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ABSTRACT

With the advent of the X-ray free-electron laser (XFEL), an opportunity has

arisen to break the nexus between radiation dose and spatial resolution in diffractive

imaging, by outrunning radiation damage altogether when using single X-ray pulses so

brief that they terminate before atomic motion commences. This dissertation concerns

the application of XFELs to biomolecular imaging in an effort to overcome the severe

challenges associated with radiation damage and macroscopic protein crystal growth.

The method of femtosecond protein nanocrystallography (fsPNX) is investigated, and

a new method for extracting crystallographic structure factors is demonstrated on simu-

lated data and on the first experimental fsPNX data obtained at an XFEL. Errors are as-

sessed based on standard metrics familiar to the crystallography community. It is shown

that resulting structure factors match the quality of those measured conventionally, at

least to 9 Å resolution. A new method for ab-initio phasing of coherently-illuminated

nanocrystals is then demonstrated on simulated data. The method of correlated fluctua-

tion small-angle X-ray scattering (CFSAXS) is also investigated as an alternative route

to biomolecular structure determination, without the use of crystals. It is demonstrated

that, for a constrained two-dimensional geometry, a projection image of a single particle

can be formed, ab-initio and without modeling parameters, from measured diffracted

intensity correlations arising from disordered ensembles of identical particles illumi-

nated simultaneously. The method is demonstrated experimentally, based on soft X-ray

diffraction from disordered but identical nanoparticles, providing the first experimental

proof-of-principle result. Finally, the fundamental limitations of CFSAXS is investi-

gated through both theory and simulations. It is found that the signal-to-noise ratio

(SNR) for CFSAXS data is essentially independent of the number of particles exposed

in each diffraction pattern. The dependence of SNR on particle size and resolution is

considered, and realistic estimates are made (with the inclusion of solvent scatter) of

the SNR for protein solution scattering experiments utilizing an XFEL source.
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Chapter 1

INTRODUCTION

1.1 Overview
Biomolecular structure determines function

The importance of determining the structures of biological macromolecules cannot be

overstated. Consider for a moment DNA, which encodes the genetic information nec-

essary for sequencing the chains of amino acids that make up protein molecules. Once

synthesized from a gene, proteins become the workhorses of the living cell, catalyzing

nearly all of the vital functions necessary for life. Of course, this detailed molecular

picture was not understood until the structures of these molecules were determined.

Although the existence of DNA was realized nearly a century and a half ago, at first

one could only postulate about the precise mechanism by which a cell transfers its ge-

netic information to its offspring, as Erwin Schödinger did in his book “What is life?”

(Schrödinger, 1944). Schrödinger correctly reasoned that the information of the gene

must lie in the spatial configuration of covalently-bonded atoms, an idea that strongly

compelled James Watson, Francis Crick, and Maurice Wilkins to determine the struc-

ture of DNA in 1953 (Watson and Crick, 1953) (for which they were awarded the 1962

Nobel Prize in Medicine). As Watson recounted in his essay “Letter to a young scien-

tist” (Watson, 2007),

“two of the three big questions in molecular genetics, the DNA structure

by which genetic information is carried and how it is copied, were thus

suddenly resolved”.

Determining the structure of DNA resulted in an understanding of its function, and

this achievement is undoubtedly among the most important scientific discoveries of the

20th century.
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Not long after the structure of DNA was revealed, the structure of myoglobin (a

protein that is common in muscle cells– it stores oxygen for use when muscles perform

work) was solved in 1958 (Kendrew et al., 1958) at about 6 angstrom resolution (partly

a result of the discovery of heavy metal isomorphous replacement as a solution of the

crystallographic “phase problem”– see section 2.3). It is hard to exaggerate the impact

of this first protein structure determination– before this, proteins were widely believed

to be colloidal, and protein crystals were expected to contain highly symmetrical struc-

tures. The irregular fold of myoglobin was a huge surprise, as famously stated by Max

Perutz (see his essay “The early days of protein crystallography” (Perutz, 1985)):

“perhaps the most remarkable features of the molecule are its complexity

and its lack of symmetry. The arrangement seems to be almost totally

lacking in the kind of regularities which one instinctively anticipates, and

it is more complicated than has been predicated by any theory of protein

structure”.

The later solution of deoxy hemoglobin in 1962 revealed the first functionally crucial

conformational change of a protein, demonstrating that a protein can have several con-

formations, and that its physiological role depends on how it changes from one to the

other.

Of considerable interest in modern biosciences are increasingly complex struc-

tures which may undergo multiple structural changes along their catalytic pathway.

There is much emphasis on protein:protein interactions, as well as the interactions be-

tween proteins and DNA, RNA, as well as other components of the cell. A prominent

example is the ribosome– its structure was determined after two decades of painstaking

effort (Ban et al., 2000) (leading to a Nobel prize in 2009), but the current emphasis

is on the understanding of the entire subprocess of translation, such as translocation

or decoding, in which it is involved (Frank, 2010). Of particular importance to this
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dissertation is the integral membrane protein photosystem I (which carries out charge

separation in oxygenic photosynthesis), as well as photosystem II (which splits wa-

ter molecules into O2 and H+ during oxygenic photosynthesis). Together, these pro-

teins, which consist of numerous protein subunits and hundreds of cofactors (the light-

catching antenna system, for instance), make up part of the molecular machinery re-

sponsible for essentially all of the oxygen in our atmosphere (photosystem II molecule

is the only natural means of producing oxygen from sunlight and water), and are there-

fore responsible for sustaining life on earth. Further discussion on these proteins, and

membrane proteins in general, will be found in subsequent sections throughout this

dissertation.

Structural studies on proteins have an overwhelming impact on human health,

since knowledge of structure plays a major role in all stages of drug discovery (see

Congreve et al. (2005) for an insightful review). Detailed structural information elu-

cidates shape and electrostatic landmarks which allow the determination of ideal drug

molecules for inhibiting or enhancing the function of specific protein targets (McPher-

son, 1999). For instance, the influenza virus neuraminidase structure is used for the

design of neuraminidase inhibitors (e.g. oseltamivir and zanamivir), currently a topic

of great importance due to the recent pandemic threat by the worldwide spread of H5N1

avian influenza (Mitrasinovic, 2009). A listing of numerous other examples where pro-

tein structure has been successfully applied to drug discovery can be found in Hardy

and Malikayil (2003). While high-throughput screening (HTS) has recently led to a

new concept of drug discovery based on the “magic of large numbers”, perhaps dis-

placing the scientific reasoning made possible by accurate structural modeling, this

route to drug discovery appears not to have lead to significant increases in research

productivity. The top 50 companies of the pharmaceutical industry collectively have

not improved their productivity since the conception of HTS more than two decades

ago, despite the ever-increasing numbers of data points (Drews, 2000). Thus it appears
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that methods for the direct measurement of high-resolution structures are not likely to

be replaced in the near future.

This brief and anecdotal introduction can hardly do justice to the importance

of biomolecular structural studies. For a gentle introduction to the dizzying variety

of biomolecules and their functions, the reader might consider a simple (but accurate)

introductory book such as Clark and Russell (2010). To appreciate the importance

of protein structure, the reader need only look to the record of Nobel prizes awarded

for the discovery of new biomolecular structures and elucidation of functional mech-

anisms (for example, the structure of DNA (Crick, Watson & Wilkins 1962), myo-

globin (Perutzand & Kendrew 1962), penicillin (Hodgkin 1964), ribonuclease (Anfin-

sen, Moore & Stein 1972), tobacco mosaic virus (Klug 1982), photosynthetic reaction

centre (Deisenhofer, Huber & Michel 1988), ATPase (Boyer, Walker & Skou 1996),

RNA polymerase (Kornberg 2006), and most recently the ribosome (Ramakrishnan,

Steitz, & Yonath 2009)) as well as related techniques for biomolecule structure de-

termination (for example, the development of X-ray crystallography (Bragg & Bragg

1915, Hodgkin 1964), electron microscopy (Klug 1982), the direct method of solving

the crystallographic phase problem (Hauptman & Karle 1985), nuclear magnetic reso-

nance spectroscopy (Ernst 1991), neutron scattering techniques (Brockhouse & Shull

1994), mass spectrometric analyses and nuclear magnetic resonance imaging (Fenn,

Tanaka & Wüthrich 2002)).

X-ray crystallography determines most biomolecular structures

X-rays, along with electrons, are among the most important probes of material struc-

ture at high (i.e. atomic) resolution. For instance, a key observation that lead Watson

and Crick to the correct model for the atomic structure of DNA was the observation

of an X-ray diffraction pattern acquired by Rosalind Franklin (Watson, 2007). Since

X-rays were first discovered by W. C. Röntgen in 1897 (leading to the first Nobel Prize

in Physics in 1901), X-ray-based science has grown in leaps and bounds with the of-
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ten abrupt advancements in source technologies and instrumentation. The first such

leap in source technology was the realization that the early particle accelerators devel-

oped for nuclear and atomic physics experiments produced “parasitic” photons (syn-

chrotron radiation) that could be turned into useful, intense, and versatile X-ray beams

for structural studies (Als-Nielsen and McMorrow, 2001). The earliest purpose-built

synchrotron radiation sources appeared in the early 1970s, leading to a ten-thousand

fold improvement in source brightness almost overnight, breaking the comparatively

slow crawl in improvements to lab-based sources over the previous 50 years. Syn-

chrotrons are now developed as dedicated user facilities throughout the world, and now

boast of trillion-fold improvements in brightness over the original lab-sized sources of

X-rays.

The vast majority of protein structures are determined through X-ray crystal-

lography, the most successful technique ever developed for probing protein structure

at atomic resolutions, as evident from the approximately 90% of protein structures

deposited into the Protein Data Bank (PDB) (Berman et al., 2002) that were deter-

mined through X-ray crystallography. The advent of recombinant DNA (allowing for

mass-producing of target protein molecules) and development of new crystallization

strategies (McPherson, 1999), in combination with bright X-ray sources, has lead to an

explosion in the number of protein structures deposited into the PDB (73,503 structures

at the time of this writing). One might argue that the relative success of X-ray crys-

tallography is largely due to the extreme challenge currently associated with imaging

single, isolated biomolecules. This trouble arises primarily from the lack of a method

to accurately determine the orientation of a single molecule exposed to the necessar-

ily short exposures required to avoid radiation damage, thereby prohibiting the possi-

bility to average the signal acquired from multiple copies of a protein molecule (one

may therefore state the fundamental problem as being attributed to radiation damage,

which is certainly the case for non-reproducible targets– see section 1.1). Crystallogra-
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phy neatly overcomes this difficulty by making use of perhaps trillions of identically-

oriented copies contained in a crystal of macroscopic size that can be easily manip-

ulated on a goniometer. The translational periodicity of the crystal lattice gives rise

to significant amplification of the diffracted signal, the penetration depths of X-rays

allows one to probe macroscopic crystals, while the short wavelengths allow atomic

resolution details to be resolved. However it must be emphasized that the resulting

molecular density map is a periodic average of all the molecules which make up the

crystal. In crystallography, each molecule is exposed to an insufficient dose to form an

image, but which is below the threshold for damage. This dose is a strong function of

resolution (fine detail is destroyed first). By adding the noisy images from many similar

molecules together, a noise-free image of an average molecule is obtained.

Challenges for modern X-ray crystallography

Despite its staggering success, X-ray crystallography is simply not applicable to many

protein targets, or is successful only after a tremendous devotion of time and effort.

Often, the problem is the crystals themselves. Growing crystals is perhaps the least

understood step in the structure determination of a protein (Drenth, 2006), and can be

a formidable (if not impossible) challenge for certain classes of proteins. For instance,

membrane proteins, which make up∼30% of all proteins in a typical living cell, are no-

toriously difficult to crystallize due to their amphiphilic nature, and are therefore often

intractable targets for crystallography. Similarly, large multi-protein complexes are also

difficult to crystallize due to extremely high solvent content (they contain no less than

∼30% solvent by volume, typically 40-60% (Matthews, 1968), and in extreme cases

can be as high as 90%) and relatively weak crystal contacts (Srere and Mathews, 1990).

Transcription and replication complexes, which involve a series of enzymes which act

upon DNA, and similarly ribosomes, crucial to the assembly of protein molecules, are

also among the most challenging targets in crystallography (McPherson, 1999).

If crystals are formed, they need be highly ordered in order to produce strong
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diffraction patterns to high resolution. This additional requirement for minimizing dis-

order (see (Nave, 1998) for further discussion on imperfections in protein crystals)

is often a considerable challenge, especially for crystals with large unit cells where

peak overlaps becomes a severe problem at the analysis stage. Due to limited lattice

constraints, protein crystals are intrinsically less well ordered than inorganic crystals

and exhibit relatively poor diffraction properties, and rarely do they diffract to 1 Å

(McPherson, 1999). In order to minimize the effects of radiation damage by the ion-

izing X-ray beam, cryogenic cooling to liquid nitrogen or helium temperatures was

developed (Hope, 1988) and is almost universally used today. However, finding the

appropriate cryo-cooling conditions that do not destroy crystallinity or introduce addi-

tional ice crystals may require a significant additional time investment since it is largely

a trial-and-error process. While it was long ago noted that improved diffraction can re-

sult from cooler crystals (Haas and Rossmann, 1970) (attributed to lower Debye-Waller,

or “B” factor, (Hope, 1988)), it has also been suggested that cryo-protectants may in-

crease mosaic spread of some crystals (Gonzalez et al., 1992). While cryo-cooling

largely avoids the radiation damage problem, for some targets (for instance, photosys-

tem II, which can tolerate only ∼1% of the typical tolerable X-ray irradiance before

significant damage to its active site (Yano et al., 2005)) radiation damage still remains

a fundamental problem, making high resolution structure determination nearly impos-

sible. The handling of protein crystals may also be a considerable challenge, since they

are extremely fragile and have weak mechanical properties.

For many proteins and multi-protein complexes, a variety of conformations may

be possible (and are of scientific interest). If numerous conformations are present in a

crystal simultaneously, only an “average” electron density map is typically accessible

(although substantial domain movement can be indicated through translation, libration,

screw-axis (TLS) parameterization (Rupp, 2010), as implemented in REFMAC (Winn

et al., 2001), for instance). Even for proteins which occupy only a single conformation,
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the conformation which occurs within a crystal is not necessarily authentic, in the sense

that it may reflect the state which most favors crystal formation rather than the func-

tional state of the molecule (Frank, 2010). Proteins which are intrinsically disordered

can be modeled through crystallography with only limited confidence (if it is even pos-

sible to grow a crystal). The diffuse scattering between Bragg reflections which results

from conformational variability has been studied in detail (Riccardi et al., 2010).

For the study of dynamic processes (for instance, processes which may be stim-

ulated first by optical illumination followed by X-ray exposure in a “pump-probe”

scheme), crystallography is only applicable for those cases in which the induced con-

formational change does not destroy crystallinity, otherwise a separate crystal must

be used for each exposure. Dynamics which occur only at room temperature may be

frozen out by cryo-cooling (although this is in many cases beneficial since it allows

trapping of intermediate states (Westenhoff et al., 2010)). For processes which oc-

cur on extremely fast timescales (for instance, electron transport), the relatively long

pulse durations generated by synchrotrons may limit time resolution. Remarkable suc-

cesses have, however, been achieved, such as the observation of laser-induced photo-

dissociation of a carbon monoxide molecule bound to the haeme group of myglobin

(Srajer et al., 2001; Schotte et al., 2003). The dominant crystallographic method for

time-resolved structure determination is Laue diffraction, since a broad X-ray energy

bandwidth avoids the need to rotate the crystal during the necessarily brief exposures,

while also making more efficient use of radiation by providing more Bragg reflections

per diffraction pattern. However, the limitations on unit cell size to avoid peak over-

laps, and more importantly the high demands regarding low mosaic spread (which is

complicated by strain induced within the crystal lattice by conformation changes) and

the necessity to find targets or triggering methods that are reversible (Westenhoff et al.,

2010) remain limiting factors.

Growth of protein microcrystals is much more common than the growth of
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macroscopic protein crystals (Mueller et al., 2007), and protein crystals usually reach a

terminal size that they (mysteriously) seldom exceed (McPherson, 1999). As a result,

microdiffraction beamlines has been applied to protein crystallography (Perrakis et al.,

1999) in order to make use of microcrystals that are not suitable for conventional beam-

lines. Use of a focal spot on the order of a few or tens of microns enhances the useful

diffraction from small crystals, while lowering background contributions. Because the

integrated diffracted intensity scales linearly with the number of unit cells exposed,

increased radiation damage can be expected for microcrystals to achieve signal levels

equivalent to larger crystals. Multiple crystals must therefore be used (Cusack et al.,

1998), requiring the development of new hardware and software for data collection and

analysis. Such efforts have been met with considerable success– data have recently

been collected (albeit with great difficulty) to obtain the first structure of a medically

important human membrane protein, the beta-androgenic receptor, grown in a lipid cu-

bic phase (Warne et al., 2008). High quality density maps have been produced from

5-10 µm polyhedra protein crystals (Coulibaly et al., 2007), as well as protein crystals

only 1 µm in size (Moukhametzianov et al., 2008). A reduction in damage is ob-

served with small crystallites, and is attributed to the ejection of photoelectrons into the

surrounding vacuum rather than into surrounding bulk protein crystal, where further

damage may be caused, as predicted by Nave and Hill (2005). Microcrystals (or mi-

crodiffraction from small regions of macroscopic crystals) may also be useful in solving

the problem of crystal imperfections and twinning (Coulibaly et al., 2007). However,

microdiffraction studies still remain challenging, as the tedious sample-mounting pro-

cedures limit high-throughput data collection (Riekel et al., 2005), and radiation dam-

age remains a fundamental theoretical limitation for micron-sized crystals (Holton and

Frankel, 2010), especially for crystals with large unit cells.

The incomplete information content of crystallography data poses an additional

challenge. Since crystallographic structure factors represent only the magnitudes of the
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Fourier transform of the electron density map (Bragg diffraction samples at half the

Shannon rate, not at the Shannon rate, which would require half-order reflections– see

section 2.3), the second half of the needed information (the phases) must be obtained

from additional data. The problem arises from the crystals themselves, since sampling

between Bragg reflections is not possible for macroscopic crystals. One might argue

that the determination of a genuinely new protein structure is one in which the phases

have been measured, for instance through isomorphous replacement (secondary crys-

tallization with heavy atom derivatives, which assists in the solution of the phase prob-

lem), or through the use of anomalous dispersion (use of multiple X-ray wavelengths

near an atomic absorption edge). However, since 75% of all protein structures in the

PDB are phased through molecular replacement (Rupp, 2010) (in which a known struc-

ture of similar sequence is used for initial phase estimates), this practice is not typical,

and severe model bias in the PDB may result from the reuse of structures determined

in this way.

Alternative methods for biomolecular structure determination

A wealth of methods have been developed for the investigation of protein structure– far

too many to be reviewed comprehensively here. It is worthwhile, however, to consider

briefly some possible alternative and complementary methods before moving on.

Cryo-electron microscopy (cryo-EM) is well-suited to determine ab-initio struc-

tures of large macromolecular complexes and machines at intermediate resolution (6-30

Å) (Spahn and Penczek, 2009). Here, multiple projection images are taken from per-

haps hundreds of thousands of single molecules, and upon determining orientations and

positions for each image, a full 3D density map is obtained upon merging of the data.

A major potential advantage of cryo-EM is that it yields snapshots of single molecules,

capturing projection images (albeit very noisy) of proteins in the midst of their catalytic

cycles. Methods are currently being developed to characterize all structural subpopu-

lations encountered, by sorting followed by a separate reconstruction of each (Frank,
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2010; Spahn and Penczek, 2009), which may allow molecular “movies” of proteins as

they carry out their functions. However, conformational variability may be greater than

that in a crystal where steric confinement limits conformational variability, which often

limits resolution for this methodology. While electrons provide the most information

for a given amount of radiation damage, with several hundred times more useful elastic

scattering events per damaging dose compared with X-rays (at all wavelengths) (Hen-

derson, 1995), for smaller molecules with molecular weight less than 105, some form of

ordered aggregation, as in 2D crystals or icosahedral capsids, is still needed to provide

sufficient signal for reconstructions. In the case that sufficiently thin crystals are avail-

able, electron microscopy allows crystallography data to be phased, since images of

crystals may be Fourier transformed to provide initial electron density estimates. Stud-

ies on macroscopic crystals are not possible with electrons, due to the short attenuation

lengths of electrons– this is the ultimate price for the 10,000-fold increase in scattering

cross section over X-rays. In addition, multiple elastic scattering becomes significant

at sample thicknesses much above 50 nm, so that phasing and inversion to images is

no longer possible (a method for removal of multiple scattering has been demonstrated,

however, for soft X-ray diffraction (Spence, 2009)).

While neutron sources are far too weak for single molecule diffraction work,

neutron crystallography supplies considerable information which is complementary to

X-ray crystallography. Since hydrogen and its isotopes scatter neutrons efficiently rel-

ative to heavier atomic species, H atoms may be observed in reconstructed density

maps, which is typically not possible through X-ray crystallography since H atoms

diffract X-rays very weakly in comparison to heavy elements. However, the lack of

atomic species which scatter especially strongly, or which have accessible isolated ab-

sorption edges (neutron energies are on the order of kBT ), renders phasing of neutron

crystallography data a difficult problem. Typically, phasing is carried out through the

use of a model based on X-ray crystallography data, with a refinement process similar
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to molecular replacement (Rhodes, 2006).

Small-angle X-ray or neutron scattering (SAS, or SAXS/SANS), despite the

huge information deficit of the one-dimensional data set (the radial intensity profile of

the rotationally-averaged diffraction pattern of the protein), can yield a considerable

amount of useful structural information for protein targets. One strength of SAS may

lie in the relative ease with which samples are prepared and experiments conducted. A

wealth of software for SAS data analysis and structural modeling is available (the most

popular of which is the ATSAS comprehensive analysis suite (Konarev et al., 2006)).

While ab-initio protein structure determination is said to be possible to resolutions of

perhaps∼1.5 nm (Petoukhov and Svergun, 2007), unique solutions are not guaranteed,

and unphysical models such as a molecular envelopes or dummy residue chains are

typically used. However, for multi-protein complexes where subunits have been de-

termined to high resolution through other techniques (such as X-ray crystallography),

SAS data in combination with rigid body modeling may be used to determine relative

locations of multiple subunits. For example, positions of the RNA subunits within the

ribosome were determined through SANS which lead to a comprehensive map of the

30S subunit (Capel et al., 1987) and a partial map of the 50S subunit (May et al., 1992)

nearly eight years before the high-resolution structure complex was determined through

X-ray crystallography. Further examples of important discoveries in structural biology

made through SAS work can be found in the review articles (Petoukhov and Svergun,

2007; Jacques and Trewhella, 2010).

Various other routes to structure determination should be considered. Nuclear

magnetic resonance (NMR), for instance, is highly successful in determining structures

of small macromolecules (approximatly 10% of protein structures in the PDB were de-

termined through NMR, although only 2% of them were proteins consisting of more

than 200 residues). Similarly, it has recently been demonstrated that high-resolution

structures can be determined for relatively small protein molecules through powder
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diffraction (von Dreele, 2007). Computational methods which make use of low res-

olution data (e.g. from the above methods) to predict considerably higher-resolution

models is currently a very active field of research (a subject well beyond the scope of

this work– see for instance (Schroder et al., 2007; Qian et al., 2007; Kifer et al., 2011)).

Radiation damage limits resolution

Radiation damage is the most fundamental problem which prevents the determination

of the structures of isolated biomolecules at high resolution using X-rays, electrons, or

neutrons (Henderson, 1995). Where only a single copy of the target is available, the

maximum resolution for X-ray imaging is about 10 nm for organic targets (Howells

et al., 2009). This limitation arises from the need to simultaneously satisfy two require-

ments: the target must be exposed to a dose great enough for statistical accuracy at a

given imaging resolution (the required dose for imaging, or the Rose criterion), and

the target must be exposed to a dose which is less than that which destroys features

at the resolution of interest (the maximum tolerable dose). Here, dose is measured by

the amount of energy absorbed by the target per unit mass, a quantity of great impor-

tance for imaging where radiation damage is considerable. The reader is referred to

(Howells et al., 2009) or the review article (Bergh et al., 2008) for further discussion on

resolution limits in biological imaging. For the case of crystallography, the maximum

tolerable dose for atomic resolution is typically about 30 MGy1 for cryocooled protein

crystals, as established experimentally (Owen et al., 2006).

In the effort to minimize radiation damage, samples are typically cooled to liq-

uid nitrogen or lower temperatures. While this does not limit the rate of ionization

events, the solid vitreous solvent matrix limits the diffusion of (destructive) free radi-

cals within the crystal (Henderson, 1990), allowing the possibility of longer exposures

as compared with room-temperature samples. For the relatively slow exposures asso-
1A Gy, or Gray, is the SI unit of absorbed radiation dose of ionizing radiation, and is defined as the

absorption of one joule of ionizing radiation by one kilogram of matter.
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ciated with synchrotron sources, radiation damage appears to be independent of the

dose rate (the principle of reciprocity) (Holton, 2009). Since photoionization is a reso-

nant process, damaging dose is not necessarily distributed about the sample uniformly,

and radiation damage can be both local and global (Holton, 2009); global damage will

manifest as a reduced overall scattered intensity with increasing resolution, whereas

local damage effects specific sites (often the active sites which contain heavy metals,

as in the MnCa cluster of photosystem II) and will modify the resulting electron den-

sity maps. The accumulation of damage can also lead to strain within the crystal and

therefore cause long-range disorder of the crystal (Meents et al., 2010). Other consid-

erations apply, such as the unit cell size (larger unit cells result in weaker scattering

per reflection for fixed crystal size, thus increasing the necessary dose), and overall, the

effects of radiation damage my differ greatly from one target to the next, and must be

assessed experimentally.

Overcoming radiation damage with X-ray free-electron lasers

With the recent advent of the X-ray free-electron laser (XFEL), an opportunity has

arisen to break the nexus between radiation dose and spatial resolution in diffractive

(lensless) imaging and crystallography. It has been proposed that femtosecond X-ray

pulses can be used to out-run damage processes, when using single pulses so brief that

they terminate before the onset of significant radiation damage (i.e. before atomic (and

possibly electron) motion commences, if the associated timescales are longer than the

X-ray pulse) (Solem, 1986; Neutze et al., 2000). A recent review of this “diffract-and-

destroy” approach for diffractive imaging, holography, and crystallography, is given in

(Chapman, 2009). Following the first two cycles of user experiments carried out at the

worlds first hard X-ray FEL (the Linac Coherent Light Source at Stanford), the first

“BioFEL” workshop, organized by J. Spence, was recently held at Lawrence Berkeley

National Laboratory in February 2011 highlighting the first experimental results2.
2https://sites.google.com/a/lbl.gov/biology-with-fels/
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XFELs operate by the Self-Amplified Spontaneous Emission (SASE) process,

in which electrons traveling through an undulator (a series of equally-spaced magnets

with alternating polarity, just as in those found at a 3rd generation synchrotron source)

spontaneously form microbunches, each of which radiate coherently as a group. For a

very concise and intuitive explanation of this process, see (Altarelli, 2010) or (Margari-

tondo and Ribic, 2011). Briefly, an electron oscillates transversely under the influence

of the undulator, and its radiation field has a definite phase relationship to this oscil-

lation. The radiation wavelength is approximately equal to λ ≈ L/2γ , where γ is the

relativistic Lorentz factor and L is the spacing of the undulator magnets; the two factors

of γ may be understood as the combined effects of length contraction and time dilation.

It turns out that the radiation advances a full wavelength in the time that an electron

advances only half of a wavelength, and the spontaneous microbunching can be un-

derstood as the result of a previously emitted electromagnetic wave (from an upstream

electron) performing either positive or negative work on the electron, driving it closer

to the nearest microbunch (i.e. an integer multiple of electron oscillation wavelengths

away from the upstream electron). While this picture can be fairly easy to see for a pair

of electrons, it is more difficult in the case of a large ensemble of electrons, where the

microbunching must first arise from the minute fluctuations in the otherwise uniform

distribution of electrons which enter the undulator. At a 3rd generation synchrotron,

this microbunching simply does not occur due to the relatively low emittance of the

electron beam (spoiled by the lattice of magnets and resulting photon emission during

the many turns an electron makes around a storage ring), but it becomes possible if a

linear accelerator is used instead. The use of a linear accelerator also allows the pro-

duction of pulses of < 10 fs duration, since the SASE process occurs in only one pass

of the electron bunch through the undulator, as opposed to a synchrotron where the

storage ring limits pulse durations to about 30 ps duration (Altarelli, 2010). The first

soft X-ray FEL to come online was the Free-Electron LASer in Hamburg (FLASH)
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vacuum ultraviolet free-electron laser at Deutsches Elektronen-Synchrotron (DESY)

(Ackermann et al., 2007), operating now at ∼6.5 nm wavelength. At the Linac Co-

herent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), X-rays

are now being produced at 9.3 keV photon energy (Emma et al., 2010). Pulse durations

range from tens to hundreds of fs, and a typical pulse contains 1011-1013 photons which

may be focused to micron-sized spot sizes.

Due to the recent availability of XFELs, ultrafast radiation damage processes

which occur during exposure to intense femtosecond pulses has become an increas-

ingly active field of research, both on the theoretical front, and more recently in the

experimental front. The use of ultra-fast and ultra-intense pulses for biological imag-

ing was suggested as early as 1986 in (Solem, 1986). The first theoretical study into

the feasibility of imaging single biomolecules was presented in (Neutze et al., 2000), in

which molecular dynamics simulations using a stochastic model of photoionization of

biomolecules and viruses exposed to an XFEL beam suggested that pulses of less than

about 10 fs duration could indeed yield atomic-resolution images. Although the effects

of electron trapping by the highly ionized molecule, and the resulting cascade of further

ionization events, were not accounted for, the basic dynamics of the radiation-induced

Coulomb explosion of the molecule were largely exposed by this first model. For hard

X-rays, about 95% of the photoelectric events remove K-shell electrons for atoms of

C, N, O and S. Core holes are filled within about 1-10 fs by Auger decay about 95% of

the time, and during these initial few femtoseconds the molecule becomes somewhat

radiation hardened due to the absence of many K-shell electrons (this insensitivity to

photoionization has been demonstrated for N2 gas in recent experiments at the LCLS

(Hoener et al., 2010)). In the initial stages, the relatively light H atoms and highly

ionized S atoms escape the molecule, while the others escape more slowly due to the

inertia-limited explosion. The authors of (Neutze et al., 2000) discussed the use of

container-free sample introduction, using either aerosol injectors or liquid droplets, the
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use of nanocrystals (5×5×5 unit cell crystals were simulated), and the potential diffi-

culties of signal averaging due to the limited numbers of elastically scattered photons

(and the connection of this problem to that of cryo-EM).

Following the work of (Neutze et al., 2000), a series of more detailed theoretical

investigations appeared in 2004. Models of the explosion dynamics were carried out

through detailed molecular dynamics simulations, including the dynamics of photoelec-

trons and Auger electrons (classical mechanics used to track particle motion, quantum

theory enters into scattering and ionization cross sections), for hard X-rays and small

50–1500 atom clusters of carbon atoms. Inclusion of secondary ionization due to Auger

electrons showed that the work of (Neutze et al., 2000) overestimated the speed of the

Coulomb explosion because trapped electrons, despite contributing to further ionization

events, cause the molecule to have a lower net charge (Jurek et al., 2004). However, the

number of stripped electrons was underestimated in (Neutze et al., 2000), meaning that

a greater change to scattering factors is to be expected, and it was suggested that while

shorter pulses are more advantageous for imaging experiments, even in the case of 10 fs

pulses, efficient fast gating of the detector will be necessary to attempt successful recon-

struction at high resolution (Faigel et al., 2005). Screening by trapped electrons causes

the core of the atom/ion/electron gas to be nearly neutral, similar to Debye shielding,

whereas the outer shells of the molecule are positively charged and peel away first.

This work was followed by the presentation of a complete continuum model based on

hot-dense plasma theory, using an average-ion approach (ionization states determined

by Saha-Boltzmann factors) which allows the simulation of larger biomolecules at the

expense of some of the finer details of the dynamics (Hau-Riege et al., 2004). Here it

was shown that pulses of 0.1, 0.9, 3.2 fs result in 1, 2, and 3 average atomic ionizations

for spheres of H, C, N, O, and S atoms irradiated by X-rays with similar parameters

to that expected at the LCLS, and that collisional ionization by trapped electrons limits

resolution rather than atomic motion. It was suggested that, despite these high ioniza-
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tion states, it may still be possible to build atomic models of the target using longer

pulses, since even ionized atoms show their locations. Inhomogeneous ionization of

the target was noted here, and in (Jurek et al., 2004; Faigel et al., 2005). A hybrid dy-

namical model was also developed, where electrons were treated as a gas continuum,

and the atoms/ions were tracked by molecular dynamics (Bergh et al., 2004). More

recent work has shown that encapsulating the molecule in a sacrificial layer (tamper)

such as a shell of water can reduce atomic motion, which greatly improves signal (Hau-

Riege et al., 2007) (recently demonstrated experimentally at FLASH (Hau-Riege et al.,

2010)). For further discussion on the radiation hydrodynamics, the reader is referred

to the literature, as this is a subject of considerable technical detail, still evolving with

time. For example, it has been suggested that for crystallography, the destruction of

periodic order effectively gates the duration of the x-ray pulse (Barty et al., 2011).

With a coherence width nearly equal to the full width of the focused beam spot

of submicron dimensions, and perhaps 1013 photons delivered within only < 10 fs,

XFELs open up entirely new possibilities for studies on radiation sensitive targets, and

fast dynamics. When operating in the diffract-and-destroy mode, XFELs allow organic

targets to be exposed to an X-ray dose which is orders of magnitude higher than the

maximum tolerable dose at synchrotron sources, thereby considerably enhancing the

signal-to-noise ratio for snapshot diffraction patterns. The diffract-and-destroy imag-

ing principle was demonstrated experimentally for the first time in 2006, at resolution

lengths greater than 60 nm (Chapman et al., 2006) for a thin SiN target, and 32 nm

wavelength radiation at 25 fs pulse duration. Images have also been reconstructed

from a fixed single-cell sample, using holographic (Marchesini et al., 2008) and phase-

retrieval methods (Boutet et al., 2008), including dynamical time-resolved work on

nanoparticles and thin SiN targets (Chapman et al., 2007; Barty et al., 2008). Nanopar-

ticles in free flight have also been imaged (Bogan et al., 2008), as well as aerosolized

fibrous and aggregated soot particles (Bogan et al., 2010a,b). When multiple copies
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of the injected particles are available, resolution may be further improved by signal

averaging, and a recovered three-dimensional reciprocal space map be used to form a

3D reconstruction of the average particle electron density map (Fung et al., 2009; Loh

and Elser, 2009), as recently demonstrated experimentally for the case of inorganic

nanoparticles (Loh et al., 2010). More recently, single snapshot projection images of

mimi viruses have been captured at 32 nm resolution using hard-X-ray pulses of 1.8

keV photon energy at 70 fs duration (Seibert et al., 2011).

Protein nanocrystallography experiments have also been carried out at the LCLS

at 1.8 keV photon energy and 70 fs pulse duration. First results have been very promis-

ing, in the sense that an interpretable electron density map can be constructed at medium

resolution set by the available photon wavelength (Chapman et al., 2011; Kirian et al.,

2011b). This work is the subject of chapter 3 in this dissertation. Unpublished work

at the LCLS has demonstrated that protein microcrystal diffraction extends to 1.9 Å

resolution for some targets. While nanocrystallography experiments are in some sense

a “stepping stone” toward the ultimate goal of single-molecule imaging (i.e. 1×1×1

unit cell crystals), the method of femtosecond protein nanocrystallography is expected

to occupy a unique niche in the field of time-resolved crystallography (Neutze et al.,

2004; Westenhoff et al., 2010), owing to the unprecedented time resolution of XFELs

and considerably improved signal-to-noise ratios made possible by the diffract-and-

destroy method. XFELs may also allow the study of radiation sensitive targets, such as

those which form only microcrystals or nanocrystals, thereby improving the through-

put of structural studies for those cases where the formation of macroscopic crystals

is the primary bottleneck. While preliminary results show little effects of radiation

damage to medium resolution (Chapman et al., 2011), the quality of high-resolution

electron density maps based on this type of data has not yet been determined, thus

leaving this subject open to debate. Simulations of the ionization dynamics for protein

nanocrystals, where the secondary ionization cascades caused by photoelectrons are
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important due to the relatively long path lengths involved, suggest that pulses of order

1011 photons/µm2 will need to be delivered in less than 10-30 fs in order to extract

meaningful crystallographic structure factors from 200-500 nm crystals, respectively

(Caleman et al., 2011). These predictions may now be tested, based on (currently un-

published) 30 fs, 9.3 keV protein crystallography data collected at the LCLS in early

2011, making this a particular exciting time for protein crystallography.

1.2 Scope of this thesis

While many of the challenges to X-ray protein crystallography have been overcome,

and crystal growth and data collection/analysis are increasingly automated, XFELs

will likely become a powerful tool for the study of more challenging targets described

throughout this chapter. If the envisioned single-molecule imaging experiments come

to fruition, little imagination is needed to see the potential revolution to structural bi-

ology that would be caused by the availability of XFELs. This thesis concerns the

application of XFELs to biomolecular imaging, in an effort to overcome the difficulties

associated with radiation damage and macroscopic protein crystal growth. Through

the use of an XFEL, the methods described naturally have application to time-resolved

studies of irreversible processes which may be initiated with an optical pump laser. The

focus here is on the method development two techniques: femtosecond X-ray protein

nanocrystallography and correlated fluctuation small-angle X-ray scattering. The dis-

cussion is primarily limited to the feasibility of conducting experiments and analyzing

the resulting data; the physics of radiation damage will not be considered here.

Chapter 2 provides the relevant mathematical and physics background for the

sections to follow. It is not intended to be comprehensive; it is presented as a brief

review for the reader, to establish mathematical convention, and as a guide for finding

further relevant references. Mathematical and physics theory which reoccur throughout

the following chapters will be placed here and referenced as necessary (the reader may

therefore wish to skip this section altogether).
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Chapter 3 describes development of a new method for analyzing femtosecond

protein nanocrystallography (fsPNX) data, along with results from the first fsPNX ex-

periments conducted at the LCLS in December of 2009. While the experiments per-

formed are the result a large multinational collaboration, the discussion herein is gen-

erally limited to the parts of the experiments in which the author had a significant con-

tribution (exceptions will be noted). This chapter largely derives from the publications

(Kirian et al., 2010; Chapman et al., 2011; Kirian et al., 2011b; Spence et al., 2011).

Investigations begin with the development of the so-called “Monte Carlo” method of

extracting crystallographic structure factors from FPX data, which is first verified using

simulated diffraction patterns (Kirian et al., 2010). The experiment carried out at the

LCLS (Chapman et al., 2011) provided a data set from the integral membrane protein

Photosystem I, which serves here as a real-world case study of the methodology. An

independent analysis of this data carried out by the author (Kirian et al., 2011b) verifies

that the Monte Carlo method is feasible for such experiments, at least to medium reso-

lution. In the final section, a new method for phasing data from coherently-illuminated

nanocrystals is presented, and tested on a simulated data set (Spence et al., 2011).

Chapter 4 describes work which stems from an idea initially put forth by Zvi

Kam in the late 1970s (Kam, 1977). This method, referred to here as correlated fluc-

tuation small-angle scattering (CFSAXS), is considered as an application of XFELs

to protein structure determination where nanocrystals cannot be grown. This chap-

ter largely derives from the publications (Saldin et al., 2010b,a, 2011a; Kirian et al.,

2011a). Preliminary investigations based on simulated data demonstrate for the first

time that, for a constrained two-dimensional geometry, ab-initio imaging is possible

using only the intensity correlations within the scattering from disordered ensembles of

particles (Saldin et al., 2010b,a). Following this theoretical work, experiments based on

soft-X-ray diffraction from gold nanoparticles provide the first proof-of-principle that

this imaging method is indeed possible at least to low resolution (Saldin et al., 2011a).
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Finally, the fundamental limitations of this method are investigated through theory

and simulations of the signal-to-noise ratio for CFSAXS measurements performed on

protein molecules using experimentally accessible beam parameters at present XFEL

sources (Kirian et al., 2011a). Here, it is shown that the method of CFSAXS is in

essence a single-molecule imaging technique, since the signal-to-noise ratio is inde-

pendent of the number of particles, and that the method is likely to succeed only at an

XFEL source due to the limitation of radiation damage at synchrotron sources.

Finally, Chapter 5 provides some personal perspectives, in retrospect of the

work carried out in this dissertation.
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Chapter 2

GENERAL PHYSICS AND MATHEMATICAL THEORY

2.1 X-ray interactions with matter
Scattering and absorption

When an X-ray photon is incident on matter, several interactions may take place. The

photon may be scattered elastically, in which the resulting scattered photon has the

same energy (and therefore wavelength) as the incident photon. This results in diffrac-

tion if the X-ray illumination is coherent, as described further in section 2.1. Inelastic

(and incoherent) Compton scattering may occur, which may contribute to background

and increased noise, but the Compton scattering cross section is negligible for X-ray

energies of interest here. The photon may alternately be absorbed, ejecting a photo-

electron from the atom. Typically this ejected electron comes from a K shell electron

orbital, the energy shell containing the most tightly bound electrons. The core hole

in the atom is typically filled by an outer shell electron, and in conserving energy the

system may emit a fluorescence photon of energy which may be much lower than the

incident photon which caused the ionization. Fluorescence is dominant for high atomic

weight atoms, but is less important for biomolecules containing primarily H, C, N, O.

For light atoms, the emission of a secondary electron, referred to as an Auger elec-

tron, typically results instead of fluorescence. Photoabsorption is an important process

which contributes to radiation damage of the target, and has important consequences

on the X-ray diffraction experiments considered here, where the majority of X-rays are

absorbed rather than scattered. The reader is referred back to section 1.1 and references

therein for further discussion.

As an example, in the case of 12.4 keV X-rays (λ = 1 Å) wavelength (typical

for macromolecular crystallography), only approximately 2% of incident X-rays will

interact with a 100-µm thick crystal. Of the interacting 2%, 84% will interact through

the photoelectric effect, causing the ejection of photoelectrons. Only 8% of the inter-
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acting X-rays will produce elastic scattering events, whereas the remaining 8% will

produce inelastic scattering (Paithankar et al., 2009). About 95% of the photoelectric

events remove K-shell electrons for atoms of C, N, O and S, and core holes are filled

within about 1-10 fs by Auger decay about 95% of the time (Neutze et al., 2000). Fig-

ure 2.1 shows the attenuation lengths (the length at which transmitted intensity drops

by a factor of 1/e, computed using the X-ray database tools provided by the Center for

X-Ray Optics1) for a typical protein, which may be on the order of a few mm for hard

X-rays.

X-Ray Attenuation Length

X-Ray Attenuation Length http://henke.lbl.gov/tmp/xray9232.html

1 of 1 7/13/11 4:28 PM

Figure 2.1: Attenuation lengths for protein with generic stoichiometry
H50C30N9O10S1.

Kinematical far-field diffraction

Scattering of X-rays by charged particles may be described either classically or through

quantum mechanics. For the case of elastic, single-scattering conditions (common for

X-rays if atomic absorption edges are avoided), the kinematical and far-field approxi-

mations2 are taken here, and the classical picture is adopted for simplicity. Although

in the quantum mechanical picture, scattering only occurs through the Compton effect,
1http://henke.lbl.gov/optical_constants/
2The kinematical approximation is also referred to as the first-order Born approximation, and far-

field diffraction is often referred to as Fraunhofer diffraction.
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the scattered intensity is correct up to a small correction factor which is negligible for

wavelengths considered here (Guinier, 1994). The reader is referred to the literature

(e.g. (Baym, 1990; Jackson, 1999)) for a more rigorous theoretical treatment. This

section serves primarily as a reminder of the basic mathematics and physics behind the

diffraction theory relevant to this dissertation, and to establish notation which will be

used consistently from this point on.

Scattering by a free electron

Let us consider first the elastic scattering from a single electron, which is among the

most elementary scattering events since the electron is believed to be structureless.

From the viewpoint of classical electromagnetic theory, the scattered radiation is un-

derstood to be the result of an oscillating electromagnetic field (the incident X-ray

beam) forcing the electron to accelerate. The oscillating electron then acts as a second

radiation source, much like a tiny dipole antenna. In the far-field approximation, it is

assumed that the amplitude of the oscillations of the electron are much smaller than the

distance to the observation point. This is also referred to as the dipole approximation,

which results in dipole radiation as detailed in Jackson (1999).

The incident electromagnetic wave and outgoing scattered wave can be de-

scribed by the wavevectors ki and ko, respectively, so that the electric field at any point

in space r and time t is E(r, t) = ûEe2πik·re2πiνt . The magnitude of k is |k|= k = 1/λ ,

where λ is the wavelength of the X-ray, and the oscillation frequency is equal to ν = ck,

with c the speed of light. The vector û specifies the polarization of the wave (and hence

û · k̂ = 0 for the usual transverse electromagnetic radiation). For an electron situated at

the origin, the magnitude of the outgoing wave radiated by electron (of charge e and

mass me) a distance R away is proportional to the acceleration of the electron (Jackson,

1999) evaluated at the retarded time t ′ = t−R/c

Eo(R, t) =−
( −e

4πε0c2R

)
a(t ′) , (2.1)
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where ε0 is the permittivity of free space. The acceleration seen by the observer is

a(t ′) =
−e
me

E0e−2πiνt ′ sinψ (2.2)

where ψ is the angle subtended between û and k̂o, as depicted in figure 2.2. In using

complex phase factors eix, it is understood that the (real) electric field may be taken as

the real part of the result. Inserting equation 2.2 into 2.1, the magnitude of the outgoing

wave is

Eo =−
(

e2

4πε0mec2

)
eikR

R
Eie−iωt sinψ = re

ei2πkR

R
Eie−iωt sinψ , (2.3)

where re is the definition of the classical electron radius, also known as the Thomson

scattering length.

Figure 2.2: Geometry for scattering from an electron at the origin, observed at a point
located a distance R away. The incident and outgoing wavevectors are ki and ko, re-
spectively, and the polarization is along û.

X-ray detectors typically measure a quantity proportional to the time-averaged

intensity of the incident beam, proportional to the square of the radiated E field:〈
E2

o
〉
=
〈
E2

i
〉 r2

e
R2 sin2

ψ (2.4)

For a pixel subtending a small solid angle ∆Ω, the collection area is R2∆Ω, and the

average intensity3 I (photons/pixel) falling within the pixel is therefore

I = J0r2
eP(û, k̂o)∆Ω , (2.5)

3Terms such as “intensity” and “flux” take on many meanings in the literature. The convention
established here will be used for the remainder of this dissertation.
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where J0 is the incident flux density (photons/area). From figure 2.2 it is clear that

the polarization factor sin2
ψ can be written as P(û, k̂o) = 1− (ûi · k̂o)

2 for a lin-

early polarized X-ray beam. For an unpolarized beam, the contributions from the two

orthogonal electric field contributions results in a polarization factor of P(k̂i, k̂o) =

1
2

(
1+(k̂i · k̂o)

2) (Guinier, 1994).

Diffraction from atoms and molecules

Since the mass of a proton is approximately 2000 times that of an electron, the accel-

eration of protons is negligible, and we need only consider the dipole radiation caused

by electrons. This is an important point, since the information resulting from X-ray

diffraction therefore tells us about the electron density, and not necessarily the atomic

coordinates. For an atom with time-averaged electron density ρ(r), the classical de-

scription calls for an integration of the scattered radiation field over the contributions

from different volume elements of this charge distribution. Where the kinematical ap-

proximation is assumed, the incident and diffracted electromagnetic wave is unaltered

by the atom or molecule (secondary scattering is neglected). Figure 2.3 shows the

geometry for scattering from an electron located at any position r, where θ is the scat-

tering angle, and outgoing wavevectors ko from various points in the atom are assumed

parallel under the far-field approximation; in other words, the size of the target is as-

sumed much smaller than the distance to the observation point. The phase difference

between a reference point at the origin and the point r is equal to 2π(ko−ki) · r. This

phase difference is of significant interest, and so it is useful to define the scattering

vectors ∆k = (ko−ki) and q = 2π∆k. Integrating the resulting electric field from all

points in the atom then results in the atomic form factor

f (q) =
∫

ρ(r)eiq·rd3r . (2.6)
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The form scattering factor is in units of effective electrons, so that the E field resulting

from scattering by the entire atom is

〈Eo〉= 〈Ei〉
re

R
f (q)

√
P(û, k̂o) . (2.7)

For a collection of atoms with form factors fi(q) located at positions ri, we may

imagine that each atom, with displacement ri, acts as an independent dipole radiator

(which is coherent with respect to neighboring atoms), so that the ensemble produces

the diffracted E field

〈Eo〉= 〈Ei〉
re

R ∑
i

fi(q)eiq·ri

√
P(û, k̂o) . (2.8)

Figure 2.3: Geometry for scattering from an atom. The path length difference between
lower two rays and upper two rays is |ki · r|+ |ko · r|

Atomic form factors are typically tabulated as a function only of the scattering

angle θ , rather than the directional vector q; we will refer to them as atomic scattering

factors, to indicate that the values refer to the orientational average cross section. Since

electrons in an atom are actually bound to the nucleus, one might expect the response of

an electron to the E field to be somewhat less than that produced by our simple model,

in analogy to a forced harmonic oscillator. Also, the electron might have a phase lag,

and exhibit resonance phenomena when the energy of the incident photon is near the

binding energy of the electron. These effects may be added to the scattering factor by

adding the terms

f (θ ,ν) = f 0(θ)+ f ′(ν)+ i f ′′(ν) . (2.9)
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The reader is referred to the Henke Tables (Henke et al., 1993) for further discus-

sion, references, and tabulated values of atomic scattering factors. See also (Hubbell,

2006) for a brief history of the tabulation of scattering factors. Software is available for

accessing tabulated atomic scattering factors, along with other X-ray scattering cross

sections such as Compton scattering and fluorescence (see for example (Brunetti et al.,

2004) or (Bailey, 1994)).

Using tabulated values for atomic scattering factors, one can then calculate the

diffracted intensity from an assembly of atoms (e.g. molecules or crystals) as

I(q, û) = J0r2
e |F(q)|2P(û, k̂o)∆Ω , (2.10)

where F(q) is the molecular structure factor , equal to

F(q,ν) = ∑
i

fi(q,ν) . (2.11)

This is equivalent to integrating the diffracted E field arising from the continuum of

volume elements from a single atom, except that in this case the integration becomes a

discrete summation over the contribution from each atom. Coherent illumination over

the entire molecule is assumed.

Diffraction from crystals

The mathematics underlying crystal diffraction is a rich and mature subject. A thorough

overview is beyond the scope of this dissertation; this brief section serves to establish

convention. For further details, the reader is referred to texts such as (Woolfson, 1997;

Azároff, 1968), or for a comprehensive resource on e.g. space groups and other sym-

metries (not discussed in any detail here, but see the discussion on twinning in section

3.2), the International Tables for Crystallography (Hahn et al., 2005) are recommended.

A crystal is defined as having a molecular unit which repeats upon any transla-

tion

Rn = naa+nbb+ncc (2.12)
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where a, b and c are the crystal basis vectors , and ni are integers, as shown in figure

2.4. It can be shown that, for a crystal of infinite extent, non-zero diffraction results

only at scattering vectors corresponding to reciprocal lattice vectors

ghkl = ha∗+ kb∗+ lc∗ (2.13)

where

a∗ = 2π
b× c

a · (b× c)
, b∗ = 2π

c×a
b · (c×a)

, c∗ = 2π
a×b

c · (a×b)
(2.14)

are the reciprocal lattice vectors, and hkl are the Miller indices defining a particular

reciprocal lattice point. This is the Laue condition for the observation of diffraction

from a crystal, which can be shown to be equivalent to the Bragg law

2d sin(θ/2) = mλ (2.15)

where d is the spacing between real-space lattice planes in the crystal, θ is the scat-

tering angle (not the Bragg angle), λ is the radiation wavelength, and m is any integer

(Guinier, 1994).

Figure 2.4: Repeating molecular struc-
ture of a crystal upon translations.

Figure 2.5: Crystal lattice basis vec-
tors in real and reciprocal space. Real-
space vectors are shown on the left,
with corresponding reciprocal space
vectors on the right.

For the case of a finite crystal, of considerable interest in this dissertation, the

structure factor of the entire crystal may be written as the product of the lattice trans-

form and the molecular structure factor of the unit cell:

Fcryst(q) = F(q)S(q) (2.16)
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where F(q) is the molecular structure factor, and

S(q) = ∑
Rn

eiq·Rn (2.17)

is a truncated lattice transform . The diffracted intensity is then

I(q) = J0r2
eP(û, k̂o)|F(q)|2|S(q)|2 . (2.18)

For the case of a parallelepiped crystal, with Na, Nb, Nc unit cells along each edge, the

squared truncated lattice transform takes the simple form (Warren, 1990)

|S(q)|2 = sin2(NaΨa)

sin2(Ψa)

sin2(NbΨb)

sin2(Ψb)

sin2(NcΨc)

sin2(Ψc)
(2.19)

where

Ψa = q ·a/2, Ψb = q ·b/2, Ψc = q · c/2 . (2.20)

It is important to note that a finite crystal, as opposed to the ideal infinite crystals,

contains non-zero diffracted intensity at points between the reciprocal lattice points

(i.e. at points which do not satisfy the Laue condition).

The Debye-Waller temperature factor, and the Wilson B factor

Atoms in a crystal are not strictly stationary, and deviations from the idealized crys-

tal may result in pronounced changes to the resulting diffraction patterns. Consider

the Debye-Waller temperature factor, in which case it is assumed that each atom in

the crystal has a random and uncorrelated Gaussian-weighted displacement δi from its

nominal (average) position. The diffracted intensity then becomes (see for instance

Als-Nielsen and McMorrow (2001))

I(q) = |F(q)|2 (2.21)

=

〈
∑
m

f eiq·(rm+δm)∑
j

f e−iq·(rn+δn)

〉
mn

(2.22)

≈ |F0(q)|2e−q2〈δ 2〉/2 . (2.23)
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Under this approximation (specifically,
〈
eix〉= e−〈x2〉/2 if x is Gaussian distributed), the

effect of atomic vibrations thus leads to a falloff in diffracted intensity with increasing

resolution, compared with the intensity which would arise from the ideal crystal. This

falloff is often written using the Wilson B factor as

I(q) ≈ |F0(q)|2e−B(sin(θ)/λ )2
(2.24)

which is used to model numerous possible effects (in addition to temperature) which

lead to a loss of intensity at high resolution, such as crystal mosaicity and radiation

damage. In the case of an intense X-ray beam such as that from an XFEL, a B factor

might be used to approximately model the initial stages of crystal destruction (pho-

toelectrons, Coulomb explosion, modified atomic scattering factors), though caution

must clearly be exercised in doing so as the small-amplitude harmonic approximation

is likely invalid.

Reciprocal space geometry and the Ewald sphere

It is useful to introduce the concept of reciprocal space in order to build an intuitive

understanding of the discussions to follow in this dissertation. Generally, when an

object with electron density ρ(r) is illuminated by monochromatic plane wave radiation

with photon energy far away from any atomic absorption edges, the resulting diffracted

intensity is related to its squared Fourier transform (similar to the atomic form factor;

see equation 2.6) by

I(q) ∝

∣∣∣∣∫ ρ(r)eiq·rd3r
∣∣∣∣2 . (2.25)

Since both incident and outgoing (diffracted) waves have the same wavelength, the

parameter which defines points in reciprocal space is the scattering vector q = 2π∆k.

For a given incident wavevector ki, the set of possible points that may be explored

are those which lie on the Ewald sphere, as illustrated in figure 2.6. By a acquiring

a series of diffraction patterns with the particle rotated into different orientations (or
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equivalently, with different incident wavevectors), the entire reciprocal space intensity

map may be explored up to the limiting sphere with radius |∆k|= 2/λ .

Figure 2.6: Illustration of reciprocal space and the Ewald sphere.

While a monochromatic beam produces an Ewald sphere which is infinitely

thin, the effects of spectral width (a spread in the wavelength of the incident beam) and

beam divergence (spread in incident beam direction) will produce an Ewald “sphere”

of finite thickness, as illustrated in figure 2.7. If the electromagnetic field adds inco-

herently over the distribution of wavelengths or incident beam directions, the Ewald

sphere of finite thickness will integrate the diffracted intensities which fall within the

gray regions illustrated in figure 2.7. This is approximately true for a wide wavelength

spread in the far field approximation (if the temporal coherence length is much smaller

than the sample-to-detector distance), but will depend on the degree of coherence of

the source for the case of beam divergence.
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Figure 2.7: Modification of Ewald sphere by spectral width and beam divergence.

2.2 Geometry specification for CCD image data

There are numerous conventions used for relating an experimental geometry to the data

recorded by a CCD, nearly all of which are likely represented in a software package

used somewhere in the world. Most conventions are confusing and inefficient, and

those who have had the pleasure of converting from one convention to another know

that this can be among the most frustrating experiences for a data analyst (from the

author’s experience). To avoid all possible ambiguities, the approach taken here is to

specify the experimental geometry in terms of understandable vector quantities, which

completely avoids the necessity to specify a particular coordinate system (of course,

all vector quantities must be in a consistent convention, but the particular convention is

irrelevant).

Consider the geometry specified in figure 2.8. We generally wish to relate the

values measured by a CCD and stored in a computer’s memory to real space coordi-

nates. This is accomplished by first specifying a pair of basis vectors f and s which

point along the fast-scan direction (the values which change most rapidly in memory)
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Figure 2.8: Geometry for scattering intensities captured by a CCD detector.

and the slow-scan direction, respectively. These basis vectors are likely orthogonal,

but they need not be. The pixel “pitch” (spacing between adjacent pixels) is speci-

fied by lengths |f| and |s|. The direction normal to the detector panel, n̂, is now easily

calculated:

n̂ =
f× s
|f× s| . (2.26)

The position and orientation of the detector should be related to the interaction region

where X-rays are incident on the target (approximated as a singular point provided that

the sample is much smaller than detector pixels). This is accomplished by specifying

the translation vector T, which points from the interaction region to the first element in

the data array. For a pixel that is at the fast-scan, slow-scan index n f ,ns, the real-space

location relative to the interaction region is then specified by the vector

V = T+n f f+nss . (2.27)

Finally, the incident beam direction k̂i and (if needed) the polarization vector û should

be specified.

Now we may straightforwardly compute parameters of interest. The outgoing

wavevector direction is

k̂o =
V
|V| . (2.28)

For wavelength λ , the scattering vector is

∆k =
1
λ

(
k̂o− k̂i

)
, (2.29)
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which has a scattering angle of

θ = arccos(k̂o · k̂i) . (2.30)

The polarization correction for linearly polarized light is

P(û, k̂o) = 1−|û · k̂o|2 . (2.31)

A detector pixel solid angle is

∆Ω≈ |f× s|
|V|2 n̂ · k̂o (2.32)

(note that |f× s| is the area of the pixel, n̂ · k̂o is the cosine of the “tilt” of the pixel

relative to the scattered beam direction). It should be clear from equations 2.26 through

2.32 that a vector representation of the experimental geometry alleviates most of the

problems associated with specification detector geometry through panel “tilts”, “cam-

era length”, and “beam center”– with the specification of at most five vectors, the com-

plete geometry is known and one need not wonder about the ordering of panel tilts, the

directions of shifts, and so on. Generalized computations are also particularly straight-

forward; for instance, a Monte Carlo calculation of diffraction intensities where spectral

width and beam divergence are significant is easily done by randomly varying λ and

the direction of k̂o, while averaging the computed scattering amplitudes or intensities

for each pixel as desired (see appendix A.1 for an example written in MATLAB).

2.3 Diffractive imaging and structure determination
Fourier transforms and related theorems

For completeness, some basic theorems concerning Fourier transforms (FTs) are es-

tablished here, following a notation similar to that in (Goodman, 1996). The one-

dimensional FT of a function g(x) may be written as

F {g(x)}= G( f ) =
∫

∞

∞

g(x)e2πi f xdx (2.33)

where the variable f is conjugate to x. The inverse FT is then

F−1 {G( f )}= g(x) =
∫

∞

∞

F(−2πi f x)d f . (2.34)
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Some useful theorems concerning FTs are the following:

Linearity theorem: F {αg+βh}= αF {g}+βF {h} (2.35)

Similarity theorem: F {g(ax)}= 1
|a|G

(
f
a

)
(2.36)

Shift theorem: F {g(x−a)}= G( f )e2π f a (2.37)

Convolution theorem: F {g(x)∗h(x)}= F

{∫
∞

−∞

g(ξ )h(x−ξ )dξ

}
(2.38)

F−1 {G( f )H( f )}= g(x)∗h(x) (2.39)

Parseval’s theorem:
∫

∞

−∞

|g(x)|2dx =
∫

∞

−∞

|G( f )|2d f (2.40)

The generalization to two or more dimensions is straightforward; for instance, the shift

theorem in 3D for a density ρ(r) with real space vector r is

F {ρ(r−R)}= F(∆k)e2π∆k·R (2.41)

upon shifting the density by some vector R, which shows that the measured structure

factor magnitude is unchanged upon translation of the electron density since

|F {ρ(r)}|2 = |F {ρ(r−R)}|2 = |F(∆k)|2 (2.42)

Some useful functions (and corresponding transforms) for discussions to follow
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are

Rectangle function: rect(x) =


1 |x|< 1/2

1/2 |x|= 1/2

0 otherwise

(2.43)

F {rect(ax)}= 1
|a|sinc( f/a) (2.44)

Sinc function: sinc(x) =
sin(πx)

πx
(2.45)

F {sinc(ax)}= 1
|a|rect( f/a) (2.46)

Delta function: δ (x) =

 1 x = 0

0 otherwise
(2.47)

F {δ (ax)}= 1
|a| (2.48)

Comb function: comb(x) =
∞

∑
n=−∞

δ (x−n) (2.49)

F {comb(ax)}= 1
|a|F {comb( f/a)} (2.50)

The Whittaker-Shannon sampling theorem

It is useful to consider the Whittaker-Shannon sampling theorem and its relation to

crystal diffraction before moving forward. Using the mathematical tools discussed

in the previous section makes this particularly straightforward. Consider a 1D crystal

which has a unit cell electron density ρ(x) which is zero when |x|> L/2. Now consider

building a finite crystal ρN(x) which consists of N repeats of the unit cell density ρ(x),

each a distance L apart. For simplicity, we may choose the length units to be that of

the unit cell for now. We may then build the finite lattice by first convolving an infinite

lattice comb(x/d) with ρ(x), and then multiplying by the window function rect(x/N)

which defines the crystal size:

ρN(x) = [comb(x)∗ρ(x)] rect(x/N) (2.51)
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where ∗ represents a convolution. From the convolution theorem (equation 2.39) the

FT is then

ψN(q) =[ comb(q)ψ(q)]∗N sinc(Nq) (2.52)

=

[
∑
n

δ (q−n)ψ(n)
]
∗N sinc(Nq) (2.53)

=∑
n

ψ(n)N sinc(Nq−Nn) (2.54)

where ψ(q) is the FT of ρ(x). Now, if we take N = 1 in equation 2.54, we get the usual

Whittaker-Shannon sampling theorem:

ψ(q) = ∑
n

ψ(n) sinc(q−n) , (2.55)

which becomes

ψ(q) = L2
∑
n

ψ(n/L) sinc(L(q−n/L)) (2.56)

upon following through with arbitrary units. In the usual language, the function ψ(q)

is band-limited since its FT ρ(x) has a finite support of size (bandwidth) L. Equation

2.56 shows that a band-limited function can be recovered exactly by a sampling of the

function on a regular grid and interpolating by convolution with a sinc function (in

other words, by laying down a sinc function at each of the lattice points, with weights

equal to the structure factors ψ(q)), provided that the sampling frequency is greater

than or equal to 1/L (referred to as the Shannon or Nyquist frequency).

The generalization from one dimension to two or three dimensions is straight-

forward. For a cubic crystal, the above expressions may be applied to each of the

orthogonal coordinates (x,y,z) where the density function is ρ(x,y,z) = ρ(r). For an

arbitrary unit cell, the use of a fractional coordinate system (where x,y,z refer to dis-

tances along the unit cell basis vectors; r = xa+yb+ zc) simplifies the problem. Since

the Whittaker-Shannon sampling theorem results from choosing N = 1, this complica-

tion is not necessary here.
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The phase problem in crystallography

Upon processing of a crystallographic data set, integrated reflection intensities Ihkl pro-

vide the magnitudes of structure factors Fhkl:

|Fhkl| ∝
√

Ihkl . (2.57)

However, in order to reconstruct an electron density map of the crystal unit cell, one

must compute the Fourier transform

ρ(r) = ∑
hkl

Fhkle2πir·ghkl (2.58)

where ghkl are reciprocal lattice vectors. Since the needed information is both the struc-

ture factor magnitudes and their corresponding phases, only half of the information is

available. This is the celebrated phase problem in crystallography. A number of so-

lutions are available, which generally require the measurement of multiple data sets.

Only one such method will be described here.

The method of isomorphous replacement (IR) utilizes two (single IR, or SIR)

or more (multiple IR, or MIR) data sets in which heavy atoms are adsorbed into protein

crystals in a repeatable way (the heavy atoms situate themselves identically in each unit

cell), so that structure factors FPH become the summation over the native structure FP

and the additional heavy atom contribution FH :

FPH = FP +FH . (2.59)

Provided such data sets, the solution to the phase problem may be illustrated in a Harker

diagram, as shown in figure 2.9, constructed by drawing the possible values of the phase

of FP (a circle centered at the origin of the Argand diagram) and the possible values of

FP = FPH−FH (a circle with origin at−FH). It is clear that, provided that the amplitude

and phase of FH can be determined (Patterson or direct methods may be considered–

see (Woolfson and Fan, 2005)), only two solutions to the phase of FP exists. A unique
40



solution may be found by preparing additional heavy atom derivatives (a third offset

circle in the Harker diagram will intersect with only one of the two possible values of

FP). Isomorphous replacement is a powerful method for direct measurement of phases,

and was used for the determination of the first protein structure (myoglobin).

Figure 2.9: A Harker diagram, illustrating the solution to the phase problem using
isomorphous replacement.

The literature on the crystallographic phase problem is vast. For a more compre-

hensive review of the phase problem and structure determination, the reader is referred

to textbooks such as (Woolfson, 1997; Rhodes, 2006; Woolfson and Fan, 2005). This

subject will be discussed again in section 3.5 where a new solution to the phase prob-

lem is presented for the case of coherently illuminated nanocrystals, along with some

further historical context.

Iterative phase retrieval methods for non-crystalline targets

For non-crystalline targets, diffraction patterns may be sampled at arbitrarily high sam-

pling frequencies, since non-zero intensities are not limited only to regions near the

Bragg condition, and this makes possible iterative phase retrieval methods for recon-

structing images from such patterns. The method of imaging a target based on its

diffraction patterns alone is generally referred to as coherent diffractive imaging, or

simply diffractive imaging. The history of this methodology, much like the crystallo-

graphic phase problem, is very rich and cannot be covered thoroughly here. For further
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reading on the history and relevant mathematics, the reader is referred chapter 19 of

Hawkes and Spence (2005) along with the review articles by Marchesini (2007) and

Millane (2003). A brief (and limited) explanation of how iterative phase retrieval may

be accomplished is described below.

We may set up the phase problem for isolated targets in the following way.

Assuming kinematical diffraction, the diffracted intensity I(q) is proportional to the

square modulus of the FT of the real-space density ρ(r):

I(q) = |F {ρ(r)}|2 = |F(q)|2 . (2.60)

The inverse FT then immediately provides access to the autocorrelation of the real-

space density:

F−1 {I(q)}= F−1 {F∗(q)F(q)}= ρ(−r)∗ρ(r) . (2.61)

Since the autocorrelation is twice the size of the particle (assuming it is isolated and

has a finite “support” which defines non-zero density regions), the bandwidth of the

diffracted intensity function is twice that of the diffraction amplitude function. Follow-

ing the discussion in section 2.3 it is clear that one must sample intensities at twice the

frequency needed for sampling of amplitudes. This is sometimes referred to as “over-

sampling”, but is actually the optimal sampling frequency for intensities. Historically,

this observation was first made by D. Sayre in 1952 (Sayre, 1952), who pointed out that

if one could sample a crystal diffraction pattern at half-integer Miller indices (midway

between Bragg reflections), then one could solve for the points at which signs of struc-

ture factors of centrosymmetrical crystals change (for centrosymmetrical objects, only

phases of 0 and π are allowed), since this would occur at points where structure factors

vanish.

The first solution to the phase problem for diffractive imaging was presented

by Gerchberg and Saxton (Gerchbeg and Saxton, 1971; Gerchberg and Saxton, 1972),

who suggested iterative algorithms in which iterations moved back and forth from real
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and reciprocal space, while asserting known information in each domain. The role of

the object boundary (the “support”), and the need to sample the continuous scattering

finely enough to satisfy Shannon’s theorem (treating the autocorrelation function as the

bandwidth) were recognized. Loosely speaking, the solution to the phase problem can

be understood by realizing that half of the information needed in reciprocal space is

provided by the measured intensities (the phases are the missing half), and half of the

information in real space is provided since values outside of the support are known to

be zero or constant-valued (the density within the support is the missing half). The

algorithm tries to find the intersection between two sets, one of which is the set of

all the possible objects with a given diffraction pattern (modulus set), and the other

which is the set of all the objects that are constrained by the support. The search for

the intersection is based on the information obtained by projecting the current estimate

on the two sets. The Gerchberg-Saxton Error Reduction algorithm proceeds as follows

(for the ith iteration):

(1) Fi(q)←F {ρi(r)} (2.62)

(2) Fi+1(q)←
√

I(q)
Fi(q)
|Fi(q)|

(2.63)

(3) ρ
′
i (r)←F−1 {Fi+1(q)} (2.64)

(4) ρi+1(r)←

 ρ ′i (r) r ∈Π(r)

0 r /∈Π(r)
(2.65)

where Π(r) is the binary support function, which may be estimated from electron mi-

crographs or the autocorrelation function (the FT of I). Unfortunately, this algorithm

will usually only find a local minimum, with the stagnation being attributed to the non-

convex Fourier modulus constraint in reciprocal space (Marchesini, 2007).

In 1982 a more useful working solution was developed for real two-dimensional

images based on non-linear feedback control theory (Fienup, 1982). Here, step (3) in
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the original Error Reduction algorithm was replaced with

(3) ρi+1(r)←

 ρ ′i (r) r ∈Π(r)

ρi(r)−βρ ′i (r) r /∈Π(r)
(2.66)

which makes up the Hybrid Input-Output algorithm. This is perhaps the most success-

ful and widely-used algorithm, especially when used in conjunction with the “shrinkwrap”

algorithm (Marchesini et al., 2003) which updates the support on each iteration. A

number of further algorithms have been developed (see (Marchesini, 2007) for a com-

parison of them), such as the “charge flipping” algorithm (Oszlanyi and Suto, 2004)

which replaces step (3) with

(3) ρi+1(r)←

 ρ ′i (r) r ∈Π(r)

−ρ ′i (r) r /∈Π(r)
(2.67)

where Π(r) is simply defined by some threshold applied to ρ ′i (r). The charge-flipping

algorithm is applied in chapter 4 of this dissertation.
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Chapter 3

FEMTOSECOND X-RAY PROTEIN NANOCRYSTALLOGRAPHY

3.1 New potential for X-ray protein crystallography, and new challenges

The ideas proposed for XFEL-based imaging of single protein molecules in the diffract-

and-destroy mode remains a considerable challenge. This is in part due to the limited

single-shot photon flux currently available at the LCLS, but the situation will be im-

proved in the near future as improvements to focusing optics are made (a 100-fold flux

increase can be expected once 100-nm focus is achieved). The difficulty of delivering

single molecules to a submicron focus is another cause for concern, since aerosol-based

injectors currently yield prohibitively low hit rates. Where proteins are embedded in

submicron droplets (perhaps just a few tens of H2O molecules thick) which vary in

size from shot to shot, complications should be expected at the stages of signal av-

eraging diffraction patterns and reconstructing an electron density map. Completely

de-hydrated protein molecules may not represent the physiologically relevant structure

for some targets. Liquid jet delivery systems are not likely to be applicable, due to

high background levels. At present, some form of ordered aggregation (as in viruses

or crystals) is required to obtain sufficient diffracted signal in order to merge data from

many randomly-oriented identical targets. Given the current capabilities of XFELs,

nanocrystals are perhaps the ideal protein-based targets. Since the peak intensity of a

Bragg reflection which results from a crystal is proportional to the square of the num-

ber of molecules, problems associated with low signal and solution scatter are largely

avoided. By applying existing automated diffraction pattern indexing algorithms, the

challenge of orientation determination is largely alleviated. Nanocrystals therefore al-

low first steps to be made toward the ultimate goal of determining the structures of

single molecules (i.e. 1×1×1 unit cell crystals).

As discussed in the introduction, femtosecond protein nanocrystallography rep-

resents far more than a “stepping stone” toward single-molecule imaging. To sum-
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marize the discussion in chapter 1, some of the advantages of femtosecond protein

nanocrystallography are the following:

1. The use of an XFEL allows the possibility of diffract-and-destroy imaging, whereby

it may become possible to overcome the problem of radiation damage altogether,

allowing the possibility to image radiation-sensitive targets such as photosystem

II.

2. The ultrashort duration of the XFEL pulses naturally lends itself to time-resolved

studies. In addition to improving time resolution (down to just a few fs), the new

possibility of exposing beyond the conventional dose limit allows one to obtain

considerable improvements in single-shot signal. This allows the possibility to

study challenging irreversible processes such as conformational changes which

destroy crystallinity.

3. New possibilities arise to study proteins that do not form sufficiently large crys-

tals for synchrotron-based studies. This can alleviate considerable time invest-

ments in growing large crystals; for instance, it took 13 years from the time that

microcrystals of photosystem I were observed to the time that an atomic resolu-

tion density map was determined from macroscopic crystals (Witt et al., 1988,

1994; Krauss et al., 1996; Jordan et al., 2001).

4. Due to the highly coherent illumination produced by the XFEL, and the small

crystal sizes, significant diffracted intensity lies between Bragg reflections. This

new information may be used to solve the crystallographic phase problem ab-

initio with only a single data set.

5. Where a liquid jet delivery system is used, it should be possible to collect useful

diffraction patterns at a rate nearly matching the repetition rate of the XFEL,

allowing complete data sets to be collected from submicron crystals in a matter
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of a few hours or less, in a highly automated fashion. Diffraction patterns may

be collected at room temperature from crystals in their native harvesting buffer,

therefore eliminating the tedious steps of cryo-cooling and sample mounting.

Given the number of potential advantages, it would be reasonable to expect that fem-

tosecond protein nanocrystallography will soon occupy its own niche among the meth-

ods for protein structure determination, provided that it can be demonstrated that the

resulting data can be analyzed and produce accurate electron density maps. Questions

regarding data analysis and data quality are the subject of this chapter.

At the LCLS, each X-ray pulse currently delivers about 1012 photons of up to

9.3 keV photon energy in about 10-300 fs duration. The peak brightness is many or-

ders of magnitude higher than a modern third-generation synchrotron source, sufficient

to provide a useful diffraction pattern from protein crystals of submicron dimensions.

These pulses are generated with a repetition rate of up to 120 Hz, which, with an effi-

cient protein crystal delivery system and new fast-readout area detectors (Denes et al.,

2009; Struder et al., 2010), allows the collection of millions of diffraction patterns at

atomic resolution within a few hours.

The development of a suitable device for the injection of hydrated proteins or

protein crystals has proven a difficult problem. However, at least two devices have

proven successful, as described elsewhere in the literature (Bogan et al., 2008; De-

Ponte et al., 2008; Weierstall et al., 2008). These injectors deliver a beam of hydrated

bioparticles or nanocrystals across the X-ray beam with hit rates varying between one

hit in tens of seconds to many per second, and have been used to produce diffraction

patterns from single viruses, bioparticles, and cells in developmental tests at the soft X-

ray FEL facility FLASH (Bogan et al., 2008). More recently, experiments performed

at the LCLS have demonstrated the efficient use of liquid jets for delivering hydrated

protein nanocrystals at room temperature to the X-ray beam (Chapman et al., 2011),
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as described further in section 3.4. An aerosol injector was also used at the LCLS

to obtain snapshot images of mimi viruses in free flight (Seibert et al., 2011). While

the current challenge for aerosol injectors is to improve hit rates to the extent that

three-dimensional reconstructions become feasible, the situation is quite the opposite

for liquid jets– here the current emphasis is on reducing the amount of wasted sample

that passes through the interaction region without being irradiated by the pulsed X-ray

beam. This may be accomplished in the future by synchronization of a pulsed source

of liquid droplets, which is likely suitable for microcrystals, but the relatively large

droplets (∼30 µm at present) make this an unlikely route for single-molecule imaging.

The analysis of this new type of crystallographic data poses significant chal-

lenges. Figure 3.1 shows a simulated X-ray snapshot diffraction pattern from a nanocrys-

tal of Photosystem I (space group P63, a= b= 281 Å, c= 165 Å) at 1.8 keV, to indicate

the idealized features of a typical nanocrystal diffraction pattern under the experimental

conditions (see section 3.3 and appendix A.1 for simulation details). This is a fully spa-

tially coherent simulation of a randomly-oriented parallelepiped crystal of 17×17×30

unit cells (∼0.5 microns in size), with a spectral width of 0.1% and beam divergence

of 1.5 mrad. For the smallest crystals consisting of just a few unit cells (Hunter et al.,

2011), there are multiple diffraction maxima, in the form of interference fringes, ex-

tending entirely from one Bragg peak to the next, as first shown by von Laue (von

Laue, 1936) (see also section 2.1 and references therein). Crystal size effects (similar

to Scherrer broadening) thus dominate the size of the Bragg spots, rather than beam

divergence, energy spread or mosaicity, as in conventional protein crystallography. For

this type of data, conventional oscillation data processing methods (Arndt and Wona-

cott, 1977) are not immediately applicable because existing algorithms cannot to de-

termine if an intensity peak is a “major” Bragg peak or merely a subsidiary maximum,

let alone estimate its partiality. However, once reasonably accurate structure factors

and crystal orientations are obtained, it may be possible to extract effective partialities
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using a post-refinement procedure similar to that described by (Rossmann et al., 1979)

for oscillation cameras. Calculating partialities for reflections from nanocrystals will

be much more challenging because a small sphere in reciprocal space is a poor model

of the “rocking curve” in this case. Specifically, the Fourier transform of the crystal

shape (referred to as a “shape transform” here) is convoluted with each reciprocal lat-

tice point, spreading the total intensity into subsidiary maxima that may range all over

reciprocal space. Since the observation of a “peak” does not necessarily imply that the

main Bragg peak intersected the Ewald sphere, these subsidiary maxima can create a

number of challenges for autoindexing for the smallest nanocrystals. In addition, all

of the data analysis must be highly automated, since human evaluation of millions of

patterns is not practical.

Figure 3.1: Simulation of an ideal 1.8 keV nanocrystal diffraction pattern for a perfect
(no mosaicity) Photosystem I nanocrystal with 17×17×30 unit cells along the a, b and
c directions∼0.5 mm in size), with a spectral width of 0.1% and beam divergence of 1.5
mrad. Red rings indicate the intersection of the Ewald sphere with the boundary of the
integration domains described in section 3.2, for a value of δ = 5 µm−1. Fringes result
from interference between shape transforms, and this effect dominates beam divergence
and energy spread in the beam. The crystal is in a random orientation, near the hk0
projection.
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With data obtained through recent experimental work, a method has been de-

veloped in which crystallographic structure factors are extracted from fs diffraction

data using a “Monte Carlo” approach to integrating the many partial reflections (de-

scribed in section 3.2) resulting from coherently illuminated nanocrystals. X-ray mi-

crodiffraction work has already demonstrated the opportunity this provides to expand

the range of proteins for which structure determination is possible (Coulibaly et al.,

2007). For instance, data have recently been collected (albeit with great difficulty) to

obtain the first structure of a medically important human membrane protein, the beta-

androgenic receptor, using microcrystals grown in a lipid cubic phase (Warne et al.,

2008). The reduction in damage observed with small crystals is attributed to the ejec-

tion of photoelectrons into the surrounding vacuum rather than into surrounding bulk

protein crystal, where further damage may be caused, as predicted by Nave and Hill

(Nave and Hill, 2005). The use of femtosecond snapshot diffraction patterns from even

smaller (submicron) crystals supplied continuously and automatically as a stream of

hydrated nanocrystals, would circumvent problems associated with radiation damage

(Hau-Riege et al., 2004) and the long data collection times associated with searches for

protein crystals hand-mounted within a cryo-loop sample holder.

3.2 Femtosecond nanocrystallography analysis theory
A new approach to crystallography data analysis

The so-called “Monte Carlo” approach to serial nanocrystallography data analysis de-

scribed in this chapter was a development which arose from the complexity of the large

data sets obtained from crystallography experiments carried out at XFELs. It can be

described as a probabilistic approach, in which the the random and largely uncorre-

lated nature of the experimental conditions are used to our advantage to simplify the

analysis procedure. Where nanocrystals are delivered to the X-ray beam in a stream

of liquid drops or jets, with sample delivery rates matching the repetition rate of the

XFEL, recorded diffraction patterns arise from crystals of random size, shape, orienta-
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tion, with varying degrees of background scatter. Typically, there is limited control over

and knowledge of experimental parameters such as photon flux, energy spectrum, and

pulse duration (for instance, we currently cannot control where a given nanocrystal falls

within the micron-size X-ray beamspot, and therefore have little immediate knowledge

of flux). However, the current losses in detailed information about each snapshot are

well-compensated for by the vastness of the data sets that result. In essence, provided

that the number of measurements are sufficiently large, the experimental averages be-

come accurate representations of the true sample population average according to the

central limit theorem, so that, under certain conditions, distributions in experimental

conditions may be “integrated out” in Monte Carlo fashion.

The analysis procedure may be summarized as follows. The approximate ori-

entation of each randomly-oriented nanocrystal is determined from its diffraction pat-

tern using conventional crystallographic peak finding and autoindexing software. Due

to the complexity of shape transforms, peak locating algorithms may require some

optimization for this type of diffraction data. However, it is demonstrated here how

existing automated indexing software may be used to obtain sufficiently accurate ori-

entations from most diffraction patterns, enabling structure factor extraction. Having

determined crystal orientations from tens or perhaps hundreds of thousands of patterns,

the diffracted intensities that fall within a small distance from a reciprocal lattice point

are then summed (alternatively, fractional Miller indices may be used to form an over-

sampled reciprocal-space intensity map averaged over the various nanocrystals). As

the crystals will differ in size, shape and orientation, this summation can be expected to

perform a Monte Carlo integration of the intensity, combining the many observed shape

transform “slices”, and so (if complete) produce a quantity proportional to the square

of the structure factor magnitude. This integration hypothesis is first tested using simu-

lated data in section 3.3, to study the convergence of this process and so determine the

number of snapshot patterns needed for a given accuracy. Data collected at the LCLS
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verify these results experimentally for Photosystem I protein nanocrystals (section 3.4).

As an extension to the approach, a new route to phasing nanocrystal data is presented,

and tested through simulations (section 3.5).

Real-world serial crystallography data present a number of new challenges in

addition to those mentioned above. Detector electronic noise can be substantial, espe-

cially for new varieties of detectors still under development for use at XFELs where

the frame capture rates are high. Significant scatter from the liquid jet may be present,

producing a fluctuating background which differs substantially from frame to frame.

Multiple (or fractured) crystals, may be present in a given shot, and many (if not most)

snapshots may be little more than background scatter. It is also possible that crystals

delivered to the beam are aligned due to the flowing liquid jet. Care needs to be taken

in order to ensure that systematic errors (which break the assumptions of the Monte

Carlo method) do not produce inaccurate results, as discussed further in section 3.4.

The Monte Carlo approach can be rationalized mathematically under some rea-

sonable assumptions corresponding to expected experimental conditions. The follow-

ing sections describe the theory under the assumptions of the kinematical approxima-

tion to X-ray diffraction, where multiple scattering is negligible (certainly valid for

submicron protein crystals). Beam divergence and spectral width are neglected for

simplicity, since the width of Bragg reflections are dominated by crystal size effects,

but some further discussion on this point is provided. The general theory presented

here may be applied to extracting structure factors (intensities near Bragg reflections)

or a complete oversampled map of reciprocal space, which may be subsequently phased

according to section 3.5.

Monte Carlo intensity integration

As described in section 2.1, for monochromatic plane-wave illumination with incident

wavevector ki, the far-field diffracted photon flux In (photons/pulse) at scattering vector
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∆k from the nth of many randomly-oriented crystals may be written in the kinematic

theory as

In(∆k) = J0r2
eP|F(∆k)|2|Sn(∆k)|2∆Ω (3.1)

where F(∆k) is the molecular transform of the average unit cell (assumed identi-

cal for each snapshot), Sn(∆k) is the shape transform of the truncated crystal lattice

corresponding to the nth nanocrystal, J0 is the incident photon flux density (photon-

s/pulse/area), re is the classical radius of the electron, P is a polarization factor, and ∆Ω

is the solid angle subtended by the detector pixel. The vector ∆k is defined in the crystal

reference frame here. Absorption effects are negligible for crystals of approximately

micron dimensions or smaller, although an absorption correction may be needed for the

surrounding liquid in which the crystals are suspended.

For a given detector pixel, the observed ∆k may be determined from the ge-

ometry of the detector and the crystal orientation. The average molecular transform

F(∆k) is defined here to be identical for all of the nanocrystals, but the shape trans-

form Sn(∆k) depends on the size and shape of the crystal and may differ significantly

from one crystal to the next. However, as discussed in section 2.1, the lattice transform

always obeys the translational symmetry Sn(∆k) = Sn(∆k+ghkl), where ghkl is any re-

ciprocal lattice vector with integer Miller indices hkl. For a perfect crystal, Sn(ghkl) is

equal to the number of unit cells in the nth crystal, and In(ghkl) is therefore proportional

to the square of the number of unit cells. The integrated shape transform is proportional

to the square root of the number of unit cells, and the integrated reflection intensity is

proportional to the number of unit cells.

With the availability of tens of thousands or perhaps even millions of snap-

shot diffraction patterns, new analysis procedures become possible. Upon determining

crystal orientations, the diffracted intensities may in principle be merged into a 3D

reciprocal-space intensity map (averaging over the contributions from crystals that dif-

53



fer in size, shape and orientation)

〈In(∆k)〉n = J0r2
eP
〈
|F(∆k)|2|Sn(∆k)|2

〉
n ∆Ω . (3.2)

Since the molecular transform does not vary from one shot to the next, we may move

this term out of the averaged quantity:

〈In(∆k)〉n = J0r2
eP|F(∆k)|2

〈
|Sn(∆k)|2

〉
n ∆Ω . (3.3)

Crystallographic structure factors Fhkl = F(ghkl) are ideally equal to the unit cell trans-

form evaluated at a reciprocal lattice point ghkl , but since the probability of observing

diffraction precisely at ghkl is essentially zero, it is necessary to instead average inten-

sities that fall within a small region nearby the lattice point. For extracting structure

factors, an integration domain radius δ may be defined such that all intensities for

which |∆k− ghkl| < δ is satisfied will be included in the average. If this integration

domain is chosen to be sufficiently small so that the molecular transform does not vary

significantly within it, the we may write

〈In(∆k)〉n,δ ,hkl ≈ J0r2
eP|Fhkl|2

〈
|Sn(∆k)|2

〉
n,δ ,hkl ∆Ω (3.4)

where 〈〉n,δ ,hkl is understood to indicate that only intensity measurements for which

|∆k−ghkl|< δ is satisfied are included in the average. The structure factor magnitudes

may be evaluated as

|Fhkl|2 ≈
〈In(∆k)〉n,δ ,hkl

J0r2
eP〈|Sn(∆k)|2〉n,δ ,hkl ∆Ω

. (3.5)

If a well-constrained distribution of crystal shapes and size is assumed (e.g. by lim-

iting the range of crystal sizes), then it becomes possible to obtain a mean value of〈
|Sn(∆k)|2

〉
n,δ ,hkl which accurately represents the true population mean. Moreover,

since any shape transform is identical when translated by a reciprocal lattice vector ghkl ,〈
|Sn(∆k)|2

〉
n,δ ,hkl approaches a constant that does not depend on the specific Miller in-

dices hkl (because an identical shape transform is laid down around every reciprocal
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lattice point). Therefore, a quantity proportional to structure factors may be extracted

without any knowledge of the crystal size and shape distribution since we only require

relative structure factor magnitudes;

|Fhkl|2 ∝
〈In(∆k)〉n,δ ,hkl

P∆Ω
. (3.6)

Accurate results can be expected from equation 3.6, provided that a reason-

able integration domain radius δ is chosen, and that a sufficient number of diffraction

patterns are measured in order to sample the various crystal shapes, sizes, and orien-

tations. The value of δ should be chosen to be smaller than the features of the unit

cell transform, which, according to the Shannon sampling theorem, corresponds to ap-

proximately δ < 1/2d for the largest cell constant d. Since intensities are averaged

in a Monte Carlo fashion, relying on chance to provide all needed crystal orientations,

shapes, and sizes, the errors in measured structure factors are equal to the standard error

of the mean, σ(I)/
√

N, where N is the number of measurements (i.e. pixels) contribut-

ing to a particular structure factor, and σ(I) is the standard deviation in the intensity.

An exceedingly small δ will drive down the value of N (since few observations lie in

the integration domain), while an oversized δ may possibly increase the variance in in-

tensities by sampling unwanted background counts, or sample the molecular transform

at points away from the reciprocal lattice point. The distribution of crystal sizes will

have a particularly significant effect on the value of σ(I), and a narrow size distribution

is clearly preferable, unless the data are scaled according to crystal size prior to merg-

ing of intensities. Optimization of δ will depend on beam divergence, spectral width,

crystal disorder, mosaicity, and so on, all of which have been neglected in the simpli-

fied model presented here. Incident flux variations have been neglected– this variation

is assumed to affect the data much in the same way as crystal size does (one can define

an effective shape transform S′n(∆k) = J0Sn(∆k) and still arrive at the expression in

equation 3.6). Errors introduced during data processing should also be considered, as

discussed in section 3.4.
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Description of an intensity merging algorithm

Merging intensities for crystalline patterns requires determination of crystal orienta-

tions, which is accomplished in the following sections through standard crystallo-

graphic autoindexing software (briefly described in the following section). Autoindex-

ing software generally specifies the needed information through the reciprocal lattice

matrix (Arndt and Wonacott, 1977)

A =


a∗x b∗x c∗x

a∗y b∗y c∗y

a∗z b∗z c∗z

 (3.7)

which specifies the crystal orientation (relative to the laboratory frame) through the

reciprocal lattice basis vectors a∗, b∗, and c∗ (as described in section 2.1). Once the A

matrix is determined, an orientation may be determined for the crystal relative to some

reference orientation, if desired, but this is generally not necessary. The laboratory-

frame scattering vector ∆k may be related to A and a set of Miller indices h by the

matrix product

∆k = Ah (3.8)

where the vectors ∆k and h are understood to be column matrices. Typically, Miller

indices h are the sought-after quantity, which may be determined by the inverse of this

equation:

h = A−1
∆k . (3.9)

The resulting Miller indices are not integer valued at this stage (if they are integers,

then they specify precisely a reciprocal lattice point), and therefore may be used to

map intensities to the correct bin in an oversampled reciprocal space intensity map.

Further details of how to merge the intensities depends on whether oversampling is

desired (see section 3.5), or simply the intensities corresponding to lattice points (i.e.

structure factors– see section 3.3 for further details).
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Autoindexing algorithms

The goal of an autoindexing algorithm is to determine from a diffraction pattern the ori-

entation and lattice of the crystal. Where ∆k j are the set of observed scattering vectors

in the laboratory frame corresponding to pixels j (a subset of scattering vectors which

lie on the Ewald sphere), the algorithm generally begins by locating the coordinates

of Bragg reflections within the 3D reciprocal space. The diffracted intensity may be

written as

I(∆k j) ∝ |F(R∆k j)|2|S(R∆k j)|2 (3.10)

where R is the desired rotation matrix. Peak locations may be represented as a set

of vectors in reciprocal space, or as a binary intensity map where values above the

threshold are equal to 1, and are 0 otherwise. With the binary map representation, a full

3D Fourier transform (FT) generates an estimated 3D Patterson function of the crystal

lattice, and the resulting map may be analyzed to determine the real space cell constants

and angles between them (see (Campbell, 1998) for details). This method is costly in

terms of computing time, as the 3D FT must oversample the intensity map in order

to obtain accurate results, although a fast implementation of this approach appears to

be used in the autoindexing algorithm of DENZO, which is distributed as part of the

HKL crystallography software suite (Otwinowski and Minor, 1997) (source code is not

available).

More efficient autoindexing algorithms avoid the use of a full 3D FT by calcu-

lating 1D FTs of projected intensities (i.e., they make use of the multi-slice theorem)

(Rossmann and van Beek, 1999). Indexing software such as MOSFLM (Steller et al.,

1997), LABELIT (Sauter et al., 2004), and DIRAX (Duisenberg, 1992) utilize this ap-

proach by searching for directions in reciprocal space where the peak counts (projected

onto the search vector) is most periodic. One can imagine choosing a vector in recip-

rocal space, and projecting all of the found peak locations onto this vector to form a
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histogram. The FT of this histogram then may be used to indicate the periodicity within

the histogram, which will be highest if the vector points along a lattice basis vector. In

this way, the computer essentially performs a virtual rotation of the crystal onto a zone

axis, much as one would physically rotate a crystal on a goniometer in order to align

the zone axis along the beam direction. It should be noted that the length of the crystal

cell constants need not be known prior to this search, as the algorithms simply search

for periodicity, and these lengths are determined at this stage. It is, however, helpful

to have known cell constants in order to select the correct triplet of basis vectors from

the perhaps 30 or so candidates. A method to determine unknown cell constants from

serial nanocrystallography data is described in section 3.4.

A note on the “twinning” problem

It is important to note that if A is determined from the locations of Bragg reflections

alone, without consideration of diffracted intensities, multiple indexing convention

choices may be possible. For space groups in which the Bravais lattice has higher

symmetry than the true point group, ambiguities in crystal orientations arise. If not

properly accounted for, the apparent symmetry of the merged data will be higher than

the true symmetry of the individual crystals. Specifically, for the case that the true

space group is P63 (as for the simulations and data analysis in sections 3.3 and 3.4),

the merged data have apparent symmetry1 P6322 and appear to have a “twin fraction”

of 0.5. (it is assumed that the nanocrystals themselves are not physically twinned; the

apparent twinning is an artifact of indexing ambiguities in the data merging). It is theo-

retically possible to “de-twin” data from twinned crystals using this new data collection

method. Specifically, if nanocrystals do consist of single mosaic blocks then they can-

not be twinned, even if the macroscopic crystals of the same form are merohedrally

twinned. Once spot partialities are available, the histogram of estimated “full” spot in-
1In simple terms, one can rotate the crystal by 180◦ about the a + b axis such that the original

reciprocal lattice is coincident with the rotated lattice, but intensities are not equivalent. This rotation
corresponds to letting hkl→ khl, which describes the indexing ambiguity in this case.
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tensities will be bimodal for many hkl indices, allowing re-indexing of each diffraction

pattern to a consistent orientation choice, so that merging these data will produce an

apparent symmetry of P63 and a twin fraction of 0.

3.3 Nanocrystallography simulations
Overview

This section details the results of Kirian et al. (2010), in which the feasibility of the

Monte Carlo approach to nanocrystal structure factor integration was investigated through

simulated data, under the conditions expected for the first nanocrystallography experi-

ments performed at the LCLS. Results of these simulations assess the number of shots

needed for a required precision in structure factor measurement at ∼8 Å resolution, as

well as the convergence properties of the Monte Carlo method. It was assumed that X-

ray diffraction patterns would be obtained from individual submicron protein crystals,

using a sufficiently short X-ray pulse so that radiation damage is negligible. The crys-

tals were assumed to be sufficiently small so as not to be affected by extinction (multiple

scattering). A small amount of water background was included in the simulated data.

Beam divergence and spectral width were neglected, since shape transforms dominate

the broadening of Bragg reflections under the expected conditions of the first experi-

ments carried out at the LCLS. The results of this work demonstrate that a complete

set of structure factors, equivalent to single-crystal structure factors, may be obtained

from such snapshot diffraction patterns, which in turn allows the reconstruction of an

electron density map if the data can be phased.

The approach to the following analysis was as follows. Upon simulating a set of

data consisting of tens of thousands of nanocrystal diffraction patterns, it was demon-

strated that orientations may be determined using DPS FFT-based autoindexing algo-

rithm implemented in MOSFLM (Leslie, 2006). Using known crystal orientations, the

diffracted intensities that fell within a small distance from a reciprocal lattice point

were averaged, where the distance was determined from the crystal orientation and
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experimental geometry. As the crystals differed in size, shape and orientation, this av-

eraging performed a Monte Carlo integration of the intensity over these quantities near

the Bragg condition, and so (when complete) produced a quantity proportional to the

square of the structure factor magnitude. The quality of the extracted structure factors

was then assessed based on a crystallographic R factor, as a function of the number of

diffraction patterns and the size of the integration domain.

Simulation of experimental diffraction patterns

For the simulations carried out here, a simple model of diffraction from parallelepiped

crystals was assumed. Following section 2.1, the diffracted intensity of the nth pat-

tern at scattering vector ∆k (defined in the lab frame, not the crystal frame) may be

expressed as

In(∆k) = J0r2
eP(û,ko)|F(∆k′)|2 sin2(N(n)

a Ψ′a)

sin2(Ψ′a)

sin2(N(n)
b Ψ′b)

sin2(Ψ′b)

sin2(N(n)
c Ψ′c)

sin2(Ψ′c)
∆Ω . (3.11)

The shape transform is therefore parameterized by the number of unit cells along each

edge of the parallelepiped, N(n)
a , N(n)

b and N(n)
c , and the functions

Ψ
′
a = π∆k′ ·a (3.12)

Ψ
′
b = π∆k′ ·b (3.13)

Ψ
′
c = π∆k′ · c (3.14)

where the real-space unit cell vectors are a, b and c. The molecular transform |F(∆k)|

was assumed to be identical for every snapshot. In order to calculate intensities of a

rotated crystal, the crystal-frame scattering vector ∆k′ may mapped to the laboratory-

frame scattering vector ∆k by the rotation matrix Rn of the nth crystal:

∆k′ = Rn∆k . (3.15)

A particular lab-frame scattering vector ∆k j is defined by the position of the detec-

tor pixel j and X-ray wavelength, and defines a point in reciprocal space where the
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Ewald sphere intersects the shape transform. Specifically, for the flat area detector as-

sumed here, with its normal parallel to the incident beam, the scattering vector ∆k j

corresponding to pixel j is

∆k j,x = X j/
[
λ

√
X2

j +Y 2
j +D2

]
(3.16)

∆k j,y = Yj/
[
λ

√
X2

j +Y 2
j +D2

]
(3.17)

∆k j,z = D/
[
λ

√
X2

j +Y 2
j +D2

]
−1/λ (3.18)

where D is the sample-to-detector distance, X j and Yj are distances from the incident

beam position on the detector plane, and λ is the photon wavelength. The X-ray radi-

ation produced by the LCLS is approximately plane polarized, so that the polarization

factor for polarization along the unit vector û was assumed to be P(û,ko) = 1−|û · k̂o|2.

The molecular transform was computed from an asymmetric unit consisting

of just twelve electrons, according to section 2.1. The hexagonal space-group P63

and cell constants (a = b = 28.8 nm, c = 16.7 nm) corresponding to Photosystem I

(PSI) crystals (used as a test target in subsequent experimental work at the LCLS) were

used here. Since PSI contains about 70,000 non-hydrogen atoms, this simplified model

resulted in a considerable speed increase. The reciprocal space lattice, symmetry, and

forbidden reflections were unchanged, so that only the relative Bragg intensities (and

overall scale) were affected by this simplification.

In order to simulate realistic photon counts using the twelve-electron point-

scatterer protein model, the structure factor F(∆k) calculated from the model was

scaled so that it agreed on average with calculated structure factors of PSI. The structure

factor was expressed as

FPSI(∆k) = A fN(θ/λ )exp
(
−B(sinθ/λ )2

)
F(∆k) (3.19)

where

fN(θ/λ ) = 7exp
(
−10.7Å2

(sinθ/λ )2
)

(3.20)
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models the structure factor for nitrogen, which is a reasonable approximation for the

average atomic scattering factor in proteins. The scattering angle may be calculated

from the magnitudes of the scattering vectors as

θ = 2arcsin
( |∆k|λ

2

)
(3.21)

Spot fading due to intrinsic crystal disorder was modeled by the Wilson B factor, which

for PSI is 44.3 Å2 (taken from the PDB file 1JB0). The overall scale factor A was

determined by calculating PSI structure factors with the CCP4 Suite (Bailey, 1994)

program SFALL using the model deposited as 1JB0 in the Protein Data Bank (Berman

et al., 2002) and a simple bulk solvent model (Tronrud, 1997). A scale factor of A≈ 70

brought the 12-electron model structure factors into reasonable agreement with these

PSI structure factors, as shown in figure 3.2. This parameterization provided an ap-

proximately correct absolute scale for the diffracted intensity, allowing Poisson noise

effects to be added, but did not include effects due to the water background. For scat-

tering angles corresponding to distances larger than the interatomic distances in water,

scattering from pure water is due to long-range fluctuations, and is nearly constant for

resolutions up to about 6 Å(Hura et al., 2000). This water background scatter was

modeled as

Ibg(∆k) = J0r2
eP(û,ko)Nw| fw|2∆Ω (3.22)

where Nw is the number of water molecules in the beam, and fw = 2.57 electron equiv-

alents is a scattering factor for water (Hura et al., 2000). In these simulations it was

assumed that the crystals were delivered to the beam in a 1 µm3 volume of water;

detergent molecules, X-ray fluorescence and inelastic scattering were not considered.

Intensity merging procedure

In order to merge intensities from Bragg reflections corresponding to a given struc-

ture factor with Miller indices hkl, it is necessary to first determine the regions of each

diffraction pattern which are in close proximity to a given reflection. To do this, au-
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Figure 3.2: Scaling of the 12-electron scattering model to the structure factors calcu-
lated SFALL.

toindexing software may be used to determine the matrix A (defined in section 3.2)

which specifies the crystal reciprocal lattice (relative to the laboratory frame) through

the vectors a∗, b∗ and c∗. Fractional Miller indices hfrac
j corresponding to each detector

pixel j are then determined by the equation

hfrac
j = A−1

∆k j . (3.23)

The nearest reciprocal lattice vector to each detector pixel is obtained by rounding the

fractional Miller indices to the nearest integer values, h j, and inverting equation 3.23:

g j = Ah j . (3.24)

The reciprocal-space distance δ ′j between ∆k j and the nearest reciprocal lattice point

g j is then

δ
′
j = |∆k j−g j| . (3.25)

A set of Miller indices hkl can therefore be assigned to each pixel. For m crystals, the

integrated “experimental” Bragg reflected intensities were evaluated as

Iexp
hkl (m,δ ) =

m

∑
n=1

∑
{ j}n,hkl,δ

I′n(∆k j) , (3.26)

where { j}n,hkl,δ is the set of pixels in pattern n for which h j are the Miller indices

hkl, and δ ′ < δ . I′n(∆k j) is the diffracted intensity after background subtraction and
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correction for the polarization factor:

I′n(∆k j) =
In(∆k j)− Ibg(∆k j)

Pj∆Ω
. (3.27)

Equation 3.27 is equivalent to integrating the diffracted intensities which fall within

a spherical volume centered about the reciprocal lattice vectors ghkl . Finally, “exper-

imental” structure factors Fexp
hkl (m,δ ) were obtained by averaging over all diffracted

intensities from equivalent reflections

|Fexp
hkl |2 =

Iexp
hkl (m,δ )

Mhkl(m,δ )
, Mhkl(m,δ ) =

m

∑
n=1

∑
{ j}m,hkl,δ

1 . (3.28)

The quality of the merged data were assessed using a standard crystallographic R-factor,

R(m,δ ) =
∑hkl

∣∣|Fcalc
hkl |−η |Fexp

hkl |
∣∣

∑hkl |Fcalc
hkl |

, (3.29)

after merging up to the mth crystal. Here Fexp
hkl (m,δ ) was obtained from equation 3.28.

The ideal Bragg intensities calculated from the model are

|Fcalc
hkl |2 = J0r2

e |FPSI(ghkl)|2 (3.30)

and the scaling factor η was determined through least squares minimization.

Results: Monte Carlo convergence

Diffracted intensities were simulated according to the equations laid out in section 3.3,

assuming parameters expected in planned experiments at LCLS. Simulated patterns

were carried out for crystals in random orientations with an isotropic distribution. The

number of unit cells Na, Nb, Nc were randomly generated, with a Gaussian distribution

corresponding to a mean length of 500 nm, and with a standard deviation of 10%.

Since Na, Nb, Nc were varied independently, the overall shape of the crystals varied in

each pattern. The detector contained 1024×1024 80 µm pixels, a sample-to-detector

distance of 5 cm, and 100% quantum efficiency was assumed. The pulse fluence was

chosen to be 1012 photons focused to a 3 µm spot, with a photon energy of 2 keV

(λ = 0.6 nm). The resolution at the side (not the corner) of the detector is 0.94 nm
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for these conditions. Figure 3.3 shows a typical simulation, clearly showing the shape

transformed Bragg reflections and their asymmetrical character. Figure 3.4 provides an

enlargement showing the shape transforms around each Bragg beam.

 

Fig. 1. (a). Log scaled simulation of a PS1 X-ray diffraction pattern for a 500nm crystallite at 2 
keV, 1.5 mrad beam divergence, 0.1% FWHM energy spread, and background due to 1 !m3 of 
water. Diffraction at edges corresponds to about 0.94 nm resolution. Polarization factor and 
detector pixel solid angles are included, and Poisson noise is included assuming that the 
detector counts single photons. 

 

Fig. 1.(b). Enlargement of Fig. 1(a), showing shape-transforms around each lattice point. 
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Figure 3.3: Simulated X-ray diffraction pattern of photosystem I for a 500 nm crystal-
lite at 2 keV, 1.5 mrad beam divergence, 0.1% FWHM energy spread, and background
due to 1 µm3 of water. Diffraction at edges corresponds to about 0.94 nm resolution.
Polarization factor and detector pixel solid angles are included, and Poisson noise is
included assuming that the detector counts single photons. Intensities are log scaled.

Using the simulated patterns, it was determined that the DPS autoindexing al-

gorithm, when called from MOSFLM without modification, is capable of determining

crystal cell constants with a 0.05% RMS error, and orientations with an RMS error of

0.06 degrees. The algorithm found the correct unit cell in 98% of cases after testing on

50,000 patterns. Although these results are remarkable and most likely sufficient for

a successful Monte-Carlo integration, the simulated data here was merged (according

to the method of section 3.3) using the known crystal orientation matrices from the

simulations, due to the amount of time required for indexing, and to avoid problems

associated with indexing ambiguities (see section 3.2).

These simulations took about 36 hours for 50,000 crystals using a Macintosh
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Fig. 1. (a). Log scaled simulation of a PS1 X-ray diffraction pattern for a 500nm crystallite at 2 
keV, 1.5 mrad beam divergence, 0.1% FWHM energy spread, and background due to 1 !m3 of 
water. Diffraction at edges corresponds to about 0.94 nm resolution. Polarization factor and 
detector pixel solid angles are included, and Poisson noise is included assuming that the 
detector counts single photons. 

 

Fig. 1.(b). Enlargement of Fig. 1(a), showing shape-transforms around each lattice point. 
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Figure 3.4: Enlargement of figure 3.3, showing shape-transforms around each lattice
point.

Pro, using a single 2.26 GHz CPU of the 8 available, in Matlab code. The time per pat-

tern is about 3 seconds. By taking advantage of the multiple CPU and GPU processing

available on these machines, this time could be greatly reduced. For the extraction of

structure factors from experimental data, the time bottleneck is likely to be the indexing

with MOSFLM, which takes a few seconds per pattern under the same conditions.

Figure 3.5 shows plots of the crystallographic R-factor plotted against number

of crystals in random orientations merged after indexing. Curves are also shown for

crystals of identical size and shape, and the effects of a Gaussian size distribution and

of Poisson noise are also shown. In addition, curves are given for various values of the

reciprocal-space integration volume defined by δ .

It was found that the optimal value for δ is ∼ 1.9 µm−1 for the particular case

of these simulations; R factors are worse for larger or smaller values of δ . For large

δ , errors due to counting near-zero valued pixels outside of the shape transform dom-

inate, whereas small δ means slower convergence due to fewer pixels contributing to

the average. In all but one case, the R-factor has fallen to less than 0.05 after 20,000
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Figure 3.5: Crystallographic R-factor plotted against number of crystallites in random
orientations merged after indexing. Colors indicate the threshold value δ . Solid lines
represent simulations including Gaussian size distribution, photon noise, and water
background. Dashed lines are for comparison to simulations without photon noise (*)
and without noise or size distribution (**).

nanocrystals. The optimum value occurs when 1/δ is approximately equal to the mean

size of the crystals. It is found that Poisson noise and the 10% crystal size distribu-

tion do not affect the convergence of these simulations significantly because the shape

transform largely dominates variance in diffracted intensities.

Figure 3.6 shows a comparison of true structure factors against those recovered

from the Monte-Carlo integration over random orientations, with size variation and

Poisson noise effects included. Figure 3.7 shows the number of unique reflections

recorded in the simulations as a function of the number of crystals for various values of

δ .

Conclusions from simulations

For the simulations of 500 nm crystals in this work, beam divergence and spectral width

have been neglected because, for small beam divergence, these effects are not expected

to result in a significant change in the diffraction patterns. For larger crystals, these

effects, along with crystal mosaicity, will become significant, and will likely result
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Figure 3.6: Comparison of true structure factors (o) to the Monte-Carlo integrated
structure factors (x) for a threshold value of δ = 0.0047 nm−1. Size variation and
noise effects are included.
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Figure 3.7: The number of unique reflections recorded as a function of the number of
crystallites. Colors indicate the threshold value δ .

in faster convergence of the Monte-Carlo integration since these effects will partially

integrate Bragg reflections. Spectral width of the X-ray beam may be simulated using

equation 3.11 by calculating a weighted sum over diffracted intensities for a spread of

wavelengths. Beam divergence can be approximated similarly by weighted summation

of intensities over a tilt series of the crystal (a more accurate model is to rock the
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detector about the crystal position, or to vary the beam direction– see appendix A.1).

While these effects are included in the production of figures 3.3 and 3.4, avoiding these

complications for the full analysis (consisting of 20,000 diffraction patterns) allowed

simulations to be calculated within a reasonable amount of time, and was sufficient for

the intended purpose since little difference in simulated patterns was observed with the

inclusion of these effects.

For crystals with a mean size of half a micron immersed in a cubic micron

of water, whose size distribution has a standard deviation of 10%, a total of about

20,000 diffraction patterns are needed in the presence of shot-noise to obtain an R-

factor smaller than 0.05 and a resolution of 0.9nm. If the fall-off in scattering-factor

and noise effects are ignored, we can estimate from geometry the number of crystals

(orientations, diffraction patterns) needed to record all reflections out to 0.2 nm resolu-

tion under similar conditions. Since the number of reflections varies as the cube of the

scattering angle, while the number of reflections per pattern varies as the square, the

number of patterns scales approximately linearly with the scattering angle, or inversely

as the resolution. Then about 105 crystals would be needed for 0.2 nm resolution. An

optimum value of the integration volume in reciprocal space exists, equal to the re-

ciprocal of the crystal dimension, and small R-factor values are obtained for a range

around this value. (This corresponds to integration over the central maximum of the

shape transform). A knowledge of the particle size distribution, obtained for example

from dynamic light scattering measurements, or by powder diffraction analysis of the

sum of all these nanocrystal patterns, may be useful in setting the integration volume

parameter in absence of a set of known structure factors to compare against (if struc-

ture factors are known, it is unlikely that an experiment would be performed in the first

place). Alternatively, merging of intensities in 3D may allow one to estimate the size

of the average shape transform.

The LCLS currently produces shorter wavelength X-rays (1.3 Å) and higher
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repetition rates, which has opened up the possibility for atomic resolution diffraction

patterns to be recorded from submicron crystals, and, in addition, for pump-probe ex-

periments on molecular dynamics. It remains to be determined if the Monte Carlo

approach will yield sufficient accuracy in order to determine the subtle changes in

structure factors arising from conformational changes of the protein molecules. Higher

repetition rates will allow for faster data collection, and for less sample loss. At the

higher resolutions corresponding to shorter wavelengths, the effects of diffraction from

the water structure must also be considered once the resolution reaches about 4 Å,

where the “water ring” begins, and the assumption of a flat water background used here

is no longer valid.

3.4 Analysis of femtosecond protein nanocrystallography data at 1.8 keV
Overview

The first femtosecond protein nanocrystallography diffraction experiments were carried

out in December of 2009 at the LCLS (Chapman et al., 2011), through a collaborative

effort between the Center for Free-Electron Lasers (CFEL), the Max Plank Institute

Advanced Study Group (ASG) and Arizona State University, involving approximately

90 collaborators in total. In the experimental setup at the “CFEL-ASG Multi Pur-

pose” (CAMP) end-station (Struder et al., 2010) on the Atomic, Molecular and Optical

Science (AMO) beamline (Bozek, 2009), single-crystal diffraction data were collected

from a stream of protein nanocrystals carried in a continuous liquid water jet that flows,

in vacuum, across the focused LCLS X-ray beam, according to the method of Serial

Crystallography (Spence and Doak, 2004). Details of the experiment are given in sec-

tion 3.4.

The protein chosen for the first protein nanocrystallography work at the LCLS

was Photosystem I (PSI) from the cyanobacterium T. elongatus (PDB code 1JBO). The

protein had already been shown to be capable of producing crystals that can be as small

as 100 nm on a side through powder diffraction data collected at a synchrotron, using
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the same injector type used at the LCLS (Shapiro et al., 2008; Hunter et al., 2011). PSI

remains the largest membrane protein to have its structure solved to atomic resolution

(see figure 3.8), and serves as a challenging case-study since it has a large unit cell,

and high (> 70%) solvent content; if such crystals can survive the liquid jet delivery

system, than the prospects for other challenging nanocrystals are favorable.

Figure 3.8: Atomic model for PSI, the largest and most complex membrane protein to
have its structure determined to atomic resolution Jordan et al. (2001).

This section is largely derived from the publications of Chapman et al. (2011)

and Kirian et al. (2011b), in which the Monte Carlo data processing method was ap-

plied to experimental XFEL diffraction data from protein nanocrystals. Reflection in-

tensities from tens of thousands of single-shot X-ray microdiffraction patterns were

analyzed and merged together to arrive at a complete set of structure factors from par-

tial reflections without prior knowledge of the crystal size and shape distribution. In

correspondence with the assumptions laid out in section 3.2, diffraction data were in

the form single “still” diffraction snapshots (Rossmann and Erickson, 1983), each from

a different nanocrystal with sizes ranging between 100 nm and 2 microns (Hunter et al.,
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2011). A suite of crystallography software was developed, extending the software de-

veloped for simulated data, since very little available software could be used without

modification. The angular width of Bragg reflections were dominated by crystal size ef-

fects, and each pattern provided only a partial integral over the reciprocal-space volume

of each Bragg spot in contrast to conventional protein crystallography. The results were

compared with single crystal data recorded from large crystals of PSI at the Advanced

Light Source and the quality of the data found to be similar.

Prior to this work, it had not been demonstrated that quantitative high qual-

ity diffraction data can be extracted from the scattering of intense femtosecond X-

ray pulses focused onto a protein nanocrystal, and the positive results suggest that the

prospects for structure determination using submicron crystals and for time-resolved

crystallography have now been greatly enhanced. The implications for improving the

efficiency of data collection by allowing the use of very small crystals, for radiation

damage reduction, and for time-resolved diffraction studies at room temperature are

discussed in section 3.4.

Experiment details

Data for this analysis were provided by the CFEL/ASG/ASU collaboration, as de-

scribed in Chapman et al. (2011), using the CAMP instrument (Struder et al., 2010)

on the AMO beamline (Bozek, 2009) at the LCLS. At a repetition rate of 30 Hz, the

LCLS delivered X-ray pulses of duration ∼3, 70, and 200 fs with more than 1012 pho-

tons per pulse incident on the nanocrystals (approximately the same number arriving in

one second at a modern synchrotron). The nominal photon energy was 1.8 keV (0.69

nm wavelength), with a shot-to-shot jitter of approximately 1%, and with a spectral

width 0.1% FWHM. The X-ray beam was focused to a diameter of 7 microns, with a

divergence of 0.5 mrad FWHM.

Hydrated Photosystem I protein nanocrystals were delivered to the beam using
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a gas dynamic virtual nozzle (GDVN) (Weierstall et al., 2008; DePonte et al., 2008).

Crystals were contained within the 4 micron continuous column of liquid jet emerging

from the GDVN (upstream of the breakup region, after which the continuous stream

forms droplets) which was directed to the X-ray beam as shown in figure 3.9. The

mechanism by which the GDVM operates is indicated schematically in figure 3.10; liq-

uid crystal suspension exits an inner glass capillary, and passes through the orifice of

the concentric outer glass capillary. As the the high pressure He sheath gas flows out

of the exit aperture due to a large pressure gradient, it exerts forces on the liquid stream

which cause the liquid to accelerate. As a result of this acceleration, the cross sectional

area of the liquid stream decreases. The acceleration of the liquid jet is the key to

its usefulness for this application; despite the few-micron diameter jet which exits the

nozzle, the exit aperture of the inner capillary is several tens of microns in diameter,

which is sufficiently large to avoid the problem of clogging. Upon minimizing surface

free energy, the continuous jet of liquid emerging from the the nozzle undergoes spon-

taneous Rayleigh break up and forms a train of spherical droplets (for a diameter D

of the nozzle, the mean break-up segmentation length is 4.55D and the mean droplet

diameter is 1.90D (DePonte et al., 2008)). While electrospray sources and aerosol in-

jectors can create much smaller droplets than the GDVN, this sample injector scheme

is ideally suited for nanocrystals since it avoids charging and dehydration, and since the

buffer background scatter is only a minor nuisance for crystallography data (but not for

non-crystalline single-particle targets). Additionally, the well-collimated liquid stream

increases the rate of successful crystal “hits”, compared with the relatively divergent

beams generated by aerosol injectors.

Full details of the PSI nanocrystal sample preparation are given elsewhere (Hunter

et al., 2011; Chapman et al., 2011). Fully-hydrated PSI nanocrystals (PDB data entry

1JB0), within their native harvesting buffer (5mM MES pH 6.4 and 0.02% - beta-

dodecylmaltoside), were delivered to the X-ray beam. Larger crystals are needle-
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Figure 3.9: Scanning electron microscope image of a gas dynamic virtual nozzle
(GDVN), captured with a gas secondary electron detector at 20 keV. The liquid column
is approximately 5 µm in diameter. The breakup region located about 200 µm from
the exit orifice is indicated by the abrupt thickening of the jet. The freely expanding
focusing gas can be seen faintly in the background. The tip of the outer glass capillary
has been trimmed to a conical profile in order to accommodate scattering angles out to
about 60 degrees.

A B

C

Figure 3.10: (A) Schematic of the gas dynamic virtual nozzle showing a cross section,
with inner and outer capillaries noted, along with the gas-focused liquid jet delivering
crystal suspension. (B) An optical image of a nozzle, showing the exiting liquid cone,
indicated by the white arrow. (C) Stroboscopic optical image of a nozzle operating in
piezo-triggered mode, breaking up the liquid column to form evenly spaced droplets.
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shaped, with approximately 5:1 aspect ratio. A flow rate of 11 µl/minute delivered

10 pmol of protein per minute at a concentration of 1 µM, corresponding to 2.5×109

crystals/ml, at a velocity of 10 m/s. A 2 µm in-line filter limited the maximum parti-

cle size that can pass through the nozzle in order to allow days of continuous jetting

without clogging. Plumbing to the liquid jet was designed for fast switching between

buffer/water/crystal suspension, allowing the nozzle to to be purged, or to ensure con-

tinuous jetting in order to avoid ice formation, which causes temporary clogging of the

nozzle.

Diffraction patterns were recorded on two fast-readout split-panel pnCCD de-

tectors (Struder et al., 2010) with sample-to-detector distances of 67.8 mm to the wide-

angle detector and 496 mm to a small-angle detector (only the wide-angle data were

used in the analysis presented here). Figure 3.11 shows the experimental geometry

schematically. Each detector consisted of 512×1024 16-bit, 75×75 micron pixels ly-

ing in a plane normal to the beam, separated by a small gap through which the direct

beam passed to a beam dump. The readout rate of the pnCCDs was matched to the 30

Hz pulse repetition rate of the FEL. The resolution range (d spacing) for the wide-angle

detector was 8.7-0.88 nm.

Over 3 million patterns captured from PSI at 10, 70 and 200 fs pulse durations

were obtained after 28 hours of operation. On average, crystal diffraction patterns were

recorded at a hit rate of 110 per minute, where “hits” are defined as patterns that contain

10 or more detectable Bragg reflections. Settling of the crystals within the liquid de-

livery line caused the hit rate to drop exponentially with time (the theory of Brownian

motion under an external force, described by the Smoluchowski equation, gives the set-

tling time inversely proportional to the fifth power of the particle size). Hit rates were

adjusted by changing the nanocrystal concentration, although highly-concentrated so-

lutions were avoided since patterns containing diffraction from multiple crystals were

rejected by the current analysis method. PSI nanocrystals crystallize in spacegroup P63
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photon energy of the X-ray pulses was 1.8 keV (6.9-Å wavelength), with
more than 1012 photons per pulse at the sample and pulse durations of
10, 70, and 200 fs (ref. 13). AnX-ray fluence of 900 J cm22 was achieved
by focusing the FEL beam to a full-width at half-maximum of 7mm,
corresponding to a sample dose of up to 700MGy per pulse (calculated

using the program RADDOSE14) and a peak power density in excess of
1016Wcm22 at 70-fs duration. In contrast, the typical tolerable dose in
conventional X-ray experiments is only about 30MGy (ref. 1). A single
LCLS X-ray pulse destroys any solid material placed in this focus, but
the stream replenishes the vaporized sample before the next pulse.
The front detector module, located close to the interaction region,

recorded high-angle diffraction to a resolution of 8.5 Å, whereas the
rear module intersected diffraction at resolutions in the range of 4,000
to 100 Å. We observed diffraction from crystals smaller than ten unit
cells on a side, as determined by examining the data recorded on the
rear pnCCDs (Fig. 2). A crystal with a side length of N unit cells gives
rise to diffraction features that are finer by a factor of 1/N than the
Bragg spacing (that is, withN2 2 fringes between neighbouring Bragg
peaks), providing a simple way to determine the projected size of the
nanocrystal. Images of crystal shapes obtained using an iterative phase
retrieval method15,16 are shown in Fig. 2. The 3D Fourier transform of
the crystal shape is repeated on every reciprocal lattice point. However,
the diffraction condition for lattice points is usually not exactly satisfied,
so each recorded Bragg spot represents a particular ‘slice’ of the Ewald
sphere through the shape transform, giving a variety of Bragg spot
profiles in a pattern; these are apparent in Fig. 2. The sum of counts
in each Bragg spot underestimates the underlying structure factor
square modulus, representing a partial reflection.
Figure 3a shows strong single-crystal diffraction to the highest

angles of the front detector. The nanocrystal shape transform is also
apparent in many patterns at the high angles detected by the front
detector, giving significant measured intensities between Bragg peaks
as is noticeable in Supplementary Fig. 3a. These mid-Bragg intensities
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Figure 2 | Coherent crystal diffraction. Low-angle diffraction patterns
recorded on the rear pnCCDs, revealing coherent diffraction from the structure
of the photosystem I nanocrystals, shown using a logarithmic, false-colour
scale. The Miller indices of the peaks in a were identified from the

corresponding high-angle pattern. In c we count seven fringes in the b*
direction, corresponding to nine unit cells, or 250 nm. Insets, real-space images
of the nanocrystal, determined by phase retrieval (using the Shrinkwrap
algorithm15) of the circled coherent Bragg shape transform.
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Figure 1 | Femtosecond nanocrystallography. Nanocrystals flow in their
buffer solution in a gas-focused, 4-mm-diameter jet at a velocity of 10m s21

perpendicular to the pulsed X-ray FEL beam that is focused on the jet. Inset,
environmental scanning electron micrograph of the nozzle, flowing jet and
focusing gas30. Two pairs of high-frame-rate pnCCD detectors12 record low-
and high-angle diffraction from single X-ray FEL pulses, at the FEL repetition
rate of 30Hz. Crystals arrive at random times and orientations in the beam, and
the probability of hitting one is proportional to the crystal concentration.
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Figure 3.11: Nanocrystals flow in their buffer solution in a gas-focused, 4 µm diameter
jet at a velocity of 10 m/s perpendicular to the pulsed X-ray FEL beam that is focused
on the jet. Two pairs of high-frame-rate pnCCD detectors record low- and high-angle
diffraction from single X-ray FEL pulses, at the FEL repetition rate of 30 Hz. Crystals
arrive at random times and orientations in the beam, and the probability of hitting one
is proportional to the crystal concentration (Chapman et al., 2011).

with average unit cell lengths (as determined by the analysis described in section 3.4) of

a = b = 284.2 Å, c = 165.7 Å, which lie between the parameters determined by single-

crystal work at liquid nitrogen (a = b = 281 Å, c = 165.2 Å) (Jordan et al., 2001) and

4◦C (a = b = 288 Å, c = 167 Å) (Krauss et al., 1996). Evaporative cooling in vacuum

along the liquid jet may produce a temperature change between 10K and 100K along

the 200 µm length of the 5 µm diameter liquid column. This drop in temperature may

account for the observed unit cell dimensions.

Diffraction patterns from the far detector, which provided fine angular sampling

at low resolution (see Chapman et al. (2011) for more details), are shown in figure

3.12. On a logarithmic scale, shape transforms are pronounced and show prominent

fringes as in simulations shown in figure 3.1. An iterative phasing algorithm applied

to the shape transforms2 revealed crystal shapes, showing prominent crystal facets, and
2This analysis was carried out by Andrew Martin.
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verified the submicron size of typical crystals. Crystal sizes may also be inferred by

counting fringes between Bragg reflections– a crystal with a side length of N unit cells

gives rise to N− 2 fringes between neighboring Bragg peaks, providing a simple way

to determine the projected size of the nanocrystal.

photon energy of the X-ray pulses was 1.8 keV (6.9-Å wavelength), with
more than 1012 photons per pulse at the sample and pulse durations of
10, 70, and 200 fs (ref. 13). AnX-ray fluence of 900 J cm22 was achieved
by focusing the FEL beam to a full-width at half-maximum of 7mm,
corresponding to a sample dose of up to 700MGy per pulse (calculated

using the program RADDOSE14) and a peak power density in excess of
1016Wcm22 at 70-fs duration. In contrast, the typical tolerable dose in
conventional X-ray experiments is only about 30MGy (ref. 1). A single
LCLS X-ray pulse destroys any solid material placed in this focus, but
the stream replenishes the vaporized sample before the next pulse.
The front detector module, located close to the interaction region,

recorded high-angle diffraction to a resolution of 8.5 Å, whereas the
rear module intersected diffraction at resolutions in the range of 4,000
to 100 Å. We observed diffraction from crystals smaller than ten unit
cells on a side, as determined by examining the data recorded on the
rear pnCCDs (Fig. 2). A crystal with a side length of N unit cells gives
rise to diffraction features that are finer by a factor of 1/N than the
Bragg spacing (that is, withN2 2 fringes between neighbouring Bragg
peaks), providing a simple way to determine the projected size of the
nanocrystal. Images of crystal shapes obtained using an iterative phase
retrieval method15,16 are shown in Fig. 2. The 3D Fourier transform of
the crystal shape is repeated on every reciprocal lattice point. However,
the diffraction condition for lattice points is usually not exactly satisfied,
so each recorded Bragg spot represents a particular ‘slice’ of the Ewald
sphere through the shape transform, giving a variety of Bragg spot
profiles in a pattern; these are apparent in Fig. 2. The sum of counts
in each Bragg spot underestimates the underlying structure factor
square modulus, representing a partial reflection.
Figure 3a shows strong single-crystal diffraction to the highest

angles of the front detector. The nanocrystal shape transform is also
apparent in many patterns at the high angles detected by the front
detector, giving significant measured intensities between Bragg peaks
as is noticeable in Supplementary Fig. 3a. These mid-Bragg intensities
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Figure 2 | Coherent crystal diffraction. Low-angle diffraction patterns
recorded on the rear pnCCDs, revealing coherent diffraction from the structure
of the photosystem I nanocrystals, shown using a logarithmic, false-colour
scale. The Miller indices of the peaks in a were identified from the

corresponding high-angle pattern. In c we count seven fringes in the b*
direction, corresponding to nine unit cells, or 250 nm. Insets, real-space images
of the nanocrystal, determined by phase retrieval (using the Shrinkwrap
algorithm15) of the circled coherent Bragg shape transform.
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Figure 1 | Femtosecond nanocrystallography. Nanocrystals flow in their
buffer solution in a gas-focused, 4-mm-diameter jet at a velocity of 10m s21

perpendicular to the pulsed X-ray FEL beam that is focused on the jet. Inset,
environmental scanning electron micrograph of the nozzle, flowing jet and
focusing gas30. Two pairs of high-frame-rate pnCCD detectors12 record low-
and high-angle diffraction from single X-ray FEL pulses, at the FEL repetition
rate of 30Hz. Crystals arrive at random times and orientations in the beam, and
the probability of hitting one is proportional to the crystal concentration.
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Figure 3.12: Low-angle diffraction patterns of photosystem I recorded on the rear pnC-
CDs, revealing coherent diffraction from the structure of the nanocrystals, shown using
a logarithmic, false-colour scale. The Miller indices of the peaks in a were identified
from the corresponding high-angle pattern. In c seven fringes appear in the b∗ direction,
corresponding to nine unit cells, or 250 nm. Insets, real-space images of the nanocrys-
tal, determined by phase retrieval (using the Shrinkwrap algorithm (Marchesini et al.,
2003)) of the circled coherent Bragg shape transform. (Chapman et al., 2011).
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Data processing

All patterns were first processed by removal of known bad pixels, applying a pre-

characterized gain (flat-field) correction. Typical combined background and readout

signal was < 0.9 photon equivalents per pixel, with a standard deviation of < 1.3 photon

equivalents. Common-mode electronic noise was prevalent in the diffraction images,

and was measured by taking column-wise median values and subsequently subtracted

from each column, as shown in figures 3.13 and 3.14. The median value was used

since it is insensitive to the relatively rare Bragg-diffracted photons. Background was

Figure 3.13: Diffraction images without
corrections for common-mode electronic
noise (note horizontal bands varying from
row to row).

Figure 3.14: Diffraction pattern after
common-mode electronic noise corrections
(note absence of horizontal bands appear-
ing in figure 3.13 after median-subraction).

estimated using a moving-window selection of 50 frames to ensure similar jet and ex-

posure conditions. Similar to common-mode rejection, for each pixel, the background

was taken as the median of values at that pixel over the 50 frames (a typical median

background frame is shown in figure 3.15). Elastic X-ray scattering from the liquid jet

was concentrated into a streak running normal to the velocity of the liquid, representing

the Fourier transform of the liquid cylinder. Because the jet streak occasionally drifted

due to motion of the liquid jet, its direction was determined by a linear fit to the streak,
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and a new jet mask was generated for each shot. Pixel saturation occurred at 80 photon-

s/pixel. For the quantitative analyses of indexing and averaging intensities, saturated

pixels were identified by the gross changes in peak shape which saturation produces,

using pattern recognition software3. Saturated pixels in the pnCCD detectors tend to

leak charge into neighboring pixels, so this was integrated and condensed into a small

artificial peak at the centroid of the bloomed region. This step essentially increased the

dynamic range of the detector, but shape information on the saturated spots was lost.

Figure 3.15: A median background frame, indicating the fluctuations in both dark cur-
rent and background scatter from the jet. Note that the pixel-by-pixel median value
results in a background which contains no bragg reflections, since a median is insensi-
tive to high-intensity outliers within the moving window.

Following all of the preprocessing steps described above, each pattern was

searched for Bragg reflection peaks by threshold analysis and aperture photometry.

Convolution of each image with a top hat function provided a locally integrated inten-

sity, while convolution with a concentric annulus provided an estimate of local back-

ground that was subtracted. Bragg peaks were identified by applying a threshold of 25
3Pattern recognition software developed by Andrew Aquila
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to the resulting locally-integrated photons, and positions were taken to be the centroid

of nearby intensities. Figure 3.16 shows a typical result from the peak finding algo-

rithm. Lists of peak coordinates were processed by the program MOSFLM (Leslie,

2006) using the DPS autoindexing algorithm (Steller et al., 1997), which resulted in an

estimated A matrix for each crystal (see section 3.2). The initial estimates of PSI cell

constants were computed by passing the space group P1 to MOSFLM, and the mean

cell constants identified by forming a histogram of the results, as shown in figure 3.17.

For subsequent indexing, the mean cell constants were supplied to MOSFLM as a cri-

teria for indicating successful indexing. Each A matrix was further refined by global

optimization of the unit cell constants and three Euler angles, which was carried out

by minimization of RMS residual distances between predicted and observed reciprocal

space peak positions using a simplex algorithm. Photon wavelengths were estimated

shot-by-shot based on the measured electron beam energy, current, and the undulator K

value of the LCLS. The orientation and position of each of the two detector panels was

initially determined from powder patterns constructed by summation of many snapshot

images from lysozyme microcrystals. These gave higher accuracy than the PSI data

due to larger spacing between adjacent reflections. Further refinement of the detector

geometry was performed on a shot-by-shot basis by constrained global optimization

of the detector coordinates, similar to the method applied to the refinement of the A

matrix.

Structure factors were extracted according to the algorithm used for simulated

data (described in section 3.3). Since the LCLS beam is strongly linearly polarized, a

polarization factor of P(ko) = 1−|û · k̂o|2 was assumed, where the vector points along

the horizontal direction and the vector k̂o points from the interaction region to a detector

pixel. Pixel solid angles were approximated with the expression

∆Ω =

(
l
L

)2

û · k̂o (3.31)

where L is the distance from the sample to the pixel, l is the pixel size, n̂ is the unit
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Figure 3.16: Peak positions detected by the aperture photometry peak finding algo-
rithm, overlaid on a fully processed image. Regions where convolutions indicate more
than 25 peaks are colored in magenta, contrasted against blue background. Detected
peaks are indicated by green circles. Saturated peaks, and those clipped by detector
edges have been rejected.
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Figure 3.17: A histogram of photosystem I cell constants a and c determined by MOS-
FLM through indexing in the P1 space group. The distribution in cell constants may be
due to inaccurate indexing, or intrinsic spread in the crystal lattice dimensions.

vector normal to the detector plane. During intensity averaging, patterns with multiple

crystals or poorly determined crystal orientation were rejected by requiring that 80%

of the observed peaks must lie within a small distance (10 µm−1) from predicted peak

locations. All pixels that were marked as bad during pre-processing were excluded

from the averaged intensities.

Of the 1.85 million diffraction patterns collected at 70 fs pulse duration, 112,725

patterns contained 10 or more identifiable peaks. A total of 28,192 were indexed with

unit cell parameters within 5% of the mean values. Indexing success was strongly

correlated with the number of detected peaks; only 5% of patterns with 10 peaks were

successfully indexed, whereas more than 60% of patterns with more than 75 peaks were

successfully indexed. Approximately 42% of indexed patterns were rejected during

intensity merging due to disagreement between predicted and observed peak locations,
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resulting in a total of 16,374 patterns that contributed to the measured structure factor

amplitudes presented here. Data processing was carried out on a desktop computer

with a 2.26 GHz quad core Intel Xeon processor. For the steps of jet masking, peak

finding, indexing, and intensity merging, the overall processing speed is typically less

than 4 seconds per pattern when using a single processor core.

Figure 3.18 shows a typical diffraction pattern after pre-processing, background

subtraction, and masking of bad pixels and the jet streak. Smaller crystals tend to dis-

play more prominent shape transforms, similar to the simulation in figure 3.12. Red

rings indicate the domains within which intensities contribute to the derived struc-

ture factor amplitudes, according to equation 3.28, for an integration domain radius

of δ = 8.7 µm−1. A calculated precession image on the [001] zone axis is shown

on a logarithmic scale in figure 3.19, for an integration domain radius δ = 7.3 µm−1.

Equivalent reflections of the P6322 space group have been merged, which results in the

perfect sixfold symmetry and mirror symmetry about the h = k line (the apparent twin-

ning described in section 3.2). In figure 3.19 the same subset of intensities are shown

for single crystal data obtained with 1.0 Å wavelength X-rays at the Advanced Light

Source in Berkeley, which have been artificially “twinned” for comparison to the LCLS

data by taking the mean intensity values of the hkl and khl̄ reflections.

Quality of data and Monte Carlo convergence

Internal consistency of the resulting structure factors was determined through the “in-

ternal” crystallographic R factor Rint, which compares structure factors Feven extracted

from the even-numbered diffraction patterns with the odd-numbered Fodd. The quantity

Rint is defined as

Rint =
∑hkl ||Feven|− |Fodd||

1
2 ∑hkl ||Feven|+ |Fodd||

(3.32)

Structure factors were taken to be the square root of intensities obtained through equa-

tion 3.2. Figure 3.21 shows Rint as a function of ordinal image number for several

values of the intensity integration volume defined by δ . It falls smoothly to a value of
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Figure 3.18: Typical fully-processed photosystem I diffraction pattern showing both of
the near pnCCD panels on a logarithmic intensity scale. All rejected pixels (including
those near the streak caused by the liquid jet) have been masked. Red rings indicate
integration domains for a threshold of δ = 8.7 µm−1, after processing with MOSFLM,
and additional refinement of cell constants and crystal orientation. Miller indices are
indicated for a selection of bright Bragg reflections. There is a substantial gap (the
vertical line down the middle) between the two panels, through which the direct beam
passes.

less than 5% for the largest integration domain. The decrease in Rint corresponding to

increasing values of δ may be due, in part, to increasing numbers of background counts

in the integration (see section 3.4 for further discussion).

We have also analyzed the variation of Rint with resolution. This is shown in
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Figure 3.19: Calculated [001] precession image extracted from photosystem I
nanocrystal data collected at the LCLS following indexing by MOSFLM. The data
set consists of 16,374 single snapshot diffraction patterns of 70 fs pulse length col-
lected at the AMO beamline at LCLS at 6.9 Å wavelength. The space group was P63,
but P6322 symmetry was imposed by autoindexing ambiguity, resulting in an apparent
twin fraction of 0.5 for this data set. The integration domain radius was δ = 7.3 µm−1.

figure 3.22, together with a correlation coefficient Cint defined by

Cint =
∑hkl (Feven−〈Feven〉)(Fodd−〈Fodd〉)

∑hkl

√
(Feven−〈Feven〉)2

√
(Fodd−〈Fodd〉)2

(3.33)

The rise in Rint at about 9.4 Å resolution is due to the use of a square detector, offering

greater resolution in diagonal directions, but fewer recorded reflections at the corners

of the detector. Prior to this, the Rint appears to converge to values between 6 and

12 percent, suggesting that high-resolution data lie beyond the range of the current

detector (which cuts off at about 8.8 Å). Errors in merged intensities were assessed by

calculating the RMS difference σ(I) between even and odd frame reflection intensities.

The median value of I/σ(I) within 9-11 Å resolution is 10.3, well above the customary

cutoff value of about 2.

Since the above internal consistency measures do not reveal information about
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Figure 3.20: Calculated [001] precession image extracted from single-crystal photo-
system I data obtained at the Advanced Light Source. 50% twinning has been applied.

Figure 3.21: Consistency of merged structure factors obtained from even- and odd-
numbered image frames, plotted as a function of ordinal image number. Rint is shown
for various integration domain radii δ .

the accuracy of extracted structure factors, rigid-body refinement of the published PSI

structure (1JB0) was compared against the LCLS structure factors using REFMAC

(Murshudov et al., 1997). This refinement was conducted in “twin mode”, and with
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Figure 3.22: R factors and linear correlations C plotted against resolution (for inte-
gration domain δ = 7.3 µm−1). Approximately 350 structure factors fall within each
resolution bin. The subscript “iso” refers to comparison of conventional single-crystal
diffraction data to fs nanocrystal diffraction data. The subscript “int” refers to compar-
ison of even to odd frames from fs nanocrystal diffraction data.

bulk solvent contribution (Tronrud, 1997; Afonine et al., 2005), and the resulting R/R-

free values were 0.284/0.327. This procedure fitted a total of 84 parameters (overall

scale and anisotropic B factor, the bulk solvent scale and B factor, 12 rigid protein

chains with three translations and three rotations each, and one twin fraction) to 6248

observations. By comparison, the R/R-free from refining 1JB0 against data obtained

from a cryo-cooled single crystal of PSI at ALS were 0.285/0.298. The similarity of

these refinement results suggests that the structure factors obtained at the LCLS are

at least as consistent with the native structure of PSI as conventional single-crystal

data to the resolution available (9 Å). Unfortunately, considerable non-isomorphism

between the crystals used at ALS and LCLS is expected because the solution conditions

and data collection temperatures were different (Crick and Magdoff, 1956; Blundell

and Johnson, 1976). Indeed, the unit cell dimensions changed by 1% and the overall

Riso between these two data (LCLS, ALS) sets was 23.5% (see also figure 3.24 in

which Riso and Ciso are defined in the same way as Rint and Cint, but with even/odd
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structure factors replaced with those obtained at LCLS/ALS). The difference is very

likely caused two effects: the cryo-protectant and the cooling process itself. The LCLS

data were collected from nonocrystals in their low ionic strength mother liquor in the

non-frozen state, while the ALS data were collected from crystals in 2M sucrose, low

ionic strength buffer at cryogenic temperatures (-177C). As the crystals contain 78%

solvent the replacement of the mother liquor with 2M sucrose in 10 steps over a time

period of 2 hours prior to flash freezing in liquid propane may contribute as much to

the slight non-isomorphism as the cooling process. As shown in figure 3.24, plots of

the asymptotic Riso value (after merging 16,374 patterns) against δ show a minimum

value for δ = 7.3 µm−1. Figure 3.23 shows a density map for PSI constructed using the

program REFMAC. Rigid body displacements were applied to the PSI structure 1JB0

in the PDB for best fit to the LCLS set of structure factors to obtain this map.

Figure 3.23: Density map for photosystem I computed from LCLS nanocrystal diffrac-
tion data along with model data in the PDB (file 1JBO). Some of the 12 proteins in
each monomer are indicated with labels PsaA and so on. The position of the mem-
branes is indicated by lines across the figure. (Analysis carried out by James Holton
and Raimund Fromme, figure by Petra Fromme).

Data completeness is demonstrated in figure 3.25, as a function of the number

of patterns and δ . Completeness is measured in the P6322 space group since the two

possible indexing orientations cannot be distinguished (see section 3.2). For this highly
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Figure 3.24: Riso comparing LCLS data against conventional synchrotron data obtained
at the ALS (left panel). Similar to the simulated results 3.5, there is an optimal integra-
tion domain δ for which Riso falls off most quickly (right panel).

symmetric space group (of the 70,082 total reflections, only 3,328 are unique), the data

set was complete using less than 10,000 patterns, depending on the δ value.

Figure 3.25: Completeness of the photosystem I data as a function of the number of
patterns shown for several values of the integration parameter δ . Note that the com-
pleteness is measured as the fraction of unique reflections which have been observed at
least once, divided by the total number of unique reflections within the resolution range
of the detector. Unique reflections means P6322, which is highly symmetric. Lower-
symmetry space groups will require far more patterns in order to collect a complete
data set.

The absorbed dose per PSI crystal for a single 70 fs shot is significantly larger
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(about 405 MGy) than the recommended safe dose limit of 30 MGy for cryocooled

protein crystals at a third-generation light source (Owen et al., 2006). The initial analy-

sis of the PSI nanocrystal diffraction data described recently by (Chapman et al., 2011)

demonstrate an apparent lack of radiation damage to a detector-limited resolution of

0.9 nm when using 70 fs pulses or shorter, despite the subsequent destruction of the

nanocrystals by the photoelectron cascade following termination of the XFEL pulse

(Chapman et al., 2006).

Further discussion

The effects of crystal mis-orientation may need further consideration in future analysis

of structure factor extraction from nanocrystal data. In comparison to data from large

single crystals, the structure factors determined here tend to have a more rapid decay

in intensity with scattering angle, which is not apparent when merging the data into a

virtual powder pattern. The most likely cause of this decay is the effective increase in

integration domain at higher scattering angles due to orientation errors that allow high-

angle spots to “escape” from the integration region more often than low-angle spots.

This problem is particularly severe for patterns that have only a very limited number of

reflections. Orientation errors may be assessed by merging all diffraction patterns into

a single, oversampled three-dimensional intensity map, followed by a measurement of

the average peak broadening of Bragg reflections as a function of resolution. Although

such an analysis was not carried out here, applying artificial scale factors of the form

exp(−B|∆k|) (similar to a temperature factor “correction”) suggests that it may be pos-

sible to decrease R and C somewhat if these errors can be corrected. However, these

problems may be alleviated in future work by increasing the number and quality of

peaks used in indexing (e.g. by increasing photon energy, pulse intensity, crystal size,

detector dynamic range, and improving the peak finding and indexing algorithms (Maia

et al., 2011)). With increasingly accurate crystal orientations, the integration domain

may be decreased significantly, which will likely result in further improvements in the
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accuracy of merged intensities.

Peak widths, as determined from virtual powder patterns, were approximately

2.68×10−4 Å−1 FWHM, giving a minimum nanocrystal size of approximately 0.372

µm, which is consistent with the smaller crystal size estimates based on the interference

fringes between Bragg peaks. The instrumental effects of spectral broadening and beam

divergence, 0.21 and 0.5 mrad FWHM, respectively, were therefore negligible for the

present analysis. It was assumed here that each nanocrystal is smaller than one mosaic

block (Hunter et al., 2011), and no attempt was made to correct for any effects of crystal

mosaicity in the present analysis. However, if the crystals consist of multiple mosaic

domains, then the effect of mosaicity on the merged intensities will be similar in nature

to that of crystal orientation errors, and the combined effect of both may be perhaps be

corrected for simultaneously in future analysis.

Although no signs of significant flow alignment of PSI crystals caused by the

liquid jet were observed, these effects may need to be considered during data analysis

for certain protein crystals. Since structure factors are derived from averaged diffracted

intensities (each integrated reflection intensity is divided by the number of observa-

tions), the analysis method described here has no effective Lorentz factor correction

and is likely to be insensitive to the degree of flow alignment. In addition, optical ex-

amination of the smaller crystals shows them to be highly irregular in shape, faceted,

and with an aspect ratio tending to unity. While strongly flow-aligned data will result

in a reduced completeness due to the blind regions at either pole of reciprocal space

(much like the blind regions in typical oscillation data), this problem may be easily

remedied by adjusting the angle of the liquid jet relative to the X-ray beam. However,

if the degree of alignment is correlated with crystal size (e.g. if larger crystals tend to

have a larger aspect ratio resulting in a greater degree of alignment), the effects of flow

alignment will need to be considered more carefully, perhaps by first classifying crys-

tals by size (e.g. using the high angular resolution shape transform on the small-angle

91



detector), carrying out separate analysis for each size class, and scaling each data set

appropriately prior to merging. The degree of flow alignment in a data set may be deter-

mined straightforwardly from autoindexing results. Even in absence of flow alignment,

scaling of multiple data sets according to crystal size classes should be investigated, as

it will likely increase the rate of convergence and the accuracy of the resulting merged

intensities.

The rate of convergence for the experimental data is much greater than for the

simulated data from section 3.3 (published in Kirian et al. (2010)), despite a higher

final R factor. This may result from the absence of beam divergence, crystal disorder

and beam energy spread in the simulations.

Conclusions from experimental results

The aim of this work was to study the convergence of the Monte Carlo integration

method using a limited subset of the data collected at LCLS in December 2009. Since

both Rint and Cint apparently tend to an asymptote, there may be little reason to collect

more than about 10,000 diffraction patterns of Photosystem I crystals for a complete

data set to a resolution of 0.9 nm, which would ensure a complete data set. (Many

nanocrystals are, however, wasted during flow in the period between X-ray pulses).

While a complete data set can in principle be collected in less than six minutes at

the present 30 Hz repetition rate, the throughput in the present work is lower, due to

the necessity to target a hit rate of 20%, so that patterns with multiple crystals are

minimized. A larger number of patterns will likely be needed for data collected at

higher resolution, but this number depends on the intensity and wavelength the X-ray

beam, the crystal size distribution, and numerous other factors. However the power of

the method may lie in its ability to take advantage of the wide range of microscopic

crystals of various sizes which exist in the mother-liquor used for crystal growth, or

the showers of microcrystals sometimes seen during growth. For difficult-to-crystallize

proteins, such as membrane proteins, it may take decades from the observation of the
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first showers of microcrystals to structure determination at atomic resolution. In the

case of Photosystem I, it took 13 years from the first observation of microcrystals in

1988 (Witt et al., 1988) to the structure determination at 2.5 Å resolution (Jordan et al.,

2001). The new avenue of fs nanocrystallography, where the structure determination is

based on a fully hydrated stream of nanocrystals, may thereby improve the efficiency of

protein structure analysis. In addition, by supplying the jet from HPLC apparatus and

an autosampler, convenient control of the chemical environment is achieved for samples

near room temperature and the method is directly applicable for high throughput data

collection, without the need to mount or freeze individual crystals. Because radiation

damage effects are avoided when using sufficiently short pulses, the need for cooling

in protein crystallography is eliminated. The continuous replenishment of nanocrystals

via the liquid nozzle also makes possible time-resolved studies of irreversible processes

by extending the experimental apparatus to include e.g. an optical pump laser, or a

mixing cell in which multiple reactants are mixed immediately upstream of the nozzle

exit. Finally, preliminary indications are that, for short pulses, a dose much larger than

the safe dose normally tolerable in protein crystallography is possible.

3.5 Phasing of coherent femtosecond X-ray diffraction from size-varying

nanocrystals
Overview

Over the past century, in view of the importance of structure-factor phases in determin-

ing atomic structure, each new solution to the crystallographic phase problem has led

to major advances in structural biology. Anomalous diffraction, isomorphous replace-

ment, molecular replacement and direct methods are widely used, but all have their

limitations (needing chemical modifications to the sample, atomic-resolution data, lim-

its on the number of atoms, or a similar solved protein (Kasai et al., 2005)). It has been

said that the discovery of a genuinely new structure in molecular biology requires phase

measurement, rather than phasing by modeling, based on the protein database, since
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the return of such new structures to the database may contribute to model bias in the

database. The new types of data available from XFELs (Kirian et al., 2010; Chapman

et al., 2011) offer new possibilities for direct phasing, not limited in this way. There is

a particular need for a direct phasing method which does not require atomic-resolution

data.

It has long been appreciated that if scattering could be obtained at points be-

tween Bragg reflections, the additional information would greatly assist solution of this

problem (Sayre, 1952). For protein crystals, variations in water content have been used

to vary the cell dimensions for this purpose (Perutz, 1954). Since they contain chiral

alpha-helices, protein crystals are acentric, however structure-factors may be real for

projections with inversion symmetry. The complex molecular transform sampled at

the Bragg condition is sufficient to reconstruct the molecular charge density, consistent

with the Shannon sampling theorem (we assume one molecule per unit cell throughout).

Sampling of intensities at the half-integral Bragg condition completely determines the

autocorrelation of the molecular density, from which a unique solution of phases can be

determined (Bates, 1982). We show how the finite size of a nanocrystal can provide the

inter-Bragg scattering needed to recover the continuous molecular transform between

Bragg peaks, so that iterative phasing methods (Hawkes and Spence, 2005) may then be

used to solve the phase problem and recover a molecular image. If enough projections

could be obtained from the same nanocrystal, one might treat an entire nanocrystal as

a single, non-periodic object and phase it using these methods, however radiation dam-

age and the difficulty of orienting submicron objects prevents this. We describe here

a more efficient approach using large numbers of nanocrystals which does not require

goniometry, and which allows for variations in crystal size.

By comparison with single-molecule diffraction, perfect nanocrystals increase

peak (Bragg) intensity by N6 (for N molecules on a side), provide a solution to the

molecular orientation problem through Miller indexing, and provide a path to single-
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molecule imaging as N is reduced by filtration, while also allowing study of proteins

which fail to produce large crystals (Riekel, 2004). Using short pulses instead of freez-

ing to reduce damage allows structural analysis and in situ “snapshot chemistry” at

room temperature, while the continuous flow of fresh material allows pump-probe study

of irreversible processes. Finally, we show here that this geometry offers an efficient

direct solution to the phase problem. In the simplest optical terms, we show that a finite

grating solves the phase problem.

For a finite crystal, the sharp Bragg reflections are convoluted with a crystal

shape-transform function, and the result is then modulated by the molecular transform

(von Laue, 1936). The shape-transform therefore provides the required inter-Bragg

scattering needed to solve the phase problem. (This has been used for the study of

strain in inorganic nanocrystals recently (Robinson and Harder, 2009)). Our simula-

tions (figure 3.27) show resulting “partial” reflections (Rossmann and Erickson, 1983),

in random orientations, each formed by one slice of the Ewald sphere through the three-

dimensional shape transform at each lattice point (Kirian et al., 2010). As for a finite

grating, the number of unit cells N between crystal facets along direction g is equal to

p+2, if there are p subsidiary fringes between Bragg reflections along direction g.

Nanocrystal phasing algorithm

Following the same notation as in section 3.2, the diffracted intensity (photons/pulse)

from the nth finite parallelepiped crystal, illuminated by a pulse of plane-polarized

monochromatic incident radiation, is given by

In(∆k) = J0r2
eP|F(∆k)|2|Sn(∆k)|2∆Ω (3.34)

where F(∆k) is again the continuous scattering from one unit cell (molecule), Jo is

the incident photon flux density (photons/pulse/area), r2
e the electron cross section, P a

polarization factor, and ∆Ω the solid angle subtended by a detector pixel at the sample.

For small scattering angles θ the resolution is d = λ/θ . Sn(∆k) is the transform of the
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truncated crystal lattice. Equation 3.34 is remarkable in that it separates the result of

complex interference effects into a simple product of intensity factors (unlike in-line

holography), the second of which (Sn(∆k)) is purely geometric and provides “samples”

of |F(∆k)|2 sufficiently fine to permit phasing. As described in section 3.2, the set

of observed ∆k may be determined using autoindexing software (Kirian et al., 2010;

Rossmann and Erickson, 1983) to find the Miller indices of all Bragg reflections, using

fractional indexing between lattice points, and this determines the orientational rela-

tionship between diffraction patterns. The molecular transform F(∆k) between Bragg

reflections is identical for all nanocrystals, but the lattice transform Sn(∆k) depends on

the size and shape of a crystal, and differs between crystals. However Sn(∆k) is the

same in the neighborhood of every lattice point for a given crystal. These characteris-

tics allow the two intensities |F(∆k)| and |Sn(∆k)| to be disentangled.

The oversampled molecular transform may be “demodulated” from the diffracted

intensity in principle by dividing the interference function in equation 3.34 into the

measured intensity on the left. The continuous molecular transform modulus |F(∆k)|

may then be phased by iterative methods, and so inverted to give a three-dimensional

electron density map of the contents of one unit cell.

We first assemble the indexed patterns from all nanocrystals into a three-dimensional

reciprocal-space intensity map, and then average these oriented intensities over all

snapshot diffraction patterns (from crystals of different size and shape), to obtain the

quantity

〈In(∆k)〉n = J0r2
eP
〈
|F(∆k)|2|Sn(∆k)|2

〉
n ∆Ω (3.35)

Since F(∆k) is identical in each pattern,

〈In(∆k)〉n = J0r2
eP|F(∆k)|2

〈
|Sn(∆k)|2

〉
n ∆Ω (3.36)

and the molecular transform may be expressed as

|F(∆k)|2 = 〈In(∆k)〉n
J0r2

eP〈|Sn(∆k)|2〉n ∆Ω
=
〈In(∆k)〉n

D(∆k)
. (3.37)
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We must now determine the denominator D(∆k), the mean shape transform, which

depends on the particle size distribution, and which we now discuss. We note that

unlike equation 3.34, which can only be inverted for individual nanoparticles when

|Sn(∆k)|2 is non-zero,
〈
|Sn(∆k)|2

〉
n is non-zero and therefore can be inverted over a

wide range around the Bragg condition.

If we knew the particle size distribution G(N(n)) where N(n) defines the crystal

dimensions, we could write

〈
|Sn(∆k)|2

〉
=

∑n |Sn(∆k)|2G(N(n))
∑n G(N(n))

(3.38)

avoiding the need to determine individual values of N(n) for each nanocrystal from the

fringe systems. The denominator D(∆k) in equation 3.37 (the mean shape-transform)

may however be simply obtained without knowledge of the particle size distribution

using the fact that a sum over corresponding pixels around different reflections will

smooth out the molecular transform (which is different at each lattice point) but pre-

serve the shape transform (which is the same around each lattice point for one nanocrys-

tal). Qualitatively we find D(∆k) as follows. First define a Wigner-Seitz cell around

every reciprocal lattice point, extending half-way to the neighboring lattice point. We

then perform a periodic average over all these Brillioun zones, by summing them all

into one, then redistributing this summed cell periodically throughout reciprocal space.

Since the molecular transform varies between cells (see figure 3.30), while the shape

transform does not, the sum accumulates to give D(∆k) in equation 3.37. In detail, we

average all Bragg reflections in equation 3.35 located at reciprocal lattice points ghkl:

〈In(∆k−ghkl)〉n,hkl = J0r2
eP
〈
|F(∆k−ghkl)|2|Sn(∆k−ghkl)|2

〉
n,hkl ∆Ω (3.39)

Angle brackets denote an average over n and ghkl . We sum corresponding pixels (dif-

fering by g) in the three-dimensional diffraction volume within a small range of ∆k

around every reflection over all reflections, and also over all patterns from particles of

different size (bring the intensity around every ghkl to the origin, and sum the result
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over all crystals). The summed cell at the origin is then redistributed about each lattice

point.

Since the lattice transform is identical when translating by any ghkl , we have

〈In(∆k−ghkl)〉n,hkl = J0r2
eP
〈
|F(∆k−ghkl)|2|Sn(∆k)|2

〉
n,hkl ∆Ω . (3.40)

The molecular transform intensity is uncorrelated with the finite-lattice transform so

that

〈In(∆k−ghkl)〉n,hkl = J0r2
eP
〈
|F(∆k−ghkl)|2

〉
n,hkl |Sn(∆k)|2n∆Ω (3.41)

Rearranging terms, and noting that
〈
|F(∆k−ghkl)|2

〉
n,hkl approaches a constant is av-

eraged over a sufficient number of Brillouin zones, we may now express the needed

average finite-lattice transform as

|Sn(∆k)|2n ∝
〈In(∆k−ghkl)〉n,hkl

J0r2
eP∆Ω

(3.42)

which we insert into equation 3.37 to obtain an expression for the molecular transform,

purely in terms of the measured diffracted intensities

|F(∆k)|2 ∝
〈In(∆k)〉n,hkl

〈In(∆k−ghkl)〉n,hkl
. (3.43)

This self-normalizing expression does not require experimental scaling factors.

The entire analysis process is illustrated schematically for a 1D lattice, to show

the basic concept. In panel (a) the idealized intensity recorded from a single snapshot

is shown, indicating the modulation of the finite lattice (a function similar to a sinc

function) by the underlying molecular transform which we desire to retrieve from the

data (equation 3.34). Panel (b) shows the intensity upon averaging over all crystal sizes

and shapes (equation 3.36)– note that the zeros in the lattice transform have vanished

upon averaging crystals with even and odd numbers of unit cells along the edge. Panel

(c) shows the recovered lattice transform, upon summing over all translations about

reciprocal lattice vectors (equation 3.42). Dividing the profile in panel (b) by that in
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panel (c) results in the recovered molecular transform shown in panel (d) (equation

3.43). Finally, panel (e) shows how the result might look in the presence of photon

noise, indicating that the results are much more accurate near the Bragg conditions

(where intensities are high and errors are relatively small) compared with points lying

between Bragg conditions.

There is, in principle, no lower limit to the size of the nanocrystals which can

be phased by this method, but if the orientations cannot be determined accurately, the

method will fail. Methods other than conventional autoindexing may be required if

the signal from a single snapshot is exceedingly low. The method also fails for crystals

much larger than a mosiac block, or when the crystals are too large and thus produce in-

sufficient scattering between Bragg reflections. While some degree of mosaicity, beam

divergence and energy spread effects can be tolerated in conventional crystallography,

because large crystals assure small shape transforms which sample the molecular trans-

form only at points very near to the Bragg condition, such affects must be reconsidered

for our method. For nanocrystals, the relatively large width of shape transforms will

cause off-Bragg intensities to be convoluted with these geometrical factors at the de-

tector, and so we should aim for minimal divergence and spectral width. Mosaicity is

likely negligible for crystals smaller than a typical mosaic domain. Nyquist sampling

requires four independent measurements of the molecular transform for each reflec-

tion (“half-orders” in three dimensions). However these samples need not be equally

spaced (Maia et al., 2011). Equation 3.43 is also limited by the dynamic range of the

detector, which can be effectively increased using summed data. In general, the enve-

lope of the shape transform falls as 1/∆k (Xu et al., 1999), so that midway between

lattice points, as D(∆k) approaches the noise limit, fluctuations in the denominator of

equation 3.43 will amplify noise on the retrieved molecular transform. This may be

controlled by using a Weiner filter (Vetterling, 1992). This smooth damping function

applied to equation 3.43 can be obtained from interpolation of the power spectrum of
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Figure 3.26: Schematic illustration of the nanocrystal phasing principle. See text for
details.
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the numerator of equation 3.43, and has values near unity when noise is low, and small

values otherwise. The need for such a function was avoided in these simulations by

collecting sufficient data. To determine the number of diffraction patterns which must

be recorded we consider a sum of M diffraction patterns from one subclass belonging

to the same orientation (within error). With a small background count Nb per shot per

pixel, and Ns signal counts per shot per pixel (Ns� 1 at high angles), the signal to noise

ratio SNR, assuming Poisson noise is

SNR =
MNs

M(Ns +Nb)
≈
√

MNs (1−Nb/2Ns) . (3.44)

By choosing the constant SNR (a commonly accepted values is SNR = 5) and using

Ns from In in equation 3.34, and given Nb, this expression then gives the number of

shots M in this orientation class for statistical significance of the oversampled intensity.

Saturation of the most intense pixel may require several data sets with different gains.

Signal-to-noise ratio also provides a condition on the inversion of equation 3.37 by

optimization methods. Shannon interpolation (for the Fourier relationship between the

autocorrelation of the molecular density and |F(∆k)|2) gives K2a(∆k) ∗ |F(∆k)|2 =

|F(∆k)|, where K2a(∆k) is the Fourier transform of the doubled unit cell and ∗ denotes

convolution. Combining this with equation 3.37

〈In(∆k〉n = D(∆k)∗ |F(∆k)|2 + ε (3.45)

where ε is the noise contribution. This may be expressed in matrix notation as the

linear equation

I = DKmF+ ε = AF+ ε (3.46)

where the condition number of A must now exceed the signal-to-noise ratio SNR. Equa-

tion 3.46 may be solved using optimization methods, based on the pseudoinverse of A.

Results from simulations

Figure 3.27 shows simulations (following the method described in Kirian et al. (2010))

at 8 keV for the protein alpha-conotoxin PnIB (1AKG), crystallized with one molecule
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in a cubic unit cell (a = b = c = 5.84 nm, α = β = γ = 90◦). A 512×512 pixel detector

is assumed with 100 mm camera length and 120 micron pixels. The mean number of

molecules N = 20 on a side of the nanocrystal (as observed experimentally by Shapiro

et al. (2008) and Hunter et al. (2011)) with standard deviation σ = 2. Figure 3.27

shows the partial reflections expected from one nanocrystal. Figure 3.30 shows the

modulus of the 3D molecular transform |F(∆k)| on one plane through the origin of

q-space. The beam-stop obscures the central maximum at the direct beam. Figure 3.28

shows the merged sum of M = 106 oriented diffraction patterns on this plane, assuming

1013 incident photons per shot with 0.5 µm beam diameter, giving 1.46×106 scattered

photons per shot. The average finite lattice sum (equation 3.42) is shown in figure

3.29, while figure 2(b) shows the molecular transform recovered using Eq. (9) for this

noise level and particle size distribution. The results are evaluated using a standard

goodness-of-fit R-factor R(M) defined as

R(M) =
∑∆k ||F(∆k)model|2−|F(∆k)recov|2|

∑∆k |F(∆k)model|2
(3.47)

comparing F(∆k)model with F(∆k)recov from equation 3.43, as shown in figure 3.32

(bold curve) for M summed patterns. Our results suggest that 106 patterns would be

needed for phasing under these conditions. If the incident flux is reduced to 1011

photons per pulse, we find that 108 patterns are needed.

The reconstruction of a charge density map of the molecule then proceeds by

phasing this transform, which may be based on any of the established iterative phasing

methods. We note that the support of the molecule (the unit cell) is known. A large

fraction of the unit cell for real protein crystals consists of water, not included here.

Shannon’s sampling theorem may be used as a constraint on predictions of the inter-

Bragg scattering, once estimates of complex values at the reciprocal lattice points exist.
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Figure 3.27: Simulated snapshot diffraction pattern of cubic nanocrystal of 1AKG, for
X-rays in transmission through a submicron protein nanocrystal in a random orientation
for some inner reflections near the origin.

Figure 3.28: Many (106) simulated patterns
merged in 3D (equation 3.35); crystal size
N = 20, σ = 2, also on [001] zone axis.

Figure 3.29: Recovered average shape
transform (equation 3.42), also on [001]
zone axis.

Concluding remarks

These simulations have demonstrated the basic principle of a new crystallographic

phasing method for data consisting of many diffraction patterns from nanocrystals of103



Figure 3.30: Computed |F(∆k)| for 1AKG
protein model on [001] in q-space, resolu-
tion d = 0.523 nm at side of pattern, 6 sam-
ples between Bragg spots.

Figure 3.31: Recovered |F(∆k)| for 1AKG
protein model following “demodulation”
(corresponding to equation 3.43), also on
[001] zone axis.

Figure 3.32: Bold curve: overall goodness of fit index R(M), for 1 < M < 106 crystals.
Upper curve: R(M) evaluated for the 50% of intensities which lie between reciprocal
lattice points only. Lower: R(M) evaluated for remaining 50% which lie near lattice
points.
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various sizes, in random orientations, containing identical molecules. Moreover, the

simulations show that this new direct method for solving the phase problem does not

require knowledge of the particle size distribution, independent measurement of exper-

imental parameters, or atomic-resolution data. Unfortunately, no data of the required

type (from untwinned nanocrystals) has thus far been collected at the LCLS at the fine

pixel sampling rate required. Transverse coherence width greater than the size of the

largest nanocrystal has been assumed, a requirement for this method. Calculations for

higher resolution would be possible using greater computational time and memory– the

purpose here is to demonstrate the principle of this method in a simple case. It is clear

that this method could be combined with modeling information based on the molecular

replacement technique.
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Chapter 4

CORRELATED FLUCTUATION SMALL-ANGLE X-RAY SCATTERING

4.1 Overview

In 1977, Zvi Kam suggested (Kam, 1977) a completely new approach to ab-initio pro-

tein structure determination through solution X-ray scattering. Kam’s suggestion was

based on the observation that, provided the proteins in solution are frozen during the

X-ray exposure, either in space or in time, a small-angle X-ray scattering (SAXS) pat-

tern actually contains a two-dimensional scattering distribution with minute intensity

fluctuations about rings of fixed scattering angle. Where a pulsed X-ray source is used,

the duration of the pulse should be much less than the rotational diffusion time of the

molecules. Kam realized that such intensity fluctuations contain a significant amount

of structural information, which can be extracted from the experimental diffraction pat-

terns by signal-averaging the correlations in the scattering intensities, rather than the in-

tensities alone. The resulting data set can be shown to converge to a three-dimensional

correlation function corresponding to a single protein molecule under certain condi-

tions, despite the presence of perhaps 108 proteins in each exposure, in contrast to the

conventional SAXS data which consists of only a one-dimensional radial intensity pro-

file. If the correlated intensities extracted from such snapshot patterns can be inverted

to form a reciprocal-space intensity map, iterative solutions of the phase problem may

then be used to obtain the real-space density of the molecule, ab-initio, without the type

of modeling commonly used in SAXS analysis.

The main disadvantage of conventional SAXS techniques is that the mean scat-

tered intensities are a function of the single scalar variable of the magnitude, q, of

the scattering vector and will thus carry limited information with approximately N =

∆q/δq measurable features (where ∆q is the range of q and δq the expected width of

a feature in the I(q) curve). δq is expected to have a magnitude given by the Shannon

sampling criterion δq= π/L where L is a typical linear dimension of the molecule. Un-
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der typical condition of a SAXS experiment, N is typically of the order 10. Although

it was initially thought that only angularly averaged quantities such as the average size,

and radius of gyration may be extracted from an angularly averaged I(q) curve, it has

been demonstrated (Stuhrmann, 1982; Svergun and Stuhrmann, 1991) that, with some

reasonable additional assumptions, even anisotropic details of the molecular shape may

be found from measured SAXS data. Nevertheless, variations in a SAXS signal are

greatest in the region of very small magnitude scattering wavevector, q, where the sig-

nal is sensitive largely to the overall shape of the molecule (modeling results in reso-

lutions on the order of about ∼2 nm at best) rather than its internal structure (Svergun

and Koch, 2002).

The reconstruction of a high-resolution image of a single particle from scatter-

ing by several symmetrically equivalent ones has been demonstrated recently (Elser and

Millane, 2008). Kam’s approach may be thought of as a more general case of scattering

by many particles occupying a continuum of orientations. However, despite the idea

having been suggested nearly 35 years ago, a three-dimensional reconstruction based

on X-ray scattered intensity correlations has never been demonstrated experimentally

for organic targets. While it appears that low signal-to-noise ratios have been a limiting

factor for experiments carried out at synchrotrons, the advent of the XFEL suggests

that we reconsider this technique, as it is now possible to operate in the diffract-and-

destroy mode and thereby improve the signal-to-noise ratio considerably by delivering

an X-ray dose well beyond what is tolerable in synchrotron-based diffraction.

In the development of this approach, this chapter details algorithms that have

been developed and tested on simulated data to demonstrate the feasibility of recon-

structing the projected image of one membrane protein, using the scattering from many,

if sufficient signal is obtained from molecules randomly oriented about a single axis

(section 4.4). A possible application of this constrained 2D geometry is for the structure

determination of e.g. a membrane bound protein in situ with the membrane perpendic-
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ular to the incident beam, where the individual proteins may be assumed identical in

structure, but randomly oriented about an axis perpendicular to the membrane. An ex-

periment carried out using soft X-ray scattering from many identical inorganic nanopar-

ticles lying on a transparent membrane demonstrates the practicality of the method, at

least for this two-dimensional case of single-axis rotations (section 4.4 and section 4.5).

In section 4.6, the magnitude of the correlated fluctuation SAXS (CFSAXS)

signal is considered in detail for typical XFEL beam conditions, and compared against

the errors derived with the inclusion of Poisson photon counting statistics. The result-

ing signal-to-noise ratio (SNR) is found to rapidly approach a limit independent of the

number of particles contributing to each diffraction pattern, so that the addition of more

particles to a “single-particle-per-shot” experiment may be of little value, apart from re-

ducing solvent background. When the scattering power is significantly less than one

photon per particle per Shannon pixel, the SNR grows in proportion to incident flux.

Direct simulations for protein molecules provide support for these analytical results,

and the effects of solvent background scatter are considered. The dependence of SNR

on resolution and particle size is also considered, along with the application of the

method to glasses and liquids, and the implications of more powerful XFELs, smaller

focused beams, and higher pulse repetition rates for this approach. It is found that an

accurate CFSAXS measurement may be acquired to subnanometer resolution for pro-

tein molecules if a 9 keV beam containing 1013 photons is focused to a ∼100 nm spot

diameter, provided that the effects of solvent background can be reduced sufficiently.

4.2 General theory of CFSAXS
Measurement of the fluctuation correlation function

In order to build a conceptual understanding of the basic theory underlying the CF-

SAXS methodology, a simplified two-dimensional geometry is first considered, which

makes the mathematical treatment particularly straightforward. The full treatment in

three dimensions will be discussed in a section 4.2. This simplified geometry is a rea-

108



sonable model of e.g. K channel proteins embedded in membrane, since their function

depends on the presence of a pore (the K channel) that joins the interior of a cell to

its outside. Similarly, the method may be applied to virus particles supported on a

flat substrate, or membrane proteins randomly oriented within a black-lipid membrane

(Beerlink et al., 2008).

Suppose a single particle creates a diffraction pattern with intensity specified

in polar coordinates as I(q,φ), where q is the polar radius, and φ is the azimuthal an-

gle, as shown in figure 4.1. We may relate q and φ to the three-dimensional reciprocal

space representation of the particle, but we need not consider this complication for the

present illustration (let us assume a flat Ewald sphere approximation for small scatter-

ing angles, in which case we can set q = |q|). If the particle is rotated by some angle ψ

about the beam axis, then the pattern in simply rotated by that amount: I→ I(q,φ +ψ).

Now consider the case in which the kth diffraction pattern contains N identical parti-

cles in orientations specified by the angles ψk
i (i = 1,2, . . . ,N) that are all exposed to

the same incident X-ray beam such that (a) the particles do not rotate or translate dur-

ing the exposure, (b) there are no correlations in particle orientations and positions,

and (c) there is no inter-particle interference observed in the diffraction patterns (for

instance, because the particles are sufficiently far apart so that interference fringes are

unobservable). The resulting N-particle diffraction pattern may then be written as a

simple summation of intensities contributed by each particle:

Ik(q,φ) =
N

∑
i

I(q,φ +ψ
k
i ) . (4.1)

In other words, when interference between particles is negligible, a single N-particle

pattern is equivalent to a summation of N single-particle patterns. The effects of inter-

particle interference have been considered by Saldin et al. (2010a) and Altarelli et al.

(2010); here we will simply assume that this assumption is true.

We wish to measure the intensity I(q,φ) corresponding to a single particle in the
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Figure 4.1: Geometry for CFSAXS data. Generally, the data is processed by extracting
ring intensities at radii q and q′.

case that multiple particles are exposed simultaneously. Assume that we may collect

a large number of patterns M, as many as we like, each with N identical particles

in random orientations. Since it is unlikely that a single many-particle pattern can

be inverted directly (absence of interference between particles, for instance, means

that we cannot use an iterative phasing algorithm to to form a projection image of the

ensemble). One might then consider measuring an average diffraction pattern over the

series of M snapshots:

〈Ik(q,φ)〉k =
M

∑
k

N

∑
i

Ik(q,φ +ψ
k
i ) . (4.2)

This direct intensity averaging washes away angular intensity fluctuations and therefore

results in a one-dimensional radial intensity profile (the usual SAXS profile), which

provides insufficient information to uniquely determine the two-dimensional single-

particle pattern I(q,φ). One might ask, as Zvi Kam did in 1977, how to fully exploit

the additional information contained within the intensity fluctuations which arise due

to the particles being frozen in space or time during the exposure. The way to do

this is the following: upon realizing that an angular correlation is unaffected by particle
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rotation, we instead choose to average the angular correlations in each of the diffraction

patterns. As we show momentarily, this results in a three-dimensional data set revealing

far more information about the desired single-particle intensity distribution I(q,φ).

Let us now define the fluctuation correlation function. We denote the intensity

fluctuations in the kth snapshot with a tilde as

Ĩk(q,φ) = Ik(q,φ)−〈Ik(q,φ)〉k (4.3)

where 〈Ik(q,φ)〉k is the average intensity at q over many snapshots (equation 4.2). In

words, we obtain the intensity fluctuations by simply subtracting the azimuthal average

from each intensity ring at radius q. The angular cross correlation function of these

fluctuations, hereafter referred to as the fluctuation correlation function, is then defined

as the mean cross correlation1 between intensity rings at q and q′:

C̃N(q,q′,∆φ) =
〈

Ĩk(q,φ)Ĩk(q′,φ +∆φ)
〉

k
. (4.4)

As detailed in Appendix B.1, if we assume that the number of snapshots M is suffi-

ciently large, then we find that the fluctuation correlation approaches the result

C̃N(q,q′,∆φ) = N
〈
I(q,φ)I(q′,φ +∆φ)

〉
φ
−N 〈I(q,φ)〉

φ

〈
I(q′,φ)

〉
φ
.

Upon rearranging and defining the single-particle intensity correlation function C1(q,q′,∆φ),

we have

C1(q,q′,∆φ) =
〈
I(q,φ)I(q′,φ +∆φ)

〉
φ

(4.5)

=
1
N

C̃N(q,q′,∆φ)+ 〈I(q,φ)〉
φ

〈
I(q′,φ)

〉
φ
, (4.6)

and hence we find that the correlation function corresponding to a single particle

(C1(q,q′,∆φ)) may be obtained through the summation of correlations in many-particle

patterns.
1This is also equal to the covariance in intensities.
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Inversion of the 2D fluctuation correlation function

Now that we have determined how to measure the fluctuation correlation function

C̃1(q,q′,∆φ), we must invert this data in order to obtain a real-space projection im-

age of the particle. A number of algorithms may be considered, as discussed in section

4.4. For now, we consider how the problem may be solved in principle. The solution in-

volves two steps: first we invert the fluctuation correlation function to a single-particle

diffraction pattern, and then we invert the resulting diffraction pattern into the real space

projection of the particle through an iterative phasing algorithm. Let us begin by ex-

panding the single-particle intensity, which we wish to solve for, in circular harmonics:

I(q,φ) = ∑
m

Im(q)eimφ . (4.7)

Next, we take the angular Fourier transform of C̃1(q,q′,∆φ) and arrive at the simple

expression (see Appendix B.2)

Bm(q,q′) =
1

2π

∫ 2π

0
C̃1(q,q′,∆φ)e−im∆φ d∆φ (4.8)

= I∗m(q)Im(q′) . (4.9)

If we consider the autocorrelations (q = q′), we immediately have the magnitudes of

the expansions coefficients, since

|Im(q)|=
√

Bm(q,q) . (4.10)

Consider the set of magnitudes |Im(q)| for a given ring at q. In order to determine the

intensity I(q,φ) we must solve a one dimensional phase problem. We could attempt

to solve this problem for each ring in turn2, for instance by using an iterative phasing

algorithm such as charge flipping (Oszlanyi and Suto, 2004, 2005) that does not use

a fixed support. Each ring then will have an overall phase ambiguity, so we must fi-

nally determine the overall phases of each ring (this corresponds to rotating each ring
2It is important to note that there is no support for this phasing problem, since non-zero intensities

span the entire ring. However, one can make reasonable estimates in this way, as discussed in section
4.4.

112



so that the relative orientations are consistent). We can solve for the relative phases

(orientations) directly– for instance, by choosing a particular m and writing the expan-

sion coefficients as Im(q) = |Im(q)|eiθm(q), the relative phase between differing rings is

simply

θm(q1)−θm(q2) =
1
i

ln

(
Bm(q1,q2)√

Bm(q1)
√

Bm(q2)

)
. (4.11)

Alternatively, we may begin the solution to our problem by directly solving

for the relative phases for expansion coefficients of identical m, over the range of q

(as opposed to the above approach, in which relative phases between coefficients of

identical q are solved for first). This will result in a set of known phase relations among

identical m, with ambiguities along q instead. Let us denote the P×P matrix Bm(qi,q j)

(where there are P measured intensity rings) as

Bm(qi,q j) =


Im(q1)I∗m(q1) . . . Im(q1)I∗m(qP)

... . . . ...

I∗m(qP)Im(q1) . . . Im(qP)I∗m(qP)

 . (4.12)

We may write this also as the outer product

Bm(qi,q j) =Vm(qi)⊗V †
m(q j) . (4.13)

where the vector Vm(q) is a column matrix with elements Im(q) and V †
m(q) is the trans-

pose conjugate. The elements of Vm(q) may then be determined by solving the Eigen

value equation

Bm(qi,q j) = Am(qi)εmA†
m(q j) (4.14)

=
[
Am(qi)

√
εm
][√

εmAm(q j)
]†

, (4.15)

where it is clear from the form of equations 4.13 and 4.15 that there is in principle only

one non-zero Eigen value εm and Eigen vector Am(q). We may then write the desired

vector Vm(q) as

Vm(q) =
√

εmAm(q)eiηm (4.16)
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which is unique up to the overall phase ηm (this is the overall phase corresponding to

Im(q) with a range of of q values, but fixed m). Now that the Im(q) are solved up to a

relative phase ambiguity between differing q values, we may apply an iterative phasing

algorithm on the entire data set while refining only the overall phases ηm(q) (one for

each m value).

The specific algorithms noted above have not been tested, but are likely to suc-

ceed with data of sufficient quality. Since the number of free variables (the number

of pixels in the 2D diffraction pattern) scales as q2, and the number of constraints

(the 3D fluctuation correlation function) obtained through the correlations scales as q3,

this problem is well over constrained and numerous inversion algorithms can be con-

ceived. Once the single-particle diffraction pattern has been obtained, iterative phasing

algorithms may be applied to recover the real-space projection of the particle electron

density. In section 4.4, details will be given of phasing algorithms which have been

proven successful on simulated data.

Fluctuation correlations in three dimensions

Regardless of the rotational freedom of the particles, the fluctuation correlation function

is computed from measured diffraction data in precisely the same way as described in

section 4.2. Let us extend the theory to the case in which the full rotational freedom is

possible, by expanding the reciprocal-space diffraction intensity map into a general 3D

function:

I(q) = ∑
lm

Ilm(q)Ylm(q̂) , (4.17)

where Ylm(q̂) is a spherical harmonic. This expression pertains to a particular orienta-

tion of the particle– it should be understood that a given diffraction pattern provides a

sampling of I(q) at scattering vectors which lie on the Ewald sphere, so that we may

write the diffracted intensity for a single snapshot pattern as the 2D function

I(q) = I(q,φ) = ∑
lm

Ilm(q)Ylm(θ(q),φ) (4.18)
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since θ is directly related to q. For a particle rotated into an orientation specified by

ω (which may specify three Euler angles), we may use the Wigner rotation matrices

D(ω)
lmm′ to represent the diffracted intensity at the laboratory-frame scattering vector q:

I(q ;ω) = ∑
lmm′

D(ω)
lmm′Ilm′(q)Ylm(q̂) . (4.19)

Just as in the 2D case, upon extracting the fluctuation correlation function from many

N-particle patterns, we have

C̃N(q,q′) = N
〈
I(q;ω)I(q′;ω)

〉
ω
−N 〈I(q;ω)〉

ω

〈
I(q′;ω)

〉
ω
,

but the orientational average is no longer constrained to the single-axis rotations. As

detailed in (Saldin et al., 2009), upon taking the orientational average of the first term

on the right hand side and exploiting the orthogonality of the Wigner rotation matrices,

we have

C1(q,q′) =
〈
I(q;ω)I(q′;ω)

〉
ω
= ∑

l≥0

l

∑
m=−l

Pl(q̂ · q̂′)Bl(q,q′) (4.20)

where Pl(x) are the Legendre polynomials, and

Bl(q,q′) = ∑
m

I∗lm(q)Ilm(q′) . (4.21)

By exploiting the orthogonality of the Legendre polynomials (or by simple matrix in-

version), we can immediately solve for the terms Bl(q,q′) as shown in (Saldin et al.,

2009); this is essentially equivalent to the step in which we Fourier transformed C̃(q,q′,∆φ)

for the 2D case described in section 4.2. In contrast to the 2D case, where we immedi-

ately gain access to products of expansion coefficients I∗m(q)Im(q′), here we gain access

to summations of products over the m subspace for each l. There is no complete so-

lution to this problem presented in the literature so far; to understand the challenge,

consider trying to solve for I2m(q) given the measured B2(q,q′) function. Here, there

are 2l +1 = 5 values of m, and so by choosing 5 values for the radius q, one can build

a 5×5 matrix B2(q,q′) and determine its Eigen vectors, which contain a possible set of
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I2m(q) values. However, a matrix containing such Eigen vectors is only unique up to

multiplication with any unitary matrix. This is conceptually similar to the way in which

one must solve for the relative phases between differing m in the 2D problem; here one

must solve for relative unitary matrices (similar to a phase) for each l subspace. Cur-

rently, the challenge lies in the fact that there are no constraints which relate the unitary

matrices of each l subspace using the pair correlation functions from a single data set.

One possible solution to this is to extend the mathematics to include triple products of

diffracted intensities, but this method will not be considered here.

4.3 A brief literature review
Z. Kam’s experimental and theoretical work

The original work published by Kam (Kam, 1977) included a nearly complete descrip-

tion of the methodology for recovering the 3D structure of a molecule through CF-

SAXS. It was written at a time prior to the conception of XFELs, and so focused on

the idea of collecting data at a synchrotron source, where the pulse durations for each

exposure are shorter than the rotational diffusion time of the molecules. Kam’s original

treatment of the mathematics assumed a continuum of particle orientations, but with

fluctuations in the probabilities for particles to be in certain orientations, which results

in essentially the same expressions that appear in section 4.2 here. Kam demonstrated

that the quantity Bl(q,q′) could be extracted from the intensity correlations upon as-

suming a spherical harmonic expansion of the reciprocal space of the molecule, and the

fact that the solution of the set of spherical harmonic expansion coefficients Ilm(q) was

unique only up to unitary matrix multiplications was recognized. Kam suggested that

the relative orientations could be determined through the use of heavy atom derivatives,

though details of this approach were not given. A simple model of the signal-to-noise

ratio for CFSAXS was presented for the case of low-signal diffraction patterns, and

it was noted that the SNR does not depend on the number of particles per pattern, but

grows linearly with incident flux (the same conclusions are reached in the more detailed
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analysis presented in section 4.6 here). The important limitations to SNR imposed by

radiation damage (the maximum tolerable dose) were not considered. Kam suggested

that the ideal experimental goal would be to obtain at least one scattered photon per par-

ticle per pixel in each diffraction pattern, but for the suggested 109 particles per shot, it

does not appear that consideration of the limited dynamic range of detectors was given

(a 16-bit detector allows only about 105 photons per particle in this case, about four

orders of magnitude short of the ideal). Finally, Kam presented optical diffraction data

collected from rice grains, but did not show a reconstruction of the particles from the

correlation functions.

Subsequent work by Kam focused on the reconstruction of 3D structures from

electron micrograph projection images through the method of spatial correlations. This

method may be somewhat challenged by the preferential orientations of molecules on

the EM grids (violating the assumption of random orientations), although it appears

that Kam considered the extreme case of single-axis alignment as early as 1978 at

a workshop on regular 2D arrays of biomacromolecules at Gremen, Germany. The

“collapse” of macromolecules during sample preparation for electron microscopy was

considered as an additional limitation, though this challenge has been largely remedied

by the many advancements in Cryo-EM sample preparation since that time. Where the

projection EM images are Fourier transformed prior to summation of correlation func-

tions, the location of the center of mass of noisy images poses an additional challenge

since a position-sensitive phase factor is introduced in the (complex) FT of the projec-

tion images. The use of triple correlations (triple products of intensities, in addition to

pair products) was proposed as a solution to the ambiguity of rotations within each l

subspace of the spherical harmonic expansion, and was partially demonstrated (albeit

to low resolution) for simulated data (Kam, 1980). This work was followed up by the

analysis of STEM and TEM images of stained protein molecules aligned along a single

axis, working with correlations of real-space intensities rather than their Fourier trans-
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forms, though the results did not show significant improvements over methods which

directly average projection images upon orientation classification (Kam et al., 1982).

Further work demonstrated the reconstruction of a 3D icosahedral virus by using the

pair and triple correlations in the real space projections of stained TEM samples (Kam

and Gafni, 1985). By exploiting the symmetries of the known icosahedral shape of

the virus, the problem of inverting the correlations data was simplified considerably

(by placing the virus on the 5-fold symmetry axis, for instance, only the expansion

coefficients with m = 0,5,10, . . . are non-zero). Unfortunately, the resolution of recon-

structions was not sufficient to resolve the substructure of morphological units on the

virus coat, and the problem was attributed to systematic distortions of the samples (i.e.

the targets were not truly identical in shape, or the staining was non-uniform) and the

complexity of the virus.

Kam also followed up on the original idea of correlated fluctuation X-ray scat-

tering (Kam et al., 1981). Here, diffraction data from 300 nm long TMV virus particles

in solution were collected at a synchrotron source. Since fast area detectors were not

yet routinely available, two symmetrically-positioned linear strip detectors with pro-

portional wire chambers were used instead (a full set of ring correlations were not

obtained). A thin 0.1 µm sample cell was used to limit the number of scatterers to ap-

proximately 107 particles per snapshot, and rotational diffusion was avoided altogether

by freezing the liquid suspension during each exposure. Although only 5 hours of data

were collected, the resulting cross correlations between the two linear strip detectors

exhibited a peak with a width corresponding to the calculated width which would arise

from the 300 nm TMV particles. Unfortunately, this work seems to be the only X-ray

correlations experiment carried out by Kam, and the results were quite limited.

Extensions to Z. Kam’s work

A recent application of CFSAXS to disordered continuous networks has received con-

siderable attention (Wochner et al., 2009). In these X-ray diffraction experiments, it
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was shown that the fluctuation correlations from closely-packed disordered ensembles

of 117-nm polystyrene spheres can reveal local symmetries which cannot be observed

from conventional SAXS analysis (similar CFSAXS work using laser illumination of

2D colloidal liquids was also carried out decades ago (Clark et al., 1983)). Moreover,

by extracting angular correlations as a function of time (here, the time delays are on the

order of hundreds of seconds), a fascinating observation was made that the fluctuation

correlations which initially exhibited a prominent 6-fold symmetry relaxed to an inter-

mediate state lacking in symmetry, before forming a final state with prominent 5-fold

symmetry. The potential application of this methodology to the analysis of the local

structures (and dynamics) of liquids, glasses, and supercooled states of matter using

XFELs was noted. In fact, preliminary work has already been carried out by another

group (Gibson et al., 2010), using CFSAXS analysis of transmission electron diffrac-

tion patterns from amorphous silicon to show that there is more local crystallinity in

unannealed amorphous silicon than was previously suspected. The challenge of directly

inverting the fluctuation correlations data to reveal local structures has been noted by

both groups. The work of (Wochner et al., 2009) appears to have inspired new theoret-

ical investigations intended to extend Kam’s original ideas about CFSAXS to the case

of closely-packed networks (Altarelli et al., 2010).

Recent work carried out by the author of this dissertation along with coworkers

has demonstrated new ab-initio inversion algorithms for determining projection im-

ages from CFSAXS measurements for particles aligned about an axis parallel to the

diffracting beam, using simulations of a simple target (Saldin et al., 2010b) and for

the more challenging case of protein molecules (Saldin et al., 2010a). A projection

image of an inorganic nanoparticle has been reconstructed from CFSAXS data as well

(Saldin et al., 2011a), using X-ray diffraction patterns from many particles illuminated

simultaneously. A very recent theoretical investigation of the signal-to-noise ratio for

CFSAXS measurements (Kirian et al., 2011a) shows that it may be possible to obtain
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subnanometer resolution CFSAXS data from protein solution scattering experiments in

the near future as XFELs continue to increase the incident single-shot flux. The prob-

lem of unambiguously solving for the 3D structure of the particles from this type of

data (i.e. the pair correlations, not triple or higher correlations which have higher sig-

nal requirements) still remains a fundamental problem. A recent investigation (Elser,

2011) has shown that for the case of an arbitrary spherical object, the number of con-

straints provided by a CFSAXS measurement (which scales with the cube of the imag-

ing resolution) is lower than the number of free variables (real-space voxels, which

also scales with the cube of imaging resolution), suggesting that the CFSAXS scheme

is fundamentally limited by data deficiency. However, as in the crystallographic phase

problem, which also suffers from information deficiency, ingenious methods have been

invented to overcome such challenges. For instance, target symmetry can be used (in

much the same way as a centrosymmetric crystal simplifies the phase problem to one

of determining only the signs of structure factors); it has been demonstrated recently

(Saldin et al., 2011b) that for the case of particles which have icosahedral symmetry,

the problem of inverting CFSAXS data from particles randomly oriented in three di-

mensions can be reduced to a problem that is equivalent (and solvable) to the case

of single-axis alignment by choice of an appropriate basis (specifically, the icosahedral

harmonics are used rather than the usual spherical harmonics to represent the reciprocal

space intensity map).

4.4 Simulations: from fluctuation correlations to density maps, ab-initio
Overview

Prior to any experimental work, the feasibility of reconstructing the structure of a par-

ticle from CFSAXS data was investigated based on simulations. Due to the difficulty

of inverting CFSAXS data for the case of full 3D orientational freedom, the simpli-

fied case of particles aligned along an axis was considered instead. Diffraction patterns

were first simulated for right cylinders, to mimic planned X-ray diffraction experiments
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on aligned gold nanorods (see section 4.5), and an inversion algorithm was demon-

strated which could yield a projection image of a (highly symmetric) single nanorod

from the simulated CFSAXS data. Further simulations of K-channel membrane pro-

tein diffraction patterns demonstrated a second, and more general, successful inversion

algorithm. The subsections to follow are largely taken from our publications3 (Saldin

et al., 2010b,a) with only slight modification.

Diffraction from cylindrical nanorods

We first illustrate the 2D CFSAXS-based image reconstruction for a simple object con-

sisting of a right cylinder of uniform refractive index n, radius a, length d, and director,

i.e. axis, d. Under the Born approximation, the differential scattering cross section is4

dσ

dΩ
=

ω4a2

c4
|n2−1|2

(q.d̂)2[q2− (q.d̂)2]
(1− sin2

θ cos2
φ)×

sin2
(

q ·d
2

)
J2

1

(
a
√

q2− (q ·d)2
)
. (4.22)

The beam was assumed incident along the ẑ axis, with q= ω

c [sinθ cosφ x̂+sinθ sinφ ŷ+

(cosθ −1)ẑ], where θ and φ are the polar and azimuthal angles of scattering, and inci-

dent polarization along the x̂ axis. The polarization term 1− sin2
θ cos2 φ was summed

over the two orthogonal polarizations of the far-field diffracted wave. Although, on our

simple model, a typical membrane protein may be better approximated with d parallel

to ẑ, for this simplified object, our principle is better illustrated with this axis taken in

the x̂− ŷ plane. If such a cylinder is assumed to have its director d along the y axis,

its projection onto a plane perpendicular to the incident beam will be a rectangle with

longer side parallel to the y axis. The x-ray diffraction pattern from such an object

would be expected to be a superposition of mutually perpendicular sinc functions, giv-

ing rise to sets of fringes parallel to the x and y axes around a central high-intensity

region. This is precisely what is seen in the calculated diffraction pattern of figure 4.2.
3It should be noted that the development and implementation of CFSAXS inversion algorithms was

largely carried out by D. Saldin, V. Schneerson, and H. Poon, with ideas contributed by J. Spence and
myself.

4This was derived by Kevin E. Schmidt; see Appendix C.
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Figure 4.2: Simulated diffraction pattern from a single rod, whose axis is aligned paral-
lel to the qy axis of the figure. The red circle marks the resolution to which this pattern
will be reconstructed from 100 diffraction patterns of randomly oriented particles like
that of figure 4.3.

Note the particularly high-intensity band through the center of the diffraction pattern

and parallel to the qx axis.

We next simulate a diffraction pattern resulting from x-rays incident on 10 such

identical rods, related only by random orientations about an axis perpendicular to the

diffraction pattern. The pattern (figure 4.3) is clearly a superposition of diffraction pat-

terns of the form of figure 4.2 with 10 bright horizontal central bands as seen in that

figure randomly oriented about the center of the pattern. In this paper we investigate

whether it is possible to develop an algorithm for recovering the the single-particle

diffraction pattern of figure 4.2 from several short-pulse multiparticle diffraction pat-

terns of the form of figure 4.3 representing instantaneous positions of rods, randomly

oriented about the z axis.
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Figure 4.3: Typical simulated diffraction pattern from 10 randomly positioned rods,
randomly oriented about an axis parallel to the incident beam. The circle marks the
same resolution ring as in figure 4.2.

Circular harmonic expansion and angular correlation functions

We begin by representing the single-particle diffraction pattern (figure 4.2) by the

circular-harmonic expansion

I(q,φ) = ∑
m

Im(q)eimφ (4.23)

where I(q,φ) represents the intensity of a point on the diffraction pattern in polar co-

ordinates (q,φ ). In general, the coefficients Im(q) are complex valued. It should be

noted that since the circular harmonics eimφ form a complete orthonormal set of basis

functions for the expansion of an arbitrary intensity distribution around a resolution

ring of magnitude q, the set of coefficients Im(q) for appropriately-spaced resolution

rings, q, can represent any planar diffraction pattern. The reality of I(q) dictates that

I−m(q) = [Im(q)]∗. If the scattering angles are small enough that a flat Ewald sphere

may be assumed, Friedel’s rule I(−q) = I(q) implies that only even values of m are

nonzero in the sum on the RHS of equation 4.23.
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Angular pair-correlation functions spanning pairs of resolution rings specified

by q and q′ are calculated in two steps. First, the data I(q,φ) of each resolution ring q

is mean subtracted to find

Ĩ(q,φ) = I(q,φ)−〈I(q,φ)〉φ . (4.24)

For small values of q, 〈I(q,φ)〉φ may be identified with the usual SAXS signal ISAXS(q).

We then define an angular pair correlation taken between the data on two resolution

rings of radii q and q′ of a diffraction pattern by Kam (1977); Saldin et al. (2009);

Wochner et al. (2009)

C2(q,q′,∆φ) =
1

Nφ
∑
φ

Ĩ(q,φ)Ĩ(q′,φ +∆φ). (4.25)

Likewise, one may define a triple correlation (Kam, 1980) over the resolution ring q by

C3(q,q,∆φ) =
1

Nφ
∑
φ

[Ĩ(q,φ)]2Ĩ(q,φ +∆φ). (4.26)

Their angular discrete Fourier transforms are defined by

Bm(q,q′) =
1

Nφ
∑
∆φ

C2(q,q′,∆φ)e−im∆φ (4.27)

and

Tm(q,q) =
1

Nφ
∑
∆φ

C3(q,q,∆φ)e−im∆φ . (4.28)

Recovering a single-particle diffraction pattern from correlations

Correlation functions of the form C2 and C3 would be expected to be identical re-

gardless of the orientation of a particle about an axis parallel to the incident radiation

(Stuhrmann, 1982). If multiple particles, randomly oriented about this axis, scatter

incident radiation under conditions where interparticle interference is negligible, the

resulting diffraction pattern would be a superposition of those of the individual parti-

cles, and thus C2 and C3 calculated from this composite diffraction pattern and aver-

aged over many such diffraction patterns (we included data from 100 such simulated
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patterns) would be expected to converge on the corresponding quantities for a single

particle. We may write

Ĩ(q,φ) = ∑
j

∑
m 6=0

Im(q)eim(φ−η j) (4.29)

where the subtraction of 〈I(q,φ)〉φ in equation 4.24 is equivalent to omitting the term

m = 0 in this summation, and where η j is the (random) orientation of particle j about

ẑ.

Substituting equation 4.29 into equations 4.27 and 4.28, it may be shown that

Bm(q,q′) = NpIm(q)I∗m(q
′) for m 6= 0 (4.30)

where Np is the number of particles giving rise to each diffraction pattern, and that

Tm(q,q) = NpI∗m(q) ∑
M 6=0,m

IM(q)Im−M(q) for m 6= 0. (4.31)

The quantities on the LHS’s of equations 4.30 and 4.31 may be found from the angular

Fourier transforms of pair- and triple-correlation functions computable from measured

data of diffraction patterns from multiple particles. Since this is a quantity from mea-

surement, and the quantities on the RHS are from theory, and since we seek only rela-

tive magnitudes of the circular-harmonic expansion coefficients Im(q), we could simply

remove the common scaling factor Np from equations 4.30 and 4.31, and estimate

|Im(q)|=
√

Bm(q,q) for m 6= 0 (4.32)

Bm(q,q) is real and non-negative from equation 4.30. A full determination of these

expansion coefficients requires also an estimation of the phases of Im(q).

From equation 4.30 with the factor of Np omitted,

Im(q) = Bm(q,q′)/I∗m(q
′), for m 6= 0. (4.33)

Thus, the determination of the phase of Im for a single resolution ring (say q′) uniquely

determines the phases of Im for the same value of m for all other rings q′. Indeed,
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substitution of equation 4.33 into 4.31 (with Np omitted) leads to

Tm(q,q) =
B∗m(q,q

′)
|Im(q′)|eiφ ′(m,q′)

×

∑
M 6=0,m

BM(q,q′)
|IM(q′)|e−iφ ′(M,q′)

Bm−M(q,q′)
|Im−M(q′)|e−iφ ′(m−M,q′)

, (4.34)

for m 6= 0. The only unknowns in equation 4.34 are the (real) phases φ ′(M,q′) of the

circular-harmonic expansion coefficients, IM(q′), for M 6= 0.

Once again, the quantity on the LHS of equation 4.34 may be found from ex-

periment. In general there are µ unknown phases φ ′(M,q′) for a single resolution ring

q′, where µ is the number of values of M which give rise to distinct values of IM(q′). In

our simulation, we took circular-harmonic expansion coefficients M up to a maximum

value 38, so given the fact that I∗−M(q) = IM(q) and that M takes up only even values,

µ=19. In general, these µ real numbers may be found by optimizing the function

∑
m 6=0
|T (obs)

m −T (calc)
m |2 (4.35)

by means of a global optimization algorithm such as simulated annealing (Kirkpatrick

et al., 1983) (where T (obs)
m are the quantities found from the angular Fourier transforms

of the triple correlations C3 from the measured diffraction patterns, and T (calc)
m their

values estimated from the RHS of equation 4.34). In the present simulation, for an

individual object which gives rise to a diffraction pattern with mirror line, the origin of

the angular coordinate may be taken about this line and the coefficients IM(q) taken to

be real. Then, the only uncertainties are their signs. In this case, even an exhaustive

search through 219 sign combinations to optimize equation 4.35 took no more than a

few minutes on a laptop computer. The value of I0(q) is estimated from the same data

via 〈I(q,φ)〉φ , the angular average of the intensities of resolution rings q. Since, over

most of the range of q of the diffraction patterns here, this scales with Np the same

way as Bm(q) and Tm(q), its relative magnitude to the coefficients for m 6= 0 may be

determined correctly from the same dataset. Also, since I0(q) is real and positive, there

is no need to determine its phase (or sign).
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Figure 4.4: Part of the single particle diffraction pattern within the red resolution ring
of figure 4.2 reconstructed from the magnitudes |Im(q)| of the circular-harmonic ex-
pansion coefficients determined from the pair correlations C2 and random signs of the
coefficients.

Simulations of disordered nanorod diffraction

The importance of the determination of the phases φ ′(m,q′) (or in this case, the signs

s(m,q′)) via the triple correlations C3 and equation 4.34 may be judged by the diffrac-

tion pattern (figure 4.4) simulated via equation 4.23 with the magnitudes of Im(q) de-

termined by equation 4.32 and random signs and equation 4.23. This is seen to bear

no relation whatsoever to the simulated single particle diffraction pattern of figure 4.2.

The step of determining the signs of Im(q) via the angular triple correlations is therefore

crucial.

The result of reconstructing the single-particle diffraction pattern up to the res-

olution ring marked in figure 4.2 with the quantities Im(q) from the correlations C2 and

C3 and SAXS data of 100 multi-particle diffraction patterns like figure 4.3 is shown in

figure 4.5. A remarkable similarity to the model single-particle diffraction pattern of
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Figure 4.5: The single particle diffraction pattern within the red ring of figure 4.2 re-
constructed from the magnitudes of Im(q) determined from the mean pair correlations
C2, and signs from the mean triple correlations C3 from 100 multi-particle diffraction
patterns like that of figure 4.3.

figure 4.2 is apparent. Simulated Poisson noise produces an unimportant peak at the

origin of the correlation functions C2 and C3. For the parameters of our simulations,

interference fringes from interparticle interference are finer than a detector pixel, and

are thus irrelevant.

Reconstruction of projection image of a single nanorod

Finally, we recover (figure 4.6) from the diffraction pattern of figure 4.5 the projected

electron density of the individual particle, after∼ 15 iterations of the charge-flipping al-

gorithm (Oszlanyi and Suto, 2004). An unambiguous reconstruction of the 80 nm× 25

nm rod projection to the resolution of the reconstructed diffraction pattern (∼ π/0.45'

7 nm) is found, without any assumption about compact support of the particle. The fi-

delity of the reconstruction may be judged by the fact that In the direction of the rod

diameter (the short direction of the projected electron density, parallel to the x axis)

even a tapering off of the electron density towards the edge is seen, exactly as expected

128



Figure 4.6: Real-space image of the 80×25 nm projection of the cylindrical object
recovered to∼7 nm resolution from the reconstructed single-particle diffraction pattern
of figure 4.5 after ∼15 iterations of the charge-flipping algorithm (Oszlanyi and Suto,
2004).

for the projection of a solid cylinder.

Application to model of K-channel membrane proteins in situ

We illustrate the principle 2D CFSAXS inversion of a K-channel membrane protein,

which is a classic ion channel involved in the process of neurotransmission (Doyle

et al., 1998), under the same single-axis alignment geometry as in the nanorod case

describe previously. The K-channel protein forms a channel for the microtransport of

K ions through a cell membrane, e.g., in the process of neurotransmission. To a good

approximation, the ion channel has to remain perpendicular to the membrane for it to

perform its function. However, the different K-channel molecules in a given membrane

may have random angles of orientation about the membrane normal. The analysis

above therefore appears well suited to extracting the projected electron density of the

individual molecules from diffraction patterns formed by illuminating groups of such

randomly oriented membrane-bound molecules in situ.
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Figure 4.7 shows the central part of the diffraction pattern of a single K-channel

protein molecule in an orientation with incident x-ray beam parallel to its central pore,

as simulated with the structure data in entry 3e8f of the Protein Data Bank, using the

usual structure factor formula

F(qx,qy,ω0) = ∑
j

f j(qx,qy)ei(qxx j+qyy j) , (4.36)

where f j(qx,qy) is the form factor of an atom j whose coordinates projected onto a

plane perpendicular to the incident beam are (x j,y j), (qx,qy) are the corresponding two-

dimensional reciprocal-space coordinates, and ω0 represents the particular molecular

orientation assumed for these simulations. The projected electron density (figure 4.8)

to the resolution of the diffraction pattern was then computed from the inverse Fourier

transform of |F(qx,qy;ω0)| (calculated up to a maximum value of q =
√

q2
x +q2

y of 2.0

Å−1but multiplied by an apodizing Gaussian window function to reduce artifacts) with

phases computed by an iterative phasing algorithm (Oszlanyi and Suto, 2005, 2004).

Figure 4.9 shows the real-space image reconstructed by such an algorithm with

information only about the angular pair correlations of the diffraction pattern of figure

4.7.

We next simulated 10,000 diffraction patterns each containing 10 such ran-

domly oriented model molecules. For the parameters of our simulation, interference

fringes from interparticle interference are smaller than a detector pixel and could there-

fore be neglected. Therefore, although the simulations that follow assume a different

set of random particle orientations per pattern, they make the assumption that it is not

necessary to simulate random interparticle vectors, and that each pattern may be simu-

lated by

I(qx,qy) = ∑
k
|F(qx,qy;ωk)|2 , (4.37)

where, as before, ωk is a random molecular orientation. A typical pattern from 10 such

randomly positioned K-channel proteins, randomly oriented about the z axis (normal to
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F!qx,qy,!0" = #
j

f j!qx,qy"ei!qxxj+qyyj", !13"

where f j!qx ,qy" is the form factor of an atom j whose coor-
dinates projected onto a plane perpendicular to the incident
beam are !xj ,yj", !qx ,qy" are the corresponding two-
dimensional reciprocal-space coordinates, and !0 represents
the particular molecular orientation assumed for these simu-
lations. The projected electron density !Fig. 2" to the reso-
lution of the diffraction pattern was then computed from the
inverse Fourier transform of $F!qx ,qy ;!0"$ !calculated up to
a maximum value of q=%qx

2+qy
2 of 2.0 Å−1 but multiplied

by an apodizing Gaussian window function to reduce arti-
facts" with phases computed by an iterative phasing
algorithm.12,16

Figure 3 shows the real-space image reconstructed by
such an algorithm with information only about the angular
pair correlations !4" of the diffraction pattern of Fig. 1.

We next simulated 10000 diffraction patterns each con-
taining 10 such randomly oriented model molecules. The
theory of Sec. II shows that, if a sufficient number of DPs are
averaged over in Eq. !4", the result of Eq. !7" is obtained for
all random positions and orientations of the individual par-
ticles. For the parameters of our simulation, interference
fringes from interparticle interference are smaller than a de-
tector pixel and could therefore be neglected. Therefore, al-
though the simulations that follow assume a different set of
random particle orientations per DP, they make the assump-
tion that it is not necessary to simulate random interparticle
vectors, and that each DP may be simulated by

I!qx,qy" = #
k

$Fk!qx,qy ;!k"$2, !14"

where, as before, !k is a random molecular orientation. A
typical pattern from 10 such randomly positioned K-channel
proteins, randomly oriented about the z axis &normal to the
!x ,y" plane' is shown in Fig. 4.

We seek to demonstrate the recovery of the model pro-
jected electron density of a single protein from a large num-
ber of diffraction patterns of the form of Fig. 4, each from
different random orientations of 10 molecules. We do this in
two steps: !1" recovery of a single-particle diffraction pattern
from these multiparticle diffraction patterns by the methods

FIG. 1. Amplitudes of a simulated diffraction pattern from x
rays incident down the central pore of a single K-channel protein
molecule up to about 6 Å resolution. Since the amplitudes of the
central pixels of this diffraction pattern and those of Figs. 4–6 are
overwhelmingly dominant, they have been removed for easier vis-
ibility of higher-resolution amplitudes. The real-space images of
Figs. 2 and 3 were calculated from these !phased" amplitudes !with
central pixels included". All figures in this paper are displayed by
means of a linear gray scale with darker shading representing higher
values.

FIG. 2. Electron density of the K-channel protein projected in
the direction parallel to its central pore as calculated from a Fourier
transform of the scattering amplitudes of Fig. 1, with phases from
an iterative phasing algorithm.

FIG. 3. Same as Fig. 2, except that the projected electron den-
sity is calculated from a diffraction pattern recovered from the an-
gular correlations from Fig. 1 and iterative phasing.

SALDIN et al. PHYSICAL REVIEW B 81, 174105 !2010"

174105-4

Figure 4.7: Amplitudes of a simulated diffraction pattern from X-rays incident down
the central pore of a single K-channel protein molecule up to about 6 Å resolution.
Since the amplitudes of the central pixels of this diffraction pattern and those of figures
4.10–4.12 are overwhelmingly dominant, they have been removed for easier visibility
of higher-resolution amplitudes. The real-space images of figures 4.8 and 4.9 were cal-
culated from these (phased) amplitudes (with central pixels included). All figures in
this section are displayed by means of a linear gray scale with darker shading repre-
senting higher values.

the (x,y) plane) is shown in figure 4.10.

We seek to demonstrate the recovery of the model projected electron density

of a single protein from a large number of diffraction patterns of the form of figure

4.10, each from different random orientations of 10 molecules. As before, we do this

in two steps: (1) recovery of a single-particle diffraction pattern from these multiparti-

cle diffraction patterns (by the method described in the following section) and (2) the

recovery of the projected electron density from this by a conventional iterative phasing

algorithm.
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F!qx,qy,!0" = #
j

f j!qx,qy"ei!qxxj+qyyj", !13"

where f j!qx ,qy" is the form factor of an atom j whose coor-
dinates projected onto a plane perpendicular to the incident
beam are !xj ,yj", !qx ,qy" are the corresponding two-
dimensional reciprocal-space coordinates, and !0 represents
the particular molecular orientation assumed for these simu-
lations. The projected electron density !Fig. 2" to the reso-
lution of the diffraction pattern was then computed from the
inverse Fourier transform of $F!qx ,qy ;!0"$ !calculated up to
a maximum value of q=%qx

2+qy
2 of 2.0 Å−1 but multiplied

by an apodizing Gaussian window function to reduce arti-
facts" with phases computed by an iterative phasing
algorithm.12,16

Figure 3 shows the real-space image reconstructed by
such an algorithm with information only about the angular
pair correlations !4" of the diffraction pattern of Fig. 1.

We next simulated 10000 diffraction patterns each con-
taining 10 such randomly oriented model molecules. The
theory of Sec. II shows that, if a sufficient number of DPs are
averaged over in Eq. !4", the result of Eq. !7" is obtained for
all random positions and orientations of the individual par-
ticles. For the parameters of our simulation, interference
fringes from interparticle interference are smaller than a de-
tector pixel and could therefore be neglected. Therefore, al-
though the simulations that follow assume a different set of
random particle orientations per DP, they make the assump-
tion that it is not necessary to simulate random interparticle
vectors, and that each DP may be simulated by

I!qx,qy" = #
k

$Fk!qx,qy ;!k"$2, !14"

where, as before, !k is a random molecular orientation. A
typical pattern from 10 such randomly positioned K-channel
proteins, randomly oriented about the z axis &normal to the
!x ,y" plane' is shown in Fig. 4.

We seek to demonstrate the recovery of the model pro-
jected electron density of a single protein from a large num-
ber of diffraction patterns of the form of Fig. 4, each from
different random orientations of 10 molecules. We do this in
two steps: !1" recovery of a single-particle diffraction pattern
from these multiparticle diffraction patterns by the methods

FIG. 1. Amplitudes of a simulated diffraction pattern from x
rays incident down the central pore of a single K-channel protein
molecule up to about 6 Å resolution. Since the amplitudes of the
central pixels of this diffraction pattern and those of Figs. 4–6 are
overwhelmingly dominant, they have been removed for easier vis-
ibility of higher-resolution amplitudes. The real-space images of
Figs. 2 and 3 were calculated from these !phased" amplitudes !with
central pixels included". All figures in this paper are displayed by
means of a linear gray scale with darker shading representing higher
values.

FIG. 2. Electron density of the K-channel protein projected in
the direction parallel to its central pore as calculated from a Fourier
transform of the scattering amplitudes of Fig. 1, with phases from
an iterative phasing algorithm.

FIG. 3. Same as Fig. 2, except that the projected electron den-
sity is calculated from a diffraction pattern recovered from the an-
gular correlations from Fig. 1 and iterative phasing.
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Figure 4.8: Electron density of the K-channel protein projected in the direction parallel
to its central pore as calculated from a Fourier transform of the scattering amplitudes
of figure 4.7, with phases from an iterative phasing algorithm.

F!qx,qy,!0" = #
j

f j!qx,qy"ei!qxxj+qyyj", !13"

where f j!qx ,qy" is the form factor of an atom j whose coor-
dinates projected onto a plane perpendicular to the incident
beam are !xj ,yj", !qx ,qy" are the corresponding two-
dimensional reciprocal-space coordinates, and !0 represents
the particular molecular orientation assumed for these simu-
lations. The projected electron density !Fig. 2" to the reso-
lution of the diffraction pattern was then computed from the
inverse Fourier transform of $F!qx ,qy ;!0"$ !calculated up to
a maximum value of q=%qx

2+qy
2 of 2.0 Å−1 but multiplied

by an apodizing Gaussian window function to reduce arti-
facts" with phases computed by an iterative phasing
algorithm.12,16

Figure 3 shows the real-space image reconstructed by
such an algorithm with information only about the angular
pair correlations !4" of the diffraction pattern of Fig. 1.

We next simulated 10000 diffraction patterns each con-
taining 10 such randomly oriented model molecules. The
theory of Sec. II shows that, if a sufficient number of DPs are
averaged over in Eq. !4", the result of Eq. !7" is obtained for
all random positions and orientations of the individual par-
ticles. For the parameters of our simulation, interference
fringes from interparticle interference are smaller than a de-
tector pixel and could therefore be neglected. Therefore, al-
though the simulations that follow assume a different set of
random particle orientations per DP, they make the assump-
tion that it is not necessary to simulate random interparticle
vectors, and that each DP may be simulated by

I!qx,qy" = #
k

$Fk!qx,qy ;!k"$2, !14"

where, as before, !k is a random molecular orientation. A
typical pattern from 10 such randomly positioned K-channel
proteins, randomly oriented about the z axis &normal to the
!x ,y" plane' is shown in Fig. 4.

We seek to demonstrate the recovery of the model pro-
jected electron density of a single protein from a large num-
ber of diffraction patterns of the form of Fig. 4, each from
different random orientations of 10 molecules. We do this in
two steps: !1" recovery of a single-particle diffraction pattern
from these multiparticle diffraction patterns by the methods

FIG. 1. Amplitudes of a simulated diffraction pattern from x
rays incident down the central pore of a single K-channel protein
molecule up to about 6 Å resolution. Since the amplitudes of the
central pixels of this diffraction pattern and those of Figs. 4–6 are
overwhelmingly dominant, they have been removed for easier vis-
ibility of higher-resolution amplitudes. The real-space images of
Figs. 2 and 3 were calculated from these !phased" amplitudes !with
central pixels included". All figures in this paper are displayed by
means of a linear gray scale with darker shading representing higher
values.

FIG. 2. Electron density of the K-channel protein projected in
the direction parallel to its central pore as calculated from a Fourier
transform of the scattering amplitudes of Fig. 1, with phases from
an iterative phasing algorithm.

FIG. 3. Same as Fig. 2, except that the projected electron den-
sity is calculated from a diffraction pattern recovered from the an-
gular correlations from Fig. 1 and iterative phasing.
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Figure 4.9: Same as figure 4.8, except that the projected electron density is calculated
from a diffraction pattern recovered from the angular correlations from figure 4.7 and
iterative phasing.
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described in Secs. II and III above and !2" the recovery of the
projected electron density from this by a conventional itera-
tive phasing algorithm.

The recovered single-particle diffraction pattern from the
average of the angular correlations of 10000 such diffraction
patterns is shown in Fig. 5. Simulated Poisson noise pro-
duces an unimportant peak at the origin of the correlation
functions C2.

V. FROM RECONSTRUCTED DIFFRACTION PATTERN
TO PROJECTED ELECTRON DENSITY

Finally, we recover !Fig. 6" from the reconstructed dif-
fraction pattern of Fig. 5 the projected electron density of an
individual protein molecule after #100 iterations of the

charge-flipping12 and phase-shifting algorithms,16 which do
not impose a fixed region of compact support.17

VI. DISCUSSION

The present paper suggests an alternative route to molecu-
lar structure determination than diffraction from either crys-
tals or single molecules. For a given probe size at the sample,
by simultaneously scattering off several copies of the mol-
ecule, the number of scattered photons per detector pixel is
increased substantially compared to single-molecule diffrac-
tion experiments. Yet, at the same time, the relaxation of the
condition of molecular alignment permits application to mol-
ecules, such as many membrane proteins, which do not crys-
tallize.

We demonstrate that averaging the angular correlation
functions of many diffraction patterns each from many ran-
domly oriented copies of the molecule allows the reconstruc-
tion of a diffraction pattern of a single molecule of sufficient
quality to allow an iterative phasing algorithm to reconstruct
an accurate real-space image of the molecule.

The Fourier transform of the autocorrelation functions of
each resolution ring yields the magnitudes $IM!q"$ of the cir-
cular harmonic expansion coefficients of the intensities. The
earlier method of finding the phases of these coefficients re-
lied on the evaluations also of so-called angular triple corre-
lation functions.4,11 It was found11 that the construction of
converged triple correlation functions required the averaging
of data from many more measured diffraction patterns than
required to construct converged angular pair correlation
functions. The algorithm presented here needs the experi-
mental data of only the angular pair correlations, as the
phases of these coefficients are found directly from their
magnitudes as in algorithms for the usual phase problem in
the for the recovery of an object’s electron density from the
magnitudes of its diffracted intensities. The liberation from
the need to measure a much larger number of diffraction

FIG. 4. Typical simulated diffraction pattern from 10 randomly
positioned and oriented model K-channel proteins.

FIG. 5. A single particle diffraction pattern reconstructed from
the average of the angular correlations of intensities of 10000 dif-
fraction patterns of the form of Fig. 4.

FIG. 6. Projected electron density of a single molecule of the
K-channel membrane protein reconstructed from the diffraction pat-
tern of Fig. 5 by an iterative phasing algorithm.
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Figure 4.10: Typical simulated diffraction pattern from 10 randomly positioned and
oriented model K-channel proteins.

Phasing the circular-harmonic expansion coefficients by charge flipping

In section 4.4, we demonstrated an approach for reconstructing a diffraction pattern

with a mirror line from CFSAXS data, when the Im(q) coefficients become real, so their

only ambiguity is one of sign. In that case, the correct combination of signs may be

found by an exhaustive search through all possible sign combinations. For diffraction

patterns without such a mirror line, however, it is necessary to find a set of real numbers

between 0 and 2π representing the unknown phases. In principle, this may be solved by

a global optimization routine such as simulated annealing but we found such a process

to be very time consuming and not so reliable. We suggest here a distinct approach

to finding these phases in an analogy with the iterative phasing algorithms referred to

above.

The phase recovery process begins by choosing a reference resolution ring,

specified by, say q′. We defined the reference ring to be a central one, half way be-
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tween the outermost and innermost. The phases of the Im(q′)s from equation 4.23 are

found by first associating random phases with these coefficients. Equation 4.23 may

then be used to find a first estimate of the intensities of the resolution ring q′ of the

diffraction pattern. The resulting intensities I(q′,φ) are then sorted by magnitude and

the signs (they are real numbers by construction) of a certain fraction, say 5%, of lowest

intensity are flipped, according to the prescription of (Oszlanyi and Suto, 2004). An in-

verse Fourier transform then yields new complex values of the Im(q′) coefficients. The

phases of these calculated coefficients are then associated with the amplitudes |Im(q′)|

found from the Fourier transforms of the measured angular correlations via equation

4.32. Another forward FT is then performed to find an improved estimate of I(q′,φ)

and the entire process iterated to convergence.

Once the phases of the Im(q′) coefficients have been found by this method, in

principle, the phases of the Im(q) coefficients of all other resolution rings q follow from

equation 4.30. In practice this may be somewhat unreliable since the phases found by

the above procedure for the reference resolution ring may not be perfect. They may be

least reliable for values of m for which |Im(q′)| is small. Therefore, we use this method

to fix the phases of Im(q′)s for the nearest-neighbor resolution rings q, where |Im(q′)|

is not too small. Nevertheless, this is a very important step: without it the correct

registries of the intensity distributions I(q,φ) on different resolution rings could not be

found.

Having thus estimated both the amplitudes and phases of the Im(q) coefficients

for these values of m (let us denote them by m′) for the neighboring resolution rings q,

the phases of the remaining values of m 6= m′ can be found by repeating the above the

iterative phasing algorithm to those resolutions rings q in turn, fixing both the ampli-

tudes and phases for m = m′, and only the amplitudes for m 6= m′. Using this method

of phasing neighboring resolution rings, the phasing process is propagated inwards and

outwards to the neighboring resolution rings in turn, using its phased nearest-neighbor
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as reference. Thus the reference phases in each ring are determined by the phases found

for its neighboring ring by a combination of equation 4.30 and the flipping algorithm.

The recovered single-particle diffraction pattern from the average of the angular

correlations of 10,000 such diffraction patterns is shown in figure 4.11. Simulated

Poisson noise produces an unimportant peak at the origin of the correlation functions

C2.

described in Secs. II and III above and !2" the recovery of the
projected electron density from this by a conventional itera-
tive phasing algorithm.

The recovered single-particle diffraction pattern from the
average of the angular correlations of 10000 such diffraction
patterns is shown in Fig. 5. Simulated Poisson noise pro-
duces an unimportant peak at the origin of the correlation
functions C2.

V. FROM RECONSTRUCTED DIFFRACTION PATTERN
TO PROJECTED ELECTRON DENSITY

Finally, we recover !Fig. 6" from the reconstructed dif-
fraction pattern of Fig. 5 the projected electron density of an
individual protein molecule after #100 iterations of the

charge-flipping12 and phase-shifting algorithms,16 which do
not impose a fixed region of compact support.17

VI. DISCUSSION

The present paper suggests an alternative route to molecu-
lar structure determination than diffraction from either crys-
tals or single molecules. For a given probe size at the sample,
by simultaneously scattering off several copies of the mol-
ecule, the number of scattered photons per detector pixel is
increased substantially compared to single-molecule diffrac-
tion experiments. Yet, at the same time, the relaxation of the
condition of molecular alignment permits application to mol-
ecules, such as many membrane proteins, which do not crys-
tallize.

We demonstrate that averaging the angular correlation
functions of many diffraction patterns each from many ran-
domly oriented copies of the molecule allows the reconstruc-
tion of a diffraction pattern of a single molecule of sufficient
quality to allow an iterative phasing algorithm to reconstruct
an accurate real-space image of the molecule.

The Fourier transform of the autocorrelation functions of
each resolution ring yields the magnitudes $IM!q"$ of the cir-
cular harmonic expansion coefficients of the intensities. The
earlier method of finding the phases of these coefficients re-
lied on the evaluations also of so-called angular triple corre-
lation functions.4,11 It was found11 that the construction of
converged triple correlation functions required the averaging
of data from many more measured diffraction patterns than
required to construct converged angular pair correlation
functions. The algorithm presented here needs the experi-
mental data of only the angular pair correlations, as the
phases of these coefficients are found directly from their
magnitudes as in algorithms for the usual phase problem in
the for the recovery of an object’s electron density from the
magnitudes of its diffracted intensities. The liberation from
the need to measure a much larger number of diffraction

FIG. 4. Typical simulated diffraction pattern from 10 randomly
positioned and oriented model K-channel proteins.

FIG. 5. A single particle diffraction pattern reconstructed from
the average of the angular correlations of intensities of 10000 dif-
fraction patterns of the form of Fig. 4.

FIG. 6. Projected electron density of a single molecule of the
K-channel membrane protein reconstructed from the diffraction pat-
tern of Fig. 5 by an iterative phasing algorithm.
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Figure 4.11: A single particle diffraction pattern reconstructed from the average of the
angular correlations of intensities of 10,000 diffraction patterns of the form of figure
4.10.

Finally, we recover (figure 4.12) from the reconstructed diffraction pattern of

figure 4.11 the projected electron density of an individual protein molecule after ∼100

iterations of the charge-flipping (Oszlanyi and Suto, 2004) and phase-shifting algo-

rithms (Oszlanyi and Suto, 2005), which do not impose a fixed region of compact sup-

port.
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described in Secs. II and III above and !2" the recovery of the
projected electron density from this by a conventional itera-
tive phasing algorithm.

The recovered single-particle diffraction pattern from the
average of the angular correlations of 10000 such diffraction
patterns is shown in Fig. 5. Simulated Poisson noise pro-
duces an unimportant peak at the origin of the correlation
functions C2.

V. FROM RECONSTRUCTED DIFFRACTION PATTERN
TO PROJECTED ELECTRON DENSITY

Finally, we recover !Fig. 6" from the reconstructed dif-
fraction pattern of Fig. 5 the projected electron density of an
individual protein molecule after #100 iterations of the

charge-flipping12 and phase-shifting algorithms,16 which do
not impose a fixed region of compact support.17

VI. DISCUSSION

The present paper suggests an alternative route to molecu-
lar structure determination than diffraction from either crys-
tals or single molecules. For a given probe size at the sample,
by simultaneously scattering off several copies of the mol-
ecule, the number of scattered photons per detector pixel is
increased substantially compared to single-molecule diffrac-
tion experiments. Yet, at the same time, the relaxation of the
condition of molecular alignment permits application to mol-
ecules, such as many membrane proteins, which do not crys-
tallize.

We demonstrate that averaging the angular correlation
functions of many diffraction patterns each from many ran-
domly oriented copies of the molecule allows the reconstruc-
tion of a diffraction pattern of a single molecule of sufficient
quality to allow an iterative phasing algorithm to reconstruct
an accurate real-space image of the molecule.

The Fourier transform of the autocorrelation functions of
each resolution ring yields the magnitudes $IM!q"$ of the cir-
cular harmonic expansion coefficients of the intensities. The
earlier method of finding the phases of these coefficients re-
lied on the evaluations also of so-called angular triple corre-
lation functions.4,11 It was found11 that the construction of
converged triple correlation functions required the averaging
of data from many more measured diffraction patterns than
required to construct converged angular pair correlation
functions. The algorithm presented here needs the experi-
mental data of only the angular pair correlations, as the
phases of these coefficients are found directly from their
magnitudes as in algorithms for the usual phase problem in
the for the recovery of an object’s electron density from the
magnitudes of its diffracted intensities. The liberation from
the need to measure a much larger number of diffraction

FIG. 4. Typical simulated diffraction pattern from 10 randomly
positioned and oriented model K-channel proteins.

FIG. 5. A single particle diffraction pattern reconstructed from
the average of the angular correlations of intensities of 10000 dif-
fraction patterns of the form of Fig. 4.

FIG. 6. Projected electron density of a single molecule of the
K-channel membrane protein reconstructed from the diffraction pat-
tern of Fig. 5 by an iterative phasing algorithm.
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Figure 4.12: Projected electron density of a single molecule of the K-channel mem-
brane protein reconstructed from the diffraction pattern of figure 4.11 by an iterative
phasing algorithm.

Conclusions from simulations

Our simualtions demonstrate that averaging the angular correlation functions of many

diffraction patterns, each from many randomly-oriented copies of the molecule, allows

the reconstruction of a diffraction pattern of a single molecule of sufficient quality to

allow an iterative phasing algorithm to reconstruct an accurate real-space image of the

molecule (at least for the simple case of a particle oriented about an axis– however,

it can be shown that the 3D reconstruction of a particle with icosahedral symmetry is

essentially the same problem mathematically (Saldin et al., 2011b)).

The Fourier transform of the autocorrelation functions of each resolution ring

yields the magnitudes |Im(q)| of the circular harmonic expansion coefficients of the in-

tensities. The method of finding the phases of these coefficients presented in section

4.4 relied on the evaluations also of so-called angular triple correlation functions. It

was found that the construction of converged triple correlation functions required the
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averaging of data from many more measured diffraction patterns than required to con-

struct converged angular pair correlation functions. The algorithm presented in section

4.4 needs the experimental data of only the angular pair correlations, as the phases of

these coefficients are found directly from their magnitudes as in algorithms for the usual

phase problem in the for the recovery of an objects electron density from the magni-

tudes of its diffracted intensities. The liberation from the need to measure a much larger

number of diffraction patterns to obtain converged triple correlations makes for a much

less costly experiment due to need for less beamtime. The computational requirements

for finding the phases of Im(q) by an iterative phasing algorithm are also much reduced

compared to the use of, e.g., a simulated annealing algorithm to optimize the agreement

between experimental and theoretical triple correlations, as previously.

4.5 Experimental demonstration of Ab-Initio imaging through 2D CFSAXS
Experiment details

As a first proof-of-principle experiment to demonstrate that ab-initio imagine is possi-

ble through the CFSAXS method, we collected soft-Xray transmission diffraction pat-

terns at the Advanced Light Source (ALS) from gold nanorods (25 nm x 80 nm) lying

on their side on a transparent silicon nitride membrane. Figure 4.13 shows an electron

microscope image of about 10 gold nanorods of∼ 90 nm× 25 nm lying in random ori-

entations about the surface normal of a transparent SiN substrate. The nanorods were

deposited using electrospray methods (Bogan et al., 2007). Using 750 eV highly coher-

ent X-rays (1.65 nm wavelength), hundreds of diffraction patterns were collected from

different 15-micron diameter regions, each containing about 10 such nanorods. During

these many hours of automated data recording (with computer-controlled sample stage

motions for each new region) the intensity of the X-ray source steadily decreased. A

typical diffraction pattern from a region of the sample containing about 10 nanorods is

shown in figure 4.14.
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500 nm

Figure 4.13: Electron microscope image of a typical sample from which soft x-ray
diffraction patterns are measured. Each sample consists of a set of about 10 gold
nanorods of approximately 90 nm × 25 nm projection in random orientations about
the normal to a transparent SiN substrate. There is a small admixture of ∼ 25 nm
diameter gold nanospheres.

Data processing

Angular correlation functions C2(q,q′;∆φ) are formed from each of these multiparticle

diffraction patterns, following the prescription (Saldin et al., 2010b):

C2(q,q′;∆φ) =

〈
1

Nφ
∑

j
Ĩ(q,φ j)Ĩ(q′,φ j +∆φ)

〉
DP

(4.38)

where Nφ is the number of azimuthal angles φ j at which the intensities are measured,

and the angular brackets denote an average over diffraction patterns (DP),

Ĩ(q,φ j) = I(q,φ j)− ISAXS(q) (4.39)

where ISAXS(q) is the average intensity over a resolution ring q, and

Ĩ(q′,φ j +∆φ) = I(q′,φ j +∆φ)− ISAXS(q′). (4.40)
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Figure 4.14: Measured soft x-ray diffraction pattern from about 10 randomly oriented
nanorods on a SiN substrate as in the electron microscope image of figure 4.13.

In order to polar-bin the intensities which were measured on the cartesian pix-

elmap of the CCD, a simple average of intensities which fell within each predefined

polar bin was taken (known bad pixels were not counted in the average). An oversam-

pling ratio of approximately 4 was taken upon defining the polar bin spacing, which

was estimated from the geometry of the CCD and the known size of the nanorods. The

angular spacing was chosen based on the outermost intensity ring, so that inner rings

were significantly oversampled. Since the beamstop casts a shadow on part of the CCD,

Friedel symmetry was assumed and missing intensities were simply populated by their

Friedel mates (for the cases where a Friedel mate existed; otherwise the pixel was sim-

ple masked out and ignored in further processing steps). The small background contri-

bution form the SiN support was measured, and subtracted from each frame. However,

due to the steady decrease in the incident beam intensity (which was not monitored),

scaling of the background had to be estimated from a linear fit to the decay in total

scattering in the diffraction patterns as a function of time (the total intensity decreased
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by approximately a factor of three during the time in which data was collected).

We evaluated (Saldin et al., 2010b) the angular correlations C2(q,q,∆φ) from

121 measured diffraction patterns of the form of figure 4.14, and computed their aver-

age according to equation 4.38. A larger number of patterns were collected, but many

of them showed signs of strong scatter from the edges of the SiN support frame, which

were discarded. A small number of patterns also showed clear signs of aggregation

(indicated by high diffracted intensity and broad fringes) which were also discarded,

since these frames likely break our assumptions about orientational independence of

each particle.

Resulting polar-binned diffraction patterns are shown in figures 4.15 and 4.16

for the first and last patterns (upper panels). On the lower panels of figures 4.15 and

4.16, a running average ring autocorrelation function is shown (dashed line), along

with the simulated (vie equation 4.22) single-nanorod autocorrelation function (solid

line). From these two figures, it is clear that the angular correlations in the first diffrac-

tion pattern do not approximate well to the simulated correlation function; however,

upon taking the average correlation function over 121 patterns, reasonable agreement

between simulated and experimental correlation functions is apparent.

Reconstruction of the single-particle diffraction pattern

As in section 4.4, the function

Bm(q,q′) =
1

Nφ
∑
∆φ

C2(q,q′,∆φ)e−im∆φ

= NpIm(q)I∗m(q
′) (4.41)

was extracted from the experimentally-measured C2 function, where Np is the number

of scatterers contributing to the measured diffraction pattern, and Im(q) are again the

circular harmonic expansion coefficients of a single-particle diffraction pattern

I(q,φ) = ∑
m

Im(q)exp(imφ) (4.42)
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Figure 8. Upper panel: diffracted intensity from a single x-ray diffraction
pattern from a group of rods in random orientations. The ring L of figure 7
is represented by the red horizontal line in this plot, in which the diffraction
pattern intensities are plotted on a logarithmic gray scale, with brighter regions
representing higher intensities. The dark ‘finger’ around φ = 180◦ is a projection
of the beamstop holder (see figure 7). Lower panel: RAC function (dotted curve)
from the experimental diffraction pattern of the upper panel and from a simulated
diffraction pattern of a single rod (more continuous curve).

diffraction patterns of such molecules in solution, provided that scattering by solution
atoms may be minimized or isolated.

3. The results are relevant also to the kind of ‘diffract and destroy’ approach to biomolecular
structure determination [15] proposed for the x-ray free electron laser (XFEL), where
measurements of diffraction from single molecules have been proposed. In this case,
the SAXS background, which arises from uncorrelated scattering by different particles,
is entirely absent, as is scattering from solution atoms [8]. Alternatively, the ability to
extract meaningful information from multi-particle diffraction patterns may help overcome
intensity issues from single-particle scattering.

4. The method is not restricted to diffraction patterns from scattering of externally incident
radiation. A diffraction pattern may be measured also from x-rays arising from the
fluorescence of a specific atom buried deeply within a large molecule [16] (e.g. the Fe
atom in hemoglobin). Such a pattern would be most sensitive to intramolecular scattering,

New Journal of Physics 12 (2010) 000000 (http://www.njp.org/)

Figure 4.15: Upper panel: diffracted intensity from a single x-ray diffraction pattern
from a group of rods in random orientations, plotted on a logarithmic gray scale, with
brighter regions representing higher intensities. The dark region around φ = 180◦ is
a projection of the beamstop holder (see figure 4.14). Lower panel: intensity autocor-
relation function (dotted curve) from the experimental diffraction pattern of the upper
panel (indicated by the red line) and from a simulated diffraction pattern of a single
nanorod (solid line).

where (q,φ) are the polar coordinate representation of the 2D scattering vector q,

and where the condition Im(q) = I∗m(q) ensures the reality of the diffraction intensities

I(q,φ). The magnitudes of the circular-harmomic expansion coefficients are again eas-

ily recovered from the angular Fourier transforms (equation 4.41) since this equation

implies that

|Im(q)|=
1

Np

√
Bm(q,q). (4.43)

In general (Saldin et al., 2010b,a; Poon and Saldin, 2011) it is necessary to re-

cover also the phases of these complex coefficients. However for the diffraction pattern
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Figure 9. Upper panel: intensity of diffraction pattern no. 121, plotted as in
figure 8. Lower panel: average RAC function from the data of many such
diffraction patterns (dotted line). This is seen to approximate well to the
corresponding calculated RAC function for a single rod.

less to that from its surroundings. This may allow the reconstruction of the 3D diffraction
volume of an individual molecule from that of many randomly oriented ones and hence
of the molecular structure, without too much interference from solvent (or membrane)
scattering.

Advances in technology, such as fast column read-out area detectors, brighter sources,
shorter pulses and zone-plate focusing, have greatly improved the experimental conditions for
such experiments. When coupled with new theoretical advances, such as those reported here,
entirely new vistas are opened up for the structure determination of microscopic particles.
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Figure 4.16: Upper panel: intensity of diffraction pattern number 121, plotted as in
figure 4.15. Lower panel: average angular autocorrelation function from the data of
many such diffraction patterns (dotted line). This is seen to approximate well to the
corresponding calculated angular autocorrelation function for a single rod.

of an object with a long thin rectangular projection, we argue that these phases are most

likely to be zero. To see why this is so, imagine such an object oriented with its long

axis along the y direction of a 2D Cartesian coordinate in the plane parallel to the par-

ticle cylinder axes. The Fourier transform of a rectangular projection of the electron

density of such an object has the appearance of two mutually perpendicular sets of sinc

functions, with the finer fringes parallel to the short axis of the rod projection (the qx

axis) and the broader fringes parallel to the qy axis. Thus, the brightest fringe on the

diffraction pattern will be along the qx axis, i.e. the axis along which φ = 0 and π
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radians. Also, since qx is an axis of symmetry, I(q,φ) = I(q,−φ). Consequently,

Im(q) =
∫

I(q,φ)exp(−imφ)dφ

=
∫

I(q,φ)cos(mφ)dφ (4.44)

and all the Im(q) coefficients are real. In addition, since for this particular diffraction

pattern, the intensities near φ = 0 and π will be dominant, the positive values of the

integrand near φ = 0 and π will be dominant (Friedel’s Law implies that the Im(q)

coefficients are non zero only for even m (Saldin et al., 2010b), and thus cos(mπ) will

be positive). Thus, the angular integral (equation 4.44) is overwhelmingly likely to

be positive. This means that if the Im(q)’s are treated as complex coefficients, they

will be highly likely to have zero phases. This conclusion was confirmed by explicit

calculations of the Im(q) coefficients of a model rod oriented along the y axis using an

analytical expression (Saldin et al., 2010b) for the diffracted intensities. Thus, in the

case of a rod-like object, its diffraction pattern may be reconstructed from equation 4.42

once the magnitudes |Im(q)| are found from equation 4.43 since all their phases may be

taken as zero. This is quite analogous to the case of conventional crystallography and a

centrosymmetric structure with a heavy atom at the center of symmetry (Bragg, 1939)

which may be considered to give rise to scattered amplitudes with zero phases.

The single-particle diffraction pattern reconstructed from these real coefficients

using equation 4.42 is shown in figure 4.17. The light circle in the center represents the

region of the beam stop where no intensities were measured (and hence no correlations

computed).

Due to the possibility of scattering contributions from objects external to the

nanorod, we included only circular harmonic expansion coefficients Im(q) that could

have come from scattering by an object conservatively estimated to have a radius R∼80

nm, namely those for which m < qR, approximately (Pendry, 1974). Figure 4.18 shows

the same diffraction pattern after 100 iterations of the phasing algorithm. The quality
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0.2 nm
−1

Figure 4.17: Single-particle diffraction pattern reconstructed from the angular correla-
tions of 121 measured multiparticle diffraction patterns of the form of figure 4.14. The
maximum value of the momentum transfer vector in this pattern was determined by
the largest resolution ring of the measured multiparticle diffraction pattern from which
autocorrelations could be reliably computed. This corresponded to q=0.471 nm−1.

of the reconstruction is judged by smoothness of the interpolation of the intensities in

the central beam stop. Figure 4.19 shows an image of the projected structure of a single

nanorod reconstructed simultaneously (this is the real-space image corresponding to

the reconstructed single-particle diffraction pattern in figure 4.18. Due to the random-

phase starting point, no two reconstructed images are identical. However essentially the

same reconstructed image of the gold rod results when there is smooth interpolation of

the missing intensities in the beam stop (apart from the random position within the

image frame of the reconstructed projection of the gold rod. The imperfection of the

reconstructed image is probably due to the admixture of some gold nanospheres, as

apparent from the TEM image of figure 4.13.)
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0.2 nm
−1

Figure 4.18: Reconstructed single-particle diffraction pattern after 100 iterations of the
phasing algorithm. This is essentially the same as that of figure 4.17, except that it
contains estimations of the missing intensities in the beam stop.

Reconstruction of the projection image of a single nanorod

The final step in the single-particle structure determination is the reconstruction of a

single-particle real-space image from this pattern. We did this with a charge-flipping

(Oszlanyi and Suto, 2004) and phase-shifting (Oszlanyi and Suto, 2005) iterative phas-

ing algorithm. According to the prescription of Oszlànyi and Süto, we began with

diffraction amplitudes whose magnitudes |A( q)| are taken to be
√

I( q), the intensi-

ties from figure 4.17, and random phases. The 2D Fourier transform of this yielded an

initial estimate of the electron density. The charge-flipping prescription (Oszlanyi and

Suto, 2004) then modifies this electron density by flipping (i.e. changing the signs of)

electron density values below ∼ 4% of the maximimum. An inverse Fourier transform

of this modified electron density then gives a new estimate of the phases associated

with the diffraction amplitudes A( q). The magnitudes |A( q)| are replaced by their

known values from figure 4.17, but are unaltered in the region of the beam stop where
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Figure 4.19: Projection of the electron density of a single∼ 90 nm× 25 nm rod recon-
structed from the diffraction pattern of figure 4.17 after 100 iterations of the reciprocal-
to-real-space phasing algorithm. The nominal resolution corresponding to 2π divided
by the maximum magnitude of the scattering vector q in figure 4.17 is about 13 nm.
The bulge near the center is probably a superposition of an image of a nanosphere, also
found in the experimental samples (see figure 4.13). A scale bar for the reconstructed
electron density is shown to the right of the figure.

the magnitudes are assumed unknown (this allows the unknown magnitudes to be es-

timated from constraints in both real and reciprocal space). In addition, the phases of

the so-called “weak reflections” (i.e. those below about 4% of the maximum intensity)

are shifted by π/2 radians (Oszlanyi and Suto, 2005), and the whole process iterated to

convergence.

By allowing the diffraction intensities in the region of the beam stop in figure

4.17 to “float” during the course of the iterations, they are estimated at the same time as

an image of the object giving rise to the diffraction pattern is estimated. The continuity

of the interpolated intensities with those directly reconstructed from the angular corre-

lations was taken to be an indication of the correctness of any particular reconstruction,

as in figure 4.18. A typical real-space image reconstructed after 100 iterations of the

phasing algorithm is shown in figure 4.19.
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Conclusions from experiments

In conclusion, we have demonstrated the first experimental ab-initio image reconstruc-

tion of a single particle from the diffraction pattern of an ensemble of randomly oriented

copies from its angular correlations. The results show that effects of interparticle in-

terference from the partially coherent incident radiation are essentially negated if the

particles are also in random positions. They also show the robustness of the method to

some variations of particle size and shape. These results were also confirmed by sim-

ulations with radiation of a 2 micron coherence length expected from radiation from

the Advanced Light Source at Berkeley, and a Gaussian distribution of particle sizes

with a standard deviation of 10%. It should be noted that the sizes of the nanopar-

ticles used in our experiment are approximately that of a typical virus, suggesting a

possible application to structure determination of virus particles supported on a similar

substrate.

4.6 Signal, noise and resolution in CFSAXS
Overview

Despite the passage of more than 30 years since the conception of the CFSAXS method

of structure determination, only little progress has been made on the experimental side

of protein structure determination. In the following sections, the limitations on resolu-

tion in CFSAXS experiments imposed by Poisson noise, with particular emphasis on

the scattering patterns now available using a free-electron X-ray laser (XFEL) such as

the Linac Coherent Light Source (LCLS) (Emma et al., 2010), are considered. Despite

the availability of perhaps 1×1013 photons per 70 fs pulse of incident hard X-rays, the

number scattered by a single molecule at molecular resolution is much less than one per

pixel. Recently, at the LCLS, an experimental single-shot diffraction pattern from a sin-

gle virus has been phased and inverted to give a two-dimensional image of the virus at

32nm resolution (Seibert et al., 2011). Three-dimensional reconstruction of inorganic

nanoparticle data has also been achieved, using expectation maximization to determine
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the relative orientations of the many identical particles used (Loh et al., 2010). This

raises the question as to whether higher resolution might be obtained using scattering

from many such particles per shot, while relying on the CFSAXS method to resolve

the orientation-determination problem. The aim here is to obtain a simple expression

for the variance of a fluctuation measurement in terms of the number of particles N per

shot and number of shots M, with the inclusion of Poisson photon counting statistics.

This will suggest the incident photon flux required, for a given number of particles per

shot, and imaging resolution. In addition, the effective signal-to-noise ratio is studied

as a function of resolution and particle size.

Basic theory for discrete photon counts

Consider a particle in orientation specified by ω scattering into a pixel of small but

finite solid angle ∆Ω centered at the scattering vector q. Given an incident flux J

(photons/area), the mean number of X-ray photons collected in the finite pixel is

n̄(q,ω) = JΘ(Rωq)∆Ω (4.45)

where Θ(q) denotes the differential scattering cross section of the particle, and Rω is a

rotation matrix relating the particle orientation to the laboratory frame. For a particle of

maximum length L, we choose to sample in reciprocal space at an oversampling ratio

of s ≥ 2, so that the step size in scattering angle is approximately ∆θ = λ/sL at small

angles, and thus the effective pixel solid angle is

∆Ω≈
(

λ

sL

)2

. (4.46)

For our purposes, a spatial correlation experiment should be carried out at relatively

small scattering angles to avoid incomplete data (due to the maximum allowed angle

subtended by two scattering vectors which, in order to conserve momentum for elastic

scattering, must run from the origin to the surface of the Ewald sphere).

Now consider the case in which there are N identical particles per snapshot, in

random orientations and positions, exposed to the same X-ray pulse simultaneously.
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We assume that N is fixed, the incident fluence J is spatially uniform, and that there are

no significant multiple scattering effects. The coherence volume of the beam must be

at least as large as a single particle, but a beam with a coherence volume that spans the

entire group may also be used, following the analysis of (Saldin et al., 2011a; Altarelli

et al., 2010). Here, we assume for simplicity that the particles are sufficiently dilute

such that interparticle interference fringes are unobservable (because a single pixel inte-

grates over a solid angle which spans many interference fringes). In this case, the mean

photon counts for the kth diffraction pattern is effectively the summation of counts

arising from each particle independently:

n̄k(q) =
N

∑
α=1

n̄(q,ωk
α) . (4.47)

Since there is no interparticle interference, this is also the expression for the sum of N

single-particle-per-shot diffaction patterns. Given the expectation value n̄, the proba-

bility p(n; n̄) of observing n photons will follow the Poisson distribution

p(n; n̄) =
n̄n

n!
e−n̄ (4.48)

with the first and second moments

∞

∑
n=0

np(n; n̄) = n̄ (4.49)

∞

∑
n=0

n2 p(n; n̄) = n̄2 + n̄ . (4.50)

The mean photon count n̄ may also include the disordered solvent molecules in addition

to the target solute particles. We will discuss this important contribution in section 4.6,

but first we establish the basic theory in its absence.

We assume that any CFSAXS experiment consists of a sufficiently large number

of snapshots, M, so that the central limit theorem applies to measured quantities. We

take the experimental average as our measured value, with the standard error of the

mean as the statistical error. The experimental average estimator of any quantity O
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with values Ok for each particular snapshot k (1≤ k ≤M), is defined as

〈Ok〉k =
1
M

M

∑
k=1

Ok . (4.51)

The standard error of the mean will be estimated as

SEO =

√
σ2

O
M−1

(4.52)

where the variance is

σ
2
O =

〈
O2

k
〉

k−〈Ok〉2k . (4.53)

Finally, we define the signal-to-noise ratio (SNR) of a measured observable as the the

absolute value of the mean divided by the standard error:

SNRO =

√
(M−1)〈Ok〉2k

σ2
O

. (4.54)

Our definition of the SNR therefore includes all experimental factors which contribute

to the variance in a measured quantity (including, but not limited to, Poisson fluctua-

tions).

Error Analysis of Snapshot SAXS

We first consider the error analysis of a simple snapshot small-angle X-ray scattering

(SAXS) experiment, in which our measurement is simply the mean photon counts in

a pixel. We will see that this measurement is necessary to extract the desired single-

particle correlation function, as discussed in the next section. Following the definitions

in section 4.6, the mean intensity arising from M N-particle patterns approaches

IN(q) ≡ 〈nk(q)〉k (4.55)

→ N 〈n̄(q,ω)〉
ω

(4.56)

where the arrow hereafter indicates the mathematical limit M→ ∞. Similarly, the vari-

ance approaches

σ
2
IN
(q) ≡

〈
n2

k(q)
〉

k−〈nk(q)〉2k (4.57)

→ N
{[〈

n̄(q,ω)2〉
ω
−〈n̄(q,ω)〉2

ω

]
+ 〈n̄(q,ω)〉

ω

}
, (4.58)
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where we have used the Poisson moments in equations 4.49 and 4.50, as detailed in

appendix D.1.

For a sufficiently low flux, the first bracketed term in equation 4.58 (propor-

tional to J2) is negligible compared to the remaining term (proportional to J). Such is

the case for a typical synchrotron-based SAXS measurement, in which the particles are

free to rotate during exposures and thereby occupy a continuum of orientational states.

In this low-flux regime, we find the expected result

SNRI(q)≈
√

MN 〈n̄(q,ω)〉
ω
=
√

MNJ 〈Θ(Rωq)〉
ω

∆Ω , (4.59)

so that the SNR in a SAXS measurement is proportional to the square root of the prod-

uct of flux, particle concentration, and number of snapshots; it depends only on the

total number of scattered photons in the experiment.

In the case of an extremely intense pulsed beam, the bracketed term in the

variance will instead dominate. We may call this the “self” noise term, to distinguish

it from Poisson noise, and we recognize it as being the variance of the differential

scattering cross section (with respect to the orientational average). The SNR is then

approximately

SNRI(q)≈
√

NM
〈Θ(Rωq)〉2

ω

〈Θ(Rωq)2〉
ω
−〈Θ(Rωq)〉2

ω

(4.60)

and is independent of incident fluence. Since it is generally true that〈
Θ(Rωq)2〉

ω
≥ 〈Θ(Rωq)〉2

ω
(4.61)

we also have the result

SNRI(q)≥
√

MN (4.62)

so that, apart from a factor which depends on the shape of the particle, the lower limit

of the SNR of a SAXS measurement depends only on the total number of particles

exposed to the beam (MN). We show in the following section that this result is in

contrast to the SNR for a correlated fluctuation SAXS measurement, in which there is

an upper bound on the SNR with respect to the number of particles per shot N.
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Error Analysis of Correlated Fluctuation SAXS

In a CFSAXS experiment, the additional information that we are interested in, beyond

the conventional SAXS data, lies in the intensity fluctuations

δnk(q)≡ nk(q)−
〈
n j(q)

〉
j (4.63)

and may be extracted by measuring the fluctuation correlation function

C̃N(q1,q2) ≡ 〈δnk(q1)δnk(q2)〉k (4.64)

→ N 〈n̄(q1,ω)n̄(q2,ω)〉
ω
−N 〈n̄(q1,ω)〉

ω
〈n̄(q2,ω)〉

ω
(4.65)

= N 〈δ n̄(q1,ω)δ n̄(q2,ω)〉
ω

(4.66)

(see appendix D.2 for details). We have assumed that the two pixels are distinct, so

that the Poisson noise in each pixel is statistically independent of the other. The desired

single-particle correlation function

C1(q1,q2)≡ 〈n̄(q1,ω)n̄(q2,ω)〉
ω

(4.67)

is the first term in equation 4.65, which may be expressed in terms of measurable

quantities as

C1(q1,q2) =
1
N
〈δnk(q1)δnk(q2)〉k +

1
N2 〈nk(q1)〉k 〈nk(q2)〉k . (4.68)

We would now like to determine the effective SNR for the measurement of C1(q1,q2).

Since we have already analyzed the errors in the SAXS terms of equation 4.68,

we look at the first term now. As detailed in appendix D.2, upon factoring out N and

152



inserting the Poisson moments, the variance approaches

σ
2
C̃N
(q1,q2) =

〈
(δnk(q1)δnk(q2))

2〉
k−〈δnk(q1)δnk(q2)〉2k (4.69)

→ N
[〈

δ n̄2(q1,ω)δ n̄2(q2,ω)
〉

ω
−〈δ n̄(q1,ω)δ n̄(q2,ω)〉2

ω
(4.70)

+
〈
n̄2(q1,ω)n̄(q2,ω)

〉
ω
+
〈
n̄(q1,ω)n̄2(q2,ω)

〉
ω

+〈n̄(q1,ω)〉2
ω
〈n̄(q2,ω)〉

ω
+ 〈n̄(q1,ω)〉

ω
〈n̄(q2,ω)〉2

ω

−2〈n̄(q1,ω)n̄(q2,ω)〉
ω
〈n̄(q1,ω)〉

ω

−2〈n̄(q1,ω)n̄(q2,ω)〉
ω
〈n̄(q2,ω)〉

ω

+〈n̄(q1,ω)n̄(q2,ω)〉
ω

]
+(N2−N)

[
〈δ n̄(q1,ω)δ n̄(q2,ω)〉2

ω
+
〈
δ n̄2(q1,ω)

〉
ω

〈
δ n̄2(q2,ω)

〉
ω

+
〈
n̄2(q1,ω)

〉
ω
〈n̄(q2,ω)〉

ω
+ 〈n̄(q1,ω)〉

ω

〈
n̄2(q2,ω)

〉
ω

−〈n̄(q1,ω)〉2
ω
〈n̄(q2,ω)〉

ω
−〈n̄(q1,ω)〉

ω
〈n̄(q2,ω)〉2

ω

+〈n̄(q1,ω)〉
ω
〈n̄(q2,ω)〉

ω

]
.

The two bracketed terms in the variance, with prefactors N and N2−N, contain terms

which scale as J∆Ω to the second, third, and fourth powers. For sufficiently small

J (such that far less than one scattered photon per pixel per particle is observed on

average), the variance is approximately

σ
2
C̃N
≈ N2 〈n̄(q1,ω)〉

ω
〈n̄(q2,ω)〉

ω
, (4.71)

and the SNR is then

SNRC̃N
(q1,q2) =

√√√√MC̃2
N

σ2
C̃N

≈ J
(

λ

sL

)2
√

M
〈δΘ(q1,ω)δΘ(q2,ω)〉2

ω

〈Θ(q1,ω)〉
ω
〈Θ(q2,ω)〉

ω

. (4.72)

Since the factor N vanishes, we must conclude that, for the low-flux limit, the SNR in

a correlated fluctuation SAXS measurement is essentially independent of the number of

particles per snapshot.

Now consider the case of large N, but high flux so that terms with J4 dominate.

(We ignore the limit of N = 1 with large J because other imaging methods are likely to
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be superior to CFSAXS in this regime). The variance then becomes

σ
2
C̃N
≈ N2

[
〈δ n̄(q1,ω)δ n̄(q2,ω)〉2

ω
+
〈
δ n̄2(q1,ω)

〉
ω

〈
δ n̄2(q2,ω)

〉
ω

]
(4.73)

and the SNR is

SNRC̃N
(q1,q2)≈

√√√√M

(
1+

〈δΘ(q1,ω)δΘ(q2,ω)〉2
ω

〈δΘ2(q1,ω)〉
ω
〈δΘ2(q2,ω)〉

ω

)
. (4.74)

Since, by the Schwartz inequality, it is generally true that (Goodman, 2000)

〈δΘ(q1,ω)δΘ(q2,ω)〉2
ω
≤
〈
δΘ

2(q1,ω)
〉

ω

〈
δΘ

2(q2,ω)
〉

ω
, (4.75)

it follows that the SNR lies in the range

√
M ≤ SNRC̃N

(q1,q2)≤
√

2M . (4.76)

Just as we found in the case of the snapshot SAXS error, in the high flux limit we can

only improve the measurement through collecting more patterns to provide an orien-

tational average. However, a correlations measurement must also average out the self

noise terms associated with products of uncorrelated intensities arising from particles

in differing orientations, and as a result we cannot improve the SNR by increasing the

number of particles in each snapshot.

Finally, we consider how the errors in the measured SAXS terms affect the

error in the resulting measurement of C1(q1,q2) (equation 4.68). If we include these

terms in the variance of C1(q1,q2), using the error propagation formula (Bevington and

Robinson, 1992)

σ
2
x ≈ σ

2
u

(
∂x
∂u

)2

+σ
2
v

(
∂x
∂v

)2

+ · · · , (4.77)

we have from equation 4.68

σ
2
C1
≈ 1

N

[
σ

2
C̃N
(q1,q2)+

1
N

σ
2
IN
(q1)IN(q2)+

1
N

σ
2
IN
(q2)IN(q1)

]
. (4.78)

Since the second and third terms on the right-hand side are proportional to N (from

equations 4.56 and 4.58), these terms are similar to the first bracketed term in σ2
C̃N

.
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They are therefore insignificant when N is large, and moreover, these SAXS terms may

perhaps be measured more accurately using a continuous X-ray source as discussed in

section 4.6. We therefore ignore this contribution to the SNR, and take SNRC̃N
(q1,q2)

as the figure of merit for our purposes here.

Intensity Statistics: Resolution and Particle Size

In addition to particle counts and incident flux, we would also like to understand how

particle size and resolution effect the CFSAXS SNR. We therefore wish to determine

typical values for the terms which appear in equations 4.72 and 4.74 for a typical protein

molecule. Following the Wilson statistical model, we assume the protein contains m

atoms that are in essentially random positions r j (we assume no symmetry), and is

of characteristic size L. The scattered intensity is proportional to the scattering cross

section

Θ(q) =

∣∣∣∣∣ m

∑
j=1

f j(q)eiq·r j

∣∣∣∣∣
2

(4.79)

where f j(q) is an atomic scattering factor (with units of area– the classical electron

radius is inclusive). Since, for a large protein with many atoms, the phase q · rj may be

assumed to be a random number, we arrive at the mean values (see appendix D.3)

〈Θ(q,ω)〉
ω

= m
〈

f 2
j (q)

〉
j (4.80)〈

Θ
2(q,ω)

〉
ω

= 2〈Θ(q,ω)〉2
ω

(4.81)〈
δΘ

2(q,ω)
〉

ω
= 〈Θ(q,ω)〉2

ω
(4.82)

Next we would like to determine a typical magnitude for the term

〈δΘ(q1,ω)δΘ(q2,ω)〉2
ω

= [〈Θ(q1,ω)Θ(q2,ω)〉
ω
−〈Θ(q1,ω)〉〈Θ(q2,ω)〉]2 .

To do this, we calculate the mean value over all pairs of scattering vectors q1,q2 which,

for simplicity, lie on the same resolution shell (q1 = q2 = q). We expand δΘ(q,ω) in

spherical harmonics as

δΘ(q,ω) =
lmax

∑
l=1

l

∑
m=−l

Alm(q)
l

∑
m′=−l

Ylm′(q̂)D
(ω)
lmm′ (4.83)
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where D(ω)
lmm′ is a Wigner rotation matrix, and l max ≈ Lq. Since the scattered intensity

is real, we must have Alm(q) = A∗l−m(q), and by Friedel’s law, we must have Alm = 0

for odd l. Then we have

〈δΘ(q1,ω)δΘ(q2,ω)〉
ω

=
l max

∑
l,l′=1

l

∑
m=−l

l′

∑
m′=−l′

Ylm(q̂1)Y ∗l′m′(q̂2)× (4.84)

l

∑
m′′=−l

l′

∑
m′′′=−l′

Alm′′(q)A
∗
l′m′′′(q)

〈
D(ω)

lmm′′D
(ω)∗
l′m′m′′′

〉
ω

=
l max

∑
l=1

l

∑
m′=−l

Ylm′(q̂1)Y ∗lm′(q̂2)

2l +1

l

∑
m=−l

|Alm(q)|2 (4.85)

=
1

4π

l max

∑
l=1

Pl(q̂1 · q̂2)
l

∑
m=−l

|Alm(q)|2 (4.86)

upon using the orthogonality of the Wigner matrices and the spherical harmonic addi-

tion theorem (Saldin et al., 2009). The Pl(x) are Legendre polynomials. If we square

this quantity and average over q̂1 · q̂2 we get〈
〈δΘ(q1,ω)δΘ(q2,ω)〉2

ω

〉
q̂1·q̂2

=
l

∑
m=−l

|Alm(q)|2
l′

∑
m′=−l′

|Al′m′(q)|2× (4.87)

1
16π2

l max

∑
l,l′=1

1
4π

∫ 1

−1
d cosθ

∫ 2π

0
dφPl(cosθ)Pl′(cosθ)

=
1

16π2

l max

∑
l=1

1
2l +1

[
l

∑
m=−l

|Alm(q)|2
]2

(4.88)

after using the orthogonality of the Legendre polynomials (Jackson, 1999). Similarly,

we may write

〈
δΘ

2(q,ω)
〉

ω
=

〈[
∑

lmm′
Alm′(q)Ylm′(q̂)D

(ω)
lmm′

]2〉
ω

(4.89)

=
1

4π

l max

∑
l=1

Pl(q̂ · q̂)
l

∑
m=−l

|Alm(q)|2 (4.90)

=
1

4π

l max

∑
l=1

l

∑
m=−l

|Alm(q)|2 . (4.91)

For our statistical model, the SNR depends only on the magnitudes of the com-

plex numbers Alm(q), which will vary considerably depending on the shape of the
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molecule. Let us consider a hypothetical case in which the values of |Alm(q)|2 are

equal to a constant A2. Then, upon taking |Alm(q)|2 outside of the summations, we

have 〈
〈δΘ(q1,ω)δΘ(q2,ω)〉2

ω

〉
q̂1·q̂2

=
A4

16π2

l max

∑
l=1

1
2l +1

[
l

∑
m=−l

]2

(4.92)

=
A4

16π2

l max

∑
l=1

2l +1 (4.93)

=
A4

16π2 (l
2
max +2l max) (4.94)

and similarly 〈
δΘ

2(q,ω)
〉

ω
= 〈Θ(q,ω)〉2

ω
=

A2

4π
(l2

max +2l max) (4.95)

where we have made use of equation 4.82. Inserting these results into equation 4.74,

the resulting high-flux, large-N SNR is

SNRC̃N
(q1,q2)≈

√
M
(

1+
1

(Lq/2)2 +Lq

)
. (4.96)

where we’ve used the fact that only even l are permitted. Similarly, for the low-flux

limit we have

SNRC̃N
(q1,q2)≈ J

(
λ

sL

)2
√

M
A2

4π
. (4.97)

Since the magnitude of A2 and the applicability of our simplifying assumptions will

depend strongly on the shape and size of the particle, we caution against drawing strong

conclusions from this model. It is, however, interesting that equation 4.96 suggests

that larger molecules result in a lower SNR than smaller molecules. This is, however,

a factor of
√

2 at most, according to the general result of equation 4.76. From the

simulations in section 4.6 we find that the SNR is indeed reduced for the larger of the

two molecules we consider.

Solvent scatter and background

Diffraction from solvent molecules is an important factor in a correlations measure-

ment, will likely be the dominant noise contribution at low photon counts. At low
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resolution, we may model the affects of the solvent by defining the effective parti-

cle electron density as its Babinet contrast against the surrounding solvent. Here, we

are concerned with subnanometer resolutions, so we must take into consideration the

correlated scattering from closely-packed solvent molecules (for a detailed theoretical

description, see (Altarelli et al., 2010)). The differential scattering cross section for the

kth pattern may be written as

Θk(q) =
∣∣∣Ψk

s(q)+Ψ
k
p(q)

∣∣∣2 (4.98)

where Ψk
s(q) is the scattering amplitude for the kth ensemble of disordered solvent

molecules (e.g. H2O), and Ψk
p(q) is the scattering amplitude from the kth ensemble

of solute particles (e.g. proteins). We assume that the solvent molecule positions are

uncorrelated with respect to the solute particle positions, otherwise they should be con-

sidered part of the structure of the dissolved particles. Upon taking the average over

many patterns, we have

〈Θk(q)〉k =
〈∣∣∣Ψk

s(q)
∣∣∣2〉

k
+

〈∣∣∣Ψk
p(q)

∣∣∣2〉
k

(4.99)

since the mean product of uncorrelated amplitudes tends toward zero. In terms of

photon counts, we can write

〈nk(q)〉k = 〈ns
k(q)〉k + 〈nk(q)〉k (4.100)

where
〈
ns

k(q)
〉

k are the average “background” counts from the solvent. Similarly, we

may write a correlated product as

〈nk(q1)nk(q2)〉k = 〈ns
k(q1)ns

k(q2)〉k + 〈nk(q1)nk(q2)〉k

+〈ns
k(q1)〉k 〈nk(q2)〉k + 〈nk(q2)〉k 〈ns

k(q2)〉k . (4.101)

The first term is an undesirable background contribution that must be subtracted. Since

we cannot assume that background scatter is uncorrelated with itself, we must care-

fully measure the correlations in the solvent alone in order to properly remove the first
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background term in equation 4.101. The last two mixed terms may be measured with

conventional SAXS methods, without the need for snapshot diffraction patterns, and

as discussed in section 4.6, we assume that these SAXS terms have a negligible effect

on experimental errors. Taking the limiting case of low flux, where background Pois-

son fluctuations are important, and applying the error propagation formula (equation

4.77), we find that the variance is simply the summation over the variance in the first

two terms. Assuming that the variance in the correlations of closely-packed solvent

molecules is roughly similar to that of the solute particles, we may use the result of

equation 4.71 to express the variance as

σ
2
C̃N
≈ N2

s 〈n̄s(q1,ω)〉〈n̄s(q2,ω)〉+N2 〈n̄(q1,ω)〉〈n̄(q2,ω)〉 (4.102)

where Ns is the number of solvent molecules. Since the volume fraction of solvent

is likely much greater than the solute particles, the solvent term will be the dominant

contribution to Poisson fluctuations, which results in an approximate SNR of

SNRC̃N
(q1,q2)≈

√√√√M
〈δ n̄(q1,ω)δ n̄(q2,ω)〉2

ω

N2
s

N2 〈n̄s(q1,ω)〉
ω
〈n̄s(q2,ω)〉

ω

. (4.103)

We note that the treatment of other sources of scatter, such as parasitic scatter

from the instrument, or solution contaminants, may be treated similarly to the scatter

from solvent molecules, and may be grouped into the term Ψk
s(q). When multiple

species of (uncorrelated) solute particles are present, the resulting correlation function

is simply the number-weighted average over all species.

Simulations

We first verified the correctness of the variance expressed in equation 4.71 and the

result that the CFSAXS SNR is practically independent of the number of particles per

snapshot N. To do this, we chose a simple analytical expression for the scattering cross

section in which the particles are aligned and confined to rotations about an axis parallel

to the incident beam. Where the particle is in the orientation specified by the angle φ ,
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we define scattered photon counts as the “sawtooth” function

n̄(q,φ) =

 Jφ/π 0≤ φ < π

J(φ −π)/π π ≤ φ < 2π

. (4.104)

Choosing, for simplicity, the pair of scattering vectors q1 =−q2, we arrive at the ana-

lytical expressions

〈n̄(q,φ)〉
φ

= J/2 (4.105)

C̃N(q,φ) = NJ2/12 (4.106)

σ
2
C̃N
(q,−q) = N

[
J2

12
+

J3

12
+

7J4

360

]
+(N2−N)

[
J2

4
+

J3

12
+

J4

72

]
. (4.107)

The form of the resulting SNR is graphed in figure 4.20 (solid lines), for various values

of N, as a function of mean photon counts per particle. We confirmed this analytical

result by Monte Carlo calculation of the fluctuation correlation and its variance, accord-

ing to equations 4.51, 4.53 and 4.54, using a flat distribution of randomly-generated φ

values, and values of n(q,φ) drawn randomly from a Poisson distribution with mean

n̄(q,φ). Shown as circles are the Monte Carlo results after averaging 10,000 simulated

experiments, each with 1000 snapshots, for values of J = 0.02, 0.2, 2, 20, and 200.

The simulated results are in remarkable agreement with analytical expressions, and, as

predicted, the SNR scales approximately linearly with increasing flux prior to a mean

photon count of one per particle, and then reaches its asymptotic value (within ∼ 5%)

after 1-2 decades of flux increase. The asymptotic value does not depend strongly on

the number of particles; the case of N = 10 is remarkably close to the predicted value

for N→ ∞.

Following the verification of equation 4.71, we carried out a similar computa-

tion of SNR for the more realistic scattering cross sections corresponding to two protein

molecules: the large monomer unit of the Photosystem I (PSI) complex (Protein Data

Bank entry 1JB0), and hen egg white lysozyme (entry 2LYZ). The differential scatter-

ing cross sections were first calculated on a GPU for all points on a cartesian grid (with
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Figure 4.20: Signal-to-noise for the simple cross section in equation 4.104. The top
dashed line indicates the maximum SNR in the case of infinite incident fluence J and
number of particles per shot N = 1. Simulated values, using randomized orientations
and photon counts, are shown as filled circles.

oversampling ratio s = 6, as determined by the maximum distance between atom pairs)

using equation 4.79, for all non-hydrogen atomic coordinates in the pdb files (24,198

coordinates in total for PSI, 1,102 for lysozyme). For simplicity, all scattering factors

were taken to be that of nitrogen, a good approximation to the average non-hydrogen

atomic scattering factor (Holton and Frankel, 2010), using the expression

fN(θ) = 7exp
(
−10.7Å2

(sinθ/λ )2
)

(4.108)

where θ here is the Bragg angle (twice the scattering angle). From the cartesian grid

of differential scattering cross sections, the terms in equation 4.69 were calculated in

Monte Carlo fashion for randomly-oriented scattering vector pairs q1, q2 lying on the

same resolution shell |q1| = |q2| = q, using trilinear interpolation. The full range of

angular separations φ = arccos(q1 · q2) (Ewald curvature was been neglected) were

computed, and averages for each separation φ were taken over 106 randomly-oriented

scattering vector pairs for each separation φ . The resulting SNR, averaged over the
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range 0.1π < φ < 0.9π , is graphed against incident flux in figure 4.21, for various

resolutions. (We ignored values near φ = 0 and π since the spikes in intensity contain

redundant SAXS information). Values shown represent the SNR for a single snapshot;

for the case of M shots, the SNR should be multiplied by
√

M. Similarly, if each

snapshot produces multiple observations for a given φ , M will be effectively increased

by this multiplicity.
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solid: lysozyme (2LYZ)
dashed: Photosystem I (1JB0)

Figure 4.21: Calculated single-shot SNR for lysozyme and photosystem I (solid and
dashed lines, respectively) as a function of incident photon fluence and imaging resolu-
tion (d-spacings indicated by colors), at photon energy 9 keV. Solvent background has
been neglected. The number of particles per snapshot is N = 1, however, other values
of N are indistinguishable on this scale.

Shown in figures 4.22 and 4.23 are direct simulations of the fluctuation corre-

lation function CN(q1,q2), calculated by averaging the ring autocorrelations (as would

be measured in an experiment using an area detector) of 106 randomly-oriented rings of

scattered counts, each with Poisson noise added. The spacings between φ values was

taken to be ∆φ = 2L/d, corresponding to an oversampling ratio of s = 2, so that there

are Nφ = 4πL/d samples about a full ring. Numerical results from the simulations
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Table 4.1: Results from direct simulations of M = 106 patterns at flux J = 1014 µm−2.

2π

d [Å] Nφ 〈n(q)〉 〈SNR〉 〈SNR〉√
MNφ

Lysozyme (2LYZ)
4 160 8.41×10−3 1.35 1.07×10−4

6 106 6.77×10−3 1.41 1.37×10−4

8 80 7.12×10−3 3.35 3.75×10−4

10 64 15.2×10−3 5.89 7.36×10−4

Photosystem I (1JB0)
4 450 2.41×10−2 1.19 5.60×10−5

6 300 1.79×10−2 1.61 9.31×10−5

8 226 2.25×10−2 4.86 32.4×10−5

10 180 3.27×10−2 5.66 42.2×10−5

at photon flux J = 1014 µm−2 are shown in table 4.1, where the 〈SNR〉 in this case

is calculated as the RMS fluctuation magnitude divided by the RMS residual magni-

tude in the range 0.1π < φ < 0.9π . Values of 〈SNR〉/√MNφ represent the equivalent

single-snapshot SNR, from which SNR may be estimated for any flux and number of

snapshots M using the proportionality SNR ∝ J
√

MNφ (for values of J . 1015, where

the linear approximation holds).

Finally, we have estimated scattering counts from a water background with 1:1

water-to-protein volume ratio, using pure water scattering factors |FH2O(q)| derived

from SAXS measurements (Hura et al., 2000). Estimations of the decreased SNR due

to a water background can be made using equation 4.103 in conjunction with 4.2, where

the background counts should be scaled as appropriate for a given protein concentra-

tion.

Discussion

Zvi Kam long ago appreciated that the SNR in a CFSAXS experiment is essentially

independent of the number of particles per snapshot, and suggested that a practical ex-

perimental aim is to obtain one scattered photon per particle, per pixel, per snapshot

(Stuhrmann, 1982). If experiments are conducted using a synchrotron source, the max-
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Figure 4.22: Simulated lysozyme fluctuation correlation function CN(q1,q2), normal-
ized by the factor 1/N 〈n(q)〉2 and offset vertically for display purposes. Wave vector
pairs lie on the same resolution shell |q1| = |q2| = q. Results represent an average
over of 106 patterns with one particle per pattern (N = 1), plotted for various values
of flux and resolution. Blue, green, and red points correspond to 1013, 1014, and 1015

photons/µm2, respectively. The solid black line indicates infinite flux (i.e. a simulation
without poisson noise).

imum number of counts per snapshot will be limited by radiation damage. Assuming,

for instance, that near-atomic resolution is desired, in which the maximum tolerable

dose is approximately 30 MGy (Owen et al., 2006), and the typical dose ratio of pro-

teins is 2000 photons µm−2 Gy−1 (Holton, 2009), a single snapshot exposure would

necessarily be limited to a flux of 6× 1010 photons µm−2. In our simulations of PSI

presented here, this results in approximately 2× 10−5 photons per pixel per particle

at 10 Å resolution, a far cry from Kam’s idealized experiment. However, this picture

changes considerably if data are collected using an XFEL in the “diffract-and-destroy”

mode, in which the incident pulse terminates prior to significant radiation damage. In

this case, doses well beyond the conventionally accepted maximum tolerable dose may

be delivered to the target, and since SNR ∝ J
√

M, halving the number of shots in favor
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Figure 4.23: Simulated photosystem I fluctuation correlation function (see figure 4.22
caption for details). Note the finer angular sampling due to larger protein size.

Table 4.2: Estimated water background counts for 1:1 volume ratio at flux J = 1014

µm−2.

2π

d [Å] |FH2O(q)|2 [e.u.]
NH2O
Nprot
〈nH2O(q)〉

Lysozyme (2LYZ)
4 28.30 26.7×10−4

6 8.30 7.83×10−4

8 6.90 6.51×10−4

10 6.50 6.13×10−4

Photosystem I (1JBO)
4 28.30 7.34×10−3

6 8.30 2.15×10−3

8 6.90 1.79×10−3

10 6.50 1.69×10−3

of doubling the single-shot flux improves SNR by a factor of
√

2. At present, the LCLS

can deliver approximately 1×1012 photons per pulse at 9keV, which may be focused to

a 0.1 µm beamspot in the near future at the coherent X-ray imaging instrument (CXI)

(Boutet and Williams, 2010). At the current pulse repitition rate of 120 Hz, the im-
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provement in SNR at the LCLS is approximately 400-fold when compared against a

synchrotron that delivers 1012 photons per second into the same 0.01 µm2 beam spot

area, but is limited to a single-shot dose of 6×1010 photons µm−2. This remains below

Kam’s ideal.

After signal averaging a large number of shots, our derived SNR is essentially

independent of the number of particles per shot, in the absence of solvent molecules

and interparticle interference. Therefore a many-particle-per-shot CFSAXS experiment

(summed over many shots) is essentially equivalent, from a SNR standpoint, to one

with only N = 1 per shot (also summed over many shots). It follows that a three-

dimensional intensity map derived from a CFSAXS experiment cannot produce a more

accurate measurement than one would obtain through direct averaging of intensities

from the identicle single-particle-per-shot experiment (provided that orientations are

accurately determined). In the presence of solvent molecules, however, there is a clear

advantage to increasing the number of particles per shot, since each displaces a small

volume of solvent which otherwise contributes to background. High particle concen-

trations are therefore desirable in this case, provided that the particles do not aggregate

or otherwise break our assumptions that interparticle interference is negligible and that

positions and orientations are random and uncorrelated. In the case that the particles

may form a closely-packed network, or have significant pair correlations, the theory

presented here is not applicable. It is possible that, in favorable cases, the SNR will be

enhanced by interparticle interference (as, for example, in the case that the “aggregates”

are crystalline, as in powder diffraction).

Our approach is also not immediately applicable to glasses or any continuously-

bonded random network of atoms. However models of, for example, amorphous sil-

icon, exist in which the structure is represented by a small number of local struc-

tural units connected together. For a sample consisting of several different types of

molecules, our CFSAXS analysis yields a weighted sum of correlation functions for
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each. Hence it is possible that this approach could be extended to the case of glasses

which can be described in this way (so that a few structural correlations accumulate

at the expense of random atomic arrangements) if the interparticle interference terms

average to zero.

Where the CFSAXS methodology is applied to single-particle imaging, it must

compete favorably with the alternative techniques (Fung et al., 2009; Loh and Elser,

2009) if it is to be of any practical use. Its greatest strength is perhaps the relative

ease with which experiments may be performed. Since the method applies when many

particles are exposed in each shot, there is a clear experimental advantage in that the

particles may be confined in a droplet using established liquid jet injectors (Weierstall

et al., 2008; DePonte et al., 2008; Chapman et al., 2011) in order to ensure that every

XFEL pulse meets a target. The CFSAXS method therefore offers a 100 percent hit

rate. The CFSAXS data are merged in a straightforward manner, without the need to

classify particle orientations, or fit a manifold to hundreds of terabytes of data. The

formation of angular correlation functions could conceivably be done at the detector

during data aquisition. The final data set is highly compressed, and computations are

likely to be easily tractable on a modest computer. The potential merits, however, come

at a significant cost. The increased hit rate is likely to be accompanied by increased

background and decreased contrast when compared with aerosol injectors (with their

much lower hit rate), and the compression of the data may result in an insoluble problem

without a further set of constraints provided by additional data, or measurement of triple

correlations.

A water background is comparable to the scatter from proteins at resolutions

below about 5 Å. A water-to-protein volume ratio of 100:1, for instance, will result in

approximately a 100-fold decrease in SNR, according to our approximate expression

in equation 4.103. Factoring in this decrease, and assuming that we can collect 107

patterns (a 24-hour beamtime at the current LCLS repitition rate of 120 Hz) snapshots
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at a flux of 1013 photons per 0.01 µm−2, it may be possible to obtain an SNR of ∼2

at 10 Å resolution. This analysis, however, has neglected to consider the effects of

particle non-homogeniety, and beam effects such as spectral width and divergence.

Despite the apparent difficulty of collecting a high-quality CFSAXS data set

at sub-nanometer resolution, we note that the LCLS is a first-of-its-kind instrument,

and improvements to XFEL capabilities in general (including the needed increase in

X-ray fluence) are inevitable. The possibility of 1 nm resolution would already exceed

the resolution attainable through conventional SAXS methods, where resolutions bet-

ter than 1.5 nm are not possible without a-priori high-resolution structural information

acquired through other techniques Petoukhov and Svergun (2007). Provided that in-

version algorithms can be developed to properly treat the data, the greatest appeal to

the CFSAXS methodology is the possibility to determine structures from proteins in

solution at room temperature. The extension to ultrafast dynamical studies is natural,

given the extremely brief pulse duration produced by XFELs. The potential for opening

up this new regime of structural studies, and the experimental feasibility reported here,

justifies the extraordinary efforts that may be required to determine the full potential of

this method.

Conclusions

We have determined, through both theory and in simulations, that the signal-to-noise ra-

tio for a CFSAXS experiment is essentially independent of the number of particles per

pattern. Therefore, the CFSAXS method cannot improve upon the errors in recovered

intensity maps which are derived from methods which can accurately determine parti-

cle orientations prior to merging intensities. However, since signal-to-noise scales with

the square root of the number of diffraction patterns for any signal averaging method,

and since injection of isolated biomolecules to a submicron beam remains a signifi-

cant challenge, the CFSAXS approach may currently hold an important advantage over

other methods since well-tested liquid jet injectors may be used for sample injection
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in order to ensure a 100 percent hit rate. Given the beam parameters anticipated at

the LCLS in the near future, our simulations suggest that it may be possible to achive

a signal-to-noise ratio of better than one at subnanometer resolution within a 24-hour

beamtime, with the effects of a small amount of solvent scatter considered.
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Chapter 5

PERSPECTIVES AND FUTURE WORK

5.1 Some final thoughts

It is a truly exciting time to be a scientist. With every experiment carried out at the

LCLS, it becomes increasingly apparent that XFEL technology will drastically enhance

research capabilities in structural biology. While the initial planned femtosecond pro-

tein nanocrystallography experiments seemed at first to be little more than an appropri-

ate stepping stone toward the ultimate goal of single-molecule imaging (perhaps only in

my own naive viewpoint), the immediate success of first experiments made it clear that

the technique will continue to evolve into something much greater. The outstanding

diffraction data that resulted in December 2009 appears to have exceeded expectations

and validated a considerable amount of theoretical work carried out on the ultrafast

dynamics of XFEL irradiation of biomolecules. Diffraction patterns emulated in al-

most every detail the diffraction simulations (free of radiation damage!) I carried out

just prior to the experiments. Similarly, the Monte Carlo method of data analysis also

appears to have exceeded expectations for the resulting structure factors, as indicated

by the excitement at the BioFEL workshop in February 2011. The recent observation

of 1.9 Å resolution data from protein nanocrystallography experiments seems to indi-

cate that the best is still to come, as the CFEL-ASU-ASG collaboration is currently

swamped with highly valuable diffraction data (although it appears that there are too

few data analyists to keep up with the current rate of incoming data!).

I should stress that the “Monte Carlo” approach to analyzing nanocrystallog-

raphy (so far the only successful approach) represents the lower limit of achievable

data quality. Inevitably, proper scaling and post-refinement schemes will be developed

that allow for density maps to be recovered from far fewer diffraction patterns than

required in this dissertation. With an optimized particle injection scheme, and proper

analysis methods, one can envision obtaining a complete atomic resolution, data set
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with perhaps only 10,000 or less diffraction patterns. With a micro-fluidic switchyard

and an autosampler, it would then appear that a pulse repetition rate of 120 Hz would

in principle allow one to determine the structures of thousands of proteins in a single

24 hour period of data collection through the serial crystallography method (one can

go on to consider the ∼100 KHz repetition rate planned for the European XFEL). The

bottleneck will almost certainly lie in the preparation of nanocrystals, but since the

growth of “invisible” protein nanocrystals has not yet been systematically studied (one

can only assume that such studies will be carried out soon, if work has not already

begun), it is probably fair to say that the potential real-world impact of this technique

is still largely unknown. While radiation damage may still prove to be a fundamen-

tal barrier, the observation of Bragg reflections out to 1.9 Å resolution suggests that

sufficient information exists for high (atomic) resolution density maps to be formed,

although some modeling based on an understanding of the ultrafast radiation damage

processes may need to be considered. It has recently been suggested, based on fs pro-

tein nanocrystallography data collected at the LCLS in June 2010 (Barty et al., 2011),

that the “self-termination” of Bragg diffraction may regulate the effects of radiation

damage (the early stages of the pulse contributes useful diffraction from the undam-

aged target, while later contributions are small due to loss of periodicity, effectively

gating the diffracting beam). Continued systematic studies on the effects of radiation

damage based on high-resolution fs diffraction data should soon create a more clear

picture of where the fundamental limitations lie. Despite the possibility that accurate

density maps may not result at high resolution, one must always consider improve-

ments to the X-ray source (attosecond-duration pulses, for instance), as the LCLS is a

first-of-its-kind light source.

The first steps toward single-molecule imaging have also been made at the

LCLS, with the reconstructions of snapshot projection images of Mimi viruses in free

flight. The resolution is relatively low (about 32 nm), but orders of magnitude improve-
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ment in the incident flux can be had from little more than finer focusing of the X-ray

spot size, and the signal averaging of many snapshots will improve things even further

(current published reconstructions are from single diffraction patterns). It appears that

the road to single-molecule imaging will be much longer one than was experienced

for protein nanocrystallography, but, provided that radiation damage or sample hetero-

geneity are not limiting factors, the technical challenge of particle injection seems to

be the only significant problem for this method at the moment. The CXI endstation at

the LCLS should soon be operating near its design parameters, for which simulations

of the merging of single-molecule data have already proven successful. While this

development of sample injectors continues, it seems likely that CFSAXS experiments

will be attempted in the meantime, and if successful, it is even possible (however re-

motely!) that this will become the method of choice do to the ease of performing such

experiments.

5.2 Possible future work
Improving on the accuracy of nanocrystallography structure factors

The conventional procedure of post-refinement and scaling (reviewed in Rossmann and

van Beek (1999)) aims to enhance the accuracy of data sets where few full reflections

are recorded, due to a mosaic spread which exceeds the angle of rotation during expo-

sure at a conventional (e.g., synchrotron) X-ray source. This problem differs somewhat

from the case of fs protein nanocrystallography, where the angle of rotation is exactly

zero, and where shape transform effects dominate the effects of mosaic spread. How-

ever, the two problems have many common characteristics. In general, one wishes to

solve for the intensities Ih (each with Miller indices h) given a series of partial intensi-

ties Ihi . A least squares approach was first suggested by Hamilton et al. (1965), which

essentially aims to minimize the quantity

Ψ = ∑
h

∑
i

Whi (Ihi−GmIh)
2 . (5.1)
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Here, Whi is a weighting factor for the ith recorded reflection with Miller indices h, and

Gm is the inverse overall scaling factor for the mth pattern. Upon setting the derivative

∂Ψ/∂ Ih equal to zero, the Ih are given by

Ih =
∑iWhiGmIhim

∑iWhiG2
m

(5.2)

which requires a non-linear least-squares procedure to solve, for which working solu-

tions exist (Fox and Holmes, 1966).

Whereas equation 5.1 assumes that fully-integrated intensities are recorded on

each frame, a more appropriate model may be constructed in which the “partiality” of

each reflection is accounted for (Rossmann et al., 1979). In this case the quantity which

is to be minimized is

Ψ = ∑
h

∑
i

∑
m

Whim (Ihim−Gm phimIh)
2 (5.3)

where Ihim represent the intensity contribution of refection hi recorded on frame m, and

phim is the partiality of the reflection. If all partial intensity contributions are recorded

in a tilt series, a different equation may apply in which partialities are known by the

experimental geometry. As in the case where partialities are not known accurately for

each frame, one must refine the quantities Wm, phim , mosaicity (or shape transform for

nanocrystallography), and crystal orientation simultaneously by solving the equations

Ih =
∑i ∑mWhimGm phimIhim

∑i ∑mWhimG2
m phim

. (5.4)

For the case of conventional crystallography data, a model for partiality has been

adopted in which the partiality is assumed to be the fraction of a spherical volume

which is swept through by an Ewald sphere of finite thickness (Rossmann et al., 1979).

Such a simple model may fail for the case of nanocrystals with irregular shape trans-

forms that vary from one pattern to the next, in contrast to the more simple case where

mosaicity is nearly identical for adjacent frames in a tilt series.
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Currently, for serial fs nanocrystallography, the only information available on

the shape of a given crystal is the diffraction pattern itself. Therefore, one might con-

sider determining shape transforms from individual patterns by merging each frame

into a 3D data set where each individual Brillouin zone is folded into a single average

Brillouin zone (much in the same way that the average shape transform is determined

in section 3.5). Provided that a sufficient number of reflections are present, and perhaps

with the assistance of a curved Ewald sphere, this procedure might allow an approx-

imate shape transform to be determined for a given frame, which might be modeled

with an appropriate shape function such as an asymmetric Gaussian. The averaged

shape transforms extracted from experimental PSI nanocrystallography data is shown

in figure 5.1, for different resolution shells. The precision of the orientation determi-

nation may also be refined at this stage, as the correct orientation will minimize the

“moment of inertia” of the resulting average shape transform. An initial estimate of Ih

based on the standard Monte Carlo merging procedure (perhaps with an initial refine-

ment of Gm) would then allow partialities to be estimated by comparison of these Ih

and with consideration of the shape transform model for that pattern. While this ap-

proach has not yet been tested, one should expect some improvement over the simple

Monte Carlo merging approach. Once a sufficiently accurate model for partialities is

determined on a shot-by-shot basis, one can hope that existing algorithms for solving

equation 5.4 can be applied successfully.

Figure 5.1: Average shape transforms for three different resolution shells extracted
from experimental PSI nanocrystallography data. The average is taken over 1,000
diffraction patterns. Edges of the P6 Brillouin zone are visible in the rightmost frame.
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For crystal systems which permit twinning (or other indexing ambiguities),

complications can be expected when attempting scaling and post-refinement (as well

as phasing based on shape transforms as described in section 3.5). Conventional crys-

tallography analysis software take advantage of the nearly full coverage of reciprocal

space which results from a single crystal; in this case a simple comparison (e.g., a χ2

or linear correlation) between two data sets arising from different crystals, using all

of the possible “twin” orientations, immediately reveals the correct convention to be

used when merging data sets. Preliminary simulations (by the author) have suggested

that this method can also work for fs nanocrystallography data for the case that the

errors in intensity measurements (due, for instance, to reflection partialities) are only

20%. However, for realistic simulations in which a monochromatic beam is used, with

negligible beam divergence, this approach failed (a correlation function revealed the

correct orientation only ∼52% of the time, where two indexing choices are possible).

Therefore, a more robust solution must be discovered in order to solve this problem.

One promising approach appears to be an adaptation of single-particle intensity

merging algorithms to crystallography diffraction data. These algorithms essentially

aim to sort diffraction patterns into orientational classes, and then merge them (i.e.,

signal average) into a 3D reciprocal space map, without prior knowledge of the 3D

reciprocal space map. One such method is known as the expansion-maximization-

compression (EMC) algorithm, developed by Loh and Elser (2009). Loosely speaking

(technical details excluded), the method works as follows: one first defines an intensity

map I′(q) which represents the current best model for the reciprocal-space intensities

corresponding to diffraction from a single molecule in some reference frame. Assume

that the nth frame in the diffraction experiment results in intensities In(qi), where qi

is the scattering vector for the ith pixel in the laboratory frame. In the “expansion”

stage, one interpolates from the current best model to obtain the simulated diffraction

patterns I′(Rωqi) for a pre-defined set of orientations ω (Rω is a rotation matrix). In the
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“maximization” stage which follows, a weighted average of the diffraction intensities

In(qi) is formed for each orientation class:

I′′(Rωqi) =
∑n pn(ω)In(qi)

∑n pn(ω)
, (5.5)

where pn(ω) is the normalized probability that the nth pattern is in orientation ω as

determined by expectation-maximization of a log-likelihood function determined from

the current model I′(q) and some physical assumptions (e.g., Poisson photon counting

statistics). Finally, at the “compression” stage, the set of I′′s determined from equation

5.5 is merged to form a new 3D model. The process is then repeated using this new

model.

A few notable differences exist for the case of nanocrystallography data. The

computational load is considerably lower, since autoindexing provides a first estimate

of particle orientations ω (thus limiting the number of log-likelihood functions that

need to be computing, which is the most costly step of the EMC algorithm). In the

ideal case where autoindexing provides highly accurate orientations, or where partiali-

ties can be determined, there may be only two orientations to consider for each pattern.

Additionally, one may begin with a reasonable starting model based on the uniformly-

twinned data set resulting from Monte Carlo merging, where the twin fraction of each

pair of twin mates is chosen at random while asserting the measured sum of intensities

at every iteration of the algorithm (note that, for some special reflections, the twin mate

of a structure factor is equal to itself). However, the primary challenge for crystallog-

raphy data lies in the fact that each diffraction pattern is modulated by an unknown

shape transform function. Without knowledge of the shape transform function, the

computation of a log-likelihood function becomes difficult or impossible. However, as

a starting point, one might consider using a simple linear correlation function or a χ2 to

determine approximate probabilities pn(ω) in the maximization step. This alternative

(which has not been tested) may be sufficient, and even a crude model for partialities

(from which fully integrated intensities may be estimated) may be all that is required
176



to determine an untwinned data set.

Finally, it should be noted that any means of narrowing the distribution mea-

sured intensities in the Monte Carlo method results in an increase in accuracy in the

merged structure factors. One might consider accomplishing this physically, by in-

creasing the “width” of the Ewald sphere so that many recorded reflections are fully

integrated experimentally. Since increasing the spectral width of the XFEL beam (e.g.,

to do conventional Laue diffraction) beyond a few tenths of a percent is difficult, one

might consider instead increasing the beam divergence through short focal length op-

tics.

Toward 3D reconstructions with CFSAXS data

While the problem of inverting 3D CFSAX data to a single-particle 3D density map

remains unsolved for the most general case, at least two possible avenues exist for

special cases. One such approach is to extend the methods for single-axis alignment

described in section 4.4 to include out-of-plane tilts of the sample support. In this case,

the diffracted intensity may be represented as I(Rθ Rφ q) where Rφ is a rotation matrix

about the direct beam axis (φ is the random rotation angle of the particles about the

substrate normal) and Rθ is the matrix rotating the sample substrate by the angle θ

about an axis perpendicular to the incident beam. The reciprocal space geometry is

shown in figure 5.2, where two scattering vectors q1 and q2 (which must lie on the

laboratory frame Ewald sphere) are observed from a particle in orientation φ and tilted

by the angle θ . We may define the intensities in terms of cylindrical coordinates r,φ ,z,

so that the product of these intensities is I(r1,φ1,z1)I(r2,φ2,z2). Upon averaging over

many snapshots, and defining φ1 = φ = φ2−∆φ , we may obtain the CFSAXS quantity

P(z1,r1;z2,r2;∆φ) = 〈I(r1,φ ,z1)I(r2,φ +∆φ ,z2)〉φ (5.6)

through an experiment in which many tilts of the sample support are observed and

intensity correlations computed (note that this is necessarily a five-dimensional data
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set). We may now expand the desired intensity map as

I(r,z,φ) = ∑
m

eimφ Im(r,z) . (5.7)

Note that this expansion is the same as in section 4.4, except that we now have a differ-

ent “slice” through reciprocal space at each value of z which allows the reconstruction

of a 3D intensity map. Upon taking the Fourier transform of P(z1,r1;z2,r2;∆φ) with

respect to the variable ∆φ , we may obtain the products of expansion coefficients,

F {P(z1,r1;z2,r2;∆φ)} ∝ Im(r1,z1)I∗m(r2,z2) . (5.8)

so that we are left with a phase problem not unlike that of the case of forming a projec-

tion image for a single tilt of θ = 0. Since the number of constraints obtained through

P(z1,r1;z2,r2;∆φ) scales as the fifth power of resolution, while the number of free vari-

ables scales as the third power, this problem is very likely solvable. An algorithm is

currently under development (Elser, 2011), and experimental data sets have recently

been collected1 using soft X-rays and metal nanoparticles on a SiN substrate (under the

same experimental conditions as described in section 4.5).

Figure 5.2: Extension of the single-axis CFSAXS alignment geometry to include mul-
tiple tilts of the sample support.

An alternate approach, where single axis alignment is not possible but the par-

ticle is known to have a high degree of symmetry, has also been demonstrated recently
1Data collected by the author, Gang Chen, Peter Zwart, Stefano Marchesini, and others.
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through simulations (Saldin et al., 2011b). Here it was demonstrated that, for the case

of particles with icosahedral symmetry, the problem of solving for the spherical har-

monic expansion coefficients through CFSAXS data can be simplified considerably by

choosing an appropriate bases. Saldin et al. (2011b) showed that a bases made up of

a linear combination of spherical harmonics, called the “icosahedral harmonics”, the

function Blm(q1,q2) (defined in the same way as in section 4.2) can be reduced to the

simple form

Bl(q1,q2) = gl(q1)gl(q2) (5.9)

whereby the quantum number m vanishes, and the problem is reduced to that discussed

(and solved for) in section 4.4. Recently, data has been collected at the LCLS from

icosahedral viruses in solution (at a photon energy lying in the water window, which

allows significant contrast improvement due to the relatively long attenuation length of

water compared with carbon), which will be used to test this theory experimentally.

Figure 5.3: Experimental diffraction pattern from icosahedral viruses at the LCLS.
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A.1 Monte Carlo diffraction pattern simulation

The following MATLAB code patsim.m demonstrates a complete simulation of nanocrys-

tal diffraction following the basic theory of chapter 2, for a few-electron kinematic

scattering model. The scattering geometry is specified by the photon wavelength λ and

fluence J0, nominal incident beam direction k̂i, pixel basis vectors f,s and array size

N f ,Ns, and a detector translation vector T. The target is specified by crystal lattice

basis vectors a,b,c, number of unit cells along each edge of the parallelepiped crys-

tal Na,Nb,Nc, electron coordinates ri of the asymmetric unit, and a rotation matrix R

which rotates the crystal. The program performs a Monte Carlo integration over pixel

finite solid angle, spectral width, and beam divergence by randomly varying the inci-

dent beam direction and wavelength according to specified normal distributions, and

the position within each pixel (flat distribution within pixel area) independently for

each pixel and for each Monte Carlo iteration. Finally, the intensity is scaled roughly to

match that of a crystal with density similar to the nominal density of protein (ρ ≈ 1.34

g/cm3), and pixel solid angles are accounted for. Poisson noise is added as a final step.

For completeness, an example of how to define Monte Carlo structure factor integration

domains is shown. Results are illustrated in figure A.1.

The provided code is a relatively slow and memory intensive for more than a

few hundred electron coordinates, and so is provided only with the intention of demon-

strating a complete working example which does not require sub functions. Three steps

may be taken to speed up this code: (1) pre-calculation of the molecular transform

|F(∆k)|2 within a cartesian grid may be performed, followed by interpolation, (2) the

set of scattering vectors ∆k need only be calculated once if randomly oriented crystals

are used (i.e., each Monte Carlo iteration then makes use of pre-calculated ∆k for that

iteration, while random orientations ensure that there is not severe systematic effects),

and (3) use of a GPU can speed up the calculation of the lattice transform |S(∆k)|2, or
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one can simply calculate |S(∆k)|2 only for the first-order Brillouin zone and populate

higher orders through interpolation. The example below takes 2.2 seconds to run on

average, using a single core of a 2.26 GHz Quad-Core Intel Xeon processor.

% patsim.m − minimal code to simulate kinematic diffraction

clear all

% nominal wavelength
lambda = 1e−10;
% pixel pitch (spacing between pixels)
pitch = 200e−6;
% pixel basis vectors ("fast" and "slow" scan)
f = [1;0;0]*pitch; s = [0;1;0]*pitch;
% pixel array size
Nf = 200; Ns = 200; Nfs = Nf*Ns;
% nominal incident beam direction
ki = [0;0;1];
% detector translation vector (from sample to [0,0] pixel)
T = [−Nf/2+0.5; −Ns/2+0.5; 2*Ns]*pitch;

% unit cell vectors
a = [1;0;0]*5e−9;
b = [cos(2*pi/3);sin(2*pi/3);0]*5e−9;
c = [0;0;1]*5e−9;
% number of unit cells
Na = 20; Nb = 20; Nc = 20;
% atomic coordinates (populate the unit cell)
nAtoms = 100;
r = [a,b,c]*rand(3,nAtoms);
% randomly rotate the crystal
[R,˜] = qr(randn(3));
a = R*a; b = R*b; c = R*c; r = R*r;

% specify number of Monte Carlo iterations
MCiter = 10;
% magnitude of pixel positional jitter
jit = 1;
% spectral width (sigma of Gaussian dist.)
sw = 0.1e−3;
% beam divergence (sigma of Gaussian dist.)
bd = 0.1e−3;

% compute scattering
I = zeros(1,Nfs);

for i=1:MCiter

% pixel positions, in detector basis
nf = repmat((0:1:(Nf−1))',1,Ns);
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ns = repmat((0:1:(Ns−1)),Nf,1);

% pixel positions: jitter integrates solid angle
V = repmat(T,1,Nfs) + ...

f*(nf(:)' + jit*(rand(1,Nfs)−0.5)) + ...
s*(ns(:)' + jit*(rand(1,Nfs)−0.5));

% the outgoing wavevectors
ko = V./repmat(sqrt(sum(V.ˆ2)),3,1);

% jitter in wavelength simulates spectral width
lambdas = lambda + sw*randn(1,Nfs)*lambda;
% jitter in incident beam direction simulates divergence
kis = repmat(ki,1,Nfs) + bd*randn(3,Nfs);
kis = kis./repmat(sqrt(sum(kis.ˆ2)),3,1);
% the scattering vectors
delk = ( ko − kis )./repmat(lambdas,3,1);

% unit cell transform
F = sum(exp(1i*2*pi*r'*delk));
F2 = abs(F).ˆ2;

% lattice transform
x = pi*a'*delk; y = pi*b'*delk; z = pi*c'*delk;
S = (sin(Na*x).*sin(Nb*y).*sin(Nc*z))./...

(sin(x).*sin(y).*sin(z));
S2 = S.ˆ2;

I = I + F2.*S2;

end

I = I/MCiter;

% scale few−electron model to match protein density
% incident flux
J0 = 10ˆ12/(1e−6)ˆ2;
% Thomson scattering cross section
re = 6.65e−29;
% detector normal
n = cross(f,s); n = n./sqrt(sum(n.ˆ2));
% pixel solid angles
SA = sqrt(sum(cross(f,s).ˆ2))./sum(V.ˆ2).*...

abs(sum(repmat(n,1,Nfs).*ko));
% unit cell volume
Vcell = abs(dot(a,cross(b,c)));
% scale up electrons to nominal protein density
elecScale = (1340*Vcell/2e−3*6.022e23)ˆ2/(nAtoms)ˆ2;
I = J0*re*I.*SA*elecScale;

% add some Poisson noise
I = poissrnd(I);

% reciprocal lattice matrix
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A = zeros(3,3);
A(:,1) = cross(b,c)/Vcell;
A(:,2) = cross(c,a)/Vcell;
A(:,3) = cross(a,b)/Vcell;
% Miller indices
h = A\delk;
% nearest reciprocal lattice vectors
g = A*round(h);
delta = sqrt(sum((delk − g).ˆ2));
% distance to nearest lattice vector
delta min = min(sqrt(sum(A.ˆ2)))*0.2;
% integration domains
delta thresh = delta < delta min;

sp = 1;

% show the atomic coordinates
subplot(2,2,sp); sp=sp+1;
plot3(r(1,:),r(2,:),r(3,:),'.');
axis equal;

% show the Ewald sphere
subplot(2,2,sp); sp=sp+1;
plot3(delk(1,:),delk(2,:),delk(3,:),'.','markersize',.1);
axis equal;

% show the resulting diffraction pattern
imdisp = reshape(I,Nf,Ns);
imdisp = −log(imdisp);
subplot(2,2,sp); sp=sp+1;
imagesc(imdisp); axis image; colormap gray;

% show the integration domains
imdisp = reshape(delta thresh,Nf,Ns);
subplot(2,2,sp); sp=sp+1;
imagesc(imdisp); axis image; colormap gray;
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Figure A.1: Figure generated from the MATLAB script patsim.m. Upper left: atomic
coordinates randomly placed within the unit cell. Upper right: scattering vectors (∆k
) corresponding to detector pixels for a given Monte Carlo iteration (note irregular
spacing due to Monte Carlo integration over solid angle, spectral width, and beam
divergence). Lower left: simulated diffraction pattern with Poisson noise. Lower right:
binary map noting integration domains (20% of minimum unit cell spacing for this
example).
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B.1 Convergence of the 2D fluctuation correlation function

Writing out the average in equation 4.3 explicitly, and assuming the limit of M→ ∞,

we have

C̃N(q,q′,∆φ) =
1
M

M

∑
k

N

∑
i j

Ĩ(q,φ +ψ
k
i )Ĩ(q

′,φ +ψ
k
j +∆φ) (B.1)

→
N

∑
i j

(
1

2π

)2 ∫ 2π

0

∫ 2π

0
Ĩ(q,ψi)Ĩ(q′,ψ j +∆φ)dψidψ j (B.2)

=
N

∑
i j

(
1

2π

)2 ∫ 2π

0

∫ 2π

0
I(q,ψi)I(q′,ψ j +∆φ)dψidψ j− (B.3)

N2 〈I(q,φ)〉
φ

〈
I(q′,φ)

〉
φ
.

Now, upon separating the summation over diagonal (i = j) terms from the summation

over off-diagonal (i 6= j) terms,

C̃N(q,q′,∆φ) =
N

∑
i

1
2π

∫ 2π

0
I(q,ψi)I(q′,ψi +∆φ)dψi + (B.4)

N

∑
i 6= j

1
2π

∫ 2π

0

∫ 2π

0
I(q,ψi)I(q′,ψ j +∆φ)dψidψ j−

N2 〈I(q,φ)〉
φ

〈
I(q′,φ)

〉
φ

→ N
1

2π

∫ 2π

0
I(q,φ)I(q′,φ +∆φ)dφ + (B.5)

(N2−N)〈I(q,φ)〉
φ

〈
I(q′,φ)

〉
φ
−

N2 〈I(q,φ)〉
φ

〈
I(q′,φ)

〉
φ

= NC̃1(q,q′,∆φ)−N 〈I(q,φ)〉
φ

〈
I(q′,φ)

〉
φ
. (B.6)
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B.2 The B function

To arrive at equation 4.8, take the angular Fourier transform of C̃1(q,q′,∆φ), defined as

Bm(q,q′) =
1

2π

∫ 2π

0
C̃1(q,q′,∆φ)e−im∆φ d∆φ (B.7)

=
1

2π

∫ 2π

0

1
2π

∫ 2π

0
Ĩ(q,φ)Ĩ(q′,φ +∆φ)dφe−im∆φ d∆φ (B.8)

=
1

2π

∫ 2π

0

1
2π

∫ 2π

0
Ĩ(q,φ) ∑

m′ 6=0
Im′(q

′)eim′(φ+∆φ)dφe−im∆φ d∆φ (B.9)

=
1

2π

∫ 2π

0
I(q,φ) ∑

m′ 6=0
Im′(q

′)eim′φ dφ
1

2π

∫ 2π

0
ei(m′−m)∆φ d∆φ (B.10)

=
1

2π

∫ 2π

0
I(q,φ)Im(q′)eimφ dφ (B.11)

=
1

2π

∫ 2π

0
∑

m′′ 6=0
Im′′(q)e

im′′φ Im(q′)eimφ dφ (B.12)

= I−m(q)Im(q′) (B.13)

where we have twice made use of the delta function

δmm′ =
1

2π

∫ 2π

0
ei(m−m′)φ dφ . (B.14)

Note that where the fluctuations Ĩ(q,φ) are used, the expansion coefficients I0(q) van-

ish, but otherwise the FT of C̃1(q,q′,∆φ) is equal to the FT of C1(q,q′,∆φ). Since we

know that a diffracted intensity is real valued, we must have I−m(q) = I∗m(q), so that

Bm(q,q′) = I∗m(q)Im(q′) . (B.15)
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C.1 Born approximation

*This note is reproduced from one written by Kevin E. Schmidt, with only minor cor-

rections.

The simplest Born approximation can be done classically. The equation with

the free current (µ = 1) is

∇×B =
4π

c
J free +

1
c

∂D
∂ t

. (C.1)

Rewriting

D = E +4πP (C.2)

we find the total current is

J free +
∂P
∂ t

. (C.3)

Taking a fixed angular frequency ω , and e−iωt times dependence, we can write the total

current as

J =−iω
n2−1

4π
E (C.4)

since the index of refraction n contains the total response current.

In the Lorentz gauge we can write ∇ ·J+ 1
c

∂Φ

∂ t = 0, so that

E =−∇Φ− 1
c

∂A
∂ t

=
c

iω
∇(∇ ·A)+

iω
c

A (C.5)

and with the vector potential for outgoing waves

A =
∫

d3r′J(r′)
ei ω

c |r−r′|

c|r− r′| (C.6)

the Lippman-Schwinger equation becomes

E(r) = E inc(r)+
[

c
iω

∇(∇·)+ iω
c

]∫
d3r′J(r′)

ei ω

c |r−r′|

c|r− r′|

= E inc(r)+
[

c
iω

∇(∇·)+ iω
c

]∫
d3r′

(
−iω

n2(r′)−1
4π

E(r′)
)

ei ω

c |r−r′|

c|r− r′|(C.7)
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Taking the limit that r→ ∞, the scattered field is

E sc(r→ ∞) =

[
c

iω
∇(∇·)+ iω

c

]
ei ω

c r

rc

∫
d3r′

(
−iω

n2(r′)−1
4π

E(r′)
)

e−i ω

c r̂·r′ (C.8)

Keeping just the terms in r−1, the spatial derivatives cancel the longitudinal

parts so that the electric field is transverse as expected for a radiation field. The com-

ponent of the scattered field with polarization λ̂ out is

λ̂ out ·E sc(r→ ∞) =
iω
c

ei ω

c r

rc

∫
d3r′

(
−iω

n2(r′)−1
4π

λ̂ out ·E(r′)
)

e−i ω

c r̂·r′ (C.9)

The differential cross section for polarization λ̂ out is the power radiated into r2dΩ

divided by the incident power per unit area. This is

dσ

dΩ
=

r2|λ̂ out ·E sc|2
|E inc|2

=
ω4

16π2c4|E inc|2
∣∣∣∣∫ d3r′[n2(r′)−1]λ̂ out ·E(r′)e−i ω

c r̂·r′
∣∣∣∣2 (C.10)

If the scattering is weak, we can use the Born approximation and replace E in

the integrand with E inc. The cross section becomes

dσ

dΩ

∣∣∣∣
Born

=
ω4

16π2c4 |λ̂ out · λ̂ in|2
∣∣∣∣∫ d3r′[n2(r′)−1]e−iq·r

∣∣∣∣2 (C.11)

where for an incident beam along z

q =
ω

c
[sinθ cosφ x̂+ sinθ sinφ ŷ+(cosθ −1)ẑ] (C.12)

Taking the incident polarization to be along x and summing over the outgoing

polarizations gives

∑
out
|λ̂ out · x̂|2 = 1−|x̂ · r̂|2 = 1− sin2

θ cos2
φ (C.13)

C.2 Uniform azimuthally symmetric scatterer

For a uniform index of refraction, we can pull the n2− 1 out of the integration and

integrate over the object. To do the integral, we take the integration z axis along the
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object’s axis. and the x axis along the component of q perpendicular to the object’s

axis. Writing the radius of the object as a function of z as a(z), and taking the z extent

to run from −d/2 to d/2, the integration becomes

I(q) =
∫ d/2

−d/2
dze−iq‖z

∫ a(z)

0
dρρ

∫ 2π

0
dφe−iq⊥ρ cosφ

= 2π

∫ d/2

−d/2
dze−iq‖z

∫ a(z)

0
dρρJ0(q⊥ρ)

=
2π

q⊥

∫ d/2

−d/2
dze−iq‖za(z)J1(q⊥a(z)) . (C.14)

If the object is symmetric under z↔−z, this becomes

I =
4π

q⊥

∫ d/2

0
dzcos(q‖z)a(z)J1(q⊥a(z)) . (C.15)

For general rods, we would need to measure a(z) and then do this integration numeri-

cally for the desired q values. For a right circular cylinder, the remaining integral can

be done analytically. a(z) = a is a constant, and

I =
4πa
q‖q⊥

sin
(

q‖d
2

)
J1(q⊥a) . (C.16)

If we write the director for the cylinder (i.e. its axis) as d, the cross section becomes

dσ

dΩ

∣∣∣∣
Born

= ω4a2

c4
|n2−1|2

(q·d̂)2[q2−(q·d̂)2]
(1− sin2

θ cos2 φ)× (C.17)

sin2
(

q·d
2

)
J2

1

(
a
√

q2− (q · d̂)2
)

.
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D.1 SAXS variance

From equation equation 4.47 we have the photon counts for the kth N-particle diffrac-

tion pattern

nk(q) =
N

∑
α=1

n(q,ωk
α) . (D.1)

The mean intensity profile is

I(q) = 〈nk(q)〉k (D.2)

=
N

∑
α=1

〈
n(q,ωk

α)
〉

k
(D.3)

which, in the limit of large M, becomes the integral over continuous orientational dis-

tribution with probability p(ω) for orientation ω

I(q) →
N

∑
α=1

∫
ωα

dωα p(ωα)
∞

∑
n=0

np(n; n̄(q,ωα)) (D.4)

= N 〈n̄(q,ω)〉
ω

(D.5)

where we have used the moments in equations 4.49 and 4.50. Similarly, the variance

will approach

σ
2
IN
(q) =

N

∑
α,β=1

〈
n(q,ωk

α)n(q,ω
k
β
)
〉

k
−
(

N

∑
α=1

〈
n(q,ωk

α)
〉

k

)2

(D.6)

→
N

∑
α=1

∫
ωα

dωα

[
N

∑
n=1

n2 p(n; n̄(q,ωα))

]
(D.7)

+
N

∑
α 6=β=1

∫
ωα

∫
ωβ

dωαdωβ

[
N

∑
n=1

np(n; n̄(q,ωα))

][
N

∑
n=1

np(n; n̄(q,ωβ ))

]
−N2 〈n(q,ω)〉2

ω

= N
[〈

n̄2(q,ω)
〉

ω
+ 〈n̄(q,ω)〉

ω

]
+N(N−1)〈n̄(q,ω)〉2

ω
(D.8)

−N2 〈n(q,ω)〉2
ω

= N
[[〈

n̄(q,ω)2〉
ω
−〈n̄(q,ω)〉2

ω

]
+ 〈n̄(q,ω)〉

ω

]
(D.9)
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D.2 CFSAXS variance

The fluctuation correlation function is

C̃N(q1,q2) ≡ 〈δnk(q1)δnk(q2)〉k (D.10)

=
〈[

nk(q1)−
〈
n j(q1)

〉
j

][
nk(q2)−

〈
n j(q2)

〉
j

]〉
k

(D.11)

= 〈nk(q1)nk(q2)〉k−〈nk(q1)〉k 〈nk(q2)〉k (D.12)

→ N 〈n̄(q1,ω)n̄(q2,ω)〉
ω
−N 〈n̄(q1,ω)〉

ω
〈n̄(q2,ω)〉

ω
(D.13)

= N 〈δ n̄(q1,ω)δ n̄(q2,ω)〉
ω
. (D.14)

The variance is

σ
2
C̃N
(q1,q2) =

〈
(δnk(q1)δnk(q2))

2〉
k−〈δnk(q1)δnk(q2)〉2k . (D.15)

Upon inspection of the first term on the right-hand side

N

∑
α,β ,µ,ν=1

〈
δn(q1,ω

k
α)δn(q2,ω

k
β
)δn(q1,ω

k
µ)δn(q2,ω

k
ν)
〉

k
(D.16)

we see that there is one term where α = β = µ = ν , and then there are three kinds of

terms where two pairs of the indices are equal (e.g. α = β 6= µ = ν), but not equal to

each other. The remaining terms are products with terms like 〈δnk(q)〉k which approach

zero in the large M limit, so that we can write

σ
2
C̃N
→ N

〈
[δn(q1,ωk)δn(q2,ωk)]

2
〉

k
−N2 〈δn(q1,ωk)δn(q2,ωk)〉2k (D.17)

+N(N−1)
[
2〈δn(q1,ωk)δn(q2,ωk)〉2k +

〈
δn(q1,ωk)

2〉
k

〈
δn(q2,ωk)

2〉
k

]
= N

[〈
[δn(q1,ωk)δn(q2,ωk)]

2
〉

k
−〈δn(q1,ωk)δn(q2,ωk)〉2k

]
(D.18)

+N(N−1)
[
〈δn(q1,ωk)δn(q2,ωk)〉2k +

〈
δn2(q1,ωk)

〉
k

〈
δn2(q2,ωk)

〉
k

]
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Expanding terms further we have

σ
2
C̃N
→ N

[〈
n2(q1,ωk)n2(q2,ωk)

〉
k−〈n(q1,ωk)n(q2,ωk)〉2k (D.19)

−2
〈
n(q1,ωk)n2(q2,ωk)

〉
k 〈n(q1,ωk)〉k

−2
〈
n2(q1,ωk)n(q2,ωk)

〉
k 〈n(q2,ωk)〉k

+6〈n(q1,ωk)n(q2,ωk)〉k 〈n(q1,ωk)〉k 〈n(q2,ωk)〉k

+〈n(q1,ωk)〉2k
〈
n2(q2,ωk)

〉
k

+
〈
n2(q1,ωk)

〉
k 〈n(q2,ωk)〉2k−4〈n(q1,ωk)〉2k 〈n(q2,ωk)〉2k

]
+(N2−N)

[
〈n(q1,ωk)n(q2,ωk)〉2k

−2〈n(q1,ωk)n(q2,ωk)〉k 〈n(q1,ωk)〉k 〈n(q2,ωk)〉k

−〈n(q1,ωk)〉2k
〈
n2(q2,ωk)

〉
k−
〈
n2(q1,ωk)

〉
k 〈n(q2,ωk)〉2k

+
〈
n2(q1,ωk)

〉
k

〈
n2(q2,ωk)

〉
k +2〈n(q1,ωk)〉2k 〈n(q2,ωk)〉2k

]
.

Finally, upon inserting the moments in equations 4.49 and 4.50, we arrive at the vari-

ance expressed in equation 4.69.

D.3 Intensity statistics

We drop the q dependence for brevity. Letting φi j = q · (ri−r j), and noting that uncor-

related terms i 6= j vanish upon averaging over a large number of random phases, the

mean value is

〈Θ〉 =

〈
m

∑
i, j=1

fi f jeiφi j

〉
(D.20)

=

〈
m

∑
i= j=1

f 2
i

〉
+0 (D.21)

= m
〈

f 2〉 (D.22)
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where
〈

f 2〉 is the number-weighted average of f 2. Similarly, by noting that φii = 0 and

φi j =−φ ji, we arrive at the mean squared value

〈
Θ

2〉 =

〈
m

∑
i, j,k,l=1

fi f j fk flei(φi j+φkl)

〉
(D.23)

= ∑
i= j,k,l

f 2
i fk fleiφkl + ∑

i=l 6=k= j
f 2
i f 2

j +0 (D.24)

= 2m2 〈 f 2〉2
. (D.25)

Finally, we use the previous results to write the variance

〈
δΘ

2〉= 〈Θ2〉−〈Θ〉2 = 〈Θ〉2 . (D.26)
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