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ABSTRACT  

   

Learning and transfer were investigated for a categorical structure in 

which relevant stimulus information could be mapped without loss from one 

modality to another. The category space was composed of three non-overlapping, 

linearly-separable categories. Each stimulus was composed of a sequence of on-

off events that varied in duration and number of sub-events (complexity). 

Categories were learned visually, haptically, or auditorily, and transferred to the 

same or an alternate modality. The transfer set contained old, new, and prototype 

stimuli, and subjects made both classification and recognition judgments. The 

results showed an early learning advantage in the visual modality, with transfer 

performance varying among the conditions in both classification and recognition. 

In general, classification accuracy was highest for the category prototype, with 

false recognition of the category prototype higher in the cross-modality 

conditions. The results are discussed in terms of current theories in modality 

transfer, and shed preliminary light on categorical transfer of temporal stimuli. 
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Chapter 1 

INTRODUCTION 

Human‟s amazing ability to categorize different objects, feelings, or 

experiences has been a central focus of cognitive psychology since its inception.  

Initial studies of categorization focused on paradigm development (Fisher, 1916; 

Hull, 1920; Smoke,1932), hypothesis-testing(e.g.,Bruner,Goodnow, 

&Austin,1956; Bourne,1966) and learning variables (e.g., Homa,1984). The 

development of mathematical models for categorization is more recent and has 

occurred primarily in the past 20 years (Nosofsky, 1984; Ashby, Alfonso-Reese, 

& Turken, 1998). The majority of formal and quantitative models of 

categorization fall within three classes. Prototype models (Reed, 1972; Minda & 

Smith, 2001) assume that subjects categorize based on the similarity of the stimuli 

to the prototypical stimuli of each category.  The prototypes which represent each 

category are based upon a central tendency for that category built up by an 

integration of the observed examples within that category. Exemplar models 

(Medin & Schaffer, 1997; Nosofsky, 1998) suggest that subjects compute the 

similarity of any given stimulus to every exemplar in memory of each possible 

category. Decision bound models (Ashby & Gott, 1988; Ashby & Maddox, 1993)  

propose that subjects associate category responses to different regions of 

perceptual space and accept stimuli as category members depending on if they fall 

within the defined perceptual region.  A myriad of connectionist models also exist 

that are often derivations from the previously discussed models; Kruschke‟s 

ALCOVE (1996) reduces to an exemplar-based model and Metcalfe‟s 
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Holographic model (1982) is a prototype model in which pattern features are 

combined via convolution. Knapp & Anderson (1984) has formulated an early 

connectionist model that can act either as a prototype or exemplar model 

depending on the number of exemplars within a category.  Although there is 

empirical evidence which supports any of the classes of categorization models 

(and their endless variations), arriving at the conclusion that any one class of 

models appropriately describes all of human categorization would be built upon 

the erroneous assumption that subjects process category information similarly in 

every situation (Homa, 1984).  

Modern categorization experiments attempt to capture the natural and 

commonplace experience of category exposure by randomly presenting variable 

instances from multiple domains.  These experiments are usually deficient in one, 

critical way – virtually all studies explore stimuli presented through a single 

modal input.  .Most sensory events we experience in the real world deal with 

some level of sensory integration that combines multiple inputs even if the 

information they provide is redundant (Stein & Meredith, 1993).  However, the 

vast majority of research attempting to model categorization has dealt with 

category learning of stimuli which are constrained to a single modality. Visual 

stimuli have dominated category research with stimuli ranging from random dot 

patterns (Posner & Keele,1968) to rocket ships (Nosofsky, Palmeri, & McKinley, 

1994). Auditory (Pitt, 1994), and to a much lesser extent, haptic stimuli (Homa et 

al., 2009) have been used infrequently to explore category learning.  Multi-modal 

stimuli have rarely been used in categorization tasks, even though perception is 
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typically multisensory and naturally occurring categories almost always involve 

multimodal integration in real life. 

The integration of modalities into a common precept serves two functions: 

to maximize the information delivered from the different sensory modalities and 

to reduce the variance in the sensory estimate in order to increase its reliability 

(Ernst & Bulthoff, 2004).  The mechanisms, both physically and psychologically, 

that work to achieve these goals are not as straight forward. Ernst and Bulthoff 

(2004) propose a model in which information from each modality is weighted and 

summed to form a robust percept. This weighting is hypothesized to be done on 

the fly by averaging the fluctuations of a signal over time. One study by Ernst and 

Banks (2002) illustrates this dynamic weighting principal. In this experiment, a 

subject viewed a reflected display in a mirror. Behind the mirror, the subject‟s 

hands were fitted into a haptic feedback device that could provide feedback based 

on the position of the subject‟s fingers. The subjects were asked to make size 

estimations of a line segment that was presented both on the mirror and 

represented spatially between their fingers via the force-feedback device. They 

first looked at the subject‟s estimations using either the visual or haptic modality, 

and then looked at how the visual and haptic modality interacted when 

information was available from both. The visual modality was weighted heavily 

when there was no manipulation of the display present. However, when visual 

noise was added to the display, subjects began to rely more heavily on the 

simultaneously available haptic information. They concluded that this is evidence 
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that the nervous system has access to sensory reliabilities and adjusts accordingly 

to maximize performance on a given task.  

A body of research does exist on the processing of stimuli which could be 

represented in more than one modality.  Glenberg and Jona (1991) presented a 

sequence of rhythms consisting of both long and short events in either the 

auditory or visual modality. Subjects were then asked to recreate the sequences of 

long and short events.  They found that modality differences did occur, namely 

with an auditory advantage for the reproduction of the temporal rhythms in 

general. This auditory advantage decreased as the inter-stimulus interval between 

the elements of the rhythms increased.  Collier and Logan (2000) investigated 

short term memory performance for similar auditory and visually presented 

rhythms. They asked subjects to make same/different judgments about two 

rhythms that were presented sequentially either visually or auditorily. They too 

found an auditory superiority effect which decayed as presentation rate slowed.  

Watkins et al. (1992) had subjects to recreate sequences of flashes and beeps 

which had variable ISIs by tapping out the sequences on a computer. They found 

no differences between auditory and visually presented stimuli unless subjects 

were asked to mouth an irrelevant syllable during stimuli presentation, suggesting 

that sub-vocalization may have been occurring during stimulus presentation.  

Bresciani, Dammeier and Ernst (2008) also examined the perception of sequences 

of events, but included haptics along with vision and audition. Subjects were 

presented a number of beeps, tones, and taps and asked to focus on the number of 

events occurring in one modality (the target) and ignore the rest (the background). 
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They found that the visual modality was most susceptible to background-evoked 

bias and the least effective in biasing the other two modalities; audition was the 

least susceptible to background-evoked bias and the most susceptible at biasing 

the other modalities. In all cases, the background did bias the target response, 

leading the authors to conclude that the three modalities were automatically 

integrated.  Notably lacking, however, are studies investigating non-modal 

specific stimuli using a category learning paradigm.  

The primary focus of the present study is to investigate how categories are 

learned where the stimuli can be presented visually, auditorily, haptically with an 

underlying isomorphic structure. By isomorphic, we mean that the underlying 

abstract structure permits a mapping from one modality to another without 

apparent loss of information.  This can be contrasted with studies that use stimuli 

that vary along dimensions that are more amenable to one modality than others, 

e.g., texture can be processed in greater detail in the haptic modality than in the 

visual modality (e.g., Pensky, Johnson, Haag, & Homa, 2008).  The conditions 

explore category learning where the categories are structured identically but 

where only the modality of input differs. We are also interested in transfer 

performance following learning, both classification of novel patterns (“Which 

category does this stimulus belong to?”) and recognition (“Is this stimulus old or 

new?”). Of major interest in the later is the performance costs involved in learning 

a category in one modality and being tested on the category in another modality. 

If novel stimuli are as easily recognized in a separate modality than that which 
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they are learned, this could provide evidence that the category structure is amodal 

(Barsalou, 1999) or the abstraction process strips modality information. 

The basic category structure is shown in Figure 1, where the duration of 

the stimulus is shown on the X-axis, and the stimulus complexity (defined as the 

number of activations within the duration) is shown on the Y-axis. This structure 

was inspired by Shepard‟s multidimensal scaling (1963) of Rothkopf‟s Morse 

Code confusability matrix (1957), in which he found he could represent the 

similarity of Morse Code letters and digits on a two dimensional plane with the 

number of components on one axis (here termed „complexity‟) and the ratio of 

dots to dashes on the other (which is analogous to length).
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Chapter 2 

PREDICTED RESULTS 

Given the paucity of data (and theory) on the learning of haptic and 

auditory categories that have a prototype structure, strong predictions are 

premature.  Nonetheless, if modality of input is less critical that is the available 

stimulus information, then similar learning rates for each modality of input is 

predicted.  That is, we should expect error rates to systematically decline across 

learning blocks, regardless of modality of input.  In a similar vein, we might then 

predict that classification and recognition scores from the transfer test will be 

similar in all within-modal conditions (Auditory to Auditory, Visual to Visual, 

etc.). This would be consistent with the assumption that regardless of the modality 

of learning, the category structure is perceived and processed by each modality 

with equal facility.  However, if processing differences exist among the various 

modalities, even with an isomorphic structure, then an advantage for one modality 

of input might occur (e.g., Glenberg and Jona (1991)).  It is possible, for example, 

that even isomorphic structures might be retained differently in the different 

modalities or perhaps the integration of patterns might be superior in one modality 

than another.  Regardless, we expect that learning and transfer would be similar 

for categories learned visually, haptically, or auditorily.   

Another set of predictions exists for the cross-modality conditions at the 

time of transfer, with particular interest on the category prototype.  To the extent 

that information is fully transferable between modalities for isomorphic 

categories, then classification of old and novel patterns is expected.  That is, 
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classification accuracy of transfer stimuli that were „learned‟ in a different 

modality should be classified with comparable accuracy to conditions involving 

same-modality transfer.  Consistent with previous category literature, we would 

predict that the category prototype might be classified best of all (e.g., Posner & 

Keele, 1968; Homa, 1984).   

Results for the recognition test in the same and cross-modality conditions 

are less clear but potentially most intriguing.  A common finding is that the 

category prototype is often falsely recognized as old (e.g., Omohundro, 1981), an 

outcome that has been found as consistent with both prototype models 

(Omohundro, 1981) but also claimed by advocates of exemplar models  

(Nosofsky & Zaki, 1998).  However, the recognition test used in the cross-

modality conditions of the present study is unique – subjects will be asked to 

identify a pattern as „old‟ if it appeared in its isomorphic form in an alternate 

modality.  If the subject stores only particulars and preserves the modality of input 

during learning, then the category prototype in the cross-modality conditions 

should be called „new‟.  That is, there is, currently, no mechanism in exemplar 

theory which permits information transfer from one modality to another.  Without 

additional assumptions, the summed familiarity to stored instances in one 

modality should be low when patterns in an alternate modality are presented.  

 In contrast, prototype theory, in an expanded form, could accommodate 

this result.  Typically, prototype theory has assumed that the training patterns are 

integrated in memory, with the summary representation functioning as the 

category prototype.  However, no current theory of prototype abstraction assumes 
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that the summary representation is also modality-free.  Modality-free 

representation has been argued in other domains of memory.  The foremost 

advocate of modality-free memory storage is Pylyshyn (1973) who has asserted 

that all information is ultimately coded in terms of modality-free assertions or 

properties.  Should the prototype be falsely recognized at high rates in the cross-

modality conditions – perhaps even at higher rates than in the same-modality 

conditions - then preliminary support would be provided for the view that the 

abstracted prototype is modality-free as well.   
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Chapter 3 

METHOD 

Participants 

A total of 216 participants were used in the current study. Five participants 

were excluded for having learning errors above chance by the final learning 

phase. 

Stimuli and Design 

Stimuli were designed to encompass two non-modal specific dimensions: 

duration and complexity.  Duration ranges from one to three seconds. Complexity 

was defined as the number of times an even occurred within the duration. For 

instance, a visual stimulus with a complexity level of two and a duration level of 

one second might be a light turning on for 300ms, off for 400ms, and then back 

on for 300ms.  Complexity ranges from 2 to 10 activations within the given 

duration. Complexity and duration were correlated so that the longer the duration 

of the stimulus, more activations would occur within that time (see Figure 1).    

Three combinations of duration and complexity were chosen to act as 

prototypes. Eight category members were generated from each of the three 

prototypes by moving up or down a level in duration and/or complexity. Levels in 

duration defined as +/-500ms of total stimulus duration and levels of complexity 

were +/- 1 activation. A bin-sorting algorithm which was constrained by the level 

of complexity and duration was then used to distribute the activations among the 

stimuli randomly. For instance, the simplest stimulus has a length of one second 

and a complexity level of two, meaning two activations. The algorithm would sort 



  11 

20 units of duration (each being 50ms) into three „bins‟ which represented the 

onset and offset of the stimulus (the two activations) and the „off  bin‟ which 

separated them in which there was no activity.  Figure 2 illustrates the prototypes 

from each category, with each gray square representing a 50ms „on‟ period (e.g., 

an LED light or the buzzer is activated) and each white rectangle representing a 

50ms „off‟ where none of the elements are active. 

Each category consists of 9 stimuli total- 1 prototype and 8 distortions. Of 

these nine stimuli, four were chosen as learning trial stimuli that would be 

presented in the first phase of the experiment, and the remaining five stimuli 

(including the prototype) would be presented in the transfer phase of the 

experiment. The categories were linearly discriminable in each dimension. The 

duration and complexity of each stimulus were used as parameters and a computer 

generated and arranged the positions and length of the activations within each 

stimuli. The stimuli were programmed into an Arduino Diecimila microcontroller 

where they were controlled through the serial console of a Windows XP 

computer.   Either a light emitting diode (LED), a 700Hz buzzer, or a 14k RPM 

vibrating motor were connected to the Arduino in order to deliver the stimuli to 

the subject. 

Procedure 

Subjects were randomly assigned to one of nine learning/testing 

conditions: visual-visual, visual-auditory, visual-haptic, auditory-auditory, 

auditory-visual, auditory-haptic, haptic-haptic, haptic-visual, and haptic-auditory.  

All subjects in each condition were read the same instructions informing them that 
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they would be charged with the task of categorizing sequences of events into three 

categories. Subjects were told that there would be two stages to the experiment, a 

learning phase and a final testing phase. They initially received instructions about 

the learning phase and were told that instructions for the final testing phase would 

be given at that time. Each learning phase consisted of three study/test blocks 

containing each of the categories‟ 4 learning trial stimuli. The twelve stimuli were 

presented in random order using either the light, buzzer, or vibrating motor 

depending on the modal condition. Following the presentation of each individual 

stimulus, the experimenter informed the subject that the stimuli belonged to either 

category A, B, or C. If the subject was in the haptic condition, they were asked to 

wear headphones through which white noise was played so they could not get 

auditory feedback from the vibrating motor.  After the experimenter presented all 

12 learning stimuli and their respective categories, the same twelve stimuli were 

presented again in random order in the same modality and the subject was asked 

to place them in the correct category. Feedback was given as to whether or not the 

subject classified each stimulus correctly. This learning block was repeated three 

times. After the final study/test block, instructions for the transfer testing phase 

were read.  Depending on the condition the modality of the final transfer phase 

was either the same as they experienced in the learning phase or switched to one 

of the other modalities. The transfer procedure uses that of previous studies (e.g., 

Omohundro, 1981) - the subject will be presented a stimulus and asked to render 

and old/new judgment. Following that, a category judgment (A,B,C) is required, 

followed by the next stimulus.  All 9 stimuli in each of the three categories were 
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presented resulting in a total of 27 recognition judgments and 27 category 

judgments.  No feedback was given throughout the final testing phase.



  14 

Chapter 4 

RESULTS 

A repeated measures ANOVA was performed comparing the three 

learning trials from the three learning modalities. Significant learning occurred 

across learning trials, and pairwise comparisons confirmed that each learning trial 

had significantly less error than the trial preceding it, F(2,426)=52,p<.001. There 

was a significant main effect of modality F(2,213)=3.31,p<.05, and pairwise 

comparisons indicated that there was significantly fewer errors for the visual 

learning condition when compared to the haptic learning condition over all three 

trials (p<.05). There was a significant learning trial by learning modality 

interaction, F(4,426)=3.006,p<.05. Follow-up pairwise comparisons showed that 

the haptic condition was only significantly worse than the visual condition in 

learning trial one (p<.01), and haptic was significantly worse than both visual and 

auditory in trial two (p<.05), but by trial three there were no significant 

differences among the modalities as illustrated in Figure 3. Even though visual 

learning had an advantage in earlier learning trials, auditory learning ended up 

with the least amount of errors, however it was nonsignificant. Regardless, this 

does lend support for the auditory superiority in rhythm processing (Glenberg & 

Jona, 1991).  

We analyzed the recognition data with the modalities collapsed into 

unimodal (audio to audio, etc.) and crossmodal (audio to visual, haptic to audio, 

etc.). We compared the recognition performance of the three types of items in the 

transfer test: old items from the learning trials, new items, and prototype items. 
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The results show that there was a significant main effect of item type 

F(2,428)=12.05,p<.001. There was also a significant main effect of modalities, 

with all items in the cross modal condition being called “old” more often , 

F(1,214)=9.7,p<.01. There was not a significant interaction. Post hoc tests 

showed all item types significantly different than one another with the prototype 

being called old the most (M=.65, SE=.01), followed by old items 

(M=.60,SE=.01), followed by new items (M=.55,SE=.01). The same analysis was 

performed without collapsed modal conditions, comparing each condition to one 

another. There was a significant main effect of item type, F(2,207)=4.61,p<.05, 

and of modal condition, F(8,207)=3.95,p<.001. There was no significant 

interaction. Pairwise comparisons showed that the unimodal haptic to haptic 

condition called items old significantly less than the haptic to visual (p<.05) or 

haptic to auditory (p<.01) group. The audio to visual group was also significantly 

less biased than the haptic to audio group (p<.05).  Figure 4 shows the likelihood 

of calling an item old for each of the nine conditions. 

Turning to transfer classification errors, we once again began with the 

modal conditions collapsed into unimodal and crossmodal groups. There was a 

significant difference in the classification performance across the different item 

types, F(2,428)=12.14,p<.001. There was no main effect of modality, nor was 

there a significant interaction. Pairwise comparisons showed that new items 

(M=.23,SE=.01) were classified with significantly more error than both old 

(M=.18,SE=.01) and prototype (M=.16,SE=.02) items. With the expanded modal 

category, there was of course still no main effect of modality.  Item was still 
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significant, F(2,414)=15.574, p<.05.  Figure 5 shows the probability of an error 

on the transfer test for each item type and condition. 

Another interesting finding was looking at the cost of crossmodal transfer 

in classification, as shown in Figure 6.  Relative to the unimodal conditions, the 

crossmodal conditions classify items in the transfer test worse only in the auditory 

and haptic learning conditions.  When subjects learned the structure visually, they 

actually tended to perform better in the crossmodal conditions.



  17 

Chapter 5 

DISCUSSION 

The present study investigated the learning and later transfer of categorical 

patterns where the stimuli were defined by a temporal sequence of events. 

 Unique to the present study is the use of a categorical structure that was 

isomorphic across modality of presentation.  By isomorphic, we mean that a 

mapping existed between the stimuli in different domains (Shepard & Chipman, 

1970).  In the present study, each temporal stimulus presented in one modality 

(e.g., a visual sequence of events) could be reproduced, without loss of 

information, into an alternate modality (e.g., a haptic sequence).  Of critical 

concern was whether categorical information, acquired in one modality, could be 

transferred without significant loss into an alternate modality. 

               In the present study, nine separate conditions were run, three unimodal 

and six crossmodal.  Common to each condition was the initial learning of three 

categories that were linearly separable in two dimensions.  In the unimodal 

conditions, learning and transfer always occurred in the same modality; in the 

crossmodal conditions, transfer occurred to an alternate modality.  Although 

considerable research has explored cross modal transfer in stimulus identification 

paradigms (Glenberg & Jona, 1991; Collier & Logan, 2000, Klatzky & Lederman, 

1985;  Guttman, Gilroy & Blake, 2005.), almost nothing is known about 

crossmodal transfer involving categorical knowledge.  To my knowledge, no one 

has explored crossmodal transfer of categorical information for an isomorphic 

structure.  Normally, the various modalities provide both shared (common) 
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information about a stimulus, as well as unique properties.  Thus, shape can be 

acquired both by vision and touch, whereas texture and malleability is gained 

primarily from touch.  Transfer between modalities is often quite good but clear 

differences also can be obtained (e.g., Pensky, Johnson, Haag, & Homa, 2009). 

 The question that arises in the present study is this - if the stimulus events are, in 

some sense, equivalent across modalities, will transfer differences be minimized? 

 If there is a differential cost among the modalities, which are easily translated, 

and which are not?    

               In the present study, five major results were obtained: (a) Categories 

with an isomorphic structure were learned faster when apprehended visually, 

although all conditions asymtoped to a common terminal level; (b) Calling a 

pattern 'old' was highest for the prototype, regardless of learning or transfer 

modality; (c) Transfer accuracy, regardless of condition, followed by order 

prototype > old > new; (d) the haptic modality was associated with the greatest 

loss of information when transferred to an alternate modality; vision was the least 

affected; and (e) Calling the prototype 'old' was often higher in an alternate 

modality. 

               Each of these results is discussed briefly in turn.  These results are then 

discussed  in terms of a descriptive model which suggests that features directly 

experienced in one modality may activate corresponding features in an alternate 

modality. 

The most basic result of the current study was that our isomorphic 

temporal categories are in fact learnable. Although there is a visual advantage in 
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early learning, it tends to plateau and by the third learning trial all modalities see 

equal error rates. There was observed auditory superiority on the terminal learning 

trial, but it was not significantly different than the other modalities. Glenberg and 

Jona (1991) were able to eliminate the auditory advantage with rhythmic stimuli 

when the stimuli were made more complex by removing any relationship between 

their internal components. The stimuli in the present experiment were devoid of 

any rhythmic considerations or repetitions, and as such could be considered 

sufficiently complex to lack an auditory advantage. 

The prototype of each category was false alarmed to in recognition testing 

during transfer more than both new and learning items. This is consistent with a 

number of findings (Posner & Keele, 1968; Homa, 1984). This suggests that 

subjects may be forming an abstracted prototype internally when they are learning 

the category structures, and this abstracted prototype is referenced during 

categorical decisions, resulting in a higher false alarm rate. When looking at 

unimodal versus crossmodal conditions, items received higher oldness ratings 

when the transfer modality differed from the learning modality, absent of any 

item type interaction.  With the modal specific features of a stimulus no longer 

relevant, as when the modality is switched, recognition can no longer rely as 

much on source specific information and may be left to rely more on familiarity 

(McElree, Dolan & Jacoby, 1999). If a similar explanation is used to explain why 

subjects who learned the categories haptically had a significantly higher bias to 

call items old when modality was switched in transfer, this could be seen as 
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evidence that the haptic modalities  is less adept at encoding temporal stimuli 

versus the hearing and vision.  

As opposed to recognition, classification performance in transfer did not 

reflect any significant differences between the modalities. However, a similar 

prototype effect was found with the prototype being classified with significantly 

less error than both the new items and the learning trial items. This type of finding 

(Homa,1984; Minda & Smith 2011) is once again consistent with the possibility 

that subjects are abstracting an internal prototype during category learning, and 

this prototype is sufficiently familiar by transfer that it is categorized with less 

error than even stimuli that subjects have had repeated exposure to.  The lack of 

significant modality effects along with the relatively low overall classification 

error rates could suggest that subjects are learning the categories at a more amodal 

level of processing, where switching the modality on transfer would have a 

negligible effect. However, we cannot completely discount modalities effect in 

classification. As seen in Figure 6, classification in transfer did seem to be 

modulated by learning modality. Specifically, subjects who learned the stimuli 

visually seemed to have no deficit when transferring to other modalities. On the 

contrary, these subjects (in the visual-haptic and visual- auditory) performed 

better on classification than in the unimodal (visual to visual) condition. It is 

difficult to say what particular quality unique to vision would facilitate transfer. 

Freides (1974) suggested that when information is delivered to modality that is 

not ideal, that information is translated into the code of the more ideal modality.  

Visual  learning is best when it deals with spatial rather than temporal 
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information, and that auditory and haptic are similar in that they both possess 

temporal learning well (Mahar, Mackenzie & McNicol, 1994). If temporal 

learning is presented visually, then the process of translation may demand a 

deeper processing of the information. 

One way of conceptualizing our results is represented by a descriptive 

model that includes the various modalities.  Each encounter of a physical stimulus 

is represented by a feature vector containing several dimensions (e.g. Hintzman, 

1986). Among these dimensions would be feature items that correspond with 

specific modal inputs, such as below: 

                                         

where any encounter with any stimulus could be represented by a vector 

containing features that are experienced in a specific modality (v1 being a visual 

feature, a1 being an auditory feature, and h1 being a haptic feature). 

Because a great deal of human interaction with the world involves items 

which can deliver robust and diverse modal information, these modality specific 

vectors could contain both redundant (such as visual and proprioceptive estimates 

of size) and unique (such as the smell and taste of a vanilla bean) information for 

multimodal stimuli. What then would happen during an experience where not all 

of the modalities are involved, such as observing a basketball sitting on a shelf 

across the room? The simplest (computationally) output would assume that  a 

vector that was only activated in the relevant modality would occur  (so in this 

case vision) and remained unaffected in all other modalities : 
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Such representations are problematic.  If, while your gaze was not on the 

basketball on the shelf, you heard a boomy, rubbery bouncing noise, you would 

assume that it came from that same ball. Just as if the lights went out and you 

were fumbling through the dark trying to find a switch and your hand brushed the 

ball.  As illustrated in the current experiment, stored experiences cannot exist 

statically in the same modality because cross modal transfer is possible with 

relatively little loss. 

 One solution to this problem would be to assume that the stored 

experiences are not static and that they could be manipulated when a situation 

called for it, such as the modality switch in our current experiment. This 

computed vector would be produced on demand and would need some sort of 

modality emulation system that was both quick and was based on past experience.  

Barsalou (1999) proposed such a system that employs internal simulations which 

determine if a novel input belongs to an existing concept. Under Barsalou‟s 

theory, any experience with a stimulus produces a rich multimodal framework in 

which manipulations of that stimulus can be carried out internally. Further 

experiences with this stimulus are integrated within this simulation, and 

experience with similar stimuli can be integrated into a more general simulation 

that can be used to test for category membership.  For instance, extensive 

experience with one particular dog, Fido, would amass a simulator that is rich 

with multimodal information, including how he smells, sounds, feels, etc. Fido‟s 

simulation is a subset of the simulator for the more general concept of dog, which 

is an integrated account of all past dog experiences. When a new dog-like figure 
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is heard barking in the back yard, this person first would see if the simulator for 

the general dog concept was able to recreate the dog-like figure and the barking 

without any glaring inconsistencies.  If they were successful and the dog-like 

figure was indeed a dog, then the Fido simulator would attempt to simulate the 

figure and bark in turn.  It is through this process of simulation that Barsalou is 

able to account for categorization. The fact that these simulators operate in a 

framework that is multimodal could account for the type of crossmodal transfer 

that we observed in the current experiment. While a subject was learning the 

categories in one modality, they were building a simulation of that category in 

which membership of learning stimuli was determined by the ability of that 

category‟s simulator to simulate that learning stimuli. When the crossmodal 

transfer was introduced, subjects were then able to use the existing category 

simulations to attempt to simulate the novel stimuli to determine if it did or did 

not belong to that category.  Such a model would predict good classification in 

alternate modalities, just as we found. However, if simulators of each category 

were built up of experienced stimuli within that category, and novel stimuli (both 

in the same and different modality) required additional simulation and a 

comparison process to determine category membership, then you would expect 

good recognition of old stimuli just as a function of how difficult the additional 

simulation was. The recognition rates in our current experiment did not reflect 

this, as we had high false alarm rates and generally poor recognition performance. 
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A third possibility for storage of unimodal modality vectors exists in 

which the vector is stored with the experienced modality activated along with a 

partial resonant activation in the other modalities:  

                                   

In this example, the object was experienced visually and, therefore, each visual 

feature has a value.  However, some (but perhaps not all as indicated by zeros in 

some slots) auditory and haptic features would also be activated.  Neurological 

research has found audio-visual (Calvert et. al, 1997; Giard & Peronnet, 1999), 

visual-haptic (Amedi, Malach, Hendler, Peled & Zohary, 2001), and auditory-

somatosensory (Sperdin, Cappe, Foxe, & Murray, 2009) interactions in the brain 

given unimodal stimuli. These findings suggest that the neocortex as a whole is 

multisensory (Ghazanfar & Schroeder, 2006).  James et. al (2002) found that 

haptic exploration of novel clay objects produced activation not only in the 

somatosensory cortex, but also in areas of the brain that are primarily associated 

with visual processing. Sathian and Zangaladze (2002) used transcranial magnetic 

stimulation (TMS) to disrupt processing in the same extrastriate visual cortex 

while subjects attempted to discriminate between different tactile gradients. When 

the TMS was activated, tactile discrimination was hindered, indicating that visual 

processing was necessary during the actual tactile discrimination task, not just 

used in simulations afterwards. So in our basketball illustration, visually 

experiencing the ball would not only activate the visual features in the vector, but 

would at the same time activate non-visual corresponding features that may 

represent features such as texture.  Because one to one mappings from one 
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modality to another do not exist, the activation in the „phantom modality‟ would 

be weaker and possibly less reliable than in the experienced modality. In the 

context of our current experiment, this theory could allow for crossmodal transfer 

while at the same time account for poor recognition because of the decreased 

reliability of the crossmodal information. This could also account for the 

asymmetrical transfer shown in Figure 6 by suggesting that the visual modality 

has more resonant features in the auditory and haptic modalities than the other 

way around.  

  Overall, the current experiment demonstrated that categorical information 

can be reliably transferred from one modality to another.  Classification error 

rates during transfer were low in both unimodal and crossmodal conditions, 

indicating that whatever internal representation was used for this category 

structure was robust for changes in modality. In every condition, the prototype 

had the fewest classification errors False alarms in recognition were higher in 

crossmodal conditions across all item types, and the prototype of each category 

was false alarmed to most of all. Further research into cross-modal categorization 

could employ a multiple modalities in the learning phase and a source 

identification task in the transfer phase, perhaps imbedded with delayed tests, to 

assess remaining questions of how accessible and resilient modality information 

of stored concepts really is. 



  26 

REFERENCES 

Amedi, A., Malach, R., Hendler, T., Peled, S., & Zohary, E. (2001). Visuo-haptic 

object-related activation in the ventral visual pathway. Nature 

Neuroscience, 4(3), 324-330. doi:10.1038/85201 

 

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A 

neuropsychological theory of multiple systems in category learning. 

Psychological Review, 105(3), 442-481. doi:10.1037/0033-295X.105.3.442  

 

Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and 

categorization of multidimensional stimuli. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 14(1), 33-53. 

doi:10.1037/0278-7393.14.1.33  

 

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain 

Sciences, 22(4), 577-660. doi:10.1017/S0140525X99002149 

 

Bourne, L.E. (1966). Human conceptual behavior. Boston: Allyn and Bacon. 

 

Bresciani, J., Dammeier, F., & Ernst, M. O. (2008). Tri-modal integration of 

visual, tactile and auditory signals for the perception of sequences of events. 

Brain Research Bulletin, 75(6), 753-760. 

doi:10.1016/j.brainresbull.2008.01.009  

 

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. Oxford, 

England: John Wiley and Sons.  

 

Calvert, G. A., Bullmore, E. T., Brammer, M. J., & Campbell, R. (1997). 

Activation of auditory cortex during silent lipreading. Science, 276(5312), 

593-596. doi:10.1126/science.276.5312.593 

 

Collier, G. L., & Logan, G. (2000). Modality differences in short-term memory 

for rhythms. Memory & Cognition, 28(4), 529-538.  

 

Ernst, M. O., & Banks, M. S. (2002, Humans integrate visual and haptic 

information in a statistically optimal fashion. Nature, 429-433.  

 

Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. 

Trends in Cognitive Sciences, 8(4), 162-169. doi:10.1016/j.tics.2004.02.002  

 

Fisher, S. C. (1916). The process of generalizing abstraction; and its product, the 

general concept. Psychological Monographs, 21(2.90), 1–209. 

 



  27 

Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially 

multisensory? Trends in Cognitive Sciences, 10(6), 278-285. 

doi:10.1016/j.tics.2006.04.008 

 

Giard, M. H., & Peronnet, F. (1999). Auditory-visual integration during 

multimodal object recognition in humans: A behavioral and 

electrophysiological study. Journal of Cognitive Neuroscience, 11(5), 473-

490. doi:10.1162/089892999563544 

 

Glenberg, A. M., & Jona, M. (1991). Temporal coding in rhythm tasks revealed 

by modality effects. Memory & Cognition, 19(5), 514-522.  

 

Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see: 

Auditory encoding of visual temporal sequences. Psychological 

Science, 16(3), 228-235. doi:10.1111/j.0956-7976.2005.00808.x 

 

Hillis, J. M., Ernst, M. O., Banks, M. S., & Landy, M. S. (2002). Combining 

sensory information: Mandatory fusion within, but not between, senses. 

Science, 298(5598), 1627-1630. doi:10.1126/science.1075396  

 

Hintzman, D. L. (1986). "Schema abstraction" in a multiple-trace memory 

model. Psychological Review, 93(4), 411-428. doi:10.1037/0033-

295X.93.4.411 

 

Homa, D., Kahol, K., Tripathi, P., Bratton, L., & Panchanathan, S. (2009). Haptic 

concepts in the blind.Attention, Perception, & Psychophysics, 71(4), 690-

698. doi:10.3758/APP.71.4.690 

 

Homa, D., & Cultice, J. C. (1984). Role of feedback, category size, and stimulus 

distortion on the acquisition and utilization of ill-defined categories. Journal 

of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 83-

94. doi:10.1037/0278-7393.10.1.83  

 

Hull, C. L. (1920). Quantitative aspects of the evolution of concepts. 

Psychological Monographs, 28(1), 1-86.  

 

James, T.W., Humphrey, J, Gati, J.S., Philip, S.,Menon, R.S. & Goodale, M.A. 

(2002). Haptic study of three-dimensional objects activates extrastriate visual 

areas. Neuropsychologia, 40, 1706-1714. 

 

Knapp, A, & Anderson, J. (1984). Theory of categorization based on distributed 

memory storage. Journal of Experimental Psychology: Learning, Memory, 

and Cognition, 10(4), 616-637. 

 



  28 

Klatzky, R. L., Lederman, S. J., & Metzger, V. A. (1985). Identifying objects by 

touch: An "expert system.".Perception & Psychophysics, 37(4), 299-302. 

 

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of 

category learning. Psychological Review, 99(1), 22-44. doi:10.1037/0033-

295X.99.1.22  

 

Mahar, D., Mackenzie, B., & McNicol, D. (1994). Modality-specific differences 

in the processing of spatially, temporally, and spatiotemporally distributed 

information. Perception, 23(11), 1369-1386. doi:10.1068/p231369 

 

Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and exemplar 

models of categorization. Perception & Psychophysics, 53(1), 49-70.  

 

McElree, B., Dolan, P. O., & Jacoby, L. L. (1999). Isolating the contributions of 

familiarity and source information to item recognition: A time course 

analysis. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 25(3), 563-582. doi:10.1037/0278-7393.25.3.563 

 

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. 

Psychological Review, 85(3), 207-238. doi:10.1037/0033-295X.85.3.207  

 

Metcalfe, J. A. (1982). A composite holographic associative recall model. 

ProQuest Information & Learning). (Electronic; Print). (1983-53209-001)  

 

Minda, J. P., & Smith, J. D. (2001). Prototypes in category learning: The effects 

of category size, category structure, and stimulus complexity. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 27(3), 775-

799. doi:10.1037/0278-7393.27.3.775  

 

Minda, J.P., & Smith, J.D. (2011). Prototype models of categorization:basic 

formulation, predictions, and limitations. In E. Pothos (Ed.), Formal 

Approaches in Categorization (pp. 40-64). New York, New York: 

Cambridge University Press. 

 

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception 

model of classification learning. Psychological Review-New York-, 101, 53-

53.  

 

Nosofsky, R. M. (1984). Choice, similarity, and the context theory of 

classification. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 10(1), 104-114. doi:10.1037/0278-7393.10.1.104  

 

Nosofsky, R. M., & Zaki, S. R. (1998). Dissociations between categorization and 

recognition in amnesic and normal individuals: An exemplar-based 



  29 

interpretation. Psychological Science, 9(4), 247-255. doi:10.1111/1467-

9280.00051  

 

Omohundro, J. (1981). Recognition vs. classification of ill-defined category 

exemplars. Memory & Cognition, 9(3), 324-331.  

 

Pensky, A. E. C., Johnson, K. A., Haag, S., & Homa, D. (2008). Delayed memory 

for visual-haptic exploration of familiar objects. Psychonomic Bulletin & 

Review, 15(3), 574-580. doi:10.3758/PBR.15.3.574 

 

Pitt, M. A. (1994). Perception of pitch and timbre by musically trained and 

untrained listeners. Journal of Experimental Psychology-Human Perception 

and Performance, 20(5), 976-985.  

 

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of 

Experimental Psychology,77(3), 353-363. doi:10.1037/h0025953 

 

Pylyshyn, Z. (1973).  What the Mind's Eye Tells the Mind's Brain.  Psychological 

Bulletin, 1973. 

 

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 

3(3), 382-407. doi:10.1016/0010-0285(72)90014-X  

 

Rothkopf, E. Z. (1957). A measure of stimulus similarity and errors in some 

paired-associate learning tasks. Journal of Experimental Psychology, 53(2), 

94-101.  

 

Sathian, K., & Zangaladze, A. (2002). Feeling with the mind's eye: Contribution 

of visual cortex to tactile perception. Behavioral Brain Research, 135(1-2), 

127-132. doi:10.1016/S0166-4328(02)00141-9 

 

Shepard, R. N. (1963). Analysis of proximities as a technique for the study of 

information processing in man. Human Factors, 5, 33-48.  

 

Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal 

representations: Shapes of states.Cognitive Psychology, 1(1), 1-17. 

doi:10.1016/0010-0285(70)90002-2 

 

Smoke, K. L. (1932). An objective study of concept formation. Psychological 

Monographs.42, no, 4, 46.  

 

Sperdin, H. F., Cappe, C., Foxe, J. J., & Murray, M. M. (2009). Early, low-level 

auditory-somatosensory multisensory interactions impact reaction time 

speed. Frontiers in Integrative Neuroscience, 3. 

doi:10.3389/neuro.07.002.2009 



  30 

Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, 

MA, US: The MIT Press.  

Watkins, M. J., LeCompte, D. C., Elliott, M. N., & Fish, S. B. (1992). Short-term 

memory for the timing of auditory and visual signals. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 18(5), 931-

937. doi:10.1037/0278-7393.18.5.931 

  



  31 

 

 Figure 1. Stimuli Construction. The stimuli represented by a triangle are 

the category prototpyes. The square stimuli represent the learning trial 

stimuli. The diamond stimuli are category members that are not presented 

until the transfer test. 
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Category 1 

Category 2

Category 3  
Figure 2. Temporal structure of the category prototypes. Each block represents 

50ms. Gray squares are activated, white are inactive. 
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Figure 3. Learning trial errors. Learning trial errors out of 12 over three learning 

trials. There was no significant difference between modalities by the third trial. 
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 Figure 4. Recognition response for each condition. For each condition, the 

percent of stimuli in transfer called „old.‟ The prototype was called old in all 

conditions but visual-audio, even though the subjects had never experienced it. 
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 Figure 5. Classification error for each condition. The percent of error for each 

object type in each condition. For most cases, the prototype experienced the least 

amount of classification error. 
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 Figure 6. Classification cost of crossmodal transfer. This chart indicates the 

change in classification error performance in crossmodal conditions relative to the 

unimodal condition (shown here as the baseline
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