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ABSTRACT 

Sinaloa, a coastal state in the northwest of Mexico, is known for irrigated 

conventional agriculture, and is considered one of the greatest successes of the 

Green Revolution. With the neoliberal reforms of the 1990s, Sinaloa farmers 

shifted out of conventional wheat, soy, cotton, and other commodities and into 

white maize, a major food staple in Mexico that is traditionally produced by 

millions of small-scale farmers. Sinaloa is now a major contributor to the national 

food supply, producing 26% of total domestic white maize production. Research 

on Sinaloa’s maize has focused on economic and agronomic components. Little 

attention, however, has been given to the environmental sustainability of 

Sinaloa’s expansion in maize. With uniquely biodiverse coastal and terrestrial 

ecosystems that support economic activities such as fishing and tourism, the 

environmental consequences of agriculture in Sinaloa are important to monitor. 

Agricultural sustainability assessments have largely focused on alternative 

agricultural approaches, or espouse alternative philosophies that are biased against 

conventional production. Conventional agriculture, however, provides a 

significant portion of the world’s calories. In addition, incentives such as federal 

subsidies and other institutions complicate transitions to alternative modes of 

production.  

To meet the agricultural sustainability goals of food production and 

environmental stewardship, we must put conventional agriculture on a more 

sustainable path. One step toward achieving this is structuring agricultural 

sustainability assessments around achievable goals that encourage continual 



ii 

adaptations toward sustainability. I attempted this in my thesis by assessing 

conventional maize production in Sinaloa at the regional/state scale using network 

analysis and incorporating stakeholder values through a multicriteria decision 

analysis approach. The analysis showed that the overall sustainability of Sinaloa 

maize production is far from an ideal state. I made recommendations on how to 

improve the sustainability of maize production, and how to better monitor the 

sustainability of agriculture in Sinaloa.
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Chapter 1 

INTRODUCTION 

Sinaloa, a coastal state in the semiarid north of Mexico, produces 26% of 

the nation’s white maize (Gobierno del Estado de Sinaloa, 2010), a staple of the 

Mexican diet (Galarza Mercado, et al., n.d.). This important role in satisfying 

national food supply is relatively new for Sinaloa: it produced almost no 

commercial maize before 1990 (Servicio de Información Agroalimentaria y 

Pesquera (SIAP), 2010). Today, Sinaloa is the national leader in maize 

production, modeling its irrigated, mechanized production methods after the 

conventional agriculture model of the United States (Aguilar Soto, 2004). Maize, 

however, is a resource consumptive crop with potential for environmental 

degradation, made evident in the U.S. Corn Belt (Brye, Norman, Bundy, & 

Gower, 2000; Clay, 2004; Kessavalou, Doran, Powers, Kettler, & Qian, 1996; 

Patzek, 2008; Sampson & Knopf, 1994). Yet, farmers, citizens, and governments 

in Sinaloa are not seriously considering the effects of maize cultivation on its 

natural resources or on other economic sectors. Neither are they considering if 

current practices will allow for maize production – or agricultural production in 

general – to continue over the long-term. In other words, Sinaloa is not 

considering the sustainability of maize production. 

Sustainability assessment considers the economic, social and ecological 

components of a system (Gibson, 2006). Research on maize in Sinaloa to date has 

focused on social, economic, and agronomic elements of production (e.g. Aguilar 

Soto, 2000; Aguilar Soto, 2004; Aguilar Soto & Maya Ambía, 2007; Díaz Valdés, 
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2006; Díaz Valdés, Pérez D., N. W., López G., A., Partidas R., L., & Suárez, Y. 

E., 2008; Maya Ambía & Ponce Conti, 2010; Ojeda-Bustamante, Sifuentes-Ibarra, 

& Unland-Weiss, 2006), with little focus on environmental impacts or social 

justice (de Ita Rubio, 2003; Díaz Coutiño, 2007). In the 1980s, Wright (2005) 

studied the social inequities associated with agricultural modernization and 

excessive pesticide use in Sinaloa’s commercial vegetable sector, calling attention 

to the need for further analysis and systemic change in the agricultural sector. 

Furthermore, studies on Sinaloa’s biodiverse coastal ecosystems have revealed the 

presence of toxic agrochemicals (Carvalho, Fowler, & Readman, 1996; Green-

Ruiz & Páez-Osuna, 2001, 2003; Federico Páez-Osuna, Ramírez Reséndiz, Ruiz 

Fernández, & Soto Jiménez, 2007), calling attention to the need for further 

research on how Sinaloa’s agricultural sector interacts with and impacts the 

environment. As the state’s most important crop in terms of surface area and 

production (SIAP, 2010), maize is a key starting point for understanding the 

relationship of contemporary agriculture to the environment in Sinaloa.  

 

Research Questions and Objectives 

Environmental analysis is an essential step toward fully assessing the 

sustainability of agriculture in Sinaloa. The discourse on agricultural 

sustainability has focused on the advantages of alternative agriculture and the 

disadvantages of conventional agriculture. Yet, the two modes of production 

espouse “fundamentally divergent paradigms” and values (Beus & Dunlap, 1990, 

p. 591). Agricultural alternatives such as organic farming or biodynamic farming 
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are designed around values such as environmental stewardship, holism, and 

community, while conventional agriculture is designed around the values of 

efficiency, centralization, specialization, and productivity (Beus & Dunlap, 1990; 

Hansen, 1996). Thus, to assess their sustainability with the same criteria is to 

compare apples and oranges. Conventional agriculture is currently the dominant 

mode of food production and is highly institutionalized through government 

subsidies, large-scale purchasers, and international markets (Clay, 2004). There is 

a need to address the sustainability of conventional agricultural systems in a more 

flexible manner to identify context-specific, feasible, and practical transitions to a 

more sustainable system. Part of achieving this is incorporating stakeholder 

perceptions and needs. My thesis assesses the sustainability of the state’s most 

important commercial crop, maize, focusing on the environmental component of 

the system at the state/regional scale in attempt to fill the gaps of sustainability 

assessment for conventional agriculture and environmental analysis of agriculture 

in Sinaloa. I seek to answer the following research questions: 

1. What are the critical environmental concerns addressed by sustainability 

assessments of agricultural systems? 

2. What is the relevance of such concerns for conventional maize production 

in Sinaloa? 

3. How can stakeholder values be incorporated into a sustainability 

assessment?  

4. What is the current level of environmental sustainability for the maize 

sector in Sinaloa? 
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I applied Multicriteria Decision Analysis (MCDA) as the assessment method, and 

network analysis for system analysis. Using the best knowledge, data, and tools 

available to me, I identified stakeholder concerns, environmental indicators of 

sustainability, their current and ideal states, and justifications for how they were 

assessed. The results call attention to environmental questions in need of further 

research. Finally, I made recommendations on moving toward a more sustainable 

agricultural system.  

 

Study Area: Sinaloa, Mexico 

Sinaloa is a state located on the Pacific Northwest coast of Mexico, 22˚31’ 

to 26˚56’ North latitude and 105˚24’ to 109˚27’ West longitude. Its area is 58,092 

km2. The mean elevation is 344 meters, though more than half the state is below 

150 meters. Most of Sinaloa can be classified as coastal lowlands. The eastern 

border rises into the Sierra Madre Occidental Mountains. The climate in most of 

Sinaloa is warm and sub-humid with an average annual temperature of 23.8˚C 

(75˚F; Schmidt Jr., 1976). Annual precipitation is about 80 cm, with most 

precipitation falling in the summer monsoon season (Comrie & Glenn, 1998; 

Liebmann, et al., 2008). Soils are mostly eutric regosols, luvisols, verticals, and 

cambisols.  

Sinaloa is biodiverse, with 424 bird species, 143 mammals, and 122 

documented amphibians and reptiles (Sarukhán & García Méndez, 2003). The 

native vegetation of the coastal plains is mainly thorn forest, while the foothills 

host deciduous tropical forest and low deciduous forest. The native montane 
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vegetation is oak forest and pine-oak forest (Schmidt Jr., 1976). Along the 

coastline are sandy beaches, dunes, mangroves, estuaries, and lagoons (Carvalho, 

et al., 1996; Federico Páez-Osuna, et al., 2007). Sinaloa’s coast is also an 

important economic asset, supporting a major shrimp and fishing industry 

(Trujillo Félix & Gaxiola Carrasco, 2010) as well as tourism and recreational 

activities that attract national and international visitors (Cruz-Torres, 2004; 

Gobierno del Estado de Sinaloa, 2010; Rubio Rocha & Beltrán Magallanes, 

2003). The coast also supports high species diversity, providing sanctuary for 

migratory birds, as well as refuge, feeding, and reproductive grounds for 

endangered species such as turtles, crocodiles, and jaguars (Carvalho, et al., 1996; 

Rubio Rocha & Beltrán Magallanes, 2003).  

Sinaloa has a long history of large-scale agriculture. In the nineteenth 

century, it was one of the first states in Mexico to modernize, with infrastructure 

for irrigation and greater concentration of land ownership than other parts of the 

country (Nakayama Arce, 1983; Ortega Noriega, 1999). In the 1930s, the federal 

government invested in new irrigation infrastructure for Sinaloa, finishing in 1948 

(Ortega Noriega, 1999). Vegetable commodity production expanded in the 1950s 

and 1960s, and Sinaloa became a major competitor with United States producers 

(Schmidt Jr., 1976). Sinaloa is noted as one of the greatest successes of the Green 

Revolution (Wright, 2005). Today, Sinaloa hosts a population of 2,652,451 

people, of whom 151,944 are farmers (Gobierno del Estado de Sinaloa, 2009a). 

Agriculture occupies 25% of the state’s landscape (Gobierno del Estado de 

Sinaloa, 2009b) and represents 14.9% of Sinaloa’s GDP. Most agriculture in the 
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state is irrigated with surface water channeled from 11 river dams (Gobierno del 

Estado de Sinaloa, 2009a).  

The large-scale, conventional maize production of Sinaloa represents an 

enormous departure from traditional small-scale, rain-fed maize cultivation 

typical in the rest of Mexico (Aguilar Soto, 2004). Sinaloa did not historically 

produced maize on a commercial scale. Prior to 1990, the dominant crops of 

Sinaloa by surface area were sesame, safflower, and a rotation of soy and wheat. 

Starting in 1990, maize production in Sinaloa expanded rapidly, going from 

140,727 ha planted in 1989 to a peak of 606,917 ha in 2008 (SIAP, 2010). This 

expansion was a result of federal neoliberal economic reform in the late 1980s 

that eliminated price protections for all commodity crops but maize and beans. 

This, and new high-yielding seeds varieties adapted to Sinaloa’s growing 

conditions led commercial growers in Sinaloa to start planting maize under 

irrigation. Maize is now a monoculture in Sinaloa during the winter growing 

season (Eakin, Bausch, & Sweeney, submitted).  

Cultivating transgenic plant varieties is not legal in Mexico. The Sinaloa 

state government allowed Monsanto to plant a small experimental plot with 

transgenic maize in 2010 (Beltrán, 2010), but in 2011 the secretaries of 

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y 

Alimentación; Secretary of Agriculture, Livestock, Rural Development, Fishing 

and Food) and SEMARNAT (Secretaría de Medio Ambiente y Recursos 

Naturales; Secretary of the Environment and Natural Resources) denied 

permission for a 100 ha pilot plot of transgenic varieties (Pérez U., 2011). 
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Chapter 2 

LITERATURE REVIEW 

Theoretical Approaches 

Sustainability. At its most basic, sustainability is defined as “meet[ing] 

the needs of the present without compromising the ability of future generations to 

meet their own needs" (World Commission on Environment and Development 

(WCED), 1987). Burkhardt (1989) argued that sustainability is a moral obligation 

“direct[ing] us toward resolving difficult practical problems in future-directed 

research and technology development, conservation/preservation strategies, and 

institutional design” (p. 126). The field of sustainability science seeks to 

“[improve] society’s capacity to use the earth in ways that simultaneously ‘meet 

the needs of a much larger but stabilizing human population,… sustain the life 

support systems of the planet, and… substantially reduce hunger and poverty’” 

(Clark, 2007, p. 1737, quoting The National Research Council Policy Division 

Board on Sustainable Development, 1999).  

Sustainability is committed to collaboration between researchers and 

stakeholders to produce knowledge that is ”both technically sound and socially 

acceptable,” or, socially robust (Sarewitz, et al., n.d., p. 13). Stakeholders are the 

various people associated with the decision process in question (Lahdelma, 

Salminen, & Hokkanen, 2000). The field of sustainability is use-inspired, 

“defined by the problems it addresses rather than by the disciplines it employs” 

(Clark, 2007, p. 1737). Sustainability problems are “important, real world 
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challenges that are complex requiring systems dynamics thinking, not yielding to 

easy solutions or optimal tradeoffs, and are best understood in the context of 

specific places although their impact and scale of operation may vary in both 

space and time” (Miller, Muñoz-Erickson, & Redman, 2011, p. 179). Sarewitz, 

Kriebel, Clapp, and colleagues (n.d.) emphasized linking knowledge to action for 

sustainability by seeking intervention points rather than merely characterizing a 

problem. 

Gibson (2006) observed that the impetus for sustainability is driven by 

demands for improvements to current conditions that are not viable over the long 

term. He identified normative criteria for sustainability, or sustainability 

principles on which to base those improvements: socio-ecological system 

integrity, livelihood sufficiency and opportunity, intragenerational equity, 

intergenerational equity, resource maintenance and efficiency, socio-ecological 

civility and democratic governance, precaution and adaptation, and immediate 

and long-term integration. These principles can be applied to any sector in which 

environmental, social, and economic components intersect, and has become an 

important lens for considering critical issues such as energy, urban development, 

resource management, and agriculture. 

Agricultural sustainability. There are many reasons to be concerned 

about the sustainability of agriculture, such as natural resource depletion, 

pollution, fluctuating food prices, corporate concentration in the food and 

agriculture industries, the obesity epidemic, and others (Table 1). Many of these 

problems are associated with conventional agriculture, characterized as “capital-
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intensive, large-scale, highly mechanized agriculture with monocultures of crops 

and extensive use of artificial fertilizers, herbicides and pesticides, with intensive 

animal husbandry” (Hansen, 1996, p.120, citing Knorr & Watkins, 1984). 

Conventional agriculture has been described as centralized, competitive, 

specialized, exploitative, and dominant of nature. The term “conventional 

agriculture” is often used to refer to mainstream U.S. agriculture (Beus & Dunlap, 

1990).  

The concept of conventional agriculture was developed to contrast with 

alternative agricultural approaches and to justify the need for alternatives 

(Hansen, 1996). “Alternative agriculture” is an umbrella term for organic, 

biodynamic, regenerative, and low-input agriculture, as well as agroecology, 

permaculture, best management practices, and maximum economic yield, all of 

which are associated with the idea of agricultural sustainability (Beus & Dunlap, 

1990; Dahlberg, 1991; Hansen, 1996; Keeney, 1989). While these alternative 

approaches to agriculture are diverse, they have much in common. For alternative 

agriculturalists, agriculture is about more than food sufficiency and environmental 

stewardship; it is “a form and manifestation of culture” that “must contribute to 

cultural and natural vitality by maintaining and promoting democracy, 

community, and care” (Burkhardt, 1989, pp. 116, 122). They favor significantly 

reducing synthetic agrochemical use, energy use, technology, and food 

processing, while advocating for smaller farms, greater farm and regional self-

sufficiency, conserving natural resources, direct sales to consumers, and farming 

as a way of life (Beus & Dunlap, 1990; Burkhardt, 1989). They all “agree that 
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Table 1 

Sustainability Principles and Agricultural Concerns 

Sustainability 
Principles (Gibson, 

2006) 

Agricultural Sustainability 
Concerns 

References 

Yield capacity Badgley, 2007; Roberts, 
2008; UNEP, 2009 

Animal welfare Singer & Mason, 2006; 
Pollan, 2006; Schlosser, 
2002 

Environmental degradation Berry, 1977; Carson, 1962; 
Lal, et al., 2003; McNeely & 
Scherr, 2003; Pretty, 1995; 
UNEP, 2009; Uri, 1999a 

Altering global nutrient cycles Vitousek, et. al., 1997 
Greenhouse gas emissions Oenema, Kuikman, & 

Velthof, 2001 

Socio-ecological 
system integrity 

Agrochemical use Carson, 1962; Lal, et al., 
2003; Pretty 1995; Uri, 
1999a 

Declining rural livelihood 
viability 

Cochrane, 2003; Lal, et al., 
2003; Lyson, 2004; 
Schlosser, 2002 

Farm subsidies Myers & Kent 2001; 
Roberts, 2008 

Worker rights Clay, 2004; Schlosser, 2002 
Corporate concentration in the 
agriculture sector 

Berry, 1977; Fitzgerald, 
2003; Lyson, 2004; Roberts, 
2008 

Livelihood sufficiency 
and opportunity 

Land concentration, farm size Berry, 1977; Roberts, 2008; 
Lyson, 2004 

Loss of local/traditional 
knowledge 

Altieri 1995; Berry 1977; 
Morales, 2002; Wilken, 1987 

Aging farmer population Hollis, 2005 
Undernourishment Roberts, 2008; UNEP, 2009 
Obesity epidemic Nestle, 2002; Roberts, 2008 
Diet related disease Horrigan, Lawrence, & 

Walker 2002; Nestle, 2002; 
Schlosser, 2002 

Fluctuating food prices UNEP, 2009 
Food safety Horrigan et al., 2002; 

Redman, 2007; Schlosser, 
2002 

Inequitable terms of trade Clay, 2004 

Intragenerational 
equity 

Food deserts Winne, 2008  
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Table 1 continued 
 

Sustainability 
Principles (Gibson, 

2006) 

Agricultural Sustainability 
Concerns 

References 

Projected population rise Kendall & Pimentel, 1994; 
UNEP, 2009 

Environmental degradation (see above) 
Natural resource depletion Berry, 1977; Lal, et al., 

2003; UNEP, 2009 
Biodiversity loss Altieri, 1999; Morris & 

Winter, 2002; Scherr & 
McNeely, 2008 

Loss of local/traditional 
knowledge  

(see above) 

Intergenerational 
equity 

Climate change Roberts, 2008; UNEP, 2009 
Natural resource depletion (see above) 
Overproduction  Cochrane, 2003 
Energy use in agriculture Pimentel & Pimentel, 2008; 

Pretty, 1995 

Resource maintenance 
and efficiency 

Loss of cultivable land UNEP, 2009 
Corporate concentration in the 
agriculture sector 

(see above) Socio-ecological 
civility and democratic 
governance Land concentration (see above) 

Biotechnology  Garcia & Altieri, 2005; 
Pretty, 2001 

Projected population rise (see above) 

Precaution and 
adaptation 

Food safety (see above) 
Definition of agricultural 
sustainability  

Douglass, 1984; Hansen, 
1996 

Immediate and long-
term integration 

Sustainability assessment  see Table 2 
 

industrial agriculture is unsustainable over the long term,” meaning that 

sustainability in agriculture is a call for basic change within the sector and beyond 

(Dahlberg, 1991, p. 338). 

In his analysis of the concept of agricultural sustainability, Hansen (1996) 

identified two broad interpretations:  

…sustainability interpreted as an approach to agriculture 
developed in response to concerns about impacts of agriculture, 
with motivating adherence to sustainability ideologies and 
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practices as its goal; and sustainability interpreted as a property of 
agriculture developed in response to concerns about threats to 
agriculture, with the goal of using it as a criterion for guiding 
agriculture as it responds to change. (Hansen, 1996, p. 117) 
 

He further categorized interpretations of agricultural sustainability as ideology, a 

set of strategies, the ability to fulfill a set of goals, and the ability to continue into 

the future. Looking at conceptual and methodological barriers for using 

sustainability concepts to guide change in agriculture, Hansen (1996) found that 

using sustainability as an approach to change has been hampered because 

prescribed approaches have been too specific, views of conventional agriculture 

are distorted, and because of the use of poor logic. To further convolute the 

concept and objectives of agricultural sustainability, conventional agricultural 

interests now use the same vocabulary and images used by alternative agricultural 

interests to frame their objectives and products as environmentally friendly, and 

even sustainable (e.g. ADM, 2011; Monsanto, 2010; Renewable Fuels 

Association, 2010). The result is that sustainable agriculture is poorly defined in 

concept and practice, with definitions being too specific, too vague, or biased 

toward one end of the conventional-alternative spectrum or the other. 

The negative characterization of conventional agriculture is not without 

reason. Yet, the productive capacity of alternative agriculture has also been 

questioned with fears that it may not be a viable, or even sustainable approach to 

food production on a large scale. The idea of “high yield conservation” posits that 

alternative methods have lower yields than conventional systems, and therefore 

require bringing more land into agricultural production to produce the same 
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amount of food, implying an increase in deforestation, erosion, and other negative 

outcomes (Clay, 2004; Devine & Furlong, 2007; Goklany, et al., 2002; Mäder, et 

al., 2002). Implicit in this argument is that population will rise (such as the oft-

referenced population projection of nine billion people by 2050 (Alexandratos, 

1999)), and that current eating patterns will remain constant, necessitating even 

higher yielding agricultural approaches that are assumed to be technologically 

driven (Fedoroff, et al., 2010). However, dietary changes, especially reducing 

meat consumption in favor of a more plant-based diet, could decrease pressure on 

agricultural land (Helms, 2004; Pimentel & Pimentel, 2003). Still, an expansion in 

biofuel crops could increase pressure on agricultural land. 

Contrary to the high yield conservation hypothesis, some studies have 

shown that the productive capacity of alternative practices is comparable to and 

perhaps better than conventional agriculture (Badgley, et al., 2007; Pimentel, 

Hepperly, Seidel, Hanson, & Douds, 2005; Pretty, et al., 2006). An idea gaining 

traction is “sustainable intensification,” which is producing more food per land 

unit while reducing the environmental impacts of production with strategies such 

as reduced tillage, integrated pest management, agroforestry, and precision 

agriculture, among others (Godfray, et al., 2010; Matson, Parton, Power, & Swift, 

1997; Pretty, 1997). Regardless of alternative agriculture’s productive capacity, or 

potential dietary changes, building the social and human capital (e.g. farmer skills 

and knowledge, consumer demand for alternatively-farmed produce) as well as 

institutions (e.g. local markets) needed for the large-scale implementation of 

alternative agriculture will take time. It is unrealistic to expect that all 
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conventional farmers –many of whom struggle financially or have little economic 

motivation to switch (Rosset & Altieri, 1997; Webster, 1997)– will adopt 

alternative management approaches for the sake of sustainability in spite of 

existing institutions that provide incentives for the status quo (Godfray, et al., 

2010; Hendrickson & James Jr., 2005; Tilman, Cassman, Matson, Naylor, & 

Polasky, 2002), such as agricultural subsidies (Myers & Kent, 2001), or the 

agricultural treadmill (Cochrane, 2003). Until those incentives change, if we want 

to improve the sustainability of agricultural production we need to stop focusing 

on what makes conventional agriculture unsustainable; this is already well-

documented (Table 1).  

To meet the sustainability criteria of intragenerational equity and 

livelihood sufficiency and opportunity (Gibson, 2006), agriculture must produce 

enough food to feed the human population. Conventional agriculture thus 

contributes to sustainability in terms of human food provisioning because it has 

increased aggregate world food production (Pretty, 2008), raising the world 

average per capita food availability, even with a doubling of the population since 

the 1950s (Alexandratos, 1999). At this stage in the long journey toward 

sustainability, it is unrealistic to imagine that some form of conventional 

agriculture is not a critical part of producing a sufficient amount of food at 

national and global scales given the current population size. 

While still building capacity for the expansion of alternative agriculture in 

terms of land use, institutions, and human capital, one of the many important steps 

toward agricultural sustainability is to reduce the environmental impacts of 
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conventional agriculture. We need to put conventional agriculture on a sustainable 

trajectory by framing it as a system interacting in the environmental, social and 

economic spheres, and continually identifying tangible ways for farming to 

become more sustainable. Indeed, sustainability literature highlights that in the 

pursuit of sustainability “there is no end state to be achieved”; it is a process of 

continual adaptation (Gibson, 2006, p. 172; Miller, et al., 2011; Pretty, 1997). One 

way to gain a better understanding of how conventional agriculture interacts with 

the surrounding environment and to identify the most effective ways to improve 

its sustainability is through sustainability assessments designed to capture the 

issues of greatest concern. 

Of the definitions for sustainable agriculture, a few have encompassed the 

many forms of agriculture while calling attention to sustainability values and their 

systemic nature. Douglass (1984) defined agricultural sustainability by the 

characteristics of environmental stewardship, the achievement of food sufficiency, 

and community. Similarly, Rasul and Thapa (2003) pointed out that there are 

“three basic features of sustainable agriculture: (i) maintenance of environmental 

quality, (ii) stable plant and animal productivity, and (iii) social acceptability” (p. 

174). Another definition focused on these issues was provided by the American 

Society of Agronomy (ASA, 1989) defining sustainable agriculture as: 

…one that, over the long term, enhances environmental quality 
and the resource base on which agriculture depends, provides for 
basic human food and fiber needs, is economically viable, and 
enhances the quality of life for farmers and society as a whole. 
(ASA, 1989, p. 15) 
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According to Hansen’s (2006) typology of agricultural sustainability 

interpretations, the focus on these three issues defines sustainability as the ability 

to fulfill a set of goals and the ability to continue. 

For this project I adopted those elements of the ASA’s definition of 

sustainable agriculture that are within the scope of environmental sustainability: 

long-term enhancement of environmental quality and natural resources, and the 

provisioning of basic human food needs. The criterion of long-term enhancement 

of environmental quality and natural resources aligns with Gibson’s (2006) 

sustainability criteria of resource maintenance and efficiency and socio-ecological 

system integrity. The criterion of the provisioning of basic human food needs 

aligns with Gibson’s criteria of livelihood sufficiency and opportunity, and intra-

generational equity. The other components of the definition – provisioning of 

human fiber needs, economic viability, and quality of life – are very important for 

understanding the sustainability of maize production in Sinaloa, however, they are 

beyond the scope of this project. 

 

Measuring Agricultural Sustainability: Indicator-Based Assessment 

Assessing the sustainability of agricultural systems is key to implementing 

policies and practices that increase sustainable land use (Sadok, et al., 2009). 

Sustainability assessments are often accompanied by “attempts to define 

sustainability objectives, to identify appropriate indicators, to apply sustainability 

considerations in scenario building, community mapping, multicriteria 

evaluations, lifecycle and flow analyses, and a host of other tools to assist 
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decision-making in complex circumstances” (Gibson, 2006, p. 171). Many 

sustainability assessments are indicator-based. An indicator is a proxy or measure 

of an issue of interest that is difficult to monitor directly (Rigby, Woodhouse, 

Young, & Burton, 2001). According to Sands and Podmore (1993) the primary 

objective of an environmental sustainability assessment “is to identify, integrate 

and quantify diverse phenomena that represent the ‘state of the environment’ for 

agricultural systems” (p.74); in other words, select appropriate qualitative and 

quantitative indicators that identify system drivers and system outcomes. 

Indicator selection is a complex task. An indicator must be theoretically 

and contextually appropriate (Rigby, et al., 2001); it must communicate and 

measure the issue of interest and contribute to the system analysis (Van 

Cauwenbergh, et al., 2007); and it must be meaningful to stakeholders. However, 

once a potential indicator is identified, the information associated with the 

indicator is a serious constraint. Often, there is no existing data for an ideal 

indicator; it may never have been collected at the location and scale of interest; if 

data has been collected it may be outdated or difficult to access; or there may not 

be enough information to interpret the available data. In many cases, due to 

timing and funding constraints of research, the assessment team does not have the 

option of collecting the data that would be most relevant to the assessment, and 

therefore must settle on an indicator for which data already exists. Because there 

are often multiple potential indicators for a variable, it is important to explain why 

each indicator was selected and what it communicates about the sustainability of 

the issue it is intended to measure. Indicator selection is an essential step in 
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sustainability assessment that must be done carefully and thoughtfully to ensure 

the right combination for analysis, meaning, and relevance.  

Once system indicators are selected and current state data are collected, 

the system is assessed for its sustainability by comparing the current state of the 

indicators to sustainable reference values or ranges that reify sustainability 

principles, such as those identified by Gibson (2006). Establishing scale and 

location-appropriate sustainable states for each indicator is challenging. For many 

issues, sustainability problems have been identified, but poorly defined, making it 

difficult to know what the sustainable state would be. For example, land use is a 

major consideration for agricultural sustainability. A large land area dedicated to a 

monoculture is widely acknowledged to be environmentally unsustainable 

(Benton, Vickery, & Wilson, 2003; Pretty, 2008; Rosset & Altieri, 1997). But 

what constitutes a large area of monoculture? Does the unsustainability of a 

monoculture vary by crop, tract shape, location, and surrounding land uses? There 

is no single correct answer to these questions. Thus, a sustainable state (also 

referred to as an ideal state or level, desirable state, or target value) is a matter of 

interpretation; it can be generated by comparing it to another system, identifying a 

threshold, applying a legal value, seeking expert knowledge, or a combination of 

these options (Van Cauwenbergh, et al., 2007).  

While researchers typically provide justifications for the sustainability 

values they use, these can be challenged and debated, because a single sustainable 

level for all indicators often does not exist. For example, according to the 

sustainability ideals of organic farming, synthetic nitrogen fertilizer should not be 



19 

used (Lotter, 2003). However, it increases production, thereby increasing the food 

supply, which is good for social sustainability. This tradeoff suggests that, rather 

than a single amount of nitrogen use being sustainable, there is a range of use –

zero to accommodate organic ideals, up to a permissible amount to aid 

production– that may be considered sustainable. Van Cauwenbergh and 

colleagues (2007) identified the various kinds of ideal states as maximum or 

minimum target, threshold, regional average, trend, and between sector 

comparisons.  

I reviewed twenty-eight diverse assessments of agricultural systems in 

diverse locations and at varying scales, from farm level assessments in Asia to an 

international assessment of environmental impacts in North America (Table 2). 

Most of the assessments I reviewed are indicator-based, with different assessment 

objectives, such as sustainability, soil quality, farm management, and others. I 

paid particular attention to the analytical framework and evaluation method in 

each assessment. The primary motivation for the review, however, was to identify 

the environmental variables of greatest concern to sustainability that are most 

relevant to the case of Sinaloa, and how indicators for these variables were 

selected and assessed.  

While assessment objectives and methodology vary, there were a few 

shortcomings characteristic of all of the assessments reviewed that need to be 

addressed. First, in terms of objectives, many agro-environmental sustainability 

ideals are based on the values of alternative approaches to agriculture (e.g. 

organic agriculture, biodynamic agriculture, agroecology, etc.), which were 
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established in reaction to the excesses of conventional agriculture (Beus & 

Dunlap, 1990; Dahlberg, 1991; Hansen, 1996). In order to make the assessment 

useful and relatable to stakeholders, the assessment should use metrics 

appropriate for the mode of production, and consider a range of sustainable 

values/states that contributes to achieving multiple sustainability principles.  

Second, the results of sustainability assessments are characteristically a numerical 

value, a categorical variable (low, medium, high, etc.) or some other brief, semi-

quantitative value. These values, however, are often not meaningful outside of the 

context of the decision making process. Indicators and their sustainability score 

are the product of a careful and complex decision process that factors in 

sustainability principles, scientific knowledge, context, missing data, stakeholder 

motivations and values, and system dynamics. The decision process is part of the 

results as much as the aggregated sustainability score, and should be reported as 

such.  

Finally, in terms of methodology, many assessments do not establish the 

relationship of each indicator to sustainability. In other words, sustainability is 

more complex than a distance-to-target evaluation for individual indicators (Van 

Cauwenbergh et al., 2007). Rather, each indicator has a unique function in the 

sustainability of a system, and their values are linked not just in the sustainability 

score, but also systemically. Part of establishing an indicator’s relationship to 

sustainability is identifying how stakeholders value the variable that the indicator 

represents. This is important because sustainability is a values-driven concept. 

The values represented (e.g. the values of the researchers, scientific consensus, 
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Table 2 

Assessments reviewed 
 

Analytical 
Framework Reference Objective System Assessed  Evaluation Method 

Driving force-
state-response 
(DSR) 

Hansen et al., 
2001 

Environmental impact 
of organic farming National: Denmark 

Organic compared 
to conventional 

DSR 
Flores Martinez 
et al., 2005 

Environmental 
assessment National: Mexico Trends 

DSR OECD, 2001 

Environmental 
performance of 
agriculture 

International: 
OECD countries 

Compare with 
earlier OECD 
work 

Environmental 
Sustainability 
Index (ESI) 

Sands & 
Podmore, 1993 

Environmental 
sustainability of 
irrigated agriculture 

Agronomic scale 
(physical extent of 
the crop and 
homogeneity of the 
agricultural 
management 
practices 
employed) 

Compare to a best 
case scenario 
based on physical 
environment; 
compare systems 
to each other and 
over time 

Farmer 
Sustainability 
Index (FSI) 

Taylor et al., 
1993 

Sustainable farm 
production practices 

Farm: cabbage 
farmers in 
Malaysia 

Weighted 
indicators by 
research team; 
sustainable 
thresholds 
established by 
research team 

Indicator of 
sustainable 
agricultural 
practice (ISAP) 

Rigby et al., 
2001 

Develop indicators of 
Environmentally 
sustainable agriculture 
practices Farm 

Indicators 
weighted 
according to 
sustainability 
principles from 
literature 

Life Cycle 
Assessment 
(LCA) 

Kim et al., 
2009 

Estimate county-level 
environmental 
performance for 
continuous corn 
cultivation 

County: U.S. Corn 
Belt 

Compare corn 
stover production 
to corn grain 
production 

Framework for 
Assessing the 
Sustainability of 
Natural 
Resource 
Management 
Systems 
(MESMIS) 

Perales Rivas et 
al., 2000 

Identify and evaluate 
critical points for 
reaching sustainability 
of the South Sinaloa 
agro-forestry-pasture 
system  

Regional: South 
Sinaloa 

Compare 
traditional system 
and innovative 
system 

MESMIS 
Perez-Grovas, 
2000 

Sustainability of 
coffee production 
systems State: Chiapas 

Compare 
traditional coffee 
cultivation to 
organic cultivation 
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(Table 2 continued) 
 

Analytical 
Framework Reference Objective System Assessed Evaluation Method 

MESMIS  
López-Ridaura 

et al., 2002 

Evaluate peasant 
natural resource 

management systems  Farm/region Monitor over time 
Multistage 

methodological 
framework 

López-Ridaura 
et al., 2005 

Systems analysis 
phase of sustainability 

assessment 
Multi-scale: 
Michoacán (None) 

Rasul & Thapa, 
2003 (original) 

Rasul & Thapa, 
2003 

Sustainability of 
conventional and 

ecological agriculture 
systems 

Small 
communities: 
Bangladesh 

Compare 
conventional with 

ecological agriculture 

Scale, technique, 
and composition 

effect theory 
Vilas-Ghiso & 

Liverman, 2007 

Explore trends in 
input use in the 

Mexican agricultural 
sector post-NAFTA 

National: 
Mexico Trends over time 

Sequential 
Ecological 
Framework Carter, 2002 

Soil quality for 
sustainable land 

management;  
National: 
Canada 

Average soil organic 
matter in local 

conditions; critical 
levels of soil organic 

matter 
Simplified 

version of indice 
de calidad de 
agua (ICA) 

(Index of water 
quality) 

SEMARNAT. 
n.d. 

Anthropogenic affects 
on water quality 

National: 
Mexico 

Indicators weighted 
by research team; 
classification scale 
(excellent condition 
to strong negative 

impact) 
Stockle et al. 
framework 
(original) 

Stockle et al., 
1994 

Relative sustainability 
of farm system Farm 

Indicators scored and 
weighted by research 

team 
Sustainability 
Assessment of 

Farming and the 
Environment 

(SAFE)  

Van 
Cauwenbergh 

et al., 2007 
Sustainability in 

agriculture systems 
Farm/region/ 

state 
Reference 

values/thresholds 
Walter & 

Stützel, 2009 
(original) 

Walter & 
Stützel, 2009 

Sustainability of 
agriculture Field/county 

Distance to target/ 
severity ratio 

(None) 
Bindraban et 

al., 2000 Land quality 

Continental; 
national; 
regional Distance to target 

(None) 
de Ita Rubio, 

2003 
Effect of NAFTA in 

Sinaloa 
Sinaloa 

agriculture (None) 

(None) 
de Vries et al., 

2002 Heavy metals 
Dutch 

agroecosystems 
Critical load 

threshold  

(None) 
Doran & Zeiss, 

2000 
Soil health & 
sustainability Farm level soil (None) 

(None) 

Instituto 
Nacional de 

Ecología (INE), 
2009 Air quality City 

Thresholds 
established by the 

Secretaria de Salud 
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(Table 2 continued) 
 

Analytical 
Framework Reference Objective System Assessed Evaluation Method 

(None) Krishna, 2002 

Soil mineral 
deficiency & nutrient 
acquisition in crop 
production 

Farm: crop 
production 

Estimation of 
elemental contents in 
different plant tissues 

(None) 
Paetz & Wilke, 
2005 

Soil sampling; 
determining soil 
characteristics for 
agriculture Field  (None) 

(None) 
Pimentel et al., 
1995 

Erosion and 
agricultural productive 
capacity; economic 
costs of erosion  

National: 
erosion in U.S. 

Compare 
conservation 
techniques to 
conventional 
techniques; economic 
bottom line 

(None) Vaughan, 2003 
Environmental impact 
of NAFTA 

National: 
Mexico 

Change since 
implementation of 
NAFTA 

(None) Vaughan, 2004 
Environmental impact 
of NAFTA 

International: 
North America, 
mostly Mexico (None) 

 
 
stakeholders, government, etc.) change not only the results, but also how useful 

and relevant the assessment is perceived by those to whom it matters most: the 

stakeholders, who are in the position to influence progress toward sustainability. 

While stakeholder input is encouraged in sustainability assessment (Gibson, 

2006), none of the assessments in my review used stakeholder input in the 

evaluation process, the phase of the assessment in which this relationship is 

established. 

Alternative approaches to indicator-based assessments are needed to 

confront these shortcomings. My study is an example of one such alternative. I 

employed a combination of MCDA (Lahdelma, et al., 2000; Lootsma, 1999; 

Triantaphyllou, 2000) and network analysis (Scott, 2000) in an indicator-based 
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assessment of the environmental sustainability of conventional maize production 

at the state/regional scale in Sinaloa, Mexico. 

 

Environmental Sustainability Variables for Agriculture 

In order to gain a better understanding of the methods of agricultural 

sustainability assessments and the issues or variables of greatest concern to 

agricultural sustainability, I reviewed twenty-eight diverse assessments of 

agriculture (Table 2). I noted each environmental indicator, and categorized them 

by general theme: water, soil, inputs, ecosystems, atmosphere, yields, land, and 

pests and disease (Appendix C). From these themes, I identified twelve broad 

environmental variables to address in my assessment of conventional maize 

production in Sinaloa: soil quality; erosion; water quality; irrigation; nitrogen 

fertilizer; pesticides; fossil energy; agricultural land; pests and disease; 

ecosystems; greenhouse gas emissions; and crop yields. I elaborate on each of 

these variables below.  

Soil quality. Soil quality is “the capacity of a specific kind of soil to 

function, within natural or managed ecosystem boundaries, to sustain plant and 

animal productivity, maintain or enhance water and air quality, and support 

human health and habitation” (Doran and Zeiss, 2000, p. 4). Soil quality is 

recognized as one of the most important issues of agricultural sustainability (Lal, 

1991), with soil organic matter (SOM) as perhaps the single most important issue 

of soil quality (Carter, 2002; Clay, 2004; Weil & Magdoff, 2004). It reflects on 

the agricultural sustainability criteria of long-term enhancement of environmental 
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quality and natural resources because it is a natural resource that contributes 

greatly to environmental quality by supporting plant life, cycling nutrients, 

sequestering carbon, filtering water, and supporting the plants that provide for 

basic human food needs.  

SOM is typically composed of organic molecules from plant litter, animal 

litter, and detritus. Its composition is highly variable and as yet poorly 

understood. The increased use of synthetic fertilizer starting in the 1950s drew 

focus away from the importance of SOM because its role in plant growth was 

understood only in terms of nutrient supply (Weil & Magdoff, 2004). By the 

1990s, however, interest and appreciation for SOM was reestablished because of 

its important role in the global carbon cycle and its stimulatory effects on plant 

growth: it enhances nutrient supply, soil structure, cation exchange capacity, 

water retention, carbon and nitrogen levels, and microbiological soil processes 

(Chen, Nobili, & Aviad, 2004).  

Erosion. A major challenge for conventional agriculture is topsoil loss 

from erosion, which affects soil quality. In the U.S. for example, the rate of soil 

formation is about 1 ton per hectare (T/ha) per year, while the rate of soil loss on 

croplands is 17 T/ha per year from erosion (Pimentel, et al., 1995), though rates 

vary widely. Erosion negatively affects soil quality by reducing soil depth, 

nutrient supply, organic matter, and water retention capacity, all of which may 

lead to dramatic decreases in yields (Fernandez-Reynoso, 2008). Erosion occurs 

when soil is exposed to energy from wind or rain (Pimentel & Pimentel, 2008). 

The occurrence of erosion degrades environmental quality and natural resources 
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because the essential resource of soil is being depleted when erosion occurs. 

Conventional agricultural lands are susceptible to erosion because of repeated 

tilling and lack of consistent vegetative cover (Pimentel, et al., 1995), though 

topography, land surface slope, and local climatic conditions play an important 

role in erosion as well. This detracts from the provisioning of basic human food 

needs because erosion results in lower yields. In conventional agriculture, 

fertilizers and irrigation are used to compensate for erosion and the resulting 

reduction in soil quality, but these inputs “create pollution and health problems, 

destroy natural habitats, and contribute to high energy consumption and 

unsustainable agricultural systems” (Pimentel, et al., 1995, p. 1117). Furthermore, 

eroded soil particles often enter water systems, which can lead to eutrophication, 

siltation in harbors and channels, wildlife habitat loss, and increased water 

treatment costs, among other environmental costs (Pimentel, et al., 1995).  

Irrigation. Water is necessary for producing food to meet the agricultural 

sustainability criteria of the provisioning of basic human food needs. The source 

and efficient use of water are important to the sustainability of agricultural 

systems. Agriculture accounts for 70% of annual global water use. Water use is a 

dominant theme in maize production because it is a water intensive crop: one 

hectare that yields 7 tons of maize transpires around 4,000 cubic meters (m3) of 

water (Pimentel, et al., 1995). In the U.S., for example, maize requires 

approximately 14 million liters, or 14,000 m3 of water per hectare (Pimentel, et 

al., 2008). Because of the high demand for water in maize production, it is 

sometimes cultivated under irrigation in areas with low rainfall, such as Sinaloa. 
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89% of the land devoted to maize production in Sinaloa is irrigated (SIAP, 2010), 

making irrigation highly relevant to its sustainability. Irrigation relates to 

sustainability in terms of water source, availability, quality, and efficient use, 

which are part of the agricultural sustainability criteria of long-term enhancement 

of environmental quality and natural resources.  

While irrigation can increase yields and contribute to consistent 

production levels, when fields are not set up for proper drainage irrigation can 

also lead to soil salinization, which decreases soil quality, and may decrease 

yields (Lee & Howitt, 1996), demonstrating how interrelated many of the 

assessment variables are. In a rain fed agricultural system, these issues would not 

be as relevant; the concern would be annual precipitation and its variability and 

unpredictability. As a major concern for agriculture in terms of availability, 

quality, source, and efficient use, water was the variable most represented by 

indicators in the agricultural assessments reviewed. 

Water quality. In addition to water use, water quality is essential for 

agricultural sustainability because agriculture and all life depend on the long-term 

quality of natural resources such as water. Agricultural activities have the 

potential to seriously impact water quality through erosion, nutrient loading, and 

agrochemical contamination (Doran & Zeiss, 2000; Pimentel, Acquay, et al., 

1992). There is ample evidence in the U.S. Corn Belt that agrochemicals have 

contaminated groundwater aquifers, rivers, and lakes (Spalding, et al., 2003; 

Verstraeten, Carr, & Steele, 1999), which can be harmful to humans and natural 

ecosystems. This has led to serious downstream impacts, such as the famous 
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hypoxic  (oxygen-depleted) water mass known as the “dead zone” in the Gulf of 

Mexico. Hypoxic events negatively impact coastal economic activities, such as 

fishing (Rabalais, Turner, & Wiseman Jr., 2002). Hypoxia is one of many 

symptoms of eutrophication, which is “an increase in the rate of production and 

accumulation of carbon in aquatic systems” (Rabalais, et al., 2002, p. 237). 

Eutrophication is a natural process that occurs when nutrients accumulate in a 

water body, promoting plant and algal growth. Cultural eutrophication occurs as a 

result of high nutrient loading (primarily nitrogen and phosphorus) from human 

activities such as agriculture, which can deoxygenate the water, reduce light 

infiltration, change species composition, and impair water use (Perry & 

Vanderklein, 1996).  

Nitrogen fertilizer. Synthetic nitrogen fertilizer, an important input for 

conventional agriculture, is one of the major contributing factors of the yield 

gains achieved during the twentieth century. Its use has made it possible to 

produce food on marginal lands, and has dramatically increased food production 

in many parts of the world (Allison, 1973; Tilman, et al., 2002). While it 

contributes to sustainability in terms of food sufficiency and land use efficiency, 

nitrogen fertilizer also presents a host of challenges to sustainability in terms of 

energy use, nitrogen cycling, and greenhouse gas emissions. These negative 

outcomes of nitrogen use are related to the other assessment variables of irrigation 

and water quality: problems with water quality are often driven by nitrogen runoff 

from agricultural fields. Excessive nitrogen fertilizer use is often a result of 

inefficient management practices related to timing, placement, and rate of 
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application (Millar, Robertson, Grace, Gehl, & Hoben, 2010). Nitrogen fertilizer 

production is the most energy intensive aspect of conventional agriculture, 

requiring natural gas, a fossil fuel, for its manufacture (Pimentel & Pimentel, 

2008). Excessive nitrogen fertilizer use “diminishes stratospheric ozone, promotes 

smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, 

and stresses ecosystems” (Socolow, 1999, p. 6001). Over-applying nitrogen 

fertilizer also leads to emissions of nitrogen oxides (NOx) such as nitrous oxide 

(N2O), a potent greenhouse gas (Tilman, et al., 2002). Understanding the tradeoffs 

among yield gains, fertilizer management, N2O emissions, and environmental 

impacts are essential for sustainably using nitrogen fertilizer (Millar, et al., 2010). 

It can negatively impact the long-term enhancement of environmental quality and 

natural resources such as water, but contributes to agricultural sustainability in 

terms of the provisioning of basic human food needs. It is worth noting that, while 

phosphorus is widely applied to maize crops in other regions (Clay, 2004), maize 

growers in Sinaloa generally do not apply it, so I did not include it in this 

assessment. 

Pesticides. Pesticides are substances that are used to kill organisms such 

as insects, animals, weeds, and fungi that are harmful to cultivated crops and 

animals. They include insecticides, herbicides, and fungicides (OECD, 1997). 

There are naturally occurring pesticides, such as Bacillus thuringiensis (BT), as 

well as inorganic or chemical pesticides. Chemical pesticides existed before 

World War II, but they were not widely available to farmers until the advent of 

the organochlorine chemical DDT, whose insecticidal properties were discovered 
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in 1939 (Weinzierl, 1994). In Mexico, intensive use of pesticides began in the 

mid-1940s to increase production and meet the quality requirements of the export 

market (González-Farias, 2003). Farmers embraced pesticides because of their 

low cost and effectiveness; they reduced crop losses to insects, rodents, weeds, 

fungi, and disease, and reduced labor. Today, pesticides are still widely used in 

conventional farming systems. By the 1990s, approximately 2.5 million tons of 

pesticides were used worldwide to destroy pests (Pimentel, Acquay, et al., 1992). 

According to one estimate, pesticide use in Mexico reached almost 120,000 tons 

per year by 1995 (González-Farias, 2003). Most alternative farming approaches 

reject the use of pesticides, opting for Integrated Pest Management (IPM), a suite 

of strategies including biological controls and crop rotation that decrease reliance 

on chemical inputs (Cowan & Gunby, 1996; Devine & Furlong, 2007; Morales, 

2002).  

Pesticide use varies greatly by crop, region, and mode of production. In 

U.S. maize production, herbicides and insecticides are widely used and have 

increased dramatically over time. For example, herbicide use in 1964 was less 

than 12 kilograms per hectare (kg/ha) of maize, and by the early 1990s herbicide 

application had reached almost 100 kg/ha of active ingredients (Clay, 2004).  

There are many sustainability concerns related to pesticide use, including 

impacts on wildlife, ecosystems, biodiversity, water contamination, and human 

poisonings (Uri, 1999). It is estimated that 25 million people are poisoned 

(Alavanja, Hoppin, & Kamel, 2004), and 200,000 people die from pesticide 

exposure globally each year (Wilson & Tisdell, 2001). Pesticides indiscriminately 
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kill crop pests and beneficial organisms such as pollinators, decomposers, and 

natural pest enemies (Weinzierl, 1994). Pests can develop resistance to chemical 

pesticides, which ultimately increasing the number of pests, promote new pests, 

and therefore increase the use of toxic pesticides (Clay, 2004; Cowan & Gunby, 

1996; Douglass, 1984; Wilson & Tisdell, 2001). Some pesticides, particularly 

organochlorine pesticides, persist in soils, sediments, and biota, increasing risks 

for environmental damage and risks to human health (Carvalho, et al., 1996). 

Another problem related to pesticide use is the proper disposal of pesticide 

containers. Each year in Sinaloa, approximately 500 tons of empty plastic 

pesticide containers must be disposed of (Cruz, Siller, Cárdenas, & Guzmán, 

2006). Like nitrogen fertilizer, pesticides can detract from agricultural 

sustainability in terms of long-term enhancement of environmental quality and 

natural resources, but contributes to the provisioning of basic human food needs. 

Thus, it is important to understand the tradeoffs among yield gains, environmental 

impacts, and pesticide management approaches in order to sustainably use 

pesticides. 

Fossil energy. Fossil energy has dramatically transformed food 

production by reducing human labor and increasing production. Pimentel and 

Pimentel (2008) pointed out that in U.S. maize production, 25% of total fossil 

energy use is comprised of machinery and fuel, which reduce human and animal 

labor. The other 75% is used to increase maize productivity, primarily in the 

manufacture of synthetic fertilizers and pesticides. Thus, one of the most effective 

ways to reduce fossil energy use in the agricultural sector is to reduce chemical 
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input use. On-farm fuel consumption has become more efficient since the 1980s 

in response to energy prices, as conventional farmers made technical and 

managerial changes to improve productivity and efficiency (Cleveland, 1995). 

There is, however, still room for improvement. Wind and Wallender (1997) 

suggest changing furrow flow rate, irrigation time, and reducing fertilizer 

application as strategies for reducing on-farm fossil-fuel use. Cole and colleagues 

(1997) recommend “expand[ing] the use of minimum tillage, irrigation 

scheduling, solar drying of crops, and improved fertilizer management” (p. 223).  

No-tillage and reduced tillage, often referred to as conservation tillage, 

represent not just reduced energy use, but a set of cultural practices developed to 

conserve natural resources and sustain satisfactory yields. Energy savings 

associated with conservation tillage depend on the balance of soil structure, 

fertilizer use, pest incidence, and pesticide use. Conservation tillage involves 

“leaving at least thirty percent of the previous crop residue on the soil surface 

after planting” (Lal, Eckert, Fausey, & Edwards, 1990, p. 207). The various 

approaches to conservation tillage include minimum tillage, chisel plowing, plow-

planting, ridge tillage, and no-tillage (Lal, et al., 1990). Reduced tillage and no 

tillage also has the added benefit of increasing soil organic matter, which 

increases soil quality (Franzluebbers, 2004). 

Fossil energy use was not widely included in the assessments of my 

literature review. However, it is a proxy for farm management, mechanization, 

and technology. While mechanization is primarily understood as a substitute for 

human and animal labor, it can also be a substitute for land because in some 
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circumstances it permits more production per land unit, in other words, higher 

yields (Conforti & Giampietro, 1997). On the other hand, mechanization requires 

large fields to be viable, and therefore is more associated with extensive 

agriculture (i.e. a monoculture produced on a large land area) than intensive 

agriculture (high output from a small land area).  

Depending on management, mechanization can negatively affect 

production. For example, in the past it was a common practice to plow, disk, and 

harrow maize fields before planting, however, it is now known that this practice 

leads to soil erosion, kills beneficial soil organisms, and degrades soil structure 

(Clay, 2004). Some regard natural resource preservation as an unnecessarily high 

standard for performance in agriculture. In this line of thinking, technology is 

regarded as a substitute for other natural resources (e.g. fertile soil) to maintain 

output. Cases of stagnating yields in places such as the United States, Japan and 

Holland, however, suggest that there are diminishing returns for technology use in 

agriculture (Douglass, 1984). Fossil fuel is a non-renewable resource that has 

contributed significantly to our capacity to provide for basic food needs, yet its 

inefficient use across sectors diminishes the long-term enhancement of 

environmental quality and natural resources. Because of the centrality of fossil 

fuels to the technologies of conventional agriculture throughout the production 

cycle (fertilizer production, input application, machinery production and 

operation, transport, etc.) as well as their role in greenhouse gas emissions and the 

debate on biofuels, they warrant special consideration for sustainability (Pimentel 

& Pimentel, 2008).  
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Agricultural land. Land quality, land tenure, and land use distribution 

have become major concerns for the future of agriculture. These concerns are 

related to climate change (Ramankutty, Foley, Norman, & McSweeney, 2002); 

global population rise, and increasing international food needs (Godfray, et al., 

2010; Tilman, et al., 2002). Land use change is another critical concern. Farmland 

is converted to other uses such as urban development (Alig, Kline, & 

Lichtenstein, 2004; Hasse & Lathrop, 2003), while more marginal land in forests, 

grasslands, and wetlands is converted to agricultural use (DeFries, Foley, & 

Asner, 2004; Monfreda, Ramankutty, & Foley, 2008). Rising land values are 

leading to land concentration and fewer farmers (Levins & Cochrane, 1996). 

Finally, the quality of agricultural land is being degraded as a result of agricultural 

activities such as tillage and irrigation that may result in soil erosion, compaction, 

nutrient depletion, and salinization (Doran & Zeiss, 2000).  

Devoting land to agricultural use is necessary to meet the agricultural 

sustainability criteria of providing for basic human food needs, however, the 

arrangement and management of crops can have significant effects on 

sustainability. A large land area devoted to a single crop –a monoculture– is 

problematic for the long-term enhancement of environmental quality and natural 

resources in terms of biodiversity, soil quality, yields, and agrochemical use. First, 

deforesting land, planting a monoculture, and fragmenting the natural landscape 

dramatically reduce biodiversity above and below the soil, thereby reducing soil 

quality and increasing dependence on synthetic fertilizers to maintain productivity 

(Rosset & Altieri, 1997). Next, large monocultures are prone to pests and disease, 
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which decrease yields, encouraging increased pesticide use and pesticide 

dependence (Pimentel, Acquay, et al., 1992; Wilson & Tisdell, 2001). These 

negative outcomes of agricultural land use can be minimized through 

management changes. For example, alternative approaches seek to minimize crop 

loss to pests and chemical use through management techniques such as crop 

rotation and polyculture that support greater biodiversity and improve soil quality 

and yields (Altieri, 1999, 2002; Pretty, 2008).  

Sinaloa maize is produced as a conventionally managed monoculture. To 

assess its environmental sustainability, it is important to weigh the tradeoffs 

among food needs, industrial needs, and the extent to which the negative 

outcomes of conventional agricultural land use are manifest or will emerge in 

Sinaloa, while recognizing that land management choices can maximize or 

minimize the potential for these problems to be manifest in the future. To arrive at 

meaningful conclusions about the sustainability of agricultural land use in Sinaloa 

would require an in-depth study on land use alone. 

Pests and disease. The variable of pests (insects, rodents, birds, weeds, 

fungi, etc.), and disease was the least represented in my literature review. Yet this 

variable can seriously affect agricultural productivity. For example, it is estimated 

that insects, weeds, and disease lead to a 37% reduction in yields of food and fiber 

crops in the U.S. (Pimentel, Acquay, et al., 1992). Thus, this variable is key to the 

agricultural sustainability criteria of provisioning basic human food needs. Pest 

incidence may also serve as an indicator of imbalances in the crop management 

system. Pest infestation can be a result of farm management, such as continuously 
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growing the same crop without rotation, or a lack of diversity in agricultural fields 

(e.g. monoculture). In these cases, when a pest or disease does strike, aside from 

chemical defenses, there is little to stop the infestation from spreading to the 

entire crop, which can result in devastating losses. To control pests and disease 

and reduce crop losses, pesticides have been used in increasing quantities across 

the globe (Pimentel, Acquay, et al., 1992; Tilman, et al., 2001). Crop pests and 

disease can thus indirectly impact the long-term enhancement of environmental 

quality and natural resources because they provoke pesticide use, depending on 

the management approach.  

Another way to deal with crop pests is through preventative management. 

Traditional farmers have a number of techniques for preventing pest infestation, 

such as site selection, field concentration/arrangement, crop rotation, soil 

management, planting and harvesting time, intercropping, biological control, and 

organic repellent use (Morales, 2002). As Morales (2002) learned from her 

research with traditional Cakchiquel farmers in Guatemala, “curative pest control 

activities [such as pesticide use] were largely unnecessary in the traditional maize. 

The important question to address was why herbivorous insects do not reach pest 

status [in traditional systems] in the first place” (p. 146). Monitoring pests and 

disease is an important way to understand farm management, an agroecosystem, 

and its sustainability. 

Ecosystems. An ecosystem may be defined as “a biotic community and its 

abiotic environment functioning as a system” (Odum & Barrett, 2005, p. 516). 

Though there are many kinds of ecosystems (natural, urban, agricultural, etc.), my 
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focus for this variable is Sinaloa’s native terrestrial ecosystems and coastal 

aquatic ecosystems. Terrestrial and aquatic ecosystems provide a host of benefits 

for people, including oxygen production, water filtration, food production, flood 

control, climate regulation, pollination, genetic diversity, nutrient cycling, 

aesthetic beauty, recreation, and many others. These are often referred to as 

ecosystem services (Bennett, Peterson, & Gordon, 2009). These services are 

critical to human life and are the foundation of economic activities such as timber, 

tourism, fishing, and agriculture.  

For example, Pimentel, Stachow, and others (1992) call attention to the 

importance of genetic diversity as an ecosystem service provided by and 

necessary for agriculture, pointing out that agriculture “depend[s] on the 10 

million natural species for production and sustainability. The continued viability 

of agriculture and forestry also depends on wild relatives of the cultured species 

for genetic resources used in plant breeding to improve crop and forest 

productivity” (p. 357). Natural ecosystems also play an essential role in watershed 

maintenance (CRZFSM, et. al., 2002), which is critical for agricultural systems 

that depend on surface water irrigation, and for the people whose lives depend on 

those watersheds. Natural ecosystems are critical to the sustainability of 

agriculture. 

“Landscape-level decisions are essential to address [agricultural] 

sustainability” (Keeney, 1989, p. 102). At a regional scale, the composition of 

land uses, human and ecological communities, and ecosystems (e.g. land in 

forests, grasslands, cities, riparian areas, agriculture, etc.) can greatly impact 
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ecosystem functioning (including food production), and therefore sustainability in 

terms of ecological integrity, environmental quality, and natural resources 

(Benton, et al., 2003; Forman, 1995). Land use decisions invariably present 

sustainability tradeoffs that are often hidden or implicit (Bennett, et al., 2009; 

Foley, et al., 2005). Food provisioning is an important service provided by an 

agroecosystem, however, land in agriculture can have tremendous impacts on 

surrounding ecosystems, both terrestrial and aquatic, and diminish their ability to 

provide other important ecosystem services (Matson, et al., 1997). First, 

converting land from native vegetation to agriculture reduces the number of 

ecosystem services provided (carbon sequestration, water filtration, biodiversity, 

etc.; DeFries, et al., 2004). Second, this conversion can dramatically alter the 

hydrologic cycle (Gordon, Peterson, & Bennett, 2007). In most agricultural 

systems, there is less vegetative cover, thus exposing the soil to erosion, reducing 

soil percolation and infiltration, and compacting the soil through mechanical 

tillage. The result is “increasing overland flow volumes, peak runoff rates, and 

potential pollutant delivery to riparian areas” (CRZSFM, et al., 2002, p. 163). 

Agricultural runoff usually contains fertilizers, pesticides, and eroded soil, which 

can result in fish kills from eutrophic or hypoxic conditions, and leads to the 

accumulation of chemicals and heavy metals in sediments, water bodies, and 

biota. Accumulation of agrochemicals and heavy metals has been found in 

Sinaloa’s coastal lagoons (Carvalho, et al., 1996; Green-Ruiz & Páez-Osuna, 

2001, 2003). 
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Both terrestrial ecosystems (forests, grasslands, etc.) and aquatic 

ecosystems (rivers, estuaries, wetlands, mangroves, lagoons, etc.) are essential 

considerations for sustainability. Yet, they are very complex, and require a great 

deal of investigation to gain a meaningful understanding of their function, how 

they affect agriculture, and how agriculture affects them. In addition, all the 

ecosystems in Sinaloa are human-managed to some degree. The issues of 

governance and the coordination of economic and social activities associated with 

ecosystem management are also important factors for sustainability. This level of 

depth is very difficult to capture in a sustainability assessment, however, 

sustainability assessments can call attention to key components in need of further 

research. 

Greenhouse gas emissions. Agriculture is a major source of 

anthropogenic greenhouse gas (GHG) emissions and contributor to global climate 

change. This impacts the long-term enhancement of environmental quality and 

natural resources, as climate change is projected to affect our ability to produce 

food in the future (Ramankutty, et al., 2002; Tilman, et al., 2002). Though 

estimates are uncertain, agricultural emissions of GHGs such as carbon dioxide 

(CO2), methane (CH4), and nitrous oxide (N2O), are thought to account for a third 

of anthropogenic radiative forcing (Cole, et al., 1997), which is the amount of 

energy that is out of balance in the Earth’s energy budget. It has been calculated 

that 83% of greenhouse gas emissions associated with food occur at the farm level 

(Weber & Matthews, 2008). For example, large amounts of CH4 are emitted by 

livestock, primarily ruminants such as cows (Grant, Smith, Desjardins, Lemke, & 
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Li, 2004). N2O is produced by soil bacteria in the processes of denitrification and 

nitrification, and exacerbated by synthetic nitrogen fertilizer application (Amos, 

Arkebauer, & Doran, 2005). Agriculture can also sequester CO2 through 

management practices such as soil restoration, recycling organic waste, 

decreasing fallow periods, planting cover crops, and practicing agroforestry. Farm 

level GHG emissions can be cut by reducing tillage, controlling for erosion, 

minimizing fertilizer use, and improving irrigation management (Amos, et al., 

2005; Cole, et al., 1997; Grant, et al., 2004). In other words, management 

practices that improve soil quality, water quality, and water use efficiency also 

help mitigate GHG emissions and increase sustainability. 

Crop yield. Yield represents the capacity of an agricultural system to 

provide for basic human food needs. Crop yield is a measure of the weight or 

volume of a crop harvested per unit of land (e.g. bushels/acre, tons/hectare). It is 

commonly used to measure agricultural output in conventional cropping systems 

because it captures three critical concerns: productivity, land-use efficiency, and 

capital investment efficiency (Clay, 2004).  

Yet, yield is also a proxy for the relationship among environmental 

resources (seed variety, soil quality, climate, water availability, etc.), socio-

economic conditions (farm management, farmer skills, land tenure, access to 

markets, etc.), and productivity (Bindraban, Stoorvogel, Jansen, Vlaming, & 

Groot, 2000). Yield thus represents a complex system of relationships, and many 

sustainability tradeoffs. For example, Conforti and Giampietro (1997) point out 

that, as we seek to increase food production, among the tradeoffs of land use and 
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land management are fossil energy and biodiversity. Higher yields in 

conventional agriculture are most frequently achieved with external chemical and 

mechanical inputs that require fossil energy directly and indirectly. The 

development and use of these inputs require financial capital, such that 

agricultural production reflects economic investment rather than ecological 

capacity (Wright, 2005). In addition, there are diminishing returns past a certain 

threshold of use, and their indiscriminate use has resulted in environmental 

degradation (Pimentel, et al., 2005; Pretty, 2008; Rosset & Altieri, 1997; Tilman, 

1999). 

Yield is not the only measure of agricultural productivity. Many 

alternative approaches aspire to support biodiversity, promote soil quality, cycle 

nutrients, and provide other ecosystem services in addition to producing food 

(Scherr & McNeely, 2008). These goals also serve to enhance resilience in the 

face of ecological and economic shocks, ensuring a consistent harvest if not a 

record breaking one. For example, Rosset and Altieri (1997) describe the 

agroecological approach to productivity as a function of: 

…the interactions between the various biotic and abiotic 
components [of an agroecosystem]. By assembling a functional 
biodiversity it is possible to initiate synergisms, which subsidize 
agroecosystem processes by providing ecological services such as 
the activation of soil biology, the recycling of nutrients, and the 
enhancement of beneficial arthropods and antagonists. 
Agroecological technologies do not emphasize boosting yields 
under optimal conditions as the Green Revolution technologies do, 
but rather they ensure constancy of production under a whole 
range of soil and climatic conditions… What is important, 
however, is to focus not on particular technologies, but on an 
assemblage of technologies that incorporate crop diversity, 
legume-based rotations, integration of animals, recycling, and use 
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of biomass and residue management. (Rosset & Altieri, 1997, p. 6. 
emphasis added) 

 
Agroecology emphasizes ecological yield capacity rather than economic yield 

capacity. In addition to food and ecosystem services, agriculture can provide 

sense of place, and be a source of tradition, culture, and identity for a community 

(Lyson, 2004). How production is understood and valued is a complicated but 

critical variable for agricultural sustainability. 
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Chapter 3 

METHODS 

Fieldwork 

In July 2010, I conducted interviews in Spanish with twenty-six 

stakeholders and experts (Kontic, 2000) from different sectors of the Sinaloa 

maize system. These stakeholders and/or experts include farmers, agronomists, 

university researchers, government employees, environmentalists, and 

representatives of farmers’ associations, all of whom have a stake in Sinaloa’s 

environment, maize production, or both. I prepared a general interview outline to 

ensure topics of interest were introduced during the conversation. The interviews 

informed me of each interviewee’s background, expertise, and stake in Sinaloa 

maize production and environment. Some, such as farmers and agronomists, had a 

greater interest in agricultural sustainability, while others, such as 

environmentalists, had a greater interest in environmental sustainability. The 

interviews also provided perspective on production decisions and norms in the 

Sinaloa context.  

Stakeholder ranking of variables and recommendations. I administered 

a simple questionnaire to stakeholders in my interviews and at a meeting of 

agronomists for a total of forty-one responses. The questionnaire was in Spanish, 

and was comprised of twelve broad agro-environmental sustainability variables 

based on my literature review and the prominent environmental sustainability 

concerns of conventional agriculture: erosion, soil quality, water quality, pest and 

disease incidence, yields, terrestrial ecosystem, aquatic ecosystem, nitrogen 
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fertilizer, irrigation, fossil energy, pesticides, and agricultural land use (Appendix 

D). The stakeholders, according to their opinion and experience, numerically 

ranked the variables by their importance to the sustainability of maize production 

in Sinaloa. I interpreted the results of the stakeholders’ rankings with MCDA. 

On the questionnaire, I also asked stakeholders to identify specific 

indicators for each sustainability issue that would be useful to them and relevant 

to the case of Sinaloa, if any occurred to them. I selected indicators for the 

sustainability assessment based on this feedback as well as data availability. There 

was also space for comments and/or recommendations on what to include in the 

assessment of maize production, not limited to agro-environmental sustainability.  

 

Indicator Selection and Data Sources 

I selected indicators for the agro-environmental sustainability assessment 

based on stakeholder feedback from interviews and the questionnaire (Appendix 

E), as well as data availability. I derived data for the ideal states of the indicators 

from the literature, best management practices for Sinaloa, sustainability 

principles, and/or expert opinion. I collected data for the current states of the 

indicators from primary and secondary sources. Secondary data were collected 

from government agencies and academic literature focused on the region. 

Mexican government agencies such as the Sinaloa state government, CONAGUA 

(Comisión Nacional de Agua; National Water Commission), INEGI (Instituto 

Nacional de Estadística y Geografía; National Institute of Statistics and 

Geography), SEMARNAT (Secretaría de medio ambiente y recursos naturales; 
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Secretariat of the Environment and Natural Resources), and SAGARPA (Servicio 

de Información Agroalimentaria y Pesquera; Agriculture and Fishery Information 

Service) provide statistics for agricultural production, management practices, and 

the state of the environment and natural resources in Sinaloa. There is a limited 

body of literature about agricultural production and the environment in Sinaloa, 

which also provided data and local perspective for the assessment.  

Primary data were collected by Eakin, Appendini, Perales and others 

(2009) via survey and semi-structured interviews. In the 2009-2010 growing 

season, they surveyed 449 maize farmers in irrigation district 010 near Culiacán, 

Sinaloa, representing 2.37% of irrigation users in the irrigation district 

(SEMARNAT & CONAGUA, 2009). A cluster sampling strategy was employed, 

in which five irrigation módulos (administrative units of farmers with water rights 

within the district) were randomly selected, and within them, respondents were 

selected at random for the survey from a list of módulo members provided by 

each módulo, stratified by landholding size. The number of respondents in each 

módulo was roughly proportional to the módulo’s size. My interviews with local 

experts both confirmed the accuracy of secondary data and filled in data gaps. I 

interpreted the indicator data using MCDA. 

 

Network Analysis 

Network analysis (Scott, 2000), based on graph theory, is a method for 

analyzing the influence that each system component has on the other system 

components. In the context of environmental sustainability assessment, influence 
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represents activity or passivity of each indicator in the system. A system 

component is active if it exerts influence over other components. It is passive if it 

has little or no influence on other indicators, and is greatly influenced by other 

indicators. Influence is important to measure because it helps identify key 

intervention points for systemic change. 

I used an impact matrix (Godet, 2001) to identify the activity (influence) 

or passivity (no influence) of each system variable (agro-environmental 

sustainability variable). The purpose of the impact matrix is to identify whether a 

system variable has influence on the other system variables. In the impact matrix, 

each indicator is listed along both the rows and columns. I identified whether each 

row item influences each column item using a binary measure of relations: 0 

represents no influence, and 1 represents influence. Only direct influence, not 

indirect influence, was considered. 

Visualizing the impact matrix helps to understand links among indicators, 

and identify patterns of influence and feedback loops. To do this, I analyzed the 

impact matrix with UCINET (Borgatti, Everett, & Freeman, 2002), a software 

program for network analysis, then generated a centrality diagram, a type of 

system graph, with NETDRAW (Borgatti, 2002; see Figure 1). According to 

network theory, being in an advantageous or central position within a network is 

one form of influence. In a network diagram, the closer a variable is to the center, 

the more influence it has. I analyzed two basic types of advantage: high degree, 

and high betweenness. With degree, the more ties a variable has to other 

variables, the more advantaged they are. I focused on Freeman out-degree 
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centrality, which is when a variable has ties extending toward other variables (as 

opposed to in-degree centrality, which is when a variable receives many ties). 

Out-degree connections reflect direct influence. They are indicated in Figure 1 by 

arrows extending from one actor to other actors. For betweenness, I analyzed 

Freeman betweenness centrality, which means that when a variable is in the 

geodesic pathway between other pairs of variables, it is in a favored position 

because the pairs of variables must go through the variable to connect with each 

other (Hanneman & Riddle, 2005). Betweenness is a measure of indirect 

influence in the system.  

These qualities of influence are important for understanding system 

dynamics. It may seem redundant in light of the stakeholder weighting, however, 

this process reveals different information about the system that is important for 

sustainability assessment. For example, if hypothetically the stakeholders ranked 

aquatic ecosystem as their highest priority because of a valuable but threatened 

fishery on the coast, rather than simply recommending a reduction of nutrient 

levels in the coastal waters, we could examine the network analysis and see that 

fertilizer application and high erosion rates influence the coastal ecosystem. We 

could then recommend changes in the source of the nutrients– farm level fertilizer 

application and erosion– in order to improve the sustainability of the aquatic 

ecosystem and the system at large. Network analysis is a useful tool for 

understanding system dynamics and making practical recommendations to 

improve the sustainability of a system. 
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Data Assessment: Multicriteria Decision Analysis (MCDA) 

Sustainability assessment is increasingly considered a decision-making 

strategy (Sadok, et al., 2009). Gibson (2006) highlights the important role of 

assessment for decision-making processes, emphasizing that sustainability 

assessments must oblige decision-makers to consider core sustainability 

requirements. He also points out that assessment criteria must reflect local 

ecosystems, institutions, and preferences through “informed choices” of 

stakeholders. These elements of assessment –defining decision criteria in terms of 

sustainability and incorporating context-specific criteria through stakeholder 

engagement– are embodied in the MCDA method.  

I interpreted the results of the questionnaire and the variable indicators 

with MCDA (Lahdelma, et al., 2000; Lootsma, 1999; Triantaphyllou, 2000). 

MCDA “aims to develop methods and tools to assist with decision-making, 

particularly in terms of the choice, ranking or sorting of options (alternatives, 

solutions, courses of action, etc.) in the presence of multiple, and often 

conflicting criteria” (Sadok, et al., 2009, p. 775). It provides a method for 

“weighting individual variables on the basis of existing empirical research and 

theory” (Eakin & Bojórquez-Tapia, 2008, p. 114). It has not previously been 

applied to a study of agricultural sustainability at the regional scale. The 

importance of weighting the system indicators lies in the fact that the system 

components almost never carry equal weight in a real system, whether the weight 

reflects stakeholder values as in this study, environmental management 

principles, or any other normative or functional standard.  
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Engaging stakeholders arguably provides the stakeholders with a greater 

sense of ownership in the research results, which is important for research that is 

intended to be relevant across sectors (Robinson & Tansey, 2006). The MCDA 

method is collaborative, or transdisciplinary. In transdisciplinary research, 

“knowledge and values from outside the realm of science are integrated into the 

research process” (A. I. Walter, Helgenberger, Wiek, & Scholz, 2007, p. 325). 

With MCDA, researchers and stakeholders co-produce the concept of 

sustainability for the system in question. MCDA provides a mechanism for 

incorporating stakeholder values in sustainability assessment, and describes the 

relationship of each indicator to sustainability through value functions. MCDA 

describes sustainability (S) mathematically as a relationship between weights and 

the current state of the diverse factors that contribute to sustainability.  

Defining weights. To obtain the weights, stakeholders ranked the 

agricultural sustainability issues on the questionnaire from 1 to 12 (1 being the 

most important to Sinaloa maize production, and 12 being the least important). 

Because the ordinal scale cannot be used for mathematical operations, for each 

questionnaire response I transformed the ordinal scale to weights ( ) in a scale 

with ratio properties, which Noh and Lee (2003) established as a valid 

transformation: 

€ 

wij =
1
n

1
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n

∑
                                                           (1)
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where i is the index of variables, j is the index of stakeholders, n is the number of 

variables, and k is the rank of the sustainability variable assigned by the 

stakeholder.  

After calculating the variable weights for each questionnaire response, I 

aggregated the weights by taking the geometric mean of the weights for each 

variable, then normalizing the geometric means so that the sum of the weights of 

all twelve sustainability variables is equal to 1.  

Distance to the ideal point. I assessed the sustainability of Sinaloa maize 

production using the technique known as the distance to the ideal point. This 

technique is based on the notion of the “ideal point,” which is an abstract 

condition possessing the most desirable values for each indicator (Lootsma, 1999; 

Szidarovsky, Gershom, & Duckstein, 1986). To determine the distance to the 

ideal or sustainable point for each indicator, I identified the current state and ideal 

state by consulting the literature and local experts.  

The distance of the current state of each indicator to a sustainable state is 

embodied in a value function (Beinat, 1997) that represents the relationship of the 

indicator to sustainability (Appendix F). Value functions facilitate the comparison 

of indicators in different units by normalizing their values to a dimensionless 

scale from 0 (anti-ideal condition) to 1 (ideal condition). In each value function, 

the abscissa represents the units of the indicator in their natural scale, and the 

ordinate represents the current state of the indicator as related to sustainability in 

the dimensionless scale.  
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To identify the appropriate value function for each indicator, I consulted 

the literature. To identify the value functions that could not be found in the 

literature, I presented generic value functions to experts who identified the 

appropriate curve. I developed the value functions in a Microsoft Excel (2008) 

file and adjusted them to best fit the expected behavior of each indicator in 

relation to sustainability. This method should have wide applicability, however, 

the specifics of the quantitative assessment are specific to Sinaloa.  

I coded the numerical value of each indicator in the dimensionless scale 

according to its distance from sustainability as far, close, or very close to a 

sustainable state. A value between 0 and 0.49 is categorized as far from a 

sustainable state. A value between 0.5-0.75 is close to a sustainable state. A value 

of 0.76-1 is very close to a sustainable state. This categorization follows the 

Weber-Fechner’s Law of Psychophysics (Bojórquez-Tapia, Cruz-Bello, Luna-

González, Juárez, & Ortiz-Pérez, 2009; Lootsma, 1999; see Appendix G). 

Aggregation.  In the final step, the normalized weights of all stakeholders 

( ) were combined with the value of each indicator in the dimensionless scale    

(

€ 

xi
') to determine the aggregate environmental sustainability score of the Sinaloa 

maize system (S): 

€ 

S = wi
'

i=1

n

∑ xi
'

                                                  (2) 

(Lootsma, 1999). 
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Chapter 4. 

RESULTS  

Network Analysis  

The network analysis of Freeman out-degree centrality (Table 4) and 

Freeman betweenness centrality (Table 5) of the system impact matrix (Table 3) 

revealed that the most active or influential system components are agricultural 

land, pesticides, and irrigation (Figure 1). Agricultural land is almost two standard 

deviations higher than the mean out-degree. This variable has even greater 

betweenness, over two standard deviations higher than the mean. Thus, 

agricultural land is very influential in the system. This is because devoting land to 

agriculture, or a specific crop, greatly impacts land management and input use. 

Yield has average degree and high betweenness, which means that yield does not 

have high direct influence, but does have high indirect influence. The most 

passive, or least influential system components are aquatic ecosystem, water 

quality, and terrestrial ecosystem; these are sinks in the system that receive all the 

impacts. 
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Table 3 
 
Impact matrix. Rows and columns list the twelve agro-environmental variables in 
the same order. Rows display influence (1) or non-influence (0) on each column. 
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Soil quality 0 0 1 0 1 0 1 0 0 0 0 1 
Irrigation 1 0 0 1 1 0 1 1 0 1 0 1 
N fertilizer 1 0 0 1 0 0 0 1 0 0 1 1 
Water 
quality 0 0 0 0 0 0 0 1 0 0 0 0 
Agricultural 
land 1 1 1 0 0 1 1 0 1 1 1 0 
Pesticides 1 0 0 1 0 0 0 1 1 1 1 1 
Erosion 1 0 0 1 1 0 0 1 0 0 0 1 
Aquatic 
ecosystem 0 0 0 0 0 0 0 0 0 0 0 0 
Pest 
incidence 0 0 0 0 0 1 0 0 0 0 0 1 
Terrestrial 
ecosystem 1 0 1 0 1 1 1 0 0 0 0 1 
Fossil 
energy 0 1 0 0 0 0 0 0 1 0 0 0 
Crop yield 0 1 1 0 1 1 0 0 0 0 0 0 
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Table 4 

Freeman’s Out-Degree Centrality  

Variable Freeman’s Out-Degree 
Centrality 

Agricultural land 8 
Pesticides 7 
Irrigation 7 
Fossil energy 6 
Erosion 5 
Nitrogen fertilizer 5 
Soil quality 4 
Yield 4 
Terrestrial ecosystem 2 
Pest incidence 2 
Water quality 1 
Aquatic ecosystem 0 

Mean 4.2 
Standard deviation 2.45 

 

Table 5 

Freeman Betweenness Centrality  

Variable Freeman Betweenness 
Centrality 

Agricultural land 15.683 
Yield 11.567 
Pesticides 11.126 
Irrigation 9.560 
Nitrogen fertilizer 4.060 
Soil quality 3.676 
Fossil energy 3.626 
Pest incidence 2.393 
Erosion 2.310 
Terrestrial ecosystem 1.000 
Water quality 0.000 
Aquatic ecosystem 0.000 

Mean 5.417 
Standard deviation 4.984 
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Figure 1. Centrality map of degree influence among agro-environmental 
sustainability variables for Sinaloa maize production. The size and location of 
each circle is indicative of centrality or influence, i.e., the larger the circle and 
closer to the center of the map it is, the more influence it has in the system. 
Prepared using the software NETDRAW. 
 

Weight Distribution of Agro-Environmental Sustainability Variables  

The stakeholders weighted soil quality as the most important variable for 

the environmental sustainability of maize production. Water-related variables –

irrigation and water quality– were weighted second and fourth most important, 

respectively. In terms of weight distribution, the top three variables (soil quality, 

irrigation, and nitrogen fertilizer) represent 40% of the total weight. The lowest 
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three variables (terrestrial ecosystems, fossil energy, and yield) represent 12% of 

the total weight (Table 6). 

 
Table 6 
 
Stakeholder Weights for Agro-Environmental Sustainability Variables, Derived 
from Questionnaire Ranking. Column 3 displays the weights after they were 
redistributed to exclude yield. 

 
Variable Original 

Weights 
Redistributed 

Weights 
Soil quality 0.169 0.175 
Irrigation 0.129 0.133 
Nitrogen fertilizer 0.105 0.109 
Water quality 0.102 0.106 
Agricultural land 0.093 0.097 
Pesticides 0.084 0.087 
Erosion 0.071 0.074 
Aquatic ecosystem 0.068 0.071 
Pest & disease incidence 0.055 0.057 
Terrestrial ecosystem 0.044 0.046 
Fossil energy 0.044 0.045 
Yield  0.035 N/A 
SUM 1.00 1.00 

 
 

The stakeholders weighted yield so low that it had very little impact on the 

aggregate sustainability score. It proved difficult to assess (see “Crop yield,” p.78) 

I removed it from the aggregation model and redistributed the weight among the 

rest of the indicators. Table 6 shows the original weight distribution (column 2) 

and the redistribution of weights excluding yield (column 3), which I used to 

generate the aggregate sustainability score.  

To gain a better sense of how different stakeholder groups weighted the 

agro-environmental sustainability variables, I analyzed the questionnaire results 
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according to the following groups: maize growers, agronomists, researchers, 

government employees, environmentalists, and growers associations. Figure 2 

shows how these different stakeholder groups weighted the variables as compared 

to each other and the total sample. Some stakeholders fall into more than one 

group, so their results are accounted for more than once in the stakeholder group 

analysis, but are counted only once in the total sample analysis. The weighting 

distribution that is the most similar to the total sample is researchers. The 

weighting distribution that differed most from the aggregate sample is that of the 

agronomists, who weighted irrigation, pest and disease incidence, and nitrogen 

fertilizer as most important, and aquatic ecosystems, terrestrial ecosystems, and 

pesticide use as the least important.  

There are some consistencies among the distinct groups. Soil quality was 

weighted first or second in importance by five of the six stakeholder groups, and 

irrigation was weighted first or second in importance by four of the six 

stakeholder groups. Yield and fossil energy were weighted quite low across 

sectors. The rest of the variables were generally weighted in the mid-range, 

though their weight by stakeholder group varied. 

Considering the network analysis within the system, the most influential 

variable, land use, was weighted second in importance by researchers, but no 

higher than sixth by the other stakeholder groups. The stakeholder groups 

weighted pesticides, the second most influential system component, with 

moderate importance to sustainability. Irrigation, the third most influential system 
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component, was consistently weighted among the most important variables to 

environmental sustainability in Sinaloa maize production. 

 
Figure 2. Weight distribution by stakeholder group. SQ = soil quality; Ir = 
irrigation; NF = N fertilizer; WQ = water quality; AL = agricultural land; Pe = 
pesticides; Er = erosion; AE = aquatic ecosystem; PD = pest and disease 
incidence; FE = fossil energy; TE = terrestrial ecosystem; Yi = yield. 
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Indicators, Current States, Ideal States, Value Functions 

Table 7 

Indicators, Current States, Ideal States, and Distance to a Sustainable State 

Indicator Variable Current 
state 

Ideal state Value in 
dimens-
ionless 
scale* 

Distance to 
sustainab-

le state 

% Maize area 
planted, not 
harvested 

Pest & 
disease 
incidence 0.03%a 0% 0.99 Very close 

% total land in crop 
production 

Terrestrial 
ecosystem 22%a 0-20% 0.98 Very close 

Ave. L 
herbicides/ha/yr Pesticides 1.15b 0 0.90 Very close 
Ha. of land in 
white maize 

Agricultural 
land  471,000a 0-347,418 0.71 Close 

Ave. kg 
insecticides/ha/yr Pesticides  2.5b 0 0.69 Close 
Net depth cm/ha/yr Irrigation 72c 44d 0.59 Close 
Ave. L diesel/ha/yr Fossil energy 130.25e 0-65f 0.57 Close 
T of N/yr in coastal 
waters from 
agriculture 

Aquatic 
ecosystem 
health 53,342g 0 0.51 Close 

% SOM Soil quality 0.4%c 2%c 0.39 Far  
% of land affected 
by hydraulic soil 
erosion Erosion 16.2%h 0% 0 Far 
Ave. E.C. (µS/cm) 
of field drain water  Water quality 3147x106i 465x106 j 0 Far 

Ave. Kg N/ha/yr 
Nitrogen 
fertilizer 437b 180c 0 Far 

AGGREGATE SUSTAINABILITY 1 0.45 Far 
*See pp. 70-74 for value functions representing the relationship of each indicator to 
sustainability. 
a Gobierno del Estado de Sinaloa, 2010 

b Eakin et al. 2009 
c Expert opinion 
d Ojeda-Bustamante, Sifuentes-Ibarra, & Unland-Weiss, 2006 
e FIRA, 2006 
f Lal, Eckert, Fausey, & Edwards, 1990 
g Páez-Osuna et al., 2007 
h SEMARNAT, 2009 
i CONAGUA, 2008b 
j CONAGUA, 2008a 
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Pest and disease incidence. The indicator for pest and disease incidence 

is percent of area planted in maize but not harvested. A shortcoming of this 

indicator is that, while it represents lost productivity due to pests and disease, it 

may also reflect damage from extreme weather events, such as a frost. A second 

shortcoming of this indicator is that it does not capture whether pests and disease 

reduce the yield on the hectares that are harvested. Furthermore, it does not 

account for whether low pest and disease incidence is a result of high pesticide 

use, however, this is captured in the indicators for pesticides (below). In 2010, 

129 of the 464,692 ha planted in maize were not harvested (Gobierno del Estado 

de Sinaloa, 2010). The current state is thus 0.03%. The ideal state is 0% area 

planted and not harvested, in other words, all land planted is harvested. The 

current state of the indicator is very close to sustainability. The value function for 

this indicator has a decreasing concave relationship to sustainability because area 

planted and not harvested represents wasted resources (seeds, energy, water, etc.), 

lower productivity, and imbalances in the crop management system, which would 

suggest that a different management approach is needed (Figure 3).  

Terrestrial ecosystem health. The primary concern for this variable is 

how much agricultural land use is permissible in the greater context of the 

environment, with a focus on the agricultural sustainability principle of long-term 

enhancement of environmental quality and natural resources. The indicator for 

terrestrial ecosystem health is percent of total landscape in crop production. The 

current state is based on the 2010 level of 1,297,586 ha, or 22% of the state’s 

surface area (Gobierno del Estado de Sinaloa, 2010). This represents cropland, 
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and does not include pasture. A shortcoming of this indicator is that it accounts 

for all land in the state, including non-arable land. It would be more suitable to 

compare the current amount of cropland with potentially arable land; however, 

this information was not available. The ideal state ranges from 0-20%. To identify 

a tipping point for this indicator, I reviewed biology and ecology literature in 

Sinaloa in attempt to identify years in which events resulting in ecosystem change 

or the decline of wildlife occurred as related to agricultural land use changes. The 

major conversion of land from thorn forest to agriculture in the 1950s through the 

1970s is mentioned in academic literature on the region, but not associated with 

evidence of ecosystem decline or wildlife populations (Sauceda López & Gómez 

Soto, 2003; Vega Aviña, 2003). Still, land use change is often cited as one of the 

major threats to Sinaloa’s wildlife (Martínez López, 2003; Rubio Rocha & 

Beltrán Magallanes, 2003; Rubio Rocha & Cupul Magaña, 2006; Sauceda López 

& Gómez Soto, 2003). In addition, there may be a substantial lag between the 

time the land is converted and when a decline in ecosystem functioning becomes 

evident. Because of a lack of evidence that the current state is unsustainable, and 

because most land use changes associated with agriculture occurred decades ago, 

it is assumed that the current state of the indicator is very close to sustainability. 

However, it is not recommended that cropland expand any further. The value 

function for percent of total landscape in agriculture shows a decreasing sigmoid 

relationship to sustainability (Figure 4). This reflects that some land in agriculture 

will not affect ecosystem functioning. However, past a certain threshold of land in 
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agricultural use, sustainability decreases rapidly, but will not completely disrupt 

ecosystem function until a second threshold is reached. 

Pesticides. I assessed two indicators for this variable: average kilograms 

of insecticides applied per hectare per growing season (kg/ha/yr), and average 

liters of herbicides applied per hectare per growing season (L/ha/yr). A 

shortcoming of both indicators is that they do not account for which pesticides 

farmers are applying, as this data was not available. It is an important 

consideration for environmental sustainability, however, because some pesticides 

are more harmful than others. The weight the stakeholders assigned to this 

variable (0.087) was divided by 2 to accommodate both indicators. Thus, they 

each have a weight of 0.043. Fungicides were not assessed because, according to 

Eakin et al. (2009), only 5% of growers apply them to their maize crops. 89% of 

farmers surveyed reported having used insecticides in the 2009 growing season 

with an average seasonal insecticide use or current state of 2.5 kg/ha/yr. 70% of 

respondents reported having used herbicides in the 2009 growing season, with an 

average application of 1.15 L/ha/yr (Eakin, et al., 2009). Pesticides are beneficial 

in terms of the agricultural sustainability criteria of provisioning basic human 

food needs, but harmful for long-term enhancement of environmental quality and 

natural resources. In other words, pesticides help increase production, but there 

are diminishing returns to their use, and they have great potential to harm people 

and the environment. Thus, using zero pesticides is the ideal state for both 

indicators. Factoring in their positive influence on production, the value functions 

representing herbicide and insecticide use (Figures 5 and Figure 7, respectively) 
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both have a decreasing convex relationship to sustainability, in which the best 

management recommendations for Sinaloa are within the range of 0.8 to 1. Best 

management practices for Sinaloa suggest ~2 L/ha/yr of insecticides and ~1.75 

kg/ha/yr of herbicides, though the recommendations vary depending on the 

chemical (Fundación Produce, 2003). The current state of the indicators for 

herbicide use and insecticide use are very close to a sustainable state and close to 

a sustainable state, respectively. 

Agricultural land. Devoting land to maize is part of meeting Mexico’s 

food needs, a principle of agricultural sustainability. Yet, some stakeholders 

questioned whether Sinaloa is overproducing white maize because about 70% of 

white maize production is used for human consumption, and the rest is used as 

livestock feed or for industrial use (Gobierno del Estado de Sinaloa, 2010). 

Sinaloa’s high production may also be depressing prices, affecting economic 

sustainability. In addition, stakeholders expressed concern over the state’s maize 

monoculture and the threat of pests and disease, however, no serious impacts of 

this kind have occurred thus far. Based on these concerns, I assessed the 

sustainability of agricultural land use in terms of maize monoculture, and meeting 

domestic human food demands. 

It is complicated to precisely identify what a sustainable land use 

arrangement would be for a given area. Given the time constraints of this project, 

I chose instead to assess the number of hectares of agricultural land devoted to 

white maize in Sinaloa, which addresses the issues of monoculture and production 

more than the issue of land use arrangement. A weakness of this indicator is that it 
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does not account for land area in yellow maize, which is part of Sinaloa’s maize 

monoculture, but does not necessarily contribute to food production. Some yellow 

maize is used as livestock feed, in which case it does contribute to food 

production, but some is used for industrial purposes. Another weakness is that at 

different scales, such as cities or irrigation districts, land in maize is highly 

concentrated in some cases. For example, some irrigation districts in Culiacán 

have up to 80% of their land planted in maize (Eakin, et al., submitted). Assessing 

land use at the state scale does not capture these concentrations, but is more apt at 

capturing food production. Another weakness of this indicator is that, while it 

captures land in maize and ultimately encourages reducing area planted in maize, 

it does not account for the potential damage of the crops that may replace maize. 

In other words, the crops that might replace maize may actually be more 

environmentally damaging than maize, and in these cases, it would be preferable 

to keep the land in maize, even if it does not mitigate the maize monoculture. An 

additional shortcoming of the indicator is that it does not account for potential 

ecosystem services provided by crops, such as carbon sequestration and oxygen 

production. Much of the land planted in maize is left fallow during the spring and 

summer. Although this does save water, it also represents an opportunity cost in 

terms of ecosystem services not provided, as well as lost potential revenue from a 

spring-summer crop. In addition, fallowing the land leaves the soil vulnerable to 

erosion. 

The indicator for agricultural land is similar to the indicator for terrestrial 

ecosystem health. However, for agricultural land use the primary concern is 



65 

monoculture and sufficient food production. For the variable of terrestrial 

ecosystem health, the primary concern is how much agricultural land use is 

permissible in the greater context of environmental functioning. In 2010, 

1,297,586 ha were devoted to crop production (Gobierno del Estado de Sinaloa, 

2010). Of that, 471,000 ha (36.3% of current agricultural land) were devoted to 

white maize in 2010, which is the current state of the indicator (Gobierno del 

Estado de Sinaloa, 2010). 3.7 million tons of Sinaloa’s white maize are used for 

human consumption (Gobierno del Estado de Sinaloa, 2010). With an average 

yield of 10.65 tons/ha (SAGARPA, 2010), 347,418 ha (26.7% of current 

agricultural land) would be needed to produce that amount of maize. In terms of 

environmental sustainability, zero land in maize would also be sustainable 

because ecological function does not depend on maize cultivation, and maize 

could be produced elsewhere to satisfy Mexico’s human food demands. The ideal 

range of agricultural land devoted to maize in Sinaloa, then, is between 0 and 

347,418 ha, or 0-20% of agricultural land. The current state of the indicator is 

close to sustainability. The value function representing agricultural land in maize 

shows a decreasing sigmoid relationship, reflecting that 0-347,418 ha is 

sustainable in terms of environmental quality and provisioning basic human food 

needs, while also showing that increasing the land in maize would diminish 

sustainability because of problems associated with overproduction and 

monoculture (Figure 6). 

Irrigation. Sinaloa’s irrigation water is derived from eleven river dams 

throughout the state, and distributed via extensive irrigation infrastructure that 
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was largely constructed before the 1950s (Ortega Noriega, 1999). These rivers are 

mainly fed from snowmelt in the Sierra Madre Occidental Mountains in the east 

of the state (Schmidt Jr., 1976).  Dams that help store water from surface sources 

such as rivers can have significant social and ecological costs (e.g. siltation, 

cutting off water sources used by human communities, disrupting habitat for 

wildlife, etc.), presenting sustainability tradeoffs for water use. Also, water 

supplies from surface water sources depend on annual precipitation. If there is a 

drought, there may not be enough water to meet agricultural demand. In Sinaloa, 

the dams and irrigation infrastructure were established decades ago. Drought does 

not appear to have affected maize production in Sinaloa since its adoption in the 

early 1990s (Comisión Nacional del Agua, 2008; Corporación OSSO - Colombia, 

2010; SIAP, 2010) –though climate change may increase future risks. Thus, I did 

not assess the source or availability of irrigation water. Stakeholders did inform, 

however, that water availability affects agricultural land use. 

The indicator for the variable of irrigation is water use efficiency. 

Irrigation efficiency reflects on sustainability in that irrigation water in Sinaloa is 

a finite resource; using it for one crop, or using it inefficiently, means that the 

water is not being used for another crop or purpose. For example, when Sinaloa 

farmers transitioned to maize production in the early 1990s, they went from 

planting two crops per year (such as a wheat/soy rotation) to planting only one 

crop per year –maize– because of the limited water supply and the higher water 

demands of maize. This has implications for lost production opportunities and soil 

preservation, as bare soils are more inclined to erode (Pimentel, et al., 1995). In 
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addition, over-irrigation can increase runoff, transport agrochemicals, and lead to 

groundwater contamination, increased water turbidity, and nutrient loading in 

waterways (Páez-Osuna, et al., 2007).  

The unit of analysis for irrigation is net centimeters of water per hectare 

per growing season (cm/ha/yr). The actual amount of water applied per hectare is 

not currently measured in Sinaloa. Local experts estimate that the current state of 

irrigation use in maize production is a net irrigation depth of 72 cm/ha/yr, with an 

average of four irrigations per season. Based on a study of water conservation in 

irrigated maize production in Sinaloa, a net irrigation depth of 44 cm/ha/year is 

the ideal state (Ojeda-Bustamante, et al., 2006). The current state of the indicator 

is close to sustainability. Irrigation water use has a positive relationship with 

Sinaloa maize production in that evapotranspiration exceeds annual precipitation, 

making irrigation necessary for achieving commercial yields (Ojeda-Bustamante, 

et al., 2006). So, at the farm scale, the value function for the sustainability of 

irrigation use is an increasing convex curve (Overman & Sholtz III, 2002). 

However, at the regional scale there are tradeoffs and opportunity costs for water 

use, meaning sustainability decreases past the threshold of 44 cm/ha. The value 

function representing irrigation use for maize production at the regional scale is 

thus bell shaped, reflecting the diminishing returns and diminishing sustainability 

of excess irrigation use (Figure 8).  

Fossil energy. The indicator for fossil energy is average liters of diesel 

fuel consumed per hectare per season (L/ha/yr). This primarily represents 

machinery use and fuel use efficiency. It also has implications for emissions of 
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CO2, a greenhouse gas released in the burning of fossil fuel. According to Eakin 

et al. (2009), every farmer in the sample reported that they mechanically prepare 

their land and plant their maize crop. All but one farmer in the sample harvest 

mechanically. Annual diesel fuel use for Sinaloa maize production ranges from a 

minimum of 71 L/ha to a maximum of 189.5 L/ha (FIRA, 2006). I averaged these 

for the current state: 130.25 L/ha. Some fossil fuel use is expected given Sinaloa’s 

mode of production (mechanized monoculture). However, significantly reducing 

consumption is possible. Interviewees mentioned that many Sinaloa farmers 

needlessly till during the summer fallow season. Over-tilling not only wastes fuel 

and increases CO2 emissions, but can also lead to erosion and other negative 

outcomes (Pimentel, et al., 1995). 

The ideal state of the indicator is the range of 0-65 L/ha. This is based on 

diesel use for reduced-tillage (in this case, chisel plowing, however, there are 

many forms of reduced-tillage): 65 L/ha/year (Lal, et al., 1990). While zero fossil 

fuel use is currently an unrealistic expectation for Sinaloa maize production, the 

range suggests that the less fossil fuel is used, the better. Conservation or reduced 

tillage is not widely practiced in Sinaloa, however, experts believe it is a viable 

option for Sinaloan maize growers. One consideration is that some conservation 

tillage practices require farmers to purchase or rent specialized machinery, which 

has implications for economic sustainability. However, many reduced tillage 

practices have the added benefit of increasing soil organic matter. The current 

state of the indicator is close to sustainability. The value function representing this 

indicator shows a decreasing convex relationship to sustainability, reflecting that 
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some fossil fuel use is sustainable, but that sustainability decreases as more fossil 

fuel is consumed (Figure 9). 

Aquatic ecosystem health. The indicator for aquatic ecosystem health is 

tons of nitrogen from agricultural sources in coastal waters. There is no data 

specific to maize for this indicator. Nitrogen loading in aquatic systems can lead 

to significant changes in the aquatic environment, including eutrophic and/or 

hypoxic conditions that result in fish kills, which do occasionally occur in 

Sinaloa’s estuaries (Páez-Osuna, et al., 2007). A weakness of this indicator is that 

it does not account for the presence or impacts of other agrochemicals in 

Sinaloa’s aquatic ecosystems (see Carvalho, et al., 1996; Green-Ruiz & Páez-

Osuna, 2001, 2003; F. Páez-Osuna, Bojórquez-Leyva, & Green-Ruiz, 1998).  

According to Páez-Osuna and colleagues (2007), agriculture is the 

principle anthropogenic source of nitrogen in Sinaloa’s coastal waters, 

contributing 53,342 tons per year (the current state), or 29.9% of the total annual 

nitrogen flows into the coast. Because this indicator reflects the sustainability 

principle of long-term enhancement of environmental quality and natural 

resources to show the impacts of agriculture on the aquatic ecosystem, the ideal 

state is zero. The current state of the indicator was determined to be close to 

sustainability. The value function representing this indicator shows a decreasing 

convex relationship to sustainability (Figure 10). It is difficult to establish 

precisely what amount of anthropogenic nitrogen flow would be permissible or 

unsustainable in a system, especially as eutrophic and hypoxic conditions depend 

on additional factors such as temperature and season (Rabalais, et al., 2002). 
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Figure 3. Value function for the indicator for pest and disease incidence (% area 
planted in maize but not harvested).  
 

 
Figure 4. Value function for the indicator for terrestrial ecosystem health (% of 
total landscape in agriculture).  
 

 
Figure 5. Value function for the first of two indicators for pesticides (annual 
herbicide use).  
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Figure 6. Value function for the indicator for agricultural land (ha of agricultural 
land in maize).  
 

 
Figure 7. Value function for the second of two indicators for pesticides (annual 
insecticide use) to sustainability.  
 

 
Figure 8. Value function for the indicator for irrigation (annual irrigation water 
use).  
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Figure 9. Value function for the indicator for fossil energy (annual diesel 
consumption).  
 

 
Figure 10. Value function for the indicator for aquatic ecosystem health 
(tons/year of nitrogen from agricultural sources in coastal waters). 
 

 
Figure 11. Value function for the indicator for soil quality (% Soil Organic Matter 
(SOM)). 
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Figure 12. Value function for the indicator for erosion (% land affected by 
hydraulic erosion).  
 

 
Figure 13. Value function for the indicator for water quality (electrical 
conductivity of water in field drains).  
 

 
Figure 14. Value function for the indicator for nitrogen fertilizer (annual N 
fertilizer use).  
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Figure 15. Value function for crop yield. 
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representing SOM shows an increasing convex relationship to sustainability 

(Figure 11). 

Erosion. The indicator for erosion is percent of land impacted by 

hydraulic erosion in 2002, the most recent data available. I focus on hydraulic 

erosion because wind erosion affects only 0.5% of land in Sinaloa (SEMARNAT, 

2009), meaning it is not a significant concern for the state. A shortcoming of this 

indicator is that, while it informs to what extent the state is affected by hydraulic 

erosion, it does not inform how severe the erosion is, or the spatial distribution of 

eroded land; those data were not available. This indicator thus includes erosion 

throughout the state, including the mountains, where erosion is likely to be greater 

than in the flat valleys where maize is produced. Thus, this interpretation of the 

current state should be taken with a grain of salt. Another difficulty of this 

indicator is that in the literature, erosion is not generally discussed in terms of 

surface area affected, making it difficult to establish the value function. The 

current state of the indicator for erosion is 16.2% of total state land area 

(SEMARNAT, 2009). The ideal state for this indicator is zero. The current state 

of the indicator is far from sustainability. While this assessment of the indicator 

for erosion is not a precise measurement of the current state, stakeholders did 

confirm that the occurrence of erosion is a concern for the agricultural sector. The 

ideal state is somewhat unrealistic because erosion is a natural process that occurs 

regardless of agricultural management. The value function for erosion shows a 

decreasing linear relationship, in which low erosion is considered to be within a 

0.8-1 sustainability range (Figure 12).  
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Water quality. The indicator for water quality is average electrical 

conductivity (E.C.) of water in agricultural drainage canals. E.C. informs the 

degree of impurity of the water (American Water Works Association, 2003). 

Conductivity measures the ability of a solution to convey an electrical current. In 

water, electricity is conveyed by dissolved ions, thus, “conductivity increases in 

direct proportion to dissolved ion concentrations” (Boyd, 2000, p. 14). In other 

words, pure water has poor conductivity, and high dissolved ion concentration has 

high conductivity. A shortcoming of this indicator is that, while it tells us there 

are dissolved substances in the water, it does not inform what is in the water. In 

addition, this indicator suggests that to improve water quality, the electrical 

conductivity must be reduced. This would require an increase in water use, which 

would decrease the sustainability of irrigation. Thus, while it does inform on the 

current state of water quality, reducing this indicator should not be seen as a 

strategy for increasing sustainability. 

The drainage canals are a strategic place to measure conductivity because 

the water there accumulates agricultural runoff (excess water, fertilizer, 

pesticides, eroded soil, salts, etc.) that will eventually go downstream to coastal 

wetlands, lagoons, and may percolate into groundwater aquifers. The current state 

of the indicator is 3147x106 micro-Siemens per centimeter (µS/cm), based on 

samples taken mid-growing season (February) from field drains in irrigation 

district 010 near Culiacán, one of the most productive in the state in terms of 

maize (CONAGUA, 2008b). This data represents samples from throughout the 

irrigation district; it is not specific to maize fields. I determined the ideal state to 



77 

be 465x106 µS/cm, based on average conductivity of water in irrigation canals in 

irrigation district 010 prior to field application (365x106 µS/cm), plus 100 to 

account for further evaporation after field application (CONAGUA, 2008a). This 

ideal state is somewhat high for conductivity; however, higher conductivity is to 

be expected in semi-arid regions where irrigation water travels long distances in 

open canals, such as in Sinaloa. Evaporation during this journey leads to more 

concentrated ions, and thus higher conductivity. The current state of the indicator 

is far from sustainability. The value function representing electrical conductivity 

levels shows a decreasing convex relationship to sustainability, because the higher 

the conductivity, the less pure the water is, suggesting lower quality, and lower 

sustainability (Figure 13).  

Nitrogen fertilizer. The indicator for nitrogen (N) fertilizer is average 

kilograms of N applied per hectare per season (kg/ha/yr). According to Eakin et 

al. (2009), 99.5% of respondents said they use N fertilizer. The average 

application of N fertilizer, or the current state, is 437 kg/ha/yr (Eakin, et al., 

2009). Local experts suggested that a sustainable state would be 180 kg/ha/yr, 

which is sufficient to achieve a good yield. However, yield goals must be realistic 

and achievable, and it is not likely that N fertilizer application is the factor that 

prevents growers from achieving their yield goals (Karlen & Sharpley, 1994). The 

current state of the indicator is far from sustainability. In terms of plant growth, N 

fertilizer has an increasing convex relationship because it increases yields, but 

only to a certain point, because plants have a limit to how much N they can 

absorb (Soule & Piper, 1992). In terms of environmental sustainability, when 
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applied in greater quantities than recommended, N fertilizer is negative because it 

can lead to leaching and eutrophication of waterways, it can alter the N cycle, it 

emits the greenhouse gases CO2 (at the manufacturing point) and N2O (at the field 

level and in downstream wetland and aquatic ecosystems), and wastes the energy 

(natural gas) needed to manufacture the fertilizer. The value function representing 

average kg/ha/yr of N fertilizer shows a bell-shaped relationship to sustainability, 

reflecting that N fertilizer increases yields to a point, but has diminishing returns 

and negative outcomes beyond that point (Figure 14). While beyond the scope of 

this assessment, it is worth mentioning that because there are diminishing returns 

to N fertilizer use, applying fertilizer beyond the recommended level also 

diminishes economic sustainability, because farmers are purchasing more inputs 

than necessary, thereby reducing their profit margin (Trewavas, 2002). 

Crop yield. The variable of yield proved too complex to assess at the 

regional level, so I did not include it in the assessment. As mentioned in Chapter 

II, to assess yield only in terms of a single crop is to justify any management 

practice based on yield gains, reflecting economic investment rather than 

ecological yield capacity. Agriculture cannot stay on this path and be sustainable. 

Past a certain threshold, yield gains come at an environmental and economic cost 

that diminishes systemic sustainability. The value function representing the 

relationship of yield to sustainability is thus bell shaped, reflecting this tradeoff 

(Figure 15). However, to assess yield’s systemic nature as a proxy for the 

relationship among environmental resources, socio-economic conditions and 

productivity (Bindraban, et al., 2000) would be extremely complex at the regional 



79 

level, and not very informative. In some ways, the aggregate assessment is a 

holistic interpretation of yield, as yield is an outcome of management practices 

and ecological conditions. Yield is especially reflected in the indicator for 

agricultural land use. Still, ecological yield capacity is a field level indicator: the 

sum of soil quality, water availability and use, farm management, and other field 

level components that may vary greatly across the region. Rather than assigning a 

sustainable level for yield, Sinaloa’s maize farmers should assess their fields’ 

ecological yield capacity by having the soil tested and adjusting their input use to 

context-appropriate levels.  

Summary. The current state of the indicators for the variables of pest and 

disease incidence, terrestrial ecosystem, and pesticides (herbicides) are very close 

to a sustainable state (0.76-1). The current state of the indicators for the variables 

of agricultural land, pesticides (insecticides), irrigation, fossil energy, and aquatic 

ecosystem are close to a sustainable state (0.5-0.75). The current state of the 

indicators for the variables of soil quality, erosion, water quality, and nitrogen 

fertilizer were found to be far from a sustainable state (0-0.49).  

As revealed in the value functions, a slight change in the current state of 

many of the indicators would change their sustainability status. For example, the 

current states of the indicators for irrigation and fossil energy are close to a 

sustainable state, but they rest on a steep decline in their respective value 

functions. A subtle increase in the current state would push these variables into 

the far-from-a-sustainable-state range. The indicators for pest incidence, 

agricultural land, and pesticides likewise sit on steeply declining value functions, 
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such that a slight increase would move them down to the close-to-a-sustainable-

state range in the cases pest incidence and herbicides, and far-from-a-sustainable-

state range in the cases of agricultural land and insecticides. Likewise, a subtle 

decrease in irrigation and fossil energy would push these indicators closer to a 

sustainable state.  

 

Systemic Sustainability 

The aggregate system is far from an environmentally sustainable state. 

Though the variables were assessed individually, the three analyses of the system 

(system influence, stakeholder weight, and current state analysis) may be 

considered together for a more complete understanding of the Sinaloa maize 

system (Figure 16). Comparing the stakeholder weights and current state results, 

variables that stakeholders weighted low in importance –pest incidence, terrestrial 

ecosystem, and fossil energy– tend to be closer to a sustainable state, while 

variables the stakeholders weighted higher in importance –soil quality, irrigation, 

and nitrogen fertilizer– are far from, or, in the case of irrigation, technically close 

to a sustainable state but bordering on far from sustainability in their current state.  

Comparing system influence and the current state results, the most 

influential or active variables –agricultural land and pesticides– are close to 

sustainability. They have the capacity to detract from sustainability, but in their 

current state they do not do so significantly. The least influential, or passive 

indicators – aquatic ecosystem and water quality– are close to a sustainable state 

but bordering on being in the far range, and far from a sustainable state, 
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Figure 16. Summary of Results. The current state results are plotted to the 
primary vertical axis. The original weights, redistributed weights, and influence 
results (degree and betweenness, normalized between 0 and 1) are plotted to the 
secondary vertical axis. 
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respectively. Water quality and aquatic ecosystem are influenced by the 

moderately influential variables of nitrogen fertilizer and erosion, both of which 

are far from a sustainable state. Nitrogen fertilizer and erosion are influenced by 

soil quality (far from a sustainable state) and fossil fuel use (close to a sustainable 

state), both variables with moderate influence. 

There does not appear to be a correlation between the results of the 

stakeholder weights and system influence. Soil quality, with the highest weight, 

has average influence. Yield, with the lowest weight, has high influence. The 

variables with the greatest influence (agricultural land) and least influence 

(aquatic ecosystem) were both weighted in the midrange.  

It is important to relate the results of the systemic assessment to the 

criteria on which I assessed it: the long-term enhancement of environmental 

quality and natural resources, and the provisioning of basic human food needs 

(American Society of Agronomy (ASA), 1989). As revealed by the analysis of the 

indicator for agricultural land, Sinaloa’s maize growers are significantly 

contributing to the national food supply, thus satisfying the criteria of 

provisioning basic human food needs. The variables of terrestrial ecosystem, 

aquatic ecosystem, water quality, irrigation, soil quality, and erosion reflect on the 

criterion of enhancing environmental quality and natural resources. The results of 

the assessment of the indicators for these variables reveal that Sinaloa’s maize 

system is not meeting this criterion. Only the indicator for terrestrial ecosystem is 

very close to a sustainable state, but there is such little information on this 

indicator that this is not a confident conclusion. The indicators for water quality, 
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soil quality, and erosion are far from a sustainable state. The indicators for 

irrigation and aquatic ecosystem are close to a sustainable state, but are bordering 

on far from a sustainable state. Efforts to improve the environmental sustainability 

of maize production in Sinaloa should focus on meeting the agricultural 

sustainability criteria of enhancing environmental quality and natural resources. 

Intervention points.  The most effectual intervention point for improving 

the environmental sustainability of the Sinaloa maize system is irrigation. Even a 

subtle decrease in the current state would greatly increase the sustainability of the 

indicator. For example, decreasing the current state of 72 cm to 65 cm –a change 

of only 7 cm– would push the indicator into the very-close-to-a-sustainable-state 

range. The high weight of irrigation means that a change in irrigation has a greater 

impact on the aggregate sustainability score than variables with lower weights. 

Because irrigation also has high influence, an improvement in irrigation also 

means an improvement in the variables that it affects: soil quality, water quality, 

agricultural land, erosion, aquatic ecosystem, terrestrial ecosystem, and yield. 

This will further improve the aggregate sustainability. This is especially true of 

the variables of soil quality and water quality, which both have high weights and 

are both far from sustainability. In addition, improving soil quality, erosion, water 

quality, the aquatic ecosystem, and the terrestrial ecosystem would enhance 

environmental quality and the natural resource base, helping the Sinaloa maize 

system meet this criterion of agro-environmental sustainability. Even a small 

change in irrigation could mean a significant change in the sustainability of the 

system. 
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Other potent intervention points are soil quality and nitrogen fertilizer. 

Both variables have a high weight but are far from a sustainable state, thus any 

improvement would have a significant impact on the aggregate sustainability 

score. While soil quality itself has average influence, the variables it does 

influence include agricultural land and yield, both of which are highly influential 

in the system. Thus, improvements in soil quality would indirectly lead to 

improvements throughout the system. Like soil quality, the variable of nitrogen 

fertilizer has average influence in the system. However, the variables it does 

influence include soil quality and water quality, both of which are far from a 

sustainable state, have a high weight, and reflect on environmental quality and the 

natural resource base. By targeting nitrogen fertilizer, three variables with high 

weights would move toward sustainability, improving the aggregate sustainability 

score. In addition, targeting nitrogen fertilizer would indirectly help meet the 

agro-environmental sustainability criteria of the enhancement of environmental 

quality and the natural resource base. Improvements in soil quality and nitrogen 

fertilizer would result in direct and indirect improvements in the sustainability of 

the system.  

Barriers to change. Anecdotally, stakeholders identified various barriers 

to change in the direction of sustainability in Sinaloa. Many mentioned a lack of 

political will and public policy in support of sustainability for the state. These 

stakeholders acknowledged that the theme of sustainability has been talked about 

in Sinaloa for some time, but there has been little to no action as a result. Another 

barrier that stakeholders frequently mentioned was the ignorance of farmers about 
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the impacts of their management decisions, both on their farm and downstream. 

This was attributed partially to the independent nature of farmers, but also to the 

fact that most farmers get their management advice from private agribusiness 

interests such as seed companies, fertilizer companies, or credit distributers. There 

has been a fall in public extension support that leaves farmers without anyone to 

turn to for management advice except fellow farmers and private interests looking 

to push a product on the farmer. The high rate of land rental among maize farmers 

was identified as an obstacle as well, as farmers have little incentive to invest in 

improving the quality of a parcel that they may not be farming next year. Two 

stakeholders pointed to federal farm subsidies as a barrier because they dilute the 

cost of production, thus mitigating the disincentive that input costs should be 

providing to reduce input use. In other words, subsidies encourage input use both 

directly and indirectly. 

 

Stakeholder Recommended Variables 

Of the forty-one responses, fourteen (34%) gave recommendations on 

additional variables to assess (Appendix E). Five recommendations were related 

to economic sustainability: efficiency in labor use, input use as related to lowering 

the cost of production, efficiency in the production chain, financing options, and 

harvest contracts as potential indicators. Another five recommendations were 

related to specific management practices associated with sustainable production: 

conservation tillage, biological pest management, integrated pest management, 

planting date, and composting green waste. Five recommendations were related to 
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seed genetics: monitoring for contamination from transgenic maize varieties, 

monitoring for high yielding seed varieties, and germplasm repositories for the 

preservation of genetic diversity. Another topic that two stakeholders 

recommended is the presence of local fauna. Four recommendations are related to 

agrochemical monitoring or contamination. Finally, two recommendations are 

related to improving public politics and laws related to the environment. 
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Chapter 5 

DISCUSSION AND CONCLUSION 

I was able to answer my research questions with a few caveats. My 

literature review revealed that water, soil, inputs, ecosystem, atmosphere, yields, 

land, and pests and disease were the most common themes addressed in agro-

environmental assessments. I adapted these themes according to their relevance 

for conventional maize production in Sinaloa as outlined in chapter II, with a 

focus on the variables of soil quality, erosion, water quality, irrigation, nitrogen 

fertilizer, pesticides, fossil energy, agricultural land, pests and disease, 

ecosystems, greenhouse gases, and crop yields. To incorporate stakeholder values 

into the sustainability assessment, I used MCDA, engaging local stakeholders 

through interviews and a simple questionnaire. My analysis shows that the current 

state of maize production in Sinaloa is far from an environmentally sustainable 

state.  

 

Methods 

In my thesis, I applied existing knowledge about agro-environmental 

sustainability to the new case study of Sinaloa maize production, and assessed the 

current state according to the values of stakeholders. Compared to other agro-

environmental assessments, there are some similarities and some differences. One 

similarity is the initial approach: Walter and Stützel (2009) also reviewed the 

literature for indicators and categorized them by theme. The variables I addressed 

for the case of Sinaloa maize closely align with those in the OECD (1997) 
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framework for environmental assessment of agriculture. Like many of the 

assessments I reviewed, my assessment is indicator-based. 

A difference among my assessment and those I reviewed is the objective. 

Some assessments seek to compare two or more production systems (e.g. Perales 

Rivas, et al., 2000; Rasul & Thapa, 2003), others explore sustainability 

theoretically (e.g. Rigby, et al., 2001), and still others focus on one component of 

the environmental system (e.g. soil quality, input use; Carter, 2002; Vilas-Ghiso 

& Liverman, 2007). In contrast, my objective was to apply agro-environmental 

sustainability principles to an existing management system and establish 

achievable goals, or ideal points, toward sustainability given the current 

economic, technological, cultural, and political conditions of the system. In other 

words, my approach to sustainability assessment is designed to be useful to and 

applied by stakeholders, or use-inspired. As a result, the sustainable states 

identified in this assessment are not as rigorous as those assessments looking to 

establish what type of management is most sustainable, or more closely 

corresponds to the ideals of sustainable agriculture. As the goals I established are 

met, however, new goals must be established that will help the system continue 

on the path toward sustainability.  

Another important difference in my assessment is the key function of 

stakeholder values in the assessment. While some assessments emphasize 

stakeholder involvement (e.g. Van Cauwenbergh, et al., 2007), the MCDA 

approach allowed me to account for both the current state of the variables 

assessed, and their importance to the stakeholders. For example, the low 
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sustainability of soil quality, a variable with average systemic influence, has high 

weight in the analysis because stakeholders value it most. To demonstrate this 

point, if the indicator for soil quality, SOM, were to go from the current state of 

0.4% to the ideal state of 2%, the aggregate sustainability score would increase 

from 0.44 to 0.55. If the SOM level were to decrease to 0% (very far from a 

sustainable state), the aggregate sustainability would decrease to 0.37. The SOM 

level accounts for 17% of the aggregate sustainability score, which is the weight 

that stakeholders gave the variable of soil quality. In contrast, the variable with 

the lowest weight in the assessment, fossil energy (because yield was not 

assessed), represents only 4.5% of the aggregate sustainability score. 

MCDA provides a method for incorporating stakeholder values into the 

assessment, describing an indicator’s relationship to sustainability, and translating 

the current state into a common scale to facilitate comparison with indicators of 

various units. However, MCDA does not link the indicators as a system, i.e. show 

how the system components relate to each other. Network analysis filled this gap. 

The combination of MCDA and network analysis was thus key for a systemic 

analysis of maize production in Sinaloa.  

 

Stakeholder Weights 

Looking at the results for the weights, the variables that stakeholders 

weighted high in importance tend to be far from sustainability. This implies that 

stakeholders have a good understanding of current concerns in the system. Given 

that the stakeholders weighted yield lowest, it appears the stakeholders are more 
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concerned with Sinaloa’s natural resources and their management than maize 

production. However, the low ranking of aquatic and terrestrial ecosystems, 

suggests that natural ecosystems are not a priority to stakeholders, either. 

Nitrogen fertilizer use was weighted third most important, suggesting that 

stakeholders are concerned about the current level of use, perhaps because of the 

cost of fertilizer, the dependence on fertilizer for high yields, the associated 

ecological impacts, or a combination of these factors. 

A surprising result given that my analysis focuses on environmental 

sustainability of agriculture is that all but one group weighted aquatic ecosystems 

and terrestrial ecosystems quite low in importance; the outlier is the group of 

researchers, who weighted terrestrial ecosystems fourth in importance. This may 

mean that the other stakeholder groups see maize and/or agriculture as an integral 

part of Sinaloa that provides important functions for society and the economy. 

Perhaps because agricultural production depends on natural resources, these have 

a higher weight than natural ecosystems. It may also mean that these stakeholders 

are more focused on active or influential system components rather than the more 

passive, less influential variables such as terrestrial and aquatic ecosystems. 

However, it may also mean that stakeholders do not perceive that Sinaloa’s 

natural ecosystems are threatened, whether or not they are.  

 

Systemic Environmental Sustainability 

The aggregate system is far from a sustainable state. Yet, the most 

influential variables are close to a sustainable state, and the least influential 
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variables are far from a sustainable state. There appears to be a mistake: the 

influence analysis could be incorrect, or the sustainable levels identified for the 

most influential variables are not rigorous enough. However, the aggregate 

analysis reflects stakeholder priorities and the distance of the current state from 

the ideal state. The fact that stakeholders weighted soil quality, nitrogen fertilizer 

use, and water quality, all of which are far from sustainability, as highly important 

gives them greater weight in the aggregate system, despite being moderately 

active or passive in the system. These variables thus weigh down the aggregate 

sustainability of the system. 

An interesting result is that water quality is far from sustainability, while 

the aquatic ecosystem is close to sustainability. Yet, water quality influences 

aquatic ecosystems. This suggests that there is something buffering the coast from 

agricultural runoff. Two local experts believe that Sinaloa’s coastal wetlands are 

absorbing a significant portion of agricultural runoff, preventing it from reaching 

the coast. Another stakeholder suggested that the vegetative growth in the canal 

drains is absorbing excess nutrients, acting as a buffer. If this is the case, the 

tradeoff is that the canals will be less efficient at moving water. The analysis 

reflects the cascading effects and linkages of farm management practices (or lack 

of maintenance, as with the canal drains) and how they shape agro-environmental 

sustainability. 

The next question is: what influences farm management? Crop yield was 

revealed to have high betweenness. Though beyond the scope of this analysis, I 

believe the importance of yield to the Sinaloa maize system is in the realm of 
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economic sustainability: growers need high yields to stay competitive in the 

current technological, political, and economic climate. Thus, the pursuit of high 

yields is motivating the management decisions associated with irrigation, nitrogen 

fertilizer, agricultural land use, and pesticide use, and indirectly influencing pest 

incidence, erosion, soil quality, and fossil fuel use. This contrasts with the 

stakeholder ranking of yield as the least important variable in the system in terms 

of environmental sustainability.  

 

Intervention Points  

I identified reducing irrigation and nitrogen fertilizer, and increasing soil 

quality as the most effectual intervention points for increasing the sustainability of 

the Sinaloa maize system. All of these interventions are actionable within the next 

growing season, but it is important to consider how realistic these suggestions are, 

and identify what the potential strategies for intervention may be, who the 

relevant actors are, the barriers to change, and the incentives for change. The key 

actors are growers and public (CONAGUA) and private water institutions 

(irrigation districts, irrigation modules). To reduce irrigation use without 

impacting yield, growers should plan their irrigation events according to optimal 

water absorption times for their crop. The most critical stages for irrigating maize 

are during the flowering and silking periods (Ojeda-Bustamante, et al., 2006). 

Reducing irrigation use could be achieved within the next growing season, though 

it may take a few growing seasons for growers to work out their new irrigation 

regimen. Reducing irrigation is a feasible intervention, however, change is not 
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likely to occur unless the government begins to regulate water use. Farmers have 

little reason to reduce their water use because the cost of water is low, and their 

use is not regulated. Irrigation modules currently do not measure the actual 

volume of water that is applied to a field; the irrigation operators estimate the 

proper amount. Thus, lack of measurement and regulation are the primary barriers 

to reducing irrigation. Measuring water use and charging for use by volume 

would encourage growers to reduce water consumption, as well as aid the fair 

distribution of water allocations. The incentives for growers to reduce irrigation 

are increased efficiency and the possibility of using the water saved during the 

winter-maize season to plant a crop during the spring-summer season. A spring-

summer crop could increase farm revenue and has the added benefit of protecting 

the soil against erosion. Planting a legume crop would improve soil nitrogen, 

which would reduce dependence on nitrogen fertilizer, lowering production costs.  

The key actors for increasing soil quality are maize growers. The 

strategies for implementing this intervention involve changes in farm 

management, such as adopting reduced tillage or no-tillage regimens, working 

with composts, and/or rotating crops. Growers could adopt these management 

changes within the next growing season; however, at least a few years must pass 

before growers will experience the benefits of their efforts to increase soil quality. 

Though increasing soil quality is a feasible intervention, the time lag may be a 

barrier to change. Another potential barrier is that growers may resist adopting 

management changes, especially those practices that may be cost-prohibitive (e.g. 

the renting or purchase of specialized machinery). The fact that much of the maize 
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area planted is rented (de Ita Rubio, 2003) is a disincentive for this intervention, 

as increasing soil quality requires capital investment, and growers do not have a 

long term commitment to their rented parcels.  The potential lack of cooperation 

from neighboring ranchers is another potential obstacle. An agronomist explained 

that part of the challenge of adopting no-till in Sinaloa is that neighboring cattle 

sometimes roam into fallow maize fields, which may compact the soil, 

necessitating tillage. Overcoming this challenge will involve better 

communication among neighbors and potentially fence installation. However, 

maize growers facing this challenge could also adopt a form of reduced tillage 

that increases soil quality but still loosens the soil, such as chisel plowing, or 

rotating crops. Given that the stakeholders weighted soil quality as the most 

important variable to environmental sustainability, it appears they understand that 

there are incentives for improving soil quality. These include healthier crops and 

less dependence on external fertilizers, which may decrease the cost of 

production.  

The key actors for reducing nitrogen fertilizer are maize growers. To 

reduce nitrogen use without reducing yield or profits, growers should plan their 

fertilizer applications according to the optimal nutrient absorption times of their 

crop. Maize generally has low nutrient uptake at the beginning of the season, high 

uptake during plant growth, and low uptake as the crop matures (Millar, et al., 

2010). Other potential strategies for reducing nitrogen fertilizer use include 

improving soil quality and irrigation management, and rotating maize with a 

leguminous crop (Díaz Valdés, 2006; Pretty, 2008). Reducing nitrogen fertilizer 
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use could be achieved within the next growing season, though it may take a few 

growing seasons for growers to work out their new fertilizer regimen. This is a 

feasible and realistic intervention, the benefits of which would be experienced 

immediately. The primary incentives for reducing nitrogen use are lowering the 

cost of production, and reducing the downstream environmental impacts 

associated with over-fertilization (e.g. eutrophication of water bodies). The 

barriers to reducing nitrogen fertilizer use include the habits and traditions of 

growers, who may resist management changes. Part of this barrier is the common 

practice of calculating nitrogen use on the basis of desired yield. In other words, 

growers may be loosing profits trying to achieve a high yield rather than basing 

their fertilizer use on the best economic return for investment (“maximum return 

to nitrogen”), part of which is having a realistic expectation for the ecological 

yield capacity of their fields (Millar, et al., 2010). Growers will need to measure 

their success not by yield (tons/hectare), but by the best economic returns for 

production costs. Strategies such as improving soil quality and irrigation and 

incorporating crop rotations will also require changes in farm management, which 

may be cost-prohibitive. However, as mentioned above, these changes would 

have multiple benefits for growers and sustainability.  

Agricultural land is another possible intervention point, however, it is 

potentially problematic. The variable of agricultural land is a reflection of the 

scale of agricultural management decisions and production. It is so influential 

because it directly impacts the variables of soil quality, irrigation, nitrogen 

fertilizer, pesticides, erosion, pest incidence, terrestrial ecosystem, and fossil 
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energy. Any changes in agricultural land would change all these variables. One 

way to increase sustainability by intervening through agricultural land is reducing 

the current state of the indicator for this variable: area planted in maize. One way 

to reduce the maize area in Sinaloa is to rotate the maize crop with a different 

crop for the winter season. This would reduce the maize monoculture, which 

would be good for sustainability. However, it would also result in management 

changes on that land. The new crop that replaces maize will have its own 

management requirements, including irrigation, pesticide, and fertilizer 

applications, which may or may not be more environmentally damaging than 

maize. In other words, an intervention to increase the sustainability of the 

indicator for agricultural land (reducing maize area planted) could have the 

appearance of improving sustainability because it reduced the maize monoculture, 

when in actuality it may result in greater environmental damage than if the land 

had continued to be planted in maize. Another potential intervention related to 

agricultural land would be to fallow land planted in maize. This would also reduce 

the maize monoculture, however, if no cover crop is planted, it may expose the 

land to erosion, reducing soil quality, and overall sustainability. Thus, 

interventions in agricultural land must be carefully planned, and take input use, 

erosion, and potential downstream impacts into account.  

If done well, an intervention in agricultural land could potentially have a 

dramatic positive impact on environmental sustainability in Sinaloa. However, 

this is not a realistic expectation. Maize is among the most profitable crops for 

Sinaloan growers, which is why so many plant it. Part of the reason that it is 
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profitable is government support, which institutionalizes maize production. 

Agriculture is a major economic activity in the state, and fallowing land is not a 

financial option for many farmers. Thus, it is unlikely that land will be taken out 

of agricultural production or maize production. 

 

Stakeholder Recommendations  

While the stakeholders’ recommendations for additional variables to 

assess provided insight into their priorities and concerns, I did not assess the 

variables they recommended for various reasons. Those related to economic, 

political, and legal concerns were beyond the scope of agro-environmental 

sustainability. The recommendations related to specific management practices 

(conservation tillage, biological pest management, etc.) suggest that some 

stakeholders are aware of alternative management options and consider them 

viable in Sinaloa. I did not assess these management practices because the 

positive outcomes associated with them, such as reduced pesticide use, reduced 

fossil energy use, and increased soil quality, were already captured in the 

assessment. In addition, there is no existing data on how many growers have 

adopted these practices. Similarly, agrochemical contamination was captured in 

the variables of water quality, aquatic ecosystem, pesticide use, and fertilizer use. 

The recommendation to assess local fauna is highly related to agro-environmental 

sustainability, and would have been an informative variable to include in this 

assessment; however, assessing it would require a very specialized local 

knowledge that was not achievable in the time frame of the study. 
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The recommendations related to seed genetics represent diverse concerns. 

Transgenic contamination could impact production capacity, but I believe the 

concern of the stakeholders is marketability, as some consumers have shown an 

aversion to transgenic foods (Clay, 2004; Lehrmann, 1999). The concern of high 

yielding seed varieties is related to yield and production. In contrast, the concern 

over genetic diversity is related to breeding options for the future, as well as 

biodiversity preservation.  

Though highly relevant to my study, I did not to assess seed genetics 

because there are no sustainability metrics or standards for this variable. First, the 

concern of food production is captured in the variables of yield and agricultural 

land use. The concern over agricultural biodiversity is very important in the 

alternative agriculture discourse in terms of preserving landraces, promoting soil 

health, providing wildlife habitat, and as a means of pest control (McNeely & 

Scherr, 2003; Pretty, 1995), but this is not an appropriate metric for Sinaloa at this 

point in time because its mode of production is mechanized monoculture: the sole 

goal is food production, not biodiversity. My analysis shows that maize 

monoculture is not yet a problem in Sinaloa in terms of pests and disease, but it is 

a potential concern for the future. According to Eakin et al. (2009), 72% of 

respondents plant one of three seed varieties: Pioneer 30P49, Bisonte, and Cebu. 

Under the current mode of production, increasing agricultural biodiversity would 

mean planting different commercial varieties, or devoting land currently in maize 

to another crop. Using a greater variety of commercial maize seeds would not 

meet the agricultural biodiversity goals of alternative agriculture. I addressed 
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converting land currently in maize to another crop in the variable of agricultural 

land. In a mechanized monoculture system, growers could increase biodiversity in 

the ecological sense by planting hedgerows, or leaving corridors of native 

vegetation. However, there is no data on how many growers do this in Sinaloa. 

Some stakeholders expressed concern over the impacts of transgenic 

contamination. Concerns over potential risks of transgenic crops are frequently 

cited in the sustainable agriculture discourse (e.g. Garcia & Altieri, 2005; Pretty, 

2001), but there is, as of now, little evidence that it diminishes sustainability 

beyond negative perceptions (Lehrmann, 1999), making it difficult to assess. 

 

Caveats and Lessons Learned 

There are a few weaknesses of the study that could be improved upon. In 

general, the study could be improved by sampling a larger number of 

stakeholders, especially more maize growers. The accuracy of the study could be 

improved by collecting primary data (data observed or collected directly by me, 

the researcher) at the desired scale. However, this would have been very costly. I 

relied on secondary data (data collected by others) and/or expert opinion for 

current state levels for ten of the thirteen indicators. The values for the indicators 

of soil quality, irrigation, and fossil energy are estimations from local experts or 

agencies, so they may not be very precise. These are weaknesses in that I cannot 

attest to the accuracy of this data, and it was not always the most informative for 

my objectives. For example, a better indicator of water quality would be the 

average nitrogen level in irrigation drains. Average rate of erosion (T/ha/year) 
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would have been a far more informative indicator for erosion than percent of the 

state surface area affected by erosion. Changes in fauna populations would have 

been more indicative of the sustainability of the current state of terrestrial 

ecosystem than percent of the state’s surface area devoted to crop production. 

While the indicator for aquatic ecosystem – annual tons of nitrogen from 

agricultural sources deposited in coastal waters – is informative, it is difficult to 

interpret without data on aquatic life, such as fish kills, rate of reproduction, or 

other indicators of the well-being of sea life. My use of secondary data is a 

strength, however, in that half of the data I used for the current state of indicators 

is collected and made available by government agencies (CONAGUA, FIRA, 

SAGARPA, SEMARNAT, and SIAP), which means that future data will likely be 

available and collected using the same methods at the same scale, thus facilitating 

follow up studies at no additional cost to these agencies or researchers.  

The sustainable states of indicators for management variables (e.g. 

irrigation, nitrogen fertilizer) were selected to be attainable, with the assumption 

that as those goals are approached and attained, new sustainability goals will be 

established. While this approach to the ideal state is flexible, the assumption that 

new goals will be established is a weakness because it depends on follow-up 

assessments. These assessments must adapt to the new conditions of the system 

by assessing relevant agro-environmental variables. They must also capture 

changing stakeholder values by redistributing the questionnaire on which the 

MCDA weight analysis is based. This approach to ideal states also lacks a vision 

of where the system could or should be in terms of sustainability. This could be 
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addressed, using the same approach to ideal states, by doing visioning exercises 

with stakeholders about what kind of agricultural system and environment they 

would like to see in Sinaloa into the future.  

Another weakness was a mistranslation in the questionnaire. For the 

variable of terrestrial ecosystems, thinking of the importance of native vegetation 

as wildlife habitat, I translated the variable of terrestrial ecosystems as “presence 

of native vegetation” (presencia de vegetación nativa instead of ecosistemas 

terrestres). As evidenced by their comments (Appendix E), some stakeholders 

interpreted presence of native vegetation as weeds, which, as my analysis attests, 

is not a major problem in Sinaloa. Thus, the weight of terrestrial ecosystems may 

not reflect how all stakeholders actually value terrestrial ecosystems. I translated 

aquatic ecosystem as “condition of natural water sources” (condición de fuentes 

de agua natural), which some stakeholders interpreted as irrigation source. I 

assessed this variable in terms of contamination with interest in the protection of 

the coastal biological community. Irrigation use was weighted high in importance, 

so this misunderstanding may skew the weight for aquatic ecosystems up. To 

address these variables, the questionnaire would have to be re-administered with 

more explicit, clear translations. 

I was not able to ascertain the importance of the ecosystems that 

agriculture has displaced to ecosystem function and ecosystem services in 

Sinaloa: primarily thorn forest and the floodplain riparian forests of Sinaloa’s 

major rivers. Shreve (1937) describes the vegetation profile of the flood plains 

and the thorn forest, pointing out the latter as one of the most important of the 



102 

region, with evidence of relations among thorn forest species and Sonoran desert 

species. Schmidt Jr. (1976) informs that thorn forest represents 75% of the state’s 

natural vegetative pattern. After irrigation infrastructure was constructed in the 

1940s, however, large portions of these ecosystems were rapidly replaced with 

agriculture. Deforestation of thorn forest has slowed since the 1970s, but thorn 

forest is one of the least protected ecosystems in Mexico (Vega Aviña, 2003).  

While it does not currently seem to be a concern, thorn forest may prove 

to be an important part of Sinaloa’s environment functioning. For example, the 

prairies of the American Midwest were not thought to be valuable and were 

destroyed on a tremendous scale; some estimate that as much as 99.9% of these 

prairies have been altered by human activities, including agriculture. Today that 

attitude has changed as prairie grasses are now known to play an essential role in 

maintaining soil structure, preventing erosion, and absorbing atmospheric carbon 

(Sampson & Knopf, 1994). Studies of Sinaloa’s lowland ecosystems are needed 

to understand the ecosystem functions they provide, and how to sustainably 

manage them. 

As a few stakeholders aptly pointed out in their questionnaire comments, I 

did not address fauna, part of the variable of ecosystems. Concerns associated 

with wildlife in Sinaloa include hunting, habitat fragmentation, and habitat loss 

(Martínez López, 2003). Though not an issue for maize production, another 

important concern with economic implications is pollination. While I could not 

verify this claim, two stakeholders said that to pollinate crops, growers now must 

rent bees, bats, and beetles, but that ten to fifteen years ago they did not need to. 
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As mentioned, assessing fauna-related variables would require a specialized local 

knowledge that was not attainable in the time frame of the study; however, 

including fauna in the assessment would have undoubtedly strengthened the 

analysis. 

My analysis does not cover the positive activities that are helping mitigate 

environmental impacts and improving sustainability in Sinaloa. These include 

agricultural solid waste collection, crop diversification efforts, reforestation 

efforts, and heritage seed conservation programs. The improper disposal of empty 

agrochemical containers was a considerable problem in Sinaloa. Now, the Campo 

Limpio (Clean Countryside) program promotes the proper cleaning of these 

containers and collects them for recycling and disposal (Campo Limpio, 2007; 

Cruz, et al., 2006). According to stakeholders, the program has been successful in 

Sinaloa. The state government and SAGARPA are both actively promoting 

diversification out of white maize (Gobierno del Estado de Sinaloa, 2010; López, 

2010). This will help reduce the overproduction of white maize, however, 

diversification is largely toward yellow maize, which will not reduce the maize 

monoculture. Two stakeholders described farmer-sponsored reforestation efforts 

in the mountains to help protect the watershed that supplies irrigation water. 

According to these stakeholders, the species being planted are primarily of 

economic interest (redwood, cedar) rather than species that reflect the vegetative 

distribution of the region, however, the effort is a step in the right direction. The 

Comisión Nacional de Áreas Naturales Protegidas (CONANP, National 

Commission for Protected Natural Areas) has a program for conserving criollo 
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(heritage) maize varieties (CONANP, 2010). The program is active in Sinaloa, 

promoting agro-biodiversity and genetic conservation.  

An obvious weakness is that my assessment is limited to one year, one 

crop, and one realm of sustainability (environment). I did not assess a historical 

time series of data, which would have given a better sense of management 

practices, climate factors, crop losses, and resource availability; however, 

historical data was not available for many indicators. A temporal perspective 

would have also shed light on the relative sustainability of maize compared to the 

crops it replaced. According to a few interviewees, maize is less environmentally 

harmful than the cotton, soy, and wheat that was cultivated before the expansion 

of maize because those crops required more pesticides, however, they 

acknowledged that maize cultivation uses more nitrogen fertilizer. Maize requires 

less water than cotton, but more water than the individual crops of soy and wheat. 

However, planting a single crop of maize per year requires less water than an 

annual crop rotation of soy and wheat.  

In terms of crop, I assessed only maize. Given the time frame of this 

project, maize is a logical focus for an environmental sustainability assessment 

because it represents so much of the agricultural landscape and has become 

increasingly important for social and economic sustainability. As I began this 

research, I anticipated that maize would be the most environmentally impactful of 

Sinaloa’s crops. However, my interviews suggested otherwise. According to local 

experts, vegetable production in Sinaloa consumes high volumes of fertilizer, and 

significantly more total pesticides than maize, despite representing a much 
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smaller portion of agricultural land. Wright (2005) called attention to this issue in 

the 1980s, before commercial maize production took off in Sinaloa. Today, 

vegetables are increasingly grown in greenhouses, which are energy and material 

intensive. The agroplastics used for vegetable production in Sinaloa are often 

burned in open fires rather than recycled, adding another layer of concern for 

environmental sustainability (Cruz, et al., 2006). In addition, many vegetables are 

water-intensive, and may also contribute to pressure on water stores. To truly 

understand agro-environmental sustainability in Sinaloa, other crops, especially 

vegetable crops, need to be assessed and incorporated into the system analysis as 

well.  

While I used a systems approach to agro-environmental sustainability, the 

assessment is not truly systemic because of my focus on the environmental realm 

of agricultural sustainability, excluding the other two pillars of sustainability: 

society and economy. For example, many pesticides are known to cause cancer in 

humans (Alavanja, et al., 2004). However, because I did not assess the social 

component of sustainability, I did not account for this in my assessment of the 

sustainability of pesticide use, or the aggregate Sinaloa maize system. Social and 

economic issues cannot be separated from environmental issues. Thus, social and 

economic issues came up in interviews and the literature. Though I did not assess 

them and was unable to verify the claims of interviewees, I elaborate on economic 

and social sustainability in the following two sections. 
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Economic Sustainability 

Agriculture is an important part of the Sinaloa economy, representing 

14.9% of state GDP (Gobierno del Estado de Sinaloa, 2009a). Maize alone 

represents 39% of the total value of crop production in the state (Gobierno del 

Estado de Sinaloa, 2010). However, there are some concerns for the economic 

sustainability of maize production in Sinaloa. For example, it is unclear whether 

the income from commercial maize is sufficient for growers to survive on. 

Profitability is a concern for social sustainability as well, because it impacts 

employment, working conditions, and workers’ wages. An analysis by FIRA 

(2006) suggests that to break even, Sinaloa growers must obtain a yield of 9.37 

T/ha (the average yield is 10.65 t/ha (SAGARPA, 2010)). One interviewee said 

that a grower needs to plant at least ten ha to make a living, but that living off of 

an agricultural income is increasingly difficult as consumerism has increased in 

Mexico in recent decades, and that many Sinaloan growers depend on additional 

sources of income. Praise for Sinaloa’s high yields came up frequently in 

interviews, however some stakeholders mentioned that growers are over-applying 

nitrogen fertilizers and over-irrigating in pursuit of these yields, reducing their 

profits and environmental sustainability, rather than adjusting their expectations to 

the limits of their land and resources. When asked about the profitability of maize, 

and why growers are producing more white maize than the market demands, 

interviewees frequently responded that there are no other economically viable 

options for Sinaloa growers right now. 75% of Sinaloa growers surveyed said 

they switched into maize because it was the most profitable or attractive crop 
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(Eakin, et al., 2009). However, overproduction may be depressing prices and 

reducing profitability. If this is the case, as growers adopt new technology to stay 

competitive, they must continually increase production to keep up with their 

costs. As other growers adopt the new technology, the competitive edge of the 

technology is lost, overall production increases, and prices fall. This phenomenon 

is known as the agricultural treadmill (Cochrane, 1959; Levins & Cochrane, 1996; 

see Eakin, et. al., submitted). 

A significant portion of total maize farm earnings in Sinaloa –nearly 30 

percent– are from government subsidies (FIRA, 2006). Federal support for 

Sinaloa maize comes in many forms. The government pays a premium on the 

price of white maize that other kinds of maize, such as yellow maize, do not 

receive. Other supports include PROCAMPO (direct payments based on acreage 

in nine basic grain crops, including maize), fuel supports, and price supports such 

as Compras Anticipadas (Futures Markets), Cobertura de Precios (Price 

Coverage), and Ingreso Objetivo (Target Income) programs, among others. 

Various stakeholders emphasized the importance of the Compras Anticipadas 

program for Sinaloa maize because Sinaloa is far from the centers of maize 

consumption (in the center and south of the country). Sinaloa growers thus 

depend on the government to find contract buyers for their maize, ensure the 

contract, and to subsidize the cost of transit. In 2008 the program capped support 

for white maize at 3.85 million tons, leaving over one million tons of Sinaloa 

maize without commercialization coverage (Juarez, Kuss, & Ford, 2009). Even 

with this cap, Sinaloa was the primary recipient of commercialization supports for 
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maize (Appendini, 2010b; Scott, 2010). Various interviewees said that 

commercialization is a big problem because the cost of commercialization is 

reducing profit margins for maize growers. Some argued that the government 

should cover commercialization for all of Sinaloa’s production, even though 

Sinaloa was producing more white maize than is demanded for human 

consumption, and the surplus 1.3 million tons is used as yellow maize for 

industrial use or as livestock feed. In 2010, the government expanded 

commercialization support in Sinaloa to 4.8 million tons of white maize 

(Gobierno del Estado de Sinaloa, 2010). Sinaloa’s dependence on government 

support calls into question the free market ideals of the neoliberal reforms that 

initially incentivized Sinaloa growers to plant maize, and raises concerns of path 

dependency (Eakin, et al., submitted). While Sinaloa maize contributes to the 

national food supply, the question remains whether the government should be 

subsidizing commercial production while reducing supports for subsistence and 

smaller-scale production that contributes to local food security in other parts of 

Mexico (Appendini, 2009; de Janvry, Sadoulet, & Gordillo de Anda, 1995; Scott, 

2010).  

An indirect subsidy that Sinaloa’s growers benefit from is the government 

funded maintenance of irrigation infrastructure. There are 11 river dams, 9,032 

kilometers of canals, and 8,653 kilometers of drains throughout the state 

(Gobierno del Estado de Sinaloa, 2009a). The cost of irrigation water for growers 

is low, but maintaining this infrastructure is very costly; one stakeholder 

estimated that the cost of maintenance is around 300 million U.S.D. a year, an 
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expense that is being absorbed by taxpayers. This high cost of irrigation calls into 

question what services or projects could be funded that would benefit a greater 

number of Sinaloans. It could also be argued, however, that this subsidy benefits 

not only Sinaloan farmers, but consumers of Sinaloa’s produce as well. 

Another issue of concern is credit access. Credit opportunities for small-

scale grain farmers have decreased since the 1990s (de Janvry, et al., 1995; Eakin, 

2006), reducing participation in agriculture as smaller scale producers cannot 

keep up with the technological innovations of the sector, and therefore can no 

longer compete commercially. This may have contributed to the widespread 

phenomenon of rentismo, or land renting in Sinaloa. This is a form of land 

concentration (concentration of land-holdings by fewer and fewer actors). It is 

estimated that over half the agricultural land area in the winter season (dominated 

by maize) is rented, primarily from smallholders and ejidatarios (de Ita Rubio, 

2003).  

Land rental represents a major portion of production costs. The estimated 

average rate for land rental is 8,000 Mexican pesos, or roughly $680 USD per 

hectare (Centro de Estadística Agropecuaria: Secretaría de Agricultura Ganadería 

y Desarrollo Rural, 2009), which represents about 27% of the total cost of 

production (Eakin, et al., submitted). It is estimated that purchased inputs 

represent about 39% of the total cost of production; labor is 14%; insurance is 

10%; and land preparation is 10% (Eakin, et al., submitted). Land rental and 

purchased inputs (about 66% of total production costs), then, are a serious 

constraint on profitability. While one stakeholder was concerned about farmer 



110 

debt, bank representatives explained that their farmer clients rarely default. 

However, banks appear to be working mainly with larger producers that are 

deemed more commercially viable, while smaller producers obtain financial 

support from input suppliers, intermediaries, and other less regulated credit 

sources (Eakin, et al., submitted), complicating their viability in the commercial 

sector. 

Looking at the larger economy, maize production has the potential to 

impact other economic sectors. Maize production, and agricultural production in 

general, have the potential to negatively impact other economic sectors through 

environmental degradation, such as the fishing industry and growing tourism 

industry. This reinforces the importance of agro-environmental sustainability.  

Considering economic potential in Sinaloa, some stakeholders emphasized 

the need for the state to develop a food processing industry or ethanol industry 

that would help absorb Sinaloa’s maize surplus. Other stakeholders expressed 

concern that Sinaloa’s agricultural sector is dependent on agricultural inputs 

(machinery, seeds, nutrients) from international sources, expressing interest in the 

development of these industries within Mexico. Local scholars are exploring these 

possibilities and concerns (Aguilar Soto, 2007; Aguilar Soto & Gaxiola Carrasco, 

2009).  

 

Social Sustainability 

There are many aspects of social sustainability related to maize production 

in Sinaloa, including national food supply, the aging farmer population, land 
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renting, farm worker wages and working conditions, and agrochemical related 

health problems, among others. Sinaloa’s white maize production plays a major 

role in satisfying Mexico’s food needs, producing 26% of Mexico’s total white 

maize production, approximately 70% of which is used for human consumption 

(Gobierno del Estado de Sinaloa, 2010). White maize is a culturally appropriate 

crop for satisfying food demand and maintaining food sovereignty. In Mexico, 

white maize is preferred over yellow maize for human consumption for its texture 

and high flour content (Appendini, 2010a; Fitting, 2006). However, the major 

centers of maize consumption in Mexico are the center and south – not the north, 

where Sinaloa is located. Thus, Sinaloa’s maize must be shipped around the 

country to reach consumers. As mentioned, high production in Sinaloa may be 

leading to a decrease in local production in the center and south of Mexico, 

reducing food security in those regions. Sinaloa also represents a geographic 

concentration of production that is vulnerable to market, climate, and 

environmental shocks. For example, the major frost event of February 2011 

devastated the maize crop, leaving the country in need of about 3 million tons of 

white maize (Enciso, 2011; Valdez Cárdenas, 2011). This event raises concerns 

about Mexico’s lack of emergency food stores, and calls into question whether 

Mexico should rely so much on one region for such a significant portion of its 

food supply. It is yet to be seen how Sinaloa will recover from the event 

economically and socially. 

A concern for social sustainability in maize production is the future of 

farming as the farmer population ages and approaches retirement. According to 
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interviewees, the youth have expressed little interest in farming. Related to the 

concern of aging farmers and with implications for environmental, economic, and 

social sustainability, is the phenomenon of rentismo, or land rental in the maize 

sector (see section “Economic Sustainability,” above). As farmers leave the sector 

because they are aging or because they cannot compete in the commercial sector, 

many rent their land to other growers. It is unclear what those who rent out their 

land do, if anything, to supplement their income, raising concerns about poverty, 

emigration, and illegal activity. Land rental is a concern for environmental 

sustainability because growers who rent have less incentive to care for the land 

(e.g. soil quality) and surrounding natural resources (e.g. water quality, terrestrial 

and aquatic ecosystems). 

Working conditions and farm wages are important social justice issues for 

agricultural sustainability. Wright (2005) documented agrochemical use in 

Sinaloa vegetable production in the 1980s, reporting deliberate over-application 

of pesticides, preventative application (which goes against best management 

practices), frequent contamination of canals and drinking water supplies, lack of 

protective clothing for workers, and worker illness and death from pesticide 

exposure. Sinaloa maize uses far fewer pesticides than vegetables, and requires 

far less labor, however, this does not mean that labor justice issues are not a 

concern in maize production. 

Agrochemical exposure has been implicated in human health risks, some 

of which have been falsified, and others verified. For example, nitrate (NO3
-) has 

been associated with potable water contamination. Conditions thought to be 
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caused by or related to NO3
- include blue baby syndrome, stomach cancer, and 

increased risk of heart attack. Research has largely disproven these claims. It is 

now thought that NO3
- is an essential part of the human diet (Hatch, Goulding, & 

Murphy, 2002). Exposure to pesticides, on the other hand, can lead to serious 

human health problems, especially cancer and neurological disorders (Alavanja, 

et al., 2004). Agricultural workers and residents of rural towns that draw 

groundwater for human consumption may be especially susceptible to these health 

risks.  

In terms of governance and government regulation, legislation exists that 

legally protects the environment at both the federal and state levels. At the federal 

level for example, Article 27 of the Constitution calls for the protection of natural 

resources, and Article 73 establishes basic protections for the environment. At the 

state level, environmental law focuses on preventing and controlling 

contamination of air and water, solid waste, and dangerous activities. One 

important law is La Ley del Equilibrio Ecológico y la Protección al Ambiente del 

Estado de Sinaloa (LEEPAES; Law of Ecological Equilibrium and 

Environmental Protection in the State of Sinaloa), passed in 1991. While these 

legal protections for the environment exist, addressing environmental problems 

has not been a priority for the state government (Karam Quiñones, 2003).  
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Sinaloa Maize in Perspective 

There has been little research on the environmental impacts of agriculture 

in Sinaloa, making it difficult to specify environmental outcomes of maize 

production and agriculture’s impacts on natural processes. In light of the current 

lack of information, to gain a better sense of the potential impacts of maize 

production in Sinaloa, it is useful to consider another case: the United States, with 

a focus on the state of Nebraska, the third most important maize-producing state 

in the U.S. in terms of production and area planted (National Corn Growers 

Association (NCGA), 2010). Nebraska is an apt comparison with Sinaloa because 

both states grow maize under irrigation, and they have similar yields. Nebraska, 

however, produces maize on a much larger scale than Sinaloa (Table 8). Nebraska 

also has a much longer history of commercial maize production, dating to the 

1850s (Olson & Naugle, 1997), though irrigated production didn’t expand until 

the 1930s (Hickey, 1992). This long legacy may shed light on the potential 

outcomes of long-term maize production and maize expansion in Sinaloa.  

Maize production in the U.S. is known to have persistent pest problems, 

requiring elevated pesticide use over time. Erosion in U.S. maize production is 

estimated to be about 8.6 metric T/ha/yr (Clay, 2004). In terms of management, 

Sinaloa growers use more nitrogen, insecticides, and irrigation water, but less 

phosphorus and fewer herbicides than U.S. growers. Sinaloa has a slightly higher 

average yield (Table 8). Data on the actual rate of erosion in Sinaloa could not be 

found.  
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Table 8 
 
Comparison of Sinaloa and Nebraska/U.S. maize production and management 
 
 Sinaloa Nebraska/U.S. Difference 
Area planted in maize (ha) 559,722a 3,716,512f - 85% 
Average yield (t/ha) 10.65b 10.36f +5.2% 
Annual precipitation (cm/yr) 80c 58.2g  +37.5% 
Average irrigation (cm/ha) 72d 47.5h +51.6% 
Average nitrogen (kg/ha) 437e 153i  +285% 
Average phosphorus (kg/ha) 0 65i -100% 
Average insecticides 2.9 L/hae 2.8 kg/hai + ~3.6% 
Average herbicides 1.15 L/hae 6.2 kg/hai - ~81.5% 
a Gobierno del Estado de Sinaloa, 2010 
b SAGARPA, 2010 
c Comrie & Glenn, 1998; Liebmann et al., 2008  
d Local expert estimate 
e Eakin et al. 2009 
f NCGA, 2010 
g U.S. Department of the Interior & U.S. Geological Survey, 2011  
h Payero et al., 2006  
i Pimentel & Pimentel, 2008 

 

Environmental impacts associated with agriculture are well documented in 

Nebraska. These include groundwater overdraft, groundwater pollution, surface 

hydrology alteration, over-application of inputs, and biodiversity loss. 

Groundwater overdraft – two-thirds of which is used for irrigation (Olson & 

Naugle, 1997) – has become a serious problem provoking attention from 

environmental groups as well as state regulation (Hickey, 1992). Groundwater 

contamination is another concern. A six-year study by Spalding and colleagues 

(2003) detected fourteen pesticides and transformation products from 

agrochemicals in a Nebraska aquifer. Verstraeten, Carr, and Steele (1999) found 

that municipal water wells and the Platte River are connected to aquifers 

contaminated with herbicides. Brye, Norman, Bundy, and Gower (2000) 
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demonstrated that agricultural land use, management, and tillage have altered 

regional hydrology, and reinforced mechanized agriculture’s potential for 

chemical leaching. Kessavalou and others (1996) tested Nebraska’s best 

management practices for center-pivot irrigation and fertilizer application, and 

found that large amounts of nitrate were still being leached. In southeast 

Nebraska, of 268 test sites of streams and groundwater, 37% were found to 

exceed the maximum drinking water limit for nitrogen, and many were found to 

surpass the advisory levels for livestock (de Walle & Sevenster, 1998). The 

massive loss of native vegetation in the Midwest is detrimental to maintaining soil 

structure, and has led to the endangering of a number of animal and plant species, 

and species extinctions (Sampson & Knopf, 1994). 

Beyond these local impacts, agriculture in the U.S. Corn Belt has 

significant downstream effects. The most notable of these is the infamous dead 

zone in the Gulf of Mexico caused by the outflow of Mississippi River water 

contaminated by agricultural runoff from the Midwest. Nitrogen fertilizer and 

Atrazine, an herbicide commonly used in U.S. maize fields and a major 

groundwater polluter in the Corn Belt, are thought to be the primary causes of the 

dead zone (Clay, 2004). Both nitrogen and Atrazine are used in Sinaloa maize 

production (Fundación Produce, 2003). In addition, pesticide use is dangerous to 

human health. Aside from the estimated 25 million poisonings per year 

worldwide, multiple epidemiological studies have linked pesticide exposure to 

significantly higher rates of many types of cancers among farmers and farm 

workers (Alavanja, et al., 2004). 
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 The case of Nebraska demonstrates that large-scale commercial maize 

production is not environmentally benign. It suggests that Sinaloa maize 

production could lead to groundwater pollution, surface hydrology alteration, 

biodiversity loss, and harmful eutrophic conditions in water bodies, calling 

attention to the need for further research on the environmental impacts of 

agriculture, and strategies and actions to mitigate negative outcomes in Sinaloa. 

However, the temporal and spatial scales of production play a role in the scale of 

impacts. As in the Sinaloa system, the area planted in maize in Nebraska 

influences all associated management practices, and augments the environmental 

impacts. For example, if all maize growers in Nebraska are using more herbicides 

than necessary, and there are almost four million hectares in cultivation versus 

about 500,000 ha in Sinaloa, the impacts will be much more dramatic in Nebraska 

than in Sinaloa. Growers have been cultivating commercial maize in Nebraska for 

over 150 years, where Sinaloa growers have been cultivating commercial maize 

for about twenty years. So, while Sinaloa is a maize monoculture with high input 

use similar to maize production in the U.S. Corn Belt, the scale of maize 

production in Sinaloa is small compared to the Corn Belt, and impacts are likely 

to be on a smaller scale, too.  

This does not mean that risks to people’s health and the environment’s 

health do not exist, or that conditions are static; impacts can accumulate and get 

worse over time. Sinaloa growers use far more nitrogen fertilizer than necessary, 

putting groundwater resources at risk, and loading nutrients in aquatic 

ecosystems. Over-tilling and not planting cover crops may increase erosion, 



118 

reduce soil quality and lead to even more nutrient loading in aquatic ecosystems. 

On a more positive note, herbicide and insecticide use, a major problem in many 

conventional cropping systems, is quite low in Sinaloa. Pests and disease are not 

currently a serious concern. However, maize is not the only crop cultivated in 

Sinaloa. Vegetable production is an important part of the agricultural economy. 

For many of the vegetables produced in Sinaloa, such as tomatoes, bell peppers, 

and chiles, growers use significantly more inputs, especially pesticides, than are 

used in maize. In addition, much of Sinaloa’s vegetable produce is exported, 

meaning that its resources are being consumed and contaminated by agriculture 

not to increase Mexican food security, but to stock American grocery stores. The 

social and environmental risks and impacts of agricultural production should be 

taken into consideration and weighed against the economic benefits of food 

exports.  

 

Recommendations 

To improve the sustainability of maize production in Sinaloa and 

knowledge of the system, there are things different groups of actors such as maize 

growers, government agencies, and researchers can do. The following 

recommendations are derived from my interviews with local experts, the results of 

my analysis, and from my own observations. 
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Maize Growers. 

• Use irrigation water judiciously to conserve and make more water 

available for spring crops. An experiment on maize production in Sinaloa 

shows that, using furrow irrigation, normal yields were achieved with a 

net irrigation depth of 44 cm/ha under conditions of normal water 

availability. However, a crop’s water requirements are variable, depending 

on season, climate, management, soil conditions, and seed variety, and 

therefore must be adjusted to local conditions. The most critical stages for 

irrigating maize are during the flowering and silking periods (Ojeda-

Bustamante, et al., 2006). In an experiment with maize in Sinaloa, Díaz 

Valdés and colleagues (2008) found drip irrigation to be more sustainable 

than furrow irrigation in terms of water and soil use. However, drip 

irrigation requires an initial capital investment, with implications for 

economic sustainability. 

• Use less fertilizer, especially nitrogen (N). Fertilizer type, timing, 

placement, and rate are all important considerations for reducing fertilizer 

use without losing profitability. N fertilizer type and placement depend on 

the context and soil type. In terms of timing, “nitrogen uptake is generally 

low at the beginning of the growing season, increasing rapidly during 

vegetative growth, and dropping sharply as the crop nears maturity” 

(Millar, et al., 2010, p. 189). Early N application, then, is often not 

absorbed by the crop, but by the atmosphere and downstream water 

bodies. In addition, as higher levels of N fertilizer are used, more N ends 
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up in the atmosphere and water bodies, rather than the crop it was intended 

for (Millar, et al., 2010). In Sinaloa, Díaz Valdés (2006) found that 200 kg 

N/ha of maize, in conjunction with a drip irrigation system, resulted in 

more residual soil nitrogen at the end of the experiment, and was more 

cost effective than applications of 300 and 400 kg/ha of N with a 

traditional furrow irrigation system. Sinaloa experts suggest that 180 kg/ha 

of N is sufficient to achieve a good yield in Sinaloa. However, growers 

should calculate for their land what the appropriate N rate is for the best 

returns, also known as the “maximum return to nitrogen” (MRTN) 

approach, rather than using the yield based N rate that is now typical in 

large scale row crop systems (Millar, et al., 2010). 

• Test soil annually. This is inexpensive, and will inform what the parcel is 

capable of yielding, as well as inform what soil amendments and fertilizers 

are most suitable for the context of the parcel. 

• Increase soil organic matter (SOM) to improve soil quality. There are 

multiple approaches for this, including reduced tillage, adding green 

compost and/or animal manure, rotating crops, and planting cover crops, 

among others (Magdoff & Weil, 2004; Uri, 1999). Growers should bear in 

mind that increasing SOM could be a slow process that may take years.  

• Rotate crops to increase crop diversity, improve soil health, increase 

yields, and reduce pest infestation, which often occurs when the same crop 

is cultivated annually in the same place (Magdoff & Weil, 2004; Rosset & 

Altieri, 1997; Soule & Piper, 1992). This will also reduce the land area in 



121 

maize, reduce pests, and reduce problems associated with overproduction 

(e.g. price depression). Rotating legumes will increase the soil nitrogen 

content, reducing the need for fertilizers (Pretty, 2008). Crop 

diversification is being encouraged by the state government (Gobierno del 

Estado de Sinaloa, 2010) and SAGARPA officials (López, 2010). 

• Reduce tillage. This will save money in terms of fossil fuel and labor, 

improve soil structure, and reduce erosion (Uri, 1999). Aside from 

reducing cultivations, there are multiple methods for reducing tillage, 

including minimum tillage, chisel plowing, plow-planting, ridge tillage, 

and no-tillage (Lal, et al., 1990). 

• Plant a cover crop during the spring season to reduce erosion and maintain 

soil quality (Magdoff & Weil, 2004). Legumes are a good option because 

they increase soil nitrogen (Pretty, 2008). 

• Track budgets for all resource inputs, not just in terms of financial cost, 

but actual input use as well (e.g. kg/ha fertilizer, cm/ha irrigation, kg/ha 

pesticides, L/ha diesel, etc.). Calculate the potential savings from reducing 

cultivations, nitrogen use, diesel, and other inputs. 

• Explore alternative farming practices that would be appropriate for the 

growers’ land, and could be adopted in the short and long term. 

 

Government. 

• Support and create incentives for sustainable farm management. 
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• Increase public education of Sinaloa’s environment and environmental 

stewardship. 

CONAGUA. 

• Monitor nitrogen, phosphorus, and pesticide levels, as well as eroded soil 

in irrigation drains. 

• Maintain and update irrigation infrastructure to avoid water losses from 

leakages and evaporation. 

• Test groundwater for agrochemical contamination. Pay special attention to 

towns that draw groundwater for human consumption. 

 

Irrigation Districts and Modules. 

• Monitor the amount of water that is applied to agricultural fields to 

increase water use efficiency and ensure that each grower receives his or 

her allocation.  

 

Researchers. 

• Monitor the crops that are the most input intensive and environmentally 

impactful. Identify ways to reduce input use in these crops. 

• Test groundwater for agrochemical contamination. Pay special attention to 

towns that draw groundwater for human consumption. 

• In the towns in which groundwater is drawn for human consumption, 

study medical records for patterns of illnesses associated with 

agrochemical poisoning. 
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• Research Sinaloa’s wetlands. Knowledge of the wetlands is currently very 

limited, and the impacts of agriculture on the wetlands are unknown. 

Wetlands are proven to be effective filters of agricultural wastewater 

(Benyamine, Bäckström, & Sandén, 2004). Their maintenance in Sinaloa 

may thus be critical to sustainability in Sinaloa. 

• Monitor local fauna populations as indicators of overall ecosystem health. 

Local experts believe that crustaceans, birds, and microbes are likely the 

species most impacted by anthropogenic activities. 

• Do a follow up study to the work of Angus Wright (2005). Are working 

conditions safe today? Are laborers healthy? Do they earn a just wage? Is 

pesticide use in accordance with regulations? 

• Research and/or assess the sustainability of vegetable production and 

aquaculture, including shrimp farming, in Sinaloa. Weigh the benefits of 

these activities against negative outcomes. For example, are these products 

exported internationally, and therefore are Sinaloa’s resources being 

exported? How much revenue do they procure? How many people do they 

gainfully employ? Are the working conditions safe? What are the 

environmental impacts of these activities? 

• Do research that responds to the needs of farmers. 

 

Conclusion 

The study uses the MCDA method for incorporating stakeholder values 

into sustainability assessment. It emphasizes the decision process of assessment as 
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part of the results, and illustrates the relationship of each indicator to 

sustainability with value functions that convert the current state of each indicator 

in a natural scale to a common scale to facilitate their comparison. Agricultural 

sustainability is framed not as a theoretical end goal, but as a perpetual journey in 

which stakeholders navigate current environmental, economic, social, and 

political conditions for the continual betterment of the system. The approach to 

sustainability is practical, emphasizing achievable goals and effective, realistic 

interventions in an established system. The analysis highlights sustainability from 

three perspectives: stakeholder values (MCDA), current state analysis (MCDA), 

and system influence (network analysis). An advantage of the study is that it 

synthesizes existing knowledge about the system, calling attention to the current 

state of knowledge, and what data need to be collected.  

The results of the agro-environmental sustainability assessment of 

commercial maize production in Sinaloa show that maize production has 

significant implications for overall sustainability. Stakeholders are most 

concerned with soil and water resources, and least concerned with natural 

ecosystems and maize yields. The current state of the system is far from an 

environmentally sustainable state. While it currently meets the agro-

environmental sustainability criteria of the provisioning of basic human food 

needs, the system is far from meeting the criteria of enhancing environmental 

quality and the natural resource base. The most effectual interventions for 

improving environmental sustainability in Sinaloa are reducing irrigation and 

nitrogen fertilizer use, and increasing soil quality. Once the sustainability goals 
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identified in this assessment are achieved, new goals should be identified to keep 

Sinaloa on a trajectory toward increasing sustainability. Considering the legacy of 

environmental damage associated with maize production in the American 

Midwest, Sinaloa stakeholders should consider what they want the future of their 

environment, economy, and society to be, and how or if maize production can be 

part of building that future.  
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Proyecto:  La integración del mercado y factores climáticos como motores de 
cambio en el sistema maicero mexicano 

 

5 Julio 2010 

Estimado Participante, 

Esta carta tiene como propósito solicitarle nos conceda usted una entrevista para 
aprovechar su conocimiento y recabar información sobre el sector maicero de 
México. 

Estamos desarrollando un proyecto que estudia  los cambios que han sucedido en 
la producción de maíz de México en los últimos diez años.  Con base en nuestros 
estudios, hemos observado  que a nivel nacional se han dado cambios importantes 
en las regiones donde se produce maíz, lo que ha dado como resultando una nueva 
geografía del maíz. Nos interesa profundizar en los factores que han influido en 
estos cambios a través una comparación de tres estudios de caso . Estos estudios 
se harán en Chiapas, Estado de México y Sinaloa. Nos interesa tanto comprender 
las diferencias regionales en los patrones de producción, como  entender las 
implicaciones de tales cambios en la seguridad alimentaria y el uso de suelo a 
nivel regional. 

Quisiéramos iniciar el proyecto entrevistando a funcionarios, técnicos, 
investigadores, científicos, líderes de asociaciones agrícolas, comerciantes y 
expertos del sector maicero, como usted, para comprender las distintas 
perspectivas sobre los cambios que se han observado en el sector maicero.   

Con su participación en la entrevista, esperamos adquirir un mejor entendimiento 
de los efectos del auge del cultivo de maíz en Sinaloa. Aunque el estudio no 
pretende ofrecerle un beneficio directo, agradecemos muchísimo su participación.   

El proyecto tiene financiamiento de la Fundación Nacional de Ciencias de los 
Estados Unidos.  Participan investigadores de la Universidad de California en 
Santa Barbara (UCSB), la Universidad Estatal de Arizona (ASU), el Colegio de 
México (COLMEX) en México, D.F., y El Colegio de la Frontera Sur (ECOSUR) 
en San Cristóbal, Chiapas. 

Cabe señalar que este estudio tiene fines estrictamente académicos, por lo cual las 
entrevistas son de carácter confidencial. No compartiremos o publicaremos el 
contenido de las mismas, ni los nombres de los entrevistados.  Sin embargo, nos 
interesa estudiar las opiniones y conocimiento de los entrevistados en relación con 
su profesión y cargo, por lo que usaremos títulos descriptivos a la hora de reportar 
nuestros resultados (por ejemplo, “un comerciante de grano de maíz de 
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Hermosillo reportó que…”).  Aunque no esperamos que el contenido de la 
entrevista tenga información confidencial, consideramos  importante informarle la 
forma en que se utilizará la información que nos proporcione.   

La entrevista que quisiéramos hacer no nos tomará más de una hora de su valioso 
tiempo. Estaremos en Sinaloa entre las fechas del 30 de junio hasta el 9 de julio 
para juntarnos a su conveniencia.  Si está usted de acuerdo, nos gustaría grabar la 
entrevista para facilitar la recuperación precisa de la información, pero si esto le 
parece inadecuado nos bastará con tomar notas.  Si grabamos su entrevista 
podemos proporcionarle una copia en formato digital si así lo deseara. 

Para cualquier aclaración, puede comunicarse directamente conmigo a los 
teléfonos que aparecen abajo.  Además, puede comunicarse a la Chair of the 
Human Subjects Institutional Review Board (Responsable Institucional del Grupo 
de Revisión de Sujetos Humanos), a través de la Oficina de Integridad y 
Seguridad de la Investigación de la Universidad Estatal de Arizona, en el teléfono 
001 480-9656788 para cualquier aclaración sobre los derechos de los 
entrevistados y las implicaciones de participar en esta investigación.  
Agradecemos de antemano su disponibilidad para el éxito de nuestro estudio.  

 

Atentamente, 

Hallie Eakin 
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WATER 

Runoff, Leaching 
1. Chemical loss rates (runoff) (Sands & Podmore, 1993) 
2. Increasing/high rates of nitrate leaching beyond root zone (Stockle et al., 

1994) 
3. Increasing/high rates of pesticide leaching beyond root zone (Stockle et 

al., 1994) 
4. Nitrate leaching (Hansen et al., 2001) 
5. Phosphorous leaching (Hansen et al., 2001) 
6. Sediment loss rates (runoff) (Sands & Podmore, 1993) 
7. Water flow buffering function (flooding & runoff) (Van Cauwenbergh et 

al., 2007) 
Nitrogen 

1. Increasing/high rates of nitrate leaching beyond root zone (Stockle et al., 
1994) 

2. Increasing/high rates of nitrates and toxic organics in drinking waters 
(Stockle et al., 1994) 

3. Increasing/high rates of nitrates of chemical loading into surface streams 
(Stockle et al., 1994) 

4. Nitrate in surface waters (Flores Martinez et al., 2005) 
5. Nitrate leaching (Hansen et al., 2001) 
6. Nitrate levels ((Doran & Zeiss, 2000) 
7. NO3 leaching (Kim et al., 2009) 

Water Quality 
1. Acidification of lakes and rivers (Vaughan, 2004) 
2. Degradation of coastal waters (Vaughan, 2004) 
3. Groundwater pollution (Vaughan, 2004) 
4. Supply (flow) of quality water function (adequate quality) (Van 

Cauwenbergh et al., 2007) 
5. Water quality risk (OECD, 2001) 
6. Water quality state (OECD, 2001) 

Water Use 
1. Depletion of groundwater from increased crop irrigation (Vaughan, 2003) 
2. Water consumption (ecological water scarcity index) (Walter & Stützel, 

2009) 
3. Water reuse (Flores Martinez et al., 2005) 
4. Water use efficiency (OECD, 2001) 
5. Water use intensity (OECD, 2001) 

Irrigation Infrastructure 
1. Canal maintenance (de Ita Rubio, 2003) 
2. Efficient management in irrigation districts (Flores Martinez et al., 2005) 
3. Irrigation technology (OECD, 2001) 
4. Storage capacity of principal dams (Flores Martinez et al., 2005) 
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Groundwater Extraction 
1. Depletion of groundwater from increased crop irrigation (Vaughan, 2003) 
2. Freshwater consumption (Vaughan, 2004) 
3. Groundwater extraction (Flores Martinez et al., 2005) 
4. Total extraction for consumption (Flores Martinez et al., 2005) 

Phosphorus 
1. Groundwater pollution (Vaughan, 2004) 
2. Phosphorous leaching (Hansen et al., 2001) 
3. Total phosphorus in surface waters (Flores Martinez et al., 2005) 

Biochemical Oxygen 
1. Biochemical demand of oxygen (DBO5) (SEMARNAT, n.d.) 
2. Biochemical oxygen in surface waters (Flores Martinez et al., 2005) 
3. Chemical demand of oxygen (DQO) (SEMARNAT, n.d.) 

Water Availability 
1. Supply (flow) of water function (adequate amount) (Van Cauwenbergh et 

al. 2007) 
2. Water scarcity (de Ita Rubio, 2003) 
3. Water stress (OECD, 2001) 

Eutrophication 
1. Algal blooms (Vaughan, 2004) 
2. Eutrophication (Kim et al., 2009) 
3. Increasing eutrophication of water bodies (Stockle et al., 1994) 

Salinization 
1. Salinization of groundwater (Flores Martinez et al., 2005) 

Other 
1. Guidelines of river basin and technical committees on groundwater (Flores 

Martinez et al., 2005) 
2. Increasing BOD in surface streams (Stockle et al., 1994) 
3. Increasing coliform counts in surface streams (Stockle et al., 1994) 
4. Increasing lake or pond sedimentation (Stockle et al., 1994) 
5. Median annual precipitation (de Ita Rubio, 2003) 
6. Total suspended solids (SEMARNAT, n.d.) 

 
SOIL 
Erosion 

1. Eolic erosion (de Ita Rubio, 2003) 
2. Erosion (Carter, 202; Perez-Grovas, 2000; Flores Martinez et al., 2005) 
3. Erosion levels (Lopez-Ridaura et al., 2002) 
4. Erosion rates (Sands & Podmore, 1993) 
5. Hydraulic erosion (de Ita Rubio, 2003) 
6. Increasing or steadily high erosion rates (Stockle et al., 1994) 
7. Risk of erosion by water (OECD, 2001) 
8. Risk of erosion by wind (OECD, 2001) 
9. Soil erosion control (Taylor et al., 1993) 
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10. Soil flow buffering function (mudflows, landslides buffered) (Van 
Cauwenbergh et al., 2007) 

11. Soil loss (input/output ratio (mass balance) (Walter & Stützel, 2009) 
12. Soil loss (Perales Rivas et al., 2000) 

Soil Organic Matter (SOM) 
1. Biophysical characteristics of soils (compaction, % organic matter) 

(Lopez-Ridaura et al., 2002) 
2. Change in organic matter (Sands & Podmore, 1993) 
3. Decreasing organic matter content (Stockle et al., 1994) 
4. Depletion of SOM (input/output ratio (mass balance) (Walter & Stützel, 

2009) 
5. Organic material content (Hansen et al., 2001; Paetz & Wilke, 2005; 

Perales Rivas et al., 2000; Pimentel et al., 1995) 
6. Organic matter content/texture (Doran & Zeiss, 2000) 
7. Organic matter incorporated in soil (López-Ridaura et al., 2005) 
8. SOM - (subattributes: macro-organic matter C & N (particulate C & N), 

Light fraction C & N, microbial biomass C & N, mineralizable C & N) 
(Carter, 2002) 

Carbon 
9. Carbonate concentration (Carter, 2002) 
10. Organic Carbon (Gomez et al., 1996) 

Nutrients 
1. Mineral deficiency/sufficiency (plant tissue nutrient levels) (Krishna, 

2002) 
2. Nutrient availability (Carter, 2002) 
3. Nutrient balance (Lopez-Ridaura et al., 2002; Perez-Grovas, 2000) 
4. Nutrient depletion (input/output ratio (mass balance) (Walter & Stützel, 

2009)  
5. Nutrients (Pimentel et al., 1995) 
6. Plant nutrient status (Doran & Zeiss, 2000) 
7. Soil nutrient balances (kg/ha) (López-Ridaura et al., 2005) 
8. Trace element concentrations (Paetz & Wilke, 2005) 

Nitrogen 
9. Nitrate levels (Doran & Zeiss, 2000) 
10. Soil surface nitrogen balance (OECD, 2001) 

Soil Physical Attributes 
1. Biophysical characteristics of soils (compaction, % organic matter) 

(Lopez-Ridaura et al., 2002) 
2. Change in bulk density (Sands & Podmore, 1993) 
3. Compaction (Carter, 2002; Perales Rivas et al., 2000) 
4. Damage to soil structure (soil pressure/resistance ratio) (Walter & Stützel, 

2009)  
5. Leachable salts (esp. NO3) (soil electrical conductivity at time of 

fertilization and after harvest (Doran & Zeiss, 2000) 
6. Physical properties and variations (Paetz & Wilke, 2005) 
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7. Soil compaction/physical condition (Doran & Zeiss, 2000) 
8. Soil structure (Carter, 2002) 
9. Soil texture (Kim, 2t al., 2009; Pimentel et al., 1995) 
10. Structure (Hansen et al., 2001) 
11. Structure development (Pimentel et al., 1995) 

Soil and Moisture 
1. Change in water holding capacity (Sands & Podmore, 1993 (Bindraban, 

Stoorvogel, Jansen, Vlaming, & Groot, 2000)  
2. Decreasing infiltration (Stockle et al., 1994) 
3. Decreasing water holding capacity (Stockle et al., 1994) 
4. Infiltration rates (Pimentel et al., 1995) 
5. Ponding (Doran & Zeiss, 2000) 
6. Soil humidity (Perales Rivas et al., 2000) 
7. Soil water storage (Doran & Zeiss, 2000) 
8. Water retention (Carter, 2002) 
9. Water-holding capacity (Pimentel et al., 1995) 

Soil Fertility 
1. Fertility (de Ita Rubio, 2003) 
2. Maintenance of soil fertility (Rigby et al., 2001) 
3. Soil fertility (Perales Rivas et al., 2000) 
4. Soil fertility maintenance (Taylor et al., 1993) 
5. Soil fertility management (Rasul & Thapa, 2003) 
6. Soil fertility status (chemical analysis of soil samples from farms) (Rasul 

& Thapa, 2003) 
7. Net soil nutrient supply (Bindraban, et al., 2000) 

Contamination 
1. Degradative potential of leached pollutants (persistence, mobility) (Sands 

& Podmore, 1993) 
2. Depth of leached pollutants (Sands & Podmore, 1993) 
3. Ecotoxicological questions (verification of effects of chemicals added to 

soil on life-forms) (Paetz & Wilke, 2005) 
4. Heavy metals (de Vries et al., 2002) 
5. Nature, concentrations, and distribution of contaminants (Paetz & Wilke, 

2005) 
6. Soil contamination (input/output ratio (mass balance) (Walter & Stützel, 

2009)  
Soil Salinity 

1. Increasing salinization of soils (Stockle et al., 1994) 
2. Salinity (Carter, 2002; Vaughan, 2004) 
3. Salinization of soil (Flores Martinez et al., 2005) 
4. Sodicity (Carter, 2002) 
5. Desertification (de Ita Rubio, 2003) 

Soil Depth 
1. Soil depth (Gomez et al. 1996; Pimentel et al., 1995) 
2. Soil thickness (Sands & Podmore, 1993) 
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3. Topsoil depth (Doran & Zeiss, 2000) 
Soil Acidification 

1. Acidification (Carter, 2002) 
2. Acidification/alkalinisation (input/output ratio (mass balance) (Walter & 

Stützel, 2009)  
3. Increasing alkalization (Stockle et al., 1994) 
4. Soil acidification/leaching losses (Doran & Zeiss, 2000) 

Soil biota 
1. Biology (Hansen et al., 2001) 
2. Presence and distribution of biological species of interest (Paetz & Wilke, 

2005) 
3. Soil biota (Pimentel et al., 1995) 

Protective Cover 
1. Soil cover (OECD, 2001) 
2. Soil protective cover % (Doran & Zeiss, 2000) 

Runoff 
1. Runoff (Doran & Zeiss, 2000) 
2. Surface runoff (Perales Rivas et al., 2000) 

Soil Use 
1. Change in use of soil (Flores Martinez et al., 2005) 
2. Land/soil use (Paetz & Wilke, 2005) 

Tillage 
1. Tillage systems (Carter, 2002) 
2. Tillage practices (Kim, et al., 2009) 

pH 
1. Soil pH (Carter, 2002; Paetz & Wilke, 2005) 

Other 
2. Aggregate stability (Carter, 2002) 
3. Decreasing cation exchange capacity (Stockle et al., 1994) 
4. Decreasing earthworm activity (Stockle et al., 1994) 
5. Nature, concentrations, and distribution of naturally occurring substances 

(Paetz & Wilke, 2005) 
6. Supply (stock) of quality soil function (Van Cauwenbergh et al., 2007) 
7. Supply (stock) of soil function (loss minimized) (Van Cauwenbergh et al., 

2007) 
8. Surface area affected by soil degradation (Flores Martinez et al., 2005) 
9. Water stable aggregates (Carter, 2002) 

 
INPUTS 
Fertilizers 

1. Amount of fertilizer applied per unit of land (Rasul & Thapa, 2003) 
2. Consumption rates of minerals (P2O5, K2O, CaO) (Walter & Stützel, 2009) 
3. Eutrophying substances - marine (aquatic eutrophication potential) 

(Walter & Stützel, 2009) 
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4. Eutrophying substances - terrestrial (terrestrial eutrophication potential) 
(Walter & Stützel, 2009) 

5. Fertilizer application (Vaughan, 2004) 
6. Fertilizer per capita (Vilas-Ghiso & Liverman, 2007) 
7. Fertilizer consumption (Vilas-Ghiso & Liverman, 2007) 
8. Proportion of area covered by each type of fertilizer (Rasul & Thapa, 

2003) 
9. Proportion of farmers using inorganic & organic fertilizers (Rasul & 

Thapa, 2003) 
Nitrogen 

10. N fertilizer (kg N ha) (Kim et al., 2009) 
11. Nitrogen efficiency (OECD, 2001) 
12. Rise of over-application of nitrogen (Vaughan, 2003) 

Phosphorus 
13. Phosphorus fertilizer kg P2O5 ha) (Kim et al., 2009) 
14. Rise of over-application of phosphorus (Vaughan, 2003) 

Potassium  
15. K fertilizer (kg K2O ha) (Kim et al., 2009) 

Energy 
16. Electricity (MJ ha) (Kim et al., 2009) 
17. Energy source (on farm, local, distant) (Sands & Podmore, 1993) 
18. Energy type ratio (fossil/human/organic) (Sands & Podmore, 1993) 
19. Energy: non-human in/useable out (Sands & Podmore, 1993) 
20. LPG (MJ ha) (Kim et al., 2009) 
21. Natural gas (MJ ha) (Kim et al., 2009) 
22. Organic energy in/useable out (Sands & Podmore, 1993) 

Pesticides 
1. Amount pesticides used (Doran & Zeiss, 2000) 
2. Insecticides (kg a.i. ha) (Kim et al., 2009) 
3. Pesticide risk (OECD, 2001) 
4. Pesticide use (OECD, 2001) 
5. Pesticides (normalized treatment index) (Walter & Stützel, 2009) 
6. Toxicity of pesticides used (Doran & Zeiss, 2000) 

Chemicals 
1. Agronomic inputs (Kim et al., 2009) 
2. Chemical inputs (de Ita Rubio, 2003) 
3. Chemical soil parameters/effects of direct inputs to soil (Paetz & Wilke, 

2005) 
4. Rise of over-application of agrochemical inputs (Vaughan, 2003) 

Herbicides 
1. Herbicide application (Carter, 2002) 
2. Herbicides (kg a.i. ha) (Kim et al., 2009) 

Other 
1. Equipment (de Ita Rubio, 2003) 
2. External inputs/total inputs (López-Ridaura et al., 2005) 
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3. Lime (kg a.i. ha) (Kim et al., 2009) 
4. Machinery (de Ita Rubio, 2003) 
5. Organic matter inputs (Carter, 2002) 
6. Seed source (Rigby et al., 2001) 

 
FOSSIL FUEL 

1. Consumption of combustible fossil fuels (Flores Martinez et al., 2005) 
2. Diesel (MJ ha) (Kim et al., 2009) 
3. Fossil energy in/useable out (Sands & Podmore, 1993) 
4. Fossil fuel consumption (rates) (Walter & Stützel, 2009) 
5. Gasoline (MJ ha) (Kim et al., 2009) 
6. Total fossil energy use (Kim et al., 2009) 

 
ECOSYSTEM 
Biodiversity 

1. Biodiversity (SEMARNAT, n.d.) 
2. Biological diversity (Vaughan, 2004) 
3. Decreasing wildlife populations (Stockle et al., 1994) 
4. Earnings from other species (Perez-Grovas, 2000) 
5. Genetic diversity (OECD, 2001) 
6. Number of species (Perales Rivas et al., 2000) 
7. Species diversity (wild life; non-native species) (OECD, 2001) 
8. Supply (stock) of biotic resources function (maintain biodiversity, 

spontaneous biodiversity, flow of biotic resources buffered) (Van 
Cauwenbergh et al., 2007) 

Crop(s) 
1. Crop management (Rigby et al., 2001) 
2. Crop rotation (Carter, 2002; Hansen et al., 2001) 
3. Nitrogen fixed by leguminous species (kg) (López-Ridaura et al., 2005) 
4. Number of managed species (Perez-Grovas, 2000) 
5. Number of species grown (Lopez-Ridaura et al., 2002) 
6. Permanent ground cover (Gomez et al., 1996) 

Habitat 
1. Decreasing adequacy of wildlife habitat (Stockle et al., 1994) 
2. Habitat matrix (OECD, 2001) 
3. Intensify farmed agricultural habitats (OECD, 2001) 
4. Semi-cultivated areas (Hansen et al., 2001) 
5. Semi-natural habitats (OECD, 2001) 
6. Uncultivated natural habitats (OECD, 2001) 

Aquatic habitats 
7. Acidification of lakes and rivers (Vaughan, 2004) 
8. Algal blooms (Vaughan, 2004) 
9. Degradation of coastal waters (Vaughan, 2004) 
10. Increasing lake or pond sedimentation (Stockle et al., 1994) 



161 

Forests 
1. Deforestation (Vaughan, 2004) 
2. Forest resources (SEMARNAT, n.d.) 
3. Rates of deforestation (Vaughan, 2003) 

Other 
1. Environmental risk (SEMARNAT, n.d.) 
2. Small biotopes (Hansen et al., 2001) 

 
ATMOSPHERE 
Greenhouse gasses  

1. Average annual concentrations of Ozone (Flores Martinez et al., 2005) 
2. CH4 (Hansen et al., 2001) 
3. CO2 (Hansen et al., 2001) 
4. Gross agricultural GHG emissions (OECD, 2001) 
5. N2O emissions from soil (Kim et al., 2009) 
6. NOx emissions for soil (Kim et al., 2009) 
7. Number of days ozone exceeded norm (Flores Martinez et al., 2005) 
8. Ozone (INE, 2009; Vaughan, 2004) 
9. Soil organic carbon accumulation or depletion (Kim et al., 2009) 

Particulate Matter 
1. Average annual concentrations of particulate matter less than 10microns 

(Flores Martinez et al., 2005) 
2. Dust (Fraser, personal communication April 20, 2010) 
3. Increasing fine particulates (<10; PM 10 dust index) (Stockle et al., 1994) 
4. Number of days particulate matter less than 10 microns exceeded norm 

(Flores Martinez et al., 2005) 
5. Suspended particles with diameter less than 10 microns (INE, 2009) 
6. Suspended particles with diameter less than 2.5 microns (INE, 2009) 

Nitrogen 
1. Ammonia (NH3) (Hansen et al., 2001) 
2. Average annual concentrations (Flores Martinez et al., 2005) 
3. Nitrogen dioxide (NO2) (INE, 2009) 
4. Nitrous oxide (N2O) (Hansen et al., 2001) 
5. Number of days NO2 concentrations exceeded norm (Flores Martinez et 

al., 2005) 
Ozone (O3) 

1. Average annual concentrations of Ozone (Flores Martinez et al., 2005) 
2. Number of days ozone exceeded norm (Flores Martinez et al., 2005) 
3. Ozone (INE, 2009; Vaughan, 2004) 

Sulfur dioxide (S02) 
1. Average annual concentrations of SO2 (Flores Martinez et al., 2005) 
2. Number of days SO2 concentrations exceeded norm (Flores Martinez et 

al., 2005) 
3. Sulfur dioxide (SO2) (INE, 2009) 
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Carbon Monoxide (CO) 
1. Average annual concentrations of CO (Flores Martinez et al., 2005) 
2. CO (INE, 2009) 
3. Number of days CO concentrations exceeded norm (Flores Martinez et al., 

2005) 
Other 

1. Air acidification (Kim et al., 2009) 
2. Airflow buffering function (Van Cauwenbergh et al., 2007) 
3. Field burning (Fraser, personal communication April 20, 2010) 
4. Increasing odor intensity (Stockle et al., 1994) 
5. Increasing/steadily high soil erosion rates by wind (Stockle et al., 1994) 
6. Pesticides (Fraser, personal communication April 20, 2010) 
7. Supply (flow) of quality air function (Van Cauwenbergh et al., 2007) 

 
LAND 
Land Management 

1. Cropping pattern (cropping intensity, crop diversification, mixed 
cropping) (Rasul & Thapa, 2003) 

2. Environmental features and land use patterns (OECD, 2001) 
3. Land occupancy (naturalness, degradation potential) (Walter & Stützel, 

2009) 
4. Land use pattern (proportion of land under field crops, homestead, 

orchard) (Rasul & Thapa, 2003) 
5. Landscape management (OECD, 2001) 

Land Use 
1. Agricultural land use (OECD, 2001) 
2. Change in land use (Vaughan, 2003) 
3. Land use (Vilas-Ghiso & Liverman, 2007) 

Surface Area 
1. Change in agricultural land (OECD, 2001) 
2. Stock of agricultural land (OECD, 2001) 
3. Surface area in agriculture (Flores Martinez et al., 2005) 

Other 
1. Contaminated sites (SEMARNAT, n.d.) 
2. Landscape costs and benefits (OECD, 2001) 
3. Surface area affected by edafic degradation (Flores Martinez et al., 2005) 

 
CROP YIELDS 
Yield Trends 

1. Decreasing yields (Stockle et al., 1994) 
2. Variability of production (Perales Rivas et al., 2000) 
3. Yield trends (Lopez-Ridaura et al., 2002) 

Yield 
1. Yield (kg/ha) (López-Ridaura et al., 2005) 
2. Crop yields (Perales Rivas et al., 2000) 



163 

3. Yield gap (actual yield to potential yield) Bindraban, et al., 
2000)(Bindraban, et al., 2000) 

4. Dry yield (Kim et al., 2009) 
Production/Consumption 

1. Maize production/consumption (López-Ridaura et al., 2005) 
2. Yield gap (kg/ha) (López-Ridaura et al., 2005) 

Other 
1. Frequency of crop failure (Gomez et al., 1996) 
2. Minimum yield in driest years (kg/ha) (López-Ridaura et al., 2005) 
3. Number of grains produced per plant (Perez-Grovas, 2000) 
4. Quality of product (Perez-Grovas, 2000) 
5. Relationship between yield and SOM (Carter, 2002) 
6. Weight of grains of one plant (Perez-Grovas, 2000) 
7. Yield standard deviation (kg/ha) (López-Ridaura et al., 2005) 
8. Yield variation with rainfall variation (kg/mm) (López-Ridaura et al., 

2005) 
9. Yield variation with temperature variation (kg/C) (López-Ridaura et al., 

2005) 
 
PESTS AND DISEASE 
Management 

1. Disease control (Taylor et al., 1993) 
2. Insect control (Taylor et al., 1993) 
3. Pest & disease management (proportion of farmers using biological, 

mechanical, & chemical methods) (Rasul & Thapa, 2003) 
4. Pest/disease control (Rigby et al., 2001) 
5. Weed control (Taylor et al., 1993) 

Incidence 
1. Incidence of pest, disease, weeds (Lopez-Ridaura et al., 2002) 
2. Pest incidence (Perez-Grovas, 2000)  
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APPENDIX D 

STAKEHOLDER QUESTIONNAIRE 
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Proyecto de maíz en México: caso de Sinaloa 
Asuntos ambientales 

 
1) Considerando la sustentabilidad del cultivo de maíz en Sinaloa en relación al 
medio ambiente, por favor alinee los siguientes asuntos ambientales según su 
importancia, con el #1 como el más importante y el #12 como el menos 
importante. Si se le ocurre un buen indicador para el asunto, por favor escríbalo 
en la ultima columna. 
 

Asuntos Ambientales Orden Indicador? 
Erosión    
Calidad del suelo  
(ej: materia orgánica, salinidad, etc.) 

  

Calidad del agua  
(ej: polución,  escorrentía agrícola, etc.) 

  

Incidencia de plagas, maleza, y enfermedades   
Rendimiento/perdida de maíz  
(ej: T/ha, superficie siniestrada, etc.) 

  

Presencia de vegetación nativa   
Condición de fuentes de agua natural  
(ríos, lagos, mar, etc. Ej: Condición biológica, etc.) 

  

Uso de fertilizante de nitrógeno 
(ej: eficiencia de aplicación, volumen aplicada, 
etc.) 

  

Uso de agua de riego 
(ej: abastamiento de agua, eficiencia, etc.) 

  

Uso de combustibles fósiles 
(ej: total consumo de energía fósil por año 
agrícola, etc.) 

  

Uso de plaguicidas 
(ej: toxicidad de plaguicidas, volumen de 
plaguicidas aplicada por año, etc.) 

  

Uso de terreno 
(ej: diversidad de cultivos, superficie en 
agricultura, cambios al uso de terreno, etc.) 

  

 
2) Hay algo que no está en la lista que deba de ser considerado? Que es, que sería 
un buen indicador, y donde estaría en la alineación de importancia? 
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APPENDIX E 

STAKEHOLDER RECOMMENDATIONS FOR ASSESSMENT 
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These comments were handwritten on the stakeholder questionnaires. This table 
shows my translation of my best guess of what was written in Spanish. In some 
cases more than one stakeholder made the same comment. If this was the case, the 
number of times a comment was made is indicated in parentheses next to the 
comment. Some comments were not legible; these are not included. I coded the 
comments according to whether they are an indicator, ideal state, intervention, 
and/or a comment on the current state. 
 

 
 

Comment 

In
di

ca
to

r 

Id
ea

l s
ta

te
 

In
te
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n 

C
om

m
en

t 

Erosion 
Quantify influence of air and water management x    
Physical chemical content x    
Plant with irrigation, lowers organic material     x 
Topsoil loss (3) x    
Increase organic matter   x  
Add soil organic matter; they are doing this x   x 
Dissolved solids in estuaries x    
Soil analysis x    
Build soil dams   x  

Soil quality 
Measure soil organic matter (2) x    
Identify nutrient availability x    
Sinaloa has good soil quality    x 
Indicators of affectation    x 
Soil with a minimum of high content of 40  x   
Stop using agrochemicals   x  
Direct planting   x  
Soil analysis    x 
Tillage   x  
Measure structure x    
Analyze fertility (2) x    
Soils are saline because of fertilizer use    x 
Salinity x    
Apply compost   x  
.4% now, ideal would be 2% x x  x 

Water quality 
Analysis of fertilizer and pesticide residues x    
Sinaloa is a good region with dams, need improvement    x 
% of irrigation water in drains x    
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Comment 

In
di

ca
to

r 
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l s
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n 

C
om
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Water free of salts and agrochemicals  x   
Analyze carbonates x    
Free of heavy metals and pathogens  x   
Water analysis (3) x    
Nitrogen x    
SO4 in groundwater and ocean x    
NO3 in groundwater and ocean x    
Availability  x    
Salinity x    
Productivity of coastal bays x    
Pollution x    

Pest and disease incidence 
Monoculture  x    
With monoculture this is increasing    x 
Index of increase x    
Seek the best planting technique   x  
Monitor urban economy x    
Stop using agrochemicals, use rock powders   x  
By knowledge and comparison    x 
Identify new pests x    
Availability of control x    
Monitor (2)   x  
Not serious    x 

Yield/crop loss 
Lack of knowledge of the needs of soil, water impacts yield    x 
% Affectation of P & E, productivity x    
Compare the statistics from 30 years ago and analyze  x    
Review cost/benefit x    
Bioorganic with chemical zoton/ha   x  
Organic Mexican hybrid/2 tons/ha    x 
Total tons/ha produced (2) x    
Yield x    
Only when there are rains or cyclones    x 
Calibration of harvesting equipment    x 
Seed genetics x    
Not relevant     x 

Terrestrial ecosystem (presencia de vegetación nativa) 
Alteration of vegetative communities x    
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It’s controllable    x 
Index of diversity x    
Does not represent a problem. Avoid with tilling   x x 
Evaluate     
Informs soil problems    x 
Herbicide application x  x  
It is controllable with consistent practices    x 
Examine the biology of the soil x    
No problem    x 

Aquatic ecosystem 
Climate change influences the patterns of rains and the 
amount of water captured in dams 

   x 

Generally adequate but there are years where quantity is a 
problem 

   x 

Indicators to increase capture x    
Try not to use groundwater   x  
Evaluate the hydrological area x    
Free of heavy metals and microbiological pathogens  x   
Not contaminated  x   
If there is no water, there is no production    x 
Water quality x    
Not a problem    x 

Nitrogen fertilizer 
Residual nitrogen in groundwater, drains, estuaries x    
They apply without studies of prices and they generalize    x 
% Diversification of fertilizer sources x    
Attempt to get fertilizer from natural sources   x  
Analyze soil fertility x    
With green compost, humification, and micro-organisms 
that fix nitrogen from the air 

  x  

Fertilizers x    
Transport and accumulation in groundwater x    
Availability in the market x    
Survey growers    x 
They are technifying everyday    x 
Monitor nitrogen to be more efficient x    
Volume x    
Analyze soil quality each cycle     
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Comment 
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In
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en

tio
n 

C
om
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Irrigation 
Measure the irrigation applied/ha and associate with yield x    
In years with little water growers should plant less maize   x  
Index to measure volume/surface area x    
In Sinaloa’s conditions we should us 300 c/ha and make 
topographical curves  

   x 

With organic material and microbiological flora we require 
less water and genetic resistance 

   x 

Natural condition of the plant  x   
Water use x    
Volume/ha x    
Infrastructure   x  
Flow and use x    
Measure in the field x    
They are technifying    x 
Better use   x  
Efficiency x    

Fossil energy 
Production systems associated with energy use x    
Contamination x    
Lack of efficiency; % efficiency in its agricultural use x    
Organize and use of machinery  x    
Try to avoid for motivations of contamination   x  
Financial cost of investment and costs in the development 
of production unit 

x    

Eliminate machinery and chemical fertilizers   x  
Diesel use in agricultural machinery x    
Minimum tillage x    
Total consumption     

Pesticides 
Associate the maize monoculture with major presence of 
pests, resistance of pests to pesticides 

x    

Some exaggerate the amount without determining the 
specific cases by field 

   x 

% decrease of chemical insecticides vs. biological 
insecticides 

x    

Use pesticides of organic origin to reduce the parts per 
million 

  x  
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Evaluate % of toxins accumulated in produce x    
Biopesticides, beneficial insects, etc. x    
According to the presence of beneficial and harmful insects x    
Measure in drain water x    
Availability of products x    
Survey growers    x 
It’s necessary to lower this    x 
If they are efficient x    
Volume x    

Agricultural land 
Rotate crops associated with soil quality, yield, costs   x  
# hectares in maize as compared to the diversity of other 
crops 

x    

Monoculture x    
Planting a monoculture of maize is the most dangerous 
practice if we want to continue planting in Sinaloa. This 
aspect would be #1 

   x 

Monoculture is #1 problem, other problems derive from 
this 

   x 

It is very important to use crop rotation to avoid soil 
degradation 

    

Analyze the increase in geodiversity of soil and if organic 
material goes up or not, so we can invent another model of 
soil use 

x   x 

Incorporate green compost in rotation with crops, and 
fixing nitrogen from the air and assimilation of phosphorus 

  x  

Agricultural surface area x    
Availability of quality surface area x    
Its necessary to establish rotation based on restructuring 
productivity 

   x 

Adaptability of each crop x    
Surface area x    

Other suggestions 
Financial/economic: 

% hours/labor agricultural management x    
Efficient costs production/ha     
Efficient use of inputs, origin and availability x    
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Efficiency in the supply chain and added value (grower and 
efficiency) – capitalization of the producer 

   x 

Financing: attractive and competitive rates that allow 
continued activity, measure in interest rates 

x x   

Financing    x 
Harvest contracts x    

Seed genetics 
The use of transgenic varieties (1-3) – can be measured by 
continually observing the crop by a number of 
representative years to be able to evaluate with statistics 

x    

Transgenic contamination x    
Seed varieties (yield varies) x    
Germplasm banks (seeds)   x  
Use of varieties and transgenic materials x    

Farm management 
Organic agriculture   x  
Rate of incorporating crop waste during fallow periods  x    
Rate of biological pesticide use x    
Using integrated pest management programs x    
Planting date (autumn) x    

Agrochemical contamination 
Use of Faena, which increases the relation of c/n and 
sterilizes humans 

x   x 

How NO3 accumulates in soil and water x    
Measure contaminate levels in topsoil x    
Stop using agrochemicals, use organics, biologics and a 
great diversity of minerals with a base in rock powders 
(rehabilitate soils, whose origin is from rocks) 

  x  

Politics & law 
Pass environmental legislation to harmonize with federal 
law 

  x  

Design environmental public politics, which currently 
don’t exist 

  x  

Wildlife 
Presence of native fauna (insects, birds, reptiles, etc.) x    
Presence of regional fauna (insects, reptiles, birds, and 
mammals)  

x    
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APPENDIX F 

VALUE FUNCTIONS FOR SUSTAINABILITY 
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A value function is a mathematical expression that is used to normalize 
values of a variable in a common scale (Beinat, 1997). They involve a 
transformation from a natural scale to a scale of 0 (anti-ideal) to 1 (ideal). In 
general, there are two types of value functions: nominal and continuous. Nominal 
value functions are used to represent the level of satisfaction provided by different 
states denoted by names, such as soil type. Continuous value functions are used to 
represent the grade of satisfaction provided by the states of continuous variables, 
such as percent, or hectares. Because they are continuous, the functions form a 
family of continuous curves.  
 
Increasing. The value for stakeholders increases as the value of the variable 
increases, reaching its ideal value at the highest point of the range. There are two 
types of increasing functions: 
 

Concave: 

€ 

v =
e−γx − y−

y* − y−
 (3) 

 

Convex: 

€ 

v =
1− e−γx − y−

y* − y−
 (4) 

 

When  

€ 

γ = −log
log(1.1+ 0.88 10 −β( )

log xmax( )

 

 
 

 

 
 

2

 (5) 

 
where is the modulator of the exponential function ( estimates the interval 
when the function doubles in value), 

€ 

β  is the saturation factor that determines the 
depth of the curve,  and are the minimum and minimum that can be 
obtained in the value function, and  is the maximum value of the variable in 
its natural scale. 
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Decreasing. the value for the sector decreases as the variable increases, reaching 
the ideal value at the lowest point of the range. There are two types of decreasing 
functions: 
 

Concave:

€ 

v =
e−γx − y−

y* − y−
 (6) 

 

Convex:

€ 

v =
1− e

x−30
δ

 

 
 

 

 
 
− y−

y* − y−
 (7) 

When 

€ 

δ =10
3

10 log xmax −β( )( )
 

 
  

 

 
  

 
 
Where  is the modulator of the exponential function. 
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Optimum. This family of curves includes the bell function, in which the value for 
the sector growers as the variable increases to a point in the middle of its range 
where it reaches its ideal point, after which the value for the stakeholders 
decreases as the variable continues to increase until reaching the highest point in 
its range. Besides the bell curve, it also includes sigmoid relationships. 
 

Bell: 

€ 

v =
e
−
x−xmax
α

 

 
 

 

 
 
2

− y−

y* − y−
 (8) 

 
when 

€ 

xmin < x* < xmax  
 
where  is the extent of the bell,  is the minimum value of the variable in its 
natural scale,  and  is the value of the ideal point of the variable in its natural 
scale. 
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Increasing sigmoid:  

Optimal maximum:

€ 

v =
e

x−xmax
α

 

 
 

 

 
 
2

− y−

y* − y−  
 (9) 

when 

€ 

x* = xmax  
 

Optimal minium: 

€ 

v =1− e
x−xmin
α

 

 
 

 

 
 
2

− y−

y* − y−
 (10) 

when 

€ 

x− = xmin  
 
Where  is the value of the anti-ideal of the variable in its natural scale. 
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Decreasing Sigmoid: 

Optimal maximum: 

€ 

v =
e
−
x−xmax
α

 

 
 

 

 
 
2

− y−

y* − y−
 (11) 

when 

€ 

x* = xmin  

Optimal minimum: 

€ 

v =1− e
x−xmin
α

 

 
 

 

 
 
2

− y−

y* − y−
 (12) 

when 

€ 

x− = xmax  
 

 
 

 
 
(L. Bojórquez-Tapia, personal communication, July 11, 2011) 
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APPENDIX G 

WEBER-FECHNER LAW OF PSYCHOPHYSICS 
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The Weber-Fechner Law of Psychophysics describes the relationship 
between physical magnitudes of stimuli and the perceived intensity of the stimuli. 
It states that perception is proportional to increases of a stimulus, which can be 
noticed only after it increases by a constant percentage, known as the “just 
noticeable difference” or JND. The JND can be interpreted as the smallest 
increment needed to be able to discriminate among degrees of a stimulus. The 
relationship between JND and perception is logarithmic: While the JND increases 
following a geometric progression (i.e., multiplied by a fixed factor, for example, 
2), the corresponding perception varies as an arithmetic progression (i.e., in 
additive constant amounts). In other words, the level of a sustainability attribute 
has to double in value (i.e., 21) in order to be perceived as twice as strong (i.e., 1 + 
1), and has to quadruple in value (i.e., 22) in order to be perceived as three times 
as strong (i.e., 1 + 1 + 1).  

In formal terms, the category cuts, , are computed with respect to the 
best state of a stimulus or value of a sustainability factor, s*: 

€ 

sh = s* − sh−1 +
Δsh−1
sh−1

sh−1 

  (13) 
where  is the JND. 

Since the ratio between the JND and the stimulus is constant, then: 
 

€ 

sh = s* − 1+
Δsh−1
sh−1

 

 
 

 

 
 sh−1   (14) 

 

€ 

r =
Δsh−1
sh−1

 (15) 

 
and Equation 13 can be rewritten as: 

 

€ 

sh = s* − (1+ r)sh−1  (16) 
and in general, 

€ 

sh = s* − (1+ r)h s0  (17) 
 
where the initial stimulus, (s0,) represents the absolute threshold or the smallest 
detectable level of a stimulus. 

The value of s0 is determined by leaving out s* from Equation 17 using the 
upper intensity level, u: 

€ 

s0 =
su

1+ r( )u
  (18) 

 
(L. Bojórquez-Tapia, personal communication, July 11, 2011; Lootsma, 1999).  


