison between base input motion and block acceleration in case of constant friction 

angle. 

5.9 Summary  

An elasto-plastic constitutive model for the in-plane shear behavior of a GMX/GCL 

combination has been developed to simulate the degradation in mobilized shear strength 

accompanying cyclic loading that exceeds the peak shear strength of the material.  The 

model uses the Mohr- Coulomb shear strength criterion for both peak and post-peak shear 

strength characterization. When implemented in a finite difference computer program, the 

model is shown to capture the degradation of hysteresis loops (i.e. the degradation in 

mobilized shear strength) observed in direct shear testing of a GMX/GCL combination.  

Comparison of numerical and experimental results indicates that the model has some 

shortcomings with respect to the initial shear stiffness and the shear stress immediately 

after shear stress reversal.  However, capturing the degradation of the mobilized shear 

strength is considered to be of paramount importance in modeling the behavior of a 

GMX/GCL combination subject to earthquake loading. 
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The framework of the model can be expanded to any geosynthetic interface that 

follows the same trend of strength reduction, i.e. a strength reduction dependent upon the 

cumulative relative shear displacement during cyclic loading. A shortcoming of the 

model is that it is based solely upon the results of uniform cyclic loading tests.  However, 

no data was available on the behavior of a GMX/GCL combination subject to non-

uniform cyclic loading. Additional experimental data is needed to assess the performance 

of the model under non-uniform cyclic loading, e.g. under loading conditions 

representative of seismic loading.  Furthermore, additional work is needed to improve 

model performance during initial loading and immediately following stress reversal.   
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CHAPTER 6  GCL CONSTITUTIVE MODEL  

6.1 Introduction 

Geosynthetic Clay liners (GCL) are common elements of liner systems in modern 

landfills. A GCL is a thin layer of sodium montmorillonite, or bentonite, clay 

encapsulated between two layers of geosynthetic fabrics. The GCL in-plane shear 

strength can be very low when the bentonite is hydrated. Nye and Fox (2007) and Sura 

(2009) conducted laboratory tests on the in-plane shear cyclic behavior of GCLs. These 

cyclic direct shear tests were conducted using the cyclic direct shear device described by 

Fox et al. (2006) as part of a joint National Science Foundation funded Arizona State 

University / University of California at San Diego research program titled GOALI: 

Collaborative Research: The Integrity of Geosynthetic Elements of Waste Containment 

Barrier Systems Subject to Large Settlements or Seismic Loading.  

 The results of the GCL testing conducted by Nye and Fox (2007) were discussed 

earlier in Chapter 3. Figure 3-42 and Figure 3-43 present examples of the in-plane cyclic 

behavior of the GCL. The hysteresis loops Figure 3-42 and Figure 3-43 exhibit two main 

characteristics depending on whether or not the peak in-plane shear strength of the GCL 

has been exceeded. Pre-peak hysteresis loops have an unusual shape, showing strain 

hardening behavior at the end of the first and the third quarter cycles of loading. The post 

peak hysteresis loops exhibit softening behavior, with the mobilized shear strength 

decreasing with increasing number of cycles of loading. To simulate the observed in-

plane cyclic behavior of GCL, a kinematic hardening multi yield surface plasticity model 

was employed. This chapter describes the development of the model.  
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 Multiple yield surface (MYS) kinematic hardening plasticity model was first 

developed by Iwan (1967) and Mroz (1967).  Prevost (1985) popularized this type of 

model for use in soil mechanics. MYS constitutive models produce a non-linear 

backbone curve for the material with hysteresis loops that obeys the Masing (1926) 

criterion for cyclic loading. The original MYS theory developed by Mroz (1967) can be 

described as a nonlinear perfectly plastic model that does not handle softening behavior. 

Salah-Mars (1989) extended the theory to include softening behavior by adding an 

outermost isotropic yield surface. One of the shortcomings of the MYS models is the 

difficulty in mapping the stress state at specific time step relative to the multi yield 

surfaces, Salah-Mars and Kavazanjian (1992) developed the concept of virtual yield 

surfaces to facilitate this process. A brief description of the Salah-Mars (1989) MYS 

constitutive model and the implementation of that model in FISH is presented in this 

chapter.    

 Salah-Mars (1989) developed his MYS model to simulate the behavior of dry soils 

without considering pore water pressure generation. The Salah-Mars Constitutive model 

has two main characteristics that make it suitable to reproduce the GCL hysteresis loops 

observed in laboratory testing. First, because the model belongs to the multi yield surface 

family, it provides the flexibility of the multi yield surface to produce a piecewise linear 

approximation of a backbone curve of any arbitrary shape. Second, the model has the 

capability to exhibit softening after the material reaches its peak strength. These two 

characteristics make the model a perfect fit for modeling GCL in-plane cyclic shear 

behavior. The Salah-Mars (1989) constitutive model was not available in FLAC 6.0, so a 

FISH subroutine was written to implement the model in FLAC 6.0.  
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 Yan (1998) used the virtual surface concept introduced by Salah-Mars and 

Kavazanjian (1992) to code a constitutive model in FLAC 6.0 for seismic modeling of 

bridge abutments.  However, Yan (1998) did not include the softening formulation 

proposed by Salah-Mars and Kavazanjian (1992) in his constitutive model. Yan (1998) 

coded two separate FISH subroutines for the constitutive model, one to initialize the 

backbone curve called (Y_INI_F.FIS) and another one for the constitutive model labled 

(Y_MYS_F.FIS).  

 Similar to the approach taken by Yan (1998), two subroutines were written to 

implement Salah-Mars (1989) constitutive model in FLAC 6.0. The Subroutine 

(M_INI.FIS) is used to initialize the backbone curve parameters, including the softening 

behavior, and the subroutine (M_MYSS.FIS) is used to implement the Salah-Mars (1989) 

constitutive model. Both (M_INI.FIS) and (M_MYSS.FIS) are presented in Appendix B 

along with the flowchart developed by Salah-Mars (1989) for the constitutive model.  

6.2 Theoretical Background  

The main components of any plasticity-based constitutive model are: (1) the yield 

condition; (2) the flow rule; and (3) the hardening rule.  In the case of a MYS model, a 

family of nested yield surfaces is employed instead of a single yield surface.  The 

theoretical formulation of a MYS model follows the classical theory of associated 

plasticity for each yield surface (Morz 1967). An illustration of the MYS approach 

developed by Morz (1967) is shown in Figure 6-1. Figure 6-1 (a) presents the stress-

strain response (i.e. the backbone curve) from a MYS model. The backbone curve in 

Figure 6-1consises of n linear segments, each segment with a constant elastic tangent 

modulus Ei and a plastic modulus Ep associated with a corresponding yield surface. The 
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relationship between Ei and Ep is obtained by assuming that the increment of total strain 

dε can be expressed as the sum of the increment of the elastic strain, dεe , and the plastic 

strain, dεp, components:  

 
pe ddd    (30) 

Since by definition:   
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Then 
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 (32) 

where, d  is the increment of stress and eE is the elastic modulus.  

A representation of the yield surfaces associated with Figure 6-1 (a) in a three-

dimensional principal stress space is shown in Figure 6-1 (b). In a MYS model, these 

yield surfaces are kinematic surfaces that translate with the stress state once the stress 

state engages the yield surface.  A new yield surface becomes active after being touched 

by the translating yield surface (or yield surfaces) and then these yield surfaces move 

together until they touch the next surface in the series (see Figure 6-1). Note that f0 

represents the initial yield surface beyond which plastic strain starts to accumulate.  

Furthermore, in the Morz-type of model after the last yield surface is engaged (fn in 

Figure 6-1) the material behavior in a perfectly plastic manner.  
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Figure 6-1 MYS model: (a) stress-strain curve; (b) before loading; (c) loading A to B; (d) loading from 

B to C; (e) loading C to D to E (after Morz 1967) 
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6.3 Yielding Criterion 

A Drucker-Prager yield function was chosen by Salah-Mars (1989) to represent the states 

of stress at which plastic flow occurs in the MYS model: 

 
   03

2

1 2  pklf 
 (33) 

where  

 s  relative stress tensor 

s  deviatoric stress tensor 

  back stress tensor 

 )(3
1   tr mean normal stress 

k  cohesion coefficient 

 cone angle 

 p  mean pressure 

l  yield surface size coefficient 

 As shown in Figure 6-2, the Dracker Prager criterion can be represented as a straight 

line on a 1J  versus DJ2  plot, where, 1J  is the first invariant of the stress tensor and 

DJ 2 is the second invariant of the deviatoric stress tensor.   



  155 

 The relative stress function in this formulation measures the position of the stress 

tensor as illustrated in Figure 6-2 with respect to the yield surface, with the back stress 

tensor  defining the coordinates of the center of the yield surface in deviatoric stress 

subspace. The initial position of a yield surface given by the tensor   reflects the 

material’s memory of its fabric or past loading history. A particular stress point 

corresponding to the current stress state has to lie inside or on the active yield surface but 

cannot be outside the active yield surface: this condition is known as the consistency 

condition.  

According to the Drucker-Prager yield criterion, the radius of the yield surface  

(R) can be presented as: 

 
 lpksR  32 

 (34) 

Siriwardane and Desai (1983) showed that  and k  could be expressed in terms of 

Mohr-Column criteria parameters c and  as follows: 

For triaxial compression: 
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For plane strain: 
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Figure 6-2 Drucker and Prager Failure criterion (after Salah-Mars 1989; Yan 1998)  
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6.4 Flow Rule  

The flow rule defines the behavior of the material after it reaches the yield surface. In the 

MYS formulation, after the stress state reaches the first yield surface, the soil undergoes 

plastic strains: this process is called plastic flow. The flow rule determines the direction 

of the plastic strain vector by assuming the normality of the incremental strain vector to 

the plastic potential function. In associated plasticity, the plastic potential function is also 

the yield surface.   

The increment of the elastic strain during plastic flow is expressed as:  

 ij

p
ij

Q
d







 (39) 

where Q is the plastic potential function and   is a positive scalar factor. In matrix form 

the plastic strain increment can be expressed as follows:                

 Np   (40) 

where N is the outward normal to the potential surface and   is the hardening 

parameter.   

 An associated flow rule was chosen in the MYS formulation presented herein. Thus 

the plastic potential surface coincides with the yield surface. Based on this assumption, 

Yan (1998) came up with the following expression for the normal tensor: 

  '61 22 HlN   (41) 
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6.5 Hardening Criterion 

The hardening rule specifies the shape of the stress strain curve after yield has been 

triggered. Two types of hardening rule are usually used in plasticity theory: an isotropic 

hardening rule, where the yield surface expands (or shrinks in the case of softening) after 

the soil undergoes yield deformation, as illustrated in Figure 6-3 (a); and a kinematic 

hardening rule where, the yield surface moves with the stress state after reaching the state 

of yielding, as illustrated in Figure 6-3 (b). In the MYS constitutive model developed 

herein, all the yield surfaces can move except the last yield surface.  

 In kinematic hardening plasticity, the yield surfaces translate in the stress space 

without changing form and they continuously touch and push each other. Yield surfaces 

in kinematic hardening can be tangent to each other but cannot intersect (Yan 1998). In 

the Salah-Mars (1989) formulation, both types of hardening rules were used. The inner 

yield surfaces are kinematic yield surfaces that translate without changing its shape until 

outmost isotropic the softening yield surface is activated. The isotropic softening yield 

surface then shrinks to accommodate softening until it encounter a final fixed perfectly 

plastic yield surface (representing the residual, or large displacement shear strength). A 

description of the softening yield surface is shown in next section. 
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Figure 6-3 Hardening criteria (a) isotropic hardening rule, (b) kinematic hardening rule 

 Based upon Prager’s hardening rule, which assumes that the change in the rate of the 

back stress is linearly proportional to the rate of the plastic strain tensor, Yan (1998) 

found that the back stress evolution of the outer most yield surface follows the 

expression: 

 nysnysnysnys NHl nys  '61 22
 (42) 

For all inner yield surfaces except nys-1 (the softening yield surface), the yield surfaces 

translates along the direction of tensor 
i

 . Therefore: 

 iii M   , 
   

2 nysi                                                      (43) 

where i is the change rate of the back stress tensor for the active yield surface and iM

is a scalar parameter that scales the rate of change along 
i

 . Morz (1967) proposed an 
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evolution scheme that follows direction tensor 
i


 
as illustrated in Figure 6-4. According 

to Morz's definition 
i

  takes the form of the following expression: 

 
    miiiii

NRR   11 
 (44) 

Morz (1967) derived the expression for iM based on the flow rule and consistency 

condition as: 
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Figure 6-4 Evolution to the inner back stress according to (Morz 1967) 

 In order to determine the tangent modulus of the yield surfaces on stress strain 

curve, Salah-Mars (1989) introduced the concept of plastic modulus 'H .  Figure 6-5 

shows a representation of uniaxial compression stress loading: the slope of the elastic part 
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of the stress-strain curve is equal to initial elastic Young’s modulus, E, and the slope of 

the second linear segment of the stress-strain curve is the tangent modulus Et. The plastic 

modulus 'H  corresponding to the second segment of the stress-strain curve can be 

defined as follows: 

 
t

t

E
E

E
H




1
'  (46) 

The sign of the plastic modulus will determine the state of the hardening process: if H’ > 

0 the model undergoes strain hardening; if H’ = 0.0 then the model undergoes perfect 

plasticity; and if H’ < 0.0 then the model undergoes strain softening.  

 

Figure 6-5 1-D definition of the plastic modulus H’ 
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6.6 Softening Criteria 

Salah-Mars and Kavazanjian (1992) characterized the last two yield surfaces in their 

MYS surface as an isotropic softening yield surface and a perfectly plastic yield surface 

to characterize the softening and subsequent perfect plasticity behavior of a geomaterial 

in a numerically stable manner. The next to last softening yield surface shrinks 

isotropically as the material softens until it collapses into the last perfectly plastic yield 

surface. The last yield surface represents the residual shear strength (perfect plasticity 

plateau) and therefore is motionless. The isotropically softening yield surface is allowed 

to change its radius without changing its center. This leads to the following evolution 

equation for the radius of the softening yield surface: 
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If the value of H  is negative, the above equations produce an isotropic shrinking of the 

corresponding yield surface.  In Figure 6-6 yield surface number 5 is used to represent the 

isotropic softening yield surface, while yield surface number 6 which is motionless with 

constant radius, represents the perfect plasticity yield surface. When the isotropic yield 

surface is active the evolution of its radius follows the following equation according to 

Salah-Mars and Kavazanjian (1992): 
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mmmm HRR 

3

2
 (49) 

 One important condition in the Salah-Mars and Kavazanjian (1992) formulation is 

that as the radius mR shrinks, it may become smaller than some of the inner yield surface 

radii. When this occurs, the yield surfaces that have been crossed by the isotropic yield 

surface are deactivated and collapse to the isotropic yield surface. Also, the radius mR  

cannot be smaller that of the first yield surface.  

 

Figure 6-6 Schematic representation of the multi yield surface constitutive model proposed by Salah-

Mars and Kavazanjian (1992) (a) Stress strain relationship represented by 6 yield surfaces, (b) Yield 

surfaces and corresponding virtual surface in   plane (After Salah-Mars 1989) 
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6.7 GCL Model Parameters 

In the previous sections, a multi yield surface kinematic hardening isotropic softening 

constitutive model following the proposed formulation by Salah-Mars and Kavazanjian 

(1992) was developed. There are four types of parameters involved in this MYS model: 

(1) parameters describing the elastic behavior of the material; (2) parameters describes 

the plastic behavior of the material; (3) parameters related to the evolution of the model 

constants with the changes in confining pressure; and (4) parameters related to the 

softening behavior of the model.  

6.7.1 Elastic parameters 

Only two parameters are needed to describe the elastic behavior of the model, as the 

material is assumed to be isotropic material. These parameters can be the shear modulus, 

G, and the bulk modulus, B, or Young's modulus, E, and Poisson ratio, .   

6.7.2 Backbone curve 

Soil nonlinearity is represented by a nonlinear stress-strain backbone curve. In the MYS 

model, this nonlinearity is modeled by a piecewise linear approximation modulus as 

shown in Figure 6-7. Each segment of this piecewise linear approximation represents a 

yield surface fi, which is characterized by an elastoplastic modulus Hi and size li where i 

1, 2, ......, nys. where nys is the total number of yield surfaces. The maximum number of 

yield surfaces can be used with the code presented herein is 10. It is worth to note here 

that an increase of the number of surfaces may lead to more accuracy but will also lead to 

an increase in computing time.  
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Figure 6-7 A stress-Strain Backbone Curve 

To define the parameters for the MYS model for GCLs, discrete stress strain laboratory 

values were used. The required parameters were derived from the cyclic simple shear 

testing on GCLs by Sura (2009) described previously in chapter 3. 

The maximum deviator stress qf can be evaluated according to Dracker-Prager criterion 

as: 
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where c is cohesion,  is the friction angle and rp is the reference normal pressure.  

Knowing the iq at a specific strain level, the corresponding yield surface size coefficient 

il is given by : 
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The radius of the yield surface i for the mean pressure p is given by: 

 ii lpkR )3(2 
  (52) 

The elastoplastic modulus Hi can be evaluated as: 
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Note that Hnys is equal to zero (perfectly plastic yield) and Hnys-1 is a negative value 

(representing softening behavior). 

6.7.3 Confining pressure parameters 

The moduli required for the model vary depending on the mean normal pressure. Duncan 

et al. (1980) assumed variation of modlui with mean pressure as follows:  
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Where Er, Br and Hr are the young's, bulk and bulk moduli measured at the mean normal 

confining pressure pr; ne, nb and nh are the modulus exponents defined from the 
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laboratory tests. Due to the lack of comprehensive database for the GCL behavior a 

values used herein for these factors are typical values for clay material.  

6.7.4 Softening parameters 

The softening of the model is fully described by the deviator stress for the yield surface 

nys (qnsf) and the strain associated with yield surface nys, nys . These values can be 

related to the stress and strain values at the peak stress as follows: 
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where srf is the reduction in deviator stress due to the softening, and ss is the ratio of the 

strain associated with the yield surface nys, nys , to the strain at the peak stress, f .  

6.8 Virtual Surface Concept  

The virtual surface concept proposed by Salah-Mars and Kavazanjian (1992) was used to 

overcome the ambiguity in mapping the stress location in MYS model.  Using this 

concept, only one-step is needed to evaluating the final update stress for each load 

increment in the numerical solution.  

 The virtual surface concept may be described as follows and as illustrated in Figure 

6-8. Consider an initial stress that lies on the first yield surface (elastic). Next, assume an 

elastic trial deviator stress that moves the stress to point V. Point V is past the first yield 



  168 

surface, so a radial return from point V produces a stress located on the yield surface. The 

change in the stress from point 1 to 2 (the stress increment) is equivalent to the back 

stress increase by the amount equal to:  

 112111
2

1
2 )(61 NRRNHl     (59) 

where R1 and R2 are the radii of the inner and the outer yield surfaces respectively and 

1N is the unit outward normal tensor of the potential surface associated with the inner 

yield surface. The hypothetical yield surface passing through point V is the virtual 

surface. The trial stress reduced by the amount equal to: 
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The radius of the virtual surface can be formulated as: 
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Figure 6-8 Virtual surface concept 

6.9 Constitutive Model Algorithm 

A FISH subroutine developed to implement the MYS model in FLAC 6.0. The code 

developed was adapted from the flow chart developed by Salah-Mars (1989). In the 

FLAC 6.0 finite difference formulation, the incremental strain is known for every specific 

time step. There, the fish subroutine will provide the final value of the stress state 1n

and the new position of the yield surface and the virtual surface as well. The algorithm 

developed by Salah-Mars (1989) requires four stages to reach the final update for the 

stress in each load step.  

 The first step in the algorithm is to estimate the trial stress using an elastic 

formulation as follows:  
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where 
tr
n 1 is the trial stress state, n  is the initial stress state before calling the 

subroutine,  
eC  is the elastic stiffness matrix, and  is the strain increment. As 

described in the example, the inner yield surface is active which makes the virtual surface 

active as well. Both surfaces start moving with the stress increment, but the virtual stress 

moves in the opposite direction as the inner yield surface. As result of this movement, the 

stress state evolves until both yield surfaces touch the outer yield surface at the same 

contact point. The evolution of the back stress of the virtual surface was described by 

Salah-Mars (1989) as follows: 
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 If the initial trial stress lies outside the virtual surface, then Salah-Mars and 

Kavazanjian (1992) proposed a second correction called the intermediate update to 

account for a possible gap between the inner and the outer yield surfaces.  The inner yield 

surface is adjusted as follows: 

 112121 )()( NRR     (66) 

The corresponding trial deviatoric stress correction for the intermediate update as 

obtained as:  
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where 2N is the unit normal tensor associated with the active outer yield surface.  
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 Finally, the final stress update is performed with the evolution of the outer yield 

surface determined as: 
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 During the final update, the inner yield surfaces are in active although they translate 

with both the outer yield surface and the virtual surfaces. The position of the inner yield 

surface at the end of the timestep is as follows: 
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The position of the virtual surface at the end of the time step will be  
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In a case in which one of the yield surfaces m is active ( the initial stress point is not in 

the linear elastic zone), the stress update is a combination of the intermediate update of 

the yield surfaces 1 to m-1 and the final update for the evolution of the active yield 

surface m. During the intermediate update, the stress tensor is corrected according to: 
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where 
1

0,1



n
ns is the initial trial deviatoric stress at time tn+1, 

tr
ns 1,1  is the intermediate trial 

deviatoric stress the same step, and 0,mN is the unit normal tensor associated with the 

active yield surface m during the intermediate update 0,mN  is evaluated as: 
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The values of the inner back stress evolution are known to be equal to: 
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During the final update, the evolution of the active yield surface back stress is obtained 

from: 
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where mM is equal to  
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The final stress update is obtained as:   
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where FmN ,  is the unit normal associated with the yield surface m in its new position. 

The virtual surfaces mj  are also updated to the account for the effect of the evolution 

of all yield surfaces equal or less than active yield surface in the following manner: 
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 At this point, the active yield surface and the trial stress have been updated to their 

final state. All yield surfaces interior to the active one along with their corresponding 

virtual surfaces are tangent to each other along with the active surface m at the final stress 

point as described by the following equations: 
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6.10 Model performance 

To test the general performance of the FISH subroutine for the MYS model, analyses 

were performed to simulate the cyclic simple shear tests conducted by Sura (2009) on 

GCLs. Sura (2009) conducted a series of simple shear cyclic tests on GCL specimens at 

four different normal stresses (114, 348, 692 and 1382 kPa) and at five different 

displacement levels (±2, 5, 10, 15, 25 mm maximum amplitude). Shear stress versus 

displacement curves developed by Sura (2009) for GCLs are presented in Figure 6-9 to 

Figure 6-15.   

 

 

 

 

 

 

 

 



  175 

 

Figure 6-9 Cyclic shear test, Δa = 2 mm, σn = 348 kPa (Sura 2009) 

 

Figure 6-10 Cyclic shear test, Δa = 10 mm, σn = 348 kPa (Sura 2009) 
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Figure 6-11 Cyclic shear test, Δa = 25 mm, σn = 348 kPa (Sura 2009) 

 

Figure 6-12 Cyclic shear test, Δa = 10 mm, σn = 692 kPa (Sura 2009) 
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Figure 6-13 Cyclic shear test, Δa = 25 mm, σn = 692 kPa (Sura 2009) 

 

Figure 6-14 Cyclic shear test, Δa = 15 mm, σn = 1382 kPa (Sura 2009) 
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Figure 6-15 Cyclic shear test, Δa = 25 mm, σn = 1382 kPa (Sura 2009) 
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The backbone curve for cyclic loading at a normal stress of 1382  kPa, shown in Figure 

6-16, was used to develop model parameters for nine hardening yield surfaces and one 

softening yield surface (nys=10). The stress and strain points used to discretize the back 

bone curve are presented in Table 6-1. The backbone curve was initialized using 

subroutine (M_INI.FIS). The rest of the GCL model parameters are listed in Table 6-2. 

The constitutive model was then enabled in (M_MYSS.FIS). Both Subroutines are 

provided in Appendix B.  

 

Figure 6-16 Discrete stress strain laboratory values for GCL backbone curve at σn = 1382 kPa 
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Table 6-1 Discrete stress strain laboratory values for GCL backbone curve 

at σn = 1382 kPa.  

Deviatoric Stress, 
q  

(kPa)   

Shear Strain,  
(%) 

0  0 

140  1.14 

200  2.50 

220  4.13 

230  6.13 

235  8.64 

240  11.88 

260  16.22 

300  22.36 

462  31.67 

 

Table 6-2 Model parameters for the GCL material 

K  n  Kb  m  C 
(kPa) 

  
(degrees)

srf   ss  

425  0.58  205  0.44  160  14  0.4  1.3 

 

Analyses were performed using the FLAC 6.0 constitutive model to simulate the cyclic 

behavior of GCLs under different normal stresses. The results of the analyses are shown 

in Figure 6-17 to Figure 6-21 along with the measured hysteresis loops. Comparing the 

numerical results with the experimental results, we can find that the numerical model 

does a good job reproducing the key aspects of the behavior of the GCLs, i.e. the 

computed hysteresis reproduce the general patterns of behavior for the measured 

hysteresis loops and the model exhibits peak and residual behavior similar to the 

measured behavior.    
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Figure 6-17 Cyclic shear response for GCL under normal stress σn = 1382 kPa for amplitude ±5mm 

(left) computed; (right) measured 

   

Figure 6-18 Cyclic shear response for GCL under normal stress σn = 1382 kPa for amplitude ±10mm 

(left) computed; (right) measured 
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Figure 6-19 Cyclic shear response for GCL under normal stress σn = 1382 kPa for ±15mm amplitude 

(left) computed; (right) measured 

 

Figure 6-20 Cyclic shear response for GCL under normal stress σn = 348 kPa for amplitude at ±25mm 

(left) computed; (right) measured 
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Figure 6-21 Computed cyclic shear for with normal stress σn = 348 kPa for amplitude at ±5mm 
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CHAPTER 7  CALIBRATION OF THE INTERFACE ELEMENTS 

7.1 Introduction 

FLAC 6.0 provides elastic-perfectly plastic interface elements in which the interface 

shear strength is characterized by the Mohr-Coulomb failure criterion. These elements 

allows for displacement of contacting grids relative to each other (slip at the interface). 

Interface elements can be also used with structural elements. These interface elements are 

a very powerful tool for modeling shear behavior when there is a distinguished 

discontinuity between two different materials, as in case of geosynthetic liner system 

element. It is very important to calibrate the behavior of these interface elements for 

accurate prediction of relative displacement at the interface as well as the effect of slip at 

the interface on seismic response. A time domain finite difference numerical model of a 

rigid block on a plane with a frictional interface was developed using the large strain 

formulation coded in FLAC 6.0 for the purpose of calibrating of the interface elements.  

The frictional interface was modeled using a simple elastic-perfectly plastic stress-strain 

relationship and the Mohr-Coulomb failure criterion already available in FLAC 6.0.  The 

numerical model was validated using a series of shaking table tests of a sliding block on a 

horizontal plane and inclined plane. In these tests, a rigid block with one geosynthetic 

material glued to its bottom side was placed on a shaking table that had a second 

geosynthetic material secured to it.  Different combinations of geotextile and 

geomembrane materials were subject to uniform sinusoidal motions of varying 

amplitude. The acceleration of the block and the displacement of the block relative to the 

shaking table were monitored during these tests. The results presented in this chapter are 
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also presented in two conference publications (Arab and Kavazanjian 2010; Arab et al. 

2010).  

7.2 Rigid Block on an Horizontal Plane  

Kavazanjian et al. (1991) conducted a series of shaking table tests of a sliding block on a 

horizontal plane. In these tests, a rigid block with one geosynthetic material glued to its 

bottom side was placed on a shaking table that had a second geosynthetic material 

secured to it.  Four different combinations of geotextile and geomembrane materials were 

subject to uniform sinusoidal motions of varying amplitude.  Three of the geosynthetics 

combinations were also subjected to a non-uniform earthquake-like motion based upon 

the S90W component of the 1940 El Centro strong motion record.  The acceleration of 

the block and the displacement of the block relative to the shaking table were monitored 

during these tests.  

 To model the Kavazanjian et al. (1991) shaking table tests in FLAC 6.0, the two-

layer, nine macro-element mesh shown in Figure 7-1 was used. The upper layer of the 

mesh represents the rigid block and the lower layer represents the shaking table.  

 

Figure 7-1 Finite difference model (macro elements shown) of the horizontal shaking table test 
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 Values of bulk and shear modulus representative of structural steel were used to 

model both the rigid block and shaking table. An interface element was used between the 

upper and lower layers of the mesh to model the geosynthetic /geosynthetic interface. The 

interface was assigned an elastic shear and normal stiffness approximately equal to ten 

times the bulk modulus of the mesh elements. The interface shear strength was initially 

based upon the static interface strength of the interface as measured in a tilt-table test and 

then adjusted as necessary to find the best fit with the experimental results.  A shear 

stress time history was applied to the base of the mesh to model the shaking table input 

motion.  

 Figure 7-2 shows a comparison between the block acceleration measured in one of 

the uniform sinusoidal loading tests and the results calculated in the FLAC 6.0analysis. 

The test was conducted using a geomembrane/geotextile interface with a measured static 

coefficient of friction equal to 0.16.  However, analysis conducted with a friction 

coefficient of 0.15 resulted in better agreement between the measured values and the 

numerical analysis results.  The best-fit numerical analysis results, calculated using a 

friction coefficient of 0.15 in the Mohr-Coulomb interface model, are shown in Figure 

7-2.  These results suggest that the dynamic coefficient of friction for the interface may 

be somewhat different from the static interface friction coefficient.  The same conclusion 

was reached by Kavazanjian et al. (1991) based solely on the experimental results (i.e. by 

comparison of the yield acceleration of the block to the static coefficient). 
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Figure 7-2 Comparison between best-fit numerical analysis and acceleration response measured by 

Kavazanjian et al. (1991) uniform sinusoidal excitation 

 Figure 7-3 presents a comparison of the relative displacement of the rigid block as 

measured in the shaking table test to that calculated in the numerical analysis. The small 

discrepancies between the experimental results and the numerical analysis (e.g. the steady 

drift of the experimental relative displacement towards the negative side of the 

displacement scale) may be attributed to the somewhat asymmetrical behavior in the 

yielding behavior: note the somewhat non-uniform acceleration behavior of the block in 

Figure 7-2.  

 

Figure 7-3 Comparison between best-fit numerical analysis and displacements measured by 

Kavazanjian et al. (1991) during uniform sinusoidal loading 
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 Figure 7-4 shows a comparison between the transmitted acceleration of the block 

from numerical analyses using the coefficient of friction from the tilt table tests and from 

physical testing of Kavazanjian et al. (1991). The numerical analysis shows the same 

acceleration for the block for all the base frequencies. For some of the interface types, the 

dynamic interface friction coefficient changed with the base frequency. This behavior 

suggests that the interface friction coefficient may be both material and frequency (or 

velocity) dependent.  

 

Figure 7-4 Comparison between transmitted block acceleration from the numerical analysis and 

transmitted block acceleration measured by Kavazanjian et al. (1991) during uniform sinusoidal 

loading with different wave frequency 

 The time domain numerical model shown in Figure 7-1 was also used to simulate 
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Northridge earthquake scaled to 0.9 g.  Yegian and Kadakal (2004) used the Corralitos, 

Capitola, and Santa Cruz records from 1989 M 7.1 Loma Prieta earthquake scaled to peak 

accelerations of 0.1 g to 0.4 g. Because earthquake motions are asymmetric, both the 

shaking table tests and the numerical analyses using earthquake time histories yielded a 

residual (permanent) displacement. Figure 7-5 presents a comparison between the 

residual displacement reported by Yegian et al. (1998) and Yegian and Kadakal (2004) 

and the residual displacement calculated using the numerical model. 

 The comparison of residual displacements from the experimental results of Yegian 

et al. (1998) and Yegian and Kadakal (2004) to the numerical analysis in Figure 7-5 

shows generally good agreement.  The primary discrepancy is for the Corralitos record 

from the Loma Prieta event.  The calculated permanent displacement for the Corralitos 

record is less than the displacement measured experimentally in the 0.1 g to 0.25 g range.  

However, both calculated and experimental results show a similar trend of increasing 

residual displacement with increasing base peak acceleration. One interesting aspect of 

the results is that in some cases the residual displacement decreases as base acceleration 

increases. 



  190 

 

Figure 7-5 Residual permanent displacement from the numerical model compared to the experimental 

results of Yegian et al. (1998) and Yegian and Kadakal (2004) 

 Despite small differences between experimental and numerical results, the analyses 

shown in Figure 7-2 through Figure 7-5 suggest that the elasto-plastic Mohr-Coulomb 

interface model is capable of reproducing the dynamic behavior of a block on a 

horizontal plane with a frictional interface if the appropriate interface dynamic shear 

strength is employed.  
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7.3 Westermo and Udwadia Analytical Solution 

Westermo and Udwadia (1983) presented an analytical solution for a rigid mass resting 

on a flat horizontal surface with an interface friction coefficient, μ, excited with a simple 

harmonic motion of amplitude oa . They showed that the system experienced two 

different slippage conditions that were independent of the frequency of the harmonic 

motion and depended only on a non-dimensional parameter η, where:  

 oa

g                                                                                                                 (86) 

and g is the acceleration of gravity.  The quantity g is the yield acceleration of the block, 

i.e., the acceleration at which the block begins to slide relative to the plane. 

 Westermo and Udwadia (1983) identified two different slippage conditions.  These 

two conditions were referred to as the slip-stick and slip-slip conditions.  At the end of a 

sliding cycle the block will either stick before moving again or immediately start to slide 

in the opposite direction. Westermo and Udwadia showed that if η was greater than 0.53, 

the block will stick before the base acceleration exceeds the threshold for movement (μg) 

for the next half cycle.  In this case, the motion of the block will consist of two sliding 

and two non-sliding intervals per cycle, as illustrated in Figure 7-6 (a). This mode of 

motion was referred to as slip-stick behavior. However, for η equal to or less than 0.53, 

the end of the slip interval converges on the time of initiation of sliding in the opposite 

direction. In this case, the block begins to slide in the opposite direction immediately and 

the block never comes to a complete stop (except for the instantaneous moment during 

reversal of the direction of motion when the relative velocity between the block and the 

plane is zero). This pattern of displacement, illustrated in Figure 7-6 (b), was referred to 
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as the slip-slip condition. Note that if η is greater than, the block will not slip relative to 

the plan (i.e. a stick-stick condition exist). 

 The numerical model illustrated in Figure 7-1 was also employed to reproduce the 

slip-stick and stick-stick modes of behavior predicted analytically by Westermo and 

Udwadia (1983).  An interface friction angle corresponding to a friction coefficient of 0.3 

was employed in the numerical analyses and the numerical model was excited with a 

harmonic sinusoidal motion of a frequency of 1 Hz using two different peak 

accelerations.  A peak acceleration of 0.4g, corresponding to a value of η = 0.75, was 

used in one analysis and a peak acceleration of 0.9 g, corresponding to a value of η = 

0.33, was used in a second analysis. In the first case, since 0.53 < η < 1.0, stick-slip 

behavior is expected.  In the second case, since η< 0.53, slip-slip behavior is expected.  

The results of the numerical analysis are shown in Figure 7-6. Figure 7-6 (a) shows the 

calculated acceleration, velocity and displacement of the rigid block for the slip-stick 

case (0.4 g peak acceleration, η = 0.75). Looking at the relative velocity of the block, the 

block experiences three modes of displacement per cycle. The block first sticks to the 

base until the acceleration exceeds g.  The block then starts to slide and the relative 

velocity increases until the acceleration of the base has decreased to g. At this point, the 

relative velocity decreases until it reaches zero and the block sticks to the plane again. 

Figure 7-6 (b) illustrates the slip-slip behavior for the second case (0.9 g peak 

acceleration, η = 0.33).  In this case the block slides in one direction until the block 

passes the g threshold and the relative velocity decreases to zero, at which point the 

block immediately begins sliding in the other direction and never comes to rest on the 

plane.  
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Figure 7-6 The influence of η on the response of a rigid block on a horizontal plane (a) slip-stick 

response, (b) slip-slip response 

7.4 Rigid Block on an Inclined Plane  

7.4.1 Sand-Sand interface 

Elgamal et al. (1990) conducted a shaking table test of a rigid block on a plane inclined at 

10o to assess the accuracy of the Newmark (1965) procedure for calculating permanent 

seismic displacement. An inclined plane coated with sandpaper was mounted on a shake 

table and a solid-metal block with sand glued to the base was placed on the plane. 

Accelerometers were attached to both the sliding block and the shaking table. A harmonic 

sinusoidal excitation at a frequency of 1 Hz with amplitude sufficient to induce the block 

to slide down slope was applied to the base for 12 seconds. In addition to the acceleration 
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of the block and the plane, the relative slip between the block and the plane was 

measured over the course of the test.  

 To model the Elgamal et al. (1990) shaking table tests in the time domain analyses, a 

two-layer, nine macro element mesh similar to the one used to simulate the horizontal 

shaking table tests was used. However, in this case the block, the base, and the interface 

were inclined at an angle at an angle o10 . As in the horizontal plane model shown in 

Figure 7-1, in the inclined plane model, illustrated in Figure 7-7, the upper layer 

represents the rigid block and the lower layer represents the shaking table with o10 . 

The same values for bulk and shear modulus of the block and plane and for the elastic 

stiffness of the interface used in the model in Figure 7-1 were assigned to the inclined 

plane model in Figure 7-7. A shear stress time history was applied to the base of the mesh 

to model the shaking table input motion. 

 

Figure 7-7 Finite difference model (macro elements shown) of an inclined shaking table test 

 Figure 7-8 shows a comparison between the block acceleration measured in the 

uniform sinusoidal loading test of Elgamal et al. (1990) and the results calculated in the 
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FLAC 6.0 analysis using a friction angle based upon the static friction coefficient of 0.36 

reported by Elgamal et al. (1990). 

 

Figure 7-8 Acceleration from the numerical model compared to the experimental results of Elgamal et 

al. (1990) 

 Figure 7-9 presents a comparison of the relative displacement of the rigid block as 

reported by Elgamal et al. (1990) for the shaking table test and as calculated in the 

numerical analysis. The primary discrepancy between the experimental results and the 

numerical analysis is at the start of shaking, when there is a delay in the initiation of 

relative displacement in the shaking table test.  Note that the experimental results suggest 

that the block sticks for a little less than 2 seconds, i.e., for the first one and a half cycles 

of motion (the excitation frequency was 1 Hz) before it starts to move relative to the 

plane.  This delay in the initiation of relative movement suggests that there may have 

been some initial adhesion at the interface (perhaps due to interlocking of sand grains) 

that had to be overcome before the block began to slide.  However, once the block began 

to move, relative displacement accumulated at approximately the same rate in the 

numerical analysis as ob-served in the model, as evidenced by the nearly parallel 

displacement curves in Figure 7-9.   
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Figure 7-9 Displacement from the numerical model compared to the experimental results of Elgamal et 

al. (1990) 

 The generally good agreement shown in Figure 7-8 and Figure 7-9 between the 

model test results reported by Elgamal et al. (1990) and the numerical analysis suggests 

that the numerical model is capable of reproducing the behavior of a rigid block on an 

inclined plane subject to dynamic excitation.  Furthermore, the good agreement shown in 

these two figures, once the initial resistance to sliding was overcome in the physical 

model, suggests that in this case the dynamic sliding resistance is similar to the static 

sliding resistance.  In this respect, the sand-sand interface tested by Elgamal et al. (1990) 

is different from the geomembrane-geotextile interfaces tested by Kavazanjian et al. 

(1991), which showed a difference between the dynamic and static sliding resistance.  

7.4.2 Geosynthetic-Geosynthetic interface 
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area of 25.8 cm2 and mass of 1.6 kg, was positioned on top of the plane. The interface 

between the block and the plane was a smooth high-density polyethylene (HDPE)/non-

woven geotextile interface similar to one that might be found in a side-slope geosynthetic 

liner system for a landfill. Figure 7-10 illustrates the test setup employed by these 

investigators.  Accelerometers were fitted to both the sliding block and the inclined plane. 

Displacement transducers were employed to measure the absolute displacement of the 

sliding block and absolute displacement of the shaking table. Relative displacement was 

calculated from the two absolute displacement measurements. 

 The input motions used in the tests described by Wartman (1999) and Wartman et al. 

(2003) were a suite of 22 uniform sinusoidal motions, three sinusoidal frequency sweep 

motions, and one earthquake-like motion. The input type, excitation frequency, peak 

acceleration of the input motion, and cumulative relative displacement between the block 

and the plane for these tests are presented in Table 7-1. 

 

Figure 7-10 Schematic representation of the shaking table setup and the instrumentation used by 

Wartman (1999) and (after Wartman1999) 
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Table 7-1 Input motions used in the tests reported by Wartman et al. (2003) 

Type  Frequency (Hz) Input Motion Peak 
Acceleration (g) 

Cumulative relative  
 Displacement  (cm) 

Uniform 1.33 0.01 0.19 

Uniform 2.66 0.09 0.12 

Uniform 2.66 0.15 2.42 

Uniform 2.66 0.2 12.64 

Uniform 4.0 0.07 0.12 

Uniform 4.0 0.13 2.51 

Uniform 4.0 0.17 2.51 

Uniform 4.0 0.25 6.60 

Uniform 6.0 0.07 0.45 

Uniform 6.0 0.1 0.83 

Uniform 6.0 0.12 1.39 

Uniform 6.0 0.19 3.65 

Uniform 8.0 0.04  0 

Uniform 8.0 0.07 0.13 

Uniform 8.0 0.11 0.54 

Uniform 8.0 0.16 1.20 

Uniform 10.92 0.05 0.17 

Uniform 10.92 0.06 0.21 

Uniform 10.92 0.09 0.46 

Uniform 10.92 0.21 3.20 

Uniform 12.8 0.07 0.20 

Uniform 12.8 0.23 3.01 

Sweep  - 0.25 3.43 

Sweep - 0.35 4.90 

Sweep - 0.58 11.78 

Earthquake like  Kobe 2.0 8.22 
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 The uniform sinusoidal loading tests were conducted for duration of 6 seconds at 

frequencies varying from 1.33 to 12.76 Hz with acceleration amplitudes varying from 

0.01 g to 0.23 g.  The inability of the shaking table to instantaneously apply or terminate 

the full amplitude of sinusoidal motion led to the use of a motion in these so-called 

uniform loading tests that linearly ramped up to the peak amplitude for 1.5 seconds 

followed by the full amplitude of motion for 3 seconds and then 1.5 seconds of ramping 

down. The frequency sweep motion linearly increased in both frequency (from 1 to 16 

Hz) and acceleration over a 5 second duration. 

 To back analyze his test results, Wartman (1999) employed the computer program 

YSLIP_PM developed by Matasovic et al. (1998) for Newmark-type displacement 

analysis.  The interface friction angle was varied in the YSLIP_PM analysis until 

calculated acceleration and displacement time histories of the block matched the 

measured values as closely as possible. However, interface friction angles back 

calculated in these analyses were consistently greater than the value of 12.7o ± 0.7o 

determined for the interface employed in these tests by tilt tests reported in Wartman et 

al. (2003).  

 Wartman (1999) postulated that the friction angle of the interface during dynamic 

loading was controlled by two factors: 1) the amount of displacement; and 2) sliding 

velocity. Figure 7-12 shows the friction angle back calculated from the table acceleration 

at the initiation of sliding plotted versus the average sliding velocity of the block as 

calculated by Wartman et al. (2003).  The calculated friction angles were in the range of 

14o–19o and appeared to increase linearly with increasing average sliding velocity. 

Wartman (1999) cites an increase in the threshold acceleration for the initiation of sliding 

in the sweep frequency test with an amplitude of 0.58 g from approximately 0.1 g at the 
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beginning of the test to 0.2 g at the end the test as additional evidence of an interface 

friction angle proportional to sliding velocity for the HDPE / non-woven geotextile 

interface that was tested. 

 The numerical model shown in Figure 7-7 was used to simulate the shaking table 

tests reported in Table 7-1 using o37.13  . For each test, the interface friction angle 

was varied until a calculated cumulative relative displacement approximately equal to the 

one reported in the test was achieved. Figure 7-11 shows the variation in the calculated 

permanent deformation with two variables: interface friction angle and frequency of the 

input motion. Similar to the trend obtained by Wartman et al. (2003), the best-fit friction 

angle from the numerical analysis increased with average velocity. The open symbols in 

Figure 7-12 show the best-fit friction angle from the numerical analysis plotted versus 

average sliding velocity. The average sliding velocity was calculated as the cumulative 

relative displacement divided by the total sliding time for the block. The total sliding time 

was determined assuming that the block was sliding when the relative velocity exceeded 

0.01cm/s. As illustrated in Figure 7-12, the friction angle back calculated from the 

numerical analysis was consistently less than the friction angle reported by Wartman et 

al. (2003) for these tests. 
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Figure 7-11 Cumulative residual changing as a function of input frequency, input peak acceleration, 

and interface friction angle calculated using FLAC 6.0.  

 

Figure 7-12 Interface friction angle as a function of average sliding velocity of the block (after 

Wartman et al., 2003) 
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 The discrepancy shown in Figure 7-12 between the numerical analysis results and 

the friction angle reported by Wartman et al. (2003) may be attributed to the use by 

Wartman et al. (2003) of the acceleration parallel to the plane rather than the acceleration 

in the horizontal direction to predict the friction angle between the block and the plane.   

Yan et al. (1996) present the following equation for the horizontal acceleration at yield at 

the initiation of movement in the downslope direction of a rigid block on a plane: 

 
   -tan gX y 

 (87) 

where yX  is the horizontal acceleration at yield,   is the friction angle between the 

block and the plane, and   is the angle of the plane. The free body diagram is illustrated 

in Figure 7-13.  Prior to yield, the vertical acceleration of the block is zero and the 

acceleration of the block parallel to the plane at yield, yX ' , is given by: 

 
 cos' yy XX 

 (88) 

 However, once the block yields there is a downward vertical acceleration induced in 

the block and the acceleration of the block parallel to the plane increase accordingly.  

Thus, using the acceleration parallel to the plane of a yielding block to predict the yield 

acceleration according to equations above results in overprediction of the block friction 

angle. 
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Figure 7-13 Free body diagram of a block on an inclined plane subject to horizontal excitation at the 

initiation of downslope sliding 

 This phenomenon is illustrated in Figure 7-14, which shows results from the 

numerical model for a frequency sweep test for a friction coefficient of 0.1 g. Note that 

downslope accelerations are positive in this figure.  Figure 7-14 (a) shows the calculated 

horizontal acceleration of the block from the frequency sweep analysis. Figure 7-14 (b) 

shows the corresponding calculated vertical acceleration of the block while Figure 7-14 

(c) shows the calculated acceleration of the block parallel to the plane. Note that Figure 

7-14 (a) shows that the horizontal acceleration at yield in this numerical analysis is 

constant and equal to 0.10 g, the value that would be predicted from equation above using 

the input friction angle.  However, Figure 7-14(c) shows the acceleration of the block 

parallel to the plane increases from 0.1g to 0.15 g as the horizontal acceleration of the 

base increases over the duration of the test. Thus, use of the acceleration parallel to the 

plane as the friction coefficient of the block over-predicts the value of the friction 

coefficient.  
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 The numerical analysis predicted an increase in acceleration from 0.1 g to 0.15 g in 

the frequency sweep tests assuming a constant friction coefficient of 0.10 g.  In the 

shaking table test conducted by Wartman (1999) that corresponds to the numerical 

analysis shown in Figure 7-14, an increase in the acceleration parallel to the plane from 

0.1g to 0.2g was observed. The additional 0.05 g in acceleration at yield parallel to the 

plane observed in the shaking table test may still be attributed to an increase in average 

velocity of the block as the frequency and amplitude of the excitation increased.  

 

Figure 7-14 Frequency sweep motion (a) Horizontal block acceleration (b) Block acceleration normal 

to the plane (c) Block acceleration parallel to the plane. 

(a) 

(b) 

(c) 

0.10 g 

0.15 g 
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 Wartman (1999) also reported shaking table tests conducted using the same physical 

model described above and a scaled version of a Hyogoken Nanbu (Kobe) earthquake 

recording (Kobe Port Island array, depth = 79 m) as input. The peak acceleration of the 

scaled record was 2.0 g.  The same numerical model described in the previous paragraphs 

of a rigid block on a plane was also used to model this test.   

 Figure 7-15 presents a comparison of the relative displacement of the rigid block as 

measured in the shaking table test and as calculated in the numerical analysis for the 

Kobe acceleration input. Once again, the interface friction angle in the numerical model 

was varied until the maximum relative displacement matched the measured value.  The 

best fit interface friction angle from this analysis was 16.2o. The relative displacement 

time history from the numerical analysis closely matches the relative displacement time 

history observed in the laboratory test, including episodes of upslope relative 

displacement at around 5 seconds.  Furthermore, the best fit friction angle of 16.2o and 

the average sliding velocity between 5 and 8 seconds of 2.67 cm/s plots in the middle of 

the band of results from the numerical analysis of the uniform sinusoidal loading tests 

reported in Figure 7-12. Figure 7-16 shows the acceleration time history calculated using 

in case of the Kobe earthquake input motion and the acceleration of the block as 

measured by Wartman (2001). The maximum acceleration measured experimentally is 

little higher in both the upslope and downslope directions than the calculated acceleration 

using the numerical model.  
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Figure 7-15 Measured and calculated block relative displacement for the Kobe earthquake acceleration 

input 

 

Figure 7-16 Block acceleration (a) Calculated; (b) Experimental (Wartman 2001) 

(a) 

(b) 
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7.5 Stick-Slip and Slip-Slip Behavior 

The numerical model was also used to investigate the potential for slip-stick and slip-slip 

conditions for an inclined plane, where the threshold acceleration is different in the 

downslope and upslope directions.  A plane inclined at 11.37o with an interface friction 

coefficient of 0.29 was used in the analysis, corresponding to a downslope yield 

acceleration of 0.08 g and an upslope yield acceleration of 0.52 g. Figure 7-17(a) shows 

the calculated block acceleration, relative velocity and relative displacement for an input 

sinusoidal acceleration with an amplitude of 0.2g and a frequency of 2.66 Hz. In this 

case, block response is in a stick-slip mode.  Figure 7-17 (b) shows the calculated block 

acceleration, relative velocity and relative displacement between the base and the block 

for an input sinusoidal acceleration with amplitude of 2.0g and a frequency of 2.66Hz. In 

this case, a slip-slip mode of response is observed, but the upslope movement is relatively 

small compared to the downslope movement.  

 

Figure 7-17 The calculated acceleration, velocity and the displacement of the rigid block on an inclined 

plane (a) slip-stick response, (b) slip-slip response  
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7.6 Soil Column 

Wartman (1999) and Wartman et al. (2003) reported shaking table tests of a soil columns 

on a plane inclined at 11.37o (Figure 7-18). Two 25.4 cm diameter clay soil columns with 

different moisture contents were used in the Wartman (1999) inclined plane studies. In 

the Wartman (1999) experiments, the clay mixture was highly plastic (plasticity index 

105%) and the soil column was ‘‘sandwiched’’ between two lightweight 1.7-cmthick, 

25.4 cm diameter Lucite plastic disks. A stiff soil column with a moisture content of 

133.0 % and a soft soil column with a moisture content of 147.0 % were used in the 

testing. A textured 1.5 mm HDPE geomembrane was glued to the top and bottom 

surfaces of the lower and upper disks to minimize movement between the soil and disks 

during testing. A geotextile was secured to the bottom of the lower disk using two-sided 

carpet tape. The soil container was 25.4 cm diameter and was 16 cm and 14 cm height for 

the stiff and soft soil columns respectively. A 0.5-mm-thick latex membrane was attached 

to the perimeter of the disks to contain the soil.  

 

Figure 7-18 Shaking table experiment with clay soil columns (Wartman et al. 2003) 
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 Wartman (1999) measured the shear wave velocity as 6.4 m/s and 4.3 m/s, 

corresponding to fundamental frequencies of 9.6 and 7.8 for the stiff and soft soil 

columns respectively. An average-damping ratio of 3.3 and 3.9 %, for the stiff and soft 

soil columns respectively, were measured using free vibration test.  

 The interface between the block and the plane was a smooth high-density 

polyethylene (HDPE)/non-woven geotextile interface similar to the interface was used in 

the rigid block experiments conducted by the same investigator. Accelerometers were 

fitted to both the sliding block and the inclined plane. Displacement transducers were 

employed to measure the absolute displacement of the sliding block and absolute 

displacement of the shaking table. Relative displacement was calculated from the two 

absolute displacement measurements. The input motions used in the tests described by 

Wartman (1999) and Wartman et al. (2003) were the suite of 22 uniform sinusoidal 

motions presented in Table 7-1. Typical accelerations measured at the top and the bottom 

of the soil column are shown in Figure 7-19 to Figure 7-22.  

 Figure 7-19 presents the results for the acceleration in the stiff soil column for the 

case of a sinusoidal input motion with frequency of 2.66 Hz. In the test presented in 

Figure 7-19, the maximum acceleration at the bottom of the soil column in the upslope 

direction was smaller than the input motion. However, the acceleration at the top of the 

soil column in this test was higher in the down slope direction than the base acceleration.  

Figure 7-20 shows the acceleration of the soil column for the case of a sinusoidal input 

motion with a frequency of 4.0 Hz. For the case illustrated in the case in Figure 7-20, the 

maximum acceleration at the base of the soil column is higher than the input base 

acceleration. Figure 7-21 shows acceleration of the soil column for case of a sinusoidal 

input motion with a frequency of 8.0 HZ. For the case illustrated in Figure 7-21, the 
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maximum acceleration at the base of the column was similar to maximum acceleration of 

the input motion but the maximum acceleration at the top of the column was higher than 

that of the input motion. Furthermore, the motion of the top and bottom of the column is 

slightly out of phase in the case illustrated in Figure 7-21. Results for case of sinusoidal 

input with a frequency of 12.8 HZ are presented in Figure 7-22.The recorded 

displacement suggests that the soil column did not move relative to the base in this case 

(i.e. the relative displacement between the base and bottom of the soil column is zero). 

The recorded displacements show that the top and bottom of the soil column move 

approximately 180° out of phase. A similar observation can be made from the 

acceleration records. 
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Figure 7-19 Acceleration of top and bottom of the stiff soil column for 2.66 Hz sinusoidal input motion, 

positive acceleration is in upslope direction (Wartman et al. 2003). 

 

Figure 7-20 Acceleration of top and bottom of the stiff soil column for 4 Hz sinusoidal input motion, 

positive acceleration is in upslope direction (Wartman et al. 2003). 



  212 

 

Figure 7-21 Acceleration of top and bottom of the stiff soil column for 8 Hz sinusoidal input motion, 

positive acceleration is in upslope direction (Wartman et al. 2003). 

 

Figure 7-22 Acceleration of top and bottom of the stiff soil column for 12.8 Hz sinusoidal input motion, 

positive acceleration is in upslope direction (Wartman et al. 2003). 
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 The numerical model shown in Figure 7-7 was used to simulate the shaking table 

tests for the stiff columns tested by Wartman (1999). The properties (Vs = 6.5 m/s and 

density of 1678 kg/m3) and dimensions of the soil column were assigned to the grid 

elements above the interface. The input motions reported in Table 7-1 and o 37.13

were used in the numerical analysis. The backbone curve developed by Vucetic and 

Dobry (1991) for clays with a plasticity index, PI of 100%, was assigned to soil column 

with the Masing rule was used to define the shape of the hysteresis loops. The interface 

friction angle was changed until the computed displacement fit the measured 

displacement as closely as possible. The acceleration, velocity and displacement at the 

top and the bottom of the soil column were calculated relative to the base.  

 Typical results of this analysis are presented in Figure 7-23 (b) to Figure 7-28 (b). 

Figure 7-23 (b) shows typical results for the sinusoidal motion at 2.66 Hz. Similar to the 

experimental results shown in Figure 7-23(a), the results presented in Figure 7-23 (b) 

show the soil column behaving much like a rigid block, with upslope accelerations for the 

bottom of the soil column limited to 0.18 g during sliding (in this case a friction angle of 

19 degrees was used for the interface). However, the top of the soil column did 

experience acceleration amplification in the downslope direction. The relative 

displacement computed between the bottom of the soil column and the base is shown in 

Figure 7-24 (b) for the 2.66 Hz sinusoidal motion. The trend measured experimentally is 

similar to the computed relative displacement between the bottom of the soil column and 

the base. The bottom of the soil column experienced stick-slip behavior, similar to the 

rigid block case.  
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Figure 7-23 Measured and calculated acceleration for stiff soil column for 2.66 Hz sinusoidal input 

motion, positive acceleration is in upslope direction (a) measured, (b) calculated 

 

Figure 7-24 Calculated relative displacement between the bottom plate and the base for (stiff soil 

column), for 2.66 Hz sinusoidal input motion, positive acceleration is in upslope direction. 
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 Typical numerical results for the sinusoidal motion at 4.0 Hz are presented in Figure 

7-25 (b). The calculated acceleration at the bottom of the soil column in case of 4.0 Hz 

input illustrated in Figure 7-25 (b) is different in shape to the measured acceleration in 

the slip episode at the bottom of the soil column shown in Figure 7-25 (a). However, the 

calculated upslope peak acceleration at the bottom of the soil column is very similar to 

the upslope peak acceleration measured at the bottom of the soil column. The 

acceleration calculated at the top of the soil column in Figure 7-25 (b) was very similar in 

shape to the measured acceleration at the top of the soil column in Figure 7-25 (a), with 

very similar peak accelerations. The calculated acceleration at bottom of the soil column 

at the end of the slip episode goes momentarily from positive acceleration (upslope) to 

negative acceleration similar to the measured acceleration of the bottom of the soil 

column. In contrast to the rigid block, accelerations in excess of the yield acceleration 

(assuming a friction angle of 17 degrees for the interface) are computed for both the top 

and the bottom of the soil column. The bottom of the soil column shows stick slip 

behavior, the base and the bottom of the soil column have the same acceleration and after 

the slip initiates, the lower disk momentarily reverses acceleration to negative 

acceleration. Figure 7-26 shows the calculated relative displacements between the bottom 

of the soil column and the base. The displacement trend in Figure 7-26 is similar to the 

trend measured in the experiment by Wartman (1999). 
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Figure 7-25 Calculated acceleration for (stiff soil column) top and bottom and input motion, for 4.0 Hz 

sinusoidal input motion, positive acceleration is in upslope direction. 

 

Figure 7-26 Calculated relative displacement between the bottom plate and the base for (stiff soil 

column), for 4.0 Hz sinusoidal input motion, positive acceleration is in upslope direction. 
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 The calculated acceleration responses of stiff soil column for 8 Hz sinusoidal input 

motion are presented in Figure 7-27 (b). In this case, the calculated acceleration at the 

bottom of the soil column showed a stick-slip behavior, where the acceleration of the 

bottom of the soil column is the same as the input motion until slip initiated. In the slip 

mode the acceleration of the bottom of the soil column exceeds the maximum 

acceleration of the base input motion. These results are very consistent with the 

experimental results in Figure 7-27 (a). 

 

 

 

Figure 7-27 Calculated acceleration for (stiff soil column) top and bottom and input motion, for 8.0 Hz 

sinusoidal input motion, positive acceleration is in upslope direction 
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 The calculated acceleration responses of the stiff soil column for the case at 12.8Hz 

sinusoidal motion are presented in Figure 7-28 (b). In this case, the calculated 

acceleration at the bottom of the soil column was identical to the acceleration at the base 

(Input motion), no relative movement between the lower plate and the upper plate. The 

calculated accelerations in Figure 7-28 (b) show that the top and bottom disks move 

approximately 90° out of phase. A similar observation is made from the Wartman (1999) 

experimental results in Figure 7-28 (a) except that the top and bottom disks move 

approximately 180° out of phase in the experimental results. 

 

 

 

Figure 7-28 Calculated acceleration for complied block (stiff soil column) top and bottom and input 

motion, for 12.8 Hz sinusoidal input motion, positive acceleration is in upslope direction 

 

(a) 

(b) 
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7.7 Summary 

A FLAC 6.0 model of a rigid block and soil column sliding along an interface on a plane 

subject to dynamic excitation has been developed using a simple elastic-perfectly plastic 

constitutive model for the interface and the Mohr-Coulomb failure criterion to 

characterize the load-displacement behavior of the interface.  This numerical model has 

been shown to accurately reproduce the slip-stick and slip-slip behavior described by 

Westermo and Udwadia (1983) for frictional sliding of a rigid block on a horizontal 

plane. The numerical model has also been shown to accurately predict shaking table tests 

of a sliding block on horizontal and inclined planes subject to uniform and non-uniform 

motions provided the appropriate friction angle is used to characterize the interface.  

Comparison of physical model test results to the results of best-fit numerical analyses 

demonstrates that the appropriate friction angle depends upon the velocity of sliding.  

However, the rate dependence appears to be less than deduced in a previous study using a 

simpler back analysis.    

 Also, the numerical model has also been shown to predict the general trend of 

shaking table tests of a compliant soil column on an inclined planes subject to uniform 

cyclic loading provided the appropriate friction angle is used to characterize the interface.  

It is important to note that, in contrast to the rigid block, accelerations in excess of the 

interface yield acceleration may be induced in both the top and bottom of the compliant 

soil column. Unlike a rigid sliding block, a compliant soil column vibrates during sliding. 

Therefore, acceleration greater than the yield acceleration may occur within the sliding 

mass of the compliant soil column. Also, unlike the rigid block dynamic response, the 

acceleration at the base of the compliant soil column is not constant during sliding, as the 

limiting force at the sliding interface is not directly related to the acceleration directly 
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above the sliding interface but is instead related to the mass-weighted average of the 

entire acceleration distribution within the soil column.   
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CHAPTER 8 SEISMIC ANALYSIS OF HEAP LEACH PAD 

LINER SYSTEMS 

8.1 Introduction 

A two-dimensional (2-D) non-linear time-domain numerical model of heap leach pad 

seismic response was developed using the interface model described in the previous 

sections to demonstrate the ability of the model to predict forces and strains in 

geosynthetic liner systems and the impact of slip (relative displacement) at the liner 

interface.  The 2-D model was also compared to different types of one-dimensional (1-D) 

analyses to evaluate differences among the results from the 2-D model and current 

methods for modeling the performance of geosynthetic liner systems. The 2-D model 

includes interface elements that account for slip at liner system interfaces and beam 

elements that allow for computation of stresses and strains in liner system components. 

The 1-D analysis methods include two methods proposed in the literature to model the 

impact of slip at a geosynthetic liner system interface: an equivalent linear method 

proposed by Yegian et al. (1998) and a nonlinear method proposed by Kavazanjian and 

Matasovic (1995). Yegian et al. (1998) proposed a set of damping and modulus values to 

model the impact of slip at a geosynthetic liner interface on landfill seismic response 

using 1-D frequency domain equivalent linear response analysis. Kavazanjian and 

Matasovic (1995) proposed using a weak soil layer with a shear strength equal to the 

interface shear strength of the liner system to model the impact of slip at a geosynthetic 

interface in a 1-D time domain nonlinear seismic analysis.  Neither of these 1-D analyses 

is able to predict stresses or strains in the liner system. The 2-D time domain non-linear 

analysis described herein not only explicitly accounts for slip at the liner interface but 
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also computes the stresses and strains induced in the liner system elements by seismic 

loading.  

8.2 Non-Linear 2-D Time Domain Analyses 

The heap leach pad model analyzed in this study illustrated in Figure 8-1, in was 

representative of a 50 m high leach pad with 2H:1V (Horizontal: Vertical) side slopes and 

a 3% base slope. Three cases were analyzed using the non-linear 2-D model.  In Case I, 

the impact of slip at the liner interface was modeled using a single interface connecting 

the foundation to the waste but with no element representing the liner itself.  In Case II, 

the liner was modeled as a beam element with two interfaces (one on each side) 

connecting the beam (liner) to the underlying foundation and the overlying ore pile.  The 

beam element was assigned a zero moment of inertia in order to consider the potential for 

buckling of the geomembrane under compressive loads.  In Case III, neither interfaces 

nor a beam element were employed in order to provide a basis for evaluating the impact 

of the liner system models used in Cases I and II on seismic response.  
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Figure 8-1 Leach pad 2-D models 

 The 2-D non-linear analyses were conducted using FLAC 6.0.   The finite difference 

grid for the leach pad model consisted of 3,899 mesh zones. An increased mesh density 

was employed around the interface. Ore and foundation material properties used in the 

study are summarized in Table 8-1. The initial elastic modulus and unit weight assigned 

to the ore were based upon typical properties for granular materials. The ore was assigned 

a friction angle of 37o. The weak rock foundation was modeled as a linear elastic 

material. The properties of the geomembrane beam element were assigned based upon 

typical properties for a 1.5 mm high density polyethylene geomembrane.  For simplicity, 

and due to the lack of any other information, the Young’s modulus from manufacturer’s 

literature (i.e., the tensile modulus under zero normal stress) was employed for the 

membrane in both tension and compression, with no adjustment made for normal stress 

on the geomembrane. The Young’s modulus assigned to the geomembrane (i.e. the beam 

element) was 117 MPa, the yield tensile strength of the geomembrane was assumed to be 
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23 kN/m based upon typical values for 1.5 mm thick HDPE geomembranes (GSE 2010). 

The beam element was pinned at both ends, as recommended by Fowmes et al. (2005).   

Table 8-1 Ore and foundation material properties 

Layer  Depth Unit weight Shear wave velocity Poisson’s ratio 

Ore Layer I 0-19.4 19.0 350 0.25 

Ore Layer II 19.4-30 19.0 375 0.25 

Ore Layer III 30-50 19.0 400 0.25 

Rock  50-∞ 20.0 700 0.25 

Equivalent 50-51 0.16 1365.5  

Equivalent 50-51 9.7 1421.96  

 In some of the analyses, interface elements were attached to the top and bottom of 

the beam element were employed to model the geomembrane / foundation soil and 

geomembrane / leachate collection layer interfaces.  However, no low permeability soil 

layer beneath the geomembrane was included in the model and the leachate collection 

layer on top of the geomembrane was ignored in the analyses to simplify the model.    

Therefore, for the analyses described herein, the upper interface was assigned an interface 

shear strength represented by a friction angle of 20 degrees )20( o  and the lower 

interface was assigned an interface shear strength represented by a friction angle of 15 

degrees )15( o . The shear and normal stiffness of the interfaces were assigned a value 

10 times greater than the corresponding stiffness in the adjacent elements to prevent the 

mesh from penetrating the beam element.  The free-field bedrock strong ground motions 

selected for input to the analyses were converted to upward histories in the bedrock 90 m 

below the ground surface using the equivalent linear computer program SHAKE2000 for 

input to the 2-D analyses.  The quiet boundary condition in FLAC 6.0 was employed at 

the bottom and the sides of the numerical model to absorb the reflected seismic motion 

(instead of reflecting the downward propagating seismic waves back into the model). 
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 The ore in the FLAC analyses was treated as a nonlinear geo-material using the 

equivalent linear model.  An equivalent linear material is characterized as a visco-elastic 

material with a constant linear elastic shear modulus and a constant fraction of critical 

damping ratio.  The modulus and damping ratio assigned to each element (or mesh zone) 

depends upon the peak shear strain in the element.  The behavior of the ore under cyclic 

loading was based upon the equivalent linear damping curve for gravel.  FLAC uses a 

backbone curve and the Masing criterion to model cyclic behavior with hysteretic 

damping. Therefore, in developing equivalent linear properties for numerical analysis the 

modeler must decide whether it is more important to match the damping curve or the 

modulus reduction curve (since both cannot be satisfied simultaneously).   Figure 8-2 (a) 

compares the mean, mean plus one standard deviation, and mean minus one standard 

deviation damping curves for gravel from Rollins et al. (1998) to the damping curve 

based upon the backbone curve that gives the best fit to the Rollins et al. (1998) modulus 

reduction curve and best-fit damping curve established by varying the backbone curve.  

Figure 8-2 (b) presents the mean, mean plus one standard deviation, and mean minus one 

standard deviation modulus reduction curves for gravel from Rollins et al. (1998) and the 

best fit modulus reduction developed by varying the backbone curve to give the best fit to 

the Rollins et al. (1998) modulus reduction curve and the modulus reduction curve 

established using the backbone curve for the best fit damping curve. The best fit damping 

curve and the associated modulus reduction curve were used in the 2-D non-linear 

(FLAC) analyses described in this chapter.   
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Figure 8-2 Comparison of (a) damping and (b) modulus reduction curves used in this study to Rollins 

et al. (1998)  

8.3 1-D Equivalent Linear Analyses 

 In the1-D equivalent linear analyses, a representative vertical column through the 

ore pile was subject to analysis.  Each layer within the column is characterized as a 

strain-dependent equivalent linear material.  Shear deformations are continuous across 

layer boundaries, prohibiting explicit consideration of slip at an interface.  However, 

Yegian et al. (1998) proposed a procedure to model slip at a geosynthetic interface in a 1-

D equivalent linear analysis. The procedure proposed by Yegian et al. (1998) called for 

use of an “equivalent layer” of unit thickness with 0.16 kN/m3 unit weight, a fraction of 

critical damping of 0.45, and an equivalent shear modulus curve obtained from back 

analysis of shaking table tests using a rigid block on a plane with geosynthetic interface. 

Yegian et al. (1998) proposed different initial shear modulus values for the “equivalent 

layer” (Gmax) depend on the interface shear strength.  For a HDPE/geotextile interface a 

value of 36 was recommended for initial shear modulus of the “equivalent layer” 
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(Gmax), where  is the normal stress on top of the liner. Yegian et al. (1998) found the 

dynamic friction coefficient of the HDPE/geotextile interface he tested to be about 0.26, 

equivalent to an interface friction angle of 15 degrees.  

Figure 8-3 (a) shows the 1-D cross section used to represent a 50 m high heap leach pad 

in the equivalent linear analysis. The ore and foundation material properties used in the 

study are summarized in Table 8-1. Figure 8-3 (b) shows the 1-D cross section used to 

represent a 50 m high heap leach pad in the equivalent linear analysis with a unit 

thickness equivalent layer represents the interface according to Yegian et al. (1998) 

procedure.  

 

 

Figure 8-3 1-D profile used in the analysis a) no liner included b) including a liner layer 

1m 

(a) (b) 
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8.4 Nonlinear 1-D Time Domain Analysis 

1-D non-linear time domain analyses of seismic response were conducted using the 

computer program D-MOD2000 (Matasovic, 2010).  Like the 1-D equivalent linear 

analyses, the 1-D non-linear analyses analyze a representative vertical column through 

the ore pile.  D-MOD2000 uses the MKZ constitutive model (Matasovic and Vucetic 

1993; 1995) to define an initial backbone curve (which can be fitted to match an 

equivalent linear backbone curve) and to describe unloading and reloading (in a manner 

that can be fitted to an equivalent linear damping curve with the addition of a constant 

viscous damping. As described by Kavazanjian and Matasovic (1995), a thin soil layer 

with shear strength equal to the interface shear strength of the liner was used to model 

slip at the liner interface in the D-MOD2000 analyses. For comparison purposes, the 

stress-strain behavior of the equivalent layer was represented by the linear elastic-

perfectly plastic constitutive relationship shown in Figure 8-4, with the same elastic 

modulus used for the interface in the FLAC 6.0 analyses and a shear strength 

characterized by the interface friction angle of 15 degrees.  The 1-D column analyzed in 

this manner is shown in Figure 8-3 (b).  1-D non-linear analyses were also conducted 

without the weak soil layer for comparison purposes. The 1-D column used for the 1-D 

nonlinear analysis without employing the interface is shown in Figure 8-3 (a).  



  229 

 

Figure 8-4 Stress strain curve used in D-MOD2000 to represent the interface behavior 

8.5 Strong Motion Records 

Three pairs of strong motion records from earthquakes of moment magnitude from 6.4 to 

7.4 were used in this analysis.  Each pair of records was scaled to a different PGA.  PGA 

values of 0.25g, 0.45g and 0.6g were employed to investigate the influence of PGA on 

the seismic response. The 0.25g PGA was employed corresponding to the 0.26 friction 

coefficient of the interface with a friction angle of 15 degrees, so that there was no slip at 

the interface. The higher PGA values were used to study the effect of slip at the interface 

on seismic response. Table 8-2 shows the characteristics of the six records used in the 

analysis.  

 

 

  

  

15tan mo  

moG



  230 

  Table 8-2 Characteristics of the strong earthquake records used in the analysis 

Earthquake Record Moment Magnitude, Mw PGA (g) 

Coalinga  (1983)  Pleasant Valley P.P., YARD, 045 6.4 0.6 

Loma  Prieta  (1989)  LGPC, 090 6.9 0.6 

Imperial Valley  (1979) 2316, Bonds Corner, 140 6.5 0.45 

 Kobe  (1995)  Kakogawa, 000 (CUE) 6.9 0.45 

Landers (1992)  Joshua Tree, 090 7.3 0.25 

Tabas (1978)  Iran, 9102 Dayhook, Ln. 7.4 0.25 

8.6 Acceleration Response Spectra 

8.6.1 2-D nonlinear FLAC 6.0 analyses 

The three configurations shown in Figure 8-1 were loaded with the six earthquake 

records presented in Table 8-2.  Figure 8-5 (a) to (d) compares the acceleration response 

spectrum (ARS) from the 2-D nonlinear analysis for a point in the middle of the top deck 

of the leach pad model from case III, where there is no interface, to case I (interface 

element no beam element) for the four earthquake records used in  this comparison. 

Figure 8-5 (a) shows the comparison for the Coalinga (1983) earthquake input motion. At 

long periods (greater than 1 sec) the interface shows no effect on the spectral response 

but in the vicinity of the resonant period of the ore body (at around 0.5 s) the spectral 

response in case I is lower than in case III. At short periods (periods less than 0.1 s) the 

spectral acceleration is similar for both cases. Figure 8-5 (b) shows the comparison for 

the Loma Prieta (1989) earthquake input motion. At long periods (greater than 1.0 s), the 

interface shows no effect on the spectral response but in the vicinity of the resonant 

period of the ore body the spectral response in case I is lower than in the case III at 

periods (between 0.2 and 0.1 s), the spectral acceleration in case I is interestingly higher 
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than case III where there no interface elements were used. Figure 8-5 (c) shows the 

comparison for the Tabas (1978) earthquake input motion. Figure 8-5 (c) shows small 

differences in the response spectra except at around a period of 0.2 s, where case I gives a 

higher spectral acceleration than case III. Figure 8-5 (d) shows the comparison for the 

Landers (1992) earthquake input motion. Figure 8-5 (d) shows small differences in the 

response spectra except in the vicinity of the resonant period of the ore body (0.5 s), 

where the spectral response for case I is lower than for case III. In Figure 8-5 (a) and (b) 

the effect of slip at the liner interface is more pronounced due to the higher PGA of the 

input motion.  In Figure 8-5 (c) and (d), the acceleration response spectra are very similar 

because the PGA of the input motion is very close to the interface friction coefficient at 

the interface. One important observation from the results shown in Figure 8-5 is that 

introducing the interface element (case I) into the model did not affect the PGA at the top 

deck of the leach pad.   
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Figure 8-5 ARS on the top deck from 2-D analysis for Case I and Case III (a) Coalinga (1983), (b) 

Loma Prieta (1989), (c) Tabas (1978), (d) Landers (1992), (e) Imperial Valley (1979) and (f) Kobe 

(1995)  

Figure 8-6 (a) and (b) compares the ARS from the 2-D non-linear analysis for a point in 

the middle of the top deck of the leach pad model for case I, where there a single 

interface is used to model the liner, to the ARS for the same point for case II, where the 

liner was modeled as a beam element with interface in both sides. Figure 8-6 (a) 
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represents the comparison for the Coalinga (1983) earthquake input motion. At long 

periods (greater than 1 sec) the response is identical but, at short periods (periods less 

than 0.1 s) the spectral acceleration shows some differences. Figure 8-6 (c) to (f) also 

show identical response at long periods (greater than 1 sec) the response but some 

differences at short periods (periods less than 0.1 s) in the spectral acceleration. In Figure 

8-6 (b) the comparison for the Tabas (1983) earthquake record, the spectral response is 

almost identical over the entire range of spectral periods. 
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Figure 8-6 Comparison of ARS on the top deck from nonlinear 2-D analysis from Case I and Case II 

(a) Coalinga, (b) Tabas (1978), (c) Loma Prieta (1989), (d) Landers (1992), (e) Kobe (1995) and (f) 

Imperial Valley (1979).  
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8.7 1-D Equivalent Linear and Nonlinear Analyses 

The two configurations shown in Figure 8-3 were loaded with the six earthquake records 

presented in Table 8-2 using the equivalent linear computer code SHAKE2000 (Ordonez, 

2008). The two configurations presented in Figure 8-3 were also loaded with the six 

earthquake records shown in Table 8-2 using the nonlinear computer code D-MOD2000 

(Matasovic, 2010).  Figure 8-7(a) to (d) compare the ARS at the top of the column from 

the 1-D non-linear analysis with and without a weak layer at the base to simulate liner 

response to the ARS from the equivalent linear analysis without consideration of the liner 

and using the method of Yegian et al. (1998) to consider liner. For the cases where the 

impact of the liner is ignored (Column 3a), the ARS from the 1-D nonlinear analysis and 

the1-D equivalent linear analyses are identical at long periods (greater than 0.3 sec). 

However, at shorter periods the 1-D nonlinear spectral accelerations are generally higher 

than the 1-D equivalent linear values. For the cases where the impact of the liner is 

considered the models that consider the presence of the liner generally result in a lower 

PGA when the input motion PGA is high enough to induce slip at the interface, as shown 

in Figure 8-7 (a) to (c). However, the only the Kobe record Figure 8-7 (c) provides a 

substantial lower PGA when slip is considered in the 1-D analyses, only for nonlinear D-

Mod 2000 analyses. In Figure 8-7 (d), where the input motion PGA is not high enough to 

induce slip at the interface result, the PGA at the top of the column is similar to the PGA 

whether or not an interface layer is employed.  
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 Figure 8-7 Comparison of ARS from 1-D analyses with and without liner elements (a) Coalinga (1983), 

(b) Loma Prieta (1989), (c) Kobe (1995), and (d) Tabas (1978) 

8.8 Comparison between the 1-D Response Spectra and 2-D Response Spectra 

Figure 8-8 (a) to (f) compares the (ARS) from the 2-D non-linear analysis for a point in 

the middle of the top deck to the ARS for the top deck (i.e. at the top of the column) from 

the 1-D equivalent linear analysis and nonlinear analyses for cases with and without 

consideration of the liner interface.   

 The 1-D models that include consideration of the element consistently give the 

lowest response, though in Figure 8-8 (f) (Tabas record scaled to 0.25 g) there is no 

significant difference among any of the analyses. Furthermore, the equivalent linear 

model that includes an interface (the Yegian et al. (1998) model) always underpredict the 

response at the high frequencies, including the PGA at the top of the column. This result 
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is consistent with the finding of Rathje and Bray (2000), who found that the response at 

the top of the landfill is not significantly modified by the sliding episodes at the base liner 

interface is the sliding displacements are maintained below a certain displacement limit. 

The 2-D model without an interface tends to give the greatest spectral response.  

However, the 2-D interface model and the 1-D non-linear models occasionally have 

higher spectral accelerations than the 2-D model without an interface.   

8.9 Seismic Deformation Behavior 

8.9.1 Permanent deformation from 2-D analyses 

Permanent deformations calculated in the 2-D FLAC 6.0 analyses at four different 

locations (A, B, C and D) for the case I model (a single interface to represent the liner) 

are shown in Table 8-3 (see Figure 8-1 for the point locations). Point A represents the 

heel of the leach pad while point B represents the toe. Point C represents the point at the 

center of the leach pad and point D is in between point B and C.  The calculated 

permanent displacements at the center of the leach pad (points C and D) were negligibly 

small in all cases. However, except for the Tabas record, the analyses consistently show 

extension at the heel of the leach pad and compression at the toe. The results for case II 

(using the beam and two interfaces to model the liner) are similar (with minor 

differences) to the results reported in Table 8-2 for the Case I (using single interface to 

model the liner). 
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Figure 8-8 ARS at center of the top deck (a) Coalinga, (b) Loma Prieta (1989), (c) Imperial Valley 

(1979), (d) Kobe (1995), (e) Landers (1992) and (f) Tabas, Iran (1978) 
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Table 8-3 Permanent Deformation at the geosynthetic liner interface 

Q Motion 

Calculated permanent seismic displacement (cm) 

2-D FLAC 6.0 analysis (Case I) Decoupled (Newmark) 
analysis 

A B D C 

Coalinga (1983)  -105 167 16 1.5 64.0 

Loma Prieta (1989)  -108.9 154 19.3 4.7 125.32 

Imperial Valley (1979) -97.6 120 13.5 3.2 34.6 

 Kobe (1995)  -77.5 121 4.07 0.23 25.53 

Landers (1992) -130 207 3.7 0.0 46.4 

Tabas (1978)  -13.7 23 0 0 0.936 

Note: For location of points A, B, D and C refer to Figure 8-1. 

8.10 Newmark Displacements from 1-D Analyses 

A conventional decoupled Newmark seismic deformation analysis was conducted using 

the 1-D equivalent linear analysis results (with no interface layer) for comparison to the 

results of 2-D analyses. The decoupled procedure described by Bray et al. (1995) for 

seismic analysis of lined landfills was employed.  First, a limit equilibrium analysis was 

used to determine the yield acceleration of the ore mass / liner system using SLIDE 5.0 

(Rockscience 2005). Next, the time history of shear stress at the liner level from the 

SHAKE2000 equivalent linear analysis was converted to an average acceleration time 

history for the ore mass by dividing the shear stress by the total normal stress acting on 

the liner.  Excursions of one side of the average acceleration time history above the yield 

acceleration were then double-integrated (using Y-Slip subroutine in the SHAKE2000 

program) to calculate the permanent seismic displacement for the decoupled analysis 

method.  A yield acceleration of 0.08 g was found for the leach pad model shown in 

Figure 8-1 (interface friction angle equal to 15 degrees). It is important to note that the 
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surfaces with the lowest yield acceleration were relatively small wedges at the toe of the 

ore mass. There is also a small wedge with low yield acceleration at the heel of the ore 

mass (explaining the large relative displacement at this location). Table 8-3 presents the 

results of the decoupled permanent seismic displacement analysis. The permanent 

deformation at the heel and toe from the 2-D FLAC 6.0 analyses were always bigger than 

the permanent deformation calculated in the decoupled Newmark analysis. The Newmark 

displacement at points A to B consistently exceeded the common employed allowable 

displacement limit of 15-30 cm for all records except Tabas record.  

8.11 Geomembrane Stresses and Strains 

A significant advantage of the 2-D (FLAC 6.0) analysis compared to the 1-D analyses is 

the ability to predict the stresses and strains in the geomembrane liner.  Figure 8-9 shows 

the axial stresses and strains in the geomembrane predicted using the beam model (case 

II) for the liner, i.e., for a case where the lower interface shear strength was less than the 

upper interface shear strength, using the Landers (1992) input motion, i.e., the motion 

that produced the largest permanent displacement at the liner interface, possibly due to its 

long duration and long period content.   The axial tensile strain at the end of the record 

(which was also the maximum axial strain) at the base liner for the case illustrated in 

Figure 8-9 is approximately 12.8%, which is below the yield strain of the liner but not an 

insignificant value. 

 Table 8-4 presents a summary of the maximum tensile and compressive forces and 

tensile and compressive strains in the liner system for the 2-D analyses for Case II using 

the six records in Table 8-3, where the interface friction angle below the geomembrane 

was five degrees less than interface friction angle above the geomembrane.  The 



  241 

maximum tensile strains and forces were approximately at a point in between points D 

and B.  In all of the analyses, the maximum compressive forces and strains were at the 

toe of the leach pad, where the geomembrane element was pinned. Except for the 

aforementioned (Landers case), maximum tensile strains and forces are well below values 

at yield for the geomembrane despite calculated permanent displacement as high as 150 

cm (5 to 10 times the generally accepted limiting value).   

 

Figure 8-9 Axial strains and axial force in the base liner geomembrane calculated at the end of 

earthquake record (Landers (1992). 

Table 8-4  Summary of stresses on the linear - results from time domain analysis 

EQ Motion 

Max Force and strain in developed GM 

Tensile 
force 

(kN) 

Tensile 
strain 

(%) 

Compressive 
force 

(kN) 

Compressive 
strain 

(%) 

Coalinga (1983)  3.92 2.18 36.56 21.3 

Loma Prieta (1989)  5.37 2.99 39.79 22.14 

Imperial Valley (1979) 4.21 2.38 36.42 20.62 

 Kobe (1995)  3.98 2.21 33.57 18.67 

Landers (1992) 7.096 12.76 49.22 27.38 

Tabas (1978)  1.19 0.65 8.5 4.7 

A 
B 
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8.12 Summary  

Site response analyses have been conducted using 2-D nonlinear and 1-D equivalent-

linear and nonlinear analyses with and without liner elements. In the 2-D analyses the 

liner system was modeled: 1) solely as a weak interface; and 2) as a beam element with 

interface with interfaces on each side. In the 1-D non-linear analyses, the liner was 

modeled as weak soil layer. In the 1-D equivalent linear analyses, the liner was modeled 

using the recommendations of Yegian et al. (1998). Results of the analyses with the 2-D 

models show that there are only minor differences between the two means of modeling 

the liner (i.e. interface and beam element with two interfaces). However, the beam model 

allows for the explicit computation of the stresses and strains in the liner. The 2-D model 

without a liner element generally produced greater spectral acceleration than the model 

with a liner, though in one case the model with the liner produced higher spectral 

acceleration in the 0.1 to 0.3 second spectral period range.  Comparison of the 2-D and 1-

D models shows that: 1) based upon comparison to the 2-D analysis with slip elements 

(which are believed to be more accurate, but which are also more complicated to perform 

than 1-D analyses), use of a weak layers in the non-linear 1-D models is an improvement 

with respect to conventional 1-D analysis without slip elements; 2) additional calibration 

of the non-linear 1-D models is required to improve the accuracy of this type of 

modeling; 3) the 1-D equivalent linear model proposed by Yegian et al. (1998) is not 

reliable;  and 4) as the calculated maximum permanent seismic displacement varies along 

the liner, 1-D models using a weak layer cannot fully account for the impact of slip at a 

liner interface on seismic response. 
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CHAPTER 9 SEISMIC ANALYSIS OF TYPICAL 

LANDFILL GEOMETRIES 

9.1 Introduction 

Two-dimensional (2-D) non-linear time-domain numerical models of the seismic 

response of two typical landfill geometries, a quarry-fill model and a canyon-fill model, 

were developed using FLAC 6.0.  The model includes interface elements that account for 

slip at liner system interfaces and beam elements allow for computation of stresses and 

strains in liner system elements.  Two different landfill configurations were analyzed in 

this study: a symmetrical configuration representative of a quarry fill and an 

asymmetrical configuration representative of a canyon fill. The geometry of the two 

models is presented in Figure 9-1.  The performance of the liner system in terms of liner 

stresses, strains and permanent displacement from the 2-D FLAC6.0 analyses was 

compared to the liner system performance as evaluated in conventional 1-D decoupled 

seismic deformation analyses.   
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Figure 9-1 Landfill models used in the numerical analysis: (a) Quarry-fill model; (b) Canyon-fill model 
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9.2 Liner System Interaction Modeling 

Interface elements were attached to each side of the beam element (geomembrane 

elements) to allow for relative displacement at the interface while accounting for the 

transfer of stresses through the lining system. This configuration also allows for different 

interface shear strengths on either side of a liner element.  The interface elements were 

modeled as linear elastic-perfectly plastic materials.  The Mohr-Coulomb criterion was 

used to model the interface shear strength. The ability of this type of model to accurately 

represent slip at the liner interface has been demonstrated by modeling of shaking table 

tests of a rigid block on both horizontal and inclined planes in Chapter 7. The beam 

element used to represent the geosynthetic materials was modeled as a linear elastic 

material with zero moment of inertia. The zero moment of inertia allows the geosynthetic 

element to buckle (wrinkle). The FLAC 6.0 software package has provisions to 

numerically handle cases when the moment of inertia is assigned a zero value, allowing 

the beam element to buckle.    

9.3 Seismic Analyses 

9.3.1 Non-Linear Analyses 

The finite difference grid for the quarry-fill, shown in Figure 9-1 (a), consisted of 5808 

mesh zones. The finite difference grid for the canyon-fill, shown in Figure 9-1 (b), 

consisted of 5398 mesh zones.  An increased mesh density was employed around the side 

slope liner.  Waste and foundation material properties used in this study are summarized 

in Table 9-1.  The initial elastic modulus and unit weight assigned to waste were based 

upon shear wave velocities from Kavazanjian et al. (1996) and unit weights reported by 



  246 

Zekkos et al. (2006).  The waste was assigned a shear strength represented by cohesion of 

24 kPa for the top 3 meters and a friction angle of 33o at greater depths based upon the bi-

linear strength envelope of Kavazanjian et al. (1995).  

Table 9-1 Waste and foundation material properties 

Layer Depth (m) Unit weight (kN/m3) Shear wave velocity  (m/s) Poison’s ratio 

Waste Layer I 0-15 16.0 240 0.33 

Waste Layer II 15-30 16.5 285 0.33 

Waste Layer III 30-50 16.9 345 0.33 

Rock I 50-70 18 500 0.25 

Rock II 70-100 18 700 0.25 

Rock III 100-120 18 884 0.25 

The waste was modeled as a linear visco-elastic material with Rayleigh damping 

and the foundation rock was modeled as a linear elastic material.  The center frequency 

for the Rayleigh damping for the waste was established as the resonant frequency from an 

undamped 2-D linear elastic analysis of the model. A 1-D column in the center of the 

landfill was analyzed using equivalent linear analyses with SHAKE2000 (Ordonez 2010) 

to determine the strain-compatible damping ratio and elastic modulus for the waste in the 

FLAC analysis.   Table 9-2 shows the damping ratio and the modulus reduction factor 

assigned to each waste layer in the FLAC analysis based upon the results of the 

SHAKE2000 analysis.  
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Table 9-2 Fraction of critical damping and modulus reduction for waste in the FLAC 

analyses 

Layer  Damping Ratio Modulus reduction factor 

Waste Layer I 0.13 0.76 

Waste Layer II 0.18 0.51 

Waste Layer III 0.17 0.58 

 The elastic properties of the geomembrane beam element were assigned based upon 

typical properties for a 1.5 mm (60 mil) high density polyethylene geomembrane (GSE 

2011).  For simplicity, and due to the lack of any other information, the Young’s modulus 

from manufacturer’s literature (i.e. the tensile modulus under zero normal stress) was 

employed for both tension and compression, with no adjustment made for normal stress 

on the geomembrane.  The beam element was pinned at the top of the slope to account for 

anchoring, as recommended by Fowmes et al. (2005).  The Young’s modulus assigned to 

the beam element was 117 MPa. The yield tensile strength of the geomembrane was 

assumed to be 23 kN/m based upon typical values. 

 Interface elements were attached to the top and bottom of the beam element to 

model the geomembrane / low permeability soil and geomembrane / leachate collection 

layer interfaces.  However, the low permeability layer underlying the geomembrane and 

the leachate collection layer on top of the geomembrane were ignored in the analyses to 

simplify the model.  To investigate the influence of the lower interface shear strength on 

the stresses and strains in the geomembrane, analyses were conducted using different 

interface shear strengths, as discussed subsequently.  The shear and normal stiffness of 

the interfaces were assigned a value 10 times greater than (using the largest of the values 

of either side of the interface) the adjacent elements to prevent the mesh from penetrating 

the beam element.  Bedrock motions selected for input to the FLAC 6.0 analysis were 
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converted to shear stress time histories at the base of the model using SHAKE2000.  The 

quiet boundary condition in FLAC was employed at the bottom and the sides of the 

models to absorb the reflected seismic waves (instead of reflecting the seismic waves 

back into the model). 

9.4 Equivalent Linear Analyses 

The 1-D equivalent linear seismic response analyses used to develop the waste material 

properties and the shear stress time histories for input to the FLAC 6.0 analyses and 

required for the decoupled Newmark-type seismic displacement analyses were conducted 

using SHAKE2000. The equivalent linear site response analyses were conducted for 

representative columns extending from the bottom of the bedrock layer in the FLAC 6.0 

models to the top deck of the landfill.  As the waste thickness was the same in each 

landfill model, the same column was employed for the equivalent linear analysis of both 

landfill models.  The properties presented in Table 9-1 were employed in the equivalent 

linear analyses along with the modulus reduction and damping curves for waste 

developed by Matasovic and Kavazanjian (1998) from back analysis of the OII landfill 

seismic response.  Equivalent linear analysis does not consider interface behavior.  

Therefore, no interface properties were required for the equivalent linear analysis.  

Earthquake acceleration time histories were input as free field bedrock outcrop motions 

in the equivalent linear analyses. 

9.5 Landfill Response to Seismic Loading 

The landfill models shown in Figure 9-1 were loaded with the Pleasant Valley P.P. - 

YARD, 045 record from the 1983 moment magnitude (Mw) 6.7 Coalinga earthquake 
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scaled to a peak horizontal ground acceleration (PHGA) of 0.4 g. This “outcrop” 

acceleration-time history was converted to an “upward” rock motion using SHAKE2000. 

The corresponding “upward” shear time histories were applied at the base of the model in 

FLAC as the design ground motion (Mejia and Dawson 2006) 

 Figure 9-2 (a) compares the acceleration response spectrum (ARS) from the 2-D 

non-linear analysis for a point in the middle of the top deck to the ARS for the top deck 

from the 1-D equivalent linear analysis for the quarry-fill model. Figure 9-2 (b) makes 

the same comparison for the canyon-fill model. In both figures, Case A refers to an 

analysis in which the upper and lower interface shear strength were the same, with a 

friction angle of 20o assigned to the base and a friction angle of 15o assigned to the side 

slope.  Case B refers to the case when the upper interface shear strength is higher than the 

lower interface shear strength, with a value of 15o used for the lower interface friction 

angle on the base and 10o used for the lower interface friction angle on the side slope (the 

upper interface friction angles were unchanged from Case A).   

 

  

Figure 9-2 Acceleration response spectra on the top deck from non-linear and equivalent linear 

analysis (a) Quarry-fill model; (b) Canyon-fill model 
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 For the quarry fill analysis, the ARS for the 2-D non-linear (FLAC 6.0) analysis 

shows significantly greater spectral response at short periods (periods less than 0.5 s) than 

the equivalent linear model and in the vicinity of the resonant period of the waste mass 

(at around 0.8 s).   The ARS for the 2-D non-linear (FLAC) analyses for the canyon fill is 

remarkably similar to ARS for the 1-D equivalent linear (SHAKE2000) results.   

Interestingly, neither the quarry fill nor the canyon fill non-linear analyses showed the 

expected “base-isolation” effect, i.e. neither of the 2-D non-linear analyses shows a 

significant reduction in the peak ground acceleration due to slip at the liner interface.  In 

fact, the spectral response of the canyon fill at short periods is significantly greater in the 

2-D non-linear analysis than in the equivalent linear analysis. This is consistent with the 

behavior observed by Wartman (1999) in his analysis on the seismic response of 

geosynthetically lined slopes. 

9.6 Geomembrane Forces and Strains 

In total, six 2-D non-linear analyses were conducted. In all cases the input motion was 

scaled to 0.4 g.  In two of the analyses, the interface strength was the same above and 

below the geomembrane and the tensile forces and strains in the geomembrane were 

minimal. Table 9-3 presents a summary of the maximum tensile forces and tensile strains 

in the liner system for the four 2-D non-linear analyses in which the interface strength 

differed between the top and bottom of the geomembrane. In analyses 1 and 3, the 

interface friction angle below the geomembrane was five degrees less than above the 

geomembrane for both the base and the side slope. In analyses 2 and 4, the weaker 

interface was above the geomembrane on the side slope but transitioned to below the 

geomembrane at the base. While there was little difference in the overall seismic 
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response, the tensile strain and the tensile force at point A were greater for cases 2 and 4 

than in cases 1 and 3.  In all cases, the maximum tensile forces and strains were at the 

crest of the landfill, where the geomembrane element was pinned, and were significantly 

below yield.  Also, the strains and forces at point C (the toe of the side slope) were 

compressive at all cases.      

 Figure 9-3 shows the axial stresses and strains in the geomembrane predicted for one 

side of the quarry-fill model for the case where the lower interface shear strength was less 

than the upper interface shear strength (the liner response for the quarry-fill model is 

essentially symmetric).  Only the Case A where the upper and lower interface strengths 

are different, is shown because when the upper and lower interface shear strengths were 

equal the stresses and strains on the geomembrane were very low. Figure 9-3 shows that 

there are compressive strains generated at the toe of the slope and on the base of the 

landfill for this case.  

Table 9-3 Forces and strains in the liner from FLAC analysis 

Side Slope 
Lower Interface 
angle (O) 

Side Slope 
Upper Interface 
angle (O) 

Base Upper 
Interface angle 
(O) 

Base Lower 
Interface angle 
(O) 

GM Tensile 
Force (kN/m) 
Point A 

GM Tensile 
Strain (%) 
Point A 

Quarry-fill model 

10 15 20 15 +3.09 +1.7 

15 10 20 15 +3.49 +1.94 

Canyon-fill model. 

10 15 20 15 +2.96 +1.6 

15 10 20 15 +3.40 +1.8 
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Figure 9-3 Axial strains and axial force at the end of the record in the geomembrane for the quarry-fill 

model  

 The behavior shown in Figure 9-3 is consistent with strains measured by Yazdani et 

al. (1995) in a 1.5 mm HDPE geomembrane side slope liner subject to waste settlement 

and downdrag over a period of three years in a landfill in Northern California.  The axial 

tensile strain at the end of the record (which is also the maximum axial strain) in the side 

slope liner for the case illustrated in Figure 9-3 is approximately 1.8%, well below the 

yield strain of the liner. 

 Figure 9-4 shows the relative displacement between the geomembrane and the 

underlying foundation material at five points on the side slope and base of the landfill for 

the quarry-fill (Figure 9-4 (a)) and at six points for the canyon-fill (Figure 9-4 (b)).  

Points A through E are common to the two geometries. Point A is at the crest of the side 

slope, point B is at the middle of the side slope, and point C is the toe of the side slope. 

Point D is one half of the distance from the toe of the slope to the center of the base and 
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point E is in the center of the base. Point F is only applicable to the canyon-fill and is 

located at the toe of the waste. The maximum permanent displacement for the quarry-fill 

was at the top of the slope (point A) and was about 0.15 m.  At mid slope, the quarry fill 

experienced about 0.06 m of permanent displacement but had a maximum transient 

relative displacement of about 0.09 m during the earthquake. The top of slope for the 

canyon-fill experienced a permanent displacement of about 0.11 m while the mid slope 

experience about 0.05 m in permanent displacement and a maximum transient 

displacement of 0.09 m for the canyon-fill. The maximum permanent displacements at 

point A-E in both models were equal to or less than the generally accepted allowable 

calculated displacement limits of 0.15 m to 0.3 m for geomembrane liners subjected to 

seismic loading. However, point F for the canyon-fill, located at the toe of the landfill, 

experienced a permanent displacement of about 0.81 m, exceeding the generally accepted 

allowable value, despite the fact that tensile strains and forces remained well below yield. 
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Figure 9-4 Displacement of waste relative to foundation rock (a) quarry-fill model; (b) canyon-fill 

model. 
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9.7 Decoupled Newmark Displacement Analysis 

A conventional 1-D decoupled seismic displacement analysis was conducted for 

comparison to the results of 2-D nonlinear analysis. The decoupled procedure described 

by Bray et al. (1998) for seismic analysis of lined landfills was employed to evaluate liner 

performance in accordance with current practice.  First, the time history of shear stress at 

the liner level from the SHAKE2000 analysis was converted to an average acceleration 

time history for the waste mass by dividing the shear stress by the normal stress acting on 

the membrane.  Next, limit equilibrium analysis was used to determine the yield 

acceleration waste mass / liner system using SLIDE 5.0 (Rockscience  2005).  A yield 

acceleration of 0.26 g was found for the quarry-fill and 0.1 g for the canyon-fill. 

Excursions of one side of the average acceleration time history above the yield 

acceleration were then double-integrated (using the Y-Slip subroutine in the SHAKE2000 

program) to calculate the permanent seismic displacement for the decoupled analysis 

method.  

 Table 9-4 presents the results of the decoupled permanent seismic displacement 

analysis.  The calculated permanent displacement for the quarry fill was negligibly small 

due to the relatively large yield acceleration. However, in the 2-D analysis a permanent 

displacement of 15 cm was calculated at the crest of the slope for the quarry-fill. The 

calculated permanent displacement of 7.2 cm for the canyon-fill from the decoupled 

analyses is similar to the displacement of 9 cm at the crest of the side slope calculated for 

the canyon fill in the 2-D analysis.  However, the displacement at the toe of the waste for 

the canyon-fill calculated in the nonlinear analysis was 81 cm, significantly higher than 

the displacement calculated in the decoupled analysis.  
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Table 9-4 Decoupled (Newmark) displacement analysis summary 

Quarry-fill Canyon-fill 

Permanent displacement 

(cm) 

Permanent displacement 

(cm) 

0.0 7.2 

 

9.8 Summary  

Two-dimensional non-linear numerical analyses have been conducted of the seismic 

response of idealized quarry-fill and canyon-fill landfills using interface elements that 

allow for slip at the geomembrane interface and computation of liner strains and forces.    

Response analyses were also conducted using conventional 1-D equivalent linear 

analysis. The analyses were conducted using a record from the Mw 6.7 Coalinga 

earthquake scaled to 0.4 g. Surprisingly, slip at the liner interface in the non-linear 

analyses did not significantly reduce the peak ground acceleration or the spectral 

response for either landfill configuration compared to the results of the equivalent liner 

analysis. The non-linear analyses indicated that the tensile forces and strains in the 

geomembrane were minimal when the interface shear strength was the same or greater on 

the bottom than on the top of the geomembrane.  When the interface friction angle was 

five degree greater on the top than on the bottom of the geomembrane, the seismically-

induced tensile stresses were still well within the allowable values.  The permanent 

seismic displacement at the crest of the side slope from the non-linear analysis compared 

favorably to the calculated permanent displacement from a conventional decoupled 

analysis. However, the permanent displacement at the toe of the canyon fill was 
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significantly greater in the 2-D non-linear analysis compared to the decoupled analysis 

for both landfill configurations.       

 Additional analyses are required to determine if the findings reported herein are 

generally applicable to geosynthetically-lined landfills or are an artifact of the landfill 

geometry and earthquake ground motion used in these analyses.  Furthermore, the tensile 

forces and strains calculated in this type of analysis must be added to static forces and 

strains induced in the liner by waste settlement and the impact of benches and interim 

anchorage for the geomembrane must be considered to determine if the geomembrane 

can withstand the seismic forces without damage. 
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CHAPTER 10 CALIBRATION OF MSW 

DYNAMIC PROPERTIES 

10.1 Introduction 

The ability to conduct an accurate seismic response analysis of a municipal solid waste 

(MSW) landfills depends to some extent upon reliable data on the strain dependent 

dynamic properties of the waste. Chapter 3 presented a summary of previous studies 

conducted to evaluate the dynamic properties of the MSW. Most of these studies 

employed data on the Operating Industries, Inc. (OII) landfill, perhaps the most studied 

landfill with respect to seismic response. In 1988, EPA installed three-component strong 

motion instruments at the base and top deck of the landfill. Inclinometers and survey 

monuments were also installed to monitor landfill deformations. The OII landfill is the 

only case history of a landfill subject to seismic shaking with actual strong motion 

records on and adjacent to the waste. 

 As part of predesign studies for closure of the OII landfill, the behavior of the OII 

solid waste when subject to earthquake-induced cyclic loading was extensively studied 

(Hushmand et al. 1990, Anderson et al. 1992, Kavazanjian and Matasovic 1995, Idriss et 

al. 1995, Matasovic et al. 1995, Matasovic and Kavazanjian 1998 and Augello et al. 

1998). Matasovic and Kavazanjian (1998) presented results of field and laboratory testing 

to characterize cyclic behavior of the OII solid waste. These results include shear wave 

velocity, unit weight, and Poisson's ratio profiles from field testing and modulus 

reduction and damping curves developed using a combination of back analysis of strong 

motions recorded at the landfill and large-diameter cyclic direct simple shear laboratory 

tests on reconstituted solid waste specimens. Several other investigators also used back 
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analysis of strong motions recorded at the landfill to develop modulus reduction and 

damping curves for the OII waste (e.g. Idriss et al. 1995, Augello et al. 1998). 

 This chapter presents the results of back analysis of the recorded response of OII 

landfill to establish the dynamic properties of the waste for seismic analyses in FLAC 

6.0.  

10.2 Site Conditions 

The OII landfill is located in southern California, approximately 16 km east of downtown 

Los Angeles (Figure 10-1). The landfill site was originally a sand and gravel quarry pit 

and was filled with solid waste over a 40-year period. There is no evidence that any 

subgrade preparation or liner installation took place prior to the disposal of solid waste at 

the site. California State Road 60 (the Pomona Freeway) divides the landfill into a 

relatively small level north parcel and the steep-slope 58-ha south parcel which is the 

subject of study in this chapter. The maximum thickness of solid waste on the south 

parcel is approximately 100 m. The top of the landfill ranges from 21 to 76 m above the 

ground surface (Matasovic and Kavazanjian 1998). 
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Figure 10-1 Aerial View of OII Landfill (Matasovic and Kavazanjian 1998) 

10.3 Recorded Ground Motions 

Two three-component strong motion instruments were installed at OII landfill site. The 

locations of the strong motion instruments are shown in the aerial view in Figure 10-1 

and plan view presented in Figure 10-2. The first instrument labeled SS1 was installed 

adjacent to the base of the landfill, while the second instrument, labeled SS2, was 

installed on the top deck of the landfill. From their installation in 1988, Through April 

1994, 34 earthquakes and aftershocks were recorded by these instruments at the OII site. 

The 34 events recorded at the OII site included both nearby small magnitude events and 

distant large magnitude events. Exclusive of the January 17, 1994 Mw 6.7 Northridge 

earthquake, the largest peak horizontal ground acceleration (PHGA) recorded at the top 

deck of the landfill was 0.10 g in the Mw 7.3 Landers earthquake of June 28, 1992 and the 
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largest PHGA recorded at the base of the landfill was 0.22 g in the Mw 5.0 Pasadena 

earthquake of December 3, 1988. The Mw 7.3 Landers earthquake was the largest 

magnitude event captured by the instrumentation at the site. The Northridge earthquake 

was the largest intensity earthquake recorded at the site. A PHGA of 0.25g was recorded 

at the top deck and a PHGA of 0.26 g was recorded at the base of the landfill in the Mw 

6.7 Northridge event (Matasovic and Kavazanjian 1998). 

 

Figure 10-2 Plan view of the OII landfill showing the testing brings (Matasovic and Kavazanjian 1998) 
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 A set of five strong ground motion acceleration time histories (accelerograms) were 

selected for use in this study for back analyses of the seismic response of the landfill 

based on the Matasovic and Kavazanjian (1998) selection criteria. Matasovic and 

Kavazanjian (1998) used an intensity criteria to select accelerograms for use in back 

analysis, where the intensity measures were the PHGA recorded at the top deck of the 

landfill, the energy content, and the duration of strong shaking of the east-west 

component of the ground motion. The recorded motions were provided to the author by 

Dr. Neven Matasovic of GeoSyntec consultants through personnel communication. The 

recorded acceleration response spectra used in the back analyses are presented in Figure 

10-3 to Figure 10-7.  

 

Figure 10-3 Acceleration response spectra for the recorded motion from the Mw 6.7 Northridge 

earthquake at OII landfill in the East-West direction 
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Figure 10-4 Acceleration response spectra for the recorded motion from the Mw 4.5 Northridge 

earthquake aftershock at OII landfill in the East-West direction 

 

 

Figure 10-5 Acceleration response spectra for the recorded motion from the Mw 7.3 Landers 

earthquake at OII landfill in the East-West direction 
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Figure 10-6 Acceleration response spectra for the recorded motion from the Mw 5.0 Malibu earthquake 

at OII landfill in the East-West direction 

 

Figure 10-7 Acceleration response spectra for the recorded motion from the Mw 5.0 Pasadena 

earthquake at OII landfill in the East-West direction 
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10.4 1-D Deconvolution Analyses 

Back analysis of the ground motions recorded at the OII landfill is complicated by the 

observation that the base station SS1 is located on compacted fill (not the bed rock) and 

therefore the base station records are not representative of free-field outcrop ground 

motion Matasovic and Kavazanjian (1998). The effect of the compacted fill on the free 

field ground motions at SS1 was evaluated using one-dimensional equivalent-linear 

deconvolution analyses to develop outcrop time histories suitable to use as input to the 

back analyses studies in the FLAC 6.0 finite difference model. Deconvolution analyses 

were done using SHAKE2000. As the back analyses the deconvolution analyses were one 

dimensional, the effect of topography was not considered in the analyses. Topographic 

effects were evaluated qualitatively by comparison of the response spectra for the 

motions predicted at SS1 in the two-dimensional finite difference back analysis to the 

response spectra of the recorded motions. 

 The idealized shear wave velocity profile for SS1 presented in GeoSyntec (1996), 

based upon the results of a downhole velocity survey at the location of SS1 was used in 

the deconvolution analysis. This shear wave velocity profile is presented in Figure 10-8. 

Unit weight, small strain shear modulus, and shear wave velocity profile used in the 

deconvolution analyses for the compacted fill, weak rock, and elastic half-space are 

presented in Figure 10-9. The Vucetic and Dobry (1991) modulus reduction and damping 

curves for a plasticity index (PI) of 15% were employed for the compacted fill as this soil 

was classified as low plasticity silty clay to clayey silt.  The Shibuya et al. (1990) 

modulus reduction and damping curves for gravel were used for the weak rock at the base 

of the landfill.  
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Figure 10-8 Idealized shear wave velocity in SS1 location (GeoSyntec 1996)  

 

Figure 10-9 Material properties used in the deocnvolution analysis at SS1 
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 In a deconvolution analysis the recorded input motion at the top of the column is 

used to predict (the deconvoluted) motion at the base of the column. Figure 10-10 to 

Figure 10-14 show the deconvoluted motion acceleration response spectra along with the 

recorded motion acceleration response spectra at SS1 for the five accelerograms used in 

the analysis. The figures show that the deconvoluted motion acceleration response spectra 

is much lower in amplitude than the recorded response spectra at the ground surface of 

the base of the landfill in all cases for all periods.  

 

 

Figure 10-10 Acceleration response spectra for recorded motion and the deconvoluted motion at the 

base SS1 for the Mw 6.7 Northridge earthquake 
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Figure 10-11 Acceleration response spectra for recorded motion and the deconvoluted motion at the 

base SS1 for the Mw 4.5 Northridge aftershock earthquake  

 

Figure 10-12 Acceleration response spectra for recorded motion and the deconvoluted motion at the 

base SS1 for the Mw 7.3 Landers earthquake 
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Figure 10-13 Acceleration response spectra for recorded motion and the deconvoluted motion at the 

base SS1 for the Mw 5.0 Malibu earthquake 

 

Figure 10-14 Acceleration response spectra for recorded motion and the deconvoluted motion at the 

base SS1 for the Mw 5.0 Pasadena earthquake 
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10.5 Solid Waste Material Properties 

The field exploration program at OII landfill included the spectral analysis of surface 

wave (SASW) surveys at 27 locations on top of the waste at four locations on native 

material adjacent to the landfill, three 840 mm-diameter bucket auger borings with in situ 

unit weight measurements to depths of up to 45 m, and an approximately 6-m long by 6-

m deep test trench with in situ unit weight measurement. The test results are presented in 

detail in (GeoSyntec 1996). The exploration locations from these field studies are 

presented in Figure 10-2.  

 A summary of the in situ unit weight results for MSW at the OII site is presented in 

Figure 10-15. The data in Figure 10-15 suggest that the average unit weight at the site is 

essentially constant with depth. Therefore a constant unit weight of 15.7 3/ mkN was 

used for the waste in the back analysis. Matasovic and Kavazanjian (1998) used  the 

shear and compressional wave velocities measured in a borehole at strong motion station 

SS2 were used to calculate Poisson's ratio,  , for the solid waste (based upon basic 

equations from linear elasticity). Figure 10-16 shows the Poisson's ratio values calculated 

in this manner. Based on the data Figure 10-16  a value of   equal to 0.33 was adapted 

for the solid waste in the back analyses. 
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Figure 10-15 MSW unit weight measured in situ at OII landfill (Matasovic and Kavazanjian 1998) 

 

Figure 10-16 Poisson’s ratio measures in situ at SS2 at OII landfill (Matasovic and Kavazanjian 1998) 
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 For the use in their seismic analysis, Matasovic and Kavazanjian (1998) developed 

Cross Section 1-1', shown in Figure 10-17, using a topographic map prepared prior to the 

Northridge earthquake, the spectral analyses of the shear wave (SASW) velocity surveys 

at the site, and a base-of-the-landfill contour map developed from the SASW results the 

and the other site characterization and field investigation studies (GeoSyntec 1996). For 

the seismic analyses, Matasovic and Kavazanjian (1998) extended the cross section to 

elevation 55 m msl, approximately 130 m below the top deck of the landfill. Elevation 55 

m mean sea level represented the lowest elevation reached by the SASW measurements. 

 As illustrated in Figure 10-17, Matasovic and Kavazanjian (1998) divided Cross 

Section 1-1' for modeling purposes into zones of four materials: cover soil, compacted 

fill, weak rock, and solid waste. Each zone was assigned an idealized linear relationship 

for shear wave velocity that increased linearly with depth based upon the SASW 

measurements.  The idealized shear wave velocity for the compacted fill and the weak 

rock is shown in Figure 10-8. The idealized shear wave velocity for the zones W1 (MSW) 

and the weak rock zone R1are shown in Figure 10-18 and Figure 10-19, respectively. 
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Figure 10-17 OII landfill cross section showing measures shear wave velocity (Matasovic and 

Kavazanjian 1998) 

 

Figure 10-18 Idealized shear wave velocity profile for OII waste and underlying bedrock (GeoSyntec 

1996)  

Zone W1 

Zone R1

Zone R1 
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Figure 10-19 Idealized shear wave velocity profile for the rock at the OII site (GeoSyntec 1996) 
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10.6 Two Dimensional Calibration Analysis 

10.6.1 OII model 

A finite difference mesh was developed to back analyze the seismic response of Cross 

Section 1-1'. The mesh is shown in Figure 10-20. The mesh has more than 7,500 zones, 

with a higher density towards the waste body. Lateral boundaries of the mesh were 

extended more than 10 times the mesh thickness beyond the boundaries of the waste fill 

to minimize the influence of the lateral boundaries on the computed response in addition 

to the use of quite boundaries on the vertical sides and the bottom of the model for the 

same reason. The idealized material parameters described earlier provided the basis for 

choosing the initial elastic properties of the MSW, compacted fill and weak rock. The 

waste and the rock are divided into layers to account for increasing in shear wave 

velocity with depth resulting in an increase in maximum shear modulus with depth. Table 

10-1 presents unit weight, shear wave velocity, small strain modulus, and poisson’s ratio 

used in the back analysis.  
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 Figure 10-20 Finite difference mesh for Cross Section 1-1’ 
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Table 10-1 OII Landfill material properties 

 
Layer 

  

(kN/m
3) 

  
Vs 

(m/s) 
Gmax 
(Pa) 

Cover 
 

Layer 1  17.3  0.3  400  2.82E+08 

Layer 2  17.3  0.3  288  1.46E+08 

Fill 
 

Layer 1  17.3  0.3  288  1.46E+08 

Layer 2  19.6  0.3  288  1.66E+08 

Waste 

Layer 1  15.7  0.33  237.60  9.04E+07 

Layer 2  15.7  0.33  286.21  1.31E+08 

Layer 3  15.7  0.33  334.82  1.79E+08 

Layer 4  15.7  0.33  383.43  2.35E+08 

Layer 5  15.7  0.33  432.04  2.99E+08 

Rock 

Layer 1  16.5  0.25  318.28  1.70E+08 

Layer 2  16.5  0.25  528.07  4.69E+08 

Layer 3  18.8  0.25  726.99  1.01E+09 

Layer 4  18.8  0.25  914.16  1.60E+09 

Layer 5  18.8  0.25  1101.32  2.32E+09 

Layer 6  18.8  0.25  1282.81  3.15E+09 

 

10.7 Nonlinear Analysis 

Most nonlinear seismic response computer programs employ Masing rule in order to 

simulate the hysteretic stress-strain behavior in soils. Philips and Hashash (2009) showed 

that the Masing unloading–reloading rules provide greater hysteretic damping for 

medium to large strains compared to the damping values obtained in dynamic tests when 

the constitutive model backbone curve is based on the modulus reduction curve (MR) of 

the soil, as illustrated in Figure 10-21. 
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Figure 10-21 Overestimation of hysteretic damping using Masing rules, (a) Damping curve. (b) 

Hysteretic loop (Philips and Hashash 2009) 

Philips and Hashash (2009) identified three options to determine constitutive parameters 

for non-linear analyses from modulus reduction and damping curves.   

1- The modulus reduction curve is closely matched to the target curves but the 

damping curve is not matched due to the inherent limitation in the Masing load–

unload criteria (MR);  

2- A balance is struck between matching the modulus reduction and damping curves  

with neither curve closely matched (MRD);  

3- The damping curve is very well matched to the target curves but the modulus 

reduction curve is not matched due to the inherent limitation in the Masing load–

unload criteria (MD).  

These three different procedures for fitting the modulus reduction and damping curve 

from experimental results are illustrated in Figure 10-22. Matasovic (1993) proposed a 

method to provide a good match for both modulus reduction and damping curves, 

combining the Masing rules with Raleigh (MRR). 
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Figure 10-22 Hyperbolic model fitting procedure (a) modulus reduction; (b) damping curve (Philips 

and Hashash 2009). 

10.8 Modulus Reduction and Damping Curves 

Based on back analysis of the response of the OII landfill and lab testing of reconstituted 

specimens off OII solid waste, Matasovic and Kavazanjian (1998) proposed upper bound, 

average and lower bound modulus reduction curve and damping curves for municipal 

solid waste. Matasovic and Kavazanjian (1998) recommended using the upper bound for 

the modulus reduction and lower bound for the damping curve for seismic response 

analyses based upon the best fit with the back analyses and consistency with the Masing 

rules. This family of curves is presented in Figure 10-23 along with an earlier set of 

curves proposed by Kavazanjian and Matasovic (1995) without the benefit of the OII 

field studies. The upper bound modulus reduction and lower bound damping curves of 

Matasovic and Kavazanjian (1998) were used as initial input to the FLAC 6.0 back 

analyses.  

 Yuan et al. (2011) conducted simple shear testing on reconstituted waste specimens 

from Tricities landfill in the San Francisco Bay area. From their testing, Yuan et al. 
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(2011) developed a modulus and damping curves for waste with 65% of its constituents 

passing a  20mm sieve (the typical compositional for the waste in the field). These 

curves, labeled as ASU curves, are shown in Figure 10-23. The modulus curve 

recommended by Yuan et al. (2011) matches the upper bound modulus reduction curve 

recommended by Matasovic and Kavazanjian (1998) at lower and medium shear strain 

range, while in high shear strain range the Yuan et al. (2011) modulus reduction curve is 

higher than the Matasovic and Kavazanjian (1998) upper bound curve. The damping 

curve recommended by Yuan et al. (2011) is significantly lower than the lower bound 

damping curve recommended by Matasovic and Kavazanjian (1998) at high shear strain 

range. Modulus and damping curves used for the compacted fill and weak rock in the 

back analyses are presented in Figure 10-24. 
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Figure 10-23 MSW modulus reduction and damping curves from Kavazanjian and Matasovic (1995), 

Matasovic and Kavazanjian (1998) and Yuan et al. (2011) 
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Figure 10-24 Compacted fill and weak rock modulus reduction and damping curves 

10.9 OII Case History Calibration 

The back analyses of the seismic response of the OII landfill were carried out using the 

computer program FLAC 6.0. There are varieties of constitutive models available in the 

program to account for nonlinearity of soil or waste, including hysteretic damping model 

which uses a backbone curve and the Masing criterion to model cyclic behavior. The 

hysteretic damping model can work side by side with a Mohr-Coulomb model or any 

other failure criterion. The hysteretic model will generate hysteresis loops based on the 

backbone for the soil before failure and behaves as fully plastic material when the 

material fails. The hysteretic model was used to account for the MSW and compacted fill 

nonlinearity. The material parameters used in the back analysis are summarized in Table 

10-2. The modulus reduction and damping curves were varied until the best fit with the 

monitoring data at SS2 was obtained to calibrate the waste model. 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0.0001 0.001 0.01 0.1 1

G
/G

m
a
x

Strain (%)

G/Gmax ‐ ROCK (Schnabel 
1973)

"Vucetic & Dobry(1991), 
Pi=15%"

0

5

10

15

20

25

0.0001 0.001 0.01 0.1 1

D
a
m
p
in
g
 (
%
)

Strain (%)

Damping ‐ ROCK 
(Schnabel 1973)

Vucetic & Dobry(1991), 
Pi=15%(damping)



  283 

Table 10-2 Initial material properties for the OII landfill back analyses  

Layer 
  

degree 
Modulus reduction and damping curves 

Waste  33  Varied 

Fill  30  Vucetic and Dobry (1991) (PI =15) 

Cover  30  Vucetic and Dobry (1991) (PI =15) 

Rock  ‐  Shibuya et al. (1990) 

 

A gravity turn-on analysis was conducted to establish the initial stresses in the numerical 

model before the dynamic response analyses were conducted. At this stage of analysis, 

the bottom boundary was fixed in both the vertical and horizontal directions and the side 

boundaries in the horizontal direction as presented in Figure 10-20 (a). 

The back analyses were performed using the deconvoluted ground motions shown in 

Figure 10-10 through Figure 10-14. The quiet boundary condition in FLAC 6.0 was 

employed at the bottom and the sides of the numerical model to absorb the reflected 

seismic motion (instead of reflecting the downward propagating seismic waves back into 

the model), replacing the boundary conditions in the gravity on analysis  as presented in 

Figure 10-20 (b). 

The hysteretic damping model is based on Masing rule and therefore inherits the 

shortcomings associated with this model. Initially, a MR type of analysis was conducted 

using a back bone curve derived from the modulus reduction curve with the damping 

curve produced automatically.  
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Three cases were analyzed in the back analyses: 

1- MR: The ASU curve was used as input for the modulus reduction curve, which 

pretty much agrees with the Matasovic and Kavazanjian (1998) lower bound 

modulus reduction curve except at the high shear strain values, presented in 

Figure 10-25.  

2- MD: Matasovic and Kavazanjian (1998) upper bound damping curve was 

matched, as presented in Figure 10-25. 

3- MRR: The ASU curve was used as input for the modulus reduction curve, adding 

2% of Raleigh damping to enhance the damping fitting at low shear strain range 

presented in Figure 10-25. 
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Figure 10-25 Model fitting procedure for MSW: (a) modulus reduction; (b) damping curve. 

0

0.2

0.4

0.6

0.8

1

1.2

0.0001 0.001 0.01 0.1 1 10

G
/G

m
ax

Strain(%)

MSW Matasovic and Kavazanjian  
1998 (upper Bound)(Target)
MSW Kavazanjian and Matazovic 
1995(MD)
FLAC (MR)

ASU Testing Results

0

5

10

15

20

25

30

0.0001 0.001 0.01 0.1 1 10

D
am

p
in
g 
(%

)

Strain (%)

MSW Matazovic and  Kavazanjian1998 
(lower Bound)(Target)
FLAC (MRR)

FLAC (MR)

FLAC (MD)

ASU Testing Results

(a) 

(b) 



  286 

 A set of nonlinear site response analyses were conducted using the Cross Section 1-

1’ of the OII landfill, presented in Figure 10-20, to evaluate the influence of the changing 

the backbone curve in the hysteretic material model on the seismic response at the top 

deck station (station SS2) of the landfill, in terms of response spectra. The analysis results 

are presented in Figure 10-26 to Figure 10-30 for the MR analyses. Except for the 

Northridge earthquake case history the calculated response spectra at the base station was 

under predicted compared to the recorded response spectra. This under prediction may be 

related to the 2-D geometric effect as the deconvolution study used to establish the base 

rock input motion was carried with the 1-D computer program.  

The results for the MR analyses for Northridge earthquake input motions presented 

Figure 10-26  give a similar response at the top deck for the short periods, a higher 

response for the mid-period (0.1–0.4 s) range, and lower response at the longer periods 

than measured. The Northridge Aftershock earthquake input the MR analyses presented 

in Figure 10-27, give a similar response to the measured motion at all periods, except in 

the mid-period range from 0.2 to 0.3 s. Considering the uncertainties in the analyses, the 

response of the landfill in the in the case of MR analyses is considered acceptable for the 

Northridge earthquake and Northridge aftershock earthquake case histories.   
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Figure 10-26 Comparison between the calculated (MR) and recorded response spectra of the OII 

landfill for Northridge earthquake (a) base and (b) top deck. 
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Figure 10-27 Comparison between the calculated (MR) and recorded response spectra of the OII 

landfill for Northridge aftershock earthquake (a) base and (b) top deck. 
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response in the lower to mid-period range (0.01–0.4 s) at the top deck compared to the 

recorded response at the top of the landfill.  

 

 

Figure 10-28 Comparison between the calculated (MR) and recorded response spectra of the OII 

landfill for Pasadena earthquake (a) base and (b) top deck 
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The MR analysis results for Malibu earthquake are presented in Figure 10-29. At the 

top of deck, the numerical analysis gives a lower response at short and long periods and a 

higher peak response at about 0.3 s than the recorded response at the top deck. 

 

 

Figure 10-29 Comparison between the calculated (MR) and recorded response spectra of the OII 

landfill for Malibu earthquake (a) base and (b) top deck 
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 The MR analysis results for the Landers earthquake are presented in Figure 10-30. 

For the Landers earthquake, the numerical analysis gives a lower response at the top deck 

in all periods, with the peak response shifted from 1 sec in the recorded response to 2 sec 

in the calculated response.  

 

 

Figure 10-30 Comparison between the calculated (MR) and recorded response spectra of the OII 

landfill for Landers earthquake (a) base and (b) top deck 
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 The case history analyses were repeated with the Matasovic and Kavazanjian (1998) 

lower bound curve for backbone curve and adding 2% of Raleigh damping (MRR 

analysis) to enhance the damping fitting. For the Northridge earthquake, the calculated 

Peak response in case of MRR analysis presented in Figure 10-31 approximately equal to 

and at the same period as the recorded motion of 0.5 sec and slightly lower response was 

calculated at shorter and longer periods for the top deck.  

 

 

Figure 10-31 Comparison between the calculated (MRR) and recorded response spectra of the OII 

landfill for Northridge earthquake (a) base and (b) top deck 
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 In case of the Northridge aftershocks presented in Figure 10-32 the calculated 

response is slightly lower than recorded response in the mid periods range (0.1-0.4) sec. 

Also, the peak spectral acceleration is shifted slightly to a lower period in the calculated 

response.  

 

Figure 10-32 Comparison between the calculated (MRR) and recorded response spectra of the OII 

landfill for Northridge Aftershock earthquake (a) base and (b) top deck 
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 In case of the Pasadena aftershocks presented in Figure 10-33 the calculated 

response is slightly higher than recorded response in the mid periods range (0.2-0.3) sec. 

Also, the peak spectral acceleration is shifted slightly to a higher period in the calculated 

response.  

 

 

Figure 10-33 Comparison between the calculated (MRR) and recorded response spectra of the OII 

landfill for Pasadena earthquake (a) base and (b) top deck 
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 Figure 10-34 shows the results for the MRR analyses for the Malibu earthquake 

input. In this earthquake, the calculated response at the top deck is lower at long and short 

periods and higher in mid range periods (0.2s-0.3s). Peak acceleration response was 

calculated at 0.3s as 0.042g versus 0.03g at 1 sec for the recorded peak response 

acceleration.  

 

Figure 10-34 Comparison between the calculated (MRR) and recorded response spectra of the OII 

landfill for Malibu earthquake (a) base and (b) top deck 
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 Figure 10-35 shows the results for the MRR analyses for the Landers earthquake 

input. The calculated response at the top deck in the Landers earthquake is lower than 

recorded response at all periods except at 0.2 s and 0.3 s.  

 

 

Figure 10-35 Comparison between the calculated (MRR) and recorded response spectra of the OII 

landfill for Landers earthquake (a) base and (b) top deck 
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 The analyses were repeated with in which a damping curve fit to the Matasovic and 

Kavazanjian (1998) damping curve (MD). Results from the MD analysis are compared to 

both the MR analyses and the recorded response. Figure 10-36 shows the response at the 

top deck station for the Northridge earthquake. For the Northridge earthquake, the 

calculated response in the MD analysis is lower than recorded response in short to mid 

periods and is similar at very long periods (greater than 2 s). The calculated response for 

the MD analysis is much lower than the calculated response for the MR analysis for 

periods up to 0.6 s.  

 

 

Figure 10-36 Comparison between the MR and MD calculated response and the recorded response 

spectra for the Northridge earthquake (a) base and (b) top deck. 
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 Figure 10-37 shows the results for the MD analysis for the Northridge Aftershock. 

The results for the Northridge Aftershock are similar to the recorded response at long 

periods (greater than 0.5 s), slightly lower at short periods, and the peak spectral 

acceleration is shifted towards a shorter period.  

 

 

Figure 10-37 Comparison between the MR and MD calculated response and the recorded response 

spectra for the Northridge Aftershock earthquake (a) base and (b) top deck. 
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 Figure 10-38 (b) shows the results for the MD analysis for the Pasadena earthquake. 

The results for the Pasadena earthquake show improvement with respect to agreement 

with the recorded motion compared to results from the MR analysis. The response for the 

MD analysis at long and short period is similar to recorded response at the top deck, 

while the calculated response in the mid period range (0.2s-0.4s) is higher than recorded 

response. The peak for the calculated response is at the same period (0.3 s) as recorded 

response but is higher in amplitude.  

 

 

Figure 10-38 Comparison between the MR and MD calculated response and the recorded response 

spectra for the Pasadena earthquake (a) base and (b) top deck 
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 Figure 10-39 shows the results for the MD analysis for Malibu earthquake input. 

The calculated results for the MD analyses are similar to the results for the MR analysis, 

with a peak spectral acceleration at 0.3s but overestimate the recorded response at this 

period and underestimate the recorded response at longer periods.  

 

 

Figure 10-39 Comparison between the MR and MD calculated response and the recorded response 

spectra for the Malibu earthquake (a) base and (b) top deck 
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 Figure 10-40 shows the results for the MD analysis for Landers earthquake input. 

The calculated results from the MD analysis for the Landers event are similar to the 

results from MR analysis, except that the MD analysis provides a somewhat higher peak 

spectral acceleration at 2.0s. But the MD and MR analyses significantly underpredict the 

recorded response at the top deck at periods between 0.4 s and 1.5 s.  

 

 

Figure 10-40 Comparison between the MR and MD calculated response and the recorded response 

spectra for the Landers earthquake (a) base and (b) top deck 
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 To determine which analysis approach is more suitable for using in future MSW 

modeling, the calculated and recorded responses for the top deck of the OII landfill is 

plotted together in Figure 10-41 to Figure 10-44. Inspection of these figures suggests that 

the MRR analysis predicts the response at the top deck of the landfill better than the MR 

or MD analyses. Figure 10-41 shows the comparison for the case of the Northridge 

earthquake. The comparison in Figure 10-41 shows that the MRR analysis predicts the 

response at the top of the deck better than the other two approaches. However, the MRR 

does slightly underpredict analysis the peak ground acceleration at the top deck. Figure 

10-42 shows the comparison for the case of Northridge aftershock. For the case of 

Northridge aftershock the MRR analysis slightly underpredicts the peak spectral 

acceleration but in general is reasonably accurate. Figure 10-43 shows the comparison of 

calculated and measured response of the top deck for the Pasadena. The MRR analysis 

predicts the response at station on the top deck of the OII landfill fairly well except in the 

mid period range (0.2-0.4s). The peak spectral acceleration in case of MRR analysis is 

slightly shifted to a higher period compared to the measures response.  Figure 10-44 

shows the comparison between the calculated and measured response for the Landers 

earthquake. None of the analyses produced a response comparable to the measured 

response, especially in the short period range.  
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Figure 10-41 Comparison among the calculated and recorded response spectra for the Northridge 

earthquake at the top deck of the OII landfill  

 

Figure 10-42 Comparison among the calculated and recorded response spectra for the Northridge 

Aftershock earthquake at the top deck of the OII landfill 
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Figure 10-43 Comparison among the calculated and recorded response spectra for the Pasadena 

earthquake at the top deck of the OII landfill 

 

Figure 10-44 Comparison among the calculated and recorded response spectra for the Landers 

earthquake at the top deck of the OII landfill 
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10.10 Summary  

The mechanical properties of the OII landfill solid waste were characterized based upon 

field and laboratory testing and back analyses of strong motion data recorded at the base 

and top deck of the OII landfill for use in subsequent numerical studies. Shear wave 

velocity and unit weight profile were established based upon data from field studies at the 

site (GeoSyntec 1996). The modulus reduction “backbone curve” was varied until the 

best match for the measured response at the landfill top deck in a series of five 

earthquakes was attained using Masing criteria for the hysteresis damping and adding 2% 

Raleigh damping. The geometry of the waste, soil, and weak rock materials used in the 

back analysis was based upon borings, topographic maps, and other information on the 

history of landfill development provided in Matasovic and Kavazanjian (1998) and 

GeoSyntec (1996). The properties of the soil and weak rock materials were based upon 

the results of the field investigation and typical properties described in GeoSyntec (1996).  

 The numerical analysis of landfill seismic response was performed using two-

dimensional nonlinear time domain response analyses with the computer program FLAC 

6.0. However, as the base strong motion station was located on fill, the "outcrop" input 

motions for the two-dimensional back analyses had to be determined by deconvolution of 

the recorded base station motions. The deconvolution analyses were performed using the 

one-dimensional equivalent-linear frequency domain computer program SHAKE2000. 

 Results of the landfill seismic response analysis using the deconvoluted motions 

indicated that the ASU curve for 65% ≤ 20mm material with 2% Raleigh damping give 

the best results for the response at the top deck of the OII landfill compared to the 
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recorded data. For subsequent numerical studies this curve along with Masing rule and 

2% Raleigh damping will be used along to characterize the cyclic stress-strain behavior 

of MSW.  
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CHAPTER 11 LINED LANDFILL CASE HISTORIES 

11.1 Introduction 

The 1994 Mw 6.7 Northridge earthquake (Northridge earthquake) provided an excellent 

opportunity to study the performance of landfills subject to strong levels of earthquake 

shaking. Several groups of researchers investigated the seismic performance of landfills 

located within 100 km of the epicenter of the 1994 Northridge earthquake (Augello et al. 

1995, Matasovic et al. 1995, Stewart et al. 1994).  Matasovic et al. (1995) summarize the 

seismic performance of twenty-two landfills within 100 km of the epicenter subjected to 

ground motions with an estimated free field PGA in excess of 0.05 g.  Nine of these 

landfills had geosynthetic liner systems over at least part of the waste disposal area.  Only 

one of these landfills, the Chiquita Canyon landfill, was reported to have experienced 

significant damage to the geomembrane component of the lining system.  A small tear 

(150 to 200 mm in length) in the geotextile overlying the side slope liner of Lopez 

Canyon landfill was reported by the California Integrated Waste Management Board 

(CIWMB). However, this tear was attributed to operating equipment and not to the 

earthquake by the landfill engineer (GeoSyntec 1994). The rest of the lined landfills 

addressed by Matasovic et al. (1995) were not reported to have experienced any damage 

to the lining system. Other reported damage at the twenty one landfills ranged from 

moderate to none, where moderate typically referred to minor cracks in soil cover without 

any major impact on the integrity of the landfill systems.  

 In this chapter two case histories from the Northridge earthquake will be back 

analyzed: the Chiquita Canyon landfill and the Lopez Canyon landfill.  At the Chiquita 

Canyon landfill damage to the lining system was observed after the earthquake.  In the 
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case of the Lopez Canyon landfill, only minor damage was observed, with no apparent 

damage to the waste containment system, despite very strong shaking at the landfill site. 

Each case history in this chapter begins with a brief review of the landfill's 

characteristics, including a summary of its performance during the Northridge 

earthquake. Next, a description of the analytical techniques employed in the case history 

analysis is provided along with a summary of the dynamic properties of the soil and 

waste fill materials employed in the back-analysis. Finally, the back-analysis of landfill 

performance in the Northridge event is presented. 

11.2 Back Analysis of Chiquita Canyon Landfill  

11.2.1 Landfill description 

The Chiquita Canyon landfill was the only landfill that was reported to have experienced 

significant damage to the geosynthetic components of the lining system in the 1994 

Northridge earthquake (Matasovic et al. 1995). EMCON Associates (1994) conducted an 

assessment of the damage to the Chiquita Canyon landfill lining system after the 1994 

Northridge earthquake. The EMCON report provides a detailed description of the site and 

the damage observed at two different cross sections of the landfills.  

 The Chiquita Canyon landfill is located at the western edge of the Santa Clara 

Valley. Topography to the north, east and west of the site is characterized by east-west 

orientated steep-sided canyons with slopes that typically approach 1H:1V.  The Chiquita 

Canyon landfill consists of five waste disposal units designated as the Primary Canyon 

and Canyons A, B, C and D. The landfill began operations in 1972 with the opening of 

the Primary Canyon landfill. Canyon D was partially filled and only used for landfilling 
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during wet weather at the time of 1994 Northridge earthquake. Canyon C, which consists 

of two cells, was the active area of the landfill at the time of the earthquake. The 

geosynthetic liner systems for Cell I in Canyon C was completed in 1991 and Cell I was 

actively receiving waste at the time of the earthquake. Cell II in Canyon C was not 

constructed at the time of the earthquake (EMCON Associates 1994). 

 Chiquita Canyon is regulated as a California Class 3 (municipal solid waste) landfill 

and received mostly municipal solid waste.  However, the facility also received some 

construction and demolition debris and a small amount of sewage sludge with a solids 

content of greater than 50% (EMCON Associates 1994). The refuse deposited in 

Canyons C and D is relatively recent in age, with most of the waste being placed in the 8 

years leading up to the Northridge earthquake (EMCON Associates 1994). 

 At the time of Northridge earthquake, the free face of the Canyon C landfill had a 

slope of about 2H:1V, while the lined side slopes, cut into the canyon wall, varied from 

1.5H:1V to 2H:1V. The Canyon C landfill side slopes were lined with a 1.5 mm (60mil)-

thick smooth HDPE geomembrane liner placed directly on a prepared subgrade.  The 

base of the landfill was lined with a composite liner consisting of a 0.6 m thick low 

permeability soil-bentonite admixture underlying a 1.5 mm single-sided textured HDPE 

geomembrane (textured side down). The base of the Canyon C landfill has a leachate 

collection layer which consists of a network of polyvinyl chloride (PVC) pipes within a 

0.3 m-thick gravel layer. The maximum refuse depth at the time of the earthquake was 

approximately 30 m. Figure 11-1 shows a plan view and cross section through the 

Canyon C landfill at the time of the earthquake in the area in which the geomembrane 

liner tear was observed. 
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Figure 11-1 Plan view and cross sections through the Chiquita Canyon landfill (Augello et al. 1995). 

 

 In 1994 (at the time of the earthquake), the Canyon D landfill had a free face slope 

of approximately 3H:1V.  The inclination of the cut side slopes in Canyon D was 
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2.5H:1V.  The side slopes in Canyon D are lined with a 1.5 mm (60 mil)-thick smooth 

HDPE geomembrane placed directly over the subgrade and covered with 0.6 m of 

protective soil cover.  The base of the Canyon D area is lined with only a 0.3 m-thick soil 

liner consisting of a mixture of alluvium and 9 percent bentonite (by dry weight) without 

a geomembrane. The leachate collection system in Canyon D consists of a 150 mm sand 

layer over the base soil liner. A cross section of Canyon D is also presented in Figure 

11-1. 

11.2.2 Landfill damage 

Tears in the geomembrane side slope liner occurred in both Canyons C and D near the 

top of the slope at the locations shown in Figure 11-1. The damage observed at these 

locations included limited downslope movement of the waste, cracks in the soil cover, 

and tears in the geomembrane liner system. There was also a temporary shutdown of the 

gas extraction system at the landfill due to a loss of external power (Augello et al. 1995).  

Cracks in the soil cover were observed in all areas of the landfill after the earthquake.  

 In Canyon C, longitudinal cracks approximately 300 mm wide with vertical offsets 

of 150 to 300 mm were observed at the top of the slope along the interface between the 

landfill liner and the waste fill. One localized tear, at the top of the slope near the anchor 

trench, was observed in Canyon C after the earthquake. The tear was approximately 4 m 

long and 0.24 m wide (Augello et al. 1995). Figure 11-2 shows a picture of the tear after 

Northridge earthquake.  
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Figure 11-2 Tear in HDPE geomembrane liner system, Canyon C, Chiquita Canyon Landfill (photo 

courtesy of Calif. EPA, Integrated Waste Management Board) 

 The earthquake-induced cracks in Canyon D were as wide as 300 mm, with 200 mm 

of vertical offset, exposing the landfill liner in some areas. While no tear was noticed 

immediately after the earthquake in January 1994, several tears in the geomembrane liner 

were found in Canyon D during landfill gas monitoring one month later, in February 

1994. The damage uncovered in February 1994 in Canyon D consisted of three parallel 

tears, each approximately 0.3 m wide, with a total length of 27 m at the top of the side 

slope near the anchor trench (EMCON Associates 1994).  

 Less pronounced cracks than observed in Canyons C and D were observed in cover 

soils of the Primary Canyon A and Canyon B after the earthquake. In Canyon A, typical 
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cracks were at the top of the slope and were on the order of 150 mm wide with 

approximately 130 mm of vertical offset.  

11.2.3 Post-Earthquake investigation 

As a part of the post-earthquake investigation, EMCON Associates (1994) obtained 

samples of geomembrane from the two tear areas beneath and above the liner. EMCON 

Associates (1994) also conducted in situ density measurements using the sand cone 

method and sampled the soil above and below the tear areas. Laboratory testing was 

conducted to classify the soil above and below the geomembrane. Table 11-1 presents a 

summary of the soil classification test results. 

Table 11-1 Soil classification for the soil above and below torn geomembrane at the Chiquita Canyon 

landfill (data from EMCON Associates, 1994) 

Sample ID Sample location Dry density 
(Kg/m3) 

Classification Liquid limit Plastic Limit 

CA Above Canyon C 
geomembrane 

1717.18 Clayey Sand - - 

CB Below Canyon C 
geomembrane 

1774.8 Sandy Clay 24 2 

DA Above Canyon D 
geomembrane 

1566.6 Clayey sand - - 

DB Below Canyon D 
geomembrane 

1968.7 Gravelly sand - - 

 

 EMCON Associates (1994) also conducted a series of interface shear tests on the 

geomembrane/ soil interfaces for the side slope liners in Canyon C and Canyon D.  These 

tests were conducted in a 304.8 mm by 304.8 mm direct shear device. Geomembrane 

samples recovered from the landfill were used in the interface shear testing. All the 

testing was done using soil compacted to the in situ dry density at 2% above the in situ 

moisture content (i.e. on unsaturated soil).  Interface shear test results are summarized in 
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Table 11-2. EMCON Associates (1994) repeated the direct shear tests using wetted 

interfaces and saturated soil with one degree decrease in interface shear strength. 

EMCON Associates (1994) reported an undrained shear strength for the low permeability 

soil-bentonite admixture of about 62.2 kPa.  

Table 11-2 Interface shear test results from EMCON Associates (1994) 

Sample ID Sample location Peak friction angle 
(degree)  

Large displacement  
friction angle  

(degree) 

Initial stiffness, Ei 

(Pa/m) 

CA Above Canyon C 
geomembrane 

27 24 8e7 

CB Below Canyon C 
geomembrane 

24 22 5.5e7 

DA Above Canyon D 
geomembrane 

26 24 4.7e7 

DB Below Canyon D 
geomembrane 

29 28 4.5e7 

 

 As part of the post-earthquake investigation, a study on the fracture morphology of 

the geomembrane was conducted by researchers at Drexel University using a scanning 

electron microscope to investigate the tear initiation and growth mechanism (EMCON 

Associates 1994). Six specimens from the Canyon C side slope geomembrane liner (S-1 

to S-6) were sampled from locations adjacent to two tear faces in Canyon C at the 

locations indicated in the sketch presented in Figure 11-3. Based on the fracture 

morphology, it was concluded that the tear likely initiated from location of samples S-3 

and S-4, i.e. at the fillet extrusion used to weld the patch at this location, and then 

propagated perpendicular to the dual hot wedge seam, i.e. perpendicular to the loading 

direction (EMCON Associates 1994).   

 As part of the post-earthquake investigation, eight 203.2 mm wide-width 

geomembrane specimens were tested under axial tensile loading conditions. Two sets of 

tests were performed at two different strain rates (50 mm/min & 500 mm/min). An 



  315 

average yield stress of 2.0х104 kPa was measured at a yield strain of 14% and a break 

strain of 64% was measured at the break point for the 50 mm/min strain rate.  An average 

yield stress of 2.34х104 kPa was measured at a yield strain of 12% and a break strain of 

46% was measured at the break point for the 500 mm/min strain rate. These results 

indicate that the yield and break strain decreased due to the increase in the strain rate 

(EMCON Associates 1994). EMCON Associates (1994) noted that failure was always 

initiated at the location of surface defects in the wide width tensile tests.  

 

Figure 11-3 Geomembrane tear in Canyon C (after EMCON Associates 1994) 

 A similar fracture morphology study was conducted for the tears in Canyon D, 

(EMCON Associates 1994). Six coupons were recovered at locations adjacent to the tear 

faces in Canyon D at the locations indicated in Figure 11-4 and evaluated using a 

scanning electron microscope. Three major tears were observed in Canyon D. Tear #1 

took place along the edge of a rib and proceeded across a fillet extrusion Seam 1 and then 

changed direction extending to the adjacent rib. Tear #2 took place along the edge of two 

extrusion seams and a section of the tear propagated along the seamed edge of a patch 

(EMCON Associates 1994). A large part of Tear #3 occurred in the geomembrane rather 

initiation of the crack  
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than along a rib. One end of Tear #3 propagated along the edge of Seams 2 and 4 for 

almost 305 mm.  The location and geometry of these tears are shown in Figure 11-4. 

 

Figure 11-4 Geomembrane tears in Canyon D (after EMCON Associates 1994) 

 The fracture morphology study revealed that Tear #1, a long horizontal tear, initiated 

from two locations, the vertical seam and the grind lines adjacent to the seam. As the tear 

grew longer, the stress acting on the seam became so great that it pulled the seam apart 

via a ductile failure according to EMCON Associates (1994).  

 According to EMCON Associates (1994), Tear # 2 was initiated in a defect or a void 

in fillet extrusion seam as shown in the sketch in Figure 11-5. The failure began at the 

defect and radiated outward. EMCON Associates (1994) concluded that this failure was 

characterized by rapid crack propagation in a brittle material during the earthquake. 

Tear #2 along the patch 
seam  

Tear #3 in the geomembrane 

Tear #3 in along the seam 

Tear #1 initiated in the vertical 
seam 
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Figure 11-5 Crack through a doubly seamed region consisted of a fillet extrusion seam on top of a flat 

extrusion seam (EMCON Associates 1994). 

 Similar to Tear #1, EMCON Associates (1994) hypothesized that Tear #3 was 

initiated at a stress concentration at the vertical seam caused by the grinding lines. In a 

similar fashion to Tear #1, the major horizontal tear associated with Tear #3 began at one 

end of the vertical seam and then propagated to the right hand side of the seam.  

 As part of the evaluation of the geomembrane tears in Canyon D, eight 203.2 mm 

wide-width geomembrane specimens were tested under axial tensile loading. Two sets of 

tests were performed at strain rates of both 50 mm/min and 500 mm/min. An average 

yield stress of 1.93х104 kPa was measured at a yield strain of 14% and a break strain of 

64% was measured for the 50 mm/min strain rate.  An average yield stress of 2.07х104 

kPa was measured at a yield strain of 13% and a break strain of 50% was measured for 

the 500 mm/min strain rate.  Once again, the yield and break strains decreased due to the 

increase in the strain rate (EMCON Associates 1994).   

 The measured geomembrane stress and strain at yield from wide width tensile test 

on the specimens from both canyons C and D along with secant modulus at yield are 

summarized in Table 11-3. 
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Table 11-3 Strain, stress, and secant modulus at yield for Chiquita Canyon geomembrane (data from 

EMCON Associates 1994) 

Cross Section 
 

Strain at yield, y  

(%) 

stress at yield, y  

(kPa) 

Secant modulus at yield, 
Ey 

(pa) 

Strain rate  
50mm/min 

Strain rate  
500mm/min 

Strain rate  
50mm/min 

Strain rate  
500mm/min 

Strain rate  
50mm/min 

Strain rate  
500mm/min 

C1-C1 14 12 2.0e4 2.3e4 1.4e8 1.9e8 

D1-D1 14 13 1.93e4 2.1e4 1.4e8 1.6e8 

    

11.2.4 Waste properties for the Chiquita Canyon landfill 

No testing was done to characterize waste properties at the Chiquita Canyon landfill. So, 

typical profiles for both unit weight and shear wave velocity from literature were used for 

the seismic analyses of performance of the Chiquita Canyon in the Northridge 

earthquake. The unit weight profile for MSW developed by Zekkos et al. (2006) for 

typical compaction effort, presented in Figure 3-54, and the shear wave velocity for 

typical MSW landfills in southern California developed by Kavazanjian et al. (1996), 

presented in Figure 3-55, were used in the seismic analysis of the Chiquita Canyon 

Landfill.  The best estimate shear modulus degradation and damping curves from the 

back analyses for the OII landfill described in Chapter 10, presented in Figure 10-25, 

were used to represent the waste material in the analyses presented herein. A Poisson’s 

ratio of 0.33 was used for the waste, similar to average measured value at the OII site.  

 The shear strength of the waste was characterized using the bilinear envelope for 

MSW developed by Kavazanjian et al. (1995), presented in Chapter 4., and represented 
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by   = 0 with c = 24 kPa at normal stresses below 30 kPa and   =33 degrees with c = 0 

at higher normal stresses.  

11.2.5 Input motions 

There was no strong motion station in the immediate vicinity of the landfill, so 

representative accelerograms from one of the closest stations to the site had to be used to 

represent the strong motions at the landfill. Chiquita Canyon is a rock site located 

between the Newhall and Castaic Dam strong motion stations. The Castaic Dam records 

were chosen by EMCON Associates (1994) to represent the rock motion at the Chiquita 

canyon landfill site. Two reasons for choosing the Castaic Dam records were presented 

by EMCON Associates (1994). First, the strong directivity of the Northridge earthquake 

makes the Castaic Dam records more suitable as they are oriented on a similar azimuth as 

the landfill. Second, the Castaic Dam recording station is rock site, similar to the landfill 

site, while the Newhall site is a soil site. Therefore, the two horizontal acceleration time 

histories from the Castaic Dam station (90- and 360-degree components) were used in the 

seismic analyses.  

 The recorded peak ground acceleration for the Castaic Dam records are 0.56 g and 

0.5 g for the 90- and 360-degree components, respectively. However, these acceleration 

time histories were scaled to the mean PGA predicted using four of the 2008 NGA (Next 

Generation Attenuation) relationships as presented in the spread sheet developed by Al 

Atik (2009). The Abrahamson and Silva, Chiou and Youngs, Boore and Atkinso, and 

Campbell and Borzorgnia NGA relationships were employed in this study.  The NGA 

2008 spread sheet predicted a mean PGA of 0.28 g and a mean plus one standard 

deviation PGA of 0.48 g at the Chiquita Canyon landfill for the Northridge earthquake.  
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The scaled strong motion records are assumed to be outcrop motions, i.e. ground motions 

at the surface of a horizontal rock outcrop at the landfill site. To transform these strong 

motion records into ground motions that can be applied at the base of the 2-D models 

used in this analysis a deconvolution procedure was employed.  The deconvolution 

procedure used SHAKE2000 to calculate the upward propagating motion at the base of 

the 2-D models according to the procedure described by Mejia and Dawson (2006) and 

illustrated in Figure 11-6.   

 

Figure 11-6 The deconvolution procedure for FLAC 6.0 (Mejia and Dawson 2006) 

 Figure 11-7 and Figure 11-8 show the acceleration response spectra (ARS) for the 

deconvoluted motion versus the ARS for the scaled outcrop motion for the two 

components of the Castaic Dam record scaled to a PGA of 0.28 g. The figures shows that 

the deconvoluted spectral accelerations are little lower than the outcrop spectral 

accelerations in all cases.  
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Figure 11-7 Comparison of acceleration response spectra for -90o component at Castaic Dam scaled to 

0.28 g versus the deconvoluted motion 

 

Figure 11-8 Comparison of acceleration response spectra for -360o component at Castaic Dam scaled to 

0.28 g versus the deconvoluted motion 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10

Sp
e
ct
ra
l A

cc
e
le
ra
ti
o
n
 (
g)

Period (s)

Outcrop Motion

Deconvoluted Motion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.01 0.1 1 10

S
p
e
ct
ra
l A

cc
e
le
ra
ti
o
n
 (
g
)

Period (s)

Outcrop Motion

Deconvoluted Motion



  322 

11.2.6 2D finite difference models for Chiquita Canyon landfill  

A finite difference mesh was developed to back analyze the seismic response of cross 

section C1-C1 as presented in Figure 11-9 (a). The mesh for cross section C1-C1 has 

more than 9,000 zones, with a higher density of zones towards the waste body. Another 

finite difference mesh developed to back analyze the seismic response of cross section 

D1-D1 as presented in Figure 11-9 (b). The mesh for cross section D1-D1 has more than 

4,000 zones and also has a higher density of zones towards the waste body.  In both finite 

difference models the geomembrane was modeled as a beam element with interface 

elements on both sides.  In cross section D1-D1, an HDPE geomembrane is deployed 

only on the side slope while in cross section C1-C1 a geomembrane is deployed on both 

the side slope and the base of the landfill.  

 Interface elements were attached to the top and bottom of the beam element to 

model the geomembrane / foundation soil and geomembrane / leachate collection layer 

interfaces. However, the low permeability soil layer beneath the base geomembrane in 

cross section C1-C1 was not included in the model and the leachate collection layer on 

top of the base geomembrane was also ignored in the analyses to simplify the model. This 

configuration allows for different interface shear strengths on either side of the 

geomembrane liner element. The beam element was fixed at the top of the slope in the x 

and y direction to simulate the anchor trench in the analyses reported in this chapter.   
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Figure 11-9 Finite difference mesh for Chiquita Canyon landfill cross sections: (a) cross section C1-C1 

(b) cross section D1-D1. 

11.2.7 Initial static analyses 

A procedure mimicking as closely as practical the assumed waste placement scenario in 

the field was used to initialize the stresses in the waste and on the liner before the seismic 

analyses was conducted. In this procedure, waste material was placed in 3 meters 

x 

y 

               Waste 

                                      Rock 

                                            

Upper Interfaces 

Beam 

Lower Interfaces 

(a) 

(b) 



  324 

horizontal lifts, similar to the assumed method of field operation. The Modified Cam-

Clay (MCC) material model was used for the waste. The MCC parameters used for the 

waste material were established using the results of oedometer tests conducted by 

GeoSyntec (1995) on OII landfill waste material.  The MCC properties for the waste are 

summarized in Table 11-4. Figure 11-10 illustrates the stratigraphy of cross section C1-

C1 and cross section D1-D1after building the lifts of waste.  

Table 11-4 Modified Cam-Clay parameters used for the Chiquita Canyon landfill waste material 

 

Initial 
void Ratio 

(eo) 

Slope of the 
consolidation line 

)(  

Slope of 
swelling line 

)(

Preconsolidation 
Pressure 

(Pc) (kPa) 
M 

Unit weight 
(kN/m3) 

MSW 2.0 0.182 0.0182 40 1.3 10.5 
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Figure 11-10 waste lift layering for the Chiquita landfill seismic analysis (a) cross section C1-C1 (b) 

cross section D1-D1.  
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11.2.8 Non-Linear 2-D seismic analyses for the Chiquita Canyon landfill  

Waste and foundation material properties used in the seismic analyses for the cross 

sections C1-C1 and D1-D1 are summarized in Table 11-5. The waste layering is different 

in the seismic stage of the analysis than it was for the initial static stage. The initial shear 

modulus and bulk modulus of the waste increases with depth according to the assumed 

unit weight and shear wave velocity profiles and Poisson’s ratio described earlier. Figure 

11-11 shows the finite difference models for cross sections C1-C1 and D1-D1 for the 

seismic analyses.  

 

Figure 11-11 Finite difference model with boundary conditions for seismic analyses: (a) cross section 

C1-C1, (b) cross section D1-D1. 
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 The initial elastic modulus and unit weight values assigned to the waste layers as a 

function of the depth below the surface of the landfill are presented in Table 11-5. The 

waste is treated in this stage of the analysis as a Mohr-Coulomb material rather than as a 

MCC material as it was in the initial static loading step. The waste was assigned a 

cohesion of 24 kPa and a friction angle of 0 for the top 3 meters and a friction angle of 

33o with 0 cohesion at greater depths, consistent with the bi-linear shear strength model 

described earlier. The rock foundation was modeled as a linear elastic material. In the 

seismic analysis quiet boundaries were used for the vertical side boundaries and the 

bottom boundary of the model to absorb the outgoing (downward and outward 

propagating) seismic waves instead of reflecting them back into the model.  

Table 11-5 Waste and foundation material properties 

 Layer 
Thickness 

(m) 
Unit weight 

(kN/m3) 

Shear wave 
velocity 

(m/s) 

Poison’s 
ratio 

MSW 

Layer 1 3 10.5 170 
 
0.33 

Layer 2 3 11.1 190 
 
0.33 

Layer 3 3 12.7 210 
 
0.33 

Layer 4 3 12.8 240 

 

0.33 

Layer 5 3 13 260 
 
0.33 

Layer 6 3 13.1 275 
 
0.33 

Layer 7 3 13.3 300 
 
0.33 

Layer 8 3 13.6 315 
 
0.33 

 
Layer 9 3 

 
14 

 
340 

 
0.33 

Clay Liner 

Admixture base 1 1 18.9 240 
 
0.33 

Admixture base 2 1 18.9 350 
 
0.33 

Admixture base 3 1 18.9 450 
 
0.33 

Rock 

Weathered Rock 5 16.5 500 
 
0.25 

 Rock  86 16.5 900 
 
0.25 

Rock (half space) 23 18.8 1200 
 
0.25 
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The waste and the low permeability admixture soil in the FLAC 6.0 seismic analyses 

were treated as nonlinear hysteretic materials using back bone curves.  The back bone 

curves used in the seismic analyses for these materials are cited in Table 11-6. The small 

strain modulus in each element (or mesh zone) was based upon the shear wave velocity 

and unit weight.   

Table 11-6  Backbone curves used in the seismic analyses for the Chiquita Canyon 

landfill 

 

  

degree 

Modulus reduction and damping 
curves 

MSW  33 ASU curve shown in Figure 10-25 

Admixture base clay 30 Vucetic and Dobry (1991) (PI =15) 

 
 

 As illustrated in Figure 11-9, the geomembranes in cross sections C1-C1 and D1-D1 

were modeled as beam elements with interface elements on both sides to attach them to 

finite difference mesh. FLAC 6.0 treats the beam element as a linear elastic material.  

However, Giroud (2005) showed that geomembranes exhibit nonlinear hyperbolic stress-

strain behavior in tension up to yield, as discussed in Chapter 3. Therefore, in order to 

model the nonlinear behavior of the geomembrane beam elements in FLAC 6.0, the 

subroutine, JP_E_BeamVariable.fis, presented in Appendix D, was developed.  This 

subroutine degrades the initial tangent modulus, EG, with the axial tensile strain of the 

geomembrane according the equation derived by Giroud (1994) for the tangent modulus 

of a hyperbolic stress-strain curve presented in Chapter 3 as Eq. (4).  Figure 11-12 shows 

the axial force versus axial strain curve for a geomembrane beam element as calculated 

by the subroutine, JP_E_BeamVariable.fis.  
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 The lower interface elements are attached to the foundation soil and the upper 

interface elements are attached to the waste in the geomembrane beam model.  The in-

plane stress-strain behavior of interface elements in FLAC 6.0 are defined using two 

parameters: the initial stiffness, Ei, and the Mohr-Coulomb shear failure parameters (c 

and ). The stiffness assigned to the interface elements in the back analysis was 1x109 

Pa/m. The upper and lower interface were assigned peak and residual friction angles 

using the constitutive model for GCL/GM in-plane peak and residual shear strength 

developed in Chapter 5. Because GM/GCL cyclic behavior was governed by interface 

behavior rather than internal shear behavior of the GCL at all but the lowest normal 

stresses, this was considered to be a reasonable assumption. The measured peak and 

residual friction angles for the upper and lower interfaces were used in the constitutive 

model along with a residual cumulative displacement, ߜ௥
௣, of 300 mm and k of 0.52 in the 

constitutive model.  

 
 

Figure 11-12 Geomembrane stress-strain curve according to Giroud (1994), with equal modulus in 

tension and compression 
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 Chapter 12 includes a parametric study in which the stiffness of the geomembrane 

and the stiffness of the upper and lower interfaces along with their failure parameters 

were varied to test the effect of these parameters on the seismic performance of the 

landfill.  However, only best estimate parameters are used in the back analyses presented 

in this chapter.  

11.2.9 Geomembrane Strains in cross section C1-C1 

The two strong motion records (090 & 360) from the Castaic Dam station, scaled to 0.28 

g, were used in the back analysis.  The parameters defining the behavior of the upper and 

lower interfaces and the geomembrane input parameters for cross section C1-C1 are 

presented in Table 11-7.  

 Table 11-7 also presents a summary of the maximum tensile strain in the 

geomembrane from the analyses for cross section C1-C1. The maximum tensile strains 

for the two strong motion records were 4.3% to 3.8%. In both cases, the maximum tensile 

strain was at the anchor point at the top of the slope.   

Table 11-7 Tensile strain in the geomembrane for cross section C1-C1 

Case* Input motion 

Lower Interface phi 
(degree) 

Upper Interface phi  
(degree) 

GM Max. 
Tensile 

Strain (%) 
FS 

Φp Φr Φp Φr 

1 090-0.28 g 24 22 27 24  4.3 0.45 

2 360-0.28 g 24 22 27  24  3.8 0.56 

* interface stiffness used 1x109 pa/m and 4.8x108 pa/m geomembrane initial stiffness 

 While the tensile strains calculated in the back analysis were well below the yield 

strain of the intact geomembrane, Giroud (2005) showed that failure in geomembranes in 

the field can occur in cases where the tensile strains are well below the yield strain due to 
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strain concentration. Therefore, the procedure proposed by Giroud (2005) to estimate the 

strain concentration due to seams and scratches in the geomembrane was followed to 

estimate the strain concentration and factor of safety for the geomembrane in cross 

section C1-C1.  

 Giroud (2005) presented several correction factors that should be applied to the 

nominal yield strain of a geomembrane from uniaxial tensile testing to estimate the yield 

strain in the field.  First, Giroud (2005) showed that the yield strain under plain strain 

conditions is lower than yield strain in uniaxial tensile tests by a factor depending on 

Poisson's ratio and calculated according to Eqn. (6) in Chapter 3.  Assuming a Poisson's 

ratio of 0.46 and a uniaxial yield strain of 12% for the geomembrane, the yield strain in 

case of plane strain conditions will decrease to 10.9% according to Eqn. (6). Giroud 

(2005) also showed that the yield strain will decrease due to scratches in the 

geomembrane according to the depth of the scratch, as illustrated in Figure 3-25. 

Assuming that the ratio of the depth of the scratch to the geomembrane thickness is 0.2, 

the ratio of the yield strain of scratched geomembrane, SY , to the intact geomembrane 

yield strain is 0.35 according to Figure 3-25. This means the yield strain for a 

geomembrane with a scratch that penetrates 20% of the thickness of the geomembrane 

under plain strain conditions, SYps , is 3.8%.  

 Giroud (2005) also showed that in the case of a seam in a geomembrane 

perpendicular to the loading direction, strain concentrations will be developed in the 

geomembrane right next to the seam. In case of cross section C1-C1 the fillet weld at the 

top of the patch shown in Figure 11-3 may be considered to be a seam perpendicular to 

the loading direction.  According to the Giroud (2005) procedure, Figure 3-24 can be 
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used to estimate the additional strain due to bending at the seam knowing the seam type 

and thickness. The type of the seam in case of the cross section C1-C1 was extrusion 

fillet with an assumed thickness of between 5 mm.  According to Figure 3-24, an 

additional strain due to bending at the seam was estimated to be 3.0%. Adding the 

calculated strain at in geomembrane due to the earthquake loading (3.8%) to the bending 

strain due to the seam stress concentration, a total tensile strain in the geomembrane in 

the vicinity of the seam of 6.8% was calculated. This total calculated tensile strain can be 

compared to the reduced yield strain to calculate the factor of safety due to earthquake 

loading. The factor of safety (FS) due to the earthquake loading can be estimated in this 

manner as follows: 

 

56.0
8.6

8.3





be

SYpsFS




  
(89) 

where SYps  is the scratched geomembrane yield strain in plain strain, e  is the maximum 

tensile strain from earthquake, and  b  is the bending strain due in the seam.  A FS of 

0.59 means that a tear will be initiated at the seam location in the earthquake, which is 

what happened at this location in the 1994 Northridge earthquake. A similar calculation 

for the 090 component of the strong motion record yielded a factor of safety of 0.45 due 

to the larger earthquake-induced strain (4.3%) for that record. Furthermore, analyses 

conducted with scratch depth as low as 0.025 times the geomembrane thickness also 

resulted in a factor of safety less than one for both motions for this cross section. 

However, as reported subsequently, a scratch depth of 0.2 times the geomembrane 

thickness was necessary to calculate a FS less than one for cross section D1-D1 for the 

records scaled to the mean PGA.   
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 One interesting note here is that the geomembrane was not pulled from the anchor 

trench even though the anchor was designed as a yielding anchor, i.e. an anchor which 

allows that geomembrane to be pulled out of the anchor trench before yielding. However, 

in this case as the geomembrane did not reach the assumed tensile force at yield before 

tearing due to strain concentration.  Therefore, the force in the geomembrane was not 

enough to pull out the geomembrane from the anchor.  

 Figure 11-13 shows the distribution of axial strain in the geomembrane predicted for 

the side slope liner in cross section C1-C1 at the end of the earthquake record, which is 

when the maximum tensile strain occurred, for the 360 strong motion component. As 

shown in the Figure 11-13, the geomembrane at the crest of the side slope experiences 

tensile strains while geomembrane at the toe of the slope was subjected to compression 

strains. The strain distribution at the end of the earthquake for the 090 component of the 

strong motion record showed a similar pattern. This means that failure in the 

geomembrane in these cases is most likely to occur in the vicinity of the anchor trench 

and not further down the slope.  
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Figure 11-13 Axial strains in the geomembrane for cross section C1-C1 at the end of the Castaic Dam 

360 earthquake record 

11.2.10 Geomembrane Strains in cross section D1-D1 

The two strong motion records (090 & 360), scaled to 0.28 g, from the Castaic Dam 

station were also used as input motions in the back analysis of cross section D1-D1. The 

parameters defining the behavior of the upper and lower interfaces and the geomembrane 

input parameters are presented in Table 11-8. As in the analysis of cross section C1-C1, 

the GM/GCL peak and residual shear strength constitutive model presented in Chapter 5 

was used to model the upper and lower interfaces, the residual friction angle was 

assumed to be reached at a cumulative displacement of ߜ௥
௣, of 300 mm, and the fitting 

parameter, k, was assumed to be 0.5. The beam element representing the geomembrane 

was pinned at the top of the slope to account for anchoring and the stress-strain curve for 

the geomembrane proposed by Giroud (1994) for geomembranes under tensile loading 

was employed, as in the analysis for cross section C1-C1.  

 Table 11-8 presents a summary of the maximum tensile strain the cross section D1-

D1 geomembrane for two strong motion records used in the analyses.  The maximum 
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tensile strains in these analyses were 2.15% and 1.9%, as presented in Table 11-8, and 

again occurred at the anchor trench.  The largest factor of safety against failure of the 

geomembrane occurs in the case where the maximum tensile strain was 2.3%, i.e. for the 

090 record.  As for cross section C1-C1, the procedure proposed by Giroud (2005) to 

estimate the strain concentration due to seams and scratches was followed to estimate the 

strain concentration and factor of safety for cross section D1-D1.   

Table 11-8 Tensile strain in the geomembrane for cross section D1-D1 

Case* Input motion 

Lower Interface phi 
(degree) 

Upper Interface phi  
(degree) 

GM Max. 
Tensile 

Strain (%) 
FS 

Φp Φr Φp Φr 

1 090-0.28 g 29 28 26 24  2.15-Bench 
1.28- Anchor 

0.9 

2 360-0.28 g 29 28 26  24  1.9- Bench 
0.9-Anchor 

0.98 

* interface stiffness used 1x109 pa/m and 4.8x108 pa/m geomembrane initial stiffness 

 In cross section D1-D1, there was horizontal bench 3 m below the crest of the slope 

where the geomembrane was anchored. In the numerical analysis, the maximum tensile 

on the bench was slightly greater than the value at the anchor. Consistent with these 

analyses results, one end of the stair-stepped tear at this location illustrated in Figure 11-4 

was on the bench.  Assuming a Poisson's ratio of 0.46 and yield strain of 13% for the 

geomembrane, the yield strain in case of plane strain condition for cross section D1-D1 

was 11.8%. Furthermore, assuming the ratio of the depth of the scratch to the 

geomembrane thickness is 0.2, the ratio of the yield strain of scratched geomembrane,

SY , to that of the intact geomembrane is estimated to be 0.35 according to Figure 3-25. 

This means the yield strain for a scratched geomembrane at cross section D1-D1 under 

plain strain conditions, SYps , was 4.1%.  Figure 3-24 was used to estimate the additional 
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strain due to the bending at the seam knowing the seam type and thickness. The type of 

the seam in case of the cross section D1-D1 was extrusion fillet with an assumed 

thickness of 5 mm. As in the analysis of cross section C1-C1, the fillet weld at the top of 

the patch was considered to be a seam perpendicular to the direction of loading. 

According to Figure 3-24 an additional strain due to bending at the seam was estimated to 

be 2.25 %. Adding the calculated strain at in geomembrane due to the earthquake loading 

(1.9 %) to the bending strain due to the seam stress concentration, a total tensile strain in 

the geomembrane in the vicinity of the seam of 4.15% was calculated. The factor of 

safety (FS) after the earthquake loading can then be estimated as follows: 

 
98.0

15.4

1.4





be

SYpsFS



                                                                             (90) 

where SYps  is the scratched geomembrane yield strain in plain strain, e  is the maximum 

tensile strain from earthquake and  b  is the bending strain due to the seam.  A FS of less 

than one means that a tear will be initiated at the seam location in the earthquake, which 

is what happened in the 1994 Northridge earthquake. Scratch with a depth less than 0.2 

times the geomembrane thickness would not result in a factor of safety less than one at 

this location for the ground motions used in the analysis. However, this is a 50% 

probability that the ground motion PGA was greater than the mean value from the NGA 

relationship of 0.28g used in this study.  
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Figure 11-14 Axial strains in the geomembrane on the bench for cross section D1-D1 at the end of the 

Castaic Dam 090 earthquake record 

11.2.11 Maximum Permanent seismic displacement from 2-D Analysis 

The maximum permanent displacement calculated in case of cross section C1-C1 was at the top of 

the slope. The maximum permanent displacement ranged from 18 to 29 mm in cross section C1-

C1, as presented in Table 11-9. In cross section D1-D1, the maximum permanent displacement 

was calculated between the slope crest and the bench 3 m below the waste surface.  The maximum 

permanent displacement in case of cross section D1-D1 ranged from 146 to 122 mm, as presented 

in Table 11-9.    

Table 11-9 Calculated maximum permanent seismic displacement from 2-D 

analysis 

Cross section Input motion 
Maximum permanent 

displacement 
(mm) 

C1-C1 090-0.28 g 29 

C1-C1 360-0.28 g 18 

D1-D1 090-0.28 g 146 

D1-D1 360-0.28 g 122 

 

+2.15%

Geomembrane
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11.2.12  Decoupled Newmark displacement analyses for the Chiquita Canyon 

landfill  

A conventional 1-D decoupled seismic displacement analysis was conducted to evaluate 

the seismic performance of the Chiquita Canyon landfill according to the criterion 

presented in the 1995 EPA RCRA Subtitle D seismic design guidance (Richardson et al. 

1995). Consistent with the 1995 EPA guidance and the current state of practice, the 

decoupled procedure described by Bray et al. (1998) for seismic analysis of lined landfills 

was employed to evaluate liner performance.  First, the 1-D equivalent linear seismic 

response analyses required for a conventional decoupled seismic displacement analyses 

were conducted for both cross section C1-C1 and D1-D1 at the Chiquita Canyon landfill 

using SHAKE2000. The equivalent linear site response analyses were conducted for the 

five columns shown in Figure 11-15 (a) for cross section C1-C1 and for the four columns 

shown in Figure 11-15 (b) for cross section D1-D1.  Each column extends from the 

bottom of the foundation rock in the FLAC 6.0 model to the top deck of the landfill.  The 

properties presented in Table 11-5 were employed in the equivalent linear analyses along 

with the modulus reduction and damping curves cited in Table 11-6.  As equivalent linear 

analysis do not consider interface behavior, no interface properties were required for the 

equivalent linear analysis.  Both the 090 and 360 strong motion records were input as free 

field bedrock outcrop motions in the equivalent linear analyses at the interface between 

the rock and the waste material.  For each column, the time history of shear stress at the 

liner level from the SHAKE2000 equivalent linear response analysis was converted to an 

average acceleration time history for the waste mass by dividing the shear stress by the 

normal stress acting on the geomembrane.   
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Figure 11-15 Columns used in 1D equivalent linear SHAKE2000 analyses (a) cross section C1-C1, (b) 

cross section D1-D1 

Next, limit equilibrium analysis was used to determine the yield acceleration waste mass / 

liner system using SLIDE 5.0 (Rockscience 2005).  Consistent with current practice, the 

large displacement friction angle (22 degrees for cross section C1-C1 and 24 degrees for 

cross section D1-D1) was employed for the geomembrane interfaces.  An undrained 

shear strength of 62.4 kPa from the EMCON Associates (1994) report was used for the 

shear strength of the low permeability base liner in Section D1-D1.  These shear strength 

values and the associated static factor of safety and yield acceleration for each section are 

presented in Table 11-10.  

 

(a) 

(b) 

290 m 178 m 77 m 87 m 32 m 215 m 

146 m 43 m 56 m 44 m 150 m 



  340 

Table 11-10 Static FS and yield acceleration for cross sections C1-C1 and D1-D1    

Cross 
section 

Large Displacement 
Interface Friction Angle 

(degree) 

Base Undrained  
Shear strength  

(kPa) 
Static FS 

Yield 
acceleration 

(ky) 

C1-C1 22 - 4.6 0.315 

D1-D1 24 62.4 1.81 0.14 

 

 Excursions of one side of the average acceleration time history above the yield 

acceleration were then double-integrated (using a sub-routine in the SHAKE2000 

program) to calculate the permanent seismic displacement for the decoupled analysis 

method for each column and for each input motion. Table 11-11 presents the average 

maximum permanent displacement (PD), calculated using decoupled method, from the 

five columns for cross section C1-C1 and the four columns for cross section D1-D1. The 

calculated maximum PDs from different columns and different records in the same cross 

section were very similar.   

 For cross section C1-C1, with a relatively high yield acceleration of 0.315 g, the 

Newmark displacement was zero for both records.  For cross section D1-D1, with a much 

lower yield acceleration of 0.14 g, the calculated Newmark seismic displacement was 12 

mm for the 090 record and 40 mm for the 360 record.  According to the 1995 EPA 

guidance document, if the calculated seismic displacement in a Newmark-type analysis is 

less than between 150 to 300 mm, the design is considered adequate. Therefore, 

according to this criterion, the seismic performance of landfill cross section C1-C1 with a 

minimum interface shear strength represented by the critical friction angle should have 

been satisfactory. The results of the analyses are consistent with the findings of Augello 

et al. (1995) who concluded that conventional Newmark analyses could not predict the 

damage to the liner at the Chiquita Canyon landfill in the Northridge earthquake.  
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Table 11-11 Summary of decoupled displacement analyses for the Chiquita Canyon 

landfill 

Cross 
Section 

Motion 
PGA 
(g) 

ky 

(g) 
Average permanent displacement   

(mm) 
C1-C1 

 
90 0.28 0.315 0 

360 0.28 0.315 0 

D1-D1 
 

90 0.28 0.14 12.0 

360 0.28 0.14 40.0 

 

11.2.13 Summary of the Chiquita Canyon landfill Case History  

Two-dimensional non-linear numerical analyses were conducted of the seismic response 

of two cross sections at the Chiquita Canyon landfill were tears are reported to have 

occurred at the crest of the slope in the Northridge earthquake.  The analyses were 

conducted using interface elements that allow for slip at the geomembrane interface and a 

beam element representing the geomembrane to allow for computation of liner strains. 

Analyses were conducted using both components of the Castaic Dam record from the Mw 

6.7 Northridge earthquake scaled to a peak ground acceleration of 0.28 g.  This peak 

ground acceleration was the mean value calculated for a bedrock outcrop at the site using 

four NGA relationships.  The analyses were conducted using the best-estimate properties 

for the waste, the liner system material, and the foundation material.   

 The 2-D non-linear analyses indicated that the tensile strains in the geomembrane 

were below the yield strain from uniaxial tensile tests.  However, when strain 

concentration factors due scratches and seams from Giroud (2005) were applied and the 

yield strain was adjusted for plain strain conditions, the factor of safety against 

geomembrane yield dropped below 1.0 for both cross sections.  The permanent 

displacement calculated from conventional Newmark-type analysis was significantly 
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lower than 150 mm, indicating that a conventional Newmark-type analysis was not able 

to predict geomembrane failure in the case of the Chiquita Canyon landfill subject to 

Northridge earthquake ground motions.  

11.3 Back Analysis of Lopez Canyon Landfill Performance in the Northridge 

Earthquake 

11.3.1 Landfill description 

The Lopez Canyon landfill is located in the foothills of the San Gabriel Mountains, 

approximately 30 km north-northwest of downtown Los Angeles. The landfill began 

operations in 1975 as a municipal solid waste with a total capacity of 16.9 million metric 

tons of waste. This landfill consists of four disposal areas designated Areas A, B, AB+, 

and C, as shown in Figure 11-16. Disposal Areas A, B, and AB+ were no longer 

accepting waste at the time of Northridge Earthquake. Disposal Areas A and B, unlined 

and cover about 30 hectares of land, were the initial landfill units. Disposal Area C 

was the newest waste unit and included a geosynthetic liner system on the base and 

on some of the side slopes. Figure 11-16 shows the most critical cross sections in terms 

of the stability of Area C according to GeoSyntec Consultant, the engineer of record for 

Disposal Area C (GeoSyntec 1994).  The performance of Disposal Area C in the 

Northridge earthquake is the subject of this case history.  
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Figure 11-16 Plan view and cross sections through the Lopez Canyon landfill at the time of the 

Northridge Earthquake (GeoSyntec 1994)  

Canyon C's native side slopes are up to 90 m high and were graded to provide slopes of 

between IH:IV to 1.5H:IV, with 5 m wide benches every 12 m in height. The base and 

the native side slopes were lined with a Subtitle D composite liner system (GeoSyntec 
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1994). The base liner system conforms to the prescriptive requirements of Subtitle D and 

consist of a 0.3 m thick granular leachate collection layer overlying a composite liner. 

The composite liner consists of a 0.6 m low permeability native soil-bentonite admixture 

(4% bentonite by weight) layer overlain by a 2.0 mm (80 mil)-thick double-sided textured 

high density polyethylene (HDPE) geomembrane. There is a 545 g/m2 non-woven 

cushion geotextile between the geomembrane and the leachate collection layer and a 410 

g/m2 nonwoven filter geotextile overlain by 0.6 m of protective soil cover on top of the 

leachate collection layer (Derian et al. 1993).  Figure 11-17 shows the cross section for 

the base lining system for Area C at the Lopez Canyon landfill (GeoSyntec 1994). 

 

 

Figure 11-17 Lopez Canyon Landfill Area C base lining system (Derain et al. 1993) 

 The side slope liner system in Disposal Area C at Lopez Canyon is an alternative 

liner system designed in conformance with the performance standards of Subtitle D 

(GeoSyntec 1994). The side slope liner consists of, from top to bottom, a 0.6 m thick 

protective soil layer, a 410 g/m2 filter geotextile, a geonet drainage layer, a 2.0 mm-thick 
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HDPE single-sided textured geomembrane (textured side down), a stitch-bonded 

geosynthetic clay liner (GCL), and an air-sprayed slope veneer of concrete averaging 75 - 

100 mm thick and reinforced with 17-gauge wire hexagonal netting (Derian et al. 1993). 

The details for the side slope lining system for Area C at the Lopez Canyon are presented 

in Figure 11-18. Construction of the liner system for Disposal Area C was divided into 

two phases. Phase I , shown in Figure 11-16, was filled to a height of about 30 m at the 

time of the Northridge Earthquake.  Phase II was not started at the time of the earthquake.  

 

 

Figure 11-18 Lopez Canyon Landfill Area C side slope lining system (Derian et al. 1993) 

11.3.2 Properties of MSW for Lopez Canyon  

At the Lopez Canyon landfill, four SASW tests were performed after the Northridge 

earthquake to characterize the shear wave velocity of the solid-waste in the different 

areas of the landfill (Kavazanjian et al. 1996). The first three arrays (LP1 through LP3) 

measured the shear wave velocity profiles of the waste fill in the older inactive areas of 

the landfill. Array LPI was in Disposal Area A and arrays LP2 and LP3 were in Disposal 
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Area B. The final SASW array (LP4) was located in Disposal Area C, which was the 

active area of the landfill at the time of the Northridge Earthquake. Figure 11-19 shows 

the median of all four shear wave velocity SASW arrays profiles measurements. This 

median Vs profile was used in the dynamic back analysis of Area C.  

 

 

Figure 11-19 shear wave velocity measured in Lopez Canyon landfill (Kavazanjian et al. 1996). 
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11.3.3 Interface direct shear testing 

As part of design for Disposal Area C at the Lopez Canyon Landfill, direct shear testing 

on various geosynthetic interfaces was conducted (GeoSyntec 1994). In this testing 

program six different interfaces of the lining system were tested. For the base liner, 

interface direct shear tests were conducted on the low permeability soil/textured 

geomembrane interface. For the side slope liner system, four interface direct shear tests 

were conducted, including two “sandwich” tests that included multiple interfaces. The 

first sandwich test was conducted on a specimen consisting of the following 5 layers of 

material from top to bottom: 

- Stitch-bonded GCL; 

- 2.0mm textured/smooth HDPE geomembrane, with the textured side upward (in contact 

with the GCL); 

- Geonet; 

- Nonwoven Geotextile; 

-site-derived operations layer soil.  

The second sandwich test was conducted on a specimen composed of the following 3 

layers of side slope material, from top to bottom: 

-Geotextiles; 

-Geonet; 

-2.0mm HDPE geomembrane with the textured side upward (toward the geonet) 
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 The third test was conducted on a GCL hydrated by soaking with the textured side of 

the geomembane facing the GCL. The results of the interface direct shear tests on 

elements of the liner system for Area C at the Lopez Canton Landfill are presented in 

Table 11-12. The failure envelopes for the various side slope interfaces reported in Table 

11-11 are shown in Figure 11-20. Figure 11-20 shows that the governing mimium friction 

angle for the side slope is the geotextile/site soil interface with a friction angle of 5.9 

degrees and a cohesion of 25.2 kPa. This means if slip occurs, it will occur only between 

the geotextile and the operations soil, and thus tensile stresses should only develop in the 

geotextile.  

Table 11-12 Direct shear test results for Lopez Canyon landfill geosynthetic elements (GeoSyntec 1994) 

Test 
Number 

Interface tested 

Peak strength Residual strength 
Friction 
Angle 

(degrees) 

Cohesion 
(kPa) 

Friction Angle 
(degrees) 

Cohesion 
(kPa) 

1 Base (low permeability 
soil/GM) 

24 65.3 24 65.3 

2 GCL/GM/geonet/geotextile/
site soil 

7 7.2 5 12.2 

3 Geotextile/Geonet/GM 13 20.8 14 16.5 
4 Soaked GCL/soaked GM 6.66 28.7 5.9 25.2 
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Figure 11-20 Failure envelopes for side slope geosynthetic interfaces in Lopez Canyon landfill  

(GeoSyntec 1994) 

11.3.4 Input motions 

The Lopez Canyon landfill is located fairly close to the Pacioma Dam Downstream 

strong motion recording station, so the recorded Pacioma Dam Downstream motions 

from the 1994 Northridge earthquake were used for the back-analyses. However, the 

accelerograms were rotated to obtain the motion corresponding to an azimuth of 60 

degrees to coincide with the direction of the cross section A-A' and to obtain the motion 

corresponding to an azimuth of 290 degrees to coincide with the direction of the cross 

section C-C'. Figure 11-21 shows the response spectra for the motion at Pacioma Dam 

rotated to azimuths of 60 degrees and 290 degrees. 
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 The strong motion records from Pacoima Dam Downstream station were assumed to 

represent rock outcrop motions at the landfill site.  Based upon the proximity of the site 

to the Pacoima Dam Downstream station, the ground motions at the site were assumed to 

have the same PGA as recorded at the Pacoima Dam Downstream station. These values 

were 0.49 g and 0.33 g for the 60 degree and 290 degree azimuth records, respectively.  

A deconvolution analysis using SHAKE2000 was performed to calculate the upward 

propagating motion at the base of the FLAC 6.0 landfill models according to the 

procedure recommended by Mejia and Dawson (2006) illustrated in Figure 11-6. 

 

Figure 11-21 Response spectra of motions records at Pacioma Dam Downstream station from 1994 

Northridge earthquake rotated to azimuths of 60 degrees and 360 degrees. 
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11.3.5 2D finite difference models  

Lopez Canyon Landfill cross sections A-A’ and C-C’ were chosen for back analysis as 

these sections both had a lower static factor of safety and yield acceleration than cross 

section B-B’. The finite difference mesh developed to back analyze the seismic response 

of cross section A-A’ is presented in Figure 11-22 (a). The mesh has more than 3,700 

zones, with a higher density towards the waste body. The finite difference mesh 

developed to back analyze the seismic response of cross section C-C’ is presented in 

Figure 11-22 (b). The mesh for cross section C-C’ has more than 8,600 zones, with 

higher density towards the waste body.  Lateral boundaries of the both models were 

extended beyond the boundaries of the waste fill and quiet boundaries were used to 

minimize the influence of the lateral boundaries on the computed seismic response. In 

both cross sections, the side slope geotextiles and base geomembrane were modeled as 

beam elements.  

Interface elements were attached to the top and bottom of the beam elements. This 

configuration allows for different interface shear strengths on either side of a liner 

element. On the side slope, the layers of GCL and geomembrane were ignored for 

simplicity. The beam element was pinned at the in the x and y direction at the top of the 

slope to simulate the anchor trench at the crest of the slope.   
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Figure 11-22 Finite difference mesh for Lopez Canyon cross sections: (a) cross section A-A', (b) cross 

section C-C'. 
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11.3.6 Initial static analyses for Lopez Canyon landfill 

To establish the initial stresses for the seismic analyses a procedure intended to simulate 

the waste placement sequence in the field was employed. A gravity turn-on analyses was 

done assuming the waste material was built in 3 meters lifts, similar to the field 

operation. Each lift was deployed (gravity was turned on) and initial stresses were 

established before the next lift was deployed. The Modified Cam-Clay (MCC) model was 

used for to simulate the waste. The MCC parameters used for the waste material were 

established using the results of the oedometer test results conducted by (GeoSyntec 1996) 

on reconstituted specimens of OII waste material.  The MCC parameters for the Lopez 

Canyon waste are presented in Table 11-4 same as Chiquita Canyon case history. Figure 

11-23 shows the stratigraphy used in the finite element models for section C-C' and 

section A-A' after building 10 layers of waste.  
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Figure 11-23 Stratigraphy for Lopez Canyon seismic analysis: (a) cross section C-C’, (b) cross section 

A-A’ 
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11.3.7 Non-Linear 2-D Seismic Analyses  

Waste and foundation material properties used in the seismic analyses for the sections C-

C' and A-A' are summarized in Table 11-13. The unit weights assigned to waste layers 

were based upon the unit weight profile recommended by Zekkos et al. (2006) for typical 

compaction in landfills in Southern California. The waste is treated in this stage as Mohr-

Coulomb material rather than a MCC material as in the initial static step. The waste was 

assigned cohesion of 24 kPa for the top 3 meters and a friction angle of 33o at greater 

depths based upon the bi-linear strength envelope of Kavazanjian et al. (1995). The rock 

foundation was modeled as a linear elastic material.  

 Figure 11-24 shows the finite difference models for both cross section C-C' and A-

A' used in the seismic analyses. The quiet boundaries shown in Figure 11-24 were used in 

both cross sections to absorb the downward propagating motions (outgoing waves) 

instead of reflecting them back into the model.  
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Table 11-13 Waste and foundation material properties for Lopez Canyon Landfill 

 Layer 
Thickness 

(m) 
Unit weight 

(kN/m3) 

Shear wave 
velocity 

(m/s) 

Poison’s 
ratio 

MSW 

Layer 1 3 10.5 170 0.33 

Layer 2 3 11.1 190 0.33 

Layer 3 3 12.7 210 0.33 

Layer 4 3 12.8 240 0.33 

Layer 5 3 13 260 0.33 

Layer 6 3 13.1 275 0.33 

Layer 7 3 13.3 300 0.33 

Layer 8 3 13.6 315 0.33 

Rock 

Weathered Rock 5 16.5 500 0.25 

 Rock  67 16.5 900 0.25 

Rock (half space) 30.5 18.8 1200 0.25 
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Figure 11-24 Finite difference model with boundary conditions for seismic analyses (a) cross section C-

C, (b) cross section A-A 

 As shown in Figure 11-22, the geotextile in both cross sections C-C' and A-A' was 

modeled as a beam element with two interface elements to attach it to the finite 

difference mesh.  One face of the geotextile (the lower interface elements) was attached 

to the foundation and the other face (the upper interface elements) was attached to the 

waste. The beam elements were treated as elastic materials with an elastic modulus, EG. 

The interface element shear response was modeled as elastic-perfectly plastic using three 

parameters: an initial stiffness, Ei, and the Mohr-Coulomb failure parameters (c and ). 

The upper interface was assumed to be the geotextile/soil interface and assigned a peak 

interface strength characterized by a friction angle of 7 degrees and a cohesion of 7.2 kPa 

and a large displacement shear strength characterized by friction angle of 5 degrees and a 
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cohesion of 12.2 kPa.  The lower interface was assumed to be the geotextile/geonet 

interface with a friction angle of 13 degrees and a cohesion of 20.8 kPa. 

11.3.8 Geotextile Strains 

In total, four 2-D non-linear analyses were conducted. The two strong motion records 

from Pacoima Dam Downstream were used. Two analyses were conducted for each cross 

section, one using the peak interface strength and one using the large displacement 

interface strength. The record rotated to an azimuth of 60 degrees was used as the input 

motion for the cross section A-A' while the record rotated to an azimuth of 290 degrees 

was used as an input motion for the cross section C-C'.  

Table 11-14 presents a summary of the maximum tensile strain in the geotextile for the 

four 2-D non-linear analyses along with the upper and lower interface shear strength and 

the interface stiffness used in the analyses.  

Table 11-14 Tensile strains in the geotextile from nonlinear analyses analysis in Lopez Canyon 

case Side Slope Lower 
Interface angle 

(degrees) 

Side Slope 
Lower Interface 
cohesion (kPa) 

Side Slope 
upper Interface 
angle (degrees) 

Side Slope 
upper Interface 
cohesion (kPa) 

Max. 
Geotextile 

Tensile Strain 
(%)  

Cross Section C-C’ 

1 7 7.2 13 20.8 7.3 

2 5 12.2 13 20.8 5.9 

Cross Section A-A’ 

3 7 7.2 13 20.8 0.5 

4 5 12.2 13 20.8 0.3 

* interface stiffness of 1x109 pa/m and geotextile stiffness of 6x108 pa/m was used in all cases  
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The calculated tensile strains at the end of the record (which was the maximum tensile 

strain for the entire earthquake) in cross section C-C' is presented in Figure 11-25. The 

maximum tensile strain was calculated at the crest of the side slope in the vicinity of the 

anchor.  The values of 7.3% and 5.9% calculated in the analyses for Section C-C' are well 

below the break strain of the geotextile.  The calculated permanent seismic displacements 

at the top of the slope for cross section C-C' was 100 mm for both cases 1 and 2 at the toe 

of the waste. The calculated strains and displacements are consistent with observations 

that the geotextile was stretch tight after the earthquake but that there was no damage to 

the underlying geonet or geomembrane (GeoSyntec 1994).  

 

Figure 11-25 Calculated tensile strain at the end of the record for the geotextile in Lopez Canyon cross 

section C-C’ (case 1) 

11.4 Summary for Lopez Canyon Case History  

Two-dimensional non-linear numerical analyses have been conducted of the seismic 

response of two cross sections at Lopez Canyon landfill in the Northridge earthquake.  

The analyses were conducted using interface elements that allow for slip at the geotextile 

interface on the side slope and the geomembrane interface on the base and beam elements 



  360 

that allow for computation of strains in these geosynthetic elements. The analyses were 

conducted using the Pacoima Dam Downstream records from the Mw 6.7 Northridge 

earthquake, rotated to azimuths of 60 and 390 degrees with PGAs of 0.49 g and 0.33 g, 

respectively.  The non-linear analyses used the interface friction angles measured for the 

lower and upper geotextile interfaces in tests conducted for design of the waste unit.  The 

critical (lowest peak strength) interface on the side slope was the geotextile/site soil 

interface. The strains predicted in the geotextile were high but not enough to cause tear in 

the geotextile.  However, the strains were consistent with the observation of tension in 

the geotextile after the earthquake.  
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CHAPTER 12 SENSITIVITY ANALYSES  

12.1 Introduction  

A series of parametric studies was conducted to investigate the influence of the key 

factors on the tensile strain calculated in geomembrane liner system in of the two 

Chiquita canyon cross sections. In each study, a baseline case with a typical configuration 

was employed and then one parameter was changed at a time to investigate the influence 

of that parameter on the maximum tensile strain in the geomembrane and the seismic 

response at the top of the landfill. The key factors investigated in these parametric studies 

were the upper and lower interface shear stiffness, the upper and lower interface shear 

strength (friction angle), the intensity of the ground motion, the geomembrane stiffness 

and the anchor at the top of the slope.  

In the parametric studies, the 2-D finite difference models shown in Figure 11-10 were 

loaded with the Castaic Dam 090 and 360 records from the 1994 moment magnitude 

(Mw) 6.7 Northridge earthquake.  In most analyses, these records were scaled to a peak 

ground acceleration of 0.28 g.  However, some analyses were conducted in which the 

ground motions were scaled to a peak ground acceleration of 0.48 g.  Deconvoluted 

motions calculated as described in Chapter 11 were input at the base of the finite 

difference models. 
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12.2 Influence of the interface shear stiffness  

The interface shear stiffness is a parameter that is not needed in conventional (i.e. 

decoupled Newmark) seismic analyses of liner system performance.  In advanced (e.g. 

finite element) numerical analyses of geosynthetics-lined landfill seismic response, 

numerical modelers typically assume either a large value or perfectly plastic behavior for 

the interface shear stiffness to enhance the stability of the analyses.  

 In the parametric study of interface shear stiffness, the baseline case (case I and II) 

was the same as the case history study reported in the previous chapter except no slip was 

allowed on the lower interface on the base and side slope (the lower interface was 

"glued"). The shear stiffness of the upper and lower interface elements was then changed 

from the value of 1e9 Pa used in the case history analysis in Chapter 11 to 1e7 Pa to 

investigate the influence of the shear stiffness on the calculated maximum tensile strain 

of the geomembrane. Table 12-1 presents a summary of maximum tensile strain 

calculated in the geomembrane for four 2D nonlinear analyses in which the interface 

shear stiffness was varied.  In cases I and II in Table 12-1, cross section C1-C1 was 

loaded with the Castaic Dam 090 record scaled to 0.28 g and the interface shear stiffness 

(IS) of both the upper and lower interfaces was changed from 1e9 Pa to 1e7 Pa while not 

allowing the lower interface to slip (lower interface glued). The maximum geomembrane 

tensile strain increased from 1.7% for IS=1e9 Pa to 10.6% in case of IS=1e7 Pa. In cases 

III and IV a similar analysis was conducted on cross section D1-D1: the cross section was 

loaded with the Castaic Dam 090 record scaled to 0.28 g and the shear stiffness (IS) of 

both upper and lower interfaces changed from 1e9 Pa to 1e7 Pa while not allowing the 

lower interface to slip. The geomembrane maximum tensile strain increased from 0.64% 

for IS=1e9 Pa to 3.2% for IS=1e7 Pa. Clearly, the interface shear stiffness can be an 
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important parameter if it can change over the range of values used in the parametric 

study.  Decreasing the shear stiffness of the lower interface from 1e9 Pa to 1e7 Pa 

increased the maximum calculated tensile strain dramatically.  

Table 12-1 Influence of the Interface shear stiffness  

Case* Input 
motion 

Lower 
Interface 

phi 
 (degree) 

Lower 
Interface 
IS  (pa) 

Upper 
Interface 

phi  
(degree) 

Upper 
Interface 
IS  (pa) 

GM Max. 
Tensile 

Strain (%) 

Cross Section C1-C1 

I 090-0.28 g glued 1e9 27 1e9 1.7 

II 090-0.28 g glued 1e7 27 1e7 10.6 

Cross Section D1-D1 

III 90-0.28 g glued 1e9 26 1e9 0.64-Bench 

IV 90-0.28 g glued 1e7 26 1e7 3.2- Bench 

Note: * in all cases the GM was assigned a tensile stiffness of 4.8e8 pa/m 
 

 Figure 12-1 compares the ARS from 2-D nonlinear analysis in from cases I and II. 

The PGA calculated in case I was slightly higher than the PGA calculated the case II. The 

ARS at short to medium periods (0.01 s-0.4 s) in case I was higher than the ARS in case 

II, however the ARS in case I was lower than the ARS in case II in long periods (>0.4 s).  

These results indicate that the landfill has a higher response in the short to medium period 

range and lower response at longer periods when the interface shear stiffness is 

decreased.  
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Figure 12-1 ARS at the center of top deck for cross section C1-C1 for an interface stiffness of 1e9 Pa 

(case I) and 1e7 Pa (case II)  for an upper interface friction angle of 27 degrees for the Castaic Dam 090 

record scaled to 0.28 g. 

 A change in the IS had a similar effect on the ARS for cross section D1-D1 as it did 

for cross section C1-C1 but the difference in the response in the two cases was less 

pronounced. Figure 12-2 compares the ARS for cross section D1-D1 for case III to the 

ARS for case IV. The ARS for the lower interface stiffness (case IV) is slightly lower 

than the ARS for the higher interface stiffness (case III) in the short period and medium 

period range (up to about 0.6 s). However, the ARS in case IV was slightly higher than 

the ARS for case III at longer periods (periods higher than 0.6 s). The less pronounced 

difference in the response due to a change in interface stiffness for cross section D1-D1 

compared to cross section C1-C1 may be attributed to the difference in liner system 

geometry, as cross section D1-D1 has no liner on the base of the cross section.  
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Figure 12-2 ARS at the center of top deck for cross section D1-D1 for an interface stiffness of 1e7 Pa 

(case III) and 1e9 Pa (case IV) for an upper friction angle of 24 degrees for the Castaic Dam 090 record 

scaled to 0.28 g. 

12.3 Influence of upper interface friction angle  

To explore the effect of the upper interface friction angle on the calculated maximum 

tensile strain was changed from 27 degrees to 12 degrees for cross section C1-C1 with a 

an interface stiffness of 1e7 Pa and from 24 to12 degrees for cross section D1-D1 with an 

interface stiffness of 1e9 Pa.  In all cases, the Castaic Dam 090 record was used.  The 

interface parameters and maximum tensile strains for these analyses are presented in 

Table 12-2.  
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Table 12-2 Influence of the Interface upper friction angle in case of cross section C1-C1 

Case* Input 
motion 

Lower 
Interface 

phi 
 (degree) 

Lower 
Interface 
IS  (pa) 

Upper 
Interface phi  

(degree) 

Upper 
Interface IS  

(pa) 

GM Max. Tensile 
Strain (%) 

Cross Section C1-C1 

V 090-0.28 g glued 1e7 27 1e7 10.6 

VI 090-0.28g glued 1e7 12 1e7 10.6 

Cross SectioD1-D1 

VII 90-0.28 g glued 1e9 24 1e9 0.64-Bench 
 

VIII 90-0.28 g glued 1e9 12 1e9 0.4- Bench 
 

Note: * in all cases the GM was assigned a tensile stiffness of 4.8e8 pa/m 
 

 Figure 12-3 compares the ARS at the top deck in cross section C1-C1 with an 

interface stiffness of 1e7 Pa (the softer interface stiffness) for an interface friction angle 

of 27 degrees (case V) to the ARS calculated when the interface friction angle was 

decreased to 12 degrees (case VI). The PGA for the case with a friction angle of 12 

degrees (case VI) is slightly lower than the PGA for the case with an interface friction 

angle of 27 degrees (case V). The ARS for the case with the interface friction angle of 12 

degrees (case VI) is lower than the ARS for the case with an interface friction angle of 27 

degrees (case V) in the mid-period range (from 0.2-0.5 s), while the ARS in are similar at 

longer periods for these cases. 
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Figure 12-3 ARS at the center of top deck for cross section C1-C1 for an upper interface friction angle 

of 27 degrees (case V) and 12 degrees (case VI) for the Castaic Dam 090 record scaled to 0.28 g. 

 Figure 12-4 presents the influence of the interface friction angle on landfill response 

for cross section D1-D1 with an interface stiffness of 1e9 Pa (the stiffer interface 

stiffness) for an upper interface friction angle of 24 degrees (case VII) and of 12 degrees 

(case VIII). The ARS in these cases were almost identical with a slightly lower response 

in case VIII in the vicinity of the peak spectral acceleration, as illustrated in Figure 12-4.  
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Figure 12-4 ARS at the center of top deck for cross section D1-D1 for an interface friction angle of 24 

degrees (case VII) and 12 degrees (case VIII) for the Castaic Dam 090 record scaled to 0.28 g. 

 In summary, the friction angle of the interface has more pronounced effect of the 

seismic response of the landfill in case of cross section C1-C1 than in case of D1-D1. 

12.4 Influence of the anchor (cross section C1-C1)  

In order to investigate the influence of the anchor trench on the calculated maximum 

tensile strain, analyses were conducted in which the beam element was not pinned at the 

top of the slope. The geomembrane in cross section C1-C1 was fixed in the x and y 

direction at the top of the slope in case IX to represent an anchor and was freed in the x 

and y direction at the crest in case X of. The maximum tensile strain in case IX (with an 

anchor) was significantly higher in case X (no anchor).  The interface parameters and the 

input motion for both cases IX and X are presented in Table 12-3.    
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Table 12-3 Influence of the anchor on maximum strain in cross section C1-C1 

Case* Input motion GM Max. Tensile Strain (%) 

IX 090-0.28 g 10.6 

X 090-0.28g 0.3 

Note: (1) in all cases the GM was assigned a tensile stiffness of 4.8e8 pa/m. 
          (2) in all cases the interfaces were glued with lower and upper shear stiffness 

of 1e7 pa/m. 

12.5 Influence of ground motion intensity (cross section C1-C1)  

To explore the influence of ground motion intensity on the calculated maximum tensile 

strains, cross section C1-C1 was subject to the Castaic Dam station input motions scaled 

to 0.48 g.  In case XI the Castaic Dam station 090 motion was used resulting in a 

calculated maximum tensile strain of 1.6% versus 1.3% for the same motion scaled to 

0.28 g.  In case XII the Castaic Dam station 360 motion was used resulting in a calculated 

maximum tensile strain of 5.6% versus 5.1% for the same motion scaled to 0.28 g.  Cases 

XI and XII are summarized in Table 12-4.   

Table 12-4 Influence of ground motion intensity on geomembrane strain in cross section C1-C1 

Case* Input motion Lower Interface IS  
(pa) 

Upper Interface IS  
(pa) 

GM Max. Tensile 
Strain (%) 

XI 090-0.48g 1e9 1e7 1.6 

XI’ 090-0.28g 1e9 1e7 1.3 

XII 360-0.48g 1e9 1e7 5.6 

XII’ 360-0.28g 1e9 1e7 5.1 

Note: (1) in all cases the GM was assigned a tensile stiffness of 4.8e8 pa/m. 
          (2) in all cases the upper and lower interfaces were glued. 

12.6 Influence of the geomembrane stiffness 

There is no information on geomembrane stiffness in compression in the literature. Some 

investigators assume that the compressive stiffness of a geomembrane is zero, as the 

geomembrane wrinkles under compression (Gourc et al. 2004). This is may be true under 
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low confining pressure. However, in cases when confining pressure (normal stress) on the 

geomembrane is not zero, the stiffness of the geomembrane in compression will not be 

zero. Furthermore, by setting the moment of inertia equal to zero and applying the 

buckling criterion built in to FLAC 6.0 the tendency of the geomembrane to wrinkle is 

accounted for.   

 To investigate the influence of having a lower stiffness in compression than tension, 

a subroutine was written in FLAC 6.0 to make the stiffness of the geomembrane one 

order of magnitude less in compression than tension. Analyses conducted assuming equal 

stiffness in compression and tension were compared to analyses with a stiffness in 

compression one order of magnitude less than in tension.  These analyses are presented in 

Table 12-5. In case XIII, the input parameters were the same as in case XII except that 

the geomembrane compression stiffness was assumed to be one order of magnitude less 

than the stiffness of the geomembrane in tension. Results of these analyses, presented in 

Table 12-5, show that the maximum tensile strain increased from 7.4% to 9.7% when the 

geomembrane compressive stiffness was degraded. This suggests that if the 

geomembrane stiffness is actually the same in compression as it is in tension, the 

conventional assumption that the geomembrane has no stiffness in compression may 

over-estimate geomembrane tensile strains.  
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 Table 12-5 Influence of the GM stiffness in compression in case of cross section C1-C1 

Case Input 
motion 

Lower 
interface 

phi 
 (degree) 

Upper interface 
phi  (degree) 

GM 
compressive  

stiffness 
(pa/m) 

GM tensile 
stiffness (pa/m) 

GM max. 
tensile 

strain (%) 

C1-C1 

XII* 360-0.28 g 22 27 4.8e8 4.8e8 7.4 

XIII* 360-0.28 g 22 27 4.8e7 4.8e8 9.7 

XIV** 360-0.28 g 24 to 22 27 to 24 4.8e8 4.8e8 3.8 

XV** 360-0.28 g 24 to 22 27 to 24 4.8e8 Giroud (1994) 4.0 

XVI 360-0.28 g 24 to 22 27 to 24 4.8e9 4.8e9 1.8 

*interface stiffness for upper and lower interfaces in cases XII and XIII is 1e7 pa/m. 
**interface stiffness for upper and lower interfaces in cases XIV, XV and XVI is 1e9 pa/m. 
 

In the initial analyses, the geomembrane was assumed to behave linear elastically in 

tension (fixed tensile stiffness at all tensile strains). However, wide width uniaxial tests 

on geomembranes show that HDPE geomembranes behave nonlinearly in tension 

(Giroud 2005). As discussed in Chapter 3, HDPE geomembrane stiffness degrades with 

increasing of tensile strain. To investigate the effect of the nonlinear stress strain behavior 

of HDPE on liner performance a subroutine was written to model the stress-strain 

behavior of the geomembrane beam element as a hyperbola.  In case XIV the stiffness of 

the geomembrane was assumed linear with the stiffness assumed as the initial stiffness of 

the geomembrane.  In case XV the tensile stiffness changed with tensile strain according 

to the model proposed by Giroud (1994). As presented in Table 12-5, the maximum 

calculated tensile strain at the end of the record in the geomembrane was higher in case 

XV, using of the hyperbolic stress-strain curve for the geomembrane in tension, than for 

case XIV in which a linear stress strain relationship was assumed.  

 There is no information on geomembrane stiffness under increasing normal stress in 

the literature. However, investigators have shown that nonwoven geotextile stiffness 

increases under increasing confining stress (Palmeira 2009).  It may be inferred that 
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geomembranes may show a similar increase in stiffness with increasing confining stress.  

In case XVI in Table 12-5 the geomembrane stiffness was increased in tension and 

compression one order of magnitude to explore the effect of a possible increase in 

geomembrane stiffness due to increasing normal stress. Results of this analysis shows 

that the maximum tensile strain decreases from 3.8% to 1.8% when the geomembrane 

stiffness was increased by an order of magnitude.  This suggests that if the geomembrane 

stiffness does actually increase under increasing normal stress, the conventional 

assumption that the geomembrane stiffness does not increase under normal stress may 

overestimate geomembrane tensile strains. 

12.7 Summary 

Parametric studies were conducted in this chapter to investigate the influence of interface 

parameters, the intensity of the ground motion, and geomembrane stiffness on the seismic 

response of the Chiquita Canyon landfill.   The shear stiffness of the geomembrane 

interface may have a pronounced effect on both the calculated maximum tensile strain in 

the geomembrane and the seismic response at the top of the landfill. The appropriate 

value that should be used for shear stiffness of the interface in a seismic analysis is 

unknown. Large scale testing is required to calibrate the interface shear stiffness in FLAC 

interface elements for seismic analysis of lined landfills.  

Using anchor to fix the geomembrane at the top of the slope results in stress 

concentration in the vicinity of the anchor and in this case a tensile strains developed 

were much higher in case of anchor compared of no anchor at the top of the slope. 
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Decreasing the earthquake ground motion intensity by decreasing the PGA of the 

input motion result in decreasing the calculated tensile strains caculated in the 

geomembrane.  

The use of a compressive stiffness for the geomembrane one order of magnitude less 

than the geomembrane stiffness in tension will lead to higher tensile strains in the 

geomembrane. The correct compressive stiffness for the geomembrane is unknown. 

laboratory testing is required to determine the stiffness of the geomembrane in 

compression. Furthermore, increasing the geomembrane stiffness to account for increased 

normal stress on the geomembrane can significantly reduce the tensile strain in the 

geomembrane.  
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CHAPTER 13 SUMMARY AND CONCLUSIONS  

13.1 Summary 

The objective of this research was to investigate the conditions under which seismic 

loading may threaten the integrity of geosynthetic elements of a waste containment 

barrier system. As demonstrated by the performance of the geosynthetic components of 

the lining system for the Chiquita Canyon landfill in the Northridge earthquake, the 

integrity of geosynthetic barrier layers in such systems can be impaired by the tensile 

forces and strains induced by seismic loading. The tensile forces and strains induced in 

geosynthetic elements of a waste containment system by seismic loading are not 

explicitly considered in current landfill design practice.  Therefore, the work in this 

dissertation focused upon developing a method that not only accounted for the effect of 

interaction between a geosynthetic waste containment system, the overlying waste, and 

the underlying ground on the seismic response of the landfill but also allowed for explicit 

calculations of tensile forces and strains developed in the geosynthetic elements of the 

waste containment system 

 Comprehensive modeling of the seismic response of landfill liner and cover systems 

used in waste containment facilities requires suitable constitutive models to model the 

cyclic shear behavior of the various geosynthetic components of the containment system 

and their interfaces. In this dissertation, an elastic-perfectly plastic interface model was 

demonstrated to adequately reproduce the cyclic shear behavior of typical geomembrane-

geotextile and geomembrane-geomembrane interfaces provided the appropriate interface 

strength and stiffness parameters are used.  This demonstration was made by comparing 

numerical results to experimental data from shaking table and centrifuge model tests.  
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New constitutive models were developed for the in-plane cyclic shear behavior of 

textured geomembrane/geosynthetic clay liner (GMX/GCL) interfaces (a common 

interface in landfill practice) and for the in-plane cyclic shear behavior of GCLs for use 

in seismic response analyses. These models were based upon experimental data from 

large scale direct shear uniform cyclic tests.  The GMX/GCL model was an empirical 

model that allows for degradation in the cyclic shear resistance from a peak and to a large 

displacement shear strength.  A kinematic hardening multi yield surface plasticity model 

was employed to model the cyclic in-plane shear behavior of GCLs using Salah-Mars 

(1989) constitutive model.  This model also allowed for degradation of the shear 

resistance from a peak strength to a large displacement characteristic of GCL cyclic 

behavior.  

 One-dimensional (1-D) and two-dimensional (2-D) numerical analyses of the 

seismic response of a heap leach pad liner system were conducted to demonstrate the 

ability of the geomembrane-geotextile interface model to account for relative 

displacement (slip) between the liner system and the overlying and underlying 

materials.  The 1-D analyses included two methods proposed in the literature to model 

the impact of slip at a geosynthetic liner system interface.  The 2-D analyses included 

interface elements that account for slip at liner system interfaces and beam elements that 

allow for computation of stresses and strains in liner system components. The 2-D 

analyses demonstrated the ability of the interface-beam model to predict realistic tensile 

forces and strains in the geosynthetic elements of a waste containment system. 

 2-D non-linear time-domain numerical models of two typical landfill configurations 

were developed to evaluate further investigate the effect of slip at a liner system interface 

on seismic response and the forces and strains developed in geosynthetic elements of a 
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liner system subject to seismic loading. These analyses were also used to investigate the 

adequacy of current methods for the seismic design of geosynthetic liner systems. The 

two typical landfill configurations analyzed were a symmetrical configuration 

representative of a quarry fill and an asymmetrical configuration representative of a 

canyon fill. An important finding from these analyses was that slip at a liner system 

interface may not always reduce the intensity of the ground motions at the top of the 

landfill.  

 Case histories of landfill performance in earthquakes, including the 1994 Northridge 

earthquake, provided an excellent opportunity to demonstrate the ability of the numerical 

model to predict the seismic performance of waste fills. A comprehensive back-analysis 

of the seismic response of the OII landfill (an unlined solid waste landfill), employing 

strong ground motions recorded at the top and base of the landfill in five different 

earthquakes, was used to develop appropriate models for the strain dependent shear 

modulus degradation and damping of solid waste for use in subsequent numerical 

analysis.  Back analyses were then conducted of the performance of two lined landfills in 

the Northridge earthquake to demonstrate the ability of the numerical model to predict 

the behavior of lined landfills subject to strong ground shaking in earthquakes.  The 

behavior of the Chiquita Canyon landfill was analyzed to investigate the cause of the 

tears observed in the geomembrane after the Northridge earthquake at this facility.  The 

behavior of the Lopez Canyon landfill in the Northridge earthquake, wherein the 

geomembrane appeared to be undamaged and an overlying geotextile appeared to be 

subject to large tensile strains, was also back analyzed .  
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13.2 Conclusions  

13.2.1 Geomembrane interface model 

A time-domain finite difference model of a rigid block sliding on a plane using a simple 

elastic-perfectly plastic constitutive model and the Mohr-Coulomb failure criterion was 

employed to characterize the load-displacement behavior of a geomembrane interface 

between a rigid block and an underlying planar surface.  This numerical model was 

shown to accurately reproduce the slip-stick and slip-slip behavior described by 

Westermo and Udwadia (1983) for frictional sliding of a rigid block on a horizontal 

plane. The numerical model was also shown to accurately predict shaking table tests of a 

sliding block on horizontal and inclined planes subject to uniform and non-uniform 

motions provided the appropriate friction angle was used to characterize the interface.  

Comparison of physical model test results to the results of best-fit numerical analyses 

demonstrated that the appropriate friction angle depends upon the velocity of sliding for 

some geomembrane interfaces.  However, the rate dependence appears to be slightly less 

than deduced in a previous study using a simpler back analysis.   

 The numerical model was also been shown to predict the main characteristics of 

shaking table tests of a compliant block on an inclined planes subject to uniform 

sinusoidal motions provided the appropriate friction angle was used to characterize the 

interface.  It is important to note that, in contrast to the behavior of a rigid block, 

accelerations in excess of the interface yield acceleration may be induced in both the top 

and bottom of the compliant soil column on top of a yielding (slipping) interface. Unlike 

a rigid sliding block, a compliant soil column vibrates during sliding. Therefore, 

accelerations greater than the yield acceleration may occur within the sliding mass of the 
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compliant soil column. Also, unlike rigid block dynamic response, the acceleration at the 

base of a compliant soil column is not constant during sliding, as the limiting force at the 

sliding interface is not directly related to the acceleration directly above the sliding 

interface but is instead related to the mass-weighted average of the entire acceleration 

distribution within the soil column. 

13.2.2 GCL/GM in-plane constitutive model  

An elasto-plastic constitutive model was been developed to simulate the degradation in 

mobilized shear strength accompanying cyclic loading that exceeds the peak shear 

strength of the material for the in-plane shear behavior of a textured GM/GCL 

combination. The model assumes elastic behavior for the interfaces below the peak shear 

strength and uses the Mohr- Coulomb shear strength criterion for both peak and post-

peak shear strength characterization. Comparison of numerical and experimental results 

indicated that, while the model has some shortcomings with respect to the initial shear 

stiffness and the shear stress immediately after shear stress reversal, it captured the 

degradation of the mobilized shear strength once the peaks strength as exceeded, and this 

degradation considered to be of paramount importance in modeling the behavior of a 

GMX/GCL combination subject to earthquake loading.  

13.2.3 GCL in-plane constitutive model  

A kinematic hardening multi yield surface plasticity model was employed to model the 

cyclic in-plane shear behavior of GCLs. The model uses the Drucker-Prager three-

dimensional stress space generalization of the Mohr-Coulomb criterion developed from 

triaxial or direct shear test shear strength criterion for peak shear strength 
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characterization. The softening in GCL after reaching the peak shear strength mobilized 

shear strength was captured when implemented in a finite difference computer program.  

Comparing the numerical results with the experimental results, it was shown that the 

numerical model does a good job reproducing the key aspects of the cyclic shear behavior 

of the GCLs, i.e. the computed hysteresis loops reproduced the general patterns of 

behavior for the measured hysteresis loops and the model exhibited peak and residual 

behavior similar to the measured behavior.    

13.2.4 Heap leach pad liner system  

Site response analyses were conducted using 2-D nonlinear and 1-D equivalent-linear and 

nonlinear analyses with and without liner elements. In the 2-D analyses the liner system 

was modeled 1) solely as a weak interface; and 2) as a beam element with interfaces on 

each side. In the 1-D non-linear analyses, the liner was modeled as weak soil layer. In the 

1-D equivalent linear analyses, the liner was modeled using the recommendations of 

Yegian et al. (1998) for geosynthetic liners.  

 Results of the analyses with the 2-D models showed that there are only minor 

differences in landfill ground motions between the two means of modeling the liner (i.e. 

interface and beam element with two interfaces). However, the beam model allows for 

the explicit computation of the stresses and strains in the liner. The 2-D model without a 

liner element generally produced greater spectral acceleration than the model with a liner, 

though the difference was usually minor and in one case the model with the liner 

produced higher spectral acceleration in the 0.1 to 0.3 second spectral period range.   

 Comparison of the 2-D and 1-D models showed that: 1) based upon comparison to 

the 2-D analysis with slip elements (which are believed to be more accurate, but which 
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are also more complicated to perform than 1-D analyses), use of a weak layers in the non-

linear 1-D models is an improvement with respect to conventional 1-D analysis without 

slip elements; 2) additional calibration of the non-linear 1-D models is required to 

improve the accuracy of this type of modeling; 3) the 1-D equivalent linear model 

proposed by Yegian et al. (1998) is not reliable;  and 4) as the calculated maximum 

permanent seismic displacement varies along the liner, 1-D models using a weak layer 

cannot fully account for the impact of slip at a liner interface on seismic response. 

 The decoupled permanent seismic displacements calculated for different input 

motion of the heap leach pad system were in excess of 150 – 300 mm, the displacement 

criteria established by EPA for acceptable seismic performance of geosynthetic liner 

systems and generally accepted in practice.  However, except for one case, the computed 

maximum tensile strains and forces were well below values at yield for the geomembrane 

despite calculated decoupled permanent displacements 5 to 10 times the generally 

accepted limiting value.    

13.2.5 Seismic analysis of two typical landfills configurations  

Two-dimensional non-linear numerical analyses were conducted of the seismic response 

of idealized quarry-fill and canyon-fill landfills using interface elements that allowed for 

slip at the geomembrane interface and computation of liner strains and forces.    Response 

analyses were also conducted using conventional 1-D equivalent linear analysis. 

Analyses were conducted using a record from the Mw 6.7 Coalinga earthquake scaled to 

0.4 g. Surprisingly, slip at the liner interface in the non-linear analyses did not 

significantly reduce the peak ground acceleration or the spectral response for either 

landfill configuration compared to the results of equivalent linear 1-D analysis which did 
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not consider slip at the interface. The non-linear analyses indicated that the tensile forces 

and strains in the geomembrane were minimal when the upper and lower interface shear 

strength was the same or when the lower interface strength was greater than the upper 

interface strength.  When the interface friction angle was five degree greater on the top 

than on the bottom of the geomembrane, the seismically-induced tensile stresses were 

still well within the allowable values.  

 The calculated permanent displacement was significantly greater in the 2-D non-

linear analysis compared to the decoupled analysis for both landfill configurations. The 

maximum tensile strains and forces for both configurations were well below values at 

yield.   Consistent with these results, in this case the calculated permanent displacement 

from decoupled analysis for both landfill configurations was well below the allowable 

permanent deformation of 150 mm.   

13.2.6 OII landfill back analyses  

A comprehensive back-analysis of the OII landfill using five sets of recorded motions 

was used to establish the appropriate modulus reduction “backbone curve” to model the 

behavior of solid waste subject to seismic loading.  Results of the back analysis indicated 

that a backbone curve consistent with the ASU modulus reduction curve for 65% ≤ 

20mm material used with the Masing rule and 2% Raleigh damping gave the best results 

for the response at the top deck of the OII landfill compared to the recorded data.   

13.2.7 Chiquita Canyon landfill back analysis  

Back-analysis of two cross sections where geomembrane liner tears were observed in the 

Chiquita Canyon landfill were conducted using two recorded motions from 1994 



  382 

Northridge earthquake. The numerical modeling predicted failure in the geomembrane 

due to strain concentration due to seams and scratches in the geomembrane at the 

locations of the tears.  The decoupled analysis used in current design practice was not 

able to predict failure in the liner system. The analysis showed that strain concentration 

due to scratches and seams can cause failure in a geomembrane liner system.  One 

recommendation based upon this finding is that sampling of the geomembrane seam for 

quality control purposes should be avoided in areas of tensile strains concentration. These 

areas, as illustrated in the numerical analyses, are likely to be near anchor trenches or in 

the vicinity of benches.  

13.2.8 Lopez Canyon landfill back analysis  

Back-analysis of the Lopez Canyon landfill was conducted using two recorded motions 

from 1994 Northridge earthquake.  Based upon available laboratory test data, the critical 

interface on the side slope was determined to be the geotextile/site soil interface. The 

strains predicted in the geotextile below this interface were high but not enough to cause 

a tear in the geotextile. The findings from this case history and from the analysis of the 

two typical landfill configurations suggests that a preferential slip plane may be 

incorporated into a composite liner system in order to constrain sliding to a specific 

interface located away from the geomembrane and thereby minimize tensile strains 

and forces in the geomembrane. 

13.3 Future work  

Recommendations for future work include: 
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1) As the interface shear properties (strength and stiffness) of the liner system often 

represents the critical element for seismic analysis and design, the dynamic properties 

of interface (i.e. behavior under cyclic and rapid laoding) in composite systems 

requires better characterization. Cyclic direct shear tests performed on 

geomembrane/GCL interfaces was done using uniform loading: these tests should be 

extended to evaluate the response of these interfaces under non-uniform loading 

(earthquake-like loading). Cyclic direct shear tests were only conducted on 

geomembrane/GCL: these tests should be extended to evaluate the other geosynthetic 

components in the landfill liner system.  

2) The behavior of confined geomembranes under tensile loading has not been studied. 

Data in the literature showed that nonwoven geotextile stiffness increase under 

confinement. Analyses showed that an increase in tensile stiffness of the 

geomembrane can decrease the tensile strains induced in the geomembrane by 

seismic loading.  Tensile tests on geomembranes under confinement are needed to 

determine an accurate stiffness for use in numerical analyses.  

3) The behavior of geomembranes under compression loading has not been studied. The 

numerical analysis conducted showed that decreasing the geomembrane compressive 

stiffness by one order of magnitude can increase the calculated max tensile strains in 

landfills. Compression tests on geomembranes under confinement are needed to 

determine an accurate stiffness for use in numerical analyses. 

4) Validation and calibration for the numerical models using centrifuge testing is needed 

to calibrate some parameters required for the numerical model of seismic 

performance developed herein, most notably to calibrate interface shear stiffness and 

geomembrane stiffness under service loads. 
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SSint_eqn_com.fis 
 
ca int.fin 
 
def int_var 
   while_stepping 
   ip=int_pnt 
     loop while ip#0 
       n1=imem(ip+$kicapt)          ;address of node block 1 
       n2=imem(n1)                  ;address of node block 2 
       i1=imem(n1+$kidi)            ;i of node 1 
       j1=imem(n1+$kidj)            ;j of node 1 
       i2=imem(n2+$kidi)            ;i of node 2 
       j2=imem(n2+$kidj)            ;j of node 2 
       n1b=imem(n1+$kidseg)         ;address of the nearest node to 1 
       i1b=imem(n1b+$kidi)          ;i of the node nearest to 1 
       j1b=imem(n1b+$kidj)          ;j of the node nearest to 1 
       n2b=imem(n2+$kidseg)         ;address of the nearest node to 2 
       i2b=imem(n2b+$kidi)          ;i of the node nearest to 2 
       j2b=imem(n2b+$kidj)          ;j of the node nearest to 2 
       rat1 = fmem(n1+$kidrat)     ; Ratio of first node contact 
       if rat1 = 1.0 then 
          rat1 = 0.0 
       end_if 
       rat2 = fmem(n2+$kidrat)     ; Ratio of second node contact 
       if rat2 = 1.0 then 
          rat2 = 0.0 
       end_if 
       ;*** First Node Relative Velocity 
       if rat1 = 0.0 then          ; Gridpoint aligned 
         vxb = xvel(i1b,j1b) 
         vyb = yvel(i1b,j1b) 
       end_if 
       if rat1 < 0.0 then          ; Use reverse link for second node 
         rat = -1.0*rat1 
         tar = 1.0 - rat 
         nbl = imem(n1b+$kidrlk)   ; Node to interpolate with (link node) 
         il  = imem(nbl+$kidi)     ; i index of link node 
         jl  = imem(nbl+$kidj)     ; j index of link node 
         vxb = (rat*xvel(i1b,j1b))+(tar*xvel(il,jl))  ; interpolation 
         vyb = (rat*yvel(i1b,j1b))+(tar*yvel(il,jl))  ; 
       end_if 
       if rat1 > 0.0 then          ; Use forward link for second node 
         rat = rat1 
         tar = 1.0 - rat 
         nbl = imem(n1b) 
         il  = imem(nbl+$kidi) 
         jl  = imem(nbl+$kidj) 
         vxb = (rat*xvel(i1b,j1b))+(tar*xvel(il,jl))  ; interpolation 
         vyb = (rat*yvel(i1b,j1b))+(tar*yvel(il,jl))  ; 
       end_if 
       rvx1 = xvel(i1,j1) - vxb    ; Node 1 Relative Velocity 
       rvy1 = yvel(i1,j1) - vyb 
     
    ;*** Second Node Relative Velocity 
    if rat2 = 0.0 then          ; Gridpoint aligned 
      vxb = xvel(i2b,j2b) 
      vyb = yvel(i2b,j2b) 
    end_if 
    if rat2 < 0.0 then          ; Use reverse link for second node 
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      rat = -1.0*rat2 
      tar = 1.0 - rat 
      nbl = imem(n2b+$kidrlk)   ; Node to interpolate with (link node) 
      il  = imem(nbl+$kidi)     ; i index of link node 
      jl  = imem(nbl+$kidj)     ; j index of link node 
      vxb = (rat*xvel(i2b,j2b))+(tar*xvel(il,jl))  ; interpolation 
      vyb = (rat*yvel(i2b,j2b))+(tar*yvel(il,jl))  ; 
    end_if 
    if rat2 > 0.0 then          ; Use forward link for second node 
      rat = rat2 
      tar = 1.0 - rat 
      nbl = imem(n2b) 
      il  = imem(nbl+$kidi) 
      jl  = imem(nbl+$kidj) 
      vxb = (rat*xvel(i2b,j2b))+(tar*xvel(il,jl))  ; interpolation 
      vyb = (rat*yvel(i2b,j2b))+(tar*yvel(il,jl))  ; 
    end_if 
    rvx2 = xvel(i2,j2) - vxb    ; Node 2 Relative Velocity 
    rvy2 = yvel(i2,j2) - vyb 
     
    ;** First Node Relative Shear Velocity 
    usx = -1.0*fmem(n1+$kidun+1)                ; Shear normal vector 
    usy = fmem(n1+$kidun)                       ; 
    rsv1 = (rvx1*usx) + (rvy1*usy) 
     
    ;** Second Node Relative Shear Velocity 
    usx = -1.0*fmem(n2+$kidun+1) 
    usy = fmem(n2+$kidun) 
    rsv2 = (rvx2*usx) + (rvy2*usy) 
; 
    if rsv#0.0 then  
     signp = rsv/abs(rsv) 
    else  
     signp = 0.0 
    end_if  
;;;;;;;;;;;;Absolute Relative Shear Velocity;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;     
    rsv = abs(rsv1+rsv2)*0.5    ; Absolute Relative Shear Velocity 
;;;;;;;;;;;;;;;;;;;;;;;;;;;Direction of motion ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    if rsv#0.0 then  
     sign = rsv/abs(rsv)  ; sign of the relative velocity 
    else  
     sign = 0.0 
    end_if   
;;;;;;;;;;;;;;;;;;;;;;;;;;;;relative displacement;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
    fmem(ip+$kicext)=fmem(ip+$kicext)+rsv*dytdel  ; comulative displacement 
; 
    rsd_past = rsd                         ; previous step 
; 
    rsd      = (fmem(ip+$kicext))          ; comulative displacement 
; 
    _rdispc  = rsd_past                    ; reverse loading 
; 
;;;;;;;;;;;;;;;;;;;;;equation parameters       ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
       _xo   = 12.0          ; displacement at residual  
; 
        _c = 0.521                 ; fitting parameter 
;  
       _phip = 16.5             ; peak friction angle 
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; 
       _phir = 1.5              ; residual friction angle 
; 
       _a = 1.0/(_phip) 
; 
       _r = _phip/_phir         ; residual friction angle 
; 
       _d = _a*(_r-1.0); 
; 
       rsdp = 10.66/1000.0        ; displacement at peak (11mm) 
; 
;;;;;;;;;;;;;;;;;;;direction 1 ll;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
         if _n1#1 then       
           _tanphip = tan(_phip*degrad) 
         end_if  
;  
 if _tanphip # 0.0 
         _tanphir = tan(_phir*degrad)*_tanphip/abs(_tanphip)   ; _RFF*_tanphip1 
 end_if 
; 
         rsdm = abs(rsd-rsdp)   
; 
         if rsd >= rsdp then 
; 
    _n1      = 1 
; 
          int_fri = 1.0/(_a+_d*((rsdm/_xo)^_c)) 
; 
   int_frip = abs(atan(_tanphip)/degrad) 
; 
          fmem(ip+$kictph) = tan(int_fri*degrad) ; store friction coefficient 
; 
        end_if 
; 
 if (rsd) < rsdp then 
; 
          int_fri = abs(atan(_tanphip)/degrad) 
; 
          fmem(ip+$kictph) = tan(int_fri*degrad) ; store friction coefficient 
; 
        end_if 
; 
 if (rsd) >= _xo then 
; 
          int_fri = _phir 
; 
          fmem(ip+$kictph) = tan(int_fri*degrad) ; store friction coefficient 
; 
        end_if 
 
  
       ip=imem(ip) 
; 
     end_loop 
end 
 
 
def check_int 
 ip=int_pnt 
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 loop while ip#0 
   inum=imem(ip+$kicid) 
   rsd=fmem(ip+$kicext) 
   int_fri=fmem(ip+$kicfri) 
   str1=string(inum) 
   str2=string(rsd) 
   message=out('The shear displacement of interface number '+str1+' is '+str2) 
   xtable(out_tab,inum)=inum 
   ytable(out_tab,inum)=int_fri 
   ip=imem(ip) 
  end_loop 
end 
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SSint_eqn_com_beam.fis 
; ca int.fin 
 
def int_var 
array rsd5(1000)  
while_stepping 
   ip=int_pnt 
    aa=imem(ip+$kicid) 
     if aa>=200  then 
     loop while ip#0 
       n1=imem(ip+$kicapt)           
       n2=imem(n1)                   
       i1=imem(n1+$kidi)             
       j1=imem(n1+$kidj)             
       i2=imem(n2+$kidi)             
       j2=imem(n2+$kidj)             
       n1b=imem(n1+$kidseg)          
       i1b=imem(n1b+$kidi)           
       j1b=imem(n1b+$kidj)           
       n2b=imem(n2+$kidseg)          
       i2b=imem(n2b+$kidi)           
       j2b=imem(n2b+$kidj)          
       rat1 = fmem(n1+$kidrat)      
       if rat1 = 1.0 then 
          rat1 = 0.0 
       end_if 
       rat2 = fmem(n2+$kidrat)      
       if rat2 = 1.0 then 
          rat2 = 0.0 
       end_if 
       ;*** First Node Relative Velocity 
       if rat1 = 0.0 then          ; Gridpoint aligned 
  
;Prob a 
 
intref25=0 
intref26=0 
intref25=i1b 
intref26=j1b 
 
intref1 = 0  
if j1b#0 then 
intref1 = xvel(intref25,intref26) 
else 
n_a = imem(str_pnt + $ksnode)  
loop while n_a # 0 
      cur_ida  = imem(n_a + $kndid)  
      if cur_ida = intref25 then 
         intref1 = fmem(n_a + $kndud1)  
      endif 
      n_a = imem(n_a)  
end_loop 
end_if 
 vxb = intref1  
;Prob b 
 
intref2 = 0  
if j1b#0 then 
intref2 = yvel(intref25,intref26) 
else 
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n_b = imem(str_pnt + $ksnode)  
loop while n_b # 0 
      cur_idb  = imem(n_b + $kndid)  
      if cur_idb = intref25 then  
         intref2 = fmem(n_b + $kndud2)  
      endif 
      n_b = imem(n_b)  
end_loop 
end_if 
 vyb = intref2 
 
       end_if 
       if rat1 < 0.0 then          ; Use reverse link for second node 
         rat = -1.0*rat1 
         tar = 1.0 - rat 
         nbl = imem(n1b+$kidrlk)   ; Node to interpolate with (link node) 
         il  = imem(nbl+$kidi)     ; i index of link node 
         jl  = imem(nbl+$kidj)     ; j index of link node 
 
;Prob c 
 
intref27=0 
intref28=0 
intref27=i1b 
intref28=j1b 
 
intref3 = 0  
if j1b#0 then 
intref3 = xvel(intref27,intref28) 
else 
n_c = imem(str_pnt + $ksnode)  
loop while n_c # 0 
      cur_idc  = imem(n_c + $kndid)  
      if cur_idc = intref27 then 
         intref3 = fmem(n_c + $kndud1)  
      endif 
      n_c = imem(n_c)  
end_loop 
end_if 
 
intref17=0 
intref18=0 
intref17=il 
intref18=jl 
 
intref3a = 0  
if intref18#0 then 
intref3a = xvel(intref17,intref18) 
else 
n_ca = imem(str_pnt + $ksnode)  
loop while n_ca # 0 
      cur_idca  = imem(n_ca + $kndid)  
      if cur_idca = intref17 then 
         intref3a = fmem(n_ca + $kndud1)  
      endif 
      n_ca = imem(n_ca)  
end_loop 
 
end_if 
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         vxb = (rat*intref3)+(tar*intref3a)  ; interpolation 
 
  
;Prob d 
 
intref29=0 
intref30=0 
intref29=i1b 
intref30=j1b 
 
intref4 = 0  
if j1b#0 then 
intref4=yvel(intref29,intref30) 
else 
n_d = imem(str_pnt + $ksnode)  
loop while n_d # 0 
      cur_idd  = imem(n_d + $kndid)  
      if cur_idd = intref29 then 
         intref4 = fmem(n_d + $kndud2)  
      endif 
      n_d = imem(n_d)  
end_loop 
end_if 
 
intref4a = 0 
if intref18#0 then 
intref4a=yvel(intref17,intref18) 
else 
n_da = imem(str_pnt + $ksnode)  
loop while n_da # 0 
      cur_idda  = imem(n_da + $kndid)  
      if cur_idda = intref17 then 
         intref4a = fmem(n_da + $kndud2)  
      endif 
      n_da = imem(n_da)  
end_loop 
end_if 
 
        vyb = (rat*intref4)+(tar*intref4a)  ; 
  
        end_if 
        if rat1 > 0.0 then          ; Use forward link for second node 
         rat = rat1 
         tar = 1.0 - rat 
         nbl = imem(n1b) 
         il  = imem(nbl+$kidi) 
         jl  = imem(nbl+$kidj) 
 
;Prob e 
  
intref31=0 
intref32=0 
intref31=i1b 
intref32=j1b 
 
intref5 = 0 
if j1b#0 then 
intref5 = xvel(intref31,intref32) 
else 
n_e = imem(str_pnt + $ksnode)  
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loop while n_e # 0 
      cur_ide  = imem(n_e + $kndid)  
      if cur_ide = intref31 then 
         intref5 = fmem(n_e + $kndud1)  
      endif 
      n_e = imem(n_e)  
end_loop 
end_if 
 
intref17a=0 
intref18a=0 
intref17a=il 
intref18a=jl 
 
intref5a = 0 
if intref18a#0 then 
intref5a = xvel(intref17a,intref18a)  
else 
n_ea = imem(str_pnt + $ksnode)  
loop while n_ea # 0 
      cur_idea  = imem(n_ea + $kndid)  
      if cur_idea = intref17a then 
         intref5a = fmem(n_ea + $kndud1)  
      endif 
      n_ea = imem(n_ea)  
end_loop 
end_if 
 
         vxb = (rat*intref5)+(tar*intref5a)  ; interpolation 
  
;Prob f 
  
intref33=0 
intref34=0 
intref33=i1b 
intref34=j1b 
 
intref6 = 0 
if j1b#0 then 
intref6=yvel(intref33,intref34) 
else 
n_f = imem(str_pnt + $ksnode)  
loop while n_f # 0 
      cur_idf  = imem(n_f + $kndid)  
      if cur_idf = intref33 then 
         intref6 = fmem(n_f + $kndud2)  
      endif 
      n_f = imem(n_f)  
end_loop 
end_if 
 
intref6a = 0 
if intref18a#0 then 
intref6a=yvel(intref17a,intref18a) 
else 
n_fa = imem(str_pnt + $ksnode)  
loop while n_fa # 0 
      cur_idfa  = imem(n_fa + $kndid)  
      if cur_idfa = intref17a then 
         intref6a = fmem(n_fa + $kndud2)  
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      endif 
      n_fa = imem(n_fa)  
end_loop 
end_if 
         vyb = (rat*intref6)+(tar*intref6a)   
  
       end_if 
 
;Prob g 
 
intref19=0 
intref20=0 
intref19=i1 
intref20=j1 
 
intref7 = 0 
if intref20#0 then 
intref7=xvel(intref19,intref20) 
else 
n_g = imem(str_pnt + $ksnode)  
loop while n_g # 0 
      cur_idg  = imem(n_g + $kndid)  
      if cur_idg = intref19 then 
         intref7 = fmem(n_g + $kndud1)  
      endif 
      n_g = imem(n_g)  
end_loop 
end_if 
 
       rvx1 = intref7 - vxb    ; Node 1 Relative Velocity 
 
;Prob h 
  
intref8 = 0  
if intref20#0 then 
intref8=yvel(intref19,intref20) 
else 
n_h = imem(str_pnt + $ksnode)  
loop while n_h # 0 
      cur_idh  = imem(n_h + $kndid)  
      if cur_idh = intref19 then 
         intref8 = fmem(n_h + $kndud2)  
      endif 
      n_h = imem(n_h)  
end_loop 
end_if 
       rvy1 = intref8 - vyb 
      
    ;*** Second Node Relative Velocity 
    if rat2 = 0.0 then          ; Gridpoint aligned 
 
;Prob i 
   
intref35=0 
intref36=0 
intref35=i2b 
intref36=j2b 
 
intref9 = 0 
if j2b#0 then 
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intref9 = xvel(intref35,intref36) 
else  
n_i = imem(str_pnt + $ksnode)  
loop while n_i # 0 
      cur_idi  = imem(n_i + $kndid)  
      if cur_idi = intref35 then 
         intref9 = fmem(n_i + $kndud1)  
      endif 
      n_i = imem(n_i)  
end_loop 
  
end_if 
vxb = intref9 
  
;Prob j 
  
intref10 = 0 
if j2b#0 then 
intref10 = yvel(intref35,intref36) 
else 
n_j = imem(str_pnt + $ksnode)  
loop while n_j # 0 
      cur_idj  = imem(n_j + $kndid)  
      if cur_idj = intref35 then 
         intref10 = fmem(n_j + $kndud2)  
      endif 
      n_j = imem(n_j)  
end_loop 
end_if 
vyb = intref10 
  
    end_if 
    if rat2 < 0.0 then          ; Use reverse link for second node 
      rat = -1.0*rat2 
      tar = 1.0 - rat 
      nbl = imem(n2b+$kidrlk)   ; Node to interpolate with (link node) 
      il  = imem(nbl+$kidi)     ; i index of link node 
      jl  = imem(nbl+$kidj)     ; j index of link node 
 
;Prob k 
 
intref37=0 
intref38=0 
intref37=i2b 
intref38=j2b 
 
intref11 = 0   
if j2b#0 then 
intref11 = xvel(intref37,intref38) 
else 
n_k = imem(str_pnt + $ksnode)  
loop while n_k # 0 
      cur_idk  = imem(n_k + $kndid)  
      if cur_idk = intref37 then 
         intref11 = fmem(n_k + $kndud1)  
      endif 
      n_k = imem(n_k)  
end_loop 
end_if 
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intref21=0 
intref22=0 
intref21=il 
intref22=jl 
 
intref11a = 0 
if intref22#0 then 
intref11a = xvel(intref21,intref22) 
else 
n_ka = imem(str_pnt + $ksnode)  
loop while n_ka # 0 
      cur_idka  = imem(n_ka + $kndid)  
      if cur_idka = intref21 then 
         intref11a = fmem(n_ka + $kndud1)  
      endif 
      n_ka = imem(n_ka)  
end_loop 
end_if 
  
         vxb = (rat*intref11)+(tar*intref11a)  ; interpolation 
  
;Prob l 
 
intref39=0 
intref40=0 
intref39=i2b 
intref40=j2b 
 
intref12 = 0  
if j2b#0 then 
intref12 = yvel(intref39,intref40) 
else 
n_l = imem(str_pnt + $ksnode)  
loop while n_l # 0 
      cur_idl  = imem(n_l + $kndid)  
      if cur_idl = intref39 then 
         intref12 = fmem(n_l + $kndud2)  
      endif 
      n_l = imem(n_l)  
end_loop 
end_if 
 
intref12a = 0 
if intref22#0 then 
intref12a = yvel(intref21,intref22)  
else 
n_la = imem(str_pnt + $ksnode)  
loop while n_la # 0 
      cur_idla  = imem(n_la + $kndid)  
      if cur_idla = intref21 then 
         intref12a = fmem(n_la + $kndud2)  
      endif 
      n_la = imem(n_la)  
end_loop 
end_if 
 
 
      vyb = (rat*intref12)+(tar*intref12a)  ; 
  
    end_if 
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    if rat2 > 0.0 then          ; Use forward link for second node 
      rat = rat2 
      tar = 1.0 - rat 
      nbl = imem(n2b) 
      il  = imem(nbl+$kidi) 
      jl  = imem(nbl+$kidj) 
 
;Prob m 
 
intref41=0 
intref42=0 
intref41=i2b 
intref42=j2b 
 
intref13 = 0  
if j2b#0 then 
intref13 = xvel(intref41,intref42) 
else 
n_m = imem(str_pnt + $ksnode)  
loop while n_m # 0 
      cur_idm  = imem(n_m + $kndid)  
      if cur_idm = intref41 then 
         intref13 = fmem(n_m + $kndud1)  
      endif 
      n_m = imem(n_m)  
end_loop 
end_if 
 
intref21a=0 
intref22a=0 
intref21a=il 
intref22a=jl 
 
intref13a = 0  
if intref22a#0 then 
intref13a = xvel(intref21a,intref22a)  
else 
n_ma = imem(str_pnt + $ksnode)  
loop while n_ma # 0 
      cur_idma  = imem(n_ma + $kndid)  
      if cur_idma = intref21a then 
         intref13a = fmem(n_ma + $kndud1)  
      endif 
      n_ma = imem(n_ma)  
end_loop 
end_if 
 
 
      vxb = (rat*intref13)+(tar*intref13a)  ; interpolation 
  
;Prob n 
 
intref43=0 
intref44=0 
intref43=i2b 
intref44=j2b 
 
intref14 = 0  
if j2b#0 then 
intref14 = yvel(intref43,intref44) 
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else 
n_n = imem(str_pnt + $ksnode)  
loop while n_n # 0 
      cur_idn  = imem(n_n + $kndid)  
      if cur_idn = intref43 then 
         intref14 = fmem(n_n + $kndud2)  
      endif 
      n_n = imem(n_n)  
end_loop 
end_if 
 
intref14a = 0 
if intref22a#0 then 
intref14a = yvel(intref21a,intref22a) 
else 
n_na = imem(str_pnt + $ksnode)  
loop while n_na # 0 
      cur_idna  = imem(n_na + $kndid)  
      if cur_idna = intref21a then 
         intref14a = fmem(n_na + $kndud2)  
      endif 
      n_na = imem(n_na)  
end_loop 
end_if 
 
      vyb = (rat*intref14)+(tar*intref14a)  ; 
 
    end_if 
 
;Prob o 
 
intref23=0 
intref24=0 
intref23=i2 
intref24=j2 
 
intref15 = 0 
if intref24#0 then 
intref15=xvel(intref23,intref24) 
else 
n_o = imem(str_pnt + $ksnode)  
loop while n_o # 0  
      cur_ido  = imem(n_o + $kndid)  
      if cur_ido = intref23 then 
         intref15 = fmem(n_o + $kndud1)  
      endif 
      n_o = imem(n_o)  
end_loop 
end_if 
 
    rvx2 = intref15 - vxb    ; Node 2 Relative Velocity 
  
;Prob P 
  
intref16 = 0 
if intref24#0 then 
intref16=yvel(intref23,intref24) 
else 
n_p = imem(str_pnt + $ksnode)  
loop while n_p # 0 
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      cur_idp  = imem(n_p + $kndid)  
      if cur_idp = intref23 then 
         intref16 = fmem(n_p + $kndud2)  
      endif 
      n_p = imem(n_p)  
end_loop 
end_if 
 
    rvy2 = intref16 - vyb 
     
    ;** First Node Relative Shear Velocity 
    usx = -1.0*fmem(n1+$kidun+1)                ; Shear normal vector 
    usy = fmem(n1+$kidun)                       ; 
    rsv1 = (rvx1*usx) + (rvy1*usy) 
     
    ;** Second Node Relative Shear Velocity 
    usx = -1.0*fmem(n2+$kidun+1) 
    usy = fmem(n2+$kidun) 
    rsv2 = (rvx2*usx) + (rvy2*usy) 
; 
    if rsv#0.0 then  
     signp = rsv/abs(rsv) 
    else  
     signp = 0.0 
    end_if  
;;;;;;;;;;;;Absolute Relative Shear Velocity;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;     
    rsv = abs(rsv1+rsv2)*0.5    ; Absolute Relative Shear Velocity 
    rsv2 = (rsv1+rsv2)*0.5      ; Relative Shear Velocity 
;;;;;;;;;;;;;;;;;;;;;;;;;;;Direction of motion ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    if rsv#0.0 then  
     sign = rsv/abs(rsv)  ; sign of the relative velocity 
    else  
     sign = 0.0 
    end_if   
;;;;;;;;;;;;;;;;;;;;;;;;;;;;relative displacement;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
       
    fmem(ip+$kicext) =fmem(ip+$kicext) +rsv*dytdel  ; comulative displacement 
; 
    rsd_past = rsd5(aa)                      ; previous step 
; 
    rsd5(aa) = fmem(ip+$kicext)              ; comulative displacement 
 
; 
    rsd = fmem(ip+$kicext)    
; 
    _rdispc  = rsd_past                    ; reverse loading 
; 
;;;;;;;;;;;;;;;;;;;;;equation parameters       ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
       _xo   = 12.0          ; displacement at residual  
; 
        _c = 0.521                 ; fitting parameter 
;  
       _phip = 16.5             ; peak friction angle 
; 
       _phir = 1.5              ; residual friction angle 
; 
       _a = 1.0/(_phip) 
; 
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       _r = _phip/_phir         ; residual friction angle 
; 
       _d = _a*(_r-1.0); 
; 
       rsdp = 10.66/1000.0        ; displacement at peak (11mm) 
; 
;;;;;;;;;;;;;;;;;;;direction 1 ll;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
         if _n1#1 then       
           _tanphip = tan(_phip*degrad) 
         end_if  
;  
 if _tanphip # 0.0 
         _tanphir = tan(_phir*degrad)*_tanphip/abs(_tanphip)   ; _RFF*_tanphip1 
 end_if 
; 
         rsdm = abs(rsd-rsdp)   
; 
         if rsd >= rsdp then 
; 
    _n1      = 1 
; 
          int_fri = 1.0/(_a+_d*((rsdm/_xo)^_c)) 
; 
   int_frip = abs(atan(_tanphip)/degrad) 
; 
          fmem(ip+$kictph) = tan(int_fri*degrad) ; store friction coefficient 
; 
        end_if 
; 
 if (rsd) < rsdp then 
; 
          int_fri = abs(atan(_tanphip)/degrad) 
; 
          fmem(ip+$kictph) = tan(int_fri*degrad) ; store friction coefficient 
; 
        end_if 
; 
 if (rsd) >= _xo then 
; 
          int_fri = _phir 
; 
          fmem(ip+$kictph) = tan(int_fri*degrad) ; store friction coefficient 
; 
         end_if 
 
  
       ip=imem(ip) 
; 
     end_loop 
 end_if 
end 
 
 
def check_int 
 ip=int_pnt 
 loop while ip#0 
   inum=imem(ip+$kicid) 
   rsd=fmem(ip+$kicext) 
   int_fri=fmem(ip+$kicfri) 
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   str1=string(inum) 
   str2=string(rsd) 
   message=out('The shear displacement of interface number '+str1+' is '+str2) 
   xtable(out_tab,inum)=inum 
   ytable(out_tab,inum)=int_fri 
   ip=imem(ip) 
  end_loop 
end 
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APPENDIX B  

GCL SUBROUTINE 
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; ********************************************************************* 
;                             m_ini.fis 
; 
; Version F of FISH function to 
; (1) set up backbone curve (divide qq into nysf segments); and 
; (2) initialize confining pressure, moduli and yield surfaces.  
;      
; This function is for Version F of Multiple Yield Plasticity Model 
; y_myss_f.fis. 
; FEATURES: use arrays instead of tables 
; 
; STARTED:  01/14/98, by L.Y. from y_ini_m.fis 
; MODIFIED: 
; 01/14/98: 
; 06/13/98: ADD $p_min, $y_min, $b_min, $h_min 
; 
; ********************************************************************* 
; 
;      xtable                 ytable 
;     --------               -------- 
; 1   eq(nysf)               qq(nysf)         ;Backbone curve at Pr 
; 2               et(nysf) 
; 3    l(nysf)              ysr(nysf2)        ;ytable for Values at P 
; 4            alpha(nalpha) 
; 
; Use the following arrays to replace the above tables: 
; 
; 1   a_eq(nysf)               a_qq(nysf)         
; 2   a_et_r(nysf)             a_et(nysf) 
; 3                            a_hp(nysf)        
; 4   a_ll_r(nysf)             a_sr(nysf2)        
; 5                            a_al(nalpha) 
;--------------------------------------------------------------------- 
; 
def set_backbone_init 
;..................................................................... 
;array a_hp(10) a_sr(19) a_al(76) have been defined in y_myss_f.fis     
;..................................................................... 
; 
float  a_eq      a_qq      a_et_r      a_ll_r      a_et      
array  a_eq(10)  a_qq(10)  a_et_r(10)  a_ll_r(10)  a_et(10) 
; 
float  $s_coh  $s_fric  $rf 
float  $p_r    $y_r     $b_r  $n_e  $n_b  $n_h   
; 
float  $p_p  $y_p  $b_p  $g_p   $g_2p  $e_1p  $e_2p 
float  $y_i  $g_r  $cphi $sphi  $tphi  $prag1 $prag2 
float  $qqf  $eqf  $qqr  $dqq   $g_hp  $xx    $yy    $zz   
float  $s_den  $p_min  $y_min  $b_min  $h_min               ; 06/13/98 
float  g_value dmin_value                                   ; 06/13/98 
float  $_rs $_ss                                            ;M.A 
; 
int    $nrowb  $nys  $nys2  $nysj  $nalpha 
int    ii  ji  k1i   k2i    k3i    k4i  k5i  k6i  k7i  
; 
  loop ii (1,izones) 
    loop ji (1,jzones) 
      if int(model(ii,ji)) = 900 then                       ;M.A 
; 
;.....set up backbone curve at Pr..... 
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; 
        $s_coh  =  m_coh(ii,ji) 
        $s_fric =  m_fric(ii,ji) 
        $s_den  = density(ii,ji)                             ;06/13/98 
; 
        $cphi   = cos($s_fric*degrad) 
        $sphi   = sin($s_fric*degrad) 
        $tphi   = $sphi/$cphi 
;..................................................................... 
;For triaxial test, use the following $prag1 & $prag2  
; 
        $xx    = sqrt(3.0)*(3.0 - $sphi) 
        $prag1 = 6.0*$s_coh*$cphi / $xx 
        $prag2 = 2.0*$sphi / $xx  
  oo = out(' $prag1 = '+string($prag1 )) 
  oo = out(' $prag2 = '+string($prag2)) 
;..................................................................... 
;For plane strain condition, use the following $prag1 & $prag2  
; 
;        $xx    = sqrt(9.0 + 12.0*$tphi*$tphi) 
;        $prag1 = 3.0*$s_coh / $xx 
;        $prag2 = $tphi / $xx  
;..................................................................... 
; 
        $p_r   = m_pr(ii,ji) 
        $y_r   = m_yr(ii,ji)  
        $b_r   = m_br(ii,ji) 
        $n_e   = m_ne(ii,ji) 
        $n_b   = m_nb(ii,ji) 
        $n_h   = m_nh(ii,ji) 
        $rf    = m_rf(ii,ji) 
 $_rss  = m_rss(ii,ji) 
 $_ss   = m_ss(ii,ji) 
; 
        $nrowb  = 4 
        $nys   = int(m_nys(ii,ji)) 
        $nys2  = 2*$nys - 1 
        $nysj  = $nys - 1  
        $nalpha = $nys2 * $nrowb 
;        
        $qqf = 2.0*($s_coh*$cphi+$p_r*$sphi)/(1.0-$sphi) 
; 
        $eqf = 2.8*$qqf / ($y_r*(1.0 - $rf)) 
; 
        $qqr = $rf*$y_r/$qqf 
        $dqq = $qqf / float($nysj) 
;..................................................................... 
;debuging statements.................................................. 
;..................................................................... 
  oo = out(' y_r = '+string($y_r)) 
  oo = out(' qqf = '+string($qqf)) 
  oo = out(' eqf = '+string($eqf)) 
;..................................................................... 
;..................................................................... 
;surface nys-1.................................................. 
;..................................................................... 
        a_eq($nysj) = $eqf                             ; eq(n-1) 
        a_qq($nysj) = $qqf                             ; qq(n-1) 
;..................................................................... 
;surface nys.................................................. 
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;..................................................................... 
        a_eq($nys) = $eqf * $_ss                       ; eq(n) M.A 
        a_qq($nys) = $qqf * $_rss                      ; qq(n) M.A 
; 
a_qq(1) = 140 
a_qq(2) = 200 
a_qq(3) = 220 
a_qq(4) = 230 
a_qq(5) = 235 
a_qq(6) = 240 
a_qq(7) = 260 
a_qq(8) = 300 
        loop k1i (1,$nysj-1) 
          $xx       = float(k1i) * $dqq 
;           a_qq(k1i) = $xx 
;..................................................................... 
;debuging statements.................................................. 
;..................................................................... 
  oo = out(' (i) = '+string(k1i)) 
  oo = out(' a_qq(k1i) = '+string(a_qq(k1i)))   
;..................................................................... 
           a_eq(k1i) = 2.8*$xx / ($y_r - $xx * $qqr)       ; eq(.) 
;..................................................................... 
;debuging statements.................................................. 
;..................................................................... 
  oo = out(' a_eq(k1i) = '+string(a_eq(k1i))) 
;..................................................................... 
        end_loop 
;..................................................................... 
;debuging statements.................................................. 
;..................................................................... 
   oo = out(' a_qq(nys-1) = '+string(a_qq($nysj))) 
  oo = out(' a_eq(nys-1) = '+string(a_eq($nysj))) 
  oo = out(' a_qq(nys) = '+string(a_qq($nys))) 
  oo = out(' a_eq(nys) = '+string(a_eq($nys))) 
;..................................................................... 
; 
;.....set material constants..... 
;     
        $y_i = a_qq(1)/a_eq(1) 
; 
        $g_r = 3.0*$y_i*$b_r/(9.0*$b_r-$y_i)  
; 
;.....calculate Et and l of yield surface at Pr.....  
; 
        a_et_r($nys)  = 0.0                           ;   et(n)            
        a_ll_r($nys)  = a_qq($nys) / $qqf             ;M.A 
;..................................................................... 
;debuging statements.................................................. 
;..................................................................... 
  oo = out(' a_et_r(nys) = '+string(a_et_r($nys))) 
  oo = out(' a_ll_r(nys) = '+string(a_ll_r($nys))) 
;.....................................................................                           ;    l(n)       
; 
        loop k2i (1,$nysj) 
          $xx         = a_eq(k2i+1) - a_eq(k2i) 
          $yy         = a_qq(k2i+1) - a_qq(k2i) 
          a_et_r(k2i) = $yy / $xx                     ;   et(.)       
          a_ll_r(k2i) = a_qq(k2i) / $qqf              ;    l(.) 
;..................................................................... 
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;debuging statements.................................................. 
;..................................................................... 
  oo = out(' (i) = '+string(k2i)) 
  oo = out(' a_et_r(i) = '+string(a_et_r(k2i))) 
  oo = out(' a_ll_r(i) = '+string(a_ll_r(k2i))) 
;.....................................................................                           ;    l(n)       
; 
        end_loop 
; 
;INITIALIZATION: calculate initial modulii and surface radii..... 
; 
        $p_min = $s_den*g_value*dmin_value                 ;06/13/98 
        $y_min = $y_i*($p_min/$p_r)^$n_e                   ;06/13/98 
        $b_min  =$b_r*($p_min/$p_r)^$n_b                   ;06/13/98 
        $h_min  =     ($p_min/$p_r)^$n_h                   ;06/13/98 
; 
        $p_p =-(sxx(ii,ji)+syy(ii,ji)+szz(ii,ji))/3.0 
; 
        if $p_p > 0.0 then 
          $y_p  = max($y_i*($p_p/$p_r)^$n_e,$y_min)        ;06/13/98 
          $b_p  = max($b_r*($p_p/$p_r)^$n_b,$b_min)        ;06/13/98 
 
          $g_p  = 3.0*$y_p*$b_p/(9.0*$b_p-$y_p) 
          $g_2p = 2.0 * $g_p 
          $e_1p = $b_p + 4.0 * $g_p / 3.0 
          $e_2p = $b_p - 2.0 * $g_p / 3.0 
; 
          loop k3i (1,$nys) 
            $xx = a_et_r(k3i)*max(($p_p/$p_r)^$n_h,$h_min) ;06/13/98 
            $yy       = 6.0*$prag2*$prag2*a_ll_r(k3i)*a_ll_r(k3i) 
            $zz       = sqrt(1.0+$yy)*2.0/3.0 
            a_et(k3i) = $xx                           ; Et at P 
            a_hp(k3i) = $xx/(1.0-$xx/$y_p)*$zz        ; H' at P 
;..................................................................... 
;debuging statements.................................................. 
;..................................................................... 
  oo = out(' i = '+string(k3i)) 
  oo = out(' Etc = '+string(a_et(k3i))) 
  oo = out(' H" = '+string(a_hp(k3i))) 
;..................................................................... 
          end_loop 
; 
        else 
          nerr  = 170 
          error = 1 
        end_if 
;        
;.....calculate initial radii at P..... 
; 
        $xx = sqrt(2.0)*($prag1+3.0*$prag2*$p_p) 
  oo = out(' $xx = '+string($xx)) 
        loop k4i (1,$nys)           
          a_sr(k4i) = $xx*a_ll_r(k4i)                 ; ysr(.) at P 
;..................................................................... 
;debuging statements.................................................. 
;..................................................................... 
  oo = out(' i = '+string(k4i)) 
  oo = out(' Radii" = '+string(a_sr(k4i))) 
;..................................................................... 
        end_loop 
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; 
;.....calculate virtual radii at P..... 
; 
        $g_hp        = $g_2p/a_hp(1)                  ; 2G/h' 
        $xx          = (a_sr(2)-a_sr(1))*(1.0+$g_hp) 
        a_sr($nys+1) = a_sr(1) + $xx 
;..................................................................... 
;debuging statements.................................................. 
;..................................................................... 
  oo = out(' i = '+string(1)) 
  oo = out(' Radii V" = '+string(a_sr($nys+1)))  
;..................................................................... 
; 
        if $nys > 2 then 
          loop k5i (2,$nysj) 
            $g_hp = $g_2p/a_hp(k5i) 
            $xx   = a_sr($nys+k5i-1) 
            $yy   = (a_sr(k5i+1)-a_sr(k5i))*(1.0+$g_hp) 
;..................................................................... 
;debuging statements.................................................. 
;..................................................................... 
            a_sr($nys+k5i) = $xx + $yy                ; vsr(.) 
  oo = out(' i = '+string(k5i)) 
  oo = out(' Radii V" = '+string(a_sr($nys+k5i))) 
;..................................................................... 
; 
          end_loop                                         
        end_if 
;          
;.....initialize back stresses: put alpha(.) into zero..... 
;     
        loop k6i (1,$nys2) 
          loop k7i (1,$nrowb) 
            a_al($nrowb*(k6i-1)+k7i) = 0.0  
;..................................................................... 
;debuging statements.................................................. 
;.....................................................................  
  oo = out(' i = '+string(($nrowb*(k6i-1)+k7i))) 
  oo = out(' alfa" = '+string(a_al($nrowb*(k6i-1)+k7i))) 
;.....................................................................       
          end_loop 
        end_loop 
; 
;.....put table values back to state variables..... 
; 
        m_prag1(ii,ji) = $prag1 
        m_prag2(ii,ji) = $prag2        
; 
           m_pp(ii,ji) = $p_p 
            m_y(ii,ji) = $y_p 
            m_b(ii,ji) = $b_p  
            m_g(ii,ji) = $g_p 
           m_g2(ii,ji) = $g_2p 
           m_e1(ii,ji) = $e_1p 
           m_e2(ii,ji) = $e_2p  
; 
        case_of $nys 
;For nys=2: 
          case 2 
; 
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            m_hp1(ii,ji) = a_hp(1) 
            m_hp2(ii,ji) = a_hp(2) 
; 
            m_yr1(ii,ji) = a_sr(1)  
            m_yr2(ii,ji) = a_sr(2)    
; 
            m_vr1(ii,ji) = a_sr(3) 
; 
            m_1a11(ii,ji) = a_al(1)      
            m_1a22(ii,ji) = a_al(2)    
            m_1a33(ii,ji) = a_al(3)     
            m_1a12(ii,ji) = a_al(4)      
; 
            m_2a11(ii,ji) = a_al(5)      
            m_2a22(ii,ji) = a_al(6)     
            m_2a33(ii,ji) = a_al(7)      
            m_2a12(ii,ji) = a_al(8)      
; 
            m_1v11(ii,ji) = a_al( 9)      
            m_1v22(ii,ji) = a_al(10)    
            m_1v33(ii,ji) = a_al(11)     
            m_1v12(ii,ji) = a_al(12)      
; 
;For nys=4: 
          case 4 
; 
            m_hp1(ii,ji) = a_hp(1) 
            m_hp2(ii,ji) = a_hp(2) 
            m_hp3(ii,ji) = a_hp(3)   
            m_hp4(ii,ji) = a_hp(4)    
; 
            m_yr1(ii,ji) = a_sr(1)  
            m_yr2(ii,ji) = a_sr(2)    
            m_yr3(ii,ji) = a_sr(3)   
            m_yr4(ii,ji) = a_sr(4)   
; 
            m_vr1(ii,ji) = a_sr(5) 
            m_vr2(ii,ji) = a_sr(6)  
            m_vr3(ii,ji) = a_sr(7)  
; 
            m_1a11(ii,ji) = a_al(1)      
            m_1a22(ii,ji) = a_al(2)    
            m_1a33(ii,ji) = a_al(3)     
            m_1a12(ii,ji) = a_al(4)      
; 
            m_2a11(ii,ji) = a_al(5)      
            m_2a22(ii,ji) = a_al(6)     
            m_2a33(ii,ji) = a_al(7)      
            m_2a12(ii,ji) = a_al(8)      
; 
            m_3a11(ii,ji) = a_al( 9)      
            m_3a22(ii,ji) = a_al(10)      
            m_3a33(ii,ji) = a_al(11)     
            m_3a12(ii,ji) = a_al(12)      
; 
            m_4a11(ii,ji) = a_al(13)      
            m_4a22(ii,ji) = a_al(14)      
            m_4a33(ii,ji) = a_al(15)     
            m_4a12(ii,ji) = a_al(16)      
; 



  418 

            m_1v11(ii,ji) = a_al(17)     
            m_1v22(ii,ji) = a_al(18)    
            m_1v33(ii,ji) = a_al(19)     
            m_1v12(ii,ji) = a_al(20)      
; 
            m_2v11(ii,ji) = a_al(21) 
            m_2v22(ii,ji) = a_al(22)   
            m_2v33(ii,ji) = a_al(23)      
            m_2v12(ii,ji) = a_al(24)      
; 
            m_3v11(ii,ji) = a_al(25)      
            m_3v22(ii,ji) = a_al(26)      
            m_3v33(ii,ji) = a_al(27)     
            m_3v12(ii,ji) = a_al(28)     
; 
;For nys=6: 
          case 6 
; 
            m_hp1(ii,ji) = a_hp(1) 
            m_hp2(ii,ji) = a_hp(2) 
            m_hp3(ii,ji) = a_hp(3)   
            m_hp4(ii,ji) = a_hp(4)    
            m_hp5(ii,ji) = a_hp(5)   
            m_hp6(ii,ji) = a_hp(6)    
; 
            m_yr1(ii,ji) = a_sr(1)  
            m_yr2(ii,ji) = a_sr(2)    
            m_yr3(ii,ji) = a_sr(3)   
            m_yr4(ii,ji) = a_sr(4)   
            m_yr5(ii,ji) = a_sr(5)   
            m_yr6(ii,ji) = a_sr(6)   
; 
            m_vr1(ii,ji) = a_sr( 7) 
            m_vr2(ii,ji) = a_sr( 8)  
            m_vr3(ii,ji) = a_sr( 9)  
            m_vr4(ii,ji) = a_sr(10)   
            m_vr5(ii,ji) = a_sr(11)   
; 
            m_1a11(ii,ji) = a_al(1)      
            m_1a22(ii,ji) = a_al(2)    
            m_1a33(ii,ji) = a_al(3)     
            m_1a12(ii,ji) = a_al(4)      
; 
            m_2a11(ii,ji) = a_al(5)      
            m_2a22(ii,ji) = a_al(6)     
            m_2a33(ii,ji) = a_al(7)      
            m_2a12(ii,ji) = a_al(8)      
; 
            m_3a11(ii,ji) = a_al( 9)      
            m_3a22(ii,ji) = a_al(10)      
            m_3a33(ii,ji) = a_al(11)     
            m_3a12(ii,ji) = a_al(12)      
; 
            m_4a11(ii,ji) = a_al(13)      
            m_4a22(ii,ji) = a_al(14)      
            m_4a33(ii,ji) = a_al(15)     
            m_4a12(ii,ji) = a_al(16)      
; 
            m_5a11(ii,ji) = a_al(17)      
            m_5a22(ii,ji) = a_al(18)      
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            m_5a33(ii,ji) = a_al(19)     
            m_5a12(ii,ji) = a_al(20)      
; 
            m_6a11(ii,ji) = a_al(21)      
            m_6a22(ii,ji) = a_al(22)      
            m_6a33(ii,ji) = a_al(23)     
            m_6a12(ii,ji) = a_al(24)      
; 
            m_1v11(ii,ji) = a_al(25)     
            m_1v22(ii,ji) = a_al(26)    
            m_1v33(ii,ji) = a_al(27)     
            m_1v12(ii,ji) = a_al(28)      
; 
            m_2v11(ii,ji) = a_al(29) 
            m_2v22(ii,ji) = a_al(30)   
            m_2v33(ii,ji) = a_al(31)      
            m_2v12(ii,ji) = a_al(32)      
; 
            m_3v11(ii,ji) = a_al(33)      
            m_3v22(ii,ji) = a_al(34)      
            m_3v33(ii,ji) = a_al(35)     
            m_3v12(ii,ji) = a_al(36)     
; 
            m_4v11(ii,ji) = a_al(37)      
            m_4v22(ii,ji) = a_al(38)     
            m_4v33(ii,ji) = a_al(39)      
            m_4v12(ii,ji) = a_al(40)      
; 
            m_5v11(ii,ji) = a_al(41)      
            m_5v22(ii,ji) = a_al(42)      
            m_5v33(ii,ji) = a_al(43)     
            m_5v12(ii,ji) = a_al(44)     
; 
;For nys=8: 
          case 8 
; 
            m_hp1(ii,ji) = a_hp(1) 
            m_hp2(ii,ji) = a_hp(2) 
            m_hp3(ii,ji) = a_hp(3)   
            m_hp4(ii,ji) = a_hp(4)    
            m_hp5(ii,ji) = a_hp(5)   
            m_hp6(ii,ji) = a_hp(6)    
            m_hp7(ii,ji) = a_hp(7)   
            m_hp8(ii,ji) = a_hp(8)    
; 
            m_yr1(ii,ji) = a_sr(1)  
            m_yr2(ii,ji) = a_sr(2)    
            m_yr3(ii,ji) = a_sr(3)   
            m_yr4(ii,ji) = a_sr(4)   
            m_yr5(ii,ji) = a_sr(5)   
            m_yr6(ii,ji) = a_sr(6)   
            m_yr7(ii,ji) = a_sr(7)   
            m_yr8(ii,ji) = a_sr(8)   
; 
            m_vr1(ii,ji) = a_sr( 9) 
            m_vr2(ii,ji) = a_sr(10)  
            m_vr3(ii,ji) = a_sr(11)  
            m_vr4(ii,ji) = a_sr(12)   
            m_vr5(ii,ji) = a_sr(13)   
            m_vr6(ii,ji) = a_sr(14)   
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            m_vr7(ii,ji) = a_sr(15)   
; 
            m_1a11(ii,ji) = a_al(1)      
            m_1a22(ii,ji) = a_al(2)    
            m_1a33(ii,ji) = a_al(3)     
            m_1a12(ii,ji) = a_al(4)      
; 
            m_2a11(ii,ji) = a_al(5)      
            m_2a22(ii,ji) = a_al(6)     
            m_2a33(ii,ji) = a_al(7)      
            m_2a12(ii,ji) = a_al(8)      
 
            m_3a11(ii,ji) = a_al( 9)      
            m_3a22(ii,ji) = a_al(10)      
            m_3a33(ii,ji) = a_al(11)     
            m_3a12(ii,ji) = a_al(12)      
; 
            m_4a11(ii,ji) = a_al(13)      
            m_4a22(ii,ji) = a_al(14)      
            m_4a33(ii,ji) = a_al(15)     
            m_4a12(ii,ji) = a_al(16)      
; 
            m_5a11(ii,ji) = a_al(17)      
            m_5a22(ii,ji) = a_al(18)      
            m_5a33(ii,ji) = a_al(19)     
            m_5a12(ii,ji) = a_al(20)      
; 
            m_6a11(ii,ji) = a_al(21)      
            m_6a22(ii,ji) = a_al(22)      
            m_6a33(ii,ji) = a_al(23)     
            m_6a12(ii,ji) = a_al(24)      
; 
            m_7a11(ii,ji) = a_al(25) 
            m_7a22(ii,ji) = a_al(26)      
            m_7a33(ii,ji) = a_al(27)     
            m_7a12(ii,ji) = a_al(28)      
; 
            m_8a11(ii,ji) = a_al(29)      
            m_8a22(ii,ji) = a_al(30)      
            m_8a33(ii,ji) = a_al(31)     
            m_8a12(ii,ji) = a_al(32)      
; 
            m_1v11(ii,ji) = a_al(33)     
            m_1v22(ii,ji) = a_al(34)    
            m_1v33(ii,ji) = a_al(35)     
            m_1v12(ii,ji) = a_al(36)      
; 
            m_2v11(ii,ji) = a_al(37) 
            m_2v22(ii,ji) = a_al(38)   
            m_2v33(ii,ji) = a_al(39)      
            m_2v12(ii,ji) = a_al(40)      
; 
            m_3v11(ii,ji) = a_al(41)      
            m_3v22(ii,ji) = a_al(42)      
            m_3v33(ii,ji) = a_al(43)     
            m_3v12(ii,ji) = a_al(44)     
; 
            m_4v11(ii,ji) = a_al(45)      
            m_4v22(ii,ji) = a_al(46)     
            m_4v33(ii,ji) = a_al(47)      
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            m_4v12(ii,ji) = a_al(48)      
; 
            m_5v11(ii,ji) = a_al(49)      
            m_5v22(ii,ji) = a_al(50)      
            m_5v33(ii,ji) = a_al(51)     
            m_5v12(ii,ji) = a_al(52)     
 
            m_6v11(ii,ji) = a_al(53)      
            m_6v22(ii,ji) = a_al(54)     
            m_6v33(ii,ji) = a_al(55)      
            m_6v12(ii,ji) = a_al(56)      
; 
            m_7v11(ii,ji) = a_al(57)      
            m_7v22(ii,ji) = a_al(58)      
            m_7v33(ii,ji) = a_al(59)     
            m_7v12(ii,ji) = a_al(60)     
; 
;For nys=10: 
          case 10 
; 
            m_hp1(ii, ji) = a_hp( 1) 
            m_hp2(ii, ji) = a_hp( 2) 
            m_hp3(ii, ji) = a_hp( 3)   
            m_hp4(ii, ji) = a_hp( 4)    
            m_hp5(ii, ji) = a_hp( 5)   
            m_hp6(ii, ji) = a_hp( 6)    
            m_hp7(ii, ji) = a_hp( 7)   
            m_hp8(ii, ji) = a_hp( 8)    
            m_hp9(ii, ji) = a_hp( 9)   
            m_hp10(ii,ji) = a_hp(10)    
; 
            m_yr1(ii, ji) = a_sr( 1)  
            m_yr2(ii, ji) = a_sr( 2)    
            m_yr3(ii, ji) = a_sr( 3)   
            m_yr4(ii, ji) = a_sr( 4)   
            m_yr5(ii, ji) = a_sr( 5)   
            m_yr6(ii, ji) = a_sr( 6)   
            m_yr7(ii, ji) = a_sr( 7)   
            m_yr8(ii, ji) = a_sr( 8)   
            m_yr9(ii, ji) = a_sr( 9)   
            m_yr10(ii,ji) = a_sr(10)   
; 
            m_vr1(ii,ji) = a_sr(11) 
            m_vr2(ii,ji) = a_sr(12)  
            m_vr3(ii,ji) = a_sr(13)  
            m_vr4(ii,ji) = a_sr(14)   
            m_vr5(ii,ji) = a_sr(15)   
            m_vr6(ii,ji) = a_sr(16)   
            m_vr7(ii,ji) = a_sr(17)   
            m_vr8(ii,ji) = a_sr(18)   
            m_vr9(ii,ji) = a_sr(19)   
; 
            m_1a11(ii,ji) = a_al(1)      
            m_1a22(ii,ji) = a_al(2)    
            m_1a33(ii,ji) = a_al(3)     
            m_1a12(ii,ji) = a_al(4)      
; 
            m_2a11(ii,ji) = a_al(5)      
            m_2a22(ii,ji) = a_al(6)     
            m_2a33(ii,ji) = a_al(7)      
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            m_2a12(ii,ji) = a_al(8)      
 
            m_3a11(ii,ji) = a_al( 9)      
            m_3a22(ii,ji) = a_al(10)      
            m_3a33(ii,ji) = a_al(11)     
            m_3a12(ii,ji) = a_al(12)      
; 
            m_4a11(ii,ji) = a_al(13)      
            m_4a22(ii,ji) = a_al(14)      
            m_4a33(ii,ji) = a_al(15)     
            m_4a12(ii,ji) = a_al(16)      
; 
            m_5a11(ii,ji) = a_al(17)      
            m_5a22(ii,ji) = a_al(18)      
            m_5a33(ii,ji) = a_al(19)     
            m_5a12(ii,ji) = a_al(20)      
; 
            m_6a11(ii,ji) = a_al(21)      
            m_6a22(ii,ji) = a_al(22)      
            m_6a33(ii,ji) = a_al(23)     
            m_6a12(ii,ji) = a_al(24)      
 
            m_7a11(ii,ji) = a_al(25) 
            m_7a22(ii,ji) = a_al(26)      
            m_7a33(ii,ji) = a_al(27)     
            m_7a12(ii,ji) = a_al(28)      
; 
            m_8a11(ii,ji) = a_al(29)      
            m_8a22(ii,ji) = a_al(30)      
            m_8a33(ii,ji) = a_al(31)     
            m_8a12(ii,ji) = a_al(32)      
; 
            m_9a11(ii,ji) = a_al(33)      
            m_9a22(ii,ji) = a_al(34)      
            m_9a33(ii,ji) = a_al(35)     
            m_9a12(ii,ji) = a_al(36)      
; 
            m_10a11(ii,ji) = a_al(37)      
            m_10a22(ii,ji) = a_al(38)      
            m_10a33(ii,ji) = a_al(39)     
            m_10a12(ii,ji) = a_al(40)      
; 
            m_1v11(ii,ji) = a_al(41)     
            m_1v22(ii,ji) = a_al(42)    
            m_1v33(ii,ji) = a_al(43)     
            m_1v12(ii,ji) = a_al(44)      
; 
            m_2v11(ii,ji) = a_al(45) 
            m_2v22(ii,ji) = a_al(46)   
            m_2v33(ii,ji) = a_al(47)      
            m_2v12(ii,ji) = a_al(48)      
; 
            m_3v11(ii,ji) = a_al(49)      
            m_3v22(ii,ji) = a_al(50)      
            m_3v33(ii,ji) = a_al(51)     
            m_3v12(ii,ji) = a_al(52)     
; 
            m_4v11(ii,ji) = a_al(53)      
            m_4v22(ii,ji) = a_al(54)     
            m_4v33(ii,ji) = a_al(55)      
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            m_4v12(ii,ji) = a_al(56)      
; 
            m_5v11(ii,ji) = a_al(57)      
            m_5v22(ii,ji) = a_al(58)      
            m_5v33(ii,ji) = a_al(59)     
            m_5v12(ii,ji) = a_al(60)     
; 
            m_6v11(ii,ji) = a_al(61)      
            m_6v22(ii,ji) = a_al(62)     
            m_6v33(ii,ji) = a_al(63)      
            m_6v12(ii,ji) = a_al(64)      
; 
            m_7v11(ii,ji) = a_al(65)      
            m_7v22(ii,ji) = a_al(66)      
            m_7v33(ii,ji) = a_al(67)     
            m_7v12(ii,ji) = a_al(68)     
 
            m_8v11(ii,ji) = a_al(69)      
            m_8v22(ii,ji) = a_al(70)     
            m_8v33(ii,ji) = a_al(71)      
            m_8v12(ii,ji) = a_al(72)      
; 
            m_9v11(ii,ji) = a_al(73)      
            m_9v22(ii,ji) = a_al(74)      
            m_9v33(ii,ji) = a_al(75)     
            m_9v12(ii,ji) = a_al(76)     
; 
        end_case 
; 
      end_if 
    end_loop 
  end_loop 
end 
set echo on 
;opt set_backbone_init 
; 
;**********************END OF FUCTION**************************** 
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; ******************************************************************** 
;                           y_myss_M.fis 
; 
; FISH Version F of Multiple Yield Plasticity Model with 2 TO 10 
;                         Yield Surfaces 
; 
; Modification for y_mys_f.fis:  by Liping 
; -------------------------------------------------------------------- 
; STARTED:  03/1/10, by M.A. from y_mys_f.fis 
;--------------------------------------------------------------------- 
; 08/06/98: put back stress pressure dependance, alpha*fac 
; -------------------------------------------------------------------- 
; Input Model Parameters: 
; (1) m_coh  (2) m_fric (3) m_ten (4) m_rf (5 ) m_nys 
; (6) m_pr   (7) m_yr   (8) m_br  (9) m_ne (10) m_nb   (11) m_nh 
; ******************************************************************** 
;              a_hp(nys)    Plastic modulus    
;              a_sr(nys2)   radii      
;              a_al(nalpha) alfa 
;--------------------------------------------------------------------- 
; 
set echo off 
def y_myss                                           ;M.A y_myss instead of y_mys 
  constitutive_model 900                             ; M.A 900 instead of 200 
; 
  float a_hp     a_sr     a_al     a_sr_l     a_al_l     $sum_al 
  array a_hp(10) a_sr(19) a_al(76) a_sr_l(19) a_al_l(76) $sum_al(76) 
; 
  f_prop  m_coh m_fric m_rf m_nys m_pr m_yr m_br m_ne m_nb m_nh      
; 
  f_prop  m_ten m_prag1 m_prag2 m_pp m_y m_b m_g m_g2 m_e1 m_e2  
; 
  f_prop  m_hp1 m_hp2 m_hp3 m_hp4 m_hp5            ;for ytable 3 or a_hp(.) 
  f_prop  m_hp6 m_hp7 m_hp8 m_hp9 m_hp10 
; 
  f_prop  m_rss m_ss                                ;M.A 
; 
  f_prop  m_yr1 m_yr2 m_yr3 m_yr4 m_yr5            ;for ytable 4 or a_sr(.) 
  f_prop  m_yr6 m_yr7 m_yr8 m_yr9 m_yr10  
  f_prop  m_vr1 m_vr2 m_vr3 m_vr4 m_vr5 
  f_prop  m_vr6 m_vr7 m_vr8 m_vr9  
; 
  f_prop  m_1a11 m_1a22 m_1a33 m_1a12              ;for ytable 5 or a_al_l(.) 
  f_prop  m_2a11 m_2a22 m_2a33 m_2a12             
  f_prop  m_3a11 m_3a22 m_3a33 m_3a12           
  f_prop  m_4a11 m_4a22 m_4a33 m_4a12           
  f_prop  m_5a11 m_5a22 m_5a33 m_5a12               
  f_prop  m_6a11 m_6a22 m_6a33 m_6a12             
  f_prop  m_7a11 m_7a22 m_7a33 m_7a12           
  f_prop  m_8a11 m_8a22 m_8a33 m_8a12           
  f_prop  m_9a11 m_9a22 m_9a33 m_9a12           
  f_prop  m_10a11 m_10a22 m_10a33 m_10a12           
; 
  f_prop  m_1v11 m_1v22 m_1v33 m_1v12 
  f_prop  m_2v11 m_2v22 m_2v33 m_2v12             
  f_prop  m_3v11 m_3v22 m_3v33 m_3v12 
  f_prop  m_4v11 m_4v22 m_4v33 m_4v12 
  f_prop  m_5v11 m_5v22 m_5v33 m_5v12             
  f_prop  m_6v11 m_6v22 m_6v33 m_6v12           
  f_prop  m_7v11 m_7v22 m_7v33 m_7v12 
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  f_prop  m_8v11 m_8v22 m_8v33 m_8v12             
  f_prop  m_9v11 m_9v22 m_9v33 m_9v12           
; 
  float   $s11i $s22i $s33i $s12i $smi 
  float   $s11d $s22d $s33d $s12d $x11i $x22i $x33i $x12i $xim 
  float   $xim1 $hp_m1 $g_hp_m1 $temp_2 $temp_3               ;M.A  
  float   $temp_4 $temp_5                                     ;M.A 
  float   $hp_mj1 $temp_1 $g_hp_mj1 $g_hp_mj $hp_mj           ;M.A 
  float   $x11n $x22n $x33n $x12n $amu11 $amu22 $amu33 $amu12  
  float   $apex $p_o  $sum_p $sp $am  $alamda $amroz 
  float   $g_hp $g_hp_m $hp_m $lcoef $xx $yy $zz $fi $fr $fratio  
  float   $hp_mjjj $g_hp_mjjj     
; 
  int     $nrowb $nys $nys2 $nysj $nalpha $nysm  
  int     i1m i2m i3m i4m i5m k1m k2m k3m k4m k5m k6m k7m k8m k9m 
  int     kal kal_m kal_p1 kal_m1 kal_p1m kal_m1m  
  int     $nbysj1 i6m i7m i8m $nbysj _i8m $_j100 _i9m 
; 
;********************************************************************* 
  CASE_OF  MODE 
;********************************************************************* 
  CASE 1 
; ---------------------- 
; Initialization section 
; ---------------------- 
; 
    $nrowb  = 4 
; 
;.....set tension to cone apex if larger than apex..... 
;     
    $apex = m_ten 
    if m_prag2 # 0.0 then 
      $apex = m_prag1 / (3.0*m_prag2) 
    end_if 
    m_ten = min($apex, m_ten) 
; 
;********************************************************************* 
  CASE 2 
; --------------- 
; Running section 
; --------------- 
; 
    zvisc = 1.0 
; 
    $nys    = int(m_nys) 
    $nys2   = 2*$nys  - 1 
    $nysj   =   $nys  - 1  
    $nalpha =   $nys2 * $nrowb 
; 
;.....put state variables into tables..... 
; 
    Case_of $nys 
; 
;For nys = 2: 
      case 2 
; 
        a_hp(1) = m_hp1         
        a_hp(2) = m_hp2       
; 
        a_sr(1) = m_yr1 
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        a_sr(2) = m_yr2  
; 
        a_sr(3) = m_vr1 
;        
        a_al(1) = m_1a11    
        a_al(2) = m_1a22    
        a_al(3) = m_1a33 
        a_al(4) = m_1a12    
; 
        a_al(5) = m_2a11    
        a_al(6) = m_2a22    
        a_al(7) = m_2a33 
        a_al(8) = m_2a12    
; 
        a_al( 9) = m_1v11 
        a_al(10) = m_1v22    
        a_al(11) = m_1v33    
        a_al(12) = m_1v12    
; 
;For nys = 4: 
      Case 4 
; 
        a_hp(1) = m_hp1 
        a_hp(2) = m_hp2       
        a_hp(3) = m_hp3 
        a_hp(4) = m_hp4  
; 
        a_sr(1) = m_yr1 
        a_sr(2) = m_yr2  
        a_sr(3) = m_yr3 
        a_sr(4) = m_yr4  
; 
        a_sr(5) = m_vr1 
        a_sr(6) = m_vr2 
        a_sr(7) = m_vr3 
; 
        a_al(1) = m_1a11    
        a_al(2) = m_1a22    
        a_al(3) = m_1a33 
        a_al(4) = m_1a12    
; 
        a_al(5) = m_2a11    
        a_al(6) = m_2a22    
        a_al(7) = m_2a33 
        a_al(8) = m_2a12    
; 
        a_al( 9) = m_3a11    
        a_al(10) = m_3a22    
        a_al(11) = m_3a33    
        a_al(12) = m_3a12    
; 
        a_al(13) = m_4a11    
        a_al(14) = m_4a22    
        a_al(15) = m_4a33    
        a_al(16) = m_4a12    
; 
        a_al(17) = m_1v11 
        a_al(18) = m_1v22    
        a_al(19) = m_1v33    
        a_al(20) = m_1v12    
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        a_al(21) = m_2v11    
        a_al(22) = m_2v22    
        a_al(23) = m_2v33    
        a_al(24) = m_2v12    
; 
        a_al(25) = m_3v11    
        a_al(26) = m_3v22    
        a_al(27) = m_3v33    
        a_al(28) = m_3v12    
; 
;For nys = 6: 
      Case 6 
; 
        a_hp(1) = m_hp1 
        a_hp(2) = m_hp2       
        a_hp(3) = m_hp3 
        a_hp(4) = m_hp4  
        a_hp(5) = m_hp5 
        a_hp(6) = m_hp6  
; 
        a_sr(1) = m_yr1 
        a_sr(2) = m_yr2  
        a_sr(3) = m_yr3 
        a_sr(4) = m_yr4  
        a_sr(5) = m_yr5 
        a_sr(6) = m_yr6  
; 
        a_sr( 7) = m_vr1 
        a_sr( 8) = m_vr2 
        a_sr( 9) = m_vr3 
        a_sr(10) = m_vr4 
        a_sr(11) = m_vr5 
; 
        a_al(1) = m_1a11    
        a_al(2) = m_1a22    
        a_al(3) = m_1a33 
        a_al(4) = m_1a12    
; 
        a_al(5) = m_2a11    
        a_al(6) = m_2a22    
        a_al(7) = m_2a33 
        a_al(8) = m_2a12    
; 
        a_al( 9) = m_3a11    
        a_al(10) = m_3a22    
        a_al(11) = m_3a33    
        a_al(12) = m_3a12    
; 
        a_al(13) = m_4a11    
        a_al(14) = m_4a22    
        a_al(15) = m_4a33    
        a_al(16) = m_4a12    
; 
        a_al(17) = m_5a11    
        a_al(18) = m_5a22    
        a_al(19) = m_5a33    
        a_al(20) = m_5a12    
; 
        a_al(21) = m_6a11    
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        a_al(22) = m_6a22    
        a_al(23) = m_6a33    
        a_al(24) = m_6a12    
; 
        a_al(25) = m_1v11 
        a_al(26) = m_1v22    
        a_al(27) = m_1v33    
        a_al(28) = m_1v12    
; 
        a_al(29) = m_2v11    
        a_al(30) = m_2v22    
        a_al(31) = m_2v33    
        a_al(32) = m_2v12    
; 
        a_al(33) = m_3v11    
        a_al(34) = m_3v22    
        a_al(35) = m_3v33    
        a_al(36) = m_3v12    
; 
        a_al(37) = m_4v11    
        a_al(38) = m_4v22    
        a_al(39) = m_4v33    
        a_al(40) = m_4v12    
; 
        a_al(41) = m_5v11    
        a_al(42) = m_5v22    
        a_al(43) = m_5v33    
        a_al(44) = m_5v12    
; 
;For nys = 8: 
      Case 8 
; 
        a_hp(1) = m_hp1 
        a_hp(2) = m_hp2       
        a_hp(3) = m_hp3 
        a_hp(4) = m_hp4  
        a_hp(5) = m_hp5 
        a_hp(6) = m_hp6  
        a_hp(7) = m_hp7 
        a_hp(8) = m_hp8  
; 
        a_sr(1) = m_yr1 
        a_sr(2) = m_yr2  
        a_sr(3) = m_yr3 
        a_sr(4) = m_yr4  
        a_sr(5) = m_yr5 
        a_sr(6) = m_yr6  
        a_sr(7) = m_yr7 
        a_sr(8) = m_yr8  
; 
        a_sr( 9) = m_vr1 
        a_sr(10) = m_vr2 
        a_sr(11) = m_vr3 
        a_sr(12) = m_vr4 
        a_sr(13) = m_vr5 
        a_sr(14) = m_vr6 
        a_sr(15) = m_vr7 
; 
        a_al(1) = m_1a11    
        a_al(2) = m_1a22    



  429 

        a_al(3) = m_1a33 
        a_al(4) = m_1a12    
; 
        a_al(5) = m_2a11    
        a_al(6) = m_2a22    
        a_al(7) = m_2a33 
        a_al(8) = m_2a12    
; 
        a_al( 9) = m_3a11    
        a_al(10) = m_3a22    
        a_al(11) = m_3a33    
        a_al(12) = m_3a12    
; 
        a_al(13) = m_4a11    
        a_al(14) = m_4a22    
        a_al(15) = m_4a33    
        a_al(16) = m_4a12    
; 
        a_al(17) = m_5a11    
        a_al(18) = m_5a22    
        a_al(19) = m_5a33    
        a_al(20) = m_5a12    
; 
        a_al(21) = m_6a11    
        a_al(22) = m_6a22    
        a_al(23) = m_6a33    
        a_al(24) = m_6a12    
; 
        a_al(25) = m_7a11    
        a_al(26) = m_7a22    
        a_al(27) = m_7a33    
        a_al(28) = m_7a12    
; 
        a_al(29) = m_8a11    
        a_al(30) = m_8a22    
        a_al(31) = m_8a33    
        a_al(32) = m_8a12    
; 
        a_al(33) = m_1v11 
        a_al(34) = m_1v22    
        a_al(35) = m_1v33    
        a_al(36) = m_1v12    
 
        a_al(37) = m_2v11    
        a_al(38) = m_2v22    
        a_al(39) = m_2v33    
        a_al(40) = m_2v12    
; 
        a_al(41) = m_3v11    
        a_al(42) = m_3v22    
        a_al(43) = m_3v33    
        a_al(44) = m_3v12    
; 
        a_al(45) = m_4v11    
        a_al(46) = m_4v22    
        a_al(47) = m_4v33    
        a_al(48) = m_4v12    
; 
        a_al(49) = m_5v11    
        a_al(50) = m_5v22    



  430 

        a_al(51) = m_5v33    
        a_al(52) = m_5v12    
; 
        a_al(53) = m_6v11    
        a_al(54) = m_6v22    
        a_al(55) = m_6v33    
        a_al(56) = m_6v12    
; 
        a_al(57) = m_7v11    
        a_al(58) = m_7v22    
        a_al(59) = m_7v33    
        a_al(60) = m_7v12    
; 
;For nys = 10: 
      Case 10 
; 
        a_hp( 1) = m_hp1 
        a_hp( 2) = m_hp2       
        a_hp( 3) = m_hp3 
        a_hp( 4) = m_hp4  
        a_hp( 5) = m_hp5 
        a_hp( 6) = m_hp6  
        a_hp( 7) = m_hp7 
        a_hp( 8) = m_hp8  
        a_hp( 9) = m_hp9 
        a_hp(10) = m_hp10 
; 
        a_sr( 1) = m_yr1 
        a_sr( 2) = m_yr2  
        a_sr( 3) = m_yr3 
        a_sr( 4) = m_yr4  
        a_sr( 5) = m_yr5 
        a_sr( 6) = m_yr6  
        a_sr( 7) = m_yr7 
        a_sr( 8) = m_yr8  
        a_sr( 9) = m_yr9 
        a_sr(10) = m_yr10 
; 
        a_sr(11) = m_vr1 
        a_sr(12) = m_vr2 
        a_sr(13) = m_vr3 
        a_sr(14) = m_vr4 
        a_sr(15) = m_vr5 
        a_sr(16) = m_vr6 
        a_sr(17) = m_vr7 
        a_sr(18) = m_vr8 
        a_sr(19) = m_vr9 
; 
        a_al(1) = m_1a11    
        a_al(2) = m_1a22    
        a_al(3) = m_1a33 
        a_al(4) = m_1a12    
; 
        a_al(5) = m_2a11    
        a_al(6) = m_2a22    
        a_al(7) = m_2a33 
        a_al(8) = m_2a12    
; 
        a_al( 9) = m_3a11    
        a_al(10) = m_3a22    
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        a_al(11) = m_3a33    
        a_al(12) = m_3a12    
; 
        a_al(13) = m_4a11    
        a_al(14) = m_4a22    
        a_al(15) = m_4a33    
        a_al(16) = m_4a12    
; 
        a_al(17) = m_5a11    
        a_al(18) = m_5a22    
        a_al(19) = m_5a33    
        a_al(20) = m_5a12    
; 
        a_al(21) = m_6a11    
        a_al(22) = m_6a22    
        a_al(23) = m_6a33    
        a_al(24) = m_6a12    
; 
        a_al(25) = m_7a11    
        a_al(26) = m_7a22    
        a_al(27) = m_7a33    
        a_al(28) = m_7a12    
; 
        a_al(29) = m_8a11    
        a_al(30) = m_8a22    
        a_al(31) = m_8a33    
        a_al(32) = m_8a12    
; 
        a_al(33) = m_9a11    
        a_al(34) = m_9a22    
        a_al(35) = m_9a33    
        a_al(36) = m_9a12    
; 
        a_al(37) = m_10a11    
        a_al(38) = m_10a22    
        a_al(39) = m_10a33    
        a_al(40) = m_10a12    
; 
        a_al(41) = m_1v11 
        a_al(42) = m_1v22    
        a_al(43) = m_1v33    
        a_al(44) = m_1v12    
 
        a_al(45) = m_2v11    
        a_al(46) = m_2v22    
        a_al(47) = m_2v33    
        a_al(48) = m_2v12    
; 
        a_al(49) = m_3v11    
        a_al(50) = m_3v22    
        a_al(51) = m_3v33    
        a_al(52) = m_3v12    
; 
        a_al(53) = m_4v11    
        a_al(54) = m_4v22    
        a_al(55) = m_4v33    
        a_al(56) = m_4v12    
; 
        a_al(57) = m_5v11    
        a_al(58) = m_5v22    
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        a_al(59) = m_5v33    
        a_al(60) = m_5v12    
; 
        a_al(61) = m_6v11    
        a_al(62) = m_6v22    
        a_al(63) = m_6v33    
        a_al(64) = m_6v12    
; 
        a_al(65) = m_7v11    
        a_al(66) = m_7v22    
        a_al(67) = m_7v33    
        a_al(68) = m_7v12    
; 
        a_al(69) = m_8v11    
        a_al(70) = m_8v22    
        a_al(71) = m_8v33    
        a_al(72) = m_8v12    
; 
        a_al(73) = m_9v11    
        a_al(74) = m_9v22    
        a_al(75) = m_9v33    
        a_al(76) = m_9v12    
; 
    End_case 
;..................................................................... 
;STEP 1: get new trial stresses from old, assuming elastic increments.. 
; 
    $s11i = zs11 + zde11 * m_e1 + (zde22 + zde33) * m_e2  
    $s22i = zs22 + zde22 * m_e1 + (zde33 + zde11) * m_e2  
    $s33i = zs33 + zde33 * m_e1 + (zde11 + zde22) * m_e2  
    $s12i = zs12 + zde12 * m_g2 
; 
;.....mean normal trial stress..... 
; 
    $smi = ($s11i + $s22i + $s33i) / 3.0 
; 
;.....update stresses for plastic process..... 
;..................................................................... 
;STEP 2: check for isotropic extension..... 
; 
    if $smi > m_ten then 
      $s11i = $s11i - ($smi-m_ten) - 1.0e-12          ;10/07/97 
      $s22i = $s22i - ($smi-m_ten) - 1.0e-12 
      $s33i = $s33i - ($smi-m_ten) - 1.0e-12 
      $smi  = m_ten - 1.0e-12                         ;10/07/97 
    end_if 
; 
;.....deviatoric trial stresses..... 
; 
    $s11d = $s11i - $smi 
    $s22d = $s22i - $smi 
    $s33d = $s33i - $smi 
    $s12d = $s12i  
;..................................................................... 
;STEP 3: calculate radii at current pressure.....  
;(yield surfaces correction for pressure dependancy)  ;12/28/97 
; 
    $fi = m_prag1 - 3.0*$smi*m_prag2 
    $fr = m_prag1 + 3.0*m_pp*m_prag2 
; 
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    $fratio = $fi/$fr 
; 
    loop k7m (1,$nys2) 
      a_sr_l(k7m) = a_sr(k7m)*$fratio                 ; ysr(.) at P  
    end_loop 
; 
;.....put back stresses into a localized array..... 
    loop k8m (1,$nys2) 
      loop k9m (1,$nrowb) 
        kal_m1         = $nrowb*(k8m-1)+k9m 
        a_al_l(kal_m1) = a_al(kal_m1)*$fratio    ;08/06/98, alpha(.) at P!!     
      end_loop 
    end_loop 
;..................................................................... 
;STEP 4: calculate trial xi stresses w.r. to the 1st Y.S...... 
; 
    $x11i = $s11d - a_al_l(1)  
    $x22i = $s22d - a_al_l(2)  
    $x33i = $s33d - a_al_l(3) 
    $x12i = $s12d - a_al_l(4) 
; 
    $xim  = $x11i*$x11i+$x22i*$x22i+$x33i*$x33i+2.0*$x12i*$x12i 
    $xim  = sqrt($xim) 
; 
;.....check if elastic process really occurs..... 
;--------------------------------------------------------------------- 
    Section 
      if $xim <= a_sr_l(1) then      
; --- no failure, elastic process--- 
        zs11 = $s11i 
        zs22 = $s22i 
        zs33 = $s33i 
        zs12 = $s12i 
; 
        exit section 
      end_if 
;..................................................................... 
;STEP 5: loop over V.S. to find the active Y.S...... 
; 
      $nysm = 1 
; 
      loop k2m (1,$nysj) 
; 
;..... calculate xi, xi dev. and norm, w.r. to V.S.'s 
; 
        kal_m1 = $nrowb*($nys+k2m-1) 
; 
        $x11i = $s11d - a_al_l(kal_m1+1) 
        $x22i = $s22d - a_al_l(kal_m1+2)  
        $x33i = $s33d - a_al_l(kal_m1+3)  
        $x12i = $s12d - a_al_l(kal_m1+4) 
; 
        $xim = $x11i*$x11i+$x22i*$x22i+$x33i*$x33i+2.0*$x12i*$x12i 
        $xim = sqrt($xim) 
; 
;.....check which yield surface is active..... 
; 
        if $xim >= a_sr_l($nys+k2m) then       
          $nysm = k2m + 1       
        end_if 
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; 
      end_loop 
 
;STEP 6: calculate xi stresses and unit normal for the active Y.S..... 
; 
      kal_m1m = $nrowb*($nysm-1) 
; 
      $x11i = $s11d - a_al_l(kal_m1m+1) 
      $x22i = $s22d - a_al_l(kal_m1m+2) 
      $x33i = $s33d - a_al_l(kal_m1m+3)  
      $x12i = $s12d - a_al_l(kal_m1m+4) 
; 
      $xim = $x11i*$x11i+$x22i*$x22i+$x33i*$x33i+2.0*$x12i*$x12i 
      $xim = sqrt($xim) 
; 
      $x11n = $x11i / $xim  
      $x22n = $x22i / $xim  
      $x33n = $x33i / $xim  
      $x12n = $x12i / $xim 
;..................................................................... 
;STEP 7: perform the intermediate stress update 
; 
;.....loop over inner Y.S., update trial stresses & outer V.S.'s... 
; 
; 
      if $nysm > 1 then 
; 
        loop i1m (1,$nysm-1) 
; 
;.....calculate mu..... 
; 
          kal    =  $nrowb*i1m 
          kal_m1 =  $nrowb*(i1m-1) 
; 
          $xx    = a_al_l(kal+1)    + $x11n*a_sr_l(i1m+1) 
          $yy    = a_al_l(kal_m1+1) + $x11n*a_sr_l(i1m) 
          $amu11 = $xx - $yy  
; 
          $xx    = a_al_l(kal+2)    + $x22n*a_sr_l(i1m+1) 
          $yy    = a_al_l(kal_m1+2) + $x22n*a_sr_l(i1m) 
          $amu22 = $xx - $yy 
; 
          $xx    = a_al_l(kal+3)    + $x33n*a_sr_l(i1m+1) 
          $yy    = a_al_l(kal_m1+3) + $x33n*a_sr_l(i1m)         
          $amu33 = $xx - $yy 
; 
          $xx    = a_al_l(kal+4)    + $x12n*a_sr_l(i1m+1) 
          $yy    = a_al_l(kal_m1+4) + $x12n*a_sr_l(i1m) 
          $amu12 = $xx - $yy 
; 
;.....intermediate update of trial stresses..... 
; 
          $g_hp = m_g2/a_hp(i1m) 
; 
          $am = $amu11*$x11n+$amu22*$x22n+$amu33*$x33n+2.0*$amu12*$x12n 
          $am = $g_hp*$am 
; 
          $s11i = $s11i - $am*$x11n 
          $s22i = $s22i - $am*$x22n 
          $s33i = $s33i - $am*$x33n 
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          $s12i = $s12i - $am*$x12n 
; 
;.....intermediate update of outer V. S.'s..... 
; 
          if $nysm < $nysj then 
            loop k3m ($nysm, $nysj-1) 
              kal_m1 = $nrowb*($nys+k3m-1) 
; 
              a_al_l(kal_m1+1) = a_al_l(kal_m1+1) - $g_hp*$amu11 
              a_al_l(kal_m1+2) = a_al_l(kal_m1+2) - $g_hp*$amu22 
              a_al_l(kal_m1+3) = a_al_l(kal_m1+3) - $g_hp*$amu33 
              a_al_l(kal_m1+4) = a_al_l(kal_m1+4) - $g_hp*$amu12 
; 
            end_loop 
          end_if 
; 
        end_loop 
; 
      end_if 
;..................................................................... 
;STEP 8: final update of active Y.S. & outer V.S.'s..... 
; 
;.....mean normal trial stress..... 
; 
;      $smi = ($s11i + $s22i + $s33i) / 3.0 
; 
;.....deviatoric stress..... 
; 
      $s11d = $s11i - $smi 
      $s22d = $s22i - $smi 
      $s33d = $s33i - $smi 
      $s12d = $s12i  
 
;.....calculate lambda..... 
; 
      kal_m1m = $nrowb*($nysm-1) 
; 
      $x11i = $s11d - a_al_l(kal_m1m+1)  
      $x22i = $s22d - a_al_l(kal_m1m+2)  
      $x33i = $s33d - a_al_l(kal_m1m+3) 
      $x12i = $s12d - a_al_l(kal_m1m+4) 
; 
      $xim = $x11i*$x11i+$x22i*$x22i+$x33i*$x33i+2.0*$x12i*$x12i 
      $xim = sqrt($xim) 
; 
      $hp_m = a_hp($nysm) 
; 
      if $nysm = $nys then 
        $g_hp_m = 0.0 
      else 
        $g_hp_m = m_g2/$hp_m 
      end_if 
; 
      $lcoef = 1.0/(m_g2+$hp_m) 
;         
      $alamda = $lcoef*($xim-a_sr_l($nysm)) 
;.................................................................................. 
;.................................................................................. 
; 
;STEP 8.2: one of the inner surfaces is active 
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; 
     if $nysm < $nysj then                 ;M.A 
;  
        kal_m = $nrowb*$nysm 
; 
        $xx = a_al_l(kal_m  +1) + $x11n*a_sr_l($nysm+1) 
        $yy = a_al_l(kal_m1m+1) + $x11n*a_sr_l($nysm) 
        $amu11 = $xx - $yy  
        $xx = a_al_l(kal_m  +2) + $x22n*a_sr_l($nysm+1) 
        $yy = a_al_l(kal_m1m+2) + $x22n*a_sr_l($nysm) 
        $amu22 = $xx - $yy  
        $xx = a_al_l(kal_m  +3) + $x33n*a_sr_l($nysm+1) 
        $yy = a_al_l(kal_m1m+3) + $x33n*a_sr_l($nysm) 
        $amu33 = $xx - $yy  
        $xx = a_al_l(kal_m  +4) + $x12n*a_sr_l($nysm+1) 
        $yy = a_al_l(kal_m1m+4) + $x12n*a_sr_l($nysm) 
        $amu12 = $xx - $yy  
; 
        $xim = $x11n*$amu11+$x22n*$amu22+$x33n*$amu33 
        $xim = $xim + 2.0*$x12n*$amu12 
;    
        $amroz  = $hp_m*$alamda/$xim 
; 
;.....update active back stress of the active surface  
;    
        a_al_l(kal_m1m+1) = a_al_l(kal_m1m+1) + $amroz*$amu11    
        a_al_l(kal_m1m+2) = a_al_l(kal_m1m+2) + $amroz*$amu22    
        a_al_l(kal_m1m+3) = a_al_l(kal_m1m+3) + $amroz*$amu33    
        a_al_l(kal_m1m+4) = a_al_l(kal_m1m+4) + $amroz*$amu12 
; 
;.....update active back stress of the outer V.S.'s 
; 
        loop k4m ($nysm,$nysj) 
          kal_m1 = $nrowb*($nys+k4m-1) 
; 
          a_al_l(kal_m1+1)=a_al_l(kal_m1+1)-$g_hp_m*$amroz*$amu11 
          a_al_l(kal_m1+2)=a_al_l(kal_m1+2)-$g_hp_m*$amroz*$amu22 
          a_al_l(kal_m1+3)=a_al_l(kal_m1+3)-$g_hp_m*$amroz*$amu33 
          a_al_l(kal_m1+4)=a_al_l(kal_m1+4)-$g_hp_m*$amroz*$amu12 
; 
        end_loop 
; 
;STEP 8.2.1: update unit normal for the active Y.S...... 
; 
        $x11n = $s11d - a_al_l(kal_m1m+1)  
        $x22n = $s22d - a_al_l(kal_m1m+2)  
        $x33n = $s33d - a_al_l(kal_m1m+3)  
        $x12n = $s12d - a_al_l(kal_m1m+4) 
; 
        $xim = $x11n*$x11n+$x22n*$x22n+$x33n*$x33n 
        $xim = $xim + 2.0*$x12n*$x12n 
        $xim = sqrt($xim) 
; 
        $x11n = $x11n / $xim  
        $x22n = $x22n / $xim  
        $x33n = $x33n / $xim  
        $x12n = $x12n / $xim 
;STEP 9: final update of trial stresses..... 
; 
        zs11 = a_al_l(kal_m1m+1) + a_sr_l($nysm)*$x11n + $smi 
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        zs22 = a_al_l(kal_m1m+2) + a_sr_l($nysm)*$x22n + $smi 
        zs33 = a_al_l(kal_m1m+3) + a_sr_l($nysm)*$x33n + $smi 
        zs12 = a_al_l(kal_m1m+4) + a_sr_l($nysm)*$x12n 
 
      end_if 
 
 
;..................................................................... 
;STEP 5-1: the softening surface is active, i.e., m = nys-1                     ; by M.A 03/17/10 
;..................................................................... 
; 
if  $nysm = $nysj then 
;.................................................................................. 
;STEP 5-1.3: ;..Update the radius of the active yield surface update the stress....       ; by M.A 03/17/10 
;.................................................................................. 
;   
     a_sr_l($nysm) = a_sr_l($nysm) + $hp_m * $alamda   
 
;STEP 9: final update of trial stresses..... 
; 
     if a_sr_l($nysm) <= a_sr_l($nys) then 
  a_sr_l($nysm) = a_sr_l($nys) 
  $nysm = $nys  
     end_if 
; 
     if  $nysm = $nysj then 
        zs11 =  a_sr_l($nysm)*$x11n + $smi 
        zs22 =  a_sr_l($nysm)*$x22n + $smi 
        zs33 =  a_sr_l($nysm)*$x33n + $smi 
        zs12 =  a_sr_l($nysm)*$x12n 
; 
;.................................................................................. 
;STEP 5-1.5: ;..; search for the biggest yeidl surface j, such that Rj< Rm               ; by M.A 03/17/10 
;..................................................................................        ; update the radius MA 
; 
  loop i6m (1,$nysm-1) 
         if a_sr_l(i6m) < a_sr_l($nysm) then      
              $nbysj1 = i6m       
           end_if 
        end_loop 
; 
; 
;.................................................................................. 
;STEP 5-1.6: ;..; Update virtuial radius coressponding to yield surface $nbysj1....           ; by M.A 03/17/10 
;..................................................................................        ; update the radius MA 
; 
  if $nbysj1 = 1 then 
; 
    $hp_m1   = a_hp(1) 
    $g_hp_m1 = m_g2/$hp_m1  
; 
   $temp_2 = ( a_sr_l($nysm) - a_sr_l(1) )*(1.0+$g_hp_m1) 
    a_sr_l($nbysj1+$nys) = a_sr_l(1) + $temp_2  
       else 
     $hp_mj1   = a_hp($nbysj1) 
    $g_hp_mj1 = m_g2/$hp_mj1  
; 
     $temp_1   = (a_sr_l($nysm)-a_sr_l($nbysj1))*(1.0+$g_hp_mj1) 
     a_sr_l($nbysj1+$nys) = a_sr_l($nbysj1+$nys-1) + $temp_1 
; 
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       end_if 
;.................................................................................. 
;STEP 5-1.7: Collapse all yield surfaces that are bigger than the active one   ....      ; by M.A 03/17/10 
;..................................................................................        ; update the radius MA 
; 
     if $nbysj1 < $nysm-1 then 
; 
    loop i7m ($nbysj1+1 , $nysm-1)  
        a_sr_l(i7m) = a_sr_l($nysj) 
        a_sr_l(i7m+$nys) = a_sr_l($nbysj1+$nys)   
          end_loop 
; 
       end_if 
; 
;.................................................................................. 
;STEP 5-1.8: Update the virtuial surface nys -1                                ....       ; by M.A 03/17/10 
;.................................................................................. 
; 
  $temp_3 = (a_sr_l($nysm+1)-a_sr_l($nysm))*(1.0+$g_hp_m)                          ;M.A 
   a_sr_l($nysm+$nys) = a_sr_l($nysm+$nys-1) + $temp_3  
; 
 
      end_if 
end_if 
;.................................................................................. 
;STEP 5-2.: the outer most surface is active, i.e., m = nys                  ......              ; by M.A 03/17/10 
;.................................................................................. 
; 
   if $nysm = $nys then  
;.................................................................................. 
;STEP 5-2.2: final update of trial stresses                                  ......         ; by M.A 03/17/10 
;.................................................................................. 
; 
         zs11 = a_sr_l($nysm)*$x11n + $smi 
         zs22 = a_sr_l($nysm)*$x22n + $smi 
         zs33 = a_sr_l($nysm)*$x33n + $smi 
         zs12 = a_sr_l($nysm)*$x12n 
; 
;.................................................................................. 
;STEP 5-2.3: search for the biggest yeidl surface j, such that Rj< Rm                       ; by M.A 03/17/10 
;.................................................................................. 
; 
   loop _i8m (1,$nysj) 
; 
        if a_sr_l(_i8m) < a_sr_l($nys) then   
;     
    $_j100 = _i8m       
; 
         end_if 
   end_loop 
;.................................................................................. 
;STEP 5-2.4: Update last virtuial surface                             ......       ; by M.A 03/17/10 
;.................................................................................. 
; 
   if $_j100 = 1 then 
; 
    $hp_m1 = a_hp(1) 
; 
    $g_hp_m1 = m_g2/$hp_m1  
; 
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    $temp_4 = (a_sr_l($nysm)-a_sr_l(1))*(1.0+$g_hp_m1) 
; 
    a_sr_l($_j100+$nys) = a_sr_l(1) + $temp_4 
; 
    else 
     $hp_mjjj = a_hp($_j100) 
;  
     $g_hp_mjjj = m_g2/$hp_mjjj 
;  
    $temp_5 = (a_sr_l($nysm)-a_sr_l($_j100))*(1.0+$g_hp_mjjj) 
; 
     a_sr_l($_j100+$nys) = a_sr_l($_j100+$nys-1) + $temp_5 
; 
        end_if 
;.................................................................................. 
;STEP 5-2.4: Collapse all yield surfaces that are bigger than the active one   ....  .        ; by M.A 03/17/10 
;.................................................................................. 
; 
    loop _i9m ($_j100+1,$nys-1)  
; 
      a_sr_l(_i9m) = a_sr_l($nys) 
; 
      a_sr_l(_i9m +$nys) = a_sr_l($_j100+$nys) 
   end_loop  
  end_if 
; 
; 
;.................................................................................. 
;.................................................................................. 
; 
; 
;.....calculate active back stresses evolution..... 
;  
;STEP 10: update back stresses for inner Y. and V. surfaces ..... 
; 
      if $nysm > 1 then 
        loop i5m (1,$nysm-1) 
          $xx = a_sr_l($nysm)   -a_sr_l(i5m) 
          $yy = a_sr_l($nys+i5m)-a_sr_l($nysm) 
; 
          kal_m1 = $nrowb*(i5m-1) 
          kal_p1 = $nrowb*(i5m-1+$nys) 
; 
          a_al_l(kal_m1+1) = a_al_l(kal_m1m+1) + $xx*$x11n 
          a_al_l(kal_p1+1) = a_al_l(kal_m1m+1) - $yy*$x11n 
; 
          a_al_l(kal_m1+2) = a_al_l(kal_m1m+2) + $xx*$x22n 
          a_al_l(kal_p1+2) = a_al_l(kal_m1m+2) - $yy*$x22n 
; 
          a_al_l(kal_m1+3) = a_al_l(kal_m1m+3) + $xx*$x33n 
          a_al_l(kal_p1+3) = a_al_l(kal_m1m+3) - $yy*$x33n 
; 
          a_al_l(kal_m1+4) = a_al_l(kal_m1m+4) + $xx*$x12n 
          a_al_l(kal_p1+4) = a_al_l(kal_m1m+4) - $yy*$x12n 
; 
        end_loop 
; 
 end_if 
; 
;.....end of plastic correction 
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; 
      if $nysm = $nys then        ;add on 05/10/97 
        zvisc = 0.0 
      end_if                      ;add on 05/10/97 
;         
    End_section 
;--------------------------------------------------------------------- 
;STEP 11: update zone parameters: 
; 
;.....calculate new average confining pressure..... 
; 
    $sp    =-(zs11 + zs22 + zs33) / 3.0 
    $sum_p = $sum_p + $sp 
; 
;    loop k8m (1,$nys2) 
;      loop k9m (1,$nrowb) 
;        kal          = $nrowb*(k8m-1) + k9m 
;        $sum_al(kal) = $sum_al(kal)   + a_al_l(kal)         
;      end_loop 
;    end_loop 
; 
    if zsub > 0.0 then 
      $p_o = m_pp 
      m_pp  = $sum_p  / zsub 
;        
;.....calculate radii at new average confining pressure..... 
; 
      $fi = m_prag1 + 3.0*m_pp*m_prag2 
      $fr = m_prag1 + 3.0*$p_o*m_prag2 
; 
      loop k7m (1,$nys2) 
        a_sr_l(k7m) = a_sr_l(k7m)/$fratio                 ; ysr(.) at P  
      end_loop 
; 
      $fratio = $fi/$fr 
; 
      loop k7m (1,$nys2) 
        a_sr_l(k7m) = a_sr_l(k7m)*$fratio                 ; ysr(.) at P  
      end_loop 
        a_sr ($nys) = a_sr ($nys)*$fratio 
; 
;.....calculate average back stresses.....      ;12/29/97: 
; 
;      loop k8m (1,$nys2) 
;        loop k9m (1,$nrowb) 
;          kal       = $nrowb*(k8m-1) + k9m 
;          a_al(kal) = $sum_al(kal) / zsub          
;        end_loop 
;      end_loop 
 
;--------------------------------------------------------------------- 
;.....reset for next zone..... 
; 
      $sum_p   = 0.0 
; 
;      loop k8m (1,$nys2) 
;        loop k9m (1,$nrowb) 
;          kal          = $nrowb*(k8m-1) + k9m 
;          $sum_al(kal) = 0.0          
;        end_loop 
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;      end_loop 
; 
;.....put table values back to model properties and state variables..... 
; 
      Case_of $nys 
; 
;For nys=2: 
        Case 2 
; 
          m_yr1 = a_sr_l(1)  
          m_yr2 = a_sr(2)    
; 
          m_vr1 = a_sr_l(3) 
; 
          m_1a11 = a_al_l(1)      
          m_1a22 = a_al_l(2)    
          m_1a33 = a_al_l(3)     
          m_1a12 = a_al_l(4)      
; 
          m_2a11 = a_al_l(5)      
          m_2a22 = a_al_l(6)     
          m_2a33 = a_al_l(7)      
          m_2a12 = a_al_l(8)      
; 
          m_1v11 = a_al_l( 9)      
          m_1v22 = a_al_l(10)    
          m_1v33 = a_al_l(11)     
          m_1v12 = a_al_l(12)      
; 
;For nys=4: 
        Case 4 
; 
          m_yr1 = a_sr_l(1)  
          m_yr2 = a_sr_l(2)    
          m_yr3 = a_sr_l(3)   
          m_yr4 = a_sr(4)   
; 
          m_vr1 = a_sr_l(5) 
          m_vr2 = a_sr_l(6)  
          m_vr3 = a_sr_l(7)  
; 
          m_1a11 = a_al_l(1)      
          m_1a22 = a_al_l(2)    
          m_1a33 = a_al_l(3)     
          m_1a12 = a_al_l(4)      
; 
          m_2a11 = a_al_l(5)      
          m_2a22 = a_al_l(6)     
          m_2a33 = a_al_l(7)      
          m_2a12 = a_al_l(8)      
; 
          m_3a11 = a_al( 9)      
          m_3a22 = a_al(10)      
          m_3a33 = a_al(11)     
          m_3a12 = a_al(12)      
; 
          m_4a11 = a_al(13)      
          m_4a22 = a_al(14)      
          m_4a33 = a_al(15)     
          m_4a12 = a_al(16)      
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; 
          m_1v11 = a_al_l(17)     
          m_1v22 = a_al_l(18)    
          m_1v33 = a_al_l(19)     
          m_1v12 = a_al_l(20)      
; 
          m_2v11 = a_al_l(21) 
          m_2v22 = a_al_l(22)   
          m_2v33 = a_al_l(23)      
          m_2v12 = a_al_l(24)      
; 
          m_3v11 = a_al(25)      
          m_3v22 = a_al(26)      
          m_3v33 = a_al(27)     
          m_3v12 = a_al(28)     
; 
;For nys=6: 
        Case 6 
; 
          m_yr1 = a_sr_l(1)  
          m_yr2 = a_sr_l(2)    
          m_yr3 = a_sr_l(3)   
          m_yr4 = a_sr_l(4)   
          m_yr5 = a_sr_l(5)   
          m_yr6 = a_sr(6)   
; 
          m_vr1 = a_sr_l( 7) 
          m_vr2 = a_sr_l( 8)  
          m_vr3 = a_sr_l( 9)  
          m_vr4 = a_sr_l(10)   
          m_vr5 = a_sr_l(11)   
; 
          m_1a11 = a_al_l(1)      
          m_1a22 = a_al_l(2)    
          m_1a33 = a_al_l(3)     
          m_1a12 = a_al_l(4)      
; 
          m_2a11 = a_al_l(5)      
          m_2a22 = a_al_l(6)     
          m_2a33 = a_al_l(7)      
          m_2a12 = a_al_l(8)      
; 
          m_3a11 = a_al_l( 9)      
          m_3a22 = a_al_l(10)      
          m_3a33 = a_al_l(11)     
          m_3a12 = a_al_l(12)      
; 
          m_4a11 = a_al_l(13)      
          m_4a22 = a_al_l(14)      
          m_4a33 = a_al_l(15)     
          m_4a12 = a_al_l(16)      
; 
          m_5a11 = a_al(17)      
          m_5a22 = a_al(18)      
          m_5a33 = a_al(19)     
          m_5a12 = a_al(20)      
; 
          m_6a11 = a_al(21)      
          m_6a22 = a_al(22)      
          m_6a33 = a_al(23)     
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          m_6a12 = a_al(24)      
; 
          m_1v11 = a_al_l(25)     
          m_1v22 = a_al_l(26)    
          m_1v33 = a_al_l(27)     
          m_1v12 = a_al_l(28)      
; 
          m_2v11 = a_al_l(29) 
          m_2v22 = a_al_l(30)   
          m_2v33 = a_al_l(31)      
          m_2v12 = a_al_l(32)      
; 
          m_3v11 = a_al_l(33)      
          m_3v22 = a_al_l(34)      
          m_3v33 = a_al_l(35)     
          m_3v12 = a_al_l(36)     
; 
          m_4v11 = a_al_l(37)      
          m_4v22 = a_al_l(38)     
          m_4v33 = a_al_l(39)      
          m_4v12 = a_al_l(40)      
; 
          m_5v11 = a_al(41)      
          m_5v22 = a_al(42)      
          m_5v33 = a_al(43)     
          m_5v12 = a_al(44)     
; 
;For nys=8: 
        Case 8 
; 
          m_yr1 = a_sr_l(1)  
          m_yr2 = a_sr_l(2)    
          m_yr3 = a_sr_l(3)   
          m_yr4 = a_sr_l(4)   
          m_yr5 = a_sr_l(5)   
          m_yr6 = a_sr_l(6)   
          m_yr7 = a_sr_l(7)   
          m_yr8 = a_sr(8)   
; 
          m_vr1 = a_sr_l( 9) 
          m_vr2 = a_sr_l(10)  
          m_vr3 = a_sr_l(11)  
          m_vr4 = a_sr_l(12)   
          m_vr5 = a_sr_l(13)   
          m_vr6 = a_sr_l(14)   
          m_vr7 = a_sr_l(15)   
; 
          m_1a11 = a_al_l(1)      
          m_1a22 = a_al_l(2)    
          m_1a33 = a_al_l(3)     
          m_1a12 = a_al_l(4)      
; 
          m_2a11 = a_al_l(5)      
          m_2a22 = a_al_l(6)     
          m_2a33 = a_al_l(7)      
          m_2a12 = a_al_l(8)      
; 
          m_3a11 = a_al_l( 9)      
          m_3a22 = a_al_l(10)      
          m_3a33 = a_al_l(11)     
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          m_3a12 = a_al_l(12)      
; 
          m_4a11 = a_al_l(13)      
          m_4a22 = a_al_l(14)      
          m_4a33 = a_al_l(15)     
          m_4a12 = a_al_l(16)      
; 
          m_5a11 = a_al_l(17)      
          m_5a22 = a_al_l(18)      
          m_5a33 = a_al_l(19)     
          m_5a12 = a_al_l(20)      
; 
          m_6a11 = a_al_l(21)      
          m_6a22 = a_al_l(22)      
          m_6a33 = a_al_l(23)     
          m_6a12 = a_al_l(24)      
; 
          m_7a11 = a_al(25) 
          m_7a22 = a_al(26)      
          m_7a33 = a_al(27)     
          m_7a12 = a_al(28)      
; 
          m_8a11 = a_al(29)      
          m_8a22 = a_al(30)      
          m_8a33 = a_al(31)     
          m_8a12 = a_al(32)      
; 
          m_1v11 = a_al_l(33)     
          m_1v22 = a_al_l(34)    
          m_1v33 = a_al_l(35)     
          m_1v12 = a_al_l(36)      
; 
          m_2v11 = a_al_l(37) 
          m_2v22 = a_al_l(38)   
          m_2v33 = a_al_l(39)      
          m_2v12 = a_al_l(40)      
; 
          m_3v11 = a_al_l(41)      
          m_3v22 = a_al_l(42)      
          m_3v33 = a_al_l(43)     
          m_3v12 = a_al_l(44)     
; 
          m_4v11 = a_al_l(45)      
          m_4v22 = a_al_l(46)     
          m_4v33 = a_al_l(47)      
          m_4v12 = a_al_l(48)      
; 
          m_5v11 = a_al_l(49)      
          m_5v22 = a_al_l(50)      
          m_5v33 = a_al_l(51)     
          m_5v12 = a_al_l(52)     
; 
          m_6v11 = a_al_l(53)      
          m_6v22 = a_al_l(54)     
          m_6v33 = a_al_l(55)      
          m_6v12 = a_al_l(56)      
; 
          m_7v11 = a_al(57)      
          m_7v22 = a_al(58)      
          m_7v33 = a_al(59)     
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          m_7v12 = a_al(60)     
; 
;For nys=10: 
        Case 10 
; 
          m_yr1  = a_sr_l( 1)  
          m_yr2  = a_sr_l( 2)    
          m_yr3  = a_sr_l( 3)   
          m_yr4  = a_sr_l( 4)   
          m_yr5  = a_sr_l( 5)   
          m_yr6  = a_sr_l( 6)   
          m_yr7  = a_sr_l( 7)   
          m_yr8  = a_sr_l( 8)   
          m_yr9  = a_sr_l( 9)   
          m_yr10 = a_sr(10)   
; 
          m_vr1 = a_sr_l(11) 
          m_vr2 = a_sr_l(12)  
          m_vr3 = a_sr_l(13)  
          m_vr4 = a_sr_l(14)   
          m_vr5 = a_sr_l(15)   
          m_vr6 = a_sr_l(16)   
          m_vr7 = a_sr_l(17)   
          m_vr8 = a_sr_l(18)   
          m_vr9 = a_sr_l(19)   
; 
          m_1a11 = a_al_l(1)      
          m_1a22 = a_al_l(2)    
          m_1a33 = a_al_l(3)     
          m_1a12 = a_al_l(4)      
; 
          m_2a11 = a_al_l(5)      
          m_2a22 = a_al_l(6)     
          m_2a33 = a_al_l(7)      
          m_2a12 = a_al_l(8)      
; 
          m_3a11 = a_al_l( 9)      
          m_3a22 = a_al_l(10)      
          m_3a33 = a_al_l(11)     
          m_3a12 = a_al_l(12)      
; 
          m_4a11 = a_al_l(13)      
          m_4a22 = a_al_l(14)      
          m_4a33 = a_al_l(15)     
          m_4a12 = a_al_l(16)      
; 
          m_5a11 = a_al_l(17)      
          m_5a22 = a_al_l(18)      
          m_5a33 = a_al_l(19)     
          m_5a12 = a_al_l(20)      
; 
          m_6a11 = a_al_l(21)      
          m_6a22 = a_al_l(22)      
          m_6a33 = a_al_l(23)     
          m_6a12 = a_al_l(24)      
; 
          m_7a11 = a_al_l(25) 
          m_7a22 = a_al_l(26)      
          m_7a33 = a_al_l(27)     
          m_7a12 = a_al_l(28)      
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; 
          m_8a11 = a_al_l(29)      
          m_8a22 = a_al_l(30)      
          m_8a33 = a_al_l(31)     
          m_8a12 = a_al_l(32)      
; 
          m_9a11 = a_al(33)      
          m_9a22 = a_al(34)      
          m_9a33 = a_al(35)     
          m_9a12 = a_al(36)      
; 
          m_10a11 = a_al(37)      
          m_10a22 = a_al(38)      
          m_10a33 = a_al(39)     
          m_10a12 = a_al(40)      
; 
          m_1v11 = a_al_l(41)     
          m_1v22 = a_al_l(42)    
          m_1v33 = a_al_l(43)     
          m_1v12 = a_al_l(44)      
; 
          m_2v11 = a_al_l(45) 
          m_2v22 = a_al_l(46)   
          m_2v33 = a_al_l(47)      
          m_2v12 = a_al_l(48)      
; 
          m_3v11 = a_al_l(49)      
          m_3v22 = a_al_l(50)      
          m_3v33 = a_al_l(51)     
          m_3v12 = a_al_l(52)     
; 
          m_4v11 = a_al_l(53)      
          m_4v22 = a_al_l(54)     
          m_4v33 = a_al_l(55)      
          m_4v12 = a_al_l(56)      
; 
          m_5v11 = a_al_l(57)      
          m_5v22 = a_al_l(58)      
          m_5v33 = a_al_l(59)     
          m_5v12 = a_al_l(60)     
; 
          m_6v11 = a_al_l(61)      
          m_6v22 = a_al_l(62)     
          m_6v33 = a_al_l(63)      
          m_6v12 = a_al_l(64)      
; 
          m_7v11 = a_al_l(65)      
          m_7v22 = a_al_l(66)      
          m_7v33 = a_al_l(67)     
          m_7v12 = a_al_l(68)     
; 
          m_8v11 = a_al_l(69)      
          m_8v22 = a_al_l(70)     
          m_8v33 = a_al_l(71)      
          m_8v12 = a_al_l(72)      
; 
          m_9v11 = a_al(73)      
          m_9v22 = a_al(74)      
          m_9v33 = a_al(75)     
          m_9v12 = a_al(76)     
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; 
      End_case 
; 
    end_if 
; 
;*********************************************************** 
  CASE 3 
; ---------------------- 
; Return maximum modulus 
; ---------------------- 
; 
    cm_max = (m_b + 4.0 * m_g / 3.0)*2.0           ;04/29/98  
    sm_max = m_g*2.0                               ;04/29/98 
; 
  END_CASE 
end 
opt y_myss 

 

  

 

 

 

 

 

 

 

 

 

 



  448 

APPENDIX C  

BEAM ELEMNT SUBROUTINE 
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JP_E_BeamVariable.fis 
;Name: 
;Diagram: 
ca str.fin 
def s_s_beam 
    while_stepping 
    ip=imem(str_pnt+$ksels) 
    loop while ip # 0 
 el_ac=imem(ip+$keln2) 
      el_ad=imem(el_ac+$kndid);node1 id 
 if el_ad < 100 then;  
       gta_val=0 
  gta_val=fmem(ip+$keleax)   ; axial strain 
      if gta_val>0. then          ; tension   
      Etan=4*16.0e6/0.125*((1-gta_val/0.125)^3) ;MA J.P. Giroud 1994 
      astr_prop=Etan                         ; 
                    str_see=imem(ip+$keltad) 
                    fmem(str_see+$ktype)=astr_prop 
  else                                  ;compression  
            gta_val=-1*gta_val                 ;correction for strain <0 
                   Etanc=4*16.0e6/0.125*((1-gta_val/0.125)^3)  ;/10.0 ;MA less 1 order of magnitude than ten 
     astr_prop=Etanc                    ; 
                   str_see=imem(ip+$keltad)           ; pointer to properties 
                   fmem(str_see+$ktype)=astr_prop     ; pointer to elastic modulus 
  end_if 
        end_if 
    ip = imem(ip) 
    end_loop 
end 
; 
;to implement ;MA 
;ca JP_E_BeamVariable.fis 



 

 


