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ABSTRACT

Reverse engineering gene regulatory networks (GRNs) is an important prob-

lem in the domain of Systems Biology. Learning GRNs is challenging due to the in-

herent complexity of the real regulatory networks and the heterogeneity of samples

in available biomedical data. Real world biological data are commonly collected

from broad surveys (profiling studies) and aggregate highly heterogeneous biolog-

ical samples. Popular methods to learn GRNs simplistically assume a single uni-

versal regulatory network corresponding to available data. They neglect regulatory

network adaptation due to change in underlying conditions and cellular phenotype

or both.

This dissertation presents a novel computational framework to learn com-

mon regulatory interactions and networks underlying the different sets of relatively

homogeneous samples from real world biological data. The characteristic set of

samples/conditions and corresponding regulatory interactions defines the cellular

context (context). Context, in this dissertation, represents the deterministic tran-

scriptional activity within the specific cellular regulatory mechanism.

The major contributions of this framework include - modeling and learning

context specific GRNs; associating enriched samples with contexts to interpret con-

textual interactions using biological knowledge; pruning extraneous edges from the

context-specific GRN to improve the precision of the final GRNs; integrating multi-

source data to learn inter and intra domain interactions and increase confidence

in obtained GRNs; and finally, learning combinatorial conditioning factors from the

data to identify regulatory cofactors.

The framework, Expattern, was applied to both real world and synthetic data.

Interesting insights were obtained into mechanism of action of drugs on analysis of

NCI60 drug activity and gene expression data. Application to refractory cancer data
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and Glioblastoma multiforme yield GRNs that were readily annotated with context-

specific phenotypic information. Refractory cancer GRNs also displayed associa-

tions between distinct cancers, not observed through only clustering. Performance

comparisons on multi-context synthetic data show the framework Expattern per-

forms better than other comparable methods.
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Chapter 1

INTRODUCTION

The completion of genome sequencing projects such as The Human Genome

Project has precipitated the question of how the basic units of biology, such as

genes, act and interact selectively to enable life. Understandably, traditional re-

ductionist approaches to study each biological entity (e.g., DNA, RNA, proteins)

in isolation is insufficient to predict the synergistic outcome of the overall system.

While an understanding of genes and proteins continue to be important, the focus

has shifted to understanding a system’s structure and dynamics [1].

Systems biology is the systematic study of interactions in biological systems,

viewing the system as an outcome of collaborative interactions between compo-

nents rather than studying each component individually. The rapid advancement

in molecular biology and development of high-throughput platforms provide us with

a rich repository of data for study. However, human minds are incapable of in-

ferring the emergent properties of a system from thousands of data points. Thus

computational tools play a vital role in the formulation of detailed graphical or math-

ematical models, refined by hypothesis-driven, iterative systems perturbations and

data integration. Computational systems biology provides us with such tools for

systems-level understanding of the aggregate outcome of cooperative and comple-

mentary interactions in biological systems, such as, our bodies. The main purpose

of computational systems biology is to assign biological functions to genes, group

of genes and particular gene interactions, and to understand how genes in a cell

contribute to specialized function. This dissertation work develops one such com-

putational systems biology tool, a statistical learning framework – Expattern (Extract

Pattern), to aid in hypothesis formulation in, and understanding of, systems biology.

Viewing the system at cellular level, we understand that cell type differences
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arise because of synthesis and accumulation of different sets of mRNA and pro-

tein molecules, i.e., through the expression of different set of genes. The expres-

sion level of a particular gene is influenced by the expression level of other genes.

Genes interact with each other in order to control and regulate their expression

levels. The resulting web of gene/protein interactions forms a Gene Regulatory

Network (GRN). GRNs are an abstraction of dynamic interactions in a biological

system. Usually the nodes are genes and edges represent direct or indirect inter-

actions between genes or gene products. Ultimately, we wish to know the gene

regulatory systems underlying the biological processes.

1.1 Context Specific Gene Regulatory Networks

A normal cell has a repertoire of mechanisms that ensure its proper growth, sur-

vival and development of the cell. The cell experiences various situations during

its lifetime such as different mutations to the DNA code, change in morphology

of neighboring cells, fluctuations in the nutrient supply or even virulent attacks of

pathogens. Through all these different conditions and possibilities the cell either

adapts or perishes (undergoes apoptosis). Adaptation to the new situation compels

certain changes in the mechanisms for regulation of vital genes in the cell, differ-

entiating it from the normal. The existence of different diseases such as cancer,

which proliferate, suppressing apoptosis, provides an example of such an adapted

system. This prompts us to develop a framework to learn the characteristic set of

interactions and conditions that distinguish between normal and disease modulated

regulatory mechanisms.

In our framework [2], we define cellular context as the characteristic set of

interactions and conditions that represent the deterministic transcriptional activity

within the specific cellular regulatory mechanism. It is assumed that when a cell

maintains a specific cellular context, for example, a phenotype, it tightly regulates

a battery of genes, which would show rather deterministic transcriptional activities.
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When the cell moves away from this cellular context or changes to a different cellular

state, the behavior of the same set of genes will not appear as deterministic since

they now behave without control signals (intrinsic stochastic behavior) or each gene

comes under the control of various other external controls. This change in gene

regulatory behavior under different cellular contexts results in a different regulatory

network for each context, i.e., context-specific gene regulatory network.

The task of learning the contexts from biological data is complicated by the

fact that cellular processes are robust, redundant and involve multi-strata interac-

tions (between DNA, RNA, Proteins, miRNA, siRNA). In order to correctly infer the

active pathway and associated components, biologists have to invest in costly and

time-consuming experiments. Thus, the use of computational approaches to learn

the underlying functional connections between the genomic entities from available

high throughput data becomes a more viable alternative both in terms of resource

cost and time.

Underlying gene 
regulatory networks 

…

…

…

Sample collection

Highly heterogeneous 
biological samples

Highly unstructured networks
with no context specificity

S1 S2 …

…SN

C1

C2

Ck

Traditional  
Approaches

Ref: Basso et al. Nature Genetics 37, 382 - 390 (2005) 

Population

Dataset

Figure 1.1: Current computational methods to discover underlying regulatory mech-
anisms assume homogeneity of samples. Use of available heterogeneous biologi-
cal samples by such methods yield highly unstructured GRNs without any context-
specificity.

Except in rare circumstances, biological data are increasingly collected not
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from tightly defined and controlled experiments, but from broad surveys, i.e., profil-

ing studies, which invariably lead to highly heterogeneous biological samples. Cur-

rent computational methods to discover underlying regulatory mechanisms typically

assume certain level of homogeneity of samples and are not adequate in dealing

with recent explosion of highly heterogeneous high throughput measurements. Fig-

ure 1.1 depicts the application of current computational methods to heterogeneous

datasets in order to yield GRNs.

Understandably, alterations to the cell’s control circuitry would produce di-

versity in the molecular mechanisms operating in diseased cells. On applying in-

ference methods to such a diverse dataset, the heterogeneity in either the network

regulatory connections or operating rules would blur the relationships, reducing the

ability to accurately determine consequential regulatory interactions. Cellular con-

texts account for heterogeneity in the data and identify condition specific regulatory

interactions. Thus knowledge of cellular contexts would be highly applicable to

fields such as predictive medicine, biomarker discovery and identification of targets

for therapeutic intervention.

Briefly, predictive medicine entails predicting disease and instituting preven-

tive measures. Using prevalent cellular contexts with observable symptoms for

subtyping of diseases (to further classify patients) could possibly predict deleteri-

ous effects of treatment on the patients’ health. Thus, knowledge of cellular con-

texts associated with a particular disease could be applied to diagnose the disease,

institute preventive measures and/or prescribe appropriate treatments.

Interestingly, as cellular contexts capture the biological state both in terms

of multi-entity interactions and the prevalent conditions, further analysis of rele-

vant cellular contexts would possibly yield a set of biological indicators (instead of

a single biological indicator) constituting more robust disease related biomarkers.

Finally, the cellular contexts capture the mechanisms that regulate cellular activity.
4



By comparing cellular contexts across different disease stages, it might be possible

to identify pivotal genes or entities in the pathway which influence the trajectory of

the cellular development (for instance, towards a preferred phenotype) as strong

candidates for therapeutic intervention.

It is imperative for any context specific regulatory network model to also ac-

count for switching from one cellular context to another, such as from a healthy

context to a diseased one, which would concordantly change the observable set of

interactions in the cell. The thesis work models this context-switching system and

develops a computational framework, designed to learn the context specific net-

work structure that adequately reflects the relationships in the observed evidence

from different data types, i.e., multiple sources. This framework will be applied

to problems (disease related) in the biological domain in order to demonstrate the

applicability and robustness of the framework.

1.2 Problem Definition

This section formulates the biological problem of identifying cellular contexts to

an equivalent computational problem in order to develop relevant computational

tools. The study of gene regulatory networks is an important, complex problem

in the biological domain. The problem of identifying genetic regulation from high

throughput data is an ill-posed problem, considering the relatively high number of

genes (biological entities) when compared to the number of samples (experimental

conditions/patients). The problem is further confounded by the different levels of

heterogeneity of the samples present in high throughput data, an aspect usually

neglected by correlation based network learning methods, which treat all samples

as instances of the same gene regulatory network. Here, we develop a framework

that is able to distinguish between important structural changes in the regulatory

relationships from system realizations of different cellular contexts.

Formally, the problem can be stated as given high throughput data ma-
5



trix D = [d11d12 . . . d1m; . . . ; dn1dn2 . . . dnm], containing the expression values (or

biomedical data), corresponding to the activity of genes G in samples T , where

G = {g1, g2, ..., gn} is the set of n genes (cellular/biological entities), and T =

{t1, t2, ..., tm} is the set of m heterogeneous samples (patients/ subtypes of dis-

eases), then find

• context motifs Ci = {Gi, Yi, Si, Ti} where the set of genes Gi in states spec-

ified by a vector expression value Yi tightly interact1 with the set of genes Si

within a set of samples Ti.

• contexts, network of context motifs with associated common conditions.

Challenges

These are the challenges we will have to meet in order to solve the above problem:

1. Modeling and identification of context motifs:

a) We need to define a measure of consistent behavior. Using this mea-

sure, we need to identify sets of genes that display consistent behavior

only within characteristic sets of samples and not outside. Also, when

considering consistent activity, we need to allow possible internal biolog-

ical noise within and external control effects outside the identified set of

samples.

b) Once the context motif model is in place, for context motif identification,

we need to estimate the model parameters from the high throughput

heterogeneous data. As the parameter estimations are calculated solely

from the data, we might obtain false positives as statistical artifacts. We

would have to develop a method to minimize false positives from param-

eter estimation of the model from high throughput data.
1Each interaction within the context motif is an edge of the contextual regulatory network. Bio-

logical interaction and regulation have been used interchangeably in this dissertation.
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c) We require a method to integrate multiple sources of data in the frame-

work to increase the reliability of the results and to obtain a holistic view

of system interactions of entities across different sources or domains.

d) We also need to identify combinatorial conditioning factors which com-

plement each other’s activity as observed in biology, for example, tran-

scription factors and co-factors necessary for the functioning of the tran-

scription factors.

2. Learning contexts: We need to define similarity between context motifs in

terms of sample overlap. This would be required to develop a method to

identify the set of context motifs sharing most conditions (set of samples).

The conditions associated with the network of interactions from the context

motif set would ultimately yield the contexts. Importantly, on combining the

context motifs, redundant or extraneous interactions need to be identified and

removed.

3. Validation of the approach: We need to develop methods for comparison and

validation of the framework. For that, we need to consider different measures

of computational accuracy and also methods for biological validation.

1.3 Overview of Framework

Here is a brief outline of the tasks this thesis work focuses on to address the chal-

lenges and solve the thesis problem outlined above :

1. Model and learn context motifs. Build a framework to model and identify

context motifs from the dataset. Consider both univariate and multivariate

conditioning factors for specifying the context motif. Use corrected multiple

hypothesis testing for determining statistical significance of context motifs in

order to minimize false positives. Explore integration of different types of
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Learn gene 
regulatory 

interactions 
(context motifs)

Input multi-type 
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context motifs
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Multi-type context motifsStep 1. Learn context motifs

Learn combinatorial 
regulatory 

conditioning factors

Multivariate context motifs

Learn gene regulatory 
networks
(Contexts)

Prune extraneous edges

Step 2. Learn context-speci�c gene regulatory networks

Input heterogeneous 
biomedical data

Learn multivariate 
context motifs 

Identified context motifs
(Step 1)

Learn Contexts

Identified Context Motifs

Pruning networks 

Figure 1.2: Tasks outlined for learning context-specific GRNs from heterogeneous
biological data. Learn context-specific interactions and integrate them to form the
context-specific GRN.

data to increase confidence in results. This task is presented as Step 1 in

Figure 1.2.

2. Learn contexts. Use graph based approach to combine context motifs and

learn regulatory interaction subnetworks associated with different set of com-

mon conditions. Develop context specific network pruning methods to extract

a reduced set of characteristic interactions from large scale contextual gene

regulatory networks.This task is presented as Step 2 in Figure 1.2.

3. Validate. Generate artificial context-specific gene regulatory networks (aGRN),

and produce gene expression data. This will allow proper validation and com-

parison of results of inference methods and study the system characteristics.

Apply the framework to extract context-specific GRNs from simulated data
8



and real world (cancer) data. Work with biologists for biological validation and

interpretation of results.

1.4 Outline of Dissertation

The dissertation is divided into different chapters. Chapter 2 provides a brief overview

of available biomedical data, GRN modeling formalisms, GRN learning algorithms.

Chapter 3 introduces the mathematical model on contextual genomic regulation and

presents the context motif inference algorithm developed for the framework. Chap-

ter 4 introduces a method to learn contexts from context motifs and applies it to a

refractory cancer dataset. Chapter 5 presents different context-specific GRN prun-

ing strategies to remove extraneous edges. Chapters 4 and 5 also compares the

performance of the framework with popular GRN reverse engineering algorithms

on artificial contextual networks. Chapter 6 presents an innovative method for multi

data type integration to identify multi-type context motifs. Chapter 7 presents a

method to identify multivariate drivers of context motifs. Chapter 8 summarizes the

key contributions of the dissertation work and future directions.
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Chapter 2

BACKGROUND

Biological systems are inherently complex, the study of which entails observation,

modeling, simulation and learning. The observation of biological systems could

be quantitative measurements such as concentrations, or qualitative such as pres-

ence or absence of a gene product/protein. The diversity of available biomedical

data thus provides different perspectives of the biological system under study (ac-

cording to the source and type of data). This chapter provides an outline of some of

the biomedical data technologies being employed in the study of GRNs. Next, we

discuss current frameworks and approaches to modeling and simulation of gene

interactions. Finally, we describe some of the methods in use to learn gene interac-

tions from biomedical data.

2.1 Biomedical Data

Briefly, in eukaryotic organisms, the genetic information is encoded as DNA (De-

oxyribonucleic acid) residing in the nucleus. DNA gets transcribed to mRNA (mes-

senger Ribonucleic acid) which goes into the cytoplasm from the nucleus. The

mature mRNA finds its way to a ribosome where it gets translated to a protein. The

subsequence of the DNA that encodes for any protein is referred to as the gene.

For cellular contexts, the genetic interactions are not restricted between the

encoded proteins or between the encoded proteins and the genes. As cellular con-

texts represent deterministic transcriptional activity, interactions are considered be-

tween any regulatory element and elements regulated by it. We extend the domain

of conditioning factors (regulating elements) from only genes, to elements which in-

fluence, regulate or act specific to the existing cellular state. Any such factor would

also be bound by the constraints in place due to cellular contextual state. With

the advent of new technologies there are many types of biomedical data that are
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Figure 2.1: cDNA microarrays can measure life-stage and tissue specific patterns
of gene expression. Reference Wikipedia.2

available. In the following sections we describe some popular current biomedical

technologies and data on which we apply our framework. In chapter 6 we exploit the

directionality of regulatory influence between different data types to integrate these

data types in our framework (Figure 6.2). This approach can be easily extended to

incorporate other types of biomedical data too, for instance, microRNA [3] data and

clinical data.

Gene Expression Data

Gene expression microarrays are used to study the relative mRNA concentrations

(in lieu of relative protein concentrations). As mRNAs are unstable, cDNAs (comple-

mentary DNA) are generated and used for the microarray experiment. The microar-

2http://en.wikipedia.org/wiki/File:Microarray-schema.jpg
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ray chip is spotted with probes - single stranded DNA which on hybridization with its

complementary cDNA strand would give off florescence. Relative gene expression

is measured as the ratio of the two fluorescences: “up-regulation” of the experi-

mental transcriptome relative to the control as red pseudo-color, “down-regulation”

as green, and constitutive expression (1:1 versus control) as neutral black. The

intensity of color is proportional to the expression differential. Gene expression

microarrays display results in a matrix of gene activity in each experimental sam-

ple. However, due to the disproportionate number of probes (genes) and samples,

deciphering the interactions between them becomes an ill-posed problem. Gene

expression data is extensively used by GRN inference methods [2, 4, 5, 6, 7, 8, 9]

to obtain genetic interactions.

Array-Based Comparative Genomic Hybridization

Array-based comparative genomic hybridization (aCGH) is a technique to detect

genomic copy number variations (CNVs) in DNA. DNA from a test sample and

normal reference sample are labelled using different fluorophores, and hybridized

to several thousand probes printed on a glass slide. The probes are derived from

most of the known genes and non-coding regions of the genome. Measure of

the CNVs for a particular location in the genome is calculated as the ratio of the

fluorescence intensity of the test to the reference DNA.

Like other types of genetic variation, some CNVs have been associated with

susceptibility or resistance to disease. For instance, the epidermal growth factor

receptor (EGFR) copy number has been found to be higher than normal in non-

small cell lung cancer [10]. Thus, CNVs can be considered as conditioning factors,

possibly influencing gene activity and resultant genetic interactions in the cellular

context. As a constituent of a cellular context interactions it would provide insights

into disease specific CNVs for disease associated cellular contexts. Figure 2.2

shows the outcome of an array CGH experiment with the intensity of different spots
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Figure 2.2: Array comparative genomic hybridization (CGH) experiment outcome.

denoting amplification or deletion of corresponding regions of the genome.

Drug Activity Data

Drugs are defined as chemical substances used in the treatment, cure, prevention,

or diagnosis of disease or used to otherwise enhance physical or mental well-being.

However, in most cases, the mechanism of action of drugs at cellular level is not

known. Pharmaceutical companies are investing in expensive clinical trials to study

the effects of different drugs on different subtype of diseases for treatment. Under-

standing the mechanism of action become imperative for prescribing personalized

medicine. The experiments measure drug activity – a measure of the physiological

response a drug produces. One of the measurements of drug activity is GI50, the

concentration needed to reduce the growth of treated cells to half that of untreated

(i.e., control) cells. For example, Scherf et al. [11] studied the gene expression data

across National Cancer Institute cell lines (NCI60) and the drug activity of 1400

drugs on those cell lines.

Prevalent cellular context conditions would dictate or impact molecular level

drug interactions. Therefore, targeted genes and pathways would be better realized

when considering drug activity within a cellular context. In Chapter 3 we demon-

strate the use of drug activity as possible conditioning entities in interactions within
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cellular contexts.

2.2 Modeling Gene Regulatory Networks

Existing formalisms to model GRNs include Boolean Networks, Probabilistic Boolean

Networks (PBNs), Bayesian Networks and Ordinary Differential Equations (ODEs).

Among these, the ODE formalism involves the construction of a set of differen-

tial equations to relate the rate of change of active gene concentrations. Different

values of production and degradation constants in the equation are set based on

biological observations. ODE formalism provides a finer granularity (as compared

to Boolean and Bayesian Network formalisms) to model and analyze GRNs. In the

next sections, we briefly describe some popular formalisms.

Boolean Networks

In the Boolean network formalism, the genes are allowed binary expression levels,

with Boolean functions deterministically describing the relationships between the

genes. Although simplistic in concept and approach, random Boolean networks

were found to display properties similar to the yeast transcriptional network [12].

A Boolean network of n genes, B = (V, F ), is defined by the set of nodes V =

{x1, x2, ..., xn} and their corresponding set of Boolean functions F = (f1, f2, ..., fn).

The functions fi : {0, 1}n → {0, 1}, i = 1, ..., n are the predictor functions for gene

i [13]. The value of xi represents the state/expression of the gene i, where 0

means gene i is OFF and 1 means gene i is ON. At each time step the states of all

genes are updated synchronously according to their predictor function. The gene

activity profile (GAP) is the state of the network at that instant, given by x(t) =

(x1(t), x2(t), ..., xn(t)). A small example of Boolean network is shown in Figure 2.3.
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Figure 2.3: Boolean network as a graph with corresponding Boolean functions and
state transition diagram.

Probabilistic Boolean Networks

The PBN formalism [14] extends the Boolean Network by introducing stochasticity

in choosing the functions describing the gene relationships. A PBN consists of a set

of nodes V = {x1, x2, ..., xn} and their corresponding set of vector-valued network

functions F = (f1, f2, ..., fn) governing the state transitions of the genes. PBN

associate multiple predictor functions and corresponding selection probabilities with

each gene. Thus, at any instance, the realization of the PBN is determined by

the selection of predictor functions for each gene, resulting in a probabilistically

determined Boolean network. Figure 2.4 shows a basic building block of a PBN.

In the figure, a number of predictors share common inputs while their outputs are

synthesized, in this case by random selection, into a single output. The wiring
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diagram for the entire PBN would consist of n such building blocks. Although the

‘wiring’ of the inputs to each function is shown to be quite general, in practice, each

function (predictor) has only a few input variables.

Figure 2.4: A basic building block of a Probabilistic Boolean Network.

Probabilistic Causal Models

In order to explain Probabilistic Causal Models (PCMs) we first need to explain

causal models. A causal model [18] is defined as a triple M = 〈U, V, F 〉 where:

1. U is a set of background variables, (also called exogenous), that are deter-

mined by factors outside the model.

2. V is a set {V1, V2, . . . , Vn} of variables, called endogenous, that are deter-

mined by variables in the model - that is, variables in U ∪ V ; and
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3. F is a set of functions {f1, f2, . . . , fn} such that each fi is a mapping from (the

respective domains of) U ∪ (V \Vi) to Vi and such that the entire set F forms

a mapping from U to V . In other words, each fi tells us the value of Vi given

the values of all other variables in U ∪ V , and the entire set F has a unique

solution V (u). Symbolically, the set of equations F can be represented by

writing

vi = fi(pai, ui), i = 1, . . . , n

where pai is any realization of the unique minimal set of variables PAi in V \Vi

(connoting parents) sufficient for representing fi. Likewise, Ui ⊆ U stands for

the unique minimal set of variables in U sufficient for representing fi.

Next, to define a submodel we assume M is a causal model, X is a set of

variables in V , and x is a particular realization of X. A submodel Mx of M is the

causal model Mx = 〈U, V, Fx〉 where Fx = {fi : Vi /∈ X} ∪ {X = x}. Finally, a

probabilistic causal model (PCM) [18] is defined as a pair 〈M,P (u)〉 where M is a

causal model and P (u) is a probability function defined over the domain of U .

Although PCM and PBNs are both stochastic in nature, there are vital dif-

ferences. PCM do not have the restriction of being Boolean. Also, PCMs are con-

structed to allow interventions in the form of do(x). By using the intervention do(x)

in PCM one can easily predict the effects on other variables in the model through

observation of the corresponding submodels Mx. In PBNs the focus is more on

finding the steady state distribution and identify how to reach a desired state as

early as possible [14]. PCMs provide a more intuitive method of causal represen-

tation, not possible with PBNs. Thus in PCMs embedded causal information can

be exploited in case of counterfactual reasoning where the model itself might need

to be mutated to realize the scenario. PBNs would not be an adequate model for
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counterfactual reasoning. However, inference of probabilistic causal models from

high throughput real world data, such as steady state gene expression data is still

a difficult problem. Identification of distinct context-specific gene regulatory interac-

tions and networks adds another layer of complexity to the learning that is yet to be

explored.

Bayesian Network

Bayesian network formalism[15, 16, 8] models the GRNs as directed acyclic graphs,

where, a gene is assumed to be conditionally independent of all other genes given

its parents. Bayesian network learning builds the joint probability distribution using

the conditional dependencies in the network. Bayesian networks can be associ-

ational or causal. Formally, a Bayesian network for a set of random variables X

is a pair B = (G,Q). The first component, G, is a directed acyclic graph (DAG)

whose vertices correspond to the random variables x1, . . . , xn, and whose edges

represent direct dependencies between the variables. The graph G encodes the

following set of independence statements: each variable xi is independent of its

nondescendants given its parents in G. The second component of the pair, namely

Q, represents the set of parameters that quantifies the network and describes a

conditional distribution for each variable, given its parents in G. Together, these

two components specify a unique distribution on x1, . . . , xn. Bayesian networks not

necessarily causal, a directed edge from u to v does not require that Xv is causally

dependent on Xu. For instance, Bayesian networks on the graphs:

a −→ b −→ c and a←− b←− c

are equivalent as they impose exactly the same conditional independence

requirements. In case of genetic regulatory networks, it is difficult to determine

directions of causality and thus association based Bayesian networks are more
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prevalent. Recently, dynamic Bayesian networks [17] have been used to study time

series data and unravel the cyclic dependencies across time points.

Causal Bayesian Network

A causal Bayesian network [18] is a Bayesian network with an added requirement

that parents of each node are its direct causes. The additional semantics of the

causal Bayesian networks specify that if a node X is actively caused to be in a

given state x (an action written as do(X = x)), then the probability density function

changes to the one of the network obtained by cutting the links from X ’s parents

to X, and setting X to the caused value x [18]. Using these semantics, one can

predict the impact of external interventions from data obtained prior to intervention.

A causal structure D of a set of variables V is a DAG in which each node

corresponds to a distinct element of V , and each link represents direct functional

relationship among the corresponding variables. A causal model is a pair M =

〈D,ΘD〉 consisting of a causal structure D and a set of parameters ΘD compatible

with D. The parameters ΘD assign a function xi = fi(pai, ui) to each Xi ∈ V

and a probability measure Pr(ui) to each ui, where PAi are the parents of Xi

in D and where each Ui is a random disturbance distributed according to Pr(ui),

independently of all other u. Causal Bayesian Networks [18] are formally defined

as:

Let P (v) be a probability distribution on a set V of variables, and let Px(v)

denote the distribution resulting from the intervention do(X = x) that sets a subset

X of variables to constants x. Denote by P∗ the set of all interventional distributions

Px(v), X ⊂ V , including P (v), which represents no intervention (i.e., X = φ). A

DAG G is said to be a causal Bayesian network compatible with P∗ if and only if

the following three conditions hold for every Px ∈ P∗:

1. Px(v) is Markov relative to G;
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2. Px(vi) = 1 for all Vi ∈ X whenever vi is consistent with X = x;

3. Px(vi|pai) = P (vi|pai) for all Vi /∈ X whenever pai is consistent with X = x.

The graph G represents conditional independence assumptions that allow

the joint distribution to be decomposed, economizing on the number of parameters.

The graph G encodes the Markov Assumption: (Each variable Xi is independent of

its nondescendants, given its parents in G).

In causal Bayesian networks, the dependencies between nodes are repre-

sented by the directed edges between nodes and the local conditional probability

distribution of those nodes. The causal interactions are assumed invariant with

respect to time. The dependencies in causal Bayesian networks need to be invari-

ant with time, so that the interventions of type do(X = x) can be resolved without

considering any extra parameter such as time. If the dependencies in the causal

Bayesian networks were temporal then the local conditional probability tables would

have to account for the time component too or the model would have to incorporate

sets of conditional probability tables for different instances of time. Thus causal

Bayesian network assumes a single underlying causal network that can explain the

obtained data. Also, they cannot be used to model cyclic dependencies or model

dynamic or temporal processes.

Artificial GRNs

Modeling of GRNs is complemented by simulation of artificial GRNs (aGRNs).

Methods to simulate synthetic data (e.g., A-BIOCHEM [19], GRENDEL [20] and

SynTReN [21]) focus mainly on the topological aspects and mRNA concentration

dependancies. The selected topologies in the aGRNs define network characteris-

tics such as average clustering coefficient, average path length and marginal de-

gree distributions [21]. Some well known topologies used for generating GRNs

are Erdös-Rényi random networks [22], Kauffman networks (restricted by the num-
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ber of connections per gene) [12], Watts-Strogatz small-world networks and Albert-

Barabási scale-free networks (gene connectivity follows the power law). Briefly,

A-BIOCHEM [19] uses coupled differential equations to represent mRNA concen-

trations and allows different topologies. GRENDEL [20] decorrelates the activities

of mRNAs, proteins and environmental stimuli and uses topology generation and

kinetic parameterization to initialize the continuous time dynamical systems. Syn-

TReN [21] samples subgraphs of known transcriptional networks to generate real-

istic biological topologies and uses Michaelis-Menten and Hill kinetic equations to

model the interaction kinetics. However, most aGRN simulators assume a single

global regulatory network accounting for the genetic activity profile of the cellular

system. Thus the corresponding generated dataset is representative of a single

network. This is a simplistic reduction of real world datasets as biological data

represent highly heterogeneous set of biological samples.

2.3 Learning Gene Regulatory Networks

Computational approaches such as clustering, classification and feature selection

yield interesting preliminary results in identifying co-expressed and possibly co-

regulated genes. Clustering manifests similarity between cancer cell lines that were

generated from the same tissue [11], implying successful capture of phenotypic

similarity. Classification finds subtypes of tumors such as in case of breast cancer

data predicting better survival [23]. Feature selection as a dimensional reduction

approach effectively reduces the number of genes considered as relevant. Saeys

et al. provide a review of different feature techniques applied in bioinformatics [24].

Initial work to infer interactions between genes were based on linear and

nonlinear correlation measures. For instance, using Pearson’s correlation of gene

activity profile to determine if the genes are possibly co-expressed or co-regulated.

REVerse Engineering ALgorithm (REVEAL) [25] uses mutual information (MI) [26],

a nonlinear correlation, to analyze the data generated from Boolean models of ge-
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netic networks to identify sets of input genes controlling each gene in the network.

While many association-based and classification-based approaches have proven

useful, one must look among all of the associated genes and attempt to group them

on the basis of prior knowledge about the activities of the individual genes to iden-

tify particular processes. As the method tries to look for more specific relationships

among genes, it can find smaller groups of interacting genes, defined by the kinds

of behaviors that arise from the way in which transcriptional regulation operates,

improving the likelihood that such sets do represent interpretable hypothesis.

This brings to attention methods to find modules, possibly functional, of the

regulation network. Popular methods include biclustering [7], the Signature Algo-

rithm [6, 5], and Segal’s module map method [27]. Biclustering [7] identifies gene-

sample grouping that have similar expression patterns. Biclustering considers co-

herent gene-sample patterns but struggles with evaluating the separation between

the identified biclusters, making its output not as easily interpretable. Tanay et

al. [28] provide a comprehensive review of biclustering methods applied to gene ex-

pression data. Shi et al. [29] extended the biclustering approach to generate super

biclusters by combining biclusters, allows for more comprehensive results. Bhattar-

charya et al. [30] developed bi-correlation clustering algorithm (BCCA) to yield a

diverse set of biclusters of co-regulated genes over a subset of samples where all

the genes in a bicluster have a similar change of expression pattern over the subset

of samples. Unfortunately, these methods are time consuming (BCCA’s time com-

plexity is O(n5) ), and yield a very high number of biclusters, making further study

or interpretation difficult.

The Signature Algorithm [6, 5] uses an initial gene set to identify and score

conditions where the genes are differentially active and iteratively choose genes to

maximize the score. The necessity for initial gene list limits the exploratory power

of this algorithm. As the algorithm proceeds, dependent upon the genes/conditions
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included in progressive iterations, it may allow convergence to a separate module

altogether, thereby losing the signal present in the initial list.

Another popular method, module map method by Segal et al. [27], utilizes

predefined gene sets with prominent expression signature within different arrays

(compiled set of biological labels) to identify core set of genes showing similar sig-

nature across arrays, i.e., functional modules participating in a common biological

process. Segal et al. applied their method to Saccharomyces cerevisiae expression

data set to identify regulatory modules and their condition-specific regulators from

gene expression data [31]. They also applied the method to perform an integrated

analysis of 1,975 published microarrays spanning 22 tumor types to develop cancer

module maps [27]. This method starts from initial partitions generated from clus-

tering and utilizes prior biological knowledge such as Gene Ontology [32], KEGG

(Kyoto Encyclopedia of Genes and Genomes) [33] and Gene MicroArray Pathway

Profiler [34], if available, in that study. Details of other comparable module methods

– LeMoNe [35], CONEXIC [36] and COALESCE [37] are provided in related works

of chapter 4.

There are also methods which learn regulatory networks directly instead of

functional modules. Relevance Networks [38] uses a threshold MI and only gene-

gene associations at or above the threshold are used to construct the interaction

networks. Extensions of Relevance Networks approach led to Context likelihood

of relatedness (CLR) [9] and ARACNE [39] algorithms. CLR applies an adaptive

background correction step to eliminate false correlations and indirect influences.

ARACNE, instead, uses the Data Processing Inequality (DPI) to remove indirect

interactions , i.e., interaction with lowest MI in any triplet of fully connected gene in-

teractions. As discussed earlier, Bayesian networks have also been applied to learn

gene regulatory networks from gene expression data. Among them, BANJO [8, 40]

learns a dynamic Bayesian network and assigns positive or negative signs to the
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directed interactions to denote promotory or inhibitory effects between genes. Also,

network learning using network clustering method [41] uses `1 penalized network

clustering assuming Sparse Gaussian Markov Random Fields. This uses undi-

rected graphs and assumes the data is jointly Gaussian. Such assumptions are not

always valid for biological datasets and thus may provide erroneous results.

2.4 Summary

This chapter provides the introduction and background to different biomedical tech-

nologies and data used in the framework. It also briefly describes comparable

formalisms and methods to model and reverse engineer gene regulatory networks.

The next chapter establishes the framework by describing the model, formal defini-

tions and methods developed in this dissertation.
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Chapter 3

IDENTIFYING CONTEXT MOTIFS

The correct identification of biological patterns or interactions from the data is the

first step in learning GRNs. However, most methods that try to identify biological

patterns assume all samples within the data represent the same set of interac-

tions. This assumed homogeneity of datasets may cause these methods to miss

interactions specific to different contexts. Here we discuss the motivation behind

identifying context specific biological patterns (, i.e., context motifs) and formally

describe the model and methodology developed in this dissertation work.

3.1 Motivation

As discussed in chapter 2, there are many algorithms that try to identify gene co-

expression as putative co-regulation or biological interaction. In all such cases, the

assumption is that there is one underlying gene regulatory network consisting of a

set of interactions that needs to be identified. However, as outlined in Section 1.1,

cellular systems can be modeled in terms of contexts. Any comparison of healthy

versus diseased cell can now be comprehended as a shift in the underlying mech-

anism regulating the activities of the cell, i.e., a contextual shift. Thus different

cellular contexts (for example subtypes of diseases) would constitute of different

(possibly overlapping) sets of interactions. Our aim thus becomes to identify these

sets of interactions (context motifs) first and then learn the underlying GRN specific

to that context.

3.2 Methodology
Contextual Genomic Regulation Modeling

It is important to select a mathematical model of a cell’s regulatory activity that

accounts for regulation which very actively adjusts to differing internal and external

environmental factors. Rather than models which infer connections between single

genes, or between genes and phenotypes, we need to select a model which can
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find subsets of samples where it is possible to attribute the states of all the members

of a set of controlled genes to a single gene, or to a small set of regulatory genes

which have expression properties that could be the source of control.

The framework needs to identify context specific relationships from the sys-

tem realizations, by defining relationships as a functional mapping of sets of reg-

ulatory (driver) elements to the activities of the regulated (driven) elements which

constitute the system. For the cellular domain, this has been captured by the math-

ematical model for contextual genomic regulation [42]. The context specific GRN

learning algorithm in Expattern is based on this model, to identify novel cellular

contexts, sets of genes whose expression pattern is significantly consistent within

a specific biological context.

In our framework [2], we introduce a mathematical model to approximate

contextual genomic regulation. Formally, the model assumes there are m sets,

G1, G2, ..., Gm, of driver genes and m corresponding sets, S1, S2, ..., Sm, of driven

genes. For each set of driven genes Sj , there is a corresponding set Gj of driver

genes regulating their behavior. G1, G2, ..., Gm are not necessarily disjoint, neither

are S1, S2, ..., Sm necessarily disjoint; thus some driver gene may regulate more

than one driven set, and some driven gene may be regulated by more than one

driver gene set.

Two parameters are essential to the definition of the contextual genomic

regulation model. To define these parameters, consider a single set of driver

genes Gi and its driven set of regulated genes Si. For the set of drivers, still

assuming a binary model (without loss of generality), there exists a state vector

Yi = (Yi1 , Yi2 , ..., Yiq) where Yik(1 ≤ k ≤ q) gives the value of gik ∈ Gi. Let regu-

lation by the driver genes be such that for a state y of the driver gene state vector

Yi (for Gi), when Yi = y, all genes in Si are switched ON , that is , without loss of

generality genes in Si take on the value 1 with high probability.
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Similarly, without loss of generality, let y be the state in which all members

of Yi have the value 1, denoted by 1; we will consider two situations for Gi, namely

the situation where Yi = 1 and the situation where Yi 6= 1. Similarly to Yi for Gi,

let Xi = (Xi1 , Xi2 , ..., Xir) be the state vector for Si where Xik(1 ≤ k ≤ r) gives the

value of sik ∈ Si. In the first case, where Yi = 1, although the driver is ON , there

may be other regulatory activities within the context affecting the driven genes. This

would be captured by a parameter that measures for any driven gene sij ∈ Si, the

conditional probability of sij being ON .

Definition 1 Conditioning parameter (δij) depends on the extent that contextual

effects diminish the influence of the driver Gi on the driven gene sij .

P (Xij = 1|Yi = 1) = 1− δij (3.1)

If Yi 6= 1, then the probability that some driven state Xij = 1 depends on

contextual effects alone and not the effects of drivers is captured by the second

parameter.

Definition 2 Crosstalk parameter (ηij) depends on the extent that contextual ef-

fects outside of the drivers activate the driven genes.

P (Xij = 1|Yi 6= 1) = ηij (3.2)

The paper by Dougherty et al. [42] discusses further considerations of the model,

including prediction accuracy and error representation. Figure 3.1 depicts the ex-

pression patterns corresponding to different combinations of high and low values of

crosstalk and conditioning parameters.

Here, we define some other terms that would be used throughout this dis-

sertation thesis.
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Figure 3.1: Schematic diagram of expression patterns outside of and within cellular
context motifs corresponding to different levels of conditioning and crosstalk.

Definition 3 Biological entity in cellular contexts denotes any cellular constituent,

product or external experimental factors (such as environment or drug treatment)

that influence, regulate or act specific to the existing cellular state.

Definition 4 Interactions are direct or indirect regulatory influences or activity in-

volving two or more biological entities. Biological entity A at state(activity) level Y

is said to have a regulatory influence on another biological entity B when the con-

ditioning δAB and crosstalk ηAB values are lesser than user-specified threshold δθ

and ηθ.

Definition 5 A context motif Ci is a set of interactions between biological entity set

Gi at state given by vector Yi, and biological entity set Si under the set of common

conditions (samples) Ti. Thus, Ci = {Gi, Yi, Si, Ti} where Ti is defined as a list of

conditions where the entity set Gi is in state Yi.

Definition 6 A context H is a network of context motifs corresponding to a set of

common conditionsW ,W ⊂ T . H = (V,E,W ) where V is the set of vertices which

represent interacting biological entities and E is the set of edges which represent

the interactions pertinent to set of conditions W .

28



(a) Context Motif Model (b) Context Motif Inference

Figure 3.2: Modeling and inference of context motifs. a) Depicts the context motif
model with crosstalk and conditioning parameters. b) Provides a schematic for
context motif inference algorithm (outlined in Figure 1).

Identification of Context Motifs

A context motif is a set of genes, one or more of which function as drivers and the

others as driven genes, which exhibit consistent transcriptional behavior across a

subset of samples. We use two statistics — conditioning and crosstalk (defined

in Section 3.2) to identify context motifs from gene expression data. The context

motifs are used as building blocks for the contexts representing the gene regulatory

network.

We apply in-silico conditioning [2], a method designed to be similar to a bi-

ologist manipulating the status of a gene or conditioning the cells in an experiment

with techniques including ectopic expression or gene silencing. With in-silico con-

ditioning, the conditionings are not performed manually as the data is collected,

but rather computationally on the observations after the data has been collected,

hence the name. In this chapter, we demonstrate the method by only considering

a single gene driver (conditioner/regulator) at a time for conditioning, although the

model allows for more. Figure 3.2a displays context motif modeling and Figure 3.2b

inference of context motif by interrogating each gene as a possible driver.
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The advantage of the context motif mining method is that it is built upon a

biologically-inspired mathematical model, which gives strong meaning to the direc-

tion of the edges, i.e., driver (gene) regulating driven (gene). Also, context motif

mining identifies each context motif with a corresponding driver gene and a set of

samples, thereby ensuring the identification of unique cellular context motifs. Algo-

rithm 1 outlines the algorithm to identify the context motifs.

Input: Gene Set G, Sample Set T , Quantized Dataset D = G× T ,
Conditioning Threshold δθ, Crosstalk Threshold ηθ, Resampling
Iterations K

Output: List of Context Motifs ContextMotifList
1 ContextMotifList← null;
2 for Gene or clinical parameter gi in state yi do
3 T yii ← Samples where gene gi is in state yi;

/* Identify Drivenyii - Genes regulated by gi in state yi */

4 Drivenyii ← null;
5 forall the Genes or clinical parameter gj, gj 6= gi do
6 ηij ← Crosstalk of gj regulated by gi in T yii ;
7 δij ← Conditioning of gj regulated by gi in T yii ;
8 if ((ηij < ηθ in T yii ) AND (δij < δθ in T yii )) then
9 Add gj to Drivenyii ;

10 end
11 end
12 if Context_Motif = {gi, yi, Drivenyii , T

yi
i } is statistically significant then

13 Add Context_Motif to ContextMotifList;
14 end
15 end

Algorithm 1: Context motif identification algorithm

If m and n denote the total number of genes and samples in data set, and k

denotes the user specified number of iterations for bootstrap sampling to calculate

statistical significance (outlined in next section), then the complexity to identify a

single context motif is O(n3m). The complexity to identify context motifs for all

possible driver genes is O(n3m2). Bootstrap resampling to calculate the statistical

significance is O(n4mk). Thus the complexity of Algorithm 1 is O(n4mk + n3m2).

If nk > m then the complexity becomes O(n4mk) else O(n3m2).
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Statistical Significance of Context Motifs

For each pairing of driver and driven gene within a context motif, both the condi-

tioning and crosstalk parameters are estimated from the observations. Thus, we

consider the statistical significance of the context motifs in order to avoid highly

possible false discoveries. We assess the probability of finding a context motif with

the same or more number of genes tightly regulated across the same number of

samples by chance. We use re-sampling based approach to calculate this hyper-

geometric probability. If this probability is very low, such as less than 0.05, it is rare

to find those estimated values by chance, i.e., it is significantly different from what

can be found by chance.

Let (M,N) denote data size where M is the total number genes and N is

the number of samples in data set. We also let m and n denote the number of

co-regulated genes and the number of observations in an identified context motif,

respectively. We estimate Pr(m′ ≥ m|n′ = n), the probability that a context mo-

tif contains larger or equal number of genes than m, given the sub-sample size

n. This probability is estimated via re-sampling method. More specifically, we ran-

domly split given data set into two groups of which the one is of sample size n

(context motif candidate) and the other of N − n. We then apply the same set

of statistics (Eqs. 3.1, 3.2) to identify the number of genes filtered by the same

thresholds for conditioning (δθ) and crosstalk (ηθ). By repeating this procedure

many times, we estimate Pr(m′ ≥ m|n′ = n). The accuracy of the estimation is

based on the number of repetitions. In typical setting, 1,000 repetitions are required

to provide distribution with enough statistical power. Using this re-sampling-based

approach, we assess the statistical significance of identified context motifs. We

then apply Benjamini and Hochberg multiple testing correction [43] to the statistical

significance values and consider only the filtered context motifs for further analysis.
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3.3 Summary

In this chapter, we presented the model and method we developed in this disserta-

tion work to identify putative cellular context motifs via in-silico conditioning. These,

if applied to a study of cancer, could lead to the discovery of subtypes of the dis-

ease not obvious at the histological level but possibly explained at molecular levels

and carry prognostic relevance. We present in later chapters the application of the

developed method to the experimental data with disparate data sources to improve

understanding of the multilayer interactivity of biological components and help direct

further studies. In the next chapter we shift our focus from individual interactions

(context motifs) to networks (contexts) and establish a systematic way of agglom-

erating the context motifs into contexts. We then apply the framework to biological

datasets and present corresponding results.
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Chapter 4

LEARNING CONTEXT-SPECIFIC GENE REGULATORY NETWORKS

Here we present a method to learn context specific GRNs and assert that the GRNs

produced by using context motif mining results exhibit biological advantages absent

in related techniques. We use the notations defined in chapter 3, Section 3.2, and

develop the network from the context motifs identified by the cellular context mining

method outlined in Section 3.2.

4.1 Motivation

Comparable methods such as biclustering [7] or functional module identification

[27, 6, 5] algorithm stop once the modules or biclusters have been identified. How-

ever, generation of a thousand or more modules identified mainly by numeric iden-

tity tags do not easily add to the understanding of how regulatory networks function.

The identified bi-clusters or modules may have a lot of overlap in terms of genes,

samples or both. Thus to summarize and classify the identified context motifs, we

use the structural definition of contexts. The notion of contexts captures the under-

lying common conditioning in a set of samples and its associated biological entity

(e.g., gene-gene) interactions.

Correct representation of context specific GRN requires the description of

the cellular context. As we understand, the set of interactions or underlying mecha-

nisms at the cellular level is closely associated with the cellular context. The context

motifs capture one step regulation between the driver entity and the driven entity.

However, in order to study the cascading controls we need to learn the context it-

self, i.e., in terms of context motif clusters. All cells belonging to the same cellular

context would have a common characteristic set of conditions and biological entity

patterns that would distinguish it from other cellular contexts. We want to identify

this characteristic set of common conditions and interactions that would define the
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cellular context. This would help in the classification or subtyping of different dis-

eases such as cancer and provide insights into their treatment. Here we present the

methodology to use context motifs and learn the contexts, assign enrichment values

to the context and then apply this to a heterogeneous refractory cancer dataset.

4.2 Related Work

Many studies have found Bayesian networks to be good models for gene regulatory

networks, and their popularity has grown in recent years. This makes Bayesian net-

works a good candidate for comparison with newer network inference algorithms.

BANJO (Bayesian Network Inference with Java Objects)3 is one of the popular

Bayesian based GRN reverse engineering method. It searches for the graphical

structure in the space of acyclic networks satisfying the conditional dependencies

observed in the data. Although Bayesian networks cannot represent cycles, they

have been used to define dynamic Bayesian networks which uses a pair of Bayesian

networks and transition tables to represent cycles. However, as the structure and

number of parameters to be learned increase, the task of learning Bayesian net-

works and dynamic Bayesian networks from data becomes more difficult.

Other methods to reverse engineer GRNs sometimes employ concepts simi-

lar to contexts (as defined in this thesis). For instance, network clustering method [41]

uses the definition of subtypes differing in terms of network phenotype. CONEXIC

(Copy number and expression in cancer) [36] isolates genes that influence cellu-

lar phenotype via changes in driver’s expression. LeMoNe (Learning Module Net-

works) [35] identifies regulatory modules with condition-dependent coherent activ-

ity. There are subtle differences in the definition of the problem and the methodolo-

gies are structured accordingly.

LeMoNe [35], a module-based algorithm, uses probabilistic ensemble based

optimization techniques to infer high quality module networks, where the genes are

3Available at http://www.cs.duke.edu/ amink/software/banjo/
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first partitioned into coexpression modules and regulators are assigned to modules

based on how well they explain the condition-dependent expression behavior of

the module. Relevance network based learning CLR(Context Likelihood of relat-

edness) [9] considers all possible pairwise regulator-target interactions and scores

these interactions based on the mutual information of their expression profiles as

compared to an interaction specific background distribution. A paper by Michoel

et al. [44] compares LeMoNe, module-based method, and CLR, direct pairwise in-

teraction method, and shows that global comparison of results using recall versus

precision curves hides the topologically distinct nature of the inferred networks. It

distinguished the specific subtasks for which each method is most suited, CLR be-

ing ‘regulator-centric’ (true predictions for higher number of regulators) and LeMoNe

being ‘target-centric’ (higher number of known targets for fewer regulators).

Combinatorial Algorithm for Expression and Sequence-based Cluster Ex-

traction (COALESCE) [37] allows discovery of regulatory motifs and modules from

large collections of genomic data such as gene expression and DNA Sequence

Data. CONEXIC [36] influence cellular phenotype via changes in driver’s expres-

sion. It integrates matched copy number changes (amplifications and deletions)

and corresponding gene expression data from tumor samples to identify driver mu-

tations and the processes that they influence. A score-guided search identifies the

combination of modulators that best explains the behavior of a gene expression

module across tumor samples and searches for those with the highest score within

the amplified or deleted regions. The method has been developed to reduce the

selection of modulators that are not drivers. To gain this specificity, they do not de-

tect all genes and pathways that drive tumors. CONEXIC only identifies candidate

drivers that are encoded in amplified or deleted regions. The main limitation of such

methods is the way that the amplified or deleted regions are getting associated with

the gene. Recent work by Li et al. [45] show that the RNA sequences do not cor-
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respond exactly to the DNA sequences. The identified differences were shown to

be nonrandom, as many mismatched exonic sites were found in multiple individuals

and in different cell types, including primary skin cells and brain tissues. Therefore,

unless we have a way of accurately determining the correspondence between the

DNA and RNA sequences, methods such as COALESCE and CONEXIC may miss

important cellular phenotypes or create false positives in the module.

4.3 Methodology

The normalized, quantized dataset is input to the cellular context motif mining al-

gorithm. Each conditioning of a gene set Gi (driver) on a vector expression value

Yi = yi yields a subset of samples Ti within which a set of genes Si = {si1 , ..., sik}

appears to be tightly regulated, so a cellular context motif is defined as Ci =

{Gi, Yi, Si, Ti}. A re-sampling approach is used to determine the most statistically

significant context motifs represented in the data. A user-set threshold is used to

filter out the statistically significant context motifs.

Contexts from Context Motifs

Note that each context motif defines regulatory relationships gi → g ∈ Si, specific to

Ti with Gi (driver) conditioned on a value Yi = yi. Thus, gene gi at state yi uniquely

defines a set of samples and is included as a driven in the context motif Cx only

if there is a high overlap (low value of conditioning) with the samples of Cx. This

ensures that the gene gi is a part of context motifs only when it has a significant

overlap with the sample set of the context motif driver. If we group all the context

motifs which share gi at state yi, we naturally obtain a high number of common

samples between these context motifs. As contexts capture common interactions

in specific sets of samples, these implicit relationships leads to the construction of

context specific regulatory networks.

As shown in Figure 4.1, the driver gj of the context motif Cj might be driven
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Figure 4.1: Chaining of context motifs to form the context motif network. Clustering
of the context motif network yields the contexts

by another driver gi of context motif Ci. The chaining of such regulatory relation-

ships gi → gj , in addition to implicit driver-driven relationships gi → g ∈ Si, re-

sults in an interesting graphical structure, representing relationships between con-

text motifs. We call this a context-specific gene regulatory network (GRN) as each

regulatory relationship gi → g ∈ Si is specific to corresponding subset of samples,

Ti.

A context-specific GRN differs from other representations not in its graph-

ical structure, but by the fact that context motifs connected to one another in a

network differ in their sample composition. Formally, a context-specific GRN H

is represented as H = (V,E,W ), where V is a set of genes (biological entities)

representing vertices, E is a set of edges oriented from genes (biological entities)

designated as drivers to genes (biological entities) designated as driven and W is

the set of associated conditions; thus H is a directed graph structure, though not

necessarily acyclic, since a driven gene in one context motif may be a driver in

another.

Again, note that each edge ei∗ is specific to only its corresponding subset of

samples, Ti, where ei∗ refers to gi → g ∈ Si. We observe that not only do context-
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specific GRNs report verifiable (and possibly novel) relationships between genes,

but moreover the overall network structure groups itself into biologically meaningful

and readily annotated context motif clusters, i.e., contexts. For proof of concept, we

present the results of application of this technique to the refractory cancer Target

Now (TN) data set, which includes gene expression profiles of 146 patients with

refractory cancer (section 4.4).

Markov Clustering

Any clustering method can be applied to identify the contexts from the context motif

network. In some cases, the contexts are easily visually separable. However, to

cater for cases with very dense and large context motif networks, there is a need

to use clustering algorithms that would automate the identification of contexts from

the context motif graphs. An important constraint is we cannot predefine the num-

ber of clusters. Thus, a viable option is using Markov clustering (MCL). The MCL

algorithm [46] simulates flow using two (alternating) algebraic operations on matri-

ces. Expansion (identical to matrix multiplication) represents the homogenization

of flow across different regions of the graph. Inflation, mathematically equivalent

to a Hadamard power followed by diagonal scaling, represents the contraction of

flow, making it thicker in regions of higher current and thinner in regions of lower

current. Intuitively, expansion corresponds to augmenting the neighbors of a given

vertex, and inflation corresponds to promoting those neighbors which have a higher

transition probability from a given vertex. The MCL process causes flow to spread

out within natural clusters and disappear in between different clusters.

Enrichment Analysis

We use biological enrichment analysis to validate the contexts obtained from con-

text motifs to determine if we get biologically meaningful results using the method.

For instance, one approach would be to use Gene Ontology [32] term analysis

of genes belonging to the same context for testing functional enrichment. Gene
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Ontology (GO) project is a collaborative effort to address the need for consistent

descriptions of gene products in different databases. However, this approach does

not take into account any of the conditions (in terms of associated samples) for anal-

ysis. We would need to determine if obtained contexts indeed display specificity in

terms of samples or tissues. Here, we develop association scores of contexts [47]

based on the specificity of the samples associated with context motifs constituting

the context.

Sample Association to Context

A context is a set of context motifs connected to one another through intra-context

regulation. It would be informative to associate a set of samples to each context

based on its strength of association with the member context motifs. For example,

in a heterogeneous cancer dataset, the sample association to contexts would allow

annotation of the context motif cluster as a partial representative of cancer type.

Since one context is comprised of potentially many context motifs, each represent-

ing a particular subset of biological samples, it is of interest which of those samples

appears in more than one context motif in the context. Samples are scored on the

basis of occurrence within the context motif, over all the context motifs found in the

context. We developed a sample association score [47], associating a sample s,

with a context C consisting of m context motifs {C1, C2, . . . , Cm}, with the scoring:

SAS(s, C) = m

√√√√ m∏
i=1

fi(s), where fi(s) =

 ki/N s ∈ Ci

1 otherwise
(4.1)

where ki is number of samples within context motif Ci and N is the total

number of samples in the gene expression data. The sample which occurs in all

context motifs of the context cluster would then have the least score, and the sample

which is not present in any of the context motifs will have a score of 1. The samples

with score less than 0.5 would be associated with the corresponding context cluster.

Continuing the heterogeneous cancer dataset example, the selected samples can
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be used for the calculation of the distributions and tumor types across all context

clusters.

Probability of sample s associated with context C, can be estimated using

the following formula:

Pr(s ∈ C) = 1−
∏
Ci∈C

p
I(s)
i , where pi = ki/N and I(s) =

 1 s ∈ Ci

0 otherwise
(4.2)

where ki is number of samples within context motif Ci and N is the total number of

samples in the gene expression data.

Tumor Type Enrichment

After sample association to specific context cluster, each cluster can be subjected

to a statistical test for enrichment of specific types of tumors. The Yates corrected

chi square test for significance would be applied (if numbers are less than 5) to each

tumor type-context cluster pair. This will allow annotation of significantly enriched

tumor type association with each context.

Comparison with other methods

Not all methods for reverse engineering GRNs are directly comparable to our method.

The first reason is context specificity, accounting for associated subsets of samples

instead of assuming that relations between genes extend across all samples. This

makes comparison with methods like Bayesian networks and mutual information

networks difficult. The second is, accounting for the state of the gene - over ex-

pressed, under expressed or no-change, associated to distinct context motifs and

thereby contexts. In case of biclustering it is implicitly captured by the biclusters

but not so in the case of mutual information based relevance networks or Signature

Algorithms [6, 5]. Thus for comparison we would have to choose a dataset which

will allow us to test contextual network learning by different methods. Biological

real world data have embedded context specific information, but as the true under-
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lying networks are unknown, the data cannot be used to directly verify the results

obtained from our framework. In the next section, we engineer synthetic data sets

which mimic the heterogeneous nature of the true biological system. Such data

sets will have context-specific regulation pre-determined and embedded so that the

identified interactions can be quantifiably validated. In order to use these synthetic

data sets to validate the context-specific GRNs produced through the cellular con-

text mining technique, we must avoid bias by generating the networks by a method

other than that which we want to validate.

Artificial Contextual Networks and Data

Artificial networks and corresponding datasets generated by biochemical simulator

A-biochem [19] were used as individual contextual networks for comparison. These

datasets have been used as benchmark datasets and cited by different groups to

verify reverse engineering GRNs (Dialogue for Reverse Engineering Assessments

and Methods (DREAM)4, ARACNE [4]). The datasets have a strong mathemati-

cal model used to create the relationships between genes, TFs, mRNA etc. within

the network. They use rate laws of transcription and mRNA degradation to deter-

mine the dynamics of gene networks. The rate laws are mathematical expressions,

which relate the rate of reaction (transcription, etc.) to the concentration of several

substances (effectors). The rate of transcription responds to the concentrations of

nucleotides, RNA polymerase, and transcription factors. The models ignore the

effect of the nucleotides and polymerase but use other effects from other gene

products that could be positive (activation) or negative (inhibition). Induction and

repression over time steps ensure change in the networks. These account for the

combinatorial effect of activation and inhibition influences to direct network data

generation.

4http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project
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We used the Century data series as generated through A-biochem5. Each

Century network consists of 100 genes with a total of 200 gene interactions (on

average each gene has 2 modulators). All networks are composed of genes with

similar kinetics, the only difference between networks is how the gene interactions

are organized (i.e. which genes induce and repress which other genes). The net-

works belong to three major groups according to their topologies. Each set of fifty

networks was based on different topologies – scale-free network topology, random

network topology and small world topologies. For our application we used the first

fifty networks which were based on scale-free network topology. To pre-process the

dataset we converted dataset to ratios by dividing each null mutant gene expression

with the corresponding wild type gene expression. Next, we used a quantization

threshold of 2 standard deviations from mean to identify differentially expressed

genes and discretize the expression values. Finally, considering each artificial net-

work as a separate context, we randomly combined discretized datasets and using

the corresponding original artificial graph information we created the composite of

the edges represented in the combined dataset.

4.4 Results
Application to Artificial Contextual Network Data

In order to compare the performance of Expattern with other comparable methods,

we chose popular methods ARACNE [39] (undirected graph, based on MI) and

BANJO [8, 40] (directed graph, based on Bayesian networks).

Undirected Edges Comparison

We applied ARACNE [39] to the artificial contextual network and found the best

performance in terms of precision and f-measure at Mutual Information (MI) thresh-

old and DPI settings at 0.15 and 0.01 respectively. We used these settings of

ARACNE throughout all runs. Expattern used the discretized version of the dataset

5Data available at“http://www.comp-sys-bio.org/AGN/data.html”.

42



at 2 standard deviations for quantization. Figure 4.4 shows Expattern performs bet-

ter than ARACNE in f-measure values in case of multiple contexts. Noticeably, the

f-measure and precision values for the single context ARACNE runs are better than

the multi-context runs of ARACNE. This depicts how methods such as ARACNE

are better suited to find interactions in case of homogeneous datasets (single con-

texts) but the performance deteriorates if we introduce heterogeneity (multiple con-

texts). This is understandable as ARACNE looks for a single underlying network,

whereas Expattern separates out the different contextual networks. We also calcu-

lated paired t-test p-values to compare the performance of Expattern with ARACNE.

We found very low p-values for precision (1.20e−46) and recall (2.45e−07), denoting

significant differences in results obtained by Expattern and ARACNE for multiple

context cases.

Directed Edges Comparison

BANJO (Bayesian Network Inference with Java Objects) is one of the popular Bayesian

based GRN reverse engineering method. It searches for the graphical structure in

the space of acyclic networks satisfying the conditional dependencies observed in

the data. We used BANJO to compare directed edges found by Bayesian inference

methods with the directed edges found by Expattern. We applied BANJO and Ex-

pattern to the same discretized dataset. BANJO used simulated annealing search

with 50000 restarts and 1000 minimum networks to search for Bayesian network

structures before checking for consensus. The ten highest scoring networks were

retained and combined into a consensus network (represented as BanC in figures).

While this consensus network may lose the Bayesian structure properties (namely

acyclicity), it gives a generalized summary of the putative interactions over the high-

est scoring network alone.

Figure 4.4 presents performance comparisons, as applied to artificial con-

textual networks, between highest scoring network found by BANJO, BANJO Con-
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Figure 4.2: Precision, recall and f-measure comparison for undirected edges of two
context networks. The results depicted are averaged over 100 pairs of randomly
combined context networks. Single ARACNE depicts the average result for 50 sin-
gle context network runs.

Table 4.1: Paired t-test p-values: Precision, recall and f-measure p-value compari-
son of BANJO, BANJO consensus with Expattern results.

Method Precision Recall F-measure
vs Expattern p-value p-value p-value
BANJO 0.0020 1.92E-60 7.53E-49
BANJO Consensus 0.0825 4.49E-61 5.99E-49

sensus network and Expattern context motif network. Expattern performs well in

terms of recall and f-measure when compared to both BANJO and BANJO consen-

sus network. However, the precision values of Expattern were only marginally better

than others. Table 4.1 presents the paired t-test p-values of performance metrics

(precision, recall and f-measure) of BANJO and BANJO Consensus network com-

pared with Expattern. The differences in f-measures and recall between the meth-

ods were more significant than the precision differences. Figure 4.4 provides a
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Figure 4.3: Precision, recall and f-measure comparison for directed edges of two
context networks (BANJO, BANJO Consensus and Expattern). The results depicted
are averaged over 100 randomly combined pairs of artificial context networks.

closer examination of the distribution of true positive and false positive edges iden-

tified by each of the methods. We observed that high recall of Expattern ensures

not only a higher number of identified true positive edges, but also, a very high num-

ber of false positive edges. This raises the question whether we can develop any

strategies to reduce the number of false positives and improve precision of Expat-

tern output. The next chapter explores different strategies to reduce false positive

edges in Expattern context motif network.

Application to Refractory Cancer Data

We applied our framework to the refractory cancer Target Now (TN) data set, which

includes gene expression profiles of 146 patients with refractory cancer. The mo-

tivation of the Target Now (TN) study (http://www.targetnow.com) is to determine

whether patients with refractory cancer, who had not received a benefit from the
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Figure 4.4: True Positive and False Positive edges averaged over 100 randomly
combined pairs of artificial context networks.

standard types of treatment, could derive benefit from therapy with a drug not nor-

mally used for their particular form of cancer. The therapeutic to apply is one that

has activity against a gene target that is found to be altered in that patient’s cancer.

The cancer patients contributing to the TN study all have late stages cancer. Late

stage cancer is very frequently very de-differentiated, having lost a great deal of the

specialized functions present in the tissue from which it arose. Due to this biological

simplification of the system, those genes whose abundance is found to be altered

from the normal tissue of origin and whose change of abundance is found in other

refractory cancers of the same type or of different types may be representatives of

changes that are necessary to support a particular molecular subtype of cancer.

The TN dataset, which consists of 17,085 unique probes from 146 patients

with different types of refractory cancer, was used to learn context-specific GRNs.
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Table 4.2: Target Now Dataset Sample Distribution with the number of samples
associated with different cancer tumor types.

Pancreas 20 Colon 7 Brain 4 Cervical 3 Esophagus 2
Ovarian 19 Kidney 6 Lung 4 Gallbladder 3 Skin 2
Melanoma 18 Salivary 6 Adipose 3 Rectal 3 T Cell 2
Breast 16 Adrenal 5 Bladder 3 Stomach 3 Thyroid 2

Single Sample: Appendix, Cartilage, Chondrosarcoma, Prostate, Testicular,
Glioma, Gastric, Ileum, Lymphoma, Monocytes, Eccrine Adenocarcinoma,
Rhabdomyosarcoma, Synovial Cell Sarcoma, Skeletal Muscle, Uterus

The dataset was pre-filtered based on transcription activity of each gene across the

samples to be reduced to only 4,000 probes. The distribution of the 146 samples

between different cancer tumor types is listed in Table 4.2.

Running the context mining algorithm with a strict statistical significance

threshold resulted in 205 context motifs (p-value < 0.0005). Using these context

motifs, the method described to create context specific GRNs yielded a directed

graph with 1,790 vertices (genes) and 9,566 edges (regulatory relationships), as

shown in Figure 4.5. This graph had an interesting property of being systematically

fragmented into four separate contexts, which were identified by locating the weakly

connected components in the graph. These contexts provide a useful approach to

interpreting the context motifs found by the context motif mining algorithm. The con-

texts, typically displayed significant overlaps among their subsets of samples. This

is due to complex inter-connections among drivers that result from common cellular

processes being shared among them.

When investigating the four disjoint contexts, we noticed the two largest con-

text clusters consisted of densely connected parts loosely bound to one another.

Seeking to further characterize the data on the basis of very dense connectivity, we

investigated the connections within the two largest contexts. On the basis of den-

sity of connection and directionality of control, we resolved the four original contexts

into seven biologically separable ones. In Figure 4.5, bottom right, we segregated
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Figure 4.5: Context-specific GRNs - each context motif cluster is annotated with
the corresponding set of samples and highlights significantly enriched tumor types
in red. See Table 4.2 for cancer tumor sample distribution in the dataset. In the
graph, red vertices represent over-expressed genes, green under-expressed, and
grey neither under- nor over-expressed. Edge orientation is driver genes (large
vertices) to driven genes (small vertices).

the first large cluster into contexts C and G. Context G is easily separable as all its

genes are neither under- nor over-expressed (unlike C), and only one edge exists

between the contexts C and G (C drives a gene also driven by G). These char-

acteristics convinced us that C and G should be analyzed as separate contexts.

The weak connection may have been rooted in tissue of origin similarity, as be-

tween them they account for two-thirds of the pancreatic samples in the data with

six members in each.

Next, we segregated the top large cluster in Figure 4.5 into context clusters

A, B and F. All driver-to-driver edges between A and B are oriented from A to B,

implying a hierarchical regulatory relationship from A to B. Also, like C and G, their

connection in the graph is explained by the fact that both A and B represent sig-

nificant numbers of both breast and ovarian tumor types. Contexts B and F share
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Table 4.3: Chi-square enrichment test p-values of tumor types in different context
clusters

Context Cluster A Context Cluster B Context Cluster C
Tumor Type p-value Tumor Type p-value Tumor Type p-value
Ovarian 2.3E-05 Gallbladder 1.6E-04 Pancreas 8.2E-05
Breast 0.0057
Lung 0.012

four edges, two involve genes driven by drivers in both B and F. The two remaining

edges are both directed from F to drivers in B, indicating a possible hierarchical

regulatory relationship between them.

Each of the seven contexts are visible in Figure 4.5 and have the associ-

ated tumor types next to them. Enriched tumor types are highlighted in red and

the numbers next to all tumor types correspond to the number of samples dis-

tinguished as significant by the scoring function (Equation 4.1, discussed in next

section). Table 4.2 contains the TN dataset sample composition. Sample enrich-

ment is depicted in Figure 4.5 displaying the tumor types having nonzero sample

counts corresponding to each context cluster. Significant Tumor Type enrichment

results are summarized in Table 4.3. Figure 4.5 highlights (in red) the tumor type

considered enriched within the corresponding context cluster.

Intriguingly, context A showed significant tumor enrichment of ovarian can-

cer, breast cancer and lung cancer. A literature survey shows breast cancer drugs

are being used in the treatment of lung cancer [48], because of vital role of es-

trogen in lung development and subsequently cancer pathway. Literature survey

verified some known gene interactions and relationships to diseases within context

clusters. Context A involved breast cancer, ovarian cancer and lung cancer, and

included genes such as TNFRSF1A, known to promote breast cancer[48]; CD74,

usually expressed in ovarian and lung cancers, considered as a target for Multi-

ple Myeloma treatment therapy [49]; HLA-DM, its expression when combined with
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that of HLA-DR, is considered to influence breast tumor progression and patient

outcome [50]. Context C, related to pancreatic cancer, contained GP2, a protein

specifically expressed in pancreatic acinar cells and considered as a diagnostic

marker in animals [51].

Conventional approaches such as clustering and Bayesian Network learn-

ing provide some ability to observe sample enrichment, but they do not exploit

the association of particular expression behaviors in subsets of the samples to the

fullest extent. Since clustering and Bayesian Network learning implicitly assume

that the observed data is from a single distribution, their results are always diluted

approximations relative to results that assume the observed data to have come from

various different distributions and evaluate them in appropriate isolation.

We compared our method to hierarchical clustering and k-means clustering

using similarity metrics of correlation and Euclidean distance, in Cluster version 3.0

[52, 53], to group samples with similar gene expression profiles together. We veri-

fied that in cases where a similar number of clusters (six or seven) were identified by

Cluster 3.0, the conventional clusters display significant overlap (ranging from 40%

to 90% overlap) with context clusters in terms of samples (and thus tumor type en-

richment). Conventional clustering algorithms do not however provide a quantitative

evaluation with which to isolate vital gene markers or describe the genes’ activity

for the subtype of disease described by the sample subset. The context motif clus-

ter approach has a distinct advantage of extracting relevant genes pertaining to the

particular disease type.

4.5 Summary

In this chapter, we presented a method to consolidate similar context motifs and

build the network of context motifs. We also introduced an innovative score – Sam-

ple Association Score and evaluated (in TN dataset case) the Tissue Enrichment

Score. The sample association score characterizes the context motif networks with
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enriched samples, an effective method for classification in the unsupervised learn-

ing of subtypes of cancer. We can use any clustering method to cluster the context

motif network to obtain the contexts. We applied the framework to both artificial

datasets and refractory cancer data. We presented a unique method to create arti-

ficial contextual gene expression data and network using Century series data (from

A-biochem), a widely used repository of artificial datasets. We validated our frame-

work results on the artificial contextual networks and compared the performance of

this framework with two very popular methods - ARACNE (undirected edges) and

BANJO (directed edges). We observed that, although Expattern shows a higher

number of True Positives than BANJO, its overall precision and f-measure are low

because of a greater percentage of False Positives. Thus to improve the perfor-

mance of Expattern, we need to develop strategies to reduce the number of false

positives in the contextual network. The next chapter explores and develops differ-

ent approaches to do the same.
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Chapter 5

PRUNING CONTEXT-SPECIFIC GENE REGULATORY NETWORKS

Context-specific gene regulatory networks use probabilistic measures of consis-

tency to infer gene regulatory relationships. Consequently, the algorithm captures

indirect influences between genes, resulting in several false positives, as well as

redundant edges. While statistical p-value thresholds reduce the network to the

most significant regulatory relationships, overlap between contexts still leads to a

large number of redundant edges within the network.

In this chapter, we present a method for pruning context-specific GRNs,

derived from the relationship between the consistency metrics used to learn the

regulatory interactions. Apart from a theoretical proof of concept, we assess the

performance of our methods based on the sizes of the reduced network as well

as its ability to capture biologically relevant regions of the network. We apply our

methods to a cancer dataset and show how the reduction strategy is able to re-

move redundant edges while preserving the functional enrichment of the network.

Further, we compare the performance of several variants of the pruning strategy

with the transitive reduction method and show how our method is superior in terms

of both performance as well as biologically significant clusters.

5.1 Motivation

In last few chapters, we presented our framework to learn context-specific GRNs

from gene expression data. In context-specific regulatory networks, an edge be-

tween two nodes corresponds to the two nodes being consistently regulated; con-

sistency being defined based on probabilistic measures of similarity in expression

values. Unlike conventional GRNs, edges in context-specific GRNs represent the

interaction conditioned on a subset of samples, i.e., their biological context, thus

lending adaptability to the model of biological regulation. The method discretizes
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the data at a predefined quantization level and then learns the network from the

discretized data. However, the problem of selecting the quantization level is not

a trivial one and greatly affects the final network constituents and structure. Too

stringent quantization levels removes the associations between genes and toler-

ant or lax quantization levels introduces false associations between genes in the

discretized data.

Also, GRNs learned by the framework (method outlined in Chapter 4) are

often made of a few thousand nodes (genes) and tens of thousands of interac-

tions rendering interpretation of the network almost impossible. Overlapping con-

texts adds to the difficulty in interpretation. In order to compensate for quantization

effects and statistical analysis artifacts on increased false positive edges found

through our method, we propose context-specific GRN pruning methods. These re-

move extraneous edges, exploiting relationships between the consistency metrics

- crosstalk and conditioning (section 3.2). We propose scale-free topology based

pruning, random network topology based pruning and several variants of network

pruning for the removal of reverse edges, sibling edges and transitive edges. The

different strategies are described in the methodology Section 5.3.

5.2 Related Work

Graph pruning methods have been prevalent for the last few decades and can be

roughly categorized into generic and domain dependent pruning strategies based

on the pruning objective. The goal of generic pruning strategies is to reduce the

graph size while maintaining certain properties of the graph. Methods include

graph spanners, where the complex graph is replaced with a sparser one, while

preserving all or most pairwise distances [54],[55] and tree approximation algo-

rithms, where the graph is replaced by a tree or a set of trees while preserving

pairwise distances. Another method – transitive reduction, removes edges while

ensuring that connectivity between nodes is maintained. Transitive reduction has
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been applied to both social networks [56], gene regulatory networks [57] and signal

transduction networks [58]. Graph pruning is also considered as a variation of the

feedback node set problem, where the goal is to remove vertices and edges of the

graph with the aim of breaking existing cycles [59].

Interestingly, there are also several domain-dependent methods for prun-

ing. Graph pruning is often applied in speech recognition, in order to prune word

graphs. Such methods include forward-backward pruning strategies by [60] as well

dynamic programming methods by [61]. In the world of gene regulatory network

learning, pruning strategies are less prevalent. Transitive reduction strategy has

been applied to gene regulatory networks [57] and signal transduction networks

[58]. ARACNe [39], based on Mutual Information, uses the Data Processing In-

equality (DPI) criteria to prune interactions corresponding to conditionally indepen-

dent genes. Others, such as, network inference algorithms allow for controlling

network sizes through various ways. Boolean network learning methods allow con-

trol of the size of the network by considering all Boolean functions of no more than

k variables [62]. Similarly, in Bayesian network learning, network sizes are usu-

ally controlled by constraining the search space using either graph properties [63]

and/or prior biological knowledge [64]. Boolean networks, Bayesian networks and

context-specific gene regulatory networks [2] also use functional annotations to re-

duce the learned gene regulatory networks to a handful of interesting pathways.

Depending upon the nature in which the search space is constrained, such meth-

ods could lead to errors of omission.

5.3 Methodology

We propose an approach to reduce the redundancy in context-specific GRNs by re-

moving extraneous edges, exploiting relationships between the consistency metrics

— crosstalk and conditioning [2]. We propose several variants of network pruning

for the removal of reverse edges, sibling edges, transitive edges focusing on two
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different topology based pruning strategies — Random Topology Based Pruning

and Scale-free Topology Based Pruning.

Given a context-specific GRN H, our goal is to remove edges in the network

that may be artifacts of indirect dependencies in the evidence data. For example,

Figure 5.1a depicts a case where gene A regulates gene B, which in turn regulates

gene C, and an edge is incorrectly inferred between genes A and C, in other words

a redundant transitive edge. Figure 5.1b depicts the case where gene A regulates

both genes B and C, and an edge is incorrectly inferred between genes B and C,

that is, a redundant sibling edge. Finally, the case shown in Figure 5.1c is where

gene A regulates B with very low level of latent intervention, this can lead to low

conditioning and crosstalk from B to A, thus, resulting in an incorrect edge from

B to A, that is, a redundant reverse edge. We derive the expected crosstalk and

conditioning values using the crosstalk and conditioning values of all other edges in

the triad (triplet of connected genes such as A,B,C in Figure 5.1). The expected

values are then used to construct the conditions for edge pruning. It is important to

understand that determination of the correct directionality of the edge, from the data

itself, is not always possible. Thus, we assume for each directed edge in a triad of

genes such as in Figure 5.1, if the crosstalk and conditioning values are lesser than

expected values, then they are considered to be true edges. Otherwise, they are

treated as redundant/extraneous edges and need to be removed. The algorithms

we present here prune extraneous edges from the graph. The derivations for all

a) b) c)Transitive

Edge

Figure 5.1: Edge Types — Transitive Edge, Sibling Edge and Reverse Edge in a
basic interaction triad of genes A,B,C.
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the cases can be found in Appendix A, we present only the final results in the

corresponding sections.

Once we obtain the context-specific GRN, we use combinations of two meth-

ods, edge removal and pruning order determination to remove extraneous edges.

We apply edge removal methods in the order determined by the chosen pruning

order strategy. Next, we apply Markov Clustering (MCL) [46, 65] to the reduced

context motifs and obtain the reduced contexts. Finally, we run enrichment analysis

and compare the reductions across different strategies.

Edge Removal

Transitive Edge Removal

Transitive edge would be deemed false positive if there is strong evidence of indirect

conditioning between the driver and any of its drivens’ driven. For example as in

Figure 5.1a, let us assume A to be the true driver gene and B to be the true driven

gene in one context motif and B to be the true driver gene and C to be the true

driven gene in another context motif. Then both edges AB, BC are present in

GRN H, and the expected values of crosstalk and conditioning of edge AC can be

calculated. The following theorem presents the result.

Theorem 5.3.1 (Transitive Conditioning) Given the values of conditioning and

crosstalk of edges AB, BC as below,

δab = 1− Pr(yb = 1|ya = 1) ≡ 1− Pr(B|A)

ηab = Pr(yb = 1|ya 6= 1) ≡ Pr(B|A′)

δbc = 1− Pr(yc = 1|yb = 1) ≡ 1− Pr(C|B)

ηbc = Pr(yc = 1|yb 6= 1) ≡ Pr(C|B′)

where, ya denotes the state vector of gene A and Pr(A) denotes the probability of

gene A to be in state ya = 1 (ON or active). Also Pr(A,B) is used to represent the
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probability of gene A to be in state ya = 1 and gene B in state yb = 1. Then, the

expected conditioning on edge AC is

δac ≥ [δab (1− ηbc) + δbc (1− δab)] + [ηbc (1− ηab)− ηabδbc] γA (5.1)

where

γA =
Pr(A′)

Pr(A)
=

1− Pr(A)

Pr(A)
.

Proof. Provided in Appendix A. �

Now, given conditioning and crosstalk values as above, we can derive the

expected value of transitive crosstalk as presented in the following theorem.

Theorem 5.3.2 (Transitive Crosstalk) Assume if δac > δbc ,i.e., Pr(C|A) < Pr(C|B),

then the expected crosstalk on edge AC is

ηac >
ηbc · γB + αbc · {αab − 1}

γA
(5.2)

where

αab =
Pr(B)

Pr(A)
,

and γA and γB given as above.

Proof. Provided in Appendix A. �

Algorithm 2 with complexity of O(n) tests and removes redundant transitive

edges.

Sibling Edge Removal

Sibling edges might be wrongly inferred if one of the target becomes a driver and

closely mimics the activity of any of its siblings. As in Figure 5.1b, if we assume A
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Input: Ordered Vertices A,B,C, Edges AB,BC,AC
Output: List of Retained Edges

1 removeEdgeAC← true ;
2 if { (ηac ≥ ηab) & Equation 5.1 not satisfied} then
3 if { (δac > δbc) & Equation 5.2 not satisfied} then
4 removeEdgeAC← false ;
5 end
6 end
7 if (removeEdgeAC) then
8 Remove Edge AC ;
9 end

Algorithm 2: Transitive edge removal algorithm

to be the true driver gene and B,C to be the true driven genes, with edges AB,

AC present in GRN H, the expected values of crosstalk and conditioning of edge

BC can be calculated. Results are presented in the following theorem.

Theorem 5.3.3 (Sibling Conditioning) Given the values of conditioning and crosstalk

of edges AB and AC, if we assume ηbc ≥ ηac, i.e., Pr(C|B′) ≥ Pr(C|A′), then the

expected conditioning on edge BC is

δbc ≥ 1− {(1− δac) · αba + ηac · (1− αba)} (5.3)

where αba is defined similarly as above.

Proof. Provided in Appendix A. �

Theorem 5.3.4 (Sibling Crosstalk) Assume if δbc ≥ δac, i.e., Pr(C|B) ≤ Pr(C|A),

then the expected crosstalk on edge BC is

ηbc ≥
ηac · γA − αac (1− αba)

γB
(5.4)

where αac, αba, γA and γB are defined similarly as above.

Proof. Provided in Appendix A. �
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Algorithm 3 tests and removes redundant sibling edges with complexity of

O(n).

Input: Ordered Vertices A,B,C, Edges AB,BC,AC
Output: List of Retained Edges

1 removeEdgeBC← true ;
2 if { (ηbc > ηac) & Equation 5.3 not satisfied} then
3 if { (δbc ≥ δac) & Equation 5.4 not satisfied } then
4 removeEdgeBC← false ;
5 end
6 end
7 if (removeEdgeBC) then
8 Remove Edge BC;
9 end

Algorithm 3: Sibling edge removal algorithm

Reverse Edge Removal

Reverse Edges would be wrongly inferred if the crosstalk and conditioning values

between the driver and the driven are very low. In such cases it is hard to determine

which is the true driver. As in Figure 5.1c, if we assume A to be the true driver gene

and B to be the true driven gene, with edge AB present in GRN H, the induced

values of conditioning and crosstalk are provided as below.

Theorem 5.3.5 (Reverse Conditioning) Given conditioning value δab of edge AB,

the expected conditioning on edge BA is

δba = 1− (1− δab) ·
Pr(A)

Pr(B)
(5.5)

(5.6)

Proof. Provided in Appendix A. �

Theorem 5.3.6 (Reverse Crosstalk) Given crosstalk value ηab of edge AB, the

expected crosstalk on edge BA is

ηba = 1− (1− ηab) ·
Pr(A′)

Pr(B′)
(5.7)

59



Proof. Provided in Appendix A. �

An edge BA would be included in the context graph H, given that edge AB

is already present in H iff

δba < δθ AND ηba < ηθ

For the conditioning of BA to be less than the threshold,

δba < δθ

⇒ 1− δθ
1− δab

<
Pr(A)

Pr(B)

For the crosstalk of BA to be less than the threshold,

ηba < ηθ

⇒ 1− ηθ
1− ηab

<
Pr(A′)

Pr(B′)

When both the above conditions are true, reverse edge BA, i.e., gene B

regulating gene A is thought to be a possible regulation and included in the graph.

However we find that δab < δba ⇒ ηba < ηab and ηab < ηba ⇒ δba < δab. Thus we

use a third gene C seemingly regulated by both A and B to determine precedence

of the drivers in algorithm as outlined in Algorithm 4, and confirm if the reverse edge

needs to be pruned or not, with complexity of O(n).

Input: Ordered Vertices A,B,C, Edges AB,BA,BC,AC
Output: List of Retained Edges

1 removeEdgeBA← true;
2 if { (ηba < ηab) & (δbc ≥ δac)} then
3 removeEdgeBA← false;
4 end
5 if (removeEdgeBA) then
6 Remove edge BA;
7 end

Algorithm 4: Reverse edge removal algorithm
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Pruning Order

Given the context-specific GRNH, the edge removal algorithm would first select the

vertices present as an ordered triad in the graph as depicted in Figure 5.1. Next,

it would check the edges in turn for the satisfiability of the edge retention criterion.

The edge retention criteria query relevant edges as reverse edge, sibling edge or

transitive edge. However, the order of the checks influence the final structure of

the graph. We propose a topology based edge pruning to determine the order of

edge checks. It has been shown in different studies that biological networks such

as metabolic networks display scale-free topology and small-world topology than

random topology [66], [67]. In order to conserve the characteristic topology of the

GRN, we would use corresponding topology based edge pruning. Here we present

the random network and scale-free network based edge pruning. In Section 5.3

we compare these to pruning orders of sibling edge checks followed by transitive

edge checks (Sibling-Transitive) and transitive edge checks followed by sibling edge

checks (Transitive-Sibling), completed by reverse edge checks.

Random Topology Based Pruning

For the random topology based edge pruning, after the selection of each triad such

as shown in Figure 5.1, we let the order of edges and edge checks be random. The

algorithm is outlined in Algorithm 5. If we denote number of genes and number of

samples as m and n respectively and e as number of edges in the context motif

graph then the complexity of Algorithm 5 is O(mne).

Scale-free Topology Based Pruning

For the scale-free topology based edge pruning, the aim is the conserve the hubs in

the networks. Thus the node with higher outgoing edge would be taken as the driver

vertex v1. In this method, the first check removes extraneous edges of hubs, i.e.,

transitive edge checking and removal reduces the outdegree of vertex v1. These
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Input: Context motif graph H = (V,E)
Output: Pruned context motif graph H ′ = (V ′, E ′)

1 forall the v1 ∈ V do
2 driven(v1)← all genes driven by v1 ;
3 forall the ((v2 ∈ driven(v1)) & (v3 ∈ driven(v1) ∩ driven(v2)) &

(v3 6= v1, v2)) do
4 Randomly select ordering of checks below;
5 if checkTransitiveEdgeRemoval(v1, v2, v3);
6 then
7 continue;
8 end
9 if checkSiblingEdgeRemoval(v1, v2, v3);

10 then
11 continue;
12 end
13 if checkReverseEdgeRemoval(v1, v2, v3);
14 then
15 continue;
16 end
17 end
18 end
19 H ′ = (V ′ ← All retained vertices, E ′ ← All retained edges);

Algorithm 5: Random topology based pruning algorithm

checks are followed by sibling and reverse edge checks. The algorithm is outlined

in Algorithm 6. If we denote number of genes and number of samples as m and n

respectively and e as number of edges in the context motif graph then the complex-

ity of Algorithm 6 is O(mne).

Comparison with Other Graph Pruning Methods

Traditional methods such as transitive reduction and Data Processing Inequality

(DPI) criteria cannot be directly applied to the context-specific GRN. For example,

transitive reduction algorithm application requires the input graph to be a directed

acyclic graph. However, the context-specific GRN has no such restriction on its

structure, thus possibly contains cycles. For the sake of comparison a special case

of the transitive reduction has been applied. The algorithm checks end points of

each edge, to determine if there is any two-step path between the end points. If
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Input: Context motif graph H = (V,E), V ordered by descending outdegree
Output: Pruned context motif graph H ′ = (V ′, E ′)

1 forall the v1 ∈ V do
2 driven(v1)← all genes driven by v1;
3 forall the ((v2 ∈ driven(v1)) & (v3 ∈ driven(v1) ∩ driven(v2)) &

(v3 6= v1, v2)) do
4 if checkTransitiveEdgeRemoval(v1, v2, v3);
5 then
6 continue;
7 end
8 if checkSiblingEdgeRemoval(v1, v2, v3);
9 then

10 continue;
11 end
12 if checkReverseEdgeRemoval(v1, v2, v3);
13 then
14 continue;
15 end
16 end
17 end
18 H ′ = (V ′ ← All retained vertices, E ′ ← All retained edges);

Algorithm 6: Scale-free topology based pruning algorithm

such a path exists, the edge is removed, else the edge is retained in the graph. The

idea is that the transitive closure of original GRN and of this reduced graph would

be the same.

ARACNE [39] uses DPI, that is, the algorithm chooses connected triplets of

genes and removes the edge with minimum value of Mutual Information [26]. In the

context-specific GRN, as the nodes represent genes in particular gene expression

level, and not just the genes themselves, each edge corresponds to a different

set of samples. In order to calculate the Mutual Information, the values of joint

probabilities and marginal probabilities would be calculated on a subset of samples

and not all the samples. Therefore it becomes a challenging problem to determine

the correct ordering of Mutual Information values calculated across different sets

of samples. Thus this approach was not used for the comparison here. Note, as

the triad of vertices considered in Expattern share a common set of samples (by
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virtue of chaining of context motifs for graph formation), we are able to use the

consistency metrics conditioning and crosstalk defined on that set of samples for

our estimations of expected values of the metrics.

Inter and Intra Context Edges

We apply the MCL algorithm [46, 65] to the reduced context motif networks in order

to study modular structure within the networks. Once we identify the contexts, we

can observe the outcome of the different pruning methods on the graphs. We want

to confirm the hypothesis that there is a higher chance of observing extraneous

edges as statistical artifacts in highly connected portions of the graph. So removal

of the extraneous edges would not only make the graph less dense, but it might

allow the emergence of smaller cliques within the larger contexts indistinguishable

earlier. By tagging the edges as inter context or intra context, we evaluate the num-

ber and type of edges retained after the application of different pruning methods.

5.4 Results
Application to Artificial Contextual Network Datasets

We observed in the last chapter, Section 4.4, that ARACNE does poorly in case of

multiple context data. Thus we did not consider the undirected edges comparison

here but focused only on comparison of Expattern with (directed) Bayesian network

learning method BANJO. BANJO reports the consensus network and the highest

scoring network at the end of each run. As before, to maintain consistency, we ap-

plied BANJO and Expattern to the same discretized datasets. BANJO was specified

to run using simulated annealing with 50000 restarts and 1000 minimum networks

before checking. We present both the highest scoring network found by BANJO and

the BANJO consensus network. As earlier, we noticed that even though the number

of true positive edges found in (unpruned GRN) Expattern was higher than found by

BANJO, Expattern also identified a very high number of false positive edges. Here,

we present the results of applying the different pruning methods to the Expattern
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GRN.

Figure 5.4 compares the performance of BANJO, BANJO Consensus, Ex-

pattern without pruning, Expattern with pruning – sibling transitive (ST), random

topology (RN), scale free (SF), transitive sibling (TS) and transitive reduction(TR)

as described in the methods section. Figure 5.4 displays the improvement in pre-

cision on applying the different pruning methods. There is some decrease in recall

values but as shown in Table 5.1, the change in f-measure is not significant.
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Figure 5.2: Precision, recall and f-measure comparison for directed edges of two
context artificial networks. The results depicted are averaged over 100 pairs of ran-
domly combined artificial context networks. The different methods presented here –
Ban (BANJO), BanC (BANJO Consensus), Exp(unpruned), ST (Sibling-Transitive),
RN (Random Topology), SF (Scale Free), TS (Transitive-Sibling) and TR (Transitive
Reduction).

The comparison between scale-free pruning versus sibling-transitive or transitive-

sibling shows that ordering of the vertices in each considered triad of genes gives
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Figure 5.3: True positive and false positive edge comparison for directed edges of
two context networks. The results depicted are averaged over 100 pairs of randomly
combined context networks. The different methods presented here – Ban (BANJO),
BanC (BANJO Consensus), Exp(unpruned), ST (Sibling-Transitive), RN (Random
Topology), SF (Scale Free), TS (Transitive-Sibling) and TR (Transitive Reduction).

rise to differences in pruning results. In scale free approach, we identify hub genes,

and verify that the out-degree of the hub vertex is not due to extraneous edges

and finally prune extra edges in the neighborhood of the hub gene. In the random

topology network approach, we randomly order removal of edges. Scale-free prun-

ing aims to retain the connectivity of hub genes before checking for true sibling or

transitive edges (Figure 5.1).

Application to Refractory Cancer Dataset

Here, we present the findings on applying the algorithms to a refractory cancer data

based on Target Now study. The Target Now gene expression profiling experiments

were conducted using the Agilent 011521 Human 1A Microarray G4110A platform
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Table 5.1: Paired t-test p-values: Comparison of methods with Expattern. Preci-
sion, recall and f-measure p-value comparison of BANJO, BANJO consensus and
different pruning methods with Expattern results.

Method Precision Recall F-measure
vs Expattern p-value p-value p-value
BANJO 0.0020 1.92E-60 7.53E-49
BANJO Consensus 0.0825 4.49E-61 5.99E-49
ST 1.56E-05 1.50E-11 0.0039
RN 3.03E-05 1.45E-09 0.0183
SF 3.89E-07 9.79E-08 0.1529
TS 3.05E-08 2.75E-08 0.1496
TR 3.67E-06 1.35E-07 0.1152

and consists of 146 patients, spanning 35 different types of tumor. The dataset

was filtered based on the transcription activity of each gene across samples, and

reduced to 3,851 genes by eliminating genes with a low variance across samples.

The context motif mining algorithm was applied to the reduced dataset, to extract

context motifs with a crosstalk < 0.3, conditioning < 0.1 and statistical significance

< 0.05. Further, for each context motif (with x genes) the probability of obtaining

a context-motif of x genes or more by chance, was computed, and context-motifs

with a statistical significance of 0.01 were considered. Pruning was applied to the

dataset and Table 5.2 shows the resulting number of contexts obtained in each

case. Of these, we eliminated contexts with fewer than 10 genes and fewer than

10 samples and studied the biological enrichment of these contexts. Single sam-

ple tumors were omitted from the phenotypic enrichment analyses and a statistical

significance threshold of 0.05 was used for all functional enrichment.

For TN Dataset, Table 5.2 compares the functional enrichment of contexts

after MCL clustering of reduced context-specific TN dataset graphs. We observe in

Table 5.2 that different methods of pruning let different enriched contexts emerge

from the unpruned network. Interestingly, scale-free, transitive reduction and transitive-

sibling methods find enriched breast cancer contexts whereas sibling-transitive and

random-topology methods retained the enrichments found by the unpruned net-
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Table 5.2: Number of contexts found by Markov Clustering at inflation of 1.4 on
the unpruned and pruned networks with enriched tissue types. Exp (Unpruned net-
work), SF (Scale Free), TS (Transitive-Sibling), ST (Sibling-Transitive), TR (Transi-
tive Reduction) and RN (Random Topology).

Pruning Strategy Number of Contexts Enriched Tissue
Exp 59 RCT,OV
ST 41 RCT,OV
RN 42 RCT,OV
SF 46 BR,OV
TR 72 BR,RCT,OV,PANC
TS 46 BR,OV

work. We observed the pancreatic cancer enrichment found by transitive reduction

was associated with one of the smaller contexts with low number of genes and as-

sociated samples. We believe that the very high number of contexts found by tran-

sitive reduction causes more fragmentation of the contexts and allow us a view of a

finer granularity of contexts. Whereas methods like scale free and sibling transitive

retain the overall structured of the unpruned network and allow a global overview. If

the question posed is to identify as many as possible subtypes of diseases a finer

granularity may be desired but if the question aims to broadly classify say patients

or disease type we can use a coarser granularity method such as scale-free.

Table 5.3: Inter and intra context edges as retained (removed) by different meth-
ods. Exp (Unpruned network), SF (Scale Free), TS (Transitive-Sibling), ST (Sibling-
Transitive), TR (Transitive Reduction) and RN (Random Topology).

Method Total Inter Intra Total % Removed % Removed
edges edges edges Removed Inter edges Intra edges

Exp 19948 321 19627 - - -
ST 9033 222 8811 10915 30.84 55.10
RN 8808 216 8592 11140 32.71 56.22
SF 8493 224 8269 11455 30.21 57.87
TR 8767 236 8531 11181 26.47 56.53
TS 8393 221 8172 11555 31.15 58.36

Table 5.3 displays the inter and intra context edges with respect to contexts

found by the unpruned network. It show the retained and removed inter context

and intra context edges as identified through Markov clustering of the unpruned
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network. Interestingly, although the number of removed edges are comparable, the

emergent graph structures are different (as presented in Table 5.2).

Application to Glioma Cancer Dataset

Here, we present the findings on applying the algorithms to a Glioma cancer data

based on The Cancer Genome Atlas (TCGA)6 study. TCGA is a joint effort of the

National Cancer Institute (NCI) and the National Human Genome Research In-

stitute (NHGRI), two of the 27 Institutes and Centers of the National Institutes of

Health, U.S. Department of Health and Human Services. In this study, we focus on

Glioblastoma multiforme (GBM) which is the most common and most aggressive

malignant primary brain tumor in humans.

Total 301 samples from GBM gene expression data (from TCGA) were used

after screening out samples from cell lines and replicates. 10 normal samples were

used for the reference to convert GBM expression values to z-score values by com-

paring the expression values from GBM samples to the distribution of normal sam-

ples. All z-score values in GBM samples were quantized to one of three discrete

values - ‘1’ for over-expression, ‘0’ for no-change and ‘-1’ for under-expression com-

pared to the normal case. Genes with low variance were excluded from the analysis

and 13,822 genes were analyzed in this work.

The context motif mining algorithm was applied to this dataset, to extract

context motifs with a crosstalk < 0.3, conditioning < 0.1 and statistical significance

< 0.05. Further, for each context motif (with x genes) the probability of obtaining

a context-motif of x genes or more by chance, was computed, and context-motifs

with a statistical significance of 0.05 were considered. Pruning was applied to the

dataset and Table 5.2 shows the resulting number of contexts obtained in each

case. Of these, we eliminated contexts with fewer than 10 genes and fewer than

15 samples and studied the biological enrichment of these contexts. Single sam-

6http://cancergenome.nih.gov/abouttcga
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ple tumors were omitted from the phenotypic enrichment analyses and a statistical

significance threshold of 0.05 was used for all functional enrichment.

Table 5.4: Inter and intra context edges as retained (removed) by different meth-
ods. Exp (Unpruned network), SF (Scale Free), TS (Transitive-Sibling), ST (Sibling-
Transitive), TR (Transitive Reduction) and RN (Random Topology).

Method Total Inter Intra Total % Removed % Removed
edges edges edges Removed Inter edges Intra edges

Exp 227576 8963 218613
TR 15605 215 15390 211971 97.60 92.96
TS 11743 144 11599 215833 98.39 94.69
ST 11403 142 11261 216173 98.41 94.85
SF 11882 144 11738 215694 98.39 94.63
RN 10814 141 10673 216762 98.43 95.12

Table 5.4 displays the inter and intra context edges with respect to contexts

found by the unpruned network. It show the retained and removed inter context

and intra context edges as identified through Markov clustering of the unpruned

network. Interestingly, although the number of removed edges are comparable, the

emergent graph structures are different (as presented in Table 5.5).

Table 5.5: Number of contexts found by Markov Clustering at inflation of 1.4 on
the unpruned and pruned networks with enriched tissue types. Exp (Unpruned net-
work), SF (Scale Free), TS (Transitive-Sibling), ST (Sibling-Transitive), TR (Transi-
tive Reduction) and RN (Random Topology). Contexts were filtered at p-value 0.05
with number of genes > 10 and number of samples > 15.

Method Filtered Enriched
Contexts Contexts Proneural Neural Classical Mesenchymal

Exp 97 7 0 4 0 3
TR 55 16 7 2 2 5
TS 22 4 0 2 0 2
ST 21 3 0 1 0 2
SF 22 4 0 2 0 2
RN 21 3 0 1 0 2

Table 5.5 shows the enrichment of identified contexts with subtypes of GBM.

Transitive Reduction method creates more fragmented contexts than the other meth-

ods which output comparable number of contexts. We show some enriched path-
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ways in contexts found by Scale Free pruning in Table 5.6. We observe that Mes-

enchymal subtype enriched context are associated with mesoderm development,

signaling pathways and leukocyte regulation. Also the Neural subtype enriched

contexts were associated to pathways related to neuroblastoma.

Table 5.6: Enriched pathways identified in Scale Free Contexts. The enriched sub-
types are displayed within parentheses.

SF Contexts Pathway Enrichment
Context 4,7 Mesoderm_development, Sig_PIP3_signaling_in_B_lymphocytes,
(Mesenchymal) Sig_BCR_signaling_pathway, Positive_regulation_of_secretion,

Pattern_recognition_receptor_activity, Leukocyte_chemotaxis,
GA12_pathway, B_cell_antigen_receptor,Leukocyte_migration,
Wong_endometrial_cancer_late, Defense_response_to_bacterium

Context 6,18 White_neuroblastoma_with_1p36.3_deletion, Chr19q12
(Neural)

5.5 Summary

Here we present a unique approach to graph pruning of context-specific gene regu-

latory networks based on consistency metrics used in the learning of the networks.

We also implemented a variant of the popularly used graph reduction method – tran-

sitive reduction pruning, adapted for use in context-specific GRNs instead of only

on directed acyclic graphs. We show the proposed context-specific graph prun-

ing strategies reduce the number of extraneous edges and allow emergence of

the functional enrichment of the context specific GRNs. We introduced different

strategies to determine the order of edge pruning. We applied these methods to

TN and GBM cancer datasets and ran obtained reduced networks through Markov

clustering. Subsequently, we calculated enrichment within the set of clusters and

interpreted the obtained results. The simple variant of transitive reduction that was

applied removed maximum edges and produced maximum number of clusters. We

observe that the best pruning strategy to be employed depends on the dataset and

the question posed, e.g., the level of desired granularity and functional enrichment.
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Chapter 6

INTEGRATING MULTI SOURCE DATA

We extend the concept of finding conditioning factors (regulating elements) from

only genes, to elements which influence, regulate or act specific to the existing

cellular state. Any such factor would also be bound by the constraints in place due

to cellular contextual state. Applying our method to such disparate datasets such

as aCGH, gene expression and/or drug activity data, would allow us to witness

the possible underlying patterns of the inter- and intra-relationships between the

different datatypes.

6.1 Motivation

Gene expression profiling experiments are a popular research and screening tool

for differentially expressed genes. The experiments are designed to simultaneously

measure the expression of thousands of genes. This high throughput biomedical

data is stored and readily available in public repositories. Thus, initially we applied

our framework to gene expression data. However, it is known that gene expres-

sion data suffers from issues of reproducibility and reliability [68], and small sample

size [69]. Some of the issues are partially mitigated by careful design of experi-

ment [68] and application of appropriate statistical methods [69]. However, in order

to increase the confidence in obtained results from our framework, we propose the

use of multiple types of biomedical data to yield multi-type interactions, for instance,

gene-drug, gene-phenotype and gene-environment interactions.

The multiple types of biomedical data originate from different platforms which

collect data at different stratas of abstraction according to specific purposes, e.g.,

aCGH at genome sequence level for DNA copy number changes; and microarray

data at the mRNA level for gene expression values. We use the framework to in-

tegrate data extracted from different types of regulatory factors, originating from
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different experimental measurements, for example, CGH (copy number changes),

microRNA (miRNA) expression, and clinical data such as survival or metabolite

levels.

6.2 Related Work

Comparable GRN reverse engineering approaches which integrate multiple sources

of data, such as by using Bayesian network [70] and [71] treat all data types equally

in the mathematical framework to generate corresponding interactions. Methods

such as COALESCE [37] and CONEXIC [36] distinguish between gene expression

and DNA Sequence Data but restrict the use of amplified or deleted matched DNA

sequence to gene probes for finding regulatory interactions (section 4.2).

Intuitively, different data types (corresponding to the disparate sources of

data) measure different components of the biological system, providing unique per-

spectives to the cellular system. Understandably, each pair of data type would

interact uniquely. Thus, considering all data types with equal weights or inference

parameter thresholds cannot be biologically meaningful. In our framework, we al-

low users to include apriori knowledge as meta-rules to guide the search of context

motifs and thereby contexts. For example, we observe that interactions between

entities of the same data types has a stronger correlation (low crosstalk and con-

ditioning) than interactions between entities of different types. Thus any method

to integrate data from different biological domains for learning, needs to taking into

account this difference. Also, recent work by Li et al. [45] found the RNA sequences

do not correspond exactly to the DNA sequences. These nonrandom differences

were found in multiple individuals and in different cell types. Thus methods such

as COALESCE and CONEXIC which assume a one to one DNA to RNA sequence

correspondence may miss important indirect DNA to RNA influences under different

cellular phenotypes. Our algorithm, Expattern does not assume pre-existing corre-

spondence and thus does not restrict the relationships between DNA sequences
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and RNA sequences. This allows us to capture indirect relationships not identified

through CONEXIC and COALESCE.

6.3 Methodology
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Figure 6.1: Directionality of edges in multi-domain conditioning.

Directionality of Regulatory Interactions

The central dogma in biology highlights the direction of information flow from DNA

to RNA to protein. Understandably, the DNA sequence affects its transcription to

RNA, linking copy number changes found in aCGH data to the amount of tran-

scribed RNA observed in gene expression data. However, this influence direction

is unidirectional, i.e., the amount of RNA cannot dictate or modify the structure of

the DNA sequence or the copy number changes. One can also understand the

mRNA-mRNA interaction where the transcribed mRNA of say transcription factors

triggers the production of a target mRNA to yield a final protein product. Similarly,

we can extrapolate the aCGH-mRNA, aCGH-miRNA, miRNA-mRNA and mRNA-

miRNA interactions. Exploiting the directionality of regulatory influences across dif-

ferent data source stratas such as DNA to RNA to protein, we can identify pertinent

interactions that are biologically meaningful instead of relying solely on statistical

significance. Figure 6.1 depicts a directionality of regulatory influences between

aCGH, gene expression and drug activity data. The shaded rectangles in the figure

represent the different data domains or strata with respect to the cellular system -
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DNA transcription, RNA Translation and External Agent/Influence. We incorporate

this directionality as apriori knowledge in the algorithm to guide the identification of

context motifs satisfying the biological constraints.

Incorporating apriori Knowledge in Expattern

Figure 6.2 provides an outline of the integrated approach to learning context-specific

interaction networks via multi-domain conditioning. We preprocess and quantize

each dataset separately. Each input file corresponds to a different data type, and

is read in separately, associating the data type (for example: mRNA, aCGH) with

each dataset. In order to integrate the datasets, the current version of the algorithm

assumes all datasets correspond to the same sample set. To guide the multi-type

context-motif identification meta-rules are incorporated in the algorithm. The meta-

rules specify the combinations of data type interactions to be identified and option-

ally the required crosstalk, conditioning and statistical strength thresholds for the

interactions, both within and across different data types.
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Meta-rules capture user intuitions about possible regulatory signal/influence

flow between domains. For example, we use a meta-rule to identify context motifs

which have aCGH driver and mRNA passengers. aCGH data measures copy num-

ber changes of the DNA sequence and pinpoints aberrations (amplification/deletions);

mRNA data measures the gene expression levels (overexpression/underexpression).

Through the central dogma in biology, we know the flow of information happens

from DNA to RNA. It follows that amplified regions of the DNA containing a gene

could cause an increase its corresponding gene expression making it over ex-

pressed. To test this we now have the option in the framework to use the meta-

rule where aCGH drives mRNA expression. Similarly, we can test whether miRNA

presence could point to underexpression of mRNA by silencing the corresponding

region containing the gene. In summary, the meta rule contains information as

displayed below:-

MetaRule(i) = 〈Driver(i)DT 〉〈Driven
(i)
DT 〉〈δ

(i)
Th〉〈η

(i)
Th〉〈ρ

(i)
Th〉.

where, 〈Driver(i)DT 〉 is the driver entity’s data type, 〈Driven(i)
DT 〉 is the Driven

entity’s domain type, and 〈δ(i)Th〉, 〈η
(i)
Th〉, 〈ρ

(i)
Th〉 are the optional conditioning threshold,

crosstalk threshold, and statistical significance threshold of meta-rule i respectively.

The algorithm for identification of multi-type interactions is outlined in Algo-

rithm 7. Each interaction is tested based on the user specified meta-rules. If the

multi-type interaction satisfies any of the meta-rules, it is saved, else discarded.

Using the saved interactions we build the context motifs and consequently obtain

the contexts. Figure 6.2 depicts the process flow for integrating multi data type and

learning context-specific interaction networks using the meta-rules.

We use m and n to denote the total number of genes and samples in data
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Input: Genes G, Samples T , Dataset D = G× T , Meta-Rules Array mArr
Output: List of Multi-Type Context Motifs MTCMList

1 MTCMList← null;
2 for Gene or clinical parameter gi in state yi do
3 allRules← mArr.getRulesWithDriverType(gi.getType());
4 if (allRules==null) then
5 break;
6 end
7 T yii ← Samples where gene gi is in state yi;

/* Drivenyii = Genes regulated by gi in state yi */

8 Drivenyii ← null;
9 forall the Genes or clinical parameter gj, gj 6= gi do

10 mRule← allRules.getRuleWithPassengerType(gj .getType());
11 if (mRule==null) then
12 break;
13 end
14 ηij ← Crosstalk of gj regulated by gi in T yii ;
15 δij ← Conditioning of gj regulated by gi in T yii ;
16 if ((ηij < mRule.ηθ in T yii ) AND (δij < mRule.δθ in T yii )) then
17 Add gj to Drivenyii ;
18 end
19 end
20 if Context_Motif = {gi, yi, Drivenyii , T

yi
i } is statistically significant then

21 Add Context_Motif to MTCMList;
22 end
23 end

Algorithm 7: Identification of multi-type context motifs algorithm

set, r as the number of meta-rules, and k as the user specified number of iterations

for bootstrap sampling to calculate statistical significance. Then the complexity to

identify a single multi-type context motif is O(n3mr). The complexity to identify

multi-type context motifs for all driver genes is O(n3m2r). Bootstrap resampling to

calculate the statistical significance is O(n4mk). Thus the complexity of Algorithm 7

is O(n4mk + n3m2r). The requirement of apriori knowledge to set the parameters

may be perceived as a limitation, but this option in the framework provides an ex-

ploratory tool for hypotheses formulation about regulations between different (inter)

or same (intra) data types. Once the user sets a criterion for measuring the context

quality, the next step would have the software identify optimal multitype contexts.
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For example, using a criteria such as a biological score or a cluster validity mea-

sure, the framework execution can be automated to find inter-datatype parameter

thresholds.

6.4 Results
Cancer Cell Line Data

We apply the method for context motif identification to NCI60 gene expression-drug

activity dataset [11]. We show that the identified context motifs can further guide

studies of drug effectiveness and mechanism of action. Here we illustrate how

multiple types of data, for instance, gene expression and drug activity data, can

be combined to identify interesting patterns of interactions not only among genes

but, for instance, between genes and drugs. To provide an example of exploratory

functionality possible by context motif mining method of Expattern we applied it to

the NCI60 drug data. The NCI60 is a set of human cancer cell lines derived from

diverse tissues; brain, blood and bone marrow, breast, colon, kidney, lung, ovary,

prostate and skin. The dataset consisted of the drug activity data of 118 drugs and

the gene expression data of 1375 genes across the NCI60 cell lines [11]. Drug

activity is represented in a matrix with log GI50 values, where GI50 is an indicator

of the growth inhibition of the compound on the cell line. The original paper [11]

related this data to sensitivity to therapy rather than to molecular consequences of

the therapy, as the gene expression patterns were determined in untreated cells.

We scaled the different datasets to comparable form (normalization), com-

bined these forms, and applied the method to obtain context motifs corresponding to

the different conditioning factors. The data matrices were normalized by subtracting

their row-wise mean and dividing by their row-wise standard deviation. Next, matrix

entries were quantized on the basis of two-fold changes, for statistical significance.

Then all quantized matrices were used as the input data for the context analysis.

The context motif analysis on the NCI60 drug activity and gene expression
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data resulted in 4153 context motifs. Among those, we focused on the context

motifs where at least one drug and one gene were included, which resulted in 243

context motifs. On filtering, only 27 context motifs were found to be statistically

significant with p-value less than 0.01.

We observed that the majority of the context motifs reflected patterns found

in the original paper [11]. For example, the two breast cancer cell lines positive

for oestrogen receptor, T-47D and MCF7, clustered together in the original paper,

were also found to be grouped together in our analysis. The context motif identified

showed higher activity of drug 11-formyl Camptothecin (RS) than its counterpart

Camptothecin, 11-HOMe(RS).

For the two cell lines (MDA-MB-435 and MDA-N), there were two filtered

context motifs of interest. In the first context motif with only these two cell lines

grouped, drug 7-Epi-10-deacetylbaccatin III (Taxol Analog NSC No. 656178), Pa-

clitaxel and other Taxol analog drugs with the mechanism of action as Tubulin-

active antimitotic agents (TU) displayed highly active status. In the second context

motif, conditioned by gene RAB7, these two cell lines were grouped together with

Melanoma cell lines (MALME-3M, SK-MEL-5 and UACC-62).

Interestingly the drugs identified in this context motif as being consistent

were Cyclocytidine and Cyctarabine(araC), belonging to DNA synthesis inhibitor

mechanism (Ds). However, they did not display high activity across all these sam-

ples, while Taxol analog drugs were highly active in these two breast cancer cell

lines. In the original paper, MDA-MB-435 and MDA-N cell lines clustered closely

with Melanoma cell lines [11]. The authors discussed that the MDA-MB-435 and

its Erb/B2 transfectant MDA-N expressed large number of genes characteristic of

melanoma, and the recent findings now group these two as a subtype of Melanoma

itself [72, 73, 74]. However, the finding in our study may indicate they still do not

use the same mechanisms in drug responses.
79



Table 6.1: Top 27 context motifs identified from combined drug data and gene ex-
pression data, with statistical significance 0.01. The first column represents the
conditioning factors (gene/drug/disease) of the context motif. Genes are repre-
sented by gene symbols. In case of drugs, the drug name is shown with the mech-
anism of action e.g. [TU]. The second, third and fourth columns lists the number of
conditioning factors, number of cell lines and total number of drug/gene elements
respectively identified for the context motif. The fifth column reports the p-value of
finding such a context motif. The final column reports the number of drugs that were
found to be highly active in that context motif.

Type SW S G Pr(G+ |S) Drug
Gene
PTK2 2 4 184 0.00163 33
RAB7 1 5 132 0.00163 0
GJA4 2 3 241 0.00169 39
HEXB 1 2 200 0.00172 37
MMP14 1 3 173 0.00253 5
TWF1 1 5 102 0.00327 3
CORO1A 1 5 102 0.00327 5
TDG 1 3 164 0.00337 16
GLUL 1 3 145 0.00422 3
ISGF3G 4 4 159 0.00489 3
KCNQ4 2 5 93 0.00490 4
- 1 3 139 0.00506 9
- 1 2 174 0.00517 44
MYL3 2 4 145 0.00653 9
RP6-213H19.1 1 4 120 0.00734 3
MAPRE2 2 3 118 0.00759 3
KLF6 1 3 118 0.00759 12
- 1 4 117 0.00816 5
- 1 3 114 0.00843 5
IRX3 1 4 107 0.00897 2
REEP5 3 2 144 0.00948 6
- 1 4 100 0.00979 0
Drugs
7-Epi-10-deacetylbaccatin III [TU] 1 2 190 0.00259 7
Camptothecin,20-ester (S) [T1] 1 42 7 0.00382 0
Camptothecin,11-HOMe (RS) [T1] 1 2 160 0.00603 42
Taxol analog [TU] 1 54 4 0.00771 0
Disease
Leukemia 2 6 78 0.00485 2
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Assignment of Drug Mechanism of Action: Many of the context motifs include

drugs that have different mechanism of action. Every context motif depicts the com-

mon transcriptional activities of given cell lines, for example, subtypes of cancers

with shared transcriptional behavior. It is possible that in order to stop proliferation

of the cell, different points of the regulatory mechanisms present in cancer cells

are targeted. Thus depending upon drug target point, varying degree of potency

of drug would be established, effective in arresting the cancer development. Our

initial purpose of being able to attribute the drug to a particular mechanism seemed

thwarted by the inclusion of drug in multiple context motifs, showing more than one

type of mechanisms active in each context. Considering the previous argument, we

improved the prediction of mechanism of action of drug by finding maximum over-

lap between biological processes (Gene Ontology [32] terms) of the genes targeted

by drug with unknown action and those of drugs with known action. Gene Ontol-

ogy (GO) organizes genes into hierarchical categories based on biological process,

molecular function and subcellular localization. Greater overlap between GO terms

would imply similarity in mechanism of action.

We used this approach to assign the mechanism of action of drug Inosine-

glycodialdehyde (Inox) by studying other drugs in all context motifs which included

Inox. In the context motif conditioned by IRX3, Inox showed similar activity to 11-

Formyl-20(RS)-Camptothecin, of mechanism T1, topoisomerase 1 inhibitor. In the

context motif conditioned by gene TWF1, it showed high activity along with drugs

Dichloroallyl-lawsone and Pyrazofurin of mechanism Rs, RNA synthesis inhibitor.

This context motif consisted of Leukemia cell lines CCRF-CEM, K-562, MOLT-4,

HL-60 and RPMI-8226.

We extracted for each drug the corresponding target genes from PubGene

[75], and ran the obtained lists through GoMiner [76]. GoMiner is a program pack-

age that organizes lists of ‘interesting’ genes (for example, under- and overex-
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pressed genes from a microarray experiment) for biological interpretation as GO

terms. Instead of analyzing microarray results with a gene-by-gene approach,

GoMiner classifies the genes into biologically coherent categories and assesses

these categories.

On matching the significant GO terms (with p-value<0.05) we found that

although there are less than 10 exact matches but the terms display coherency in

terms of function to Rs mechanism derived GO terms. For Inosine-glycodialdehyde,

we found GO terms which relate to negative regulation of transcription (from RNA

polymerase II promoter and DNA- dependant, namely, GO:0000122, GO:0045892).

GO terms matching those from Pyrazofurin and dichloroallyl-lawsone (Rs mecha-

nism) related to nucleotide metabolism and biosynthesis (terms include GO:0006220,

GO:0009058, GO:0009165 and GO:00-44249). There was no significant GO term

match between those derived from Inox and those from Camptothecin.

Some context motifs group different cell lines possibly implying an under-

lying similarity in the regulatory mechanism in place, irrespective of the tissue of

origin. This allows identification of drugs which could be potent in these particular

cancer subtypes, allowing us to span and target a greater range of cancer types

using the same drug. By finding targeted mechanisms by concentrating on anno-

tations such as GO terms would allow greater power in ability to prescribe potent

drugs. Here, we showed a need for context motif identification and possible ap-

plication of this method to decipher the mechanism of action for drugs or propose

alternative drugs for treatment according to cancer type and/or patient profile.

Application to Glioma Cancer Dataset

The Cancer Genome Atlas (TCGA)is a comprehensive and coordinated effort to

accelerate our understanding of the molecular basis of cancer through the applica-

tion of genome analysis technologies, including large-scale genome sequencing.
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TCGA is a joint effort of the National Cancer Institute (NCI) and the National Hu-

man Genome Research Institute (NHGRI), two of the 27 Institutes and Centers of

the National Institutes of Health, U.S. Department of Health and Human Services.

In this study, we focus on Glioblastoma multiforme (GBM) which is the most com-

mon and most aggressive malignant primary brain tumor in humans.

Total 301 samples from GBM gene expression data (from TCGA) were used

after screening out samples from cell lines and replicates. 10 normal samples were

used for the reference to convert GBM expression values to z-score values by com-

paring the expression values from GBM samples to the distribution of normal sam-

ples. All z-score values in GBM samples were quantized to one of three discrete

values - ‘1’ for over-expression, ‘0’ for no-change and ‘-1’ for under-expression com-

pared to the normal case. Genes with low variance were excluded from the analysis

and 13,822 genes were analyzed in this work.

Next, matching aCGH samples (Agilent 244K) were obtained from TCGA

portal after filtering to remove duplicate vials and whole genome amplified samples

resulting in a total of 265 samples. Adjacent probes were collapsed into segments

using a circular segmentation algorithm DNACopy7. The smoothed 244K probes

were further discretized to ternary (-1=values less than -2, 1=values greater than 1,

0=all intermediary values) and compressed to 362 probes using CGHAnalysis8.

We were interested in studying three types of interactions for the TCGA data

(mRNA - mRNA, co-aberrations and DNA copy number changes-mRNA). We pre-

processed and quantized each dataset separately as described above. The two

datasets were read in separately and the domain types were associated with each

dataset: in our case mRNA and aCGH. To guide the multi-type context-motif iden-

tification meta-rules were incorporated in the algorithm as explained in Section 6.3.

7www.bioconductor.org/packages/2.3/bioc/html/DNAcopy.html
8http://public.tgen.org/ckingsle/
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Figure 6.3: Contexts with enriched subtypes (on top) and mutations (on bottom).
Contexts that have mRNA as a driver are shown as circles and contexts driven by
aCGH are shown as parallelograms. Red contexts are up-regulated and green are
down-regulated with respect to non-tumor samples. The contexts in shaded area
are contexts with aCGH drivers and mRNA drivens.

The saved interactions were identified as corresponding multi-type context motifs

and we obtained the multi-type contexts consequently.

For enrichment analysis we used the software Enrichment - Annotation Pipeline

for Cellular Contexts (EPICC) to read context motifs from the result of context min-

ing, which is done by a separate cluster computer program for its scalability, and

applies several steps to identify and annotate contexts. This software can be easily

extended to use results from multi-type context-mining.

Biological Interpretation

Quantized copy number data and expression data for 265 GBM samples was input

to a parallel implementation of context-mining algorithm, Expattern, for multi-source
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data. Rules were specified to find mRNA-mRNA, aCGH-mRNA and aCGH-aCGH

interactions. A total of 39K context-motifs were obtained at a corrected p-value of

0.05 for genes or regions belonging to a context-motif. After filtering out context-

motifs with p-value <0.05 (corrected), 3,567 context motifs were obtained out of

which 3,529 were mRNA-mRNA, 167 aCGH-aCGH and 140 were aCGH-mRNA.

Context-motif results were further analyzed using EPICC to form 84 contexts via

graph clustering and annotated with subtype and mutation information. Figure 6.3

illustrates 26 selected contexts that have samples sizes between 5% and 75% of

the total 265 samples. The figure also illustrates subtypes associated with these

contexts.

A total of 11 contexts were found driven by aCGH from which 5 contexts

contained mixed regulation of aCGH and mRNA data types. Such results would

not have been easily identified by methods like CONEXIC and COALESCE when

focusing only on drivers with associated amplified or deleted regions. Multi-type

contexts are listed in Table 6.2, these contexts were regulated by aCGH and have

aCGH /mRNA as drivens. The DNA to expression regulation of genes MTAP in

Context 6, TSFM in Context 7, GSTT1 in Context 35 and SLC35E3 in Context

15 confirm that amplifications /deletions of these regions cause the overexpres-

sion/underexpression of these genes. These results also display other key players

in the contexts which influence or are influenced by the downstream effects of the

aCGH drivers.

Table 6.3 shows the comparison of context subtype enrichment when ap-

plied to single data type (gene expression data, described in last chapter) than

when applied to multi-type data (gene expression and aCGH). Contexts were fil-

tered at p-value 0.05 with number of genes > 10 and number of samples > 15. We

observe a higher number of enriched contexts identified on using multi-type data.

This is because context motifs identified through multi-type integration of data (here,
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Table 6.2: Contexts in which aCGH regions regulate aCGH and mRNA. The entries
in parenthesis (s;e) denote (number of samples; number of entities) identified in
that context. Driver state is represented as D (Deleted) or A (Amplified). Subtype
associated with the context is denoted by italicized text.

Context ID Drivers Drivens Driver Mutations
(s;e) State
Context 6 KIAA1797,IFNB1,IFNW1, MTAP D CENTG1,
(18;85) IFNE1,DKFZp781D1719 DST,TNK2,
Classical IFNA8,FLJ42400,IFNA14,

MTAP,CDKN2A,DMRTA1,
FLJ35282,KLHL9,IFNA2

Context 7 KIAA1002,INHBE,DDIT3, 39149, A DDIT3,FGFR1,
(12;77) ARHGAP9, MARS, GLI1, TSFM MAG,OR5P2,

MBD6,DCTN2,TSPAN31, PDGFRA
GEFT,FLJ39081,INHBC,
CENTG1, CDK4, KIF5A,
METTL1,FAM119B,OS9,
PIP5K2C, DTX3, GEFT,
FAM119B,XRCC6BP1,
SLC26A10, B4GALNT1,
TSFM, AVIL, CTDSP2,
LOC283387,CYP27B1

Context 4 LANCL2,ECOP,PSPH, CHCHD2, A
(11;88) ZNF713, FLJ44060 LANCL2
Context 15 NUP107,MDM2, SLC35E3 A
(15;18) SLC35E3
Context 35 FKSG58, RABIF, KLHL12, GSTT1 D COL11A1,MAG,
(10;6) ADIPOR1, CYB5R1, PDGFRA,RYR3,

TMEM183A, GSTT1 MYO3A,PLAG1

Table 6.3: Subtype enriched contexts identified using single type data (SType) ver-
sus multi-type (MType) GBM data.

Method Filtered Enriched
Contexts Contexts Proneural Neural Classical Mesenchymal

SType Exp 97 7 0 4 0 3
MType Exp 94 20 8 3 3 6

using meta-rules) would be more specific to capture interactivity between different

entity types, e.g., DNA copy number change influencing gene expression within

specific subtype of GBM.
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6.5 Summary

This chapter focuses on integrating multi-source data to learn context specific GRNs.

Most approaches to integrate different types of data usually ignore apriori knowl-

edge of the user and instead treat all data types equally, irrespective of the direc-

tionality of influence between the different sources of data. We provide an innova-

tive way to incorporate information about different data domains as meta rules in

the framework. These guide the learning of context motifs and thereby contexts.

The flow of information is different between different data perspectives. We suc-

cessfully applied the multi-source implementation to aCGH-mRNA data of TCGA

for GBM and found interesting contexts with aCGH drivers. These might have been

lost or not readily identified within the numerous purely aCGH or purely mRNA in-

teractions generated by other comparable methods.
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Chapter 7

IDENTIFYING MULTIVARIATE DRIVER CONTEXT MOTIFS

The framework, in previous chapters, used only one (gene) entity as the driver, i.e.,

applied univariate in-silico conditioning for identifying context motifs from the data.

However, most processes in biology are known to be triggered by the concordant

activity of multiple entities. For example, transcription factors need co-transcription

factors to bind to the promoter region of the gene. To capture such concordant

and combinatorial activity, there is a need to extend the univariate conditioning to

study the combined conditioning effects of multiple entities, i.e., multivariate in-

silico conditioning. The following sections describe some related work, our method

of identifying multivariate drivers and application to Drosophila Melanogaster datset

results.

7.1 Motivation

In eukaryotes, combinatorial and cooperative activity of regulatory factors such

as transcription factors (TFs) and microRNAs (miRNA) regulate the gene expres-

sion [77]. For example, in humans, the regulation of more than 25000 genes is

carried out by less than 2000 TFs. Eukaryotic TFs, individually considered, display

only a modest degree of specificity and affinity in their interactions with ligands [78].

The specificity of transcriptional interactions are instead enforced by transciption

complexes, created through cooperative multiple interactions. It is observed that

transcription complexes have high specificity, even if the constituent interactions

are of low specificity [78]. Similarly, cooperative action of miRNAs has also been

defined through reporter gene assays [79]. Cooperativity therefore provides the

mechanistic basis for reading out combinatorial expression patterns of both TFs

and miRNAs as shown in Figure 7.1 [77]. In this chapter we focus on the combina-

torial conditioning factors, specifically - Transcription Factors(TF).
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From  O Hobert Science 2008;319:1785-1786. Reprinted with permission from AAAS.

Figure 7.1: A schematic visualization of some shared principles of TF and miRNA
action [77].

Hobert et al. [77] discuss and compare gene regulation mechanisms by TFs

and miRNAs (Figure 7.1). For this study, we are interested in combinatorial and

cooperative activity of TF regulation (second row in Figure 7.1). Figure 7.2 (from

the same paper [77]) depicts a cooperative scenario of joint regulation by TF and

miRNA. Such a joint regulatory state would shape the expression profiles of in-

dividual cell types. Individual cell types and/or cellular states are defined by the

expression of gene batteries and their encoded protein products. The specific com-

position of individual gene batteries would be controlled by the regulatory milieu

of a cell, composed of specific combinations of TFs and miRNAs. In the example

shown in Figure 7.2 [77], a combination of TFs can activate expression of a gene,

Gene #1, in two cell types, #1 and #2, but a combinatorial code of repressors pre-
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vents activation in cell type #2. Similarly, another transcription factor code activates

transcription in cell type #3 and #4, but the miRNA code specific to cell type #4, re-

stricts the product of gene #1 to be only expressed in #3. Understandably, through

combinatorial action, a relatively limited set of trans-acting factors is able to define

a vast number of distinct regulatory states [77].

Gene #1 3’UTR

“TF code” in
cell type #1,#2

“TF code” in
cell type #2

“TF code” in
cell type #3,#4

    Cell type
  #1  #2  #3  #4 ....   
Protein #1  +    +    -    +    
Protein #2  -     -    +    +   
Protein #3  +    -    +    -  
......

inaccessible
cis-elements

cis-elementsnucleosome

“miRNA code”
in cell type #4

accessibility constraints
in other cell types?

mRNA #1

Protein #3

From O Hobert Science 2008;319:1785-1786. Reprinted with permission from AAAS.

Figure 7.2: TF and miRNA codes to shape expression profile [77].

7.2 Related Work

Experimental studies are expensive and time consuming to understand the intricate

and complex control of genes. Especially in case of the combinatorial analysis

of regulatory factors, computational analysis becomes a very attractive alternative

to identify regulatory factors acting in concert. Computational approach by Yu et

al.[80] demonstrate that tissue-specific gene expression is generally regulated by

more than a single transcription factor; where non-tissue specific TFs play a large

role in regulation of tissue-specific genes. Furthermore, they show that individual

TFs can contribute to tissue specificity in different tissues by interacting with distinct

TF partners.

Growing interest in combinatorial activity of TFs is also evidenced by the
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popularity of databases such as TRANSCompel R© [81]. TRANSCompel R© [81] fo-

cuses on composite elements (CE), the smallest units of combinatorial transcrip-

tional regulation, characterizing the synergistic or antagonistic effects between the

two transcription factors binding to two or more neighboring binding sites.

Over the years, different computational approaches have been proposed to

identify combinatorial regulations. Among them, Sach Mukherjee et al. [82] used a

statistical model for sparse, noisy Boolean functions and methods to identify combi-

natorial regulation. This was applied to a study of signaling proteins in cancer biol-

ogy. More recent work has been done by Park et al. [83] on extracting combinatorial

Boolean rules of synergistic gene sets from cancer microarray datasets. However,

computational methods to reverse engineer gene regulatory networks commonly

use a simplistic view of single regulatory factor and its target, even though (as out-

lined in Section 7.1) biology has many examples of several variables jointly influenc-

ing an output or response. In this chapter, we extend the framework to model and

capture such consorted regulations which cannot be identified through univariate

in-silico analysis.

7.3 Methodology

In the framework, each gene is first tested as a univariate conditioning factor. If true,

the framework obtains the corresponding context motif. If not, i.e., the gene does

not seem to be driving any other genes on its own, it is added it to the list of can-

didate multivariate drivers. As regulatory factors are known to have low specificity

individually [78], thus coherent activity by corresponding drivens may not be dis-

played in data when evaluated via consistency metrics only (possibly not statistically

significant). However, if we can combine the regulatory elements that constitute the

regulatory complex, the combined effect would display the consistent regulation in

its corresponding drivers.

Once we have the list of candidate multivariate drivers, we can select and
91



combine them, iteratively searching for i-conditioner sets of combinations among

i different genes (i = 2, . . . , k). We use different Boolean operators to obtain the

i-conditioners as explained in the next section. As before, the algorithm will filter

out combinations predicted to yield non-statistically significant conditioned sam-

ple sets before proceeding. This is necessary to ensure the algorithm restricts its

output to significant results only, which will be subsequently considered for biolog-

ical interpretation. Using the filtered list of i-conditioners, the algorithm will identify

corresponding context motifs from the data. These steps will be repeated until a

stopping criterion such as the number of i-conditioners or the number of identified

context motifs is satisfied. Exhaustive search can be considered with the use of the

parallel processing version of the implementation if needed.

Input: Genes G, Samples T , Dataset D = G× T , Number of drivers
combined combinatorially c

Output: List of Multivariate Context Motifs MvarCMList
1 i← 1;
2 while {i ≤ c} do
3 if i == 1 then
4 Obtain contexts from univariate in-silico conditioning;
5 else

/* Create i-conditioner set */

6 Generate new i-conditioners using Boolean operators on i-1
conditioners ;

7 if new i-conditioner drives a context motif then
8 Check significance of derived sample set based on new

i-conditioner;
9 if significant then

10 add to filtered i-conditioner list;
11 end
12 end
13 Use filtered i-conditioner list to identify multivariate context motifs;
14 if i == c then
15 MvarCMList← i-conditioner multivariate context motifs;
16 end
17 end
18 i← i+ 1;
19 end

Algorithm 8: Algorithm for the identification of multivariate context motifs
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We use m and n to denote the total number of genes and samples in data

set, c is the number of conditioners to be combined, l is the list size of candidates

for multivariate i-conditioner set, and k as the user specified number of iterations

for bootstrap sampling to calculate statistical significance. Then the complexity

to identify a single multivariate context motif is O(n3m). The complexity to iden-

tify multivariate context motif for every set of candidate multivariate conditioners is

O(n3mlc). Bootstrap resampling to calculate the statistical significance isO(n4mk).

Thus the complexity of Algorithm 8 is O(n4mk + n3mlc).

Combining Conditioners Using Boolean Operators

We refer to the samples Ti, where the conditioning factor Gi is observed as active,

as the conditioned sample set or context sample set. We apply Boolean oper-

ations such as AND, OR in order to combine gene states and obtain combined

conditioners. The AND operation will be a context motif sample set constraining

operation and OR operation would be a context motif sample set expanding op-

eration. For instance, if we have two context motifs C1 = {G1, Y1, S1, T1} and

C2 = {G2, Y2, S2, T2}, where T1 = {t1, t2, t3} and T2 = {t2, t3, t4}. Then combined

context motif C1.2 = AND(C1, C2) would be the effect of G1 AND G2 on sample set

of combined context motif T1.2 = T1 ∩ T2 = {t2, t3}. As T1.2 ⊂ T1 and T1.2 ⊂ T2, the

AND operation effectively reduces the context motif sample set. Similarly, we can

show that the OR operation effectively increases the context motif sample set.

Transcription Factor Enrichment Ratio

In order to evaluate the number of regulatory factors found by the multivariate anal-

ysis, we investigate if the conditioning factors in the multivariate context motifs are

enriched with regulatory elements such as transcription factors (TFs). Only when

the TFs are flagged as conditioning factors in the context would it count as evi-

dence to assert an enrichment of regulatory elements in the conditioning factor of

the context.
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7.4 Results

Combining conditioners using Boolean operator OR provides alternate drivers or

conditioning pathways that yield the same output expressed by a common set of

drivens. Combining conditioners using Boolean operator AND, however, focuses

on the combinatorial and concerted activity of the conditioning factors. In this sec-

tion, for applying the framework to biological data, we focused on AND operator to

find new contexts that cannot be identified by univariate analysis alone. Also, we

restricted our conditioning set size to i = 2 ,i.e., to combinations of two drivers but

the model is extensible to accommodate any number of driver combinations.

We applied the method to a dataset of D. Melanogaster gene-expression

profiles from 88 experimental conditions hybridized to a total of 267 GeneChip

Drosophila Genome Arrays (Affymetrix, Santa Clara, CA) [84]. It consisted of six

independent investigations studying five different experimental questions namely

aging, immune response, DNA-damage response, resistance to DDT, and embry-

onic development. The dataset had 13,165 genes with RNA samples from both

embryos and adults. The downloaded data was in the form of mean-normalized log

ratios (see [84] for more detail). The data was discretized based-on fold-change

against mean of each gene. In other words, for each gene, if the log ratio differs

from the mean by more than 1.5 folds, it was assigned +1 or -1 depending its direc-

tion of changes. Otherwise, it was assigned 0.

Combinatorial Drivers

We used settings of crosstalk 0.2 and conditioning 0.1 to identify multivariate con-

text motifs (Mvar CMs). We filtered the context motifs at different significance levels

and obtained the results presented in Table 7.1. We noticed that we get a very high

number of multivariate context motifs with same p-values. Thus we could not rank

the multivariate context motifs by p-values. In order to examine the characteristics
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of the identified context motifs, we used an approximation of the number of genes

times the number of samples to rank the multivariate context motifs. Table 7.1 lists

the number of identified multivariate context motifs at different p-value thresholds.

We also list the range of number of drivers found in each case.

Table 7.1: Drosophila Melanogaster data multivariate context motifs identified at
crosstalk of 0.2, conditioning of 0.1 and statistical significance of 0.05.

P(G+|S) Identified Number of
Mvar CMs driven genes

10−4 79 [2492, 3728]
10−3 101,494 [142, 3768]
10−2 1,592,953 [5, 3768]
0.05 4,038,021 [4, 3768]

Transcription Factor Enrichment in Conditioning Factors

In order to evaluate the number of regulatory factors found by the multivariate anal-

ysis, we investigated if the conditioning factors (drivers) in the multivariate context

motifs Ci are enriched with transcription factors (TFs). The TF list for Drosophila

Melanogaster was taken from the FlyTF database [85]. It initially consisted of 753

site-specific TFs but was shortened to 658 according to total gene matches found

across the gene expression data set.

The lists were used to check the conditioning factors of the context motifs

for at least one occurrence of TF. The computed enrichment ratio was the success

rate of context motifs that contain at least one TF in their conditioning factors. TF

regulation is considered when flagged as conditioning factors of the cellular context.

The same property ceases to hold when the gene is considered to be under the

influence of other cellular factors.

Simulation

In order to compare if TF presence is higher in the context motifs extracted by the

algorithm than that by pure chance, re-sampling based simulations were carried out

as follows. We first estimated empirical distribution of the number of conditioning
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factors in each context motif from the identified multivariate context motifs for each

set of p-values (10−2, 10−3, 10−4) using the drivers of top k = 100, 200, 300 and

1000 multivariate context motifs. For each set we found out the list of unique drivers

in that set. Once identified, we mapped them to find out the percentage of TF

presence. Then, Nr (=10,000) random sets of genes of unique driver set sizes

were sampled, using non-repeating Bootstrap sampling. Following the empirical

distribution, the enrichment percentage of TFs was calculated. This was used to

find the p-value of observing as many or more TFs in the driver set as found in the

real case.

Table 7.2: Drosophila Melanogaster data multivariate context motifs. Probability
of obtaining that many or more TF matches among uniquely chosen drivers via
non-repeating Bootstrap resampling.

P-value Top k TF driven Number of TF match P(TFMatch+)
Mvar CMs Mvar CMs unique drivers unique drivers

10−4 79 28 56 7 0.0103
10−3 100 34 48 5 0.0538

200 69 85 7 0.0404
500 150 189 16 0.0117
1000 273 274 22 0.0106

10−2 100 18 44 5 0.0256
200 33 66 6 0.0578
500 111 124 9 0.0504
1000 200 187 13 0.0808

As observed in Table 7.2, the probability of observing as many or higher

number of TFs by chance via random sampling is very low. This shows that these

statistically significant multivariate context motifs identified more regulatory factors

(TFs) than possible by random chance alone. To provide a comparison with the

univariate case, Expattern only returned 37 univariate context motifs at p-value of

10−4, of which only three context motifs had a TF as a driver. Thus univariate

context motifs cannot effectively capture combinatorial regulatory interactions. Ta-

ble 7.2 shows Expattern can be applied to situations where the combinatorial ef-

fect of different regulatory factors are at play. The contexts identified through this
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method would give us a better in-silico insight into possible regulatory pathways and

combinations hitherto unknown.

7.5 Summary

In this chapter we identified multivariate conditioning factors belonging to statisti-

cally significant context motifs. We used the gene expression data of Drosophila

Melanogaster, and mapped the identified multivariate conditioning factors to tran-

scription factors, a class of known regulatory elements. Comparison results show

that there is enrichment of TFs in the actual contexts sorted by p-values than ran-

dom contexts, generated by re-sampling based simulation. This approach can be

applied to the study of any organism or complex disease where the interplay of myr-

iad factors propels the system to different phenotypic outcomes. For example, the

study of human cancer data to identify conditioning factors required to function in

concert for cancer development. The multivariate contextual outcome of the frame-

work can be employed to advance hypotheses about hitherto unknown biological

entities (e.g.: miRNA, kinases, gene expression) required to be working in concert

to yield particular cellular pathologies.
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Chapter 8

CONCLUSION

Inference of context specific gene regulatory networks from available biological data

is a highly challenging problem of computational systems biology. Briefly, the chal-

lenges are four fold – identifying an appropriate mathematical model, learning in-

dividual interactions, building a network from identified interactions and developing

a method for validation. In this dissertation we have developed and presented a

computational framework that meets these challenges to model and learn context

specific GRNs from multi-source data. In this chapter, we summarize the key con-

tributions of this dissertation and discuss directions for future research.

8.1 Key Contributions
Developed Framework To Learn csGRNs

One of the main contributions of this dissertation is the development of a systematic

computational framework, ExPattern, to learn context specific GRNs. This entailed

many critical tasks, the first of which was the formulation of the biological problem

into an equivalent computational problem (chapter 1). We used contextual genomic

regulation mathematical model, an appropriate mathematical model for capturing

the notions of contextual consistency. We formally defined a set of constructs in the

framework – measures of consistency (conditioning and crosstalk), cellular con-

text motifs (interactions) and cellular contexts (networks)(section 3.2). This model

differs from other gene set dependency models in that it learns about the gene

modules and their dependency structure simultaneously from data rather than from

predefined gene sets.

Comparable module identification or biclustering methods just output a col-

lection of thousands of modules or biclusters without integrating the results to pro-

vide a comprehensible set of network or graph solution. We developed the in-silico

conditioning method to identify cellular context motifs and agglomerated these into
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sample annotated comprehensible set of context specific networks. We also de-

fined a unique way of scoring the contexts and identify functionally or biologically

significant contexts. The score, Sample Association Score, focuses on the enriched

presence of tissue type from samples (in chapter 4, Section 4.3). Other GRN re-

verse engineering methods do not take into account the sample composition of the

modules or rather assume the interactions are valid across the entire sample set. In

our case however, each context represents a different configuration of samples and

it is interesting to observe enriched sample or tissue type capturing the phenotypic

basis of the context specific GRN.

Created Artificial Contextual Networks for Framework Validation

In this thesis we present an innovative method to create artificial contextual GRNs

and its associated data to validate the results of different reverse engineering al-

gorithms (Chapters 4,5). In order to use these synthetic data sets to validate the

context-specific GRNs produced through the cellular context mining technique, we

avoid bias by generating the networks by a method other than that which we want to

validate. We used the benchmark artificial network generator A-biochem to create

contextual networks. A-biochem has been used extensively for testing the per-

formance of reverse engineering algorithms in Dialogue for Reverse Engineering

Assessments and Methods (DREAM). However, popular artificial network genera-

tors assume a single underlying network and do not have contextual information

embedded in the network or the data. To our knowledge, no one else has designed

or created artificial contextual networks. We randomly combined individual artificial

networks generated by A-biochem, treating each as a unique context, and com-

bined the corresponding data to generate contextual gene expression data. We

compared the performance of our method with other popular GRN reverse engi-

neering methods (Chapter 4).
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Developed Innovative Strategies To Prune Extraneous Edges

We introduced unique ways of pruning extraneous edges to reduce the false posi-

tives from the context specific GRNs (Chapter 5). GRNs learned by the framework

(method outlined in Chapter 4) are often made of a few thousand nodes (genes)

and tens of thousands of interactions rendering interpretation of the network almost

impossible. Large amount of redundancy in the network, especially with overlap-

ping contexts adds to the difficulty in interpretation. We observed on comparison

of the performance of our framework with other methods that even though Expat-

tern identified a higher percentage of true edges the overall scores of precision

and f-measure were low because of high number of false positive edges. In order

to compensate for quantization effects and network redundancy on increased false

positive edges found through our method, we developed context-specific GRN prun-

ing methods. In our experiments with artificial contextual networks, the strategies

successfully removed extraneous edges, reducing false positives (by 50% - 70%)

without losing more than 10% of true positives by exploiting relationships between

the consistency metrics - crosstalk and conditioning (Chapter 5).

Integrated Multiple Sources of Data

Popular approaches to integrate data from multiple sources do not distinguish be-

tween data types, treating all equally in the mathematical framework to generate

corresponding interactions. For obtaining biologically meaningful interactions we

allow the users to include apriori knowledge as meta-rules (Chapter 6) in Expat-

tern to guide the search of context motifs and thereby contexts. For example, we

observe that interactions between entities of the same data types has a stronger

correlation (low crosstalk and conditioning) than interactions between entities of dif-

ferent types. Thus any method to integrate data from different biological domains

for learning, needs to taking into account this difference. We applied our method
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to NCI60 drug activity and gene expression data and inferred mechanism of action

for a drug with unknown mechnism of action. We also applied our method to TCGA

data and obtained interesting contexts which combined aCGH and gene expression

data (Chapter 6).

Identified Combinatorial Conditioning Factors

We extended the framework to identify complex conditioning factors, using Boolean

operations to identify combinatorial conditioning factors and restricting the search

space using the sizes of samples to be considered. Focusing on transcription fac-

tors we found that univariate contexts do not show much enrichment of TFs. This

is understandable as research shows that TFs are not specific, it is only in com-

bination with its co-factors that the TFs show deterministic transcriptional activity

with high specificity. In order to identify such combinatorial regulatory factors, we

applied the multivariate contextual analysis of Expattern to a dataset of Drosophila

M. We used Bootstrap resampling method to estimate the probability of finding as

many or more transcriptional factors as found by Expattern. Our results show very

low p-values, making the multivariate contextual networks identified by Expattern

as statistically significant with TF enriched conditioning factors (Chapter 7).

8.2 Future Directions

We discuss several interesting directions for future work here.

1. Currently our framework quantizes the data as a preprocessing step before

calculating the consistency metrics. This step enforces a dependency on the

quantization and normalization method used. Using the continuous values

instead of discrete values of data in the framework might restrict the loss of

information by quantization step. A necessary prerequisite would be the as-

sumption of an underlying probability distribution of the data and mathemati-

cal redefinitions of consistency metrics conditioning, crosstalk and statistical
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significance of context motifs for continuous values.

2. We applied the framework to finding combinatorial conditioners and integrat-

ing multi-source data separately. An interesting next step would be to combine

the methods of both multivariate and multi-type runs to guide the identification

of combinatorial multi type conditioning factors. It would require an assess-

ment of the kind of apriori knowledge to be included for identifying context

motifs. For example, what kind of multivariate combinations would be allowed

given the types of data sources and strengths of interactions. For such a

scenario, the next challenge would be the validation of the obtained results.

Also, if we want to reduce extraneous edges in this network, some modifi-

cations to pruning strategies would have to be made. For example, whether

the data type composition of extraneous edges would influence the edges to

be removed? Finally, the interpretation of results would pose a challenge as

– what would the edges and contexts mean when observing combinatorial

drivers of different types of data ?

3. Currently we validated our results using different artificial datasets. Under-

standably, different network characteristics would influence the obtained struc-

ture of graphs when we apply different pruning strategies. A more rigorous

study of different artificial networks and run outcomes would provide us a bet-

ter picture of which types of networks would be more suitable for the different

pruning strategies. For example, scale-free pruning uses the assumption of

the original graph having scale free characteristics. How poorly would the

method perform on networks that are not scale free?

4. Expattern executions for multi-source data used apriori knowledge of biolo-

gists to assign strengths and relationships between different data types. We

can also run Expattern in an exploratory mode, by automating runs for differ-
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ent settings and evaluating contexts based on different criteria. This can help

us determine optimal settings for multi-type interactions. It is important to re-

alize that the context evaluation is very highly dependent on the question the

biologist is interested in and the outcomes (optimal settings) would change

depending on the evaluation criteria.

Current computational approaches employed for bioinformatics research are

geared towards unraveling underlying regulatory mechanisms from high throughput

data. Purely logical or statistical approaches employed for hypothesis generation

needs to be corroborated with biological evidence to confirm validity of assumed

models. This thesis provides an approach to bridge statistical output with biologi-

cal interpretation. To summarize, in this dissertation work we successfully modeled

and learned context specific Gene Regulatory Networks from multi-source data.

We applied it to both artificial datasets as well as real world biological data, focus-

ing mainly on heterogeneous disease such as cancer. Functional enrichment and

annotation helped validate the results obtained. We developed a unique method

using apriori biological knowledge to integrate different data sources and identify

contextual networks. We introduced an innovative way to reduce extraneous edges

from the context specific GRNs and extended the framework to identify combinato-

rial conditioning factors to build contexts. We believe the computational framework

Expattern is a unique and powerful exploratory tool for computational biologists,

easily extensible to integrate multiple sources of data and identify combinatorial

conditioning factors at play. We believe that this tool will definitely aid in under-

standing the underlying systems biology mechanisms of heterogeneous diseases

such as cancers.
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the Fifth Conference on Uncertainty in Artificial Intelligence. Citeseer, 1999,
pp. 206–215.

[16] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using Bayesian Networks
to Analyze Expression Data,” Journal of Computational Biology, vol. 7, no. 3-4,
pp. 601–620, 2000.

[17] M. Zou and S. Conzen, “A new dynamic Bayesian network (DBN) approach
for identifying gene regulatory networks from time course microarray data,”
Bioinformatics, vol. 21, no. 1, pp. 71–79, 2005.

[18] J. Pearl, Causality: Models, reasoning, and inference. Cambridge Univ Pr,
2000.

[19] P. Mendes, W. Sha, and K. Ye, “Artificial gene networks for objective compar-
ison of analysis algorithms,” Bioinformatics, vol. 19, no. 90002, pp. 122–129,
2003.

[20] B. Haynes and M. Brent, “Benchmarking regulatory network reconstruction
with GRENDEL,” Bioinformatics, vol. 25, no. 6, p. 801, 2009.

[21] T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Ver-
schoren, B. De Moor, and K. Marchal, “SynTReN: a generator of synthetic gene
expression data for design and analysis of structure learning algorithms,” BMC
bioinformatics, vol. 7, no. 1, p. 43, 2006.

105



[22] P. Erdos and A. Renyi, “On random graphs,” Publ. Math. Debrecen, vol. 6, no.
290-297, p. 156, 1959.

[23] A. Bild, G. Yao, J. Chang, Q. Wang, A. Potti, D. Chasse, M. Joshi, D. Harpole,
J. Lancaster, A. Berchuck et al., “Oncogenic pathway signatures in human
cancers as a guide to targeted therapies,” Nature, vol. 439, no. 7074, p. 353,
2006.

[24] Y. Saeys, I. Inza, and P. Larranaga, “A review of feature selection techniques
in bioinformatics,” Bioinformatics, vol. 23, no. 19, p. 2507, 2007.

[25] S. Liang, S. Fuhrman, R. Somogyi et al., “REVEAL, a general reverse en-
gineering algorithm for inference of genetic network architectures,” in Pacific
Symposium on Biocomputing, vol. 3, no. 18-29. Citeseer, 1998, p. 22.

[26] T. Cover and J. Thomas, Elements of information theory. Wiley, 2006.

[27] E. Segal, N. Friedman, D. Koller, and A. Regev, “A module map showing condi-
tional activity of expression modules in cancer,” Gene expression, vol. 1, p. 45,
2004.

[28] A. Tanay, R. Sharan, and R. Shamir, “Discovering statistically significant bi-
clusters in gene expression data,” Bioinformatics, vol. 18, no. suppl 1, p. S136,
2002.

[29] F. Shi, C. Leckie, G. MacIntyre, I. Haviv, A. Boussioutas, and A. Kowalczyk,
“A bi-ordering approach to linking gene expression with clinical annotations in
gastric cancer,” BMC bioinformatics, vol. 11, no. 1, p. 477, 2010.

[30] A. Bhattacharya and R. De, “Bi-correlation clustering algorithm for determining
a set of co-regulated genes,” Bioinformatics, vol. 25, no. 21, p. 2795, 2009.

[31] E. Segal, M. Shapira, A. Regev, D. PeŠer, D. Botstein, D. Koller, and N. Fried-
man, “Module networks: Discovering regulatory modules and their condition
specific regulators from gene expression data,” Nature genetics, vol. 34, no. 2,
pp. 166–176, 2003.

[32] M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, J. Cherry, A. Davis,
K. Dolinski, S. Dwight, J. Eppig et al., “Gene Ontology: tool for the unification
of biology,” Nature genetics, vol. 25, no. 1, pp. 25–29, 2000.

106



[33] M. Kanehisa and S. Goto, “Kegg: Kyoto encyclopedia of genes and genomes,”
Nucleic acids research, vol. 28, no. 1, p. 27, 2000.

[34] K. Dahlquist, N. Salomonis, K. Vranizan, S. Lawlor, and B. Conklin, “Genmapp,
a new tool for viewing and analyzing microarray data on biological pathways,”
Nature genetics, vol. 31, no. 1, pp. 19–20, 2002.

[35] A. Joshi, R. De Smet, K. Marchal, Y. Van de Peer, and T. Michoel, “Module
networks revisited: computational assessment and prioritization of model pre-
dictions,” Bioinformatics, vol. 25, no. 4, p. 490, 2009.

[36] U. Akavia, O. Litvin, J. Kim, F. Sanchez-Garcia, D. Kotliar, H. Causton,
P. Pochanard, E. Mozes, L. Garraway, and D. Pe’er, “An integrated approach
to uncover drivers of cancer,” Cell, 2010.

[37] C. Huttenhower, K. Mutungu, N. Indik, W. Yang, M. Schroeder, J. Forman,
O. Troyanskaya, and H. Coller, “Detailing regulatory networks through large
scale data integration,” Bioinformatics, vol. 25, no. 24, p. 3267, 2009.

[38] A. Butte and I. Kohane, “Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements,” in Pac Symp Bio-
comput, vol. 5. Citeseer, 2000, pp. 418–429.

[39] A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla Fav-
era, and A. Califano, “ARACNE: an algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context,” BMC Bioinformatics,
vol. 7, no. Suppl 1, p. S7, 2006.

[40] J. Yu, V. Smith, P. Wang, A. Hartemink, and E. Jarvis, “Advances to Bayesian
network inference for generating causal networks from observational biological
data,” Bioinformatics-Oxford, vol. 20, no. 18, pp. 3594–3603, 2004.

[41] S. Mukherjee and S. Hill, “Network clustering: probing biological heterogeneity
by sparse graphical models,” Bioinformatics, 2011.

[42] E. Dougherty, M. Brun, J. Trent, and M. Bittner, “Conditioning-Based Model-
ing of Contextual Genomic Regulation,” IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, vol. 29, 2007.

[43] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate: A Practi-
cal and Powerful Approach to Multiple Testing,” Journal of the Royal Statistical
Society. Series B (Methodological), pp. 289–300, 1995.

107



[44] T. Michoel, R. De Smet, A. Joshi, Y. Van de Peer, and K. Marchal, “Compar-
ative analysis of module-based versus direct methods for reverse-engineering
transcriptional regulatory networks,” BMC systems biology, vol. 3, no. 1, p. 49,
2009.

[45] M. Li, I. Wang, Y. Li, A. Bruzel, A. Richards, J. Toung, and V. Cheung,
“Widespread rna and dna sequence differences in the human transcriptome,”
Science, 2011.

[46] S. van Dongen, “Graph Clustering by Flow Simulation,” University of Utrecht,
2000.

[47] I. Sen, M. Verdicchio, S. Jung, R. Trevino, M. Bittner, and S. Kim, “Context-
Specific Gene Regulations In Cancer Gene Expression Data,” in Pacific Sym-
posium on Biocomputing Conference, 2009.

[48] M. Rivas, R. Carnevale, C. Proietti, C. Rosemblit, W. Beguelin, M. Salatino,
E. Charreau, I. Frahm, S. Sapia, P. Brouckaert et al., “TNFα acting on TNFR1
promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-κB-
dependent pathways,” Experimental Cell Research, vol. 314, no. 3, pp. 509–
529, 2008.

[49] J. Burton, S. Ely, P. Reddy, R. Stein, D. Gold, T. Cardillo, and D. Goldenberg,
“CD74 is expressed by multiple myeloma and is a promising target for therapy,”
pp. 6606–6611, 2004.

[50] S. Oldford, J. Robb, D. Codner, V. Gadag, P. Watson, and S. Drover, “Tu-
mor cell expression of HLA-DM associates with a Th1 profile and predicts
improved survival in breast carcinoma patients,” International immunology,
vol. 18, no. 11, p. 1591, 2006.

[51] Y. Hao, J. Wang, N. Feng, and A. Lowe, “Determination of plasma glycopro-
tein 2 levels in patients with pancreatic disease,” Archives of Pathology and
Laboratory Medicine, vol. 128, pp. 668–674, 2004.

[52] M. Eisen, P. Spellman, P. Brown, and D. Botstein, “Cluster analysis and display
of genome-wide expression patterns,” pp. 14 863–14 868, 1998.

[53] M. de Hoon, S. Imoto, J. Nolan, and S. Miyano, “Open source clustering soft-
ware,” Bioinformatics, vol. 20, no. 9, p. 1453, 2004.

108



[54] S. Baswana, “Dynamic algorithms for graph spanners,” Lecture Notes in Com-
puter Science, vol. 4168, p. 76, 2006.

[55] D. Peleg and A. Schäffer, “Graph spanners,” Journal of graph theory, vol. 13,
no. 1, pp. 99–116, 1989.

[56] V. Dubois, C. Bothorel, R. France Telecom, and F. Lannion, “Transitive reduc-
tion for social network analysis and visualization,” in Web Intelligence, 2005.
Proceedings. The 2005 IEEE/WIC/ACM International Conference on, 2005,
pp. 128–131.

[57] K. Kyoda, M. Morohashi, S. Onami, and H. Kitano, “A gene network infer-
ence method from continuous-value gene expression data of wild-type and
mutants,” Genome Informatics Series, pp. 196–204, 2000.

[58] R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E. Sontag, A. Zelikovsky, and
K. Westbrooks, “A novel method for signal transduction network inference from
indirect experimental evidence,” Journal of Computational Biology, vol. 14,
no. 7, pp. 927–949, 2007.

[59] Y. Saab, “A fast and effective algorithm for the feedback arc set problem,”
Journal of Heuristics, vol. 7, no. 3, pp. 235–250, 2001.

[60] A. Sixtus and S. Ortmanns, “High quality word graphs using forward-backward
pruning,” vectors, vol. 10, p. 1, 1999.

[61] T. Kuhn, P. Fetter, A. Kaltenmeier, and P. Regel-Brietzmann, “DP-based word-
graph pruning,” in IEEE International Conference On Acoustics Speech And
Signal Processing, vol. 2, 1996.

[62] H. Lähdesmäki, I. Shmulevich, and O. Yli-Harja, “On learning gene regulatory
networks under the Boolean network model,” Machine Learning, vol. 52, no. 1,
pp. 147–167, 2003.

[63] B. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d’Alche Buc,
“Gene networks inference using dynamic Bayesian networks,” Bioinformatics-
Oxford, vol. 19, no. 2, pp. 138–148, 2003.

[64] S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano, “Com-
bining microarrays and biological knowledge for estimating gene networks
via Bayesian networks,” Journal of Bioinformatics and Computational Biology.,
vol. 2, no. 1, pp. 77–98, 2004.

109



[65] A. Ramesh, R. Trevino, D. Von Hoff, and S. Kim, “Clustering Context-Specific
Gene Regulatory Networks.” in Proceedings of the Pacific Symposium on Bio-
computing, 2010, pp. 444–455.

[66] R. Albert, “Scale-free networks in cell biology,” Journal of cell science, vol.
118, no. 21, p. 4947, 2005.

[67] A. Barabási and Z. Oltvai, “Network biology: understanding the cell’s functional
organization,” Nature Reviews Genetics, vol. 5, no. 2, pp. 101–113, 2004.

[68] S. Draghici, P. Khatri, A. Eklund, and Z. Szallasi, “Reliability and reproducibility
issues in DNA microarray measurements,” TRENDS in Genetics, vol. 22, no. 2,
pp. 101–109, 2006.

[69] E. Dougherty, “Small sample issues for microarray-based classification,” Com-
parative and Functional Genomics, vol. 2, no. 1, pp. 28–34, 2001.

[70] O. Troyanskaya, K. Dolinski, A. Owen, R. Altman, and D. Botstein, “A Bayesian
framework for combining heterogeneous data sources for gene function pre-
diction (in Saccharomyces cerevisiae),” Proceedings of the National Academy
of Sciences of the United States of America, vol. 100, no. 14, p. 8348, 2003.

[71] C. Myers and O. Troyanskaya, “Context-sensitive data integration and predic-
tion of biological networks,” Bioinformatics, vol. 23, no. 17, p. 2322, 2007.

[72] D. Ross, U. Scherf, M. Eisen, C. Perou, C. Rees, P. Spellman, V. Iyer, S. Jef-
frey, M. Van de Rijn, M. Waltham et al., “Systematic variation in gene expres-
sion patterns in human cancer cell lines,” nature genetics, vol. 24, no. 3, pp.
227–235, 2000.

[73] J. Rae, S. Ramus, M. Waltham, J. Armes, I. Campbell, R. Clarke, R. Barndt,
M. Johnson, and E. Thompson, “Common origins of MDA-MB-435 cells from
various sources with those shown to have melonoma properties,” Clinical and
Experimental Metastasis, vol. 21, no. 6, pp. 543–552, 2004.

[74] J. Rae, C. Creighton, J. Meck, B. Haddad, and M. Johnson, “MDA-MB-435
cells are derived from M14 Melanoma cells—-a loss for breast cancer, but a
boon for melanoma research,” Breast cancer research and treatment, vol. 104,
no. 1, pp. 13–19, 2007.

110



[75] T. Jenssen, A. Lægreid, J. Komorowski, and E. Hovig, “A literature network of
human genes for high-throughput analysis of gene expression,” Nature Genet-
ics, vol. 28, no. 1, pp. 21–28, 2001.

[76] B. Zeeberg, W. Feng, G. Wang, M. Wang, A. Fojo, M. Sunshine,
S. Narasimhan, D. Kane, W. Reinhold, S. Lababidi et al., “GoMiner: a re-
source for biological interpretation of genomic and proteomic data,” Genome
Biol, vol. 4, no. 4, p. R28, 2003.

[77] O. Hobert, “Gene regulation by transcription factors and micrornas,” Science,
vol. 319, no. 5871, p. 1785, 2008.

[78] A. Frankel and P. Kim, “Modular structure of transcription factors: implications
for gene regulation,” Cell, vol. 65, no. 5, pp. 717–719, 1991.

[79] P. Sætrom, B. Heale, O. Snøve, L. Aagaard, J. Alluin, and J. Rossi, “Distance
constraints between microrna target sites dictate efficacy and cooperativity,”
Nucleic Acids Research, vol. 35, no. 7, p. 2333, 2007.

[80] X. Yu, J. Lin, D. Zack, and J. Qian, “Computational analysis of tissue-specific
combinatorial gene regulation: predicting interaction between transcription fac-
tors in human tissues,” Nucleic acids research, vol. 34, no. 17, p. 4925, 2006.

[81] O. Kel-Margoulis, A. Kel, I. Reuter, I. Deineko, and E. Wingender,
“TransCompel R©: a database on composite regulatory elements in eukaryotic
genes,” Nucleic acids research, vol. 30, no. 1, p. 332, 2002.

[82] S. Mukherjee, S. Pelech, R. Neve, W. Kuo, S. Ziyad, P. Spellman, J. Gray,
and T. Speed, “Sparse combinatorial inference with an application in cancer
biology,” Bioinformatics, vol. 25, no. 2, p. 265, 2009.

[83] I. Park, K. Lee, and D. Lee, “Inference of combinatorial boolean rules of syn-
ergistic gene sets from cancer microarray datasets,” Bioinformatics, vol. 26,
no. 12, p. 1506, 2010.

[84] P. Spellman and G. Rubin, “Evidence for large domains of similarly expressed
genes in the drosophila genome,” Journal of Biology, vol. 1, no. 1, p. 5, 2002.

[85] B. Adryan and S. Teichmann, “Flytf: a systematic review of site-specific
transcription factors in the fruit fly drosophila melanogaster,” Bioinformatics,
vol. 22, no. 12, p. 1532, 2006.

111



Appendix A

MATHEMATICAL PROOFS
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A.1 Mathematical definitions

Here, we use the shorthand of gene name (say X) to denote gene X is in active

state, i.e. yx = 1, where yx is the activity state of the gene X and 1 represents the

activity level. Similarly, X ′ denotes gene X is not in active state, i.e. yx 6= 1. If we

assume A to be the true driver gene and B, C to be driven genes in GRN H, the

values of crosstalk and conditioning of induced edges could be calculated on the

basis of the following formulas and definitions. Let δθ = threshold for δ (conditioning)

and ηθ = threshold for η (crosstalk). Crosstalk and Conditioning formulas:

δab = 1− Pr(yb = 1|ya = 1) ≡ 1− Pr(B|A)

ηab = Pr(yb = 1|ya 6= 1) ≡ Pr(B|A′)

δbc = 1− Pr(yc = 1|yb = 1) ≡ 1− Pr(C|B)

ηbc = Pr(yc = 1|yb 6= 1) ≡ Pr(C|B′)

δac = 1− Pr(yc = 1|ya = 1) ≡ 1− Pr(C|A)

ηac = Pr(yc = 1|ya 6= 1) ≡ Pr(C|A′)

A.2 Transitive Edges

We assume A to be the true driver gene and B to be the true driven gene in one

context motif and B to be the true driver gene and C to be the true driven gene in

another context motif. Then both edges AB, BC present in GRN G, the induced

values of crosstalk and conditioning of edge AC can be calculated as follows. To

estimate:

δac = 1− Pr(yc = 1|ya = 1) ≡ 1− Pr(C|A)

ηac = Pr(yc = 1|ya 6= 1) ≡ Pr(C|A′)
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Theorem A.2.1 (Transitive Edge Conditioning) Given the values of conditioning

and crosstalk of edges AB, BC as above,

δac ≥ [δab (1− ηbc) + δbc (1− δab)] + [ηbc (1− ηab)− ηabδbc] γA (A.1)

where

γA =
Pr(A′)

Pr(A)
=

1− Pr(A)

Pr(A)
.

Proof. In order to find δac, we first compute the expected value of Pr(C|A).

Pr(C|A) =
Pr(A,C)

Pr(A)
=

Pr(A,B,C)

Pr(A)
+

Pr(A,B′, C)

Pr(A)

Expanding,

Pr(A,B,C) = Pr(C,B) + Pr(A)− Pr (A ∪ (B,C))

= Pr(C|B) · Pr(B) + Pr(A)− Pr (A ∪ (B,C))

Similarly,

Pr(A,B′, C) = Pr(C|B′) · Pr(B′) + Pr(A)− Pr (A ∪ (B′, C)) (A.2)

Substituting,

Pr(C|A) = Pr(C|B) · Pr(B)

Pr(A)
+ 1− Pr(A ∪ (B,C))

Pr(A)
+ Pr(C|B′) · Pr(B′)

Pr(A)
+ 1− Pr(A ∪ (B′, C))

Pr(A)

= Pr(C|B) · Pr(B)

Pr(A)
+ Pr(C|B′) · Pr(B′)

Pr(A)
+ 2− Pr (A ∪ (B,C)) + Pr (A ∪ (B′, C))

Pr(A)
.

As

Pr(A ∪ (B ∩ C)) + Pr(A ∪ (B′ ∩ C)) = Pr(A) + Pr(A ∪ C), (A.3)

Pr(C|A) = Pr(C|B) · Pr(B)

Pr(A)
+ Pr(C|B′) · Pr(B′)

Pr(A)
+ 2− Pr(A) + Pr(A ∪ C)

Pr(A)

= (1− δbc) ·
Pr(B)

Pr(A)
+ ηbc ·

Pr(B′)

Pr(A)
+

(
1− Pr(A ∪ C)

Pr(A)

)
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If we assume ηac ≥ ηab then:

ηac ≥ ηab

⇔ Pr(C|A′) ≥ Pr(B|A′)

⇔ Pr(C|A′) · Pr(A′) ≥ Pr(B|A′) · Pr(A′)

⇔ Pr(A′, C) ≥ Pr(A′, B)

⇔ Pr(C)− Pr(A,C) ≥ Pr(B)− Pr(A,B)

⇔ Pr(A) + Pr(C)− Pr(A,C) ≥ Pr(A) + Pr(B)− Pr(A,B)

⇔ Pr(A ∪ C) ≥ Pr(A ∪B)

⇔ Pr(A ∪ C)

Pr(A)
≥ Pr(A ∪B)

Pr(A)

⇔ 1− Pr(A ∪ C)

Pr(A)
≤ 1− Pr(A ∪B)

Pr(A)
.

Using 1− Pr(A∪C)
Pr(A)

≤ 1− Pr(A∪B)
Pr(A)

,

Pr(C|A) ≤ (1− δbc) ·
Pr(B)

Pr(A)
+ ηbc ·

Pr(B′)

Pr(A)
+

(
1− Pr(A ∪B)

Pr(A)

)
1− δac ≤ (1− δbc) ·

Pr(B)

Pr(A)
+ ηbc ·

Pr(B′)

Pr(A)
+

(
1− Pr(A) + Pr(B)− Pr(A,B)

Pr(A)

)
1− δac ≤ (1− δbc) ·

Pr(B)

Pr(A)
+ ηbc ·

Pr(B′)

Pr(A)
+

(
−Pr(B) + Pr(A,B)

Pr(A)

)
1− δac ≤ (1− δbc − 1) · Pr(B)

Pr(A)
+ ηbc ·

Pr(B′)

Pr(A)
+ Pr(B|A)

1− δac ≤ −δbc ·
Pr(B)

Pr(A)
+ ηbc ·

Pr(B′)

Pr(A)
+ (1− δab)

∴ δac ≥ δab + δbc ·
Pr(B)

Pr(A)
− ηbc

(
1− Pr(B)

Pr(A)

)
.

To simplify it further,

ηab = Pr(B|A′) =
Pr(B,A′)

Pr(A′)
=

Pr(B)− Pr(A,B)

Pr(A′)

=
Pr(B)− (1− δab) Pr(A)

Pr(A′)

∴ Pr(B) = ηab Pr(A′) + (1− δab) Pr(A).
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Substituting,

∴ δac ≥ δab + δbc ·
ηab Pr(A′) + (1− δab) Pr(A)

Pr(A)
− ηbc

(
1− ηab Pr(A′)− (1− δab) Pr(A)

Pr(A)

)
= δab + δbc ·

{
ηab

Pr(A′)

Pr(A)
+ (1− δbc)

}
− ηbc

Pr(A)
+ ηabηbc

Pr(A′)

Pr(A)
+ (1− δab) ηbc

= δab + (δbc + ηbc)

(
ηab

Pr(A′)

Pr(A)
+ 1− δab

)
− ηbc

Pr(A)
.

Let

γA =
Pr(A′)

Pr(A)
=

1− Pr(A)

Pr(A)
,

then

Pr(A′) =
γA

1 + γA
, and Pr(A) =

1

1 + γA
.

Again, substituting, and rearranging terms

∴ δac ≥ δab + (δbc + ηbc) (ηabγA + 1− δab)− ηbc (1 + γA)

= δab + (δbc + ηbc) ηabγA + (δbc + ηbc) (1− δab)− ηbc − ηbcγA

= [δab (1− ηbc) + δbc (1− δab)]− [ηab (δbc + ηbc)− ηbc] γA

= [δab (1− ηbc) + δbc (1− δab)] + [ηbc (1− ηab)− ηabδbc] γA.

�

Now, given conditioning and crosstalk values as above, we can derive the

expected value of transitive crosstalk as follows.

Theorem A.2.2 (Transitive Edge Crosstalk) Assume if δac > δbc, i.e., Pr(C|A) <

Pr(C|B), then

ηac >
ηbc · γB + αbc · {αab − 1}

γA
(A.4)

where

αab =
Pr(B)

Pr(A)
,

and γA and γB given as above.
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Proof.

δac > δbc

⇒ 1− Pr(C|A) > 1− Pr(C|B)

⇒ Pr(C|B) > Pr(C|A)

⇒ Pr(C,B)

Pr(B)
>

Pr(C,A)

Pr(A)

⇒ Pr(C,B) > Pr(C,A) · Pr(B)

Pr(A)

⇒ Pr(C)− Pr(C|B′) · Pr(B′) > {Pr(C)− Pr(C|A′) Pr(A′)} · Pr(B)

Pr(A)

⇒ Pr(C) ·
{

1− Pr(B)

Pr(A)

}
+ Pr(C|A′) · Pr(A′) · Pr(B)

Pr(A)
> Pr(C|B′) · Pr(B′)

⇒ Pr(C) ·
{

1− Pr(B)

Pr(A)

}
+ ηac ·

Pr(A′)

Pr(A)
· Pr(B) > ηbc · Pr(B′)

⇒ ηac >
ηbc · Pr(B′)− Pr(C) ·

{
1− Pr(B)

Pr(A)

}
Pr(B) · Pr(A′)

Pr(A)

⇒ ηac >
ηbc · Pr(B

′)
Pr(B)

+ Pr(C)
Pr(B)

·
{

Pr(B)
Pr(A)

− 1
}

Pr(A′)
Pr(A)

Let

αab =
Pr(B)

Pr(A)
(A.5)

If we are given δab < δθ where δθ is the conditioning threshold value, then αab >

1− δθ as

δab < δθ

1− Pr(B|A) < δθ

Pr(B|A) > 1− δθ

Pr(A,B) > {1− δθ} · Pr(A)

Pr(B) > Pr(A,B) > {1− δθ} · Pr(A)

Pr(B)

Pr(A)
> 1− δθ

αab > 1− δθ
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Substituting back we can write,

ηac >
ηbc · γB + αbc · {αab − 1}

γA

�

A.3 Sibling Edges

We assume A to be the true driver gene and B,C to be the true driven genes, with

edges AB, AC present in GRN H, the induced values of crosstalk and conditioning

of edge BC can be calculated as follows. To estimate:

δbc = 1− Pr(yc = 1|yb = 1) ≡ 1− Pr(C|B)

ηbc = Pr(yc = 1|yb 6= 1) ≡ Pr(C|B′)

Theorem A.3.1 (Sibling Edge Conditioning) Given the values of conditioning and

crosstalk of edges AB and AC, if we assume ηbc ≥ ηac, i.e. Pr(C|B′) ≥ Pr(C|A′),

then

δbc ≥ 1− {(1− δac) · αba + ηac · (1− αba)} (A.6)

where αba is defined similarly as above.

Proof. In order to find δbc, we first compute the expected value of Pr(C|B).

Pr(C|B) =
Pr(B,C)

Pr(B)
=

Pr(A,B,C)

Pr(B)
+

Pr(A′, B, C)

Pr(B)

Expanding,

Pr(A,B,C) = Pr(A,C) + Pr(B)− Pr (B ∪ (A,C))

= Pr(C|A) · Pr(A) + Pr(B)− Pr (B ∪ (A,C))
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Similarly,

Pr(A′, B, C) = Pr(C|A′) · Pr(A′) + Pr(B)− Pr (B ∪ (A′, C))

Substituting,

Pr(C|B) = Pr(C|A) · Pr(A)

Pr(B)
+ 1− Pr(B ∪ (A,C))

Pr(B)
+ Pr(C|A′) · Pr(A′)

Pr(B)
+ 1− Pr(B ∪ (A′, C))

Pr(B)

= Pr(C|A) · Pr(A)

Pr(B)
+ Pr(C|A′) · Pr(A′)

Pr(B)
+ 2− Pr (B ∪ (A,C)) + Pr (B ∪ (A′, C))

Pr(B)
.

As

Pr(B ∪ (A ∩ C)) + Pr(B ∪ (A′ ∩ C)) = Pr(B) + Pr(B ∪ C), (A.7)

Pr(C|B) = Pr(C|A) · Pr(A)

Pr(B)
+ Pr(C|A′) · Pr(A′)

Pr(B)
+ 2− Pr(B) + Pr(B ∪ C)

Pr(B)

= (1− δac) ·
Pr(A)

Pr(B)
+ ηac ·

Pr(A′)

Pr(B)
+

(
1− Pr(B ∪ C)

Pr(B)

)
Now,

1− Pr(B ∪ C)

Pr(B)
= 1− Pr(B) + Pr(B′, C)

Pr(B)
= −Pr(B′, C)

Pr(B)
(A.8)

If we assume ηbc ≥ ηac then:

ηbc ≥ ηac

⇔ Pr(C|B′) ≥ Pr(C|A′)

⇔ Pr(B′, C)

Pr(B′)
≥ Pr(C|A′)

⇔ −Pr(B′, C)

Pr(B)
· Pr(B)

Pr(B′)
≤ −Pr(C|A′)

⇔ −Pr(B′, C)

Pr(B)
≤ −Pr(C|A′) · Pr(B′)

Pr(B)

Using the above results and substituting back,

Pr(C|B) ≤ (1− δac) ·
Pr(A)

Pr(B)
+ ηac ·

Pr(A′)

Pr(B)
− Pr(C|A′) · Pr(B′)

Pr(B)

= (1− δac) ·
Pr(A)

Pr(B)
+ ηac ·

Pr(A′)− Pr(B′)

Pr(B)
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Let

αba =
Pr(A)

Pr(B)
(A.9)

Then,

Pr(C|B) ≤ (1− δac) · αba + ηac · (1− αba)

∴ 1− δbc ≤ (1− δac) · αba + ηac · (1− αba)

⇔ δbc ≥ 1− {(1− δac) · αba + ηac · (1− αba)}

�

Theorem A.3.2 (Sibling Edge Crosstalk) Assume if δbc ≥ δac, i.e., Pr(C|B) ≤

Pr(C|A), then

ηbc ≥
ηac · γA − αac (1− αba)

γB
(A.10)

where αac, αba, γA and γB are defined similarly as above.

Proof.

δbc ≥ δac

⇒ 1− Pr(C|B) ≥ 1− Pr(C|A)

⇒ Pr(C|A) ≥ Pr(C|B)

⇒ Pr(C,A)

Pr(A)
≥ Pr(C,B)

Pr(B)

⇒ Pr(C,A) ≥ Pr(C,B) · Pr(A)

Pr(B)

⇒ Pr(C)− Pr(C,A′) ≥ (Pr(C)− Pr(C,B′)) · Pr(A)

Pr(B)

⇒ Pr(C)− Pr(C|A′) · Pr(A′) ≥ (Pr(C)− Pr(C|B′) · Pr(B′)) · Pr(A)

Pr(B)

⇒ (1− αba) Pr(C) + ηbc · Pr(A) · Pr(B′)

Pr(B)
≥ ηac · Pr(A′)

⇒ ηbc · Pr(A) · Pr(B′)

Pr(B)
≥ ηac · Pr(A′)− (1− αba) Pr(C)
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⇒ ηbc ≥
ηac · Pr(A′)− (1− αba) Pr(C)

Pr(A) · Pr(B′)
Pr(B)

⇒ ηbc ≥
ηac · Pr(A

′)
Pr(A)

− (1− αba) · Pr(C)
Pr(A)

Pr(B′)
Pr(B)

Let

γA =
Pr(A′)

Pr(A)
=

1− Pr(A)

Pr(A)
,

Substituting,

ηbc ≥
ηac · γA − αac (1− αba)

γB
(A.11)

�

A.4 Reverse Edges

We assume A to be the true driver gene and B to be the true driven gene, with

edge AB present in GRN H, the induced values of crosstalk and conditioning of

edge BA can be calculated as follows. Let δθ = threshold for δ (conditioning) and

ηθ = threshold for η (crosstalk).

Theorem A.4.1 (Reverse Edge Conditioning) Given conditioning value δab of edge

AB, we have

δba = 1− (1− δab) ·
Pr(A)

Pr(B)
(A.12)

Proof.

δba = 1− Pr(A|B)

= 1− Pr(B|A) · Pr(A)

Pr(B)

= 1− (1− δab) ·
Pr(A)

Pr(B)

�
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Theorem A.4.2 (Reverse Crosstalk) Given crosstalk value ηab of edge AB, we

have

ηba = 1− (1− ηab) ·
Pr(A′)

Pr(B′)
(A.13)

Proof.

ηba = Pr(A|B′)

=
Pr(A ∩B′)

Pr(B′)

=
Pr(A)− Pr(A ∩B)

Pr(B′)

Now,

ηab = Pr(B|A′) =
Pr(A′ ∩B)

Pr(A′)

ηab =
Pr(B)− Pr(A ∩B)

Pr(A′)

⇒ Pr(A ∩B) = Pr(B)− Pr(A′) · ηab

Substituting,

ηba =
Pr(A)− Pr(A ∩B)

Pr(B′)

=
Pr(A)− Pr(B) + Pr(A′) · ηab

Pr(B′)

=
Pr(A)− 1 + 1− Pr(B) + Pr(A′) · ηab

Pr(B′)

=
Pr(B′)− (1− ηab) · Pr(A′)

Pr(B′)

= 1− (1− ηab) ·
Pr(A′)

Pr(B′)

�

Reverse Edge in Context Graph

An edge BA would be included in the context graph H, given that edge AB is

already present in H iff

δba < δθ AND ηba < ηθ (A.14)
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For the conditioning of BA to be less than the threshold,

δba < δθ

⇒ 1− (1− δab) ·
Pr(A)

Pr(B)
< δθ

⇒ 1− δθ
1− δab

<
Pr(A)

Pr(B)

For the crosstalk of BA to be less than the threshold,

ηba < ηθ

⇒ 1− (1− ηab) ·
Pr(A′)

Pr(B′)
< ηθ

⇒ 1− ηθ
1− ηab

<
Pr(A′)

Pr(B′)

When both the above conditions are true, reverse edge BA, i.e., gene B

regulating gene A is thought to be a possible regulation and included in the graph.

Parameter Relationship between Forward and Reverse Edges

If we assume δab < δba, we find

δab < δba ⇒ δab < 1− (1− δab) ·
Pr(A)

Pr(B)

⇒ (1− δab) ·
Pr(A)

Pr(B)
< (1− δab)

⇒ (1− δab) ·
(

1− Pr(A)

Pr(B)

)
> 0

⇒ Pr(A) < Pr(B)

⇒ 1− Pr(A) > 1− Pr(B)

⇒ 1− Pr(A)

1− Pr(B)
> 1

⇒ (1− ηab) ·
(

1− Pr(A)

1− Pr(B)

)
> (1− ηab)

⇒ 1− (1− ηab) ·
(

1− Pr(A)

1− Pr(B)

)
< 1− (1− ηab)

⇒ ηba < ηab
123



If we assume ηab < ηba then,

ηab < ηba ⇒ ηab < 1− (1− ηab)
Pr(A′)

Pr(B′)

⇒ (1− ηab) ·
Pr(A′)

Pr(B′)
< (1− ηab)

⇒ (1− ηab) ·
(

1− Pr(A′)

Pr(B′)

)
> 0

⇒ Pr(A′) < Pr(B′)

⇒ 1− Pr(A′) > 1− Pr(B′)

⇒ Pr(A) > Pr(B)

⇒ (1− δab) ·
Pr(A)

Pr(B)
> (1− δab)

⇒ 1− (1− δab) ·
Pr(A)

Pr(B)
< 1− (1− δab)

⇒ δba < δab

Thus δab < δba => ηba < ηab and ηab < ηba => δba < δab. By only com-

paring the values of δab, δba, ηab, ηba the true directionality of the edges cannot be

determined. In such a case, we use a third gene C seemingly regulated by both

A and B to determine precedence of the drivers in algorithm as outlined in Algo-

rithm 4, and confirm if the reverse edge needs to be pruned or not.
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