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ABSTRACT  
 
   

In the late 1960s, Granger published a seminal study on causality in time series, 

using linear interdependencies and information transfer. Recent developments in 

the field of information theory have introduced new methods to investigate the 

transfer of information in dynamical systems. Using concepts from Chaos and 

Markov theory, much of these methods have evolved to capture non-linear 

relations and information flow between coupled dynamical systems with 

applications to fields like biomedical signal processing. 

This thesis deals with the application of information theory to non-linear 

multivariate time series and develops measures of information flow to identify 

significant drivers and response  (driven) components in networks of coupled 

sub-systems with variable coupling in strength and direction (uni- or bi-

directional) for each connection. Transfer Entropy (TE) is used to quantify 

pairwise directional information. Four TE-based measures of information flow are 

proposed, namely TE Outflow (TEO), TE Inflow (TEI), TE Net flow (TEN), and 

Average TE flow (ATE).  

First, the reliability of the information flow measures on models, with and 

without noise, is evaluated. The driver and response sub-systems in these 

models are identified. Second, these measures are applied to 

electroencephalographic (EEG) data from two patients with focal epilepsy. The 

analysis showed dominant directions of information flow between brain sites and 

identified the epileptogenic focus as the system component typically with the 

highest value for the proposed measures (for example, ATE). Statistical tests 

between pre-seizure (preictal) and post-seizure (postictal) information flow also 

showed a breakage of the driving of the brain by the focus after seizure onset. 
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The above findings shed light on the function of the epileptogenic focus and 

understanding of ictogenesis. It is expected that they will contribute to the 

diagnosis of epilepsy, for example by accurate identification of the epileptogenic 

focus from interictal periods, as well as the development of better seizure 

detection, prediction and control methods, for example by isolating pathologic 

areas of excessive information flow through electrical stimulation. 
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Chapter 1 

INTRODUCTION 

1.1. Overview 

Directional information flow is the key to understanding the interactions of 

dynamical system components. The identification of the driving and the response 

subsystem and estimation of the strength of interaction between such systems 

over time, especially when their structure is unknown, hold promise for the 

understanding of their dynamical behavior. 

Commonly used tools for the estimation of linear dependencies between 

data series are the linear cross-correlation in the time domain and the cross-

coherence in the frequency domain (Priestley, 1981). A mathematically more 

general and a statistical approach for the detection of linear and nonlinear 

interdependences between time series is the mutual information (MI) (Fraser & 

Swinney, 1986). It is a nonparametric and model-free measure that depends on 

the low and high order moments of a probability distribution. MI is however a 

symmetrical function and as a measure of Information flow cannot detect 

direction and hence causal relationships between two time series. An 

improvement on MI, which uses delayed time series for one of the time series, 

was a huge improvement toward the above goal but has its drawbacks; for 

example, its estimation requires a large number of data points, a strict 

requirement for experimental signals as they are typically noisy and 

nonstationary. 

Granger (Granger, 1969) was one of the first to study the directional 

aspect of interactions, but assumed only linear dependencies. His approach has 

its roots to Norbert Wiener. Wiener (Wiener, 1956) introduced these concepts in 
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the context of linear regression models of stochastic processes. Granger 

causality was later extended to exploit nonlinearities in time series by applying 

local in time linear models, estimating statistical quantities from them, and then 

averaging over the entire dataset (Schiff, So, Chang, Burke, & Sauer, 1996); or 

by considering error reduction triggered by added variables in global nonlinear 

models (Liang, Ding, & Bressler, 2001).  

Granger causality and its extensions were all model-based methods and, 

like all model-based analysis, they are plagued with modeling errors and 

modeling uncertainly. In order to overcome this hurdle, information-theory-based 

directional information flow and strength of coupling between complex 

systems/signals was introduced in Schreiber’s seminal paper (Schreiber, 2000). 

This method was based on the study of transitional probabilities among states of 

systems under consideration, and it was named Transfer Entropy (TE).  

In this thesis, TE and measures derived from TE are applied to 

multivariate time series data from a network of complex systems with varied 

couplings. Their applicability is demonstrated on models and 

electroencephalograph (EEG) data from epileptic patients. 

 

1.2. Research Objectives 

One of the main motivations for undertaking information flow analysis of 

multivariate time series data is because these are data commonly encountered in 

engineering applications including biomedical signals (EEG, EKG, EMG) and 

complex network of sensors. There are always observed interdependencies 

between various components of a complex system and, for systems where the 

model structure is unknown, time series analysis offers the only window to the 
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system’s working behavior. The information theoretic approach to detecting 

nonlinear relations between time series offers significant advantages over other 

linear causal approaches. Also, TE being a directional measure, it captures the 

direction of coupling in addition to the coupling’s strength. 

 The primary objective of this thesis has been to formulate a strong 

framework for the analysis of such multivariate time series data recorded from a 

coupled system, and to empirically validate its ability to detect the strongest 

drivers present in the system by existing and new measures we developed that 

involve TE.  

 We also present results on the application of these methodologies to 

electroencephalographic (EEG) time series from epileptic patients with focal 

epilepsy, which motivated our efforts towards the culmination of this work. First, 

measures for identifying drivers in a system were developed. Second, these 

measures were applied to EEG data to observe dynamical changes prior to a 

seizure in the temporal (time) and spatial (brain’s) domain. These changes were 

further utilized to address the still unresolved problem of epileptogenic focus 

localization. We address this particular problem by looking at a seizure as a 

connectivity-breaking event of the information flow from the focus to other brain 

sites. The above findings shed light on the function of the epileptogenic focus 

and understanding of ictogenesis (genesis of epileptic seizures). The 

performance of the measures we developed was evaluated on the EEG from for 

two patients over several days of recording. 
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1.3. Thesis Organization 

This thesis is further organized in chapters as follows. Chapter 2 outlines a brief 

description of dynamical systems and chaos theory, and introduces information 

flow and several existing measures for analysis of time series from coupled 

chaotic systems. Chapter 3 introduces TE as a measure for directional 

information flow and discusses two methods for its estimation. Based on TE, 

measures to detect directional information flow in a network of coupled systems 

are then introduced. Chapter 4 uses the methods discussed in Chapter 3 and 

applies them to multivariate time series from coupled mathematical models of 

nonlinear oscillators. The results are also discussed with respect to the 

measures’ robustness to noise. Chapter 5 demonstrates the application of the 

methods developed in Chapter 3 to electroencephalographic (EEG) data from 

two patients with focal epilepsy. The results during preictal, ictal and postictal 

periods are presented along with their possible use for seizure prediction and 

detection. In Chapter 6, conclusions are presented and future work is discussed. 
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Chapter 2 

INFORMATION FLOW IN DYNAMICAL SYSTEMS 

2.1. Dynamical Systems and Chaos 

Chaos theory studies the behavior of nonlinear dynamical systems that are highly 

sensitive to initial conditions. Differential equations have been used to model 

physical systems to find out how they may behave temporally under different 

than the experimental conditions and thus try to predict their future dynamics. As 

the order and degree of the modeled systems get higher, analytical solutions 

become impossible to compute. Nonlinear systems for which analytical solutions 

were found exhibited regular motions, i.e. if a solution was bounded, the system 

either settled in a steady state or in a periodic motion. Around 1975, a third kind 

of motion was observed which was erratic. This type of motion was termed 

chaos, and the theory to explain such systems came to be known as Chaos 

theory.  

 A system is said to be in an unstable steady state if small changes 

makes the system evolve away from the steady state. For example a cone 

resting on its apex can be balanced at just one particular point. But if the cone is 

perturbed it falls to the ground which is a stable (static or dynamic) state. A 

system which experiences more complicated steady states, in the sense that 

there is no particular region in the state space the system may eventually rest to 

or stabilize in is said to be a chaotic system. Even though nearby points in the 

state space of a chaotic system move away from each other, a steady chaotic 

state can dynamically be defined as stable if the system always moves 

(randomly, according to a deterministic probability distribution) within it and never 

escapes from it under a small bounded perturbation (chaotic attractor).  
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The existence of such systems was known for some time but they were 

first described mathematically by Lorenz in his seminal paper in 1963. He 

presented a system of 3 coupled differential equations that could behave 

chaotically depending on the value of a parameter. He observed that a small 

change in the initial conditions led to large change in the corresponding 

trajectories. This led him to his now famous speculation that a butterfly flapping 

its wings in Brazil (that is, a small change in the initial conditions in the 

atmosphere) might cause a tornado in Texas (which is a long-term unpredictable 

phenomenon).  

Chaotic motion is complex. It is intuitive to expect the systems in nature 

that exhibit chaos to be complex too. Hence we expect, the larger the number of 

system state variables, the more complex the system and hence larger the 

probability that the system exhibits chaos. For example, chaos can be exhibited 

only by systems with dimension of at least 3. 

For autonomous differential equations on a real line all bounded solutions 

converge to a fixed point. For two dimensional autonomous differential equations, 

the solutions can either converge to a fixed or a periodic orbit also called a limit 

cycle. Hence chaos cannot exist in such system. This is given by the Poincare - 

Bendixson theorem. For a system of autonomous differential equations to exhibit 

chaos, the dimension of the system should be at least 3. Many systems of 

dimension 3 have been described which exhibit chaotic motion. Examples 

include the Lorenz and Rossler systems. Maps can be classified into invertible 

and non-invertible. A map 7 is said to be invertible if there exists a unique 	
 for 

every 	
 8 1. In other words the mapping is one to one. Hence 	
 is given by  

 	
 �  7��9	
:�; (2.1) 
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Non invertible maps are those for which 7�� cannot be defined as the 

system can evolve to the same state from two different states. For invertible 

maps chaos can exist only for dimensions two and above (the third dimension is 

implicit, due to “discretization”, because the system is a map). But for non-

invertible maps chaos can exist even in one dimensional maps. Examples 

include logistic map, tent map (Williams, 1997). 

The properties of chaotic systems are explained below. 

1.) The system is deterministic: Even though chaotic system exhibit random 

like behavior, they are still deterministic systems. If the initial conditions 

are known precisely then it is possible to predict the future behavior of the 

system. However in real systems, the initial conditions are never known 

precisely, which leads to random like behavior of chaotic systems. 

2.) The system is nonlinear: For a system to exhibit chaotic behavior, there 

has to be an element of nonlinearity. Perfectly linear system can never 

exhibit chaos. However even a little nonlinearity can induce chaos. For 

example, the Henon map is barely nonlinear in the sense that it just has 

an 	� term and all the other terms are linear. But the map exhibits chaotic 

behavior. 

3.)  The system exhibits sensitivity to initial conditions: This is the most 

important characteristic of chaotic systems. It states that any two initial 

conditions diverge exponentially as the systems evolves with time. 

Hence, any small change in the initial conditions takes the system in a 

completely different trajectory. There are always errors and the initial 

conditions of a system are not known precisely. Hence predictions after a 
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certain time become impossible as the error in the initial conditions is 

amplified exponentially. 

4.) The system is bounded: This is a condition put on the system in order to 

eliminate trivial cases. If the orbits go to infinity, it is very easy for 

distances to diverge to infinity. For example consider a system 
<=<�  �  	, 

the error ∆	 is given by ?� which diverges exponentially. However the 

system is not chaotic as it’s not bounded. 

2.2. State Space Representation and State Space Reconstruction 

State space, also referred to as Phase space, is a vector space in which all 

possible states of a system are represented with a unique point or set of points 

(vectors). The rank of this space gives the necessary number of degrees of 

freedom or variables the system may have. The succession of points in the state 

space is representative of how the system evolves over time. 

 Often, as a part of an engineering experiment, one measures data (e.g. 

from sensors) over time, thus ending up with a time series. This time series data 

can be, for instance, from a single EEG channel that measures the electric 

potential of millions of firing neurons, or from a seismograph, which measures 

ground motion to detect tremors prior to, during and after an earthquake. For 

real-world systems of such complexity as the human brain or the seismic activity 

of the earth, an accurate model representing the dynamics of the system is not 

known. We have to rely on the analysis of time series to understand the 

underlying dynamics of such systems. 

The complexity of modeling nonlinear systems must not be 

underestimated. Research in nonlinear dynamical analysis of time series is a 
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relatively new field of study and much progress has been seen in generating 

reliable models in recent times. The approach we discuss in this thesis is based 

on the method of the delay-coordinate embedding for the reconstruction of the 

state space of an unknown system, developed by Takens (Takens, 1981). The 

embedding method has been proven useful, particularly for time series generated 

from low-dimensional, deterministic or mostly deterministic dynamical systems. 

For situations where the dynamical invariant set (steady state) responsible for the 

behavior observed in the measured time series is low-dimensional, and the 

influence of noise is relatively small, the delay-coordinate embedding method can 

yield reliable information essential for understanding the underlying dynamical 

system. The method has been applied to several fields in engineering and has 

been a favorite approach in analyzing epileptic EEG signals for seizure prediction 

(L. D. Iasemidis et al., 2003). There have been several works that start with the 

delay coordinate embedding technique and are then applied to dynamical 

systems with chaotic attractors (Abarbanel, 1996)(Kantz, Schreiber, & Mackay, 

1997). 

 The underlying dynamics of any system is in principle represented by a 

mathematical model involving a set of differential equations. The dynamical 

variables of all first order equations constitute the state space and the number of 

such variables is the dimension of the state space, usually denoted by �. It 

occurs that the asymptotic evolution of a system (steady state) usually is well 

defined in a finite dimensional state space. The delay coordinate embedding 

technique (Takens, 1981) provides an accepted practical solution to determining 

this approximate behavior. In general Takens' embedding theorem guarantees 

that a topological equivalence of the state space of the intrinsic unknown 
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dynamical system can be reconstructed from the time series generated by 

measurement of the system’s variables values over time, subsequently based on 

which characteristics of the dynamical invariant set of the steady state can be 

estimated. 

 Taken’s embedding theorem is explained in simple terms as follows. 

Given a measured time series @#9A;, the time-delay vectors B#9A; are a one-to-

one representation of the state vectors (points in the state space C; for � 

sufficiently large. 

 B#9�; � D@#9�;, @#9� 8  E;, … . , @#G� 8 9� H 1;EIJ (2.2) 

The delay time E and the embedding dimension � are the important 

parameters to be considered for the state space reconstruction. 

Delay time E. To select the delay time, we must first note that any 

discrete-time map can be regarded as arising from the section of a Poincare 

surface with the continuous time series (Ott, 2002). Thus, one iteration of the 

map corresponds to roughly one period of oscillation of the continuous-time 

signal 	9A;, which, for chaotic systems, is approximately the decay time of the 

autocorrelation of 	9A;. As an empirical rule, the delay time can be chosen to be 

E � 1 for chaotic time series from discrete-time maps. 

In order for the time-delayed components @#G� 8 9K H 1;EI to serve as 

independent variables, the delay time has to be chosen carefully. If the delay 

time is too small, then adjacent components @#9�;, @#9� 8  E; will be too much 

correlated to be considered as independent coordinates. On the other hand, if 

the delay is too large, adjacent components become too uncorrelated (almost 

independent) and cannot be part of a system that supposedly generated them. 

One can examine the autocorrelation function of 	9A; and decide a proper delay 
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time (Theiler, 1986). In particular, it is suggested (Rapp, Albano, & Mees, 1988; 

Schreiber, 2000) that one can choose E when the autocorrelation drops to 1/? 

times the initial value.  

 The second method selects E as the one equal to the first local minimum 

of the time-delayed mutual information (Fraser & Swinney, 1986). Mutual 

information is a measure of mutual dependence (linear or non-linear) between 

two variables quantifying the reduction of the uncertainty about one variable 

when we know the other. The mutual information of two variables X and Y is 

defined as 

 '9M, N; �  O O K9	, �;PQ
ln T K9	, �;K9	;K9�;U �	��PV

 (2.3) 

where K9	, �; is the joint probability density function (pdf) of M and N , K9	; and 

K9�; are the marginal pdfs of M and N respectively, and WX and WY are the support 

sets of the two random variables (the sets where K9	;  Z  0 and K9�;  Z  0). Time-

delayed mutual information is the mutual information of a single variable at 

different time indices 

 '9E; � '9M
, M
��; (2.4) 

There exist various alternative empirical methods for choosing a proper delay 

time [Liebert & Schuster, 1989; Liebert et al., 1991; Buzug & Pfister, 1992; 

Kember & Fowler, 1993; Rosenstein et al., 1994], which all yield similar results. 

Embedding dimension �. In order to have a close representation of the true 

dynamical system, the embedding dimension � should be sufficiently large 

(Takens, 1981). Takens theorm provides a lower bound for �. In particular, 

suppose the dynamical invariant set lies in a �-dimensional manifold (or 

subspace) in the state space. Then, if � Z  2�, the �-dimensional reconstructed 
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vectors ^9A; have a one-to-one correspondence to the vectors of the true 

dynamical system.  

The reconstructed system obtained by the time-delay vectors should be 

topologically equivalent to the original as long as � _  2� 8  1 where � is the 

box-counting dimension of the original system.. Among the approaches for the 

selection of �, we chose the most popular method of false nearest neighbors 

(FNN) and present it briefly below (Kennel, Brown, & Abarbanel, 1992). For a 

small  , the reconstructed points are badly projected to the state space, However, 

we would like to have a reconstructed state space of the smallest embedding 

dimension � that unfolds the attractor. This idea is implemented as follows. For 

each point @#
  in the �-dimensional reconstructed state space, its nearest 

neighbor @#9�;`  is located and their distance is calculated, �a@#̀ , @#9�;` b �
c@#̀ – @#9�;` c. The metric used is usually the maximum norm, or the Euclidean 

norm. The dimension of the reconstructed state space is augmented by 1 and the 

new distance of these vectors is calculated, �a@#̀ :�, @#̀ :�b � c@#̀ :� – @#9�;`:�c  

If the ratio of the two distances exceeds a predefined tolerance threshold C the 

two neighbors are classified as false neighbors, i.e. 

 C#9�; � �a@#̀ :� , @#9�;`:� b�9@#̀  ,   @#9�;`  ;   Z  C (2.5) 

The criterion that the embedding dimension � is high enough to unfold 

the attractor is that the percentage of points for which C#9�; Z  C, is essentially 

zero (usually set to 1% of the total number of points / vectors).The selection of A 

should be large enough to allow for exponential divergence (Kennel et al., 1992). 

Empirically, a good and often used value for C is 2. 



The invariant quantities of 

(dimensions, Lyapunov exponents, etc) can be estimated 

state space as we will see when we discuss application of these 

time series generated from models and physical sy

 

2.3. Discrete Systems: 

The Henon map (Hénon, 1976)

the most studied examples of dynamical systems that exhibit chaotic behavior. It 

is given as  

 

The map depends on two parameters, 

map have values of 

behavior. This map is shown in 

Figure 2.1: (a) One realization of the Henon map 

strange attractor of the Henon map

 

13 

nt quantities of a steady state of the original system 

(dimensions, Lyapunov exponents, etc) can be estimated in the reconstructed 

as we will see when we discuss application of these measures

from models and physical systems. 

Discrete Systems: Henon Chaotic Map 

(Hénon, 1976) is a discrete-time dynamical system. It is one of 

the most studied examples of dynamical systems that exhibit chaotic behavior. It 

 

The map depends on two parameters,  and , which for the canonical Henon 

 and for the map to produce chaotic 

. This map is shown in Figure 2.1.  

One realization of the Henon map over time with n = 200. (b) The 

strange attractor of the Henon map in the state space. 

he original system 

constructed 

measures to 

time dynamical system. It is one of 

the most studied examples of dynamical systems that exhibit chaotic behavior. It 

(2.6) 

, which for the canonical Henon 

for the map to produce chaotic 

 

with n = 200. (b) The 
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2.4. Continuous Systems: Rossler Chaotic Attractor  

The Rossler attractor (Rössler, 1976) is given by the differential equations 

 	e  �  H� H  f, �e  �  	 8  0.15�,
fe  �  0.2 8  	f H  10f 

(2.7) 

with a sampling time of 0.1. In Figure 2.2, the time series segments for 	 and � 

variables and the attractor of the system are shown. Figure 2(c) shows the 

projection of the attractor on the 	 H � plane and Figure 2(d) shows the plot of 	
 

versus 	
��
 delay representation. The shape in Figure 2(d) is a distorted version 

of the shape in Figure 3.2(c). Despite the distortion of the shape, it can be proven 

that the invariances in dynamics (e.g. dimension, Lyapunov exponents) are 

preserved. 

 

Figure 2.2: Rossler system in the reconstructed state space: (a) time series of 

the 	
 (black line) and �
 (grey line), (b) the attractor, (c) scatter plot of (	
, �
), 

(d) scatter plot of (	
, 	
��
) 
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                              9�;                                                                          9g; 

Figure 2.3: Rossler attractor. (a) False Nearest Neighbors for � � 1, . . ,5  and (b) 

Time Delay Mutual Information (its first minimum is marked with red cross-hair). 

 

As evident from Figure 3, the Rossler attractor was reconstructed by choosing 

the embedding dimension � using the False Nearest Neighbor method and the 

Time Delay E �  14 from the first minimum of the Time Delay Mutual Information 

plot. 

 

2.5. Measures of Directional Information Flow  

The interaction or coupling between variables of a system is a developing area of 

nonlinear dynamics and time series analysis (Hlavackova-Schindler, Palus, 

Vejmelka, & Bhattacharya, 2007). The detection and characterization of 

interdependence among interacting components of complex systems can give 

information about their function and a better understanding of the underlying 

system dynamics. Information flow is an essential feature of many complex 

physical phenomena, such as climatic processes (Smith, Wigley, & Santer, 
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2003), brain function (Kaminski & Blinowska, 1991) and other processes in many 

other fields. 

In this section the most commonly used measures of information flow are 

reviewed and the most promising methods are considered for application to 

models and information flow in the brain of epileptic patients. 

 

Granger Causality 

For a given set of time series observations, it is essential to assess 

whether they originate from coupled or decoupled systems, detect the hidden 

causal dependencies between them, and understand which system is the driver 

and which is the driven. Granger causality (Granger, 1969)  was the leading 

approach for a long time inferring the direction of interactions. Granger 

investigated the dependencies between time series and whether one time series 

is useful in forecasting another. Granger causality assumes linearity of the 

models for the predictability of time series.  

Granger causality estimates the information flow between two time series 

using the methodology of prediction. For any two time series M and N, M ‘causes‘ 

N if the prediction of future values of Y can be improved by using past values of X 

too. Consider two time series 	9�; and �9�; which are the results of two 

processes M and  . Modeling M and N using Kth order autoregressive models we 

can write 

 	9�; �  i �#j	9� H k; 8  l�9�;�
jm�  (2.8) 
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 �9�; �  i g#j�9� H k; 8  n�9�;�
jm�  (2.9) 

where ��j and g�j are the autoregressive coefficient and l� and n� are the 

prediction error for the process M and N respectively. Incorporating the 

information of process N in determining the future values of process M and vice 

versa, we get the new bivariate autoregressive models as 

 	9�; �  i �#j	9� H k; 8  i o#j�9� H k; 8 �
jm� l�9�;�

jm�  (2.10) 

 

 �9�; �  i g#j�9� H k; 8 i �#j	9� H k; 8  n�9�;�
jm�

�
jm�  (2.11) 

 

where l� and n� are the new prediction error for the process M and N 

respectively. Prediction of future values of 	 is dependent on the past values of 

both 	 and �. Similarly prediction of future values of � is dependent on past 

values of � and 	. Let Σ=\=, Σr\r, Σs\9s,t; ,Σt\9t,s;  be the variance of the sequence 

l�9�;, n�9�;, l�9�;, n�9�; respectively. 

If M has causal influence on N, then Σt\9t,s; should be less than Σr\r, and 

similarly if there is information flow from N to M, then variance Σs\9s,t; should be 

lower than Σ=\=. The idea is that, the extra information available in � about 	 is 

included in the autoregressive modeling to provide better prediction of the future 

values of 	. Geweke et al. (Geweke, 1982) defined the Granger causality from N 

to M as  
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 uY�X � ln 9Σs\9s,t;Σ=\= ; (2.12) 

 uX�Y � ln 9Σt\9t,s;Σr\r ; (2.13) 

 uX,Y � max 9uY�X, uX�Y; (2.14) 

 

Depending on the values of uX,Y we determine the strength of directional 

interaction between processes M and N. It has to be noted that Granger causality 

might not be a true indication of causality when two processes 9M, N; might be 

both controlled by a third process 9y; and, depending on the strength of 

interaction, Granger causality  may not detect the causal relation existing 

between M and N, or may falsely detect causality between M and N when y is 

driving both M and N. 

Many measures have been developed based on the concept of Granger 

causality and extended it in order to also incorporate nonlinear relationships 

between the involved time series. The recently developed measures of 

interaction go beyond the standard cross-correlation and exploit nonlinear 

properties of dynamical systems. These measures can be divided in three main 

categories 

I. Event synchronization (Rosenblum & Pikovsky, )  (Smirnov & 

Bezruchko, 2003),  

II. Reconstruction of the state spaces (Mormann et al., 2003) 

(Feldmann & Bhattacharya, 2004) 

III. Information theory (Schreiber, 2000) (Paluš, Komárek, Hrnčíř, & 

Štěrbová, 2001) 
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 The measures based on Information theory make no assumptions on the 

system dynamics whereas event synchronization measures assume strong 

oscillatory behavior or distinct event occurrences, and the state space methods 

require local dynamics to be preserved in neighborhoods of reconstructed points. 

We will now present a brief discussion of some of these methods, and their 

application in models and EEG data is left for subsequent chapters. Emphasis 

will be made on the Information Theory measures which yielded promising 

results for the data and the nature of applications under our consideration. 

 Let D	
J and D�
J be two univariate time series obtained from dynamical 

systems M and N for  � �  1, … . . , z. Let also assume there exists a unidirectional 

coupling and M is the driver system and N is the driven system. The notation 

M �  N is used in order to indicate the effect of M on N, while N �  M is indicating 

the inverse. Moreover, all the measures are defined in order to allow for different 

parameters in the embedding of the corresponding variables M and N of the time 

series. Let k and { be the embedding dimensions, and E= and Er the delays, for 

the two systems / time series, respectively.  

 

Transfer entropy  

Transfer entropy (TE) is an information theoretic measure which takes 

into account the dynamics of information transport and detects the directed 

exchange of information between two systems. As defined by Schreiber 

(Schreiber, 2000), TE quantifies the information flow from X to Y by the amount 

of information we obtain about the future position of Y in the state space by 

observing the present state of X and Y. The concept of transfer entropy extends 

the Shannon entropy for transition probabilities and quantifies how the 
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conditioning on X changes the transition probabilities of Y. It has been shown 

that transfer entropy ��X�Y is the exact equivalent to the conditional mutual 

information '9�
:||	
, �
; (Hlavackova-Schindler et al., 2007). TE is defined here 

in accordance with the state space nomenclature as 

 ��Y�X � i K ~	
:�, 	
9j;, �
9�;� log �K ~	
:��	
9j;, �
9�;�
K ~	
:��	
9j;� � (2.15) 

where 	
9j;and �
9�;represent the embedding vectors with an embedding 

dimension specified as superscript. 
TE can also be defined in terms of entropies as  

 ��Y�X �  ' ~	
:�, �
9�;�	
9j;� 

              � � ~	
:��	
9j;� – � ~	
:�|	
9j;, �
9�;� 

(2.16) 

where � ~	
:��	
9j;� is the information gained about the future state 	
:� by 

using the information from 	
9j; and  � ~	
:�|	
9j;, �
9�;�  is the information gained 

about the future state by using the information from �
9�; in addition to 

� ~	
:�|	
9j;, �
9�;�. Thus, ��Y�X is the additional information gained from process 

Y about the future state of the process X, and therefore it can be seen as the 

information flow from the process N to process M. Equation 2.16 also implies that 

when the processes X and Y are independent, the value of ��Y�X is zero. 

Since we assume M to be continuous, and possibly a vector-valued 

random variable, for a fixed small �, the ��X�Y can be estimated in terms of the 

correlation sum as  
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 ��Y�X � log ��� ~	
:�, 	
9j;, �
9�;� �� ~	
9j;�
�� ~	
:�, 	
9j;� �� ~	
9j;, �
9�;�� (2.17) 

In Chapter 3 we shall see another method for estimation of TE using the 

nearest neighbors’ method to calculate mutual information in Equation 2.16 
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Chapter 3 

METHODS OF ESTIMATION OF INFORMATION FLOW 

3.1. Transfer Entropy (TE) Estimation Methods 

In chapter 2, we discussed time series analysis and various approaches to state 

space reconstruction, presented examples of mathematical models of chaos, and 

explained the basics behind Transfer of Entropy between time series. In this 

chapter we will detail the method of Transfer Entropy to detect directional 

information flow in coupled dynamical systems and employ it to detect and 

localize driving and driven systems from multivariate time series obtained from a 

network of coupled systems with unknown coupling strength and direction. 

We shall also discuss two different methods for the estimation of Transfer 

Entropy and compare them qualitatively for merits and demerits. The methods 

differ in the involved entropy and probability densities estimation in the 

embedding state space. 

Consider a kth order Markov process (Bharucha-Reid, 1997) described by  

 � 9M
:�|M
, M9
��; … … … M
�j:�;
�  � 9M
:�|M
, M9
��; … … … M
�j; (3.1) 

where �  is the conditional probability of a  random process M being in state M
:� 

at time � 8 1 upon the past k states �M
, M9
��; … … … M
�j:��  � M
9j; of the 

system. The Markov dependence described in Equation 3.1 can be extended to 

the case of Markov interdependence of two random processes M and N as 

 � ~M
:��M
9j;� � � ~M
:��M
9j;, N
�� (3.2) 

where N
� are the past { states of the second random process N. This generalized 

Markov property implies that the state M
:� of the process M depends on the past 
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k states of the process M and on the past { states of the process N. If the  

process M also depends on the past states (values) of process N, the divergence 

between Equations 3.1 and 3.2  can be quantified using the Kullback-Leibler 

measure (Quiroga, Arnhold, Lehnertz, & Grassberger, 2000), where � 9M
:�|M
j; 

is the hypothesized (a priori) transition probability and � 9M
:�|M
j , N
�; is the true 

underlying transition probability of the system. It can then easily be shown that 

the Kullback-Leibler measure quantifies the transfer of entropy from the driving 

process Y to the driven process X, and it is given by Equation 2.15 

The values of the parameters k and { are the orders of the Markov 

process for the two coupled processes M and N respectively.  

A simple manipulation of Equation 3.3 permits a decomposition of the 

transfer entropy in terms of conditional entropies (Paulus, Komarek, Prochazka, 

Hrncir, & Sterbova, 2001) and justifies the use of TE as a measure of information 

flow from N to M in Equation 2.16 

 

3.1.1. Estimation of Transfer Entropy: Correlation Integral Approach  

The first method for estimation of Transfer Entropy from the correlation integral 

was detailed in Chapter 2. From Schreiber (Schreiber, 2000), Transfer Entropy 

from N � M is defined as in Equation 3.3, where the probabilities are calculated 

using the correlation integral. For discrete systems, the correlation integral can 

be approximated by the correlation sum defined as 

 ��a@9�;b � 2���#�� i i �9� H �	#9j; H 	�9j;�#���� ;

#mj  (3.3) 

Here � is the number of time points, k is the embedding dimension for x, W is the 

Theiler window (Theiler, 1986),  ���#�� � 9� H k 8 1;9� H k H � 8 1;, r is a 
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threshold value and �·� is a distance norm. (Any norm can be used although 

maximum norm is considered for computational reasons.)  Θ9·; is the Heaviside 

step function. � is used to avoid spurious correlations which creeps in due to 

neighbors being very close in time (high sampling frequency) due to continuity of 

the signal in the time domain and not to its dynamics. 

 For small radius � , the entropy of a variable M can be estimated in terms 

of the correlation sum as  

 �9M; � ln �a@9�;b 8 k ln � (3.4) 

This approximation allows us to define ��Y�X as 

 ��Y�X �  H� ~	
:�, 	
9j;, �
9�;� H � ~	
9j;�
8 � ~	
:�, 	
9j;� 8 � ~	
9j;, �
9�;� 

(3.5) 

which gives us Equation 2.17 

 

3.1.2. Estimation of Transfer Entropy: K-nearest neighbor Approach  

This method differs from the previous method in the estimation of the mutual 

information. The calculation of �9M; in Equation 3.7 is based on the K-neighbor 

distances. 

 The joint entropy for � ~	
:�, 	
9j;, �
9�;� from Equation 3.5, is estimated by 

 
:�, 	
9j;, �
9�;� �  H�9k; 8 �9z; 8 log9ojo�o�; 8 k 8 { 8 1z i log �9%;�

#m�  (3.6) 

 

while the entropy � ~	
9j;� (and accordingly for the other two entropies in 

Equation 3.5) is estimated by   
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 � ~	
9j;� � 1z i ���=9�;9%;� 8 �9z; 8 log9oj;�
#��

8 kz i log �9%;�
#m�  

(3.7) 

The space that (	
9j;) evolves is considered a projection from the higher-

dimensional space where  (	
:�, 	
9j;, �
9�;) evolves. 

with �=9�; is the number of points whose distance from the %th point of 	
9j; is less 

than 
�9#;�  plus one, �9	; is the digamma function G�9	; � <<= log Γ9	; � � 9=;�9=; I and 

oj is the volume of the �-dimensional unit cube, using the maximum norm as the 

distance metric. Since we know Transfer Entropy is equivalent to the normalized 

Conditional Mutual Information (Hlavackova-Schindler et al., 2007) we have from 

Equation 2.16 where the mutual information � is calculated by Equation 3.6 and 

Equation 3.7 instead of using the correlation integral.  

 

3.2. Optimal Data structure and an Efficient Algorithm to compute TE 

The computation of ��Y�X (Equation 3.5) is a computationally intensive task.  

The key step in the estimation of TE involves estimation of the correlation integral 

(Equation 3.3). Computation of ��a@9�;b takes most of the computation time, 

because it involves a nearest neighbor search in a k 8  { embedding space. With 

the amount of data at hand (over 85 hours of data for two patients including 

interictal and ictal data) an efficient algorithm was essential. 

An important step in the computation of correlation sum is to find the 

maximum numbers of neighbors for a given point in a k-embedded space. This 

directly affects the optimality of the data structure used to hold the embedded 
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data. A quick intuitive approach (commonly referred to as the brute force method) 

is to iteratively go through every single node in linked list for a reference node, 

simultaneously computing the distance between the current node and the 

reference node and keeping in memory the number of neighbors for a given 

reference node. Although this method is simple in conception, it suffers from the 

biggest cost with respect to time complexity. Every node is traversed at most z 

times, where z is the total number of data points in the segment of analysis 

(2048 in the EEG analysis). This yields an asymptotic polynomial time complexity 

of "9z�;. Literature in cost of algorithms (Cormen, 2001) tells us that this is 

inefficient and too computational intensive. We need to use a data structure that 

has quick retrieval in order to reduce the time complexity for the nearest neighbor 

search. K-d tree data structure is employed for this purpose. 

K-d tree (short for k-dimensional tree) is a space-partitioning data 

structure for organizing points in a k-dimensional space. K-d trees are particularly 

useful for applications involving searches in multidimensional spaces. K-d trees 

are a special case of binary space partitioning trees. In this thesis we shall refrain 

going into the details of the data structure with regard to its construction. For 

more details the reader can refer to (Bentley & Friedman, 1979; Eastman, 1982; 

Friedman, Baskett, & Shustek, 1975; Friedman, Bentley, & Finkel, 1977). 

 

3.2.1. Nearest neighbor search using k-d tree: 

The nearest neighbor search (NN) algorithm aims to find the point in the tree that 

is nearest to a given input point. This search can be done efficiently by using tree 

properties to quickly eliminate large portions of the search space. Finding the 

nearest point is an "9{¡¢ z; operation in the case of randomly distributed points. 
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Analyses of binary search trees has found that the worst case for search time in 

an k-dimensional KD tree containing N nodes is given by (Lee & Wong, 1977) 

 A£���� � "9k. z��~�j�; (3.8) 

 

which makes this approach significantly faster than the brute force method.  

In very high dimensional spaces, the curse of dimensionality causes the 

algorithm to need to visit many more branches than in lower dimensional spaces. 

In particular, when the number of points is only slightly higher than the number of 

dimensions, the algorithm is only slightly better than a linear search of all of the 

points. As a rule of thumb, if the dimensionality (of embedding) is k, the number 

of points in the data, z, should be z ZZ  2j. In our case z � 2048 which implies 

z ZZ 92j � 24 � 64; holds true. 

 

3.3. Measures to Detect Information Flow in Coupled Systems 

The Transfer Entropy values contain information about which system is the driver 

and which system is driven. Theoretically, smaller values of ��Y�X (in a given 

direction) imply that the amount of information about the next state of M 

considering the current state of M and N is small compared to considering only 

the current state of X.  

 As we move from bivariate time series to multivariate time series we are 

dealing with several drivers and several response systems (driven systems). To 

address this situation, we develop bivariate measures that quantify the involved 

variables’ relative strength of driving in pairs. We propose four such measures: 

Outflow (TEO), Inflow (TEI), TE Net Outflow (TEN), and TE Average Outflow 

(ATE). It is important to analyze each of these measures and has meaning only 
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when the system under consideration has several subsystems with varying 

coupling strengths and directions. 

Consider a large complex system with k coupled sub-systems D	#J#m�j . We 

have aj�b pairs 9	#,
, 	�,
 ; where TE is estimated from data points 	#,
, with � 

running from 1, … , z for all combinations of % and ¦. ��#��  then denotes the 

transfer entropy outflow from the %�§ subsystem to the ¦�§ subsystem. We use 

this terminology for all measures discussed below.  

 

3.2.1 TE Outflow (TEO) 

Transfer Entropy is first estimated for all ¨	#,
©#m�j
 in the ‘outward’ direction. TEO 

is defined as 

 ��"# � 1k H 1 i ��#��
j

�m��ª#
 (3.9) 

In systems where couplings are sparse and localized, subsystems may 

have stronger connection with just a few other subsystems. Here the connection 

with the maximum values may be of interest. Therefore, we modify the above 

equation as follows  

 ��"«# � max$ �,�ª# ��#�� (3.10) 

 

3.2.2 TE Inflow (TEI) 

Transfer Entropy is estimated for all ¨	#,
©#m�j
 in the ‘inward’ direction. TEI is 

defined as 
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 ��'# � 1k H 1 i ����#
j

�m��ª#
 (3.11) 

Similarly, using the maximum inflow metric, we have  

 ��'«# � max$ �,�ª# ����# (3.12) 

 

3.3.3 TE Net Outflow (TEN) 

Transfer Entropy is estimated for all ¨	#,
©#m�j
 in both directions. TEN is defined as 

 ��z# � 1k H 1 i9��#�� H  ����#;j
�m��ª#

 (3.13) 

The difference ��#�� H  ����# has an expected value of zero for either 

independent or completely dependent and equally bidirectional dynamics 

between i and j. Non-zero differences characterize an existing direction of 

coupling.  

For sparse coupling 

 ��z«# � max$ �,�ª# 9��#�� H  ����#; (3.14) 

 

3.3.4 Average TE Outflow (ATE) 

Here Transfer Entropy is estimated for all ¨	#,
©#m�j
 in both directions. Then ATE is 

defined as 

 C��# � 1k H 1 i ��#�� 8  ����#2
j

�m��ª#
 (3.15) 

In cases where the overall strength rather than the direction of coupling is of 

importance, ATE is preferred. ATE values are distributed around zero for 
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realizations of independent dynamics between I and j. Increasing coupling 

strengths are generally reflected in increasing values of ATE. 

Similarly as before, for maximum strength of coupling we define 

 C��# � max$ �,�ª# 
��#�� 8  ����#2  (3.16) 
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Chapter 4 

APPLICATION OF TRANSFER ENTROPY TO COUPLED DYNAMICAL 

SYSTEMS 

4.1. Discrete Models: System of Coupled Henon maps 

Consider two nonlinearly coupled Henon systems given by the equations 

 	�,
:� �  1.4 – a¬�	�,
	�,
 8 91 H ¬�;	�,
� b 8  0.3	�,
�� (4.1) 

 	�,
:� �  1.4 – 9¬�	�,
	�,
 8 91 H ¬�;	�,
� ; 8  0.3	�,
�� (4.2) 

where ��, ��  ® G0,1I are the coupling coefficients between the two maps. 

The data x1(n) generated from Equation 4.1 will be referred to as �� and x2(n) 

from Equation 4.2 will be referred to as ��. We estimate ��X�Y and ��Y�X using 

both the Correlation Integral method (����) and the Nearest Neighbor approach 

(����). For both methods of TE estimation, the embedding dimensions k and { in 

Equation 2.15 are chosen to be 2 and 1 respectively, and E � 1. 

Robustness of TE estimation to noise 

A total of 204,800 data points were generated from the above model. The 

coupling was kept constant at �� � 0,  �� � 0.6 which established unidirectional 

coupling from �� � ��. White Gaussian noise was added to the time series from 

�� and �� for different Wz& (signal-to-noise-ratio) values, TE was estimated for 

100 segments of 2,048 points each. The mean and standard deviation of TE is 

shown in Figure 4.1. 

 Both methods for estimation of TE showed consistent behavior for large 

SNR values, being able to distinguish the driver and driven maps. ���� showed a 

drop in TE values for less than 15 dB SNR, while ���� showed more robustness 

to noise even around 1 dB SNR although its standard deviation increased. 
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Figure 4.1. (a) ���� and (b) ���� with addition of observational Gaussian noise 

in a system of two coupled Henon maps. ���� shows more robustness to noise 

compared to ����. Blue line is TE (�� � ��) and red line is TE (�� � ��) 

 

System of many Coupled Henon maps 

A system of many coupled Henon maps is described in Figure 4.2. We will use 

the measures defined in Equations 3.11 through 3.18 to analyze the flow of 

information in the system and determine the component (individual Henon map) 

which exhibits largest outflow, largest coupling and the dominant characteristics 

with respect to information flow. All the Henon time series are generated by 

Equations 4.1 and 4.2 with the coupling specified in Figure 4.2. The embedding 

dimension and lag used for TE estimation is the same as in the previous section. 

All notational conventions are the same as before unless otherwise specified. 
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Figure 4.2. Network of Henon maps coupled with different coupling coefficients 

as specified by the coupling values near the arrows between maps. Arrows show 

the direction of coupling.  

 

 Figure 4.3. TEO for the network system of Henon maps: (a) The average TEO 

over the entire data, (b) the outflow between pairs of maps in a grid, and (c) 

Outflow from all Henon maps over time. 
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Figure 4.4. TEI for the network system of Henon maps: (a) The average TEI over 

the entire data, (b) the inflow between pairs of maps in a grid, and (c) Inflow of all 

Henon maps over time. 

 

Figure 4.5. TEN for the network system of Henon maps: (a) The average TEN for 

the entire data, (b) the Net outflow between pairs of maps in a grid, and (c) Net 

Outflow of all Henon maps over time. 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Henon Map H
i

A
ve

ra
ge

 T
E

I (
bi

ts
)

Data points

H
en

on
 M

ap
 H

i

 

 

10 20 30 40 50 60 70 80 90 100

1
2
3
4
5
6
7
8
9

10
0.05

0.1

0.15

0.2

0.25

0.3

Henon Map H
i

H
en

on
 M

ap
 H

i

 

 

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10 0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

Henon Map H
i

A
ve

ra
ge

 T
E

N
 (

bi
ts

)

Data points

H
en

on
 M

ap
 H

i

 

 

10 20 30 40 50 60 70 80 90 100

1
2
3
4
5
6
7
8
9

10
-0.05

0

0.05

0.1

0.15

Henon Map H
i

H
en

on
 M

ap
 H

i

 

 

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10 -0.5

0

0.5

(b) (a) 

(c) 

(a) (b) 

(c) 



35 

 

 

Figure 4.6. ATE for the network system of Henon maps: (a) The average ATE for 

the entire data, (b) the strength of coupling between pairs of maps, and (c) 

Average TE of all Henon maps over time. 

 

Discussion 

From Figure 4.2 it is clear that �� has the highest outflow. This is indeed the case 

since it has unidirectional couping with ���
. The �4 has the second highest 

outflow due to high coupling strength with �¯ . All the rest of the maps are driven 

and hence have positive inflow of information. �° is only weakly driven by �±. 

The �² and ��³ have bidirectional coupling with each other which shows as small 

values for TEN. 

We evaluate our results in the following section in light of the above 

discussion. 
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Description of plots 

For each of the 4 methods (TEO, TEI, TEN and ATE) we have one Figure with 3 

descriptive panels sub labeled (a), (b) and (c). Panel (a) is the plot of the average 

value for each method over time (or for all data points). This aids in 

understanding which Henon map �# has the highest value of a given measure 

averaged  to all other maps. No assumption about the nature of coupling is 

made, which makes it more suitable for time series from an unknown system. 

Panel (b) shows pairwise information flow for each method from �# to �� $ %, ¦. 
The color corresponds to the strength of interaction. The value is the time 

average over all data points. In panel (c) we show the same information as in (a) 

except that the evolution of the information flow can be observed over time. This 

proves useful to observe change in the dynamics of information flow over time in 

systems that coupling changes with time (like in EEG). 

Results 

In Figure 4.3(a) we observe that �� has the highest TEO values of TEO with �± 

and �4 following it. This is in accordance with the model structure and specified 

couplings. In Figure 4.3(b), the relevant pairwise information and outflow from �� 

to ���± can be seen as increasing plot color intensity due to the increase in 

coupling strength. Figure 4.3(c) shows the same information over time. 

Figure 4.4(a) shows the inverse relationship of TEI compared to TEO. 

��, �!, �
, �± show increasing values of TEI due to increasing coupling strength 

of the response system. Similar observations are made for plots (b) and (c). 

In Figure 4.5(a) it is interesting to observe that only  ��, �4 and �² show 

positive TEN. This is because only they have Net positive outflow. Although �± is 
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driving �°, �± is driven more strongly by �� and hence it has a negative net 

outflow. Figure 4(b) and (c) show plots supporting the above arguments. 

Finally, Figure 4.6 shows that sites with strong coupling in either direction 

show higher values for ATE.  

 The above results validate the point that each of the defined four 

measures in terms of TE highlights unique characteristics in a complex network 

of coupled systems. Depending on the nature of interactions one is seeking for, 

the right measure can be utilized. In Chapter 5, we will apply these insights to the 

EEG, where the nature of interaction and strength of interaction are unknown and 

changing over time. 

 

4.2. Continuous Models: Systems of Coupled Rossler oscillators 

A coupled Rossler system with N Rossler oscillators in the chaotic regime can be 

written as  

 	e# �  H´#�# H f# �#9�, 	#, 	�) (4.3) 

 �e# �  H	# 8 µ#�# (4.4) 

 fe# �  ¶# 8 f#9	# H ·#) (4.5) 

where µ# � 0.15, ¶# � 0.2, ·# � 10 are the parameters for % �   1 … z. For our 

application we use diffusive (linear) coupling, which means �#9�, 	#, 	�; � �9	� H
	#; , and z � 3.  

The coupling is described in Figure 4.7. 
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Figure 4.7. A coupled system with 3 Rossler oscillators (R1, R2 and R3) and their 

coupling ����� ��. 

We will once again use the measures defined in Equations 3.11 through 3.18 to 

analyze the flow of information in the system and determine the component (R1, 

R2 or R3) that exhibits largest outflow, largest coupling and the dominant 

characteristics with respect to information flow. All Rossler time series R1(t), 

R2(t) and R3(t) are generated by Equations 4.3 to 4.5 with varied coupling. 

102,400 data points were generated per coupling value. The embedding 

dimension � � 3 and lag E � 4 was determined by using methods from section 

2.3 for TE estimation. TE is estimated for non-overlapping points of window size 

= 2048 points. k � 3 and { � 1 are chosen as the embedding dimension of the 

Rossler.  

Effect of TE on variation of coupling 

The effect of variation in coupling strength is shown in Figure 4.8. It can be seen 

that TE between two Rossler oscillators has higher values when the coupling 

�! � 0 
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strength is higher. The coupling is changed every 50 TE points (or 102,400 

points in the original time series.). The coupling strengths are shown in Figure 

4.8. 

 

 

Figure 4.8. (a) Variation of �� �� � with respect to variation in coupling 

coefficient. (b) Same for � �� ! . (c) Same for �� �� !. 
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Figure 4.10 (a) z#  $ % � &�, &�, &! . (b) C��# $ % � &�, &�, &! 
 

Discussion 

From Figure 4.9(a) we can see that ��" � is always higher than  ��" � and 

��" ! due to the nature of the existing coupling in the system. ��" � and  

��" ! are roughly zero since there is no effective outflow due to the existing 

unidirectional coupling inwards. 

 Figure 4.9(b) shows ��' � to be close to zero throughout since there is no 

inflow to R1. R2, which is not driven for the first 50 points, shows zero ��' � and 

then increases once the coupling between &1 � &2 becomes non zero. The color 

intensity which is an indication of the amount of inward information flow increases 

as the coupling increases. 

 Figure 4.9(c) shows better results than the above two for R1 since all 

bias, if any, is removed due to the way ��z# is calculated. Finally Figure 4.9(d) 

shows the average outflow and we can observe that both C��z � and C��z ! 

have higher values when the coupling of R2 and R3 with R1 increases (by the 

end of the record). We also observe that  ��z � is also high in this period.  
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Chapter 5 

APPLICATION OF TRANSFER ENTROPY TO DYNAMICS OF EPILEPTIC 

BRAIN 

5.1. Introduction 

Epilepsy is considered a “sacred” or “divine” disease and is among the most 

common disorders of the nervous system, second only to stroke, and affects 1-

2% of the world’s population (Engel, Pedley, & Aicardi, 2008). Estimates of 

incidence rates (number of new cases per year) range from 24 to 53 per 

100,000. The high incidence of epilepsy stems from the fact that it occurs as a 

result of a large number of causes, including genetic abnormalities, 

developmental anomalies, febrile convulsions, as well as brain insults such as 

craniofacial trauma, central nervous system infections, hypoxia, ischemia, and 

tumors.  

The hallmark of epilepsy is recurrent seizures. If seizures cannot be 

controlled, the patient experiences major limitations in family, social, educational, 

and vocational activities. These limitations have profound effects on the patient’s 

quality of life, as well as on his or her family (Goldstein & Harden, 2000). The 

seizures are due to sudden development of synchronous neuronal firing in the 

cerebrum and are recorded by electrodes on (scalp) or inside (intracranial) the 

brain. Seizures may begin locally in portions of the cerebral hemispheres (partial 

/ focal seizures with a single or multiple foci) or simultaneously in both cerebral 

hemispheres (generalized seizures). After a seizure’s onset, partial seizures may 

remain localized and cause relatively mild cognitive, psychic, sensory, motor, or 

autonomic symptoms, or may spread (secondarily generalized) to cause altered 
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consciousness, complex automatic behaviors, or bilateral tonic-clonic 

(convulsive) movements.  

Because seizures typically occur without a warning to the patient, 

localization of the epileptogenic focus requires a long stay (days) of the patient in 

a well-controlled, long-term EEG recording clinical environment, the epilepsy 

monitoring unit (EMU), while the patient’s anti-epileptic medication is 

progressively tapered. The goal is for the patient to have several (usually 3 to 4) 

of his/her typical seizures in order for the physicians to localize the focus with 

confidence. Continuous video of the patient is also recorded for the physicians to 

correlate the observed clinical symptoms in the video with the findings from the 

EEG (Gotman, Gloor, & Ives, 1985). Focus localization at EMUs through visual 

inspection of the recorded EEG has variable rates of success. For example, up to 

20-50% of pediatric EMU evaluations do not capture any epileptic events (Asano 

et al., 2005). In a mixed group of children and adults who attained post-operative 

seizure-freedom, the EEG had correctly localized the focus only 70% of the time, 

and even less so for extra-temporal epilepsies, for which the EEG also had 

falsely localized the focus up to 25% of the time (Manford, Hart, Sander, & 

Shorvon, 1992). 

Classifying epilepsy as focal or generalized guides selection of 

anticonvulsants, aids classification into an epilepsy syndrome, and determines 

whether neuro-imaging is needed for further localization. Typically, only patients 

rendered focal by the EEG proceed for neuroimaging studies. Multiple imaging 

modalities can be used during a presurgical evaluation: magnetic resonance 

imaging (MRI), positron emission tomography (PET), Subtraction Ictal Single-

photon-emission-computed-tomography (SPECT) Co-registered with MRI 
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(SISCOM), and magnetoencephalography (MEG). However, these modalities 

have serious limitations too. For newly diagnosed focal epilepsy from phase I, 

12-13% of cases are symptomatic (cerebral lesion visible with neuro-imaging) 

and 18-29% are cryptogenic (cerebral lesion not visible with neuro-imaging) 

(Loiseau et al., 1990). While the presence of a surgically remediable lesion on 

MRI improves post-surgical seizure freedom to 70-90%, a clinically relevant 

lesion is found only 15-20% of the time.  

The mainstay of treatment of epilepsy today is pharmacological. 

Nonetheless, 30-40% of patients with epilepsy have seizures that are refractory 

to medical therapy (medically refractory or clinically intractable) (Kwan & Brodie, 

2000; Schiller & Najjar, 2008). For these patients, surgical treatment may then be 

the only option for seizure control. However, surgical treatment can be effective 

in carefully selected cases, usually 8-10% of the total epileptic patients (Engel Jr, 

Van Ness, Rasmussen, & Ojemann, 1993), for whom the focus location can be 

rendered with high confidence and ablation of focus is not expected to sever 

nearby critical brain centers. Good responses (Engel Class I) to surgery occur in 

approximately 70-90% of adult patients with complex partial seizures due to 

mesial temporal sclerosis. However, the response rate drops off markedly (50-

60%) in patients with epileptogenic lesions of the neocortex (most commonly in 

frontal or temporal lobes). Patients diagnosed with more than one epileptogenic 

focus, or those with generalized seizures, usually do not experience complete 

seizure control with current surgical therapy. This is a good example of the role 

an accurate diagnosis of the location and extent of the epileptogenic focus plays 

in the treatment of epilepsy. 
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It is widely believed that seizures arise from the epileptogenic focus (also 

called epileptogenic zone to emphasize the network dimension of it) because of 

damage in key brain structures and/or networks. For example, damage to 

hippocampal circuitry causes seizures of mesial temporal lobe origin. The 

characteristic circuit abnormalities include drop out of neurons, loss of 

neurotransmitter receptors, simplification of the dendritic tree (reduced synaptic 

input), sprouting of dentate granule cell axons (increase of the number of 

excitatory-excitatory feedback connections), and increase in glial cell elements 

(sclerosis) (Koblar, Black, & Schapel, 1992). Physiological studies in 

epileptogenic hippocampi have demonstrated loss of neuronal inhibition. It is 

generally believed that impairment of the balance of inhibition and excitation at 

the neuronal network level is one critical factor for epileptogenesis (Dudek & 

Spitz, 1997). Clinical research in controlling of seizures via electromagnetic (e.g., 

deep brain stimulation – DBS) or in-situ pharmacological stimulation has started 

and is expected to flourish in the near future within the new field of 

neuromodulation (Lopes da Silva & Pijn, 1995). A basic question that needs to be 

answered is where to stimulate, especially with respect to the focal zone. This is 

another good example where localization of the focus and its extent is a problem 

that needs to be solved accurately for an epilepsy treatment to be effective.  

Our research may shed light on epileptogenesis by providing, tools for EEG 

monitoring of epileptogenic foci in patients with the disorder under development. 

 

5.2. Long Term EEG Monitoring 

In this thesis, the methods developed in the previous chapters are applied to 

EEG data from two patients with epilepsy. The patients underwent presurgical 
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evaluation and long-term intracranial EEG recordings, and subsequent 

successful (Engel’s class I) surgery with removal of the clinically identified 

epileptogenic focus. These stored pre-surgical, long-term, continuous EEG 

recordings of several days in duration, were used to test our methodologies. 

Informed consent for participation in this study was obtained from all patients. 

The recording procedures and the data recorded and analyzed are detailed 

below.  

The two patients underwent a stereotactic placement of: 

1.) Bilateral depth electrodes the hippocampi (RTD1 anterior, RTD6 

posterior, in the right hippocampus, with RTD1 adjacent to right 

amygdala; LTD1 anterior, LTD6 posterior in the left hippocampus with the 

LTD1 adjacent to the left amygdala). 

2.) Two subdural strip electrodes were placed bilaterally over the orbitofrontal 

lobes (LOF1 to LOF4 in the left and ROF1 to ROF4 in the right lobe, with 

LOF1, ROF1 being most mesial and LOF4, ROF4 most lateral).  

3.) Two subdural strip electrodes were placed bilaterally over the temporal 

lobes (LST1 to LST4 in the left and RST1 to RST4 in the right, with LST1, 

RST1 being more mesial and LST4 and RST4 being more lateral).  

Video/EEG monitoring was performed using the Nicolet BMSI 4000 EEG 

machine. EEG signals were recorded using an average common reference with 

band pass filter settings of 0.1 Hz – 70 Hz. The data were sampled at 200 Hz.  
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Figure 5.1. Schematic diagram of an horizontal section of the brain showing the 

depth and subdural electrode placement.  
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Figure 5.2. EEG at the beginning of a seizure in patient 1. Seizures are bursts of 

sudden, relatively brief disturbances of brain’s function caused by 

hypersynchronous abnormal paroxysmal cerebral electrical activity.  Seizure 

starts at RTD (hippocampus focus) and then spreads to other channels (brain 

sites). 
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Figure 5.3. EEG from one full tape of recording around a seizure spanning 5 

hours 22 minutes. 

 

5.3. Estimation of Transfer Entropy, TEO, TEI, TEN and ATE for EEG 

In chapter 4 we discussed the application of Transfer Entropy (TE) to coupled 

chaotic attractors. In this chapter, we apply the methods developed to EEG data 

from patients with epilepsy. The choice parameters k and { (order of the Markov 

process for the driven and driving system) are important to approximately capture 

the information transfer in the brain taking into account the changes in the 

underlying dynamics of the system. We previously observed that the radius  � in 

the estimation of TE affects the probability distribution and hence the estimate for 
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TE. Extension of these concepts to real world data like EEG is simple though not 

trivial. We maintain {-Markov order of the driving system to be 1, as suggested in 

(Schreiber, 2000), to investigate mostly direct (very fast) interactions of the 

driving system with the driven ones. The k-Markov order was chosen by methods 

detailed for embedding dimension in Chapter 3 (EEG segments of 2048 points, 

that is, 10.24 sec in duration). The radius r for the calculation of the involved 

transition probabilities is chosen as the value where we observe the first linear 

region of the {��9�;/ln 9�; curve per EEG segment. This value was found to be 

around 0.7 of the standard deviation of the recorded EEG data. 

TE is estimated from successive, non-overlapping EEG segments of 

10.24 seconds in duration (2048 points at 200 Hz sampling rate). The EEG 

signals were recorded from a total of 28 electrodes. TE values are estimated for 

both direction (��Y�X ��� ��X�Y) and for every pair of sites (x, Y). 

Iasemidis et al., in (L. D. Iasemidis, Chris Sackellares, Zaveri, & Williams, 

1990) (L. Iasemidis & Sackellares, 1991), have shown that a selection of duration 

of 10.24 sec is adequate for the convergence of the estimates of measures of 

dynamics from the nonstationary EEG signals in epilepsy. 

Proceeding, we estimate Equation 3.11 – 3.18 for all the EEG data from 

both patients using the optimized TE algorithms discussed in section 5.3. 

Surrogate analysis was performed (using shuffled data from the driven system to 

break any existing connectivity in the surrogate data) for bias removal. The 

analysis of the generated data showed very little bias, of low variance, and did 

not significantly affect the estimation of ��.  

 The results for all four measures ��"#, ��'#, ��z#and C��# are shown in 

Figure 5.4 during ictal and interictal period. 
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Description of plots 

For each of the 4 methods (TEO, TEI, TEN and ATE) we use the color plots for 

presentation purposes, which clearly show the values of the measure for each 

electrode on the average across the rest of the rest of the electrodes over time. 

In Figure 5.4 (a), it is interesting to observe the changes in value of the measure 

right after a seizure (e.g., RST3). The vertical axis has the montage with labeled 

electrodes. The horizontal axis is time. The color bar on the side of the plots 

gives the scale or reference for color and value of the measure. The red end of 

the color spectrum denotes higher measure values and the blue end of the 

spectrum denotes lower values. In Figure 5.4 (a) it is also interesting to observe 

red values for RTD6 over time. This indicates that RTD6 has higher outflow of 

information (TEO) compared to other sites which have colors denoting lower 

intensity.  

Observations: 

The following observations can be made with regard to the 4 measures for the 

two patients. The observations are categorized by their applicability to different 

applications (discussed below in subsequent sections). 

Application to Epileptogenic Focus Localization 

• The highest outflow over time is observed in RTD 6 (Figure 5.4 (a)) 

• The highest inflow over time is observed in RTD 4 (Figure 5.4 (b)) 

• The highest coupling (strength of interaction) is observed in RTD. 

(Figure 5.5 (b)) 

• RTD 6 is observed to ‘drive‘ the other sites most of the times. (Figure 

5.5 (a), 5.6 (a)) 
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Application to Epileptogenic Focus Lateralization 

• LTD, LST, LOF (Left hemisphere) and ROF (Right Frontal) show 

significantly less activity compared to RTD, RST region. (Figure 5.4, 

5.5 (a) and (b)) The epileptogenic zone for these patients was RTD, 

RST. 

Application to Seizure Detection and Understanding of Seizure Dynamics 

• Postictal transition shows a significant drop in information flow across 

all channels (Inflow and Outflow). (Figure 5.4 and 5.5) RST suffers the 

greatest disruption in information flow in magnitude and duration 

postictally. (Figure 5.4 and 5.5, 5.6) 

Application to Seizure Prediction and Understanding of Seizure Dynamics  

• RST shows a steady increase in information flow, until seizure breaks 

connectivity and resumes progressively increasing postictally. (Figure 

5.4 and 5.5, 5.6) 

 

 

 

 

 

 

 

 

 

 



52 

 

 

 

 

Figure 5.4. Patient 1: (a)  ��"# $ % vs. time. (b) Similar plot for '# . Arrows denote 

the occurrence of seizures in the analyzed EEG record. 

 

 

 

(a) 

(b) 
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Figure 5.5. Patient 1: (a)  ��z#  $ % vs. time. (b) Similar plot for C��# . Arrows 

denote occurrence of seizures in the analyzed EEG record. 

(a) 

(b) 
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Figure 5.6. Patient 2: (a)  ��" $ % vs. time. (b) Similar plot for C�'# . Arrows 

denote occurrence of seizures in the analyzed EEG record. 

 

5.4. Information Flow in Preictal and Postictal transition  

In light of the above plots, and the consistency of the above observations across 

seizures in the two patients, we postulate that the information flows (��"# and 

C��#) at the focal electrodes (RTD) show a significant drop in value postictally. 

(a) 

(b) 



55 

This denotes a breakage of information flow (breakage of coupling among sites) 

due to a seizure. This is typically observed in the epileptogenic areas and is in 

agreement with a past hypothesis of our group about the resetting power of 

seizures. 

 In order to test this hypothesis, we performed a test to see if the drop in 

the mean value of the measures from pre to post seizure is statistically significant 

compared to transition at a randomly selected point in time interictally. This was 

evaluated by performing a right-tailed unpaired two-sample t-test for the 

measures between samples taken five minutes from the immediate preictal 

period and five minutes from the immediate postictal region. The objective was to 

observe a significant difference in the means of the two samples. The t-statistic 

was calculated as  

 ��������� � M�¸̧ ¸ H  M�¸̧ ¸¹Xº¸̧¸̧ �X»¸̧¸̧     (5.1) 

where  

 ¹Xº¸̧¸̧ �X»¸̧¸̧ � ¼9¹�� 8 ¹��;�  (5.2) 

 

and ¹� is the unbiased estimator of the variance of the two samples. The 

��������� is calculated for a data sample of � �  30 TE points preictally and 

postictally (which roughly corresponds to 5 minutes pre seizure and 5 minutes 

post seizure). The seizure durations were taken as 12 points in the TE profiles 

(roughly 2 minutes) as the gap between the two samples. 

A t-statistic distribution was generated for ��������� using ��"# or C��# 
9% � &�½; values by performing the t-test as mentioned above. For the statistical 
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evaluation we employed a sliding axis with pre and post windows over the entire 

duration of the recording. The generated ��������� distribution was used to check 

the statistical significance of the difference in mean (or drop in information flow: 

��"# and  C��#) while transitioning from preictal to postictal periods. 

It can be seen from Figure 5.7 that the ��������� pre- to postictal 

transitions for ��" ¾¿ and  C�� ¾¿ are statistically significant (low p values). 
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Figure 5.7. (a) and (b) show the p value at seizures for ��" ¾¿ and C�� ¾¿ respectively. 

 

It is important to note that these observations can be made with even smaller 

duration of EEG data, but to rule out possibly large effects of short artifacts and 

small sample bias, and to test for consistency, we considered long durations. 

-15 -10 -5 0 5 10 15 20
0

0.0566

0.1132

0.1698

0.2264

0.2830
(a)

T
pre-post

 (TE
TEO

)

P
ro

ba
bi

lit
y 

(T
pr

e-
po

st
)

p=0.07036

p=0.03277

p=0.00611

p=0.00826

p=0.00368

p=0.00453

p=0.00232

p=0.00221

p=0.00023

p=0.00062

-20 -15 -10 -5 0 5 10 15 20 25
0

0.0566

0.1132

0.1698

0.2264

0.2830

0.3396

0.3962
(b)

T
pre-post

 (TE
ATE

)

P
ro

ba
bi

lit
y 

(T
pr

e-
po

st
) p=0.04223

p=0.02157

p=0.00300

p=0.00192

p=0.00243

p=0.00408

p=0.00385

p=0.00170

p=0.00028

p=0.00249



58 

These observations herein are promising for their employment in the solution of 

the problem of focus localization from interictal periods. This topic is further 

discussed in the next section. Table 5.1 below shows the p-value at seizures for 

patient 1. 

Table 5.1. p-values from the t-test  ��������� for RTD6 per seizure (patient 1). 

Seizure number 
p-values  

(ÀÁÂÃÁÄÅ ) 

p-values  

(ÁÂÆÃÁÄÅ ) 

Seizure 1 0.0003 0.0006 

Seizure 2 0.0017 0.0023 

Seizure 3 0.0041 0.0061 

Seizure 4 0.0216 0.0328 

Seizure 5 0.0025 0.0083 

Seizure 6 0.0024 0.0045 

Seizure 7 0.0030 0.0037 

Seizure 8 0.0019 0.0002 

Seizure 9 0.0038 0.0022 

Seizure 10 0.0422 0.0704 

 

5.5. Information Flow in Interictal EEG 

The 4 measures of information flow were calculated for interictal periods (without 

any seizures) too. Figure 5.8 shows the plot for ��"#, ��'#, ��z#and C��# for 24 

hour interictal EEG (void of seizures). 

Description of plots 

For each of the 4 methods (TEO, TEI, TEN and ATE), corresponding color plots 

were generated for each measure across time and electrode space. Horizontal 
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axis is time duration and the vertical axis has the montage with labeled 

electrodes. The color bar on the side of the plots codes for the values of each 

measure. The red end of the spectrum denotes higher measure values and the 

blue end of the spectrum denotes lower values. In Figure 5.8 (a) we observe red 

color for RTD6 over time. This indicates that RTD6 has higher outflow of 

information (TEO) compared to other sites which have colors of lower intensity.  

Observations 

1) ��", the outflow from each electrode in the plots, shows higher values at 

RTD4, RTD6 (clinically assessed focal sites) throughout the interictal 

period supporting the hypothesis that focus is a driver for normal brain 

sites even interictally.  

2) ��', estimated as the maximum inflow to each electrode in the plots, 

shows higher values in RTD2, RTD4 throughout the interictal period. This, 

along with the observation in (1) above, supports the hypothesis that 

focus also behaviors as an information sink in both of these patients. 

3) The above two observations motivated us to look into measures of net 

driving strength and coupling strength. ��z , which quantifies the net 

driving strength as described in Equation 3.16, shows the highest driving 

strength in RTD6 over time compared to the rest of the electrode sites. 

4) Finally,  , which quantifies the coupling strength between sites, shows the 

highest values at the entire right temporal region. This implies that RTD 

region has the stronger connections than any other region in the brain in 

both patients. 
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Figure 5.8. Patient 1: (a)  ��"# $ %  vs. time. (b) Similar plot for '# . 
 

 

 

(a) 

(b) 
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Figure 5.9. Patient 1: (a)  ��"# $ %  vs. time. (b) Similar plot for  ��'#. 
 

 

 

 

(a) 

(b) 
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Figure 5.10. Patient 2: (a)  ��"# $ %  vs. time. (b) Similar plot for ��'#. 
5.6. Application of TE to Epileptogenic Focus Localization 

In this section we present the results from the analysis of the EEG from both of 

our patients by the average value of the four information flow measures we 

developed. We already noticed in section 5.5 that the focus shows maximum 

outflow and inflow, and maximum coupling strength of all other electrodes. In 

(a) 

(b) 
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order to be able to successfully localize the focus, we venture out to find the site 

with highest TEO. TEO is able to detect the exact site with the highest outflow 

that might correspond to our hypothesis that focus drives the neighboring sites. 

 In some patient cases it is hard to localize the focus exactly due to 

changing dynamics of the focal sites over time and/or inability to record from the 

focus due to inadequate electrode placement. The clinically assessed focus for 

Patient 1 was RTD4 and RTD6. TEO is able to specifically show RTD6 as the 

site with highest outflow. Our analysis showed that TEO might be a better 

measure to detect a specific site than a region. 

As mentioned in section 5.1, clinical assessment is amenable to errors 

with regard to localizing to a particular electrode site (e.g., RTD6) compared to 

localizing to a region (e.g., RTD). This may be attributed to the fact that an 

epileptogenic focus may be present at a location neighboring and not exactly at a 

recording electrode site. It was noticed that the use of ATE gave results closer to 

the clinical assessment for both of our patients (RTD4 and RTD6). This may be 

because ATE mainly detects maximum coupling amongst sites, that is, it detects 

sites with maximum information flow in both directions. This could prove useful 

also in focus lateralization, that is, where even the location of the focus within a 

hemisphere of the brain cannot be identified. Figure 5.9 shows bar plots of 

average over time TEO per electrode site for the same duration as in Figure 5.4 

and 5.5 in patient 1. We can clearly observe that RTD6 (focus) exhibits the 

maximum outflow of all other sites (we observed the same finding in Figures 5.4 

and 5.5 visually but did not quantify it). Figure 5.10 shows the corresponding 

plots for patient 2. 
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Figure 5.11. Patient 1: Bar plot for the time averaged values of (a) ��"# $ %. (b) 

C��#$ %. RTD6 shows the highest values for ��" and RTD4 and RTD6 show the 

highest values C��, which match the clinical assessment of focus location. 
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Figure 5.12. Patient 2: Bar plot for the time averaged values of (a) ��"# $ %. (b) 

C��#$ %. RTD6 shows the highest values for ��" and RTD4 and RTD6 show the 

highest values C��, which match the clinical assessment of focus location. 
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Table 5.2.  Epileptogenic focus localization: Comparison of different methods of 

information flow localization techniques with clinical assessment of focus location 

Patient ID 
Focus (Clinical 

Assessment: All 

Seizures) 

Focus 

Localization 

(TEO) 

Focus 

Localization 

(ATE) 

 

Patient 1 

 
RTD2, RTD4, 

RTD6 

 
RTD6 

 
RTD4, RTD6 

 

Patient 2 

 
RTD2, RTD4, 
RTD6, RTD8 

 
RTD8 

 

 
RTD6, RTD8 

 

 Table 5.2 shows the results obtained from our methods for focus location 

compared to clinical assessment. The clinical reports, by visual inspection of the 

EEG at seizures’ onset, show different localization for each seizure and an 

overall localization to RTD. The clinical results shown in the Table represent an 

agreement across all seizures analyzed.  A more extensive analysis across 

several patients and development of a robust focus localization algorithm is left 

for future work. 

 

5.7. Application to Seizure Dynamics, Seizure Prediction and Seizure 

Detection 

Sections 5.3 to 5.6 showed that our developed TE-based measures of 

information flow provide new insights into understanding the dynamics of EEG 

preictally and postictally across two patients. These methods can be extended to 

achieve a robust framework for Focus Localization (Section 5.5 and 5.6) and 

Seizure Detection (��"ÇÈ�ÉP, Section 5.4). Once Focus Localization is achieved 
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from the interictal period, ��"ÇÈ�ÉP can be used for seizure detection by 

observing the change in information pre to post ictally (statistically shown in 

Section 5.4).  

 

Figure 5.13. Patient 1: ��"#$ % over time shows breakage of information flow at 

seizure across all channels. (Smoothened for visualization.) 

Change in information dynamics due to an upcoming seizure can be 

observed temporally and spatially in Figure 5.11. It is interesting to observe the 

different dynamical behavior of each channel. ��" ¾¿ drops in value immediately 

after seizure but resumes its preictal value in a very short period. This behavior 

of the focus was observed consistently at all seizures. On the other hand, ��" P¾ 

behaves differently. The drop in ��" P¾ is observed long term and its value 

remains low for several hours after a seizure before it increases in value.  

Figure 5.12 (a) shows a similar plot for a different tape in patient 1. We can see 

that there is breakage of information flow (TEO) across all channels during 
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seizure. Figure 5.12 (b) shows the plot of ��" ¾¿4 and we observe the drop right 

at seizure. This phenomenon is not visible in Figure 5.12 (c) for "ÊP¾� , where its 

values are very low.  The application of TE and TE-based methods shown in this 

chapter opens a window to the understanding of the dynamics of seizures and 

their implications, a very less understood topic to date. 
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Figure 5.14. Patient 1: (a) ��"#$ % over time shows the breakage of information 

flow per site at seizures. (Smoothened for visualization.) (b) same plot for 

��" ¾¿4 (c) same plot for ��"ÊP¾� . Red lines indicate the occurrence of 

seizures. 
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Chapter 6 
 

CONCLUSION 

One of the objectives of this thesis was to address the underlying mechanisms of 

epilepsy as a dynamical disorder through the study of Information Flow in the 

epileptic brain.  

 At first, a new framework was developed to analyze Information flow in 

complex network of coupled sub-systems using Transfer Entropy and derived 

measures. The application of the methods on model data was successful in 

distinguishing the desired sub-subsystem from the whole system, with respect to 

its interactions with other sub-systems. The simulation results and analysis also 

showed the robustness of these methods to noise. Visual results were provided 

to help clearly identify the relative behavior of each sub-system. 

 After validating the efforts on the models, the methods were applied to 

long-term EEG data from two patients with focal epilepsy. Several observations 

were made by analyzing the EEG under the assumption that brain consists of 

highly complex coupled subsystems. The analysis was performed separately in 

interictal and ictal periods for the two patients. The results from the analysis in 

the interictal periods showed that the epileptic focus had maximum outflow in 

information throughput. This supports the hypothesis that the focus is a driver to 

the neighboring response systems (brain sites). Results regarding strength of 

coupling support the hypothesis that focus has the strongest interaction with 

neighboring sites with respect to inflow and outflow of information. 

 The analysis of EEG from the ictal period sheds light on the dynamics of 

the transition to seizures (ictal periods) and the mechanisms involved. The 

results showed that seizures behave as deterrents for connection of the focus 
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with the rest of the brain. A drop in information flow from the focus is observed 

postictally. While the focal sites recover immediately and continue to be the 

strongest driver, other sites take time to restore their information flow. We believe 

that this observation opens the door to the development of important tools for 

both seizure detection and focus localization. The statistical results we herein 

obtained along these directions provide very good supporting evidence towards 

these two goals. There also exists the opportunity for possible application of such 

results to improvement of seizure prediction algorithms. 

In summary, the tools developed and the results generated within this 

thesis hold promise for enhancement of new concepts in the fields of seizure 

prediction, seizure detection and focus localization, and provide a new framework 

for engineering studies and discoveries in epilepsy. Future work should use 

these tools to further investigate the mechanisms of epileptogenesis and 

ictogenesis, as well as the workings of the normal brain. 
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