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ABSTRACT

Navigating within non-linear structures is a challenge for all users when the space

is large but the problem is most pronounced when the users are blind or visually impaired.

Such users access digital content through screen readers like JAWS which read out the

text on the screen. However presentation of non-linear narratives in such a manner without

visual cues and information about spatial dependencies is very inefficient for such users.

The NSDL Science Literacy StrandMaps are visual layouts to help students and

teachers browse educational resources. A Strandmap shows relationships between con-

cepts and how they build upon one another across grade levels.

NSDL Strandmaps are non-linear narratives which need to be presented to users

who are blind in an effective way. A good summary of the Strandmap can give the users

an idea about the concepts that are explained in it. This can help them decide whether to

view the map or not. In addition, a preview-based navigation mechanism can help users

decide which direction they want to take, based on a preview of upcoming content in each

direction.

Given a non-linear narrative like a Strandmap which has both text and structure,

and a word limit w, the goal of this thesis is to find the best way to create its summary. The

following approaches are considered:

• Purely Text-based Approach using a Multi-document Text Summarizer

• Purely Structure-based Approach using PageRank

• Approaches Combining both Text and Structure

– CUTS-Based Approach (Topic Segmentation)

– PageRank with Content

Since no reference summaries for such structures were available, user studies were con-

ducted to evaluate these algorithms. PageRank with Content approach performed the best.
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Another important conclusion was that text and structure are intertwined in a Strandmap by

design.
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Chapter 1

INTRODUCTION

1.1 Motivation

Users who are blind access digital content through Screen Readers like JAWS [2],

Window-Eyes [3] and Dolphin [4] which read out the text on the screen. However since

Screen Readers present the information in a linear manner, such users cannot skim the

page quickly and might potentially have to cover a large portion of the page before

reaching the content they are looking for. Moreover individuals who are blind do not get

information about spatial dependencies between elements on the page and other visual

cues which help their sighted peers decide which parts of a page are more important than

the others.

There have been efforts to make structural and navigational information accessible

to users who are blind. A transformer system [37] extracts all the links and titles in the

page and makes them available at the top of the page to make it easier to access links. It

also adds textual tags for html elements like Images, Buttons, Radiobuttons etc. and links

on the page.

For information represented in the form of Concept maps, Website maps,

Food-webs, E-R diagrams etc, the content itself is visually rich and non-linear.To present

such information using screen readers would be a huge challenge. Even if the users can

listen to the text contained in such structures and their relationships efficiently, keeping

everything in memory and making sense of it would be a cognitive overload. Since

individuals who are blind tend to construct linear memory structures [29], it would be more

difficult for them to comprehend such structures as a whole.

Our goal is to make such non-linear narratives accessible to individuals who are

blind. This thesis focuses on exploring ways to create summaries of such structures which

can then be used to enhance search and navigation for users who are blind.

Hovy and Lin [33] define a summary as "a text that is produced out of one or

more(possibly multimedia) texts, that contains(some of) the same information of the

original text(s), and that is no longer than half of the original text(s)." In this thesis we seek

1



Figure 1.1: NSDL Strandmap - Stars [1]

to find approaches to create efficient summaries of Strandmaps.

1.2 NSDL Strandmaps

National Science Digital Library(NSDL) is an online library supported by the National

Science Foundation. It contains resources for science, technology, engineering, and

mathematics(STEM) education and research. These resources are selected by specialists

from high quality scientific and technical material and cover the curriculum from K through

12.

The NSDL Science Literacy StrandMaps [1] are visual layouts which serve as

2
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Figure 1.2: Features of an NSDL Strandmap

primary interfaces to help students and teachers browse NSDL educational resources. A

Strandmap about a specific science or math topic shows relationships between concepts

belonging to the topic and how they build upon one another across grade levels. A

Strandmap for "Stars" is shown as an example in Figure 1.1 and Figure 1.2 highlights its

important features.

• Each box describes a concept using a set of benchmark statements defined by

AAAS Project 2061 [55]. Clicking on a box shows the NSDL resources relevant to

the concept and information about related AAAS Project 2061 Benchmarks and

National Science Education Standards.

• Grade levels increase from bottom to top thus implying an increase in complexity of

3



concepts on moving upwards.

• Groups of concepts, called topics or strands are listed on the top of the map. These

are the main topics being talked about in the map.

• The arrows between the concepts depict how concepts build upon each other.Their

direction signifies a "Prerequisite" relationship which means that knowing the

concept from where the arrow starts is required to be able to understand the concept

where the arrow points to.

Strandmaps can be thought of as directed graphs in which concepts are nodes and edges

between them determine the order of learning. Grades increase from bottom to top thus

dividing the Strandmap into Grade Levels horizontally. Topic strands vary vertically. Thus

teachers can design lesson plans which start from one concept and follow arrows along

the path leading to another concept. Clicking on each node along this lesson plan path will

give them the necessary information and resources to teach that concept. Students can

also use the Strandmap to find resources included in the curriculum for their grade-level.

1.3 MAISON

MAISON: Middleware for Accessible Information Spaces on NSDL [5, 12] is a middleware

service to help minimize the extraneous load on teachers and students who are blind,

while they search and access materials from the collection of resources available on

NSDL. Such users interact through screen readers such as JAWS [2], Window-Eyes [3]

and Dolphin [4].

MAISON provides an accessible text-based interface to NSDL Strandmaps. The

middleware is built on top of the Strand map service (SMS), which can be accessed

through a Concept Space Interchange Protocol (CSIP) service API [6] provided by NSDL.

MAISON middleware provides a new CSIP-A protocol that enables development of user

interfaces that provide contextually informed strand map search and navigation.In addition

to specifying the keyword to search, a context keyword can also be specified which further

refines search results. Figure 1.3 shows the NSDL interface for searching Strandmaps.

Search results are displayed by the interface shown in Figure 1.4. The MAISON interface

4



Figure 1.3: Strandmap Search Interface in NSDL

for searching these Strandmaps is shown in Figure 1.5 and the search results are shown

in Figure 1.6. MAISON interfaces are easily accessible by screen readers and

customizable by the user. Search can be enhanced using context keywords. There is an

option to organize Strandmap nodes based on grades or strands which can give a

clustered map focused on either of these properties.In addition to the above features,

MAISON provides a personalized experience by providing options for bookmarking and

history navigation for the user.

The NSDL site shows the Strandmap to users in the form of an image. Since such

an element is inaccessible by screen-readers, we created an accessible interface for

5



Figure 1.4: Search Results on NSDL site

navigating within the Strandmap for users who are blind. Starting with the

nodes(concepts) at the lowest level, there are link annotations for each possible path

which give a preview of what kind of concepts are reachable on that path. Link annotations

to aid navigation can be of three types: summary of upcoming nodes, keywords from

upcoming concepts or simply the text descriptions. The summary annotation on an edge

presents a text summary of the contents of the nodes reachable from that edge within a

certain distance. This is further explained in Figure 1.7. A snapshot of the Strandmap

annotated this way is shown in Figure 1.8. Similarly for keyword annotations, the most

important keywords are extracted from the upcoming nodes and included in the annotation

of the edge leading to them. As illustrated in Figure 1.9, the keywords or summary

6



Figure 1.5: MAISON Search Interface

Figure 1.6: Search Results on MAISON site
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Figure 1.7: Creating a Summary Annotation

Figure 1.8: Navigating Strandmaps through Summary Annotations
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Figure 1.9: Creating a Keyword Annotation

annotations are not only generated from the immediate neighbors but also from nodes that

are present further along that path, if they are deemed important enough. The screenshot

in Figure 1.10 shows how keywords are used to annotate edges of a Strandmap. More

implementation details can be found in Appendix B.1.

MAISON also provides a Web Annotation Plugin which annotates the links in a

webpage to help people who are blind have a better navigation experience by getting a

preview of the content to which the link points. The plugin provides either keyword or text

summary annotations on pressing hotkey combinations from the keyboard. Figure 1.11

shows a sample link and the keyword and text annotations generated by the plugin for it.

Implementation details can be found in the Appendix B.2.

1.4 Problem Statement

Navigating within non-linear narratives is a challenge for all users when the space is large

but the problem is most pronounced when the users are blind or visually impaired.
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Figure 1.10: Navigating Strandmaps through Keyword Annotations

3

Figure 1.11: MAISON Web Annotations
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NSDL Strandmaps are non-linear narratives which need to be presented to users

who are blind, in an effective way. A good summary of the Strandmap can give the users

an idea about the concepts that are explained in that map and help them decide whether

they want to view the map or not. In addition, a preview-based navigation mechanism can

help users decide which path they want to take from a certain node, based on a preview of

nodes further reachable from that path.

Given a non-linear narrative like a Strandmap which has both text and structure,

and a word limit w, our goal is to find the best way to create its summary.

There are several approaches which can be used to create a summary of a

Strandmap.

• Purely Text-Based Approach: A text-only approach can be used to summarize the

textual content of the nodes in the Strandmap without giving any weight to their

structural relationships.

• Purely Structure-Based Approach: A purely structure-based approach will

summarize the Strandmap based on the link-based importance of each node without

taking content into account.

• Approaches Combining Text and Structure: Purely text-based and purely

structure-based approaches are two ends of the spectrum and we can find effective

ways of combining both together to create a summary.

1.5 Organization of this Thesis

Chapter 2 contains a summary of techniques for text and graph summarization. Chapter

3 describes the MEAD Summarizer [60], the CUTS [56] algorithm for segmentation of text

streams, the method of Multidimensional Scaling [71] and PageRank [17, 53]. Chapter 4

contains representative algorithms from the approaches we discussed in Section 1.4 to

summarize Strandmaps. Chapter 5 describes the methods to evaluate summaries

generated by various approaches and Chapter 6 contains results and analysis. The

Appendix contains all versions of user studies that were conducted for evaluation and

summarization in MAISON [5].

11



Chapter 2

RELATED WORK

2.1 Text Summarization

Text Summarization techniques strive to obtain a concise piece of text that is

representative and contains the same information as the original text.

Summaries are of two kinds - Abstracts and Extracts. An Abstract is a new set of

sentences constructed after semantic analysis of the input text. This is the way humans

naturally create summaries. An Extract on the other hand simply picks up parts of the text

it deems most important to convey the meaning of the input text using some heuristics.

The techniques used to achieve extraction-based summaries can be broadly

classified as follows.

Using Shallow Lexical Features

These techniques basically use features of the text like - word frequency, location of the

word, sentence length and cue words as important criteria to determine the importance of

a sentence. Then they rank sentences on the basis of these features or their combination

and pick up the highest ranked sentences from them.

One of the earliest work in text summarization using features was done by Luhn

[46]. It first finds out the significance of individual words in a text. The significance of a

sentence is a combination of the significance of words in it and their positions within it.

This is based on the intuition that highly significant words at a close distance will be most

representative of the text. Yih et al [68] score each word by a combination of its frequency

and position in the document, favoring words that occur near the beginning. These

features are combined using an ML based technique and sentence selection is treated as

an optimization problem.

Teufel and Moens [69] mainly use positive and negative cue words to determine

abstract-worthy material, in addition to using location, sentence length and word

frequency. Hovy and Lin [33] also use cue words.
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Modeling units of text

These techniques model the units of text-words, sentences and paragraphs, and the

similarities between them, to generate summaries.

Mitra et al [47] create a text relationship map in which the paragraphs of text are

represented as nodes. Paragraphs are treated as term-frequency vectors and vector

similarity between every pair of paragraphs is calculated. For those that exceed some

threshold, a link is put between them in the map. Paragraphs with highest number of links

are considered best for creating the summary.

MEAD by Radev et al [59] treats each document as a term-frequency vector and

computes the centroid vector of the cluster of documents. This centroid signifies the

central theme of the documents. It then uses cosine similarity with the centroid vector

along with other features like similarity with first sentence or title, sentence length, position

and query overlap in scoring sentences for extraction.

LexRank Radev et al [58] creates a graph of sentences from the given

document(s) and treats it like a social network. The edge weight values in the adjacency

matrix of the graph are given by pairwise intra-sentence cosine similarity. The idea is to

perform random walk on this graph and use eigenvector centrality as a measure of

sentence importance. The intuition is that a well-connected or more central sentence will

be more important to the summary.

Chains of related words contribute to lexical cohesion. It occurs over a sequence

of a number of related words, called lexical chains. Morris and Hirst [48] uses lexical

chains as relationships between semantically similar words in a text. To find semantic

relationships, a thesaurus is used. Barzilay and Elhadad [14] segment the text and then

construct lexical chains. Then they identify the strong ones and extract the most important

sentences.

13



Figure 2.1: Community Structure in a Graph

2.2 Graph Summarization

These techniques use the link structure of the graph to summarize it. The approaches for

Graph or Web summarization based on link structure can be broadly divided into the

following categories.

Finding Communities

Communities are defined as a set of nodes in a graph which are closer to each other, than

to nodes outside the graph. Newman and Girvan [51] describes community structure as

"natural divisions of network nodes into densely connected subgroups". An example of

communities has been shown in Figure 2.1 Since subgroups A, B, C and D are strongly

connected to nodes in their own groups and not so well connected with nodes in other

groups, we can say that they represent community structures in the graph.

Community structure is a pattern found in most graphs [21, 50]. In social networks,

it is intuitive that people with same jobs, hobbies, interests or those belonging to the same

organizations tend to be closer to each other. This can also be seen explicitly in social

networks on the web. In the same way, the link structure of the web has similar pages

pointing to each other more often.

Finding communities is an important step towards summarization of graphs as

they tend to identify the structure of the web as clusters of similar pages. It is also an

14



Figure 2.2: Dendogram [67]

important technique used for visualization of large graphs.

There are various techniques for finding communities. They can be categorized

into the following methods

Hierarchical Clustering

The idea behind this method is to iteratively group those nodes together that have a high

measure of similarity between them. Hierarchical clustering is of two kinds as described

below.

• Agglomerative: This is a bottom-up approach which starts with individual nodes

and a similarity measure between every pair of nodes. Then we keep on grouping

the most similar nodes together, forming new nodes(communities). This forms a

dendrogram ( Figure 2.2) kind of structure which can be cut at any level to yield the

required number of communities. Thus, we start with nodes and keep on adding

edges between them till the required number of edges have been added or the

required number of communities(connected-groups) have been found. Clauset et al

[23] follows such an approach. However, Newman and Girvan [51] describe that

these kind of methods tend to find only the central cores of communities, while

leaving out peripheral nodes.

• Divisive: This is a top-down approach which starts with all the nodes and edges and

keeps on deleting edges that are between least similar nodes. The edge-deletion
15



can be stopped at any stage when we get the required number of communities.

Newman and Girvan [51] follow an approach which is similar in methodology but

defines a different criterion on which the edges are deleted. They do not use the

idea of similarity but define betweenness which signifies whether the edge falls

in-between many paths between any two pair of nodes. This stems from the

observation that two communities are linked by very few inter-community edges. So,

all paths between nodes of different communities will pass thorough these small

number of edges. Thus finding such edges, through which large number of paths

pass, can be a way for identifying such in-between edges. Then they can be

removed and individual communities can be isolated. The authors define three

measures of betweenness which are explained below.

– Shortest-path betweenness: For each edge, its Shortest-path betweenness

is given by the total number of shortest-paths between all pairs of nodes in the

graph, that run through that edge.

– Random-walk betweenness: For every edge, its Random-walk betweenness

is measured as the sum total of the number of times a random-walk, passes

through it, where random-walks are executed between all pairs of nodes in the

graph.

– Current-flow betweenness: The graph is regarded as a circuit with each edge

having a unit resistance and current flowing from source to sink. Every pair of

nodes in the graph is taken as the source-sink pair and the sum-total of current,

over all source-sink pairs, for an edge is its Current-flow betweenness.

Out of these measures, the authors recommend Shortest-path betweenness for

reasonable results and fast calculation. An important feature of this algorithm is the

recalculation step after each edge removal i.e. after each edge has been assigned

its betweeness score and the edge with maximum betweenness has been removed,

the betweeness for all edges is recalculated. This seems to yield good results.
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Figure 2.3: Focused community crawling and the graph induced (a)The virtual source ver-
tex (b)Vertices of seed websites (c)Vertices of websites one link away from any seed site
(d)References to sites not in b or c and (e)The virtual sink vertex [28]

Max-flow Min-cut

Flake et al [28] defines a community as "a set of web pages that link (in either direction) to

more web pages in the community than to pages outside of the community". They make

use of this definition to find communities using a maximum flow framework in graphs.

Max-flow or Min-cut can be used to disconnect connected components that have larger

cuts within and smaller cuts outside. So, they use a focused crawler to calculate maximum

flow, starting from source(seeds), to the nodes connected to them and so on with the

virtual sink. This is shown in Figure 2.3. Since hubs and authorities [38] signify nodes of a

particular community,they use these as the starting points or seeds of their algorithm.

They also use expectation-maximization to bootstrap the seeds.

Graph partitioning

This is one of the most common method for finding communities. It consists of recursively

partitioning a graph into communities. There are various ways to get partitions. This is

elaborated in the Clustering Section.
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Figure 2.4: Bipartite Core [40]

Finding Bipartite Cores

Kumar et al [41] propose an algorithm for finding emerging communities. They suggest

that co-citation of the nodes is an important indicator of them belonging to a community.

Thus, they propose the idea that communities are dense Bipartite subgraphs, with a

central core. Their algorithm is a two-step process.

1. Inclusion/Exclusion: This is the pruning part where a node is either kept in

consideration for being part of a community or removed, based on certain criteria

which are necessary for a node to be part of the community.

2. Building cores: Then they use the Apriori algorithm [11] to build cores iteratively

from smaller cores, as any subset of a smaller degree core will have a subset which

is a higher degree core and so on

Kumar et al [40] defines Bipartite Cores as: "A bipartite core in a graph consists of two (not

necessarily disjoint) sets of nodes L and R, such that every node in L links to every node in

R. Links from R to L, or within R or L may or may not be present." An example of bipartite

core is shown in Figure 2.4. They also use a similar two-step method for finding

communities.

1. The first step is the Elimination/Generation Algorithm to find Bipartite Cores in the

graph. The Elimination part consists of pruning nodes, which we are sure will not be

able to form cores we are interested in finding, as a result of non-fulfillment of some
18



required criteria, which is similar to the one in [41]. As an example, if we are looking

for cores in which each node has a degree 4, we can remove all those nodes from

consideration whose indegree or outdegree is lesser than 4. The Generation step

consists of identifying those nodes which just make it to the considered list, by a

narrow margin, and make sure whether all their neighbors have the required degree

or not. Those which have neighbors with lower degrees are discarded. These two

steps are done iteratively.

2. This step consists of actually finding the communities centered on these cores.This

is done by creating a root-set of the nodes that make up the core(in Step1), the

nodes pointed to by the nodes in L and the nodes that point to at least 2 nodes in R.

Then HITS algorithm [38] is applied to this root-set to get a set of authorities and

hubs, which together form a community.

Other Methods

• Using shingles: Shingles are fixed size fingerprints for a set of nodes. Two sets can

be compared fast using shingles. Gibson et al [30] use Jaccard coefficient for

defining shingles so that the number of positions on which the fingerprint vectors of

two sets agree indicates their similarity. The basic idea is to group the nodes that

have sufficiently overlapping shingles. This is done iteratively.

• Using circuit laws: Wu and Huberman [74] propose an algorithm which treats the

graph as a electrical circuit and all the edges as unit resistance. A potential

difference is applied to a two nodes, and the voltages on all nodes is calculated and

the graph is split into two using the median voltage as separator. However, there

needs to be some mechanism to identify that the two nodes across which a potential

is applied are not in the same community.

Clustering

Clustering is the most natural choice for grouping similar nodes of a graph to summarize it.

Most web graph summarization techniques described in this report use clustering to

achieve graph compression, visualization or find communities. The techniques described
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Figure 2.5: Graph Partitioning [52]

here are those which comprise the kind of work in clustering that has been applied to all

these fields. The various kinds of clustering that can achieve the purpose of web graph

summarization can be categorized into the following.

Graph Partitioning(Multilevel algorithms)

The problem of Graph partitioning can be explained by an example. Imagine a distributed

environment, which consists of n processes, represented by nodes of a graph, that need to

run on m processors. The inter-process communication can be represented as a edge

between two nodes (processes). The objective is to keep the inter-process communication

between processors to a minimum while making sure no processor is overloaded or

under-loaded. In other words we seek to partition the process graph into as many

partitions as we have processors, while keeping the edges between the partitions to a

minimum and trying to make the partitions of approximately equal size. This is a graph

partitioning problem. Karypis and Kumar [34] defines graph partitioning as -" The problem

is to partition the vertices of a graph in p roughly equal parts, such that the number of

edges connecting vertices in different parts is minimized." 2.5 illustrates this.

Karypis and Kumar[35] defines k-way partitioning as " Given a graph G = (V, E)

with |V| = n, partition V into k subsets, V1, V2, . . . , Vk such that Vi ∩ Vj = ∅ for i != j , |Vi| =

n/k, and Ui Vi = V , and the number of edges of E whose incident vertices belong to

different subsets is minimized."

The kind of algorithms that use Graph partitioning to a graph recursively, to create

a hierarchical structure are called Multilevel algorithms. "They (multilevel algorithms)

usually combine a graph contraction algorithm which creates a series of progressively
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smaller and coarser graphs together with a local optimization method which, starting with

the coarsest graph, refines the partition at each graph level" [73] . This is one of the most

widely used techniques in visualization and finding communities.

A Multilevel Partitioning algorithm consists of three steps or phases. All these

steps are comprehensively described in Karypis and Kumar [35].

• Coarsening Phase: In this phase, multiple nodes of a graph are grouped into a

single node which is called multinode. The edges of a multinode are the union of the

edges of all these constituent nodes, and its weight is the sum of their weights.

Thus, we form a graph on a coarser level or a lower level of granularity by making

such virtual nodes and edges. This step is done repeatedly till the coarse graph has

few nodes. The techniques used for coarsening are Random Matching and Heavy

Edge matching.

• Partitioning Phase: In this phase, the coarse graph obtained above is partitioned

into two partitions of approximately equal sizes. However, Walshaw and Cross [73]

report that creating an imbalance might actually lead to better partitions. The most

common ways of partitioning are KL algorithm [36] and Spectral bisection.

• Uncoarsening Phase: This phase comprises of projecting the partitioned coarse

graph back into the original graph and refining partitions at every level of unfolding.

KL Refinement and Boundary KL Refinement can be used to do this. Dhillon at al

[25] uses a weighted kernel-k means algorithm for the refinement, which does not

consider only equal-sized clusters.

There are many works which use these techniques. Walshaw and Cross [73]

presents a mesh-partitioning algorithm which uses an enhanced multilevel algorithm

with a Kerninghan-Lin type partition optimization algorithm. Rodrigues et al [63]uses

this paradigm for Visualization.

Structural Clustering

Xu [75] proposes a method of clustering nodes, based on their common neighborhood.

Vertices with lot of common neighbors are clustered together. They further classify nodes
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into hubs and outliers. It runs in time linear in the number of edges in the graph.

It defines the notion of Structural similarity for two nodes as the number of shared

neighbors between them, normalized by the size of each node’s neighborhood. Extending

this idea, a vertex becomes a core of the cluster if it has high similarity with a large number

of neighboring nodes. With this framework, they propose the SCAN algorithm which

checks each node to see whether it is a core or not. If it is, then it starts a new cluster with

it. If it is not, it is labeled as a non-member and further analysed. If it has edges to two or

more clusters, it is deemed a hub, else it is classified as an outlier.

Simulated Annealing

Virtanen [72] uses Simulated Annealing as a local search heuristic, to cluster nodes of the

graph, with respect to the fitness measure used for the simulated annealing. They define a

few concepts as follows.

• The internal degree of a cluster is defined as the number of edges that start from

within the cluster and end within it.

• The outward degree of the cluster is the number of edges that start from the cluster

but end outside it.

• Local density of a cluster is the ratio of the internal degree of the cluster to the

maximum internal degree possible within the cluster.i.e.

Local density of cluster C =
Internal degree of C
|C|(|C − 1|)

• It also defines relative density as the ratio of internal edges to the total number of

edges incident on the cluster.

Relative density of cluster C =
Internal degree of C

Internal degree of C + Outward degree of C

The product of Local density and Relative density is used as a fitness measure for

clustering. The algorithm can iteratively find clusters by removing the best cluster found

after each iteration, or reducing it to a single node.
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Graph Compression

Graph Compression techniques, in general, seek to encode a graph in as few number of

bits as possible for compact storage or fast transmission over the network. Since this too

is a helpful summary, we can look into such methods which can compress large graphs, of

the scale of the web. The main ideas behind these algorithms are the observations that

• Most pages point to common links

• Most links on a page are of the same domain, hence are lexicographically similar

• An efficient encoding mechanism will reduce the number of bits/link

The intuition behind the algorithm by Adler and Mitzenmacher [10] is that nodes in

a web graph often copy links from other nodes. The authors call the nodes from which the

links are copied as reference nodes and encode a node in terms of its reference node,

setting the corresponding bits in the vector, which signify the link that was copied. They

measure the costs for encoding all nodes as such and create, what they call an Affinity

Graph. This graph is the same as the original graph, except that the weight on the edge

between a node and its reference represent the cost of encoding, which was calculated

before. Its root is the node which has a directed edge from every node in the graph but has

no outgoing edges. Then they find the most optimal mapping of node from reference by

finding the minimum weight directed spanning tree on the affinity graph, starting with root.

Randall et al [62] propose two algorithms called Link2 and Link3. The paper is

also inspired by the idea of multiple nodes pointing to common pages in the web graph(link

copying can lead to this) and the fact that most pages point to nodes on the same host.

This is intuitive as most pages have navigational links that point to pages on the same

host. A university’s website is a good example. Arising from this observation, if we order

the URLs on a page lexicographically, the "gaps" between the "node pointing to" and the

"node pointed to" will be quite small. Link2 algorithm stores only differences between such

URLs, instead of the entire URL for the nodes. A further improvement is using smaller

codes for the smaller values in the lexicographical ordering. The encoding is done by
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Huffman and Nybble codes. Link 3 encodes adjacency by representing them with respect

to another list called a representative list(or a union of many representative lists),

alongwith the corrections from the representative. Suel and Yuan [66] make a distinction

between storing URLs and storing the link structure. For storing URLs, it first strips off the

host prefix and then encodes a URL in terms of the longest common prefix, with the URL

just preceding it, in a lexicographically ordered arrangement.It then encodes the most

frequent words with smaller Huffman codes and the rest of the words by Huffman codes

for every two consecutive characters. Links are separated into local(on same host) and

global. To store links, it encodes most popular links by short Huffman codes as a global

encoding. For local encoding, it encodes most popular links of a host by Huffman codes

and the rest by taking advantage of small gaps.

Boldi and Vigna [16] extend the ideas presented above using locality(small

lexicographical gap), similarity(common pages pointed to) and consecutivity of the links.

Consecutivity means that many links in a page are lexicographically consecutive. They

then use Reference compression i.e. coding the adjacency list with respect to a reference

list. They also propose using Differential compression which codes blocks , rather than

each unit of the adjacency list. They also use Intervals, in which they identify long enough

subsequences and represent them by their left extreme and length. The remaining are

compressed using differential compression.

Blandford et al [15] do O(n)-bit encoding with O(1) access time for graphs

satisfying either an nc, c < 1 edge or vertex separator theorem.

Raghavan and Garcia-Mollina [61] propose an S-node representation which is a

hierarchical representation which groups a number of nodes(subgraph) into a supernode

and encodes the lower-level graphs. To do this, it partitions the nodes, starting with the

initial partition based on domain name i.e. all pages of asu.edu will be kept in the same

partition. For the following partitions, it uses two methods- URL split or Clustered split.

URL split partitions on the basis of common prefixes. Clustered split, on the other hand

clusters pages with similar adjacency lists together using k-means.
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Visualization Techniques

Visualization of graphs consists of finding techniques which make a graph easier to

visualize and interpret intuitively, without overwhelming the user. We can apply

visualization techniques to the web graph in order to summarize it.

We need to pick up the visualization techniques which can process large number

of nodes. Most of the visualization techniques work well for small graphs but not for graphs

comparable to the web. Visualization techniques are described below.

Hierarchical Graph Partitioning

This is a widely used method for Visualization. Graph clustering is also a widely used

technique. For detailed treatment of Hierarchical Graph Partitioning, please refer to the

"Graph partitioning" method under Clustering.

Rodrigues et al [63] use Hierarchical Partitioning for Visualization. Their algorithm

uses k-way partitioning to create a hierarchy of communities within communities, which it

calls the Graph-tree data structure. Papadopoulos and Voglis [54] recursively divide a

graph into modules(a set of vertices having the same neighborhood) in a tree-like fashion,

to be able to draw each module differently, to aid cognition. Eades et al [26] propose an

algorithm to draw clustered graphs using orthogonal grid rectangular cluster drawings,

which utilize recursive partitioning and gain optimality in some aesthetic criteria.

Graph layout

Graph Layout is the way of drawing graphs so that the user can visually understand it. The

main goal of these algorithms is clarity and aesthetics. However, these algorithms are not

well-suited for large graphs.

The major Graph layout algorithms are presented in Figure 2.6, which has been

taken from [32].

Visualization of Features of a Graph

Visualization of some properties of a graph like Min-cut plots and A-plots instead of the

whole graph [22] is useful in applications like anomaly detection. A Min-cut plot is obtained
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Figure 2.6: Overview of Graph Layout Algorithms [32]

by recursively dividing a graph on its Min-cut into two, and plotting a graph between the

number of edges in the resulting graph(s) v/s the number of edges of the graph that were

in the cut set.

A-Plot contains the following:

• Adjacency matrix of the graph in which nodes are ordered in decreasing order of

their network value

• Degree of a node with rank of its network value

• Adjacency matrix of the graph in which nodes are ordered in decreasing order of

their degree

They also identify patterns in the plots which are representative of real large graphs.
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Web Navigation Systems

These systems are designed to help the user in navigating websites or the web in general.

One way to do this is to summarize the web graph so that the user only sees the most

relevant part of it at a time, and is not overwhelmed by the multiplicity of options to click

next.

Candan and Li [19] present an approach to solve the problem, which they use for

website summarization. They define two kinds of neighborhoods - the Physical

neighborhood, which is just determined by the URL prefix and the Logical neighborhood

which is a hierarchy of neighborhoods, with entry points to child neighborhoods, which

reflects the natural course of navigation, as described in Li et al [43], and is shown in

Figure 2.7.

The algorithm starts by summarizing the root neighborhood into fewer

nodes(called focus nodes) by graph summarization technique, and then summarizes each

successive neighborhood the user enters.

To find the summary of a neighborhood, the algorithm starts with a set of seed

nodes, comprising of the focused entry nodes from its parents and the focused entry

nodes to lower-level of neighborhoods, and k-dominant nodes in the neighborhood [18].

Edges on the shortest path, between pair of dominant nodes that does not pass through

any other dominant node are kept in the summary. The nodes that are selected thus

become the focused nodes for the next iteration of the algorithm on sub-neighborhoods.

Information-Theoretic Approaches

Minimum Description Length(MDL) is widely used for summarization, as is also observed

in [42]. MDL is inspired from the observation that there are redundancies in the data. So, it

seeks to represent data in the form of a model, which is representative for most of the

data, and a set of corrections, for the data points that the model didn’t accommodate or

which are extraneous in the model. The best MDL description is the one which minimizes

the size of the model + corrections.
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Figure 2.7: Logical Neighborhoods and the Summarization Process. Crossed circles
denote entry points of neighborhoods. Each sub-neighborhood contains one entry point
per its parent neighborhoods. Each parent neighborhood includes the entry points of its
sub-neighborhoods.[19]

For a given graph, Navlakha et al [49] represent it in the form of a graph summary,

alongwith a set of edge corrections. The graph summary is a coarser representation of the

original graph, consisting of supernodes and superedges, similar to the concepts

described before. A supernode is a virtual node that is the grouping of multiple nodes,

while a superedge from a supenode A to B is the aggregation of edges that connect any

node of A to any node of B. The superedge corrections, for the edges that are not a part of

the model, are represented as -(x,y) for edges not present in the original graph but are

present in the model, and +(x,y) for edges that are present in the original graph and not in

the model. Two algorithms are suggested by them for computing MDL representations.

• The Greedy algorithm iteratively merges those pairs of nodes together, which

minimize the MDL cost.

• The Randomized algorithm randomly picks nodes and merges it with the best node

in its 2-hop neighborhood.

They also suggest versions of these algorithms for lossy summarization (it is not possible

to exactly reconstruct the original graph using the summary and the corrections). Those

techniques too are acceptable for us too, since we seek to summarize the graph
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Figure 2.8: Graph Summarization by Aggregation [70]

approximately.

Database Type approaches

These kind of approaches are characterized by operations analogous to SELECT and

GROUP BY as in databases. Also the attributes of nodes are of concern, which is different

from almost all the other approaches presented.

Tian et al [70] present such a database-type framework for summarization.

• A summary graph is created from the nodes of the graph by grouping nodes based

on attributes selected by the user and the relationships between them. An algorithm

called SNAP is used for this purpose.

• The user can control the granularity of summaries by operations analogous to

"drill-down" and "roll-up" in OLAP. An algorithm called k-SNAP is used for generating

k-size graph.

Figure 2.8 describes the mechanism of the graph summarization in a simple manner.

k-SNAP is achieved by both Top-down and Bottom-up approaches. The first

approach starts from the group of all nodes with desired attributes and splits repeatedly,

based on some criteria, till k-groups are reached. The second approach, on the other

hand, builds up from the nodes and merges till k-groups are reached. K-SNAP is proved to

be NP complete thus heuristics are used.
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Graph Anonymization

These techniques seek to anonymize the nodes in a graph to maintain privacy, so that

reconstruction and discovering of node identities is avoided.

As observed by Backstrom et al [13], it is not enough just to remove the identities

of the nodes. The structure of the graph eg. degrees of its nodes, their similarity etc. is

also a very good indicator of the identity of nodes in it [31].So, the graph itself needs to be

anonymized.

Liu and Terzi [44] is a recent work in this direction. A degree sequence of a graph

is a vector whose ith position stores the degree of the ith node in the graph. The algorithm

is a two-step approach.

• The first step creates a k-anonymized vector of the degree sequence of the given

graph such that the Degree Anonymization cost is minimized.

• The second step consists of creating a graph whose degree sequence is the

k-anonymized vector obtained above, and whose every node shares the same

degree with k-1 other nodes.
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Chapter 3

BACKGROUND

3.1 MEAD Summarizer

MEAD [60] is a public-domain, portable, Centroid-based multi-document text

summarization system. It also contains packages for evaluation of summaries [7].

MEAD is an Extraction-based summarizer which consists of assigning a score to

each sentence in the text based on some heuristics and then extracting the highest

scoring sentences to create a summary.

MEAD accepts a cluster of documents as input and and produces a summary of

this cluster as output. The summarization process in MEAD consists of Feature Extraction,

Sentence Scoring and Re-ranking. In the beginning, each document is considered as a

bag of words and after stemming and stop-word removal, is represented as weighted

TF*IDF vector.

Feature Extraction

MEAD uses a combination of the following features in assigning a score to each sentence

• Cosine similarity with Centroid vector of cluster

• Position of the sentence in the document

• Content Overlap with the first sentence in the document

• Length of the sentence

These features are further explained in detail below.

Centroid

A Centroid is a set of statistically important words in a cluster of documents. The Term

Frequency(TF) of a word in the cluster is the average number of times the word appears

across the cluster. The Inverse Document Frequency(IDF) for each word in the cluster is

computed from the corpus. The centroid is a TF*IDF vector of all words in the cluster.
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Figure 3.1: Centroid Example

The Centroid is computed iteratively by only including those documents whose

similarity with the current Centroid is above a certain threshold. The similarity is computed

according to the formula below.

sim(D,C) =

∑
k(dk ∗ ck ∗ idf(k))√∑
k(dk)

2
√∑

k(ck)
2

(3.1)

Initially just the first document is considered and thus the centroid is the document itself.

Then the next document is processed if its similarity with the centroid is greater than the

threshold. This way documents are added iteratively and the centroid is recomputed after

every iteration.

MEAD is a Centroid-based summarizer and hypothesizes that sentences

containing words from the Centroid are more representative of the text. The next Section

describes how this is used as a feature in summarization.

Centroid Value

For each sentence, its total centroid value is computed as the sum of centroid values of

each word in it. For example let the vector shown in Figure 3.1 be the centroid computed

from the cluster of documents input to MEAD. For the sentence "Opposition in Yemen

Divided Over Deal", the centroid value will be 24.74 which is the sum of centroid values of

its individual words (opposition=0; yemen=13.51; divided=0; deal=11.23).

Centroid value of a sentence is used as a feature in computing its score for

creating the overall summary.
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Positional Value

The position of a sentence within the document is also considered as a measure of its

importance. The first Sentence in the document gets same score as the highest ranking

sentence according to Centroid Value. The Positional Value for the ith sentence is

computed according to the formula below , where n is the total number of sentence in the

document and Cmax is the Centroid Value of the highest ranking sentence in the

document in terms of Centroid Value.

Pi =
n− i+ 1

n
∗ Cmax

First Sentence Overlap

MEAD rewards similarity of a sentence with the first sentence in the document. The first

sentence overlap is computed by the inner product of the vectors for the current sentence

and the first sentence of the document.

Fi = ~S1 ~Si

Sentence Length

A longer sentence is supposed to contain more information and thus is considered more

important. Length is the number of words in the document. This feature was introduced in

Radev and Winkel [57] in 2002.

Sentence Scoring

The score of each sentence in the document is computed as a weighted linear

combination of its Centroid Value(C), Position Value(P) and the First Sentence Overlap(F)

in [60] as shown below.

Score(Si) = wcCi + wpPi + wfFi

where wc ,wp and wf are weights assigned to each feature.

Re-Ranking

After the sentences are ranked according to their total scores, for every sentence that

overlaps with a higher ranking sentence, a Redundancy Penalty is subtracted from its
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score. This is done to reduce repetition in the summary. The cross-sentence word overlap

is computed according to the following formula:

Rs = 2 ∗ (number of overlapping words)
(number of words in sentence1 + number of words in sentence2)

wR =Maxs(SCORE(s))

Redundancy Penalty is computed as wRRs where wR is the weight of the penalty. Thus

the score of the sentence along with the Redundancy Penalty becomes

Score(Si) = wcCi + wpPi + wfFi − wRRs

After this correction, all sentences are reranked according to their new scores.

This process is repeated until the summary extract stops changing on reranking.

3.2 Multidimensional Scaling

Multidimensional Scaling [71] is a set of techniques to map data into multidimensional

space, given their pairwise dissimilarities so that their distances in the multidimensional

space closely reflect their actual dissimilarities. These techniques seek to minimize stress

which is the sum of difference between distances in the mapped values and actual

dissimilarities for every pair of objects.

stress =

√∑
i,j(d

′
i,j − di,j)2∑
i,j d

2
i,j

The following general algorithm can be used to obtain the MDS representation of

given data:

• Start with a (random) configuration of points in smaller dimension

• Apply some form of steepest descent iteratively to minimize the stress.

• If moving objects does not decrease the stress, add new dimensions

3.3 PageRank

The importance of a web page can be measured by the number and the importance of

pages that link to it. A high number of links and links from important pages increase the

importance of a page.
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Figure 3.2: A Small Network

PageRank [17, 53] is a method to estimate the relative importance of web pages

by just using the link structure of the web. The PageRank of a page is the sum of the

PageRanks of all pages that link to it and this rank is further evenly divided among the

pages it links to. Thus PageRank is defined recursively and is influenced by ranks of other

pages.

As an example, consider the scenario in Figure 3.2. Here,

PR(A) = PR(C)/1

Since C has just one outgoing link to A, PageRank of A is equal to the entire PageRank of

C. However,

PR(B) = PR(A)/2

A’s PageRank is divided equally among both its outgoing links. Therefore,

PR(C) = PR(A)/2 + PR(B)/1

Let u be a web page. Let Bu be the set of pages pointing to u and Fu be the set of

pages that u points to. Ni represents the number of links from a web page i. Then

according to the simplified idea of PageRank,

PR(u) =
∑
v∈Bu

PR(v)

Nv

Let A be a square matrix whose rows and columns represent web pages. If there is an

edge from u to v, Au,v = 1/Nu. Otherwise, Au,v = 0. If there is a rank vector R of all web

pages such that R = AR, then R is the eigenvector of A with eigenvalue 1, which is the
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principal eigenvalue for a stochastic matrix like A. The principal eigenvector gives the

stationary distribution. We can compute it by power iteration.

This model has the problem of rank sinks which are pages that accumulate

PageRank but do not distribute it. To overcome this problem, a rank source E(u) is

introduced over web pages which is a user-defined parameter.

PR(u) =
∑
v∈Bu

PR(v)

Nv
+ E(u)

In matrix notation, we then have R = AR+ E. Since ||R||1 = 1 we can rewrite

R = (A+ E × 1)R. Therefore R is an eigenvector of (A+ E × 1)

PageRank can also be explained in terms of the "random surfer" model ie. a surfer

performing a random walk on the web graph. Assume there is a "random surfer" who

keeps clicking on a link at random, visiting the page and then clicking at a link at random

on that page and so on. The importance of a page is the probability that the random surfer

will find himself on that page. Further the surfer might get bored and jump to a random

page. This is reflected by the user defined distribution E.

3.4 CUTS

CUTS: Curvature-Based Development Pattern Analysis and Segmentation for Blogs and

other Text Streams [56] is an algorithm to segment a text stream or blog using underlying

topic development patterns.

The algorithm generates a representation for each blog entry and maps them onto

a curve. Then this curve is analyzed to identify topic segments and topic development

patterns.

The algorithm can be broken down into the following steps:

Representation of Stream

Each entry in the blog is considered as a bag of words and its TF*IDF vector is

constructed after stemming and stop-word removal. For the ith entry in the blog, let the

vector be Pi = wi,1, wi,2, ..., wi,n where n is the size of the set of keywords contained in all

entries concerned.
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The cosine similarity between any two entries i and j can then be computed as:

si,j =
n∑
k=1

wi,k · wj,k

Then the dissimilarity between the entries i and j is di,j = 1− si,j .A dissimilarity matrix is

generated by computing the pairwise dissimilarities for all text entries.

D =



d1,1 d1,2 ... d1,N

d2,1 d2,2 ... d2,N

: : di,j :

dN,1 dN,2 ... dN,N


Curve Construction

Using the dissimilarity values obtained in the last step, the entries are plotted onto a

1-dimensional space using Multidimensional Scaling [71]where the distances between

entries closely reflect their dissimilarities.

Then a 2-dimensional curve is constructed by plotting the time or sequence

number of entries onto the x-axis and the MDS-computed distance coordinate on the

y-axis. Thus the x-axis denotes the ordering between the entries and the y-axis denotes

the dissimilarities between them. This curve obtained by plotting consecutive entries is

called the CUTS Curve. An example is shown in Figure 3.3. The CUTS curve represents

the development of textual content over time.

The paper identifies three different kinds of topic development patterns -

Dominated, Drifting and Interrupted as shown in Figure 3.4.

• Dominated: A dominated pattern is shown in (a). The entries are similar to each

other and hence lie close to each other in the 1-dimensional MDS coordinate space.

When these entries are plotted in sequence, a horizontal pattern is obtained. Since

the topic remains relatively stable, this is a Dominant pattern.

• Drifting: When successive entries talk about slightly different topics, a Drifting

pattern is obtained as shown in (b). Even though consecutive entries are similar,

there is a huge difference between topics at the beginning and topics at the end of

the pattern. The slope of such a curve gives the speed at which the topic evolves.
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Figure 3.3: CUTS Curve [56]

Figure 3.4: Topic Development Patterns [56]

• Interrupted: In an Interrupted pattern, a sudden and temporary topic emerges in the

pattern as shown in (d) and (e). The interrupt consists of two opposite drifting

patterns with start and end (respectively) very similar to each other which is why it is

regarded as an interruption within an otherwise dominant or drifting topic.

Curve Segmentation

The curve obtained in Figure 3.4 is segmented using polygonal approximation. Let the

curve be denoted by C = {xi, yi}Ni=1. The goal of curve segmentation is to find the subset

of dominant points D = {xi, yi}Mi=1 (where M ≤ N and D ⊆ C) such that each resulting

curve segment has uniform features.
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Figure 3.5: Adaptive Curve Segmentation [45]

In a polygonal approximation approach, the curve is split into a series of straight

lines. This paper uses Adaptive Curve Segmentation [45] to segment the curve. The

working of this algorithm is explained with the help of an example in Figure 3.5.

In the first step the entire curve is represented by the line segment e1 which is

obtained by joining the farthest points on the curve. Next, the point on the curve which is

farthest from this line b1 is located. This is called a break-point because it divides the curve

into two parts. Thus e1/b1 becomes the root of the binary tree representing the cuts curve

as shown in (e). The same process is repeated for the parts on either side of b1. The left

part yields a break-point b3 and the right part yields a break-point b2 as shown in (b). This

process is repeated until the number of points in any given segment is at most MinSpan,

which is a user-defined parameter. As we go from root to the leaf nodes in a tree

constructed this way, each level approximates the curve with a higher level of granularity.

The optimal series of lines for approximating the curve is determined by traversing

the binary tree in (e) and comparing the significance of a node to the significance of its

child nodes. If the significance of any of the children exceeds that of the parent, the parent

is removed from consideration and the children get upgraded.

A curve segment can be defined as a 4-tuple

gi = (ki, σi, (xstart, ystart)i, (xend, yend)i).

• ki is the Slope of the line segment which indicates the topic drift in the curve

• σi is the average of the distance between points on the curve to the line segment

approximating them. This measures the Concentration. A higher σ means that the

topics being covered are far from the line approximating them. This signifies that a
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Figure 3.6: Combining Curve Segments [56]

wide variety of loosely concentrated topics are being covered. On the other hand, a

low average distance indicates highly concentrated topics in the segment. In Figure

3.6 e1 and e2 are more concentrated than e3.

• (xstart, ystart)i and (xend, yend)i denote the start and end points of the segment.

Eliminating Over-Segmentation

The Curve Segmentation algorithm is a greedy approach and may lead to

oversegmentation. This would lead to a decrease in precision. Thus, topic segments with

relatively homogeneous development need to be combined into a single base topic

segment.

Given two consecutive curves gi and gi+1, they can be combined into a single

topic segment if:

(|ki − ki+1| < λdrifting) ∧ (|σi − σi+1| < (σi + σi+1)/2)

Here λdrifting is a tunable parameter which reflects the algorithm’s sensitivity to

differences in topic evolution speeds. It is calculated as a percentage of the overall change

in the data.

Topic Development Patterns

After the base topic segments are identified, they are classified into topic development

patterns as follows:

• Dominated:|ki| < λdrifting
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• Drifting:|ki| ≥ λdrifting

• Interrupted: Two base topic segments can be combined into an interrupted segment

if they are drifting, have opposite slopes and their start and end (respectively) are

similar to each other:

(|kh| ≥ λdrifting) ∧ (|kh+1 ≥ λdrifting)∧

(kh × kh+1 < 0)∧

(|k′h−1 − k̃h|+ |k′h+2 − k̃h| < λdrifting)

where k′h−1 and k′h+2 are the slopes of the base topic segments just before bh and

after bh+1 respectively and

k̃h =
|(ystart)h − (yend)h+1|
|(xstart)h − (xend)h+1|

3.5 Text Summarization Using CUTS

TDSum approach [39] uses the topic development patterns identified by the CUTS

algorithm (Section 3.4) to create a summary. Initially the CUTS algorithm is applied to the

text to be summarized. After the CUTS curve is obtained, its features are used to budget

the required compression amount of the summary into compression amounts for the

individual segments. The CUTS curve tree shown in Figure 3.5, (e) is traversed in a

top-down manner. The root of the tree is initially allocated the total given budget. Then

each child is allocated a part of the parent’s budget recursively by comparing values of the

following features:

• Length (the number of words in a segment).

• Slope

• Concentration

Compression amounts of left and right child of a node in the binary tree

representing the CUTS curve are calculated using the following equations:

Cl · Ll + Cr · Lr = C · (Ll + Lr) (3.2)
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Cl
Cr

=WL ·
(
Ll
Lr

)iL
+WS ·

(
Sl
Sr

)iS
+WAD ·

(
ADl

ADr

)iAD

(3.3)

Each feature is given a weight such that WL +WS +WAD = 1. iL, iS and iAD are

inversion parameters and can have values 1 or -1 depending on whether the feature

contributes directly or inversely to the compression budget.

After the compression budget is calculated for a node in the tree, it is determined

whether the node can be marked for selection. If a node is marked for selection, the

subtree rooted at that node is not explored further for assigning compression budgets. A

node is marked for selection in the following cases:

• If the node is a leaf node, it is marked as selected and sent as input to the

summarizer.

• If the compression budget allocated to the node is too high or 100% then it is marked

as selected and included in the summary.

• If the compression budget allocated to the node is less than the shortest sentence in

the text, then it is marked selected and not included in the summary.
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Chapter 4

APPROACHES TO SUMMARIZING NON-LINEAR NARRATIVES

4.1 Representative Algorithms

We discussed the broad categories of approaches that can be used to summarize

non-linear narratives like Strandmaps in Section 1.4. In this Section, we will look at

representative algorithms from each of these approaches. Our goal is to compare these

approaches to understand their effectiveness in creating summaries of Strandmaps.

4.2 Purely Text-Based Approach

To create a purely text-based summary of a Strandmap, the textual content in each node

of the Strandmap is extracted into separate documents and then this set of documents is

sent as input to the multi-document summarizer MEAD [60]. The MEAD summarizer takes

a cluster of documents as input and returns a centroid-based text summary as output. It

has been covered in detail in Section 3.1.

The summary obtained thus is just a text-based summary ie. no information about

links between the nodes is used in creating this summary.

The algorithm for obtaining a purely text-based summary of a Strandmap can be

summed up as:

• For every node ni in Strandmap S, extract its text into document di

• Send documents d0, d1...dN to MEAD as input, where N is the number of nodes in

the Strandmap

• The output of MEAD is the purely text-based summary of S

4.3 Purely Structure-Based Approach - PageRank (without Content)

To create a purely structure-based summary of a Strandmap, we use PageRank [17, 53]

which has been explained in Section 3.3. PageRank is a measure of structural importance

of a node in a graph and we use this notion of importance in creating a summary.

The original Strandmap can be directly used as a graph and PageRank of its

nodes can be computed using the PageRank algorithm but this will not be sufficient for our
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purpose. In a Strandmap, a node may contain multiple sentences. Just ranking the nodes

will not help us rank the sentences within it. Since a sentence is the basic unit of our

summary, we need to transform this graph in terms of sentences to obtain the relative

structural importance of every sentence within a Strandmap. For this we create a

Sentence Graph from the Strandmap in which every sentence is represented by a node

called a Sentence Node. Links between original nodes are transformed into links between

Sentence Nodes and are called Sentence Links.

Starting with the given Strandmap, we create Sentence Nodes by creating a new

node in the Sentence Graph for every sentence in the Strandmap and creating internal

and external links from it. The internal links are between these sentence nodes and

correspond to the order in which the text is read within a node. We put a link from first

sentence of node to the second sentence, from the second to the third and so on.

• For every node ni in Strandmap S, where ni consists of sentences s1, s2...sN ,

create N new nodes p1, p2...pN in Sentence Graph SG such that pj contains

sentence sj .

• In Sentence Graph SG create N − 1 links l1,2, l2,3...lN−1,N such that lj,j+1 points

from pj to pj+1.

After the nodes have been created as described above, we translate the links

between nodes originally present in the Strandmap to external links in the Sentence

Graph. Two methods are described below which differ in the way the Sentence Links

corresponding to these links are created between Sentence Nodes.

Uniform Connectivity

In this method, all links of a node in the Strandmap are preserved in each of the Sentence

Nodes derived from that node. Thus in terms of external linkage, each Sentence Node is

structurally equivalent to the original node in the Strandmap from which it is derived. So for

each link that existed, we create multiple links,one for each of the Sentence Nodes derived

from the original nodes.
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If there is a link from node ni to nk in S, And P = p1, p2...pN are sentence nodes

derived from ni, And Q = q1, q2...qN ′ are sentence nodes derived from nk, For each

pa ∈ P and qb ∈ Q, there exists a link from pa to qb( Create a link from each sentence

node in P to each sentence node in Q). Figure 4.1(b) shows this kind of Sentence Graph.

Biased Connectivity

In this method, the first sentence node link inherits all the incoming links of a node and the

last sentence node inherits all the outgoing links of the node. The sentence node which

corresponds to the first sentence in the node is given more importance for an incoming link

and the sentence node derived from the last sentence is given more importance for

outgoing link. The reason behind this is because often in text summarization, the

sentences or words in the beginning of a document or a paragraph are considered more

important than the other sentences in the text [68, 69, 60]. Taking just the first sentence of

each paragraph to create a summary is a heuristic which is often used to create a quick

summary. Moreover such an arrangement of links maintains the flow in which the

sentences would be read if the user just hopped from node to node reading every node’s

content.

If there is a link from node ni to nk in S, And P = p1, p2...pN are sentence nodes

derived from ni in the order of sentences in the node, And Q = q1, q2...qN ′ are sentence

nodes derived from nk in the order of sentences in the node, Create a link from pN to q1.

Figure 4.1(c) shows this kind of Sentence Graph.

4.4 Combining Text and Structure

The previous sections discussed about purely text-based and purely link-based

approaches but Strandmaps contain both links and text. So, each of these solutions are

two ends of the spectrum and do not completely capture the nature of Strandmaps. We

need an approach which can combine both links and text in a meaningful way. We

propose two approaches which are described in this Section.

Approach I : Topic-development Curve Analysis

TDSum [39] uses the underlying topic-development patterns found by CUTS [56] to create

summary of a text as explained in Section 3.5. We use the same kind of approach to
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Figure 4.1: Sentence Graphs

summarize a Strandmap.

In a CUTS curve, the y-axis represents the 1-dimensional MDS coordinate which

gives a measure of the similarity between text entries. This can be done for Strandmaps

too. Each node in the Strandmap contains text that can be represented as a term-weight

vector and pairwise dissimilarities between nodes can be computed. MDS coordinate of

each node can be obtained which will give a measure of how close the nodes are in terms

of textual content.

The y-axis of the CUTS curve represents the order or sequence of text entries. A

major difference between a Strandmap and a text stream is the absence of ordering

among nodes in a Strandmap. We need to know the order between text entries in order to

create the CUTS curve. The optimal reading order for a Strandmap should meet the

following criteria:

• No advanced concepts should come before the prerequisites are covered

• Similar content should be together
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To figure out this optimal reading order, we use Constrained Multidimensional Scaling

explained in the next Section.

Constrained Multidimensional Scaling (CMDS)

Constrained MDS is a technique we developed to find the optimal reading order of a

Strandmap. MDS can be used to bring similar content together but we need to make sure

that while doing so, the ordering of prerequisites is not violated. The idea of Constrained

MDS is to start with a dissimilarity matrix and perform Multidimensional Scaling(Section

3.2) but while reducing overall stress, allow only those moves that do not violate the

pre-requisite ordering of the Strandmap. This algorithm is described below:

• Given:

– Pairwise similarities between all nodes

– Prerequisite constraints in the Strandmap

• Initialize:

– Assign random coordinates such that nodes are in Topological order

• Iterate: Steepest descent to minimize error without violating constraints

– Error is the total sum of the differences between the computed CMDS

coordinate and the actual dissimilarity between every pair of points.

Error =
∑

i:0→(N−1),j:0→(N−1)

|distancei,j − dissimilarityi,j | (4.1)

– Gradient for a point A is the normalized total error between A and the rest of

the points. It is used to determine the direction in which to move the point to

minimize stress for a point.

GradientA =

∑
i:0→(N−1),i 6=A(−1)pError(A, i)

(N − 1)2
(4.2)

where p is even if A is to the left of i and p is odd if A is to the right of i
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– Computing new coordinate for point A

x′A = xA + (δ ×GradientA) (4.3)

where δ is the rate of movement

– If the new positions computed do not yield a configuration with lower stress, or

if the new positions violate constraints, the rate is reduced

δ′ = δ/2 (4.4)

till δ ≥ δt where δt is a user-defined constant for the lowest acceptable value of

δ

• Stop:

– If no better configuration can be found in spite of decreasing rate and δ < δt

– Number of iterations crosses numiter which is a user-defined constant for the

maximum number of iterations allowed for convergence.

Every node in the Strandmap contains text. The text of each node is processed

and each node is represented as a term-weight vector, after stemming and stop-word

removal. Once we have term-weight vectors of each node, we can find the similarity

between any two such vectors using cosine similarity. In addition, WordNet [27] is used to

find synonymous words and add a percentage of their weight to total similarity.

si,j =

n∑
k=1

wi,k · wj,k

The dissimilarity can be calculated as di,j = 1− si,j and a dissimilarity matrix is generated

by computing the pairwise dissimilarities for all text entries. We also obtain all pairs of

pre-requisite constraints from the Strandmap. If node A points to node B in the

Strandmap, it implies that A is a pre-requisite of B and therefore should be read/taught

before B. Thus A→ B is a constraint.

After the preprocessing described above, we initialize the CMDS-coordinates of

each node.We perform a Topological sort on the nodes of the Strandmap as described in
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Cormen et al [24] and obtain an ordered sequence of nodes. Then we assign random

coordinates to all these nodes starting with the lowest random number for the first node in

the topological ordering and increasing random numbers for each successive node. Note

that there might be more than one ordering possible but we just need one for initialization

to ensure that pre-requisite constraints are not being violated.

All the nodes have now been assigned some random coordinates. Now we use a

Steepest descent approach [65] to minimize stress. The nodes are moved in the direction

in which total stress is minimized. If there is a move which violates any pre-requisite

constraint, the rate of movement is adjusted till no constraint is violated. If some constraint

is still violated, the move is not allowed. Doing this ensures that similar content is pulled

together but none of the pre-requisite ordering is destroyed. A configuration consists of a

set of values of CMDS coordinates for each node in the Strandmap. Error(Equation (4.1))

of each configuration is defined as the sum of differences of the distance (computed from

the current values of coordinates) and the actual dissimilarity (cosine) for each pair of

nodes in the Strandmap. A good configuration is one which has a low value of Error

because it means that estimated coordinates in CMDS space closely match the actual

textual similarities between nodes. We start with the initial value of Error and try to obtain

configurations with successively lower Error. For this we keep updating the coordinates of

each point in the hope that this move will lower the overall Error. To determine in which

direction the point should be moved, we use the Gradient as defined in Equation (4.2).

The Gradient of a point is the average error between that point and the rest of the points.

The value p in the equation decides whether the gradient is positive or negative. Since we

are working in 1 dimension, if point A is to the left of point i, we need to increase the value

of A’s coordinate so that it can move closer to i and decrease the error. So we need an

even p to add this error. If however, point A is to the right of point i, we need to decrease

the value of A’s coordinate and so we need an even p. The Gradient is further divided by

the number of points because each point would need to move and dividing thus would give

us the amount for a single point. Then we calculate the new coordinate of every point and

a new configuration is obtained. If the new configuration obtained does not lead to a lesser

Error, or if moving the points thus is violating some constraint in the Strandmap, we
49



discard this configuration and create a new one by decreasing δ. This is done iteratively till

we keep getting an configuration with lower error which does not violate any constraints.

If we reach a situation where decreasing δ till its threshold does not help find a

better configuration or the maximum number of iterations set by the user has been

reached, we stop iterating.

The configuration we end up with gives the locally optimal CMDS coordinates of

nodes which keep similar content together without violating any constraints. The nodes

are arranged in order of increasing CMDS Coordinates and the order of positions of nodes

that we obtain is used to plot the CUTS curve.

Summarization of Strandmaps with CUTS

Constrained MDS gives us the reading order of the Strandmap. The positions of each

node obtained by arranging nodes in order of increasing CMDS values is used as the

sequence number on the x-axis of the CUTS curve. The MDS coordinates of each node

are plotted on the y-axis as before.

Segments from the CUTS curve are obtained as explained in Section 3.4 through

3.4. After segments are obtained, the total summary budget given is distributed among the

segments as described in Section 3.5.

Every node in the Strandmap contains a number of sentences. We send a single

document to MEAD containing all these sentences and obtain the overall Centroid-score

of each sentence as computed by MEAD. This gives an indication of the sentence’s

importance to the central meaning of the entire Strandmap. A curve segment

encompasses one or more nodes. We rank all sentences within a segment according to

their Centroid scores.

For obtaining summary of the Strandmap, we consider each segment one by one

and keep extracting the top Centroid-score sentences from the segment until the summary

budget of that segment is exhausted.

• For every segment Z in the CUTS curve, which has a summary budget B, and
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sentences U = u1, u2...uN in order of decreasing Centroid scores

• while numwords(SegmentSummary) < B

– SegmentSummary = SegmentSummary + u1

– U = U − u1 and re-rank

A correction was added to this algorithm. If the addition of the last sentence

overshoots the summary budget of the segment, a coin-toss is done to decide whether to

keep that sentence or not. This technique was added because on the average, this

method yielded much larger summaries than the other methods due to presence of

multiple segments (If the last sentence overshoots the limit in a large number of segments,

it leads to a lot of extra sentences in the summary).

All the segment summaries are combined in order of segments, to create the

overall summary of the Strandmap.

Approach II: PageRank With Content

PageRank is an algorithm to estimate the importance of a node in the graph in terms of its

structural importance (Section 3.3). In the original algorithm, each outgoing link from a

node has an equal probability of being visited ie. the "random surfer" can decide to visit

any of the links on a web page with equal probability. In order to combine text with

structure, these transition probabilities are biased to reflect similarity between nodes. In

this case, the "random surfer" would choose to go to the link which is most similar to the

web page he is currently on, in terms of textual content. This makes intuitive sense in the

case of Strandmaps as users would like to progress from one concept to another which is

similar to it or create lesson plans that transition from one concept to another related or

advanced concept. Therefore, in Strandmaps users are more likely to progress from one

concept to a similar concept. To reflect this way of navigation, we need to bias the

transition probabilities in Pagerank to favor transition between similar concepts.

Instead of distributing Pageranks equally among all outgoing links in the graph, we

give a higher rank to similar pages. If there is a forward link from page u to page v, and W
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Figure 4.2: Pagerank Example

is the set of all nodes to which u has forward edges,

TransitionProbabilityu→v =
Sim(u, v)∑

i:iεW Sim(u,w)
(4.5)

where Sim(x, y) is the cosine similarity between the term-weight representations of web

pages x and y given by the formula in Equation (3.1).

Let us consider the graph in Figure 4.2. In the original Pagerank algorithm, if the

rank of D was 1, it would be split equally between A and B as 0.5 each. If we used

Pagerank with content and used the cosine similarity values given in the matrix in Figure

4.3, the rank of D would not be divided equally but according to their similarities with D. D

has outgoing links to A and B and the sum of similarity between D and A and D and B is

0.4 + 0.9 = 1.3. Thus the rank of A is 0.4
1.3 and that of B is 0.9

1.3 .

To use this idea for summarization of Strandmaps, we rank all sentences

according to their similarity-weighted PageRank and keep extracting the top-ranking

sentence until the summary budget is exhausted.

• create SentenceGraphs from the Strandmap as described in Section 4.3 having

both Uniform and Biased connectivity.

• Define transition probabilities from Equation (4.5) and find the similarity-weighted

Pagerank of each sentence in the Strandmap.

• While(number of words in summary < summary budget), add sentence with highest

rank to the summary
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Figure 4.3: Pagerank with Content Example
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Chapter 5

EVALUATION

The goal of our evaluation was to find if any of the approaches were creating good

summaries of the Strandmap and which approach was creating the most effective

summary.

5.1 Evaluation Challenges

The evaluation of text summarization algorithms is usually done by comparing the

summary generated by the algorithm with a reference summary. These reference

summaries are created by humans and available in Document Understanding

Conference(DUC) [9]. However no such reference summaries exist for non-linear

narratives like Strandmaps. Moreover there is no established algorithm to create such

summaries which can be used as a baseline. Thus we needed to create such benchmark

summaries ourselves by conducting user studies. However the inherent problem in these

user studies is the factor of human subjectivity and variability. There needs to be a very

large sample to establish which sentences constitute a good summary by majority.

Another problem is that users might not agree with each other on what constitutes a good

summary.

5.2 User Study Design

A number of user studies were conducted which have been detailed in the Appendix. After

getting user feedback, there were some biases discovered in each and hence a new study

had to be conducted. Thus every study was an iterative improvement over the last one.

For the final user study, we applied the following design lessons which were learnt

from the previous studies:

• Bias introduced by paper-based studies: The initial studies we conducted were

paper-based. The users were shown Strandmaps on the screen while sentences of

the Strandmap were listed on sheets of paper. Users were asked to rank each

sentence in order of its perceived importance in creating a summary. Sometimes

these sentences spanned several pages and we noticed that most often users
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marked the sentence on the last page with lower ranks. This could be due to the

extra effort required to turn pages every time a sentence’s rank needed to be

decided. It would be a cognitive overload or might not even be possible to remember

all sentences thus turning pages was the only way for good comparison. By making

it difficult to compare all sentences together, we biased the summaries in favor of

sentences on earlier pages. After identifying this bias, the studies were conducted

online where it was comparatively easier to scroll back and forth.

• Interference from overlapping content: Some of the studies conducted had

"Earthquakes’ and "Plate Tectonics" as two different Strandmaps. These topics are

related and their Strandmaps have a lot of overlapping content, so users already had

some residual knowledge of the subject while browsing the map that was presented

later. This made them exclude some information already covered in the last map

while selecting sentences for creating a summary or discount their importance while

ranking sentences. In the final study, the set of Strandmaps presented were

non-overlapping and varied in topics.

• Bias from extra information The name of the Strandmap eg. "Solar System",

"Astronomy" etc. and the listing of the topic strands were visible on the screen. This

made users select sentences which had these exact keywords. This bias was

identified from user feedback and in later studies no meta information about the

Strandmaps was presented.

• Limited size of human memory Tasks during the initial studies consisted of

selecting a number of sentences from the Strandmap to create a summary or

relatively ranking each sentence in the Strandmap in order of importance for creating

a summary. Both these tasks required the user to keep all sentences in mind while

judging a sentence because the selection or ranking was relative. However, this

poses a cognitive overload and users may only be able to rank sentences in relation

to those they remember. Thus we redesigned the task to avoid this.

• Selection Tasks are not reusable If users are asked to select a group of sentences

from the given set, which correspond to a summary size of a particular percentage
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Features Map 1 Map 2 Map 3 Map 4 Map 5
Name Cells and Organs Detecting Flaws in Arguments Disease Using Tools and Devices Waves
SMAP ID SMS-SMAP-1405 SMS-SMAP-2554 SMS-SMAP-1446 SMS-SMAP-2507 SMS-SMAP-1364
#nodes 25 19 22 24 17
#sentences 32 19 30 24 27
#users 13 12 11 12 12

Table 5.1: Strandmaps for Evaluation

compression of the original text, it cannot be further reused for any other

compression percentage.

5.3 User Study

The points mentioned in Section 5.2 were incorporated in the design of the final study.

The final user study was conducted on 5 Strandmaps from NSDL and responses were

received from 11− 13 users per map. Information about the maps selected is in Table 5.1.

The study was available online and Figure 5.1 shows the interface. The left part of

the screen showed an NSDL Strandmap and the right part listed all sentences contained

in the map. Users were first asked to go through the Strandmap on the left and then asked

to score each sentence on the right individually according to its importance in creating a

summary of the Strandmap on a scale of 1− 10.

Task:Please go through the fullsize map(click on the link and zoom it) understand

its meaning and assign scores(1 through 10) to each sentence on the right according to its

importance in creating the summary of the map. A score of 1 means the sentence is

irrelevant and should be omitted in creating the summary and a score of 10 means that the

sentence is indispensable for the meaning of the map to be understood properly and

should always be included in the summary. You should assign a score to every sentence.

• Clicking the Fullsize Map link on the left showed the Strandmap zoomed to its

original size.

• The Strandmap shown did not display a heading, topics or grade levels so that both

the algorithm and the human would have the same information. This was done to

remove the bias additional information would have on user selection.

• On the right hand, all the sentences contained in the Strandmap were listed in
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Figure 5.1: User Study Interface

alphabetical order. This was to remove any perception of importance ordering could

imply.

• Users could hover over the sentences in the interface to see their corresponding

position on the Strandmap marked by an orange arrow.

• Users were asked to rank each statement individually instead of relatively ranking it

or selecting a number of sentences from the entire set. This was done to eliminate

relative comparison as it would be difficult to do that on a global level

5.4 Evaluation Measure

After conducting the user study, for every Strandmap, we found the score assigned to

each sentence in it by each user. For each sentence in a Strandmap we found the average

rating assigned to each sentence in it, across all users. Thus, for a Strandmap S

containing sentences X = x1, x2...xN , and the set of users U = u1, u2...uM such that the

score assigned to sentence xi by user uj is sij , the average score for a sentence, AS(xi)
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is
∑

j:1→M sij
M . We evaluate a given algorithm by calculating its User Overlap. For every

sentence in the summary created by the algorithm, we find its average score and add all

such average scores to find the User Overlap. If an algorithm A gives a set of sentences

Y = y1, y2...yP then User Overlap =
∑

i:i→P AS(xi)
M .

Since user overlap values for one map cannot be compared with those of another,

we calculate the Normalized User Overlap which is the user overlap for an approach,

divided by the maximum user overlap among all approaches for that Strandmap. Thus the

maximum Normalized User Overlap for each map will be 1.
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Chapter 6

RESULTS

6.1 User Ratings

Table 6.1 gives the maximum, minimum and average scores users assigned to sentences

in each of the Strandmaps.

We observe that the Standard Deviation values in Table 6.1 are very small. This

indicates that scores given by users tended to cluster around the average. Thus, scores

awarded to sentence on the average were very close to each other. Moreover, users did

not use the whole scale from 1 to 10 as implied by the maximum and minimum values.

6.2 User Agreement

ANOVA tests [20] showed that the ratings given by users were not from the same

distribution and the Null hypothesis was rejected with more than 99% confidence as shown

in Table 6.2.

User disagreement is not surprising given that Strandmaps are complex structures

with multiple interconnected topics. So summaries can widely vary within the set of users.

6.3 Experimental Setup

Experiments were carried out to find out the best approach for creating summaries of

non-linear narratives like Strandmaps.

Map 1 Map 2 Map 3 Map 4 Map 5
Average 5.89 6.61 6.25 5.92 6.35
Max 7.62 8.42 7.82 8.00 8.17
Min 2.92 4.50 5.18 4.42 4.08
Std.Dev. 1.27 1.01 0.78 0.91 1.25

Table 6.1: Distribution of User Ratings

Map 1 Map 2 Map 3 Map 4 Map 5
P Values 1.93E-17 4.58E-11 8.69E-21 5.04E-28 2.76E-19

Table 6.2: P-Values from ANOVA test for User Agreement
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Configurations Map 1 Map 2 Map 3 Map 4 Map 5 Average
FFF 6.38 6.73 6.25 6.31 6.56 6.45
FFT 6.89 7.27 6.16 5.95 6.40 6.54
FTF 6.07 6.92 6.39 6.08 6.53 6.40
FTT 5.63 7.07 6.69 5.71 6.31 6.28
TFF 6.09 7.52 6.49 5.77 6.01 6.38
TFT 5.98 6.58 6.17 5.44 6.38 6.11
TTF 5.75 7.31 6.30 6.05 6.32 6.35
TTT 5.73 7.19 6.42 6.21 6.13 6.34
Only L 6.42 6.73 6.92 6.18 6.31 6.51
Atul’s Config 5.69 6.83 6.11 6.40 6.18 6.24

Table 6.3: Different Configurations for CUTS-based Approach

The 5 Strandmaps described in Table 5.1 were used with each of the algorithms

described in Section 4 and a 25% summary was created for each map. This means that

the summary retains 25% of the words in the original text. The User Overlap measures for

each algorithm were calculated and compared for statistical significance.

The Topic-development based approach uses the formula in Equation (3.3) to

assign summary budgets to the left and right children of a node. This formula has many

parameters which can be changed to change behavior. We used many different

configurations and chose the one with the highest user overlap score in the comparison.

These are shown in Table 6.3.

A configuration consists of either inverting a feature or not. There are 3 features

-Length, Slope and Average Distance and each feature could either be considered in

direct proportion or inverted. Note that Concentration is inverse of Average Distance. A

value of T means the feature is inverted and F means it is not inverted. For the first 8

configurations equal weights are assigned to all features ie. WL =WS =WAD = 0.333.

Only L means that only Length was used as a parameter. Atul’s Configuration refers to the

configuration that proved most efficient in summarization of text using CUTS [39]. This

configuration used features - Length, Inverse-Slope and Average Distance ie.

Inverse-Concentration. The weights were WL = 0.059, WS = 0.471 and WAD = 0.471
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Map 1 Map 2 Map 3 Map 4 Map 5
Purely Text-based 6.81 8.04 7.08 6.48 6.63
PageRank without Content (Biased Connectivity) 6.71 7.47 6.98 6.58 6.94
PageRank without Content (Uniform Connectivity) 6.72 7.67 6.77 6.58 7.29
CUTS-based 6.89 7.27 6.16 5.95 6.40
PageRank with Content (Biased Connectivity) 6.72 7.71 6.81 6.58 7.49
PageRank with Content (Uniform Connectivity) 6.72 7.71 6.70 6.58 7.50

Table 6.4: Comparison between Approaches

6.4 Comparison among Approaches

Table 6.4 shows the User Overlap of all approaches for all Strandmaps. The Sentence

Graphs constructed for PageRank (without Content) based approach and PageRank with

Content are constructed using both Biased and Uniform connectivity as explained in

sections 4.3 and 4.3. In the CUTS-based approach, the budgeting as shown in the

formula in Equation (3.3) was directly proportional to Length, Slope and

Concentration(inverse of average-distance) and equal weights of 0.33 were assigned to

each feature i.e. WL = 0.33,WS = 0.33,WAD = 0.33, the reason for which has been

discussed in Section 6.3.

There are two observations worth noting from these results:

• All the presented approaches perform better than the random average case If

we compare these techniques in Table 6.4to the average user score in Table 6.1,

we see that they have a greater user overlap than the average score assigned by

users. This means that all approaches perform better than if we randomly selected

sentences to create a summary. This is especially interesting in, as the experiments

in Table 6.1 showed, that users themselves disagree what a good summary is.

Nevertheless, these results clearly show that Strandmaps have textual and structural

features that can be leveraged to obtain good summaries.

• PageRank with Content performs better than PageRank The boldfaced numbers

in Table 6.4 show the maximum user overlap for that map. We see that PageRank

with Content performs equal to or better than PageRank without Content in all maps

except Map3. In Figure 6.1 we see that PageRank with Content performs better on
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Figure 6.1: Normalized User Overlap Graph

the average, in terms of Normalized User Overlap, than PageRank.

Performing Single factor ANOVA on the results obtained from PageRank without

Content( both biased and uniform connectivity), Pure Text and PageRank with

Content(both biased and uniform connectivity) with α = 0.5 gives a P-value 0.99. Since

the P value is greater than 0.5, we cannot reject the Null hypothesis. ANOVA on all the

approaches (including CUTS-based approach) with α = 0.5 gives a P-value 0.57.

The graph showing the Normalized User Overlap is shown in Figure 6.1.

Performing Single factor ANOVA on the normalized user overlap results obtained

from PageRank without Content( both biased and uniform connectivity), Pure Text and

PageRank with Content(both biased and uniform connectivity) with α = 0.5 gives a

P-value 0.94 so we cannot reject the Null hypothesis. ANOVA on all the approaches

(including CUTS-based approach) with α = 0.5 gives a P-value 0.04 so we can reject the

null hypothesis in this case. Thus we can conclude that CUTS-based approach does not

perform as well as the others.

6.5 Graph Rewiring

Strandmaps are educational-concept maps and the links are from lower level to higher

level concepts which are related to each other. Graph Rewiring consists of randomly

shuffling the edges in a Strandmap. This is done to remove the inherent dependence

between text and links in it. The textual descriptions of those nodes could also be very
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Map 1 Map 2 Map 3 Map 4 Map 5
PageRank with Content (Biased Connectivity) 6.72 7.71 6.81 6.58 7.49
PageRank with Content after Rewiring(Biased) 5.94 5.93 6.26 5.50 7.06
PageRank with Content (Uniform Connectivity) 6.72 7.71 6.70 6.58 7.50
PageRank with Content after Rewiring(Uniform) 6.07 5.93 6.26 5.50 7.06

Table 6.5: Effect of Graph Rewiring

similar to each other. We performed a set of experiments by rewiring the graph to break

this inherent relationship between text and links in a Strandmap. While the purely-text

based approach will not change on rewiring, PageRank with content is expected to decline

in performance as the relation between text and structure would break.

We created a list of all the edges in a map and then picked two random numbers.

Then we swapped the destinations of the edges at these two indices. We did this a

number of times and then added these rewired edges to the graph instead of the original

ones. Then we used the PageRank with Content algorithm on this graph. If we compare

the user overlap scores of the original PageRank with Content approach and this one

(Table 6.5), we do observe that performance deteriorates. This is in accordance with our

assumption that breaking the link between text and structure in a Strandmap will lead to

worse performance of PageRank with Content approach. If we compare with the average

case in Table 6.1 we see that after rewiring, the algorithm sometimes even performs

worse than the random case. This shows that in addition to text, structure is also an

important part of the Strandmap.

6.6 Conjectures
Interdependence between Text and Structure in Strandmaps

Our conjecture is that text in Strandmaps already reflect the structure. The Strandmaps

are so designed that text and structure are intertwined. Keywords are often repeated along

a path which make nodes linking to each other somewhat similar in content as well. We

believe, this is the reason why text-based approaches and structure-based approaches

both provide similar degrees of effectiveness.
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PageRank with Content

From the graph shown in Figure 6.1 we see that PageRank with Content approach in

which the Sentence Graph is created using Biased Connectivity has maximum Normalized

User Overlap score. Thus we speculate that this method combines text and structure well

even though it does not make any assumption about interdependence between text and

structure.

Difference in Performance across Strandmaps

From the graph shown in Figure 6.1 we see that some algorithms perform well in some

maps but not others. For example, the CUTS-based algorithm performs well in Map1 but

then performs the worst in the rest of the graphs. This might be due to inherent differences

in the Strandmaps themselves. Understanding the relationships between Strandmap

structures and effectiveness of the approaches considered here requires future studies.
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Chapter 7

CONCLUSION

Navigating within non-linear structures is a challenge for all users when the space is large

but the problem is most pronounced when the users are blind or visually impaired. Such

users access digital content through screen readers like JAWS which read out the text on

the screen. However presentation of information in a linear manner without visual cues

and information about spatial dependencies is very inefficient for users who are blind.

The NSDL Science Literacy StrandMaps are visual layouts which serve as primary

interfaces to help students and teachers browse educational resources. A Strandmap

about a specific science or math topic shows relationships between concepts belonging to

the topic and how they build upon one another across grade levels.

NSDL Strandmaps are non-linear narratives which need to be presented to users

who are blind in an effective way. A good summary of the Strandmap can give the users

an idea about the concepts that are explained in that map and help them decide whether

they want to view the map or not. In addition, a preview-based navigation mechanism can

help users decide which path they want to take from a certain node, based on a preview of

nodes further reachable from that path.

Given a non-linear narrative like a Strandmap which has both text and structure,

and a word limit w, our goal is to find the best way to create its summary. We propose the

following approaches:

• Purely Text-based Approach using a Multi-document Text Summarizer MEAD

• PageRank without Content

• Approaches Combining both Text and Structure

– CUTS-Based Approach

– PageRank with Content
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Since no reference summaries for such structures were available, we conducted

user studies to find human-generated summaries of Strandmaps. These were then

evaluated and we found that PageRank with Content Approach, using Biased Connectivity

to create Sentence Graphs, combined content and structure well. This method had the

highest normalized user overlap score but it was closely followed by Pure Text and

PageRank(without Content) based approaches and it could not be statistically proved that

the three approaches were different from each other. CUTS-based approach performed

the worst on an average, even though it performed the best in one of the maps.

We also came to the conclusion that text and structure are intertwined in a

Strandmap by design.

7.1 Future Work

From the results displayed in Figure 6.1 we see that some algorithms perform well in

some maps but not so well in others. No algorithm always performs consistently across

the maps. We discussed this in conjecture 6.6. This might be due to differences in

properties of the maps like structure or similarity of content. This needs to be investigated

further in future work.
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Appendix A

USER STUDIES
A.1 User Study Version 1

In this study users were first shown Strandmaps on the original NSDL interface and then
given sheets of paper on which all the sentences present in the Strandmap were listed.
Users had to choose a given number of sentences from this list which they thought would
be best to describe its summary. The paper form is shown in Figure A.1.

Three Strandmaps were used in this study and 5 responses were collected for
each map - 3 at 20% compression and 2 at 40% compression. The Strandmaps used
were:

• Classical Mechanics

• Plate Tectonics

• Changes in the Earth’s Surface
Lessons Learnt

• For every sentence the user faced the binary decision of selecting it or not. So, there
was no way to gauge relative importance of other sentences not selected by the user.

• Due to fixed summary length assigned to each user, these results could not be
reused for summaries at different compression amounts.

• Due to a low number of responses and responses being further split by summary
sizes, there was very little data for each Strandmap, for each summary length.

A.2 User Study Version 2

Like in the previous study, in this study users were first shown Strandmaps on the original
NSDL interface and then given sheets of paper on which all the sentences present in the
Strandmap were listed. However this time users had to distinctly rank the given sentences
in order of their relevance in describing the summary of the Strandmap starting with 1 as
most relevant. The paper form is shown in Figure A.2.

The same 3 Strandmaps were used in this study and 12 users gave their
responses for each map.

Lessons Learnt

This study gave us a way to create summaries at multiple compression rates from the
ranking given by the users. We could get the relative importance of every sentence in the
Strandmap. There was more data for every map. However, we discovered the following
problems:

• There were a considerable number of sentences in each Strandmap which spanned
several sheets of paper. We found that sentences on the latter pages received
worse rankings from most users. This might have been due to the additional effort
and break in attention from turning pages back and forth.

• We realized that it was a cognitive overload to keep all sentences in memory and
create a ranking. Thus users would have ranked a sentence comparing it just with
those they recalled from memory. Thus such methods which required remembering
all sentences for fair comparison was an impossible task.
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Task type  _____________ 

Please choose ___ sentences from the graph, which best describe its summary. You can mark  a  
X  in front of the selected sentences: 

 

The sun's gravitational pull holds the earth and other planets in their orbits, just as the planets' gravitational pull keeps 
their moons in orbit around them. 

The change in motion (direction or speed) of an object is proportional to the applied force and inversely proportional 
to the mass. 

Whenever one thing exerts a force on another, an equal amount of force is exerted back on it. 

Gravitational force is an attraction between masses.  

The strength of the force is proportional to the masses and weakens rapidly with increasing distance between them. 

Any object maintains a constant speed and direction of motion unless an unbalanced outside force acts on it. 

Isaac Newton, building on earlier descriptions of motion by Galileo, Kepler, and others, created a unified view of force 
and motion in which motion everywhere in the universe can be explained by the same few rules.  
 
Newton's system was based on the concepts of mass, force, and acceleration; his three laws of motion relating them; 
and a physical law stating that the force of gravity between any two objects in the universe depends only upon their 
masses and the distance between them. 
 
Ptolemy, an Egyptian astronomer living in the second century A.D., devised a powerful mathematical model of the 
universe based on continuous motion in perfect circles, and in circles on circles.  
 
With the model, he was able to predict the motions of the sun, moon, and stars, and even of the irregular "wandering 
stars" now called planets. 
 
The Newtonian system made it possible to account for such diverse phenomena as tides, the orbits of planets and 
moons, the motion of falling objects, and the earth's equatorial bulge. 
 
For several centuries, Newton's science was accepted without major changes because it explained so many different 
phenomena, could be used to predict many physical events (such as the appearance of Halley's comet), was 
mathematically sound, and had many practical applications. 
 
Although overtaken in the 1900s by Einstein's relativity theory, Newton's ideas persist and are widely used.  
 
Moreover, his influence has extended far beyond physics and astronomy, serving as a model for other sciences and 
even raising philosophical questions about free will and the organization of social systems. 
 
No matter how well one theory fits observations, a new theory might fit them just as well or better, or might fit a wider 
range of observations. 
 
Mathematics provides a precise language to describe objects and events and the relationships among them.  
 
In addition, mathematics provides tools for solving problems, analyzing data, and making logical arguments. 
 
In the long run, theories are judged by the range of observations they explain, how well they explain observations, 
and how useful they are in making accurate predictions. 
 
Science is based on the assumption that the universe is a vast single system in which the basic rules are everywhere 
the same and that the things and events in the universe occur in consistent patterns that are comprehensible through 
careful, systematic study. 
 

Figure A.1: User Study Version 1
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Name _____________        Graph: Astronomy 

If you had to create a summary of this graph, which sentences from it do you think would be most 
relevant to describe it?  

All sentences contained in this graph are listed below. Please rank all of them in order of their 
relevance to describe the summary of this graph (starting with 1 as most relevant). 

 You can write numbers in the space provided before each sentence. 

____________________________________________________________________________________ 

The sun's gravitational pull holds the earth and other planets in their orbits, just as the planets' gravitational pull 
keeps their moons in orbit around them. 

The change in motion (direction or speed) of an object is proportional to the applied force and inversely 
proportional to the mass. 

Whenever one thing exerts a force on another, an equal amount of force is exerted back on it. 

Gravitational force is an attraction between masses.  

The strength of the force is proportional to the masses and weakens rapidly with increasing distance between 
them. 

Any object maintains a constant speed and direction of motion unless an unbalanced outside force acts on it. 

Isaac Newton, building on earlier descriptions of motion by Galileo, Kepler, and others, created a unified view of 
force and motion in which motion everywhere in the universe can be explained by the same few rules.  

 
Newton's system was based on the concepts of mass, force, and acceleration; his three laws of motion relating 
them; and a physical law stating that the force of gravity between any two objects in the universe depends only 
upon their masses and the distance between them. 

 
Ptolemy, an Egyptian astronomer living in the second century A.D., devised a powerful mathematical model of 
the universe based on continuous motion in perfect circles, and in circles on circles.  

 
With the model, he was able to predict the motions of the sun, moon, and stars, and even of the irregular 
"wandering stars" now called planets. 

 
The Newtonian system made it possible to account for such diverse phenomena as tides, the orbits of planets 
and moons, the motion of falling objects, and the earth's equatorial bulge. 

 
For several centuries, Newton's science was accepted without major changes because it explained so many 
different phenomena, could be used to predict many physical events (such as the appearance of Halley's comet), 
was mathematically sound, and had many practical applications. 

 
Although overtaken in the 1900s by Einstein's relativity theory, Newton's ideas persist and are widely used.  

 
Moreover, his influence has extended far beyond physics and astronomy, serving as a model for other sciences 
and even raising philosophical questions about free will and the organization of social systems. 

 
No matter how well one theory fits observations, a new theory might fit them just as well or better, or might fit a 
wider range of observations. 

 
Mathematics provides a precise language to describe objects and events and the relationships among them.  

 
In addition, mathematics provides tools for solving problems, analyzing data, and making logical arguments. 

 

Figure A.2: User Study Version 2
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Figure A.3: User Study Version 3 Screen 1

Figure A.4: User Study Version 3 Screen 2

A.3 User Study Version 3

Learning from the ineffectiveness of paper-based studies, we created a study which was
available online. The screens for this study are shown in Figures A.3 and A.4.

The users were shown the Strandmap on the left part of the screen and all the
sentences in it were listed in the frame on the right. A box before the sentence was color
coded to match the color of the node to which the sentence belonged to. The sentences
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were listed in order such as not to violate the prerequisite ordering in the Strandmap.
Users had to pick sentences on the right so as to create a meaningful summary of the map
at 25% compression. A word counter was provided for keeping a count of the number of
words selected. A Percentage Calculator was also provided which calculated how much of
the summary had been created. Only when the percentage was 100% and the word
counter exceeded the required minimum number of words, would the users be able to
submit the summary. Users could change their selection of sentences to select another set
of sentences according to the limit.

Users could visualize the summary at any time using the "View Summary" button.
which took them to the next screen where they could "Commit Summary" for final
submission after creating the full summary or go back using the "Go Back and Change"
button.

We used the same 3 Strandmaps as before and 16 users gave their responses for
all 3 maps.

Lessons Learnt

Even though this study consisted of selecting sentences at a particular compression rate
and could not be used for other amounts, we thought that the cognitive overload in
relatively ranking each sentence was considerably reduced. This was a design tradeoff.
We decided we could repeat the study for multiple compression rates. However this study
too, suffered from some drawbacks:

• The same Strandmaps had been used in previous studies and some users had
attempted all the previous studies. So, there was a problem of residual information
that they recalled from past studies.

• The Strandmaps Plate Tectonics and Changes in the Earth’s Surface had
overlapping content and users who saw the second map were biased against what
they had already learnt from the last map.

• In this interface, the heading of the Strandmap and search keywords were displayed
above the map. This lead several users to believe that sentences containing those
keywords were more important than the others.

• As was discussed in earlier studies, selection tasks were not reusable but we made
a design tradeoff. However in the final study, the task was to rate each sentence
instead of relative ranking or selection which was a good solution.
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Appendix B

SUMMARIZATION IN MAISON
B.1 Summary Preview for Navigation in NSDL StrandMaps

The Text Summary module in MAISON annotates each edge of the StrandMap with a
summary of the content that is reachable (within n hops) of the current node. This is used
to give users a text preview of what to expect further along that edge so that they can
decide which edges to follow to reach a particular educational resource or learn about
certain concepts. For every outgoing edge from the user’s current node, the
summarization module takes the description text of its immediate neighbor as well its
neighbors and generates summaries using MEAD [60] for multi-document centroid-based
summarization. The summary obtained from MEAD is used as annotation on that edge. In
Figure 1.7, if the user is at node A, there are three outgoing edges. For the rightmost
edge, the summary annotation will consist of the summaries of immediate neighbor (B)
and its neighbors(C, D,E). The text of all these nodes, which form the lookahead
neighborhood for that edge are summarized.As it is expensive to generate summaries in
real-time and to have smooth user navigation the summaries are cached internally using a
cache.

This system is available at [8] by using "Summary of the Upcoming Nodes" as Link
Preview Option.

B.2 MAISON Web Annotation Plugin

The MAISON Web Annotation Plugin annotates links on a Webpage on request to help
people who are blind have better navigation experience.

On the Client side, the user sends an annotation request (Keyword/Text Summary)
through a Firefox Extension (Addon). Then the Server side extracts text from the
requested link, generates the annotation for the link and sends this back to the client as
response. The annotation can either be a summary or a set of keywords depending on the
request from the client. The text summary is created using Open Text Summarizer [64]
which is a very fast text summarizer. Summaries are also cached for faster response time.

Figure B.1 shows the interaction between the Client and Server.

Figure B.1: MAISON Web Annotation System
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